Science.gov

Sample records for promotes mesenchymal stem

  1. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis.

    PubMed

    Jung, Younghun; Kim, Jin Koo; Shiozawa, Yusuke; Wang, Jingcheng; Mishra, Anjali; Joseph, Jeena; Berry, Janice E; McGee, Samantha; Lee, Eunsohl; Sun, Hongli; Wang, Jianhua; Jin, Taocong; Zhang, Honglai; Dai, Jinlu; Krebsbach, Paul H; Keller, Evan T; Pienta, Kenneth J; Taichman, Russell S

    2013-01-01

    Tumours recruit mesenchymal stem cells to facilitate healing, which induces their conversion into cancer-associated fibroblasts that facilitate metastasis. However, this process is poorly understood on the molecular level. Here we show that CXCL16, a ligand for CXCR6, facilitates mesenchymal stem cell or very small embryonic-like cells recruitment into prostate tumours. CXCR6 signalling stimulates the conversion of mesenchymal stem cells into cancer-associated fibroblasts, which secrete stromal-derived factor-1, also known as CXCL12. CXCL12 expressed by cancer-associated fibroblasts then binds to CXCR4 on tumour cells and induces an epithelial-to-mesenchymal transition, which ultimately promotes metastasis to secondary tumour sites. Our results provide the molecular basis for mesenchymal stem cell recruitment into tumours and how this process leads to tumour metastasis. PMID:23653207

  2. Recruitment of Mesenchymal Stem Cells Into Prostate Tumors Promotes Metastasis

    PubMed Central

    Jung, Younghun; Kim, Jin Koo; Shiozawa, Yusuke; Wang, Jingcheng; Mishra, Anjali; Joseph, Jeena; Berry, Janice E.; McGee, Samantha; Lee, Eunsohl; Sun, Hongli; Wang, Jianhua; Jin, Taocong; Zhang, Honglai; Dai, Jinlu; Krebsbach, Paul H.; Keller, Evan T.; Pienta, Kenneth J.; Taichman, Russell S.

    2013-01-01

    Tumors recruit mesenchymal stem cells (MSCs) to facilitate healing, which induces their conversion into cancer-associated fibroblasts that facilitate metastasis. However, this process is poorly understood on the molecular level. Here we show that the CXCR6 ligand CXCL16 facilitates MSC or Very Small Embryonic-Like (VSEL) cells recruitment into prostate tumors. CXCR6 signaling stimulates the conversion of MSCs into cancer-associated fibroblasts, which secrete stromal-derived factor-1, also known as CXCL12. CXCL12 expressed by cancer-associated fibroblasts then binds to CXCR4 on tumor cells and induces an epithelial to mesenchymal transition, which ultimately promotes metastasis to secondary tumor sites. Our results provide the molecular basis for MSC recruitment into tumors and how this process leads to tumor metastasis. PMID:23653207

  3. Cinnamtannin B-1 Promotes Migration of Mesenchymal Stem Cells and Accelerates Wound Healing in Mice.

    PubMed

    Fujita, Kosuke; Kuge, Katsunori; Ozawa, Noriyasu; Sahara, Shunya; Zaiki, Kaori; Nakaoji, Koichi; Hamada, Kazuhiko; Takenaka, Yukiko; Tanahashi, Takao; Tamai, Katsuto; Kaneda, Yasufumi; Maeda, Akito

    2015-01-01

    Substances that enhance the migration of mesenchymal stem cells to damaged sites have the potential to improve the effectiveness of tissue repair. We previously found that ethanol extracts of Mallotus philippinensis bark promoted migration of mesenchymal stem cells and improved wound healing in a mouse model. We also demonstrated that bark extracts contain cinnamtannin B-1, a flavonoid with in vitro migratory activity against mesenchymal stem cells. However, the in vivo effects of cinnamtannin B-1 on the migration of mesenchymal stem cells and underlying mechanism of this action remain unknown. Therefore, we examined the effects of cinnamtannin B-1 on in vivo migration of mesenchymal stem cells and wound healing in mice. In addition, we characterized cinnamtannin B-1-induced migration of mesenchymal stem cells pharmacologically and structurally. The mobilization of endogenous mesenchymal stem cells into the blood circulation was enhanced in cinnamtannin B-1-treated mice as shown by flow cytometric analysis of peripheral blood cells. Whole animal imaging analysis using luciferase-expressing mesenchymal stem cells as a tracer revealed that cinnamtannin B-1 increased the homing of mesenchymal stem cells to wounds and accelerated healing in a diabetic mouse model. Additionally, the cinnamtannin B-1-induced migration of mesenchymal stem cells was pharmacologically susceptible to inhibitors of phosphatidylinositol 3-kinase, phospholipase C, lipoxygenase, and purines. Furthermore, biflavonoids with similar structural features to cinnamtannin B-1 also augmented the migration of mesenchymal stem cells by similar pharmacological mechanisms. These results demonstrate that cinnamtannin B-1 promoted mesenchymal stem cell migration in vivo and improved wound healing in mice. Furthermore, the results reveal that cinnamtannin B-1-induced migration of mesenchymal stem cells may be mediated by specific signaling pathways, and the flavonoid skeleton may be relevant to its effects on

  4. Cinnamtannin B-1 Promotes Migration of Mesenchymal Stem Cells and Accelerates Wound Healing in Mice

    PubMed Central

    Fujita, Kosuke; Kuge, Katsunori; Ozawa, Noriyasu; Sahara, Shunya; Zaiki, Kaori; Nakaoji, Koichi; Hamada, Kazuhiko; Takenaka, Yukiko; Tanahashi, Takao; Tamai, Katsuto; Kaneda, Yasufumi; Maeda, Akito

    2015-01-01

    Substances that enhance the migration of mesenchymal stem cells to damaged sites have the potential to improve the effectiveness of tissue repair. We previously found that ethanol extracts of Mallotus philippinensis bark promoted migration of mesenchymal stem cells and improved wound healing in a mouse model. We also demonstrated that bark extracts contain cinnamtannin B-1, a flavonoid with in vitro migratory activity against mesenchymal stem cells. However, the in vivo effects of cinnamtannin B-1 on the migration of mesenchymal stem cells and underlying mechanism of this action remain unknown. Therefore, we examined the effects of cinnamtannin B-1 on in vivo migration of mesenchymal stem cells and wound healing in mice. In addition, we characterized cinnamtannin B-1-induced migration of mesenchymal stem cells pharmacologically and structurally. The mobilization of endogenous mesenchymal stem cells into the blood circulation was enhanced in cinnamtannin B-1-treated mice as shown by flow cytometric analysis of peripheral blood cells. Whole animal imaging analysis using luciferase-expressing mesenchymal stem cells as a tracer revealed that cinnamtannin B-1 increased the homing of mesenchymal stem cells to wounds and accelerated healing in a diabetic mouse model. Additionally, the cinnamtannin B-1-induced migration of mesenchymal stem cells was pharmacologically susceptible to inhibitors of phosphatidylinositol 3-kinase, phospholipase C, lipoxygenase, and purines. Furthermore, biflavonoids with similar structural features to cinnamtannin B-1 also augmented the migration of mesenchymal stem cells by similar pharmacological mechanisms. These results demonstrate that cinnamtannin B-1 promoted mesenchymal stem cell migration in vivo and improved wound healing in mice. Furthermore, the results reveal that cinnamtannin B-1-induced migration of mesenchymal stem cells may be mediated by specific signaling pathways, and the flavonoid skeleton may be relevant to its effects on

  5. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury

    PubMed Central

    Anbari, Fatemeh; Khalili, Mohammad Ali; Bahrami, Ahmad Reza; Khoradmehr, Arezoo; Sadeghian, Fatemeh; Fesahat, Farzaneh; Nabi, Ali

    2014-01-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intravenous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and administered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat cerebral cortex and rat neurological function was improved significantly. These findings suggest that intravenously administered bone marrow mesenchymal stem cells can promote nerve cell regeneration in injured cerebral cortex, which supplement the lost nerve cells. PMID:25206912

  6. Epigenetic modulators promote mesenchymal stem cell phenotype switches.

    PubMed

    Alexanian, Arshak R

    2015-07-01

    Discoveries in recent years have suggested that some tissue specific adult stem cells in mammals might have the ability to differentiate into cell types from different germ layers. This phenomenon has been referred to as stem cell transdifferentiation or plasticity. Despite controversy, the current consensus holds that transdifferentiation does occur in mammals, but only within a limited range. Understanding the mechanisms that underlie the switches in phenotype and development of the methods that will promote such type of conversions can open up endless possibilities for regenerative medicine. Epigenetic control contributes to various processes that lead to cellular plasticity and DNA and histone covalent modifications play a key role in these processes. Recently, we have been able to convert human mesenchymal stem cells (hMSCs) into neural-like cells by exposing cells to epigenetic modifiers and neural inducing factors. The goal of this study was to investigate the stability and plasticity of these transdifferentiated cells. To this end, neurally induced MSCs (NI-hMSCs) were exposed to adipocyte inducing factors. Grown for 24-48 h in fat induction media NI-hMSCs reversed their morphology into fibroblast-like cells and regained their proliferative properties. After 3 weeks approximately 6% of hMSCs differentiated into multilocular or plurivacuolar adipocyte cells that demonstrated by Oil Red O staining. Re-exposure of these cultures or the purified adipocytes to neural induction medium induced the cells to re-differentiate into neuronal-like cells. These data suggest that cell plasticity can be manipulated by the combination of small molecule modulators of chromatin modifying enzymes and specific cell signaling pathways. PMID:25936755

  7. Calcium phosphate surfaces promote osteogenic differentiation of mesenchymal stem cells

    PubMed Central

    Müller, Petra; Bulnheim, Ulrike; Diener, Annette; Lüthen, Frank; Teller, Marianne; Klinkenberg, Ernst-Dieter; Neumann, Hans-Georg; Nebe, Barbara; Liebold, Andreas; Steinhoff, Gustav; Rychly, Joachim

    2008-01-01

    Abstract Although studies in vivo revealed promising results in bone regeneration after implantation of scaffolds together with osteogenic progenitor cells, basic questions remain how material surfaces control the biology of mesenchymal stem cells (MSC). We used human MSC derived from bone marrow and studied the osteogenic differentiation on calcium phosphate surfaces. In osteogenic differentiation medium MSC differentiated to osteoblasts on hydroxyapatite and BONITmatrix®, a degradable xerogel composite, within 14 days. Cells revealed a higher alkaline phosphatase (ALP) activity and increased RNA expression of collagen I and osteocalcin using real-time RTPCR compared with cells on tissue culture plastic. To test whether material surface characteristics alone are able to stimulate osteogenic differentiation, MSC were cultured on the materials in expansion medium without soluble additives for osteogenic differentiation. Indeed, cells on calcium phosphate without osteogenic differentiation additives developed to osteoblasts as shown by increased ALP activity and expression of osteogenic genes, which was not the case on tissue culture plastic. Because we reasoned that the stimulating effect on osteogenesis by calcium phosphate surfaces depends on an altered cell–extracellular matrix interaction we studied the dynamic behaviour of focal adhesions using cells transfected with GFP labelled vinculin. On BONITmatrix®, an increased mobility of focal adhesions was observed compared with cells on tissue culture plastic. In conclusion, calcium phosphate surfaces are able to drive MSC to osteoblasts in the absence of osteogenic differentiation supplements in the medium. An altered dynamic behaviour of focal adhesions on calcium phosphate surfaces might be involved in the molecular mechanisms which promote osteogenic differentiation. PMID:18366455

  8. Electrochemically Preadsorbed Collagen Promotes Adult Human Mesenchymal Stem Cell Adhesion.

    PubMed

    Benavidez, Tomás E; Wechsler, Marissa E; Farrer, Madeleine M; Bizios, Rena; Garcia, Carlos D

    2016-01-01

    The present article reports on the effect of electric potential on the adsorption of collagen type I (the most abundant component of the organic phase of bone) onto optically transparent carbon electrodes (OTCE) and its mediation on subsequent adhesion of adult, human, mesenchymal stem cells (hMSCs). For this purpose, adsorption of collagen type I was investigated as a function of the protein concentration (0.01, 0.1, and 0.25 mg/mL) and applied potential (open circuit potential [OCP; control], +400, +800, and +1500 mV). The resulting substrate surfaces were characterized using spectroscopic ellipsometry, atomic force microscopy, and cyclic voltammetry. Adsorption of collagen type I onto OTCE was affected by the potential applied to the sorbent surface and the concentration of protein. The higher the applied potential and protein concentration, the higher the adsorbed amount (Γcollagen). It was also observed that the application of potential values higher than +800 mV resulted in the oxidation of the adsorbed protein. Subsequent adhesion of hMSCs on the OTCEs (precoated with the collagen type I films) under standard cell culture conditions for 2 h was affected by the extent of collagen preadsorbed onto the OTCE substrates. Specifically, enhanced hMSCs adhesion was observed when the Γcollagen was the highest. When the collagen type I was oxidized (under applied potential equal to +1500 mV), however, hMSCs adhesion was decreased. These results provide the first correlation between the effects of electric potential on protein adsorption and subsequent modulation of anchorage-dependent cell adhesion. PMID:26549607

  9. Agonism of Wnt/β-catenin signaling promotes mesenchymal stem cell (MSC) expansion

    PubMed Central

    Hoffman, Michael D.; Benoit, Danielle S.W.

    2014-01-01

    Promoting mesenchymal stem cell (MSC) proliferation has numerous applications in stem cell therapies, particularly in the area of regenerative medicine. In order for cell-based regenerative approaches to be realized, MSC proliferation must be achieved in a controlled manner without compromising stem cell differentiation capacities. Here we demonstrate that 6-bromoindirubin-3’-oxime (BIO) increases MSC β-catenin activity 106-fold and stem cell-associated gene expression ~33-fold respectively over untreated controls. Subsequently, BIO treatment increases MSC populations 1.8-fold in typical 2D culture conditions, as well as 1.3-fold when encapsulated within hydrogels compared to untreated cells. Furthermore, we demonstrate that BIO treatment does not reduce MSC multipotency, where MSCs maintain their ability to differentiate into osteoblasts, chondrocytes, and adipocytes using standard conditions. Taken together, our results demonstrate BIOs potential utility as a proliferative agent for cell transplantation and tissue regeneration. PMID:23554411

  10. Sertoli cells promote proliferation of bone marrow-derived mesenchymal stem cells in co-culture.

    PubMed

    Zhang, Fenxi; Lu, Ming; Liu, Hengxing; Ren, Tongming; Miao, Yingying; Wang, Jingjing

    2016-05-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) are a major source for cell transplantation. The proliferative ability of BMSCs is an important determinant of the efficiency of transplant therapy. Sertoli cells are "nurse" cells for development of sperm cells. Our recent study showed that Sertoli cells promoted proliferation of human umbilical cord mesenchymal stem cells (hUCMSCs) in co-culture. Studies by other groups also showed that Sertoli cells promoted growth of endothelial cells and neural stem cells. In this study, we investigated the effect of Sertoli cells on proliferation of BMSCs. Our results showed that Sertoli cells in co-culture significantly enhanced proliferation of BMSCs (P < 0.01). Moreover, co-culture with Sertoli cells also markedly increased mRNA and/or protein expressions of Mdm2, p-Akt and Cyclin D1, and decreased p53 expression in BMSCs (P < 0.01 or < 0.05). These findings indicate that Sertoli cells have the potential to enhance proliferation of BMSCs. PMID:27319049

  11. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    SciTech Connect

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing Wang, Zehua

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  12. Polysaccharide Hydrogel Combined with Mesenchymal Stem Cells Promotes the Healing of Corneal Alkali Burn in Rats

    PubMed Central

    Liu, Xun; Yu, Min; Yang, Chunbo; Li, Xiaorong

    2015-01-01

    Corneal chemical burns are common ophthalmic injuries that may result in permanent visual impairment. Although significant advances have been achieved on the treatment of such cases, the structural and functional restoration of a chemical burn-injured cornea remains challenging. The applications of polysaccharide hydrogel and subconjunctival injection of mesenchymal stem cells (MSCs) have been reported to promote the healing of corneal wounds. In this study, polysaccharide was extracted from Hardy Orchid and mesenchymal stem cells (MSCs) were derived from Sprague-Dawley rats. Supplementation of the polysaccharide significantly enhanced the migration rate of primarily cultured rat corneal epithelial cells. We examined the therapeutic effects of polysaccharide in conjunction with MSCs application on the healing of corneal alkali burns in rats. Compared with either treatment alone, the combination strategy resulted in significantly better recovery of corneal epithelium and reduction in inflammation, neovascularization and opacity of healed cornea. Polysaccharide and MSCs acted additively to increase the expression of anti-inflammatory cytokine (TGF-β), antiangiogenic cytokine (TSP-1) and decrease those promoting inflammation (TNF-α), chemotaxis (MIP-1α and MCP-1) and angiogenesis (VEGF and MMP-2). This study provided evidence that Hardy Orchid derived polysaccharide and MSCs are safe and effective treatments for corneal alkali burns and that their benefits are additive when used in combination. We concluded that combination therapy with polysaccharide and MSCs is a promising clinical treatment for corneal alkali burns and may be applicable for other types of corneal disorder. PMID:25789487

  13. Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Angiogenesis: Potencial Clinical Application

    PubMed Central

    Merino-González, Consuelo; Zuñiga, Felipe A.; Escudero, Carlos; Ormazabal, Valeska; Reyes, Camila; Nova-Lamperti, Estefanía; Salomón, Carlos; Aguayo, Claudio

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult multipotent stem cells that are able to differentiate into multiple specialized cell types including osteocytes, adipocytes, and chondrocytes. MSCs exert different functions in the body and have recently been predicted to have a major clinical/therapeutic potential. However, the mechanisms of self-renewal and tissue regeneration are not completely understood. It has been shown that the biological effect depends mainly on its paracrine action. Furthermore, it has been reported that the secretion of soluble factors and the release of extracellular vesicles, such as exosomes, could mediate the cellular communication to induce cell-differentiation/self-renewal. This review provides an overview of MSC-derived exosomes in promoting angiogenicity and of the clinical relevance in a therapeutic approach. PMID:26903875

  14. IL-6 Secreted from Senescent Mesenchymal Stem Cells Promotes Proliferation and Migration of Breast Cancer Cells

    PubMed Central

    Di, Guo-hu; Liu, Yang; Lu, Ying; Liu, Jin; Wu, Chutse; Duan, Hai-Feng

    2014-01-01

    Human mesenchymal stem cells (hMSCs) are currently investigated for a variety of therapeutic applications. However, MSCs isolated from primary tissue cannot meet clinical grade needs and should be expanded in vitro for several passages. Although hMSCs show low possibility for undergoing oncogenic transformation, they do, similar to other somatic cells, undergo cellular senescence and their therapeutic potential is diminished when cultured in vitro. However, the role of senescent MSCs in tumor progression remains largely elusive. In the current study, by establishing senescent human umbilical cord mesenchymal stem cells (s-UCMSCs) through the replicative senescence model and genotoxic stress induced premature senescence model, we show that s-UCMSCs significantly stimulate proliferation and migration of breast cancer cells in vitro and tumor progression in a co-transplant xenograft mouse model compared with ‘young’ counterparts (defined as MSCs at passage 5, in contrast to senescent MSCs at passage 45). In addition, we identified IL-6, a known pleiotropic cytokine, as a principal mediator for the tumor-promoting activity of s-UCMSCs by induction of STAT3 phosphorylation. Depletion of IL-6 from s-UCMSCs conditioned medium partially abrogated the stimulatory effect of s-UCMSCs on the proliferation and migration of breast tumor cells. PMID:25419563

  15. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    SciTech Connect

    Zhang, Fenxi; Hong, Yan; Liang, Wenmei; Ren, Tongming; Jing, Suhua; Lin, Juntang

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  16. Sostdc1 deficiency accelerates fracture healing by promoting the expansion of periosteal mesenchymal stem cells.

    PubMed

    Collette, Nicole M; Yee, Cristal S; Hum, Nicholas R; Murugesh, Deepa K; Christiansen, Blaine A; Xie, LiQin; Economides, Aris N; Manilay, Jennifer O; Robling, Alexander G; Loots, Gabriela G

    2016-07-01

    Loss of Sostdc1, a growth factor paralogous to Sost, causes the formation of ectopic incisors, fused molars, abnormal hair follicles, and resistance to kidney disease. Sostdc1 is expressed in the periosteum, a source of osteoblasts, fibroblasts and mesenchymal progenitor cells, which are critically important for fracture repair. Here, we investigated the role of Sostdc1 in bone metabolism and fracture repair. Mice lacking Sostdc1 (Sostdc1(-/-)) had a low bone mass phenotype associated with loss of trabecular bone in both lumbar vertebrae and in the appendicular skeleton. In contrast, Sostdc1(-/-) cortical bone measurements revealed larger bones with higher BMD, suggesting that Sostdc1 exerts differential effects on cortical and trabecular bone. Mid-diaphyseal femoral fractures induced in Sostdc1(-/-) mice showed that the periosteal population normally positive for Sostdc1 rapidly expands during periosteal thickening and these cells migrate into the fracture callus at 3days post fracture. Quantitative analysis of mesenchymal stem cell (MSC) and osteoblast populations determined that MSCs express Sostdc1, and that Sostdc1(-/-) 5day calluses harbor >2-fold more MSCs than fractured wildtype controls. Histologically a fraction of Sostdc1-positive cells also expressed nestin and α-smooth muscle actin, suggesting that Sostdc1 marks a population of osteochondral progenitor cells that actively participate in callus formation and bone repair. Elevated numbers of MSCs in D5 calluses resulted in a larger, more vascularized cartilage callus at day 7, and a more rapid turnover of cartilage with significantly more remodeled bone and a thicker cortical shell at 21days post fracture. These data support accelerated or enhanced bone formation/remodeling of the callus in Sostdc1(-/-) mice, suggesting that Sostdc1 may promote and maintain mesenchymal stem cell quiescence in the periosteum. PMID:27102547

  17. Ethanol extract of Fructus Ligustri Lucidi promotes osteogenesis of mesenchymal stem cells.

    PubMed

    Li, Guo; Zhang, Xiao-ai; Zhang, Jin-fang; Chan, Chu-yan; Yew, David Tai Wai; He, Ming-liang; Lin, Marie Chia-mi; Leung, Ping-chung; Kung, Hsiang-fu

    2010-04-01

    Fructus Ligustri Lucidi (FLL) has been used in traditional Chinese medicine for over 1000 years. The ethanol extract of FLL (EFLL) has been shown to be a potential candidate in the prevention and treatment of osteoporosis. The present study aimed to determine whether EFLL carries out the effect by promoting osteogenesis in mesenchymal stem cells (MSCs). The osteogenic differentiation of MSCs was evaluated by their alkaline phosphatase (ALP) activities and mineralization. Expression of genes was detected by RT-PCR. We found that EFLL significantly stimulated the ALP activities and shortened the time needed for the mineralization of MSCs during osteogenic differentiation. The expression of several osteoblast differentiation regulators was also upregulated by EFLL during this process. Our study demonstrated that the EFLL is capable of enhancing osteogenic differentiation of MSCs. It might be useful for treating diseases with inadequate bone formation, including osteoporosis. PMID:19813230

  18. Transplantation of human amniotic mesenchymal stem cells promotes neurological recovery in an intracerebral hemorrhage rat model.

    PubMed

    Zhou, Honglong; Zhang, Hongri; Yan, Zhongjie; Xu, Ruxiang

    2016-06-24

    Human amniotic membrane mesenchymal stem cells (hAMSCs) have recently been suggested as ideal candidate stem cells for cell-based therapy. Many studies have reported the therapeutic effects of hAMSCs in numerous disease models. However, no studies have used hAMSCs to treat intracerebral hemorrhage (ICH). In the present study, we examined the therapeutic potential of hAMSCs in a rat model of ICH, and characterized the possible mechanisms of action. Adult male Wistar rats were subjected to ICH by intrastriatal injection of VII collagenase, and then were intracerebrally administered hAMSCs, fibroblasts, or phosphate-buffered saline (PBS) at 24 h after ICH. Compared with the fibroblasts and the PBS control, hAMSCs treatment significantly promoted neurological recovery, and reduced the numbers of ED1(+) activated microglia, as well as myeloperoxidase (MPO(+)), and caspase-3(+) cells in the brain injury model. In addition, hAMSCs treatment significantly increased the expression of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) in the injured brain, and promoted neurogenesis and angiogenesis, compared with the fibroblasts and the PBS control. The transplanted hAMSCs survived for at least 27 days and were negative for β-tubulin III and glial fibrillary acidic protein (GFAP). Taken together, the results suggest that hAMSCs treatment significantly promotes neurological recovery in rats after ICH. The mechanism of action could be mediated by inhibition of inflammation and apoptosis, increasing neurotrophic factor expression, and promotion of neurogenesis and angiogenesis. Thus, hAMSCs are candidate stem cells for the treatment of ICH. PMID:27188654

  19. Decellularized Matrix from Tumorigenic Human Mesenchymal Stem Cells Promotes Neovascularization with Galectin-1 Dependent Endothelial Interaction

    PubMed Central

    Burns, Jorge S.; Kristiansen, Malthe; Kristensen, Lars P.; Larsen, Kenneth H.; Nielsen, Maria O.; Christiansen, Helle; Nehlin, Jan; Andersen, Jens S.; Kassem, Moustapha

    2011-01-01

    Background Acquisition of a blood supply is fundamental for extensive tumor growth. We recently described vascular heterogeneity in tumours derived from cell clones of a human mesenchymal stem cell (hMSC) strain (hMSC-TERT20) immortalized by retroviral vector mediated human telomerase (hTERT) gene expression. Histological analysis showed that cells of the most vascularized tumorigenic clone, -BD11 had a pericyte-like alpha smooth muscle actin (ASMA+) and CD146+ positive phenotype. Upon serum withdrawal in culture, -BD11 cells formed cord-like structures mimicking capillary morphogenesis. In contrast, cells of the poorly tumorigenic clone, -BC8 did not stain for ASMA, tumours were less vascularized and serum withdrawal in culture led to cell death. By exploring the heterogeneity in hMSC-TERT20 clones we aimed to understand molecular mechanisms by which mesenchymal stem cells may promote neovascularization. Methodology/Principal Findings Quantitative qRT-PCR analysis revealed similar mRNA levels for genes encoding the angiogenic cytokines VEGF and Angiopoietin-1 in both clones. However, clone-BD11 produced a denser extracellular matrix that supported stable ex vivo capillary morphogenesis of human endothelial cells and promoted in vivo neovascularization. Proteomic characterization of the -BD11 decellularized matrix identified 50 extracellular angiogenic proteins, including galectin-1. siRNA knock down of galectin-1 expression abrogated the ex vivo interaction between decellularized -BD11 matrix and endothelial cells. More stable shRNA knock down of galectin-1 expression did not prevent -BD11 tumorigenesis, but greatly reduced endothelial migration into -BD11 cell xenografts. Conclusions Decellularized hMSC matrix had significant angiogenic potential with at least 50 angiogenic cell surface and extracellular proteins, implicated in attracting endothelial cells, their adhesion and activation to form tubular structures. hMSC -BD11 surface galectin-1 expression was

  20. Co-transplantation of Hematopoietic Stem Cells and Cxcr4 Gene-Transduced Mesenchymal Stem Cells Promotes Hematopoiesis.

    PubMed

    Chen, Wei; Li, Miao; Su, Guizhen; Zang, Yu; Yan, Zhiling; Cheng, Hai; Pan, Bin; Cao, Jiang; Wu, Qingyun; Zhao, Kai; Zhu, Feng; Zeng, Lingyu; Li, Zhenyu; Xu, Kailin

    2015-04-01

    Mesenchymal stem cells (MSCs) are a promising candidate for cellular therapies. Co-transplantation of MSCs and hematopoietic stem cells (HSCs) promotes successful engraftment and improves hematopoietic recovery. In this study, the effects of co-transplantation of HSCs and mouse bone marrow (BM)-derived MSCs overexpressing CXCR4 (CXCR4-MSC) on CXCR4-MSC homing capacity and the reconstitution potential in lethally irradiated mice were evaluated. Recovery of donor-derived peripheral blood leukocytes and platelets was accelerated when CXCR4-MSCs were co-transplanted with BM cells. The frequency of c-kit(+)Sca(+)Lin(-) HSCs was higher in recipient BM following co-transplantation of CXCR4-MSCs compared with the EGFP-MSC control and the BMT only groups. Surprisingly, the rate of early engraftment of donor-derived BM cells in recipients co-transplanted with CXCR4-MSCs was slightly lower than in the absence of MSCs on day 7. Moreover, co-transplantation of CXCR4-MSCs regulated the balance of T helper cells subsets. Hematopoietic tissue reconstitution was evaluated by histopathological analysis of BM and spleen. Co-transplantation of CXCR4-MSCs was shown to promote the recovery of hematopoietic organs. These findings indicate that co-transplantation of CXCR4-MSCs promotes the early phase of hematopoietic recovery and sustained hematopoiesis. PMID:25391891

  1. Chinese preparation Xuesaitong promotes the mobilization of bone marrow mesenchymal stem cells in rats with cerebral infarction.

    PubMed

    Zhang, Jin-Sheng; Zhang, Bao-Xia; Du, Mei-Mei; Wang, Xiao-Ya; Li, Wei

    2016-02-01

    After cerebral ischemia, bone marrow mesenchymal stem cells are mobilized and travel from the bone marrow through peripheral circulation to the focal point of ischemia to initiate tissue regeneration. However, the number of bone marrow mesenchymal stem cells mobilized into peripheral circulation is not enough to exert therapeutic effects, and the method by which blood circulation is promoted to remove blood stasis influences stem cell homing. The main ingredient of Xuesaitong capsules is Panax notoginseng saponins, and Xuesaitong is one of the main drugs used for promoting blood circulation and removing blood stasis. We established rat models of cerebral infarction by occlusion of the middle cerebral artery and then intragastrically administered Xuesaitong capsules (20, 40 and 60 mg/kg per day) for 28 successive days. Enzyme-linked immunosorbent assay showed that in rats with cerebral infarction, middle- and high-dose Xuesaitong significantly increased the level of stem cell factors and the number of CD117-positive cells in plasma and bone marrow and significantly decreased the number of CD54- and CD106-positive cells in plasma and bone marrow. The effect of low-dose Xuesaitong on these factors was not obvious. These findings demonstrate that middle- and high-dose Xuesaitong and hence Panax notoginseng saponins promote and increase the level and mobilization of bone marrow mesenchymal stem cells in peripheral blood. PMID:27073383

  2. Chinese preparation Xuesaitong promotes the mobilization of bone marrow mesenchymal stem cells in rats with cerebral infarction

    PubMed Central

    Zhang, Jin-sheng; Zhang, Bao-xia; Du, Mei-mei; Wang, Xiao-ya; Li, Wei

    2016-01-01

    After cerebral ischemia, bone marrow mesenchymal stem cells are mobilized and travel from the bone marrow through peripheral circulation to the focal point of ischemia to initiate tissue regeneration. However, the number of bone marrow mesenchymal stem cells mobilized into peripheral circulation is not enough to exert therapeutic effects, and the method by which blood circulation is promoted to remove blood stasis influences stem cell homing. The main ingredient of Xuesaitong capsules is Panax notoginseng saponins, and Xuesaitong is one of the main drugs used for promoting blood circulation and removing blood stasis. We established rat models of cerebral infarction by occlusion of the middle cerebral artery and then intragastrically administered Xuesaitong capsules (20, 40 and 60 mg/kg per day) for 28 successive days. Enzyme-linked immunosorbent assay showed that in rats with cerebral infarction, middle- and high-dose Xuesaitong significantly increased the level of stem cell factors and the number of CD117-positive cells in plasma and bone marrow and significantly decreased the number of CD54- and CD106-positive cells in plasma and bone marrow. The effect of low-dose Xuesaitong on these factors was not obvious. These findings demonstrate that middle- and high-dose Xuesaitong and hence Panax notoginseng saponins promote and increase the level and mobilization of bone marrow mesenchymal stem cells in peripheral blood. PMID:27073383

  3. Human umbilical mesenchymal stem cells conditioned medium promote primary wound healing regeneration

    PubMed Central

    Kusindarta, Dwi Liliek; Wihadmadyatami, Hevi; Fibrianto, Yuda Heru; Nugroho, Widagdo Sri; Susetya, Heru; Musana, Dewi Kania; Wijayanto, Hery; Prihatna, Surya Agus; Wahyuni, A. E. T. H.

    2016-01-01

    Aim: This research was conducted to clarify the capability of human umbilical mesenchymal stem cells conditioned medium (HU-MSCM) to promote regenerations of primary wound healing on the incision skin injury. Materials and Methods: In this study, two approaches in vitro and in vivo already done. On in vitro analysis, tube formation was performed using HU vein endothelial cells in the presence of HU-MSCM, in some experiments cells line was incubated prior the presence of lipopolysaccharide and HU-MSCM then apoptosis assay was performed. Furthermore, in vivo experiments 12 female rats (Rattus norvegicus) were used after rats anesthetized, 7 mm wound was made by incision on the left side of the body. The wound was treated with HU-MSCM containing cream, povidone iodine was run as a control. Wound healing regenerations on the skin samples were visualized by hematoxylin-eosin staining. Results: In vitro models elucidate HU-MSCM may decreasing inflammation at the beginning of wound healing, promote cell migration and angiogenesis. In addition in vivo models show that the incision length on the skin is decreasing and more smaller, HE staining describe decreasing of inflammation phase, increasing of angiogenesis, accelerate fibroplasia, and maturation phase. Conclusions: Taken together our observation indicates that HU-MSCM could promote the acceleration of skin tissue regenerations in primary wound healing process. PMID:27397984

  4. Mohawk promotes the tenogenesis of mesenchymal stem cells through activation of the TGFβ signaling pathway.

    PubMed

    Liu, Huanhuan; Zhang, Can; Zhu, Shouan; Lu, Ping; Zhu, Ting; Gong, Xiaonan; Zhang, Ziwang; Hu, Jiajie; Yin, Zi; Heng, Boon Chin; Chen, Xiao; Ouyang, Hong Wei

    2015-02-01

    The transcription factor Mohawk (Mkx) is expressed in developing tendons and is an important regulator of tenogenic differentiation. However, the exact roles of Mkx in tendinopathy and tendon repair remain unclear. Using gene expression Omnibus datasets and immunofluorescence assays, we found that Mkx expression level was dramatically lower in human tendinopathy tissue and it is activated at specific stages of tendon development. In mesenchymal stem cells (MSCs), ectopic Mkx expression strikingly promoted tenogenesis more efficiently than Scleraxis (Scx), a well-known master transcription factor of tendon. Significantly higher levels of tenogenic gene expression and collagen fibril growth were observed with Mkx versus Scx. Interestingly, it was observed that Mkx dramatically upregulated Scx through binding to the Tgfb2 promoter. Additionally, the transplantation of Mkx-expressing-MSC sheets promoted tendon repair in a mouse model of Achilles-tendon defect. Taken together, these data shed light on previously unrecognized roles of Mkx in tendinopathy, tenogenesis, and tendon repair as well as in regulating the TGFβ pathway. PMID:25332192

  5. Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells

    PubMed Central

    Somaiah, Chinnapaka; Kumar, Atul; Mawrie, Darilang; Sharma, Amit; Patil, Suraj Dasharath; Bhattacharyya, Jina; Swaminathan, Rajaram; Jaganathan, Bithiah Grace

    2015-01-01

    Mesenchymal stem cells (MSC) can differentiate into several cell types and are desirable candidates for cell therapy and tissue engineering. However, due to poor cell survival, proliferation and differentiation in the patient, the therapy outcomes have not been satisfactory. Although several studies have been done to understand the conditions that promote proliferation, differentiation and migration of MSC in vitro and in vivo, still there is no clear understanding on the effect of non-cellular bio molecules. Of the many factors that influence the cell behavior, the immediate cell microenvironment plays a major role. In this context, we studied the effect of extracellular matrix (ECM) proteins in controlling cell survival, proliferation, migration and directed MSC differentiation. We found that collagen promoted cell proliferation, cell survival under stress and promoted high cell adhesion to the cell culture surface. Increased osteogenic differentiation accompanied by high active RHOA (Ras homology gene family member A) levels was exhibited by MSC cultured on collagen. In conclusion, our study shows that collagen will be a suitable matrix for large scale production of MSC with high survival rate and to obtain high osteogenic differentiation for therapy. PMID:26661657

  6. Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells.

    PubMed

    Somaiah, Chinnapaka; Kumar, Atul; Mawrie, Darilang; Sharma, Amit; Patil, Suraj Dasharath; Bhattacharyya, Jina; Swaminathan, Rajaram; Jaganathan, Bithiah Grace

    2015-01-01

    Mesenchymal stem cells (MSC) can differentiate into several cell types and are desirable candidates for cell therapy and tissue engineering. However, due to poor cell survival, proliferation and differentiation in the patient, the therapy outcomes have not been satisfactory. Although several studies have been done to understand the conditions that promote proliferation, differentiation and migration of MSC in vitro and in vivo, still there is no clear understanding on the effect of non-cellular bio molecules. Of the many factors that influence the cell behavior, the immediate cell microenvironment plays a major role. In this context, we studied the effect of extracellular matrix (ECM) proteins in controlling cell survival, proliferation, migration and directed MSC differentiation. We found that collagen promoted cell proliferation, cell survival under stress and promoted high cell adhesion to the cell culture surface. Increased osteogenic differentiation accompanied by high active RHOA (Ras homology gene family member A) levels was exhibited by MSC cultured on collagen. In conclusion, our study shows that collagen will be a suitable matrix for large scale production of MSC with high survival rate and to obtain high osteogenic differentiation for therapy. PMID:26661657

  7. Human mesenchymal stem cells creating an immunosuppressive environment and promote breast cancer in mice.

    PubMed

    Ljujic, Biljana; Milovanovic, Marija; Volarevic, Vladislav; Murray, Bridgid; Bugarski, Diana; Przyborski, Stefan; Arsenijevic, Nebojsa; Lukic, Miodrag L; Stojkovic, Miodrag

    2013-01-01

    Human mesenchymal stem cells (hMSC) can home to tumor sites and promote tumor growth. The effects of hMSC on tumor growth are controversial and involvement of hMSC in tumor immunology has not been adequately addressed. Therefore, we investigated whether injection of hMSC affects tumor appearance, growth and metastasis, and anti-tumor immunity in an experimental animal model of metastatic breast cancer. Injection of hMSC in BALB/c mice bearing mammary carcinoma promoted tumor growth and metastasis, which was accompanied by lower cytotoxic activity of splenocytes, NK cells and CD8⁺ T cells in vitro. Tumor-bearing mice that received hMSC had significantly lower percentages of CD3⁺NKp46⁺ NKT-like, higher percentages of CD4⁺Foxp3⁺ T cells, increased serum levels of Th2 and decreased serum levels of Th1 cytokines, and significantly higher number of CD4⁺ cells expressing IL-10. These results demonstrate that immunosuppressive environment created by hMSC promoted breast tumor growth and metastasis in mice. PMID:23892388

  8. Human mesenchymal stem cells creating an immunosuppressive environment and promote breast cancer in mice

    PubMed Central

    Ljujic, Biljana; Milovanovic, Marija; Volarevic, Vladislav; Murray, Bridgid; Bugarski, Diana; Przyborski, Stefan; Arsenijevic, Nebojsa; Lukic, Miodrag L.; Stojkovic, Miodrag

    2013-01-01

    Human mesenchymal stem cells (hMSC) can home to tumor sites and promote tumor growth. The effects of hMSC on tumor growth are controversial and involvement of hMSC in tumor immunology has not been adequately addressed. Therefore, we investigated whether injection of hMSC affects tumor appearance, growth and metastasis, and anti-tumor immunity in an experimental animal model of metastatic breast cancer. Injection of hMSC in BALB/c mice bearing mammary carcinoma promoted tumor growth and metastasis, which was accompanied by lower cytotoxic activity of splenocytes, NK cells and CD8+ T cells in vitro. Tumor-bearing mice that received hMSC had significantly lower percentages of CD3+NKp46+ NKT-like, higher percentages of CD4+Foxp3+ T cells, increased serum levels of Th2 and decreased serum levels of Th1 cytokines, and significantly higher number of CD4+ cells expressing IL-10. These results demonstrate that immunosuppressive environment created by hMSC promoted breast tumor growth and metastasis in mice. PMID:23892388

  9. Mesenchymal stem cells derived from low risk acute lymphoblastic leukemia patients promote NK cell antitumor activity.

    PubMed

    Entrena, Ana; Varas, Alberto; Vázquez, Miriam; Melen, Gustavo J; Fernández-Sevilla, Lidia M; García-Castro, Javier; Ramírez, Manuel; Zapata, Agustín G; Vicente, Ángeles

    2015-07-28

    Mesenchymal stem cells (MSCs) are key components of the bone marrow microenvironment which contribute to the maintenance of the hematopoietic stem cell niche and exert immunoregulatory functions in innate and adaptive immunity. We analyze the immunobiology of MSCs derived from acute lymphoblastic leukemia (ALL) patients and their impact on NK cell function. In contrast to the inhibitory effects on the immune response exerted by MSCs from healthy donors (Healthy-MSCs), we demonstrate that MSCs derived from low/intermediate risk ALL patients at diagnosis (ALL-MSCs) promote an efficient NK cell response including cytokine production, phenotypic activation and most importantly, cytotoxicity. Longitudinal studies indicate that these immunostimulatory effects of ALL-MSCs are progressively attenuated. Healthy-MSCs adopt ALL-MSC-like immunomodulatory features when exposed to leukemia cells, acquiring the ability to stimulate NK cell antitumor function. The mechanisms underlying to these functional changes of ALL-MSCs include reduced production of soluble inhibitory factors, differential expression of costimulatory and coinhibitory molecules, increased expression of specific TLRs and Notch pathway activation. Collectively our findings indicate that, in response to leukemia cells, ALL-MSCs could mediate a host beneficial immunomodulatory effect by stimulating the antitumor innate immune response. PMID:25917077

  10. Mesenchymal stem cell therapy promotes the improvement and recovery of renal function in a preclinical model.

    PubMed

    Urt, Antônio Filho; Oliveira, Rodrigo Juliano; Hermeto, Larissa Correa; Pesarini, João Renato; David, Natan de; Cantero, Wilson de Barros; Falcão, Gustavo; Marks, Guido; Antoniolli-Silva, Andréia Conceição Milan Brochado

    2016-06-01

    Acute renal failure (ARF) is an extremely important public health issue in need of novel therapies. The present study aimed to evaluate the capacity of mesenchymal stem cell (MSC) therapy to promote the improvement and recovery of renal function in a preclinical model. Wistar rats were used as the experimental model, and our results show that cisplatin (5mg/kg) can efficiently induce ARF, as measured by changes in biochemical (urea and creatinine) and histological parameters. MSC therapy performed 24h after the administration of chemotherapy resulted in normalized plasma urea and creatinine levels 30 and 45d after the onset of kidney disease. Furthermore, MSC therapy significantly reduced histological changes (intratubular cast formation in protein overload nephropathy and tubular hydropic degeneration) in this ARF model. Thus, considering that current therapies for ARF are merely palliative and that MSC therapy can promote the improvement and recovery of renal function in this model system, we suggest that innovative/alternative therapies involving MSCs should be considered for clinical studies in humans to treat ARF. PMID:27275667

  11. Bone marrow mesenchymal stem cells transplantation promotes the release of endogenous erythropoietin after ischemic stroke

    PubMed Central

    Lv, Wen; Li, Wen-yu; Xu, Xiao-yan; Jiang, Hong; Bang, Oh Yong

    2015-01-01

    This study investigated whether bone marrow mesenchymal stem cell (BMSC) transplantation protected ischemic cerebral injury by stimulating endogenous erythropoietin. The model of ischemic stroke was established in rats through transient middle cerebral artery occlusion. Twenty-four hours later, 1 × 106 human BMSCs (hBMSCs) were injected into the tail vein. Fourteen days later, we found that hBMSCs promoted the release of endogenous erythropoietin in the ischemic region of rats. Simultaneously, 3 μg/d soluble erythropoietin receptor (sEPOR) was injected into the lateral ventricle, and on the next 13 consecutive days. sEPOR blocked the release of endogenous erythropoietin. The neurogenesis in the subventricular zone was less in the hBMSCs + sEPOR group than in the hBMSCs + heat-denatured sEPOR group. The adhesive-removal test result and the modified Neurological Severity Scores (mNSS) were lower in the hBMSCs + sEPOR group than in the heat-denatured sEPOR group. The adhesive-removal test result and mNSS were similar between the hBMSCs + heat-denatured sEPOR group and the hBMSCs + sEPOR group. These findings confirm that BMSCs contribute to neurogenesis and improve neurological function by promoting the release of endogenous erythropoietin following ischemic stroke. PMID:26487854

  12. Mesenchymal stem cell therapy promotes the improvement and recovery of renal function in a preclinical model

    PubMed Central

    Urt-Filho, Antônio; Oliveira, Rodrigo Juliano; Hermeto, Larissa Correa; Pesarini, João Renato; de David, Natan; Cantero, Wilson de Barros; Falcão, Gustavo; Marks, Guido; Antoniolli-Silva, Andréia Conceição Milan Brochado

    2016-01-01

    Abstract Acute renal failure (ARF) is an extremely important public health issue in need of novel therapies. The present study aimed to evaluate the capacity of mesenchymal stem cell (MSC) therapy to promote the improvement and recovery of renal function in a preclinical model. Wistar rats were used as the experimental model, and our results show that cisplatin (5mg/kg) can efficiently induce ARF, as measured by changes in biochemical (urea and creatinine) and histological parameters. MSC therapy performed 24h after the administration of chemotherapy resulted in normalized plasma urea and creatinine levels 30 and 45d after the onset of kidney disease. Furthermore, MSC therapy significantly reduced histological changes (intratubular cast formation in protein overload nephropathy and tubular hydropic degeneration) in this ARF model. Thus, considering that current therapies for ARF are merely palliative and that MSC therapy can promote the improvement and recovery of renal function in this model system, we suggest that innovative/alternative therapies involving MSCs should be considered for clinical studies in humans to treat ARF. PMID:27275667

  13. UV-activated 7-dehydrocholesterol-coated titanium implants promote differentiation of human umbilical cord mesenchymal stem cells into osteoblasts.

    PubMed

    Satué, María; Ramis, Joana M; Monjo, Marta

    2016-01-01

    Vitamin D metabolites are essential for bone regeneration and mineral homeostasis. The vitamin D precursor 7-dehydrocholesterol can be used after UV irradiation to locally produce active vitamin D by osteoblastic cells. Furthermore, UV-irradiated 7-dehydrocholesterol is a biocompatible coating for titanium implants with positive effects on osteoblast differentiation. In this study, we examined the impact of titanium implants surfaces coated with UV-irradiated 7-dehydrocholesterol on the osteogenic differentiation of human umbilical cord mesenchymal stem cells. First, the synthesis of cholecalciferol (D3) was achieved through the incubation of the UV-activated 7-dehydrocholesterol coating for 48 h at 23℃. Further, we investigated in vitro the biocompatibility of this coating in human umbilical cord mesenchymal stem cells and its potential to enhance their differentiation towards the osteogenic lineage. Human umbilical cord mesenchymal stem cells cultured onto UV-irradiated 7-dehydrocholesterol-coated titanium implants surfaces, combined with osteogenic supplements, upregulated the gene expression of several osteogenic markers and showed higher alkaline phosphatase activity and calcein blue staining, suggesting increased mineralization. Thus, our results show that the use of UV irradiation on 7-dehydrocholesterol -treated titanium implants surfaces generates a bioactive coating that promotes the osteogenic differentiation of human umbilical cord mesenchymal stem cells, with regenerative potential for improving osseointegration in titanium-based bone anchored implants. PMID:25899927

  14. Thymosin beta-4 promotes mesenchymal stem cell proliferation via an interleukin-8-dependent mechanism

    SciTech Connect

    Jeon, Byung-Joon; Yang, Yoolhee; Kyung Shim, Su; Yang, Heung-Mo; Cho, Daeho; Ik Bang, Sa

    2013-10-15

    Mesenchymal stem cells (MSCs) hold great promise for the field of tissue regeneration. Because only a limited number of MSCs can be obtained from each donor site, it is important to establish standard methods for MSC expansion using growth and trophic factors. Thymosin β4 (Tβ4) is a novel trophic factor that has antimicrobial effects and the potential to promote tissue repair. Tβ4 is a ubiquitous, naturally-occurring peptide in the wound bed. Therefore, the relationship between Tβ4 and MSCs, especially adjacent adipose tissue-derived stem cells (ASCs), merits consideration. Exogenous Tβ4 treatment enhanced the proliferation of human ASCs, resulting in prominent nuclear localization of PCNA immunoreactivity. In addition, exogenous Tβ4 also increased IL-8 secretion and blocking of IL-8 with neutralizing antibodies decreased Tβ4-induced ASC proliferation, suggesting that IL-8 is a critical mediator of Tβ4-enhanced proliferation. Moreover, Tβ4 activated phosphorylation of ERK1/2 and increased the nuclear translocation of NF-κB. These observation provide that Tβ4 promotes the expansion of human ASCs via an IL-8-dependent mechanism that involves the ERK and NF-κB pathways. Therefore, Tβ4 could be used as a tool for MSC expansion in cell therapeutics. - Highlights: • This is fundamental information required to correlate Tβ4 with MSC expansion. • MSC expansion by Tβ4 is involved in enhancement of IL-8 and ERK/NF-κB pathway. • Tβ4 could be used as a tool for MSC expansion in cell therapeutics.

  15. Icariin promotes directed chondrogenic differentiation of bone marrow mesenchymal stem cells but not hypertrophy in vitro.

    PubMed

    Wang, Zhi Cong; Sun, Hui Jun; Li, Kai Hua; Fu, Chao; Liu, Mo Zhen

    2014-11-01

    Icariin (ICA), a Traditional Chinese Medicine, has been demonstrated to be a promoting compound for extracellular matrix synthesis and gene expression of chondrocytes. However, whether ICA can act as a substitute for or cooperate with growth factors to directly promote stable chondrogenesis of bone marrow mesenchymal stem cells (BMSCs) remains unknown. In the present study, rat BMSCs were cultivated in monolayer cultures with a chondrogenic medium containing transforming growth factor-β3 for 14 days; ICA was added to the same chondrogenic medium throughout the culture period at a concentration of 1×10(-6) M. Cell morphology was observed using an inverted microscope, and chondrogenic differentiation markers, including collagen II, aggrecan and SRY (sex determining region Y)-box 9 (SOX9), were detected by immunofluorescence, reverse transcription-quantitative polymerase chain reaction and western blot analysis. Hypertrophic differentiation was also analyzed using collagen I gene expression and alkaline phosphatase (ALP) activity. The results revealed that ICA was effective at forming an increased number of and larger aggregates, and significantly upregulated the mRNA expression levels and protein synthesis of collagen II, aggrecan and SOX9. Furthermore, the chondrogenic medium alone caused hypertrophic differentiation through the upregulation of collagen I gene expression and ALP activity, which was not potentiated by the presence of ICA. Thus, ICA promoted directed chondrogenic differentiation of BMSCs, but had no effect on hypertrophic differentiation. The present results also suggested that ICA may be an effective accelerant of growth factors for cartilage tissue engineering by promoting their chondrogenic differentiating effects but reducing the effect of hypertrophic differentiation. PMID:25289054

  16. Icariin promotes directed chondrogenic differentiation of bone marrow mesenchymal stem cells but not hypertrophy in vitro

    PubMed Central

    WANG, ZHI CONG; SUN, HUI JUN; LI, KAI HUA; FU, CHAO; LIU, MO ZHEN

    2014-01-01

    Icariin (ICA), a Traditional Chinese Medicine, has been demonstrated to be a promoting compound for extracellular matrix synthesis and gene expression of chondrocytes. However, whether ICA can act as a substitute for or cooperate with growth factors to directly promote stable chondrogenesis of bone marrow mesenchymal stem cells (BMSCs) remains unknown. In the present study, rat BMSCs were cultivated in monolayer cultures with a chondrogenic medium containing transforming growth factor-β3 for 14 days; ICA was added to the same chondrogenic medium throughout the culture period at a concentration of 1×10−6 M. Cell morphology was observed using an inverted microscope, and chondrogenic differentiation markers, including collagen II, aggrecan and SRY (sex determining region Y)-box 9 (SOX9), were detected by immunofluorescence, reverse transcription-quantitative polymerase chain reaction and western blot analysis. Hypertrophic differentiation was also analyzed using collagen I gene expression and alkaline phosphatase (ALP) activity. The results revealed that ICA was effective at forming an increased number of and larger aggregates, and significantly upregulated the mRNA expression levels and protein synthesis of collagen II, aggrecan and SOX9. Furthermore, the chondrogenic medium alone caused hypertrophic differentiation through the upregulation of collagen I gene expression and ALP activity, which was not potentiated by the presence of ICA. Thus, ICA promoted directed chondrogenic differentiation of BMSCs, but had no effect on hypertrophic differentiation. The present results also suggested that ICA may be an effective accelerant of growth factors for cartilage tissue engineering by promoting their chondrogenic differentiating effects but reducing the effect of hypertrophic differentiation. PMID:25289054

  17. A functional polyester carrying free hydroxyl groups promotes the mineralization of osteoblast and human mesenchymal stem cell extracellular matrix.

    PubMed

    Bi, Xiaoping; You, Zhengwei; Gao, Jin; Fan, Xianqun; Wang, Yadong

    2014-06-01

    Functional groups can control biointerfaces and provide a simple way to make therapeutic materials. We recently reported the design and synthesis of poly(sebacoyl diglyceride) (PSeD) carrying a free hydroxyl group in its repeating unit. This paper examines the use of this polymer to promote biomineralization for application in bone tissue engineering. PSeD promoted more mineralization of extracellular matrix secreted by human mesenchymal stem cells and rat osteoblasts than poly(lactic-co-glycolic acid) (PLGA), which is currently widely used in bone tissue engineering. PSeD showed in vitro osteocompatibility and in vivo biocompatibility that matched or surpassed that of PLGA, as well as supported the attachment, proliferation and differentiation of rat osteoblasts and human mesenchymal stem cells. This demonstrates the potential of PSeD for use in bone regeneration. PMID:24560799

  18. The potential for resident lung mesenchymal stem cells to promote functional tissue regeneration: understanding microenvironmental cues.

    PubMed

    Foronjy, Robert F; Majka, Susan M

    2012-12-01

    Tissue resident mesenchymal stem cells (MSCs) are important regulators of tissue repair or regeneration, fibrosis, inflammation, angiogenesis and tumor formation. Bone marrow derived mesenchymal stem cells (BM-MSCs) and endothelial progenitor cells (EPC) are currently being considered and tested in clinical trials as a potential therapy in patients with such inflammatory lung diseases including, but not limited to, chronic lung disease, pulmonary arterial hypertension (PAH), pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD)/emphysema and asthma. However, our current understanding of tissue resident lung MSCs remains limited. This review addresses how environmental cues impact on the phenotype and function of this endogenous stem cell pool. In addition, it examines how these local factors influence the efficacy of cell-based treatments for lung diseases. PMID:23626909

  19. Activation of Wnt3a signaling promotes myogenic differentiation of mesenchymal stem cells in mdx mice

    PubMed Central

    Shang, Yan-chang; Wang, Shu-hui; Xiong, Fu; Peng, Fu-ning; Liu, Zhen-shan; Geng, Jia; Zhang, Cheng

    2016-01-01

    Aim: Duchenne muscular dystrophy (DMD) is an X-linked genetic muscular disorder with no effective treatment at present. Mesenchymal stem cell (MSC) transplantation has been used to treat DMD, but the efficiency is low. Our previous studies show that activation of Wnt3a signaling promotes myogenic differentiation of MSCs in vitro. Here we report an effective MSC transplantation therapy in mdx mice by activation of Wnt3a signaling. Methods: MSCs were isolated from mouse bone marrow, and pretreated with Wnt3a-conditioned medium (Wnt3a-CM), then transplanted into mdx mice. The recipient mice were euthanized at 4, 8, 12, 16 weeks after the transplantation, and muscle pathological changes were examined. The expression of dystrophin in muscle was detected using immunofluorescence staining, RT-PCR and Western blotting. Results: Sixteen weeks later, transplantation of Wnt3a-pretreated MSCs in mdx mice improved the characteristics of dystrophic muscles evidenced by significant reductions in centrally nucleated myofibers, the variability range of cross-sectional area (CSA) and the connective tissue area of myofibers. Furthermore, transplantation of Wnt3a-pretreated MSCs in mdx mice gradually and markedly increased the expression of dystrophin in muscle, and improved the efficiency of myogenic differentiation. Conclusion: Transplantation of Wnt3a-pretreated MSCs in mdx mice results in long-term amelioration of the dystrophic phenotype and restores dystrophin expression in muscle. The results suggest that Wnt3a may be a promising candidate for the treatment of DMD. PMID:27133298

  20. Activation of mesenchymal stem cells by macrophages promotes tumor progression through immune suppressive effects

    PubMed Central

    Jia, Xiao-hua; Feng, Guo-wei; Wang, Zhong-liang; Du, Yang; Shen, Chen; Hui, Hui; Peng, Dong; Li, Zong-jin; Kong, De-ling; Tian, Jie

    2016-01-01

    Cancer development and progression is linked to tumor-associated macrophages (TAMs). Distinct TAMs subsets perform either protective or pathogenic effects in cancer. A protective role in carcinogenesis has been described for M1 macrophages, which activate antitumor mechanisms. By comparison, TAMs isolated from solid and metastatic tumors have a suppressive M2-like phenotype, which could support multiple aspects of tumor progression. Currently, it has not been clearly understood how macrophages in tumor-associated stroma could be hijacked to support tumor growth. Mesenchymal stem cells (MSCs) actively interact with components of the innate immune system and display both anti-inflammatory and pro-inflammatory effects. Here, we tested whether MSCs could favor the tumor to escape from immunologic surveillance in the presence of M1 macrophages. We found that MSCs educated by M1 condition medium (cMSCs) possessed a greatly enhanced ability in promoting tumor growth in vivo. Examination of cytokines/chemokines showed that the cMSCs acquired a regulatory profile, which expressed high levels of iNOS and MCP1. Consistent with an elevated MCP1 expression in cMSCs, the tumor-promoting effect of the cMSCs depended on MCP1 mediated macrophage recruitment to tumor sites. Furthermore, IL-6 secreted by the cMSCs could polarize infiltrated TAMs into M2-like macrophages. Therefore, when macrophages changed into M1 pro-inflammation type in tumor microenvironment, the MSCs would act as poor sensors and switchers to accelerate tumor growth. PMID:26988913

  1. Tuning microenvironment modulus and biochemical composition promotes human mesenchymal stem cell tenogenic differentiation.

    PubMed

    Rehmann, Matthew S; Luna, Jesus I; Maverakis, Emanual; Kloxin, April M

    2016-05-01

    Mesenchymal stem cells (MSCs) are promising for the regeneration of tendon and ligament tissues. Toward realizing this potential, microenvironment conditions are needed for promoting robust lineage-specific differentiation into tenocytes/ligament fibroblasts. Here, we utilized a statistical design of experiments approach to examine combinations of matrix modulus, composition, and soluble factors in human MSC tenogenic/ligamentogenic differentiation. Specifically, well-defined poly(ethylene glycol)-based hydrogels were synthesized using thiol-ene chemistry providing a bioinert base for probing cell response to extracellular matrix cues. Monomer concentrations were varied to achieve a range of matrix moduli (E ∼ 10-90 kPa), and different ratios of integrin-binding peptides were incorporated (GFOGER and RGDS for collagen and fibronectin, respectively), mimicking aspects of developing tendon/ligament tissue. A face-centered central composite response surface design was utilized to understand the contributions of these cues to human MSC differentiation in the presence of soluble factors identified to promote tenogenesis/ligamentogenesis (BMP-13 and ascorbic acid). Increasing modulus and collagen mimetic peptide content increased relevant gene expression and protein production or retention (scleraxis, collagen I, tenascin-C). These findings could inform the design of materials for tendon/ligament regeneration. More broadly, the design of experiments enabled efficient data acquisition and analysis, requiring fewer replicates than if each factor had been varied one at a time. This approach can be combined with other stimuli (for example, mechanical stimulation) toward a better mechanistic understanding of differentiation down these challenging lineages. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1162-1174, 2016. PMID:26748903

  2. Boron Nitride Nanotubes Reinforce Tricalcium Phosphate Scaffolds and Promote the Osteogenic Differentiation of Mesenchymal Stem Cells.

    PubMed

    Shuai, Cijun; Gao, Chengde; Feng, Pei; Xiao, Tao; Yu, Kun; Deng, Youwen; Peng, Shuping

    2016-05-01

    Incorporating boron nitride nanotubes (BNNTs) into ceramic matrices is a promising strategy for obtaining multifunctional composites. In this study, the application of BNNTs in reinforcing β-tricalcium phosphate (β-TCP) scaffolds manufactured using laser sintering is demonstrated. BNNTs contribute to the effective inhibition of both grain growth and phase transformation in β-TCP. Moreover, they can strengthen the grain boundaries and boost the fracture mode transition from intergranular to transgranular. BNNTs play an active role in reinforcing β-TCP in terms of load transfer and energy absorption by the synergistic mechanisms of pull-out, peel-off, crack bridging and deflection. With a BNNT content of 4 wt%, the elastic modulus, hardness, compressive strength and fracture toughness of β-TCP increase by 46%, 39%, 109% and 35%, respectively. Umbilical cord mesenchymal stem cells (UC-MSCs) were isolated with high purity, and surface molecule characterization revealed that they were CD90+, CD29+, CD73+, CD31-, CD34- and CD45-. UC-MSCs on BNNTs/β-TCP scaffolds were characterized by more positive Alizarin Red staining as well as up-regulated expression of osteoblast markers, as revealed by quantitative real-time reverse transcriptase polymerase chain reaction analysis and immunofluorescence staining. These results are the first to demonstrate that BNNTs promote the osteogenic differentiation of UC-MSCs, indicating good osteoinductive properties for use in bone scaffolds. This study paves the way for the potential use of a BNNT/β-TCP scaffold in bone repair. PMID:27305816

  3. CD44 promotes the migration of bone marrow-derived mesenchymal stem cells toward glioma

    PubMed Central

    YIN, QIANG; ZHOU, YANG-YANG; WANG, PENG; MA, LI; LI, PENG; WANG, XIAO-GUANG; SHE, CHUN-HUA; LI, WEN-LIANG

    2016-01-01

    Previous in vivo and in vitro studies have shown that human mesenchymal stem cells (MSCs) exhibit tropism for gliomas. However, the mechanism underlying this directed migration remains unclear. The aim of the present study was to investigate the possible mechanism underlying platelet-derived growth factor-BB (PDGF-BB)-induced chemotactic migration of bone marrow-derived MSCs (BMSCs) toward glioma. Rat glioma C6 cell-conditioned medium was utilized to evaluate the chemotactic response of BMSCs toward glioma using an in vitro migration assay. Recombinant rat PDGF-BB was added to C6 cell-conditioned medium to assess its effect on the tropism of BMSCs. The effect of PDGF-BB on the expression levels of cluster of differentiation (CD)44 in BMSCs was evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence assays. The results revealed that chemotactic migration was induced in BMSCs by rat glioma C6 cell-conditioned medium, which was enhanced by PDGF-BB treatment in a dose-dependent manner. Furthermore, RT-PCR and immunofluorescence assays showed that CD44 expression was upregulated in BMSCs following treatment with 40 ng/ml PDGF-BB for 12 h. Additionally, 3-h pretreatment with the anti-CD44 neutralizing antibody OX-50 was observed to attenuate the tropism of BMSCs toward glioma in the presence or absence of PDGF-BB. The results of the present study indicate that CD44 mediates the tropism of BMSCs toward glioma, and PDGF-BB promotes the migration of BMSCs toward glioma via the upregulation of CD44 expression in BMSCs. These findings suggest CD44 inhibition may be a potential therapeutic target for the treatment of glioma. PMID:27073479

  4. Osteogenic differentiation of human mesenchymal stem cells promotes mineralization within a biodegradable peptide hydrogel.

    PubMed

    Castillo Diaz, Luis A; Elsawy, Mohamed; Saiani, Alberto; Gough, Julie E; Miller, Aline F

    2016-01-01

    An attractive strategy for the regeneration of tissues has been the use of extracellular matrix analogous biomaterials. Peptide-based fibrillar hydrogels have been shown to mimic the structure of extracellular matrix offering cells a niche to undertake their physiological functions. In this study, the capability of an ionic-complementary peptide FEFEFKFK (F, E, and K are phenylalanine, glutamic acid, and lysine, respectively) hydrogel to host human mesenchymal stem cells in three dimensions and induce their osteogenic differentiation is demonstrated. Assays showed sustained cell viability and proliferation throughout the hydrogel over 12 days of culture and these human mesenchymal stem cells differentiated into osteoblasts simply upon addition of osteogenic stimulation. Differentiated osteoblasts synthesized key bone proteins, including collagen-1 (Col-1), osteocalcin, and alkaline phosphatase. Moreover, mineralization occurred within the hydrogel. The peptide hydrogel is a naturally biodegradable material as shown by oscillatory rheology and reversed-phase high-performance liquid chromatography, where both viscoelastic properties and the degradation of the hydrogel were monitored over time, respectively. These findings demonstrate that a biodegradable octapeptide hydrogel can host and induce the differentiation of stem cells and has the potential for the regeneration of hard tissues such as alveolar bone. PMID:27493714

  5. Nukbone® promotes proliferation and osteoblastic differentiation of mesenchymal stem cells from human amniotic membrane

    SciTech Connect

    Rodríguez-Fuentes, Nayeli; Rodríguez-Hernández, Ana G.; Enríquez-Jiménez, Juana; Alcántara-Quintana, Luz E.; Fuentes-Mera, Lizeth; Piña-Barba, María C.; Zepeda-Rodríguez, Armando; and others

    2013-05-10

    Highlights: •Nukbone showed to be a good scaffold for adhesion, proliferation and differentiation of stem cells. •Nukbone induced osteoblastic differentiation of human mesenchymal stem cells. •Results showed that Nukbone offer an excellent option for bone tissue regeneration due to properties. -- Abstract: Bovine bone matrix Nukbone® (NKB) is an osseous tissue-engineering biomaterial that retains its mineral and organic phases and its natural bone topography and has been used as a xenoimplant for bone regeneration in clinics. There are not studies regarding its influence of the NKB in the behavior of cells during the repairing processes. The aim of this research is to demonstrate that NKB has an osteoinductive effect in human mesenchymal stem cells from amniotic membrane (AM-hMSCs). Results indicated that NKB favors the AM-hMSCs adhesion and proliferation up to 7 days in culture as shown by the scanning electron microscopy and proliferation measures using an alamarBlue assay. Furthermore, as demonstrated by reverse transcriptase polymerase chain reaction, it was detected that two gene expression markers of osteoblastic differentiation: the core binding factor and osteocalcin were higher for AM-hMSCs co-cultured with NKB in comparison with cultivated cells in absence of the biomaterial. As the results indicate, NKB possess the capability for inducing successfully the osteoblastic differentiation of AM-hMSC, so that, NKB is an excellent xenoimplant option for repairing bone tissue defects.

  6. Osteogenic differentiation of human mesenchymal stem cells promotes mineralization within a biodegradable peptide hydrogel

    PubMed Central

    Castillo Diaz, Luis A; Elsawy, Mohamed; Saiani, Alberto; Gough, Julie E; Miller, Aline F

    2016-01-01

    An attractive strategy for the regeneration of tissues has been the use of extracellular matrix analogous biomaterials. Peptide-based fibrillar hydrogels have been shown to mimic the structure of extracellular matrix offering cells a niche to undertake their physiological functions. In this study, the capability of an ionic-complementary peptide FEFEFKFK (F, E, and K are phenylalanine, glutamic acid, and lysine, respectively) hydrogel to host human mesenchymal stem cells in three dimensions and induce their osteogenic differentiation is demonstrated. Assays showed sustained cell viability and proliferation throughout the hydrogel over 12 days of culture and these human mesenchymal stem cells differentiated into osteoblasts simply upon addition of osteogenic stimulation. Differentiated osteoblasts synthesized key bone proteins, including collagen-1 (Col-1), osteocalcin, and alkaline phosphatase. Moreover, mineralization occurred within the hydrogel. The peptide hydrogel is a naturally biodegradable material as shown by oscillatory rheology and reversed-phase high-performance liquid chromatography, where both viscoelastic properties and the degradation of the hydrogel were monitored over time, respectively. These findings demonstrate that a biodegradable octapeptide hydrogel can host and induce the differentiation of stem cells and has the potential for the regeneration of hard tissues such as alveolar bone. PMID:27493714

  7. Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors

    PubMed Central

    2013-01-01

    Introduction Mesenchymal stem cells (MSCs) are known to migrate to tumor tissues. This behavior of MSCs has been exploited as a tumor-targeting strategy for cell-based cancer therapy. However, the effects of MSCs on tumor growth are controversial. This study was designed to determine the effect of MSCs on the growth of breast and prostate tumors. Methods Bone marrow-derived MSCs (BM-MSCs) were isolated and characterized. Effects of BM-MSCs on tumor cell proliferation were analyzed in a co-culture system with mouse breast cancer cell 4T1 or human prostate cancer cell DU145. Tumor cells were injected into nude mice subcutaneously either alone or coupled with BM-MSCs. The expression of cell proliferation and angiogenesis-related proteins in tumor tissues were immunofluorescence analyzed. The angiogenic effect of BM-MSCs was detected using a tube formation assay. The effects of the crosstalk between tumor cells and BM-MSCs on expression of angiogenesis related markers were examined by immunofluorescence and real-time PCR. Results Both co-culturing with mice BM-MSCs (mBM-MSCs) and treatment with mBM-MSC-conditioned medium enhanced the growth of 4T1 cells. Co-injection of 4T1 cells and mBM-MSCs into nude mice led to increased tumor size compared with injection of 4T1 cells alone. Similar experiments using DU145 cells and human BM-MSCs (hBM-MSCs) instead of 4T1 cells and mBM-MSCs obtained consistent results. Compared with tumors induced by injection of tumor cells alone, the blood vessel area was greater in tumors from co-injection of tumor cells with BM-MSCs, which correlated with decreased central tumor necrosis and increased tumor cell proliferation. Furthermore, both conditioned medium from hBM-MSCs alone and co-cultures of hBM-MSCs with DU145 cells were able to promote tube formation ability of human umbilical vein endothelial cells. When hBM-MSCs are exposed to the DU145 cell environment, the expression of markers associated with neovascularization (macrophage

  8. Mesenchymal stem cells.

    PubMed

    Ding, Dah-Ching; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2011-01-01

    Stem cells have two features: the ability to differentiate along different lineages and the ability of self-renewal. Two major types of stem cells have been described, namely, embryonic stem cells and adult stem cells. Embryonic stem cells (ESC) are obtained from the inner cell mass of the blastocyst and are associated with tumorigenesis, and the use of human ESCs involves ethical and legal considerations. The use of adult mesenchymal stem cells is less problematic with regard to these issues. Mesenchymal stem cells (MSCs) are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation. MSCs can be isolated from a variety of tissues, such as umbilical cord, endometrial polyps, menses blood, bone marrow, adipose tissue, etc. This is because the ease of harvest and quantity obtained make these sources most practical for experimental and possible clinical applications. Recently, MSCs have been found in new sources, such as menstrual blood and endometrium. There are likely more sources of MSCs waiting to be discovered, and MSCs may be a good candidate for future experimental or clinical applications. One of the major challenges is to elucidate the mechanisms of differentiation, mobilization, and homing of MSCs, which are highly complex. The multipotent properties of MSCs make them an attractive choice for possible development of clinical applications. Future studies should explore the role of MSCs in differentiation, transplantation, and immune response in various diseases. PMID:21396235

  9. Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer's disease mice

    PubMed Central

    Yan, Yufang; Ma, Tuo; Gong, Kai; Ao, Qiang; Zhang, Xiufang; Gong, Yandao

    2014-01-01

    In the present study, we transplanted adipose-derived mesenchymal stem cells into the hippocampi of APP/PS1 transgenic Alzheimer's disease model mice. Immunofluorescence staining revealed that the number of newly generated (BrdU+) cells in the subgranular zone of the dentate gyrus in the hippocampus was significantly higher in Alzheimer's disease mice after adipose-derived mesenchymal stem cell transplantation, and there was also a significant increase in the number of BrdU+/DCX+ neuroblasts in these animals. Adipose-derived mesenchymal stem cell transplantation enhanced neurogenic activity in the subventricular zone as well. Furthermore, adipose-derived mesenchymal stem cell transplantation reduced oxidative stress and alleviated cognitive impairment in the mice. Based on these findings, we propose that adipose-derived mesenchymal stem cell transplantation enhances endogenous neurogenesis in both the subgranular and subventricular zones in APP/PS1 transgenic Alzheimer's disease mice, thereby facilitating functional recovery. PMID:25206892

  10. Suppression of ornithine decarboxylase promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells.

    PubMed

    Tsai, Yo-Hsian; Lin, Kuan-Lian; Huang, Yuan-Pin; Hsu, Yi-Chiang; Chen, Chung-Hwan; Chen, Yuhsin; Sie, Min-Hua; Wang, Gwo-Jaw; Lee, Mon-Juan

    2015-07-22

    Ornithine decarboxylase (ODC) is the rate-limiting enzyme for polyamine biosynthesis. Suppression of ODC by its irreversible inhibitor, α-difluoromethylornithine (DFMO), or by RNA interference through siRNA, enhanced osteogenic gene expression and alkaline phosphatase activity, and accelerated matrix mineralization of human bone marrow-derived mesenchymal stem cells (hBMSCs). Besides, adipogenic gene expression and lipid accumulation was attenuated, indicating that the enhanced osteogenesis was accompanied by down-regulation of adipogenesis when ODC was suppressed. A decrease in the intracellular polyamine content of hBMSCs during osteogenic induction was observed, suggesting that the level of endogenous polyamines is regulated during differentiation of hBMSCs. This study elucidates the role of polyamine metabolism in the lineage commitment of stem cells and provides a potential new indication for DFMO as bone-stimulating drug. PMID:26140984

  11. Inhibiting PPARγ by erythropoietin while upregulating TAZ by IGF1 synergistically promote osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Zhou, Jianwei; Wei, Fangyuan; Ma, Yuquan

    2016-09-01

    Erythropoietin (EPO) is reported to promote osteogenesis and inhibit adipogenesis of mesenchymal stem cells (MSC) through inhibiting PPARγ, while insulin-like growth factor 1 (IGF1) is able to enhance osteogenesis via upregulating transcriptional coactivator with PDZ-binding motif (TAZ). The different targets of EPO and IGF1 suggested their potential synergism to enhance osteogenesis. In this study, we aimed to determine the potential synergism of EPO and IGF1 and its efficacy on MSC differentiation. Rat adipose-derived mesenchymal stem cells (ADSCs) were separately treated with EPO, IGF1 and EPO/IGF1. It was observed that the co-treatment using EPO and IGF1 was able to potently promote the osteogenic differentiation of rat ADSCs compared with EPO or IGF1 alone, which offered a promising effective option to strengthen bone tissue regeneration for bone defects. Further, we demonstrated that the enhanced osteogenic differentiation by EPO and IGF1 co-treatment was almost counteracted by activating PPARγ through PPARγ agonist, RSG, and blocking TAZ through TAZ silencing RNA, siTAZ. Thus, it could be concluded that EPO and IGF1 possessed a potent synergism in promoting osteogenic differentiation, and the synergism was mainly attributed to co-regulation of different osteogenic regulators PPARγ and TAZ, which were targeted genes of EPO and IGF1 respectively. PMID:27422606

  12. Mesenchymal stem cells preconditioned with trimetazidine promote neovascularization of hearts under hypoxia/reoxygenation injury

    PubMed Central

    Hu, Xiaowu; Yang, Junjie; Wang, Ying; Zhang, You; Ii, Masaaki; Shen, Zhenya; Hui, Jie

    2015-01-01

    Background: Cell-based angiogenesis is a promising treatment for ischemic diseases; however, survival of implanted cells is impaired by the ischemic microenvironment. In this study, mesenchymal stem cells (MSCs) for cell transplantation were preconditioned with trimetazidine (TMZ). We hypothesized that TMZ enhances the survival rate of MSCs under hypoxic stimuli through up-regulation of HIF1-α. Methods and results: Bone marrow-derived rat mesenchymal stem cells were preconditioned with 10 μM TMZ for 6 h. TMZ preconditioning of MSCs remarkably increased cell viability and the expression of HIF1-α and Bcl-2, when cells were under hypoxia/reoxygenation (H/R) stimuli. But the protective effects of TMZ were abolished after knocking down of HIF-1α. Three days after implantation of the cells into the peri-ischemic zone of rat myocardial ischemia-reperfusion (I/R) injury model, survival of the TMZ-preconditioned MSCs was high. Furthermore, capillary density and cardiac function were significantly better in the rats implanted with TMZ-preconditioned MSCs 28 days after cell injection. Conclusions: TMZ preconditioning increased the survival rate of MSCs, through up-regulation of HIF1-α, thus contributing to neovascularization and improved cardiac function of rats subjected to myocardial I/R injury. PMID:26629255

  13. PTHrP in differentiating human mesenchymal stem cells: transcript isoform expression, promoter methylation, and protein accumulation.

    PubMed

    Longo, Alessandra; Librizzi, Mariangela; Naselli, Flores; Caradonna, Fabio; Tobiasch, Edda; Luparello, Claudio

    2013-10-01

    Human PTHrP gene displays a complex organization with nine exons producing diverse mRNA variants due to alternative splicing at 5' and 3' ends and the existence of three different transcriptional promoters (P1, P2 and P3), two of which (P2 and P3) contain CpG islands. It is known that the expression of PTHrP isoforms may be differentially regulated in a developmental stage- and tissue-specific manner. To search for novel molecular markers of stemness/differentiation, here we have examined isoform expression in fat-derived mesenchymal stem cells both maintained in stem conditions and induced toward adipo- and osteogenesis. In addition, the expression of the splicing isoforms derived from P2 and P3 promoters was correlated to the state of methylation of the latter. Moreover, we also performed a quantitative evaluation of intracellular and secreted PTHrP protein product in undifferentiated stem cells and in parallel cultures at various differentiation stages. The data obtained indicate that from the stemness condition to that of osteo- and adipo-genic differentiated cells, the expression of isoforms becomes increasingly selective, thereby being a potential gene signature for the monitoring of cell stem or committed/differentiating state and that the switching-off of PTHrP isoform expression is mostly promoter methylation-dependent. Moreover, PTHrP intracellular retention is down-regulated in osteo-differentiating cells whereas the secretion of the protein in the extracellular medium is up-regulated with respect to stem cells, thereby suggesting that these variations of the intracellular and extracellular levels of PTHrP could potentially be enclosed in the list of the available protein signature of osteogenic differentiation. PMID:23810909

  14. [Mesenchymal stem cells. A review.].

    PubMed

    Sigurjónsson, O E; Guðmundsson, K O; Guðmundsson, S

    2001-01-01

    The bone marrow contains various types of stem cells. Among them are hematopoietic stem cells, which are the precursors of all blood cells, and mesenchymal stem cells. Mesenchymal stem cells have recently received a lot of attention in biological research because of their capability to self renewal, to expand and transdifferentiate into many different cell types; bone cells, adipocytes, chondrocytes, tendocytes, neural cells and stromal cells of the bone marrow. Mesenchymal stem cells can be cultured in vitro although their differentiation potential is not yet fully understood. Several experiments have been conducted in animal models where mesenchymal stem cells have been transplanted in order to enhance hematopoiesis or to facilitate the repair of mesenchymal tissue. Similar experiments are being conducted in humans. Mesenchymal stem cells are believed to be able to enhance hematopoietic stem cells transplantation by rebuilding the bone marrow microenvironment which is damaged after radiation- and/or chemotherapy. Mesenchymal stem cells are promising as vehicles for gene transfer and therapy. It may prove possible to tranduce them with a gene coding for a defective protein i.e. collagen I in osteogenesis imperfecta. The cells could then be expanded ex vivo and transplanted to the patients where they home to the bone marrow, differentiate and produce the intact protein. Future medicine will probably involve mesenchymal stem cells in various treatment settings. PMID:17018999

  15. [Present status of research in bone marrow-derived mesenchymal stem cells for promoting the healing of diabetic ulcer].

    PubMed

    Zheng, Shu-Juan; Jia, Chi-Yu

    2012-08-01

    The delayed healing of diabetic ulcer has been haunting the surgeons and researchers for a long time. Although we have been researching and exploring the effective therapies for many years, the progress has been limited. Bone marrow-derived mesenchymal stem cells (BMSCs) have gradually won worldwide attention for their characteristics of differentiating into tissue repair cells and secreting multiple cytokines as well as growth factors. In recent years, the role of BMSCs in the treatment of diabetic ulcer has been drawing more and more attention. This article reviewed the advancement in the research of BMSCs in promoting the healing of diabetic ulcer. Through a discussion of the treatment of diabetic ulcer, the related research in BMSCs, as well as its role in diabetic ulcer treatment, the mechanism of BMSCs in promoting healing of diabetic ulcers is discussed. We expect through further research, unified criteria for the quality of BMSCs, application approach and dosage of BMSCs could be established. PMID:23248965

  16. Mesenchymal stem/progenitor cells promote the reconstitution of exogenous hematopoietic stem cells in Fancg−/− mice in vivo

    PubMed Central

    Li, Yan; Chen, Shi; Yuan, Jin; Yang, Yanzhu; Li, Jingling; Ma, Jin; Wu, Xiaohua; Freund, Marcel; Pollok, Karen; Hanenberg, Helmut; Goebel, W. Scott

    2009-01-01

    Fanconi anemia (FA) is a heterogeneous genetic disorder characterized by bone marrow failure and complex congenital anomalies. Although mutations in FA genes result in a characteristic phenotype in the hematopoietic stem/progenitor cells (HSPCs), little is known about the consequences of a nonfunctional FA pathway in other stem/progenitor cell compartments. Given the intense functional interactions between HSPCs and the mesenchymalmicroenvironment, we investigated the FA pathway on the cellular functions of murine mesenchymal stem/progenitor cells (MSPCs) and their interactions with HSPCs in vitro and in vivo. Here, we show that loss of the murine homologue of FANCG (Fancg) results in a defect in MSPC proliferation and in their ability to support the adhesion and engraftment of murine syngeneic HSPCs in vitro or in vivo. Transplantation of wild-type (WT) but not Fancg−/− MSPCs into the tibiae of Fancg−/− recipient mice enhances the HSPC engraftment kinetics, the BM cellularity, and the number of progenitors per tibia of WT HSPCs injected into lethally irradiated Fancg−/− recipients. Collectively, these data show that FA proteins are required in the BM microenvironment to maintain normal hematopoiesis and provide genetic and quantitative evidence that adoptive transfer of WT MSPCs enhances hematopoietic stem cell engraftment. PMID:19129541

  17. Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms

    PubMed Central

    Kachgal, Suraj; Putnam, Andrew J.

    2012-01-01

    Using a fibrin-based angiogenesis model, we have established that there is no canonical mechanism used by ECs to degrade the surrounding extracellular matrix (ECM), but rather the set of proteases used is dependent on the mural cells providing the angiogenic cues. Mesenchymal stem cells (MSCs) originating from different tissues, which are thought to be phenotypically similar, promote angiogenesis through distinct mechanisms. Specifically, adipose-derived stem cells (ASCs) promote utilization of the plasminogen activator-plasmin axis by ECs as the primary means of vessel invasion and elongation in fibrin. Matrix metalloproteinases (MMPs) serve a purpose in regulating capillary diameter and possibly in stabilizing the nascent vessels. These proteolytic mechanisms are more akin to those involved in fibroblast-mediated angiogenesis than to those in bone marrow-derived stem cell (BMSC)-mediated angiogenesis. In addition, expression patterns of angiogenic factors such as urokinase plasminogen activator (uPA), hepatocyte growth factor (HGF), and tumor necrosis factor alpha (TNFα) were similar for ASC and fibroblast-mediated angiogenesis, and in direct contrast to BMSC-mediated angiogenesis. The present study illustrates that the nature of the heterotypic interactions between mural cells and endothelial cells depend on the identity of the mural cell used. Even MSCs which are shown to behave phenotypically similar do not stimulate angiogenesis via the same mechanisms. PMID:21104120

  18. Wnt3a, a Protein Secreted by Mesenchymal Stem Cells Is Neuroprotective and Promotes Neurocognitive Recovery Following Traumatic Brain Injury.

    PubMed

    Zhao, Yuhai; Gibb, Stuart L; Zhao, Jing; Moore, Anthony N; Hylin, Michael J; Menge, Tyler; Xue, Hasen; Baimukanova, Gyulnar; Potter, Daniel; Johnson, Evan M; Holcomb, John B; Cox, Charles S; Dash, Pramod K; Pati, Shibani

    2016-05-01

    Intravenous administration of bone marrow derived mesenchymal stem cells (MSCs) has been shown to reduce blood brain barrier compromise and improve neurocognition following traumatic brain injury (TBI). These effects occur in the absence of engraftment and differentiation of these cells in the injured brain. Recent studies have shown that soluble factors produced by MSCs mediate a number of the therapeutic effects. In this study, we sought to determine if intravenous administration of MSCs (IV-MSCs) could enhance hippocampal neurogenesis following TBI. Our results demonstrate that IV-MSC treatment attenuates loss of neural stem cells and promotes hippocampal neurogenesis in TBI injured mice. As Wnt signaling has been implicated in neurogenesis, we measured circulating Wnt3a levels in serum following IV-MSC administration and found a significant increase in Wnt3a. Concurrent with this increase, we detected increased activation of the Wnt/β-catenin signaling pathway in hippocampal neurons. Furthermore, IV recombinant Wnt3a treatment provided neuroprotection, promoted neurogenesis, and improved neurocognitive function in TBI injured mice. Taken together, our results demonstrate a role for Wnt3a in the therapeutic potential of MSCs and identify Wnt3a as a potential stand-alone therapy or as part of a combination therapeutic strategy for the treatment of TBI. Stem Cells 2016;34:1263-1272. PMID:26840479

  19. Dental mesenchymal stem cells.

    PubMed

    Sharpe, Paul T

    2016-07-01

    Mammalian teeth harbour mesenchymal stem cells (MSCs), which contribute to tooth growth and repair. These dental MSCs possess many in vitro features of bone marrow-derived MSCs, including clonogenicity, expression of certain markers, and following stimulation, differentiation into cells that have the characteristics of osteoblasts, chondrocytes and adipocytes. Teeth and their support tissues provide not only an easily accessible source of MSCs but also a tractable model system to study their function and properties in vivo In addition, the accessibility of teeth together with their clinical relevance provides a valuable opportunity to test stem cell-based treatments for dental disorders. This Review outlines some recent discoveries in dental MSC function and behaviour and discusses how these and other advances are paving the way for the development of new biologically based dental therapies. PMID:27381225

  20. Involvement of Wnt/β-catenin signaling in the mesenchymal stem cells promote metastatic growth and chemoresistance of cholangiocarcinoma

    PubMed Central

    Yuan, Jiahui; Yan, Congcong; Hu, Shaoping; Tong, Yinping; Mao, Yubin; Hu, Tianhui; Zhang, Bing; Song, Gang

    2015-01-01

    Mesenchymal stem cells (MSCs) are multi-potent progenitor cells with ability to differentiate into multiple lineages, including bone, cartilage, fat, and muscles. Recent research indicates that MSCs can be efficiently recruited to tumor sites, modulating tumor growth and metastasis. However, the underlying molecular mechanisms are not fully understood. Here, we first demonstrated that human umbilical cord-derived mesenchymal stem cells (hUC-MSCs), when mixed with human cholangiocarcinoma cell lines QBC939 in a xenograft tumor model, significantly increased the cancer cells proliferation and metastatic potency. MSCs and their conditioned media (MSC-CM) could improve the drug resistance of tumor when the compound K (CK) as an anti-cancer drug, a major intestinal bacterial metabolite of panaxoside, was administered to xenograft tumor mice. Furthermore, MSCs greatly increased the colony formation and invasion of cholangiocarcinoma cells QBC939 and Mz-ChA-1. Immunochemistry studies of cholangiocarcinoma tissue chips and transplantation tumor from nude mice showed that the expression of β-catenin was important for cholangiocarcinoma development. We further demonstrated that MSCs and MSCs-CM could promote proliferation and migration of cholangiocarcinoma cells through targeting the Wnt/β-catenin signaling pathway. hUC-MSCs or MSCs-CM stimulated Wnt activity by promoting the nuclear translocation of β-catenin, and up-regulated Wnt target genes MMPs family, cyclin D1 and c-Myc. Together, our studies highlight a critical role for MSCs on cancer metastasis and indicate MSCs promote metastatic growth and chemoresistance of cholangiocarcinoma cells via activation of Wnt/β-catenin signaling. PMID:26474277

  1. Mussel-inspired alginate gel promoting the osteogenic differentiation of mesenchymal stem cells and anti-infection.

    PubMed

    Zhang, Shiwen; Xu, Kaige; Darabi, Mohammad Ali; Yuan, Quan; Xing, Malcolm

    2016-12-01

    Alginate hydrogels have been used in cell encapsulation for many years but a prevalent issue with pure alginates is that they are unable to provide enough bioactive properties to interact with mammalian cells. This paper discusses the modification of alginate with mussel-inspired dopamine for cell loading and anti-infection. Mouse bone marrow stem cells were immobilized into alginate and alginate-dopamine beads and fibers. Through live-dead and MTT assay, alginates modified by dopamine promoted cell viability and proliferation. In vitro cell differentiation results showed that such an alginate-dopamine gel can promote the osteogenic differentiation of mesenchymal stem cell after PCR and ALP assays. In addition to that, the adhesive prosperities of dopamine allowed for coating the surface of alginate-dopamine gel with silver nanoparticles, which provided the gel with significant antibacterial characteristics. Overall, these results demonstrate that a dopamine-modified alginate gel can be a great tool for cell encapsulation to promote cell proliferation and can be applied to bone regeneration, especially in contaminated bone defects. PMID:27612740

  2. RSPO2 enriches LGR5+ spheroid colon cancer stem cells and promotes its metastasis by epithelial-mesenchymal transition

    PubMed Central

    Zhang, Shi; Han, Xiaoyan; Wei, Bo; Fang, Jiafeng; Wei, Hongbo

    2016-01-01

    Colon cancer stem cells (CCSCs) account for the tumorigenicity of colon cancer and promote its progression and metastasis. RSPO2, the agonist of canonical Wnt/beta-catenin pathway and serves as the growth factor of intestinal stem cells (ISCs), is considered playing an important role in CCSCs. However, the specific function of RSPO2 in CCSCs remains unclear. In this study, we demonstrated that RSPO2 was highly expressed in CCSCs-enriched HCT116 spheroid cells. Elevates the concentration of RSPO2 in medium in favor of enriching the LGR5+ cells and increasing the LGR5 expression in HCT116 spheroid cells, meanwhile silencing of RSPO2 by small interfering RNA inhibits LGR5 expression in HCT116 spheroid cells. In addition, RSPO2 promotes spheres formation but has little effect on the proliferation of HCT116 spheroid cells in vitro. Moreover, RSPO2 also promotes the invasion of HCT116 spheroid cells through enhancing Epithelial-mesenchymal transition (EMT). These findings suggests that RSPO2 is a potential growth factor for CCSCs, helps enriching the CCSCs by serum-free DMEM/F12 medium (SFM) culture and plays a vital role in the metastasis of colon cancer. PMID:27158331

  3. Mesenchymal Stem Cell Transplantation Promotes Neurogenesis and Ameliorates Autism Related Behaviors in BTBR Mice.

    PubMed

    Segal-Gavish, Hadar; Karvat, Golan; Barak, Noy; Barzilay, Ran; Ganz, Javier; Edry, Liat; Aharony, Israel; Offen, Daniel; Kimchi, Tali

    2016-01-01

    Autism spectrum disorders (ASD) are characterized by social communication deficits, cognitive rigidity, and repetitive stereotyped behaviors. Mesenchymal stem cells (MSC) have a paracrine regenerative effect, and were speculated to be a potential therapy for ASD. The BTBR inbred mouse strain is a commonly used model of ASD as it demonstrates robust behavioral deficits consistent with the diagnostic criteria for ASD. BTBR mice also exhibit decreased brain-derived neurotrophic factor (BDNF) signaling and reduced hippocampal neurogenesis. In the current study, we evaluated the behavioral and molecular effects of intracerebroventricular MSC transplantation in BTBR mice. Transplantation of MSC resulted in a reduction of stereotypical behaviors, a decrease in cognitive rigidity and an improvement in social behavior. Tissue analysis revealed elevated BDNF protein levels in the hippocampus accompanied by increased hippocampal neurogenesis in the MSC-transplanted mice compared with sham treated mice. This might indicate a possible mechanism underpinning the behavioral improvement. Our study suggests a novel therapeutic approach which may be translatable to ASD patients in the future. PMID:26257137

  4. P53 functional abnormality in mesenchymal stem cells promotes osteosarcoma development

    PubMed Central

    Velletri, T; Xie, N; Wang, Y; Huang, Y; Yang, Q; Chen, X; Chen, Q; Shou, P; Gan, Y; Cao, G; Melino, G; Shi, Y

    2016-01-01

    It has been shown that p53 has a critical role in the differentiation and functionality of various multipotent progenitor cells. P53 mutations can lead to genome instability and subsequent functional alterations and aberrant transformation of mesenchymal stem cells (MSCs). The significance of p53 in safeguarding our body from developing osteosarcoma (OS) is well recognized. During bone remodeling, p53 has a key role in negatively regulating key factors orchestrating the early stages of osteogenic differentiation of MSCs. Interestingly, changes in the p53 status can compromise bone homeostasis and affect the tumor microenvironment. This review aims to provide a unique opportunity to study the p53 function in MSCs and OS. In the context of loss of function of p53, we provide a model for two sources of OS: MSCs as progenitor cells of osteoblasts and bone tumor microenvironment components. Standing at the bone remodeling point of view, in this review we will first explain the determinant function of p53 in OS development. We will then summarize the role of p53 in monitoring MSC fidelity and in regulating MSC differentiation programs during osteogenesis. Finally, we will discuss the importance of loss of p53 function in tissue microenvironment. We expect that the information provided herein could lead to better understanding and treatment of OS. PMID:26775693

  5. Mucosally transplanted mesenchymal stem cells stimulate intestinal healing by promoting angiogenesis

    PubMed Central

    Manieri, Nicholas A.; Mack, Madison R.; Himmelrich, Molly D.; Worthley, Daniel L.; Hanson, Elaine M.; Eckmann, Lars; Wang, Timothy C.; Stappenbeck, Thaddeus S.

    2015-01-01

    Mesenchymal stem cell (MSC) therapy is an emerging field of regenerative medicine; however, it is often unclear how these cells mediate repair. Here, we investigated the use of MSCs in the treatment of intestinal disease and modeled abnormal repair by creating focal wounds in the colonic mucosa of prostaglandin-deficient mice. These wounds developed into ulcers that infiltrated the outer intestinal wall. We determined that penetrating ulcer formation in this model resulted from increased hypoxia and smooth muscle wall necrosis. Prostaglandin I2 (PGI2) stimulated VEGF-dependent angiogenesis to prevent penetrating ulcers. Treatment of mucosally injured WT mice with a VEGFR inhibitor resulted in the development of penetrating ulcers, further demonstrating that VEGF is critical for mucosal repair. We next used this model to address the role of transplanted colonic MSCs (cMSCs) in intestinal repair. Compared with intravenously injected cMSCs, mucosally injected cMSCs more effectively prevented the development of penetrating ulcers, as they were more efficiently recruited to colonic wounds. Importantly, mucosally injected cMSCs stimulated angiogenesis in a VEGF-dependent manner. Together, our results reveal that penetrating ulcer formation results from a reduction of local angiogenesis and targeted injection of MSCs can optimize transplantation therapy. Moreover, local MSC injection has potential for treating diseases with features of abnormal angiogenesis and repair. PMID:26280574

  6. Mesenchymal Stem Cells promote mammary cancer cell migration in vitro via the CXCR2 receptor

    PubMed Central

    Halpern, Jennifer L.; Kilbarger, Amy; Lynch, Conor C.

    2011-01-01

    Bone metastasis is a common event during breast cancer progression. Recently, mesenchymal stem cells (MSCs) have been implicated in the metastasis of primary mammary cancer. Given that bone is the native environment for MSCs, we hypothesized MSCs facilitate the homing of circulating mammary cancer cells to the bone. To test this hypothesis, we examined in vitro whether bone derived MSCs from FVB mice could influence the migration of syngeneic murine mammary cancer cell lines derived from the polyoma virus middle-T (PyMT) model of mammary gland tumorigenesis. Our data show that conditioned media derived from MSCs significantly enhanced the migration of PyMT mammary cancer cell lines. Analysis of conditioned media using a cytokine array revealed the presence of numerous cytokines in the MSC conditioned media, most notably, the murine orthologs of CXCL1 and CXCL5 that are cognate ligands of the CXCR2 receptor. Further investigation identified that; 1) CXCL1, CXCL5 and CXCR2 mRNA and protein were expressed by the MSCs and PyMT cell lines and; 2) neutralizing antibodies to CXCL1, CXCL5 and CXCR2 or a CXCR2 small molecule inhibitor (SB265610) significantly abrogated the migratory effect of the MSC conditioned media on the PyMT cells. Therefore, in vitro evidence demonstrates that bone derived MSCs play a role in the migration of mammary cancer cells, a conclusion that has potential implications for breast to bone metastasis in vivo. PMID:21601983

  7. Adult human mesenchymal stem cells enhance breast tumorigenesis and promote hormone independence

    PubMed Central

    Rhodes, Lyndsay V.; Muir, Shannon E.; Elliott, Steven; Guillot, Lori M.; Antoon, James W.; Penfornis, Patrice; Tilghman, Syreeta L.; Salvo, Virgilio A.; Fonseca, Juan P.; Lacey, Michelle R.; Beckman, Barbara S.; McLachlan, John A.; Rowan, Brian G.; Pochampally, Radhika

    2016-01-01

    Adult human mesenchymal stem cells (hMSCs) have been shown to home to sites of breast cancer and integrate into the tumor stroma. We demonstrate here the effect of hMSCs on primary breast tumor growth and the progression of these tumors to hormone independence. Co-injection of bone marrow-derived hMSCs enhances primary tumor growth of the estrogen receptor-positive, hormone-dependent breast carcinoma cell line MCF-7 in the presence or absence of estrogen in SCID/beige mice. We also show hormone-independent growth of MCF-7 cells when co-injected with hMSCs. These effects were found in conjunction with increased immunohistochemical staining of the progesterone receptor in the MCF-7/hMSC tumors as compared to MCF-7 control tumors. This increase in PgR expression indicates a link between MCF-7 cells and MSCs through ER-mediated signaling. Taken together, our data reveal the relationship between tumor microenvironment and tumor growth and the progression to hormone independence. This tumor stroma-cell interaction may provide a novel target for the treatment of estrogen receptor-positive, hormone-independent, and endocrine-resistant breast carcinoma. PMID:19597705

  8. Resveratrol-induced SIRT1 activation promotes neuronal differentiation of human bone marrow mesenchymal stem cells.

    PubMed

    Joe, I-Seul; Jeong, Sin-Gu; Cho, Goang-Won

    2015-01-01

    Resveratrol-3,4',5-trihydroxy-trans-stillbene (resveratrol; RSV), a natural non-flavonoid polyphenol compound, provides protection against stress injury, excessive sunlight, ultraviolet radiation, infections, and invading fungi. There is increasing evidence that resveratrol, a sirtuin1 activator, plays a pivotal role in neuroprotection and neuronal differentiation. In this study, we investigated whether resveratrol induces neuronal differentiation of human bone marrow-mesenchymal stem cells (hBM-MSCs). Quantitative PCR results showed that resveratrol-treated MSCs (RSV-MSCs) had significantly increased expression of the neuroprogenitor markers Nestin, Musashi, CD133, and GFAP. When RSV-MSCs were differentiated with neuronal induction media (RSV-dMSCs), they exhibited a cell body and dendritic morphology similar to neurons. The number and neurite length of these RSV-dMSCs were significantly increased compared to differentiated MSCs (dMSCs). The RSV-dMSCs and dMSCs had significantly increased expression of the neuronal-specific marker genes Nestin, Musashi, CD133, GFAP, NF-M, MAP-2, and KCNH1. The RSV-dMSCs also showed a higher expression of the neuronal marker proteins, Nestin and NF-M, based on immunocytochemical staining and immunoblot analysis. This effect was abolished by the treatment of sirtuin1 inhibitor EX527. Therefore, we have shown that resveratrol treatment, along with the use of neuronal induction media, effectively stimulates neuronal cell differentiation of hBM-MSCs. PMID:25459285

  9. Proton-sensing GPCR-YAP Signalling Promotes Cancer-associated Fibroblast Activation of Mesenchymal Stem Cells

    PubMed Central

    Zhu, Hongyi; Guo, Shangchun; Zhang, Yuelei; Yin, Junhui; Yin, Wenjing; Tao, Shicong; Wang, Yang; Zhang, Changqing

    2016-01-01

    The pHs of extracellular fluids (ECFs) in normal tissues are commonly maintained at 7.35 to 7.45. The acidification of the ECF is one of the major characteristics of tumour microenvironment. In this study, we report that decreased extracellular pH promotes the transformation of mesenchymal stem cells (MSCs) into cancer-associated fibroblasts (CAFs), termed CAF activation. Furthermore, we demonstrate that GPR68, a proton-sensing G-protein-coupled receptor (GPCR), is required for the pH-dependent regulation of the differentiation of MSCs into CAFs. We then identify Yes-associated protein 1 (YAP) as a downstream effector of GPR68 for CAF activation. Finally, we show that knockdown of GPR68 in MSCs can prevent the CAF activation under cancer microenvironment. Systemic transplantation of GPR68-silenced MSCs suppresses in-situ tumour growth and prolong life span after cancer graft. PMID:27019624

  10. Proton-sensing GPCR-YAP Signalling Promotes Cancer-associated Fibroblast Activation of Mesenchymal Stem Cells.

    PubMed

    Zhu, Hongyi; Guo, Shangchun; Zhang, Yuelei; Yin, Junhui; Yin, Wenjing; Tao, Shicong; Wang, Yang; Zhang, Changqing

    2016-01-01

    The pHs of extracellular fluids (ECFs) in normal tissues are commonly maintained at 7.35 to 7.45. The acidification of the ECF is one of the major characteristics of tumour microenvironment. In this study, we report that decreased extracellular pH promotes the transformation of mesenchymal stem cells (MSCs) into cancer-associated fibroblasts (CAFs), termed CAF activation. Furthermore, we demonstrate that GPR68, a proton-sensing G-protein-coupled receptor (GPCR), is required for the pH-dependent regulation of the differentiation of MSCs into CAFs. We then identify Yes-associated protein 1 (YAP) as a downstream effector of GPR68 for CAF activation. Finally, we show that knockdown of GPR68 in MSCs can prevent the CAF activation under cancer microenvironment. Systemic transplantation of GPR68-silenced MSCs suppresses in-situ tumour growth and prolong life span after cancer graft. PMID:27019624

  11. Mesenchymal stem cells promote colorectal cancer progression through AMPK/mTOR-mediated NF-κB activation

    PubMed Central

    Wu, Xiao-Bing; Liu, Yang; Wang, Gui-Hua; Xu, Xiao; Cai, Yang; Wang, Hong-Yi; Li, Yan-Qi; Meng, Hong-Fang; Dai, Fu; Jin, Ji-De

    2016-01-01

    Mesenchymal stem cells (MSCs) exert a tumor-promoting effect in a variety of human cancers. This study was designed to identify the molecular mechanisms related to the tumor-promoting effect of MSCs in colorectal cancer. In vitro analysis of colorectal cancer cell lines cultured in MSC conditioned media (MSC-CM) showed that MSC-CM significantly promoted the progression of the cancer cells by enhancing cell proliferation, migration and colony formation. The tumorigenic effect of MSC-CM was attributed to altered expression of cell cycle regulatory proteins and inhibition of apoptosis. Furthermore, MSC-CM induced high level expression of a number of pluripotency factors in the cancer cells. ELISAs revealed MSC-CM contained higher levels of IL-6 and IL-8, which are associated with the progression of cancer. Moreover, MSC-CM downregulated AMPK mRNA and protein phosphorylation, but upregulated mTOR mRNA and protein phosphorylation. The NF-κB pathway was activated after addition of MSC-CM. An in vivo model in Balb/C mice confirmed the ability of MSC-CM to promote the invasion and proliferation of colorectal cancer cells. This study indicates that MSCs promote the progression of colorectal cancer via AMPK/mTOR-mediated NF-κB activation. PMID:26892992

  12. Nicotine Promotes Acquisition of Stem Cell and Epithelial-to-Mesenchymal Properties in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Rahimy, Elham; Haas, Martin; Yu, Vicky; Ellies, Lesley G.; Chen, Jing; Fan, Jian-Bing; Brumund, Kevin T.; Weisman, Robert A.; Ongkeko, Weg M.

    2012-01-01

    The ability of nicotine to enhance the malignancy of cancer cells is known; however, the possibility that nicotine could regulate a cancer stem cell phenotype remains to be well-established. In this study we sought to determine whether long-term exposure to nicotine could promote cancer stem cell-like properties in two head and neck squamous cell carcinoma cell lines, UMSCC-10B and HN-1. Nicotine treatment induced epithelial-to-mesenchymal transition (EMT) in both cell lines by repressing E-cadherin expression, and led to the induction of stem cell markers Oct-4, Nanog, CD44 and BMI-1, which was reversed upon ectopic re-expression of E-cadherin. Nicotine-treated cells formed spheres at a higher efficiency than non-treated cells, formed larger tumors when injected into mice, and formed tumors with 4-fold greater efficiency compared to control cells when injected at limiting doses. Consistent with previous literature, nicotine-treated cells demonstrated a greater capacity for survival and also a higher tendency to invade. Comparison of microRNA profiles between nicotine and control cells revealed the upregulation of miR-9, a repressor of E-cadherin, and the downregulation of miR-101, a repressor of EZH2. Taken together, these results suggest that nicotine may play a critical role in the development of tobacco-induced cancers by regulating cancer stem cell characteristics, and that these effects are likely mediated through EMT-promoting, microRNA-mediated pathways. Further characterization of such pathways remains a promising avenue for the understanding and treatment of tobacco-related cancers. PMID:23300583

  13. Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells.

    PubMed

    Lee, Jun Hee; Han, Yong-Seok; Lee, Sang Hun

    2016-05-01

    Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine. PMID:26869524

  14. Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Lee, Jun Hee; Han, Yong-Seok; Lee, Sang Hun

    2016-01-01

    Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine. PMID:26869524

  15. Stable CpG Hypomethylation of Adipogenic Promoters in Freshly Isolated, Cultured, and Differentiated Mesenchymal Stem Cells from Adipose Tissue

    PubMed Central

    Noer, Agate; Sørensen, Anita L.; Boquest, Andrew C.

    2006-01-01

    Mesenchymal stem cells from adipose tissue can differentiate into mesodermal lineages. Differentiation potential, however, varies between clones of adipose stem cells (ASCs), raising the hypothesis that epigenetic differences account for this variability. We report here a bisulfite sequencing analysis of CpG methylation of adipogenic (leptin [LEP], peroxisome proliferator-activated receptor gamma 2 [PPARG2], fatty acid-binding protein 4 [FABP4], and lipoprotein lipase [LPL]) promoters and of nonadipogenic (myogenin [MYOG], CD31, and GAPDH) loci in freshly isolated human ASCs and in cultured ASCs, in relation to gene expression and differentiation potential. Uncultured ASCs display hypomethylated adipogenic promoters, in contrast to myogenic and endothelial loci, which are methylated. Adipogenic promoters exhibit mosaic CpG methylation, on the basis of heterogeneous methylation between cells and of variation in the extent of methylation of a given CpG between donors, and both between and within clonal cell lines. DNA methylation reflects neither transcriptional status nor potential for gene expression upon differentiation. ASC culture preserves hypomethylation of adipogenic promoters; however, between- and within-clone mosaic methylation is detected. Adipogenic differentiation also maintains the overall CpG hypomethylation of LEP, PPARG2, FABP4, and LPL despite demethylation of specific CpGs and transcriptional induction. Furthermore, enhanced methylation at adipogenic loci in primary differentiated cells unrelated to adipogenesis argues for ASC specificity of the hypomethylated state of these loci. Therefore, mosaic hypomethylation of adipogenic promoters may constitute a molecular signature of ASCs, and DNA methylation does not seem to be a determinant of differentiation potential of these cells. PMID:16760426

  16. CD105 promotes chondrogenesis of synovium-derived mesenchymal stem cells through Smad2 signaling.

    PubMed

    Fan, Wenshuai; Li, Jinghuan; Wang, Yiming; Pan, Jianfeng; Li, Shuo; Zhu, Liang; Guo, Changan; Yan, Zuoqin

    2016-05-27

    Mesenchymal stem cells (MSCs) are considered to be suitable for cell-based tissue regeneration. Expressions of different cell surface markers confer distinct differentiation potential to different sub-populations of MSCs. Understanding the effect of cell surface markers on MSC differentiation is essential to their targeted application in different tissues. Although CD105 positive MSCs possess strong chondrogenic capacity, the underlying mechanisms are not clear. In this study, we observed a considerable heterogeneity with respect to CD105 expression among MSCs isolated from synovium. The CD105(+) and CD105(-) synovium-derived MSCs (SMSCs) were sorted to compare their differentiation capacities and relative gene expressions. CD105(+) subpopulation had higher gene expressions of AGG, COL II and Sox9, and showed a stronger affinity for Alcian blue and immunofluorescent staining for aggrecan and collagenase II, as compared to those in CD105(-) cells. However, no significant difference was observed with respect to gene expressions of ALP, Runx2, LPL and PPARγ. CD105(+) SMSCs showed increased levels of Smad2 phosphorylation, while total Smad2 levels were similar between the two groups. There was no difference in activation of Smad1/5. These results were further confirmed by CD105-knockdown in SMSCs. Our findings suggest a stronger chondrogenic potential of CD105(+) SMSCs in comparison to that of CD105(-) SMSCs and that CD105 enhances chondrogenesis of SMSCs by regulating TGF-β/Smad2 signaling pathway, but not Smad1/5. Our study provides a better understanding of CD105 with respect to chondrogenic differentiation. PMID:27107692

  17. Mesenchymal stem cells promote tumor angiogenesis via the action of transforming growth factor β1

    PubMed Central

    LI, GUO-CAI; ZHANG, HONG-WEI; ZHAO, QING-CHUN; SUN, LI; YANG, JIAN-JUN; HONG, LIU; FENG, FAN; CAI, LEI

    2016-01-01

    Mesenchymal stem cells (MSCs) may influence the growth and metastasis of various human malignancies, including hepatocellular carcinoma (HCC). Therefore, the underlying mechanisms via which MSCs are able to affect malignancies require investigation. In the present study, the potential role of MSC in the angiogenesis of HCC was investigated. A total of 17 nude mouse models exhibiting human HCC were used to evaluate the effects of MSC on angiogenesis. A total of 8 mice were injected with human MSCs via the tail vein, and the remaining 9 mice were injected with phosphate-buffered saline as a control. A total of 35 days subsequent to the injection of MSCs, the microvessel density (MVD) of tumors was evaluated by immunostaining, using cluster of differentiation 31 antibody. The mRNA levels of transforming growth factor (TGF)β1, Smad2 and Smad7 were detected using reverse transcription-quantitative polymerase chain reaction. Protein expression levels of TGFβ1 and vascular endothelial growth factor (VEGF) in tumor tissues were analyzed using ELISA. Compared with controls, MVD in MSC-treated mice was significantly increased (28.00±9.19 vs. 18.11±3.30; P=0.006). The levels of TGFβ1 mRNA in the MSC-treated group were 2.15-fold higher compared with the control group (1.27±0.61 vs. 0.59±0.39; P=0.033), and MVD was higher in the group exhibiting increased TGFβ1 mRNA levels compared with the control group (26.50±9.11 vs. 19.44±6.14; P=0.038). In addition, a close correlation between the expression levels of TGFβ1 and VEGF was identified. The results of the present study suggested that MSCs may be capable of enhancing the angiogenesis of HCC, which may be partly due to the involvement of TGFβ1. PMID:26893697

  18. Dexamethasone and Azathioprine Promote Cytoskeletal Changes and Affect Mesenchymal Stem Cell Migratory Behavior

    PubMed Central

    Schneider, Natália; Gonçalves, Fabiany da Costa; Pinto, Fernanda Otesbelgue; Lopez, Patrícia Luciana da Costa; Araújo, Anelise Bergmann; Pfaffenseller, Bianca; Passos, Eduardo Pandolfi; Cirne-Lima, Elizabeth Obino; Meurer, Luíse; Lamers, Marcelo Lazzaron; Paz, Ana Helena

    2015-01-01

    Glucocorticoids and immunosuppressive drugs are commonly used to treat inflammatory disorders, such as inflammatory bowel disease (IBD), and despite a few improvements, the remission of IBD is still difficult to maintain. Due to their immunomodulatory properties, mesenchymal stem cells (MSCs) have emerged as regulators of the immune response, and their viability and activation of their migratory properties are essential for successful cell therapy. However, little is known about the effects of immunosuppressant drugs used in IBD treatment on MSC behavior. The aim of this study was to evaluate MSC viability, nuclear morphometry, cell polarity, F-actin and focal adhesion kinase (FAK) distribution, and cell migratory properties in the presence of the immunosuppressive drugs azathioprine (AZA) and dexamethasone (DEX). After an initial characterization, MSCs were treated with DEX (10 μM) or AZA (1 μM) for 24 hrs or 7 days. Neither drug had an effect on cell viability or nuclear morphometry. However, AZA treatment induced a more elongated cell shape, while DEX was associated with a more rounded cell shape (P < 0.05) with a higher presence of ventral actin stress fibers (P < 0.05) and a decrease in protrusion stability. After 7 days of treatment, AZA improved the cell spatial trajectory (ST) and increased the migration speed (24.35%, P < 0.05, n = 4), while DEX impaired ST and migration speed after 24 hrs and 7 days of treatment (-28.69% and -25.37%, respectively; P < 0.05, n = 4). In conclusion, our data suggest that these immunosuppressive drugs each affect MSC morphology and migratory capacity differently, possibly impacting the success of cell therapy. PMID:25756665

  19. Neural-Induced Human Mesenchymal Stem Cells Promote Cochlear Cell Regeneration in Deaf Guinea Pigs

    PubMed Central

    Jang, Sujeong; Cho, Hyong-Ho; Kim, Song-Hee; Lee, Kyung-Hwa; Jun, Jae Yeoul; Park, Jong-Seong; Jeong, Han-Seong

    2015-01-01

    Objectives In mammals, cochlear hair cell loss is irreversible and may result in a permanent sensorineural hearing loss. Secondary to this hair cell loss, a progressive loss of spiral ganglion neurons (SGNs) is presented. In this study, we have investigated the effects of neural-induced human mesenchymal stem cells (NI-hMSCs) from human bone marrow on sensory neuronal regeneration from neomycin treated deafened guinea pig cochleae. Methods HMSCs were isolated from the bone marrow which was obtained from the mastoid process during mastoidectomy for ear surgery. Following neural induction with basic fibroblast growth factor and forskolin, we studied the several neural marker and performed electrophysiological analysis. NI-hMSCs were transplanted into the neomycin treated deafened guinea pig cochlea. Engraftment of NI-hMSCs was evaluated immunohistologically at 8 weeks after transplantation. Results Following neural differentiation, hMSCs expressed high levels of neural markers, ionic channel markers, which are important in neural function, and tetrodotoxin-sensitive voltage-dependent sodium currents. After transplantation into the scala tympani of damaged cochlea, NI-hMSCs-injected animals exhibited a significant increase in the number of SGNs compared to Hanks balanced salt solution-injected animals. Transplanted NI-hMSCs were found within the perilymphatic space, the organ of Corti, along the cochlear nerve fibers, and in the spiral ganglion. Furthermore, the grafted NI-hMSCs migrated into the spiral ganglion where they expressed the neuron-specific marker, NeuN. Conclusion The results show the potential of NI-hMSCs to give rise to replace the lost cochlear cells in hearing loss mammals. PMID:26045904

  20. Autocrine production of TGF-β1 promotes myofibroblastic differentiation of neonatal lung mesenchymal stem cells

    PubMed Central

    Popova, Antonia P.; Bozyk, Paul D.; Goldsmith, Adam M.; Linn, Marisa J.; Lei, Jing; Bentley, J. Kelley

    2010-01-01

    We have isolated mesenchymal stem cells (MSCs) from tracheal aspirates of premature infants with respiratory distress. We examined the capacity of MSCs to differentiate into myofibroblasts, cells that participate in lung development, injury, and repair. Gene expression was measured by array, qPCR, immunoblot, and immunocytochemistry. Unstimulated MSCs expressed mRNAs encoding contractile (e.g., ACTA2, TAGLN), extracellular matrix (COL1A1 and ELN), and actin-binding (DBN1, PXN) proteins, consistent with a myofibroblast phenotype, although there was little translation into immunoreactive protein. Incubation in serum-free medium increased contractile protein (ACTA2, MYH11) gene expression. MSC-conditioned medium showed substantial levels of TGF-β1, and treatment of serum-deprived cells with a type I activin receptor-like kinase inhibitor, SB-431542, attenuated the expression of genes encoding contractile and extracellular matrix proteins. Treatment of MSCs with TGF-β1 further induced the expression of mRNAs encoding contractile (ACTA2, MYH11, TAGLN, DES) and extracellular matrix proteins (FN1, ELN, COL1A1, COL1A2), and increased the protein expression of α-smooth muscle actin, myosin heavy chain, and SM22. In contrast, human bone marrow-derived MSCs failed to undergo TGF-β1-induced myofibroblastic differentiation. Finally, primary cells from tracheal aspirates behaved in an identical manner as later passage cells. We conclude that human neonatal lung MSCs demonstrate an mRNA expression pattern characteristic of myofibroblast progenitor cells. Autocrine production of TGF-β1 further drives myofibroblastic differentiation, suggesting that, in the absence of other signals, fibrosis represents the “default program” for neonatal lung MSC gene expression. These data are consistent with the notion that MSCs play a key role in neonatal lung injury and repair. PMID:20190033

  1. Mesenchymal Stem Cells Ageing: Targeting the "Purinome" to Promote Osteogenic Differentiation and Bone Repair.

    PubMed

    Noronha-Matos, J B; Correia-de-Sá, P

    2016-09-01

    Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into bone forming cells. Such ability is compromised in elderly individuals resulting in bone disorders such as osteoporosis, also limiting their clinical usage for cell transplantation and bone tissue engineering strategies. In bone marrow niches, adenine and uracil nucleotides are important local regulators of osteogenic differentiation of MSCs. Nucleotides can be released to the extracellular milieu under both physiological and pathological conditions via (1) membrane cell damage, (2) vesicle exocytosis, (3) ATP-binding cassette transporters, and/or (4) facilitated diffusion through maxi-anion channels, hemichannels or ligand-gated receptor pores. Nucleotides and their derivatives act via adenosine P1 (A1 , A2A , A2B , and A3 ) and nucleotide-sensitive P2 purinoceptors comprising ionotropic P2X and G-protein-coupled P2Y receptors. Purinoceptors activation is terminated by membrane-bound ecto-nucleotidases and other ecto-phosphatases, which rapidly hydrolyse extracellular nucleotides to their respective nucleoside 5'-di- and mono-phosphates, nucleosides and free phosphates, or pyrophosphates. Current knowledge suggests that different players of the "purinome" cascade, namely nucleotide release sites, ecto-nucleotidases and purinoceptors, orchestrate to fine-tuning regulate the activity of MSCs in the bone microenvironment. Increasing studies, using osteoprogenitor cell lines, animal models and, more recently, non-modified MSCs from postmenopausal women, raised the possibility to target chief components of the purinergic signaling pathway to regenerate the ability of aged MSCs to differentiate into functional osteoblasts. This review summarizes the main findings of those studies, prompting for novel therapeutic strategies to control ageing disorders where bone destruction exceeds bone formation, like osteoporosis, rheumatoid arthritis, and fracture mal-union. J. Cell. Physiol. 231: 1852

  2. Bone marrow-derived mesenchymal stem cell-secreted IL-8 promotes the angiogenesis and growth of colorectal cancer

    PubMed Central

    Cai, Jianye; Shi, Jianqiang; Sui, Xin; Cao, Yong; Huang, Weijun; Chen, Xiaoyong; Cai, Zijie; Li, Hongyu; Bardeesi, Adham Sameer A.; Zhang, Bin; Liu, Muyun; Song, Wu; Wang, Maosheng; Xiang, Andy Peng

    2015-01-01

    Mesenchymal stem cells (MSCs) have recently been shown to home to tumors and contribute to the formation of the tumor-associated stroma. In addition, MSCs can secrete paracrine factors to facilitate tumor progression. However, the involvement of MSC-derived cytokines in colorectal cancer (CRC) angiogenesis and growth has not been clearly addressed. In this study, we report that interleukin-8 (IL-8) was the most highly upregulated pro-angiogenic factor in MSCs co-cultured with CRC cells and was expressed at substantially higher levels in MSCs than CRC cells. To evaluate the effect of MSC-derived IL-8 on CRC angiogenesis and growth, we used MSCs that expressed small hairpin (interfering) RNAs (shRNA) targeting IL-8 (shIL-8-MSCs). We found that MSC-secreted IL-8 promoted human umbilical vein endothelial cell (HUVEC) proliferation and migration, tube-formation ability and CRC cell proliferation. Additionally, in vivo studies showed that MSCs promoted tumor angiogenesis partially through IL-8. Taken together, these findings suggest that IL-8 secreted by MSCs promotes CRC angiogenesis and growth and can therefore serve as a potential novel therapeutic target. PMID:26517517

  3. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a.

    PubMed

    Liang, Xiaolei; Zhang, Lina; Wang, Shihua; Han, Qin; Zhao, Robert Chunhua

    2016-06-01

    Angiogenesis plays crucial roles in various physiological processes including wound healing and tissue repair. It requires a tight interaction between endothelial cells and their surrounding environment. Mesenchymal stem cells (MSCs), one of the non-endothelial cell types present in the perivascular environment, have been shown to secret exosomes to modulate intercellular communications between MSCs and their target cells. In this study, we initially isolated exosomes secreted by human adipose-derived MSCs (adMSC-Exo) and examined their roles in angiogenesis. We found that adMSC-Exo could be taken up by endothelial cells and significantly promote angiogenesis in vitro and in vivo Further study showed that miR-125a was enriched in adMSC-Exo, and repressed the expression of the angiogenic inhibitor delta-like 4 (DLL4) by targeting its 3' untranslated region. Additionally, adMSC-Exo and its exosomal transferred miR-125a could repress DLL4 expression and modulate endothelial cell angiogenesis through promoting formation of endothelial tip cells. In conclusion, our study indicates that adMSC-Exo can transfer miR-125a to endothelial cells and promote angiogenesis by repressing DLL4. adMSC-Exo, as a pro-angiogenic factor, might be a promising candidate for therapeutical tissue repair. PMID:27252357

  4. Homeobox B7 promotes the osteogenic differentiation potential of mesenchymal stem cells by activating RUNX2 and transcript of BSP

    PubMed Central

    Gao, Run-Tao; Zhan, Li-Ping; Meng, Cen; Zhang, Ning; Chang, Shi-Min; Yao, Rui; Li, Chong

    2015-01-01

    Mesenchymal stem cells (MSCs) are a reliable cell source for tissue regeneration. However, the molecular mechanisms underlying the directed differentiation of MSCs remain unclear; thus, their use is limited. Here, we investigate HOXB7 function in the osteogenic differentiation potentials of MSCs using stem cells from apical papilla (SCAPs) and bone marrow stem cells (BMSCs). The HOXB7 gene is highly expressed in BMSCs compared with dental tissue-derived MSCs. We found that, in vitro, over-expression of HOXB7 in SCAPs enhanced alkaline phosphatase (ALP) activity and mineralization. HOXB7 over-expression affected the mRNA expression of osteonectin (ON), collagen alpha-2(I) chain (COL1A2), bone sialoprotein (BSP), and osteocalcin (OCN), led to the expression of the key transcription factor, runt-related transcription factor 2 (RUNX2), and promoted SCAP osteogenic differentiation in vitro. The knock-down of HOXB7 inhibited ALP activity, mineralization, and the expression of ON, BSP, COL1A2, OCN, and RUNX2 in BMSCs in vitro. In addition, transplant experiments in nude mice confirmed that SCAP osteogenesis was triggered when HOXB7 was activated. Furthermore, Over-expression of HOXB7 significantly increased the levels of HOXB7 associated with the BSP promoter by ChIP assays. Taken together, these results indicate that HOXB7 enhances SCAP osteogenic differentiation by up-regulating RUNX2 and directly activating transcript of BSP. Thus, the activation of HOXB7 signaling might improve tissue regeneration mediated by MSCs. These results provide insight into the mechanism underlying the directed differentiation of MSCs. PMID:26379836

  5. Mechanical Stimulation of Mesenchymal Stem Cell Proliferation and Differentiation Promotes Osteogenesis While Preventing Dietary-Induced Obesity

    PubMed Central

    Luu, Yen Kim; Capilla, Encarnacion; Rosen, Clifford J; Gilsanz, Vicente; Pessin, Jeffrey E; Judex, Stefan; Rubin, Clinton T

    2009-01-01

    Mesenchymal stem cells (MSCs) are defined by their ability to self-renew and differentiate into the cells that form mesodermal tissues such as bone and fat. Low magnitude mechanical signals (LMMS) have been shown to be anabolic to bone and have been recently reported to suppress the development of fat in normal animals fed a regular diet. Using male C57BL/6J mice, the ability of LMMS (0.2g, 90-Hz signal applied for 15 min/d, 5 d/wk) to simultaneously promote bone formation and prevent diet-induced obesity was correlated to mechanical influences on the molecular environment of the bone marrow, as indicated by the population dynamics and lineage commitment of MSCs. Six weeks of LMMS increased the overall marrow-based stem cell population by 37% and the number of MSCs by 46%. Concomitant with the increase in stem cell number, the differentiation potential of MSCs in the bone marrow was biased toward osteoblastic and against adipogenic differentiation, as reflected by upregulation of the transcription factor Runx2 by 72% and downregulation of PPARγ by 27%. The phenotypic impact of LMMS on MSC lineage determination was evident at 14 wk, where visceral adipose tissue formation was suppressed by 28%, whereas trabecular bone volume fraction in the tibia was increased by 11%. Translating this to the clinic, a 1-yr trial in young women (15–20 yr; n = 48) with osteopenia showed that LMMS increased trabecular bone in the spine and kept visceral fat at baseline levels, whereas control subjects showed no change in BMD, yet an increase in visceral fat. Mechanical modulation of stem cell proliferation and differentiation indicates a unique therapeutic target to aid in tissue regeneration and repair and may represent the basis of a nonpharmacologic strategy to simultaneously prevent obesity and osteoporosis. PMID:18715135

  6. Human carcinoma-associated mesenchymal stem cells promote ovarian cancer chemotherapy resistance via a BMP4/HH signaling loop

    PubMed Central

    Coffman, Lan G.; Choi, Yun-Jung; McLean, Karen; Allen, Benjamin L.; di Magliano, Marina Pasca; Buckanovich, Ronald J.

    2016-01-01

    The tumor microenvironment is critical to cancer growth and therapy resistance. We previously characterized human ovarian carcinoma-associated mesenchymal stem cells (CA-MSCs). CA-MSCs are multi-potent cells that can differentiate into tumor microenvironment components including fibroblasts, myofibroblasts and adipocytes. We previously reported CA-MSCs, compared to normal MSCs, express high levels of BMP proteins and promote tumor growth by increasing numbers of cancer stem-like cells (CSCs). We demonstrate here that ovarian tumor cell-secreted Hedgehog (HH) induces CA-MSC BMP4 expression. CA-MSC-derived BMP4 reciprocally increases ovarian tumor cell HH expression indicating a positive feedback loop. Interruption of this loop with a HH pathway inhibitor or BMP4 blocking antibody decreases CA-MSC-derived BMP4 and tumor-derived HH preventing enrichment of CSCs and reversing chemotherapy resistance. The impact of HH inhibition was only seen in CA-MSC-containing tumors, indicating the importance of a humanized stroma. These results are reciprocal to findings in pancreatic and bladder cancer, suggesting HH signaling effects are tumor tissue specific warranting careful investigation in each tumor type. Collectively, we define a critical positive feedback loop between CA-MSC-derived BMP4 and ovarian tumor cell-secreted HH and present evidence for the further investigation of HH as a clinical target in ovarian cancer. PMID:26755648

  7. Umbilical cord-derived mesenchymal stem cells inhibit growth and promote apoptosis of HepG2 cells.

    PubMed

    Tang, Ying-Mei; Bao, Wei-Min; Yang, Jin-Hui; Ma, Lin-Kun; Yang, Jing; Xu, Ying; Yang, Li-Hong; Sha, Feng; Xu, Zhi-Yuan; Wu, Hua-Mei; Zhou, Wei; Li, Yan; Li, Yu-Hua

    2016-09-01

    Hepatocellular carcinoma is the fifth most common type of cancer worldwide and remains difficult to treat. The aim of this study was to investigate the effects of mesenchymal stem cells (MSCs) derived from the umbilical cord (UC‑MSCs) on HepG2 hepatocellular carcinoma cells. UC‑MSCs were co‑cultured with HepG2 cells and biomarkers of UC‑MSCs were analyzed by flow cytometry. mRNA and protein expression of genes were determined by reverse transcription‑polymerase chain reaction and flow cytometry, respectively. Passage three and seven UC‑MSCs expressed CD29, CD44, CD90 and CD105, whereas CD34 and CD45 were absent on these cells. Co‑culture with UC‑MSCs inhibited proliferation and promoted apoptosis of HepG2 cells in a time‑dependent manner. The initial seeding density of UC‑MSCs also influenced the proliferation and apoptosis of HepG2 cells, with an increased number of UC‑MSCs causing enhanced proliferation inhibition and cell apoptosis. Co‑culture with UC‑MSCs downregulated mRNA and protein expression of α‑fetoprotein (AFP), Bcl‑2 and Survivin in HepG2 cells. Thus, UC‑MSCs may inhibit growth and promote apoptosis of HepG2 cells through downregulation of AFP, Bcl‑2 and Survivin. US-MSCs may be used as a novel therapy for treating hepatocellular carcinoma in the future. PMID:27485485

  8. Microvesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells Stimulated by Hypoxia Promote Angiogenesis Both In Vitro and In Vivo

    PubMed Central

    Zhang, Hong-Chao; Liu, Xin-Bin; Huang, Shu; Bi, Xiao-Yun; Wang, Heng-Xiang; Xie, Li-Xian; Wang, Yong-Qi; Cao, Xiao-Fang; Lv, Jun; Xiao, Feng-Jun; Yang, Yang

    2012-01-01

    Although mesenchymal stem cells (MSCs) have been increasingly trialed to treat a variety of diseases, the underlying mechanisms remain still elusive. In this study, human umbilical cord (UC)-derived MSCs were stimulated by hypoxia, and the membrane microvesicles (MVs) in the supernatants were collected by ultracentrifugation, observed under an electron microscope, and the origin was identified with the flow cytometric technique. The results showed that upon hypoxic stimulus, MSCs released a large quantity of MVs of ∼100 nm in diameter. The MVs were phenotypically similar to the parent MSCs, except that the majority of them were negative for the receptor of platelet-derived growth factor. DiI-labeling assay revealed that MSC-MVs could be internalized into human UC endothelial cells (UC-ECs) within 8 h after they were added into the culture medium. Carboxyfluorescein succinimidyl ester-labeling technique and MTT test showed that MSC-MVs promoted the proliferation of UC-ECs in a dose-dependent manner. Further, MVs could enhance in vitro capillary network formation of UC-ECs in a Matrigel matrix. In a rat hindlimb ischemia model, both MSCs and MSC-MVs were shown to improve significantly the blood flow recovery compared with the control medium (P<0.0001), as assessed by laser Doppler imaging analysis. These data indicate that MV releasing is one of the major mechanisms underlying the effectiveness of MSC therapy by promoting angiogenesis. PMID:22839741

  9. NR2F2 regulates bone marrow-derived mesenchymal stem cell-promoted proliferation of Reh cells.

    PubMed

    Zhu, Ni; Wang, Huafang; Wei, Jieping; Wang, Binsheng; Shan, Wei; Lai, Xiaoyu; Zhao, Yanmin; Yu, Jian; Huang, He

    2016-08-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) are pivotal components of the leukemic microenvironment. BM-MSCs have been previously reported to promote the proliferation of leukemic cells. To further understand the molecular mechanisms of BM-MSC-induced proliferation of leukemic cells, the present study co-cultured acute lymphoblastic leukemia (ALL) Reh cells with BM-MSCs. The current study used methods including shRNA, flow cytometry, MTT, reverse transcription-quantitative polymerase chain reaction, ELISA and western blotting. The data of the present study demonstrated that BM‑MSCs promote the proliferation of Reh cells and the NR2F2 mRNA and protein levels were elevated in BM‑MSCs following co‑culture. Additionally, it was demonstrated that shRNA knockdown of NR2F2 inhibited BM‑MSC‑induced proliferation of Reh cells. Furthermore, following downregulation of NR2F2, vascular endothelial growth factor A (VEGFA) secretion by BM‑MSCs was reduced. The present study demonstrated that NR2F2 mediates BM‑MSC‑induced proliferation of Reh cells, partially via regulation of VEGFA. Disrupting microenvironmental support by targeting NR2F2 may be a potential therapeutic strategy for ALL. PMID:27314877

  10. Bone marrow-derived mesenchymal stem cells in three-dimensional culture promote neuronal regeneration by neurotrophic protection and immunomodulation.

    PubMed

    Han, Sufang; Wang, Bin; Li, Xing; Xiao, Zhifeng; Han, Jin; Zhao, Yannan; Fang, Yongxiang; Yin, Yanyun; Chen, Bing; Dai, Jianwu

    2016-07-01

    Accumulating evidence has revealed three-dimensional (3D) culture could better mimic the stem cell niche in vivo in comparison with conventional two-dimensional (2D) culture. In this study, we found that bone marrow derived mesenchymal stem cells (BMSCs) cultured in 3D collagen scaffold (3D BMSCs) exhibited distinctive features including significantly enhancing neurotrophic factor secretions and reducing macrophage activations challenged by lipopolysaccharide (LPS) in vitro. To further evaluate 3D BMSCs' potential benefits to the regeneration of spinal cord injury (SCI), the 3D and 2D BMSCs were respectively implanted in rat hemisected SCI. Compared with 2D cohort, 3D BMSCs transplantation significantly reduced the expressions of inflammatory cytokines such as TNF-α, IL-1β, and IL-6 at 5 days after transplantation, markedly enhanced axonal regeneration, and promoted motor functional recovery during 8 weeks of observation. When Nocodazole was used to depolymerize the cytoskeleton of 3D BMSCs, the changed expressions of neurotrophic factors and inflammatory cytokines were blunted, at least partially. Thus synergistic effects of neuronal protection and immunomodulation of 3D BMSCs may lead to a better functional recovery of SCI and the underlying mechanism may involve the alteration of their cellular morphology because of 3D culture. This study contributes to a better understanding of the cellular characteristics of 3D BMSCs and provides a novel strategy to promote the repair of the injured spinal cord. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1759-1769, 2016. PMID:26990583

  11. Mesenchymal stem cells induce dermal fibroblast responses to injury

    SciTech Connect

    Smith, Andria N.; Willis, Elise; Chan, Vincent T.; Muffley, Lara A.; Isik, F. Frank; Gibran, Nicole S.; Hocking, Anne M.

    2010-01-01

    Although bone marrow-derived mesenchymal stem cells have been shown to promote repair when applied to cutaneous wounds, the mechanism for this response remains to be determined. The aim of this study was to determine the effects of paracrine signaling from mesenchymal stem cells on dermal fibroblast responses to injury including proliferation, migration and expression of genes important in wound repair. Dermal fibroblasts were co-cultured with bone marrow-derived mesenchymal stem cells grown in inserts, which allowed for paracrine interactions without direct cell contact. In this co-culture model, bone marrow-derived mesenchymal stem cells regulate dermal fibroblast proliferation, migration and gene expression. When co-cultured with mesenchymal stem cells, dermal fibroblasts show increased proliferation and accelerated migration in a scratch assay. A chemotaxis assay also demonstrated that dermal fibroblasts migrate towards bone marrow-derived mesenchymal stem cells. A PCR array was used to analyze the effect of mesenchymal stem cells on dermal fibroblast gene expression. In response to mesenchymal stem cells, dermal fibroblasts up-regulate integrin alpha 7 expression and down-regulate expression of ICAM1, VCAM1 and MMP11. These observations suggest that mesenchymal stem cells may provide an important early signal for dermal fibroblast responses to cutaneous injury.

  12. Wound Dressing Model of Human Umbilical Cord Mesenchymal Stem Cells-Alginates Complex Promotes Skin Wound Healing by Paracrine Signaling

    PubMed Central

    Yang, Huachao; Tang, Zhenrui; Long, Gang; Huang, Wen

    2016-01-01

    Purpose. To probe growth characteristics of human umbilical cord mesenchymal stem cells (hUCMSCs) cultured with alginate gel scaffolds, and to explore feasibility of wound dressing model of hUCMSCs-alginates compound. Methods. hUCMSCs were isolated, cultured, and identified in vitro. Then cells were cultivated in 100 mM calcium alginate gel, and the capacity of proliferation and migration and the expression of vascular endothelial growth factors (VEGF) were investigated regularly. Wound dressing model of hUCMSCs-alginate gel mix was transplanted into Balb/c mice skin defects. Wound healing rate and immunohistochemistry were examined. Results. hUCMSCs grew well but with little migration ability in the alginate gel. Compared with control group, a significantly larger cell number and more VEGF expression were shown in the gel group after culturing for 3–6 days (P < 0.05). In addition, a faster skin wound healing rate with more neovascularization was observed in the hUCMSCs-alginate gel group than in control groups at 15th day after surgery (P < 0.05). Conclusion. hUCMSCs can proliferate well and express massive VEGF in calcium alginate gel porous scaffolds. Wound dressing model of hUCMSCs-alginate gel mix can promote wound healing through paracrine signaling. PMID:26880953

  13. Optimization of electrospun TSF nanofiber alignment and diameter to promote growth and migration of mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Qu, Jing; Zhou, Dandan; Xu, Xiaojing; Zhang, Feng; He, Lihong; Ye, Rong; Zhu, Ziyu; Zuo, Baoqi; Zhang, Huanxiang

    2012-11-01

    Silk fibroin scaffolds are a naturally derived biocompatible matrix with the potential for reconstructive surgical applications. In this study, tussah silk fibroin (TSF) nanofiber with different diameters (400 nm, 800 nm and 1200 nm) and alignment (random and aligned) were prepared by electrospinning, then the growth and migration of mesenchymal stem cells (MSCs) on these materials were further evaluated. CD90 immunofluorescence staining showed that fiber alignment exhibited a strong influence on the morphology of MSCs, indicating that the alignment of the scaffolds could determine the distribution of cells. Moreover, smaller diameter and aligned TSF scaffolds are more favorable to the growth of MSCs as compared with 800 nm and 1200 nm random TSF scaffolds. In addition, the increased migration speed and efficiency of MSCs induced by three-D TSF were verified, highlighting the guiding roles of TSF to the migrated MSCs. More importantly, 400 nm aligned TSF scaffolds dramatically improved cell migratory speed and further induced the most efficient migration of MSCs as compared with larger diameter TSF scaffolds. In conclusion, the data demonstrate that smaller diameter and aligned electrospun TSF represent valuable scaffolds for supporting and promoting MSCs growth and migration, thus raising the possibility of manipulating TSF scaffolds to enhance homing and therapeutic potential of MSCs in cellular therapy.

  14. Transforming growth factor-β1 promotes homing of bone marrow mesenchymal stem cells in renal ischemia-reperfusion injury

    PubMed Central

    Si, Xiaoyun; Liu, Ximing; Li, Jingjing; Wu, Xiaoyan

    2015-01-01

    Backgrounds: Acute ischemia reperfusion-induced kidney injury is a common cause of acute renal failure, and it is also an important cause of delayed recovery of transplanted kidney functions and even loss of function. However, there is no effective treatment method in clinical applications presently. Objective: The objective was to investigate effects of transforming growth factor-β1 on homing of bone marrow mesenchymal stem cells in renal ischemia-reperfusion injury. Methods: Effects of TGF-β1 over-expression in MSCs on expression of CXCR4 and chemotactic effect to SDF-1 were investigated by in vitro transmembrane chemotaxis. Anti-TGF-β1 antibody was incubated with ischemia reperfusion injury renal tissue homogenate and effects of anti-TGF-β1 antibody were observed. In addition, effects of TGF-β1 gene transfection and anti-CXCR4 antibody treatment in MSCs on expression of SDF-1/CXCR4 axis of renal tissues and damage repair were further explored. Results: Expression of TGF-β1 mRNA in the IRI group increased significantly, and MSCs transplantation could enhance expression of CXCR4 mRNA in rats of the IRI group, the expression of CXCR4 can be decreased by the anti-TGF-β1 antibody and the anti-CXCR4 antibody. TGF-β1 induced homing of MSCs in repair of renal ischemic reperfusion injury by regulating expression of CXCR4 on cell membranes. Blue fluorescence of DAPI-positive MSCs cells of renal parenchyma in the IRI+MSC group was enhanced significantly, which was significantly inhibited by anti-TGF-β1 and anti-CXCR4 antibody, and the inhibitory effect of anti-CXCR4 antibody was more obvious than that of anti-TGF-β1 antibody. Conclusion: Transforming growth factor-β1 promotes homing of bone marrow mesenchymal stem cells in renal ischemia-reperfusion injury, which will provide useful data on role of TGF-β1 in regulating SDF-1/CXCR4 axis-induced MSCs homing. PMID:26722423

  15. Transforming growth factor beta receptor type III is a tumor promoter in mesenchymal-stem like triple negative breast cancer

    PubMed Central

    2014-01-01

    Introduction There is a major need to better understand the molecular basis of triple negative breast cancer (TNBC) in order to develop effective therapeutic strategies. Using gene expression data from 587 TNBC patients we previously identified six subtypes of the disease, among which a mesenchymal-stem like (MSL) subtype. The MSL subtype has significantly higher expression of the transforming growth factor beta (TGF-β) pathway-associated genes relative to other subtypes, including the TGF-β receptor type III (TβRIII). We hypothesize that TβRIII is tumor promoter in mesenchymal-stem like TNBC cells. Methods Representative MSL cell lines SUM159, MDA-MB-231 and MDA-MB-157 were used to study the roles of TβRIII in the MSL subtype. We stably expressed short hairpin RNAs specific to TβRIII (TβRIII-KD). These cells were then used for xenograft tumor studies in vivo; and migration, invasion, proliferation and three dimensional culture studies in vitro. Furthermore, we utilized human gene expression datasets to examine TβRIII expression patterns across all TNBC subtypes. Results TβRIII was the most differentially expressed TGF-β signaling gene in the MSL subtype. Silencing TβRIII expression in MSL cell lines significantly decreased cell motility and invasion. In addition, when TβRIII-KD cells were grown in a three dimensional (3D) culture system or nude mice, there was a loss of invasive protrusions and a significant decrease in xenograft tumor growth, respectively. In pursuit of the mechanistic underpinnings for the observed TβRIII-dependent phenotypes, we discovered that integrin-α2 was expressed at higher level in MSL cells after TβRIII-KD. Stable knockdown of integrin-α2 in TβRIII-KD MSL cells rescued the ability of the MSL cells to migrate and invade at the same level as MSL control cells. Conclusions We have found that TβRIII is required for migration and invasion in vitro and xenograft growth in vivo. We also show that TβRIII-KD elevates

  16. Mesenchymal Stem Cells in Cardiology.

    PubMed

    White, Ian A; Sanina, Cristina; Balkan, Wayne; Hare, Joshua M

    2016-01-01

    Cardiovascular disease (CVD) accounts for more deaths globally than any other single disease. There are on average 1.5 million episodes of myocardial infarction (heart attack) each year in the United States alone with roughly one-third resulting in death. There is therefore a major need for developing new and effective strategies to promote cardiac repair. Intramyocardial transplantation of mesenchymal stem cells (MSCs) has emerged as a leading contender in the pursuit of clinical intervention and therapy. MSCs are potent mediators of cardiac repair and are therefore an attractive tool in the development of preclinical and clinical trials. MSCs are capable of secreting a large array of soluble factors, which have had demonstrated effects on pathogenic cardiac remolding, fibrosis, immune activation, and cardiac stem cell proliferation within the damaged heart. MSCs are also capable of differentiation into cardiomyocytes, endothelial cells, and vascular smooth muscle cells, although the relative contribution of trilineage differentiation and paracrine effectors on cardiac repair remains the subject of active investigation. PMID:27236666

  17. Sonic hedgehog (Shh) signaling promotes tumorigenicity and stemness via activation of epithelial-to-mesenchymal transition (EMT) in bladder cancer.

    PubMed

    Islam, S S; Mokhtari, R B; Noman, A S; Uddin, M; Rahman, M Z; Azadi, M A; Zlotta, A; van der Kwast, T; Yeger, H; Farhat, W A

    2016-05-01

    Activation of the sonic hedgehog (Shh) signaling pathway controls tumorigenesis in a variety of cancers. Here, we show a role for Shh signaling in the promotion of epithelial-to-mesenchymal transition (EMT), tumorigenicity, and stemness in the bladder cancer. EMT induction was assessed by the decreased expression of E-cadherin and ZO-1 and increased expression of N-cadherin. The induced EMT was associated with increased cell motility, invasiveness, and clonogenicity. These progression relevant behaviors were attenuated by treatment with Hh inhibitors cyclopamine and GDC-0449, and after knockdown by Shh-siRNA, and led to reversal of the EMT phenotype. The results with HTB-9 were confirmed using a second bladder cancer cell line, BFTC905 (DM). In a xenograft mouse model TGF-β1 treated HTB-9 cells exhibited enhanced tumor growth. Although normal bladder epithelial cells could also undergo EMT and upregulate Shh with TGF-β1 they did not exhibit tumorigenicity. The TGF-β1 treated HTB-9 xenografts showed strong evidence for a switch to a more stem cell like phenotype, with functional activation of CD133, Sox2, Nanog, and Oct4. The bladder cancer specific stem cell markers CK5 and CK14 were upregulated in the TGF-β1 treated xenograft tumor samples, while CD44 remained unchanged in both treated and untreated tumors. Immunohistochemical analysis of 22 primary human bladder tumors indicated that Shh expression was positively correlated with tumor grade and stage. Elevated expression of Ki-67, Shh, Gli2, and N-cadherin were observed in the high grade and stage human bladder tumor samples, and conversely, the downregulation of these genes were observed in the low grade and stage tumor samples. Collectively, this study indicates that TGF-β1-induced Shh may regulate EMT and tumorigenicity in bladder cancer. Our studies reveal that the TGF-β1 induction of EMT and Shh is cell type context dependent. Thus, targeting the Shh pathway could be clinically beneficial in the

  18. Growth Factors Cross-Linked to Collagen Microcarriers Promote Expansion and Chondrogenic Differentiation of Human Mesenchymal Stem Cells.

    PubMed

    Bertolo, Alessandro; Arcolino, Fanny; Capossela, Simona; Taddei, Anna Rita; Baur, Martin; Pötzel, Tobias; Stoyanov, Jivko

    2015-10-01

    Tissue engineering is a field in progressive expansion and requires constant updates in methods and devices. One of the central fields is the development of biocompatible, biodegradable, and injectable scaffolds, such as collagen microcarriers. To enhance cell attachment and produce a cost-effective cell culture solution with local stimulation of cells, basic fibroblast growth factor (bFGF) or transforming growth factor-β1 (TGF-β1) was covalently immobilized on microcarriers either by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) or riboflavin/UV (RB/UV) light-mediated cross-linking. Collagen microcarriers cross-linked with bFGF or TGF-β1 were used for expansion and chondrogenic differentiation of human mesenchymal stem cells (MSCs). Evaluation methods included cell viability test, chondrogenic marker expression (aggrecan and collagen type I and type II), histological detection of proteoglycans, and immunohistochemical analysis. Cross-linking strengthened the collagen structure of the microcarriers and reduced collagenase-mediated degradation. MSCs effectively proliferated on microcarriers cross-linked with bFGF, especially by EDC/NHS cross-linking. Chondrogenic differentiation of MSCs was induced by TGF-β1 cross-linked on microcarriers, promoting gene expression and protein accumulation of aggrecan and collagen type I and type II, as well as proteoglycans. Cross-linking by RB/UV enhanced chondrogenesis more than any other group. In addition, cross-linking reduced scaffold shrinkage exerted by MSCs during chondrogenesis, a desirable feature for microcarriers if used as tissue defect filler. In conclusion, cross-linking of bFGF or TGF-β1 to collagen microcarriers supported in vitro proliferation and chondrogenesis, respectively. If translated in vivo and in clinical practice, such approach might lead a step closer to development of a cost-effective and locally acting device for cell-based therapy. PMID:26222829

  19. Conserved dopamine neurotrophic factor-transduced mesenchymal stem cells promote axon regeneration and functional recovery of injured sciatic nerve.

    PubMed

    Liu, Yi; Nie, Lin; Zhao, Hua; Zhang, Wen; Zhang, Yuan-Qiang; Wang, Shuai-Shuai; Cheng, Lei

    2014-01-01

    Peripheral nerve injury (PNI) is a common disease that often results in axonal degeneration and the loss of neurons, ultimately leading to limited nerve regeneration and severe functional impairment. Currently, there are no effective treatments for PNI. In the present study, we transduced conserved dopamine neurotrophic factor (CDNF) into mesenchymal stem cells (MSCs) in collagen tubes to investigate their regenerative effects on rat peripheral nerves in an in vivo transection model. Scanning electron microscopy of the collagen tubes demonstrated their ability to be resorbed in vivo. We observed notable overexpression of the CDNF protein in the distal sciatic nerve after application of CDNF-MSCs. Quantitative analysis of neurofilament 200 (NF200) and S100 immunohistochemistry showed significant enhancement of axonal and Schwann cell regeneration in the group receiving CDNF-MSCs (CDNF-MSCs group) compared with the control groups. Myelination thickness, axon diameter and the axon-to fiber diameter ratio (G-ratio) were significantly higher in the CDNF-MSCs group at 8 and 12 weeks after nerve transection surgery. After surgery, the sciatic functional index, target muscle weight, wet weight ratio of gastrocnemius muscle and horseradish peroxidase (HRP) tracing demonstrated functional recovery. Light and electron microscopy confirmed successful regeneration of the sciatic nerve. The greater numbers of HRP-labeled neuron cell bodies and increased sciatic nerve index values (SFI) in the CDNF-MSCs group suggest that CDNF exerts neuroprotective effects in vivo. We also observed higher target muscle weights and a significant improvement in muscle atrophism in the CDNF-MSCs group. Collectively, these findings indicate that CDNF gene therapy delivered by MSCs is capable of promoting nerve regeneration and functional recovery, likely because of the significant neuroprotective and neurotrophic effects of CDNF and the superior environment offered by MSCs and collagen tubes. PMID

  20. Differentiation of rabbit bone mesenchymal stem cells into endothelial cells in vitro and promotion of defective bone regeneration in vivo.

    PubMed

    Liu, Jinzhong; Liu, Chao; Sun, Bin; Shi, Ce; Qiao, Chunyan; Ke, Xiaoliang; Liu, Shutai; Liu, Xia; Sun, Hongchen

    2014-04-01

    Tissue engineering strategies often fail to regenerate bones because of inadequate vascularization, especially in the reconstruction of large segmental bone defects. Large volumes of vascular endothelial cells (ECs) that functionally interact with osteoblasts during osteogenesis are difficult to obtain. In this study, we simulated bone healing by co-culturing differentiated ECs and mesenchymal stem cells (MSCs) either on a culture plate or on a polylactide glycolic acid (PLGA) scaffold in vitro. We also evaluated the effect of osteogenesis in repairing rabbit mandible defects in vivo. In this study, MSCs were separated from rabbit as the seed cells. After passage, the MSCs were cultured in an EC-conditioned medium to differentiate into ECs. Immunohistochemical staining analysis with CD34 showed that the induced cells had the characteristics of ECs and MSC. The induced ECs were co-cultured in vitro, and the induction of MSCs to osteoblast served as the control. Alkaline phosphatase (ALP) and alizarin red (AZR) staining experiments were performed, and the Coomassie brilliant blue total protein and ALP activity were measured. The MSCs proliferated and differentiated into osteoblast-like cells through direct contact between the derived ECs and MSCs. The co-cultured cells were seeded on PLGA scaffold to repair 1 cm mandible defects in the rabbit. The effectiveness of the repairs was assessed through soft X-ray and histological analyses. The main findings indicated that MSCs survived well on the scaffold and that the scaffold is biocompatible and noncytotoxic. The results demonstrated that the co-cultured MSC-derived ECs improved MSC osteogenesis and promoted new bone formation. This study may serve as a basis for the use of in vitro co-culturing techniques as an improvisation to bone tissue engineering for the repair of large bone defects. PMID:23943083

  1. Conserved Dopamine Neurotrophic Factor-Transduced Mesenchymal Stem Cells Promote Axon Regeneration and Functional Recovery of Injured Sciatic Nerve

    PubMed Central

    Liu, Yi; Nie, Lin; Zhao, Hua; Zhang, Wen; Zhang, Yuan-Qiang; Wang, Shuai-Shuai; Cheng, Lei

    2014-01-01

    Peripheral nerve injury (PNI) is a common disease that often results in axonal degeneration and the loss of neurons, ultimately leading to limited nerve regeneration and severe functional impairment. Currently, there are no effective treatments for PNI. In the present study, we transduced conserved dopamine neurotrophic factor (CDNF) into mesenchymal stem cells (MSCs) in collagen tubes to investigate their regenerative effects on rat peripheral nerves in an in vivo transection model. Scanning electron microscopy of the collagen tubes demonstrated their ability to be resorbed in vivo. We observed notable overexpression of the CDNF protein in the distal sciatic nerve after application of CDNF-MSCs. Quantitative analysis of neurofilament 200 (NF200) and S100 immunohistochemistry showed significant enhancement of axonal and Schwann cell regeneration in the group receiving CDNF-MSCs (CDNF-MSCs group) compared with the control groups. Myelination thickness, axon diameter and the axon-to fiber diameter ratio (G-ratio) were significantly higher in the CDNF-MSCs group at 8 and 12 weeks after nerve transection surgery. After surgery, the sciatic functional index, target muscle weight, wet weight ratio of gastrocnemius muscle and horseradish peroxidase (HRP) tracing demonstrated functional recovery. Light and electron microscopy confirmed successful regeneration of the sciatic nerve. The greater numbers of HRP-labeled neuron cell bodies and increased sciatic nerve index values (SFI) in the CDNF-MSCs group suggest that CDNF exerts neuroprotective effects in vivo. We also observed higher target muscle weights and a significant improvement in muscle atrophism in the CDNF-MSCs group. Collectively, these findings indicate that CDNF gene therapy delivered by MSCs is capable of promoting nerve regeneration and functional recovery, likely because of the significant neuroprotective and neurotrophic effects of CDNF and the superior environment offered by MSCs and collagen tubes. PMID

  2. Low level light promotes the proliferation and differentiation of bone marrow derived mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Ahn, Jin-Chul; Rhee, Yun-Hee; Choi, Sun-Hyang; Kim, Dae Yu; Chung, Phil-Sang

    2015-03-01

    Low-level light irradiation (LLLI) reported to stimulate the proliferation or differentiation of a variety of cell types. However, very little is known about the effect of light therapy on stem cells. The aim of the present study was to evaluate the effect of LLLI on the molecular physiological change of human bone marrow derived stem cells (hBMSC) by wavelength (470, 630, 660, 740 and 850, 50mW). The laser diode was performed with different time interval (0, 7.5, 15, 30J/cm2, 50mW) on hBMSC. To determine the molecular physiological changes of cellular level of hBMSC, the clonogenic assay, ATP assay, reactive oxygen species (ROS) detection, mitochondria membrane potential (MMPΦ) staining and calcium efflux assay were assessed after irradiation. There was a difference between with and without irradiation on hBMSCs. An energy density up to 30 J/cm² improved the cell proliferation in comparison to the control group. Among these irradiated group, 630 and 660nm were significantly increased the cell proliferation. The cellular level of ATP and calcium influx was increased with energy dose-dependent in all LLLI groups. Meanwhile, ROS and MMPΦ were also increased after irradiation except 470nm. It can be concluded that LLLI using infrared light and an energy density up to 30 J/cm² has a positive stimulatory effect on the proliferation or differentiation of hBMSCs. Our results suggest that LLLI may influence to the mitochondrial membrane potential activity through ATP synthesis and increased cell metabolism which leads to cell proliferation and differentiation.

  3. Increased SCF/c-kit by hypoxia promotes autophagy of human placental chorionic plate-derived mesenchymal stem cells via regulating the phosphorylation of mTOR.

    PubMed

    Lee, Youjin; Jung, Jieun; Cho, Kyung Jin; Lee, Seoung-Kwan; Park, Jong-Wan; Oh, Il-Hoan; Kim, Gi Jin

    2013-01-01

    Hypoxia triggers physiological and pathological cellular processes, including proliferation, differentiation, and death, in several cell types. Mesenchymal stem cells (MSCs) derived from various tissues have self-renewal activity and can differentiate towards multiple lineages. Recently, it has been reported that hypoxic conditions tip the balance between survival and death by hypoxia-induced autophagy, although the underlying mechanism is not clear. The objectives of this study are to compare the effect of hypoxia on the self-renewal of bone marrow-derived mesenchymal stem cells (BM-MSCs) and placental chorionic plate-derived mesenchymal stem cells (CP-MSCs) and to investigate the regulatory mechanisms of self-renewal in each MSC type during hypoxia. The expression of self-renewal markers (e.g., Oct4, Nanog, Sox2) was assessed in both cell lines. PI3K and stem cell factor (SCF) expression gradually increased in CP-MSCs but were markedly downregulated in BM-MSCs by hypoxia. The phosphorylation of ERK and mTOR was augmented by hypoxia in CP-MSCs compared to control. Also, the expression of LC3 II, a component of the autophagosome and the hoof-shaped autophagosome was detected more rapidly in CP-MSCs than in BM-MSCs under hypoxia. Hypoxia induced the expression of SCF in CP-MSCs and increased SCF/c-kit pathway promotes the self-renewal activities of CP-MSCs via an autocrine/paracrine mechanism that balances cell survival and cell death events by autophagy. These activities occur to a greater extent in CP-MSCs than in BM-MSCs through regulating the phosphorylation of mTOR. These findings will provide useful guidelines for better understanding the function of SCF/c-kit in the self-renewal and autophagy-regulated mechanisms that promote of MSC survival. PMID:22833529

  4. Human umbilical cord derived mesenchymal stem cells promote interleukin-17 production from human peripheral blood mononuclear cells of healthy donors and systemic lupus erythematosus patients.

    PubMed

    Ren, S; Hu, J; Chen, Y; Yuan, T; Hu, H; Li, S

    2016-03-01

    Inflammation instigated by interleukin (IL)-17-producing cells is central to the development and pathogenesis of several human autoimmune diseases and animal models of autoimmunity. The expansion of IL-17-producing cells from healthy donors is reportedly promoted by mesenchymal stem cells derived from fetal bone marrow. In the present study, human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) were examined for their effects on lymphocytes from healthy donors and from patients with systemic lupus erythematosus (SLE). Significantly higher levels of IL-17 were produced when CD4(+) T cells from healthy donors were co-cultured with hUC-MSCs than those that were cultured alone. Blocking experiments identified that this effect might be mediated partially through prostaglandin E2 (PGE2 ) and IL-1β, without IL-23 involvement. We then co-cultured hUC-MSCs with human CD4(+) T cells from systemic lupus erythematosus patients. Ex-vivo inductions of IL-17 by hUC-MSCs in stimulated lymphocytes were significantly higher in SLE patients than in healthy donors. This effect was not observed for IL-23. Taken together, our results represent that hUC-MSCs can promote the IL-17 production from CD4(+) T cells in both healthy donor and SLE patients. PGE2 and IL-1β might also be partially involved in the promotive effect of hUC-MSCs. PMID:26507122

  5. Co-culture of outgrowth endothelial cells with human mesenchymal stem cells in silk fibroin hydrogels promotes angiogenesis.

    PubMed

    Sun, Wei; Motta, Antonella; Shi, Yang; Seekamp, Andreas; Schmidt, Harald; Gorb, Stanislav N; Migliaresi, Claudio; Fuchs, Sabine

    2016-01-01

    Sufficient vascularization of the implant construct is required for tissue regeneration to ensure the supply of oxygen and nutrients. In our previous work, we established sonication-induced silk fibroin hydrogel to load neural stem cells for brain tissue engineering applications. In this study, we explored the application of silk fibroin as an injectable hydrogel for vascularization of soft tissues. We investigated the ability of outgrowth endothelial cells (OECs) in mono-culture or in co-culture with human bone marrow-derived mesenchymal stem cells (BM-MSCs) to form capillary networks in silk fibroin hydrogels. Furthermore, the silk fibroin hydrogel was modified with IKVAV peptide revealing a sequence derived from the extracellular matrix component laminin-1 to test its effects on angiogenesis, using unmodified and VVIAK modified silk fibroin hydrogel as controls. In monocultures of OECs, no angiogenic structures were observed in silk fibroin hydrogels. In contrast, vascular structures were abundant and increased in co-culture, as confirmed by immunocytochemistry and scanning electron microscopy (SEM) over 10 d of culture in silk fibroin-based hydrogels. Although no significant differences in angiogenic activity seem to be caused by the IKVAV peptide in our experimental settings, these results indicate that sonication-induced silk fibroin-based hydrogels support the formation of functional endothelial tubes and vascularization networks in the presence of mesenchymal cells supporting the vascular sprouting of endothelial cells. PMID:27271291

  6. Notochordal conditioned media from tissue increases proteoglycan accumulation and promotes a healthy nucleus pulposus phenotype in human mesenchymal stem cells

    PubMed Central

    2011-01-01

    Introduction Notochordal cells (NCs) are influential in development of the intervertebral disc (IVD) and species that retain NCs do not degenerate. IVD repair using bone marrow derived mesenchymal stem cells (MSCs) is an attractive approach and the harsh microenvironment of the IVD suggests pre-differentiation is a necessary first step. The goal of this study was to use soluble factors from NCs in alginate and NCs in their native tissue to differentiate human MSCs to a young nucleus pulposus (NP) phenotype. Methods Human MSCs (cultured under micromass conditions for 21 days in hypoxia) were differentiated with conditioned medium derived from porcine notochordal cells in native tissue (NCT) or in alginate beads (NCA), and compared with chondrogenic (TGFβ-3) or basal medium. A PCR array of 42 genes was utilized to screen a large number of genes known to be associated with the healthy NP phenotype and pellet cultures were also evaluated for glycosaminoglycan content, histology and viability. Proteomic analysis was used to assess candidate soluble factors in NCA and NCT. Results Notochordal cell conditioned media had diverse effects on MSC phenotype. NCT resulted in the highest levels of glycosaminoglycan (GAG), as well as up-regulation of SOX9 and Collagen II gene expression. NCA demonstrated effects that were catabolic yet also anti-fibrotic and minimally hypertrophic with down-regulation of Collagens I and III and low levels of Collagen X, respectively. Micromass culture and hypoxic conditions were sufficient to promote chondrogenesis demonstrating that both basal and chondrogenic media produced similar phenotypes. Candidate matricellular proteins, clusterin and tenascin were identified by proteomics in the NCA group. Conclusions NCs secreted important soluble factors capable of differentiating MSCs to a NP phenotype synthesizing high levels of proteoglycan while also resisting collagen fiber expression and hypertrophy, yet results were sensitive to the conditions

  7. Micropatterning Extracellular Matrix Proteins on Electrospun Fibrous Substrate Promote Human Mesenchymal Stem Cell Differentiation Toward Neurogenic Lineage.

    PubMed

    Li, Huaqiong; Wen, Feng; Chen, Huizhi; Pal, Mintu; Lai, Yuekun; Zhao, Allan Zijian; Tan, Lay Poh

    2016-01-13

    In this study, hybrid micropatterned grafts constructed via a combination of microcontact printing and electrospinning techniques process were utilized to investigate the influencing of patterning directions on human mesenchymal stem cells (hMSCs) differentiation to desired phenotypes. We found that the stem cells could align and elongate along the direction of the micropattern, where they randomly distributed on nonmicropatterned surfaces. Concomitant with patterning effect of component on stem cell alignment, a commensurate increase on the expression of neural lineage commitment markers, such as microtubule associated protein 2 (MAP2), Nestin, NeuroD1, and Class III β-Tubulin, were revealed from mRNA expression by quantitative Real Time PCR (qRT-PCR) and MAP2 expression by immunostaining. In addition, the effect of electrospun fiber orientation on cell behaviors was further examined. An angle of 45° between the direction of micropatterning and orientation of aligned fibers was verified to greatly prompt the outgrowth of filopodia and neurogenesis of hMSCs. This study demonstrates that the significance of hybrid components and electrospun fiber alignment in modulating cellular behavior and neurogenic lineage commitment of hMSCs, suggesting promising application of porous scaffolds with smart component and topography engineering in clinical regenerative medicine. PMID:26654444

  8. Mesenchymal stem cells in osteoarticular diseases.

    PubMed

    Jorgensen, Christian; Noël, Danièle

    2011-11-01

    Multipotent mesenchymal stromal cells or mesenchymal stem cells (MSCs) are mainly isolated from bone marrow or fat tissue. Owing to their potential for multilineage differentiation towards bone, cartilage and fat tissue, they were initially evaluated in innovative strategies for tissue engineering. More recently, they have gained interest for their immunomodulatory properties and have been tested in various clinical trials that aim to modulate the host immune response in graft-versus-host disease or autoimmune diseases. MSC-mediated immunomodulation occurs through the secretion of soluble mediators. The clinical applications of MSCs for rheumatic diseases focus on their potential to promote tissue repair/regeneration and prevent inflammation. This article will focus on the mechanisms by which MSCs might exhibit a therapeutic potential in rheumatology. Special attention is given to their potential for innovative future strategies. PMID:21999261

  9. Priming with ceramide-1 phosphate promotes the therapeutic effect of mesenchymal stem/stromal cells on pulmonary artery hypertension.

    PubMed

    Lim, Jisun; Kim, YongHwan; Heo, Jinbeom; Kim, Kang-Hyun; Lee, Seungun; Lee, Sei Won; Kim, Kyunggon; Kim, In-Gyu; Shin, Dong-Myung

    2016-04-22

    Some molecules enriched in damaged organs can contribute to tissue repair by stimulating the mobilization of stem cells. These so-called "priming" factors include bioactive lipids, complement components, and cationic peptides. However, their therapeutic significance remains to be determined. Here, we show that priming of mesenchymal stromal/stem cells (MSCs) with ceramide-1 phosphate (C1P), a bioactive lipid, enhances their therapeutic efficacy in pulmonary artery hypertension (PAH). Human bone marrow (BM)-derived MSCs treated with 100 or 200 μM C1P showed improved migration activity in Transwell assays compared with non-primed MSCs and concomitantly activated MAPK(p42/44) and AKT signaling cascades. Although C1P priming had little effect on cell surface marker phenotypes and the multipotency of MSCs, it potentiated their proliferative, colony-forming unit-fibroblast, and anti-inflammatory activities. In a monocrotaline-induced PAH animal model, a single administration of human MSCs primed with C1P significantly attenuated the PAH-related increase in right ventricular systolic pressure, right ventricular hypertrophy, and thickness of α-smooth muscle actin-positive cells around the vessel wall. Thus, this study shows that C1P priming increases the effects of MSC therapy by enhancing the migratory, self-renewal, and anti-inflammatory activity of MSCs and that MSC therapy optimized with priming protocols might be a promising option for the treatment of PAH patients. PMID:26993164

  10. Mesenchymal Stem Cells as Therapeutics

    PubMed Central

    Parekkadan, Biju; Milwid, Jack M.

    2013-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells that are being clinically explored as a new therapeutic for treating a variety of immune-mediated diseases. First heralded as a regenerative therapy for skeletal tissue repair, MSCs have recently been shown to modulate endogenous tissue and immune cells. Preclinical studies of the mechanism of action suggest that the therapeutic effects afforded by MSC transplantation are short-lived and related to dynamic, paracrine interactions between MSCs and host cells. Therefore, representations of MSCs as drug-loaded particles may allow for pharmacokinetic models to predict the therapeutic activity of MSC transplants as a function of drug delivery mode. By integrating principles of MSC biology, therapy, and engineering, the field is armed to usher in the next generation of stem cell therapeutics. PMID:20415588

  11. Promoting effect of small molecules in cardiomyogenic and neurogenic differentiation of rat bone marrow-derived mesenchymal stem cells

    PubMed Central

    Khanabdali, Ramin; Saadat, Anbarieh; Fazilah, Maizatul; Bazli, Khairul Fidaa’ Khairul; Qazi, Rida-e-Maria; Khalid, Ramla Sana; Hasan Adli, Durriyyah Sharifah; Moghadamtousi, Soheil Zorofchian; Naeem, Nadia; Khan, Irfan; Salim, Asmat; Shamsuddin, ShamsulAzlin Ahmad; Mohan, Gokula

    2016-01-01

    Small molecules, growth factors, and cytokines have been used to induce differentiation of stem cells into different lineages. Similarly, demethylating agents can trigger differentiation in adult stem cells. Here, we investigated the in vitro differentiation of rat bone marrow mesenchymal stem cells (MSCs) into cardiomyocytes by a demethylating agent, zebularine, as well as neuronal-like cells by β-mercaptoethanol in a growth factor or cytokines-free media. Isolated bone marrow-derived MSCs cultured in Dulbecco’s Modified Eagle’s Medium exhibited a fibroblast-like morphology. These cells expressed positive markers for CD29, CD44, and CD117 and were negative for CD34 and CD45. After treatment with 1 μM zebularine for 24 hours, the MSCs formed myotube-like structures after 10 days in culture. Expression of cardiac-specific genes showed that treated MSCs expressed significantly higher levels of cardiac troponin-T, Nkx2.5, and GATA-4 compared with untreated cells. Immunocytochemical analysis showed that differentiated cells also expressed cardiac proteins, GATA-4, Nkx 2.5, and cardiac troponin-T. For neuronal differentiation, MSCs were treated with 1 and 10 mM β-mercaptoethanol overnight for 3 hours in complete and serum-free Dulbecco’s Modified Eagle’s Medium, respectively. Following overnight treatment, neuron-like cells with axonal and dendritic-like projections originating from the cell body toward the neighboring cells were observed in the culture. The mRNA expression of neuronal-specific markers, Map2, Nefl, Tau, and Nestin, was significantly higher, indicating that the treated cells differentiated into neuronal-like cells. Immunostaining showed that differentiated cells were positive for the neuronal markers Flk, Nef, Nestin, and β-tubulin. PMID:26766903

  12. Electro-acupuncture promotes survival, differentiation of the bone marrow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats

    PubMed Central

    Ding, Ying; Yan, Qing; Ruan, Jing-Wen; Zhang, Yan-Qing; Li, Wen-Jie; Zhang, Yu-Jiao; Li, Yan; Dong, Hongxin; Zeng, Yuan-Shan

    2009-01-01

    Background Bone marrow mesenchymal stem cells (MSCs) are one of the potential tools for treatment of the spinal cord injury; however, the survival and differentiation of MSCs in an injured spinal cord still need to be improved. In the present study, we investigated whether Governor Vessel electro-acupuncture (EA) could efficiently promote bone marrow mesenchymal stem cells (MSCs) survival and differentiation, axonal regeneration and finally, functional recovery in the transected spinal cord. Results The spinal cords of adult Sprague-Dawley (SD) rats were completely transected at T10, five experimental groups were performed: 1. sham operated control (Sham-control); 2. operated control (Op-control); 3. electro-acupuncture treatment (EA); 4. MSCs transplantation (MSCs); and 5. MSCs transplantation combined with electro-acupuncture (MSCs+EA). After 2-8 weeks of MSCs transplantation plus EA treatment, we found that the neurotrophin-3 (NT-3), cAMP level, the differentiation of MSCs, the 5-HT positive and CGRP positive nerve fibers in the lesion site and nearby tissue of injured spinal cord were significantly increased in the MSCs+EA group as compared to the group of the MSCs transplantation or the EA treated alone. Furthermore, behavioral test and spinal cord evoked potentials detection demonstrated a significantly functional recovery in the MSCs +EA group. Conclusion These results suggest that EA treatment may promote grafted MSCs survival and differentiation; MSCs transplantation combined with EA treatment could promote axonal regeneration and partial locomotor functional recovery in the transected spinal cord in rats and indicate a promising avenue of treatment of spinal cord injury. PMID:19374777

  13. Conditioned Media from Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Inhibits Melanogenesis by Promoting Proteasomal Degradation of MITF

    PubMed Central

    Lim, Hoon; Shin, Ji Hyun; Park, So Jung; Jo, Yoon Kyung; Oh, Wonil; Yang, Yoon Sun; Cho, Dong-Hyung; Kim, Ju-Yeon

    2015-01-01

    Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) secrete various beneficial molecules, which have anti-apoptotic activity and cell proliferation. However, the effect of hUCB-MSCs in melanogenesis is largely unclear. In this study, we show that conditioned media (CM) derived from hUCB-MSCs inhibit melanogenesis by regulating microphthalmia-associated transcription factor (MITF) expression via the ERK signalling pathway. Treatment of hUCB-MSC-CM strongly inhibited the alpha-melanocyte stimulating hormone-induced hyperpigmentation in melanoma cells as well as melanocytes. Treatment of hUCB-MSC-CM induced ERK1/2 activation in melanocytes. In addition, inhibition of ERK1/2 suppressed the anti-pigmentation activity of the hUCB-MSC-CM in melanocytes and in vitro artificial skin models. We also found that the expression of MITF was appreciably diminished while expression of phosphorylated MITF, which leads to its proteasomal degradation, was increased in cells treated with hUCB-MSC-CM. These results suggested that hUCB-MSC-CM significantly suppresses melanin synthesis via MITF degradation by the ERK pathway activation. PMID:26024475

  14. Inhibition of IL-1R1/MyD88 signalling promotes mesenchymal stem cell-driven tissue regeneration

    PubMed Central

    Martino, Mikaël M.; Maruyama, Kenta; Kuhn, Gisela A.; Satoh, Takashi; Takeuchi, Osamu; Müller, Ralph; Akira, Shizuo

    2016-01-01

    Tissue injury and the healing response lead to the release of endogenous danger signals including Toll-like receptor (TLR) and interleukin-1 receptor, type 1 (IL-1R1) ligands, which modulate the immune microenvironment. Because TLRs and IL-1R1 have been shown to influence the repair process of various tissues, we explored their role during bone regeneration, seeking to design regenerative strategies integrating a control of their signalling. Here we show that IL-1R1/MyD88 signalling negatively regulates bone regeneration, in the mouse. Furthermore, IL-1β which is released at the bone injury site, inhibits the regenerative capacities of mesenchymal stem cells (MSCs). Mechanistically, IL-1R1/MyD88 signalling impairs MSC proliferation, migration and differentiation by inhibiting the Akt/GSK-3β/β-catenin pathway. Lastly, as a proof of concept, we engineer a MSC delivery system integrating inhibitors of IL-1R1/MyD88 signalling. Using this strategy, we considerably improve MSC-based bone regeneration in the mouse, demonstrating that this approach may be useful in regenerative medicine applications. PMID:27001940

  15. Inhibition of IL-1R1/MyD88 signalling promotes mesenchymal stem cell-driven tissue regeneration.

    PubMed

    Martino, Mikaël M; Maruyama, Kenta; Kuhn, Gisela A; Satoh, Takashi; Takeuchi, Osamu; Müller, Ralph; Akira, Shizuo

    2016-01-01

    Tissue injury and the healing response lead to the release of endogenous danger signals including Toll-like receptor (TLR) and interleukin-1 receptor, type 1 (IL-1R1) ligands, which modulate the immune microenvironment. Because TLRs and IL-1R1 have been shown to influence the repair process of various tissues, we explored their role during bone regeneration, seeking to design regenerative strategies integrating a control of their signalling. Here we show that IL-1R1/MyD88 signalling negatively regulates bone regeneration, in the mouse. Furthermore, IL-1β which is released at the bone injury site, inhibits the regenerative capacities of mesenchymal stem cells (MSCs). Mechanistically, IL-1R1/MyD88 signalling impairs MSC proliferation, migration and differentiation by inhibiting the Akt/GSK-3β/β-catenin pathway. Lastly, as a proof of concept, we engineer a MSC delivery system integrating inhibitors of IL-1R1/MyD88 signalling. Using this strategy, we considerably improve MSC-based bone regeneration in the mouse, demonstrating that this approach may be useful in regenerative medicine applications. PMID:27001940

  16. Mallotus philippinensis bark extracts promote preferential migration of mesenchymal stem cells and improve wound healing in mice.

    PubMed

    Furumoto, Tadashi; Ozawa, Noriyasu; Inami, Yuta; Toyoshima, Misaki; Fujita, Kosuke; Zaiki, Kaori; Sahara, Shunya; Akita, Mariko; Kitamura, Keiko; Nakaoji, Koichi; Hamada, Kazuhiko; Tamai, Katsuto; Kaneda, Yasufumi; Maeda, Akito

    2014-02-15

    In the present study, we report the effects of the ethanol extract from Mallotus philippinensis bark (EMPB) on mesenchymal stem cell (MSC) proliferation, migration, and wound healing in vitro and in a mouse model. Chemotaxis assays demonstrated that EMPB acted an MSC chemoattractant and that the main chemotactic activity of EMPB may be due to the effects of cinnamtannin B-1. Flow cytometric analysis of peripheral blood mononuclear cells in EMPB-injected mice indicated that EMPB enhanced the mobilization of endogenous MSCs into blood circulation. Bioluminescent whole-animal imaging of luciferase-expressing MSCs revealed that EMPB augmented the homing of MSCs to wounds. In addition, the efficacy of EMPB on migration of MSCs was higher than that of other skin cell types, and EMPB treatment improved of wound healing in a diabetic mouse model. The histopathological characteristics demonstrated that the effects of EMPB treatment resembled MSC-induced tissue repair. Taken together, these results suggested that EMPB activated the mobilization and homing of MSCs to wounds and that enhancement of MSC migration may improve wound healing. PMID:24182990

  17. Sequential differentiation of mesenchymal stem cells in an agarose scaffold promotes a physis-like zonal alignment of chondrocytes.

    PubMed

    Schmitt, Jacqueline Frida; See, Kwee Hua; Hua, See Kwee; Yang, Zheng; Zheng, Yang; Hui, James Hoi Po; Po, James Hui Hoi; Lee, Eng Hin; Hin, Lee Eng

    2012-11-01

    Chondrocytes of the epiphyseal growth plate (physis) differentiate and mature in defined linear zones. The current study examines the differentiation of human bone marrow derived mesenchymal stem cells (hBMSCs) into zonal physeal cartilage. hBMSCs were embedded in an agarose scaffold with only the surface of the scaffold in direct contact with the culture medium. The cells were differentiated using a two-step system involving the sequential addition of TGFβ followed by BMP2. The resultant samples displayed a heterogenic population of physis-like collagen type 2 positive cells including proliferating chondrocytes and mature chondrocytes showing hypertrophy, expression of early bone markers and matrix mineralization. Histological analysis revealed a physis-like linear zonal alignment of chondrocytes in varying stages of differentiation. The less mature chondrocytes were seen at the base of the construct while hypertrophic chondrocytes and matrix mineralization was observed closer to the surface of the construct. The described differentiation protocol using hBMSCs in an agarose scaffold can be used to study the factors and conditions that influence the differentiation, proliferation, maturation, and zonal alignment of physeal chondrocytes. PMID:22517299

  18. Over-expression of HO-1 on mesenchymal stem cells promotes angiogenesis and improves myocardial function in infarcted myocardium

    PubMed Central

    2010-01-01

    Heme oxygenase-1 (HO-1) is a stress-inducible enzyme with diverse cytoprotective effects, and reported to have an important role in angiogenesis recently. Here we investigated whether HO-1 transduced by mesenchymal stem cells (MSCs) can induce angiogenic effects in infarcted myocardium. HO-1 was transfected into cultured MSCs using an adenoviral vector. 1 × 106 Ad-HO-1-transfected MSCs (HO-1-MSCs) or Ad-Null-transfected MSCs (Null-MSCs) or PBS was respectively injected into rat hearts intramyocardially at 1 h post-myocardial infarction. The results showed that HO-1-MSCs were able to induce stable expression of HO-1 in vitro and in vivo. The capillary density and expression of angiogenic growth factors, VEGF and FGF2 were significantly enhanced in HO-1-MSCs-treated hearts compared with Null-MSCs-treated and PBS-treated hearts. However, the angiogenic effects of HO-1 were abolished by treating the animals with HO inhibitor, zinc protoporphyrin. The myocardial apoptosis was marked reduced with significantly reduced fibrotic area in HO-1-MSCs-treated hearts; Furthermore, the cardiac function and remodeling were also significantly improved in HO-1-MSCs-treated hearts. Our current findings support the premise that HO-1 transduced by MSCs can induce angiogenic effects and improve heart function after acute myocardial infarction. PMID:20925964

  19. CD133+ ovarian cancer stem-like cells promote non-stem cancer cell metastasis via CCL5 induced epithelial-mesenchymal transition

    PubMed Central

    Qi, Wei; Huang, Jiani; Chen, Junying; He, Luhang; Liang, Zhiqing; Guo, Bo; Li, Yongsheng; Xie, Rongkai; Zhu, Bo

    2015-01-01

    Cancer stem cells (CSCs, also called cancer stem-like cells, CSLCs) can function as “seed cells” for tumor recurrence and metastasis. Here, we report that, in the presence of CD133+ ovarian CSLCs, CD133− non-CSLCs can undergo an epithelial-mesenchymal transition (EMT)-like process and display enhanced metastatic capacity in vitro and in vivo. Highly elevated expression of chemokine (C-C motif) ligand 5 (CCL5) and its receptors chemokine (C-C motif) receptor (CCR) 1/3/5 are observed in clinical and murine metastatic tumor tissues from epithelial ovarian carcinomas. Mechanistically, paracrine CCL5 from ovarian CSLCs activates the NF-κB signaling pathway in ovarian non-CSLCs via binding CCR1/3/5, thereby inducing EMT and tumor invasion. Taken together, our results redefine the metastatic potential of non-stem cancer cells and provide evidence that targeting the CCL5:CCR1/3/5-NF-κB pathway could be an effective strategy to prevent ovarian cancer metastasis. PMID:25788271

  20. rFN/Cad-11-Modified Collagen Type II Biomimetic Interface Promotes the Adhesion and Chondrogenic Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Guo, Hongfeng; Zhang, Yuan; Li, Zhengsheng; Kang, Fei; Yang, Bo; Kang, Xia; Wen, Can; Yan, Yanfei; Jiang, Bo; Fan, Yujiang

    2013-01-01

    Properties of the cell-material interface are determining factors in the successful function of cells for cartilage tissue engineering. Currently, cell adhesion is commonly promoted through the use of polypeptides; however, due to their lack of complementary or modulatory domains, polypeptides must be modified to improve their ability to promote adhesion. In this study, we utilized the principle of matrix-based biomimetic modification and a recombinant protein, which spans fragments 7–10 of fibronectin module III (heterophilic motif ) and extracellular domains 1–2 of cadherin-11 (rFN/Cad-11) (homophilic motif ), to modify the interface of collagen type II (Col II) sponges. We showed that the designed material was able to stimulate cell proliferation and promote better chondrogenic differentiation of rabbit mesenchymal stem cells (MSCs) in vitro than both the FN modified surfaces and the negative control. Further, the Col II/rFN/Cad-11-MSCs composite stimulated cartilage formation in vivo; the chondrogenic effect of Col II alone was much less significant. These results suggested that the rFN/Cad-11-modified collagen type II biomimetic interface has dual biological functions of promoting adhesion and stimulating chondrogenic differentiation. This substance, thus, may serve as an ideal scaffold material for cartilage tissue engineering, enhancing repair of injured cartilage in vivo. PMID:23919505

  1. Structured three-dimensional co-culture of mesenchymal stem cells with meniscus cells promotes meniscal phenotype without hypertrophy.

    PubMed

    Cui, Xiaofeng; Hasegawa, Akihiko; Lotz, Martin; D'Lima, Darryl

    2012-09-01

    Menisci play a crucial role in weight distribution, load bearing, shock absorption, lubrication, and nutrition of articular cartilage within the knee joint. Damage to the meniscus typically does not heal spontaneously due to its partial avascular nature. Partial or complete meniscectomy is a common clinical treatment of the defective meniscus. However, this procedure ultimately leads to osteoarthritis due to increased mechanical stress to the articular cartilage. Meniscus tissue engineering offers a promising solution for partial or complete meniscus deficiency. Mesenchymal stem cells (MSC) have the potential to differentiate into meniscal fibrochondrocyte as well as deliver trophic effects to the differentiated cells. This study tested the feasibility of using MSC co-cultured with mature meniscal cells (MC) for meniscus tissue engineering. Structured cell pellets were created using MC and MSC at varying ratios (100:0, 75:25, 50:50, 25:75, and 0:100) and cultured with or without transforming growth factor-beta 3 supplemented chondrogenic media for 21 days. The meniscal and hypertrophic gene expression, gross appearance and structure of the pellets, meniscus extracellular matrix (ECM), histology and immunohistochemistry of proteoglycan and collagen were evaluated. Co-culture of MC with MSC at 75:25 demonstrated highest levels of collagen type I and glycosaminoglycans (GAG) production, as well as the lowest levels of hypertrophic genes, such as COL10A1 and MMP13. All co-culture conditions showed better meniscus ECM production and hypertrophic inhibition as compared to MSC culture alone. The collagen fiber bundles observed in the co-cultures are important to produce heterogenic ECM structure of meniscus. In conclusion, co-culturing MC and MSC is a feasible and efficient approach to engineer meniscus tissue with enhanced ECM production without hypertrophy. PMID:22422555

  2. Hypoxia Precondition Promotes Adipose-Derived Mesenchymal Stem Cells Based Repair of Diabetic Erectile Dysfunction via Augmenting Angiogenesis and Neuroprotection

    PubMed Central

    Li, ShaoDan; Xu, Yong; Chen, Ping; Liu, Yi; Ding, Qiang; Wahafu, Wasilijiang; Hong, BaoFa; Yang, MingHui

    2015-01-01

    The aim of the present study was to examine whether hypoxia preconditioning could improve therapeutic effects of adipose derived mesenchymal stem cells (AMSCs) for diabetes induced erectile dysfunction (DED). AMSCs were pretreated with normoxia (20% O2, N-AMSCs) or sub-lethal hypoxia (1% O2, H-AMSCs). The hypoxia exposure up-regulated the expression of several angiogenesis and neuroprotection related cytokines in AMSCs, including vascular endothelial growth factor (VEGF) and its receptor FIK-1, angiotensin (Ang-1), basic fibroblast growth factor (bFGF), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), stromal derived factor-1 (SDF-1) and its CXC chemokine receptor 4 (CXCR4). DED rats were induced via intraperitoneal injection of streptozotocin (60 mg/kg) and were randomly divided into three groups—Saline group: intracavernous injection with phosphate buffer saline; N-AMSCs group: N-AMSCs injection; H-AMSCs group: H-AMSCs injection. Ten rats without any treatment were used as normal control. Four weeks after injection, the mean arterial pressure (MAP) and intracavernosal pressure (ICP) were measured. The contents of endothelial, smooth muscle, dorsal nerve in cavernoursal tissue were assessed. Compared with N-AMSCs and saline, intracavernosum injection of H-AMSCs significantly raised ICP and ICP/MAP (p<0.05). Immunofluorescent staining analysis demonstrated that improved erectile function by MSCs was significantly associated with increased expression of endothelial markers (CD31 and vWF) (p<0.01) and smooth muscle markers (α-SMA) (p<0.01). Meanwhile, the expression of nNOS was also significantly higher in rats receiving H-AMSCs injection than those receiving N-AMSCs or saline injection. The results suggested that hypoxic preconditioning of MSCs was an effective approach to enhance their therapeutic effect for DED, which may be due to their augmented angiogenesis and neuroprotection. PMID:25790284

  3. Netrin-1 overexpression in bone marrow mesenchymal stem cells promotes functional recovery in a rat model of peripheral nerve injury

    PubMed Central

    Ke, Xianjin; Li, Qian; Xu, Li; Zhang, Ying; Li, Dongmei; Ma, Jianhua; Mao, Xiaoming

    2015-01-01

    Abstract Transplantation of bone marrow mesenchymal stem cells (BMSCs) has been developed as a new method of treating diseases of the peripheral nervous system. While netrin-1 is a critical molecule for axonal path finding and nerve growth, it may also affect vascular network formation. Here, we investigated the effect of transplanting BMSCs that produce netrin-1 in a rat model of sciatic nerve crush injury. We introduced a sciatic nerve crush injury, and then injected 1×106 BMSCs infected by a recombinant adenovirus expressing netrin-1 Ad5-Netrin-1-EGFP or culture medium into the injured part in the next day. At day 7, 14 and 28 after injection, we measured motor nerve conduction and detected mRNA expressions of netrin-1 receptors UNC5B and Deleted in Colorectal Cancer (DCC), and neurotrophic factors brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) by real-time PCR. We also detected protein expressions of BDNF and NGF by Western blotting assays and examined BMSCs that incorporated into myelin and vascellum. The results showed that BMSCs infected by Ad5-Netrin-1-EGFP significantly improved the function of the sciatic nerve, and led to increased expression of BDNF and NGF (P<0.05). Moreover, 28 days after injury, more Schwann cells were found in BMSCs infected by Ad5-Netrin-1-EGFP compared to control BMSCs. In conclusion, transplantation of BMSCs that produce netrin-1 improved the function of the sciatic nerve after injury. This method may be a new treatment of nerve injury. PMID:26445571

  4. Enhanced cell survival and paracrine effects of mesenchymal stem cells overexpressing hepatocyte growth factor promote cardioprotection in myocardial infarction.

    PubMed

    Zhao, Liyan; Liu, Xiaolin; Zhang, Yuelin; Liang, Xiaoting; Ding, Yue; Xu, Yan; Fang, Zhen; Zhang, Fengxiang

    2016-05-15

    Poor cell survival post transplantation compromises the therapeutic benefits of mesenchymal stem cells (MSCs) in myocardial infarction (MI). Hepatocyte growth factor (HGF) is an important cytokine for angiogenesis, anti-inflammation and anti-apoptosis. This study aimed to evaluate the cardioprotective effects of MSCs overexpressing HGF in a mouse model of MI. The apoptosis of umbilical cord-derived MSCs (UC-MSCs) and HGF-UC-MSCs under normoxic and hypoxic conditions was detected. The conditioned medium (CdM) of UC-MSCs and HGF-UC-MSCs under a hypoxic condition was harvested and its protective effect on neonatal cardiomyocytes (NCMs) exposed to a hypoxic challenge was examined. UC-MSCs and HGF-UC-MSCs were transplanted into the peri-infarct region in mice following MI and heart function assessed 4 weeks post transplantation. The apoptosis of HGF-UC-MSCs under hypoxic conditions was markedly decreased compared with that of UC-MSCs. NCMs treated with HGF-UC-MSC hypoxic CdM (HGF-UC-MSCs-hy-CdM) exhibited less cell apoptosis in response to hypoxic challenge than those treated with UC-MSC hypoxic CdM (UC-MSCs-hy-CdM). HGF-UC-MSCs-hy-CdM released the inhibited p-Akt and lowered the enhanced ratio of Bax/Bcl-2 induced by hypoxia in the NCMs. HGF-UC-MSCs-hy-CdM expressed higher levels of HGF, EGF, bFGF and VEGF than UC-MSCs-hy-CdM. Transplantation of HGF-UC-MSCs or UC-MSCs greatly improved heart function in the mouse model of MI. Compared with UC-MSCs, transplantation of HGF-UC-MSCs was associated with less cardiomyocyte apoptosis, enhanced angiogenesis and increased proliferation of cardiomyocytes. This study may provide a novel therapeutic strategy for MSC-based therapy in cardiovascular disease. PMID:27025401

  5. Poly(γ-Glutamic Acid) as an Exogenous Promoter of Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells

    PubMed Central

    Antunes, Joana C.; Tsaryk, Roman; Gonçalves, Raquel M.; Pereira, Catarina Leite; Landes, Constantin; Brochhausen, Christoph; Ghanaati, Shahram

    2015-01-01

    Cartilage damage and/or aging effects can cause constant pain, which limits the patient's quality of life. Although different strategies have been proposed to enhance the limited regenerative capacity of cartilage tissue, the full production of native and functional cartilaginous extracellular matrix (ECM) has not yet been achieved. Poly(γ-glutamic acid) (γ-PGA), a naturally occurring polyamino acid, biodegradable into glutamate residues, has been explored for tissue regeneration. In this work, γ-PGA's ability to support the production of cartilaginous ECM by human bone marrow mesenchymal stem/stromal cells (MSCs) and nasal chondrocytes (NCs) was investigated. MSC and NC pellets were cultured in basal medium (BM), chondrogenic medium (CM), and CM-γ-PGA-supplemented medium (CM+γ-PGA) over a period of 21 days. Pellet size/shape was monitored with time. At 14 and 21 days of culture, the presence of sulfated glycosaminoglycans (sGAGs), type II collagen (Col II), Sox-9, aggrecan, type XI collagen (Col XI), type X collagen (Col X), calcium deposits, and type I collagen (Col I) was analyzed. After excluding γ-PGA's cytotoxicity, earlier cell condensation, higher sGAG content, Col II, Sox-9 (day 14), aggrecan, and Col X (day 14) production was observed in γ-PGA-supplemented MSC cultures, with no signs of mineralization or Col I. These effects were not evident with NCs. However, Sox-9 (at day 14) and Col X (at days 14 and 21) were increased, decreased, or absent, respectively. Overall, γ-PGA improved chondrogenic differentiation of MSCs, increasing ECM production earlier in culture. It is proposed that γ-PGA incorporation in novel biomaterials has a beneficial impact on future approaches for cartilage regeneration. PMID:25760236

  6. The angiogenic related functions of bone marrow mesenchymal stem cells are promoted by CBDL rat serum via the Akt/Nrf2 pathway.

    PubMed

    Shen, Cheng-Cheng; Chen, Bing; Gu, Jian-Teng; Ning, Jiao-Lin; Chen, Lin; Zeng, Jing; Yi, Bin; Lu, Kai-Zhi

    2016-05-15

    Hepatopulmonary syndrome (HPS) is a complication of severe liver disease. It is characterized by an arterial oxygenation defect. Recent studies have demonstrated that pulmonary angiogenesis contributes to the abnormal gas exchange found in HPS. Additionally, mesenchymal stem cells (MSCs) are considered the stable source of VEGF-producing cells and have the potential to differentiate into multiple cell types. However, it has not been determined whether bone marrow mesenchymal stem cells (BM-MSCs) are mobilized and involved in the pulmonary angiogenesis in HPS. In this study, a CFU-F assay showed that the number of peripheral blood MSCs was increased in common bile duct ligation (CBDL) rats; however, there was no significant difference found in the number of BM-MSCs. In vitro, CBDL rat serum induced the overexpression of CXCR4 and PCNA in BM-MSCs. Consistently, the directional migration as well as the proliferation ability of BM-MSCs were enhanced by CBDL rat serum, as determined by a transwell migration and MTT assays. Moreover, the secretion of VEGF by BM-MSCs increased after treatment with CBDL rat serum. We also found that the expression of phospho-Akt, phospho-ERK, and Nrf2 in BM-MSCs was significantly up-regulated by CBDL rat serum in a time dependent manner, and the blockage of the Akt/Nrf2 signalling pathway with an Akt Inhibitor or Nrf2 siRNA, instead of an ERK inhibitor, attenuated the migration, proliferation and paracrine capacity of BM-MSCs. In conclusion, these findings indicated that the number of MSCs increased in the peripheral blood of CBDL rats, and the Akt/Nrf2 pathway plays a vital role in promoting the angiogenic related functions of BM-MSCs, which could be a potent contributor to pulmonary angiogenesis in HPS. PMID:27105936

  7. Mesenchymal stem cells in regenerative rehabilitation

    PubMed Central

    Nurkovic, Jasmin; Dolicanin, Zana; Mustafic, Fahrudin; Mujanovic, Rifat; Memic, Mensur; Grbovic, Vesna; Skevin, Aleksandra Jurisic; Nurkovic, Selmina

    2016-01-01

    [Purpose] Regenerative medicine and rehabilitation contribute in many ways to a specific plan of care based on a patient’s medical status. The intrinsic self-renewing, multipotent, regenerative, and immunosuppressive properties of mesenchymal stem cells offer great promise in the treatment of numerous autoimmune, degenerative, and graft-versus-host diseases, as well as tissue injuries. As such, mesenchymal stem cells represent a therapeutic fortune in regenerative medicine. The aim of this review is to discuss possibilities, limitations, and future clinical applications of mesenchymal stem cells. [Subjects and Methods] The authors have identified and discussed clinically and scientifically relevant articles from PubMed that have met the inclusion criteria. [Results] Direct treatment of muscle injuries, stroke, damaged peripheral nerves, and cartilage with mesenchymal stem cells has been demonstrated to be effective, with synergies seen between cellular and physical therapies. Over the past few years, several researchers, including us, have shown that there are certain limitations in the use of mesenchymal stem cells. Aging and spontaneous malignant transformation of mesenchymal stem cells significantly affect the functionality of these cells. [Conclusion] Definitive conclusions cannot be made by these studies because limited numbers of patients were included. Studies clarifying these results are expected in the near future. PMID:27390452

  8. Mesenchymal stem cells in regenerative rehabilitation.

    PubMed

    Nurkovic, Jasmin; Dolicanin, Zana; Mustafic, Fahrudin; Mujanovic, Rifat; Memic, Mensur; Grbovic, Vesna; Skevin, Aleksandra Jurisic; Nurkovic, Selmina

    2016-06-01

    [Purpose] Regenerative medicine and rehabilitation contribute in many ways to a specific plan of care based on a patient's medical status. The intrinsic self-renewing, multipotent, regenerative, and immunosuppressive properties of mesenchymal stem cells offer great promise in the treatment of numerous autoimmune, degenerative, and graft-versus-host diseases, as well as tissue injuries. As such, mesenchymal stem cells represent a therapeutic fortune in regenerative medicine. The aim of this review is to discuss possibilities, limitations, and future clinical applications of mesenchymal stem cells. [Subjects and Methods] The authors have identified and discussed clinically and scientifically relevant articles from PubMed that have met the inclusion criteria. [Results] Direct treatment of muscle injuries, stroke, damaged peripheral nerves, and cartilage with mesenchymal stem cells has been demonstrated to be effective, with synergies seen between cellular and physical therapies. Over the past few years, several researchers, including us, have shown that there are certain limitations in the use of mesenchymal stem cells. Aging and spontaneous malignant transformation of mesenchymal stem cells significantly affect the functionality of these cells. [Conclusion] Definitive conclusions cannot be made by these studies because limited numbers of patients were included. Studies clarifying these results are expected in the near future. PMID:27390452

  9. Knockdown of DNMT1 and DNMT3a Promotes the Angiogenesis of Human Mesenchymal Stem Cells Leading to Arterial Specific Differentiation.

    PubMed

    Zhang, Rui; Wang, Nan; Zhang, Li-Nan; Huang, Na; Song, Tie-Feng; Li, Zheng-Zheng; Li, Man; Luo, Xue-Gang; Zhou, Hao; He, Hong-Peng; Zhang, Xiao-Yu; Ma, Wenjian; Zhang, Tong-Cun

    2016-05-01

    Human mesenchymal stem cells (hMSCs) possess the potential to differentiate into endothelial cells (EC). DNA methylation plays an important role in cell differentiation during development. However, the role of the DNA methyltransferases Dnmt1 and Dnmt3a in specific arterial differentiation of hMSCs is not clear. Here, we show that the CpG islands in the promoter regions of the EC specification and arterial marker genes were highly methylated in hMSCs based on bisulfite genomic sequencing. Treatment with the DNMT inhibitor 5-aza-dc induced the reactivation of EC specification and arterial marker genes by promoting demethylation of these genes as well as stimulating tube-like structure formation. The hMSCs with stable knockdown of Dnmt1/Dnmt3a were highly angiogenic and expressed several arterial specific transcription factors and marker genes. A Matrigel plug assay confirmed that Dnmt1/Dnmt3a stable knockdown hMSCs enhanced blood vessel formation compared with WT MSCs. We also identified that the transcription factor E2F1 could upregulate the transcription of arterial marker genes by binding to the promoters of arterial genes, suggesting its critical role for arterial specification. Moreover, miRNA gain/loss-of-function analyses revealed that miR152 and miR30a were involved in endothelial differentiation of hMSCs by targeting Dnmt1 and Dnmt3a, respectively. Taken together, these data suggest that Dnmt1 and Dnmt3a are critical regulators for epigenetic silencing of EC marker genes and that E2F1 plays an important role in promoting arterial cell determination. Stem Cells 2016;34:1273-1283. PMID:26850336

  10. Hypoxia-induced secretion of IL-10 from adipose-derived mesenchymal stem cell promotes growth and cancer stem cell properties of Burkitt lymphoma.

    PubMed

    Xu, Lihua; Wang, Xu; Wang, Jiani; Liu, Dan; Wang, Yaya; Huang, Zhenqian; Tan, Huo

    2016-06-01

    In this study, we explored how the altered paracrine of adipose mesenchymal stem cells (ADSCs) contributed to the growth and cancer stem cell (CSC) properties of the Burkitt lymphoma cells. Condition mediums from normoxia or hypoxia cultured ADSC (CM-ADSC-N or CM-ADSC-H) were collected, and their effects on growth, colony formation, and apoptosis of Burkitt's lymphoma cells were investigated. Differentially expressed cytokines and inflammatory factors were compared between CM-ADSC-N and CM-ADSC-H. The involvement of differentially expressed IL-10 in growth and CSC properties of Burkitt lymphoma was investigated using both in vitro and in vivo models. Findings of this study showed that hypoxia increased IL-10 secretion from ADSCs, through which the growth and CSC properties of BL2 cells were enhanced. Intratumoral injection of CM-ADSC-H or IL-10 enhanced in vivo Burkitt lymphoma growth in nude mice model at least partly via the JAK2/STAT3 signaling pathway. PMID:26695151

  11. Myogenic differentiation potential of human tonsil-derived mesenchymal stem cells and their potential for use to promote skeletal muscle regeneration

    PubMed Central

    PARK, SAEYOUNG; CHOI, YOONYOUNG; JUNG, NAMHEE; YU, YEONSIL; RYU, KYUNG-HA; KIM, HAN SU; JO, INHO; CHOI, BYUNG-OK; JUNG, SUNG-CHUL

    2016-01-01

    Stem cells are regarded as an important source of cells which may be used to promote the regeneration of skeletal muscle (SKM) which has been damaged due to defects in the organization of muscle tissue caused by congenital diseases, trauma or tumor removal. In particular, mesenchymal stem cells (MSCs), which require less invasive harvesting techniques, represent a valuable source of cells for stem cell therapy. In the present study, we demonstrated that human tonsil-derived MSCs (T-MSCs) may differentiate into myogenic cells in vitro and that the transplantation of myoblasts and myocytes generated from human T-MSCs mediates the recovery of muscle function in vivo. In order to induce myogenic differentiation, the T-MSC-derived spheres were cultured in Dulbecco's modified Eagle's medium/nutrient mixture F-12 (DMEM/F-12) supplemented with 1 ng/ml transforming growth factor-β, non-essential amino acids and insulin-transferrin-selenium for 4 days followed by culture in myogenic induction medium [low-glucose DMEM containing 2% fetal bovine serum (FBS) and 10 ng/ml insulin-like growth factor 1 (IGF1)] for 14 days. The T-MSCs sequentially differentiated into myoblasts and skeletal myocytes, as evidenced by the increased expression of skeletal myogenesis-related markers [including α-actinin, troponin I type 1 (TNNI1) and myogenin] and the formation of myotubes in vitro. The in situ transplantation of T-MSCs into mice with a partial myectomy of the right gastrocnemius muscle enhanced muscle function, as demonstrated by gait assessment (footprint analysis), and restored the shape of SKM without forming teratomas. Thus, T-MSCs may differentiate into myogenic cells and effectively regenerate SKM following injury. These results demonstrate the therapeutic potential of T-MSCs to promote SKM regeneration following injury. PMID:27035161

  12. Myogenic differentiation potential of human tonsil-derived mesenchymal stem cells and their potential for use to promote skeletal muscle regeneration.

    PubMed

    Park, Saeyoung; Choi, Yoonyoung; Jung, Namhee; Yu, Yeonsil; Ryu, Kyung-Ha; Kim, Han Su; Jo, Inho; Choi, Byung-Ok; Jung, Sung-Chul

    2016-05-01

    Stem cells are regarded as an important source of cells which may be used to promote the regeneration of skeletal muscle (SKM) which has been damaged due to defects in the organization of muscle tissue caused by congenital diseases, trauma or tumor removal. In particular, mesenchymal stem cells (MSCs), which require less invasive harvesting techniques, represent a valuable source of cells for stem cell therapy. In the present study, we demonstrated that human tonsil-derived MSCs (T-MSCs) may differentiate into myogenic cells in vitro and that the transplantation of myoblasts and myocytes generated from human T-MSCs mediates the recovery of muscle function in vivo. In order to induce myogenic differentiation, the T-MSC-derived spheres were cultured in Dulbecco's modified Eagle's medium/nutrient mixture F-12 (DMEM/F‑12) supplemented with 1 ng/ml transforming growth factor-β, non-essential amino acids and insulin‑transferrin-selenium for 4 days followed by culture in myogenic induction medium [low-glucose DMEM containing 2% fetal bovine serum (FBS) and 10 ng/ml insulin‑like growth factor 1 (IGF1)] for 14 days. The T-MSCs sequentially differentiated into myoblasts and skeletal myocytes, as evidenced by the increased expression of skeletal myogenesis-related markers [including α-actinin, troponin I type 1 (TNNI1) and myogenin] and the formation of myotubes in vitro. The in situ transplantation of T-MSCs into mice with a partial myectomy of the right gastrocnemius muscle enhanced muscle function, as demonstrated by gait assessment (footprint analysis), and restored the shape of SKM without forming teratomas. Thus, T-MSCs may differentiate into myogenic cells and effectively regenerate SKM following injury. These results demonstrate the therapeutic potential of T-MSCs to promote SKM regeneration following injury. PMID:27035161

  13. Dimethyloxaloylglycine Promotes the Angiogenic Activity of Mesenchymal Stem Cells Derived from iPSCs via Activation of the PI3K/Akt Pathway for Bone Regeneration

    PubMed Central

    Zhang, Jieyuan; Guan, Junjie; Qi, Xin; Ding, Hao; Yuan, Hong; Xie, Zongping; Chen, Chunyuan; Li, Xiaolin; Zhang, Changqing; Huang, Yigang

    2016-01-01

    The vascularization of tissue-engineered bone is a prerequisite step for the successful repair of bone defects. Hypoxia inducible factor-1α (HIF-1α) plays an essential role in angiogenesis-osteogenesis coupling during bone regeneration and can activate the expression of angiogenic factors in mesenchymal stem cells (MSCs). Dimethyloxaloylglycine (DMOG) is an angiogenic small molecule that can inhibit prolyl hydroxylase (PHD) enzymes and thus regulate the stability of HIF-1α in cells at normal oxygen tension. Human induced pluripotent stem cell-derived MSCs (hiPSC-MSCs) are promising alternatives for stem cell therapy. In this study, we evaluated the effect of DMOG on promoting hiPSC-MSCs angiogenesis in tissue-engineered bone and simultaneously explored the underlying mechanisms in vitro. The effectiveness of DMOG in improving the expression of HIF-1α and its downstream angiogenic genes in hiPSC-MSCs demonstrated that DMOG significantly enhanced the gene and protein expression profiles of angiogenic-related factors in hiPSC-MSCs by sustaining the expression of HIF-1α. Further analysis showed that DMOG-stimulated hiPSC-MSCs angiogenesis was associated with the phosphorylation of protein kinase B (Akt) and with an increase in VEGF production. The effects could be blocked by the addition of the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. In a critical-sized calvarial defect model in rats, DMOG-treated hiPSC-MSCs showed markedly improved angiogenic capacity in the tissue-engineered bone, leading to bone regeneration. Collectively, the results indicate that DMOG, via activation of the PI3K/Akt pathway, promotes the angiogenesis of hiPSC-MSCs in tissue-engineered bone for bone defect repair and that DMOG-treated hiPSC-MSCs can be exploited as a potential therapeutic tool in bone regeneration. PMID:27194942

  14. Suppression of Evi1 promotes the osteogenic differentiation and inhibits the adipogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro.

    PubMed

    An, Qijun; Wu, Dou; Ma, Yuehong; Zhou, Biao; Liu, Qiang

    2015-12-01

    Osteoporosis (OP) is considered a complex disease with a strong genetic impact, mainly affecting post-menopausal women and is also a common cause of fracture. Elucidating the molecular mechanisms that regulate the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) is crucial to developing treatment strategies to combat OP. In the present study, we found that ectopic viral integration site‑1 (Evi1) was highly expressed during the process of adipogenesis of rat BMSCs. Notably, Evi1 levels markedly increased on day 3 of adipogenic differentiation following the addition of adipogenic induction supplements. In addition, we interfered with the expression of the Evi1 gene in the adipogenesis of BMSCs by supplementing adenoviral plasmids and measured the expression levels of bone sialoprotein (BSP), osteocalcin (OCN), osteopontin (OPN), peroxisome proliferator‑activated receptor γ2 (PPARγ2) and lipoprotein lipase (LPL) by RT-qPCR and western blot analysis. The mRNA and protein levels of osteogenic and adipogenic markers in the BMSCs were up‑ and downregulated, respectively following the silencing of siEvi1. Our experimental results substantiate that the suppression of Evi1 in BMSCs by RNA interference inhibits adipogenic differentiation, while it promotes osteogenic differentiation. The results from our study demonstrated that the Evi1 gene may be targeted as a therapeutic strategy for promoting bone formation. PMID:26497332

  15. Macrophages derived from THP-1 promote the osteogenic differentiation of mesenchymal stem cells through the IL-23/IL-23R/β-catenin pathway.

    PubMed

    Tu, Bing; Liu, Shen; Liu, Guangwang; Yan, Wei; Wang, Yugang; Li, Zhiwei; Fan, Cunyi

    2015-11-15

    Abnormal bone formation is a clinically significant dilemma for many conditions in response to injury, inflammation or genetic disease. However, the effects of inflammation on the osteogenic differentiation of mesenchymal stem cells (MSCs) remain unclear. IL-23 secretion from macrophages might contribute to the development of bone formation. Here, we investigated the stimulatory effects of THP-1 macrophage conditioned medium (MΦ CM) on the osteogenic differentiation of human MSCs and the associated signaling pathways. The osteogenic differentiation of MSCs was induced after exposure to osteogenic differentiation medium (OM). MΦ CM significantly increased alkaline phosphate (ALP) activity and calcium mineralization in MSCs. Osteogenic marker genes, including RUNX2, ALP and osteocalcin (OCN), were also up-regulated in MSCs after exposure to MΦ CM. Moreover, western blotting revealed that MΦ CM treatment induced STAT3 and β-catenin activation in MSCs. Furthermore, blockade of IL-23 in MΦ CM not only impaired the osteogenic-promotion effects of macrophage but also decreased the expression of osteogenic maker genes. However, IL-23R silencing suppressed MΦ CM-induced calcium mineralization and osteogenic maker gene expression in MSCs. These data suggest that macrophages derived from THP-1 promote the osteoblastic differentiation of MSCs through the IL-23/IL-23R/β-catenin pathway and macrophages might contribute to the development of bone formation in inflammation. PMID:26477825

  16. The use of SHP-2 gene transduced bone marrow mesenchymal stem cells to promote osteogenic differentiation and bone defect repair in rat.

    PubMed

    Fan, Dapeng; Liu, Shen; Jiang, Shichao; Li, Zhiwei; Mo, Xiumei; Ruan, Hongjiang; Zou, Gang-Ming; Fan, Cunyi

    2016-08-01

    Bone tissue engineering is a promising approach for bone regeneration, in which growth factors play an important role. The tyrosine phosphatase Src-homology region 2-containing protein tyrosine phosphatase 2 (SHP2), encoded by the PTPN11 gene, is essential for the differentiation, proliferation and metabolism of osteoblasts. However, SHP-2 has never been systematically studied for its effect in osteogenesis. We predicted that overexpression of SHP-2 could promote bone marrow-derived mesenchymal stem cell (BMSC)osteogenic differentiation and SHP-2 transduced BMSCs could enhance new bone formation, determined using the following study groups: (1) BMSCs transduced with SHP-2 and induced with osteoblast-inducing liquid (BMSCs/SHP-2/OL); (2) BMSCs transduced with SHP-2 (BMSCs/-SHP-2); (3) BMSCs induced with osteoblast-inducing liquid (BMSCs/OL) and (4) pure BMSCs. Cells were assessed for osteogenic differentiation by quantitative real-time polymerase chain reaction analysis, western blot analysis, alkaline phosphatase activity and alizarin red S staining. For in vivo assessment, cells were combined with beta-tricalcium phosphate scaffolds and transplanted into rat calvarial defects for 8 weeks. Following euthanasia, skull samples were explanted for osteogenic evaluation, including micro-computed tomography measurement, histology and immunohistochemistry staining. SHP-2 and upregulation of its gene promoted BMSC osteogenic differentiation and therefore represents a potential new therapeutic approach to bone repair. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1871-1881, 2016. PMID:26999642

  17. The role of mesenchymal stem cells in promoting the transformation of androgen-dependent human prostate cancer cells into androgen-independent manner

    PubMed Central

    Cheng, Jiwen; Yang, Keqin; Zhang, Qingyun; Yu, Yang; Meng, Qinggui; Mo, Ning; Zhou, Yang; Yi, Xianlin; Ma, Chengzhong; Lei, Aming; Liu, Yan

    2016-01-01

    Mesenchymal stem cells (MSCs) play an important role in the development of human prostate cancer (PCa). However, the role of MSCs in the transformation of androgen-dependent human PCa cells into androgen-independent manner has been poorly understood. In this study, we investigated the underlying mechanism of MSCs in promoting PCa cells from androgen-dependent into androgen-independent manner. Firstly, we demonstrated that MSCs could affect the transformation of androgen-dependent human PCa cells into androgen-independent manner in vivo and in vitro. Then we found a substantial expression of TGF-β in MSCs. TGF-β blockade could significantly inhibit the promotive function of MSCs in PCa cells. Besides that, we also demonstrated androgen might inhibit the expression of TGF-β in MSCs. Furthermore, we found that either overexpression of SSEA-4 or the number of SSEA-4 positive MSCs in PCa tissues was associated with a shorter cancer-free survival interval (CFSI) and a worse overall survival (OS). Our results suggest that androgen blockade treatment in clinical PCa therapy may elicit the expression of TGF-β in MSCs, which will result in the transformation of androgen-dependent human PCa cells into androgen-independent manner. PMID:26787499

  18. Mesenchymal stem cell-based HSP70 promoter-driven VEGFA induction by resveratrol alleviates elastase-induced emphysema in a mouse model.

    PubMed

    Chen, Young-Bin; Lan, Ying-Wei; Chen, Lih-Geeng; Huang, Tsung-Teng; Choo, Kong-Bung; Cheng, Winston T K; Lee, Hsuan-Shu; Chong, Kowit-Yu

    2015-11-01

    Chronic obstructive pulmonary disease (COPD) is a sustained blockage of the airways due to lung inflammation occurring with chronic bronchitis and/or emphysema. Progression of emphysema may be slowed by vascular endothelial growth factor A (VEGFA), which reduces apoptotic tissue depletion. Previously, authors of the present report demonstrated that cis-resveratrol (c-RSV)-induced heat-shock protein 70 (HSP70) promoter-regulated VEGFA expression promoted neovascularization of genetically modified mesenchymal stem cells (HSP-VEGFA-MSC) in a mouse model of ischemic disease. Here, this same stem cell line was evaluated for its protective capacity to alleviate elastase-induced pulmonary emphysema in mice. Results of this study showed that c-RSV-treatment of HSP-VEGFA-MSC exhibited synergy between HSP70 transcription activity and induced expression of anti-oxidant-related genes when challenged by cigarette smoke extracts. Eight weeks after jugular vein injection of HSP-VEGFA-MSC into mice with elastase-induced pulmonary emphysema followed by c-RSV treatment to induce transgene expression, significant improvement was observed in respiratory functions. Expression of VEGFA, endogenous nuclear factor erythroid 2-related factor (Nrf 2), and manganese superoxide dismutase (MnSOD) was significantly increased in the lung tissues of the c-RSV-treated mice. Histopathologic examination of treated mice revealed gradual but significant abatement of emphysema and restoration of airspace volume. In conclusion, the present investigation demonstrates that c-RSV-regulated VEGFA expression in HSP-VEGFA-MSC significantly improved the therapeutic effects on the treatment of COPD in the mouse, possibly avoiding side effects associated with constitutive VEGFA expression. PMID:26243699

  19. Transplantation of mesenchymal stem cells promotes the functional recovery of the central nervous system following cerebral ischemia by inhibiting myelin-associated inhibitor expression and neural apoptosis

    PubMed Central

    FENG, NIANPING; HAO, GUANG; YANG, FENGGANG; QU, FUJUN; ZHENG, HAIHONG; LIANG, SONGLAN; JIN, YONGHUA

    2016-01-01

    Cerebral ischemia, which may lead to cerebral hypoxia and damage of the brain tissue, is a leading cause of human mortality and adult disability. Mesenchymal stem cells (MSCs) are a class of adult progenitor cells with the ability to differentiate into multiple cell types. The transplantation of bone marrow-derived MSCs is a potential therapeutic strategy for cerebral ischemia. However, the underlying mechanism has yet to be elucidated. In the present study, primary MSCs were isolated from healthy rats, labeled and transplanted into the brains of middle cerebral artery occlusion rat models. The location of the labeled MSCs in the rat brains were determined by fluorescent microscopy, and the neurological functions of the rats were scored. Immunohistochemical analyses demonstrated that the protein expression levels of myelin-associated inhibitors of regeneration, including Nogo-A, oligodendrocyte myelin glycoprotein and myelin-associated glycoprotein, were decreased following transplantation of the bone marrow-derived MSCs. Furthermore, the mRNA expression levels of Capase-3 and B-cell lymphoma 2, as determined by reverse transcription-quantitative polymerase chain reactions, were downregulated and upregulated, respectively, in the MSC-transplanted rats; thus suggesting that neural apoptosis was inhibited. The results of the present study suggested that the transplantation of bone marrow-derived MSCs was able to promote the functional recovery of the central nervous system following cerebral ischemia. Accordingly, inhibitors targeting myelin-associated inhibitors and apoptosis may be of clinical significance for cerebral ischemia in the future. PMID:27168778

  20. Promoting Effects on Proliferation and Chondrogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells by Four “Kidney-Tonifying” Traditional Chinese Herbs

    PubMed Central

    Cai, Bin; Zhang, Ai-guo; Zhang, Xian; Ge, Wen-jie; Dai, Guo-da; Tan, Xiang-ling; Roodrajeetsing, Gopaul; Cai, Jian-ping

    2015-01-01

    Traditional Chinese medicine can promote the proliferation of bone marrow-derived mesenchymal stem cells (BMSCs). We chose four “Kidney-tonifying” Chinese herbal medicines, Radix Astragali, Salvia, Herba Epimedii, and Saussurea Involucrata, to evaluate whether they had positive effects on the proliferation of BMSCs and TGF-β1-induced chondrogenic differentiation of BMSCs. The four Chinese herbal medicines were intragastrically administered to Sprague-Dawley rats, respectively, to prepare drug-containing serums of corresponding Chinese herbs. BMSCs were isolated, cultured, and exposed to culture solution containing 1%, 5%, 10%, and 15% (v/v) Radix Astragali-, Salvia-, Herba Epimedii-, and Saussurea Involucrata-containing serum, respectively. TGF-β1-induced BMSCs were addressed in the same manner. Collagen type II protein was assessed by immunofluorescence methods. To assess whether the drug-containing serums had positive effects on the proliferation of BMSCs and TGF-β1-induced BMSCs, MTT method was assessed. The proliferation of BMSCs was significantly enhanced when exposed to culture solutions containing 1% and 5% Radix Astragali-, 1% and 5% Salvia-, 5% Herba Epimedii-, and 1%, 5%, and 10% Saussurea Involucrata-containing serum. The proliferation of TGF-β1-induced BMSCs was significantly enhanced when exposed to 1%, 5%, and 15% Radix Astragali-, 10% and 15% Salvia-, 5%, and 15% Herba Epimedii-, and 1%, 5%, and 10% Saussurea Involucrata-containing serum. PMID:26137494

  1. Kidney-Targeted Transplantation of Mesenchymal Stem Cells by Ultrasound-Targeted Microbubble Destruction Promotes Kidney Repair in Diabetic Nephropathy Rats

    PubMed Central

    Zhang, Yi; Ye, Chuan; Wang, Gong; Gao, Yunhua; Tan, Kaibin; Zhuo, Zhongxiong; Liu, Zheng; Xia, Hongmei; Yang, Dan; Li, Peijing

    2013-01-01

    We test the hypothesis that ultrasound-targeted microbubble destruction (UTMD) technique increases the renoprotective effect of kidney-targeted transplantation of bone-marrow-derived mesenchymal stem cells (BM-MSCs) in diabetic nephropathy (DN) rats. Diabetes was induced by streptozotocin injection (60 mg/Kg, intraperitoneally) in Sprague-Dawley rats. MSCs were administered alone or in combination with UTMD to DN rats at 4 weeks after diabetes onset. Random blood glucose concentrations were measured at 1, 2, 4, and 8 weeks, and plasma insulin levels, urinary albumin excretion rate (UAER) values, the structures of pancreas and kidney, the expressions of TGF-β1, synaptopodin, and IL-10 were assessed at 8 weeks after MSCs transplantation. MSCs transplantation decreased blood glucose concentrations and attenuated pancreatic islets/β cells damage. The permeability of renal interstitial capillaries and VCAM-1 expression increased after UTMD, which enhanced homing and retention of MSCs to kidneys. MSCs transplantation together with UTMD prevented renal damage and decreased UAER values by inhibiting TGF-β1 expression and upregulating synaptopodin and IL-10 expression. We conclude that MSCs transplantation reverts hyperglycemia; UTMD technique noninvasively increases the homing of MSCs to kidneys and promotes renal repair in DN rats. This noninvasive cell delivery method may be feasible and efficient as a novel approach for personal MSCs therapy to diabetic nephropathy. PMID:23762850

  2. Hypoxia pretreatment of bone marrow-derived mesenchymal stem cells seeded in a collagen-chitosan sponge scaffold promotes skin wound healing in diabetic rats with hindlimb ischemia.

    PubMed

    Tong, Chuan; Hao, Haojie; Xia, Lei; Liu, Jiejie; Ti, Dongdong; Dong, Liang; Hou, Qian; Song, Haijing; Liu, Huiling; Zhao, Yali; Fu, Xiaobing; Han, Weidong

    2016-01-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) have properties that make them promising for the treatment of chronic nonhealing wounds. The major challenge is ensuring an efficient, safe, and painless delivery of BM-MSCs. Tissue-engineered skin substitutes have considerable benefits in skin damage resulting from chronic nonhealing wounds. Here, we have constructed a three-dimensional biomimetic scaffold known as collagen-chitosan sponge scaffolds (CCSS) using the cross-linking and freeze-drying method. Scanning electron microscopy images showed that CCSS had an interconnected network pore configuration about 100 μm and exhibited a suitable swelling ratio for maintaining morphological stability and appropriate biodegradability to improve biostability using swelling and degradation assays. Furthermore, BM-MSCs were seeded in CCSS using the two-step seeding method to construct tissue-engineered skin substitutes. In addition, in this three-dimensional biomimetic CCSS, BM-MSCs secreted their own collagen and maintain favorable survival ability and viability. Importantly, BM-MSCs exhibited a significant upregulated expression of proangiogenesis factors, including HIF-1α, VEGF, and PDGF following hypoxia pretreatment. In vivo, hypoxia pretreatment of the skin substitute observably accelerated wound closure via the reduction of inflammation and enhanced angiogenesis in diabetic rats with hindlimb ischemia. Thus, hypoxia pretreatment of the skin substitutes can serve as ideal bioengineering skin substitutes to promote optimal diabetic skin wound healing. PMID:26463737

  3. Autocrine fibronectin from differentiating mesenchymal stem cells induces the neurite elongation in vitro and promotes nerve fiber regeneration in transected spinal cord injury.

    PubMed

    Zeng, Xiang; Ma, Yuan-Huan; Chen, Yuan-Feng; Qiu, Xue-Cheng; Wu, Jin-Lang; Ling, Eng-Ang; Zeng, Yuan-Shan

    2016-08-01

    Extracellular matrix (ECM) expression is temporally and spatially regulated during the development of stem cells. We reported previously that fibronectin (FN) secreted by bone marrow mesenchymal stem cells (MSCs) was deposited on the surface of gelatin sponge (GS) soon after culture. In this study, we aimed to assess the function of accumulated FN on neuronal differentiating MSCs as induced by Schwann cells (SCs) in three dimensional transwell co-culture system. The expression pattern and amount of FN of differentiating MSCs was examined by immunofluorescence, Western blot and immunoelectron microscopy. The results showed that FN accumulated inside GS scaffold, although its mRNA expression in MSCs was progressively decreased during neural induction. MSC-derived neuron-like cells showed spindle-shaped cell body and long extending processes on FN-decorated scaffold surface. However, after blocking of FN function by application of monoclonal antibodies, neuron-like cells showed flattened cell body with short and thick neurites, together with decreased expression of integrin β1. In vivo transplantation study revealed that autocrine FN significantly facilitated endogenous nerve fiber regeneration in spinal cord transection model. Taken together, the present results showed that FN secreted by MSCs in the early stage accumulated on the GS scaffold and promoted the neurite elongation of neuronal differentiating MSCs as well as nerve fiber regeneration after spinal cord injury. This suggests that autocrine FN has a dynamic influence on MSCs in a three dimensional culture system and its potential application for treatment of traumatic spinal cord injury. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1902-1911, 2016. PMID:26991461

  4. Synovial Mesenchymal Stem Cells Promote Meniscus Regeneration Augmented by an Autologous Achilles Tendon Graft in a Rat Partial Meniscus Defect Model

    PubMed Central

    Ozeki, Nobutake; Muneta, Takeshi; Matsuta, Seiya; Koga, Hideyuki; Nakagawa, Yusuke; Mizuno, Mitsuru; Tsuji, Kunikazu; Mabuchi, Yo; Akazawa, Chihiro; Kobayashi, Eiji; Saito, Tomoyuki; Sekiya, Ichiro

    2015-01-01

    Although meniscus defects and degeneration are strongly correlated with the later development of osteoarthritis, the promise of regenerative medicine strategies is to prevent and/or delay the disease's progression. Meniscal reconstruction has been shown in animal models with tendon grafting and transplantation of mesenchymal stem cells (MSCs); however, these procedures have not shown the same efficacy in clinical studies. Here, our aim was to investigate the ability of tendon grafts pretreated with exogenous synovial-derived MSCs to prevent cartilage degeneration in a rat partial meniscus defect model. We removed the anterior half of the medial meniscus and grafted autologous Achilles tendons with or without a 10-minute pretreatment of the tendon with synovial MSCs. The meniscus and surrounding cartilage were evaluated at 2, 4, and 8 weeks (n = 5). Tendon grafts increased meniscus size irrespective of synovial MSCs. Histological scores for regenerated menisci were better in the tendon + MSC group than in the other two groups at 4 and 8 weeks. Both macroscopic and histological scores for articular cartilage were significantly better in the tendon + MSC group at 8 weeks. Implanted synovial MSCs survived around the grafted tendon and native meniscus integration site by cell tracking assays with luciferase+, LacZ+, DiI+, and/or GFP+ synovial MSCs and/or GFP+ tendons. Flow cytometric analysis showed that transplanted synovial MSCs retained their MSC properties at 7 days and host synovial tissue also contained cells with MSC characteristics. Synovial MSCs promoted meniscus regeneration augmented by autologous Achilles tendon grafts and prevented cartilage degeneration in rats. Stem Cells 2015;33:1927–1938 PMID:25993981

  5. Immunoregulatory effects of bone marrow-derived mesenchymal stem cells in the nasal polyp microenvironment.

    PubMed

    Pezato, Rogério; de Almeida, Danilo Cândido; Bezerra, Thiago Freire; Silva, Fernando de Sá; Perez-Novo, Claudina; Gregório, Luís Carlos; Voegels, Richard Louis; Câmara, Niels Olsen; Bachert, Claus

    2014-01-01

    Nasal polyposis is a severe, chronic inflammatory condition of the paranasal sinuses and is frequently associated with asthma and aspirin sensitivity. Mesenchymal stem cells exhibit a potent immunosuppressive effect in several inflammatory conditions, and their role in nasal polyposis remains little explored. Hence, we investigated whether bone marrow-derived mesenchymal stem cells could modulate cell phenotype in the nasal polyp milieu. After coculture with mesenchymal stem cells, the frequency of these inflammatory cells was found to decrease. Furthermore, mesenchymal stem cells promoted strong inhibition of CD4+ and CD8+ T cell proliferation, increased the frequency of CD4+CD25+Foxp3 T cells, and changed the global cytokine profile from an inflammatory to an anti-inflammatory response. We believe that mesenchymal stem cells may be a very useful adjunct for investigation of the inflammatory process in nasal polyposis, contributing to better understanding of the inflammatory course of this condition. PMID:24707116

  6. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction.

    PubMed

    Miyahara, Yoshinori; Nagaya, Noritoshi; Kataoka, Masaharu; Yanagawa, Bobby; Tanaka, Koichi; Hao, Hiroyuki; Ishino, Kozo; Ishida, Hideyuki; Shimizu, Tatsuya; Kangawa, Kenji; Sano, Shunji; Okano, Teruo; Kitamura, Soichiro; Mori, Hidezo

    2006-04-01

    Mesenchymal stem cells are multipotent cells that can differentiate into cardiomyocytes and vascular endothelial cells. Here we show, using cell sheet technology, that monolayered mesenchymal stem cells have multipotent and self-propagating properties after transplantation into infarcted rat hearts. We cultured adipose tissue-derived mesenchymal stem cells characterized by flow cytometry using temperature-responsive culture dishes. Four weeks after coronary ligation, we transplanted the monolayered mesenchymal stem cells onto the scarred myocardium. After transplantation, the engrafted sheet gradually grew to form a thick stratum that included newly formed vessels, undifferentiated cells and few cardiomyocytes. The mesenchymal stem cell sheet also acted through paracrine pathways to trigger angiogenesis. Unlike a fibroblast cell sheet, the monolayered mesenchymal stem cells reversed wall thinning in the scar area and improved cardiac function in rats with myocardial infarction. Thus, transplantation of monolayered mesenchymal stem cells may be a new therapeutic strategy for cardiac tissue regeneration. PMID:16582917

  7. Mesenchymal Stem Cells Migration Homing and Tracking

    PubMed Central

    Verfaillie, Catherine M.

    2013-01-01

    In this review, we discuss the migration and homing ability of mesenchymal stem cells (MSCs) and MSC-like cells and factors influencing this. We also discuss studies related to the mechanism of migration and homing and the approaches undertaken to enhance it. Finally, we describe the different methods available and frequently used to track and identify the injected cells in vivo. PMID:24194766

  8. [Glioma treatment strategies using mesenchymal stem cells].

    PubMed

    Namba, Hiroki

    2010-10-01

    Because of the growth characteristics of malignant gliomas that are highly invasive and deeply infiltrate the surrounding brain area; the surgical resection of these gliomas with preservation of neural functions is almost always noncurative. The residual tumor cells are usually resistant to standard adjuvant radiochemotherapy, and therefore, the tumors inevitably recur after a certain period and finally cause the death of the patients. Neural and mesenchymal stem cells have been extensively studied for the development of new strategies for treating malignant gliomas because of these cells possess the intrinsic property of homing toward tumor cells. By using neural and mesenchymal stem cells as vehicles for drug carriers, it is possible to deliver anticancer drugs to the tumor cells that infiltrate functioning normal brain tissue and are difficult to remove. Several cytokines and suicide genes have been tested, and promising results have been reported in animal brain tumor models. However, further studies involving safety issues such as secondary cancer formation are required before human trials of stem cell therapies. In the present paper, the author has reviewed the recent concepts involved in the treatment of malignant gliomas with stem cells, especially mesenchymal stem cells that are much easier to obtain from the patients themselves. PMID:20940507

  9. Nanoplex-Mediated Co-delivery of Fibroblast Growth Factor and Bone Morphogenetic Protein Genes Promotes Osteogenesis in Human Adipocyte-Derived Mesenchymal Stem Cells

    PubMed Central

    Atluri, Keerthi; Seabold, Denise; Hong, Liu; Elangovan, Satheesh; Salem, Aliasger K.

    2015-01-01

    This study highlights the importance of transfection mediated coordinated bone morphogenetic protein 2 (BMP-2) and fibroblast growth factor 2 (FGF-2) signaling in promoting osteogenesis. We employed plasmids independently encoding BMP-2 and FGF-2 complexed with polyethylenimine (PEI) to transfect human adipose derived mesenchymal stem cells (hADMSCs) in vitro. The nanoplexes were characterized for size, surface charge, in vitro cytotoxicity and transfection ability in hADMSCs. A significant enhancement in BMP-2 protein secretion was observed on day 7 post-transfection of hADMSCs with PEI nanoplexes loaded with both pFGF-2 and pBMP-2 (PEI/(pFGF-2 + pBMP-2)) versus transfection with PEI nanoplexes of either pFGF-2 alone or pBMP-2 alone. Osteogenic differentiation of transfected hADMSCs was determined by measuring osteocalcin and Runx-2 gene expression using real time polymerase chain reactions. A significant increase in the expression of Runx-2 and osteocalcin was observed on day 3 and day 7 post-transfection, respectively, by cells transfected with PEI/(pFGF-2 + pBMP-2) compared to cells transfected with nanoplexes containing pFGF-2 or pBMP-2 alone. Alizarin Red staining and atomic absorption spectroscopy revealed elevated levels of calcium deposition in hADMSC cultures on day 14 and day 30 post-transfection with PEI/(pFGF-2 + pBMP-2) compared to other treatments. We have shown that co-delivery of pFGF-2 and pBMP-2 results in a significant enhancement in osteogenic protein synthesis, osteogenic marker expression and subsequent mineralization. This research points to a new clinically translatable strategy for achieving efficient bone regeneration. PMID:26121311

  10. Mesenchymal stem cells promote the sustained expression of CD69 on activated T lymphocytes: roles of canonical and non-canonical NF-κB signalling

    PubMed Central

    Saldanha-Araujo, Felipe; Haddad, Rodrigo; de Farias, Kelen C R Malmegrim; Souza, Alessandra de Paula Alves; Palma, Patrícia V; Araujo, Amélia G; Orellana, Maristela D; Voltarelli, Julio C; Covas, Dimas T; Zago, Marco A; Panepucci, Rodrigo A

    2012-01-01

    Abstract Mesenchymal stem cells (MSCs) are known to induce the conversion of activated T cells into regulatory T cells in vitro. The marker CD69 is a target of canonical nuclear factor kappa-B (NF-κB) signalling and is transiently expressed upon activation; however, stable CD69 expression defines cells with immunoregulatory properties. Given its enormous therapeutic potential, we explored the molecular mechanisms underlying the induction of regulatory cells by MSCs. Peripheral blood CD3+ T cells were activated and cultured in the presence or absence of MSCs. CD4+ cell mRNA expression was then characterized by microarray analysis. The drug BAY11-7082 (BAY) and a siRNA against v-rel reticuloendotheliosis viral oncogene homolog B (RELB) were used to explore the differential roles of canonical and non-canonical NF-κB signalling, respectively. Flow cytometry and real-time PCR were used for analyses. Genes with immunoregulatory functions, CD69 and non-canonical NF-κB subunits (RELB and NFKB2) were all expressed at higher levels in lymphocytes co-cultured with MSCs. The frequency of CD69+ cells among lymphocytes cultured alone progressively decreased after activation. In contrast, the frequency of CD69+ cells increased significantly following activation in lymphocytes co-cultured with MSCs. Inhibition of canonical NF-κB signalling by BAY immediately following activation blocked the induction of CD69; however, inhibition of canonical NF-κB signalling on the third day further induced the expression of CD69. Furthermore, late expression of CD69 was inhibited by RELB siRNA. These results indicate that the canonical NF-κB pathway controls the early expression of CD69 after activation; however, in an immunoregulatory context, late and sustained CD69 expression is promoted by the non-canonical pathway and is inhibited by canonical NF-κB signalling. PMID:21777379

  11. Targeted transplantation of iron oxide-labeled, adipose-derived mesenchymal stem cells in promoting meniscus regeneration following a rabbit massive meniscal defect

    PubMed Central

    QI, YIYING; YANG, ZHIGAO; DING, QIANHAI; ZHAO, TENGFEI; HUANG, ZHONGMING; FENG, GANG

    2016-01-01

    Repair of a massive meniscal defect remains a challenge in the clinic. However, targeted magnetic cell delivery, an emerging technique, may be useful in its treatment. The present study aimed to determine the effect of targeted intra-articular injection of superparamagnetic iron oxide (SPIO)-labeled adipose-derived mesenchymal stem cells (ASCs) in a rabbit model of a massive meniscal defect. ASCs may be directly labeled and almost 100% of the ASCs were labeled with SPIO after 24 h; these SPIO-labeled ASCs may be orientated by magnet. The centrifuged SPIO-labeled ASCs precipitations may be detected by magnetic resonance imaging (MRI). The anterior half of the medial meniscus of 18 New Zealand Rabbits was excised. After 7 days, the rabbits were randomized to injections of 2×106 SPIO-labeled ASCs, 2×106 unlabeled ASCs or saline. Permanent magnets were fixed to the outside of the operated joints for one day, and after 6 and 12 weeks, the knee joints were examined using MRI, gross and histological observation, and Prussian blue staining. Marked hypointense artifacts caused by SPIO-positive cells in the meniscus were detected using MRI. Histological observation revealed that the anterior portion of the meniscus was similar to the native tissue, demonstrating typical fibrochondrocytes surrounded by richer extracellular matrix in the SPIO-ASCs group. Collagen-rich matrix bridging the interface and the neo-meniscus integrated well with its host meniscus. Furthermore, degenerative changes occurred in all groups, but intra-articular injection of SPIO-ASCs or ASCs alleviated these degenerative changes. Prussian blue staining indicated that the implanted ASCs were directly associated with the regenerated tissue. Overall, targeted intra-articular delivery of SPIO-ASCs promoted meniscal regeneration whilst providing protective effects from osteoarthritic damage. PMID:26893631

  12. Combination of retinoic acid, dimethyl sulfoxide and 5-azacytidine promotes cardiac differentiation of human fetal liver-derived mesenchymal stem cells.

    PubMed

    Deng, Fuxue; Lei, Han; Hu, Yunfeng; He, Linjing; Fu, Hang; Feng, Rui; Feng, Panpan; Huang, Wei; Wang, Xi; Chang, Jing

    2016-03-01

    There are controversial reports about cardiac differentiation potential of mesenchymal stem cells (MSCs), and there is still no well-defined protocol for the induction of cardiac differentiation. The effects of retinoic acid (RA) and dimethyl sulfoxide (DMSO) on the proliferation and differentiation of human fetal liver-derived MSCs (HFMSCs) as well as the pluripotent state induced by 5-azacytidine (5-aza) in vitro were investigated. MSCs were isolated from fetal livers and cultured in accordance with previous reports. Cells were plated and were treated for 24 h by the combination of 5-aza, RA and DMSO in different doses. Different culture conditions were tested in our study, including temperature, oxygen content and medium. Three weeks later, cells were harvested for the certification of cardiac differentiation as well as the pluripotency, which indicated by cardiac markers and Oct4. It was found that the cardiac differentiation was only induced when HFMSCs were treated in the following conditions: in high-dose combination (5-aza 50 μM + RA 10(-1) μM + DMSO 1 %) in cardiac differentiation medium at 37 °C and 20 % O2. The results of immunohistochemistry and quantitative RT-PCR showed that about 40 % of the cells positively expressed Nkx2.5, desmin and cardiac troponin I, as well as Oct4. No beating cells were observed during the period. The combined treatment with RA, DMSO and 5-aza in high-dose could promote HFMSCs to differentiate into cardiomyocyte-like cells and possibly through the change of their pluripotent state. PMID:26070350

  13. Mechanical Signals As a Non-Invasive Means to Influence Mesenchymal Stem Cell Fate, Promoting Bone and Suppressing the Fat Phenotype

    PubMed Central

    Luu, Yen K.; Pessin, Jeffrey E.; Judex, Stefan; Rubin, Janet; Rubin, Clinton T.

    2010-01-01

    Pluripotent mesenchymal stem cells (MSCs) are considered ideal therapeutic targets in regenerative medicine, as they hold the capacity to differentiate into higher order connective tissues. The potential to harness MSCs for disease treatment and acceleration of repair will ultimately depend on an improved understanding of how physical and/or chemical signals regulate their activity, and the ability of exogenous stimuli to enhance MSC proliferation and define MSC fate. Recent appreciation that bone marrow osteoprogenitors are inversely proportional to adipocyte precursors suggests that their shared progenitor, the MSC, will commit to one lineage at the cost of the other. This interrelationship may contribute to the phenotype of sedentary subjects who have more fat and less bone, while conversely, to the outcome of exercise being less fat and more bone. Mechanical biasing of MSC lineage selection suggests that physical signals may influence the quantity of both fat and bone through developmental, as well as metabolic or adaptive pathways. Considered with the recent finding that low magnitude mechanical signals (LMMS) suppress the development of subcutaneous and visceral fat without elevating energy expenditure, this indicates that MSCs are ideally positioned as mechanosensitive elements central to musculoskeletal adaptation, but that the signals needn’t be large to be influential. The biasing of MSC differentiation by mechanical signals represents a unique means by which adiposity can be inhibited while simultaneously promoting a better skeleton, and may provide the basis for a safe, non-invasive, non-pharmacologic strategy to prevent both obesity and osteoporosis, yet uniquely – without targeting the resident fat or bone cell. PMID:22241295

  14. Terbium promotes adhesion and osteogenic differentiation of mesenchymal stem cells via activation of the Smad-dependent TGF-β/BMP signaling pathway.

    PubMed

    Liu, Dan-Dan; Ge, Kun; Jin, Yi; Sun, Jing; Wang, Shu-Xiang; Yang, Meng-Su; Zhang, Jin-Chao

    2014-08-01

    With its special physical and chemical properties, terbium has been widely used, which has inevitably increased the chance of human exposure to terbium-based compounds. It was reported that terbium mainly deposited in bone after introduction into the human body. Although some studies revealed the effects of terbium on bone cell lines, there have been few reports about the potential effect of terbium on adhesion and differentiation of mesenchymal stem cells (MSCs). In this study, we investigated the effects of terbium on the adhesion and osteogenic and adipogenic differentiation of MSCs and the associated molecular mechanisms. Our data reveal that terbium promoted the osteogenic differentiation in a time-dependent manner and conversely inhibited the adipogenic differentiation of MSCs. Meanwhile, the cell-cell or cell-matrix interaction was enhanced by activating adherent-related key factors, which were evaluated by real-time reverse transcriptase polymerase chain reaction (RT-PCR). Real-time RT-PCR and Western blot analysis were also performed to further detect osteogenic and adipogenic biomarkers of MSCs. The regulation of terbium on differentiation of MSCs led to the interaction between the transforming growth factor β/bone morphogenetic protein and peroxisome-proliferator-activated receptor γ (PPARγ) signaling pathways, resulting in upregulation of the osteogenic master transcription factors, such as Runt-related transcription factor 2, bone morphogenetic protein 2, collagen I, alkaline phosphatase, and osteocalcin, and downregulation of the adipogenic master transcription factors, such as PPARγ2. The results provide novel evidence to elucidate the mechanisms of bone metabolism by terbium and may be helpful for more rational application of terbium-based compounds in the future. PMID:24585101

  15. A CXCL5- and bFGF-Dependent Effect of PDGF-B-Activated Fibroblasts in Promoting Trafficking and Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    Nedeau, April E.; Bauer, Richard J.; Gallagher, Katherine; Chen, Haiying; Liu, Zhao-Jun

    2008-01-01

    Adult bone marrow-derived mesenchymal stem cells (MSCs) are able to differentiate into myofibroblasts and be recruited into wound lesions and contribute to wound healing. The cellular and molecular mechanism responsible for MSC trafficking and differentiation, however, are poorly understood. Local resting resident fibroblasts are activated after injury and play a critical role in recruiting MSCs. We investigated the role of platelet derived growth factor-B-activated fibroblasts (PDGF-B-aFBs) in regulating recruitment, migration and differentiation of MSCs from GFP transgenic mice in an in vitro wound healing assay and a novel three-dimensional (3D) model. PDGF-B-aFBs caused significant increases in MSCs migration velocity compared to control as demonstrated by time-lapse photography in an in vitro wound healing assay. Consistently, invasion/migration of MSCs into 3D collagen gels was enhanced in the presence of PDGF-B-aFbs. In addition, PDGF-B-aFBs induced differentiation of MSCs into myofibroblast. The regulatory effects of PDGF-B-aFBs are likely to be mediated by basic fibroblast growth factor (bFGF) and epithelial neutrophil activating peptide-78 (ENA-78 or CXCL5) as protein array analysis indicated an elevated levels of these two soluble factors in culture supernatant of PDGF-B-aFBs. Blocking antibodies against bFGF and CXCL5 were able to inhibit both trafficking and differentiation of MSCs into 3D collagen gels while supplement of exogenous bFGF and/or CXCL5 promoted invasion/migration of MSCs into 3D collagen gels. Our results reveal that PDGF-B-aFBs play a key role in recruitment/migration and differentiation of MSCs and implicate a bFGF- and CXCL5-dependent mechanism in mediating these effects. PMID:18570917

  16. Mesenchymal Stem Cell Transplantation in Multiple Sclerosis

    PubMed Central

    Cohen, Jeffrey A.

    2013-01-01

    Mesenchymal stem cells (MSCs) are a pluripotent non-hematopoietic precursor cells that can be isolated from bone marrow and numerous other tissues, culture-expanded to purity, and induced to differentiate in vitro and in vivo into mesodermal derivatives. MSCs exhibit many phenotypic and functional similarities to pericytes. The immunomodulatory, tissue protective, and repair-promoting properties of MSCs demonstrated both in vitro and in animal models make them an attractive potential therapy for MS and other conditions characterized by inflammation and/or tissue injury. Other potential advantages of MSCs as a therapeutic include the relative ease of culture expansion, relative immunoprivilege allowing allogeneic transplantation, and their ability to traffic from blood to areas of tissue allowing intravascular administration. The overall published experience with MSC transplantation in MS is modest, but several small case series and preliminary studies yielded promising results. Several groups, including us, recently initiated formal studies of autologous, culture-expanded, bone-marrow-derived MSC transplantation in MS. Although there are several potential safety concerns, to date, the procedure has been well tolerated. Future studies that more definitively assess efficacy also will need to address several technical issues. PMID:23294498

  17. Human umbilical cord blood mononuclear cells and chorionic plate-derived mesenchymal stem cells promote axon survival in a rat model of optic nerve crush injury

    PubMed Central

    CHUNG, SOKJOONG; RHO, SEUNGSOO; KIM, GIJIN; KIM, SO-RA; BAEK, KWANG-HYUN; KANG, MYUNGSEO; LEW, HELEN

    2016-01-01

    The use of mesenchymal stem cells (MSCs) in cell therapy in regenerative medicine has great potential, particularly in the treatment of nerve injury. Umbilical cord blood (UCB) reportedly contains stem cells, which have been widely used as a hematopoietic source and may have therapeutic potential for neurological impairment. Although ongoing research is dedicated to the management of traumatic optic nerve injury using various measures, novel therapeutic strategies based on the complex underlying mechanisms responsible for optic nerve injury, such as inflammation and/or ischemia, are required. In the present study, a rat model of optic nerve crush (ONC) injury was established in order to examine the effects of transplanting human chorionic plate-derived MSCs (CP-MSCs) isolated from the placenta, as well as human UCB mononuclear cells (CB-MNCs) on compressed rat optic nerves. Expression markers for inflammation, apoptosis, and optic nerve regeneration were analyzed, as well as the axon survival rate by direct counting. Increased axon survival rates were observed following the injection of CB-MNCs at at 1 week post-transplantation compared with the controls. The levels of growth-associated protein-43 (GAP-43) were increased after the injection of CB-MNCs or CP-MSCs compared with the controls, and the expression levels of hypoxia-inducible factor-1α (HIF-1α) were also significantly increased following the injection of CB-MNCs or CP-MSCs. ERM-like protein (ERMN) and SLIT-ROBO Rho GTPase activating protein 2 (SRGAP2) were found to be expressed in the optic nerves of the CP-MSC-injected rats with ONC injury. The findings of our study suggest that the administration of CB-MNCs or CP-MSCs may promote axon survival through systemic concomitant mechanisms involving GAP-43 and HIF-1α. Taken together, these findings provide further understanding of the mechanisms repsonsible for optic nerve injury and may aid in the development of novel cell-based therapeutic strategies with

  18. Reactive oxygen species induce MMP12-dependent degradation of collagen 5 and fibronectin to promote the motility of human umbilical cord-derived mesenchymal stem cells

    PubMed Central

    Yun, Seung Pil; Lee, Sei-Jung; Oh, Sang Yub; Jung, Young Hyun; Ryu, Jung Min; Suh, Han Na; Kim, Mi Ok; Oh, Keon Bong; Han, Ho Jae

    2014-01-01

    BACKGROUND AND PURPOSE Reactive oxygen species (ROS) are potent regulators of stem cell behaviour; however, their physiological significance as regards MMP-mediated regulation of the motility of human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) has not been characterized. In the present study, we investigated the role of hydrogen peroxide (H2O2) and associated signalling pathways in promoting UCB-MSCs motility. EXPERIMENTAL APPROACH The regulatory effects of H2O2 on the activation of PKC, MAPKs, NF-κB and β-catenin were determined. The expressions of MMP and extracellular matrix proteins were examined. Pharmacological inhibitors and gene-specific siRNA were used to identify the signalling pathways of H2O2 that affect UCB-MSCs motility. An experimental skin wound-healing model was used to confirm the functional role of UCB-MSCs treated with H2O2 in ICR mice. KEY RESULTS H2O2 increased the motility of UCB-MSCs by activating PKCα via a calcium influx mechanism. H2O2 activated ERK and p38 MAPK, which are responsible for the distinct activation of transcription factors NF-κB and β-catenin. UCB-MSCs expressed eight MMP genes, but only MMP12 expression was uniquely regulated by NF-κB and β-catenin activation. H2O2 increased the MMP12-dependent degradation of collagen 5 (COL-5) and fibronectin (FN) associated with UCB-MSCs motility. Finally, topical transplantation of UCB-MSCs treated with H2O2 enhanced skin wound healing in mice. CONCLUSIONS AND IMPLICATIONS H2O2 stimulated UCB-MSCs motility by increasing MMP12-dependent degradation of COL-5 and FN through the activation of NF-κB and glycogen synthase kinase-3β/β-catenin, which is critical for providing a suitable microenvironment for MSCs transplantation and re-epithelialization of skin wounds in mice. PMID:24627968

  19. Mesenchymal stem cell therapy and lung diseases.

    PubMed

    Akram, Khondoker M; Samad, Sohel; Spiteri, Monica; Forsyth, Nicholas R

    2013-01-01

    Mesenchymal stem cells (MSCs), a distinct population of adult stem cells, have amassed significant interest from both medical and scientific communities. An inherent multipotent differentiation potential offers a cell therapy option for various diseases, including those of the musculoskeletal, neuronal, cardiovascular and pulmonary systems. MSCs also secrete an array of paracrine factors implicated in the mitigation of pathological conditions through anti-inflammatory, anti-apoptotic and immunomodulatory mechanisms. The safety and efficacy of MSCs in human application have been confirmed through small- and large-scale clinical trials. However, achieving the optimal clinical benefit from MSC-mediated regenerative therapy approaches is entirely dependent upon adequate understanding of their healing/regeneration mechanisms and selection of appropriate clinical conditions. MSC-mediated acute alveolar injury repair. A cartoon depiction of an injured alveolus with associated inflammation and AEC apoptosis. Proposed routes of MSC delivery into injured alveoli could be by either intratracheal or intravenous routes, for instance. Following delivery a proposed mechanism of MSC action is to inhibit/reduce alveolar inflammation by abrogation of IL-1_-depenedent Tlymphocyte proliferation and suppression of TNF-_ secretion via macrophage activation following on from stimulation by MSC-secreted IL-1 receptor antagonist (IL-1RN). The inflammatory environment also stimulates MSC to secrete prostaglandin-E2 (PGE2) which can stimulate activated macrophages to secrete the anti-inflammatory cytokine IL-10. Inhibition of AEC apoptosis following injury can also be promoted via MSC stimulated up-regulation of the anti-apoptotic Bcl-2 gene. MSC-secreted KGF can stimulate AECII proliferation and migration propagating alveolar epithelial restitution. Alveolar structural engraftment of MSC is a rare event. PMID:22772131

  20. Mesenchymal stem cells and induced pluripotent stem cells as therapies for multiple sclerosis.

    PubMed

    Xiao, Juan; Yang, Rongbing; Biswas, Sangita; Qin, Xin; Zhang, Min; Deng, Wenbin

    2015-01-01

    Multiple sclerosis (MS) is a chronic, autoimmune, inflammatory demyelinating disorder of the central nervous system that leads to permanent neurological deficits. Current MS treatment regimens are insufficient to treat the irreversible neurological disabilities. Tremendous progress in the experimental and clinical applications of cell-based therapies has recognized stem cells as potential candidates for regenerative therapy for many neurodegenerative disorders including MS. Mesenchymal stem cells (MSC) and induced pluripotent stem cell (iPSCs) derived precursor cells can modulate the autoimmune response in the central nervous system (CNS) and promote endogenous remyelination and repair process in animal models. This review highlights studies involving the immunomodulatory and regenerative effects of mesenchymal stem cells and iPSCs derived cells in animal models, and their translation into immunomodulatory and neuroregenerative treatment strategies for MS. PMID:25918935

  1. Citalopram increases the differentiation efficacy of bone marrow mesenchymal stem cells into neuronal-like cells

    PubMed Central

    Verdi, Javad; Mortazavi-Tabatabaei, Seyed Abdolreza; Sharif, Shiva; Verdi, Hadi; Shoae-Hassani, Alireza

    2014-01-01

    Several studies have demonstrated that selective serotonin reuptake inhibitor antidepressants can promote neuronal cell proliferation and enhance neuroplasticity both in vitro and in vivo. It is hypothesized that citalopram, a selective serotonin reuptake inhibitor, can promote the neuronal differentiation of adult bone marrow mesenchymal stem cells. Citalopram strongly enhanced neuronal characteristics of the cells derived from bone marrow mesenchymal stem cells. The rate of cell death was decreased in citalopram-treated bone marrow mesenchymal stem cells than in control cells in neurobasal medium. In addition, the cumulative population doubling level of the citalopram-treated cells was significantly increased compared to that of control cells. Also BrdU incorporation was elevated in citalopram-treated cells. These findings suggest that citalopram can improve the neuronal-like cell differentiation of bone marrow mesenchymal stem cells by increasing cell proliferation and survival while maintaining their neuronal characteristics. PMID:25206899

  2. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy.

    PubMed

    Ding, Dah-Ching; Chang, Yu-Hsun; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2015-01-01

    The human umbilical cord is a promising source of mesenchymal stem cells (HUCMSCs). Unlike bone marrow stem cells, HUCMSCs have a painless collection procedure and faster self-renewal properties. Different derivation protocols may provide different amounts and populations of stem cells. Stem cell populations have also been reported in other compartments of the umbilical cord, such as the cord lining, perivascular tissue, and Wharton's jelly. HUCMSCs are noncontroversial sources compared to embryonic stem cells. They can differentiate into the three germ layers that promote tissue repair and modulate immune responses and anticancer properties. Thus, they are attractive autologous or allogenic agents for the treatment of malignant and nonmalignant solid and soft cancers. HUCMCs also can be the feeder layer for embryonic stem cells or other pluripotent stem cells. Regarding their therapeutic value, storage banking system and protocols should be established immediately. This review critically evaluates their therapeutic value, challenges, and future directions for their clinical applications. PMID:25622293

  3. Mesenchymal stem cell-based therapy.

    PubMed

    Mundra, Vaibhav; Gerling, Ivan C; Mahato, Ram I

    2013-01-01

    Mesenchymal stem cells (MSCs) are multipotent adult stem cells which have self-renewal capacity and differentiation potential into several mesenchymal lineages including bones, cartilages, adipose tissues and tendons. MSCs may repair tissue injuries and prevent immune cell activation and proliferation. Immunomodulation and secretion of growth factors by MSCs have led to realizing the true potential of MSC-based cell therapy. The use of MSCs as immunomodulators has been explored in cell/organ transplant, tissue repair, autoimmune diseases, and prevention of graft vs host disease (GVHD). This review focuses on the clinical applications of MSC-based cell therapy, with particular emphasis on islet transplantation for treating type I diabetes. PMID:23215004

  4. Mesenchymal Stem Cell-Based Therapy

    PubMed Central

    Mundra, Vaibhav; Gerling, Ivan C.; Mahato, Ram I.

    2012-01-01

    Mesenchymal stem cells (MSCs) are multipotent adult stem cells which have self-renewal capacity and differentiation potential into several mesenchymal lineages including bones, cartilages, adipose tissues and tendons. MSCs may repair tissue injuries and prevent immune cell activation and proliferation. Immunomodulation and secretion of growth factors by MSCs have led to realizing the true potential of MSC-based cell therapy. The use of MSCs as immunomdulators has been explored in cell/organ transplant, tissue repair, autoimmune diseases and prevention of graft vs. host disease (GVHD). This review focuses on the clinical applications of MSC-based cell therapy, with particular emphasis on islet transplantation for treating type I diabetes. PMID:23215004

  5. CD271 as a marker to identify mesenchymal stem cells from diverse sources before culture

    PubMed Central

    Álvarez-Viejo, María; Menéndez-Menéndez, Yolanda; Otero-Hernández, Jesús

    2015-01-01

    Mesenchymal stem cells, due to their characteristics are ideal candidates for cellular therapy. Currently, in culture these cells are defined by their adherence to plastic, specific surface antigen expression and multipotent differentiation potential. However, the in vivo identification of mesenchymal stem cells, before culture, is not so well established. Pre-culture identification markers would ensure higher purity than that obtained with selection based on adherence to plastic. Up until now, CD271 has been described as the most specific marker for the characterization and purification of human bone marrow mesenchymal stem cells. This marker has been shown to be specifically expressed by these cells. Thus, CD271 has been proposed as a versatile marker to selectively isolated and expand multipotent mesenchymal stem cells with both immunosuppressive and lymphohematopoietic engraftment-promoting properties. This review focuses on this marker, specifically on identification of mesenchymal stem cells from different tissues. Literature revision suggests that CD271 should not be defined as a universal marker to identify mesenchymal stem cells before culture from different sources. In the case of bone marrow or adipose tissue, CD271 could be considered a quite suitable marker; however this marker seems to be inadequate for the isolation of mesenchymal stem cells from other tissues such as umbilical cord blood or wharton’s jelly among others. PMID:25815130

  6. CD271 as a marker to identify mesenchymal stem cells from diverse sources before culture.

    PubMed

    Álvarez-Viejo, María; Menéndez-Menéndez, Yolanda; Otero-Hernández, Jesús

    2015-03-26

    Mesenchymal stem cells, due to their characteristics are ideal candidates for cellular therapy. Currently, in culture these cells are defined by their adherence to plastic, specific surface antigen expression and multipotent differentiation potential. However, the in vivo identification of mesenchymal stem cells, before culture, is not so well established. Pre-culture identification markers would ensure higher purity than that obtained with selection based on adherence to plastic. Up until now, CD271 has been described as the most specific marker for the characterization and purification of human bone marrow mesenchymal stem cells. This marker has been shown to be specifically expressed by these cells. Thus, CD271 has been proposed as a versatile marker to selectively isolated and expand multipotent mesenchymal stem cells with both immunosuppressive and lymphohematopoietic engraftment-promoting properties. This review focuses on this marker, specifically on identification of mesenchymal stem cells from different tissues. Literature revision suggests that CD271 should not be defined as a universal marker to identify mesenchymal stem cells before culture from different sources. In the case of bone marrow or adipose tissue, CD271 could be considered a quite suitable marker; however this marker seems to be inadequate for the isolation of mesenchymal stem cells from other tissues such as umbilical cord blood or wharton's jelly among others. PMID:25815130

  7. Bone-Marrow-Derived Mesenchymal Stem Cells Promote Proliferation and Neuronal Differentiation of Niemann–Pick Type C Mouse Neural Stem Cells by Upregulation and Secretion of CCL2

    PubMed Central

    Lee, Hyun; Kang, Ji Eun; Lee, Jong Kil; Bae, Jae-sung

    2013-01-01

    Abstract Niemann–Pick type C (NP-C) disease is a neurodegenerative disorder characterized neuropathologically by ballooned neurons distended with lipid storage and widespread neuronal loss. Neural stem cells (NSC) derived from NP-C disease models have decreased ability for self-renewal and neuronal differentiation. Investigation of neurogenesis in the adult brain has suggested that NP-C disease can be overcome, or at least ameliorated, by the generation of new neurons. Bone-marrow-derived mesenchymal stem cells (BM-MSCs) are regarded as potential candidates for use in the treatment of neurodegenerative disorders because of their ability to promote neurogenesis. The underlying mechanisms of BM-MSC-induced promotion of neurogenesis, however, have not been resolved. The aim of the present study was to examine the mechanism of neurogenesis by BM-MSCs in NP-C disease. Coculture of embryonic NSCs from NP-C mice that exhibit impaired ability for self-renewal and decreased rates of neuronal differentiation with BM-MSCs resulted in an enhanced capacity for self-renewal and an increased ability for differentiation into neurons or oligodendrocytes. In addition, results of in vivo studies have demonstrated that transplantation of intracerebral BM-MSCs resulted in stimulated proliferation and neuronal differentiation of NSCs within the subventricular zone. Of particular interest, enhanced proliferation and neuronal differentiation of endogenous NP-C mouse NSCs showed an association with elevated release of the chemokine (C-C motif) ligand 2 (CCL2) from BM-MSCs. These effects suggest that soluble CCL2 derived from BM-MSCs can modulate endogenous NP-C NSCs, resulting in their improved proliferation and neuronal differentiation in mice. PMID:23659480

  8. Promoting the recovery of injured liver with poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) scaffolds loaded with umbilical cord-derived mesenchymal stem cells.

    PubMed

    Li, Pengshan; Zhang, Jin; Liu, Jing; Ma, Huan; Liu, Jie; Lie, Puchang; Wang, Yuechun; Liu, Gexiu; Zeng, Huilan; Li, Zhizhong; Wei, Xing

    2015-02-01

    Cell-based therapies are major focus of current research for treatment of liver diseases. In this study, mesenchymal stem cells were isolated from human umbilical cord Wharton's jelly (WJ-MSCs). Results confirmed that WJ-MSCs isolated in this study could express the typical MSC-specific markers and be induced to differentiate into adipocytes, osteoblasts, and chondrocytes. They could also be induced to differentiate into hepatocyte-like cells. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PHBVHHx) is a new member of polyhydroxyalkanoate family and biodegradable polyester produced by bacteria. PHBVHHx scaffolds showed much higher cell attachment and viability than the other polymers tested. PHBVHHx scaffolds loaded with WJ-MSCs were transplanted into liver-injured mice. Liver morphology improved after 30 days of transplantation and looked similar to normal liver. Concentrations of serum alanine aminotransferase and total bilirubin were significantly lower, and albumin was significantly higher on days 14 and 30 in the WJ-MSCs+scaffold group than in the carbon tetrachloride (CCl4) group. Hematoxylin-eosin staining showed that liver had similar structure of normal liver lobules and similar size and shape of normal hepatic cells, and Masson staining demonstrated that liver had less blue staining for collagen after 30 days of transplantation. Real-time reverse transcription-polymerase chain reaction (RT-PCR) showed that the expression of the bile duct epithelial cell gene CK-19 in mouse liver is significantly lower on days 14 and 30 in the WJ-MSCs+scaffold group than in the CCl4 group. Real-time RT-PCR, immunocytochemistry, and periodic acid-Schiff staining showed that WJ-MSCs in scaffolds differentiated into hepatocyte-like cells on days 14 and 30 in the WJ-MSCs+scaffold group. Real-time RT-PCR also demonstrated that WJ-MSCs in scaffolds expressed endothelial cell genes Flk-1, vWF, and VE-cadherin on days 14 and 30 in the WJ-MSCs+scaffold group

  9. Demineralized Bone Matrix Combined Bone Marrow Mesenchymal Stem Cells, Bone Morphogenetic Protein-2 and Transforming Growth Factor-β3 Gene Promoted Pig Cartilage Defect Repair

    PubMed Central

    Wang, Xin; Li, Yanlin; Han, Rui; He, Chuan; Wang, Guoliang; Wang, Jianwei; Zheng, Jiali; Pei, Mei; Wei, Lei

    2014-01-01

    Objectives To investigate whether a combination of demineralized bone matrix (DBM) and bone marrow mesenchymal stem cells (BMSCs) infected with adenovirus-mediated- bone morphogenetic protein (Ad-BMP-2) and transforming growth factor-β3 (Ad-TGF-β3) promotes the repair of the full-thickness cartilage lesions in pig model. Methods BMSCs isolated from pig were cultured and infected with Ad-BMP-2(B group), Ad-TGF-β3 (T group), Ad-BMP-2 + Ad-TGF-β3(BT group), cells infected with empty Ad served as a negative group(N group), the expression of the BMP-2 and TGF-β3 were confirmed by immunofluorescence, PCR, and ELISA, the expression of SOX-9, type II collagen(COL-2A), aggrecan (ACAN) in each group were evaluated by real-time PCR at 1w, 2w, 3w, respectively. The chondrogenic differentiation of BMSCs was evaluated by type II collagen at 21d with immunohistochemical staining. The third-passage BMSCs infected with Ad-BMP-2 and Ad-TGF-β3 were suspended and cultured with DBM for 6 days to construct a new type of tissue engineering scaffold to repair full-thickness cartilage lesions in the femur condyles of pig knee, the regenerated tissue was evaluated at 1,2 and 3 months after surgery by gross appearance, H&E, safranin O staining and O'driscoll score. Results Ad-BMP-2 and Ad-TGF-β3 (BT group) infected cells acquired strong type II collagen staining compared with Ad-BMP-2 (B group) and Ad-TGF-β3 (T group) along. The Ad-BMP-2 and Ad-TGF-β3 infected BMSCs adhered and propagated well in DBM and the new type of tissue engineering scaffold produced hyaline cartilage morphology containing a stronger type II collagen and safranin O staining, the O'driscoll score was higher than other groups. Conclusions The DBM compound with Ad-BMP-2 and Ad-TGF-β3 infected BMSCs scaffold has a good biocompatibility and could well induce cartilage regeneration to repair the defects of joint cartilage. This technology may be efficiently employed for cartilage lesions repair in vivo. PMID

  10. Cartilage Engineering from Mesenchymal Stem Cells

    NASA Astrophysics Data System (ADS)

    Goepfert, C.; Slobodianski, A.; Schilling, A. F.; Adamietz, P.; Pörtner, R.

    Mesenchymal progenitor cells known as multipotent mesenchymal stromal cells or mesenchymal stem cells (MSC) have been isolated from various tissues. Since they are able to differentiate along the mesenchymal lineages of cartilage and bone, they are regarded as promising sources for the treatment of skeletal defects. Tissue regeneration in the adult organism and in vitro engineering of tissues is hypothesized to follow the principles of embryogenesis. The embryonic development of the skeleton has been studied extensively with respect to the regulatory mechanisms governing morphogenesis, differentiation, and tissue formation. Various concepts have been designed for engineering tissues in vitro based on these developmental principles, most of them involving regulatory molecules such as growth factors or cytokines known to be the key regulators in developmental processes. Growth factors most commonly used for in vitro cultivation of cartilage tissue belong to the fibroblast growth factor (FGF) family, the transforming growth factor-beta (TGF-β) super-family, and the insulin-like growth factor (IGF) family. In this chapter, in vivo actions of members of these growth factors described in the literature are compared with in vitro concepts of cartilage engineering making use of these growth factors.

  11. Spheroid Culture of Mesenchymal Stem Cells

    PubMed Central

    Cesarz, Zoe; Tamama, Kenichi

    2016-01-01

    Compared with traditional 2D adherent cell culture, 3D spheroidal cell aggregates, or spheroids, are regarded as more physiological, and this technique has been exploited in the field of oncology, stem cell biology, and tissue engineering. Mesenchymal stem cells (MSCs) cultured in spheroids have enhanced anti-inflammatory, angiogenic, and tissue reparative/regenerative effects with improved cell survival after transplantation. Cytoskeletal reorganization and drastic changes in cell morphology in MSC spheroids indicate a major difference in mechanophysical properties compared with 2D culture. Enhanced multidifferentiation potential, upregulated expression of pluripotency marker genes, and delayed replicative senescence indicate enhanced stemness in MSC spheroids. Furthermore, spheroid formation causes drastic changes in the gene expression profile of MSC in microarray analyses. In spite of these significant changes, underlying molecular mechanisms and signaling pathways triggering and sustaining these changes are largely unknown. PMID:26649054

  12. Mesenchymal stem cells as feeder cells for pancreatic islet transplants.

    PubMed

    Sordi, Valeria; Piemonti, Lorenzo

    2010-01-01

    Allogeneic islet transplantation serves as a source of insulin-secreting beta-cells for the maintenance of normal glucose levels and treatment of diabetes. However, limited availability of islets, high rates of islet graft failure, and the need for life-long non-specific immunosuppressive therapy are major obstacles to the widespread application of this therapeutic approach. To overcome these problems, pancreatic islet transplantation was recently suggested as a potential target of the "therapeutic plasticity" of adult stem cells. In fact, new results suggest that stem/precursor cells, and mesenchymal stem cells in particular, co-transplanted with islets can promote tissue engraftment and beta-cell survival via bystander mechanisms, mainly exerted by creating a milieu of cytoprotective and immunomodulatory molecules. This evidence consistently challenges the limited view that stem/precursor cells work exclusively through beta-cell replacement in diabetes therapy. It proposes that stem cells also act as "feeder" cells for islets, and supporter of graft protection, tissue revascularization, and immune acceptance. This article reviews the experience of using stem cell co-transplantation as strategy to improve islet transplantation. It highlights that comprehension of the mechanisms involved will help to identify new molecular targets and promote development of new pharmacological strategies to treat type 1 and type 2 diabetes patients. PMID:21060972

  13. Mesenchymal Stem Cells: New Players in Retinopathy Therapy

    PubMed Central

    Rajashekhar, Gangaraju

    2014-01-01

    Retinopathies in human and animal models have shown to occur through loss of pericytes resulting in edema formation, excessive immature retinal angiogenesis, and neuronal apoptosis eventually leading to blindness. In recent years, the concept of regenerating terminally differentiated organs with a cell-based therapy has evolved. The cells used in these approaches are diverse and include tissue-specific endogenous stem cells, endothelial progenitor (EPC), embryonic stem cells, induced pluripotent stem cells (iPSC) and mesenchymal stem cells (MSC). Recently, MSC derived from the stromal fraction of adipose tissue have been shown to possess pluripotent differentiation potential in vitro. These adipose stromal cells (ASC) have been differentiated in a number of laboratories to osteogenic, myogenic, vascular, and adipocytic cell phenotypes. In vivo, ASC have been shown to have functional and phenotypic overlap with pericytes lining microvessels in adipose tissues. Furthermore, these cells either in paracrine mode or physical proximity with endothelial cells, promoted angiogenesis, improved ischemia–reperfusion, protected from myocardial infarction, and were neuroprotective. Owing to the easy isolation procedure and abundant supply, fat-derived ASC are a more preferred source of autologous mesenchymal cells compared to bone marrow MSC. In this review, we present evidence that these readily available ASC from minimally invasive liposuction will facilitate translation of ASC research into patients with retinal diseases in the near future. PMID:24795699

  14. Adult Mesenchymal Stem Cells and Radiation Injury.

    PubMed

    Kiang, Juliann G

    2016-08-01

    Recent understanding of the cellular and molecular signaling activations in adult mesenchymal stem cells (MSCs) has provided new insights into their potential clinical applications, particularly for tissue repair and regeneration. This review focuses on these advances, specifically in the context of self-renewal for tissue repair and recovery after radiation injury. Thus far, MSCs have been characterized extensively and shown to be useful in mitigation and therapy for acute radiation syndrome and cognitive dysfunction. Use of MSCs for treating radiation injury alone or in combination with additional trauma is foreseeable. PMID:27356065

  15. Mesenchymal stem cells and cardiac repair

    PubMed Central

    Nesselmann, Catharina; Ma, Nan; Bieback, Karen; Wagner, Wolfgang; Ho, Anthony; Konttinen, Yrjö T; Zhang, Hao; Hinescu, Mihail E; Steinhoff, Gustav

    2008-01-01

    Accumulating clinical and experimental evidence indicates that mesenchymal stem cells (MSCs) are promising cell types in the treatment of cardiac dysfunction. They may trigger production of reparative growth factors, replace damaged cells and create an environment that favours endogenous cardiac repair. However, identifying mechanisms which regulate the role of MSCs in cardiac repair is still at work. To achieve the maximal clinical benefits, ex vivo manipulation can further enhance MSC therapeutic potential. This review focuses on the mechanism of MSCs in cardiac repair, with emphasis on ex vivo manipulation. PMID:18684237

  16. Proteomic Definitions of Mesenchymal Stem Cells

    PubMed Central

    Maurer, Martin H.

    2011-01-01

    Mesenchymal stem cells (MSCs) are pluripotent cells isolated from the bone marrow and various other organs. They are able to proliferate and self-renew, as well as to give rise to progeny of at least the osteogenic, chondrogenic, and adipogenic lineages. Despite this functional definition, MSCs can also be defined by their expression of a distinct set of cell surface markers. In the current paper, studies investigating the proteome of human MSCs are reviewed with the aim to identify common protein markers of MSCs. The proteomic analysis of MSCs revealed a distinct set of proteins representing the basic molecular inventory, including proteins for (i) cell surface markers, (ii) the responsiveness to growth factors, (iii) the reuse of developmental signaling cascades in adult stem cells, (iv) the interaction with molecules of the extracellular matrix, (v) the expression of genes regulating transcription and translation, (vi) the control of the cell number, and (vii) the protection against cellular stress. PMID:21437194

  17. The potential of mesenchymal stem cells in the management of radiation enteropathy

    PubMed Central

    Chang, P-Y; Qu, Y-Q; Wang, J; Dong, L-H

    2015-01-01

    Although radiotherapy is effective in managing abdominal and pelvic malignant tumors, radiation enteropathy is still unavoidable. This disease severely affects the quality of life of cancer patients due to some refractory lesions, such as intestinal ischemia, mucositis, ulcer, necrosis or even perforation. Current drugs or prevailing therapies are committed to alleviating the symptoms induced by above lesions. But the efficacies achieved by these interventions are still not satisfactory, because the milieus for tissue regeneration are not distinctly improved. In recent years, regenerative therapy for radiation enteropathy by using mesenchymal stem cells is of public interests. Relevant results of preclinical and clinical studies suggest that this regenerative therapy will become an attractive tool in managing radiation enteropathy, because mesenchymal stem cells exhibit their pro-regenerative potentials for healing the injuries in both epithelium and endothelium, minimizing inflammation and protecting irradiated intestine against fibrogenesis through activating intrinsic repair actions. In spite of these encouraging results, whether mesenchymal stem cells promote tumor growth is still an issue of debate. On this basis, we will discuss the advances in anticancer therapy by using mesenchymal stem cells in this review after analyzing the pathogenesis of radiation enteropathy, introducing the advances in managing radiation enteropathy using regenerative therapy and exploring the putative actions by which mesenchymal stem cells repair intestinal injuries. At last, insights gained from the potential risks of mesenchymal stem cell-based therapy for radiation enteropathy patients may provide clinicians with an improved awareness in carrying out their studies. PMID:26247725

  18. Lamin A deregulation in human mesenchymal stem cells promotes an impairment in their chondrogenic potential and imbalance in their response to oxidative stress.

    PubMed

    Mateos, Jesús; De la Fuente, Alexandre; Lesende-Rodriguez, Iván; Fernández-Pernas, Pablo; Arufe, María C; Blanco, Francisco J

    2013-11-01

    In the present study, we examined the effect of the over-expression of LMNA, or its mutant form progerin (PG), on the mesoderm differentiation potential of mesenchymal stem cells (MSCs) from human umbilical cord (UC) stroma using a recently described differentiation model employing spheroid formation. Accumulation of lamin A (LMNA) was previously associated with the osteoarthritis (OA) chondrocyte phenotype. Mutations of this protein are linked to laminopathies and specifically to Hutchinson-Gilford Progeria Syndrome (HGPS), an accelerated aging disease. Some authors have proposed that a deregulation of LMNA affects the differentiation potential of stem cells. The chondrogenic potential is defective in PG-MSCs, although both PG and LMNA transduced MSCs, have an increase in hypertrophy markers during chondrogenic differentiation. Furthermore, both PG and LMNA-MSCs showed a decrease in manganese superoxide dismutase (MnSODM), an increase of mitochondrial MnSODM-dependent reactive oxygen species (ROS) and alterations in their migration capacity. Finally, defects in chondrogenesis are partially reversed by periodic incubation with ROS-scavenger agent that mimics MnSODM effect. Our results indicate that over-expression of LMNA or PG by lentiviral gene delivery leads to defects in chondrogenic differentiation potential partially due to an imbalance in oxidative stress. PMID:23994728

  19. Viability of mesenchymal stem cells during electrospinning

    PubMed Central

    Zanatta, G.; Steffens, D.; Braghirolli, D.I.; Fernandes, R.A.; Netto, C.A.; Pranke, P.

    2011-01-01

    Tissue engineering is a technique by which a live tissue can be re-constructed and one of its main goals is to associate cells with biomaterials. Electrospinning is a technique that facilitates the production of nanofibers and is commonly used to develop fibrous scaffolds to be used in tissue engineering. In the present study, a different approach for cell incorporation into fibrous scaffolds was tested. Mesenchymal stem cells were extracted from the wall of the umbilical cord and mononuclear cells from umbilical cord blood. Cells were re-suspended in a 10% polyvinyl alcohol solution and subjected to electrospinning for 30 min under a voltage of 21 kV. Cell viability was assessed before and after the procedure by exclusion of dead cells using trypan blue staining. Fiber diameter was observed by scanning electron microscopy and the presence of cells within the scaffolds was analyzed by confocal laser scanning microscopy. After electrospinning, the viability of mesenchymal stem cells was reduced from 88 to 19.6% and the viability of mononuclear cells from 99 to 8.38%. The loss of viability was possibly due to the high viscosity of the polymer solution, which reduced the access to nutrients associated with electric and mechanical stress during electrospinning. These results suggest that the incorporation of cells during fiber formation by electrospinning is a viable process that needs more investigation in order to find ways to protect cells from damage. PMID:22183245

  20. Human umbilical cord Wharton's jelly-derived mesenchymal stem cells differentiate into a Schwann-cell phenotype and promote neurite outgrowth in vitro.

    PubMed

    Peng, Jiang; Wang, Yu; Zhang, Li; Zhao, Bin; Zhao, Zhe; Chen, JiFeng; Guo, QuanYi; Liu, ShuYun; Sui, Xiang; Xu, WenJing; Lu, ShiBi

    2011-02-28

    Cell-based therapy has achieved promising functional recovery for peripheral nerve repair. Although Schwann cells (SCs) and bone marrow derived mesenchymal stromal cells (BM-MSCs) are the main cell source for nerve tissue engineering, the clinical application is limited because of donor site morbidity, the invasive procedure, and the decreased number of SCs and BM-MSCs. Wharton's jelly-derived mesenchymal stem cells (WJMSCs) could be a promising cell source for nerve tissue engineering because they are easily accessible and their use has no ethical issues. We investigated the phenotypic, molecular and functional characteristics of WJMSCs differentiated along a Schwann-cell lineage. Cultured WJMSCs were isolated from human umbilical cord, and the undifferentiated WJMSCs were confirmed by the detection of MSC-specific cell-surface markers. WJMSCs treated with a mixture of glial growth factors (basic fibroblast growth factor, platelet-derived growth factor and forskolin) adopted a spindle-like morphology similar to SCs. Immunocytochemical staining, RT-PCR analysis, and Western blot analysis revealed that the treated cells expressed the glial markers glial fibrillary acidic protein, p75, S100 and P0 and indicative of differentiation. On co-culture with dorsal root ganglia neurons, the differentiated WJMSCs enhanced the number of sprouting neurites and neurite length in dorsal root ganglia neurons. Furthermore, using enzyme-linked immunosorbent assay and RT-PCR methodology, we found differentiated WJMSCs secrete and express neurotrophic factors, including brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3). Quantification of neurite outgrowth from PC12 cells grown in differentiated WJMSCs-conditioned media demonstrates that the neurite length is significantly more than control medium and undifferentiated WJMSCs group. WJMSCs can be differentiated into cells that are Schwann-like in terms of morphologic features, phenotype, and

  1. Therapeutic potential of umbilical cord mesenchymal stem cells with Wnt/β-catenin signaling pathway pre-activated for the treatment of diabetic wounds.

    PubMed

    Sun, T-J; Tao, R; Han, Y-Q; Xu, G; Liu, J; Han, Y-F

    2014-01-01

    The pathogenesis of diabetes mellitus wounds is complicate, and there lacks effective treatment strategies. Mesenchymal stem cells can promote wound healing. Compared with bone marrow mesenchymal stem cells, umbilical cord mesenchymal stem cells have obvious advantages in biological property. Wnts are potent regulatory molecules for stem cell turnover and skin regeneration, while Wnt signaling is not well activated in diabetic wounds. Umbilical cord mesenchymal stem cells with Wnt/β-catenin signaling pathway pre-activated have some potential in the treatment of diabetic wounds. In this paper, we review the research status as well as problems in this field. PMID:25268090

  2. Mesenchymal stem cells for cardiac cell therapy.

    PubMed

    Choi, Yeong-Hoon; Kurtz, Andreas; Stamm, Christof

    2011-01-01

    Despite refinements of medical and surgical therapies, heart failure remains a fatal disease. Myocardial infarction is the most common cause of heart failure, and only palliative measures are available to relieve symptoms and prolong the patient's life span. Because mammalian cardiomyocytes irreversibly exit the cell cycle at about the time of birth, the heart has traditionally been considered to lack any regenerative capacity. This paradigm, however, is currently shifting, and the cellular composition of the myocardium is being targeted by various regeneration strategies. Adult progenitor and stem cell treatment of diseased human myocardium has been carried out for more than 10 years (Menasche et al., 2001; Stamm et al., 2003), and it has become clear that, in humans, the regenerative capacity of hematopoietic stem cells and endothelial progenitor cells, despite potent proangiogenic effects, is limited (Stamm et al., 2009). More recently, mesenchymal stem cells (MSCs) and related cell types are being evaluated in preclinical models of heart disease as well as in clinical trials (see Published Clinical Trials, below). MSCs have the capacity to self-renew and to differentiate into lineages that normally originate from the embryonic mesenchyme (connective tissues, blood vessels, blood-related organs) (Caplan, 1991; Prockop, 1997; Pittenger et al., 1999). The current definition of MSCs includes plastic adherence in cell culture, specific surface antigen expression (CD105(+)/CD90(+)/CD73(+), CD34(-)/CD45(-)/CD11b(-) or CD14(-)/CD19(-) or CD79α(-)/HLA-DR1(-)), and multilineage in vitro differentiation potential (osteogenic, chondrogenic, and adipogenic) (Dominici et al., 2006 ). If those criteria are not met completely, the term "mesenchymal stromal cells" should be used for marrow-derived adherent cells, or other terms for MSC-like cells of different origin. For the purpose of this review, MSCs and related cells are discussed in general, and cell type

  3. Local transplantation of osteogenic pre-differentiated autologous adipose-derived mesenchymal stem cells may accelerate non-union fracture healing with limited pro-metastatic potency.

    PubMed

    Han, Duanyang; Han, Na; Zhang, Peixun; Jiang, Baoguo

    2015-01-01

    Fracture non-union is a serious complication in orthopedic clinical practice. Mesenchymal stem cells are believed to play a vital role in fracture healing process. Among various origins of mesenchymal stem cell, adipose derived stem cells hold great promise especially in clinical milieu. However, the wide spread application of mesenchymal stem cell based therapy is impeded by the pro-metastasis nature of the mesenchymal stem cell itself. Based on the findings from previous studies, we hypothesize that local transplanted osteogenic pre-differentiatiated adipose stem cell may promote the non-union fracture healing. Moreover, the pre-differnetiation stem cells by down-regulating the expression of CCL5 and CCL2. This novel osteogenic pre-differnetiation technique may help clinical orthopedists to resolve the refractory non-union cases and shed new light on other stem cell based therapies to counteract to avoid the pro-metastasis nature of the mesenchymal stem cells. PMID:25785146

  4. Concise Review: Mesenchymal Stem Cells for Diabetes

    PubMed Central

    Domínguez-Bendala, Juan; Lanzoni, Giacomo

    2012-01-01

    Mesenchymal stem cells (MSCs) have already made their mark in the young field of regenerative medicine. Easily derived from many adult tissues, their therapeutic worth has already been validated for a number of conditions. Unlike embryonic stem cells, neither their procurement nor their use is deemed controversial. Here we review the potential use of MSCs for the treatment of type 1 diabetes mellitus, a devastating chronic disease in which the insulin-producing cells of the pancreas (the β-cells) are the target of an autoimmune process. It has been hypothesized that stem cell-derived β-cells may be used to replenish the islet mass in diabetic patients, making islet transplantation (a form of cell therapy that has already proven effective at clinically restoring normoglycemia) available to millions of prospective patients. Here we review the most current advances in the design and application of protocols for the differentiation of transplantable β-cells, with a special emphasis in analyzing MSC potency according to their tissue of origin. Although no single method appears to be ripe enough for clinical trials yet, recent progress in reprogramming (a biotechnological breakthrough that relativizes the thus far insurmountable barriers between embryonal germ layers) bodes well for the rise of MSCs as a potential weapon of choice to develop personalized therapies for type 1 diabetes. PMID:23197641

  5. Concise review: mesenchymal stem cells for diabetes.

    PubMed

    Domínguez-Bendala, Juan; Lanzoni, Giacomo; Inverardi, Luca; Ricordi, Camillo

    2012-01-01

    Mesenchymal stem cells (MSCs) have already made their mark in the young field of regenerative medicine. Easily derived from many adult tissues, their therapeutic worth has already been validated for a number of conditions. Unlike embryonic stem cells, neither their procurement nor their use is deemed controversial. Here we review the potential use of MSCs for the treatment of type 1 diabetes mellitus, a devastating chronic disease in which the insulin-producing cells of the pancreas (the β-cells) are the target of an autoimmune process. It has been hypothesized that stem cell-derived β-cells may be used to replenish the islet mass in diabetic patients, making islet transplantation (a form of cell therapy that has already proven effective at clinically restoring normoglycemia) available to millions of prospective patients. Here we review the most current advances in the design and application of protocols for the differentiation of transplantable β-cells, with a special emphasis in analyzing MSC potency according to their tissue of origin. Although no single method appears to be ripe enough for clinical trials yet, recent progress in reprogramming (a biotechnological breakthrough that relativizes the thus far insurmountable barriers between embryonal germ layers) bodes well for the rise of MSCs as a potential weapon of choice to develop personalized therapies for type 1 diabetes. PMID:23197641

  6. Epigenetic Mechanisms Regulating Mesenchymal Stem Cell Differentiation

    PubMed Central

    Pérez-Campo, Flor M.; Riancho, José A.

    2015-01-01

    Human Mesenchymal Stem Cells (hMSCs) have emerged in the last few years as one of the most promising therapeutic cell sources and, in particular, as an important tool for regenerative medicine of skeletal tissues. Although they present a more restricted potency than Embryonic Stem (ES) cells, the use of hMCS in regenerative medicine avoids many of the drawbacks characteristic of ES cells or induced pluripotent stem cells. The challenge in using these cells lies into developing precise protocols for directing cellular differentiation to generate a specific cell lineage. In order to achieve this goal, it is of the upmost importance to be able to control de process of fate decision and lineage commitment. This process requires the coordinate regulation of different molecular layers at transcriptional, posttranscriptional and translational levels. At the transcriptional level, switching on and off different sets of genes is achieved not only through transcriptional regulators, but also through their interplay with epigenetic modifiers. It is now well known that epigenetic changes take place in an orderly way through development and are critical in the determination of lineage-specific differentiation. More importantly, alteration of these epigenetic changes would, in many cases, lead to disease generation and even tumour formation. Therefore, it is crucial to elucidate how epigenetic factors, through their interplay with transcriptional regulators, control lineage commitment in hMSCs. PMID:27019612

  7. G9a inhibition promotes neuronal differentiation of human bone marrow mesenchymal stem cells through the transcriptional induction of RE-1 containing neuronal specific genes.

    PubMed

    Kim, Ho-Tae; Jeong, Sin-Gu; Cho, Goang-Won

    2016-06-01

    Recent studies have shown that epigenomic modifications are significantly associated with neuronal differentiation. Many neuronal specific genes contain the repressor element-1 (RE-1), which recruits epigenetic modulators, such as the histone methyltransferase G9a and interrupts the expression of neuronal genes in non-neuronal cells. This study investigated the functional role of G9a during neuronal differentiation of human bone marrow mesenchymal stem cells (BM-MSCs). Human BM-MSCs treated with the G9a inhibitor BIX01294 showed an increased expression of various neuronal-lineage genes. Using genomic sequence analysis, we identified RE-1 consensus sequences in the proximal region of several neuronal-specific genes. Chromatin immunoprecipitation (ChIP) assay results have showed that H3K9me2 (dimethylation of lysine 9 on histone 3) occupancy at RE-1-containing sequences from neuronal-specific genes was significantly decreased in BIX01294-MSCs. When BIX01294-MSCs were differentiated with neuronal induction medium, cells differentiated more effectively into neuron-like cells, complete with a cell body and dendrites. Expression of neuronal-specific genes containing the RE-1 sequences was significantly increased in differentiated BIX01294-MSCs, as confirmed by immunocytochemical staining and immunoblotting. Thus, this study shows that BIX01294 pretreated human BM-MSCs can be effectively differentiated into neuron-like cells by induced expression of neuronal-specific genes containing RE-1 sequences. PMID:26952575

  8. Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging.

    PubMed

    Gao, Guifang; Yonezawa, Tomo; Hubbell, Karen; Dai, Guohao; Cui, Xiaofeng

    2015-10-01

    Inkjet bioprinting is one of the most promising additive manufacturing approaches for tissue fabrication with the advantages of high speed, high resolution, and low cost. The limitation of this technology is the potential damage to the printed cells and frequent clogging of the printhead. Here we developed acrylated peptides and co-printed with acrylated poly(ethylene glycol) (PEG) hydrogel with simultaneous photopolymerization. At the same time, the bone marrow-derived human mesenchymal stem cells (hMSCs) were precisely printed during the scaffold fabrication process so the cells were delivered simultaneously with minimal UV exposure. The multiple steps of scaffold synthesis and cell encapsulation were successfully combined into one single step using bioprinting. The resulted peptide-conjugated PEG scaffold demonstrated excellent biocompatibility, with a cell viability of 87.9 ± 5.3%. Nozzle clogging was minimized due to the low viscosity of the PEG polymer. With osteogenic and chondrogenic differentiation, the bioprinted bone and cartilage tissue demonstrated excellent mineral and cartilage matrix deposition, as well as significantly increased mechanical properties. Strikingly, the bioprinted PEG-peptide scaffold dramatically inhibited hMSC hypertrophy during chondrogenic differentiation. Collectively, bioprinted PEG-peptide scaffold and hMSCs significantly enhanced osteogenic and chondrogenic differentiation for robust bone and cartilage formation with minimal printhead clogging. PMID:25641582

  9. Microbubble-mediated ultrasound promotes accumulation of bone marrow mesenchymal stem cell to the prostate for treating chronic bacterial prostatitis in rats

    PubMed Central

    Yi, Shanhong; Han, Guangwei; Shang, Yonggang; Liu, Chengcheng; Cui, Dong; Yu, Shuangjiang; Liao, Bin; Ao, Xiang; Li, Guangzhi; Li, Longkun

    2016-01-01

    Chronic bacterial prostatitis (CBP) is an intractable disease. Although bone marrow mesenchymal stem cells (BMMSCs) are able to regulate inflammation in CBP, the effect of microbubble-mediated ultrasound- induced accumulation of BMMSCs on CBP remains unclear. To address this gap, a model of CBP was established in SD rats, which were then treated with BMMSCs alone (BMMSC group), BMMSCs with ultrasound (ultrasound group), BMMSCs with microbubble-mediated ultrasound (MMUS group) and compared with a healthy control group. A therapeutic-ultrasound apparatus was used to treat the prostate in the presence of circulating microbubbles and BMMSCs. The BMMSC distribution was assessed with in vivo imaging, and the prostate structure with light microscopy. Real-time quantitative RT-PCR, ELISA, and immunohistochemistry were used to assess the expressions of TNF-α and IL-1β. More BMMSCs were found in the prostate in the MMUS group than in the CBP, ultrasound, and BMMSC groups. Inflammatory cell infiltration, fibrous tissue hyperplasia, and tumor-like epithelial proliferation were significantly reduced in the MMUS group, as were the mRNA and protein expressions of TNF-α and IL-1β. Microbubble-mediated ultrasound-induced accumulation of BMMSCs can inhibit inflammation and decrease TNF-α and IL-1β expressions in the prostate of CBP rats, suggesting that this method may be therapeutic for CPB. PMID:26797392

  10. The synergistic effect of micro-topography and biochemical culture environment to promote angiogenesis and osteogenic differentiation of human mesenchymal stem cells.

    PubMed

    Song, Shang; Kim, Eun Jung; Bahney, Chelsea S; Miclau, Theodore; Marcucio, Ralph; Roy, Shuvo

    2015-05-01

    Critical failures associated with current engineered bone grafts involve insufficient induction of osteogenesis of the implanted cells and lack of vascular integration between graft scaffold and host tissue. This study investigated the combined effects of surface microtextures and biochemical supplements to achieve osteogenic differentiation of human mesenchymal stem cells (hMSCs) and revascularization of the implants in vivo. Cells were cultured on 10μm micropost-textured polydimethylsiloxane (PDMS) substrates in either proliferative basal medium (BM) or osteogenic medium (OM). In vitro data revealed that cells on microtextured substrates in OM had dense coverage of extracellular matrix, whereas cells in BM displayed more cell spreading and branching. Cells on microtextured substrates in OM demonstrated a higher gene expression of osteoblast-specific markers, namely collagen I, alkaline phosphatase, bone sialoprotein, and osteocalcin, accompanied by substantial amount of bone matrix formation and mineralization. To further investigate the osteogenic capacity, hMSCs on microtextured substrates under different biochemical stimuli were implanted into subcutaneous pockets on the dorsal aspect of immunocompromised mice to study capacity for ectopic bone formation. In vivo data revealed greater expression of osteoblast-specific markers coupled with increased vascular invasion on microtextured substrates with hMSCs cultured in OM. Together, these data represent a novel regenerative strategy that incorporates defined surface microtextures and biochemical stimuli to direct combined osteogenesis and re-vascularization of engineered bone scaffolds for musculoskeletal repair and relevant bone tissue engineering applications. PMID:25735800

  11. Mechanical regulation of mesenchymal stem cell differentiation.

    PubMed

    Steward, Andrew J; Kelly, Daniel J

    2015-12-01

    Biophysical cues play a key role in directing the lineage commitment of mesenchymal stem cells or multipotent stromal cells (MSCs), but the mechanotransductive mechanisms at play are still not fully understood. This review article first describes the roles of both substrate mechanics (e.g. stiffness and topography) and extrinsic mechanical cues (e.g. fluid flow, compression, hydrostatic pressure, tension) on the differentiation of MSCs. A specific focus is placed on the role of such factors in regulating the osteogenic, chondrogenic, myogenic and adipogenic differentiation of MSCs. Next, the article focuses on the cellular components, specifically integrins, ion channels, focal adhesions and the cytoskeleton, hypothesized to be involved in MSC mechanotransduction. This review aims to illustrate the strides that have been made in elucidating how MSCs sense and respond to their mechanical environment, and also to identify areas where further research is needed. PMID:25382217

  12. Proteomic Analysis of Mesenchymal Stem Cells.

    PubMed

    Faça, Vitor Marcel; Orellana, Maristela Delgado; Greene, Lewis Joel; Covas, Dimas Tadeu

    2016-01-01

    Mesenchymal stem or stromal cells (MSCs) are of great interest in biomedical sciences and disease treatment because of their multipotency and wide range of applications for tissue repair and suppression of the immune system. Proteomic analysis of these unique cells has contributed to the identification of important pathways utilized by MSCs to differentiate into distinct tissues as well as important proteins responsible for their special function in vivo and in vitro. However, comparison of proteomic studies in MSCs still suffers from the heterogeneity of MSC preparations. In addition, as proteomics technology advances, several studies can be revisited in order to increase the depth of analysis and, therefore, elucidate more refined mechanisms involved in MSC functionalities. Here, we present detailed protocols to obtain MSCs, as well as protocols to perform in-depth profiling and quantification of alterations in MSC proteomes. PMID:27236693

  13. Mesenchymal Stem Cells: Angels or Demons?

    PubMed Central

    Wong, Rebecca S. Y.

    2011-01-01

    Mesenchymal stem cells (MSCs) have been used in cell-based therapy in various disease conditions such as graft-versus-host and heart diseases, osteogenesis imperfecta, and spinal cord injuries, and the results have been encouraging. However, as MSC therapy gains popularity among practitioners and researchers, there have been reports on the adverse effects of MSCs especially in the context of tumour modulation and malignant transformation. These cells have been found to enhance tumour growth and metastasis in some studies and have been related to anticancer-drug resistance in other instances. In addition, various studies have also reported spontaneous malignant transformation of MSCs. The mechanism of the modulatory behaviour and the tumorigenic potential of MSCs, warrant urgent exploration, and the use of MSCs in patients with cancer awaits further evaluation. However, if MSCs truly play a role in tumour modulation, they can also be potential targets of cancer treatment. PMID:21822372

  14. Secretome From Mesenchymal Stem Cells Induces Angiogenesis Via Cyr61

    PubMed Central

    ESTRADA, ROSENDO; LI, NA; SAROJINI, HARSHINI; AN, JIN; LEE, MENQ-JER; WANG, EUGENIA

    2010-01-01

    It is well known that bone marrow-derived mesenchymal stem cells (MSCs) are involved in wound healing and regeneration responses. In this study, we globally profiled the proteome of MSCs to investigate critical factor(s) that may promote wound healing. Cysteine-rich protein 61 (Cyr61) was found to be abundantly present in MSCs. The presence of Cyr61 was confirmed by immunofluorescence staining and immunoblot analysis. Moreover, we showed that Cyr61 is present in the culture medium (secretome) of MSCs. The secretome of MSCs stimulates angiogenic response in vitro, and neovascularization in vivo. Depletion of Cyr61 completely abrogates the angiogenic-inducing capability of the MSC secretome. Importantly, addition of recombinant Cyr61 polypeptides restores the angiogenic activity of Cyr61-depleted secretome. Collectively, these data demonstrate that Cyr61 polypeptide in MSC secretome contributes to the angiogenesis-promoting activity, a key event needed for regeneration and repair of injured tissues. PMID:19170074

  15. Labeling and Imaging Mesenchymal Stem Cells with Quantum Dots

    EPA Science Inventory

    Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into bone, cartilage, adipose and muscle cells. Adult derived MSCs are being actively investigated because of their potential to be utilized for therapeutic cell-based transplantation. Methods...

  16. Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy

    PubMed Central

    Glenn, Justin D; Whartenby, Katharine A

    2014-01-01

    Mesenchymal stem cells (MSCs) are a pleiotropic population of cells that are self-renewing and capable of differentiating into canonical cells of the mesenchyme, including adipocytes, chondrocytes, and osteocytes. They employ multi-faceted approaches to maintain bone marrow niche homeostasis and promote wound healing during injury. Biomedical research has long sought to exploit their pleiotropic properties as a basis for cell therapy for a variety of diseases and to facilitate hematopoietic stem cell establishment and stromal reconstruction in bone marrow transplantation. Early results demonstrated their usage as safe, and there was little host response to these cells. The discovery of their immunosuppressive functions ushered in a new interest in MSCs as a promising therapeutic tool to suppress inflammation and down-regulate pathogenic immune responses in graft-versus-host and autoimmune diseases such as multiple sclerosis, autoimmune diabetes, and rheumatoid arthritis. MSCs produce a large number of soluble and membrane-bound factors, some of which inhibit immune responses. However, the full range of MSC-mediated immune-modulation remains incompletely understood, as emerging reports also reveal that MSCs can adopt an immunogenic phenotype, stimulate immune cells, and yield seemingly contradictory results in experimental animal models of inflammatory disease. The present review describes the large body of literature that has been accumulated on the fascinating biology of MSCs and their complex effects on immune responses. PMID:25426250

  17. Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates

    PubMed Central

    Glennon-Alty, Laurence; Williams, Rachel; Dixon, Simon; Murray, Patricia

    2013-01-01

    Mesenchymal stem cells (MSCs) can generate chondrocytes in vitro, but typically need to be cultured as aggregates in the presence of transforming growth factor beta (TGF-β), which makes scale-up difficult. Here we investigated if polyacrylate substrates modelled on the functional group composition and distribution of the Arg-Gly-Asp (RGD) integrin-binding site could induce MSCs to undergo chondrogenesis in the absence of exogenous TGF-β. Within a few days of culture on the biomimetic polyacrylates, both mouse and human MSCs, and a mesenchymal-like mouse-kidney-derived stem cell line, began to form multi-layered aggregates and started to express the chondrocyte-specific markers, Sox9, collagen II and aggrecan. Moreover, collagen II tended to be expressed in the centre of the aggregates, similarly to developing limb buds in vivo. Surface analysis of the substrates indicated that those with the highest surface amine content were most effective at promoting MSC chondrogenesis. These results highlight the importance of surface group functionality and the distribution of those groups in the design of substrates to induce MSC chondrogenesis. PMID:23237986

  18. Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates.

    PubMed

    Glennon-Alty, Laurence; Williams, Rachel; Dixon, Simon; Murray, Patricia

    2013-04-01

    Mesenchymal stem cells (MSCs) can generate chondrocytes in vitro, but typically need to be cultured as aggregates in the presence of transforming growth factor beta (TGF-β), which makes scale-up difficult. Here we investigated if polyacrylate substrates modelled on the functional group composition and distribution of the Arg-Gly-Asp (RGD) integrin-binding site could induce MSCs to undergo chondrogenesis in the absence of exogenous TGF-β. Within a few days of culture on the biomimetic polyacrylates, both mouse and human MSCs, and a mesenchymal-like mouse-kidney-derived stem cell line, began to form multi-layered aggregates and started to express the chondrocyte-specific markers, Sox9, collagen II and aggrecan. Moreover, collagen II tended to be expressed in the centre of the aggregates, similarly to developing limb buds in vivo. Surface analysis of the substrates indicated that those with the highest surface amine content were most effective at promoting MSC chondrogenesis. These results highlight the importance of surface group functionality and the distribution of those groups in the design of substrates to induce MSC chondrogenesis. PMID:23237986

  19. Mesenchymal stem cell therapy for heart disease.

    PubMed

    Gnecchi, Massimiliano; Danieli, Patrizia; Cervio, Elisabetta

    2012-08-19

    Mesenchymal stem cells (MSC) are adult stem cells with capacity for self-renewal and multi-lineage differentiation. Initially described in the bone marrow, MSC are also present in other organs and tissues. From a therapeutic perspective, because of their easy preparation and immunologic privilege, MSC are emerging as an extremely promising therapeutic agent for tissue regeneration and repair. Studies in animal models of myocardial infarction have demonstrated the ability of transplanted MSC to engraft and differentiate into cardiomyocytes and vascular cells. Most importantly, engrafted MSC secrete a wide array of soluble factors that mediate beneficial paracrine effects and may greatly contribute to cardiac repair. Together, these properties can be harnessed to both prevent and reverse remodeling in the ischemically injured ventricle. In proof-of-concept and phase I clinical trials, MSC therapy improved left ventricular function, induced reverse remodeling, and decreased scar size. In this review we will focus on the current understanding of MSC biology and MSC mechanism of action in cardiac repair. PMID:22521741

  20. Combined Bone Mesenchymal Stem Cell and Olfactory Ensheathing Cell Transplantation Promotes Neural Repair Associated With CNTF Expression in Traumatic Brain-Injured Rats.

    PubMed

    Fu, Xue-Mei; Liu, Su-Juan; Dan, Qi-Qin; Wang, Yan-Ping; Lin, Na; Lv, Long-Yun; Zou, Yu; Liu, Su; Zhou, Xue; Wang, Ting-Hua

    2015-01-01

    This study examined the role of bone mesenchymal stem cell (BMSC) and olfactory ensheathing cell (OEC) cografting on neural function and underlying molecular mechanisms in acute stage of traumatic brain injury (TBI) rats. Eighty Sprague-Dawley (SD) female rats were randomly divided into five groups (n = 16 per category): sham operated group (Sham), weight-drop-induced TBI group (TBI), BMSC transplantation group (BMSC), OEC transplantation group (OEC), and cotransplantation group (CO). Eight rats were randomly selected from each group for behavioral and morphological assessment. Another category (n = 8 rats) was employed in the genetic expression detection. BMSCs were isolated from GFP mice and identified by CD44 antibody. OECs were isolated from the SD rats, identified by P75 antibody and labeled by Hoechst 33342. They were then transplanted into the surrounding tissue of the epicenter of TBI rats. The result of neurological severity scores revealed that BMSC or OEC transplantation alone and BMSC and OEC cografting significantly ameliorated the neurological deficits of TBI rats. Quantitative immunohistochemical analysis showed that graft-recipient animals possessed dramatically more neurons and regenerated axons and smaller amounts of astrocytes than controls 14 days posttransplantation (p < 0.05). However, the expressional level of ciliary neurotrophic factor significantly decreased in the cografting group as determined by RT-PCR (p < 0.05), and the Janus kinase/signal transducer and activator of transcription pathway was significantly activated at 7 days after cell transplantation (p < 0.05). This study is the first to report the role of cotransplantation of BMSCs and OECs in the therapy of TBI and explore its potential molecular mechanisms, therefore providing the important morphological and molecular biological evidence for the clinical application of BMSC and/or OEC transplantation in TBI. PMID:24612678

  1. Microarc-oxidized titanium surfaces functionalized with microRNA-21-loaded chitosan/hyaluronic acid nanoparticles promote the osteogenic differentiation of human bone marrow mesenchymal stem cells

    PubMed Central

    Wang, Zhongshan; Wu, Guangsheng; Feng, Zhihong; Bai, Shizhu; Dong, Yan; Wu, Guofeng; Zhao, Yimin

    2015-01-01

    Dental implants have been widely used for the replacement of missing teeth in the clinic, but further improvements are needed to meet the clinical demands for faster and tighter osseointegration. In this study, we fabricated safe and biocompatible chitosan (CS)/hyaluronic acid (HA) nanoparticles to deliver microRNA-21 (miR-21) and thereby accelerate osteogenesis in human bone marrow mesenchymal stem cells (hBMMSCs). The CS/HA/miR-21 nanoparticles were cross-linked with 0.2% gel solution onto microarc oxidation (MAO)-treated titanium (Ti) surfaces to fabricate the miR-21-functionalized MAO Ti surface, resulting in the development of a novel coating for reverse transfection. To characterize the CS/HA/miR-21 nanoparticles, their particle size, zeta potential, surface morphology, and gel retardation ability were sequentially investigated. Their biological effects, such as cell viability, cytotoxicity, and expression of osteogenic genes by hBMMSCs on the miR-21-functionalized MAO Ti surfaces, were evaluated. Finally, we explored appropriate CS/HA/miR-21 nanoparticles with a CS/HA ratio of 4:1 and N/P ratio 20:1 for transfection, which presented good spherical morphology, an average diameter of 160.4±10.75 nm, and a positive zeta potential. The miR-21-functionalized MAO Ti surfaces demonstrated cell viability, cytotoxicity, and cell spreading comparable to those exhibited by naked MAO Ti surfaces and led to significantly higher expression of osteogenic genes. This novel miR-21-functionalized Ti implant may be used in the clinic to allow more effective and robust osseointegration. PMID:26604744

  2. Ionizing radiation promotes advanced malignant traits in nasopharyngeal carcinoma via activation of epithelial-mesenchymal transition and the cancer stem cell phenotype

    PubMed Central

    SU, ZHONGWU; LI, GUO; LIU, CHAO; REN, SHULING; TIAN, YONGQUAN; LIU, YONG; QIU, YUANZHENG

    2016-01-01

    Post-irradiation residual mass and recurrence always suggest a worse prognosis for nasopharyngeal carcinoma (NPC). Our study aimed to investigate the malignant behaviors of post-irradiation residual NPC cells, to identify the potential underlying mechanisms and to search for appropriate bio-targets to overcome this malignancy. Two NPC cell lines were firstly exposed to 60 Gy irradiation, and residual cells were collected. In our previous study, colony formation assay detected the radioresistance of these cells. Here, the CCK-8 assay examined the cell sensitivity to paclitaxel and cisplatin. Wound-healing and Transwell assays were performed to investigate cell motility and invasion capabilities. Inverted phase-contrast microscopy was used to observe and photograph the morphology of cells. Expression levels of epithelial-mesenchymal transition (EMT)-related proteins were detected by western blot assay in NPC cells and tissues. The mRNA levels of cancer stem cell (CSC)-related genes were detected via qRT-PCR. The results revealed that residual NPC cells exhibited enhanced radioresistance and cross-resistance to paclitaxel and cisplatin. Higher capacities of invasion and migration were also observed. An elongated morphology with pseudopodia formation and broadening in the intercellular space was observed in the residual cells. Downregulation of E-cadherin and upregulation of vimentin were detected in the residual NPC cells and tissues. CSC-related Lgr5 and c-myc were significantly upregulated in the CNE-2-Rs and 6-10B-Rs radioresistance cells. Higher proportions of Lgr5+ cells were observed in radioresistant cells via immunofluorescent staining and flow cytometry. In conclusion, our study demonstrated that residual NPC cells had an advanced malignant transition and presented with both EMT and a CSC phenotype. This provides a possible clue and treatment strategy for advanced and residual NPC. PMID:27108809

  3. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets.

    PubMed

    Sordi, Valeria; Malosio, Maria Luisa; Marchesi, Federica; Mercalli, Alessia; Melzi, Raffaella; Giordano, Tiziana; Belmonte, Nathalie; Ferrari, Giuliana; Leone, Biagio Eugenio; Bertuzzi, Federico; Zerbini, Gianpaolo; Allavena, Paola; Bonifacio, Ezio; Piemonti, Lorenzo

    2005-07-15

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) are stromal cells with the ability to proliferate and differentiate into many tissues. Although they represent powerful tools for several therapeutic settings, mechanisms regulating their migration to peripheral tissues are still unknown. Here, we report chemokine receptor expression on human BM-MSCs and their role in mediating migration to tissues. A minority of BM-MSCs (2% to 25%) expressed a restricted set of chemokine receptors (CXC receptor 4 [CXCR4], CX3C receptor 1 [CX3CR1], CXCR6, CC chemokine receptor 1 [CCR1], CCR7) and, accordingly, showed appreciable chemotactic migration in response to the chemokines CXC ligand 12 (CXCL12), CX3CL1, CXCL16, CC chemokine ligand 3 (CCL3), and CCL19. Using human pancreatic islets as an in vitro model of peripheral tissue, we showed that islet supernatants released factors able to attract BM-MSCs in vitro, and this attraction was principally mediated by CX3CL1 and CXCL12. Moreover, cells with features of BM-MSCs were detected within the pancreatic islets of mice injected with green fluorescent protein (GFP)-positive BM. A population of bona fide MSCs that also expressed CXCR4, CXCR6, CCR1, and CCR7 could be isolated from normal adult human pancreas. This study defines the chemokine receptor repertoire of human BM-MSCs that determines their migratory activity. Modulation of homing capacity may be instrumental for harnessing the therapeutic potential of BM-MSCs. PMID:15784733

  4. Lentiviral-mediated multiple gene transfer to chondrocytes promotes chondrocyte differentiation and bone formation in rabbit bone marrow-derived mesenchymal stem cells.

    PubMed

    Liu, Ping; Sun, Liang; Chen, Hui; Sun, Shui; Zhou, Dongsheng; Pang, Bo; Wang, Jian

    2015-11-01

    The aim of the present study was to provide a theoretical and experimental foundation on the differentiation of stem cells through the induction of multiple genes. The lentiviral vector carrying TGF-β1 and IL-10 genes was transfected to bone marrow-derived mesenchymal stem cells (BMSCs) which differentiated into chondrogenesis. Healthy New Zealand white rabbits, 2-3 months of age were used in the present study. A 6-8 ml of bone marrow was isolated from the iliac and tibial shaft of each rabbit. The BMSCs suspension was aspired following centrifugation of the bone marrow by percoll separating medium. The BMSCs were primarily cultured and subcultured in vitro, then divided into four groups according to the difference of lentivirus vectors: group A, receiving transforming growth factor β1 (TGF‑β1); group B, receiving TGF-β1 and Interleukin-10 (IL-10); group C, empty vector transfection; and group D, receiving no cell growth factor. Fluorescence expression was detected 12 h after transfecting the lentiviral vector carrying the TGF-β1 and IL-10 gene to BMSCs. The transfection efficiency was approximately 70% with a MOI=100 after 96 h. Expression of SOX-9 aggrecan and Type Ⅱ collagen in groups A-E on day 7 and 14 was detected by RT-PCR and western blot analysis. The expression level of three genes expressed in groups A and C were higher compared to the expression in groups B, D and E. The expression level of the three genes expressed in group B was higher compared to the expression in group D. The expression level of three genes expressed in group A and C showed no statistical difference. Cytokines therefore play an important role in cell proliferation and chondrogenic differentiation. TGF-β1 has a synergistic effect in the differentiation. In addition, IL-10 may have a protective role in the restoration of cartilaginous tissue. PMID:26328747

  5. Endothelial Cells Direct Mesenchymal Stem Cells Toward a Smooth Muscle Cell Fate

    PubMed Central

    Lin, Cho-Hao

    2014-01-01

    Under defined conditions, mesenchymal stem cells can differentiate into unique cell types, making them attractive candidates for cell-based disease therapies. Ischemic diseases would greatly benefit from treatments that include the formation of new blood vessels from mesenchymal stem cells. However, blood vessels are complex structures composed of endothelial cells and smooth muscle cells, and their assembly and function in a diseased environment is reliant upon joining with the pre-existing vasculature. Although endothelial cell/smooth muscle cell interactions are well known, how endothelial cells may influence mesenchymal stem cells and facilitate their differentiation has not been defined. Therefore, we sought to explore how endothelial cells might drive mesenchymal stem cells toward a smooth muscle fate. Our data show that cocultured endothelial cells induce smooth muscle cell differentiation in mesenchymal stem cells. Endothelial cells can promote a contractile phenotype, reduce proliferation, and enhance collagen synthesis and secretion. Our data show that Notch signaling is essential for endothelial cell-dependent differentiation, and this differentiation pathway is largely independent of growth factor signaling mechanisms. PMID:24914692

  6. Chinese herbs and their active ingredients for activating xue (blood) promote the proliferation and differentiation of neural stem cells and mesenchymal stem cells

    PubMed Central

    2014-01-01

    Some Chinese herbs are anti-thrombolysis, and anti-inflammatory, improves brain RNA content, promotes brain protein synthesis, enhances dopamine function, regulates brain hormones, and improves microcirculation in central nervous system that might improve, repair and rehabilitation from the stroke and brain injury. Specific Chinese herbs and their components, such as Acanthopanax, Angelica, could maintain the survival of neural stem cells, and Rhodiola, Ganoderma spore Polygala, Tetramethylpyrazine, Gardenia, Astragaloside and Ginsenoside Rg1 promoted proliferation of neural stem cells, and Rhodiola, Astragaloside promoted differentiation of neural stem cell into neuron and glia in vivo. Astragalus, Safflower, Musk, Baicalin, Geniposide, Ginkgolide B, Cili polysaccharide, Salidroside, Astragaloside, Antler polypeptides, Ginsenoside Rg1, Panax notoginseng saponins promoted proliferation and differentiation of neural stem cells in vitro. Salvia, Astragalus, Ginsenoside Rg1, P. notoginseng saponins, Musk polypeptide, Muscone and Ginkgolide B promoted neural-directed differentiation of MSCs into nerve cells. These findings are encouraging further research into the Chinese herbs for developing drugs in treating patients of stroke and brain injury. PMID:24716802

  7. The Effects of Secretion Factors from Umbilical Cord Derived Mesenchymal Stem Cells on Osteogenic Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Wang, Kui-Xing; Xu, Liang-Liang; Rui, Yun-Feng; Huang, Shuo; Lin, Si-En; Xiong, Jiang-Hui; Li, Ying-Hui; Lee, Wayne Yuk-Wai; Li, Gang

    2015-01-01

    Factors synthesized by mesenchymal stem cells (MSCs) contain various growth factors, cytokines, exosomes and microRNAs, which may affect the differentiation abilities of MSCs. In the present study, we investigated the effects of secretion factors of human umbilical cord derived mesenchymal stem cells (hUCMSCs) on osteogenesis of human bone marrow derived MSCs (hBMSCs). The results showed that 20 μg/ml hUCMSCs secretion factors could initiate osteogenic differentiation of hBMSCs without osteogenic induction medium (OIM), and the amount of calcium deposit (stained by Alizarin Red) was significantly increased after the hUCMSCs secretion factors treatment. Real time quantitative reverse transcription-polymerase chain reaction (real time qRT-PCR) demonstrated that the expression of osteogenesis-related genes including ALP, BMP2, OCN, Osterix, Col1α and Runx2 were significantly up-regulated following hUCMSCs secretion factors treatment. In addition, we found that 10 μg hUCMSCs secretion factors together with 2×105 hBMSCs in the HA/TCP scaffolds promoted ectopic bone formation in nude mice. Local application of 10 μg hUCMSCs secretion factors with 50 μl 2% hyaluronic acid hydrogel and 1×105 rat bone marrow derived MSCs (rBMSCs) also significantly enhanced the bone repair of rat calvarial bone critical defect model at both 4 weeks and 8 weeks. Moreover, the group that received the hUCMSCs secretion factors treatment had more cartilage and bone regeneration in the defect areas than those in the control group. Taken together, these findings suggested that hUCMSCs secretion factors can initiate osteogenesis of bone marrow MSCs and promote bone repair. Our study indicates that hUCMSCs secretion factors may be potential sources for promoting bone regeneration. PMID:25799169

  8. Mesenchymal stem cells: From stem cells to sarcomas.

    PubMed

    Lye, Kwan Liang; Nordin, Norshariza; Vidyadaran, Sharmili; Thilakavathy, Karuppiah

    2016-06-01

    Mesenchymal stem cells (MSCs) have garnered vast interests in clinical settings, especially in regenerative medicine due to their unique properties-they are reliably isolated and expanded from various tissue sources; they are able to differentiate into mesodermal tissues such as bones, cartilages, adipose tissues, and muscles; and they have unique immunosuppressive properties. However, there are some concerns pertaining to the role of MSCs in the human body. On one hand, they are crucial component in the regeneration and repair of the human body. On the contrary, they are shown to transform into sarcomas. Although the exact mechanisms are still unknown, many new leads have pointed to the belief that MSCs do play a role in sarcomagenesis. This review focuses on the current updates and findings of the role of MSCs in their transformation process into sarcomas. PMID:26992453

  9. Human bone marrow mesenchymal stem cell transplantation attenuates axonal injury in stroke rats

    PubMed Central

    Xu, Yi; Du, Shiwei; Yu, Xinguang; Han, Xiao; Hou, Jincai; Guo, Hao

    2014-01-01

    Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that intravenous transplantation of human bone marrow mesenchymal stem cells through the femoral vein could exert neuroprotective effects against cerebral ischemia via a mechanism associated with the ability to attenuate axonal injury. The results of behavioral tests, infarction volume analysis and immunohistochemistry showed that cerebral ischemia caused severe damage to the myelin sheath and axons. After rats were intravenously transplanted with human bone marrow mesenchymal stem cells, the levels of axon and myelin sheath-related proteins, including microtubule-associated protein 2, myelin basic protein, and growth-associated protein 43, were elevated, infarct volume was decreased and neural function was improved in cerebral ischemic rats. These findings suggest that intravenously transplanted human bone marrow mesenchymal stem cells promote neural function. Possible mechanisms underlying these beneficial effects include resistance to demyelination after cerebral ischemia, prevention of axonal degeneration, and promotion of axonal regeneration. PMID:25657721

  10. Proangiogenic Features of Mesenchymal Stem Cells and Their Therapeutic Applications

    PubMed Central

    Tao, Hongyan; Han, Zhibo; Han, Zhong Chao; Li, Zongjin

    2016-01-01

    Mesenchymal stem cells (MSCs) have shown their therapeutic potency for treatment of cardiovascular diseases owing to their low immunogenicity, ease of isolation and expansion, and multipotency. As multipotent progenitors, MSCs have revealed their ability to differentiate into various cell types and could promote endogenous angiogenesis via microenvironmental modulation. Studies on cardiovascular diseases have demonstrated that transplanted MSCs could engraft at the injured sites and differentiate into cardiomyocytes and endothelial cells as well. Accordingly, several clinical trials using MSCs have been performed and revealed that MSCs may improve relevant clinical parameters in patients with vascular diseases. To fully comprehend the characteristics of MSCs, understanding their intrinsic property and associated modulations in tuning their behaviors as well as functions is indispensable for future clinical translation of MSC therapy. This review will focus on recent progresses on endothelial differentiation and potential clinical application of MSCs, with emphasis on therapeutic angiogenesis for treatment of cardiovascular diseases. PMID:26880933

  11. The role of organ level conditioning on the promotion of engineered heart valve tissue development in-vitro using mesenchymal stem cells.

    PubMed

    Ramaswamy, Sharan; Gottlieb, Danielle; Engelmayr, George C; Aikawa, Elena; Schmidt, David E; Gaitan-Leon, Diana M; Sales, Virna L; Mayer, John E; Sacks, Michael S

    2010-02-01

    We have previously shown that combined flexure and flow (CFF) augment engineered heart valve tissue formation using bone marrow-derived mesenchymal stem cells (MSC) seeded on polyglycolic acid (PGA)/poly-L-lactic acid (PLLA) blend nonwoven fibrous scaffolds (Engelmayr, et al., Biomaterials 2006; vol. 27 pp. 6083-95). In the present study, we sought to determine if these phenomena were reproducible at the organ level in a functional tri-leaflet valve. Tissue engineered valve constructs (TEVC) were fabricated using PGA/PLLA nonwoven fibrous scaffolds then seeded with MSCs. Tissue formation rates using both standard and augmented (using basic fibroblast growth factor [bFGF] and ascorbic acid-2-phosphate [AA2P]) media to enhance the overall production of collagen were evaluated, along with their relation to the local fluid flow fields. The resulting TEVCs were statically cultured for 3 weeks, followed by a 3 week dynamic culture period using our organ level bioreactor (Hildebrand et al., ABME, Vol. 32, pp. 1039-49, 2004) under approximated pulmonary artery conditions. Results indicated that supplemented media accelerated collagen formation (approximately 185% increase in collagen mass/MSC compared to standard media), as well as increasing collagen mass production from 3.90 to 4.43 pg/cell/week from 3 to 6 weeks. Using augmented media, dynamic conditioning increased collagen mass production rate from 7.23 to 13.65 pg/cell/week (88.8%) during the dynamic culture period, along with greater preservation of net DNA. Moreover, when compared to our previous CFF study, organ level conditioning increased the collagen production rate from 4.76 to 6.42 pg/cell/week (35%). Newly conducted CFD studies of the CFF specimen flow patterns suggested that oscillatory surface shear stresses were surprisingly similar to a tri-leaflet valve. Overall, we found that the use of simulated pulmonary artery conditions resulted in substantially larger collagen mass production levels and rates

  12. Nicotinamide Promotes Adipogenesis in Umbilical Cord-Derived Mesenchymal Stem Cells and Is Associated with Neonatal Adiposity: The Healthy Start BabyBUMP Project.

    PubMed

    Shapiro, Allison L B; Boyle, Kristen E; Dabelea, Dana; Patinkin, Zachary W; De la Houssaye, Becky; Ringham, Brandy M; Glueck, Deborah H; Barbour, Linda A; Norris, Jill M; Friedman, Jacob E

    2016-01-01

    The cellular mechanisms whereby excess maternal nutrition during pregnancy increases adiposity of the offspring are not well understood. However, nicotinamide (NAM), a fundamental micronutrient that is important in energy metabolism, has been shown to regulate adipogenesis through inhibition of SIRT1. Here we tested three novel hypotheses: 1) NAM increases the adipogenic response of human umbilical cord tissue-derived mesenchymal stem cells (MSCs) through a SIRT1 and PPARγ pathway; 2) lipid potentiates the NAM-enhanced adipogenic response; and 3) the adipogenic response to NAM is associated with increased percent fat mass (%FM) among neonates. MSCs were derived from the umbilical cord of 46 neonates born to non-obese mothers enrolled in the Healthy Start study. Neonatal %FM was measured using air displacement plethysmography (Pea Pod) shortly after birth. Adipogenic differentiation was induced for 21 days in the 46 MSC sets under four conditions, +NAM (3mM)/-lipid (200 μM oleate/palmitate mix), +NAM/+lipid, -NAM/+lipid, and vehicle-control (-NAM/-lipid). Cells incubated in the presence of NAM had significantly higher PPARγ protein (+24%, p <0.01), FABP4 protein (+57%, p <0.01), and intracellular lipid content (+51%, p <0.01). Lipid did not significantly increase either PPARγ protein (p = 0.98) or FABP4 protein content (p = 0.82). There was no evidence of an interaction between NAM and lipid on adipogenic response of PPARγ or FABP4 protein (p = 0.99 and p = 0.09). In a subset of 9 MSC, SIRT1 activity was measured in the +NAM/-lipid and vehicle control conditions. SIRT1 enzymatic activity was significantly lower (-70%, p <0.05) in the +NAM/-lipid condition than in vehicle-control. In a linear model with neonatal %FM as the outcome, the percent increase in PPARγ protein in the +NAM/-lipid condition compared to vehicle-control was a significant predictor (β = 0.04, 95% CI 0.01-0.06, p <0.001). These are the first data to support that chronic NAM exposure

  13. Nicotinamide Promotes Adipogenesis in Umbilical Cord-Derived Mesenchymal Stem Cells and Is Associated with Neonatal Adiposity: The Healthy Start BabyBUMP Project

    PubMed Central

    Shapiro, Allison L. B.; Boyle, Kristen E.; Dabelea, Dana; Patinkin, Zachary W.; De la Houssaye, Becky; Ringham, Brandy M.; Glueck, Deborah H.; Barbour, Linda A.; Norris, Jill M.; Friedman, Jacob E.

    2016-01-01

    The cellular mechanisms whereby excess maternal nutrition during pregnancy increases adiposity of the offspring are not well understood. However, nicotinamide (NAM), a fundamental micronutrient that is important in energy metabolism, has been shown to regulate adipogenesis through inhibition of SIRT1. Here we tested three novel hypotheses: 1) NAM increases the adipogenic response of human umbilical cord tissue-derived mesenchymal stem cells (MSCs) through a SIRT1 and PPARγ pathway; 2) lipid potentiates the NAM-enhanced adipogenic response; and 3) the adipogenic response to NAM is associated with increased percent fat mass (%FM) among neonates. MSCs were derived from the umbilical cord of 46 neonates born to non-obese mothers enrolled in the Healthy Start study. Neonatal %FM was measured using air displacement plethysmography (Pea Pod) shortly after birth. Adipogenic differentiation was induced for 21 days in the 46 MSC sets under four conditions, +NAM (3mM)/–lipid (200 μM oleate/palmitate mix), +NAM/+lipid, –NAM/+lipid, and vehicle-control (–NAM/–lipid). Cells incubated in the presence of NAM had significantly higher PPARγ protein (+24%, p <0.01), FABP4 protein (+57%, p <0.01), and intracellular lipid content (+51%, p <0.01). Lipid did not significantly increase either PPARγ protein (p = 0.98) or FABP4 protein content (p = 0.82). There was no evidence of an interaction between NAM and lipid on adipogenic response of PPARγ or FABP4 protein (p = 0.99 and p = 0.09). In a subset of 9 MSC, SIRT1 activity was measured in the +NAM/-lipid and vehicle control conditions. SIRT1 enzymatic activity was significantly lower (-70%, p <0.05) in the +NAM/-lipid condition than in vehicle-control. In a linear model with neonatal %FM as the outcome, the percent increase in PPARγ protein in the +NAM/-lipid condition compared to vehicle-control was a significant predictor (β = 0.04, 95% CI 0.01–0.06, p <0.001). These are the first data to support that chronic NAM

  14. Mesenchymal stem cells in cartilage regeneration.

    PubMed

    Savkovic, Vuk; Li, Hanluo; Seon, Jong-Keun; Hacker, Michael; Franz, Sandra; Simon, Jan-Christoph

    2014-01-01

    Articular cartilage provides life-long weight-bearing and mechanical lubrication with extraordinary biomechanical performance and simple structure. However, articular cartilage is apparently vulnerable to multifactorial damage and insufficient to self-repair, isolated in articular capsule without nerves or blood vessels. Osteoarthritis (OA) is known as a degenerative articular cartilage deficiency progressively affecting large proportion of the world population, and restoration of hyaline cartilage is clinical challenge to repair articular cartilage lesion and recreate normal functionality over long period. Mesenchymal stem cells (MSC) are highly proliferative and multipotent somatic cells that are able to differentiate mesoderm-derived cells including chondrocytes and osteoblasts. Continuous endeavors in basic research and preclinical trial have achieved promising outcomes in cartilage regeneration using MSCs. This review focuses on rationale and technologies of MSC-based hyaline cartilage repair involving tissue engineering, 3D biomaterials and growth factors. By comparing conventional treatment and current research progress, we describe insights of advantage and challenge in translation and application of MSC-based chondrogenesis for OA treatment. PMID:25005451

  15. Mesenchymal Stem Cells Reduce Murine Atherosclerosis Development

    PubMed Central

    Frodermann, Vanessa; van Duijn, Janine; van Pel, Melissa; van Santbrink, Peter J.; Bot, Ilze; Kuiper, Johan; de Jager, Saskia C. A.

    2015-01-01

    Mesenchymal stem cells (MSCs) have regenerative properties, but recently they were also found to have immunomodulatory capacities. We therefore investigated whether MSCs could reduce atherosclerosis, which is determined by dyslipidaemia and chronic inflammation. We adoptively transferred MSCs into low-density lipoprotein-receptor knockout mice and put these on a Western-type diet to induce atherosclerosis. Initially after treatment, we found higher levels of circulating regulatory T cells. In the long-term, overall numbers of effector T cells were reduced by MSC treatment. Moreover, MSC-treated mice displayed a significant 33% reduction in circulating monocytes and a 77% reduction of serum CCL2 levels. Most strikingly, we found a previously unappreciated effect on lipid metabolism. Serum cholesterol was reduced by 33%, due to reduced very low-density lipoprotein levels, likely a result of reduced de novo hepatic lipogenesis as determined by a reduced expression of Stearoyl-CoA desaturase-1 and lipoprotein lipase. MSCs significantly affected lesion development, which was reduced by 33% in the aortic root. These lesions contained 56% less macrophages and showed a 61% reduction in T cell numbers. We show here for the first time that MSC treatment affects not only inflammatory responses but also significantly reduces dyslipidaemia in mice. This makes MSCs a potent candidate for atherosclerosis therapies. PMID:26490642

  16. Mesenchymal stem cells: from experiment to clinic

    PubMed Central

    2011-01-01

    There is currently much interest in adult mesenchymal stem cells (MSCs) and their ability to differentiate into other cell types, and to partake in the anatomy and physiology of remote organs. It is now clear these cells may be purified from several organs in the body besides bone marrow. MSCs take part in wound healing by contributing to myofibroblast and possibly fibroblast populations, and may be involved in epithelial tissue regeneration in certain organs, although this remains more controversial. In this review, we examine the ability of MSCs to modulate liver, kidney, heart and intestinal repair, and we update their opposing qualities of being less immunogenic and therefore tolerated in a transplant situation, yet being able to contribute to xenograft models of human tumour formation in other contexts. However, such observations have not been replicated in the clinic. Recent studies showing the clinical safety of MSC in several pathologies are discussed. The possible opposing powers of MSC need careful understanding and control if their clinical potential is to be realised with long-term safety for patients. PMID:21902837

  17. Mesenchymal stem cells and inflammatory lung diseases.

    PubMed

    Iyer, S S; Co, C; Rojas, M

    2009-03-01

    Mesenchymal stem cells (MSCs) are emerging as a therapeutic modality in various inflammatory disease states. A number of ongoing randomized Phase I/II clinical trials are evaluating the effects of allogeneic MSC infusion in patients with multiple sclerosis, graft-versus-host disease, Crohn's disease, and severe chronic myocardial ischemia. MSCs are also being considered as a potential therapy in patients with inflammatory lung diseases. Several studies, including our own, have demonstrated compelling benefits from the administration of MSCs in animal models of lung injury. These studies are leading to growing interest in the therapeutic use of MSCs in inflammatory lung diseases. In this Review, we describe how the immunoregulatory effects of MSCs can confer substantial protection in the setting of lung diseases such as acute lung injury, chronic obstructive pulmonary disease, asthma, and pulmonary hypertension. We also address potential pitfalls related to the therapeutic use of MSCs in fibrotic lung diseases such as idiopathic pulmonary fibrosis. In addition, we identify emerging areas for MSC- based therapies in modulating oxidative stress and in attenuating inflammation in alcohol-related acute lung injury. PMID:19352305

  18. Clinical applications of mesenchymal stem cells

    PubMed Central

    2012-01-01

    Mesenchymal stem cells (MSC) have generated a great amount of enthusiasm over the past decade as a novel therapeutic paradigm for a variety of diseases. Currently, MSC based clinical trials have been conducted for at least 12 kinds of pathological conditions, with many completed trials demonstrating the safety and efficacy. This review provides an overview of the recent clinical findings related to MSC therapeutic effects. Roles of MSCs in clinical trials conducted to treat graft-versus-host-disease (GVHD) and cardiovascular diseases are highlighted. Clinical application of MSC are mainly attributed to their important four biological properties- the ability to home to sites of inflammation following tissue injury when injected intravenously; to differentiate into various cell types; to secrete multiple bioactive molecules capable of stimulating recovery of injured cells and inhibiting inflammation and to perform immunomodulatory functions. Here, we will discuss these four properties. Moreover, the issues surrounding clinical grade MSCs and principles for MSC therapeutic approaches are also addressed on the transition of MSCs therapy from bench side to bedside. PMID:22546280

  19. Mesenchymal stem cell-derived exosomes facilitate nasopharyngeal carcinoma progression

    PubMed Central

    Shi, Si; Zhang, Qicheng; Xia, Yunfei; You, Bo; Shan, Ying; Bao, Lili; Li, Li; You, Yiwen; Gu, Zhifeng

    2016-01-01

    Mesenchymal stem cells (MSCs), which are capable of differentiating into multiple cell types, are reported to exert multiple effects on tumor development. However, the relationship between MSCs and nasopharyngeal carcinoma (NPC) cells remains unclear. Exosomes are small membrane vesicles that can be released by several cell types, including MSCs. Exosomes, which can carry membrane and cytoplasmic constituents, have been described as participants in a novel mechanism of cell-to-cell communication. In the present study, we investigated the mechanisms underlying the interaction between MSCs and NPC cells. The data showed that MSCs secreted 40-100 nm heterogeneous small vesicles, which were defined as exosomes. Incubation of NPC cells with MSC-derived exosomes resulted in the uptake of exosomes by the cells, which promoted their proliferation, migration and tumorigenesis. After an extended treatment duration, the tumor cells showed morphological changes and significant changes in the expression of epithelial-mesenchymal transition (EMT) markers. Moreover, we found that FGF19 was highly expressed in MSC-exosomes and that exosomes stimulated NPC progression by activating the FGF19-FGFR4-dependent ERK signaling cascade and by modulating the EMT. All of these data indicated that exosomes participate in a novel mechanism by which MSCs influence NPC progression. PMID:27186416

  20. Cancer-associated mesenchymal stem cells aggravate tumor progression

    PubMed Central

    Kudo-Saito, Chie

    2015-01-01

    Mesenchymal stem cells (MSCs) have both stemness and multi-modulatory activities on other cells, and the immunosuppressive and tumor-promotive mechanisms have been intensively investigated in cancer. The role of MSCs appears to be revealed in tumor aggravation, and targeting MSCs seems to be a promising strategy for treating cancer patients. However, it is still impractical in clinical therapy, since the precise MSCs are poorly understood in the in vivo setting. In previous studies, MSCs were obtained from different sources, and were prepared by ex vivo expansion for a long term. The inconsistent experimental conditions made the in vivo MSCs obscure. To define the MSCs in the host is a priority issue for targeting MSCs in cancer therapy. We recently identified a unique subpopulation of MSCs increasing in mice and human with cancer metastasis. These MSCs are specifically expanded by metastatic tumor cells, and promote tumor progression and dissemination accompanied by immune suppression and dysfunction in the host, more powerfully than normal MSCs growing without interference of cancer. In this review, we summarize current knowledge of the role of MSCs in tumor aggravation, along with our new findings of the bizarre MSCs. PMID:25883937

  1. University Festival Promotes STEM Education

    ERIC Educational Resources Information Center

    Quagliata, Andrew B.

    2015-01-01

    STEM education is argued as an essential ingredient in preparing our children for careers of the future. This study describes a university festival that includes the promotion of STEM-related career interests in young people among its goals. A total of 203 participants between the age of 7 and 17 completed both pre-event and post-event surveys. In…

  2. 660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment

    PubMed Central

    Li, Xianchao; Hou, Wensheng; Wu, Xiaoying; Jiang, Wei; Chen, Haiyan; Xiao, Nong; Zhou, Ping

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hypoxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efficiencies are relatively low. Red or near-infrared light from 600–1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migration and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2, an increasing number of green fluorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 × 106 bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2 for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental findings indicate that 660 nm red light emitting diode irradiation promotes the migration of bone marrow mesenchymal stem cells, thereby enhancing the contribution of cell transplantation in the treatment of hypoxic-ischemic brain damage. PMID:25206807

  3. miR-204-5p promotes the adipogenic differentiation of human adipose-derived mesenchymal stem cells by modulating DVL3 expression and suppressing Wnt/β-catenin signaling

    PubMed Central

    HE, HONGHUI; CHEN, KE; WANG, FANG; ZHAO, LILING; WAN, XINXING; WANG, LINGHAO; MO, ZHAOHUI

    2015-01-01

    MicroRNAs (miRNAs or miRs) play an important regulatory role during adipogenesis, and have been studied extensively in this regard. Specifically, the switch between the differentiation of mesenchymal stem cells (MSCs) towards adipogenic vs. osteogenic lineages is regulated by miR-204 which controls the expression of Runx2. However, the association between miR-204-5p and the Wnt/β-catenin signaling pathway during adipogenesis has not yet been clarified. In the present study, we demonstrate that miR-204-5p regulates the in vitro adipogenesis of human adipose-derived mesenchymal stem cells (hADSCs). The level of miR-204-5p was shown to be gradually upregulated during adipocytic differentiation, together with the mRNA expression of the critical adipogenic transcription factors, cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT) enhancer binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ), and the mature adipogenic marker, fatty acid binding protein 4 (FABP4). We further demonstrate that while the overexpression of miR-204-5p promotes adipogenesis, its knockdown causes the inhibition of this process. We then used bioinformatics tools and luciferase reporter assay to establish that dishevelled segment polarity protein 3 (DVL3), a key regulator of the Wnt/β-catenin signaling pathway, is a direct target of miR-204-5p. In addition, the overexpression of DVL3 led to an increase in β-catenin and cyclin D1 (CCND1) expression and, by contrast, the knockdown of DVL3 led to a decrease in the expression of β-catenin and CCND1. The knockdown of DVL3 significantly promoted adipogenesis. Finally, we demonstrated that the overexpression of miR-204-5p induced the downregulation of β-catenin and the canonical Wnt target gene, CCND1, in mature adipoctyes, while its knockdown led to their upregulation. Taken together, our data suggest that miR-204-5p regulates adipogenesis by controlling DVL3 expression and subsequently inhibiting the

  4. Adipose-derived mesenchymal stem cells promote the survival of fat grafts via crosstalk between the Nrf2 and TLR4 pathways.

    PubMed

    Chen, Xiaosong; Yan, Liu; Guo, Zhihui; Chen, Zhaohong; Chen, Ying; Li, Ming; Huang, Chushan; Zhang, Xiaoping; Chen, Liangwan

    2016-01-01

    Autologous fat grafting is an effective reconstructive surgery technique; however, its success is limited by inconsistent graft retention and an environment characterized by high oxidative stress and inflammation. Adipose-derived stem cells (ADSCs) increase the survival of fat grafts, although the underlying mechanisms remain unclear. Here, TLR4(-/-) and Nrf2(-/-) mice were used to explore the effects of oxidative stress and inflammation on the viability and function of ADSCs in vitro and in vivo. Enrichment of fat grafts with ADSCs inhibited inflammatory cytokine production, enhanced growth factor levels, increased fat graft survival, downregulated NADPH oxidase (NOX)1 and 4 expression, increased vascularization and reduced ROS production in a manner dependent on toll-like receptor (TLR)-4 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Immunohistochemical analysis showed that exposure to hypoxia enhanced ADSC growth and promoted the differentiation of ADSCs into vascular endothelial cells. Hypoxia-induced inflammatory cytokine, growth factor and NOX1/4 upregulation, as well as increased ROS production and apoptosis in ADSCs were dependent on TLR4 and Nrf2, which also modulated the effect of ADSCs on promoting endothelial progenitor cell migration and angiogenesis. Western blot analyses showed that the effects of hypoxia on ADSCs were regulated by crosstalk between Nrf2 antioxidant responses and NF-κB- and TLR4-mediated inflammatory responses. Taken together, our results indicate that ADSCs can increase the survival of fat transplants through the modulation of inflammatory and oxidative responses via Nrf2 and TLR4, suggesting potential strategies to improve the use of ADSCs for cell therapy. PMID:27607584

  5. Inhibition of Transforming Growth Factor-β Receptor signaling promotes culture expansion of undifferentiated human Endometrial Mesenchymal Stem/stromal Cells

    PubMed Central

    Gurung, Shanti; Werkmeister, Jerome A.; Gargett, Caroline E.

    2015-01-01

    Human endometrial MSC (eMSC) are a novel source of MSC easily harvested from the highly regenerative uterine lining. We have developed protocols for eMSC isolation from single cell suspensions using magnetic bead-sorting using a perivascular marker antibody to SUSD2 and culture expansion in serum free medium (SFM). Similar to other MSC, eMSC spontaneously differentiate into fibroblasts during culture expansion decreasing their purity and efficacy. The aim of this study was to determine if A83-01, a TGF-β receptor inhibitor prevents eMSC differentiation in culture. SUSD2+ eMSC were cultured in SFM with bFGF/EGF in 5% O2/5% CO2. At passage 6, eMSC were incubated with or without A83-01 for 7 days, then analysed for MSC properties. A83-01 dose dependently promoted SUSD2+ eMSC proliferation and blocked apoptosis via the SMAD 2/3 pathway. Fewer A83-01 treated cells were autofluorescent or stained with β-galactosidase, indicating reduced senescence. A83-01-treated cells had higher cloning efficiency, differentiated into mesodermal lineages and expressed MSC phenotypic markers. These data suggest that A83-01 maintains SUSD2+ eMSC stemness, promoting proliferation by blocking senescence and apoptosis in late passage cultures through binding to TGF-β receptors. Small molecules such as A83-01 may enable the expansion of undifferentiated MSC for use in tissue engineering and cell-based therapies. PMID:26461813

  6. Inhibition of Transforming Growth Factor-β Receptor signaling promotes culture expansion of undifferentiated human Endometrial Mesenchymal Stem/stromal Cells.

    PubMed

    Gurung, Shanti; Werkmeister, Jerome A; Gargett, Caroline E

    2015-01-01

    Human endometrial MSC (eMSC) are a novel source of MSC easily harvested from the highly regenerative uterine lining. We have developed protocols for eMSC isolation from single cell suspensions using magnetic bead-sorting using a perivascular marker antibody to SUSD2 and culture expansion in serum free medium (SFM). Similar to other MSC, eMSC spontaneously differentiate into fibroblasts during culture expansion decreasing their purity and efficacy. The aim of this study was to determine if A83-01, a TGF-β receptor inhibitor prevents eMSC differentiation in culture. SUSD2(+) eMSC were cultured in SFM with bFGF/EGF in 5% O2/5% CO2. At passage 6, eMSC were incubated with or without A83-01 for 7 days, then analysed for MSC properties. A83-01 dose dependently promoted SUSD2(+) eMSC proliferation and blocked apoptosis via the SMAD 2/3 pathway. Fewer A83-01 treated cells were autofluorescent or stained with β-galactosidase, indicating reduced senescence. A83-01-treated cells had higher cloning efficiency, differentiated into mesodermal lineages and expressed MSC phenotypic markers. These data suggest that A83-01 maintains SUSD2(+) eMSC stemness, promoting proliferation by blocking senescence and apoptosis in late passage cultures through binding to TGF-β receptors. Small molecules such as A83-01 may enable the expansion of undifferentiated MSC for use in tissue engineering and cell-based therapies. PMID:26461813

  7. Mesenchymal Stem Cells in Kidney Repair.

    PubMed

    Morigi, Marina; Rota, Cinzia; Remuzzi, Giuseppe

    2016-01-01

    Every year 13.3 million people suffer acute kidney injury (AKI), which is associated with a high risk of death or development of long-term chronic kidney disease (CKD) in a substantial percentage of patients besides other organ dysfunctions. To date, the mortality rate per year for AKI exceeds 50 % at least in patients requiring early renal replacement therapy and is higher than the mortality for breast and prostate cancer, heart failure and diabetes combined.Until now, no effective treatments able to accelerate renal recovery and improve survival post AKI have been developed. In search of innovative and effective strategies to foster the limited regeneration capacity of the kidney, several studies have evaluated the ability of mesenchymal stem cells (MSCs) of different origin as an attractive therapeutic tool. The results obtained in several models of AKI and CKD document that MSCs have therapeutic potential in repair of renal injury, preserving renal function and structure thus prolonging animal survival through differentiation-independent pathways. In this chapter, we have summarized the mechanisms underlying the regenerative processes triggered by MSC treatment, essentially due to their paracrine activity. The capacity of MSC to migrate to the site of injury and to secrete a pool of growth factors and cytokines with anti-inflammatory, mitogenic, and immunomodulatory effects is described. New modalities of cell-to-cell communication via the release of microvesicles and exosomes by MSCs to injured renal cells will also be discussed. The translation of basic experimental data on MSC biology into effective care is still limited to preliminary phase I clinical trials and further studies are needed to definitively assess the efficacy of MSC-based therapy in humans. PMID:27236667

  8. Anisotropic mechanosensing by mesenchymal stem cells

    PubMed Central

    Kurpinski, Kyle; Chu, Julia; Hashi, Craig; Li, Song

    2006-01-01

    Mesenchymal stem cells (MSCs) are a potential source for the construction of tissue-engineered vascular grafts. However, how vascular mechanical forces regulate the genetic reprogramming in MSCs is not well understood. Mechanical strain in the vascular wall is anisotropic and mainly in the circumferential direction. We have shown that cyclic uniaxial strain on elastic substrates causes the cells to align perpendicularly to the strain axis, which is different from that in the vascular wall. To simulate the vascular cell alignment and investigate the anisotropic mechanical sensing by MSCs, we used soft lithography to create elastomeric membranes with parallel microgrooves. This topographic pattern kept MSCs aligned parallel to the strain axis, and the cells were subjected to 5% cyclic uniaxial strain (1 Hz) for 2–4 days. DNA microarray analysis revealed global gene expression changes, including an increase in the smooth muscle marker calponin 1, decreases in cartilage matrix markers, and alterations in cell signaling (e.g., down-regulation of the Jagged1 signaling pathway). In addition, uniaxial strain increased MSC proliferation. However, when micropatterning was used to align cells perpendicularly to the axis of mechanical strain, the changes of some genes were diminished, and MSC proliferation was not affected. This study suggests that mechanical strain plays an important role in MSC differentiation and proliferation, and that the effects of mechanotransduction depend on the orientation of cells with respect to the strain axis. The differential cellular responses to the anisotropic mechanical environment have important implications in cardiovascular development, tissue remodeling, and tissue engineering. PMID:17060641

  9. Use of Ferritin Expression, Regulated by Neural Cell-Specific Promoters in Human Adipose Tissue-Derived Mesenchymal Stem Cells, to Monitor Differentiation with Magnetic Resonance Imaging In Vitro

    PubMed Central

    Mo, Cuiping; Mu, Shuhua; Jiang, Xiaogang; Li, Xiaoyun; Zhong, Shizhen; Zhao, Zhenfu; Zhou, Guangqian

    2015-01-01

    The purpose of this study was to establish a method for monitoring the neural differentiation of stem cells using ferritin transgene expression, under the control of a neural-differentiation-inducible promoter, and magnetic resonance imaging (MRI). Human adipose tissue-derived mesenchymal stem cells (hADMSCs) were transduced with a lentivirus containing the human ferritin heavy chain 1 (FTH1) gene coupled to one of three neural cell-specific promoters: human synapsin 1 promoter (SYN1p, for neurons), human glial fibrillary acidic protein promoter (GFAPp, for astrocytes), and human myelin basic protein promoter (MBPp, for oligodendrocytes). Three groups of neural-differentiation-inducible ferritin-expressing (NDIFE) hADMSCs were established: SYN1p-FTH1, GFAPp-FTH1, and MBPp-FTH1. The proliferation rate of the NDIFE hADMSCs was evaluated using a Cell Counting Kit-8 assay. Ferritin expression was assessed with western blotting and immunofluorescent staining before and after the induction of differentiation in NDIFE hADMSCs. The intracellular iron content was measured with Prussian blue iron staining and inductively coupled plasma mass spectrometry. R2 relaxation rates were measured with MRI in vitro. The proliferation rates of control and NDIFE hADMSCs did not differ significantly (P > 0.05). SYN1p-FTH1, GFAPp-FTH1, and MBPp-FTH1 hADMSCs expressed specific markers of neurons, astrocytes, and oligodendrocytes, respectively, after neural differentiation. Neural differentiation increased ferritin expression twofold, the intracellular iron content threefold, and the R2 relaxation rate two- to threefold in NDIFE hADMSCs, resulting in notable hypointensity in T2-weighted images (P < 0.05). These results were cross-validated. Thus, a link between neural differentiation and MRI signals (R2 relaxation rate) was established in hADMSCs. The use of MRI and neural-differentiation-inducible ferritin expression is a viable method for monitoring the neural differentiation of h

  10. [New advance of research on therapy of severe acute radiation sickness with mesenchymal stem cells].

    PubMed

    Guo, Ling-Ling; Li, Ming; Xing, Shuang; Luo, Qing-Liang

    2011-06-01

    Mesenchymal stem cells (MSC) are a kind of non-hematopoietic adult stem cells with self-renewal and multilineage differentiation potential, which have special biological characteristics, such as secreting various cytokines, promoting hematopoiesis, accelerating stem cells homing and reconstructing hematopoietic microenvironment. MSC are collected and amplified easily, and can be transfected by exogenous gene. Many reports indicated that MSC were applied in therapy for variety of tissues and organs injury, meanwhile the treatment for acute radiation sickness has made significant progress. In this review, the biological characteristics and new research advance on MSC in treatment of severe acute radiation sickness are summarized and discussed. PMID:21729581

  11. [Mesenchymal stem cells: from biology to clinical applications].

    PubMed

    Franchini, Massimo

    2003-11-01

    Mesenchymal stem cells (MSC) are multipotent cells present in a variety of tissues during human development and in adults mainly in bone marrow. Mesenchymal stem cells may be isolated and expanded in vitro and they are capable to differentiate into a variety of tissues, including bone, cartilage, muscle and adipose tissue. In this review we briefly analyze the main biological features of MSC with particular attention to their interaction with hemopoietic system and to their differentiative properties. Finally, we focus on the main MSC applications both in the fields of genetic and tissue engineering. PMID:14679915

  12. Bile acids induce hepatic differentiation of mesenchymal stem cells

    PubMed Central

    Sawitza, Iris; Kordes, Claus; Götze, Silke; Herebian, Diran; Häussinger, Dieter

    2015-01-01

    Mesenchymal stem cells (MSC) have the potential to differentiate into multiple cell lineages and their therapeutic potential has become obvious. In the liver, MSC are represented by stellate cells which have the potential to differentiate into hepatocytes after stimulation with growth factors. Since bile acids can promote liver regeneration, their influence on liver-resident and bone marrow-derived MSC was investigated. Physiological concentrations of bile acids such as tauroursodeoxycholic acid were able to initiate hepatic differentiation of MSC via the farnesoid X receptor and transmembrane G-protein-coupled bile acid receptor 5 as investigated with knockout mice. Notch, hedgehog, transforming growth factor-β/bone morphogenic protein family and non-canonical Wnt signalling were also essential for bile acid-mediated differentiation, whereas β-catenin-dependent Wnt signalling was able to attenuate this process. Our findings reveal bile acid-mediated signalling as an alternative way to induce hepatic differentiaion of stem cells and highlight bile acids as important signalling molecules during liver regeneration. PMID:26304833

  13. Epac Activation Regulates Human Mesenchymal Stem Cells Migration and Adhesion.

    PubMed

    Yu, Jiao-Le; Deng, Ruixia; Chung, Sookja K; Chan, Godfrey Chi-Fung

    2016-04-01

    How to enhance the homing of human mesenchymal stem cells (hMSCs) to the target tissues remains a clinical challenge nowadays. To overcome this barrier, the mechanism responsible for the hMSCs migration and engraftment has to be defined. Currently, the exact mechanism involved in migration and adhesion of hMSCs remains unknown. Exchange protein directly activated by cAMP (Epac), a novel protein discovered in cAMP signaling pathway, may have a potential role in regulating cells adhesion and migration by triggering the downstream Rap family signaling cascades. However, the exact role of Epac in cells homing is elusive. Our study evaluated the role of Epac in the homing of hMSCs. We confirmed that hMSCs expressed functional Epac and its activation enhanced the migration and adhesion of hMSCs significantly. The Epac activation was further found to be contributed directly to the chemotactic responses induced by stromal cell derived factor-1 (SDF-1) which is a known chemokine in regulating hMSCs homing. These findings suggested Epac is connected to the SDF-1 signaling cascades. In conclusion, our study revealed that Epac plays a role in hMSCs homing by promoting adhesion and migration. Appropriate manipulation of Epac may enhance the homing of hMSCs and facilitate their future clinical applications. Stem Cells 2016;34:948-959. PMID:26727165

  14. The adult human brain harbors multipotent perivascular mesenchymal stem cells.

    PubMed

    Paul, Gesine; Özen, Ilknur; Christophersen, Nicolaj S; Reinbothe, Thomas; Bengzon, Johan; Visse, Edward; Jansson, Katarina; Dannaeus, Karin; Henriques-Oliveira, Catarina; Roybon, Laurent; Anisimov, Sergey V; Renström, Erik; Svensson, Mikael; Haegerstrand, Anders; Brundin, Patrik

    2012-01-01

    Blood vessels and adjacent cells form perivascular stem cell niches in adult tissues. In this perivascular niche, a stem cell with mesenchymal characteristics was recently identified in some adult somatic tissues. These cells are pericytes that line the microvasculature, express mesenchymal markers and differentiate into mesodermal lineages but might even have the capacity to generate tissue-specific cell types. Here, we isolated, purified and characterized a previously unrecognized progenitor population from two different regions in the adult human brain, the ventricular wall and the neocortex. We show that these cells co-express markers for mesenchymal stem cells and pericytes in vivo and in vitro, but do not express glial, neuronal progenitor, hematopoietic, endothelial or microglial markers in their native state. Furthermore, we demonstrate at a clonal level that these progenitors have true multilineage potential towards both, the mesodermal and neuroectodermal phenotype. They can be epigenetically induced in vitro into adipocytes, chondroblasts and osteoblasts but also into glial cells and immature neurons. This progenitor population exhibits long-term proliferation, karyotype stability and retention of phenotype and multipotency following extensive propagation. Thus, we provide evidence that the vascular niche in the adult human brain harbors a novel progenitor with multilineage capacity that appears to represent mesenchymal stem cells and is different from any previously described human neural stem cell. Future studies will elucidate whether these cells may play a role for disease or may represent a reservoir that can be exploited in efforts to repair the diseased human brain. PMID:22523602

  15. Semaphorin 3A Induces Mesenchymal-Stem-Like Properties in Human Periodontal Ligament Cells

    PubMed Central

    Maeda, Hidefumi; Hasegawa, Daigaku; Gronthos, Stan; Bartold, Peter Mark; Menicanin, Danijela; Fujii, Shinsuke; Yoshida, Shinichiro; Tomokiyo, Atsushi; Monnouchi, Satoshi; Akamine, Akifumi

    2014-01-01

    Periodontal ligament stem cells (PDLSCs) have recently been proposed as a novel option in periodontal regenerative therapy. However, one of the issues is the difficulty of stably generating PDLSCs because of the variation of stem cell potential between donors. Here, we show that Semaphorin 3A (Sema3A) can induce mesenchymal-stem-like properties in human periodontal ligament (PDL) cells. Sema3A expression was specifically observed in the dental follicle during tooth development and in parts of mature PDL tissue in rodent tooth and periodontal tissue. Sema3A expression levels were found to be higher in multipotential human PDL cell clones compared with low-differentiation potential clones. Sema3A-overexpressing PDL cells exhibited an enhanced capacity to differentiate into both functional osteoblasts and adipocytes. Moreover, PDL cells treated with Sema3A only at the initiation of culture stimulated osteogenesis, while Sema3A treatment throughout the culture had no effect on osteogenic differentiation. Finally, Sema3A-overexpressing PDL cells upregulated the expression of embryonic stem cell markers (NANOG, OCT4, and E-cadherin) and mesenchymal stem cell markers (CD73, CD90, CD105, CD146, and CD166), and Sema3A promoted cell division activity of PDL cells. These results suggest that Sema3A may possess the function to convert PDL cells into mesenchymal-stem-like cells. PMID:24380401

  16. Hypoxia and Stem Cell-Based Engineering of Mesenchymal Tissues

    PubMed Central

    Ma, Teng; Grayson, Warren L.; Fröhlich, Mirjam; Vunjak-Novakovic, Gordana

    2009-01-01

    Stem cells have the ability for prolonged self-renewal and differentiation into mature cells of various lineages, which makes them important cell sources for tissue engineering applications. Their remarkable ability to replenish and differentiate in vivo is regulated by both intrinsic and extrinsic cellular mechanisms. The anatomical location where the stem cells reside, known as the “stem cell niche or microenvironment,” provides signals conducive to the maintenance of definitive stem cell properties. Physiological condition including oxygen tension is an important component of the stem cell microenvironment and has been shown to play a role in regulating both embryonic and adult stem cells. This review focuses on oxygen as a signaling molecule and the way it regulates the stem cells' development into mesenchymal tissues in vitro. The physiological relevance of low oxygen tension as an environmental parameter that uniquely benefits stem cells' expansion and maintenance is described along with recent findings on the regulatory effects of oxygen on embryonic stem cells and adult mesenchymal stem cells. The relevance to tissue engineering is discussed in the context of the need to specifically regulate the oxygen content in the cellular microenvironment in order to optimize in vitro tissue development. PMID:19198002

  17. miR-29c-3p promotes senescence of human mesenchymal stem cells by targeting CNOT6 through p53-p21 and p16-pRB pathways.

    PubMed

    Shang, Jin; Yao, Yuan; Fan, Xin; Shangguan, Lei; Li, Jie; Liu, Huan; Zhou, Yue

    2016-04-01

    Mesenchymal stem cells (MSCs) are important seed cells for tissue engineering and are promising targets for cell-based therapies. However, the replicative senescence of MSCs during in vitro culture limits their research and clinical applications. The molecular mechanisms underlying the replicative senescence of MSCs are not fully understood. Evidence suggests that miRNAs play important roles in replicative senescence. A microarray analysis found that the miR-29c-3p level was significantly increased during the MSC senescence process. In our study, we investigated the roles of miR-29c-3p in senescence of MSCs. We cultured MSCs for long periods of time, up and down-regulated the miR-29c-3p expression in MSCs, and examined the senescent phenotype changes. The over-expression of miR-29c-3p led to enhanced senescence-associated-β-galactosidase (SA-β-gal) staining, senescence associated secretory phenotype (SASP), senescence associated heterochromatic foci (SAHF), reduced proliferation ability, retarded osteogenic differentiation and corresponding changes in senescence markers, whereas the miR-29c-3p down-regulation had the opposite results. Dual-luciferase reporter assays demonstrated that CNOT6 is the target gene of miR-29c-3p. Knockdown of CNOT6 confirmed its inhibitory effects on the senescence of MSCs. In addition, Western blot results showed that both the p53-p21 and the p16-pRB pathways were activated during the miR-29c-3p-induced senescence of MSCs. In conclusion, our results demonstrate that miR-29c-3p promotes the senescence of MSCs by targeting CNOT6 through p53-p21 and p16-pRB pathways and highlight the contribution of post-transcriptional regulation to stem cell senescence. PMID:26792405

  18. Mesenchymal Stem Cells Respond to Hypoxia by Increasing Diacylglycerols.

    PubMed

    Lakatos, Kinga; Kalomoiris, Stefanos; Merkely, Béla; Nolta, Jan A; Fierro, Fernando A

    2016-02-01

    Mesenchymal stem cells (MSC) are currently being tested clinically for a plethora of conditions, with most approaches relying on the secretion of paracrine signals by MSC to modulate the immune system, promote wound healing, and induce angiogenesis. Hypoxia has been shown to affect MSC proliferation, differentiation, survival and secretory profile. Here, we investigate changes in the lipid composition of human bone marrow-derived MSC after exposure to hypoxia. Using mass spectrometry, we compared the lipid profiles of MSC derived from five different donors, cultured for two days in either normoxia (control) or hypoxia (1% oxygen). Hypoxia induced a significant increase of total triglycerides, fatty acids and diacylglycerols (DG). Remarkably, reduction of DG levels using the phosphatidylcholine-specific phospholipase C inhibitor D609 inhibited the secretion of VEGF and Angiopoietin-2, but increased the secretion of interleukin-8, without affecting significantly their respective mRNA levels. Functionally, incubation of MSC in hypoxia with D609 inhibited the potential of the cells to promote migration of human endothelial cells in a wound/scratch assay. Hence, we show that hypoxia induces in MSC an increase of DG that may affect the angiogenic potential of these cells. PMID:26212931

  19. Research Advancements in Porcine Derived Mesenchymal Stem Cells.

    PubMed

    Bharti, Dinesh; Shivakumar, Sharath Belame; Subbarao, Raghavendra Baregundi; Rho, Gyu-Jin

    2016-01-01

    In the present era of stem cell biology, various animals such as Mouse, Bovine, Rabbit and Porcine have been tested for the efficiency of their mesenchymal stem cells (MSCs before their actual use for stem cell based application in humans. Among them pigs have many similarities to humans in the form of organ size, physiology and their functioning, therefore they have been considered as a valuable model system for in vitro studies and preclinical assessments. Easy assessability, few ethical issues, successful MSC isolation from different origins like bone marrow, skin, umbilical cord blood, Wharton's jelly, endometrium, amniotic fluid and peripheral blood make porcine a good model for stem cell therapy. Porcine derived MSCs (pMSCs have shown greater in vitro differentiation and transdifferention potential towards mesenchymal lineages and specialized lineages such as cardiomyocytes, neurons, hepatocytes and pancreatic beta cells. Immunomodulatory and low immunogenic profiles as shown by autologous and heterologous MSCs proves them safe and appropriate models for xenotransplantation purposes. Furthermore, tissue engineered stem cell constructs can be of immense importance in relation to various osteochondral defects which are difficult to treat otherwise. Using pMSCs successful treatment of various disorders like Parkinson's disease, cardiac ischemia, hepatic failure, has been reported by many studies. Here, in this review we highlight current research findings in the area of porcine mesenchymal stem cells dealing with their isolation methods, differentiation ability, transplantation applications and their therapeutic potential towards various diseases. PMID:26201864

  20. Mesenchymal stem cells/multipotent mesenchymal stromal cells (MSCs): potential role in healing cutaneous chronic wounds.

    PubMed

    Zou, Ji-Ping; Huang, Sha; Peng, Yan; Liu, Hong-Wei; Cheng, Biao; Fu, Xiao-Bing; Xiang, Xiao-Fei

    2012-12-01

    Chronic wounds remain a major challenge in modern medicine and represent a significant health care burden. Several treatments have been suggested, but without a full understanding of the exact mechanism by which chronic wound occurs. Numerous studies have shown that mesenchymal stem cells/multipotent mesenchymal stromal cells (MSCs) may have therapeutic potential in healing cutaneous chronic wounds through various mechanisms. So far, a series of hypotheses have been proposed, but a holistic image of them is lacking. This review provides a systematic analysis of recent research in animal models and preclinical or clinic trails to evaluate the potential role of MSCs in chronic cutaneous wound healing. Most important, we highlight how mesenchymal stem cells could potentially revolutionize our approach to treating cutaneous chronic wounds. Special attention should be focused on ongoing research regarding the challenges in using and prospects of MSCs in clinical settings. PMID:23222159

  1. Mesenchymal Stem Cell-Mediated Effects of Tumor Support or Suppression

    PubMed Central

    Rhee, Ki-Jong; Lee, Jong In; Eom, Young Woo

    2015-01-01

    Mesenchymal stem cells (MSCs) can exhibit a marked tropism towards site of tumors. Many studies have reported that tumor progression and metastasis increase by MSCs. In contrast, other studies have shown that MSCs suppress growth of tumors. MSCs contribute to tumor growth promotion by several mechanisms: (1) transition to tumor-associated fibroblasts; (2) suppression of immune response; (3) promotion of angiogenesis; (4) stimulation of epithelial-mesenchymal transition (EMT); (5) contribution to the tumor microenvironment; (6) inhibition of tumor cell apoptosis; and (7) promotion of tumor metastasis. In contrast to the tumor-promoting properties, MSCs inhibit tumor growth by increasing inflammatory infiltration, inhibiting angiogenesis, suppressing Wnt signaling and AKT signaling, and inducing cell cycle arrest and apoptosis. In this review, we will discuss potential mechanisms by which MSC mediates tumor support or suppression and then the possible tumor-specific therapeutic strategies using MSCs as delivery vehicles, based on their homing potential to tumors. PMID:26694366

  2. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation

    PubMed Central

    Kolf, Catherine M; Cho, Elizabeth; Tuan, Rocky S

    2007-01-01

    Recent advances in understanding the cellular and molecular signaling pathways and global transcriptional regulators of adult mesenchymal stem cells have provided new insights into their biology and potential clinical applications, particularly for tissue repair and regeneration. This review focuses on these advances, specifically in the context of self-renewal and regulation of lineage-specific differentiation of mesenchymal stem cells. In addition we review recent research on the concept of stem cell niche, and its relevance to adult mesenchymal stem cells. PMID:17316462

  3. [BMAL1 gene regulates the osteogenic differentiation of bone marrow mesenchymal stem cells].

    PubMed

    Xiaoguang, Li; Xiao-long, Guo; Bin, Guo

    2016-06-01

    Periodontitis is a chronic infective disease characterized as the destruction of the supporting tissues of the teeth. Bone marrow mesenchymal stem cells, which are ideal adult stem cells for the regeneration of supporting tissues, may play important roles in restoring the structure and function of the periodontium and in promoting the treatment of periodontal disease. As a consequence, the characteristics, especially osteogenic differentiation mechanism, of these stem cells have been extensively investigated. The regulation of the physiological behavior of these stem cells is associated with BMAL1 gene. This gene is a potential treatment target for periodontal disease, although the specific mechanism remains inconclusive. This study aimed to describe the characteristics of BMAL1 gene and its ability to regulate the osteogenic differentiation of stem cells. PMID:27526460

  4. RTVP-1 promotes mesenchymal transformation of glioma via a STAT-3/IL-6-dependent positive feedback loop

    PubMed Central

    Giladi, Nis David; Ziv-Av, Amotz; Lee, Hae Kyung; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Ben-Asher, Hiba Waldman; deCarvalho, Ana; Mikkelsen, Tom; Poisson, Laila; Brodie, Chaya

    2015-01-01

    Glioblastomas (GBMs), the most aggressive primary brain tumors, exhibit increased invasiveness and resistance to anti-tumor treatments. We explored the role of RTVP-1, a glioma-associated protein that promotes glioma cell migration, in the mesenchymal transformation of GBM. Analysis of The Cancer Genome Atlas (TCGA) demonstrated that RTVP-1 expression was higher in mesenchymal GBM and predicted tumor recurrence and poor clinical outcome. ChiP analysis revealed that the RTVP-1 promoter binds STAT3 and C/EBPβ, two master transcription factors that regulate mesenchymal transformation of GBM. In addition, IL-6 induced RTVP-1 expression in a STAT3-dependent manner. RTVP-1 increased the migration and mesenchymal transformation of glioma cells. Similarly, overexpression of RTVP-1 in human neural stem cells induced mesenchymal differentiation, whereas silencing of RTVP-1 in glioma stem cells (GSCs) decreased the mesenchymal transformation and stemness of these cells. Silencing of RTVP-1 also increased the survival of mice bearing GSC-derived xenografts. Using gene array analysis of RTVP-1 silenced glioma cells we identified IL-6 as a mediator of RTVP-1 effects on the mesenchymal transformation and migration of GSCs, therefore acting in a positive feedback loop by upregulating RTVP-1 expression via the STAT3 pathway. Collectively, these results implicate RTVP-1 as a novel prognostic marker and therapeutic target in GBM. PMID:26267319

  5. Challenge of Mesenchymal Stem Cells Against Diabetic Foot Ulcer.

    PubMed

    Şener, Leyla Türker; Albeniz, Işıl

    2015-01-01

    Mesenchymal stem cells (MSCs) play an important role in embryonic development and tissue regeneration in adult life owing to their high competency and self-renewal features. MSCs represent an important stem cell population with multipotent capabilities that may have high utility for translational clinical applications. MSCs can differentiate into a variety of cell types, especially fascia originated cells, and provide soluble factors for regeneration of tissues and organs. In in vitro environments, stem cells are capable of reproducing while preserving their properties; therefore, assuming stem cells could be reproduced in sufficient quantity, they would be appropriate for genetic operations. Stem cells can be used in tissue engineering, preventing rejection of bone marrow/ stem cell grafts by supporting hematopoiesis and recovery of autoimmune diseases, and cell therapy through their immunosuppressive properties. Mesenchymal stem cells have the potential capability to renew deformed organs and assist in tissue repair. In the field of wound healing, use of BM-MSCs is effective through modulating inflammation, extracellular matrix production, migration of keratinocytes, and angiogenesis for cell therapies. A significant complication of diabetes is diabetic foot ulcers, which affect quality of life and threaten life. In this article, we review recent studies with favorable results related to MSCs, which have become an important area of study in terms of tissue regeneration and regenerative medicine with diabetic foot ulcers. PMID:25986622

  6. [Immunoregulatory role of mesenchymal stem cells in bone reparation processes].

    PubMed

    Zubov, D O

    2008-01-01

    Bone marrow contains mesenchymal stem cells (MSC) including osteoblast progenitor cells. When culturedunder conditions promoting an osteoblastic phenotype,MSC proliferate to form colonies that produce alkaline phosphatase and, subsequently, a mature osteoblastic phenotype. Transplantation of cultured autologous MSC to patients with non-healing bone fractures gives a good result leading to complete bone fracture consolidation. The aim of the study is to determine a quantitative production of IL-1beta, IL-2, IL-4, IL-6, IL-8 and TNF-alpha by cultured uncommitted and committed osteogenic MSC. The results showed that the cytokine profile consisting of IL-1beta, IL-2, IL-4, IL-6, IL-8 and TNF-alpha is secreted by cultured MSC. The secretion of IL-1beta and IL-2 by cultured MSC together with hyper production of IL-6 (up to 276.5 pg/ml, p<0.05) and IL-8 (up to 106.6 ng/ml, p<0.05) by osteoinducted MSC are firstly shown. The immunoregulatory role of transplanted autologous cells in inflammation and own bone reparation processes during posttraumatic bone fracture healing is highlighted. In conclusion, the data obtained allow examining of cultured autologous MSC as effective activators of bone resorption, inflammation and some immunological reactions in the process of altered osteoreparation. PMID:18756772

  7. Human Mesenchymal Stem Cell Morphology and Migration on Microtextured Titanium.

    PubMed

    Banik, Brittany L; Riley, Thomas R; Platt, Christina J; Brown, Justin L

    2016-01-01

    The implant used in spinal fusion procedures is an essential component to achieving successful arthrodesis. At the cellular level, the implant impacts healing and fusion through a series of steps: first, mesenchymal stem cells (MSCs) need to adhere and proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; third, the osteoid matrix produced by the osteoblasts needs to generate new bone tissue, thoroughly integrating the implant with the vertebrate above and below. Previous research has demonstrated that microtextured titanium is advantageous over smooth titanium and PEEK implants for both promoting osteogenic differentiation and integrating with host bone tissue; however, no investigation to date has examined the early morphology and migration of MSCs on these surfaces. This study details cell spreading and morphology changes over 24 h, rate and directionality of migration 6-18 h post-seeding, differentiation markers at 10 days, and the long-term morphology of MSCs at 7 days, on microtextured, acid-etched titanium (endoskeleton), smooth titanium, and smooth PEEK surfaces. The results demonstrate that in all metrics, the two titanium surfaces outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface presented the most favorable overall results, demonstrating the random migration needed to efficiently cover a surface in addition to morphologies consistent with osteoblasts and preosteoblasts. PMID:27243001

  8. Human Mesenchymal Stem Cell Morphology and Migration on Microtextured Titanium

    PubMed Central

    Banik, Brittany L.; Riley, Thomas R.; Platt, Christina J.; Brown, Justin L.

    2016-01-01

    The implant used in spinal fusion procedures is an essential component to achieving successful arthrodesis. At the cellular level, the implant impacts healing and fusion through a series of steps: first, mesenchymal stem cells (MSCs) need to adhere and proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; third, the osteoid matrix produced by the osteoblasts needs to generate new bone tissue, thoroughly integrating the implant with the vertebrate above and below. Previous research has demonstrated that microtextured titanium is advantageous over smooth titanium and PEEK implants for both promoting osteogenic differentiation and integrating with host bone tissue; however, no investigation to date has examined the early morphology and migration of MSCs on these surfaces. This study details cell spreading and morphology changes over 24 h, rate and directionality of migration 6–18 h post-seeding, differentiation markers at 10 days, and the long-term morphology of MSCs at 7 days, on microtextured, acid-etched titanium (endoskeleton), smooth titanium, and smooth PEEK surfaces. The results demonstrate that in all metrics, the two titanium surfaces outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface presented the most favorable overall results, demonstrating the random migration needed to efficiently cover a surface in addition to morphologies consistent with osteoblasts and preosteoblasts. PMID:27243001

  9. Mesenchymal stem cell-based therapy in kidney transplantation.

    PubMed

    Chen, Cheng; Hou, Jianquan

    2016-01-01

    Kidney transplantation is the best treatment for end-stage renal disease, but its implementation is limited by organ shortage and immune rejection. Side effects of current immunosuppressive drugs, such as nephrotoxicity, opportunistic infection, and tumorigenic potential, influence long-term graft outcomes. In recent years, continued research and subsequent discoveries concerning the properties and potential utilization of mesenchymal stem cells (MSCs) have aroused considerable interest and expectations. Biological characteristics of MSCs, including multi-lineage differentiation, homing potential, paracrine effect and immunomodulation, have opened new horizons for applications in kidney transplantation. However, many studies have shown that the biological activity of MSCs depends on internal inflammatory conditions, and the safety and efficacy of the clinical application of MSCs remain controversial. This review summarizes the findings of a large number of studies and aims to provide an objective viewpoint based on a comprehensive analysis of the presently established benefits and obstacles of implementing MSC-based therapy in kidney transplantation, and to promote its clinical translation. PMID:26852923

  10. Mechanisms of mesenchymal stem/stromal cell function.

    PubMed

    Spees, Jeffrey L; Lee, Ryang Hwa; Gregory, Carl A

    2016-01-01

    The past decade has seen an explosion of research directed toward better understanding of the mechanisms of mesenchymal stem/stromal cell (MSC) function during rescue and repair of injured organs and tissues. In addition to delineating cell-cell signaling and molecular controls for MSC differentiation, the field has made particular progress in defining several other mechanisms through which administered MSCs can promote tissue rescue/repair. These include: 1) paracrine activity that involves secretion of proteins/peptides and hormones; 2) transfer of mitochondria by way of tunneling nanotubes or microvesicles; and 3) transfer of exosomes or microvesicles containing RNA and other molecules. Improved understanding of MSC function holds great promise for the application of cell therapy and also for the development of powerful cell-derived therapeutics for regenerative medicine. Focusing on these three mechanisms, we discuss MSC-mediated effects on immune cell responses, cell survival, and fibrosis and review recent progress with MSC-based or MSC-derived therapeutics. PMID:27581859

  11. Mesenchymal stem cells as mediators of neural differentiation.

    PubMed

    Hardy, Steven A; Maltman, Daniel J; Przyborski, Stefan A

    2008-01-01

    Mesenchymal stem cells (MSCs) represent a promising source of material for autologous cell transplantation therapies, in particular, their potential use for the treatment of damaged nervous tissue. Much of the work in this area has focused on the transplantation of MSCs into animal models of neurological disorders, including stroke and spinal cord injury. Although numerous studies have reported significant functional improvements in these systems, the exact mechanism(s) by which MSCs elicit recovery remains largely undefined. While it has been proposed that 'trans'-differentiation and/or cell fusion events underly MSC-mediated neural repair, there is considerable doubt that the low frequency of these phenomena is sufficient to account for the observed levels of recovery. Furthermore, in vitro studies call into question the ability of MSCs to produce authentic neural derivatives. In this review we focus on recent evidence indicating that transplanted MSCs promote endogenous repair of neurologically damaged areas via the release of soluble trophic factors and cytokines. Through the modern analysis of MSC-conditioned media it is becoming possible to gain new insight into the release and interplay of these soluble factors and their neurogenic effects. Ultimately this understanding may lead to the rational design of new therapies for the treatment of neurological and neurodegenerative disorders. PMID:18220922

  12. Osteogenic Potency of Nacre on Human Mesenchymal Stem Cells

    PubMed Central

    Green, David W.; Kwon, Hyuk-Jae; Jung, Han-Sung

    2015-01-01

    Nacre seashell is a natural osteoinductive biomaterial with strong effects on osteoprogenitors, osteoblasts, and osteoclasts during bone tissue formation and morphogenesis. Although nacre has shown, in one study, to induce bridging of new bone across large non-union bone defects in 8 individual human patients, there have been no succeeding human surgical studies to confirm this outstanding potency. But the molecular mechanisms associated with nacre osteoinduction and the influence on bone marrow-derived mesenchymal stem cells (BMSC’s), skeletal stem cells or bone marrow stromal cells remain elusive. In this study we highlight the phenotypic and biochemical effects of Pinctada maxima nacre chips and the global nacre soluble protein matrix (SPM) on primary human bone marrow-derived stromal cells (hBMSCs) in vitro. In static co-culture with nacre chips, the hBMSCs secreted Alkaline phosphatase (ALP) at levels that exceeded bone morphogenetic protein (rhBMP-2) treatment. Concentrated preparation of SPM applied to Stro-1 selected hBMSC’s led to rapid ALP secretions, at concentrations exceeding the untreated controls even in osteogenic conditions. Within 21 days the same population of Stro-1 selected hBMSCs proliferated and secreted collagens I–IV, indicating the premature onset of an osteoblast phenotype. The same SPM was found to promote unselected hBMSC differentiation with osteocalcin detected at 7 days, and proliferation increased at 7 days in a dose-dependent manner. In conclusion, nacre particles and nacre SPM induced the early stages of human bone cell differentiation, indicating that they may be promising soluble factors with osteoinductive capacity in primary human bone cell progenitors such as, hBMSC’s. PMID:25666352

  13. Autophagy prevents irradiation injury and maintains stemness through decreasing ROS generation in mesenchymal stem cells

    PubMed Central

    Hou, J; Han, Z-p; Jing, Y-y; Yang, X; Zhang, S-s; Sun, K; Hao, C; Meng, Y; Yu, F-h; Liu, X-q; Shi, Y-f; Wu, M-c; Zhang, L; Wei, L-x

    2013-01-01

    Stem cells were characterized by their stemness: self-renewal and pluripotency. Mesenchymal stem cells (MSCs) are a unique type of adult stem cells that have been proven to be involved in tissue repair, immunoloregulation and tumorigenesis. Irradiation is a well-known factor that leads to functional obstacle in stem cells. However, the mechanism of stemness maintenance in human MSCs exposed to irradiation remains unknown. We demonstrated that irradiation could induce reactive oxygen species (ROS) accumulation that resulted in DNA damage and stemness injury in MSCs. Autophagy induced by starvation or rapamycin can reduce ROS accumulation-associated DNA damage and maintain stemness in MSCs. Further, inhibition of autophagy leads to augment of ROS accumulation and DNA damage, which results in the loss of stemness in MSCs. Our results indicate that autophagy may have an important role in protecting stemness of MSCs from irradiation injury. PMID:24113178

  14. Mesenchymal stem cells: isolation, in vitro expansion and characterization.

    PubMed

    Beyer Nardi, N; da Silva Meirelles, L

    2006-01-01

    Mesenchymal stem cells (MSC), one type of adult stem cell, are easy to isolate, culture, and manipulate in ex vivo culture. These cells have great plasticity and the potential for therapeutic applications, but their properties are poorly understood. MSCs can be found in bone marrow and in many other tissues, and these cells are generally identified through a combination of poorly defined physical, phenotypic, and functional properties; consequently, multiple names have been given to these cell populations. Murine MSCs have been directly applied to a wide range of murine models of diseases, where they can act as therapeutic agents per se, or as vehicles for the delivery of therapeutic genes. In addition to their systemic engraftment capabilities, MSCs show great potential for the replacement of damaged tissues such as bone, cartilage, tendon, and ligament. Their pharmacological importance is related to four points: MSCs secrete biologically important molecules, express specific receptors, can be genetically manipulated, and are susceptible to molecules that modify their natural behavior. Due to their low frequency and the lack of knowledge on cell surface markers and their location of origin, most information concerning MSCs is derived from in vitro studies. The search for the identity of the mesenchymal stem cell has depended mainly on three culture systems: the CFU-F assay, the analysis of bone marrow stroma, and the cultivation of mesenchymal stem cell lines. Other cell populations, more or less related to the MSC, have also been described. Isolation and culture conditions used to expand these cells rely on the ability of MSCs, although variable, to adhere to plastic surfaces. Whether these conditions selectively favor the expansion of different bone marrow precursors or cause similar cell populations to acquire different phenotypes is not clear. The cell populations could also represent different points of a hierarchy or a continuum of differentiation. These

  15. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis.

    PubMed

    Wu, Yaojiong; Chen, Liwen; Scott, Paul G; Tredget, Edward E

    2007-10-01

    Although chronic wounds are common, treatment for these disabling conditions remains limited and largely ineffective. In this study, we examined the benefit of bone marrow-derived mesenchymal stem cells (BM-MSCs) in wound healing. Using an excisional wound splinting model, we showed that injection around the wound and application to the wound bed of green fluorescence protein (GFP)(+) allogeneic BM-MSCs significantly enhanced wound healing in normal and diabetic mice compared with that of allogeneic neonatal dermal fibroblasts or vehicle control medium. Fluorescence-activated cell sorting analysis of cells derived from the wound for GFP-expressing BM-MSCs indicated engraftments of 27% at 7 days, 7.6% at 14 days, and 2.5% at 28 days of total BM-MSCs administered. BM-MSC-treated wounds exhibited significantly accelerated wound closure, with increased re-epithelialization, cellularity, and angiogenesis. Notably, BM-MSCs, but not CD34(+) bone marrow cells in the wound, expressed the keratinocyte-specific protein keratin and formed glandular structures, suggesting a direct contribution of BM-MSCs to cutaneous regeneration. Moreover, BM-MSC-conditioned medium promoted endothelial cell tube formation. Real-time polymerase chain reaction and Western blot analysis revealed high levels of vascular endothelial growth factor and angiopoietin-1 in BM-MSCs and significantly greater amounts of the proteins in BM-MSC-treated wounds. Thus, our data suggest that BM-MSCs promote wound healing through differentiation and release of proangiogenic factors. Disclosure of potential conflicts of interest is found at the end of this article. PMID:17615264

  16. Elastin-based biomaterials and mesenchymal stem cells

    PubMed Central

    Ozsvar, Jazmin; Mithieux, Suzanne M.; Wang, Richard; Weiss, Anthony S.

    2015-01-01

    Elastin is the dominant mammalian elastic protein found in soft tissue. Elastin-based biomaterials have the potential to repair elastic tissues by improving local elasticity and providing appropriate cellular interactions and signaling. Studies that combine these biomaterials with mesenchymal stem cells have demonstrated their capacity to also regenerate non-elastic tissue. Mesenchymal stem cell differentiation can be controlled by their immediate environment, and their sensitivity to elasticity makes them an ideal candidate for combining with elastin-based biomaterials. With the growing accessibility of the elastin precursor, tropoelastin, and elastin-derived materials, the amount of research interest in combining these two fields has increased and, subsequently, is leading to the realization of a potentially new strategy for regenerative medicine. PMID:26146549

  17. Adult mesenchymal stem cells: differentiation potential and therapeutic applications.

    PubMed

    Jackson, L; Jones, D R; Scotting, P; Sottile, V

    2007-01-01

    Adult mesenchymal stem cells (MSCs) are a population of multipotent cells found primarily in the bone marrow. They have long been known to be capable of osteogenic, adipogenic and chondrogenic differentiation and are currently the subject of a number of trials to assess their potential use in the clinic. Recently, the plasticity of these cells has come under close scrutiny as it has been suggested that they may have a differentiation potential beyond the mesenchymal lineage. Myogenic and in particular cardiomyogenic potential has been shown in vitro. MSCs have also been shown to have the ability to form neural cells both in vitro and in vivo, although the molecular mechanisms underlying these apparent transdifferentiation events are yet to be elucidated. We describe here the cellular characteristics and differentiation potential of MSCs, which represent a promising stem cell population for future applications in regenerative medicine. PMID:17495381

  18. Functionally Active Gap Junctions between Connexin 43-Positive Mesenchymal Stem Cells and Glioma Cells.

    PubMed

    Gabashvili, A N; Baklaushev, V P; Grinenko, N F; Levinskii, A B; Mel'nikov, P A; Cherepanov, S A; Chekhonin, V P

    2015-05-01

    The formation of functional gap junctions between mesenchymal stem cells and cells of low-grade rat glioma C6 cells was studied in in vitro experiments. Immunocytochemical analysis with antibodies to connexin 43 extracellular loop 2 showed that mesenchymal stem cells as well as C6 glioma cells express the main astroglial gap junction protein connexin 43. Analysis of migration activity showed that mesenchymal stem cells actively migrate towards C6 glioma cells. During co-culturing, mesenchymal stem cells and glioma C6 form functionally active gap junctions mediating the transport of cytoplasmic dye from glioma cells to mesenchymal stem cells in the opposite direction. Fluorometry showed that the intensity of transport of low-molecular substances through heterologous gap junctions between mesenchymal stem cells and glioma cells is similar to that through homologous gap junctions between glioma cells. This phenomenon can be used for the development of new methods of cell therapy of high-grade gliomas. PMID:26033611

  19. The Alliance of Mesenchymal Stem Cells, Bone, and Diabetes

    PubMed Central

    Napoli, Nicola; Paladini, Angela; Briganti, Silvia I.; Pozzilli, Paolo; Epstein, Sol

    2014-01-01

    Bone fragility has emerged as a new complication of diabetes. Several mechanisms in diabetes may influence bone homeostasis by impairing the action between osteoblasts, osteoclasts, and osteocytes and/or changing the structural properties of the bone tissue. Some of these mechanisms can potentially alter the fate of mesenchymal stem cells, the initial precursor of the osteoblast. In this review, we describe the main factors that impair bone health in diabetic patients and their clinical impact. PMID:25140176

  20. Biological properties of mesenchymal Stem Cells from different sources

    PubMed Central

    Giai Via, Alessio; Frizziero, Antonio; Oliva, Francesco

    2012-01-01

    Summary Mesenchymal stem cells (MSCs) are adult, nonhematopoietic, stem cells that were initially isolated from bone marrow. Now they can be isolated from almost every tissue of the body. They have the ability to self-renew and differentiate into multiple cell lineage, including bone, chondrocytes, adipocytes, tenocytes and cardiomyocytes, and it makes them an attractive cell source for a new generation of cell-based regenerative therapies. In this review we try to summarize data on sources and the biological properties of MSCs. PMID:23738292

  1. Immunotolerant Properties of Mesenchymal Stem Cells: Updated Review

    PubMed Central

    Faiella, Whitney; Atoui, Rony

    2016-01-01

    Stem cell transplantation is a potential therapeutic option to regenerate damaged myocardium and restore function after infarct. Current research is focused on the use of allogeneic mesenchymal stem cells (MSCs) due to their unique immunomodulatory characteristics and ability to be harvested from young and healthy donors. Both animal and human studies support the immunoprivileged state of MSCs and even demonstrate improvements in cardiac function after transplantation. This research continues to be a topic of interest, as advances will ultimately enable the clinical use of these universal cells for therapy after a myocardial infarction. Updated in vitro, in vivo, and clinical trial studies are discussed in detail in the following review. PMID:26839557

  2. The Effects of Graphene Nanostructures on Mesenchymal Stem Cells

    PubMed Central

    Lalwani, Gaurav; Kanakia, Shruti; Sitharaman, Balaji

    2014-01-01

    We report the effects of two-dimensional graphene nanostructures; graphene nano-onions (GNOs), graphene oxide nanoribbons (GONRs), and graphene oxide nanoplatelets (GONPs) on viability, and differentiation of human mesenchymal stem cells (MSCs). Cytotoxicity of GNOs, GONRs, and GONPs dispersed in distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)] (DSPE-PEG), on adipose derived mesenchymal stem cells (adMSCs), and bone marrow-derived mesenchymal stem cells (bmMSCs) was assessed by AlamarBlue and Calcein AM viability assays at concentrations ranging from 5–300 μg/ml for 24 or 72 hours. Cytotoxicity of the 2D graphene nanostructures was found to be dose dependent, not time dependent, with concentrations less than 50 μg/ml showing no significant differences compared to untreated controls. Differentiation potential of adMSCs to adipocytes and osteoblasts, --characterized by Oil Red O staining and elution, alkaline phosphatase activity, calcium matrix deposition and Alizarin Red S staining-- did not change significantly when treated with the three graphene nanoparticles at a low (10 μg/ml) and high (50 μg/ml) concentration for 24 hours. Transmission electron microscopy (TEM) and confocal Raman spectroscopy indicated cellular uptake of only GNOs and GONPs. The results lay the foundation for the use of these nanoparticles at potentially safe doses as ex vivo labels for MSC-based imaging and therapy. PMID:24674462

  3. Biomimetic Nucleation of Hydroxyapatite Crystals Mediated by Antheraea pernyi Silk Sericin Promotes Osteogenic Differentiation of Human Bone Marrow Derived Mesenchymal Stem Cells

    PubMed Central

    2015-01-01

    Biomacromolecules have been used as templates to grow hydroxyapatite crystals (HAps) by biomineralization to fabricate mineralized materials for potential application in bone tissue engineering. Silk sericin is a protein with features desirable as a biomaterial, such as increased hydrophilicity and biodegradation. Mineralization of the silk sericin from Antheraea pernyi (A. pernyi) silkworm has rarely been reported. Here, for the first time, nucleation of HAps on A. pernyi silk sericin (AS) was attempted through a wet precipitation method and consequently the cell viability and osteogenic differentiation of BMSCs on mineralized AS were investigated. It was found that AS mediated the nucleation of HAps in the form of nanoneedles while self-assembling into β-sheet conformation, leading to the formation of a biomineralized protein based biomaterial. The cell viability assay of BMSCs showed that the mineralization of AS stimulated cell adhesion and proliferation, showing that the resultant AS biomaterial is biocompatible. The differentiation assay confirmed that the mineralized AS significantly promoted the osteogenic differentiation of BMSCs when compared to nonmineralized AS as well as other types of sericin (B. mori sericin), suggesting that the resultant mineralized AS biomaterial has potential in promoting bone formation. This result represented the first work proving the osteogenic differentiation of BMSCs directed by silk sericin. Therefore, the biomineralization of A. pernyi silk sericin coupled with seeding BMSCs on the resultant mineralized biomaterials is a useful strategy to develop the potential application of this unexplored silk sericin in the field of bone tissue engineering. This study lays the foundation for the use of A. pernyi silk sericin as a potential scaffold for tissue engineering. PMID:24666022

  4. Mesenchymal markers on human adipose stem/progenitor cells

    PubMed Central

    Zimmerlin, Ludovic; Donnenberg, Vera S.; Rubin, J. Peter; Donnenberg, Albert D.

    2014-01-01

    The stromal-vascular fraction (SVF) of adipose tissue is a rich source of multipotent stem cells. We and others have described 3 major populations of stem/progenitor cells in this fraction, all closely associated with small blood vessels: endothelial progenitor cells (EPC, CD45−/CD31+/CD34+), pericytes (CD45−/CD31−/CD146+) and supra-adventitial adipose stromal cells (SA-ASC, CD45−/CD31−/CD146−/CD34+). EPC are luminal, pericytes are adventitial and SA-ASC surround the vessel like a sheath. The multipotency of the pericytes and SA-ASC compartments is strikingly similar to that of CD45−/CD34−/CD73+/CD105+/CD90+ bone marrow-derived mesenchymal stem cells (BM-MSC). Here we determine the extent to which this mesenchymal expression pattern is expressed on the 3 adipose stem/progenitor populations. Eight independent adipose tissue samples were analyzed in a single tube (CD105-FITC/CD73-PE/CD146-PETXR/CD14-PECY5/CD33-PECY5/CD235A-PECY5/CD31-PECY7/CD90-APC/CD34-A700/CD45-APCCY7/DAPI). Adipose EPC were highly proliferative with 14.3±2.8% (mean ± SEM) having >2N DNA. About half (53.1±7.6%) coexpressed CD73 and CD105, and 71.9±7.4% expressed CD90. Pericytes were less proliferative (8.2±3.4% >2N DNA) with a smaller proportion (29.6±6.9% CD73+/CD105+, 60.5±10.2% CD90+) expressing mesenchymal associated markers. However, the CD34+ subset of CD146+ pericytes, were both highly proliferative (15.1±3.6% with >2N DNA) and of uniform mesenchymal phenotype (93.3±3.7% CD73+/CD105+, 97.8±0.7% CD90+), suggesting transit amplifying progenitor cells. SA-ASC were the least proliferative (3.7 ± 0.8%>2N DNA) but were also highly mesenchymal in phenotype (94.4±3.2% CD73+/CD105+, 95.5±1.2% CD90+). These data imply a progenitor/progeny relationship between pericytes and SA-ASC, the most mesenchymal of SVF cells. Despite phenotypic and functional similarities to BM-MSC, SA-ASC are distinguished by CD34 expression. PMID:23184564

  5. Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies.

    PubMed

    Li, Guihong; Yu, Fengbo; Lei, Ting; Gao, Haijun; Li, Peiwen; Sun, Yuxue; Huang, Haiyan; Mu, Qingchun

    2016-06-01

    Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction, angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action, and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke. We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research. PMID:27482235

  6. Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies

    PubMed Central

    Li, Guihong; Yu, Fengbo; Lei, Ting; Gao, Haijun; Li, Peiwen; Sun, Yuxue; Huang, Haiyan; Mu, Qingchun

    2016-01-01

    Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction, angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action, and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke. We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research. PMID:27482235

  7. Epigallocatechin Gallate Inhibits Mouse Mesenchymal Stem Cell Differentiation to Adipogenic Lineage.

    PubMed

    Chani, Baldeep; Puri, Veena; Chander Sobti, Ranbir; Puri, Sanjeev

    2016-01-01

    Epigallocatechin gallate (EGCG) is a major component of green tea polyphenols having a potent anti-oxidant potential. Besides inhibiting the growth of many cancer cell types and inducing proliferation and differentiation in keratinocytes, it has been shown to promote reduction of body fat. The fact that mesenchymal stem cells (MSCs) have ability to self-renew and differentiate into the cells of mesodermal lineages, such as fat and bone, it is, thus, possible that EGCG may directly be involved in affecting fat metabolism through its effect on mesenchymal stem cells. Hence, with this aim, the present study was designed to determine the effect of EGCG on mouse mesenchymal stem cells, C3H10T1/2 cells differentiation into adipocytes. To understand this process, the cells were incubated with varying concentrations of EGCG (1 μM, 5 μM, 10 μM, 50 μM) in the presence and /or absence of adipogenic medium for 9 days. The results demonstrated that, EGCG inhibited the cells proliferation, migration and also prevented their differentiation to adipogenic lineage. These effects were analyzed through the inhibition of wound healing activity, reduction in Oil red O stained cells, together with decrease in the expression of Adipisin gene following EGCG treatment. These observations thus demonstrated anti-adipogenic effect of EGCG with a possibility of its role in the therapeutic intervention of obesity. PMID:27397998

  8. Effect of Human Adipose Tissue Mesenchymal Stem Cells on the Regeneration of Ovine Articular Cartilage

    PubMed Central

    Zorzi, Alessandro R.; Amstalden, Eliane M. I.; Plepis, Ana Maria G.; Martins, Virginia C. A.; Ferretti, Mario; Antonioli, Eliane; Duarte, Adriana S. S.; Luzo, Angela C. M.; Miranda, João B.

    2015-01-01

    Cell therapy is a promising approach to improve cartilage healing. Adipose tissue is an abundant and readily accessible cell source. Previous studies have demonstrated good cartilage repair results with adipose tissue mesenchymal stem cells in small animal experiments. This study aimed to examine these cells in a large animal model. Thirty knees of adult sheep were randomly allocated to three treatment groups: CELLS (scaffold seeded with human adipose tissue mesenchymal stem cells), SCAFFOLD (scaffold without cells), or EMPTY (untreated lesions). A partial thickness defect was created in the medial femoral condyle. After six months, the knees were examined according to an adaptation of the International Cartilage Repair Society (ICRS 1) score, in addition to a new Partial Thickness Model scale and the ICRS macroscopic score. All of the animals completed the follow-up period. The CELLS group presented with the highest ICRS 1 score (8.3 ± 3.1), followed by the SCAFFOLD group (5.6 ± 2.2) and the EMPTY group (5.2 ± 2.4) (p = 0.033). Other scores were not significantly different. These results suggest that human adipose tissue mesenchymal stem cells promoted satisfactory cartilage repair in the ovine model. PMID:26569221

  9. Epigallocatechin Gallate Inhibits Mouse Mesenchymal Stem Cell Differentiation to Adipogenic Lineage

    PubMed Central

    Chani, Baldeep; Puri, Veena; Chander Sobti, Ranbir; Puri, Sanjeev

    2016-01-01

    Epigallocatechin gallate (EGCG) is a major component of green tea polyphenols having a potent anti-oxidant potential. Besides inhibiting the growth of many cancer cell types and inducing proliferation and differentiation in keratinocytes, it has been shown to promote reduction of body fat. The fact that mesenchymal stem cells (MSCs) have ability to self-renew and differentiate into the cells of mesodermal lineages, such as fat and bone, it is, thus, possible that EGCG may directly be involved in affecting fat metabolism through its effect on mesenchymal stem cells. Hence, with this aim, the present study was designed to determine the effect of EGCG on mouse mesenchymal stem cells, C3H10T1/2 cells differentiation into adipocytes. To understand this process, the cells were incubated with varying concentrations of EGCG (1 μM, 5 μM, 10 μM, 50 μM) in the presence and /or absence of adipogenic medium for 9 days. The results demonstrated that, EGCG inhibited the cells proliferation, migration and also prevented their differentiation to adipogenic lineage. These effects were analyzed through the inhibition of wound healing activity, reduction in Oil red O stained cells, together with decrease in the expression of Adipisin gene following EGCG treatment. These observations thus demonstrated anti-adipogenic effect of EGCG with a possibility of its role in the therapeutic intervention of obesity. PMID:27397998

  10. Mesenchymal stem cells expressing neural antigens instruct a neurogenic cell fate on neural stem cells.

    PubMed

    Croft, Adam P; Przyborski, Stefan A

    2009-04-01

    The neurogenic response to injury in the postnatal brain is limited and insufficient for restoration of function. Recent evidence suggests that transplantation of mesenchymal stem cells (MSCs) into the injured brain is associated with improved functional recovery, mediated in part through amplification in the endogenous neurogenic response to injury. In the current study we investigate the interactions between bone marrow-derived MSCs and embryonic neural stem cells (NSCs) plus their differentiated progeny using an in vitro co-culture system. Two populations of MSCs were used, MSCs induced to express neural antigens (nestin+, Tuj-1+, GFAP+) and neural antigen negative MSCs. Following co-culture of induced MSCs with differentiating NSC/progenitor cells a significant increase in Tuj-1+ neurons was detected compared to co-cultures of non-induced MSCs in which an increase in astrocyte (GFAP+) differentiation was observed. The effect was mediated by soluble interactions between the two cell populations and was independent of any effect on cell death and proliferation. Induced and non-induced MSCs also promoted the survival of Tuj-1+ cell progeny in long-term cultures and both promoted axonal growth, an effect also seen in differentiating neuroblastoma cells. Therefore, MSCs provide instructive signals that are able to direct the differentiation of NSCs and promote axonal development in neuronal progeny. The data indicates that the nature of MSC derived signals is dependent not only on their microenvironment but on the developmental status of the MSCs. Pre-manipulation of MSCs prior to transplantation in vivo may be an effective means of enhancing the endogenous neurogenic response to injury. PMID:19159625

  11. Human Mesenchymal Stem Cell Grafts Enhance Normal and Impaired Wound Healing by Recruiting Existing Endogenous Tissue Stem/Progenitor Cells

    PubMed Central

    Shin, Laura

    2013-01-01

    Mesenchymal stem cells (MSCs) have been investigated as a clinical therapy to promote tissue repair. However, the disappearance of grafted cells soon after engraftment suggests a possible role as initiators of repair rather than effectors. We evaluated the relative contribution of grafted human MSCs and host stem/progenitor cells in promoting wound healing by using a novel asymmetric wound model in normal and impaired healing diabetic (db/db) mice to discriminate between the effect of direct engraftment and the subsequent systemic response. Experimental animals received paired wounds, with one wound receiving human mesenchymal stem cells (hMSCs) and the other wound receiving vehicle to assess local and systemic effects, respectively. Control animals received vehicle in both wounds. Grafted hMSCs significantly improved healing in both normal and impaired healing animals; produced significant elevation of signals such as Wnt3a, vascular endothelial growth factor, and platelet-derived growth factor receptor-α; and increased the number of pre-existing host MSCs recruited to the wound bed. Improvement was also seen in both the grafted and nongrafted sides, suggesting a systemic response to hMSC engraftment. Healing was enhanced despite the rapid loss of hMSCs, suggesting that mobilizing the host response is the major outcome of grafting MSCs to tissue repair. We validate that hMSCs evoke a host response that is clinically relevant, and we suggest that therapeutic efforts should focus on maximizing the mobilization of host MSCs. PMID:23283490

  12. Tailoring Material Properties of Cardiac Matrix Hydrogels to Induce Endothelial Differentiation of Human Mesenchymal Stem Cells

    PubMed Central

    Jeffords, Megan E.; Wu, Jinglei; Shah, Mickey; Hong, Yi; Zhang, Ge

    2015-01-01

    Cardiac matrix hydrogel has shown great promise as an injectable biomaterial due to the possession of cardiac-specific extracellular matrix composition. A cardiac matrix hydrogel facilitating neovascularization will further improve its therapeutic outcomes in cardiac repair. In this study, we explored the feasibility of tailoring material properties of cardiac matrix hydrogels using a natural compound, genipin, to promote endothelial differentiation of stem cells. Our results demonstrated that the genipin crosslinking could increase the mechanical properties of the cardiac matrix hydrogel to a stiffness range promoting endothelial differentiation of human mesenchymal stem cells (hMSCs). It also decreased the swelling ratio and prolonged degradation without altering gelation time. Human mesenchymal stem cells cultured on the genipin crosslinked cardiac matrix hydrogels showed great viability. After 1-day culture, hMSCs demonstrated down-regulation of early endothelial marker expression and up-regulation of mature endothelial marker expression. Especially for 1 mM genipin crosslinked cardiac matrix hydrogels, hMSCs showed particularly significant expression of mature endothelial cell marker vWF. These attractive results indicate the potential of using genipin crosslinked cardiac matrix hydrogels to promote rapid vascularization for cardiac infarction treatment through minimally invasive therapy. PMID:25946697

  13. Angiogenic and Immunomodulatory Properties of Endothelial and Mesenchymal Stem Cells

    PubMed Central

    Pedersen, Torbjorn O.; Finne-Wistrand, Anna; Bolstad, Anne Isine

    2016-01-01

    It has been suggested that the effect of implanted cells on the local environment is important when selecting the appropriate cell type for tissue regeneration. Our aim was to compare the local tissue response to implanted human mesenchymal stem cells (MSC) and human umbilical vein endothelial cells (EC). MSC and EC were cultured in poly(l-lactide-co-1,5-dioxepan-2-one) scaffolds for 1 week in a bioreactor system, after which they were implanted subcutaneously in NOD/SCID mice. After 3 weeks, scaffolds were retrieved, and the mRNA expression of selected genes involved in hypoxia and inflammation was examined by real-time reverse transcription polymerase chain reaction and correlated with immunofluorescent staining for corresponding proteins. The Toll-like receptor signaling pathway was examined by superarray hybridization. The expression of 53 angiogenesis-related proteins was investigated by a proteome profiler angiogenesis antibody array kit. Vascularization was quantified using immunohistochemistry for CD31. The expression of hypoxia-inducible factors and biomarkers for angiogenesis was more strongly upregulated in response to implanted EC than to MSC, suggesting a higher sensitivity to low oxygen tension among EC. Hypoxic signaling was increased after implantation of EC compared with MSC, leading to a prolonged acute inflammatory phase that promoted ingrowth of vascular cells and establishment of the circulation. Inflammatory cytokines were also differently expressed at the gene and protein levels in the two experimental groups, resulting in altered recruitment of acute and chronic inflammatory cells. The end result of these differences was increased vessel formation within the constructs in the EC group. PMID:26650611

  14. Mesenchymal stem cell secretome and regenerative therapy after cancer

    PubMed Central

    Zimmerlin, Ludovic; Park, Tea Soon; Zambidis, Elias T.; Donnenberg, Vera S.; Donnenberg, Albert D.

    2013-01-01

    Cancer treatment generally relies on tumor ablative techniques that can lead to major functional or disfiguring defects. These post-therapy impairments require the development of safe regenerative therapy strategies during cancer remission. Many current tissue repair approaches exploit paracrine (immunomodulatory, pro-angiogenic, anti-apoptotic and pro-survival effects) or restoring (functional or structural tissue repair) properties of mesenchymal stem/stromal cells (MSC). Yet, a major concern in the application of regenerative therapies during cancer remission remains the possible triggering of cancer recurrence. Tumor relapse implies the persistence of rare subsets of tumor-initiating cancer cells which can escape anti-cancer therapies and lie dormant in specific niches awaiting reactivation via unknown stimuli. Many of the components required for successful regenerative therapy (revascularization, immunosuppression, cellular homing, tissue growth promotion) are also critical for tumor progression and metastasis. While bidirectional crosstalk between tumorigenic cells (especially aggressive cancer cell lines) and MSC (including tumor stroma-resident populations) has been demonstrated in a variety of cancers, the effects of local or systemic MSC delivery for regenerative purposes on persisting cancer cells during remission remain controversial. Both pro- and anti-tumorigenic effects of MSC have been reported in the literature. Our own data using breast cancer clinical isolates have suggested that dormant-like tumor-initiating cells do not respond to MSC signals, unlike actively dividing cancer cells which benefited from the presence of supportive MSC. The secretome of MSC isolated from various tissues may partially diverge, but it includes a core of cytokines (i.e. CCL2, CCL5, IL-6, TGFβ, VEGF), which have been implicated in tumor growth and/or metastasis. This article reviews published models for studying interactions between MSC and cancer cells with a focus

  15. The Impact of Epigenetics on Mesenchymal Stem Cell Biology.

    PubMed

    Ozkul, Yusuf; Galderisi, Umberto

    2016-11-01

    Changes in epigenetic marks are known to be important regulatory factors in stem cell fate determination and differentiation. In the past years, the investigation of the epigenetic regulation of stem cell biology has largely focused on embryonic stem cells (ESCs). Contrarily, less is known about the epigenetic control of gene expression during differentiation of adult stem cells (AdSCs). Among AdSCs, mesenchymal stem cells (MSCs) are the most investigated stem cell population because of their enormous potential for therapeutic applications in regenerative medicine and tissue engineering. In this review, we analyze the main studies addressing the epigenetic changes in MSC landscape during in vitro cultivation and replicative senescence, as well as follow osteocyte, chondrocyte, and adipocyte differentiation. In these studies, histone acetylation, DNA methylation, and miRNA expression are among the most investigated phenomena. We describe also epigenetic changes that are associated with in vitro MSC trans-differentiation. Although at the at initial stage, the epigenetics of MSCs promise to have profound implications for stem cell basic and applied research. J. Cell. Physiol. 231: 2393-2401, 2016. © 2016 Wiley Periodicals, Inc. PMID:26960183

  16. Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1

    PubMed Central

    Battula, Venkata Lokesh; Treml, Sabrina; Bareiss, Petra M.; Gieseke, Friederike; Roelofs, Helene; de Zwart, Peter; Müller, Ingo; Schewe, Bernhard; Skutella, Thomas; Fibbe, Willem E.; Kanz, Lothar; Bühring, Hans-Jörg

    2009-01-01

    Background Conventionally, mesenchymal stem cells are functionally isolated from primary tissue based on their capacity to adhere to a plastic surface. This isolation procedure is hampered by the unpredictable influence of co-cultured hematopoietic and/or other unrelated cells and/or by the elimination of a late adhering mesenchymal stem cells subset during removal of undesired cells. To circumvent these limitations, several antibodies have been developed to facilitate the prospective isolation of mesenchymal stem cells. Recently, we described a panel of monoclonal antibodies with superior selectivity for mesenchymal stem cells, including the monoclonal antibodies W8B2 against human mesenchymal stem cell antigen-1 (MSCA-1) and 39D5 against a CD56 epitope, which is not expressed on natural killer cells. Design and Methods Bone marrow derived mesenchymal stem cells from healthy donors were analyzed and isolated by flow cytometry using a large panel of antibodies against surface antigens including CD271, MSCA-1, and CD56. The growth of mesenchymal stem cells was monitored by colony formation unit fibroblast (CFU-F) assays. The differentiation of mesenchymal stem cells into defined lineages was induced by culture in appropriate media and verified by immunostaining. Results Multicolor cell sorting and CFU-F assays showed that mesenchymal stem cells were ~90-fold enriched in the MSCA-1+CD56− fraction and ~180-fold in the MSCA-1+CD56+ fraction. Phenotype analysis revealed that the expression of CD10, CD26, CD106, and CD146 was restricted to the MSCA-1+CD56− mesenchymal stem cells subset and CD166 to MSCA-1+CD56± mesenchymal stem cells. Further differentiation of these subsets showed that chondrocytes and pancreatic-like islets were predominantly derived from MSCA-1+CD56± cells whereas adipocytes emerged exclusively from MSCA-1+CD56− cells. The culture of single sorted MSCA-1+CD56+ cells resulted in the appearance of phenotypically heterogeneous clones with

  17. Osteogenic potential of sorted equine mesenchymal stem cell subpopulations

    PubMed Central

    Radtke, Catherine L.; Nino-Fong, Rodolfo; Rodriguez-Lecompte, Juan Carlos; Esparza Gonzalez, Blanca P.; Stryhn, Henrik; McDuffee, Laurie A.

    2015-01-01

    The objectives of this study were to use non-equilibrium gravitational field-flow fractionation (GrFFF), an immunotag-less method of sorting mesenchymal stem cells (MSCs), to sort equine muscle tissue-derived mesenchymal stem cells (MMSCs) and bone marrow-derived mesenchymal stem cells (BMSC) into subpopulations and to carry out assays in order to compare their osteogenic capabilities. Cells from 1 young adult horse were isolated from left semitendinosus muscle tissue and from bone marrow aspirates of the fourth and fifth sternebrae. Aliquots of 800 × 103 MSCs from each tissue source were sorted into 5 fractions using non-equilibrium GrFFF (GrFFF proprietary system). Pooled fractions were cultured and expanded for use in osteogenic assays, including flow cytometry, histochemistry, bone nodule assays, and real-time quantitative polymerase chain reaction (qPCR) for gene expression of osteocalcin (OCN), RUNX2, and osterix. Equine MMSCs and BMSCs were consistently sorted into 5 fractions that remained viable for use in further osteogenic assays. Statistical analysis confirmed strongly significant upregulation of OCN, RUNX2, and osterix for the BMSC fraction 4 with P < 0.00001. Flow cytometry revealed different cell size and granularity for BMSC fraction 4 and MMSC fraction 2 compared to unsorted controls and other fractions. Histochemisty and bone nodule assays revealed positive staining nodules without differences in average nodule area, perimeter, or stain intensity between tissues or fractions. As there are different subpopulations of MSCs with different osteogenic capacities within equine muscle- and bone marrow-derived sources, these differences must be taken into account when using equine stem cell therapy to induce bone healing in veterinary medicine. PMID:25852225

  18. Mesenchymal stem cells in pathogenesis of myelodysplastic syndromes

    PubMed Central

    Wang, Jingya

    2014-01-01

    Myelodysplastic syndromes (MDS) are clonal malignant stem cell disorders characterized by inefficient hematopoiesis. The role of the marrow microenvironment in the pathogenesis of the disease has been controversial. Emerging evidence indicated that mesenchymal stem cells (MSC) derived from MDS patients were cytogenetically abnormal, and they showed a deficient hematopoietic-supportive capacity and increased production of cytokine such as tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interferon γ (IFN-γ). From the point of some evidence, the abnormal microenvironment seems to participate in the progression of the disease by contributing to the selective expansion of the malignant clone. In this review, we will discuss the most recent progress related to identification of normal MSC and the importance of the stem cell niche in development and maintenance of MDS.

  19. Recent Advances in Hydroxyapatite Scaffolds Containing Mesenchymal Stem Cells

    PubMed Central

    Michel, John; Penna, Matthew; Kochen, Juan; Cheung, Herman

    2015-01-01

    Modern day tissue engineering and cellular therapies have gravitated toward using stem cells with scaffolds as a dynamic modality to aid in differentiation and tissue regeneration. Mesenchymal stem cells (MSCs) are one of the most studied stem cells used in combination with scaffolds. These cells differentiate along the osteogenic lineage when seeded on hydroxyapatite containing scaffolds and can be used as a therapeutic option to regenerate various tissues. In recent years, the combination of hydroxyapatite and natural or synthetic polymers has been studied extensively. Due to the interest in these scaffolds, this review will cover the wide range of hydroxyapatite containing scaffolds used with MSCs for in vitro and in vivo experiments. Further, in order to maintain a progressive scope of the field this review article will only focus on literature utilizing adult human derived MSCs (hMSCs) published in the last three years. PMID:26106425

  20. Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential.

    PubMed

    Mo, Miaohua; Wang, Shan; Zhou, Ying; Li, Hong; Wu, Yaojiong

    2016-09-01

    Mesenchymal stem cells (MSC) are capable of differentiating into cells of multiple cell lineages and have potent paracrine effects. Due to their easy preparation and low immunogenicity, MSC have emerged as an extremely promising therapeutic agent in regenerative medicine for diverse diseases. However, MSC are heterogeneous with respect to phenotype and function in current isolation and cultivation regimes, which often lead to incomparable experimental results. In addition, there may be specific stem cell subpopulations with definite differentiation capacity toward certain lineages in addition to stem cells with multi-differentiation potential. Recent studies have identified several subsets of MSC which exhibit distinct features and biological activities, and enhanced therapeutic potentials for certain diseases. In this review, we give an overview of these subsets for their phenotypic, biological and functional properties. PMID:27141940

  1. The role of mesenchymal stem cells and serotonin in the development of experimental pancreatitis.

    PubMed

    Lazebnic, L B; Lychkova, A E; Knyazev, O V

    2013-08-01

    Pancreatitis was modeled before and after preliminary transplantation of stem cells and serotonin. It was demonstrated that transplantation of mesenchymal stem cells and activation of serotoninergic system prevent the development of pancreatitis. PMID:24143388

  2. Immunoregulation by Mesenchymal Stem Cells: Biological Aspects and Clinical Applications

    PubMed Central

    Castro-Manrreza, Marta E.; Montesinos, Juan J.

    2015-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiation into mesenchymal lineages and that can be isolated from various tissues and easily cultivated in vitro. Currently, MSCs are of considerable interest because of the biological characteristics that confer high potential applicability in the clinical treatment of many diseases. Specifically, because of their high immunoregulatory capacity, MSCs are used as tools in cellular therapies for clinical protocols involving immune system alterations. In this review, we discuss the current knowledge about the capacity of MSCs for the immunoregulation of immunocompetent cells and emphasize the effects of MSCs on T cells, principal effectors of the immune response, and the immunosuppressive effects mediated by the secretion of soluble factors and membrane molecules. We also describe the mechanisms of MSC immunoregulatory modulation and the participation of MSCs as immune response regulators in several autoimmune diseases, and we emphasize the clinical application in graft versus host disease (GVHD). PMID:25961059

  3. Epigallocatechin-3-gallate protects against tumor necrosis factor alpha induced inhibition of osteogenesis of mesenchymal stem cells.

    PubMed

    Liu, Wei; Fan, Jian-Bo; Xu, Da-Wei; Zhang, Jie; Cui, Zhi-Ming

    2016-03-01

    Anabolic bone accruement through osteogenic differentiation is important for the maintenance of physiological bone mass and often disrupted in various inflammatory diseases. Epigallocatechin-3-gallate, as an antioxidant and anti-inflammatory agent, has been suggested for potential therapeutic use in this context, possibly by the inhibition of bone resorption as well as the enhancement of bone formation through directly activating osteoblast differentiation. However, the reported effects of epigallocatechin-3-gallate modulating osteoblast differentiation are mixed, and the underlying molecular mechanism is still elusive. Moreover, there is limited information regarding the effects of epigallocatechin-3-gallate on osteogenic potential of mesenchymal stem cell in inflammation. Here, we examined the in vitro osteogenic differentiation of human mesenchymal stem cells. We found that the cell viability and osteoblast differentiation of human bone marrow-derived mesenchymal stem cells are significantly inhibited by inflammatory cytokine TNFα treatment. Epigallocatechin-3-gallate is able to enhance the cell viability and osteoblast differentiation of mesenchymal stem cells and is capable of reversing the TNFα-induced inhibition. Notably, only low doses of epigallocatechin-3-gallate have such benefits, which potentially act through the inhibition of NF-κB signaling that is stimulated by TNFα. These data altogether clarify the controversy on epigallocatechin-3-gallate promoting osteoblast differentiation and further provide molecular basis for the putative clinical use of epigallocatechin-3-gallate in stem cell-based bone regeneration for inflammatory bone loss diseases, such as rheumatoid arthritis and prosthetic osteolysis. PMID:26748399

  4. Expansion of Mesenchymal Stem Cells under Atmospheric Carbon Dioxide

    PubMed Central

    Brodsky, Arthur Nathan; Zhang, Jing; Visconti, Richard P.; Harcum, Sarah W.

    2013-01-01

    Stem cells are needed for an increasing number of scientific applications, including both fundamental research and clinical disease treatment. To meet this rising demand, improved expansion methods to generate high quantities of high quality stem cells must be developed. Unfortunately, the bicarbonate buffering system – which relies upon an elevated CO2 environment – typically used to maintain pH in stem cell cultures introduces several unnecessary limitations in bioreactor systems. In addition to artificially high dissolved CO2 levels negatively affecting cell growth, but more importantly, the need to sparge CO2 into the system complicates the ability to control culture parameters. This control is especially important for stem cells, whose behavior and phenotype is highly sensitive to changes in culture conditions such as dissolved oxygen and pH. As a first step, this study developed a buffer to support expansion of mesenchymal stem cells (MSC) under an atmospheric CO2 environment in static cultures. MSC expanded under atmospheric CO2 with this buffer achieved equivalent growth rates without adaptation compared to those grown in standard conditions and also maintained a stem cell phenotype, self-renewal properties, and the ability to differentiate into multiple lineages after expansion. PMID:23894049

  5. Multilineage potential research of bovine amniotic fluid mesenchymal stem cells.

    PubMed

    Gao, Yuhua; Zhu, Zhiqiang; Zhao, Yuhua; Hua, Jinlian; Ma, Yuehui; Guan, Weijun

    2014-01-01

    The use of amnion and amniotic fluid (AF) are abundant sources of mesenchymal stem cells (MSCs) that can be harvested at low cost and do not pose ethical conflicts. In human and veterinary research, stem cells derived from these tissues are promising candidates for disease treatment, specifically for their plasticity, their reduced immunogenicity, and high anti-inflammatory potential. This work aimed to obtain and characterize bovine amniotic fluid mesenchymal stem cells (AFMSC). The bovine AF from the amniotic cavity of pregnant gilts in the early stages of gestation (3- and 4-m-old bovine embryos) was collected. AFMSCs exhibit a fibroblastic-like morphology only starting from the fourth passage, being heterogeneous during the primary culture. Immunofluorescence results showed that AFMSCs were positive for β-integrin, CD44, CD73 and CD166, but negative for CD34, CD45. Meanwhile, AFMSCs expressed ES cell markers, such as Oct4, and when appropriately induced, are capable of differentiating into ectodermal and mesodermal lineages. This study reinforces the emerging importance of these cells as ideal tools in veterinary medicine; future studies aimed at a deeper evaluation of their immunological properties will allow a better understanding of their role in cellular therapy. PMID:24590129

  6. CPNE7, a preameloblast-derived factor, regulates odontoblastic differentiation of mesenchymal stem cells.

    PubMed

    Oh, Hyun-Jung; Choung, Han-Wool; Lee, Hye-Kyung; Park, Su-Jin; Lee, Ji-Hyun; Lee, Dong-Seol; Seo, Byoung-Moo; Park, Joo-Cheol

    2015-01-01

    Tooth development involves sequential interactions between dental epithelial and mesenchymal cells. Our previous studies demonstrated that preameloblast-conditioned medium (PA-CM) induces the odontogenic differentiation of human dental pulp cells (hDPCs), and the novel protein Cpne7 in PA-CM was suggested as a candidate signaling molecule. In the present study, we investigated biological function and mechanisms of Cpne7 in regulation of odontoblast differentiation. Cpne7 was expressed in preameloblasts and secreted extracellularly during ameloblast differentiation. After secretion, Cpne7 protein was translocated to differentiating odontoblasts. In odontoblasts, Cpne7 promoted odontoblastic markers and the expression of Dspp in vitro. Cpne7 also induced odontoblast differentiation and promoted dentin/pulp-like tissue formation in hDPCs in vivo. Moreover, Cpne7 induced differentiation into odontoblasts of non-dental mesenchymal stem cells in vitro, and promoted formation of dentin-like tissues including the structure of dentinal tubules in vivo. Mechanistically, Cpne7 interacted with Nucleolin and modulated odontoblast differentiation via the control of Dspp expression. These results suggest Cpne7 is a diffusible signaling molecule that is secreted by preameloblasts, and regulates the differentiation of mesenchymal cells of dental or non-dental origin into odontoblasts. PMID:25453951

  7. Gata2 Is a Rheostat for Mesenchymal Stem Cell Fate in Male Mice.

    PubMed

    Li, Xiaoxiao; Huynh, HoangDinh; Zuo, Hao; Salminen, Marjo; Wan, Yihong

    2016-03-01

    Gata2 is a zinc finger transcription factor that is important in hematopoiesis and neuronal development. However, the roles of Gata2 in the mesenchymal lineages are poorly understood. In vitro studies suggest that Gata2 modulates adipocyte differentiation and mesenchymal stem cell (MSC) proliferation. To systematically determine the in vivo functions of Gata2 in the MSC lineage commitment and development, we have generated three mouse models in which Gata2 is specifically deleted in MSCs, adipocytes, or osteoblasts. During the MSC expansion stage, Gata2 promotes proliferation and attenuates differentiation; thereby Gata2 loss in MSCs results in enhanced differentiation of both adipocytes and osteoblasts. During the differentiation stage, Gata2 also plays MSC-independent roles to impede lineage commitment; hence, Gata2 loss in adipocyte or osteoblast lineages also augments adipogenesis and osteoblastogenesis, respectively. These findings reveal Gata2 as a crucial rheostat of MSC fate to control osteoblast and adipocyte lineage development. PMID:26812161

  8. MIR146A inhibits JMJD3 expression and osteogenic differentiation in human mesenchymal stem cells

    PubMed Central

    Huszar, Jessica M.; Payne, Christopher J.

    2014-01-01

    Chromatin remodeling is important for cell differentiation. Histone methyltransferase EZH2 and histone demethylase JMJD3 (KDM6B) modulate levels of histone H3 lysine 27 trimethylation (H3K27me3). Interplay between the two modulators influence lineage specification in stem cells. Here, we identified microRNA MIR146A to be a negative regulator of JMJD3. In the osteogenic differentiation of human mesenchymal stem cells (hMSCs), we observed an upregulation of JMJD3 and a downregulation of MIR146A. Blocking JMJD3 activity in differentiating hMSCs reduced transcript levels of osteogenic gene RUNX2. H3K27me3 levels decreased at the RUNX2 promoter during cell differentiation. Modulation of MIR146A levels in hMSCs altered JMJD3 and RUNX2 expression and affected osteogenic differentiation. We conclude that JMJD3 promotes osteogenesis in differentiating hMSCs, with MIR146A regulating JMJD3. PMID:24726732

  9. MIR146A inhibits JMJD3 expression and osteogenic differentiation in human mesenchymal stem cells.

    PubMed

    Huszar, Jessica M; Payne, Christopher J

    2014-05-01

    Chromatin remodeling is important for cell differentiation. Histone methyltransferase EZH2 and histone demethylase JMJD3 (KDM6B) modulate levels of histone H3 lysine 27 trimethylation (H3K27me3). Interplay between the two modulators influence lineage specification in stem cells. Here, we identified microRNA MIR146A to be a negative regulator of JMJD3. In the osteogenic differentiation of human mesenchymal stem cells (hMSCs), we observed an upregulation of JMJD3 and a downregulation of MIR146A. Blocking JMJD3 activity in differentiating hMSCs reduced transcript levels of osteogenic gene RUNX2. H3K27me3 levels decreased at the RUNX2 promoter during cell differentiation. Modulation of MIR146A levels in hMSCs altered JMJD3 and RUNX2 expression and affected osteogenic differentiation. We conclude that JMJD3 promotes osteogenesis in differentiating hMSCs, with MIR146A regulating JMJD3. PMID:24726732

  10. Gold nanorod delivery of LSD1 siRNA induces human mesenchymal stem cell differentiation.

    PubMed

    Zhao, Xiongfei; Huang, Qianying; Jin, Yiqiang

    2015-09-01

    Over the past decade, theranostic nanoparticles with microsize and multifunctional ability have emerged as a new platform in biomedical field, such as cancer therapy, optical imaging and gene therapy. Gene therapy has been recently shown as a promising tool for tissue engineering as safe and effective nanotechnology-based delivery methods are developed. Controlling adhesion and differentiation of stem cells is critical for tissue regeneration. In this study, we have developed poly-sodium 4-styrenesulfonate (PSS) and poly-allylamine hydrochloride (PAH) coated AuNR-based nanocarriers, which are capable of delivering small interfering RNA (siRNA) against LSD1 to induce the differentiation of human mesenchymal stem cells. To further study the mechanism, we tested the stemness and differentiation genes and found that they have been changed with LSD1 down-regulation. In addition, with the hepatocyte growth factor (HGF), LSD1 siRNA delivery by AuNRs could promote the differentiation of the human mesenchymal stem cells (human MSCs) into a hepatocyte lineage in vitro. Our results suggest for the first time use of AuNRs as nanocarriers of delivery LSD1 siRNA to induce the differentiation of human MSCs into a hepatocyte lineage, and envision the potential application of nanotechnology in tissue remodeling (such as liver and bone) in vivo, eventually translating to clinical applications. PMID:26046277

  11. Human Amnion-Derived Mesenchymal Stem Cells Protect Human Bone Marrow Mesenchymal Stem Cells against Oxidative Stress-Mediated Dysfunction via ERK1/2 MAPK Signaling

    PubMed Central

    Wang, Yuli; Ma, Junchi; Du, Yifei; Miao, Jing; Chen, Ning

    2016-01-01

    Epidemiological evidence suggests that bone is especially sensitive to oxidative stress, causing bone loss in the elderly. Previous studies indicated that human amnion-derived mesenchymal stem cells (HAMSCs), obtained from human amniotic membranes, exerted osteoprotective effects in vivo. However, the potential of HAMSCs as seed cells against oxidative stress-mediated dysfunction is unknown. In this study, we systemically investigated their antioxidative and osteogenic effects in vitro. Here, we demonstrated that HAMSCs signi cantly promoted the proliferation and osteoblastic differentiation of H2O2-induced human bone marrow mesenchymal stem cells (HBMSCs), and down-regulated the reactive oxygen species (ROS) level. Further, our results suggest that activation of the ERK1/2 MAPK signal transduction pathway is essential for both HAMSCs-mediated osteogenic and protective effects against oxidative stress-induced dysfunction in HBMSCs. U0126, a highly selective inhibitor of extracellular ERK1/2 MAPK signaling, significantly suppressed the antioxidative and osteogenic effects in HAMSCs. In conclusion, by modulating HBMSCs, HAMSCs show a strong potential in treating oxidative stress- mediated bone deficiency. PMID:26743906

  12. Therapeutic potential of mesenchymal stem cell based therapy for osteoarthritis.

    PubMed

    Burke, John; Hunter, Monte; Kolhe, Ravindra; Isales, Carlos; Hamrick, Mark; Fulzele, Sadanand

    2016-12-01

    Osteoarthritis (OA) is a chronic degenerative disease affecting articular cartilage in joints, and it is a leading cause of disability in the United States. Current pharmacological treatment strategies are ineffective to prevent the OA progression; however, cellular therapies have the potential to regenerate the lost cartilage, combat cartilage degeneration, provide pain relief, and improve patient mobility. One of the most promising sources of cellular regenerative medicine is from mesenchymal stem cells (MSCs). MSCs can be isolated from adipose tissue, bone marrow, synovial tissue, and other sources. The aim of this review is to compile recent advancement in cellular based therapy more specifically in relation to MSCs in the treatment of osteoarthritis. PMID:27510262

  13. Mesenchymal stem cell therapy for acute radiation syndrome.

    PubMed

    Fukumoto, Risaku

    2016-01-01

    Acute radiation syndrome affects military personnel and civilians following the uncontrolled dispersal of radiation, such as that caused by detonation of nuclear devices and inappropriate medical treatments. Therefore, there is a growing need for medical interventions that facilitate the improved recovery of victims and patients. One promising approach may be cell therapy, which, when appropriately implemented, may facilitate recovery from whole body injuries. This editorial highlights the current knowledge regarding the use of mesenchymal stem cells for the treatment of acute radiation syndrome, the benefits and limitations of which are under investigation. Establishing successful therapies for acute radiation syndrome may require using such a therapeutic approach in addition to conventional approaches. PMID:27182446

  14. Mesenchymal Stem Cell-Derived Hepatocytes for Functional Liver Replacement

    PubMed Central

    Christ, Bruno; Stock, Peggy

    2012-01-01

    Mesenchymal stem cells represent an alternate cell source to substitute for primary hepatocytes in hepatocyte transplantation because of their multiple differentiation potential and nearly unlimited availability. They may differentiate into hepatocyte-like cells in vitro and maintain specific hepatocyte functions also after transplantation into the regenerating livers of mice or rats both under injury and non-injury conditions. Depending on the underlying liver disease their mode of action is either to replace the diseased liver tissue or to support liver regeneration through their anti-inflammatory and anti-apoptotic as well as their pro-proliferative action. PMID:22737154

  15. In vitro Differentiation Potential of Mesenchymal Stem Cells

    PubMed Central

    Gimble, Jeffrey M.; Guilak, Farshid; Nuttall, Mark E.; Sathishkumar, Solomon; Vidal, Martin; Bunnell, Bruce A.

    2008-01-01

    Summary Mesenchymal stem cells (MSCs) represent a class of multipotent progenitor cells that have been isolated from multiple tissue sites. Of these, adipose tissue and bone marrow offer advantages in terms of access, abundance, and the extent of their documentation in the literature. This review focuses on the in vitro differentiation capability of cells derived from adult human tissue. Multiple, independent studies have demonstrated that MSCs can commit to mesodermal (adipocyte, chondrocyte, hematopoietic support, myocyte, osteoblast, tenocyte), ectodermal (epithelial, glial, neural), and endodermal (hepatocyte, islet cell) lineages. The limitations and promises of these studies in the context of tissue engineering are discussed. PMID:21547120

  16. Age-associated changes in the ecological niche: implications for mesenchymal stem cell aging

    PubMed Central

    2013-01-01

    Adult stem cells are critical for organ-specific regeneration and self-renewal with advancing age. The prospect of being able to reverse tissue-specific post-injury sequelae by harvesting, culturing and transplanting a patient’s own stem and progenitor cells is exciting. Mesenchymal stem cells have emerged as a reliable stem cell source for this treatment modality and are currently being tested in numerous ongoing clinical trials. Unfortunately, the fervor over mesenchymal stem cells is mitigated by several lines of evidence suggesting that their efficacy is limited by natural aging. This article discusses the mechanisms and manifestations of age-associated deficiencies in mesenchymal stem cell efficacy. A consideration of recent experimental findings suggests that the ecological niche might be responsible for mesenchymal stem cell aging. PMID:23673056

  17. Lower Oncogenic Potential of Human Mesenchymal Stem Cells Derived from Cord Blood Compared to Induced Pluripotent Stem Cells

    PubMed Central

    Foroutan, T.; Najmi, M.; Kazemi, N.; Hasanlou, M.; Pedram, A.

    2015-01-01

    Background: In regenerative medicine, use of each of the mesenchymal stem cells derived from bone marrow, cord blood, and adipose tissue, has several cons and pros. Mesenchymal stem cells derived from cord blood have been considered the best source for precursor transplantation. Direct reprogramming of a somatic cell into induced pluripotent stem cells by over-expression of 6 transcription factors Oct4, Sox2, Klf4, lin28, Nanog, and c-Myc has great potential for regenerative medicine, eliminating the ethical issues of embryonic stem cells and the rejection problems of using non-autologous cells. Objective: To compare reprogramming and pluripotent markers OCT4, Sox-2, c-Myc, Klf4, Nanog, and lin28 in mesenchymal stem cells derived from cord blood and induced pluripotent stem cells. Methods: We analyzed the expression level of OCT4, Sox-2, c-Myc, Klf4, Nanog and lin28 genes in human mesenchymal stem cells derived from cord blood and induced pluripotent stem cells by cell culture and RT-PCR. Results: The expression level of pluripotent genes OCT4 and Sox-2, Nanog and lin28 in mesenchymal stem cells derived from cord blood were significantly higher than those in induced pluripotent stem cells. In contrast to OCT-4A and Sox-2, Nanog and lin28, the expression level of oncogenic factors c-Myc and Klf4 were significantly higher in induced pluripotent stem cells than in mesenchymal stem cells derived from cord blood. Conclusion: It could be concluded that mesenchymal stem cells derived from human cord blood have lower oncogenic potential compared to induced pluripotent stem cells. PMID:26306155

  18. Bone Marrow Mesenchymal Stem Cell and Vein Conduit on Sciatic Nerve Repair in Rats

    PubMed Central

    Seyed Foroutan, Kamal; Khodarahmi, Ali; Alavi, Hootan; Pedram, Sepehr; Baghaban Eslaminejad, Mohamad Reza; Bordbar, Sima

    2015-01-01

    Background: Peripheral nerve repair with sufficient functional recovery is an important issue in reconstructive surgery. Stem cells have attracted extensive research interest in recent years. Objectives: The purpose of this study was to compare the vein conduit technique, with and without the addition of mesenchymal stem cells in gap-less nerve injury repair in rats. Materials and Methods: In this study, 36 Wistar rats were randomly allocated to three groups: In the first group, nerve repair was performed with simple neurorrhaphy (control group), in the second group, nerve repair was done with vein conduit over site (vein conduit group) and in the third group, bone marrow stem cells were instilled into the vein conduit (stem cell group) after nerve repair with vein conduit over site. Six weeks after the intervention, the sciatic function index, electrophysiological study and histological examination were performed. Results: All animals tolerated the surgical procedures and survived well. The sciatic function index and latency were significantly improved in the vein conduit (P = 0.04 and 0.03, respectively) and stem cell group (P = 0.02 and 0.03, respectively) compared with the control group. No significant difference was observed in sciatic function and latency between the vein conduit and stem-cell groups. Moreover, histological analysis showed no significant difference in regenerative density between these two groups. Conclusions: The results of this study showed that the meticulous microsurgical nerve repair, which was performed using the vein tubulization induced significantly better sciatic nerve regeneration. However, the addition of bone marrow mesenchymal stem cell to vein conduit failed to promote any significant changes in regeneration outcome. PMID:25825699

  19. Hepcidin promotes osteogenic differentiation through the bone morphogenetic protein 2/small mothers against decapentaplegic and mitogen-activated protein kinase/P38 signaling pathways in mesenchymal stem cells

    PubMed Central

    LU, HUADING; LIAN, LIYI; SHI, DEHAI; ZHAO, HUIQING; DAI, YUHU

    2015-01-01

    The ability of mesenchymal stem cells (MSCs) to differentiate into osteogenic lineages requires management for their future use in treating bone destruction and osteoporosis. Hepcidin is closely associated with bone metabolism, however, it remains to be elucidated whether hepcidin affects osteogenic differentiation in MSCs. The present study demonstrated that hepcidin enhanced osteoblastic differentiation and mineralization, which was manifested by an upregulation in the differentiation markers alkaline phosphatase and osteogenic genes. Furthermore, the expression levels of bone morphogenetic proteins and small mothers against decapentaplegic homologs were concomitantly increased following hepcidin treatment. In addition, the p38 mitogen-activated protein kinase may be an upstream kinase for osteoblastic differentiation. Thus, hepcidin may be important in the osteogenic differentiation of MSCs and may be considered as a target in the development of therapies for pathological bone loss. PMID:25351366

  20. Composition of Mineral Produced by Dental Mesenchymal Stem Cells

    PubMed Central

    Volponi, A.A.; Gentleman, E.; Fatscher, R.; Pang, Y.W.Y.; Gentleman, M.M.; Sharpe, P.T.

    2015-01-01

    Mesenchymal stem cells isolated from different dental tissues have been described to have osteogenic/odontogenic-like differentiation capacity, but little attention has been paid to the biochemical composition of the material that each produces. Here, we used Raman spectroscopy to analyze the mineralized materials produced in vitro by different dental cell populations, and we compared them with the biochemical composition of native dental tissues. We show that different dental stem cell populations produce materials that differ in their mineral and matrix composition and that these differ from those of native dental tissues. In vitro, BCMP (bone chip mass population), SCAP (stem cells from apical papilla), and SHED (stem cells from human-exfoliated deciduous teeth) cells produce a more highly mineralized matrix when compared with that produced by PDL (periodontal ligament), DPA (dental pulp adult), and GF (gingival fibroblast) cells. Principal component analyses of Raman spectra further demonstrated that the crystallinity and carbonate substitution environments in the material produced by each cell type varied, with DPA cells, for example, producing a more carbonate-substituted mineral and with SCAP, SHED, and GF cells creating a less crystalline material when compared with other dental stem cells and native tissues. These variations in mineral composition reveal intrinsic differences in the various cell populations, which may in turn affect their specific clinical applications. PMID:26253190

  1. Mesenchymal Stem Cell Therapy in Diabetes Mellitus: Progress and Challenges

    PubMed Central

    El-Badri, Nagwa; Ghoneim, Mohamed A.

    2013-01-01

    Advanced type 2 diabetes mellitus is associated with significant morbidity and mortality due to cardiovascular, nervous, and renal complications. Attempts to cure diabetes mellitus using islet transplantation have been successful in providing a source for insulin secreting cells. However, limited donors, graft rejection, the need for continued immune suppression, and exhaustion of the donor cell pool prompted the search for a more sustained source of insulin secreting cells. Stem cell therapy is a promising alternative for islet transplantation in type 2 diabetic patients who fail to control hyperglycemia even with insulin injection. Autologous stem cell transplantation may provide the best outcome for those patients, since autologous cells are readily available and do not entail prolonged hospital stays or sustained immunotoxic therapy. Among autologous adult stem cells, mesenchymal stem cells (MSCs) therapy has been applied with varying degrees of success in both animal models and in clinical trials. This review will focus on the advantages of MSCs over other types of stem cells and the possible mechanisms by which MSCs transplant restores normoglycemia in type 2 diabetic patients. Sources of MSCs including autologous cells from diabetic patients and the use of various differentiation protocols in relation to best transplant outcome will be discussed. PMID:23762531

  2. Mesenchymal stem cells are sensitive to bleomycin treatment

    PubMed Central

    Nicolay, Nils H.; Rühle, Alexander; Perez, Ramon Lopez; Trinh, Thuy; Sisombath, Sonevisay; Weber, Klaus-Josef; Ho, Anthony D.; Debus, Jürgen; Saffrich, Rainer; Huber, Peter E.

    2016-01-01

    Mesenchymal stem cells (MSCs) have been shown to attenuate pulmonary damage induced by bleomycin-based anticancer treatments, but the influence of bleomycin on the stem cells themselves remains largely unknown. Here, we demonstrate that human bone marrow-derived MSCs are relatively sensitive to bleomycin exposure compared to adult fibroblasts. MSCs revealed increased levels of apoptosis after bleomycin treatment, while cellular morphology, stem cell surface marker expression and the ability for adhesion and migration remained unchanged. Bleomycin treatment also resulted in a reduced adipogenic differentiation potential of these stem cells. MSCs were found to efficiently repair DNA double strand breaks induced by bleomycin, mostly through non-homologous end joining repair. Low mRNA and protein expression levels of the inactivating enzyme bleomycin hydrolase were detected in MSCs that may contribute to the observed bleomycin-sensitive phenotype of these cells. The sensitivity of MSCs against bleomycin needs to be taken into consideration for ongoing and future treatment protocols investigating these stem cells as a potential treatment option for bleomycin-induced pulmonary damage in the clinic. PMID:27215195

  3. Secretome of Olfactory Mucosa Mesenchymal Stem Cell, a Multiple Potential Stem Cell

    PubMed Central

    Ge, Lite; Duan, Da; Wang, Zijun; Qi, Linyu; Teng, Xiaohua; Zhao, Zhenyu; Wang, Lei; Zhuo, Yi; Chen, Ping; He, Xijing; Lu, Ming

    2016-01-01

    Nasal olfactory mucosa mesenchymal stem cells (OM-MSCs) have the ability to promote regeneration in the nervous system in vivo. Moreover, with view to the potential for clinical application, OM-MSCs have the advantage of being easily accessible from patients and transplantable in an autologous manner, thus eliminating immune rejection and contentious ethical issues. So far, most studies have been focused on the role of OM-MSCs in central nervous system replacement. However, the secreted proteomics of OM-MSCs have not been reported yet. Here, proteins secreted by OM-MSCs cultured in serum-free conditions were separated on SDS-PAGE and identified by LC-MS/MS. As a result, a total of 274 secreted proteins were identified. These molecules are known to be important in neurotrophy, angiogenesis, cell growth, differentiation, and apoptosis, and inflammation which were highly correlated with the repair of central nervous system. The proteomic profiling of the OM-MSCs secretome might provide new insights into their nature in the neural recovery. However, proteomic analysis for clinical biomarkers of OM-MSCs needs to be further studied. PMID:26949398

  4. Secretome of Olfactory Mucosa Mesenchymal Stem Cell, a Multiple Potential Stem Cell.

    PubMed

    Ge, Lite; Jiang, Miao; Duan, Da; Wang, Zijun; Qi, Linyu; Teng, Xiaohua; Zhao, Zhenyu; Wang, Lei; Zhuo, Yi; Chen, Ping; He, Xijing; Lu, Ming

    2016-01-01

    Nasal olfactory mucosa mesenchymal stem cells (OM-MSCs) have the ability to promote regeneration in the nervous system in vivo. Moreover, with view to the potential for clinical application, OM-MSCs have the advantage of being easily accessible from patients and transplantable in an autologous manner, thus eliminating immune rejection and contentious ethical issues. So far, most studies have been focused on the role of OM-MSCs in central nervous system replacement. However, the secreted proteomics of OM-MSCs have not been reported yet. Here, proteins secreted by OM-MSCs cultured in serum-free conditions were separated on SDS-PAGE and identified by LC-MS/MS. As a result, a total of 274 secreted proteins were identified. These molecules are known to be important in neurotrophy, angiogenesis, cell growth, differentiation, and apoptosis, and inflammation which were highly correlated with the repair of central nervous system. The proteomic profiling of the OM-MSCs secretome might provide new insights into their nature in the neural recovery. However, proteomic analysis for clinical biomarkers of OM-MSCs needs to be further studied. PMID:26949398

  5. Effects of Oxidative Stress on Mesenchymal Stem Cell Biology

    PubMed Central

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) are multipotent stem cells present in most fetal and adult tissues. Ex vivo culture-expanded MSCs are being investigated for tissue repair and immune modulation, but their full clinical potential is far from realization. Here we review the role of oxidative stress in MSC biology, as their longevity and functions are affected by oxidative stress. In general, increased reactive oxygen species (ROS) inhibit MSC proliferation, increase senescence, enhance adipogenic but reduce osteogenic differentiation, and inhibit MSC immunomodulation. Furthermore, aging, senescence, and oxidative stress reduce their ex vivo expansion, which is critical for their clinical applications. Modulation of sirtuin expression and activity may represent a method to reduce oxidative stress in MSCs. These findings have important implications in the clinical utility of MSCs for degenerative and immunological based conditions. Further study of oxidative stress in MSCs is imperative in order to enhance MSC ex vivo expansion and in vivo engraftment, function, and longevity. PMID:27413419

  6. Mesenchymal stem cells are resistant to carbon ion radiotherapy

    PubMed Central

    Nicolay, Nils H.; Liang, Yingying; Perez, Ramon Lopez; Bostel, Tilman; Trinh, Thuy; Sisombath, Sonevisay; Weber, Klaus-Josef; Ho, Anthony D.; Debus, Jürgen; Saffrich, Rainer; Huber, Peter E.

    2015-01-01

    Mesenchymal stem cells (MSCs) participate in regeneration of tissues damaged by ionizing radiation. However, radiation can damage MSCs themselves. Here we show that cellular morphology, adhesion and migration abilities were not measurably altered by photon or carbon ion irradiation. The potential for differentiation was unaffected by either form of radiation, and established MSC surface markers were found to be stably expressed irrespective of radiation treatment. MSCs were able to efficiently repair DNA double strand breaks induced by both high-dose photon and carbon ion radiation. We have shown for the first time that MSCs are relatively resistant to therapeutic carbon ion radiotherapy. Additionally, this form of radiation did not markedly alter the defining stem cell properties or the expression of established surface markers in MSCs. PMID:25504442

  7. Transplantation of mesenchymal stem cells improves type 1 diabetes mellitus.

    PubMed

    Li, Lisha; Li, Furong; Gao, Feng; Yang, Yali; Liu, Yuanyuan; Guo, Pingping; Li, Yulin

    2016-05-01

    Bone-marrow-derived stem cells can regenerate pancreatic tissue in a model of type 1 diabetes mellitus. Mesenchymal stem cells (MSCs) form the main part of bone marrow. We show that the intrapancreatic transplantation of MSCs elevates serum insulin and C-peptide, while decreasing blood glucose. MSCs engrafted into the damaged rat pancreas become distributed into the blood vessels, acini, ducts, and islets. Renascent islets, islet-like clusters, and a small number of MSCs expressing insulin protein have been observed in the pancreas of diabetic rats. Intrapancreatic transplantation of MSCs triggers a series of molecular and cellular events, including differentiation towards the pancreas directly and the provision of a niche to start endogenous pancreatic regeneration, which ameliorates hypoinsulinemia and hyperglycemia caused by streptozotocin. These data establish the many roles of MSCs in the restoration of the function of an injured organ. PMID:26650464

  8. Effects of Oxidative Stress on Mesenchymal Stem Cell Biology.

    PubMed

    Denu, Ryan A; Hematti, Peiman

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) are multipotent stem cells present in most fetal and adult tissues. Ex vivo culture-expanded MSCs are being investigated for tissue repair and immune modulation, but their full clinical potential is far from realization. Here we review the role of oxidative stress in MSC biology, as their longevity and functions are affected by oxidative stress. In general, increased reactive oxygen species (ROS) inhibit MSC proliferation, increase senescence, enhance adipogenic but reduce osteogenic differentiation, and inhibit MSC immunomodulation. Furthermore, aging, senescence, and oxidative stress reduce their ex vivo expansion, which is critical for their clinical applications. Modulation of sirtuin expression and activity may represent a method to reduce oxidative stress in MSCs. These findings have important implications in the clinical utility of MSCs for degenerative and immunological based conditions. Further study of oxidative stress in MSCs is imperative in order to enhance MSC ex vivo expansion and in vivo engraftment, function, and longevity. PMID:27413419

  9. Interaction between Mesenchymal Stem Cells and B-Cells

    PubMed Central

    Fan, Linxiao; Hu, Chenxia; Chen, Jiajia; Cen, Panpan; Wang, Jie; Li, Lanjuan

    2016-01-01

    Mesenchymal stem cells (MSCs) are multipotent; non-hematopoietic stem cells. Because of their immunoregulatory abilities; MSCs are widely used for different clinical applications. Compared with that of other immune cells; the investigation of how MSCs specifically regulate B-cells has been superficial and insufficient. In addition; the few experimental studies on this regulation are often contradictory. In this review; we summarize the various interactions between different types or states of MSCs and B-cells; address how different types of MSCs and B-cells affect this interaction and examine how other immune cells influence the regulation of B-cells by MSCs. Finally; we hypothesize why there are conflicting results on the interaction between MSCs and B-cells in the literature. PMID:27164080

  10. Mesenchymal stem cells and immunomodulation: current status and future prospects

    PubMed Central

    Gao, F; Chiu, S M; Motan, D A L; Zhang, Z; Chen, L; Ji, H-L; Tse, H-F; Fu, Q-L; Lian, Q

    2016-01-01

    The unique immunomodulatory properties of mesenchymal stem cells (MSCs) make them an invaluable cell type for the repair of tissue/ organ damage caused by chronic inflammation or autoimmune disorders. Although they hold great promise in the treatment of immune disorders such as graft versus host disease (GvHD) and allergic disorders, there remain many challenges to overcome before their widespread clinical application. An understanding of the biological properties of MSCs will clarify the mechanisms of MSC-based transplantation for immunomodulation. In this review, we summarize the preclinical and clinical studies of MSCs from different adult tissues, discuss the current hurdles to their use and propose the future development of pluripotent stem cell-derived MSCs as an approach to immunomodulation therapy. PMID:26794657

  11. Mesenchymal stem cell therapy for cutaneous radiation syndrome.

    PubMed

    Akita, Sadanori; Akino, Kozo; Hirano, Akiyoshi; Ohtsuru, Akira; Yamashita, Shunichi

    2010-06-01

    Systemic and local radiation injuries caused by nuclear power reactor accidents, therapeutic irradiation, or nuclear terrorism should be prevented or properly treated in order to improve wound management and save lives. Currently, regenerative surgical modalities should be attempted with temporal artificial dermis impregnated and sprayed with a local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Human mesenchymal stem cells and adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and were tested for differentiation and local stimulation effects in the radiation-exposed wounds. The perforator flap and artificial dermal template with growth factor were successful for reconstruction in patients who were suffering from complex underlying disease. Patients were uneventfully treated with minimal morbidities. In the experiments, the hMSCs are strongly proliferative even after 20 Gy irradiation in vitro. In vivo, 4 Gy rat whole body irradiation demonstrated that sustained marrow stromal (mesenchymal stem) cells survived in the bone marrow. Immediate artificial dermis application impregnated with cells and the cytokine over the 20 Gy irradiated skin and soft tissues demonstrated the significantly improved fat angiogenesis, architected dermal reconstitution, and less inflammatory epidermal recovery. Detailed understanding of underlying diseases and rational reconstructive procedures brings about good outcomes for difficult irradiated wound healing. Adipose-derived stem cells are also implicated in the limited local injuries for short cell harvesting and processing time in the same subject. PMID:20445394

  12. Senescence in Human Mesenchymal Stem Cells: Functional Changes and Implications in Stem Cell-Based Therapy

    PubMed Central

    Turinetto, Valentina; Vitale, Emanuela; Giachino, Claudia

    2016-01-01

    Regenerative medicine is extensively interested in developing cell therapies using mesenchymal stem cells (MSCs), with applications to several aging-associated diseases. For successful therapies, a substantial number of cells are needed, requiring extensive ex vivo cell expansion. However, MSC proliferation is limited and it is quite likely that long-term culture evokes continuous changes in MSCs. Therefore, a substantial proportion of cells may undergo senescence. In the present review, we will first present the phenotypic characterization of senescent human MSCs (hMSCs) and their possible consequent functional alterations. The accumulation of oxidative stress and dysregulation of key differentiation regulatory factors determine decreased differentiation potential of senescent hMSCs. Senescent hMSCs also show a marked impairment in their migratory and homing ability. Finally, many factors present in the secretome of senescent hMSCs are able to exacerbate the inflammatory response at a systemic level, decreasing the immune modulation activity of hMSCs and promoting either proliferation or migration of cancer cells. Considering the deleterious effects that these changes could evoke, it would appear of primary importance to monitor the occurrence of senescent phenotype in clinically expanded hMSCs and to evaluate possible ways to prevent in vitro MSC senescence. An updated critical presentation of the possible strategies for in vitro senescence monitoring and prevention constitutes the second part of this review. Understanding the mechanisms that drive toward hMSC growth arrest and evaluating how to counteract these for preserving a functional stem cell pool is of fundamental importance for the development of efficient cell-based therapeutic approaches. PMID:27447618

  13. Purinergic signaling: a common pathway for neural and mesenchymal stem cell maintenance and differentiation

    PubMed Central

    Cavaliere, Fabio; Donno, Claudia; D’Ambrosi, Nadia

    2015-01-01

    Extracellular ATP, related nucleotides and adenosine are among the earliest signaling molecules, operating in virtually all tissues and cells. Through their specific receptors, namely purinergic P1 for nucleosides and P2 for nucleotides, they are involved in a wide array of physiological effects ranging from neurotransmission and muscle contraction to endocrine secretion, vasodilation, immune response, and fertility. The purinergic system also participates in the proliferation and differentiation of stem cells from different niches. In particular, both mesenchymal stem cells (MSCs) and neural stem cells are endowed with several purinergic receptors and ecto-nucleotide metabolizing enzymes, and release extracellular purines that mediate autocrine and paracrine growth/proliferation, pro- or anti-apoptotic processes, differentiation-promoting effects and immunomodulatory actions. Here, we discuss the often opposing roles played by ATP and adenosine in adult neurogenesis in both physiological and pathological conditions, as well as in adipogenic and osteogenic MSC differentiation. We also focus on how purinergic ligands produced and released by transplanted stem cells can be regarded as ideal candidates to mediate the crosstalk with resident stem cell niches, promoting cell growth and survival, regulating inflammation and, therefore, contributing to local tissue homeostasis and repair. PMID:26082684

  14. Cellular interactions via conditioned media induce in vivo nephron generation from tubular epithelial cells or mesenchymal stem cells

    SciTech Connect

    Machiguchi, Toshihiko Nakamura, Tatsuo

    2013-06-07

    Highlights: •We have attempted in vivo nephron generation using conditioned media. •Vascular and tubular cells do cross-talks on cell proliferation and tubular changes. •Tubular cells suppress these changes in mesenchymal stem cells. •Tubular cells differentiate mesenchymal stem cells into tubular cells. •Nephrons can be created from implanted tubular cells or mesenchymal stem cells. -- Abstract: There are some successful reports of kidney generation by utilizing the natural course of kidney development, namely, the use of an artificially treated metanephros, blastocyst or ureteric bud. Under a novel concept of cellular interactions via conditioned media (CMs), we have attempted in vivo nephron generation from tubular epithelial cells (TECs) or mesenchymal stem cells (MSCs). Here we used 10× CMs of vascular endothelial cells (VECs) and TECs, which is the first to introduce a CM into the field of organ regeneration. We first present stimulative cross-talks induced by these CMs between VECs and TECs on cell proliferation and morphological changes. In MSCs, TEC-CM suppressed these changes, however, induced cytokeratin expression, indicating the differentiation of MSCs into TECs. As a result, glomerular and tubular structures were created following the implantation of TECs or MSCs with both CMs. Our findings suggest that the cellular interactions via CMs might induce in vivo nephron generation from TECs or MSCs. As a promoting factor, CMs could also be applied to the regeneration of other organs and tissues.

  15. Human mesenchymal stem cells - current trends and future prospective

    PubMed Central

    Ullah, Imran; Subbarao, Raghavendra Baregundi; Rho, Gyu Jin

    2015-01-01

    Stem cells are cells specialized cell, capable of renewing themselves through cell division and can differentiate into multi-lineage cells. These cells are categorized as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells. Mesenchymal stem cells (MSCs) are adult stem cells which can be isolated from human and animal sources. Human MSCs (hMSCs) are the non-haematopoietic, multipotent stem cells with the capacity to differentiate into mesodermal lineage such as osteocytes, adipocytes and chondrocytes as well ectodermal (neurocytes) and endodermal lineages (hepatocytes). MSCs express cell surface markers like cluster of differentiation (CD)29, CD44, CD73, CD90, CD105 and lack the expression of CD14, CD34, CD45 and HLA (human leucocyte antigen)-DR. hMSCs for the first time were reported in the bone marrow and till now they have been isolated from various tissues, including adipose tissue, amniotic fluid, endometrium, dental tissues, umbilical cord and Wharton's jelly which harbours potential MSCs. hMSCs have been cultured long-term in specific media without any severe abnormalities. Furthermore, MSCs have immunomodulatory features, secrete cytokines and immune-receptors which regulate the microenvironment in the host tissue. Multilineage potential, immunomodulation and secretion of anti-inflammatory molecules makes MSCs an effective tool in the treatment of chronic diseases. In the present review, we have highlighted recent research findings in the area of hMSCs sources, expression of cell surface markers, long-term in vitro culturing, in vitro differentiation potential, immunomodulatory features, its homing capacity, banking and cryopreservation, its application in the treatment of chronic diseases and its use in clinical trials. PMID:25797907

  16. Human mesenchymal stem cells - current trends and future prospective.

    PubMed

    Ullah, Imran; Subbarao, Raghavendra Baregundi; Rho, Gyu Jin

    2015-01-01

    Stem cells are cells specialized cell, capable of renewing themselves through cell division and can differentiate into multi-lineage cells. These cells are categorized as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells. Mesenchymal stem cells (MSCs) are adult stem cells which can be isolated from human and animal sources. Human MSCs (hMSCs) are the non-haematopoietic, multipotent stem cells with the capacity to differentiate into mesodermal lineage such as osteocytes, adipocytes and chondrocytes as well ectodermal (neurocytes) and endodermal lineages (hepatocytes). MSCs express cell surface markers like cluster of differentiation (CD)29, CD44, CD73, CD90, CD105 and lack the expression of CD14, CD34, CD45 and HLA (human leucocyte antigen)-DR. hMSCs for the first time were reported in the bone marrow and till now they have been isolated from various tissues, including adipose tissue, amniotic fluid, endometrium, dental tissues, umbilical cord and Wharton's jelly which harbours potential MSCs. hMSCs have been cultured long-term in specific media without any severe abnormalities. Furthermore, MSCs have immunomodulatory features, secrete cytokines and immune-receptors which regulate the microenvironment in the host tissue. Multilineage potential, immunomodulation and secretion of anti-inflammatory molecules makes MSCs an effective tool in the treatment of chronic diseases. In the present review, we have highlighted recent research findings in the area of hMSCs sources, expression of cell surface markers, long-term in vitro culturing, in vitro differentiation potential, immunomodulatory features, its homing capacity, banking and cryopreservation, its application in the treatment of chronic diseases and its use in clinical trials. PMID:25797907

  17. Cryopreservation of Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Miyagi-Shiohira, Chika; Kurima, Kiyoto; Kobayashi, Naoya; Saitoh, Issei; Watanabe, Masami; Noguchi, Yasufumi; Matsushita, Masayuki; Noguchi, Hirofumi

    2015-01-01

    Mesenchymal stem cells (MSCs) have the potential to differentiate into cells of mesodermal origin such as osteoblasts, adipocytes, myocytes, and chondrocytes. They possess an immunosuppressive effect, which makes them a viable cell population for the cell-based therapy of treatment-resistant immune diseases. Adipose-derived mesenchymal stem cells (ASCs) have been demonstrated to have the ability to acquire the properties of subcutaneous adipose tissue particularly easily, and cryopreservation is currently performed as a routine method for preserving ASCs to safely acquire large numbers of cells. However, many studies have reported that cellular activity after freezing and thawing may be affected by the solutions used for cryopreservation. Dimethyl sulfoxide (DMSO) is commonly used as a cryopreservation medium as it diffuses into the cell through the plasma membrane and protects the cells from the damage caused by freezing. As substitutes for DMSO or animal-derived serum, cell banker series, polyvinylpyrrolidone (PVP), sericin and maltose, and methyl cellulose (MC) have been investigated for their clinical applications. It is critical to develop a reliable cell cryopreservation protocol for regenerative medicine using MSCs. PMID:26858903

  18. Cryopreservation of Adipose-Derived Mesenchymal Stem Cells.

    PubMed

    Miyagi-Shiohira, Chika; Kurima, Kiyoto; Kobayashi, Naoya; Saitoh, Issei; Watanabe, Masami; Noguchi, Yasufumi; Matsushita, Masayuki; Noguchi, Hirofumi

    2015-12-17

    Mesenchymal stem cells (MSCs) have the potential to differentiate into cells of mesodermal origin such as osteoblasts, adipocytes, myocytes, and chondrocytes. They possess an immunosuppressive effect, which makes them a viable cell population for the cell-based therapy of treatment-resistant immune diseases. Adipose-derived mesenchymal stem cells (ASCs) have been demonstrated to have the ability to acquire the properties of subcutaneous adipose tissue particularly easily, and cryopreservation is currently performed as a routine method for preserving ASCs to safely acquire large numbers of cells. However, many studies have reported that cellular activity after freezing and thawing may be affected by the solutions used for cryopreservation. Dimethyl sulfoxide (DMSO) is commonly used as a cryopreservation medium as it diffuses into the cell through the plasma membrane and protects the cells from the damage caused by freezing. As substitutes for DMSO or animal-derived serum, cell banker series, polyvinylpyrrolidone (PVP), sericin and maltose, and methyl cellulose (MC) have been investigated for their clinical applications. It is critical to develop a reliable cell cryopreservation protocol for regenerative medicine using MSCs. PMID:26858903

  19. Heterogeneity in proliferative potential of ovine mesenchymal stem cell colonies.

    PubMed

    Rhodes, N P; Srivastava, J K; Smith, R F; Longinotti, C

    2004-04-01

    Bone marrow biopsies were taken from the iliac crest of 28 individual sheep from three different breeds, ranging in age from 4 months to 8 years and mesenchymal stem cells (MSCs) isolated using selection due to plastic adherence. Cells were cultured in medium that had been selected for its effect on observed MSC proliferation, until populations of greater than 50 million had been obtained from each biopsy. The identity of the isolated cell populations as progenitors of the mesenchymal lineage was verified by deriving both osteoblastic and chondrocytic phenotypes when cultured in osteogenic and chondrogenic medium supplements, respectively. The rate of cell proliferation for each marrow biopsy was measured at each passage and the number of initial stem cells in each sample estimated. There was no statistically significant correlation between the age of the sheep and MSC proliferative potential, or age and estimated initial MSC number. There was no apparent significant difference between proliferation rate and sheep breed and colonies established from frozen cells grew at similar rates to pre-frozen cells. Counter intuitively, there appeared to be a negatively correlated trend between proliferation rate and MSC concentration in the samples. It is concluded that no initial descriptive statistics of the marrow biopsies can assist in estimating the proliferative potential, and therefore the timing of future surgeries, of MSCs sampled for the purposes of tissue engineering. PMID:15332606

  20. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts?

    PubMed

    Chen, Q; Shou, P; Zheng, C; Jiang, M; Cao, G; Yang, Q; Cao, J; Xie, N; Velletri, T; Zhang, X; Xu, C; Zhang, L; Yang, H; Hou, J; Wang, Y; Shi, Y

    2016-07-01

    Mesenchymal stem cells (MSCs), a non-hematopoietic stem cell population first discovered in bone marrow, are multipotent cells capable of differentiating into mature cells of several mesenchymal tissues, such as fat and bone. As common progenitor cells of adipocytes and osteoblasts, MSCs are delicately balanced for their differentiation commitment. Numerous in vitro investigations have demonstrated that fat-induction factors inhibit osteogenesis, and, conversely, bone-induction factors hinder adipogenesis. In fact, a variety of external cues contribute to the delicate balance of adipo-osteogenic differentiation of MSCs, including chemical, physical, and biological factors. These factors trigger different signaling pathways and activate various transcription factors that guide MSCs to commit to either lineage. The dysregulation of the adipo-osteogenic balance has been linked to several pathophysiologic processes, such as aging, obesity, osteopenia, osteopetrosis, and osteoporosis. Thus, the regulation of MSC differentiation has increasingly attracted great attention in recent years. Here, we review external factors and their signaling processes dictating the reciprocal regulation between adipocytes and osteoblasts during MSC differentiation and the ultimate control of the adipo-osteogenic balance. PMID:26868907

  1. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts?

    PubMed Central

    Chen, Q; Shou, P; Zheng, C; Jiang, M; Cao, G; Yang, Q; Cao, J; Xie, N; Velletri, T; Zhang, X; Xu, C; Zhang, L; Yang, H; Hou, J; Wang, Y; Shi, Y

    2016-01-01

    Mesenchymal stem cells (MSCs), a non-hematopoietic stem cell population first discovered in bone marrow, are multipotent cells capable of differentiating into mature cells of several mesenchymal tissues, such as fat and bone. As common progenitor cells of adipocytes and osteoblasts, MSCs are delicately balanced for their differentiation commitment. Numerous in vitro investigations have demonstrated that fat-induction factors inhibit osteogenesis, and, conversely, bone-induction factors hinder adipogenesis. In fact, a variety of external cues contribute to the delicate balance of adipo-osteogenic differentiation of MSCs, including chemical, physical, and biological factors. These factors trigger different signaling pathways and activate various transcription factors that guide MSCs to commit to either lineage. The dysregulation of the adipo-osteogenic balance has been linked to several pathophysiologic processes, such as aging, obesity, osteopenia, osteopetrosis, and osteoporosis. Thus, the regulation of MSC differentiation has increasingly attracted great attention in recent years. Here, we review external factors and their signaling processes dictating the reciprocal regulation between adipocytes and osteoblasts during MSC differentiation and the ultimate control of the adipo-osteogenic balance. PMID:26868907

  2. Wnt/β-Catenin Signaling Determines the Vasculogenic Fate of Postnatal Mesenchymal Stem Cells.

    PubMed

    Zhang, Zhaocheng; Nör, Felipe; Oh, Min; Cucco, Carolina; Shi, Songtao; Nör, Jacques E

    2016-06-01

    Vasculogenesis is the process of de novo blood vessel formation observed primarily during embryonic development. Emerging evidence suggest that postnatal mesenchymal stem cells are capable of recapitulating vasculogenesis when these cells are engaged in tissue regeneration. However, the mechanisms underlining the vasculogenic differentiation of mesenchymal stem cells remain unclear. Here, we used stem cells from human permanent teeth (dental pulp stem cells [DPSC]) or deciduous teeth (stem cells from human exfoliated deciduous teeth [SHED]) as models of postnatal primary human mesenchymal stem cells to understand mechanisms regulating their vasculogenic fate. GFP-tagged mesenchymal stem cells seeded in human tooth slice/scaffolds and transplanted into immunodeficient mice differentiate into human blood vessels that anastomize with the mouse vasculature. In vitro, vascular endothelial growth factor (VEGF) induced the vasculogenic differentiation of DPSC and SHED via potent activation of Wnt/β-catenin signaling. Further, activation of Wnt signaling is sufficient to induce the vasculogenic differentiation of postnatal mesenchymal stem cells, while Wnt inhibition blocked this process. Notably, β-catenin-silenced DPSC no longer differentiate into endothelial cells in vitro, and showed impaired vasculogenesis in vivo. Collectively, these data demonstrate that VEGF signaling through the canonical Wnt/β-catenin pathway defines the vasculogenic fate of postnatal mesenchymal stem cells. Stem Cells 2016;34:1576-1587. PMID:26866635

  3. The Role of Chemokines in Mesenchymal Stem Cell Homing to Wounds

    PubMed Central

    Hocking, Anne M.

    2015-01-01

    Significance: Mesenchymal stem cells (MSCs) are being administered to cutaneous wounds with the goal of accelerating wound closure and promoting regeneration instead of scar formation. An ongoing challenge for cell-based therapies is achieving effective and optimal targeted delivery and engraftment at the site of injury. Contributing to this challenge is our incomplete understanding of endogenous MSC homing to sites of injury. Recent Advances: Chemokines and their receptors are now recognized as important mediators of stem cell homing. To date, the most studied chemokine–chemokine receptor axis in MSC homing to wounds is CXCL12-CXCR4 but recent work suggests that CCL27-CCR10 and CCL21-CCR7 may also be involved. Critical Issues: Strategies to enhance chemokine-mediated MSC homing to wounds are using a variety of approaches to amplify the chemokine signal at the wound site and/or overexpress specific chemokine receptors on the surface of the MSC. Future Directions: Harnessing chemokine signaling may enhance the therapeutic effects of stem cell therapy by increasing the number of both exogenous and endogenous stem cells recruited to the site of injury. Alternatively, chemokine-based therapies directly targeting endogenous stem cells may circumvent the need for the time-consuming and costly isolation and expansion of autologous stem cells prior to therapeutic administration. PMID:26543676

  4. Transplantation of Simian Mesenchymal Stem Cells to Baboons with Experimentally Induced Myocardial Infarction.

    PubMed

    Agrba, V Z; Porkhanov, V A; Karal-Ogly, D D; Leontyuk, A V; Kovalenko, A L; Sholin, I Yu; Gvozdik, T E; Ignatova, I E; Agumava, A A; Chuguev, Yu P; Gvaramiya, I A; Lapin, B A

    2016-02-01

    Culture of mesenchymal stem cells isolated from the bone marrow of primates by their characteristics met the requirements of stem cells. It was shown that transplantation of allogeneic mesenchymal stem cells (2 million cells per 1 kg body weight) immediately after ligation of the left anterior descending coronary artery between the middle and upper thirds led to neovascularization and capillarization of the ischemic myocardium. PMID:26906203

  5. Mesenchymal Stem Cells in Tissue Growth and Repair

    PubMed Central

    Kalinina, N.I.; Sysoeva, V.Yu.; Rubina, K.A.; Parfenova, Ye.V.; Tkachuk, V.A.

    2011-01-01

    It has been established in the recent several decades that stem cells play a crucial role in tissue renewal and regeneration. Mesenchymal stem cells (MSCs) are part of the most important population of adult stem cells. These cells have hereby been identified for the very first time and subsequently isolated from bone marrow stroma. Bone marrow-derived MSCs have been believed to play the role of a source of cells for the renewal and repair of connective tissues, including bone, cartilage and adipose tissues. Cells similar to bone marrow-derived MSCs have now been identified in all postnatal tissues. Data on the distribution and function of MSCsin vivocollected using novel approaches pertaining to the identification of MSCsin situ, to their isolation from tissues, and finally to the determination of their biological properties have enabled successful revision of the role of MSCs in various organs and tissues. This review summarizes our own, as well as others’, data concerning the role of MSCs in the regulation processes of tissue repair and regeneration. In our opinion, MSCs provide the connection between the blood-vascular, immune, endocrine, and nervous systems and tissue-specific stem cells in the body. PMID:22649702

  6. Use of Mesenchymal Stem Cells for Therapy of Cardiac Disease

    PubMed Central

    Karantalis, Vasileios; Hare, Joshua M.

    2015-01-01

    Despite substantial clinical advances over the past 65 years, cardiovascular disease remains the leading cause of death in America. The past 15 years has witnessed major basic and translational interest in the use of stem and/or precursor cells as a therapeutic agent for chronically injured organs. Among the cell types under investigation, adult mesenchymal stem cells (MSCs) are widely studied and in early stage clinical studies show promise for repair and regeneration of cardiac tissues. The ability of MSCs to differentiate into mesoderm and non-mesoderm derived tissues, their immunomodulatory effects, their availability and their key role in maintaining and replenishing endogenous stem cell niches have rendered them one of the most heavily investigated and clinically tested type of stem cell. Accumulating data from preclinical and early phase clinical trials document their safety when delivered as either autologous or allogeneic forms in a range of cardiovascular diseases, but also importantly define parameters of clinical efficacy that justify further investigation in larger clinical trials. Here, we review the biology of MSCs, their interaction with endogenous molecular and cellular pathways, and their modulation of immune responses. Additionally, we discuss factors that enhance their proliferative and regenerative ability and factors that may hinder their effectiveness in the clinical setting. PMID:25858066

  7. Derivation of Functional Smooth Muscle Cells from Multipotent Human Hair Follicle Mesenchymal Stem Cells

    PubMed Central

    Liu, Jin Yu; Peng, Hao Fan; Gopinath, Siddhita; Tian, Jun

    2010-01-01

    We investigated the potential of human hair follicle cells for multilineage differentiation and as a source of functional smooth muscle cells (SMCs). We report that human hair follicle stem cells (HFCs) isolated from individual follicles expressed surface markers that are characteristic of mesenchymal stem cells such as CD44, CD49b, CD73, CD90, and CD105 but lacked hematopoietic markers CD45 and CD34. In addition, HFCs differentiated toward adipocytes, chondrocytes, osteoblasts, or SMCs in the appropriate induction medium. Treatment with basic fibroblast growth factor increased proliferation and prevented myogenic differentiation, suggesting that basic fibroblast growth factor can be used to expand the population of undifferentiated HFCs to the large numbers needed for therapeutic applications. SMCs were isolated from HFCs using tissue-specific promoters and flow cytometry sorting. Cylindrical vascular constructs engineered with HF-SMCs showed remarkable contractility in response to receptor and nonreceptor agonists such KCl, endothelin-1, and the thromboxane mimetic, U46619, as well as superior mechanical properties compared to their counterparts with human vascular SMCs. Our results suggest that HF is a rich source of mesenchymal stem cells with great potential for myogenic differentiation providing functional SMCs for tissue regeneration and cell therapies. PMID:20236033

  8. Increased Mesenchymal Stem Cell Response and Decreased Staphylococcus aureus Adhesion on Titania Nanotubes without Pharmaceuticals

    PubMed Central

    Xu, Zhiqiang; Lai, Yingzhen; Wu, Dong; Huang, Wenxiu; Huang, Sijia; Zhou, Lin; Chen, Jiang

    2015-01-01

    Titanium (Ti) implants with enhanced biocompatibility and antibacterial property are highly desirable and characterized by improved success rates. In this study, titania nanotubes (TNTs) with various tube diameters were fabricated on Ti surfaces through electrochemical anodization at 10, 30, and 60 V (denoted as NT10, NT30, and NT60, resp.). Ti was also investigated and used as a control. NT10 with a diameter of 30 nm could promote the adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs) without noticeable differentiation. NT30 with a diameter of 100 nm could support the adhesion and proliferation of BMSCs and induce osteogenesis. NT60 with a diameter of 200 nm demonstrated the best ability to promote cell spreading and osteogenic differentiation; however, it clearly impaired cell adhesion and proliferation. As the tube diameter increased, bacterial adhesion on the TNTs decreased and reached the lowest value on NT60. Therefore, NT30 without pharmaceuticals could be used to increase mesenchymal stem cell response and decrease Staphylococcus aureus adhesion and thus should be further studied for improving the efficacy of Ti-based orthopedic implants. PMID:26640782

  9. The multiple functional roles of mesenchymal stem cells in participating in treating liver diseases

    PubMed Central

    Liu, Wei-hui; Song, Fu-qiang; Ren, Li-na; Guo, Wen-qiong; Wang, Tao; Feng, Ya-xing; Tang, Li-jun; Li, Kun

    2015-01-01

    Mesenchymal stem cells (MSCs) are a group of stem cells derived from the mesodermal mesenchyme. MSCs can be obtained from a variety of tissues, including bone marrow, umbilical cord tissue, umbilical cord blood, peripheral blood and adipose tissue. Under certain conditions, MSCs can differentiate into many cell types both in vitro and in vivo, including hepatocytes. To date, four main strategies have been developed to induce the transdifferentiation of MSCs into hepatocytes: addition of chemical compounds and cytokines, genetic modification, adjustment of the micro-environment and alteration of the physical parameters used for culturing MSCs. Although the phenomenon of transdifferentiation of MSCs into hepatocytes has been described, the detailed mechanism is far from clear. Generally, the mechanism is a cascade reaction whereby stimulating factors activate cellular signalling pathways, which in turn promote the production of transcription factors, leading to hepatic gene expression. Because MSCs can give rise to hepatocytes, they are promising to be used as a new treatment for liver dysfunction or as a bridge to liver transplantation. Numerous studies have confirmed the therapeutic effects of MSCs on hepatic fibrosis, cirrhosis and other liver diseases, which may be related to the differentiation of MSCs into functional hepatocytes. In addition to transdifferentiation into hepatocytes, when MSCs are used to treat liver disease, they may also inhibit hepatocellular apoptosis and secrete various bioactive molecules to promote liver regeneration. In this review, the capacity and molecular mechanism of MSC transdifferentiation, and the therapeutic effects of MSCs on liver diseases are thoroughly discussed. PMID:25534251

  10. RNA-Seq Reveals the Angiogenesis Diversity between the Fetal and Adults Bone Mesenchyme Stem Cell.

    PubMed

    Zhao, Xin; Han, Yingmin; Liang, Yu; Nie, Chao; Wang, Jian

    2016-01-01

    In this research, we used RNA sequencing (RNA-seq) to analyze 23 single cell samples and 2 bulk cells sample from human adult bone mesenchyme stem cell line and human fetal bone mesenchyme stem cell line. The results from the research demonstrated that there were big differences between two cell lines. Adult bone mesenchyme stem cell lines showed a strong trend on the blood vessel differentiation and cell motion, 48/49 vascular related differential expressed genes showed higher expression in adult bone mesenchyme stem cell lines (Abmsc) than fetal bone mesenchyme stem cell lines (Fbmsc). 96/106 cell motion related genes showed the same tendency. Further analysis showed that genes like ANGPT1, VEGFA, FGF2, PDGFB and PDGFRA showed higher expression in Abmsc. This work showed cell heterogeneity between human adult bone mesenchyme stem cell line and human fetal bone mesenchyme stem cell line. Also the work may give an indication that Abmsc had a better potency than Fbmsc in the future vascular related application. PMID:26901069

  11. RNA-Seq Reveals the Angiogenesis Diversity between the Fetal and Adults Bone Mesenchyme Stem Cell

    PubMed Central

    Zhao, Xin; Han, Yingmin; Liang, Yu; Nie, Chao; Wang, Jian

    2016-01-01

    In this research, we used RNA sequencing (RNA-seq) to analyze 23 single cell samples and 2 bulk cells sample from human adult bone mesenchyme stem cell line and human fetal bone mesenchyme stem cell line. The results from the research demonstrated that there were big differences between two cell lines. Adult bone mesenchyme stem cell lines showed a strong trend on the blood vessel differentiation and cell motion, 48/49 vascular related differential expressed genes showed higher expression in adult bone mesenchyme stem cell lines (Abmsc) than fetal bone mesenchyme stem cell lines (Fbmsc). 96/106 cell motion related genes showed the same tendency. Further analysis showed that genes like ANGPT1, VEGFA, FGF2, PDGFB and PDGFRA showed higher expression in Abmsc. This work showed cell heterogeneity between human adult bone mesenchyme stem cell line and human fetal bone mesenchyme stem cell line. Also the work may give an indication that Abmsc had a better potency than Fbmsc in the future vascular related application. PMID:26901069

  12. Potential mechanisms underlying the Runx2 induced osteogenesis of bone marrow mesenchymal stem cells

    PubMed Central

    Xu, Jiahai; Li, Zhanghua; Hou, Yudong; Fang, Weijun

    2015-01-01

    Bone marrow derived mesenchymal stem cells (BM-MSCs) belong a type of pluripotent stem cells and can be induced to differentiate into osteoblasts (OB). Runt-related transcription factor 2 (Runx2) is an osteogenesis specific transcription factor and plays an important role in osteogenesis of BM-MSCs. It can promote the expression of osteogenesis related genes, regulate cell cycle progression, improve bone microenvironment and affect functions of chondrocytes and osteoclasts, which have involvement of a large amount of signal molecules including TGF-β, BMP, Notch, Wnt, Hedgehog, FGF and microRNA. In this paper, we summarize the mechanisms underlying the Runx2 induced osteogenesis of BM-MSCs. PMID:26885254

  13. Osteogenic differentiation of mesenchymal stem cells could be enhanced by strontium.

    PubMed

    Yang, Fan; Tu, Jie; Yang, Dazhi; Li, Guanglin; Cai, Lintao; Wang, Liping

    2010-01-01

    Strontium is a newly developed drug for decreasing risks of hip or vertebral fractures in postmenopausal women. Experimental studies have suggested that Strontium could enhance new bone formation and decrease the bone resorption. Mesenchymal stem cell (MSC) is an important category of stem cells which possess the osteogenic differentiation potential and could be used in the bone and cartilage tissue engineering. Here we investigated the effects of strontium on the osteogenic differentiation process of MSC. We found that strontium could enhance the calcium deposition process and promote bone repair, through enhancing the osteogenic differentiation of MSC. This study could help to develop a new strategy to induce the MSC to differentiate into the osteogenic lineage. PMID:21096310

  14. Depolarization Alters Phenotype, Maintains Plasticity of Predifferentiated Mesenchymal Stem Cells

    PubMed Central

    Sundelacruz, Sarah; Levin, Michael

    2013-01-01

    Although adult stem cell transplantation has been implemented as a therapy for tissue repair, it is limited by the availability of functional adult stem cells. A potential approach to generate stem and progenitor cells may be to modulate the differentiated status of somatic cells. Therefore, there is a need for a better understanding of how the differentiated phenotype of mature cells is regulated. We hypothesize that bioelectric signaling plays an important role in the maintenance of the differentiated state, as it is a functional regulator of the differentiation process in various cells and tissues. In this study, we asked whether the mature phenotype of osteoblasts and adipocytes derived from human mesenchymal stem cells (hMSCs) could be altered by modulation of their membrane potential. hMSC-derived osteoblasts and adipocytes were depolarized by treatment with ouabain, a Na+/K+ ATPase inhibitor, or by treatment with high concentrations of extracellular K+. To characterize the effect of voltage modulation on the differentiated state, the depolarized cells were evaluated for (1) the loss of differentiation markers; (2) the up-regulation of stemness markers and stem properties; and (3) differences in gene expression profiles in response to voltage modulation. hMSC-derived osteoblasts and adipocytes exhibited significant down-regulation of bone and fat tissue markers in response to depolarization, despite the presence of differentiation-inducing soluble factors, suggesting that bioelectric signaling overrides biochemical signaling in the maintenance of cell state. Suppression of the osteoblast or adipocyte phenotype was not accompanied by up-regulation of genes associated with the stem state. Thus, depolarization does not activate the stem cell genetic signature and, therefore, does not induce a full reprogramming event. However, after transdifferentiating the depolarized cells to evaluate for multi-lineage potential, depolarized osteoblasts demonstrated improved

  15. Mesenchymal Stem Cell Fate: Applying Biomaterials for Control of Stem Cell Behavior.

    PubMed

    Anderson, Hilary J; Sahoo, Jugal Kishore; Ulijn, Rein V; Dalby, Matthew J

    2016-01-01

    The materials pipeline for biomaterials and tissue engineering applications is under continuous development. Specifically, there is great interest in the use of designed materials in the stem cell arena as materials can be used to manipulate the cells providing control of behavior. This is important as the ability to "engineer" complexity and subsequent in vitro growth of tissues and organs is a key objective for tissue engineers. This review will describe the nature of the materials strategies, both static and dynamic, and their influence specifically on mesenchymal stem cell fate. PMID:27242999

  16. Mesenchymal Stem Cell Fate: Applying Biomaterials for Control of Stem Cell Behavior

    PubMed Central

    Anderson, Hilary J.; Sahoo, Jugal Kishore; Ulijn, Rein V.; Dalby, Matthew J.

    2016-01-01

    The materials pipeline for biomaterials and tissue engineering applications is under continuous development. Specifically, there is great interest in the use of designed materials in the stem cell arena as materials can be used to manipulate the cells providing control of behavior. This is important as the ability to “engineer” complexity and subsequent in vitro growth of tissues and organs is a key objective for tissue engineers. This review will describe the nature of the materials strategies, both static and dynamic, and their influence specifically on mesenchymal stem cell fate. PMID:27242999

  17. [Bone and Stem Cells. The mechanism of osteogenic differentiation from mesenchymal stem cell].

    PubMed

    Ohata, Yasuhisa; Ozono, Keiichi

    2014-04-01

    Osteoblasts and osteocytes originate from pluripotent mesenchymal stem cells. Mesenchymal stem cells commit to osteogenic lineage and differentiate into mature osteoblasts and osteocytes through osteoprogenitor cells and preosteoblasts in response to multiple stimuli. The osteoblast commitment, differentiation, and functions are governed by several transcription factors. Among these transcription factors, runt-related transcription factor 2 (Runx2) is a crucial factor in osteoblast differentiation and controls bone formation. Differentiation toward these osteogenic lineage is controlled by a multitude of cytokines including WNTs, bone morphogenetic protein (BMP) , transforming growth factor-β (TGF-β) , hedgehog, parathyroid hormone (PTH) /parathyroid hormone related protein (PTHrP) , insulin-like growth factor-1 (IGF-1) , fibroblast growth factor (FGF) , and Notch. Although regulation of Runx2 activity is a point of convergence of many of the signal transduction routes, there is also a high degree of cross-talk between these pathways. Thus, the combined action of the signal transduction pathways induced by some cytokines determines the commitment and differentiation of mesenchymal stem cells toward the osteogenic lineage. PMID:24681495

  18. Induced pluripotent stem cell-derived mesenchymal stem cells: A leap toward personalized therapies.

    PubMed

    Whitt, Jason; Vallabhaneni, Krishna C; Penfornis, Patrice; Pochampally, Radhika

    2016-01-01

    Mesenchymal Stem/stromal cell (MSCs) transplantation procedures have been used since the 1960's to treat leukemia and other diseases, but due to the risks involved only patients with life threatening illnesses were typically subjected to the transplantation procedure until the last decade. Recent advancements in transplantation techniques have made it more feasible to use it for non-life-threatening diseases. However, the potential uses for stem cells are still limited by their rarity, and, in the case of allogeneic transplants, graft-vs.-host complications. An evolving alternative to conventional stem cell therapies is induced pluripotent stem-cell derived mesenchymal stem/stromal cells (iPSC- MSCs), which have a multi-lineage potential comparable to conventionally acquired MSCs with the added benefit of being less immunoreactive. However there are still many hurdles left to be overcome before they can be used regularly for personalized therapies. This review will focus on recent advancements that have been made regarding the role MSCs play in tumor development and the potential uses iPSC-MSCs may have in future cancer treatment. PMID:26423301

  19. Nuclear Export of Smads by RanBP3L Regulates Bone Morphogenetic Protein Signaling and Mesenchymal Stem Cell Differentiation

    PubMed Central

    Chen, Fenfang; Lin, Xia; Xu, Pinglong; Zhang, Zhengmao; Chen, Yanzhen; Wang, Chao; Han, Jiahuai; Zhao, Bin; Xiao, Mu

    2015-01-01

    Bone morphogenetic proteins (BMPs) play vital roles in regulating stem cell maintenance and differentiation. BMPs can induce osteogenesis and inhibit myogenesis of mesenchymal stem cells. Canonical BMP signaling is stringently controlled through reversible phosphorylation and nucleocytoplasmic shuttling of Smad1, Smad5, and Smad8 (Smad1/5/8). However, how the nuclear export of Smad1/5/8 is regulated remains unclear. Here we report that the Ran-binding protein RanBP3L acts as a nuclear export factor for Smad1/5/8. RanBP3L directly recognizes dephosphorylated Smad1/5/8 and mediates their nuclear export in a Ran-dependent manner. Increased expression of RanBP3L blocks BMP-induced osteogenesis of mouse bone marrow-derived mesenchymal stem cells and promotes myogenic induction of C2C12 mouse myoblasts, whereas depletion of RanBP3L expression enhances BMP-dependent stem cell differentiation activity and transcriptional responses. In conclusion, our results demonstrate that RanBP3L, as a nuclear exporter for BMP-specific Smads, plays a critical role in terminating BMP signaling and regulating mesenchymal stem cell differentiation. PMID:25755279

  20. Gene expression profiling distinguishes proneural glioma stem cells from mesenchymal glioma stem cells

    PubMed Central

    Chandran, Uma R.; Luthra, Soumya; Santana-Santos, Lucas; Mao, Ping; Kim, Sung-Hak; Minata, Mutsuko; Li, Jianfeng; Benos, Panayiotis V.; DeWang, Mao; Hu, Bo; Cheng, Shi-Yuan; Nakano, Ichiro; Sobol, Robert W.

    2015-01-01

    Tumor heterogeneity of high-grade glioma (HGG) is recognized by four clinically relevant subtypes based on core gene signatures. However, molecular signaling in glioma stem cells (GSCs) in individual HGG subtypes is poorly characterized. Previously we identified and characterized two mutually exclusive GSC subtypes with distinct activated signaling pathways and biological phenotypes. One GSC subtype presented with a gene signature resembling Proneural (PN) HGG, whereas the other was similar to mesenchymal (Mes) HGG. Classical HGG-derived GSCs were sub-classified as either one of these two subtypes. Differential mRNA expression analysis of PN and Mes GSCs identified 5796 differentially expressed genes, revealing a pronounced correlation with the corresponding PN or Mes HGGs. Mes GSCs displayed more aggressive phenotypes in vitro and as intracranial xenografts in mice. Further, Mes GSCs were markedly resistant to radiation compared with PN GSCs. Expression of ALDH1A3 — one of the most up-regulated Mes representative genes and a universal cancer stem cell marker in non-brain cancers — was associated with self-renewal and a multi-potent stem cell population in Mes but not PN samples. Moreover, inhibition of ALDH1A3 attenuated the growth of Mes but not PN GSCs in vitro. Lastly, radiation treatment of PN GSCs up-regulated Mes-associated markers and down-regulated PN-associated markers, whereas inhibition of ALDH1A3 attenuated an irradiation-induced gain of Mes identity in PN GSCs in vitro. Taken together, our data suggest that two subtypes of GSCs, harboring distinct metabolic signaling pathways, represent intertumoral glioma heterogeneity and highlight previously unidentified roles of ALDH1A3-associated signaling that promotes aberrant proliferation of Mes HGGs and GSCs. Inhibition of ALDH1A3-mediated pathways therefore might provide a promising therapeutic approach for a subset of HGGs with the Mes signature. Here, we describe the gene expression analysis

  1. Transcriptional profiling of interleukin-2-primed human adipose derived mesenchymal stem cells revealed dramatic changes in stem cells response imposed by replicative senescence

    PubMed Central

    Wang, Lu; Sadvakas, Aiman; Sha, Ying; Pérez, Laura M.; Nussupbekova, Aliya; Amirbekov, Aday; Akanov, Akan A.; Gálvez, Beatriz G.; Jordan, I. King; Lunyak, Victoria V.

    2015-01-01

    Inflammation is a double-edged sword with both detrimental and beneficial consequences. Understanding of the mechanisms of crosstalk between the inflammatory milieu and human adult mesenchymal stem cells is an important basis for clinical efforts. Here, we investigate changes in the transcriptional response of human adipose-derived stem cells to physiologically relevant levels of IL-2 (IL-2 priming) upon replicative senescence. Our data suggest that replicative senescence might dramatically impede human mesenchymal stem cell (MSC) function via global transcriptional deregulation in response to IL-2. We uncovered a novel senescence-associated transcriptional signature in human adipose-derived MSCs hADSCs after exposure to pro-inflammatory environment: significant enhancement of the expression of the genes encoding potent growth factors and cytokines with anti-inflammatory and migration-promoting properties, as well as genes encoding angiogenic and anti-apoptotic promoting factors, all of which could participate in the establishment of a unique microenvironment. We observed transcriptional up-regulation of critical components of the nitric oxide synthase pathway (iNOS) in hADSCs upon replicative senescence suggesting, that senescent stem cells can acquire metastasis-promoting properties via stem cell-mediated immunosuppression. Our study highlights the importance of age as a factor when designing cell-based or pharmacological therapies for older patients and predicts measurable biomarkers characteristic of an environment that is conducive to cancer cells invasiveness and metastasis. PMID:26255627

  2. Paracrine effects of haematopoietic cells on human mesenchymal stem cells

    PubMed Central

    Zhou, Shuanhu

    2015-01-01

    Stem cell function decline during ageing can involve both cell intrinsic and extrinsic mechanisms. Bone and blood formation are intertwined in bone marrow, therefore haematopoietic cells and bone cells could be extrinsic factors for each other. In this study, we assessed the paracrine effects of extrinsic factors from haematopoietic cells on human mesenchymal stem cells (MSCs). Our data showed that haematopoietic cells stimulate proliferation, osteoblast differentiation and inhibit senescence of MSCs; TNF-α, PDGF-β, Wnt1, 4, 6, 7a and 10a, sFRP-3 and sFRP-5 are dominantly expressed in haematopoietic cells; the age-related increase of TNF-α in haematopoietic cells may perform as a negative factor in the interactions of haematopoietic cells on MSCs via TNF-α receptors and then activating NF-κB signaling or Wnt/β-catenin signaling to induce senescence and reduce osteoblast differentiation in MSCs. In conclusion, our data demonstrated that there are paracrine interactions of haematopoietic cells on human MSCs; immunosenescence may be one of the extrinsic mechanisms by which skeletal stem cell function decline during human skeletal ageing. PMID:26030407

  3. Human mesenchymal stem cells: New sojourn of bacterial pathogens.

    PubMed

    Kohli, Sakshi; Singh, Yadvir; Sowpati, Divya Tej; Ehtesham, Nasreen Z; Dobrindt, Ulrich; Hacker, Jörg; Hasnain, Seyed E

    2015-05-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), is the leading infectious disease which claims one human life every 15-20s globally. The persistence of this deadly disease in human population can be attributed to the ability of the bacterium to stay in latent form. M. tuberculosis possesses a plethora of mechanisms not only to survive latently under harsh conditions inside the host but also modulate the host immune cells in its favour. Various M. tuberculosis gene families have also been described to play a role in this process. Recently, human bone marrow derived mesenchymal stem cells (MSCs) have been reported as a niche for dormant M. tuberculosis. MSCs possess abilities to alter the host immune response. The bacterium finds this self-renewal and immune privileged nature of MSCs very favourable not only to modulate the host immune system, with some help from its own genes, but also to avoid the external drug pressure. We suggest that the MSCs not only provide a resting place for M. tuberculosis but could also, by virtue of their intrinsic ability to disseminate in the body, explain the genesis of extra-pulmonary TB. A similar exploitation of stem cells by other bacterial pathogens is a distinct possibility. It may be likely that other intracellular bacterial pathogens adopt this strategy to 'piggy-back' on to ovarian stem cells to ensure vertical transmission and successful propagation to the next generation. PMID:25648374

  4. Mesenchymal stem cells: potential application in intervertebral disc regeneration

    PubMed Central

    Shen, Bojiang; Williams, Lisa; Diwan, Ashish

    2014-01-01

    Chronic low back pain is one of the leading public health problems in developed countries. Degeneration of the intervertebral disc (IVD) is a major pathological process implicated in low back pain, which is characterized by cellular apoptosis and senescence with reduced synthesis of extracellular matrix (ECM). Currently, there is no clinical therapy targeting the reversal of disc degeneration. Recent advances in cellular and molecular biology have provided an exciting approach to disc regeneration that focuses on the delivery of viable cells to the degenerative disc. Adult mesenchymal stem cells (MSCs) are multipotent stem cells with self-renewal capacities and are able to differentiate into diverse specialized cell types, including chondrocyte lineages. The potential of stem cell therapy in disc degeneration is to repopulate the disc with viable cells capable of producing the ECM and restoring damaged tissue. The present literature review summarizes recent advances in basic research and clinical trials of MSCs to provide an outline of the key roles of MSCs therapies in disc repair. The review also discusses the controversies, challenges and therapeutic concepts for the future. PMID:26835326

  5. Postnatal epithelium and mesenchyme stem/progenitor cells in bioengineered amelogenesis and dentinogenesis.

    PubMed

    Jiang, Nan; Zhou, Jian; Chen, Mo; Schiff, Michael D; Lee, Chang H; Kong, Kimi; Embree, Mildred C; Zhou, Yanheng; Mao, Jeremy J

    2014-02-01

    Rodent incisors provide a classic model for studying epithelial-mesenchymal interactions in development. However, postnatal stem/progenitor cells in rodent incisors have not been exploited for tooth regeneration. Here, we characterized postnatal rat incisor epithelium and mesenchyme stem/progenitor cells and found that they formed enamel- and dentin-like tissues in vivo. Epithelium and mesenchyme cells were harvested separately from the apical region of postnatal 4-5 day rat incisors. Epithelial and mesenchymal phenotypes were confirmed by immunocytochemistry, CFU assay and/or multi-lineage differentiation. CK14+, Sox2+ and Lgr5+ epithelium stem cells from the cervical loop enhanced amelogenin and ameloblastin expression upon BMP4 or FGF3 stimulation, signifying their differentiation towards ameloblast-like cells, whereas mesenchyme stem/progenitor cells upon BMP4, BMP7 and Wnt3a treatment robustly expressed Dspp, a hallmark of odontoblastic differentiation. We then control-released microencapsulated BMP4, BMP7 and Wnt3a in transplants of epithelium and mesenchyme stem/progenitor cells in the renal capsule of athymic mice in vivo. Enamel and dentin-like tissues were generated in two integrated layers with specific expression of amelogenin and ameloblastin in the newly formed, de novo enamel-like tissue, and DSP in dentin-like tissue. These findings suggest that postnatal epithelium and mesenchyme stem/progenitor cells can be primed towards bioengineered tooth regeneration. PMID:24345734

  6. Adult human nasal mesenchymal-like stem cells restore cochlear spiral ganglion neurons after experimental lesion.

    PubMed

    Bas, Esperanza; Van De Water, Thomas R; Lumbreras, Vicente; Rajguru, Suhrud; Goss, Garrett; Hare, Joshua M; Goldstein, Bradley J

    2014-03-01

    A loss of sensory hair cells or spiral ganglion neurons from the inner ear causes deafness, affecting millions of people. Currently, there is no effective therapy to repair the inner ear sensory structures in humans. Cochlear implantation can restore input, but only if auditory neurons remain intact. Efforts to develop stem cell-based treatments for deafness have demonstrated progress, most notably utilizing embryonic-derived cells. In an effort to bypass limitations of embryonic or induced pluripotent stem cells that may impede the translation to clinical applications, we sought to utilize an alternative cell source. Here, we show that adult human mesenchymal-like stem cells (MSCs) obtained from nasal tissue can repair spiral ganglion loss in experimentally lesioned cochlear cultures from neonatal rats. Stem cells engraft into gentamicin-lesioned organotypic cultures and orchestrate the restoration of the spiral ganglion neuronal population, involving both direct neuronal differentiation and secondary effects on endogenous cells. As a physiologic assay, nasal MSC-derived cells engrafted into lesioned spiral ganglia demonstrate responses to infrared laser stimulus that are consistent with those typical of excitable cells. The addition of a pharmacologic activator of the canonical Wnt/β-catenin pathway concurrent with stem cell treatment promoted robust neuronal differentiation. The availability of an effective adult autologous cell source for inner ear tissue repair should contribute to efforts to translate cell-based strategies to the clinic. PMID:24172073

  7. Concise Review: The Bystander Effect: Mesenchymal Stem Cell-Mediated Lung Repair.

    PubMed

    Savukinas, Ulrika Blank; Enes, Sara Rolandsson; Sjöland, Annika Andersson; Westergren-Thorsson, Gunilla

    2016-06-01

    Mesenchymal stem or stromal cells (MSCs), a heterogeneous subset of adult stem/progenitor cells, have surfaced as potential therapeutic units with significant clinical benefit for a wide spectrum of disease conditions, including those affecting the lung. Although MSCs carry both self-renewal and multilineage differentiation abilities, current dogma holds that MSCs mainly contribute to tissue regeneration and repair by modulating the host tissue via secreted cues. Thus, the therapeutic benefit of MSCs is thought to derive from so called bystander effects. The regenerative mechanisms employed by MSCs in the lung include modulation of the immune system as well as promotion of epithelial and endothelial repair. Apart from secreted factors, a number of recent findings suggest that MSCs engage in mitochondrial transfer and shedding of membrane vesicles as a means to enhance tissue repair following injury. Furthermore, it is becoming increasingly clear that MSCs are an integral component of epithelial lung stem cell niches. As such, MSCs play an important role in coupling information from the environment to stem and progenitor populations, such that homeostasis can be ensured even in the face of injury. It is the aim of this review to outline the major mechanisms by which MSCs contribute to lung regeneration, synthesizing recent preclinical findings with data from clinical trials and potential for future therapy. Stem Cells 2016;34:1437-1444. PMID:26991735

  8. Intestinal stem cells and epithelial-mesenchymal interactions in the crypt and stem cell niche

    PubMed Central

    Shaker, Anisa; Rubin, Deborah C.

    2010-01-01

    The intestinal epithelium contains a rapidly proliferating and perpetually differentiating epithelium. The principal functional unit of the small intestine is the crypt-villus axis. Stem cells located in the crypts of Lieberkühn give rise to proliferating progenitor or transit amplifying cells that differentiate into the four major epithelial cell types. The study of adult gastrointestinal tract stem cells has progressed rapidly with the recent discovery of a number of putative stem cell markers. Substantial evidence suggests that there are two populations of stem cells: long-term quiescent (reserved) and actively cycling (primed) stem cells. These are in adjoining locations and are presumably maintained by the secretion of specific proteins generated in a unique microenvironment or stem cell niche surrounding each population. The relationship between these two populations, and the cellular sources and composition of the surrounding environment remains to be defined, and is an active area of research. In this review we will outline progress in identifying stem cells and defining epithelial-mesenchymal interactions in the crypt. We will summarize early advances using stem cells for therapy of gastrointestinal disorders. PMID:20801415

  9. Osteogenic and adipogenic potential of porcine adipose mesenchymal stem cells.

    PubMed

    Qu, Chang-qing; Zhang, Guo-hua; Zhang, Li-jie; Yang, Gong-she

    2007-02-01

    Human, rat, and mouse studies have demonstrated the existence of a population of adipose mesenchymal stem cells (AMSCs) that can undergo multilineage differentiation in vitro. Understanding the clinical potential of AMSCs may require their use in preclinical large-animal models such as pigs. Thus, the objectives of this study were to establish a protocol for the isolation of porcine AMSCs from adipose tissue and to examine their ex vivo differentiation potential to adipocytes and osteoblast. The porcine AMSCs from passage 4 were selected for differentiation analysis. The adipocytes were identified morphologically by staining with Oil Red O, and the adipogenic marker genes were examined by RT-PCR technique. Osteogenic lineage was documented by deposition of calcium stained with Alzarin Red S, visualization of alkaline phosphatase activity, and expression of marker gene. Our result indicates that porcine AMSCs have been successfully isolated and induced differentiation into adipocytes and osteoblasts. This study suggested that porcine AMSCs are also a valuable model system for the study on the mesenchymal lineages for basic research and tissue engineering. PMID:17570023

  10. Therapeutic Potential of Mesenchymal Stem Cells in Regenerative Medicine

    PubMed Central

    Patel, Devang M.; Shah, Jainy; Srivastava, Anand S.

    2013-01-01

    Mesenchymal stem cells (MSCs) are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation into both mesenchymal and nonmesenchymal lineages. The intrinsic properties of these cells make them an attractive candidate for clinical applications. MSCs are of keen interest because they can be isolated from a small aspirate of bone marrow or adipose tissues and can be easily expanded in vitro. Moreover, their ability to modulate immune responses makes them an even more attractive candidate for regenerative medicine as allogeneic transplant of these cells is feasible without a substantial risk of immune rejection. MSCs secrete various immunomodulatory molecules which provide a regenerative microenvironment for a variety of injured tissues or organ to limit the damage and to increase self-regulated tissue regeneration. Autologous/allogeneic MSCs delivered via the bloodstream augment the titers of MSCs that are drawn to sites of tissue injury and can accelerate the tissue repair process. MSCs are currently being tested for their potential use in cell and gene therapy for a number of human debilitating diseases and genetic disorders. This paper summarizes the current clinical and nonclinical data for the use of MSCs in tissue repair and potential therapeutic role in various diseases. PMID:23577036

  11. IL-17 Inhibits Chondrogenic Differentiation of Human Mesenchymal Stem Cells

    PubMed Central

    Kondo, Masahiro; Yamaoka, Kunihiro; Sonomoto, Koshiro; Fukuyo, Shunsuke; Oshita, Koichi; Okada, Yosuke; Tanaka, Yoshiya

    2013-01-01

    Objective Mesenchymal stem cells (MSCs) can differentiate into cells of mesenchymal lineages, such as osteoblasts and chondrocytes. Here we investigated the effects of IL-17, a key cytokine in chronic inflammation, on chondrogenic differentiation of human MSCs. Methods Human bone marrow MSCs were pellet cultured in chondrogenic induction medium containing TGF-β3. Chondrogenic differentiation was detected by cartilage matrix accumulation and chondrogenic marker gene expression. Results Over-expression of cartilage matrix and chondrogenic marker genes was noted in chondrogenic cultures, but was inhibited by IL-17 in a dose-dependent manner. Expression and phosphorylation of SOX9, the master transcription factor for chondrogenesis, were induced within 2 days and phosphorylated SOX9 was stably maintained until day 21. IL-17 did not alter total SOX9 expression, but significantly suppressed SOX9 phosphorylation in a dose-dependent manner. At day 7, IL-17 also suppressed the activity of cAMP-dependent protein kinase A (PKA), which is known to phosphorylate SOX9. H89, a selective PKA inhibitor, also suppressed SOX9 phosphorylation, expression of chondrogenic markers and cartilage matrix, and also decreased chondrogenesis. Conclusions IL-17 inhibited chondrogenesis of human MSCs through the suppression of PKA activity and SOX9 phosphorylation. These results suggest that chondrogenic differentiation of MSCs can be inhibited by a mechanism triggered by IL-17 under chronic inflammation. PMID:24260226

  12. Mesenchymal stem cells protect from hypoxia-induced alveolar epithelial-mesenchymal transition.

    PubMed

    Uzunhan, Yurdagül; Bernard, Olivier; Marchant, Dominique; Dard, Nicolas; Vanneaux, Valérie; Larghero, Jérôme; Gille, Thomas; Clerici, Christine; Valeyre, Dominique; Nunes, Hilario; Boncoeur, Emilie; Planès, Carole

    2016-03-01

    Administration of bone marrow-derived human mesenchymal stem cells (hMSC) reduces lung inflammation, fibrosis, and mortality in animal models of lung injury, by a mechanism not completely understood. We investigated whether hMSC would prevent epithelial-mesenchymal transition (EMT) induced by hypoxia in primary rat alveolar epithelial cell (AEC). In AEC cultured on semipermeable filters, prolonged hypoxic exposure (1.5% O2 for up to 12 days) induced phenotypic changes consistent with EMT, i.e., a change in cell morphology, a decrease in transepithelial resistance (Rte) and in the expression of epithelial markers [zonula occludens-1 (ZO-1), E-cadherin, AQP-5, TTF-1], together with an increase in mesenchymal markers [vimentin, α-smooth muscle actin (α-SMA)]. Expression of transcription factors driving EMT such as SNAIL1, ZEB1, and TWIST1 increased after 2, 24, and 48 h of hypoxia, respectively. Hypoxia also induced TGF-β1 mRNA expression and the secretion of active TGF-β1 in apical medium, and the expression of connective tissue growth factor (CTGF), two inducers of EMT. Coculture of AEC with hMSC partially prevented the decrease in Rte and in ZO-1, E-cadherin, and TTF-1 expression, and the increase in vimentin expression induced by hypoxia. It also abolished the increase in TGF-β1 expression and in TGF-β1-induced genes ZEB1, TWIST1, and CTGF. Finally, incubation with human recombinant KGF at a concentration similar to what was measured in hMSC-conditioned media restored the expression of TTF-1 and prevented the increase in TWIST1, TGF-β1, and CTGF in hypoxic AEC. Our results indicate that hMSC prevent hypoxia-induced alveolar EMT through the paracrine modulation of EMT signaling pathways and suggest that this effect is partly mediated by KGF. PMID:26702148

  13. Separation of Mesenchymal Stem Cells Through a Strategic Centrifugation Protocol.

    PubMed

    Ferlin, Kimberly M; Kaplan, David S; Fisher, John P

    2016-04-01

    Despite great promise surrounding mesenchymal stem cells (MSCs), their implementation for tissue engineering strategies remains in the development phases. Many of the concerns regarding the clinical use of MSCs originate from population heterogeneity, during both isolation and differentiation. In this study, we utilize our previously developed centrifugation cell adhesion protocol for the separation of MSCs. Our findings reveal that MSCs can be isolated from whole bone marrow using a 200 g (700 pN) centrifugal force after 24 h of culture on polystyrene with cell surface marker expression equivalent to positive controls. During differentiation, a centrifugation protocol with identical force parameters could be applied 14 days into chondrogenic differentiation to isolate differentiated chondrocytes, which exhibited increased expression of chondrogenic markers compared to controls. In summary, the use of our developed centrifugation cell adhesion protocol has proven to be an effective means to separate MSC populations, decreasing the heterogeneity of subsequent cell therapy products. PMID:26797048

  14. Mesenchymal stem cells: immune evasive, not immune privileged

    PubMed Central

    Ankrum, James A.; Ong, Joon Faii; Karp, Jeffrey M.

    2014-01-01

    The diverse immunomodulatory properties of mesenchymal stem/stromal cells (MSCs) may be exploited for treatment of a multitude of inflammatory conditions. MSCs have long been reported to be hypoimmunogenic or ‘immune privileged’; this property is thought to enable MSC transplantation across major histocompatibility barriers and the creation of off-the-shelf therapies consisting of MSCs grown in culture. However, recent studies describing generation of antibodies against and immune rejection of allogeneic donor MSCs suggest that MSCs may not actually be immune privileged. Nevertheless, whether rejection of donor MSCs influences the efficacy of allogeneic MSC therapies is not known, and no definitive clinical advantage of autologous MSCs over allogeneic MSCs has been demonstrated to date. Although MSCs may exert therapeutic function through a brief ‘hit and run’ mechanism, protecting MSCs from immune detection and prolonging their persistence in vivo may improve clinical outcomes and prevent patient sensitization toward donor antigens. PMID:24561556

  15. [Immunomodulatory properties of stem mesenchymal cells in autoimmune diseases].

    PubMed

    Sánchez-Berná, Isabel; Santiago-Díaz, Carlos; Jiménez-Alonso, Juan

    2015-01-20

    Autoimmune diseases are a cluster of disorders characterized by a failure of the immune tolerance and a hyperactivation of the immune system that leads to a chronic inflammation state and the damage of several organs. The medications currently used to treat these diseases usually consist of immunosuppressive drugs that have significant systemic toxic effects and are associated with an increased risk of opportunistic infections. Recently, several studies have demonstrated that mesenchymal stem cells have immunomodulatory properties, a feature that make them candidates to be used in the treatment of autoimmune diseases. In the present study, we reviewed the role of this therapy in the treatment of systemic lupus erythematosus, Sjögren's syndrome, systemic sclerosis, Crohn's disease and multiple sclerosis, as well as the potential risks associated with its use. PMID:24636281

  16. Flexible polymeric ultrathin film for mesenchymal stem cell differentiation.

    PubMed

    Pensabene, Virginia; Taccola, Silvia; Ricotti, Leonardo; Ciofani, Gianni; Menciassi, Arianna; Perut, Francesca; Salerno, Manuela; Dario, Paolo; Baldini, Nicola

    2011-07-01

    Ultrathin films (also called nanofilms) are two-dimensional (2-D) polymeric structures with potential application in biology, biotechnology, cosmetics and tissue engineering. Since they can be handled in liquid form with micropipettes or tweezers they have been proposed as flexible systems for cell adhesion and proliferation. In particular, with the aim of designing a novel patch for bone or tendon repair and healing, in this work the biocompatibility, adhesion and proliferation activity of Saos-2, MRC-5 and human and rat mesenchymal stem cells on poly(lactic acid) nanofilms were evaluated. The nanofilms did not impair the growth and differentiation of osteoblasts and chondrocytes. Moreover, nanofilm adhesion to rabbit joints was evident under ex vivo conditions. PMID:21421086

  17. Mesenchymal Stem Cells after Polytrauma: Actor and Target

    PubMed Central

    Wiegner, Rebecca; Lampl, Lorenz; Brenner, Rolf E.

    2016-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells that are considered indispensable in regeneration processes after tissue trauma. MSCs are recruited to damaged areas via several chemoattractant pathways where they function as “actors” in the healing process by the secretion of manifold pro- and anti-inflammatory, antimicrobial, pro- and anticoagulatory, and trophic/angiogenic factors, but also by proliferation and differentiation into the required cells. On the other hand, MSCs represent “targets” during the pathophysiological conditions after severe trauma, when excessively generated inflammatory mediators, complement activation factors, and damage- and pathogen-associated molecular patterns challenge MSCs and alter their functionality. This in turn leads to complement opsonization, lysis, clearance by macrophages, and reduced migratory and regenerative abilities which culminate in impaired tissue repair. We summarize relevant cellular and signaling mechanisms and provide an up-to-date overview about promising future therapeutic MSC strategies in the context of severe tissue trauma. PMID:27340408

  18. Immunomodulatory functions of mesenchymal stem cells and possible mechanisms.

    PubMed

    Wang, Qing; Ding, Gang; Xu, Xin

    2016-09-01

    In addition to their well-studied self-renewal capabilities and multipotent differentiation properties, mesenchymal stem cells (MSCs) have been reported to possess profound immunomodulatory functions both in vitro and in vivo. More and more studies have shown that MSCs are capable of interacting closely with almost all subsets of immune cells, such as T cells, B cells, dendritic cells, natural killer cells, macrophages, and neutrophils etc. The immunomodulatory property of MSCs may shed light on the treatment of a variety of autoimmune and inflammation-related diseases. In this article, we will review the studies on the immunomodulatory and anti-inflammatory functions of MSCs and the mechanisms responsible for the interaction between immune cells and MSCs, which could improve the development of promising approaches for cell-mediated immune therapies. PMID:26932157

  19. The Modulatory Effects of Mesenchymal Stem Cells on Osteoclastogenesis

    PubMed Central

    Sharaf-Eldin, Wessam E.; Abu-Shahba, Nourhan; Mahmoud, Marwa; El-Badri, Nagwa

    2016-01-01

    The effect of mesenchymal stem cells (MSCs) on bone formation has been extensively demonstrated through several in vitro and in vivo studies. However, few studies addressed the effect of MSCs on osteoclastogenesis and bone resorption. Under physiological conditions, MSCs support osteoclastogenesis through producing the main osteoclastogenic cytokines, RANKL and M-CSF. However, during inflammation, MSCs suppress osteoclast formation and activity, partly via secretion of the key anti-osteoclastogenic factor, osteoprotegerin (OPG). In vitro, co-culture of MSCs with osteoclasts in the presence of high concentrations of osteoclast-inducing factors might reflect the in vivo inflammatory pathology and prompt MSCs to exert an osteoclastogenic suppressive effect. MSCs thus seem to have a dual effect, by stimulating or inhibiting osteoclastogenesis, depending on the inflammatory milieu. This effect of MSCs on osteoclast formation seems to mirror the effect of MSCs on other immune cells, and may be exploited for the therapeutic potential of MSCs in bone loss associated inflammatory diseases. PMID:26823668

  20. VEGF improves survival of mesenchymal stem cells in infarcted hearts

    SciTech Connect

    Pons, Jennifer; Huang Yu; Arakawa-Hoyt, Janice; Washko, Daniel; Takagawa, Junya; Ye, Jianqin; Grossman, William; Su Hua

    2008-11-14

    Bone marrow-derived mesenchymal stem cells (MSC) are a promising source for cell-based treatment of myocardial infarction (MI), but existing strategies are restricted by low cell survival and engraftment. We examined whether vascular endothelial growth factor (VEGF) improve MSC viability in infracted hearts. We found long-term culture increased MSC-cellular stress: expressing more cell cycle inhibitors, p16{sup INK}, p21 and p19{sup ARF}. VEGF treatment reduced cellular stress, increased pro-survival factors, phosphorylated-Akt and Bcl-xL expression and cell proliferation. Co-injection of MSCs with VEGF to MI hearts increased cell engraftment and resulted in better improvement of cardiac function than that injected with MSCs or VEGF alone. In conclusion, VEGF protects MSCs from culture-induce cellular stress and improves their viability in ischemic myocardium, which results in improvements of their therapeutic effect for the treatment of MI.

  1. Mesenchymal Stem Cells after Polytrauma: Actor and Target.

    PubMed

    Huber-Lang, Markus; Wiegner, Rebecca; Lampl, Lorenz; Brenner, Rolf E

    2016-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells that are considered indispensable in regeneration processes after tissue trauma. MSCs are recruited to damaged areas via several chemoattractant pathways where they function as "actors" in the healing process by the secretion of manifold pro- and anti-inflammatory, antimicrobial, pro- and anticoagulatory, and trophic/angiogenic factors, but also by proliferation and differentiation into the required cells. On the other hand, MSCs represent "targets" during the pathophysiological conditions after severe trauma, when excessively generated inflammatory mediators, complement activation factors, and damage- and pathogen-associated molecular patterns challenge MSCs and alter their functionality. This in turn leads to complement opsonization, lysis, clearance by macrophages, and reduced migratory and regenerative abilities which culminate in impaired tissue repair. We summarize relevant cellular and signaling mechanisms and provide an up-to-date overview about promising future therapeutic MSC strategies in the context of severe tissue trauma. PMID:27340408

  2. Adult Mesenchymal Stem Cells: When, Where, and How

    PubMed Central

    Caplan, Arnold I.

    2015-01-01

    Adult mesenchymal stem cells (MSCs) have profound medicinal effects at body sites of tissue injury, disease, or inflammation as either endogenously or exogenously supplied. The medicinal effects are either immunomodulatory or trophic or both. When to deliver these mediators of regeneration, where, and by what delivery apparatus or mechanism will directly determine their medical efficacy. The MSCs help manage the innate regenerative capacity of almost every body tissue and the MSCs have only recently been fully appreciated. Perhaps the most skilled physician-manager of the body's innate regenerative capacity is in orthopedics where the vigorous regeneration and repair capacity of bone through local MSCs-titers is expertly managed by the orthopaedic physician. The challenge is to extend MSCs expertise to address other tissue dysfunctions and diseases. The medicine of tomorrow will encompass optimizing the tissues' intrinsic regenerative potential through management of local MSCs. PMID:26273305

  3. Prenatal transplantation of mesenchymal stem cells to treat osteogenesis imperfecta

    PubMed Central

    Chan, Jerry K. Y.; Götherström, Cecilia

    2014-01-01

    Osteogenesis imperfecta (OI) can be a severe disorder that can be diagnosed before birth. Transplantation of mesenchymal stem cells (MSC) has the potential to improve the bone structure, growth, and fracture healing. In this review, we give an introduction to OI and MSC, and the basis for pre- and postnatal transplantation in OI. We also summarize the two patients with OI who have received pre- and postnatal transplantation of MSC. The findings suggest that prenatal transplantation of allogeneic MSC in OI is safe. The cell therapy is of likely clinical benefit with improved linear growth, mobility, and reduced fracture incidence. Unfortunately, the effect is transient. For this reason, postnatal booster infusions using same-donor MSC have been performed with clinical benefit, and without any adverse events. So far there is limited experience in this specific field and proper studies are required to accurately conclude on clinical benefits of MSC transplantation to treat OI. PMID:25346689

  4. Mesenchymal stem cells are highly resistant to sulfur mustard.

    PubMed

    Schmidt, Annette; Scherer, Michael; Thiermann, Horst; Steinritz, Dirk

    2013-12-01

    The effect of sulfur mustard (SM) to the direct injured tissues of the skin, eyes and airways is well investigated. Little is known about the effect of SM to mesenchymal stem cells (MSC). However, this is an interesting aspect. Comparing the clinical picture of SM it is known today that MSC play an important role e.g. in chronic impaired wound healing. Therefore we wanted to get an understanding about how SM affects MSC and if these findings might become useful to get a better understanding of the effect of sulfur mustard gas with respect to skin wounds. We used mesenchymal stem cells, isolated from femoral heads from healthy donors and treated them with a wide range of SM to ascertain the dose-response-curve. With the determined inhibitory concentrations IC1 (1μM), IC5 (10μM), IC10 (20μM) and IC25 (40μM) we did further investigations. We analyzed the migratory ability and the differentiation capacity under influence of SM. Already very low concentrations of SM demonstrated a strong effect to the migratory activity whereas the differentiation capacity seemed not to be affected. Putting these findings together it seems to be likely that a link between MSC and the impaired wound healing after SM exposure might exist. Same as in patients with chronic impaired wound healing MSC had shown a reduced migratory activity. The fact that MSC are able to tolerate very high concentrations of SM and still do not lose their differentiation capacity may reveal new ways of treating wounds caused by sulfur mustard. PMID:23933411

  5. Femtosecond laser pulses for chemical-free embryonic and mesenchymal stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Mthunzi, Patience; Dholakia, Kishan; Gunn-Moore, Frank

    2011-10-01

    Owing to their self renewal and pluripotency properties, stem cells can efficiently advance current therapies in tissue regeneration and/or engineering. Under appropriate culture conditions in vitro, pluripotent stem cells can be primed to differentiate into any cell type some examples including neural, cardiac and blood cells. However, there still remains a pressing necessity to answer the biological questions concerning how stem cell renewal and how differentiation programs are operated and regulated at the genetic level. In stem cell research, an urgent requirement on experimental procedures allowing non-invasive, marker-free observation of growth, proliferation and stability of living stem cells under physiological conditions exists. Femtosecond (fs) laser pulses have been reported to non-invasively deliver exogenous materials, including foreign genetic species into both multipotent and pluripotent stem cells successfully. Through this multi-photon facilitated technique, directly administering fs laser pulses onto the cell plasma membrane induces transient submicrometer holes, thereby promoting cytosolic uptake of the surrounding extracellular matter. To display a chemical-free cell transfection procedure that utilises micro-litre scale volumes of reagents, we report for the first time on 70 % transfection efficiency in ES-E14TG2a cells using the enhanced green fluorescing protein (EGFP) DNA plasmid. We also show how varying the average power output during optical transfection influences cell viability, proliferation and cytotoxicity in embryonic stem cells. The impact of utilizing objective lenses of different numerical aperture (NA) on the optical transfection efficiency in ES-E14TG2a cells is presented. Finally, we report on embryonic and mesenchymal stem cell differentiation. The produced specialized cell types could thereafter be characterized and used for cell based therapies.

  6. FYN promotes breast cancer progression through epithelial-mesenchymal transition.

    PubMed

    Xie, Ye-Gong; Yu, Yue; Hou, Li-Kun; Wang, Xin; Zhang, Bin; Cao, Xu-Chen

    2016-08-01

    FYN, one of the members of the Src family of kinases (SFKs), has been reported to be overexpressed in various types of cancers and correlated with cell motility and proliferation. However, the mechanism is still unclear. In the present study, we found that FYN was overexpressed in breast cancer and overexpression of FYN promoted cell proliferation, migration and invasion in the MCF10A cells, whereas depletion of FYN suppressed cell proliferation, migration and invasion in the MDA-MB-231 cells. Moreover, FYN upregulated the expression of mesenchymal markers and epithelial-mesenchymal transition (EMT)-related transcription factors, and downregulated the expression of epithelial markers, suggesting that FYN induces EMT in breast cancer cells. Furthermore, FYN was transcriptionally regulated by FOXO1 and mediated FGF2-induced EMT through both the PI3K/AKT and ERK/MAPK pathways. PMID:27349276

  7. Generation of induced pluripotent stem cells from human mesenchymal stem cells of parotid gland origin

    PubMed Central

    Yan, Xing; Xu, Nuo; Meng, Cen; Wang, Bianhong; Yuan, Jinghong; Wang, Caiyun; Li, Yang

    2016-01-01

    The technology to reprogram human somatic cells to pluripotent state allows the generation of patient-specific induced pluripotent stem cells (iPSCs) and holds a great promise for regenerative medicine and autologous transplantation. Here we, for the first time, identified mesenchymal stem cells isolated from parotid gland (hPMSCs) as a suitable candidate for iPSC production. In the present study, hPMSCs were isolated from parotid gland specimens in patients with squamous cell carcinoma of the oral cavity. The mesenchymal stem cell properties of cultured hPMSCs were confirmed by expression of surface markers and induced differentiation into osteogenic, chondrogenic and adipogenic cell lineages. hPMSCs were then reprogrammed to pluripotent cells by episomal vector-mediated transduction of reprogramming factors (OCT3/4, SOX2, KLF4, c-MYC, LIN28 and TP53 shRNA). The resulting hPMSC-iPSCs showed similar characteristics as human embryonic stem cells (ESCs) with regard to morphology, pluripotent markers, global gene expression, and methylation status of pluripotent cell-specific genes OCT4 and NANOG. These hPMSC-iPSCs were able to differentiate into cells of all three germ layers both in vitro and in vivo. Our results indicate that hPMSCs could be an alternative cell source for generation of iPSCs and have the potential to be used in cell-based regenerative medicine. PMID:27158336

  8. Symposium Promotes Technological Literacy through STEM

    ERIC Educational Resources Information Center

    Havice, Bill; Marshall, Jerry

    2009-01-01

    This article describes a symposium which promotes technological literacy through science, technology, engineering, and mathematics (STEM). The three-day symposium titled, "The Anderson, Oconee, Pickens Symposium on Teaching and Learning STEM Standards for the 21st Century," was held August 4-6, 2008 at the Tri-County Technical College (TCTC)…

  9. ERR{alpha} regulates osteoblastic and adipogenic differentiation of mouse bone marrow mesenchymal stem cells

    SciTech Connect

    Rajalin, Ann-Marie; Pollock, Hanna; Aarnisalo, Piia

    2010-05-28

    The orphan nuclear receptor estrogen-related receptor-{alpha} (ERR{alpha}) has been reported to have both a positive and a negative regulatory role in osteoblastic and adipocytic differentiation. We have studied the role of ERR{alpha} in osteoblastic and adipogenic differentiation of mesenchymal stem cells. Bone marrow mesenchymal stem cells were isolated from ERR{alpha} deficient mice and their differentiation capacities were compared to that of the wild-type cells. ERR{alpha} deficient cultures displayed reduced cellular proliferation, osteoblastic differentiation, and mineralization. In the complementary experiment, overexpression of ERR{alpha} in MC3T3-E1 cells increased the expression of osteoblastic markers and mineralization. Alterations in the expression of bone sialoprotein (BSP) may at least partially explain the effects on mineralization as BSP expression was reduced in ERR{alpha} deficient MSCs and enhanced upon ERR{alpha} overexpression in MC3T3-E1 cells. Furthermore, a luciferase reporter construct driven by the BSP promoter was efficiently transactivated by ERR{alpha}. Under adipogenic conditions, ERR{alpha} deficient cultures displayed reduced adipocytic differentiation. Our data thus propose a positive role for ERR{alpha} in osteoblastic and adipocytic differentiation. The variability in the results yielded in the different studies implies that ERR{alpha} may play different roles in bone under different physiological conditions.

  10. Inhibition of adipocytogenesis by canonical WNT signaling in human mesenchymal stem cells

    SciTech Connect

    Shen, Longxiang; Glowacki, Julie; Zhou, Shuanhu

    2011-08-01

    The WNT signaling pathway plays important roles in the self-renewal and differentiation of mesenchymal stem cells (MSCs). Little is known about WNT signaling in adipocyte differentiation of human MSCs. In this study, we tested the hypothesis that canonical and non-canonical WNTs differentially regulate in vitro adipocytogenesis in human MSCs. The expression of adipocyte gene PPAR{gamma}2, lipoprotein lipase, and adipsin increased during adipocytogenesis of hMSCs. Simultaneously, the expression of canonical WNT2, 10B, 13, and 14 decreased, whereas non-canonical WNT4 and 11 increased, and WNT5A was unchanged. A small molecule WNT mimetic, SB-216763, increased accumulation of {beta}-catenin protein, inhibited induction of WNT4 and 11 and inhibited adipocytogenesis. In contrast, knockdown of {beta}-catenin with siRNA resulted in spontaneous adipocytogenesis. These findings support the view that canonical WNT signaling inhibits and non-canonical WNT signaling promotes adipocytogenesis in adult human marrow-derived mesenchymal stem cells.

  11. Characterization of esterified hyaluronan-gelatin polymer composites suitable for chondrogenic differentiation of mesenchymal stem cells*

    PubMed Central

    Angele, Peter; Müller, Rainer; Schumann, Detlef; Englert, Carsten; Zellner, Johannes; Johnstone, Brian; Yoo, Jung; Hammer, Joachim; Fierlbeck, Johann; Angele, Martin K.; Nerlich, Michael; Kujat, Richard

    2008-01-01

    Composite scaffolds of homogeneously mixed esterified hyaluronan (HY) and gelatin (G) were manufactured with variable component compositions (HY100%; HY95%/G5%; HY70%/G30%). The goals of this study were to analyze the produced composite scaffolds using physical and chemical methods, e.g., scanning electron microscopy, IR-spectroscopy, water contact angle, protein assay, and tensile testing as well as to assess the effects of adding gelatin to the composite scaffolds on attachment, proliferation and chondrogenic differentiation of human mesenchymal stem cells. Numbers of attached cells were significantly higher on the composite material compared to pure hyaluronan at different time points of two-dimensional or three-dimensional cell culture (p < 0.02). In composite scaffolds, a significantly greater amount of cartilage-specific extracellular matrix components was deposited after 28 days in culture (glycosaminoglycan: p < 0.001; collagen: p < 0.001) as compared with 100% hyaluronan scaffolds. Additionally, gelatin containing composite scaffolds displayed stronger promotion of collagen type II expression than pure hyaluronan scaffolds. The mechanism, by which gelatin influences cell adhesion, was examined. The effect was inhibited by collagenase treatment of the composites or by addition of α5β1-integrin blocking antibodies to the cell suspension. In summary, the results describe the establishment of a class of composite polymer scaffolds, consisting of esterified hyaluronan and gelatin, which are potentially useful for cell-based tissue engineering approaches using mesenchymal stem cells for chondrogenic differentiation. PMID:18985778

  12. Characterization of esterified hyaluronan-gelatin polymer composites suitable for chondrogenic differentiation of mesenchymal stem cells.

    PubMed

    Angele, Peter; Müller, Rainer; Schumann, Detlef; Englert, Carsten; Zellner, Johannes; Johnstone, Brian; Yoo, Jung; Hammer, Joachim; Fierlbeck, Johann; Angele, Martin K; Nerlich, Michael; Kujat, Richard

    2009-11-01

    Composite scaffolds of homogeneously mixed esterified hyaluronan (HY) and gelatin (G) were manufactured with variable component compositions (HY100%; HY95%/G5%; HY70%/G30%). The goals of this study were to analyze the produced composite scaffolds using physical and chemical methods, for example, scanning electron microscopy, IR-spectroscopy, water contact angle, protein assay, and tensile testing as well as to assess the effects of adding gelatin to the composite scaffolds on attachment, proliferation, and chondrogenic differentiation of human mesenchymal stem cells. Numbers of attached cells were significantly higher on the composite material compared to pure hyaluronan at different time points of two-dimensional or three-dimensional cell culture (p< 0.02). In composite scaffolds, a significantly greater amount of cartilage-specific extracellular matrix components was deposited after 28 days in culture (glycosaminoglycan: p < 0.001; collagen: p < 0.001) as compared with 100% hyaluronan scaffolds. Additionally, gelatin-containing composite scaffolds displayed stronger promotion of collagen type II expression than pure hyaluronan scaffolds. The mechanism, based on which gelatin influences cell adhesion, was examined. The effect was inhibited by collagenase treatment of the composites or by addition of alpha5beta1-integrin blocking antibodies to the cell suspension. In summary, the results describe the establishment of a class of composite polymer scaffolds, consisting of esterified hyaluronan and gelatin, which are potentially useful for cell-based tissue engineering approaches using mesenchymal stem cells for chondrogenic differentiation. PMID:18985778

  13. Mesenchymal stem cell therapy in lung disorders: pathogenesis of lung diseases and mechanism of action of mesenchymal stem cell.

    PubMed

    Inamdar, Ajinkya C; Inamdar, Arati A

    2013-10-01

    Lung disorders such as asthma, acute respiratory distress syndrome (ARDS), chronic obstructive lung disease (COPD), and interstitial lung disease (ILD) show a few common threads of pathogenic mechanisms: inflammation, aberrant immune activity, infection, and fibrosis. Currently no modes of effective treatment are available for ILD or emphysema. Being anti-inflammatory, immunomodulatory, and regenerative in nature, the administration of mesenchymal stem cells (MSCs) has shown the capacity to control immune dysfunction and inflammation in the lung. The intravenous infusion of MSCs, the common mode of delivery, is followed by their entrapment in lung vasculature before MSCs reach to other organ systems thus indicating the feasible and promising approach of MSCs therapy for lung diseases. In this review, we discuss the mechanistic basis for MSCs therapy for asthma, ARDS, COPD, and ILD. PMID:23992090

  14. Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies?

    PubMed

    El Omar, Reine; Beroud, Jacqueline; Stoltz, Jean-Francois; Menu, Patrick; Velot, Emilie; Decot, Veronique

    2014-10-01

    Due to their self-renewal capacity, multilineage differentiation potential, paracrine effects, and immunosuppressive properties, mesenchymal stromal cells (MSCs) are an attractive and promising tool for regenerative medicine. MSCs can be isolated from various tissues but despite their common immunophenotypic characteristics and functional properties, source-dependent differences in MSCs properties have recently emerged and lead to different clinical applications. Considered for a long time as a medical waste, umbilical cord appears these days as a promising source of MSCs. Several reports have shown that umbilical cord-derived MSCs are more primitive, proliferative, and immunosuppressive than their adult counterparts. In this review, we aim at synthesizing the differences between umbilical cord MSCs and MSCs from other sources (bone marrow, adipose tissue, periodontal ligament, dental pulp,…) with regard to their proliferation capacity, proteic and transcriptomic profiles, and their secretome involved in their regenerative, homing, and immunomodulatory capacities. Although umbilical cord MSCs are until now not particularly used as an MSC source in clinical practice, accumulating evidence shows that they may have a therapeutic advantage to treat several diseases, especially autoimmune and neurodegenerative diseases. PMID:24552279

  15. Clinical Application of Mesenchymal Stem Cells in the Treatment and Prevention of Graft-versus-Host Disease

    PubMed Central

    Lin, Yi; Hogan, William J.

    2011-01-01

    Mesenchymal stem cells (MSCs) represent a heterogeneous population of stromal cells with pluripotent mesenchymal differentiation potential. They have been found to have immunosuppressive properties and the ability to modulate angiogenesis and endogenous tissue repair by in vitro and animal studies. Clinical trials have examined the utility of these cells in autoimmune and inflammatory conditions. In particular, in allogeneic hematopoietic stem cell transplant (HSCT), multiple studies have been conducted to explore the use of MSC to treat acute and chronic graft-versus-host disease (GVHD) and for cotransplantation with HSCT to promote HSC engraftment and prevent GVHD. We review here the results of these studies and discuss some challenges of this treatment modality in this disease setting. PMID:22190941

  16. Eccentric exercise facilitates mesenchymal stem cell appearance in skeletal muscle.

    PubMed

    Valero, M Carmen; Huntsman, Heather D; Liu, Jianming; Zou, Kai; Boppart, Marni D

    2012-01-01

    Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether stem cells other than satellite cells accumulate in muscle in response to exercise and contribute to post-exercise repair and/or growth. In this study, stem cell antigen-1 (Sca-1) positive, non-hematopoetic (CD45⁻) cells were evaluated in wild type (WT) and α7 integrin transgenic (α7Tg) mouse muscle, which is resistant to injury yet liable to strain, 24 hr following a single bout of eccentric exercise. Sca-1⁺CD45⁻ stem cells were increased 2-fold in WT muscle post-exercise. The α7 integrin regulated the presence of Sca-1⁺ cells, with expansion occurring in α7Tg muscle and minimal cells present in muscle lacking the α7 integrin. Sca-1⁺CD45⁻ cells isolated from α7Tg muscle following exercise were characterized as mesenchymal-like stem cells (mMSCs), predominantly pericytes. In vitro multiaxial strain upregulated mMSC stem cells markers in the presence of laminin, but not gelatin, identifying a potential mechanistic basis for the accumulation of these cells in muscle following exercise. Transplantation of DiI-labeled mMSCs into WT muscle increased Pax7⁺ cells and facilitated formation of eMHC⁺DiI⁻ fibers. This study provides the first demonstration that mMSCs rapidly appear in skeletal muscle in an α7 integrin dependent manner post-exercise, revealing an early event that may be necessary for effective repair and/or growth following exercise. The results from this study also support a role for the α7 integrin and/or mMSCs in molecular- and cellular-based therapeutic strategies that can effectively combat disuse muscle atrophy. PMID:22253772

  17. Mesenchymal Stem Cells Derived from Dental Pulp: A Review

    PubMed Central

    Santiago-Osorio, Edelmiro

    2016-01-01

    The mesenchymal stem cells of dental pulp (DPSCs) were isolated and characterized for the first time more than a decade ago as highly clonogenic cells that were able to generate densely calcified colonies. Now, DPSCs are considered to have potential as stem cell source for orthopedic and oral maxillofacial reconstruction, and it has been suggested that they may have applications beyond the scope of the stomatognathic system. To date, most studies have shown that, regardless of their origin in third molars, incisors, or exfoliated deciduous teeth, DPSCs can generate mineralized tissue, an extracellular matrix and structures type dentin, periodontal ligament, and dental pulp, as well as other structures. Different groups worldwide have designed and evaluated new efficient protocols for the isolation, expansion, and maintenance of clinically safe human DPSCs in sufficient numbers for various therapeutics protocols and have discussed the most appropriate route of administration, the possible contraindications to their clinical use, and the parameters to be considered for monitoring their clinical efficacy and proper biological source. At present, DPSC-based therapy is promising but because most of the available evidence was obtained using nonhuman xenotransplants, it is not a mature technology. PMID:26779263

  18. Clinical Applications of Mesenchymal Stem Cells in Laryngotracheal Reconstruction

    PubMed Central

    Hanson, Summer; Thibeault, Susan L.; Hematti, Peiman

    2011-01-01

    Abstract / Summary During the past several years, mesenchymal stem cells (MSCs) derived from adult tissue have rapidly moved from in vitro and animal studies into clinical trials as a therapeutic modality for a diverse group of clinical applications, including head and neck reconstruction. For many diseases, cell therapy could affect the underlying pathophysiologic processes through multiple pathways providing an advantage over current treatment modalities. There is an emerging body of evidence that MSCs have unique immunomodulatory properties in addition to the ability to differentiate into multiple tissue lineages which make them even more attractive for regenerative medicine. A variety of pre-clinical and clinical studies have shown that MSCs may have a useful role in tissue repair as well as engineering strategies in head and neck reconstructive surgery. Clinically, this has ranged from injection laryngoplasty to the implantation of a tracheal construct seeded with MSC-derived chondrocytes. Recent advances in stem cell immunobiology can offer insight to the multiple mechanisms through which MSCs could affect underlying pathophysiologic processes ranging from vocal fold scarring to composite tissue defects. Thorough evaluation of the current literature is necessary in understanding how MSCs could potentially revolutionize our approach to head and neck defects. The purpose of this review is to highlight the advances in MSC-based therapies in head and neck surgery, specifically laryngotracheal reconstruction. The clinical role of tissue-derived MSCs, though not well understood, holds promise for many therapeutic applications in regenerative medicine and reconstruction. PMID:19951250

  19. Clinical Applications of Mesenchymal Stem Cells in Chronic Diseases

    PubMed Central

    Sitzia, Clementina; Erratico, Silvia; Torrente, Yvan

    2014-01-01

    Extraordinary progress in understanding several key features of stem cells has been made in the last ten years, including definition of the niche, and identification of signals regulating mobilization and homing as well as partial understanding of the mechanisms controlling self-renewal, commitment, and differentiation. This progress produced invaluable tools for the development of rational cell therapy protocols that have yielded positive results in preclinical models of genetic and acquired diseases and, in several cases, have entered clinical experimentation with positive outcome. Adult mesenchymal stem cells (MSCs) are nonhematopoietic cells with multilineage potential to differentiate into various tissues of mesodermal origin. They can be isolated from bone marrow and other tissues and have the capacity to extensively proliferate in vitro. Moreover, MSCs have also been shown to produce anti-inflammatory molecules which can modulate humoral and cellular immune responses. Considering their regenerative potential and immunoregulatory effect, MSC therapy is a promising tool in the treatment of degenerative, inflammatory, and autoimmune diseases. It is obvious that much work remains to be done to increase our knowledge of the mechanisms regulating development, homeostasis, and tissue repair and thus to provide new tools to implement the efficacy of cell therapy trials. PMID:24876848

  20. Mesenchymal Stem Cells Derived from Dental Pulp: A Review.

    PubMed

    Ledesma-Martínez, Edgar; Mendoza-Núñez, Víctor Manuel; Santiago-Osorio, Edelmiro

    2016-01-01

    The mesenchymal stem cells of dental pulp (DPSCs) were isolated and characterized for the first time more than a decade ago as highly clonogenic cells that were able to generate densely calcified colonies. Now, DPSCs are considered to have potential as stem cell source for orthopedic and oral maxillofacial reconstruction, and it has been suggested that they may have applications beyond the scope of the stomatognathic system. To date, most studies have shown that, regardless of their origin in third molars, incisors, or exfoliated deciduous teeth, DPSCs can generate mineralized tissue, an extracellular matrix and structures type dentin, periodontal ligament, and dental pulp, as well as other structures. Different groups worldwide have designed and evaluated new efficient protocols for the isolation, expansion, and maintenance of clinically safe human DPSCs in sufficient numbers for various therapeutics protocols and have discussed the most appropriate route of administration, the possible contraindications to their clinical use, and the parameters to be considered for monitoring their clinical efficacy and proper biological source. At present, DPSC-based therapy is promising but because most of the available evidence was obtained using nonhuman xenotransplants, it is not a mature technology. PMID:26779263

  1. Impairment of mesenchymal stem cells derived from oral leukoplakia

    PubMed Central

    Zhang, Zhihui; Song, Jiangyuan; Han, Ying; Mu, Dongdong; Su, Sha; Ji, Xiaoli; Liu, Hongwei

    2015-01-01

    Oral leukoplakia is one of the common precancerous lesions in oral mucosa. To compare the biological characteristics and regenerative capacities of mesenchymal stem cells (MSCs) from oral leukoplakia (epithelial hyperplasia and dysplasia) and normal oral mucosa, MSCs were isolated by enzyme digestion. Then these cells were identified by the expression of MSC related markers, STRO-1, CD105 and CD90, with the absent for the hematopoietic stem cell marker CD34 by flow cytometric detection. The self-renewal ability of MSCs from oral leukoplakia was enhanced, while the multipotent differentiation was descended, compared with MSCs from normal oral mucosa. Fibrin gel was used as a carrier for MSCs transplanted into immunocompromised mice to detect their regenerative capacity. The regenerative capacities of MSCs from oral leukoplakia became impaired partly. Collagen IV (Col IV) and matrix metalloproteinases-9 (MMP-9) were selected to analyze the potential mechanism for the functional changes of MSCs from oral leukoplakia by immunochemical and western blot analysis. The expression of Col IV was decreased and that of MMP-9 was increased by MSCs with the progression of oral leukoplakia, especially in MSCs from epithelial dysplasia. The imbalance between regenerative and metabolic self-regulatory functions of MSCs from oral leukoplakia may be related to the progression of this premalignant disorder. PMID:26617710

  2. Mesenchymal stem cell therapy for cirrhosis: Present and future perspectives.

    PubMed

    Eom, Young Woo; Kim, Gaeun; Baik, Soon Koo

    2015-09-28

    Cirrhosis occurs as a result of various chronic liver injuries, which may be caused by viral infections, alcohol abuse and the administration of drugs and chemicals. Recently, bone marrow cells (BMCs), hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) have been used for developing treatments for cirrhosis. Clinical trials have investigated the therapeutic potential of BMCs, HSCs and MSCs for the treatment of cirrhosis based on their potential to differentiate into hepatocytes. Although the therapeutic mechanisms of BMC, HSC and MSC treatments are still not fully characterized, the evidence thus far has indicated that the potential therapeutic mechanisms of MSCs are clearer than those of BMCs or HSCs with respect to liver regenerative medicine. MSCs suppress inflammatory responses, reduce hepatocyte apoptosis, increase hepatocyte regeneration, reverse liver fibrosis and enhance liver functionality. This paper summarizes the clinical studies that have used BMCs, HSCs and MSCs in patients with liver failure or cirrhosis. We also present the potential therapeutic mechanisms of BMCs, HSCs and MSCs for the improvement of liver function. PMID:26420953

  3. Mesenchymal Stem Cells as Cellular Vectors for Pediatric Neurological Disorders

    PubMed Central

    Phinney, Donald G.; Isakova, Iryna A.

    2014-01-01

    Lysosomal storage diseases are a heterogeneous group of hereditary disorders characterized by a deficiency in lysosomal function. Although these disorders differ in their etiology and phenotype those that affect the nervous system generally manifest as a profound deterioration in neurologic function with age. Over the past several decades implementation of various treatment regimens including bone marrow and cord blood cell transplantation, enzyme replacement, and substrate reduction therapy have proved effective for managing some clinical manifestations of these diseases but their ability to ameliorate neurologic complications remains unclear. Consequently, there exists a need to develop alternative therapies that more effectively target the central nervous system. Recently, direct intracranial transplantation of tissue-specific stem and progenitor cells has been explored as a means to reconstitute metabolic deficiencies in the CNS. In this chapter we discuss the merits of bone marrow-derived mesenchymal stem cells (MSCs) for this purpose. Originally identified as progenitors of connective tissue cell lineages, recent findings have revealed several novel aspects of MSC biology that make them attractive as therapeutic agents in the CNS. We relate these advances in MSC biology to their utility as cellular vectors for treating neurologic sequelae associated with pediatric neurologic disorders. PMID:24858930

  4. Aging alters tissue resident mesenchymal stem cell properties.

    PubMed

    Alt, Eckhard U; Senst, Christiane; Murthy, Subramanyam N; Slakey, Douglas P; Dupin, Charles L; Chaffin, Abigail E; Kadowitz, Philip J; Izadpanah, Reza

    2012-03-01

    Tissue resident mesenchymal stem cells (MSCs) are known to participate in tissue regeneration that follows cell turnover, apoptosis, or necrosis. It has been long known that aging impedes an organism's repair/regeneration capabilities. In order to study the age associated changes, the molecular characteristics of adipose tissue derived MSCs (ASCs) from three age groups of healthy volunteers, i.e., young, middle aged, and aged were investigated. The number and multilineage differentiation potential of ASCs declined with age. Aging reduces the proliferative capacity along with increases in cellular senescence. A significant increase in quiescence of G2 and S phase was observed in ASCs from aged donors. The expression of genes related to senescence such as CHEK1 and cyclin-dependent kinase inhibitor p16(ink4a) was increased with age, however genes of apoptosis were downregulated. Further, an age-dependent abnormality in the expression of DNA break repair genes was observed. Global microRNA analysis revealed an abnormal expression of mir-27b, mir-106a, mir-199a, and let-7. In ubiquitously distributed adipose tissue (and ASCs), aging brings about important alterations, which might be critical for tissue regeneration and homeostasis. Our findings therefore provide a better understanding of the mechanism(s) involved in stem cell aging and regenerative potential, and this in turn may affect tissue repair that declines with aging. PMID:22265741

  5. Immunomodulatory effects of umbilical cord-derived mesenchymal stem cells.

    PubMed

    Shawki, Shereen; Gaafar, Taghrid; Erfan, Hadeel; El Khateeb, Engy; El Sheikhah, Ahmad; El Hawary, Rabab

    2015-06-01

    Umbilical cord blood (UCB) is of great interest as a source of stem cells for use in cellular therapies. The immunomodulatory effect of mesenchymal stem cells (MSCs) originating from bone marrow, adipose tissue and amniotic membrane has previously been reported. In this study, MSCs were isolated from UCB with the aim of evaluating their immunomodulatory effects on proliferation of PB lymphocytes by two different techniques; namely, 5-bromo-2-deoxyuridine ELISA and a carboxy fluorescein diacetate succinimidyl ester flow cytometric technique. MSCs were isolated from UCB, propagated until Passage four, and then characterized for cell surface markers by flow cytometry and ability to differentiate towards osteocytes and adipocytes. Immunosuppressive effects on PB lymphocytes were examined by co-culturing mitomycin C-treated UCB MSCs with mitogen-stimulated lymphocytes for 72 hr. Thereafter, proliferation of lymphocytes was detected by CFSE flow cytometry and colorimetric ELISA. The titers of cytokines in cell culture supernatant were also assayed to clarify possible mechanisms of immunomodulation. UCB MSCs suppressed mitogen-stimulated lymphocyte proliferation, which occurs via both cell-cell contact and cytokine secretion. Titers of transforming growth factor beta and IL 10 increased, whereas that of IFN-γ decreased in the supernatants of co-cultures. Thus, UCB MSCs suppress the proliferation of mitogen-stimulated lymphocytes. However further in vivo studies are required to fully evaluate the immunomodulatory effects of UCB MSCs. PMID:25869421

  6. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine.

    PubMed

    Nowakowski, Adam; Walczak, Piotr; Janowski, Miroslaw; Lukomska, Barbara

    2015-10-01

    Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented. PMID:26140302

  7. Mesenchymal stem cell therapy for osteoarthritis: current perspectives

    PubMed Central

    Wyles, Cody C; Houdek, Matthew T; Behfar, Atta; Sierra, Rafael J

    2015-01-01

    Osteoarthritis (OA) is a painful chronic condition with a significant impact on quality of life. The societal burden imposed by OA is increasing in parallel with the aging population; however, no therapies have demonstrated efficacy in preventing the progression of this degenerative joint disease. Current mainstays of therapy include activity modification, conservative pain management strategies, weight loss, and if necessary, replacement of the affected joint. Mesenchymal stem cells (MSCs) are a multipotent endogenous population of progenitors capable of differentiation to musculoskeletal tissues. MSCs have a well-documented immunomodulatory role, managing the inflammatory response primarily through paracrine signaling. Given these properties, MSCs have been proposed as a potential regenerative cell therapy source for patients with OA. Research efforts are focused on determining the ideal source for derivation, as MSCs are native to several tissues. Furthermore, optimizing the mode of delivery remains a challenge both for appropriate localization of MSCs and for directed guidance toward stemming the local inflammatory process and initiating a regenerative response. Scaffolds and matrices with growth factor adjuvants may prove critical in this effort. The purpose of this review is to summarize the current state of MSC-based therapeutics for OA and discuss potential barriers that must be overcome for successful implementation of cell-based therapy as a routine treatment strategy in orthopedics. PMID:26357483

  8. Suitability of human mesenchymal stem cells for gene therapy depends on the expansion medium

    SciTech Connect

    Apel, Anja; Groth, Ariane; Schlesinger, Sabine; Bruns, Helge; Schemmer, Peter; Buechler, Markus W.; Herr, Ingrid

    2009-02-01

    Great hope is set in the use of mesenchymal stem cells for gene therapy and regenerative medicine. Since the frequency of this subpopulation of stem cells in bone marrow is low, mesenchymal stem cells are expanded ex vivo and manipulated prior to experimental or clinical use. Different methods for isolation and expansion are available, but the particular effect on the stem cell character is unclear. While the isolation of mesenchymal stem cells by density centrifugation followed by selection of the plastic adherent fraction is frequently used, the composition of expansion media differs. Thus, in the present study we cultured mesenchymal stem cells isolated from five healthy young volunteers in three widely used expansion media and performed a detailed analysis of the effect on morphology, proliferation, clonogenicity, passaging, differentiation and senescence. By this way we clearly show that the type of expansion medium used determines the stem cell character and time of senescence which is critical for future gene therapeutic and regenerative approaches using mesenchymal stem cells.

  9. Body Management: Mesenchymal Stem Cells Control the Internal Regenerator

    PubMed Central

    Hariri, Robert

    2015-01-01

    Summary It has been assumed that adult tissues cannot regenerate themselves. With the current understanding that every adult tissue has its own intrinsic progenitor or stem cell, it is now clear that almost all tissues have regenerative potential partially related to their innate turnover dynamics. Moreover, it appears that a separate class of local cells originating as perivascular cells appears to provide regulatory oversight for localized tissue regeneration. The management of this regeneration oversight has a profound influence on the use of specific cells for cell therapies as a health care delivery tool set. The multipotent mesenchymal stem cell (MSC), now renamed the medicinal signaling cell, predominantly arises from pericytes released from broken and inflamed blood vessels and appears to function as both an immunomodulatory and a regeneration mediator. MSCs are being tested for their management capabilities to produce therapeutic outcomes in more than 480 clinical trials for a wide range of clinical conditions. Local MSCs function by managing the body’s primary repair and regeneration activities. Supplemental MSCs can be provided from either endogenous or exogenous sources of either allogeneic or autologous origin. This MSC-based therapy has the potential to change how health care is delivered. These medicinal cells are capable of sensing their surroundings. Also, by using its complex signaling circuitry, these cells organize site-specific regenerative responses as if these therapeutic cells were well-programmed modern computers. Given these facts, it appears that we are entering a new age of cellular medicine. Significance This report is a perspective from an active scientist and an active entrepreneur and commercial leader. It is neither a comprehensive review nor a narrowly focused treatise. The broad themes and the analogy to the working component of a computer and that of a cell are meant to draw several important scientific principles and health

  10. Single-Layer Graphene Enhances the Osteogenic Differentiation of Human Mesenchymal Stem Cells In Vitro and In Vivo.

    PubMed

    Liu, Yunsong; Chen, Tong; Du, Feng; Gu, Ming; Zhang, Ping; Zhang, Xiao; Liu, Jianzhang; Lv, Longwei; Xiong, Chunyang; Zhou, Yongsheng

    2016-06-01

    In recent years, although several studies have demonstrated the potential of graphene-coated substrates in promoting attachment, proliferation and differentiation of osteoblasts and mesenchymal stem cells (MSCs), the effects of single-layer graphene on the osteogenic differentiation of human MSCs (hMSCs) remains unclear, especially in vivo. In this study, we transferred chemical vapor deposition (CVD) grown single-layer graphene to glass slides and observed its effects on adhesion, proliferation and osteogenic differentiation of human adipose-derived stem cells (hASCs) and human bone marrow mesenchymal stem cells (hBMMSCs) in vitro. Then, in vivo, we incubated hASCs and hBMMSCs on single-layer graphene-coated smooth titanium (Ti) disks before implanting them into the back subcutaneous area of nude mice. We found that single-layer graphene accelerated cell adhesion to the substrate without influencing cell proliferation of hMSCs. Moreover, we present the first study that explores the epigenetic role of single-layer graphene in determining stem cell fate. By utilizing epigenetic approaches, we reveal that single-layer graphene promotes osteogenic differentiation of hMSCs both in vitro and in vivo, potentially by upregulating methylation of H3K4 at the promoter regions of osteogenesis-associated genes. Overall, our results highlight the potential of this material in implants and injured tissues in clinical applications. PMID:27319220

  11. The essential role of inorganic substrate in the migration and osteoblastic differentiation of mesenchymal stem cells.

    PubMed

    He, Jing; Meng, Guolong; Yao, Ruijuan; Jiang, Bo; Wu, Yao; Wu, Fang

    2016-06-01

    The physical environment, which is an integral part of the stem cell niche, is critical in regulating stem cell functions and differentiation into specific lineages. Previous studies have primarily focused on modulating the polymeric matrixes, including the extracellular matrix. Here, we report that the presence of the inorganic substrate (Ti and hydroxyapatite (HA)) in addition to the collagen overlayer plays an essential role in cytoskeletal organization, migration and differentiation of mesenchymal stem cells (MSCs). The osteogenic differentiation of MSCs was suppressed on pure collagen substrate alone, despite collagen greatly enhancing the MSC adhesion and proliferation. The results indicated a strong correlation between MSC motility and osteoblastic differentiation. In particular, the presence of the inorganic matrix promoted the activation of the canonical WNT-β-Catenin pathway and stimulated transcription, leading to osteoblastic differentiation, which was likely due to the internal forces generated "dynamically" during cell migration. Compared to the Ti substrate, hydroxyapatite promoted the collagen self-assembly and the formation of the collagen fibrous network, which is critical for MSC motility and osteogenic differentiation. The HA-collagen matrix exhibited the most favourable stress fibre formation, the longest migration distance (2.8-fold higher than that of the pure collagen sample and 1.9-fold higher than that of Ti-collagen), and the best osteogenic differentiation activities. These findings might have important implications for our understanding of the fundamental MSC functions and the optimal design of bone regeneration materials. PMID:26905036

  12. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments. PMID:27026484

  13. The Endometrium as a Source of Mesenchymal Stem Cells for Regenerative Medicine1

    PubMed Central

    Mutlu, Levent; Hufnagel, Demetra; Taylor, Hugh S.

    2015-01-01

    Stem cell therapies have opened new frontiers in medicine with the possibility of regenerating lost or damaged cells. Embryonic stem cells, induced pluripotent stem cells, hematopoietic stem cells, and mesenchymal stem cells have been used to derive mature cell types for tissue regeneration and repair. However, the endometrium has emerged as an attractive, novel source of adult stem cells that are easily accessed and demonstrate remarkable differentiation capacity. In this review, we summarize our current understanding of endometrial stem cells and their therapeutic potential in regenerative medicine. PMID:25904012

  14. Clinical Trials With Mesenchymal Stem Cells: An Update.

    PubMed

    Squillaro, Tiziana; Peluso, Gianfranco; Galderisi, Umberto

    2016-01-01

    In the last year, the promising features of mesenchymal stem cells (MSCs), including their regenerative properties and ability to differentiate into diverse cell lineages, have generated great interest among researchers whose work has offered intriguing perspectives on cell-based therapies for various diseases. Currently the most commonly used adult stem cells in regenerative medicine, MSCs, can be isolated from several tissues, exhibit a strong capacity for replication in vitro, and can differentiate into osteoblasts, chondrocytes, and adipocytes. However, heterogeneous procedures for isolating and cultivating MSCs among laboratories have prompted the International Society for Cellular Therapy (ISCT) to issue criteria for identifying unique populations of these cells. Consequently, the isolation of MSCs according to ISCT criteria has produced heterogeneous, nonclonal cultures of stromal cells containing stem cells with different multipotent properties, committed progenitors, and differentiated cells. Though the nature and functions of MSCs remain unclear, nonclonal stromal cultures obtained from bone marrow and other tissues currently serve as sources of putative MSCs for therapeutic purposes, and several findings underscore their effectiveness in treating different diseases. To date, 493 MSC-based clinical trials, either complete or ongoing, appear in the database of the US National Institutes of Health. In the present article, we provide a comprehensive review of MSC-based clinical trials conducted worldwide that scrutinizes biological properties of MSCs, elucidates recent clinical findings and clinical trial phases of investigation, highlights therapeutic effects of MSCs, and identifies principal criticisms of the use of these cells. In particular, we analyze clinical trials using MSCs for representative diseases, including hematological disease, graft-versus-host disease, organ transplantation, diabetes, inflammatory diseases, and diseases in the liver, kidney

  15. The potential of mesenchymal stem cell in prion research.

    PubMed

    Mediano, D R; Sanz-Rubio, D; Ranera, B; Bolea, R; Martín-Burriel, I

    2015-05-01

    Scrapie and bovine spongiform encephalopathy are fatal neurodegenerative diseases caused by the accumulation of a misfolded protein (PrP(res)), the pathological form of the cellular prion protein (PrP(C)). For the last decades, prion research has greatly progressed, but many questions need to be solved about prion replication mechanisms, cell toxicity, differences in genetic susceptibility, species barrier or the nature of prion strains. These studies can be developed in murine models of transmissible spongiform encephalopathies, although development of cell models for prion replication and sample titration could reduce economic and timing costs and also serve for basic research and treatment testing. Some murine cell lines can replicate scrapie strains previously adapted in mice and very few show the toxic effects of prion accumulation. Brain cell primary cultures can be more accurate models but are difficult to develop in naturally susceptible species like humans or domestic ruminants. Stem cells can be differentiated into neuron-like cells and be infected by prions. However, the use of embryo stem cells causes ethical problems in humans. Mesenchymal stem cells (MSCs) can be isolated from many adult tissues, including bone marrow, adipose tissue or even peripheral blood. These cells differentiate into neuronal cells, express PrP(C) and can be infected by prions in vitro. In addition, in the last years, these cells are being used to develop therapies for many diseases, including neurodegenerative diseases. We review here the use of cell models in prion research with a special interest in the potential use of MSCs. PMID:24854140

  16. Stem cell transplantation and mesenchymal cells to treat autoimmune diseases.

    PubMed

    Tyndall, Alan; van Laar, Jacob M

    2016-06-01

    Since the start of the international stem cell transplantation project in 1997, over 2000 patients have received a haematopoietic stem cell transplant (HSCT), mostly autologous, as treatment for a severe autoimmune disease, the majority being multiple sclerosis (MS), systemic sclerosis (SSc) and Crohn's disease. There was an overall 85% 5-year survival and 43% progression-free survival. Around 30% of patients in all disease subgroups had a complete response, often durable despite full immune reconstitution. In many cases, e.g. systemic sclerosis, morphological improvement such as reduction of skin collagen and normalization of microvasculature was documented, beyond any predicted known effects of intense immunosuppression alone. It is hoped that the results of the three running large prospective randomized controlled trials will allow modification of the protocols to reduce the high transplant-related mortality which relates to regimen intensity, age of patient, and comorbidity. Mesenchymal stromal cells (MSC), often incorrectly called stem cells, have been the intense focus of in vitro studies and animal models of rheumatic and other diseases over more than a decade. Despite multiple plausible mechanisms of action and a plethora of positive in vivo animal studies, few randomised controlled clinical trials have demonstrated meaningful clinical benefit in any condition so far. This could be due to confusion in cell product terminology, complexity of clinical study design and execution or agreement on meaningful outcome measures. Within the rheumatic diseases, SLE and rheumatoid arthritis (RA) have received most attention. Uncontrolled multiple trial data from over 300 SLE patients have been published from one centre suggesting a positive outcome; one single centre comparative study in 172 RA was positive. In addition, small numbers of patients with Crohn's disease, multiple sclerosis, primary Sjögren's disease, polymyositis/dermatomyositis and type II diabetes

  17. Therapeutic application of mesenchymal stem cell-derived exosomes: A promising cell-free therapeutic strategy in regenerative medicine.

    PubMed

    Motavaf, M; Pakravan, K; Babashah, S; Malekvandfard, F; Masoumi, M; Sadeghizadeh, M

    2016-01-01

    Mesenchymal stem cells have emerged as promising therapeutic candidates in regenerative medicine. The mechanisms underlying mesenchymal stem cells regenerative properties were initially attributed to their engraftment in injured tissues and their subsequent transdifferentiation to repair and replace damaged cells. However, studies in animal models and patients indicated that the low number of transplanted mesenchymal stem cells localize to the target tissue and transdifferentiate to appropriate cell lineage. Instead the regenerative potential of mesenchymal stem cells has been found - at least in part - to be mediated via their paracrine actions. Recently, a secreted group of vesicles, called "exosome" has been identified as major mediator of mesenchymal stem cells therapeutic efficacy. In this review, we will summarize the current literature on administration of exosomes released by mesenchymal stem cells in regenerative medicine and suggest how they could help to improve tissue regeneration following injury. PMID:27453276

  18. Deferoxamine Preconditioning of Neural-Like Cells Derived from Human Wharton's Jelly Mesenchymal Stem Cells as a Strategy to Promote Their Tolerance and Therapeutic Potential: An In Vitro Study.

    PubMed

    Nouri, Fatemeh; Salehinejad, Parvin; Nematollahi-Mahani, Seyed Noureddin; Kamarul, Tunku; Zarrindast, Mohammad Reza; Sharifi, Ali Mohammad

    2016-07-01

    Transplantation of neural-like cells is considered as a promising therapeutic strategy developed for neurodegenerative disease in particular for ischemic stroke. Since cell survival is a major concern following cell implantation, a number of studies have underlined the protective effects of preconditioning with hypoxia or hypoxia mimetic pharmacological agents such as deferoxamine (DFO), induced by activation of hypoxia inducible factor-1 (HIF-1) and its target genes. The present study has investigated the effects of DFO preconditioning on some factors involved in cell survival, angiogenesis, and neurogenesis of neural-like cells derived from human Wharton's jelly mesenchymal stem cells (HWJ-MSCs) in presence of hydrogen peroxide (H2O2). HWJ-MSCs were differentiated toward neural-like cells for 14 days and neural cell markers were identified using immunocytochemistry. HWJ-MSC-derived neural-like cells were then treated with 100 µM DFO, as a known hypoxia mimetic agent for 48 h. mRNA and protein expression of HIF-1 target genes including brain-derived neurotrophic factors (BDNF) and vascular endothelial growth factor (VEGF) significantly increased using RT-PCR and Western blotting which were reversed by HIF-1α inhibitor, while, gene expression of Akt-1, Bcl-2, and Bax did not change significantly but pAkt-1 was up-regulated as compared to poor DFO group. However, addition of H2O2 to DFO-treated cells resulted in higher resistance to H2O2-induced cell death. Western blotting analysis also showed significant up-regulation of HIF-1α, BDNF, VEGF, and pAkt-1, and decrease of Bax/Bcl-2 ratio as compared to poor DFO. These results may suggest that DFO preconditioning of HWJ-MSC-derived neural-like cells improves their tolerance and therapeutic potential and might be considered as a valuable strategy to improve cell therapy. PMID:26242172

  19. Parkinson's Disease and Mesenchymal Stem Cells: Potential for Cell-Based Therapy

    PubMed Central

    Kitada, Masaaki; Dezawa, Mari

    2012-01-01

    Cell transplantation is a strategy with great potential for the treatment of Parkinson's disease, and many types of stem cells, including neural stem cells and embryonic stem cells, are considered candidates for transplantation therapy. Mesenchymal stem cells are a great therapeutic cell source because they are easy accessible and can be expanded from patients or donor mesenchymal tissues without posing serious ethical and technical problems. They have trophic effects for protecting damaged tissues as well as differentiation ability to generate a broad spectrum of cells, including dopamine neurons, which contribute to the replenishment of lost cells in Parkinson's disease. This paper focuses mainly on the potential of mesenchymal stem cells as a therapeutic cell source and discusses their potential clinical application in Parkinson's disease. PMID:22530164

  20. Transcriptional Dynamics of Immortalized Human Mesenchymal Stem Cells during Transformation.

    PubMed

    Takeuchi, Masao; Higashino, Atsunori; Takeuchi, Kikuko; Hori, Yutaro; Koshiba-Takeuchi, Kazuko; Makino, Hatsune; Monobe, Yoko; Kishida, Marina; Adachi, Jun; Takeuchi, Jun; Tomonaga, Takeshi; Umezawa, Akihiro; Kameoka, Yosuke; Akagi, Ken-Ichi

    2015-01-01

    Comprehensive analysis of alterations in gene expression along with neoplastic transformation in human cells provides valuable information about the molecular mechanisms underlying transformation. To further address these questions, we performed whole transcriptome analysis to the human mesenchymal stem cell line, UE6E7T-3, which was immortalized with hTERT and human papillomavirus type 16 E6/E7 genes, in association with progress of transformation in these cells. At early stages of culture, UE6E7T-3 cells preferentially lost one copy of chromosome 13, as previously described; in addition, tumor suppressor genes, DNA repair genes, and apoptosis-activating genes were overexpressed. After the loss of chromosome 13, additional aneuploidy and genetic alterations that drove progressive transformation, were observed. At this stage, the cell line expressed oncogenes as well as genes related to anti-apoptotic functions, cell-cycle progression, and chromosome instability (CIN); these pro-tumorigenic changes were concomitant with a decrease in tumor suppressor gene expression. At later stages after prolong culture, the cells exhibited chromosome translocations, acquired anchorage-independent growth and tumorigenicity in nude mice, (sarcoma) and exhibited increased expression of genes encoding growth factor and DNA repair genes, and decreased expression of adhesion genes. In particular, glypican-5 (GPC5), which encodes a cell-surface proteoglycan that might be a biomarker for sarcoma, was expressed at high levels in association with transformation. Patched (Ptc1), the cell surface receptor for hedgehog (Hh) signaling, was also significantly overexpressed and co-localized with GPC5. Knockdown of GPC5 expression decreased cell proliferation, suggesting that it plays a key role in growth in U3-DT cells (transformants derived from UE6E7T-3 cells) through the Hh signaling pathway. Thus, the UE6E7T-3 cell culture model is a useful tool for assessing the functional contribution of

  1. Oxygen Tension Regulates Human Mesenchymal Stem Cell Paracrine Functions

    PubMed Central

    Deschepper, Mickael; Moya, Adrien; Logeart-Avramoglou, Delphine; Boisson-Vidal, Catherine; Petite, Hervé

    2015-01-01

    Mesenchymal stem cells (MSCs) have captured the attention and research endeavors of the scientific world because of their differentiation potential. However, there is accumulating evidence suggesting that the beneficial effects of MSCs are predominantly due to the multitude of bioactive mediators secreted by these cells. Because the paracrine potential of MSCs is closely related to their microenvironment, the present study investigated and characterized select aspects of the human MSC (hMSC) secretome and assessed its in vitro and in vivo bioactivity as a function of oxygen tension, specifically near anoxia (0.1% O2) and hypoxia (5% O2), conditions that reflect the environment to which MSCs are exposed during MSC-based therapies in vivo. In contrast to supernatant conditioned media (CM) obtained from hMSCs cultured at either 5% or 21% of O2, CM from hMSCs cultured under near anoxia exhibited significantly (p < .05) enhanced chemotactic and proangiogenic properties and a significant (p < .05) decrease in the inflammatory mediator content. An analysis of the hMSC secretome revealed a specific profile under near anoxia: hMSCs increase their paracrine expression of the angiogenic mediators vascular endothelial growth factor (VEGF)-A, VEGF-C, interleukin-8, RANTES, and monocyte chemoattractant protein 1 but significantly decrease expression of several inflammatory/immunomodulatory mediators. These findings provide new evidence that elucidates aspects of great importance for the use of MSCs in regenerative medicine and could contribute to improving the efficacy of such therapies. Significance The present study investigated and characterized select aspects of the human mesenchymal stem cell (hMSC) secretome and assessed its in vitro and in vivo biological bioactivity as a function of oxygen tension, specifically near anoxia (0.1% O2) and hypoxia (5% O2), conditions that reflect the environment to which MSCs are exposed during MSC-based therapies in vivo. The present study

  2. Transcriptional Dynamics of Immortalized Human Mesenchymal Stem Cells during Transformation

    PubMed Central

    Hori, Yutaro; Koshiba-Takeuchi, Kazuko; Makino, Hatsune; Monobe, Yoko; Kishida, Marina; Adachi, Jun; Takeuchi, Jun; Tomonaga, Takeshi; Umezawa, Akihiro; Kameoka, Yosuke; Akagi, Ken-ichi

    2015-01-01

    Comprehensive analysis of alterations in gene expression along with neoplastic transformation in human cells provides valuable information about the molecular mechanisms underlying transformation. To further address these questions, we performed whole transcriptome analysis to the human mesenchymal stem cell line, UE6E7T-3, which was immortalized with hTERT and human papillomavirus type 16 E6/E7 genes, in association with progress of transformation in these cells. At early stages of culture, UE6E7T-3 cells preferentially lost one copy of chromosome 13, as previously described; in addition, tumor suppressor genes, DNA repair genes, and apoptosis-activating genes were overexpressed. After the loss of chromosome 13, additional aneuploidy and genetic alterations that drove progressive transformation, were observed. At this stage, the cell line expressed oncogenes as well as genes related to anti-apoptotic functions, cell-cycle progression, and chromosome instability (CIN); these pro-tumorigenic changes were concomitant with a decrease in tumor suppressor gene expression. At later stages after prolong culture, the cells exhibited chromosome translocations, acquired anchorage-independent growth and tumorigenicity in nude mice, (sarcoma) and exhibited increased expression of genes encoding growth factor and DNA repair genes, and decreased expression of adhesion genes. In particular, glypican-5 (GPC5), which encodes a cell-surface proteoglycan that might be a biomarker for sarcoma, was expressed at high levels in association with transformation. Patched (Ptc1), the cell surface receptor for hedgehog (Hh) signaling, was also significantly overexpressed and co-localized with GPC5. Knockdown of GPC5 expression decreased cell proliferation, suggesting that it plays a key role in growth in U3-DT cells (transformants derived from UE6E7T-3 cells) through the Hh signaling pathway. Thus, the UE6E7T-3 cell culture model is a useful tool for assessing the functional contribution of

  3. Mesenchymal Stem Cells Retain Their Defining Stem Cell Characteristics After Exposure to Ionizing Radiation

    SciTech Connect

    Nicolay, Nils H.; Sommer, Eva; Lopez, Ramon; Wirkner, Ute; Trinh, Thuy; Sisombath, Sonevisay; Debus, Jürgen; Ho, Anthony D.; Saffrich, Rainer; Huber, Peter E.

    2013-12-01

    Purpose: Mesenchymal stem cells (MSCs) have the ability to migrate to lesion sites and undergo differentiation into functional tissues. Although this function may be important for tissue regeneration after radiation therapy, the influence of ionizing radiation (IR) on cellular survival and the functional aspects of differentiation and stem cell characteristics of MSCs have remained largely unknown. Methods and Materials: Radiation sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells was examined, and cellular morphology, cell cycle effects, apoptosis, and differentiation potential after exposure to IR were assessed. Stem cell gene expression patterns after exposure to IR were studied using gene arrays. Results: MSCs were not more radiosensitive than human primary fibroblasts, whereas there were considerable differences regarding radiation sensitivity within individual MSCs. Cellular morphology, cytoskeletal architecture, and cell motility were not markedly altered by IR. Even after high radiation doses up to 10 Gy, MSCs maintained their differentiation potential. Compared to primary fibroblast cells, MSCs did not show an increase in irradiation-induced apoptosis. Gene expression analyses revealed an upregulation of various genes involved in DNA damage response and DNA repair, but expression of established MSC surface markers appeared only marginally influenced by IR. Conclusions: These data suggest that human MSCs are not more radiosensitive than differentiated primary fibroblasts. In addition, upon photon irradiation, MSCs were able to retain their defining stem cell characteristics both on a functional level and regarding stem cell marker expression.

  4. Boron nitride nanotube-enhanced osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Li, Xia; Wang, Xiupeng; Jiang, Xiangfen; Yamaguchi, Maho; Ito, Atsuo; Bando, Yoshio; Golberg, Dmitri

    2016-02-01

    The interaction between boron nitride nanotubes (BNNTs) layer and mesenchymal stem cells (MSCs) is evaluated for the first time in this study. BNNTs layer supports the attachment and growth of MSCs and exhibits good biocompatibility with MSCs. BNNTs show high protein adsorption ability, promote the proliferation of MSCs and increase the secretion of total protein by MSCs. Especially, BNNTs enhance the alkaline phosphatase (ALP) activity as an early marker of osteoblasts, ALP/total protein and osteocalcin (OCN) as a late marker of osteogenic differentiation, which shows that BNNTs can enhance osteogenesis of MSCs. The release of trace boron and the stress on cells exerted by BNNTs with a fiber structure may account for the enhanced differentiation of MSCs into osteoblasts. Therefore BNNTs are potentially useful for bone regeneration in orthopedic applications. PMID:25766516

  5. Synthesis of hybrid sol-gel materials and their biological evaluation with human mesenchymal stem cells.

    PubMed

    Hernández-Escolano, M; Juan-Díaz, M J; Martínez-Ibáñez, M; Suay, J; Goñi, I; Gurruchaga, M

    2013-06-01

    Surface engineering of biomaterials could promote the osseointegration of implants. In this work, two types of hybrid sol-gel materials were developed to stimulate cell attachment, proliferation and differentiation of osteogenic cells. One type was synthesised from vinyl triethoxysilane (VTES) and tetraethyl-orthosilicate (TEOS) at different molar ratios, while the other from VTES and hydroxyapatite particles (HAp). Hybrid materials were systematically investigated using nuclear magnetic resonance, Fourier transform infrared spectroscopy and contact angle metrology. The biocompatibility and osseoinduction of the coatings were evaluated by measuring mesenchymal stem cell proliferation using MTT assays and analysing the mineralised extracellular matrix production by quantifying calcium-rich deposits. The results highlighted the versatility of these coatings in obtaining different properties by changing the molar ratio of the VTES:TEOS precursors. Thus, mineralisation was stimulated by increasing TEOS content, while the addition of HAp improved cell proliferation but worsened mineralisation. PMID:23475116

  6. Effects of hypoxia on proliferation of human cord blood-derived mesenchymal stem cells.

    PubMed

    Peng, Longying; Shu, Xiaomei; Lang, Changhui; Yu, Xiaohua

    2016-08-01

    The purpose of our study was to examine the influence of hypoxia on proliferation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs). The mononuclear cells were separated by density gradient centrifugation from human umbilical cord blood and then, respectively, cultured under hypoxia (5 % O2) or normoxia (20 % O2). Their cell morphology, cell surface markers, β-galactosidase staining, cell growth curve, DNA cycle, and the expression of hypoxia-inducible factor-1α (HIF-1α) were evaluated. We found that hypoxia, in part via HIF-1α, improved the proliferation efficiency, and prevented senescence of hUCB-MSCs without altering their morphology and surface markers. These results demonstrated that hypoxia provides a favorable culture condition to promote hUCB-MSCs proliferation in vitro, which is a better way to obtain sufficient numbers of hUCB-MSCs for research and certainly clinical application. PMID:25742732

  7. Safety Concern between Autologous Fat Graft, Mesenchymal Stem Cell and Osteosarcoma Recurrence

    PubMed Central

    Perrot, Pierre; Rousseau, Julie; Bouffaut, Anne-Laure; Rédini, Françoise; Cassagnau, Elisabeth; Deschaseaux, Frédéric; Heymann, Marie-Françoise; Heymann, Dominique; Duteille, Franck; Trichet, Valérie; Gouin, François

    2010-01-01

    Background Osteosarcoma is the most common malignant primary bone tumour in young adult treated by neo adjuvant chemotherapy, surgical tumor removal and adjuvant multidrug chemotherapy. For correction of soft tissue defect consecutive to surgery and/or tumor treatment, autologous fat graft has been proposed in plastic and reconstructive surgery. Principal Findings We report here a case of a late local recurrence of osteosarcoma which occurred 13 years after the initial pathology and 18 months after a lipofilling procedure. Because such recurrence was highly unexpected, we investigated the possible relationship of tumor growth with fat injections and with mesenchymal stem/stromal cell like cells which are largely found in fatty tissue. Results obtained in osteosarcoma pre-clinical models show that fat grafts or progenitor cells promoted tumor growth. Significance These observations and results raise the question of whether autologous fat grafting is a safe reconstructive procedure in a known post neoplasic context. PMID:20544017

  8. Activation of cardiac progenitor cells through paracrine effects of mesenchymal stem cells

    SciTech Connect

    Nakanishi, Chiaki; Yamagishi, Masakazu; Yamahara, Kenichi; Hagino, Ikuo; Mori, Hidezo; Sawa, Yoshiki; Yagihara, Toshikatsu; Kitamura, Soichiro; Nagaya, Noritoshi

    2008-09-12

    Mesenchymal stem cells (MSC) transplantation has been proved to be promising strategy to treat the failing heart. The effect of MSC transplantation is thought to be mediated mainly in a paracrine manner. Recent reports have suggested that cardiac progenitor cells (CPC) reside in the heart. In this study, we investigated whether MSC had paracrine effects on CPC in vitro. CPC were isolated from the neonatal rat heart using an explant method. MSC were isolated from the adult rat bone marrow. MSC-derived conditioned medium promoted proliferation of CPC and inhibited apoptosis of CPC induced by hypoxia and serum starvation. Chemotaxis chamber assay demonstrated that MSC-derived conditioned medium enhanced migration of CPC. Furthermore, MSC-derived conditioned medium upregulated expression of cardiomyocyte-related genes in CPC such as {beta}-myosin heavy chain ({beta}-MHC) and atrial natriuretic peptide (ANP). In conclusion, MSC-derived conditioned medium had protective effects on CPC and enhanced their migration and differentiation.

  9. Chemotherapy-induced Dkk-1 expression by primary human mesenchymal stem cells is p53 dependent.

    PubMed

    Hare, Ian; Evans, Rebecca; Fortney, James; Moses, Blake; Piktel, Debbie; Slone, William; Gibson, Laura F

    2016-10-01

    Mesenchymal stem cells (MSCs) are abundant throughout the body and regulate signaling within tumor microenvironments. Wnt signaling is an extrinsically regulated pathway that has been shown to regulate tumorigenesis in many types of cancer. After evaluating a panel of Wnt activating and inhibiting molecules, we show that primary human MSCs increase the expression of Dkk-1, an inhibitor of Wnt signaling, into the extracellular environment following chemotherapy exposure in a p53-dependent manner. Dkk-1 has been shown to promote tumor growth in several models of malignancy, suggesting that MSC-derived Dkk-1 could counteract the intent of cytotoxic chemotherapy, and that pharmacologic inhibition of Dkk-1 in patients receiving chemotherapy treatment for certain malignancies may be warranted. PMID:27586146

  10. [Exosomes Derived from Mesenchymal Stem Cells--the Future Ideal Vector of Biological Therapy].

    PubMed

    Zhang, Juan; Shi, Jing-Shu; Li, Jian

    2015-08-01

    MSC-exosomes are homogeneous menbrane vesicles with diameter 40-100 nm, derived from mesenchymal stem cells at physiological or pathology conditions. MSC-exosomes contain a great quantity and a wide variety of bioactive substances, such as proteins and miRNA. MSC-exosomes transfer bioactive substances to recipient cells to affect their functions through membrane fusion or endocytosis, which like the storage pools of signal vehicles for cell-to-cell comunication in vivo. MSC-exosomes can mimic the beneficial effect of MSC treatment, such as the promotion of tissue repair or the immune regulation. The biological property and functions of MSC-exosomes are reviwed in this article. PMID:26314469

  11. Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art

    PubMed Central

    Malgieri, Arianna; Kantzari, Eugenia; Patrizi, Maria Patrizia; Gambardella, Stefano

    2010-01-01

    Mesenchymal stem cells (MSCs) are multipotent adult stem cells present in all tissues, as part of the perivascular population. As multipotent cells, MSCs can differentiate into different tissues originating from mesoderm ranging from bone and cartilage, to cardiac muscle. MSCs are an excellent candidate for cell therapy because they are easily accessible, their isolation is straightforward, they can be bio-preserved with minimal loss of potency, and they have shown no adverse reactions to allogeneic versus autologous MSCs transplants. Therefore, MSCs are being explored to regenerate damaged tissue and treat inflammation, resulting from cardiovascular disease and myo-cardial infarction (MI), brain and spinal cord injury, stroke, diabetes, cartilage and bone injury, Crohn's disease and graft versus host disease (GvHD). Most of the application and clinical trials involve MSCs from bone marrow (BMMSCs). Transplantation of MSCs from bone marrow is considered safe and has been widely tested in clinical trials of cardiovascular, neurological, and immunological disease with encouraging results. There are examples of MSCs utilization in the repair of kidney, muscle and lung. The cells were also found to promote angiogenesis, and were used in chronic skin wound treatment. Recent studies involve also mesenchymal stem cell transplant from umbilical cord (UCMSCt). One of these demonstrate that UCMSCt may improve symptoms and biochemical values in patients with severe refractory systemic lupus erythematosus (SLE), and therefore this source of MSCs need deeper studies and require more attention. However, also if there are 79 registered clinical trial sites for evaluating MSC therapy throughout the world, it is still a long way to go before using these cells as a routinely applied therapy in clinics. PMID:21072260

  12. Titanium phosphate glass microcarriers induce enhanced osteogenic cell proliferation and human mesenchymal stem cell protein expression

    PubMed Central

    Lakhkar, Nilay J; M Day, Richard; Kim, Hae-Won; Ludka, Katarzyna; Mordan, Nicola J; Salih, Vehid; Knowles, Jonathan C

    2015-01-01

    In this study, we have developed 50- to 100-µm-sized titanium phosphate glass microcarriers (denoted as Ti5) that show enhanced proliferation of human mesenchymal stem cells and MG63 osteosarcoma cells, as well as enhanced human mesenchymal stem cell expression of bone differentiation markers, in comparison with commercially available glass microspheres at all time points. We also demonstrate that these microcarriers provide superior human mesenchymal stem cell proliferation with conventional Dulbecco’s Modified Eagle medium than with a specially developed commercial stem cell medium. The microcarrier proliferative capacity is revealed by a 24-fold increase in MG63 cell numbers in spinner flask bioreactor studies performed over a 7-day period, versus only a 6-fold increase in control microspheres under the same conditions; the corresponding values of Ti5 and control microspheres under static culture are 8-fold and 7-fold, respectively. The capability of guided osteogenic differentiation is confirmed by ELISAs for bone morphogenetic protein-2 and osteopontin, which reveal significantly greater expression of these markers, especially osteopontin, by human mesenchymal stem cells on the Ti5 microspheres than on the control. Scanning electron microscopy and confocal laser scanning microscopy images reveal favorable MG63 and human mesenchymal stem cell adhesion on the Ti5 microsphere surfaces. Thus, the results demonstrate the suitability of the developed microspheres for use as microcarriers in bone tissue engineering applications. PMID:26668711

  13. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    PubMed Central

    Zhang, Rui-ping; Xu, Cheng; Liu, Yin; Li, Jian-ding; Xie, Jun

    2015-01-01

    An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T7-8. Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesenchymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunofluorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB) locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guidance. Our data confirm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic field guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively tracked in vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury. PMID:25878588

  14. Markers of stemness in equine mesenchymal stem cells: a plea for uniformity.

    PubMed

    De Schauwer, Catharina; Meyer, Evelyne; Van de Walle, Gerlinde R; Van Soom, Ann

    2011-05-01

    Mesenchymal stromal cells (MSC) are a very promising subpopulation of adult stem cells for cell-based regenerative therapies in veterinary medicine. Despite major progress in the knowledge on adult stem cells during recent years, a proper identification of MSC remains a challenge. In human medicine, the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy (ISCT) recently proposed three criteria to define MSC. Firstly, cells must be plastic-adherent when maintained under standard culture conditions. Secondly, MSC must express CD73, CD90 and CD105, and lack expression of CD34, CD45, CD14 or CD11b, CD79α or CD19 and MHC class II antigens. Thirdly, MSC must be able to differentiate into osteoblasts, adipocytes and chondroblasts in vitro. Successful isolation and differentiation of equine MSC from different sources such as bone marrow, fat tissue, umbilical cord blood, Wharton's Jelly or peripheral blood has been widely reported. However, their unequivocal immunophenotyping is hampered by the lack of a single specific marker and the limited availability of monoclonal anti-horse antibodies, which are two major factors complicating successful research on equine MSC. Detection of gene expression on mRNA level is hereby a valuable alternative, although the need still exists to test several antibody clones in search for cross-reactivity. To date, commercial antibodies recognizing equine epitopes are only available for CD13, CD44 and MHC-II. Moreover, as the expression of certain adult stem cell markers may differ between species, it is mandatory to define a set of CD markers which can be uniformly applied for the identification of equine MSC. PMID:21196039

  15. Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation.

    PubMed

    Lei, Ming; Li, Kun; Li, Bei; Gao, Li-Na; Chen, Fa-Ming; Jin, Yan

    2014-08-01

    Mesenchymal stem cells (MSCs) isolated from human postnatal dental pulp and periodontal ligament (PDL) tissues can give rise to multilineage differentiation in vitro and generate related dental tissues in vivo. However, the cell properties of human dental pulp stem cells (DPSCs) and PDL stem cells (PDLSCs) after in vivo implantation remain largely unidentified. In this study, cells were re-isolated from in vivo-generated dental pulp-like and PDL-like tissues (termed re-DPCs and re-PDLCs, respectively) as a result of ectopic transplantation of human DPSC and PDLSC sheets. The cell characteristics in terms of colony-forming ability, cell surface antigens and multi-differentiation potentials were all evaluated before and after implantation. It was found that re-DPCs and re-PDLCs were of human and mesenchymal origin and positive for MSC markers such as STRO-1, CD146, CD29, CD90 and CD105; and, to some extent, re-DPCs could maintain their colony forming abilities. Moreover, both cell types were able to form mineral deposits and differentiate into adipocytes and chondrocytes; however, quantitative analysis and related gene expression determination showed that the osteo-/chondro-differentiation capabilities of re-DPCs and re-PDLCs were significantly reduced compared to those of DPSCs and PDLSCs, respectively (P < 0.05); re-PDLCs showed a greater reduction potential than re-DPCs. We conclude that DPSCs and PDLSCs may maintain their MSC characteristics after in vivo implantation and, compared to PDLSCs, DPSCs appear much more stable under in vivo conditions. These findings provide additional cellular and molecular evidence that supports expanding the use of dental tissue-derived stem cells in cell therapy and tissue engineering. PMID:24824581

  16. Cell Fate and Differentiation of Bone Marrow Mesenchymal Stem Cells

    PubMed Central

    Jimi, Eijiro

    2016-01-01

    Osteoblasts and bone marrow adipocytes originate from bone marrow mesenchymal stem cells (BMMSCs) and there appears to be a reciprocal relationship between adipogenesis and osteoblastogenesis. Alterations in the balance between adipogenesis and osteoblastogenesis in BMMSCs wherein adipogenesis is increased relative to osteoblastogenesis are associated with decreased bone quality and quantity. Several proteins have been reported to regulate this reciprocal relationship but the exact nature of the signals regulating the balance between osteoblast and adipocyte formation within the bone marrow space remains to be determined. In this review, we focus on the role of Transducin-Like Enhancer of Split 3 (TLE3), which was recently reported to regulate the balance between osteoblast and adipocyte formation from BMMSCs. We also discuss evidence implicating canonical Wnt signalling, which plays important roles in both adipogenesis and osteoblastogenesis, in regulating TLE3 expression. Currently, there is demand for new effective therapies that target the stimulation of osteoblast differentiation to enhance bone formation. We speculate that reducing TLE3 expression or activity in BMMSCs could be a useful approach towards increasing osteoblast numbers and reducing adipogenesis in the bone marrow environment. PMID:27298623

  17. The Effect of Hypoxia on Mesenchymal Stem Cell Biology

    PubMed Central

    Ejtehadifar, Mostafa; Shamsasenjan, Karim; Movassaghpour, Aliakbar; Akbarzadehlaleh, Parvin; Dehdilani, Nima; Abbasi, Parvaneh; Molaeipour, Zahra; Saleh, Mahshid

    2015-01-01

    Although physiological and pathological role of hypoxia have been appreciated in mammalians for decades however the cellular biology of hypoxia more clarified in the past 20 years. Discovery of the transcription factor hypoxia-inducible factor (HIF)-1, in the 1990s opened a new window to investigate the mechanisms behind hypoxia. In different cellular contexts HIF-1 activation show variable results by impacting various aspects of cell biology such as cell cycle, apoptosis, differentiation and etc. Mesenchymal stem cells (MSC) are unique cells which take important role in tissue regeneration. They are characterized by self-renewal capacity, multilineage potential, and immunosuppressive property. Like so many kind of cells, hypoxia induces different responses in MSCs by HIF- 1 activation. The activation of this molecule changes the growth, multiplication, differentiation and gene expression profile of MSCs in their niche by a complex of signals. This article briefly discusses the most important effects of hypoxia in growth kinetics, signalling pathways, cytokine secretion profile and expression of chemokine receptors in different conditions. PMID:26236651

  18. Mesenchymal Stem Cells Ameliorated Glucolipotoxicity in HUVECs through TSG-6

    PubMed Central

    An, Xingxing; Li, Lan; Chen, Younan; Luo, Ai; Ni, Zuyao; Liu, Jingping; Yuan, Yujia; Shi, Meimei; Chen, Bo; Long, Dan; Cheng, Jingqiu; Lu, Yanrong

    2016-01-01

    Glucolipotoxicity is one of the critical causal factors of diabetic complications. Whether mesenchymal stem cells (MSCs) have effects on glucolipotoxicity in human umbilical vein endothelial cells (HUVECs) and mechanisms involved are unclear. Thirty mM glucose plus 100 μM palmitic acid was used to induce glucolipotoxicity in HUVECs. MSCs and HUVECs were co-cultured at the ratio of 1:5 via Transwell system. The mRNA expressions of inflammatory factors were detected by RT-qPCR. The productions of reactive oxygen species (ROS), cell cycle and apoptosis were analyzed by flow cytometry. The tumor necrosis factor-α stimulated protein 6 (TSG-6) was knockdown in MSCs by RNA interference. High glucose and palmitic acid remarkably impaired cell viability and tube formation capacity, as well as increased the mRNA expression of inflammatory factors, ROS levels, and cell apoptosis in HUVECs. MSC co-cultivation ameliorated these detrimental effects in HUVECs, but no effect on ROS production. Moreover, TSG-6 was dramatically up-regulated by high glucose and fatty acid stimulation in both MSCs and HUVECs. TSG-6 knockdown partially abolished the protection mediated by MSCs. MSCs had protective effects on high glucose and palmitic acid induced glucolipotoxicity in HUVECs, and TSG-6 secreted by MSCs was likely to play an important role in this process. PMID:27043548

  19. Chondrogenic Differentiation of Mesenchymal Stem Cells: Challenges and Unfulfilled Expectations

    PubMed Central

    Somoza, Rodrigo A.; Welter, Jean F.; Correa, Diego

    2014-01-01

    Articular cartilage repair and regeneration provides a substantial challenge in Regenerative Medicine because of the high degree of morphological and mechanical complexity intrinsic to hyaline cartilage due, in part, to its extracellular matrix. Cartilage remains one of the most difficult tissues to heal; even state-of-the-art regenerative medicine technology cannot yet provide authentic cartilage resurfacing. Mesenchymal stem cells (MSCs) were once believed to be the panacea for cartilage repair and regeneration, but despite years of research, they have not fulfilled these expectations. It has been observed that MSCs have an intrinsic differentiation program reminiscent of endochondral bone formation, which they follow after exposure to specific reagents as a part of current differentiation protocols. Efforts have been made to avoid the resulting hypertrophic fate of MSCs; however, so far, none of these has recreated a fully functional articular hyaline cartilage without chondrocytes exhibiting a hypertrophic phenotype. We reviewed the current literature in an attempt to understand why MSCs have failed to regenerate articular cartilage. The challenges that must be overcome before MSC-based tissue engineering can become a front-line technology for successful articular cartilage regeneration are highlighted. PMID:24749845

  20. Ion channels in mesenchymal stem cells from rat bone marrow.

    PubMed

    Li, Gui-Rong; Deng, Xiu-Ling; Sun, Haiying; Chung, Stephen S M; Tse, Hung-Fat; Lau, Chu-Pak

    2006-06-01

    Mesenchymal stem cells (MSCs) from bone marrow are believed to be an ideal cell source for cardiomyoplasty; however, cellular electrophysiology is not understood. The present study was designed to investigate ion channels in undifferentiated rat MSCs. It was found that three types of outward currents were present in rat MSCs, including a small portion of Ca(2+)-activated K(+) channel (I(KCa)) sensitive to inhibition by iberiotoxin and/or clotromazole, a delayed rectifier K(+) current (IK(DR)), and a transient outward K(+) current (I(to)). In addition, tetrodotoxin (TTX)-sensitive sodium current (I(Na.TTX)) and nifedipine-sensitive L-type Ca(2+) current (I(Ca.L)) were found in a small population of rat MSCs. Moreover, reverse transcription-polymerase chain reaction revealed the molecular evidence of mRNA for the functional ionic currents, including Slo and KCNN4 for I(KCa); Kv1.4 for I(to); Kv1.2 and Kv2.1 for IK(DR); SCN2a1 for I(Na.TTX); and CCHL2a for I(Ca.L). These results demonstrate for the first time that multiple functional ion channel currents (i.e., I(KCa), I(to), IK(DR), I(Na.TTX), and I(Ca.L)) are present in rat MSCs from bone marrow; however, physiological roles of these ion channels remain to be studied. PMID:16484345

  1. Mesenchymal stem cells inhibit complement activation by secreting factor H.

    PubMed

    Tu, Zhidan; Li, Qing; Bu, Hong; Lin, Feng

    2010-11-01

    Mesenchymal stem cells (MSCs) possess potent and broad immunosuppressive capabilities, and have shown promise in clinical trials treating many inflammatory diseases. Previous studies have found that MSCs inhibit dendritic cell, T-cell, and B-cell activities in the adaptive immunity; however, whether MSCs inhibit complement in the innate immunity, and if so, by which mechanism, have not been established. In this report, we found that MSCs constitutively secrete factor H, which potently inhibits complement activation. Depletion of factor H in the MSC-conditioned serum-free media abolishes their complement inhibitory activities. In addition, production of factor H by MSCs is augmented by inflammatory cytokines TNF-α and interferon-γ (IFN-γ) in dose- and time-dependent manners, while IL-6 does not have a significant effect. Furthermore, the factor H production from MSCs is significantly suppressed by the prostaglandin E2 (PGE2) synthesis inhibitor indomethacin and the indoleamine 2,3-dioxygenase (IDO) inhibitor 1-methyl-d-tryptophan (1-MT), both of which inhibitors are known to efficiently dampen MSCs immunosuppressive activity. These results indicate that MSCs inhibit complement activation by producing factor H, which could be another mechanism underlying MSCs broad immunosuppressive capabilities. PMID:20163251

  2. Mesenchymal Stem Cell (MSC) Aggregate Formation in vivo

    PubMed Central

    Bartosh, Thomas J.; Ylostalo, Joni H.

    2016-01-01

    Human mesenchymal stem/progenitor cells (MSCs) isolated from various adult tissues show remarkable therapeutic potential and are being employed in clinical trials for the treatment of numerous diseases (Prockop et al., 2010). While routes of cell administration vary, profound beneficial effects of MSCs in animal models have been observed following intraperitoneal injections of the cells (Roddy et al., 2011). Similar to MSC spheres formed in culture under conditions where attachment to plastic is not permitted (Bartosh et al., 2010), MSCs injected into the peritoneum of mice spontaneously aggregate into 3D sphere-like structures (Bartosh et al., 2013). During the process of sphere assembly and compaction, MSCs upregulate expression of numerous therapeutic anti-inflammatory and immune modulatory factors. Here we describe the method we previously used for the generation of human bone marrow-derived MSC aggregates/spheres in vivo (Bartosh et al., 2013). By tagging the MSCs with green fluorescent protein (GFP), the aggregates formed can be easily visualized, collected and analyzed for changes in cellular properties and interactions with host immune cells.

  3. Current Methods of Adipogenic Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Scott, Michelle A.; Nguyen, Virginia T.; Levi, Benjamin

    2011-01-01

    There has been a recent increase in our understanding in the isolation, culture, and differentiation of mesenchymal stem cells (MSCs). Concomitantly, the availability of MSCs has increased, with cells now commercially available, including human MSCs from adipose tissue and bone marrow. Despite an increased understanding of MSC biology and an increase in their availability, standardization of techniques for adipogenic differentiation of MSCs is lacking. The following review will explore the variability in adipogenic differentiation in vitro, specifically in 3T3-L1 and primary MSCs derived from both adipose tissue and bone marrow. A review of alternative methods of adipogenic induction is also presented, including the use of specific peroxisome proliferator-activated receptor-gamma agonists as well as bone morphogenetic proteins. Finally, we define a standard, commonly used adipogenic differentiation medium in the hopes that this will be adopted for the future standardization of laboratory techniques—however, we also highlight the essentially arbitrary nature of this decision. With the current, rapid pace of electronic publications, it becomes imperative for standardization of such basic techniques so that interlaboratory results may be easily compared and interpreted. PMID:21526925

  4. Isolation of Mouse Bone Marrow Mesenchymal Stem Cells.

    PubMed

    Boregowda, Siddaraju V; Krishnappa, Veena; Phinney, Donald G

    2016-01-01

    Mesenchymal stem cells (MSCs) were initially characterized as connective tissue progenitors resident in bone marrow, but have now been isolated from a variety of tissues and organs and shown to also exhibit potent tissue regenerative properties mediated largely via paracrine actions. These findings have spurred the development of MSC-based therapies for treating a diverse array of nonskeletal diseases. Although genetic and experimental rodent models of disease represent important tools for developing efficacious MSC-based therapies, development of reliable methods to isolate MSCs from mouse bone marrow has been hampered by the unique biological properties of these cells. Indeed, few isolation schemes afford high yields and purity while maintaining the genomic integrity of cells. We recently demonstrated that mouse MSCs are highly sensitive to oxidative stress, and long-term expansion of these cells in atmospheric oxygen selects for immortalized clones that lack a functional p53 protein. Herein, we describe a protocol for the isolation of primary MSCs from mouse bone marrow that couples immunodepletion with culture in a low-oxygen environment and affords high purity and yield while preserving p53 function. PMID:27236673

  5. Human umbilical cord mesenchymal stem cell transplantation restores damaged ovaries

    PubMed Central

    Zhu, Shao-Fang; Hu, Hong-Bo; Xu, Hong-Yan; Fu, Xia-Fei; Peng, Dong-Xian; Su, Wei-Yan; He, Yuan-Li

    2015-01-01

    Ovarian injury because of chemotherapy can decrease the levels of sexual hormones and potentia generandi of patients, thereby greatly reducing quality of life. The goal of this study was to investigate which transplantation method for human umbilical cord mesenchymal stem cells (HUMSCs) can recover ovarian function that has been damaged by chemotherapy. A rat model of ovarian injury was established using an intraperitoneal injection of cyclophosphamide. Membrane-labelled HUMSCs were subsequently injected directly into ovary tissue or tail vein. The distribution of fluorescently labelled HUMSCs, estrous cycle, sexual hormone levels, and potentia generandi of treated and control rats were then examined. HUMSCs injected into the ovary only distributed to the ovary and uterus, while HUMSCs injected via tail vein were detected in the ovary, uterus, kidney, liver and lung. The estrous cycle, levels of sex hormones and potentia generandi of the treated rats were also recovered to a certain degree. Moreover, in some transplanted rats, fertility was restored and their offspring developed normally. While ovary injection could recover ovarian function faster, both methods produced similar results in the later stages of observation. Therefore, our results suggest that transplantation of HUMSCs by tail vein injection represents a minimally invasive and effective treatment method for ovarian injury. PMID:25922900

  6. Mesenchymal stem cells (MSCs) as skeletal therapeutics - an update.

    PubMed

    Saeed, Hamid; Ahsan, Muhammad; Saleem, Zikria; Iqtedar, Mehwish; Islam, Muhammad; Danish, Zeeshan; Khan, Asif Manzoor

    2016-01-01

    Mesenchymal stem cells hold the promise to treat not only several congenital and acquired bone degenerative diseases but also to repair and regenerate morbid bone tissues. Utilizing MSCs, several lines of evidences advocate promising clinical outcomes in skeletal diseases and skeletal tissue repair/regeneration. In this context, both, autologous and allogeneic cell transfer options have been utilized. Studies suggest that MSCs are transplanted either alone by mixing with autogenous plasma/serum or by loading onto repair/induction supportive resorb-able scaffolds. Thus, this review is aimed at highlighting a wide range of pertinent clinical therapeutic options of MSCs in the treatment of skeletal diseases and skeletal tissue regeneration. Additionally, in skeletal disease and regenerative sections, only the early and more recent preclinical evidences are discussed followed by all the pertinent clinical studies. Moreover, germane post transplant therapeutic mechanisms afforded by MSCs have also been conversed. Nonetheless, assertive use of MSCs in the clinic for skeletal disorders and repair is far from a mature therapeutic option, therefore, posed challenges and future directions are also discussed. Importantly, for uniformity at all instances, term MSCs is used throughout the review. PMID:27084089

  7. Oxidative stress induces senescence in human mesenchymal stem cells

    SciTech Connect

    Brandl, Anita; Meyer, Matthias; Bechmann, Volker; Nerlich, Michael; Angele, Peter

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  8. Model microgravity enhances endothelium differentiation of mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofeng; Nan, Yayun; Wang, Huan; Chen, Jun; Wang, Nanding; Xie, Juan; Ma, Jing; Wang, Zongren

    2013-02-01

    Mesenchymal stem cells (MSCs) are capable of differentiation into multilineage cell types under certain induction conditions. Previous studies have demonstrated that physical environments and mechanical force can influence MSC fate, indicating that these factors may be favorable inducers for clinical treatment. Our previous study found that MSCs are spread with a spindle shape when cultured in normal gravity (NG), and under modeled microgravity (MMG) for 72 h, they become unspread and round and their cytoskeleton fibers are reorganized. These morphological changes affected the function of MSCs through the activity of RhoA. We examined the responses of MSCs under MMG stimulation, followed with VEGF differentiation. We found that MSCs under MMG for 72 h were differentiated into endothelial-like cells by detecting the expression of endothelial-specific molecules (Flk-1 and vWF), which were also able to form a capillary network. Their endothelial differentiation potential was improved under MMG compared with that under NG. We believe that this method is a novel choice of MMG stimulation for neovascularization. This phenomenon may increase the potential of MSC differentiation, which might be a new strategy for the treatment of various vascular diseases and improve vascularization in tissue engineering.

  9. Engineering Mesenchymal Stem Cells for Regenerative Medicine and Drug Delivery

    PubMed Central

    Park, Ji Sun; Suryaprakash, Smruthi; Lao, Yeh-Hsing; Leong, Kam W.

    2015-01-01

    Researchers have applied mesenchymal stem cells (MSC) to a variety of therapeutic scenarios by harnessing their multipotent, regenerative, and immunosuppressive properties with tropisms toward inflamed, hypoxic, and cancerous sites. Although MSC-based therapies have been shown to be safe and effective to a certain degree, the efficacy remains low in most cases when MSC are applied alone. To enhance their therapeutic efficacy, researchers have equipped MSC with targeted delivery functions using genetic engineering, therapeutic agent incorporation, and cell surface modification. MSC can be genetically modified virally or non-virally to overexpress therapeutic proteins that complement their innate properties. MSC can also be primed with non-peptidic drugs or magnetic nanoparticles for enhanced efficacy and externally regulated targeting, respectively. Furthermore, MSC can be functionalized with targeting moieties to augment their homing toward therapeutic sites using enzymatic modification, chemical conjugation, or non-covalent interactions. These engineering techniques are still works in progress, requiring optimization to improve the therapeutic efficacy and targeting effectiveness while minimizing any loss of MSC function. In this review, we will highlight the advanced techniques of engineering MSC, describe their promise and the challenges of translation into clinical settings, and suggest future perspectives on realizing their full potential for MSC-based therapy. PMID:25770356

  10. Mesenchymal stem cell mechanobiology and emerging experimental platforms

    PubMed Central

    MacQueen, Luke; Sun, Yu; Simmons, Craig A.

    2013-01-01

    Experimental control over progenitor cell lineage specification can be achieved by modulating properties of the cell's microenvironment. These include physical properties of the cell adhesion substrate, such as rigidity, topography and deformation owing to dynamic mechanical forces. Multipotent mesenchymal stem cells (MSCs) generate contractile forces to sense and remodel their extracellular microenvironments and thereby obtain information that directs broad aspects of MSC function, including lineage specification. Various physical factors are important regulators of MSC function, but improved understanding of MSC mechanobiology requires novel experimental platforms. Engineers are bridging this gap by developing tools to control mechanical factors with improved precision and throughput, thereby enabling biological investigation of mechanics-driven MSC function. In this review, we introduce MSC mechanobiology and review emerging cell culture platforms that enable new insights into mechanobiological control of MSCs. Our main goals are to provide engineers and microtechnology developers with an up-to-date description of MSC mechanobiology that is relevant to the design of experimental platforms and to introduce biologists to these emerging platforms. PMID:23635493

  11. Mesenchymal stem cell printing and process regulated cell properties.

    PubMed

    Snyder, Jessica; Rin Son, Ae; Hamid, Qudus; Wang, Chengyang; Lui, Yigong; Sun, Wei

    2015-12-01

    This topical review with original analysis and empirical results compares cell sensitivity to physical stress during printing. The objective is to frame a reproducible causation between printing environment and printed cell morphology, viability and phenotype stability. Content includes: (1) a topical review classifies the overlap between physical stress vectors during printing and mesenchymal stem cell sensitivities. (2) Original flow analysis frames the feasible range of stress duration and intensity during manufacturing. (3) Preliminary empirical results define cell properties as a function of minimum, mean and maximum stress conditions. The review and analytical characterization serve as an essential precursor to interpret surprising empirical results. Results identify key cell properties are stress-dependent and controllable based on printing process parameter selection. Printing's minimum stress condition preserves cell viability. The maximum stress increases heterogeneity of cell response, induces inelastic ultra-structural distortion of the cell membrane and chromatin, and increases necrotic subpopulations post-printing. The review, analysis and preliminary results support the feasibility of modulating cell properties during fabrication by prescriptively tuning the stress environment. The process control over cell morphology, health and the rate of differentiation is both a direct result of strain during printing and an in-direct result of increased distress signaling from necrotic sub-populations. PMID:26696405

  12. Cancer development, chemoresistance, epithelial to mesenchymal transition and stem cells: A snapshot of IL-6 mediated involvement.

    PubMed

    Bharti, Rashmi; Dey, Goutam; Mandal, Mahitosh

    2016-05-28

    Interleukin-6 (IL-6) is a cytokine present in tumor microenvironment. Elevated level of IL-6 is associated with cancer cell proliferation, angiogenesis and metastasis through fueling STAT3, MAPK and Akt signaling. It promotes epithelial to mesenchymal transition (EMT) through altered expression of N-cadherin, vimentin, snail, twist and E-cadherin leading to cancer metastasis. IL-6 boosts mammosphere formation, self-renewal of stem cells, stemness properties of cancer cells and recruitment of mesenchymal stem cells. IL-6 is also a contributing factor for multidrug resistance in cancer due to gp130/MAPK/STAT3 mediated activation of transcription factors C/EBPβ/δ, overexpression of p-glycoprotein, EMT transition and expansion of stem cells. The in-depth investigation of IL-6 mediated cellular effects and its signaling pathway can provide the new window for future research and clinical development of IL-6 targeted therapy in cancer. Thus, an overview is delivered in this review deciphering the emerging aspect of the predominant influence of IL-6 in malignant transformation, EMT, cancer-associated stem cells and chemoresistance. PMID:26945971

  13. Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy - a review.

    PubMed

    Freitag, Julien; Bates, Dan; Boyd, Richard; Shah, Kiran; Barnard, Adele; Huguenin, Leesa; Tenen, Abi

    2016-01-01

    Osteoarthritis is a leading cause of pain and disability across the world. With an aging population its prevalence is likely to further increase. Current accepted medical treatment strategies are aimed at symptom control rather than disease modification. Surgical options including joint replacement are not without possible significant complications. A growing interest in the area of regenerative medicine, led by an improved understanding of the role of mesenchymal stem cells in tissue homeostasis and repair, has seen recent focused efforts to explore the potential of stem cell therapies in the active management of symptomatic osteoarthritis. Encouragingly, results of pre-clinical and clinical trials have provided initial evidence of efficacy and indicated safety in the therapeutic use of mesenchymal stem cell therapies for the treatment of knee osteoarthritis. This paper explores the pathogenesis of osteoarthritis and how mesenchymal stem cells may play a role in future management strategies of this disabling condition. PMID:27229856

  14. Mesenchymal and induced pluripotent stem cells: general insights and clinical perspectives

    PubMed Central

    Zomer, Helena D; Vidane, Atanásio S; Gonçalves, Natalia N; Ambrósio, Carlos E

    2015-01-01

    Mesenchymal stem cells have awakened a great deal of interest in regenerative medicine due to their plasticity, and immunomodulatory and anti-inflammatory properties. They are high-yield and can be acquired through noninvasive methods from adult tissues. Moreover, they are nontumorigenic and are the most widely studied. On the other hand, induced pluripotent stem (iPS) cells can be derived directly from adult cells through gene reprogramming. The new iPS technology avoids the embryo destruction or manipulation to generate pluripotent cells, therefore, are exempt from ethical implication surrounding embryonic stem cell use. The pre-differentiation of iPS cells ensures the safety of future approaches. Both mesenchymal stem cells and iPS cells can be used for autologous cell transplantations without the risk of immune rejection and represent a great opportunity for future alternative therapies. In this review we discussed the therapeutic perspectives using mesenchymal and iPS cells. PMID:26451119

  15. [Mesenchymal stem cells as a therapeutic tool in tissue and organ regeneration].

    PubMed

    Bajek, Anna; Olkowska, Joanna; Drewa, Tomasz

    2011-01-01

    Tissue engineering is an interdisciplinary field that offers new opportunities for regeneration of diseased and damaged tissue with the use of many different cell types,including adult stem cells. In tissue engineering and regenerative medicine the most popular are mesenchymal stem cells (MSCs) isolated from bone marrow. Bone marrow mesenchymal stem cells are a potential source of progenitor cells for osteoblasts, chondroblasts, adipocytes, skeletal muscles and cardiomyocytes. It has also been shown that these cells can differentiate into ecto- and endodermal cells, e.g. neuronal cells, glial cells, keratinocytes and hepatocytes. The availability of autologous MSCs, their proliferative potential and multilineage differentiation capacity make them an excellent tool for tissue engineering and regenerative medicine. The aim of this publication is to present characteristic and biological properties of mesenchymal stem cells isolated from bone marrow. PMID:21358000

  16. Cardiogenic and Myogenic Gene Expression in Mesenchymal Stem Cells After 5-Azacytidine Treatment

    PubMed Central

    Supokawej, Aungkura; Kheolamai, Pakpoom; Nartprayut, Kuneerat; U-pratya, Yaowalak; Manochantr, Sirikul; Chayosumrit, Methichit; Issaragrisil, Surapol

    2013-01-01

    Objective: 5-Azacytidine is a hypomethylating agent that is used for the treatment of myelodysplastic syndrome. This histone modifier is widely employed and plays a nonspecific role in influencing the differentiation capability of stem cells. The ability of bone marrow mesenchymal stem cells to differentiate into cardiomyocyte- and myocyte-like cells after exposure to 3 different doses of 5-azacytidine has been evaluated and compared. The aim of the study was to optimize the effective dose of 5-azacytidine for promoting the cardiomyocyte and myocyte differentiation capabilities of human mesenchymal stem cells (MSCs). Materials and Methods: Human bone marrow aspirations were collected from healthy donors. MSCs were used for the study of mesodermal differentiation. MSCs were cultured to promote osteoblast differentiation and adipocyte differentiation. The evaluation of osteogenic or adipogenic properties was then performed through immunocytochemical staining. BMMSCs were trypsinized into single-cell suspensions and then prepared for flow cytometric analysis. The MSCs were treated with 5, 10, or 15 μM 5-azacytidine for 24 h and then cultured for 3 weeks. Total RNA was extracted from untreated and 5-azacytidine–treated cells. Troponin T and GATA4 antibodies were used as cardiogenic markers, whereas myogenin and MyoD antibodies were used as myocyte markers. Results: The morphology and growth rate of MSCs that were treated with any of the 3 doses of 5-azacytidine were similar to the morphology and growth rate of control MSCs. An immunofluorescence analysis examining the expression of the cardiac-specific markers GATA4 and troponin T and the skeletal muscle-specific markers MyoD and myogenin revealed that cells treated with 15 μM 5-azacytidine were strongly positive for these markers. Real-time RT-PCR results were examined; these amplifications indicated that there were higher expression levels of cardiac- and skeletal muscle-specific mRNAs in MSCs treated with 15

  17. Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells

    SciTech Connect

    Alexandrov, Boian S.; Phipps, M. Lisa; Alexandrov, Ludmil B.; Booshehri, Layla G.; Erat, Anna; Zabolotny, Janice; Mielke, Charles H.; Chen, Hou-Tong; Rodriguez, George; Rasmussen, Kim O.; Martinez, Jennifer S.; Bishop, Alan R.; Usheva, Anny

    2013-01-31

    In this paper, we report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52 THz laser or pulsed broadband (centered at 10 THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation. Our microarray survey and RT-PCR experiments demonstrate that prolonged broadband THz irradiation drives mMSCs toward differentiation, while 2-hour irradiation (regardless of THz sources) affects genes transcriptionally active in pluripotent stem cells. The strictly controlled experimental environment indicates minimal temperature changes and the absence of any discernable response to heat shock and cellular stress genes imply a non-thermal response. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. Finally, we propose that THz radiation has potential for non-contact control of cellular gene expression.

  18. Hexadecanoic acid from Buzhong Yiqi decoction induced proliferation of bone marrow mesenchymal stem cells.

    PubMed

    Chen, Dong-Feng; Li, Xican; Xu, Zhiwei; Liu, Xiaobing; Du, Shao-Hui; Li, Hui; Zhou, Jian-Hong; Zeng, He-Ping; Hua, Zi-Chun

    2010-08-01

    Buzhong Yiqi decoction (BYD) is a well-known ancient tonic prescription in traditional Chinese medicine (TCM). The purpose of this study is to identify active components of BYD involved in promoting proliferation of mesenchymal stem cells (MSCs) and to investigate its mechanism. BYD was extracted with petroleum ether, ethanol, and water. Evidence provided by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, bromodeoxyuridine, proliferation cell nuclear antigen immunoreactivity, cell cycle analysis, and gas chromatography-mass spectrometry indicated that hexadecanoic acid (HA) in BYD extracted with petroleum ether is the active compound responsible for increasing proliferation of MSCs. Western blot analysis show that HA significantly increase retinoic acid receptor (RAR) levels of MSCs, but not estrogen receptor, thyroid hormone receptor, vitamin D receptor, glucocorticoid receptor, and peroxisome proliferator-activated receptor. Reverse transcription-polymerase chain reaction revealed that HA significantly increased RAR mRNA levels. Furthermore, the mechanism of HA action depends on RAR pathway and up-regulates expression of mRNA for insulin-like growth factor-I, the target gene of RAR. Our findings have now allowed for a refinement in our understanding of TCM with respect to pharmacological regulation of stem cells and may be useful to stem cell biology and therapy. PMID:20482257

  19. Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells

    NASA Astrophysics Data System (ADS)

    Alexandrov, Boian S.; Phipps, M. Lisa; Alexandrov, Ludmil B.; Booshehri, Layla G.; Erat, Anna; Zabolotny, Janice; Mielke, Charles H.; Chen, Hou-Tong; Rodriguez, George; Rasmussen, Kim Ø.; Martinez, Jennifer S.; Bishop, Alan R.; Usheva, Anny

    2013-01-01

    We report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52 THz laser or pulsed broadband (centered at 10 THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation. Our microarray survey and RT-PCR experiments demonstrate that prolonged broadband THz irradiation drives mMSCs toward differentiation, while 2-hour irradiation (regardless of THz sources) affects genes transcriptionally active in pluripotent stem cells. The strictly controlled experimental environment indicates minimal temperature changes and the absence of any discernable response to heat shock and cellular stress genes imply a non-thermal response. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.

  20. Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells

    DOE PAGESBeta

    Alexandrov, Boian S.; Phipps, M. Lisa; Alexandrov, Ludmil B.; Booshehri, Layla G.; Erat, Anna; Zabolotny, Janice; Mielke, Charles H.; Chen, Hou-Tong; Rodriguez, George; Rasmussen, Kim O.; et al

    2013-01-31

    In this paper, we report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52 THz laser or pulsed broadband (centered at 10 THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation. Our microarray survey and RT-PCR experiments demonstrate that prolonged broadband THz irradiation drives mMSCs toward differentiation, while 2-hour irradiation (regardless of THz sources) affects genes transcriptionally active in pluripotent stem cells. The strictly controlled experimental environment indicatesmore » minimal temperature changes and the absence of any discernable response to heat shock and cellular stress genes imply a non-thermal response. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. Finally, we propose that THz radiation has potential for non-contact control of cellular gene expression.« less

  1. Towards reaching the target: clinical application of mesenchymal stem cells for diabetic foot ulcers.

    PubMed

    Dash, Surjya Narayan; Dash, Nihar Ranjan; Guru, Bhikaricharan; Mohapatra, Prakash Chandra

    2014-02-01

    Mesenchymal stem cells (MSCs) hold great promise for therapeutic application in non-healing ulcers and tissue regeneration because of their multi-lineage differentiation potential. MSCs delivered may migrate to the sites of injury and improve wound healing by stimulating angiogenesis and promoting revascularization. The incidence of type 2 diabetes mellitus (T2DM) is increasing worldwide. It is associated with peripheral neuropathy and peripheral arterial occlusive disease (PAOD), which predispose patients to develop non-healing foot ulcers following minor trauma. A high rate of amputation exists among diabetic patients due to non-healing foot ulcers, which are a significant burden for the society despite new therapeutic protocols developed. In recent years, stem cell transplantation has been considered as a new therapeutic option for diabetic foot ulcers (DFUs). The regeneration potential of MSCs has been demonstrated in the experimental and clinical trials. Here we review the potential efficacy and systematic use of MSCs for the treatment of non-healing DFUs, current advances, MSC delivery systems, and possible options to enhance the therapeutic potential of stem cell for wound healing. PMID:24237303

  2. Human mesenchymal stem cells seeded on extracellular matrix-scaffold: viability and osteogenic potential.

    PubMed

    Penolazzi, Letizia; Mazzitelli, Stefania; Vecchiatini, Renata; Torreggiani, Elena; Lambertini, Elisabetta; Johnson, Scott; Badylak, Stephen F; Piva, Roberta; Nastruzzi, Claudio

    2012-02-01

    The development and the optimization of novel culture systems of mesenchymal osteoprogenitors are some of the most important challenges in the field of bone tissue engineering (TE). A new combination between cells and extracellular matrix (ECM)-scaffold, containing ECM has here been analyzed. As source for osteoprogenitors, mesenchymal stem cells obtained from human umbilical cord Wharton's Jelly (hWJMSCs), were used. As ECM-scaffold, a powder form of isolated and purified porcine urinary bladder matrix (pUBM), was employed. The goals of the current work were: (1) the characterization of the in vitro hWJMSCs behavior, in terms of viability, proliferation, and adhesion to ECM-scaffold; (2) the effectiveness of ECM-scaffold to induce/modulate the osteoblastic differentiation; and (3) the proposal for a possible application of cells/ECM-scaffold construct to the field of cell/TE. In this respect, the properties of the pUBM-scaffold in promoting and guiding the in vitro adhesion, proliferation, and three-dimensional colonization of hWJMSCs, without altering viability and morphological characteristics of the cells, are here described. Finally, we have also demonstrated that pUBM-scaffolds positively affect the expression of typical osteoblastic markers in hWJMSCs. PMID:21830215

  3. FGF, TGFβ and Wnt crosstalk: embryonic to in vitro cartilage development from mesenchymal stem cells.

    PubMed

    Cleary, Mairéad A; van Osch, Gerjo J V M; Brama, Pieter A; Hellingman, Catharine A; Narcisi, Roberto

    2015-04-01

    Articular cartilage is easily damaged, yet difficult to repair. Cartilage tissue engineering seems a promising therapeutic solution to restore articular cartilage structure and function, with mesenchymal stem cells (MSCs) receiving increasing attention for their promise to promote cartilage repair. It is known from embryology that members of the fibroblast growth factor (FGF), transforming growth factor-β (TGFβ) and wingless-type (Wnt) protein families are involved in controlling different differentiation stages during chondrogenesis. Individually, these pathways have been extensively studied but so far attempts to recapitulate embryonic development in in vitro MSC chondrogenesis have failed to produce stable and functioning articular cartilage; instead, transient hypertrophic cartilage is obtained. We believe a better understanding of the simultaneous integration of these factors will improve how we relate embryonic chondrogenesis to in vitro MSC chondrogenesis. This narrative review attempts to define current knowledge on the crosstalk between the FGF, TGFβ and Wnt signalling pathways during different stages of mesenchymal chondrogenesis. Connecting embryogenesis and in vitro differentiation of human MSCs might provide insights into how to improve and progress cartilage tissue engineering for the future. PMID:23576364

  4. Umbilical cord mesenchymal stem cell transplantation ameliorates burn-induced acute kidney injury in rats.

    PubMed

    Lu, Gang; Huang, Sha; Chen, Yongbin; Ma, Kui

    2013-09-01

    Excessive systemic inflammation following burns could lead to acute kidney injury (AKI). Mesenchymal stromal cells (MSCs) suppress immune cell responses and have beneficial effects in various inflammatory-related immune disorders. However, autologous MSCs are not vital enough for the treatment because of the severely burned patients' deleterious condition. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) could be a suitable substitute cell candidate but no data are available on the therapeutic effectiveness of UC-MSCs transplantation for burn injury and its consequences. In this study, UC-MSCs or ulinastatin was administered intravenously in the rats with burn trauma, and the therapeutic effects of UC-MSCs on the survival of severe burn-induced AKI rats and functional protection of kidney were analyzed. Results showed that UC-MSCs promoted the survival and prevented commitment to apoptosis of resident kidney cells and reduced organ microscopic damage in kidneys after thermal trauma. Thus, our study demonstrates that intravenously delivered UC-MSCs protected the host from death caused by kidney injury subsequent to severe burn, identifying UC-MSCs transplantation may be an attractive candidate for cell-based treatments for burns and induced organ damage. PMID:24043673

  5. Effects of Tithonia diversifolia (Hemsl.) A. Gray extract on adipocyte differentiation of human mesenchymal stem cells.

    PubMed

    Di Giacomo, Claudia; Vanella, Luca; Sorrenti, Valeria; Santangelo, Rosa; Barbagallo, Ignazio; Calabrese, Giovanna; Genovese, Carlo; Mastrojeni, Silvana; Ragusa, Salvatore; Acquaviva, Rosaria

    2015-01-01

    Tithonia diversifolia (Hemsl.) A. Gray (Asteraceae) is widely used in traditional medicine. There is increasing interest on the in vivo protective effects of natural compounds contained in plants against oxidative damage caused from reactive oxygen species. In the present study the total phenolic and flavonoid contents of aqueous, methanol and dichloromethane extracts of leaves of Tithonia diversifolia (Hemsl.) A. Gray were determined; furthermore, free radical scavenging capacity of each extract and the ability of these extracts to inhibit in vitro plasma lipid peroxidation were also evaluated. Since oxidative stress may be involved in trasformation of pre-adipocytes into adipocytes, to test the hypothesis that Tithonia extract may also affect adipocyte differentiation, human mesenchymal stem cell cultures were treated with Tithonia diversifolia aqueous extract and cell viability, free radical levels, Oil-Red O staining and western bolt analysis for heme oxygenase and 5'-adenosine monophoshate-activated protein kinase were carried out. Results obtained in the present study provide evidence that Tithonia diversifolia (Hemsl.) A. Gray exhibits interesting health promoting properties, resulting both from its free radical scavenger capacity and also by induction of protective cellular systems involved in cellular stress defenses and in adipogenesis of mesenchymal cells. PMID:25848759

  6. Effects of Tithonia diversifolia (Hemsl.) A. Gray Extract on Adipocyte Differentiation of Human Mesenchymal Stem Cells

    PubMed Central

    Di Giacomo, Claudia; Vanella, Luca; Sorrenti, Valeria; Santangelo, Rosa; Barbagallo, Ignazio; Calabrese, Giovanna; Genovese, Carlo; Mastrojeni, Silvana; Ragusa, Salvatore; Acquaviva, Rosaria

    2015-01-01

    Tithonia diversifolia (Hemsl.) A. Gray (Asteraceae) is widely used in traditional medicine. There is increasing interest on the in vivo protective effects of natural compounds contained in plants against oxidative damage caused from reactive oxygen species. In the present study the total phenolic and flavonoid contents of aqueous, methanol and dichloromethane extracts of leaves of Tithonia diversifolia (Hemsl.) A. Gray were determined; furthermore, free radical scavenging capacity of each extract and the ability of these extracts to inhibit in vitro plasma lipid peroxidation were also evaluated. Since oxidative stress may be involved in trasformation of pre-adipocytes into adipocytes, to test the hypothesis that Tithonia extract may also affect adipocyte differentiation, human mesenchymal stem cell cultures were treated with Tithonia diversifolia aqueous extract and cell viability, free radical levels, Oil-Red O staining and western bolt analysis for heme oxygenase and 5'-adenosine monophoshate-activated protein kinase were carried out. Results obtained in the present study provide evidence that Tithonia diversifolia (Hemsl.) A. Gray exhibits interesting health promoting properties, resulting both from its free radical scavenger capacity and also by induction of protective cellular systems involved in cellular stress defenses and in adipogenesis of mesenchymal cells. PMID:25848759

  7. Mesenchymal stem cells and cutaneous wound healing: novel methods to increase cell delivery and therapeutic efficacy.

    PubMed

    Lee, Dylan E; Ayoub, Nagi; Agrawal, Devendra K

    2016-01-01

    Mesenchymal stem cells (MSCs) (also known as multipotent mesenchymal stromal cells) possess the capacity for self-renewal and multi-lineage differentiation, and their ability to enhance cutaneous wound healing has been well characterized. Acting via paracrine interactions, MSCs accelerate wound closure, increase angiogenesis, promote resolution of wound inflammation, favorably regulate extracellular matrix remodeling, and encourage regeneration of skin with normal architecture and function. A number of studies have employed novel methods to amplify the delivery and efficacy of MSCs. Non-traditional sources of MSCs, including Wharton's jelly and medical waste material, have shown efficacy comparable to that of traditional sources, such as bone marrow and adipose tissue. The potential of alternative methods to both introduce MSCs into wounds and increase migration of MSCs into wound areas has also been demonstrated. Taking advantage of the associations between MSCs with M2 macrophages and microRNA, methods to enhance the immunomodulatory capacity of MSCs have shown success. New measures to enhance angiogenic capabilities have also exhibited effectiveness, often demonstrated by increased levels of proangiogenic vascular endothelial growth factor. Finally, hypoxia has been shown to have strong wound-healing potential in terms of increasing MSC efficacy. We have critically reviewed the results of the novel studies that show promise for the continued development of MSC-based wound-healing therapies and provide direction for continued research in this field. PMID:26960535

  8. Differentiation of Wharton's jelly mesenchymal stem cells into neurons in alginate scaffold

    PubMed Central

    Hosseini, Seyed Mojtaba; Vasaghi, Attiyeh; Nakhlparvar, Newsha; Roshanravan, Reza; Talaei-khozani, Tahereh; Razi, Zahra

    2015-01-01

    Alginate scaffold has been considered as an appropriate biomaterial for promoting the differentiation of embryonic stem cells toward neuronal cell lineage. We hypothesized that alginate scaffold is suitable for culturing Wharton's jelly mesenchymal stem cells (WJMSCs) and can promote the differentiation of WJMSCs into neuron-like cells. In this study, we cultured WJMSCs in a three-dimensional scaffold fabricated by 0.25% alginate and 50 mM CaCl2 in the presence of neurogenic medium containing 10 μM retinoic acid and 20 ng/mL basic fibroblast growth factor. These cells were also cultured in conventional two-dimensional culture condition in the presence of neurogenic medium as controls. After 10 days, immunofluorescence staining was performed for detecting β-tubulin (marker for WJMSCs-differentiated neuron) and CD271 (motor neuron marker). β-Tubulin and CD271 expression levels were significantly greater in the WJMSCs cultured in the three-dimensional alginate scaffold than in the conventional two-dimensional culture condition. These findings suggest that three-dimensional alginate scaffold cell culture system can induce neuronal differentiation of WJMSCs effectively. PMID:26487861

  9. Identification of Small Activating RNAs that Enhance Endogenous OCT4 Expression in Human Mesenchymal Stem Cells

    PubMed Central

    Wang, Ji; Huang, Vera; Ye, Lin; Bárcena, Alicia; Lin, Guiting; Lue, Tom F.

    2015-01-01

    Ectopic overexpression of transcription factors has been used to reprogram cell fate. For example, virus-mediated overexpression of four transcription factors OCT4, SOX2, MYC, and KLF4, known as Yamanaka factors, can convert somatic cells to induced pluripotent stem (iPS) cells. However, gene-specific switch-on of endogenous gene production without the use of foreign DNA remains a challenge. The small RNA machinery that comprised small RNAs and Argonaute proteins is known to silence gene expression, but can be repurposed to activate gene expression when directed to gene promoters, a phenomenon known as RNA activation or RNAa. By screening of dsRNAs targeting OCT4 promoter, we identified a small activating RNA (saRNA) that activated OCT4 expression in several types of human mesenchymal stem cells (MSCs). We found that saRNA-induced OCT4 activation can be further enhanced by a histone deacetylase inhibitor, valproic acid. Furthermore, introducing OCT4 saRNA in combination with viruses encoding the remaining three Yamanaka factors (SOX2, MYC, and KLF4) into MSCs led to the derivation of partially reprogrammed iPS cells. Findings from this study suggest that, with further optimization, RNAa can be a powerful tool to reprogram cell fate by inducing the expression of endogenous genes. PMID:25232932

  10. Intraventricular injections of mesenchymal stem cells activate endogenous functional remyelination in a chronic demyelinating murine model

    PubMed Central

    Cruz-Martinez, P; González-Granero, S; Molina-Navarro, M M; Pacheco-Torres, J; García-Verdugo, J M; Geijo-Barrientos, E; Jones, J; Martinez, S

    2016-01-01

    Current treatments for demyelinating diseases are generally only capable of ameliorating the symptoms, with little to no effect in decreasing myelin loss nor promoting functional recovery. Mesenchymal stem cells (MSCs) have been shown by many researchers to be a potential therapeutic tool in treating various neurodegenerative diseases, including demyelinating disorders. However, in the majority of the cases, the effect was only observed locally, in the area surrounding the graft. Thus, in order to achieve general remyelination in various brain structures simultaneously, bone marrow-derived MSCs were transplanted into the lateral ventricles (LVs) of the cuprizone murine model. In this manner, the cells may secrete soluble factors into the cerebrospinal fluid (CSF) and boost the endogenous oligodendrogenic potential of the subventricular zone (SVZ). As a result, oligodendrocyte progenitor cells (OPCs) were recruited within the corpus callosum (CC) over time, correlating with an increased myelin content. Electrophysiological studies, together with electron microscopy (EM) analysis, indicated that the newly formed myelin correctly enveloped the demyelinated axons and increased signal transduction through the CC. Moreover, increased neural stem progenitor cell (NSPC) proliferation was observed in the SVZ, possibly due to the tropic factors released by the MSCs. In conclusion, the findings of this study revealed that intraventricular injections of MSCs is a feasible method to elicit a paracrine effect in the oligodendrogenic niche of the SVZ, which is prone to respond to the factors secreted into the CSF and therefore promoting oligodendrogenesis and functional remyelination. PMID:27171265

  11. Environmental parameters influence non-viral transfection of human mesenchymal stem cells for tissue engineering applications.

    PubMed

    King, William J; Kouris, Nicholas A; Choi, Siyoung; Ogle, Brenda M; Murphy, William L

    2012-03-01

    Non-viral transfection is a promising technique that could be used to increase the therapeutic potential of stem cells. The purpose of this study was to explore practical culture parameters of relevance in potential human mesenchymal stem cell (hMSC) clinical and tissue engineering applications, including type of polycationic transfection reagent, N/P ratio and dose of polycation/pDNA polyplexes, cell passage number, cell density and cell proliferation. The non-viral transfection efficiency was significantly influenced by N/P ratio, polyplex dose, cell density and cell passage number. hMSC culture conditions that inhibited cell division also decreased transfection efficiency, suggesting that strategies to promote hMSC proliferation may be useful to enhance transfection efficiency in future tissue engineering studies. Non-viral transfection treatments influenced hMSC phenotype, including the expression level of the hMSC marker CD105 and the ability of hMSCs to differentiate down the osteogenic and adipogenic lineages. The parameters found here to promote hMSC transfection efficiency, minimize toxicity and influence hMSC phenotype may be instructive in future non-viral transfection studies and tissue engineering applications. PMID:22277991

  12. Environmental parameters influence non-viral transfection of human mesenchymal stem cells for tissue engineering applications

    PubMed Central

    King, William J.; Kouris, Nicholas A.; Choi, Siyoung; Ogle, Brenda M.; Murphy, William L.

    2012-01-01

    Non-viral transfection is a promising technique which could be used to increase the therapeutic potential of stem cells. The purpose of this study was to explore practical culture parameters of relevance in potential human mesenchymal stem cell (hMSC) clinical and tissue engineering applications, including type of polycationic transfection reagent, N/P ratio and dose of polycation/pDNA polyplexes, cell passage number, cell density, and cell proliferation. The non-viral transfection efficiency was significantly influenced by N/P ratio, polyplex dose, cell density, and cell passage number. hMSC culture conditions that inhibited cell division also decreased transfection efficiency, suggesting that strategies to promote hMSC proliferation may be useful to enhance transfection efficiency in future tissue engineering studies. Non-viral transfection treatments influenced hMSC phenotype, including the expression level of the hMSC marker CD105, and the ability of hMSCs to differentiate down the osteogenic and adipogenic lineages. The parameters found here to promote hMSC transfection efficiency, minimize toxicity, and influence hMSC phenotype may be instructive in future non-viral transfection studies and tissue engineering applications. PMID:22277991

  13. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    SciTech Connect

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva; Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs; Apati, Agota

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  14. Mineralization of Peptide Amphiphiles Nanofibers and its Effect on Differentiation of Human Mesenchymal Stem Cells

    PubMed Central

    Sargeant, Timothy D.; Aparicio, Conrado; Goldberger, Josh; Cui, Honggang

    2012-01-01

    One of the important targets in regenerative medicine is to design resorbable materials that can promote formation of new bone in large skeletal defects. One approach to this challenge is to use a bioactive and biodegradable organic matrix that can promote cellular adhesion and direct differentiation. We studied here matrices composed of peptide amphiphiles (PAs) that self-assemble into nanofibers and create self-supporting gels in cell culture conditions. The bioactivity of PAs was designed by incorporating in their peptide sequences phosphoserine residues to promote hydroxyapatite formation in the culture medium and the cell adhesion epitope RGDS. In calcium supplemented osteogenic media, the PA nanofibers were found to nucleate spheroidal nanoparticles approximately 100 nm in diameter of crystalline carbonated hydroxyapatite. This mineralization mode is not epitaxial relative to the long axis of nanofibers and occurs in the presence of serine or phosphoserine residues in the peptide sequence of the amphiphiles. Mixing of the phosphoserine-containing PAs with 5 weight % of RGDS-containing PA molecules does not inhibit formation of the mineral nanoparticles. Quantitative real-time reverse transcription polymerase chain reaction (QRT-PCR) and immunohistochemistry (IHC) analysis for alkaline phosphatase (ALP) and osteopontin expression suggest that these mineralized matrices promote osteogenic differentiation of human mesenchymal stem cells. Based on ALP expression, the presence of phosphoserine residues in PA nanofibers seem to benefit osteogenic differentiation. PMID:22440242

  15. The canine epiphyseal-derived mesenchymal