Science.gov

Sample records for promyelocytic hl-60 leukemia

  1. Antiproliferative activity of various Uncaria tomentosa preparations on HL-60 promyelocytic leukemia cells.

    PubMed

    Pilarski, Radosław; Poczekaj-Kostrzewska, Magdalena; Ciesiołka, Danuta; Szyfter, Krzysztof; Gulewicz, Krzysztof

    2007-01-01

    The woody Amazonian vine Uncaria tomentosa (cat's claw) has been recently more and more popular all over the world as an immunomodulatory, antiinflammatory and anti-cancer remedy. This study investigates anti-proliferative potency of several cat's claw preparations with different quantitative and qualitative alkaloid contents on HL-60 acute promyelocytic human cells by applying trypan blue exclusion and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay (MTT). By standardization and statistical comparison of the obtained results pteropodine and isomitraphylline are indicated to be most suitable for standardization of medical cat's claw preparations. PMID:18048957

  2. Differentiation-promoting activity of pomegranate (Punica granatum) fruit extracts in HL-60 human promyelocytic leukemia cells.

    PubMed

    Kawaii, Satoru; Lansky, Ephraim P

    2004-01-01

    Differentiation refers to the ability of cancer cells to revert to their normal counterparts, and its induction represents an important noncytotoxic therapy for leukemia, and also breast, prostate, and other solid malignancies. Flavonoids are a group of differentiation-inducing chemicals with a potentially lower toxicology profile than retinoids. Flavonoid-rich polyphenol fractions from the pomegranate (Punica granatum) fruit exert anti-proliferative, anti-invasive, anti-eicosanoid, and pro-apoptotic actions in breast and prostate cancer cells and anti-angiogenic activities in vitro and in vivo. Here we tested flavonoid-rich fractions from fresh (J) and fermented (W) pomegranate juice and from an aqueous extraction of pomegranate pericarps (P) as potential differentiation-promoting agents of human HL-60 promyelocytic leukemia cells. Four assays were used to assess differentiation: nitro blue tetrazolium reducing activity, nonspecific esterase activity, specific esterase activity, and phagocytic activity. In addition, the effect of these extracts on HL-60 proliferation was evaluated. Extracts W and P were strong promoters of differentiation in all settings, with extract J showing only a relatively mild differentiation-promoting effect. The extracts had proportional inhibitory effects on HL-60 cell proliferation. The results highlight an important, previously unknown, mechanism of the cancer preventive and suppressive potential of pomegranate fermented juice and pericarp extracts. PMID:15117547

  3. Synergistic growth inhibitory and differentiating effects of trimidox and tiazofurin in human promyelocytic leukemia HL-60 cells.

    PubMed

    Szekeres, T; Fritzer, M; Strobl, H; Gharehbaghi, K; Findenig, G; Elford, H L; Lhotka, C; Schoen, H J; Jayaram, H N

    1994-12-15

    Increased ribonucleotide reductase (RR) activity has been linked with malignant transformation and tumor cell growth. Therefore, this enzyme is considered to be an excellent target for cancer chemotherapy. We have examined the effects of a newly patented RR inhibitor, trimidox (3,4,5-trihydroxybenzohydroxamidoxime). Trimidox inhibited the growth of human promyelocytic leukemia HL-60 cells with an IC50 of 35 mumol/L. Incubation of HL-60 cells with 50 mumol/L trimidox for 24 hours decreased deoxyguanosine triphosphate (dGTP) and deoxycytidine triphosphate (dCTP) pools to 24% and 39% of control values, respectively. Incubation of HL-60 cells with 20 to 80 mumol/L trimidox even up to a period of 4 days did not alter the distribution of cells in different phases of cell cycle. Sequential incubation of HL-60 cells with trimidox (25 mumol/L) for 24 hours and then with 10 mumol/L tiazofurin (an inhibitor of inosine monophosphate dehydrogenase) for 4 days produced synergistic growth inhibitory activity, and the cell number decreased to 16% of untreated controls. When differentiation-linked cell surface marker expressions were determined in cells treated with trimidox and tiazofurin, a significantly increased fluorescence intensity was observed for the CD 11b (2.9-fold). CD 33 (1.9-fold), and HLA-D cell surface antigens. Expression of the transferrin receptor (CD71) increased 7.3-fold in cells treated with both agents, compared with untreated controls. Our results suggest that trimidox in combination with tiazofurin might be useful in the treatment of leukemia. PMID:7994048

  4. Oxidative stress-mediated intrinsic apoptosis in human promyelocytic leukemia HL-60 cells induced by organic arsenicals

    PubMed Central

    Fan, Xiao-Yang; Chen, Xin-You; Liu, Yu-Jiao; Zhong, Hui-Min; Jiang, Feng-Lei; Liu, Yi

    2016-01-01

    Arsenic trioxide has shown the excellent therapeutic efficiency for acute promyelocytic leukemia. Nowadays, more and more research focuses on the design of the arsenic drugs, especially organic arsenicals, and on the mechanism of the inducing cell death. Here we have synthesized some organic arsenicals with Schiff base structure, which showed a better antitumor activity for three different kinds of cancer cell lines, namely HL-60, SGC 7901 and MCF-7. Compound 2a (2-(((4-(oxoarsanyl)phenyl)imino)methyl)phenol) and 2b (2-methoxy-4-(((4-(oxoarsanyl)phenyl)imino)methyl)phenol) were chosen for further mechanism study due to their best inhibitory activities for HL-60 cells, of which the half inhibitory concentration (IC50) were 0.77 μM and 0.51 μM, respectively. It was illustrated that 2a or 2b primarily induced the elevation of reactive oxygen species, decrease of glutathione level, collapse of mitochondrial membrane potential, release of cytochrome c, activation of Caspase-3 and apoptosis, whereas all of the phenomena can be eliminated by the addition of antioxidants. Therefore, we concluded that compound 2a and 2b can induce the oxidative stress-mediated intrinsic apoptosis in HL-60 cells. Both the simplicity of structure with Schiff base group and the better anticancer efficiency demonstrate that organic arsenicals are worthy of further exploration as a class of potent antitumor drugs. PMID:27432798

  5. Oxidative stress-mediated intrinsic apoptosis in human promyelocytic leukemia HL-60 cells induced by organic arsenicals.

    PubMed

    Fan, Xiao-Yang; Chen, Xin-You; Liu, Yu-Jiao; Zhong, Hui-Min; Jiang, Feng-Lei; Liu, Yi

    2016-01-01

    Arsenic trioxide has shown the excellent therapeutic efficiency for acute promyelocytic leukemia. Nowadays, more and more research focuses on the design of the arsenic drugs, especially organic arsenicals, and on the mechanism of the inducing cell death. Here we have synthesized some organic arsenicals with Schiff base structure, which showed a better antitumor activity for three different kinds of cancer cell lines, namely HL-60, SGC 7901 and MCF-7. Compound 2a (2-(((4-(oxoarsanyl)phenyl)imino)methyl)phenol) and 2b (2-methoxy-4-(((4-(oxoarsanyl)phenyl)imino)methyl)phenol) were chosen for further mechanism study due to their best inhibitory activities for HL-60 cells, of which the half inhibitory concentration (IC50) were 0.77 μM and 0.51 μM, respectively. It was illustrated that 2a or 2b primarily induced the elevation of reactive oxygen species, decrease of glutathione level, collapse of mitochondrial membrane potential, release of cytochrome c, activation of Caspase-3 and apoptosis, whereas all of the phenomena can be eliminated by the addition of antioxidants. Therefore, we concluded that compound 2a and 2b can induce the oxidative stress-mediated intrinsic apoptosis in HL-60 cells. Both the simplicity of structure with Schiff base group and the better anticancer efficiency demonstrate that organic arsenicals are worthy of further exploration as a class of potent antitumor drugs. PMID:27432798

  6. Study on human promyelocytic leukemia HL-60 cells apoptosis induced by fucosterol.

    PubMed

    Ji, Yu-Bin; Ji, Chen-Feng; Yue, Lei

    2014-01-01

    In this study, we investigated the effect of fucosterol on HL-60 and the molecular mechanism. HL-60 Cells were treated with fucosterol, and 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) method was used to study fucosterol anti-tumor activity. Morphology of HL-60 cells was observed. Flow cytometry (FCM) was employed to detect the cell cycle. Laser scanning confocal microscope (LSCM) was used to analyze mitochondrial membrane potential (MMP) and the expressions of Fas, FasL, Fadd and Caspase-8. Western blot was performed to analyze the expressions of Cyt-C, Pro-Caspase-9 and Pro-Caspase-3. Caspase activity kits were used to determine the activity of Caspase-9, Caspase-8 and Caspase-3. The results showed fucosterol could inhibit the growth of HL-60 cells, and the cell cycle was arrested at G2/M phase. HL-60 cells showed obvious apoptosis morphology. After being treated with fucosterol for 24 h, HL-60 cells decreased MMP, induced Cyt-C release and Caspase-9, Caspase-3 activation. Fucosterol also increased the protein expression of Fas, FasL, Fadd and Caspase-8. Moreover, the activity of Caspase-9, Caspase-8 and Caspase-3 was increased significantly. In conclusion, Fucosterol can induce HL-60 cells apoptosis, suggesting that it may be a potent agent for cancer prevention and treatment. PMID:24211971

  7. Eugenol isolated from the essential oil of Eugenia caryophyllata induces a reactive oxygen species-mediated apoptosis in HL-60 human promyelocytic leukemia cells.

    PubMed

    Yoo, Chae-Bin; Han, Ki-Tae; Cho, Kyu-Seok; Ha, Joohun; Park, Hee-Juhn; Nam, Jung-Hwan; Kil, Uk-Hyun; Lee, Kyung-Tae

    2005-07-01

    Eugenol is a major component of essential oil isolated from the Eugenia caryophyllata (Myrtaceae), which has been widely used as a herbal drug. In this study, we investigated the effects of eugenol on the cytotoxicity, induction of apoptosis, and the putative pathways of its actions in human promyelocytic leukemia cells (HL-60) under the standard laboratory illumination. Eugenol-treated HL-60 cells displayed features of apoptosis including DNA fragmentation and formation of DNA ladders in agarose gel electrophoresis. We observed that eugenol transduced the apoptotic signal via ROS generation, thereby inducing mitochondrial permeability transition (MPT), reducing anti-apoptotic protein bcl-2 level, inducing cytochrome c release to the cytosol, and subsequent apoptotic cell death. Taken together, the present study demonstrated that ROS plays a critical role in eugenol-induced apoptosis in HL-60, and this is the first report on the mechanism of the anticancer effect of eugenol. PMID:15922856

  8. Measurement of Electrophoretic Mobility of Human Promyelocytic Leukemia Cell Lines (HL60) During Neutrophil Differentiation Using On-Chip Cell Electrophoresis

    NASA Astrophysics Data System (ADS)

    Matsuhashi, Ryutaro; Akagi, Takanori; Ichiki, Takanori

    Electrophoretic mobility (EPM) of human promyelocytic leukemia cell lines (HL60) during neutrophil differentiation induced by all-trans retinoic acid (ATRA) or dimethyl sulfoxide (DMSO) was measured using microcapillary electrophoresis chips. Prior to EPM measurement of HL60 cells, neutrophil differentiation of the cells was confirmed by morphological classification. Subsequently, EPM of HL60 cells was measured using an on-chip cell electrophoresis system before and after neutrophil differentiation. The EPM changed gradually with the progress of the neutrophil differentiation. From the analysis of experimental data by principal component analysis, it was revealed that there is a strong correlation between morphologic classification and EPM during the neutrophilic differentiation. The present result suggests that on-chip EPM measurement system can be used as a monitoring tool for the cell differentiation.

  9. Copper(II) and uranyl(II) complexes with acylthiosemicarbazide: synthesis, characterization, antibacterial activity and effects on the growth of promyelocytic leukemia cells HL-60.

    PubMed

    Angelusiu, Madalina Veronica; Almajan, Gabriela Laura; Rosu, Tudor; Negoiu, Maria; Almajan, Eva-Ruxandra; Roy, Jenny

    2009-08-01

    New chelates of N(1)-[4-(4-X-phenylsulfonyl)benzoyl]-N(4)-butyl-thiosemicarbazide (X=H, Cl, Br) with Cu(2+) and UO(2)(2+) have been prepared and characterized by analytical and physico-chemical techniques such as magnetic susceptibility measurements, elemental and thermal analyses, electronic, ESR and IR spectral studies. Room temperature ESR spectra of Cu(II) complexes yield {g} values characteristic of distorted octahedral and pseudo-tetrahedral geometry. Infrared spectra indicate that complexes contain six-coordinate uranium atom with the ligand atoms arranged in an equatorial plane around the linear uranyl group. Effects of these complexes on the growth of human promyelocytic leukemia cells HL-60 and their antibacterial activity (against Staphylococcus epidermidis ATCC 14990, Bacillus subtilis ATCC 6633, Bacillus cereus ATCC 14579, Pseudomonas aeruginosa ATCC 9027 and Escherichia coli ATCC 11775 strains) were studied comparatively with that of free ligands. PMID:19356828

  10. [Studies on changes in nucleolar organizer region of human promyelocytic leukemia cells (HL-60) treated with retinoic acid].

    PubMed

    Xie, R L; Wang, Y Q

    1989-12-01

    Changes of nucleolar organizer region in HL-60 cells after treated with retinoic acid (RA) were studied with techniques of silver-staining nucleolar organizer region (Ag-NOR) in metaphase karyotypes, Brachet's reaction and with our improved TEM techniques for studying silver-stained active nucleolar organizer region (Ag-aNOR) in interphase nucleoli. Number of Ag-NOR in HL-60 cells is 4.5/cell on average. The Ag-NOR number of cells treated with RA showed no remarkable difference from that of control group. Ag-aNOR number treated with RA was reduced obviously as compared with that of control group. Meanwhile, the changes of nucleolus number showed by Brachet's reaction were in accordance with those of Ag-aNOR. Therefore, it may be concluded: (1). Though the number of active rRNA genes did not changed after the differentiation of HL-60 cells induced by RA, their expression was clearly inhibited: (2). The relationship between the changes of Brachet-No and Ag-aNOR is in positive correlation (r = 0.98, p less than 0.01). EM examination of Ag-aNOR of HL-60 cells reveals that Ag-protein (RNA polymerase I) only presented in fibrillar centers (FC) and the dense fibrillar components (DFC) of nucleolus. In addition, in control group, large amount of Ag-protein, FC, DFC and granular components (GC) were observed, and there were many large nucleoli in a nucleus, meanwhile, the cells of the treated group tended to be mature, with a decrease in the amount of Ag-protein, FC, DFC and GC accordingly, and the nucleoli reduced both in size and number significantly.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2626898

  11. Seed dormancy breaking diterpenoids from the liverwort Plagiochila sciophila and their differentiation inducing activity in human promyelocytic leukemia HL-60 cells.

    PubMed

    Kenmoku, Hiromichi; Tada, Hiroyuki; Oogushi, Megumi; Esumi, Tomoyuki; Takahashi, Hironobu; Noji, Masaaki; Sassa, Takeshi; Toyota, Masao; Asakawa, Yoshinori

    2014-07-01

    To obtain the structural diversity of bioactive compounds similar to cotylenins and fusicoccins that modulate 14-3-3 protein-protein interactions in eukaryotes, screening tests were carried out using the lettuce seed dormancy breaking-assay. An acetone extract of the liverwort Plagiochila sciophila exhibited significant activity against the seeds in the presence of the plant hormone abscisic acid. Activity-guided fractionation of the extract afforded the isolation of seven novel fusicoccane-type diterpenoids, named fusicosciophins A-E (1-5), 8-deacetyl (6) and 9-deacetyl fusicosciophin E (7). Their structures were determined by spectroscopic methods and X-ray crystallographic analyses. All the pure isolated compounds (1-7) exhibited moderate lettuce seed dormancy breaking activity. In addition, the differentiation-inducing activity and cytotoxicity of these isolates, together with fusicoccin A (FC-A) and all-trans retinoic acid (ATRA), were evaluated in human promyelocytic leukemia HL-60 cells and human mouth epidermal carcinoma KB cells, respectively. Fusicosciophins (2 and 4) and FC-A exhibited moderate differentiation-inducing activity (EC50 31.2-59.1 microM) compared with ATRA (EC50 0.3 microM), while 2, 4 and ATRA exhibited higher selectivity indices (IC50/EC50 >3.38-667) than FC-A (IC50/EC50 1.05). This is the first report on the isolation of fusicoccane-type diterpenoids from liverworts having seed dormancy breaking activity and differentiation-inducing activity in mammal cells. PMID:25230492

  12. Gossypol-Induced Differentiation in Human Leukemia HL-60 Cells

    PubMed Central

    Wang, Wen-Qing; Li, Rong; Bai, Qing-Xian; Liu, Yu-Hong; Zhang, Wei-Ping; Wang, Juan-Hong; Wang, Zhe; Li, Yuan-Fei; Chen, Xie-Qun; Huang, Gao-Sheng

    2006-01-01

    The main treatment of leukemia is traditional radiochemotherapy, which is associated with serious side effects. In the past twenty years, differentiation was found as an important effective measure to treat leukemia with fewer side effects. Gossypol, a natural compound which has been used as an effective contraceptive drug, has been proposed to be a potent drug to treat leukemia, but the differentiation effect has not been studied. In the present study, we investigated the pro-differentiated effects, in vitro, of gossypol on the classic human myeloid leukemia HL-60 cell line. The effects of gossypol were investigated by using morphological changes, nitroblue tetrazolium (NBT) reduction, surface markers, cell-cycle analysis and Western blot analysis, etc. When HL-60 cells were incubated with low concentrations of gossypol (2-5μM) for 48hr, a prominent G0/G1 arrest was observed. At 96 hr of treatment, 90% of HL-60 cells differentiated, as evidenced by morphological changes, NBT reduction, and increase in cell surface expression of some molecules were detected. This study is the first to identify gossypol’s pro-differentiated effects on the leukemia cell line, and it induced differentiation through the PBK (PDZ-binding kinase)/TOPK (T-LAKcell-originated protein kinase) (PBK/TOPK) pathway. It is concluded that gossypol could induce differentiation in the leukemia HL-60 cells, and it may be a potential therapeutic agent, chemoprevention or chemotherapeutic adjuvant especially in combination drug therapy for leukemia. PMID:23675007

  13. Ultrastructural localization of F-actin using phalloidin and quantum dots in HL-60 promyelocytic leukemia cell line after cell death induction by arsenic trioxide.

    PubMed

    Izdebska, Magdalena; Gagat, Maciej; Grzanka, Dariusz; Grzanka, Alina

    2013-06-01

    Quantum dots (QDs) are fluorescent nanocrystals whose unique properties are fundamentally different from organic fluorophores. Moreover, their cores display sufficient electron density to be visible under transmission electron microscopy (TEM). Here, we report a technique for phalloidin-based TEM detection of F-actin. The ultrastructural reorganization of F-actin after arsenic trioxide (ATO) treatment was estimated using a combination of pre- and post-embedding techniques with biotinylated phalloidin and QD-streptavidin conjugates or colloidal gold (AU) conjugated to streptavidin. Ultrastructural studies showed ATO-induced apoptosis of HL-60 cells. Moreover, different patterns of QD-labeled F-actin after ATO treatment were seen. In the case of AU labeling, only a few gold particles were seen and it was impossible to see any difference in F-actin distribution. TEM imaging experiments using QDs and colloidal gold (AU) showed that the strategy of bioconjugation of nanoprobes is the most important factor in biotinylated phalloidin detection of F-actin using streptavidin-coated nanoparticles, especially at the ultrastructural level. Additionally, the results presented in present study confirm the essential role of F-actin in chromatin reorganization during cell death processes. PMID:23312591

  14. Carvacrol induces mitochondria-mediated apoptosis in HL-60 promyelocytic and Jurkat T lymphoma cells.

    PubMed

    Bhakkiyalakshmi, Elango; Suganya, Natarajan; Sireesh, Dornadula; Krishnamurthi, Kannan; Saravana Devi, Sivanesan; Rajaguru, Palanisamy; Ramkumar, Kunka Mohanram

    2016-02-01

    The aim of the present study was to investigate the effect of carvacrol, a phenolic monoterpenoid on the induction of apoptosis in HL-60 (Human acute promyelocytic leukemia cells) and Jurkat (human T lymphocyte cells) cells. Carvacrol showed a potent cytotoxic effect on both cells with dose-dependent increase in the level of free radical formation as measured by an oxidation sensitive fluorescent dye, 2,7-dichlorodihydrofluorescein diacetate (H2DCFDA) levels. The reduction in the level of antioxidants such as catalase (CAT) and superoxide dismutase (SOD) (P<0.05) was observed in carvacrol-treated cells. The major cytotoxic effect appears to be intervened by the induction of apoptotic cell death as assessed by annexin-V labeling assay using flow cytometry. Western blot analysis showed that Bax expression was increased, whereas Bcl-2 expression was significantly decreased in carvacrol exposed HL-60 cells and Jurkat cells. Further studies revealed that the dissipation of mitochondrial membrane potential of intact cells was accompanied by the activation of caspase-3. Our results found that the potential mechanism of cellular apoptosis induced by carvacrol is mediated by caspase-3 and is associated with the collapse of mitochondrial membrane potential, generation of free radicals, and depletion of the intracellular antioxidant pool. PMID:26724845

  15. Vitamin D3 potentiates the antitumorigenic effects of arsenic trioxide in human leukemia (HL-60) cells

    PubMed Central

    2014-01-01

    Background Arsenic trioxide (ATO) is a novel form of therapy that has been found to aid acute promyelocytic leukemia (APL) patients. Our laboratory has demonstrated that ATO-induced cytotoxicity in human leukemia (HL-60) cells is mediated by oxidative stress. Pro-oxidants have been known to play a role in free radical-mediated oxidative stress. Vitamin D3, (Vit D3) an active metabolite of vitamin D has been reported to inhibit the growth of number neoplasms such as prostate, breast, colorectal, leukemia, and skin cancers. The goal of the present research was to use (HL-60) cells as an in vitro test model to evaluate whether low doses of Vit D3 potentiate the toxicity of ATO and whether this toxic action is mediated via apoptotic mechanisms. Method HL-60 cells were treated either with a pharmacologic dose of ATO alone and with several low doses of Vit D3. Cell survival was determined by MTT assay. Cell apoptosis was measured both by flow cytometry assessment, and DNA laddering assay. Results MTT assay indicated that Vit D3 co-treatment potentiates ATO toxicity in HL-60 cells in a dose dependent manner. A statistically significant and dose-dependent increase (p <0.05) was recorded in annexin V positive cells (apoptotic cells) with increasing doses of Vit D3 in ATO-treated cells. This finding was confirmed by the result of DNA laddering assay showing clear evidence of nucleosomal DNA fragmentation in vitamin and ATO co-treated cells. Conclusion The present study indicates that Vit D3 potentiates the antitumor effects of ATO. This potentiation is mediated at least in part, through induction of phosphatidylserine externalization and nucleosomal DNA fragmentation. These findings highlight the potential impact of Vit D3 in promoting the pharmacological effect of ATO, suggesting a possible future role of Vit D3/ATO combination therapy in patients with acute promyelocytic leukemia (APL). PMID:24661615

  16. [Effect of rapamycin on proliferation of acute myeloid leukemia cell lines HL-60 and HL-60/VCR].

    PubMed

    Liang, Rong; Xiong, Hua; Wang, Zhe; Chen, Xie-Qun

    2010-12-01

    In order to investigate the effect of rapamycin on the proliferation of human acute myeloid leukemia (AML) cells, the sensitive cells HL-60 and multidrug-resistant HL-60/VCR cells were chosen as research objects. The proliferation of cells was detected by growth curve method. The flow cytometer was used to analyze cell cycle. The expression of P-glycoprotein (Pgp) was determined by Western blot. The results demonstrated that there was a significant difference of cell growth inhibition rate between control group and rapamycin group (p < 0.05). The cell growth inhibition rate was dose- and time- dependent (p < 0.05). Flow cytometry detection showed that the cell percentage of G(1) phase in rapamycin group was higher than that in group without rapamycin, and that of S phase was lower. The cell growth inhibition rate in 50 nmol/L and 100 nmol/L rapamycin plus daunorubicin (DNR) group was more than that in DNR alone group (p < 0.05), especially when DNR was added at 24 hours interval after RAP. The expression of Pgp of HL-60/VCR cells was inhibited by rapamycin. It is concluded that the rapamycin can inhibit the proliferation of sensitive HL-60 and multidrug resistant HL-60/VCR cells. It can also increase sensitivity of HL-60 and HL-60/VCR cells to DNR, which provides new strategy for the therapy of refractory AML. PMID:21176352

  17. Cholesterol starvation induces differentiation of human leukemia HL-60 cells.

    PubMed

    Sánchez-Martín, Carolina C; Dávalos, Alberto; Martín-Sánchez, Covadonga; de la Peña, Gema; Fernández-Hernando, Carlos; Lasunción, Miguel A

    2007-04-01

    Cholesterol metabolism is particularly active in malignant, proliferative cells, whereas cholesterol starvation has been shown to inhibit cell proliferation. Inhibition of enzymes involved in cholesterol biosynthesis at steps before the formation of 7-dehydrocholesterol has been shown to selectively affect cell cycle progression from G(2) phase in human promyelocytic HL-60 cells. In the present work, we explored whether cholesterol starvation by culture in cholesterol-free medium and treatment with different distal cholesterol biosynthesis inhibitors induces differentiation of HL-60 cells. Treatment with SKF 104976, an inhibitor of lanosterol 14-alpha demethylase, or with zaragozic acid, which inhibits squalene synthase, caused morphologic changes alongside respiratory burst activity and expression of cluster of differentiation antigen 11c (CD11c) but not cluster of differentiation antigen 14. These effects were comparable to those produced by all-trans retinoic acid, which induces HL-60 cells to differentiate following a granulocyte lineage. In contrast, they differed from those produced by vitamin D(3), which promotes monocyte differentiation. The specificity of the response was confirmed by addition of cholesterol to the culture medium. Treatment with PD 98059, an inhibitor of extracellular signal-regulated kinase, abolished both the activation of NADPH oxidase and the expression of the CD11c marker. In sharp contrast, BM 15766, which inhibits sterol Delta(7)-reductase, failed to induce differentiation or arrest cell proliferation. These results show that changes in the sterol composition may trigger a differentiation response and highlight the potential of cholesterol pathway inhibition as a possible tool for use in cancer therapy. PMID:17409448

  18. Protein kinase C-gamma is present in adriamycin resistant HL-60 leukemia cells.

    PubMed

    Aquino, A; Warren, B S; Omichinski, J; Hartman, K D; Glazer, R I

    1990-01-30

    The isoform pattern of protein kinase C (PKC) was examined in wild-type and Adriamycin-resistant (HL-60/AR) HL-60 leukemia cells. Analyses were carried out by immunoblotting with mouse monoclonal antibodies against PKC-alpha and PKC-beta and a rabbit polyclonal antibody against the variable (V3) region of PKC-gamma. HL-60/AR cells contained an equivalent level of PKC-alpha and a lower amount of PKC-beta than HL-60 cells. In contrast, only HL-60/AR cells contained PKC-gamma. These results indicate that the regulation of this family of isoenzymes is altered in drug-resistant cells. PMID:2302237

  19. The effect of aqueous cinnamon extract on the apoptotic process in acute myeloid leukemia HL-60 cells

    PubMed Central

    Assadollahi, Vahideh; Parivar, Kazem; Roudbari, Nasim Hayati; Khalatbary, Ali Reza; Motamedi, Masoumeh; Ezatpour, Behrouz; Dashti, Gholam Reza

    2013-01-01

    Background: Acute promyelocytic leukemia (APL) is an acute leukemia diagnosed by translocation of chromosomes 15 and 17 [T (15,17)] and aggregation of neoplastic promyelocytes which are incapable of being converted into mature cells. Today, many tend to use medicinal herbs in studies and clinical applications for treatment of cancers. Cinnamon with scientific name “cinnamomumzelanicum” is a shrub of Laurales order, lauraceae family with cinnamomum genus. It is a medicinal shrub with anti-proliferation effect on tumor cells. This study was conducted to determine the effects of aqueous cinnamon extract on HL-60 cells as a model for APL. Materials and Methods: In this in vitro experimental study, HL-60 cell line was cultured under the influence of cinnamon extract's concentrations of 0.01, 0.1, 1, and 2 mg/ml in with intervals of 24, 48, and 72 h. Growth inhibition and toxic effects of cinnamon extract were evaluated through tetrazolium salt reduction. The effect of this herb on the cell cycle was studied by flow cytometry. The Hoechst stain was used to detect apoptotic cell nuclei. Results: Cinnamon extract inhibited the growth of HL-60 cells as correlated with concentration and time. After 72 h of treating HL-60 cells with 0.01 mg/l cinnamon extract, the growth of cells was inhibited by 90.1%. Cinnamon extract stopped the cell cycle in G1 phase and the Hoechst staining verified the apoptotic process in those cells. Conclusion: Considering the inhibitory property of cinnamon extract, we recommend it as a single drug or besides other medications for treating promyelocytic leukemia. PMID:23977653

  20. Glycolytic, glutaminolytic and pentose-phosphate pathways in promyelocytic HL60 and DMSO-differentiated HL60 cells.

    PubMed

    Ahmed, N; Williams, J F; Weidemann, M J

    1993-04-01

    The human leukaemic cell line HL60 undergoes differentiation to granulocyte-like cells in response to dimethylsulphoxide (DMSO). The rates of glucose and glutamine utilization were studied in HL60 cells that were either undifferentiated or fully differentiated by 9 days exposure to DMSO. Differentiation did not alter the rate of utilization of exogenous glucose, approximately 75% of which was converted to lactate in each case. The activities of hexokinase, phosphofructokinase, pyruvate kinase and citrate synthase were similarly unaffected. In contrast, the activity of the oxidative segment of the pentose-phosphate pathway was enhanced by differentiation, and no glycogen synthase activity could be detected. These observations are consistent with the significantly lower content of glycogen, the increased activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase and the increased oxidation of [1-14C] glucose relative to [6-14C] glucose in the differentiated cells. Glucose utilization was depressed by exogenous glutamine but, at the same time, glutamine utilization was enhanced by glucose in both cell types; these reciprocal effects were more pronounced in the undifferentiated HL60 cells. Glucose utilization may be depressed in the presence of glutamine as a result of the allosteric inhibition of a rate-limiting step of glycolysis (eg. phosphofructokinase). In spite of having glutaminase activity twice that of their differentiated counterparts, the uptake of glutamine by undifferentiated HL60 cells was low, especially when it was the sole substrate. The stimulation of glutaminolysis by glucose may be due to activation of mitochondrial glutamine transport. A large proportion of the glutamine utilized by both cells contributed to a net accumulation of glutamate, aspartate and alanine, whilst up to 35% was oxidized to CO2. In contrast, almost all of the glucose utilized was converted to lactate and very little was oxidized. The high rates of

  1. Effects of highly ripened cheeses on HL-60 human leukemia cells: antiproliferative activity and induction of apoptotic DNA damage.

    PubMed

    Yasuda, S; Ohkura, N; Suzuki, K; Yamasaki, M; Nishiyama, K; Kobayashi, H; Hoshi, Y; Kadooka, Y; Igoshi, K

    2010-04-01

    To establish cheese as a dairy product with health benefits, we examined the multifunctional role of cheeses. In this report, we clarify whether different types of commercial cheeses may possess antiproliferative activity using HL-60 human promyelocytic leukemia cell lines as a cancer model. Among 12 cheese extracts tested, 6 (Montagnard, Pont-l'Eveque, Brie, Camembert, Danablue, and Blue) revealed strong growth inhibition activity and induction of DNA fragmentation in HL-60 cells. Based on the quantification of nitrogen contents in different cheese samples, a positive correlation between the ripeness of various cheeses and their antiproliferative activity tested in HL-60 cells was displayed. Four varieties of Blue cheese ripened for 0, 1, 2, or 3 mo demonstrated that the Blue cheese ripened for a long term was capable of causing the strong suppression of the cell growth and the induction of apoptotic DNA damage as well as nucleic morphological change in HL-60 cells. Collectively, these results obtained suggest a potential role of highly ripened cheeses in the prevention of leukemic cell proliferation. PMID:20338416

  2. Novel ring A stereoisomers of 2-methyl-1alpha,25-dihydroxyvitamin D(3) and 2-methyl-20-epi-1alpha,25-dihydroxyvitamin D(3): transactivation of target genes and modulation of differentiation in human promyelocytic leukemia (HL-60) cells.

    PubMed

    Nakagawa, K; Kurobe, M; Ozono, K; Konno, K; Fujishima, T; Takayama, H; Okano, T

    2000-03-15

    We evaluated the biological activity of two sets of ring A stereoisomers of 2-methyl-1alpha,25-dihydroxyvitamin D(3) (2-methyl-1alpha,25(OH)(2)D(3)) and 2-methyl-20-epi-1alpha, 25-dihydroxyvitamin D(3) (2-methyl-20-epi-1alpha,25(OH)(2)D(3)) in terms of the following: transactivation of a rat 25-hydroxyvitamin D(3)-24-hydroxylase gene promoter including two vitamin D response elements (VDREs) and a human osteocalcin gene promoter including a VDRE in transfected human osteosarcoma (MG-63) cells; a vitamin D receptor (VDR)-mediated response using a VDR-GAL4 one-hybrid luciferase reporter system and a retinoid X receptor alpha (RXRalpha)-mediated response using an expressed VDR/RXRalpha-GAL4 modified two-hybrid luciferase reporter system in transfected human epitheloid carcinoma, cervix (HeLa) cells; and modulation of cell surface CD11b antigen expression in human leukemia (HL-60) cells. All the diastereomers of both analogues exhibited unique biological activity profiles depending upon the configurations of the C-1 and C-3 hydroxyl groups, the C-2 methyl group in ring A, and the C-20 methyl group in the side chain. Of the eight possible diastereomers of the 2-methyl analogues, 2alpha-methyl-1alpha,25(OH)(2)D(3) was the most potent and exhibited comparable or even greater biological potency than 1alpha,25(OH)(2)D(3). Of the eight possible diastereomers of the 2-methyl-20-epi analogues, 2alpha-methyl-20-epi-1alpha,25(OH)(2)D(3) was the most potent and exhibited 100- to 200-fold higher transcriptional potencies than 1alpha,25(OH)(2)D(3) and exceptionally high cell regulatory activities. 2beta-methyl-20-epi-1alpha,25(OH)(2)D(3) was nearly as potent as its 2-epimer, 2alpha-methyl-20-epi-1alpha,25(OH)(2)D(3), whereas its 20-epimer, 2beta-methyl-1alpha,25(OH)(2)D(3), was almost completely biologically inactive. In these respects, it can be postulated that the double modification of 2-methyl substitution and 20-epimerization to 1alpha,25(OH)(2)D(3) induces remarkable changes

  3. Novel dichlorophenyl urea compounds inhibit proliferation of human leukemia HL-60 cells by inducing cell cycle arrest, differentiation and apoptosis.

    PubMed

    Figarola, James L; Weng, Yehua; Lincoln, Christopher; Horne, David; Rahbar, Samuel

    2012-08-01

    Two novel dichlorophenyl urea compounds, SR4 and SR9, were synthesized in our laboratory and evaluated for anti-cancer activities. Specifically, we investigated the antiproliferative properties of these new compounds on promyelocytic HL-60 leukemia cells by analyzing their effects on cell differentiation, cell cycle progression and apoptosis. SR4 and SR9 were both cytotoxic to HL-60 cells in a dose-and time-dependent manner, with IC(50) of 1.2 μM and 2.2 μM, respectively, after 72 h treatment. Both compounds strongly suppressed growth of HL-60 cells by promoting cell cycle arrest at the G0/G1 transition, with concomitant decrease in protein levels of cyclins D1 and E2 and cyclin-dependent kinases (CDK 2 and CDK 4), and increased protein expression of CDK inhibitors p21(WAF1/Cip1) and p27(Kip1). In addition, either compounds induce cell differentiation as detected by increased NBT staining and expression of CD11b and CD14. Treatment with SR compounds also promoted mitochondrial-dependent apoptosis as confirmed by Annexin V-FITC double staining, DNA fragmentation, increased expression of caspase 3, 7 and 9, cytochrome c release, PARP degradation, and collapse in mitochondrial membrane potential (ΔΨ(MT)). Collectively, these results provide evidence that SR4 and SR9 have the potential for the treatment of human leukemia and merit further investigation as therapeutic agents against other types of cancer. PMID:21728022

  4. Arsenic trioxide induces oxidative stress, DNA damage, and mitochondrial pathway of apoptosis in human leukemia (HL-60) cells

    PubMed Central

    2014-01-01

    Background Acute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia (AML), which accounts for approximately 10% of all acute myloid leukemia cases. It is a blood cancer that is formed by chromosomal mutation. Each year in the United States, APL affects about 1,500 patients of all age groups and causes approximately 1.2% of cancer deaths. Arsenic trioxide (ATO) has been used successfully for treatment of APL patients, and both induction and consolidated therapy have resulted in complete remission. Recently published studies from our laboratory have demonstrated that ATO pharmacology as an anti-leukemic drug is associated with cytotoxic and genotoxic effects in leukemia cells. Methods In the present study, we further investigated the detailed molecular mechanism of ATO-mediated intrinsic pathway of apoptosis; using HL-60 cells as a test model. Oxidative stress was assessed by spectrophotometric measurements of MDA and GSH levels while genotoxicity was determined by single cell gel electrophoresis (Comet assay). Apoptosis pathway was analyzed by Western blot analysis of Bax, Bcl2 and caspase 3 expression, as well as immunocytochemistry and confocal imaging of Bax and Cyt c translocation and mitochondrial membrane potential depolarization. Results ATO significantly (p < 0.05) induces oxidative stress, DNA damage, and caspase 3 activityin HL-60 cells in a dose-dependent manner. It also activated the intrinsic pathway of apoptosis by significantly modulating (p < 0.05) the expression and translocation of apoptotic molecules and decreasing the mitochondrial membrane potential in leukemia cells. Conclusion Taken together, our research demonstrated that ATO induces mitochondrial pathway of apoptosis in HL-60 cells. This apoptotic signaling is modulated via oxidative stress, DNA damage, and change in mitochondrial membrane potential, translocation and upregulation of apoptotic proteins leading programmed cell death. PMID:24887205

  5. Regulated expression of the MRP8 and MRP14 genes during terminal differentiation of human promyelocytic leukemic HL-60 cells

    SciTech Connect

    Warner-Bartnicki, A.L.; Murao, S.; Collart, F.R.; Huberman, E.

    1992-02-14

    The calcium-binding proteins MRP8 and MRP14 are induced during monomyelocytic cell maturation and may mediate the growth arrest in differentiating HL-60 cells. We determined the levels of a protein complex (PC) containing MRP8 and MRP14 and investigated the mechanism by which the genes encoding these proteins are regulated in HL-60 cells treated with the differentiation-inducing agent mycophenolic acid. Elevated levels of the PC were found to directly parallel gains in the steady-state levels of MRP8 and MRP14 mRNA. Transcription studies with the use of nuclear run-on experiments revealed increased transcription initiation at the MRP8 and MRP14 promoters after MPA treatment. 1{alpha},25-Dihydroxyvitamin D{sub 3}, which induces HL-60 cell differentiation by another mechanism, was also found to increase transcription initiation at the MRP8 and MRP14 promoters, suggesting that this initiation is the major control of MRP8 and MRP14 gene expression during terminal differentiation of human promyelocytic cells.

  6. BCL-x{sub L}/MCL-1 inhibition and RARγ antagonism work cooperatively in human HL60 leukemia cells

    SciTech Connect

    Perri, Mariarita; Yap, Jeremy L.; Yu, Jianshi; Cione, Erika; Fletcher, Steven; Kane, Maureen A.

    2014-10-01

    The acute promyelocytic leukemia (APL) subtype of acute myeloid leukemia (AML) is characterized by chromosomal translocations that result in fusion proteins, including the promyelocytic leukemia–retinoic acid receptor, alpha fusion protein (PML–RARα). All-trans retinoic acid (atRA) treatment is the standard drug treatment for APL yielding cure rates >80% by activating transcription and proteasomal degradation of retinoic acid receptor, alpha (RARα). Whereas combination therapy with As{sub 2}O{sub 3} has increased survival further, patients that experience relapse and are refractory to atRA and/or As{sub 2}O{sub 3} is a clinically significant problem. BCL-2 family proteins regulate apoptosis and over-expression of anti-apoptotic B-cell leukemia/lymphoma 2 (BCL-2) family proteins has been associated with chemotherapeutic resistance in APL including impairment of the ability of atRA to induce growth arrest and differentiation. Here we investigated the novel BH3 domain mimetic, JY-1-106, which antagonizes the anti-apoptotic BCL-2 family members B-cell lymphoma-extra large (BCL-x{sub L}) and myeloid cell leukemia-1 (MCL-1) alone and in combination with retinoids including atRA, AM580 (RARα agonist), and SR11253 (RARγ antagonist). JY-1-106 reduced cell viability in HL-60 cells alone and in combination with retinoids. The combination of JY-1-106 and SR11253 had the greatest impact on cell viability by stimulating apoptosis. These studies indicate that dual BCL-x{sub L}/MCL-1 inhibitors and retinoids could work cooperatively in leukemia treatment. - Highlights: • Novel Bcl-x{sub L}/Mcl-1 inhibitor JY-1-106 reduces HL60 cell viability. • JY-1-106 is investigated in combination with retinoic acid, AM580, and SR11253. • AM580 is an RARα agonist; SR11253 is an RARγ antagonist. • Combined use of JY-1-106/SR11253 exhibited the greatest cell viability reduction. • JY-1-106 alone or in combination with retinoids induces apoptosis.

  7. Microarray analysis of responsible genes in increased growth rate in the subline of HL60 (HL60RG) cells.

    PubMed

    Luan, Yang; Kogi, Mieko; Rajaguru, Palanisamy; Ren, Jin; Yamaguchi, Teruhide; Suzuki, Kazuhiro; Suzuki, Takayoshi

    2012-03-01

    HL60RG, a subline of human promyelocytic leukemia HL60 cells, has a increased growth rate than their parental cells. To gain information of the mechanisms involved in the increased growth rate of HL60RG, we performed a multiplex fluorescence in situ hybridization (M-FISH), standard cytogenetics analysis (G-banding) and genome scan using 10K SNP mapping array on both cell types. Characteristic genomic alterations in HL60RG cells were identified including uniparental disomy (UPD) of chromosome 1, and hemizygous deletion in 10p and 11p. However, no such defects were observed in HL60 cells. Changes in gene expression in HL60RG cells were determined using expression arrays (Affymetrix GeneChip, HU133A). Candidate genes associated with the rapid growth of HL60RG cells were identified. Two tumor necrosis factor receptors, TNFRSF1B (type II tumor necrosis factor-α receptor) and TNFRSF8 (also known as a tumor marker CD30), which are adjacently located on chromosome 1 showed opposing changes in gene expression in HL60RG cells-over-expression of TNFRSF8 and repression of TNFRSF1B. Differences in the DNA methylation status in the transcriptional regulatory regions of both genes between HL60 and HL60RG was detected by a methylation-specific PCR assay. In conclusion, alterations in chromosome and gene expression in HL60RG may be associated with increased growth rate. PMID:22032829

  8. Overcoming MDR-associated chemoresistance in HL-60 acute myeloid leukemia cells by targeting sphingosine kinase-1.

    PubMed

    Bonhoure, E; Pchejetski, D; Aouali, N; Morjani, H; Levade, T; Kohama, T; Cuvillier, O

    2006-01-01

    We examined the involvement of sphingosine kinase-1, a critical regulator of the sphingolipid balance, in susceptibility to antineoplastic agents of either sensitive or multidrug-resistant acute myeloid leukemia cells. Contrary to parental HL-60 cells, doxorubicin and etoposide failed to trigger apoptosis in chemoresistant HL-60/Doxo and HL-60NP16 cells overexpressing MRP1 and MDR1, respectively. Chemosensitive HL-60 cells displayed sphingosine kinase-1 inhibition coupled with ceramide generation. In contrast, chemoresistant HL-60/ Doxo and HL-60/VP16 had sustained sphingosine kinase-1 activity and did not produce ceramide during treatment. Enforced expression of sphingosine kinase-1 in chemosensitive HL-60 cells resulted in marked inhibition of apoptosis that was mediated by blockade of mitochondrial cytochrome c efflux hence suggesting a control of apoptosis at the pre-mitochondrial level. Incubation with cell-permeable ceramide of chemoresistant cells led to a sphingosine kinase-1 inhibition and apoptosis both prevented by sphingosine kinase-1 over-expression. Furthermore, F-12509a, a new sphingosine kinase inhibitor, led to ceramide accumulation, decrease in sphingosine 1-phosphate content and caused apoptosis equally in chemosensitive and chemoresistant cell lines that is inhibited by adding sphingosine 1-phosphate or overexpressing sphingosine kinase-1. F-12509a induced classical apoptosis hallmarks namely nuclear fragmentation, caspase-3 cleavage as well as downregulation of antiapoptotic XIAP, and release of cytochrome c and SMAC/Diablo. PMID:16281067

  9. Actin distribution patterns in HL-60 leukemia cells treated with etoposide.

    PubMed

    Grzanka, A

    2001-10-01

    Localization of actin was studied in HL-60 leukemia cells after treatment with the anticancer agent etoposide for 3 days in a range of concentrations (0.02-200 microM). Significant changes in morphology of the cells and F-actin distribution patterns labelled with TRITC-phalloidin occurred only after treatment with 100 and 200 microM etoposide. In comparison with control cells, the number of cells decreased, cells were larger and almost all treated cells had irregular surfaces with lamellipodia. F-actin was distributed in a punctate pattern throughout the cytoplasm after treatment. In some treated cells, fluorescence appeared as a bright haze, whereas in other cells it formed a network. Treated cells also showed bright fluorescence at their periphery. Immunogold labelling of actin was observed in cells whether or not treated with etoposide. Labelling was found in the nucleus and also in the cytoplasm. At the ultrastructural level, cells treated with 100 and 200 microM etoposide showed increased positivity for actin in relation with blebbing, margination of nuclear chromatin and bodies containing recognizable nuclear fragments. These findings indicate that alterations in expression of actin in HL-60 cells after treatment with etoposide is dose-dependent and related with apoptosis. PMID:11700950

  10. Steamed ginseng-leaf components enhance cytotoxic effects on human leukemia HL-60 cells.

    PubMed

    Tung, Nguyen Huu; Song, Gyu Yong; Minh, Chau Van; Kiem, Phan Van; Jin, Long Guo; Boo, Hye-Jin; Kang, Hee-Kyoung; Kim, Young Ho

    2010-08-01

    Three new dammarane-type glycosides, named ginsenosides SL(1)-SL(3) (1-3), and eleven known compounds (4-14) were isolated from the heat-processed leaves of Panax ginseng. Their structures were elucidated on the basis of extensive chemical and spectroscopic methods. Cytotoxic-activity testing of compounds 1-14 against human leukemia HL-60 cells showed that ginsenosides Rh(3) (11) and Rk(2) (12) exhibited potent effects with IC(50) values of 0.8 and 0.9 microM. In addition, ginsenosides SL(3) (3), 20S-Rg(2) (7), F(4) (10), 20S-Rh(2) (13) displayed strong activity with IC(50) values of 9.0, 9.0, 7.5, and 8.2 microM, respectively. This is the first report on chemical components of the steamed ginseng leaves. PMID:20686271

  11. Ganoderma lucidum polysaccharide exerts anti-tumor activity via MAPK pathways in HL-60 acute leukemia cells.

    PubMed

    Yang, Guohua; Yang, Lei; Zhuang, Yun; Qian, Xifeng; Shen, Yunfeng

    2016-01-01

    In this study, we investigated the anti-tumor activity both in vitro and in vivo of a polysaccharide obtained from Ganoderma lucidum on HL-60 acute myeloid leukemia cells, and focused on its targeting effect on mitogen-activated protein kinase (MAPK) pathways. It was found by the methods such as western blot and flow cytometry (FCM), that G. lucidum polysaccharide (GLP) blocked the extracellular signal-regulated kinase/MAPK signaling pathway, simultaneously activated p38 and JNK MAPK pathways, and therefore regulated their downstream genes and proteins, including p53, c-myc, c-fos, c-jun, Bcl-2, Bax, cleaved caspase-3 and cyclin D1. As a result, cycle arrest and apoptosis of HL-60 cells were induced. Therefore, GLP exerted anti-tumor activity via MAPK pathways in HL-60 acute leukemia cells. PMID:25327706

  12. Activation of 2',5'-oligoadenylate synthetase activity on induction of HL-60 leukemia cell differentiation.

    PubMed Central

    Schwartz, E L; Nilson, L A

    1989-01-01

    A 27-fold increase in 2',5'-oligoadenylate synthetase activity, an enzyme associated with the antiproliferative actions of interferon (IFN), was observed after treatment of HL-60 human leukemia cells with dimethyl sulfoxide (DMSO), an inducer of granulocytic differentiation of the cells. Enzyme activity was elevated after 24 h of exposure to DMSO, was maximal at 48 hours, and declined thereafter. A comparable increase was observed after treatment with 1 U of alpha interferon (IFN-alpha) per ml or 8 U of beta interferon (IFN-beta) per ml. Elevated levels of expression of other IFN-inducible genes, including type I histocompatibility antigen (HLA-B) mRNA and 2',5'-oligoadenylate phosphodiesterase activity, were also observed with DMSO treatment. DMSO-treated HL-60 cells had an increased amount of a 1.8-kilobase mRNA for oligoadenylate [oligo(A)] synthetase when compared with that of control cells; both DMSO- and IFN-treated HL-60 cells also expressed 1.6-, 3.4-, and 4.3-kilobase mRNA. The increase in both oligo(A) synthetase activity and mRNA levels was inhibited by polyclonal antiserum to human IFN-alpha; however, no IFN-alpha mRNA could be detected in the cells. Antiserum to IFN-beta or gamma interferon (IFN-gamma) had no effect on oligo(A) synthetase expression or activity nor was there any detectable IFN-beta 1 or IFN-beta 2 mRNA in the cells. The anti-IFN-alpha serum did not block the elevation of HLA-B mRNA in DMSO-treated cells. These observations suggest that the increased expression of oligo(A) synthetase in DMSO-treated cells may be mediated by the release of an IFN-alpha-like factor; however, the levels of any IFN-alpha mRNA produced in the cells were extremely low. Images PMID:2476665

  13. Acute Promyelocytic Leukemia

    PubMed Central

    Kingsley, Edwin C.; Durie, Brian G. M.; Garewal, Harinder S.

    1987-01-01

    Acute promyelocytic leukemia (APL) is a subtype of acute myelogenous leukemia frequently associated with disseminated intravascular coagulation (DIC). Data on 11 patients with APL treated at our institution were analyzed and compared with those of 147 published cases. Most had a bleeding diathesis at presentation and evidence of DIC eventually developed in all. Seven patients (64%) showed the t(15;17)(q22;q21) karyotype or a similar translocation. Using a chemotherapy induction regimen containing an anthracycline, complete remission, requiring a total of 14 courses of treatment, was achieved in six patients (55%). The median duration of response and median survival for complete responders were 10 and 15 months, respectively. Three patients (27%) died of bleeding complications during induction therapy. The tritiated-thymidine labeling index of leukemia cells predicted which patients would achieve a complete remission. Review of six studies of 147 patients with APL from the past 12 years supports the use of a chemotherapy induction regimen containing anthracycline or amsacrine and heparin for the treatment of DIC. PMID:3472414

  14. Histamine increases cytosolic Ca2+ in HL-60 promyelocytes predominantly via H2 receptors with an unique agonist/antagonist profile and induces functional differentiation.

    PubMed

    Seifert, R; Höer, A; Schwaner, I; Buschauer, A

    1992-08-01

    Histamine H1 receptors mediate activation of phospholipase C, with subsequent increases in cytosolic Ca2+ concentration ([Ca2+]i), and H2 receptors mediate accumulation of cAMP. HL-60 promyelocytes possess H2 receptors, but it is not known whether these cells also possess H1 receptors. We studied the effects of histamine on [Ca2+]i and the functional importance of histamine receptors in HL-60 promyelocytes. In these cells, histamine and dimaprit increased [Ca2+]i with EC50 values of 15 microM and 30 microM, respectively. Diphenhydramine inhibited the effect of histamine (100 microM) on [Ca2+]i up to 40%, with an IC50 of 100 nM. Famotidine and cimetidine diminished the effect of histamine (100 microM) up to 75%, with IC50 values of 85 nM and 300 nM, respectively. Diphenhydramine plus famotidine abolished histamine-induced rises in [Ca2+]i. Impromidine, with an IC50 of 100 nM, abolished the effect of histamine (100 microM) on [Ca2+]i. Diphenhydramine, famotidine, cimetidine, and impromidine showed marked noncompetitive antagonism with histamine. Histamine-induced increases in [Ca2+]i were largely due to influx of Ca2+ from the extracellular space. Ca2+ influx was inhibited by 1-(beta-[3-(4-methoxyphenyl)propoxyl]-4-methoxyphenethyl)-1H-imida zole hydrochloride (SK&F 96365). Histamine activated phospholipase C. Histamine induced expression of formyl peptide receptors, which effect was abolished by famotidine. In U-937 promonocytes and in the human erythroleukemia cell lines HEL and K-562, histamine did not induce rises in [Ca2+]i. Our data suggest the following. (i) In HL-60 promyelocytes, histamine increases [Ca2+]i predominantly via H2 receptors and to a lesser extent via H1 receptors. (ii) The agonist/antagonist profile of the H2 receptor-mediated increases in [Ca2+]i differs markedly from that for cAMP accumulation, suggesting the involvement of different H2 receptor subtypes. (iii) In HL-60 promyelocytes, histamine activates nonselective cation channels and

  15. Arsenic trioxide suppresses transcription of hTERT through down-regulation of multiple transcription factors in HL-60 leukemia cells.

    PubMed

    Zhang, Yao; Sun, Miao; Shi, Weiwei; Yang, Qingling; Chen, Changjie; Wang, Zhiwei; Zhou, Xin

    2015-01-22

    Acute promyelocytic leukemia (APL) is largely caused by the t(15,17) chromosome translocation, leading to the production of the PML/retinoic acid receptor alpha fusion. All-trans retinoic acid (ATRA) and arsenic trioxide (ATO), as a monotherapy or combination therapy, have been successfully used to treat APL primarily by targeting the degradation of the fusion protein. We previously observed that ATO treatment induced cell death in APL cell line HL-60 accompanied by inhibition of the human telomere reverse transcriptase (hTERT) activity, a critical enzyme responsible for the control of cell replication and transformation in cancer cells. In the present study, we investigated the underlying mechanism by which hTERT activity is inhibited by ATO in HL-60 cells. Our results showed that ATO down-regulated the expression of hTERT at both mRNA and protein levels. Further molecular analysis revealed that the expression of four transcription factors Sp1, c-Myc, NF-κB and USF2, which are located in the proximate promoter region (-1126 to -47) of hTERT, was also suppressed by ATO. Notably, we observed that down-regulation of these four factors by their siRNAs potentiates ATO-induced cell growth inhibition and apoptosis. Therefore, our results provide a novel mechanism of action of ATO for the treatment of APL. PMID:25436934

  16. Mitochondrial and endoplasmic reticulum stress-induced apoptotic pathways are activated by 5-aminolevulinic acid-based photodynamic therapy in HL60 leukemia cells.

    PubMed

    Grebenová, Dana; Kuzelová, Katerina; Smetana, Karel; Pluskalová, Michaela; Cajthamlová, Hana; Marinov, Iuri; Fuchs, Ota; Soucek, Josef; Jarolím, Petr; Hrkal, Zbynek

    2003-02-01

    We studied the mechanism of the cytotoxic effects of 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT; induction with 1 mM ALA for 4 h followed by a blue light dose of 18 J/cm(2)) on the human promyelocytic leukemia cell line HL60 using biochemical and electron microscopy methods. The disruption of mitochondrial membrane potential, deltapsi(m), was paralleled by a decrease in ATP level, unmasking of the mitochondrial antigen 7A6, release of cytochrome c into the cytoplasm, activation of caspases 9 and 3 and cleavage of poly(ADP-ribose) polymerase (PARP). This was followed by DNA fragmentation. These data suggest that ALA-PDT activates the mitochondrial apoptotic pathway. The level of endoplasmic reticulum Ca(2+)-binding chaperones ERp57 and ERp72 and of anti-apoptotic proteins Bcl-2 and Bcl-x(L) was decreased whereas that of Ca(2+)-binding protein calmodulin and the stress protein HSP60 was elevated following ALA-PDT. Inhibition of the initiator caspase 9, execution caspase 3 and Ca(2+)-dependent protease m-calpain, did not prevent DNA fragmentation. We conclude that, in our in vitro model, ALA-based photodynamic treatment initiates several signaling processes in HL60 cells that lead to rapidly progressing apoptosis, which is followed by slow necrosis. Two apoptotic processes proceed in parallel, one representing the mitochondrial pathway, the other involving disruption of calcium homeostasis and activation of the endoplasmic reticulum stress-mediated pathway. PMID:12633980

  17. Enhancement of caffeic acid phenethyl ester on all-trans retinoic acid-induced differentiation in human leukemia HL-60 cells

    SciTech Connect

    Kuo, H.-C.; Kuo, W.-H.; Lee, Y.-J.; Wang, C.-J.; Tseng, T.-H. . E-mail: tht@csmu.edu.tw

    2006-10-01

    All-trans retinoic acid (ATRA) induces complete remission in a high proportion of patients with acute promyelocytic leukemia (APL); however, the response is sometimes very slow. Furthermore, relapse and resistance to treatment often occur despite continued treatment with ATRA. Thereafter, combination treatment strategies have been suggested to circumvent these problems. The present study demonstrates that caffeic acid phenethyl ester (CAPE), a major component of honeybee propolis, enhanced ATRA-induced granulocytic differentiation in HL-60, a human promyelocytic cell line. The differentiation was assessed by Wright-Giemsa stain, nitroblue tetrazolium reduction, and membrane differentiation marker CD11b. In addition, CAPE enhanced ATRA-induced cell cycle arrest at the G1 phase by decreasing the association of cdk2-cyclin E complex. Finally, it was demonstrated that CAPE promoted the ATRA-mediated nuclear transcription activation of RAR{alpha} assessed by EMSA assay and enhanced the expression of target genes including RAR{alpha}, C/EBP{epsilon}, and p21 protein resulting in the differentiation development of leukemia. It is suggested that CAPE possesses the potential to enhance the efficiency of ATRA in the differentiation therapy of APL.

  18. In vitro and in vivo activity of gallic acid and Toona sinensis leaf extracts against HL-60 human premyelocytic leukemia.

    PubMed

    Huang, Pei-Jane; Hseu, You-Cheng; Lee, Meng-Shiou; Senthil Kumar, K J; Wu, Chi-Rei; Hsu, Li-Sung; Liao, Jiunn-Wang; Cheng, I-Shiung; Kuo, Ya-Ting; Huang, Shi-Ying; Yang, Hsin-Ling

    2012-10-01

    Toona sinensis is one of the most popular vegetarian cuisines in Taiwan and it has been shown to induce apoptosis in cultured human premyelocytic leukemia (HL-60) cells. In the present study, we examined the effects of T. sinensis leaf extracts (TS extracts) on tumor regression using in vitro cell culture and an in vivo athymic nude mice model. We found that TS extracts (10-75 μg/mL) arrested HL-60 cells at the G1-S transition phase through the reductions of Cyclin D1, CDK4, Cyclin E, CDK2, and Cyclin A, and induction of CDK inhibitor p27KIP levels. Furthermore, VEGF expression and release was significantly inhibited by TS extracts. Notably, TS extracts treatment was effective in terms of delaying tumor incidence in the nude mice inoculated with HL-60 cells as well as reducing the tumor burden. Histological analysis confirmed that TS extracts significantly modulated tumor progression in xenograft tumor. Furthermore, a similar pattern of results were observed from gallic acid (5 and 10 μg/mL), a major compound in TS, caused G1 arrest through regulations of cell-cycle regulatory proteins. Our data suggest that T. sinensis exerts antiproliferative effects on HL-60 cells in vitro and in vivo due mainly to the presence of gallic acid. PMID:22771367

  19. An oligomer complementary to c-myc mRNA inhibits proliferation of HL-60 promyelocytic cells and induces differentiation.

    PubMed Central

    Holt, J T; Redner, R L; Nienhuis, A W

    1988-01-01

    To study the role of a nuclear proto-oncogene in the regulation of cell growth and differentiation, we inhibited HL-60 c-myc expression with a complementary antisense oligomer. This oligomer was stable in culture and entered cells, forming an intracellular duplex. Incubation of cells with the anti-myc oligomer decreased the steady-state levels of c-myc protein by 50 to 80%, whereas a control oligomer did not significantly affect the c-myc protein concentration. Direct inhibition of c-myc expression with the anti-myc oligomer was associated with a decreased cell growth rate and an induction of myeloid differentiation. Related antisense oligomers with 2- to 12-base-pair mismatches with c-myc mRNA did not influence HL-60 cells. Thus, the effects of the antisense oligomer exhibited sequence specificity, and furthermore, these effects could be reversed by hybridization competition with another complementary oligomer. Antisense inhibition of a nuclear proto-oncogene apparently bypasses cell surface events in affecting cell proliferation and differentiation. Images PMID:3280975

  20. Ultraviolet light-emitting diode irradiation-induced cell death in HL-60 human leukemia cells in vitro

    PubMed Central

    XIE, DONG; SUN, YAN; WANG, LINGZHEN; LI, XIAOLING; ZANG, CHUANNONG; ZHI, YUNLAI; SUN, LIRONG

    2016-01-01

    Ultraviolet (UV) radiation is considered to be a potent cell-damaging agent in various cell lineages; however, the effect of UV light-emitting diode (LED) irradiation on human cells remains unclear. The aim of the present study was to examine the effect of UV LED irradiation emitting at 280 nm on cultured HL-60 human leukemia cells, and to explore the underlying mechanisms. HL-60 cells were irradiated with UV LED (8, 15, 30 and 60 J/m2) and incubated for 2 h after irradiation. The rates of cell proliferation and apoptosis, the cell cycle profiles and the mRNA expression of B-cell lymphoma 2 (Bcl-2) were detected using cell counting kit-8, multicaspase assays, propidium iodide staining and reverse transcription-quantitative polymerase chain reaction, respectively. The results showed that UV LED irradiation (8–60 J/m2) inhibited the proliferation of HL-60 cells in a dose-dependent manner. UV LED at 8–30 J/m2 induced dose-dependent apoptosis and G0/G1 cell cycle arrest, and inhibited the expression of Bcl-2 mRNA, while UV LED at 60 J/m2 induced necrosis. In conclusion, 280 nm UV LED irradiation inhibits proliferation and induces apoptosis and necrosis in cultured HL-60 cells. In addition, the cell cycle arrest at the G0/G1 phase and the downregulation of Bcl-2 mRNA expression were shown to be involved in UV LED-induced apoptosis. PMID:26820261

  1. Sonodynamic therapy induces apoptosis of human leukemia HL-60 cells in the presence of protoporphyrin IX.

    PubMed

    Su, Xiaomin; Wang, Xiaobing; Zhang, Kun; Yang, Shuang; Liu, Quanhong; Leung, Albert W; Xu, Chuanshan; Wang, Pan

    2016-04-01

    Sonodynamic therapy (SDT) is expected to be a novel therapeutic strategy for tumor. The protoporphyrin IX disodium salt (PpIX), a photosensitizer, can be activated by ultrasound. The present study aims to investigate apoptosis of HL-60 cells induced by PpIX-mediated SDT. 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was adopted to examine cell toxicity. Apoptosis was detected using Annexin V-PE/7-amino-actinomycin D (7-AAD) double staining. Detection of apoptotic bodies was examined by Hoechst33342 (HO) staining. Western blotting was used to analyze the protein of caspase-3 and poly ADP-ribose polymerase (PARP). Intracellular reactive oxygen species (ROS) was detected by a flow cytometer after exposures. Compared with PpIX alone and ultrasound alone groups, the synergistic cytotoxicity of PpIX plus ultrasound were significantly boosted. In addition, as determined by Annexin V-PE/7-AAD staining, SDT significantly induced HL-60 cell apoptosis, the obvious nuclear condensation was also found with HO staining at 4 hours post-SDT treatment. Furthermore, Western blotting showed visible enhancement of caspase-3 and PARP cleavage in this process. Besides, intracellular ROS production was significantly enhanced after SDT. Our findings demonstrate that PpIX-mediated SDT could induce apoptosis on HL-60 cells, suggesting that apoptosis is an important mechanism of cell death induced by PpIX-mediated SDT. PMID:26891272

  2. Cytotoxic Effects of Tetracycline Analogues (Doxycycline, Minocycline and COL-3) in Acute Myeloid Leukemia HL-60 Cells

    PubMed Central

    Maguire, Kim R.; Sidén, Åke; Potácová, Zuzana

    2014-01-01

    Tetracycline analogues (TCNAs) have been shown to inhibit matrix metalloproteinases and to induce apoptosis in several cancer cell types. In the present study, the cytotoxic effects of TCNAs doxycycline (DOXY), minocycline (MINO) and chemically modified tetracycline-3 (COL-3) were investigated in the human acute myeloid leukemia HL-60 cell line. Cells were incubated with TCNAs in final concentrations of 0.5–100 µg/ml for 24 h. Viability of the leukemic cells was inhibited in a concentration-dependent manner using resazurin assay. The estimated IC50s were 9.2 µg/ml for DOXY, 9.9 µg/ml for MINO and 1.3 µg/ml for COL-3. All three TCNAs induced potent cytotoxic effects and cell death. Apoptosis, which was assessed by morphological changes and annexin V positivity, was concentration- and time-dependent following incubation with any one of the drugs. TCNAs induced DNA double strand breaks soon after treatment commenced as detected by γH2AX and western blot. The loss of mitochondrial membrane potential (Δψm), caspase activation and cleavage of PARP and Bcl-2 were observed; however, the sequence of events differed among the drugs. Pancaspase inhibitor Z-VAD-FMK improved survival of TCNAs-treated cells and decreased TCNAs-induced apoptosis. In summary, we demonstrated that TCNAs had a cytotoxic effect on the HL-60 leukemic cell line. Apoptosis was induced via mitochondria-mediated and caspase-dependent pathways in HL-60 cells by all three TCNAs. COL-3 exerted the strongest anti-proliferative and pro-apoptotic effects in concentrations that have been achieved in human plasma in reported clinical trials. These results indicate that there is a therapeutic potential of TCNAs in leukemia. PMID:25502932

  3. Neutrophil elastase activity in differentiating HL-60 promyelocytes is decreased by culture with ethanol and elastase deficient neutrophils are produced in alcoholics

    SciTech Connect

    Sachs, C.; Christianson, R.; Pratt, P.; Lynn, W.

    1987-05-01

    Serum-free culture of HL-60 in the presence of recombinant Granulocyte-Macrophage Colony Stimulating Factor in four days elicits a five-fold increase in esterolytic neutrophil elastase (NE) like activity measured with methoxy-succinyl-ala-ala-pro-val p-nitroanilide and purified NE standard but does not cause terminal differentiation. Simultaneous exposure to 0.2, 0.4, or 0.6% (vol./vol.) ethanol blocks this increase in NE activity. Exposure to 0.85% ethanol promotes terminal differentiation to elastase-deficient granulocytes which as been described using DMSO. To ascertain if ethanol may have similar effects on granulocytic differentiation in vivo, they compared oxidase and elastase activities of PMN's in male alcoholics on a binge (ethanol > 200 mg/dl.). In 29 patients an average of 872 (+/- 237) (SD) ng./10/sup 6/ PMN's of active NE was found compared to 1571 (+/- 177) in 13 controls. Patients admitted for treatment of alcoholism had similar NE activity in 3-4 days, showed a slight increase in activity within one week and had NE activity comparable to controls within 2-3 weeks. These findings support the previous observation that smoking related emphysema is less prevalent and severe in patients who regularly consume alcohol. They conclude that ethanol may visibly alter responsiveness of promyelocytic precursors to regulatory differentiating factors.

  4. Genetics Home Reference: acute promyelocytic leukemia

    MedlinePlus

    ... acute myeloid leukemia, a cancer of the blood-forming tissue ( bone marrow ). In normal bone marrow, hematopoietic ... 7186-203. Review. Citation on PubMed de Thé H, Chen Z. Acute promyelocytic leukaemia: novel insights into ...

  5. A novel combination of oridonin and valproic acid in enhancement of apoptosis induction of HL-60 leukemia cells.

    PubMed

    Shi, Meiyan; Ren, Xia; Wang, Xidi; Wang, Hengxiao; Liu, Guoqiang; Yuan, Xiaofen; Zheng, Shubo; Yu, Linchang; Pan, Sufei; Song, Guanhua; Guo, Qiang; Li, Lianlian; Zhang, Xiaoyu; Zhang, Zhiyong; Ding, Huifang; Jiang, Guosheng

    2016-02-01

    Oridonin, obtained from the traditional Chinese herbal medicine rabdosia rubescens, exerts potent antitumor activities in cancer cells. Valproic acid (VPA), as a potent histone deacetylase inhibitor (HDACI), also plays an important role in inhibition of proliferation of tumor cells. However, there are no reports so far on the cooperation between oridonin and VPA for anti-leukemic effect. Therefore, in the present study, we undertook experiments to determine whether lower concentration of oridonin in conjunction with lower concentration of VPA would produce even more encouraging synergistic effect than each of them alone, and to clarify its molecular mechanism. The results demonstrated that the lower concentration of oridonin in combination with lower concentration of VPA synergistically inhibited the proliferation of HL-60 cells, and induced obvious caspase-dependent apoptosis through activation of the intrinsic apoptosis pathway, which is involved in the downregulation of Bcl-2/Bax ratio, release of cytochrome c to cytosol and caspase-9 activation, as well as through the extrinsic apoptosis pathway mediated by Fas/FasL and caspase-8 activation. In addition, MAPK signaling pathway was also involved in apoptosis induced by oridonin plus VPA. Furthermore, the combination treatment in vivo remarkably reduced the xenograft tumor size and triggered tumor cell apoptosis. Taken together, the novel combination of oridonin plus VPA exerted synergistic anti-proliferative and apoptosis-inducing effects on human myeloid leukemia cells, and may serve as a potential promising anti-leukemia strategy. PMID:26676928

  6. Potentiation of Acute Promyelocytic Leukemia Cell Differentiation and Prevention of Leukemia Development in Mice by Oleanolic Acid.

    PubMed

    Rawendra, Reynetha D S; Lin, Ping-Yuan; Chang, Ching-Dong; Hsu, Jue-Liang; Huang, Tzou-Chi; Shih, Wen-Ling

    2015-12-01

    Although differentiation therapy with all-trans retinoic acid (ATRA) induces complete remission in most acute promyelocytic leukemia (APL) patients, it is associated with organ toxicity. The present study focused on investigating the effects of the natural compounds oleanolic acid (OA) and ursolic acid (UA) on proliferation and differentiation of human APL HL-60 cells in vitro and murine APL WEHI-3 cells in vivo. Results demonstrated that OA and UA significantly inhibited cellular proliferation of HL-60 in a concentration- and time-dependent manner. Non-cytotoxic concentration of OA exhibited a marked differentiation-inducing effect on HL-60 and enhanced ATRA-induced HL-60 differentiation. In contrast, UA showed only a moderate effect. Activation of MAPK/NF-κB signaling pathway was likely found to be involved in the mechanism. Moreover, OA increased survival duration of WEHI-3 transplanted BALB/c mice, and decreased leukemia cells infiltration in the liver and spleen. Thus, these results may provide new insight for developing alternative therapy in APL patients. PMID:26637873

  7. α-Tomatine inhibits growth and induces apoptosis in HL-60 human myeloid leukemia cells.

    PubMed

    Huang, Huarong; Chen, Shaohua; Van Doren, Jeremiah; Li, Dongli; Farichon, Chelsea; He, Yan; Zhang, Qiuyan; Zhang, Kun; Conney, Allan H; Goodin, Susan; Du, Zhiyun; Zheng, Xi

    2015-06-01

    α‑Tomatine is a glycoalkaloid that occurs naturally in tomatoes (Lycopersicon esculentum). In the present study, the effects of α‑tomatine on human myeloid leukemia HL‑60 cells were investigated. Treatment of HL‑60 cells with α‑tomatine resulted in growth inhibition and apoptosis in a concentration‑dependent manner. Tomatidine, the aglycone of tomatine had little effect on the growth and apoptosis of HL‑60 cells. Growth inhibition and apoptosis induced by α‑tomatine in HL‑60 cells was partially abrogated by addition of cholesterol indicating that interactions between α‑tomatine and cell membrane‑associated cholesterol may be important in mediating the effect of α‑tomatine. Activation of nuclear factor‑κB by the phorbol ester, 12‑O‑tetradecanoylphorbol‑13‑acetate failed to prevent apoptosis in HL‑60 cells treated with α‑tomatine. In animal experiments, it was found that treatment of mice with α‑tomatine inhibited the growth of HL‑60 xenografts in vivo. Results from the present study indicated that α‑tomatine may have useful anti‑leukemia activities. PMID:25625536

  8. Arsenic Trioxide (ATO) cooperates with All Trans Retinoic Acid (ATRA) to enhance MAPK activation and differentiation in Human Myeloblastic Leukemia (HL-60) cells

    PubMed Central

    Nayak, Satyaprakash; Shen, Miaoqing; Varner, Jeffrey D.; Yen, Andrew

    2016-01-01

    Arsenic trioxide (ATO) synergistically promotes retinoic acid (RA)-induced differentiation of HL-60 myeloblastic leukemia cells, a PML-RARα negative cell line. In PML-RARα positive myeloid leukemia cells, ATO is known to cause degradation of PML-RARα with subsequent induced myeloid differentiation. We find now that ATO by itself does not cause differentiation of the PML-RARα negative HL-60 cells, but enhances RA’s capability to cause differentiation. RA-induced differentiation of HL-60 cells is known to be propelled by an induced hyperactive/persistent MAPK signal. ATO augmented RA induced RAF/MEK/ERK axis signaling and expression of CD11b, an integrin receptor that is a myeloid differentiation marker. p47PHOX, a component of the respiratory burst machinery and inducible oxidative metabolism, functional differentiation marker were also enhanced. However, ATO did not enhance RA-induced CD38 expression, an early cell surface differentiation marker. ATO enhanced RA-induced population growth retardation without evidence of apoptosis or an enhanced G1/0 growth arrest. But compared to RA, ATO plus RA showed reduced pAKT, suggesting that an overall biosynthetic/metabolic retardation was seminal to the apparent enhanced growth retardation due to ATO. In sum, our results indicate that ATO can augment action of RA in causing differentiation of myeloid leukemia cells through promoting MAPK signaling and independent of PML-RARα. PMID:20615082

  9. Ceramide 1-phosphate, a novel phospholipid in human leukemia (HL-60) cells. Synthesis via ceramide from sphingomyelin

    SciTech Connect

    Dressler, K.A.; Kolesnick, R.N. )

    1990-09-05

    Prior studies demonstrated that conversion of sphingomyelin to ceramide via sphingomyelinase action resulted in the generation of free sphingoid bases and inactivation of protein kinase C in human leukemia (HL-60) cells. The present studies define the novel phospholipid ceramide 1-phosphate in these cells and present evidence for formation of this compound by preferential utilization of ceramide derived from spingomyelin. A ceramide 1-phosphate standard, prepared enzymatically via diacylglycerol kinase, was utilized for localization. In cells labeled to equilibrium with 32Pi to label the head group of the molecule, the basal ceramide 1-phosphate level was 30 +/- 2 pmol/10(6) cells. Generation of ceramide via the use of exogenous sphingomyelinase resulted in time- and concentration-dependent formation of ceramide 1-phosphate. As little as 3.8 x 10(-5) units/ml was effective and a 3-fold increase was observed with a maximal concentration of 3.8 x 10(-2) units/ml; ED50 approximately 2 x 10(-4) units/ml. This effect was observed by 5 min and maximal at 30 min. Similarly, in cells labeled with (3H)serine to probe the sphingoid base backbone, the basal level of ceramide 1-phosphate was 39 +/- 5 pmol/10(6) and increased 2.5-fold with sphingomyelinase; ED 50 approximately 5 x 10(-5) units/ml. To determine the source of the phosphate moiety, studies were performed with cells short term labeled with 32Pi and resuspended in medium without radiolabel. Under these conditions, sphingomyelin was virtually unlabeled. Nevertheless, sphingomyelin (3.8 x 10(-2) units/ml) induced a 12-fold increase in radiolabel incorporation, suggesting ceramide 1-phosphate formation occurred via ceramide phosphorylation. This event appeared specific for ceramide derived from sphingomyelin since ceramide from glycosphingolipids was not converted to ceramide 1-phosphate.

  10. Newly Diagnosed Acute Promyelocytic Leukemia

    PubMed Central

    Avvisati, Giuseppe

    2011-01-01

    Acute promyelocytic leukemia (APL) represents a medical emergency with a high rate of early mortality. As a consequence, as soon as the diagnosis is suspected based upon cytologic criteria, it is necessary to start all- trans retinoic acid (ATRA) treatment without delay. For patients with newly diagnosed APL, induction therapy with ATRA plus anthracycline based chemotherapy is recommended. At present the combination of arsenic trioxide plus ATRA should be considered for patients who are not candidates for anthracycline-based therapy. For pediatric and adult patients with APL aged < 60 years who achieve a CR with induction, I recommend 3 intensive courses of consolidation chemotherapy associated to ATRA, targeted on the basis of the risk group at diagnosis. In patients treated with a very intensive consolidation chemotherapy maintenance treatment can be omitted. However If a maintenance treatment has to be adopted I suggest the use of intermittent ATRA for 15 days every 3 months for a period of 2 years, rather than ATRA associated to chemotherapy. Moreover, taking into account the medical literature, a reduced dosage of ATRA ( 25 mg/m2) in pediatric patients and a consolidation chemotherapy of reduced intensity in elderly patients is recommended. Furthermore, in order to maximize survival, careful attention should be reserved to the coagulopathy and to the appearance of the differentiation syndrome. Finally, PCR for the PML/RARA fusion gene on a bone marrow specimen every three months for two years, and then every six months for additional three years are needed during the follow-up. PMID:22220261

  11. Cytoskeletal reorganization during process of apoptosis induced by cytostatic drugs in K-562 and HL-60 leukemia cell lines.

    PubMed

    Grzanka, A; Grzanka, D; Orlikowska, M

    2003-10-15

    The aim of the present study was to investigate the reorganization of F-actin, vimentin and tubulin in K-562 and HL-60 cell lines during apoptosis induced by etoposide, doxorubicin and taxol. The distribution of cytoskeletal proteins was analyzed by fluorescence microscopy. Actin was also studied by confocal microscopy and at the ultrastructural level. Changes in the distribution of cytoskeletal proteins were found to be dose-dependent and appeared to be more intense in HL-60 cells. Etoposide- and doxorubicin-treated cells showed similar changes in the distribution of F-actin, vimentin and tubulin. The reorganization of cytoskeletal proteins seemed to be consistent with features of apoptosis. An increase in bright staining of F-actin, vimentin and tubulin at the site of apoptotic bodies formation was observed. Immunogold labeling of actin in HL-60 cells was associated with features typical for apoptosis, i.e. compaction and margination of nuclear chromatin. K-562 cells showed cytoplasmic actin-positivity in the cytoplasm. Significant changes in morphology of HL-60 cells were found in the following concentrations: etoposide 20, 200 microM; doxorubicin 5, 10 microM and taxol 2-10 microM. The investigated proteins seemed to be involved in the above-reported apoptotic changes. Bright staining of F-actin, vimentin and tubulin, concentrated at the site of apoptotic bodies formation might suggested importance of these proteins for this process. Moreover, the increase in actin labeling in areas of chromatin compaction and margination of nuclear chromatin especially in HL-60 cells, which are more susceptible to apoptosis might implicate that actin might be involved in the chromatin remodeling during apoptosis. PMID:14555241

  12. Induction of Apoptosis in Human Leukemia Cell Line (HL60) by Animal’s Venom Derived Peptides (ICD-85)

    PubMed Central

    Zare Mirakabadi, Abbas; Shahramyar, Zahra; Morovvati, Hasan; Lotfi, Mohsen; Nouri, Ali

    2012-01-01

    Our previous studies revealed an inhibitory effect of ICD-85 (Venom derived peptides) on breast cancer cell line MDA-MB231. ICD-85 was also confirmed by in-vivo studies to suppress the breast tumor in mice. However, the exact mechanism of ICD-85 was unknown. Hence, the present study was undertaken to assess the mechanism of ICD-85 effect as an anti-proliferative agent of cancer cells. The effect of ICD-85 on proliferation of HL-60 cancer cells was determined by using the MTT assay. The morphological changes of ICD-85 treated HL-60 cells were observed under transmission electron microscope (TEM). DNA fragmentation analysis was also carried out using gel electrophoresis. ICD-85 induced the marked inhibition of HL60 cell proliferation with an IC50-value of 0.04 μg/mL following 24 h of incubation. ICD-85 treated cells when compared with untreated cells, showed nuclear material condensation, endoplasmic reticulum dilation, mitochondria swelling or degradation, increased cytoplasmic vacuoles, reduction or disappearance in cytoplasmic process and decreased nuclear/cytoplasmic ratio was observed. The characteristic DNA ladder formation of ICD-85-treated cells in agarose gel electrophoresis confirmed the results obtained through the electron microscopy. The results of the present study indicated that ICD-85 inhibited the cancer cell proliferation by inducing cell apoptosis. PMID:24250521

  13. Regulation of Bcl-2 expression by HuR in HL60 leukemia cells and A431 carcinoma cells.

    PubMed

    Ishimaru, Daniella; Ramalingam, Sivakumar; Sengupta, Tapas K; Bandyopadhyay, Sumita; Dellis, Stephanie; Tholanikunnel, Baby G; Fernandes, Daniel J; Spicer, Eleanor K

    2009-08-01

    Overexpression of the proto-oncogene bcl-2 promotes abnormal cell survival by inhibiting apoptosis. Expression of bcl-2 is determined, in part, by regulatory mechanisms that control the stability of bcl-2 mRNA. Elements in the 3'-untranslated region of bcl-2 mRNA have been shown to play a role in regulating the stability of the message. Previously, it was found that the RNA binding proteins nucleolin and Ebp1 have a role in stabilizing bcl-2 mRNA in HL60 cells. Here, we have identified HuR as a component of bcl-2 messenger ribonucleoprotein (mRNP) complexes. RNA coimmunoprecipitation assays showed that HuR binds to bcl-2 mRNA in vivo. We also observed an RNA-dependent coprecipitation of HuR and nucleolin, suggesting that the two proteins are present in common mRNP complexes. Moreover, nucleolin and HuR bind concurrently to bcl-2 AU-rich element (ARE) RNA in vitro, suggesting separate binding sites for these proteins on bcl-2 mRNA. Knockdown of HuR in A431 cells leads to down-regulation of bcl-2 mRNA and protein levels. Observation of a decreased ratio of bcl-2 mRNA to heterogeneous nuclear RNA in HuR knockdown cells confirmed a positive role for HuR in regulating bcl-2 stability. Recombinant HuR retards exosome-mediated decay of bcl-2 ARE RNA in extracts of HL60 cells. This supports a role for HuR in the regulation of bcl-2 mRNA stability in HL60 cells, as well as in A431 cells. Addition of nucleolin and HuR to HL60 cell extracts produced a synergistic protective effect on decay of bcl-2 ARE RNA. HuR knockdown also leads to redistribution of bcl-2 mRNA from polysomes to monosomes. Thus, HuR seems to play a positive role in both regulation of bcl-2 mRNA translation and mRNA stability. PMID:19671677

  14. Human myeloblastic leukemia cells (HL-60) express a membrane receptor for estrogen that signals and modulates retinoic acid-induced cell differentiation

    SciTech Connect

    Kauss, M. Ariel; Reiterer, Gudrun; Bunaciu, Rodica P.; Yen, Andrew

    2008-10-01

    Estrogen receptors are historically perceived as nuclear ligand activated transcription factors. An estrogen receptor has now been found localized to the plasma membrane of human myeloblastic leukemia cells (HL-60). Its expression occurs throughout the cell cycle, progressively increasing as cells mature from G{sub 1} to S to G{sub 2}/M. To ascertain that the receptor functioned, the effect of ligands, including a non-internalizable estradiol-BSA conjugate and tamoxifen, an antagonist of nuclear estrogen receptor function, were tested. The ligands caused activation of the ERK MAPK pathway. They also modulated the effect of retinoic acid, an inducer of MAPK dependent terminal differentiation along the myeloid lineage in these cells. In particular the ligands inhibited retinoic acid-induced inducible oxidative metabolism, a functional marker of terminal myeloid cell differentiation. To a lesser degree they also diminished retinoic acid-induced earlier markers of cell differentiation, namely CD38 and CD11b. However, they did not regulate retinoic acid-induced G{sub 0} cell cycle arrest. There is thus a membrane localized estrogen receptor in HL-60 myeloblastic leukemia cells that can cause ERK activation and modulates the response of these cells to retinoic acid, indicating crosstalk between the membrane estrogen and retinoic acid evoked pathways relevant to propulsion of cell differentiation.

  15. Human myeloblastic leukemia cells (HL-60) express a membrane receptor for estrogen that signals and modulates retinoic acid-induced cell differentiation.

    PubMed

    Kauss, M Ariel; Reiterer, Gudrun; Bunaciu, Rodica P; Yen, Andrew

    2008-10-01

    Estrogen receptors are historically perceived as nuclear ligand activated transcription factors. An estrogen receptor has now been found localized to the plasma membrane of human myeloblastic leukemia cells (HL-60). Its expression occurs throughout the cell cycle, progressively increasing as cells mature from G(1) to S to G(2)/M. To ascertain that the receptor functioned, the effect of ligands, including a non-internalizable estradiol-BSA conjugate and tamoxifen, an antagonist of nuclear estrogen receptor function, were tested. The ligands caused activation of the ERK MAPK pathway. They also modulated the effect of retinoic acid, an inducer of MAPK dependent terminal differentiation along the myeloid lineage in these cells. In particular the ligands inhibited retinoic acid-induced inducible oxidative metabolism, a functional marker of terminal myeloid cell differentiation. To a lesser degree they also diminished retinoic acid-induced earlier markers of cell differentiation, namely CD38 and CD11b. However, they did not regulate retinoic acid-induced G(0) cell cycle arrest. There is thus a membrane localized estrogen receptor in HL-60 myeloblastic leukemia cells that can cause ERK activation and modulates the response of these cells to retinoic acid, indicating crosstalk between the membrane estrogen and retinoic acid evoked pathways relevant to propulsion of cell differentiation. PMID:18692045

  16. 'Attached cell' antigen 28.3.7 mapping to human chromosome 15 characterises TPA-induced differentiation of the promyelocytic HL-60 cell line to give macrophage/monocyte populations.

    PubMed Central

    Blaineau, C; Avner, P; Tunnacliffe, A; Goodfellow, P

    1983-01-01

    Human cells growing in vitro attached to the substratum express a cell antigen called 28.3.7 identified by a species-specific monoclonal antibody. This antigen is not expressed on human cells growing in suspension. The antigen has a mol. wt. in reduced SDS-polyacrylamide gel electrophoresis gels of 95 000 and in human-mouse somatic cell hybrids, expression of the antigen is controlled by a gene, MIC7, mapping to human chromosome 15. The antigen functions as a marker for macrophage differentiation. In vitro differentiation of the 28.3.7 antigen-negative human promyelocytic leukaemia line HL-60 induced by phorbol ester, results in the formation of a macrophage/monocyte population and the concomitant expression of the 28.3.7 antigen on this adherent cell population. Images Fig. 1. PMID:6641710

  17. Genetic network profiles associated with established resistance to ionizing radiation in acute promyelocytic leukemia cells and their extracellular vesicles.

    PubMed

    Monzen, Satoru; Chiba, Mitsuru; Hosokawa, Yoichiro

    2016-02-01

    Radiation-resistant acute promyelocytic leukemia (APL) cells present challenges to treatment, and the acquisition of resistance to ionizing radiation (IR) is a matter of clinical concern. However, little information is available on the behavior of radio-resistant APL in terms of gene expression profiles and intercellular communication. In this study, cDNA microarray and RT-PCR were used to analyze the intracellular genetic network and extracellular vesicles (EVs), respectively, in the established radio-resistant HL60 (Res-HL60) cell line. Significant changes in the expression of 7,309 known mRNAs were observed in Res-HL60 relative to control. In addition, 7 mRNAs were determined as targets because significant changes in the expression were observed using Ingenuity analysis software, confirming the quantitative RT-PCR. However, EVs from Res-HL60 cells did not include these target molecules. These results suggest that radio-resistant APL is regulated by the expression and suppression of specific molecules, and these molecules are not transferred between cells by EVs. PMID:26718911

  18. c-Myc-mediated expression of nucleophosmin/B23 decreases during retinoic acid-induced differentiation of human leukemia HL-60 cells.

    PubMed

    Yung, Benjamin Y M

    2004-12-17

    The retinoic acid-induced differentiation of human leukemia HL-60 cells towards mature granulocytic cells was accompanied by the decline in the protein levels of c-myc, nucleophosmin/B23 and its promoter activity. These RA-induced effects were further enhanced by the concurrent treatment of HL-60 cells with p38 map kinase inhibitor SB203580 (SB). It seems that there is a strong correlation of nucleophosmin/B23 and c-Myc expressions in cells under RA treatment. Furthermore, nucleophosmin/B23 promoter activity decreased upon c-Myc antisense-mediated reduction of intracellular amount of c-Myc. CHIP assays showed that binding of c-Myc to the nucleophosmin/B23 promoter decreased in RA-treated cells. Thus, nucleophosmin/B23 expression is targeted by c-Myc during RA-induced differentiation. These results provide evidence for a novel mechanism of transcriptional downregulation of nucleophosmin/B23 and the functional role of c-Myc in RA-induced differentiation. PMID:15589822

  19. Mitoxantrone resistance in HL-60 leukemia cells: Reduced nuclear topoisomerase II catalytic activity and drug-induced DNA cleavage in association with reduced expression of the topoisomerase II. beta. isoform

    SciTech Connect

    Harker, W.G.; Slade, D.L.; Parr, R.L. ); Drake, F.H. )

    1991-10-15

    Mitoxantrone-resistant variants of the human HL-60 leukemia cell line are cross-resistant to several natural product and synthetic antineoplastic agents. The resistant cells (HL-60/MX2) retain sensitivity to the Vinca alkaloids vincristine and vinblastine, drugs that are typically associated with the classical multidrug resistance phenotype. Mitoxantrone accumulation and retention are equivalent in the sensitive and resistant cell types, suggesting that mitoxantrone resistance inn HL-60/MX2 cells might be associated with an alteration in the type II DNA topoisomerases. The authors discovered that topoisomerase II catalytic activity in 1.0 M NaCl nuclear extracts from the HL-60/MX2 variant was reduced 4- to 5-fold compared to that in the parental HL-60 cells. Studies were designed to minimize the proteolytic degradation of the topoisomerase II enzymes by extraction of whole cells with hot SDS. When nuclear extracts from the two cell types were normalized for equivalent catalytic activity, mitoxantrone inhibited the decatenation of kDNA by these extracts to an equal extent but levels of mitoxantrone-induced cleavage of {sup 32}P-labeled pBR322 DNA by nuclear extracts from HL-60/MX2 cells were 3- to 4-fold lower than in comparable HL-60 extracts. Resistance to the topoisomerase II inhibitor mitoxantrone in HL-60/MX2 is associated with reduced nuclear and whole cell topoisomerase II catalytic activity, immunologically undetectable levels of the 180-kDa topoisomerase II isozyme, and reduced mitoxantrone-induced cleavage of radiolabeled DNA by topoisomerase II in nuclear extracts from these cells.

  20. Global Characteristics of Childhood Acute Promyelocytic Leukemia

    PubMed Central

    Zhang, L; Samad, A; Pombo-de-Oliveira, MS; Scelo, G; Smith, MT; Feusner, J; Wiemels, JL; Metayer, C

    2014-01-01

    Acute promyelocytic leukemia (APL) comprises approximately 5–10% of childhood acute myeloid leukemia (AML) cases in the US. While variation in this percentage among other populations was noted previously, global patterns of childhood APL have not been thoroughly characterized. In this comprehensive review of childhood APL, we examined its geographic pattern and the potential contribution of environmental factors to observed variation. In 142 studies (spanning >60 countries) identified, variation was apparent—de novo APL represented from 2% (Switzerland) to >50% (Nicaragua) of childhood AML in different geographic regions. Because a limited number of previous studies addressed specific environmental exposures that potentially underlie childhood APL development, we gathered 28 childhood cases of therapy-related APL, which exemplified associations between prior exposures to chemotherapeutic drugs/radiation and APL diagnosis. Future population-based studies examining childhood APL patterns and the potential association with specific environmental exposures and other risk factors are needed. PMID:25445717

  1. Generation of Adducts of 4-Hydroxy-2-nonenal with Heat Shock 60 kDa Protein 1 in Human Promyelocytic HL-60 and Monocytic THP-1 Cell Lines

    PubMed Central

    Daga, Martina; Cetrangolo, Giovanni Paolo; Ciamporcero, Eric Stefano; Petrella, Claudia; Graf, Maria; Uchida, Koji; Mamone, Gianfranco; Ferranti, Pasquale; Ames, Paul R. J.

    2015-01-01

    Heat shock 60 kDa protein 1 (HSP60) is a chaperone and stress response protein responsible for protein folding and delivery of endogenous peptides to antigen-presenting cells and also a target of autoimmunity implicated in the pathogenesis of atherosclerosis. By two-dimensional electrophoresis and mass spectrometry, we found that exposure of human promyelocytic HL-60 cells to a nontoxic concentration (10 μM) of 4-hydroxy-2-nonenal (HNE) yielded a HSP60 modified with HNE. We also detected adducts of HNE with putative uncharacterized protein CXorf49, the product of an open reading frame identified in various cell and tissue proteomes. Moreover, exposure of human monocytic THP-1 cells differentiated with phorbol 12-myristate 13-acetate to 10 μM HNE, and to light density lipoprotein modified with HNE (HNE-LDL) or by copper-catalyzed oxidation (oxLDL), but not to native LDL, stimulated the formation of HNE adducts with HSP60, as detected by immunoprecipitation and western blot, well over basal levels. The identification of HNE-HSP60 adducts outlines a framework of mutually reinforcing interactions between endothelial cell stressors, like oxLDL and HSP60, whose possible outcomes, such as the amplification of endothelial dysfunction, the spreading of lipoxidative damage to other proteins, such as CXorf49, the activation of antigen-presenting cells, and the breaking of tolerance to HSP60 are discussed. PMID:26078803

  2. Dystroglycan depletion inhibits the functions of differentiated HL-60 cells.

    PubMed

    Martínez-Zárate, Alma Delia; Martínez-Vieyra, Ivette; Alonso-Rangel, Lea; Cisneros, Bulmaro; Winder, Steve J; Cerecedo, Doris

    2014-06-01

    Dystroglycan has recently been characterized in blood tissue cells, as part of the dystrophin glycoprotein complex but to date nothing is known of its role in the differentiation process of neutrophils. We have investigated the role of dystroglycan in the human promyelocytic leukemic cell line HL-60 differentiated to neutrophils. Depletion of dystroglycan by RNAi resulted in altered morphology and reduced properties of differentiated HL-60 cells, including chemotaxis, respiratory burst, phagocytic activities and expression of markers of differentiation. These findings strongly implicate dystroglycan as a key membrane adhesion protein involved in the differentiation process in HL-60 cells. PMID:24792180

  3. [Effect of bone marrow stromal cells on the apoptotic sensitivity of HL-60 and HL-60/VCR cells].

    PubMed

    Liang, Rong; Huang, Gao-Sheng; Wang, Zhe; Chen, Xie-Qun; Bai, Qing-Xian; Zhang, Wei-Ping; Wang, Juan-Hong; Wang, Wen-Qing; Guo, Ying

    2005-04-01

    This study was aimed to investigate the effects of human bone marrow fibroblastoid stromal cell line (HFCL) on chemosensitivity of acute myeloid leukemia sensitive HL-60 cell line and multidrug-resistant (MDR) HL-60/VCR cell line in vitro co-culture. Setting up co-culture system of HL-60 or HL-60/VCR cells in direct contact with HFCL cells, or with HFCL cells separated by transwell, and exposing HL-60 or HL-60/VCR cells to different concentrations of topotecon (TPT), morphologic evidence for apoptosis was determined by staining with Wright-Giemsa stain and acridine orange/ethidium bromide (AO/EB). Cell cycle, sub-G(1) and annexin V FITC staining were detected by flow cytometry. The expression of active caspase-3, Bcl-2 and Pgp was detected by Western blot. The results showed that HL-60 or HL-60/VCR cells treated by TPT revealed characteristic apoptotic morphological changes by Wright-Giemsa and AO/EB staining. The percentage of annexin V-positive cells and apoptotic cells decreased when they were cocultured with HFCL cells. The proportion of G(0)/G(1) HL-60 or HL-60/VCR cells treated by TPT increased and the sub-G(1) appeared significantly, but apoptotic and sub-G cells reduced after direct contact with HFCL cells. Meanwhile, although HL-60 or HL-60/VCR cells treated by TPT expressed activated caspase-3, and the expression of Bcl-2 decreased, the expression of activated caspase-3 decreased and Bcl-2 increased after direct contact with HFCL cells. In conclusion, HFCL stromal cells can prevent TPT-induced apoptosis in HL-60 and HL-60/VCR cells via modulation of Bcl-2 and active caspase-3. PMID:15854294

  4. Gemtuzumab Ozogamicin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Acute Promyelocytic Leukemia

    ClinicalTrials.gov

    2015-07-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Childhood Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia

  5. Xanthones from Garcinia paucinervis with in vitro anti-proliferative activity against HL-60 cells.

    PubMed

    Li, Da-Hong; Li, Chen-Xi; Jia, Cui-Cui; Sun, Ya-Ting; Xue, Chun-Mei; Bai, Jiao; Hua, Hui-Ming; Liu, Xiao-Qiu; Li, Zhan-Lin

    2016-02-01

    Three new xanthones, paucinervins H-J (1-3), as well as eleven known compounds (4-14), were isolated from the leaves of Garcinia paucinervis. The structures of the new compounds (1-3) were elucidated by 1D, 2D NMR spectra and HR ESIMS. In vitro antiproliferative activity against human promyelocytic leukemia HL-60 cells was tested, among which, compounds 2, 5, 6 and 7 exhibited strong growth inhibitory effects with GI50 values ranging from 1.30 to 9.08 μM, respectively. Preliminary SARs were also discussed. PMID:26659874

  6. Ultrasensitive and selective assay of glutathione species in arsenic trioxide-treated leukemia HL-60 cell line by molecularly imprinted polymer decorated electrochemical sensors.

    PubMed

    Zhang, Bo; Liu, Jie; Ma, Xiaoru; Zuo, Peng; Ye, Bang-ce; Li, Yingchun

    2016-06-15

    Herein a pair of molecularly imprinted polymer (MIP) modified electrochemical sensors were reported to detect glutathione (GSH) and glutathione disulfide (GSSG) in arsenic trioxide-treated HL-60 cells. MIP film was in situ synthesized onto electrode surface via electro-polymerization in a facile way. The characteristics of the obtained sensors were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Both GSH-MIP and GSSG-MIP sensors exhibit the relatively wide linear detection range and low detection limit of 1.33 × 10(-10) M (S/N=3). It is found that N-acetylcysteine and DL-homocysteine, the precursors of GSH, show little influence on the detection of glutathione species, nor did the reactants of arsenite and GSH. Such strategies were successfully applied to discriminate GSH and GSSG in cell samples with acceptable recoveries of 92.0-109.1%, and the results are comparable with classic o-phthalaldehyde fluorospectrophotometry. Moreover, the presented sensors allow for easy disclosure of the reversion of malignant phenotype in leukemia cells via glutathione species analysis. PMID:26890824

  7. Fucoidan Suppresses the Growth of Human Acute Promyelocytic Leukemia Cells In Vitro and In Vivo.

    PubMed

    Atashrazm, Farzaneh; Lowenthal, Ray M; Woods, Gregory M; Holloway, Adele F; Karpiniec, Samuel S; Dickinson, Joanne L

    2016-03-01

    Fucoidan, a natural component of seaweeds, is reported to have immunomodulatory and anti-tumor effects. The mechanisms underpinning these activities remain poorly understood. In this study, the cytotoxicity and anti-tumor activities of fucoidan were investigated in acute myeloid leukemia (AML) cells. The human AML cell lines NB4, KG1a, HL60, and K562 were treated with fucoidan and cell cycle, cell proliferation, and expression of apoptotic pathways molecules were analyzed. Fucoidan suppressed the proliferation and induced apoptosis through the intrinsic and extrinsic pathways in the acute promyelocytic leukemia (APL) cell lines NB4 and HL60, but not in KG1a and K562 cells. In NB4 cells, apoptosis was caspase-dependent as it was significantly attenuated by pre-treatment with a pan-caspase inhibitor. P21/WAF1/CIP1 was significantly up-regulated leading to cell cycle arrest. Fucoidan decreased the activation of ERK1/2 and down-regulated the activation of AKT through hypo-phosphorylation of Thr(308) residue but not Ser(473). In vivo, a xenograft model using the NB4 cells was employed. Mice were fed with fucoidan and tumor growth was measured following inoculation with NB4 cells. Subsequently, splenic natural killer (NK) cell cytotoxic activity was also examined. Oral doses of fucoidan significantly delayed tumor growth in the xenograft model and increased cytolytic activity of NK cells. Taken together, these data suggest that the selective inhibitory effect of fucoidan on APL cells and its protective effect against APL development in mice warrant further investigation of fucoidan as a useful agent in treatment of certain types of leukemia. PMID:26241708

  8. NADPH oxidase-dependent production of reactive oxygen species induces endoplasmatic reticulum stress in neutrophil-like HL60 cells.

    PubMed

    Kuwabara, Wilson Mitsuo Tatagiba; Zhang, Liling; Schuiki, Irmgard; Curi, Rui; Volchuk, Allen; Alba-Loureiro, Tatiana Carolina

    2015-01-01

    Reactive oxygen species (ROS) primarily produced via NADPH oxidase play an important role for killing microorganisms in neutrophils. In this study we examined if ROS production in Human promyelocytic leukemia cells (HL60) differentiated into neutrophil-like cells (dHL60) induces ER stress and activates the unfolded protein response (UPR). To cause ROS production cells were treated with PMA or by chronic hyperglycemia. Chronic hyperglycemia failed to induce ROS production and did not cause activation of the UPR in dHL60 cells. PMA, a pharmacologic NADPH oxidase activator, induced ER stress in dHL60 cells as monitored by IRE-1 and PERK pathway activation, and this was independent of calcium signaling. The NADPH oxidase inhibitor, DPI, abolished both ROS production and UPR activation. These results show that ROS produced by NADPH oxidase induces ER stress and suggests a close association between the redox state of the cell and the activation of the UPR in neutrophil-like HL60 cells. PMID:25668518

  9. Trans-1,3-diphenyl-2,3-epoxypropan-1-one, a chalcone derivative, induces apoptosis via ROS-mediated down-regulation of Bcl-xL in human leukemia HL-60 cells

    PubMed Central

    Ko, Eun-Yi; Lee, Seung-Hong; Ko, Ji-Yeon; Moon, Jeong Yong; Yoon, Weon-Jong; Ahn, Ginnae; Roh, Seong Woon; Cho, Kichul; Jeon, You-Jin; Kim, Daekyung; Kim, Kil-Nam

    2015-01-01

    The anticancer effects of trans-1,3-diphenyl-2,3-epoxypropan-1-one (DPEP), a chalcone derivative, were investigated in human leukemia HL-60 cells. Treatment of HL-60 cells with various concentration of DPEP resulted in a sequence of events characteristic of apoptosis, including loss of cell viability, morphological changes, and increased sub-G1 DNA content. We demonstrated that DPEP elevates reactive oxygen species (ROS) levels in HL-60 cells, and that the ROS scavenger N-acetylcysteine (NAC) could block DPEP-induced ROS generation and apoptosis. Western blot analysis revealed that DPEP inhibits Bcl-xL expression, leading to caspase-3 activation and poly-ADP-ribose polymerase (PARP) cleavage, thereby inducing apoptosis. However, NAC pre-treatment significantly inhibited the activation of caspase-3 and PARP cleavage and reduced Bcl-xL levels. These findings provide the first evidence that DPEP may inhibit the growth of HL-60 cells and induce apoptosis through a ROS-mediated Bcl-xL pathway. PMID:27103891

  10. 2-(3-Methoxyphenyl)-5-methyl-1,8-naphthyridin-4(1H)-one (HKL-1) induces G2/M arrest and mitotic catastrophe in human leukemia HL-60 cells

    SciTech Connect

    Hsu, Mei-Hua; Liu, Chin-Yu; Lin, Chiao-Min; Chen, Yen-Jung; Chen, Chun-Jen; Lin, Yu-Fu; Huang, Li-Jiau; Lee, Kuo-Hsiung; Kuo, Sheng-Chu

    2012-03-01

    2-(3-Methoxyphenyl)-5-methyl-1,8-naphthyridin-4(1H)-one (HKL-1), a 2-phenyl-1,8-naphthyridin-4-one (2-PN) derivative, was synthesized and evaluated as an effective antimitotic agent in our laboratory. However, the molecular mechanisms are uncertain. In this study, HKL-1 was demonstrated to induce multipolar spindles, sustain mitotic arrest and generate multinucleated cells, all of which indicate mitotic catastrophe, in human leukemia HL-60 cells. Western blotting showed that HKL-1 induces mitotic catastrophe in HL-60 cells through regulating mitotic phase-specific kinases (down-regulating CDK1, cyclin B1, CENP-E, and aurora B) and regulating the expression of Bcl-2 family proteins (down-regulating Bcl-2 and up-regulating Bax and Bak), followed by caspase-9/-3 cleavage. These findings suggest that HKL-1 appears to exert its cytotoxicity toward HL-60 cells in culture by inducing mitotic catastrophe. Highlights: ► HKL-1 is a potential antimitotic agent against HL-60 cells. ► HKL-1 induces spindle disruption and sustained resulted in mitotic catastrophe. ► CENP-E and aurora B protein expressions significantly reduced. ► Bcl-2 family protein expressions altered and caspase-9/-3 activation. ► HKL-1 is an attractive candidate for possible use as a novel antimitotic agent.

  11. 6-Formylindolo(3,2-b)Carbazole (FICZ) Modulates the Signalsome Responsible for RA-Induced Differentiation of HL-60 Myeloblastic Leukemia Cells

    PubMed Central

    Bunaciu, Rodica P.; LaTocha, Dorian H.; Varner, Jeffrey D.; Yen, Andrew

    2015-01-01

    6-Formylindolo(3,2-b)carbazole (FICZ) is a photoproduct of tryptophan and an endogenous high affinity ligand for aryl hydrocarbon receptor (AhR). It was previously reported that, in patient-derived HL-60 myeloblastic leukemia cells, retinoic acid (RA)-induced differentiation is driven by a signalsome containing c-Cbl and AhR. FICZ enhances RA-induced differentiation, assessed by expression of the membrane differentiation markers CD38 and CD11b, cell cycle arrest and the functional differentiation marker, inducible oxidative metabolism. Moreover, FICZ augments the expression of a number of the members of the RA-induced signalsome, such as c-Cbl, Vav1, Slp76, PI3K, and the Src family kinases Fgr and Lyn. Pursuing the molecular signaling responsible for RA-induced differentiation, we characterized, using FRET and clustering analysis, associations of key molecules thought to drive differentiation. Here we report that, assayed by FRET, AhR interacts with c-Cbl upon FICZ plus RA-induced differentiation, whereas AhR constitutively interacts with Cbl-b. Moreover, correlation analysis based on the flow cytometric assessment of differentiation markers and western blot detection of signaling factors reveal that Cbl-b, p-p38α and pT390-GSK3β, are not correlated with other known RA-induced signaling components or with a phenotypic outcome. We note that FICZ plus RA elicited signaling responses that were not typical of RA alone, but may represent alternative differentiation-driving pathways. In clusters of signaling molecules seminal to cell differentiation, FICZ co-administered with RA augments type and intensity of the dynamic changes induced by RA. Our data suggest relevance for FICZ in differentiation-induction therapy. The mechanism of action includes modulation of a SFK and MAPK centered signalsome and c-Cbl-AhR association. PMID:26287494

  12. All-trans retinoic acid and a novel synthetic retinoid tamibarotene (Am80) differentially regulate CD38 expression in human leukemia HL-60 cells: possible involvement of protein kinase C-delta.

    PubMed

    Uruno, Akira; Noguchi, Naoya; Matsuda, Ken; Nata, Koji; Yoshikawa, Takeo; Chikamatsu, Youichiro; Kagechika, Hiroyuki; Harigae, Hideo; Ito, Sadayoshi; Okamoto, Hiroshi; Sugawara, Akira

    2011-08-01

    ATRA and a synthetic RAR agonist tamibarotene (Am80) induce granulocytic differentiation of human acute leukemia HL-60 cells and have been used in antineoplastic therapy. ATRA induces CD38 antigen during HL-60 cell differentiation, which interacts with CD31 antigen on the vascular EC surface and may induce disadvantages in the therapy. We here examined the mechanisms of the ATRA-mediated CD38 induction and compared the difference between ATRA- and tamibarotene-mediated induction. Tamibarotene-induced HL-60 cell adhesion to ECs was 38% lower than ATRA, and NB4 cell adhesion to ECs by tamibarotene was equivalent to ATRA, which induced CD38 gene transcription biphasically in HL-60 cells, the early-phase induction via DR-RARE containing intron 1, and the delayed-phase induction via RARE lacking the 5'-flanking region. In contrast to ATRA, tamibarotene induced only the early-phase induction, resulting in its lower CD38 induction than ATRA. A PKCδ inhibitor, rottlerin, and siRNA-mediated PKCδ knockdown suppressed the ATRA-induced CD38 promoter activity of the 5'-flanking region, whereas a RAR antagonist, LE540, or RAR knockdown did not affect it. Cycloheximide and rottlerin suppressed the delayed-phase induction of CD38 expression by ATRA but did not affect the early-phase induction. Moreover, ATRA, but not tamibarotene, induced PKCδ expression without affecting its mRNA stability. The diminished effect of tamibarotene on CD38-mediated HL-60 cell adhesion to ECs compared with ATRA is likely a result of the lack of its delayed-phase induction of CD38 expression, which may be advantageous in antineoplastic therapy. PMID:21393419

  13. 4H-Chromene-based anticancer agents towards multi-drug resistant HL60/MX2 human leukemia: SAR at the 4th and 6th positions.

    PubMed

    Puppala, Manohar; Zhao, Xinghua; Casemore, Denise; Zhou, Bo; Aridoss, Gopalakrishnan; Narayanapillai, Sreekanth; Xing, Chengguo

    2016-03-15

    4H-Chromene-based compounds, for example, CXL017, CXL035, and CXL055, have a unique anticancer potential that they selectively kill multi-drug resistant cancer cells. Reported herein is the extended structure-activity relationship (SAR) study, focusing on the ester functional group at the 4th position and the conformation at the 6th position. Sharp SARs were observed at both positions with respect to cellular cytotoxic potency and selectivity between the parental HL60 and the multi-drug resistant HL60/MX2 cells. These results provide critical guidance for future medicinal optimization. PMID:26867486

  14. Acute Appendicitis Secondary to Acute Promyelocytic Leukemia

    PubMed Central

    Rodriguez, Eduardo A.; Lopez, Marvin A.; Valluri, Kartik; Wang, Danlu; Fischer, Andrew; Perdomo, Tatiana

    2015-01-01

    Patient: Female, 43 Final Diagnosis: Myeloid sarcoma appendicitis Symptoms: Abdominal pain • chills • fever Medication: — Clinical Procedure: Laparoscopic appendectomy, bone marrow biopsy Specialty: Gastroenterology and Hepatology Objective: Rare disease Background: The gastrointestinal tract is a rare site for extramedullary involvement in acute promyelocytic leukemia (APL). Case Report: A 43-year-old female with no past medical history presented complaining of mild abdominal pain, fever, and chills for the past day. On examination, she was tachycardic and febrile, with mild tenderness of her right lower quadrant and without signs of peritoneal irritation. Laboratory examination revealed pancytopenia and DIC, with a fibrinogen level of 290 mg/dL. CT of the abdomen showed a thickened and hyperemic appendix without perforation or abscess, compatible with acute appendicitis. The patient was given IV broad-spectrum antibiotics and was transfused with packed red blood cells and platelets. She underwent uncomplicated laparoscopic appendectomy and bone marrow biopsy, which revealed neo-plastic cells of 90% of the total bone marrow cellularity. Flow cytometry indicated presence of 92.4% of immature myeloid cells with t (15: 17) and q (22: 12) mutations, and FISH analysis for PML-RARA demonstrated a long-form fusion transcript, positive for APL. Appendix pathology described leukemic infiltration with co-expression of myeloperoxidase and CD68, consistent with myeloid sarcoma of the appendix. The patient completed a course of daunorubicin, cytarabine, and all trans-retinoic acid. Repeat bone marrow biopsy demonstrated complete remission. She will follow up with her primary care physician and hematologist/oncologist. Conclusions: Myeloid sarcoma of the appendix in the setting of APL is very rare and it might play a role in the development of acute appendicitis. Urgent management, including bone marrow biopsy for definitive diagnosis and urgent surgical intervention

  15. A novel PAD4/SOX4/PU.1 signaling pathway is involved in the committed differentiation of acute promyelocytic leukemia cells into granulocytic cells.

    PubMed

    Song, Guanhua; Shi, Lulu; Guo, Yuqi; Yu, Linchang; Wang, Lin; Zhang, Xiaoyu; Li, Lianlian; Han, Yang; Ren, Xia; Guo, Qiang; Bi, Kehong; Jiang, Guosheng

    2016-01-19

    All-trans retinoic acid (ATRA) treatment yields cure rates > 80% through proteasomal degradation of the PML-RARα fusion protein that typically promotes acute promyelocytic leukemia (APL). However, recent evidence indicates that ATRA can also promote differentiation of leukemia cells that are PML-RARα negative, such as HL-60 cells. Here, gene expression profiling of HL-60 cells was used to investigate the alternative mechanism of impaired differentiation in APL. The expression of peptidylarginine deiminase 4 (PADI4), encoding PAD4, a protein that post-translationally converts arginine into citrulline, was restored during ATRA-induced differentiation. We further identified that hypermethylation in the PADI4 promoter was associated with its transcriptional repression in HL-60 and NB4 (PML-RARα positive) cells. Functionally, PAD4 translocated into the nucleus upon ATRA exposure and promoted ATRA-mediated differentiation. Mechanistic studies using RNAi knockdown or electroporation-mediated delivery of PADI4, along with chromatin immunoprecipitation, helped identify PU.1 as an indirect target and SOX4 as a direct target of PAD4 regulation. Indeed, PAD4 regulates SOX4-mediated PU.1 expression, and thereby the differentiation process, in a SOX4-dependent manner. Taken together, our results highlight an association between PAD4 and DNA hypermethylation in APL and demonstrate that targeting PAD4 or regulating its downstream effectors may be a promising strategy to control differentiation in the clinic. PMID:26673819

  16. A novel PAD4/SOX4/PU.1 signaling pathway is involved in the committed differentiation of acute promyelocytic leukemia cells into granulocytic cells

    PubMed Central

    Song, Guanhua; Shi, Lulu; Guo, Yuqi; Yu, Linchang; Wang, Lin; Zhang, Xiaoyu; Li, Lianlian; Han, Yang; Ren, Xia; Guo, Qiang; Bi, Kehong; Jiang, Guosheng

    2016-01-01

    All-trans retinoic acid (ATRA) treatment yields cure rates > 80% through proteasomal degradation of the PML-RARα fusion protein that typically promotes acute promyelocytic leukemia (APL). However, recent evidence indicates that ATRA can also promote differentiation of leukemia cells that are PML-RARα negative, such as HL-60 cells. Here, gene expression profiling of HL-60 cells was used to investigate the alternative mechanism of impaired differentiation in APL. The expression of peptidylarginine deiminase 4 (PADI4), encoding PAD4, a protein that post-translationally converts arginine into citrulline, was restored during ATRA-induced differentiation. We further identified that hypermethylation in the PADI4 promoter was associated with its transcriptional repression in HL-60 and NB4 (PML-RARα positive) cells. Functionally, PAD4 translocated into the nucleus upon ATRA exposure and promoted ATRA-mediated differentiation. Mechanistic studies using RNAi knockdown or electroporation-mediated delivery of PADI4, along with chromatin immunoprecipitation, helped identify PU.1 as an indirect target and SOX4 as a direct target of PAD4 regulation. Indeed, PAD4 regulates SOX4-mediated PU.1 expression, and thereby the differentiation process, in a SOX4-dependent manner. Taken together, our results highlight an association between PAD4 and DNA hypermethylation in APL and demonstrate that targeting PAD4 or regulating its downstream effectors may be a promising strategy to control differentiation in the clinic. PMID:26673819

  17. Stress-induced NF-κB activation differentiates promyelocytic leukemia cells to macrophages in response to all-trans-retinoic acid.

    PubMed

    Imran, Muhammad; Park, Joon Seong; Lim, In Kyoung

    2015-03-01

    All-trans-retinoic acid (ATRA) has been known as a choice of treatment for inducing differentiation of promyelocytic leukemia cells to granulocytes. NF-κB plays a crucial role in inflammation and immunity and its activation is an important event for macrophage differentiation both in vivo and in vitro. We report here that NF-κB activation is critical for determining ATRA-induced lineage specific differentiation of myeloid leukemia cells. Our data revealed that ATRA treatment to HL-60 cells enhanced IκBα degradation and NF-κB nuclear translocation and the activated NF-κB potentiated the ability of ATRA for differentiation and switched differentiation to macrophages instead of granulocytes. Serum withdrawal and LPS treatment dampened IκBα expression via MAPK activation and reactive oxygen species generation leading to NF-κB nuclear translocation and ATRA treatment further corroborated these effects in myeloid leukemia cells. Activated NF-κB enhanced the degree of ATRA-induced differentiation of HL-60 cells to macrophages, rather than granulocytes, as assessed by morphologic examination and expressions of differentiation markers such as CD11b, CD38, CD68, MMP9 and Btg2. Employing LLnL or dominant negative IκBα attenuated NF-κB associated enhanced cell maturation and differentiation switch thus suggesting NF-κB as one of the factors that determines ATRA induced lineage specificity of myeloid leukemia cells. Furthermore, MAPK activation was observed to be central both for the differentiation of promyelocytic cells to macrophages or granulocytes regulating NF-κB or C/EBPα expressions, respectively; however, MAPK-mediated signals are modulated under various conditions affecting lineage specificity. In summary, our present data demonstrate that activation of NF-κB directly affects differentiation program of promyelocytes to macrophages, rather than granulocyte, in response to ATRA treatment. PMID:25435432

  18. Clinical and Pathologic Features of Secondary Acute Promyelocytic Leukemia

    PubMed Central

    Duffield, Amy S.; Aoki, Joseph; Levis, Mark; Cowan, Kathleen; Gocke, Christopher D.; Burns, Kathleen H.; Borowitz, Michael J.; Vuica-Ross, Milena

    2013-01-01

    Acute promyelocytic leukemia (APL) is a relatively common form of acute myeloid leukemia (AML) that has an excellent prognosis. In contrast, secondary acute myeloid leukemias, including therapy-related AML and AML with myelodysplasia-related changes, have a relatively poor prognosis. We identified 9 cases of APL at our institution in which there was a history of chemotherapy, radiotherapy, chronic immunosuppression, or antecedent myelodysplastic syndrome. The clinical and pathologic findings in these cases of secondary APL were compared with the clinical and pathologic findings in cases of de novo APL. We found that secondary and de novo APL had abnormal promyelocytes with similar morphologic and immunophenotypic features, comparable cytogenetic findings, comparable rates of FMS-like tyrosine kinase mutations, and similar rates of recurrent disease and death. These data suggest that secondary APL is similar to de novo APL and, thus, should be considered distinct from other secondary acute myeloid neoplasms. PMID:22338051

  19. Acute promyelocytic leukemia presenting as a paraspinal mass.

    PubMed

    Shah, Nirav N; Stonecypher, Mark; Gopal, Pallavi; Luger, Selina; Bagg, Adam; Perl, Alexander

    2016-03-01

    Acute promyelocytic leukemia (APL) is a distinct subtype of acute myeloid leukemia (AML) that is characterized by a balanced translocation between chromosomes 15 and 17 [t(15;17)], which results in the fusion of the promyelocytic leukemia (PML) and retinoic acid receptor α (RARA) genes. Historically, APL was a fatal disease because of the high relapse rates with cytotoxic chemotherapy alone and a significant bleeding risk secondary to disseminated intravascular coagulation (DIC). However, APL is now one of the most curable hematological malignancies because of molecularly targeted therapies. With the advent of all-trans retinoic acid (ATRA) containing chemotherapy regimens, rates of complete remission and long-term, disease-free survival have improved dramatically. More recently, regimens incorporating both ATRA and arsenic trioxide (ATO) have allowed a substantial number of patients to be treated with little or no additional cytotoxic chemotherapy. PMID:27058871

  20. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia

    PubMed Central

    Madan, V; Shyamsunder, P; Han, L; Mayakonda, A; Nagata, Y; Sundaresan, J; Kanojia, D; Yoshida, K; Ganesan, S; Hattori, N; Fulton, N; Tan, K-T; Alpermann, T; Kuo, M-C; Rostami, S; Matthews, J; Sanada, M; Liu, L-Z; Shiraishi, Y; Miyano, S; Chendamarai, E; Hou, H-A; Malnassy, G; Ma, T; Garg, M; Ding, L-W; Sun, Q-Y; Chien, W; Ikezoe, T; Lill, M; Biondi, A; Larson, R A; Powell, B L; Lübbert, M; Chng, W J; Tien, H-F; Heuser, M; Ganser, A; Koren-Michowitz, M; Kornblau, S M; Kantarjian, H M; Nowak, D; Hofmann, W-K; Yang, H; Stock, W; Ghavamzadeh, A; Alimoghaddam, K; Haferlach, T; Ogawa, S; Shih, L-Y; Mathews, V; Koeffler, H P

    2016-01-01

    Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by differentiation block at the promyelocyte stage. Besides the presence of chromosomal rearrangement t(15;17), leading to the formation of PML-RARA (promyelocytic leukemia-retinoic acid receptor alpha) fusion, other genetic alterations have also been implicated in APL. Here, we performed comprehensive mutational analysis of primary and relapse APL to identify somatic alterations, which cooperate with PML-RARA in the pathogenesis of APL. We explored the mutational landscape using whole-exome (n=12) and subsequent targeted sequencing of 398 genes in 153 primary and 69 relapse APL. Both primary and relapse APL harbored an average of eight non-silent somatic mutations per exome. We observed recurrent alterations of FLT3, WT1, NRAS and KRAS in the newly diagnosed APL, whereas mutations in other genes commonly mutated in myeloid leukemia were rarely detected. The molecular signature of APL relapse was characterized by emergence of frequent mutations in PML and RARA genes. Our sequencing data also demonstrates incidence of loss-of-function mutations in previously unidentified genes, ARID1B and ARID1A, both of which encode for key components of the SWI/SNF complex. We show that knockdown of ARID1B in APL cell line, NB4, results in large-scale activation of gene expression and reduced in vitro differentiation potential. PMID:27063598

  1. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia.

    PubMed

    Madan, V; Shyamsunder, P; Han, L; Mayakonda, A; Nagata, Y; Sundaresan, J; Kanojia, D; Yoshida, K; Ganesan, S; Hattori, N; Fulton, N; Tan, K-T; Alpermann, T; Kuo, M-C; Rostami, S; Matthews, J; Sanada, M; Liu, L-Z; Shiraishi, Y; Miyano, S; Chendamarai, E; Hou, H-A; Malnassy, G; Ma, T; Garg, M; Ding, L-W; Sun, Q-Y; Chien, W; Ikezoe, T; Lill, M; Biondi, A; Larson, R A; Powell, B L; Lübbert, M; Chng, W J; Tien, H-F; Heuser, M; Ganser, A; Koren-Michowitz, M; Kornblau, S M; Kantarjian, H M; Nowak, D; Hofmann, W-K; Yang, H; Stock, W; Ghavamzadeh, A; Alimoghaddam, K; Haferlach, T; Ogawa, S; Shih, L-Y; Mathews, V; Koeffler, H P

    2016-08-01

    Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by differentiation block at the promyelocyte stage. Besides the presence of chromosomal rearrangement t(15;17), leading to the formation of PML-RARA (promyelocytic leukemia-retinoic acid receptor alpha) fusion, other genetic alterations have also been implicated in APL. Here, we performed comprehensive mutational analysis of primary and relapse APL to identify somatic alterations, which cooperate with PML-RARA in the pathogenesis of APL. We explored the mutational landscape using whole-exome (n=12) and subsequent targeted sequencing of 398 genes in 153 primary and 69 relapse APL. Both primary and relapse APL harbored an average of eight non-silent somatic mutations per exome. We observed recurrent alterations of FLT3, WT1, NRAS and KRAS in the newly diagnosed APL, whereas mutations in other genes commonly mutated in myeloid leukemia were rarely detected. The molecular signature of APL relapse was characterized by emergence of frequent mutations in PML and RARA genes. Our sequencing data also demonstrates incidence of loss-of-function mutations in previously unidentified genes, ARID1B and ARID1A, both of which encode for key components of the SWI/SNF complex. We show that knockdown of ARID1B in APL cell line, NB4, results in large-scale activation of gene expression and reduced in vitro differentiation potential. PMID:27063598

  2. Tretinoin and Arsenic Trioxide in Treating Patients With Untreated Acute Promyelocytic Leukemia

    ClinicalTrials.gov

    2016-07-08

    Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Childhood Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Myeloid Neoplasm

  3. Glabridin Mediate Caspases Activation and Induces Apoptosis through JNK1/2 and p38 MAPK Pathway in Human Promyelocytic Leukemia Cells

    PubMed Central

    Chien, Ming-Hsien; Chen, Hui-Yu; Yang, Shun-Fa; Hsiao, Pei-Ching

    2014-01-01

    Background Glabridin, a prenylated isoflavonoid of G. glabra L. roots, has been associated with a wide range of biological properties such as regulation of energy metabolism, estrogenic, neuroprotective, anti-osteoporotic, and skin-whitening in previous studies. However, the effect of glabridin on tumor cells metastasis has not been clearly clarified. Here, the molecular mechanism by which glabridin anticancer effects in human promyelocytic leukemia cells was investigated. Methodology and Principal Findings The results showed that glabridin significantly inhibited cell proliferation of four AML cell lines (HL-60, MV4-11, U937, and THP-1). Furthermore, glabridin induced apoptosis of HL-60 cells through caspases-3, -8, and -9 activations and PARP cleavage in dose- and time-dependent manner. Moreover, western blot analysis also showed that glabridin increase phosphorylation of ERK1/2, p38 MAPK and JNK1/2 in dose- and time-dependent manner. Inhibition of p38 MAPK and JNK1/2 by specific inhibitors significantly abolished the glabridin-induced activation of the caspase-3, -8 and -9. Conclusion Taken together, our results suggest that glabridin induced HL-60 cell apoptosis through p38 MAPK and JNK1/2 pathways and could serve as a potential additional chemotherapeutic agent for treating AML. PMID:24901249

  4. The Comet Assay to Determine the Mode of Cell Death for the Ultrasonic Delivery of Doxorubicin to Human Leukemia (HL-60 cells) from Pluronic P105 Micelles

    PubMed Central

    Husseini, Ghaleb A.; O'Neill, Kim L.; Pitt, William G.

    2006-01-01

    This notes examines the mode of cell death of HL-60 cells exposed to 70 kHz and 1.3 W/cm2 in the presence of 1% Pluronic P105 and 1.67 μg/ml doxorubicin (Dox). The cells were ultrasonicated for 30, 60 and 120 minutes. They were then lysed, electrophorised, stained using propidium iodide, and their DNA profile captured using a fluorescent microscope. The gradual DNA damage observed and the comet tails captured after 1 and 2 hours of insonation suggest that the mode of cell killing is apoptosis. PMID:16292892

  5. Tretinoin, Cytarabine, and Daunorubicin Hydrochloride With or Without Arsenic Trioxide Followed by Tretinoin With or Without Mercaptopurine and Methotrexate in Treating Patients With Acute Promyelocytic Leukemia

    ClinicalTrials.gov

    2013-06-04

    Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Promyelocytic Leukemia (M3); Childhood Acute Promyelocytic Leukemia (M3); Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  6. Thrombo-hemorrhagic deaths in acute promyelocytic leukemia.

    PubMed

    Breccia, Massimo; Lo Coco, Francesco

    2014-05-01

    Acute promyelocytic leukemia (APL) has become the most curable form of acute myeloid leukemia after the advent of all-trans retinoic acid (ATRA). However, early deaths (ED) mostly due to the disease-associated coagulopathy remain the major cause of treatment failure. In particular, hemorrhagic events account for 40-65% of ED and several prognostic factors have been identified for such hemorrhagic deaths, including poor performance status, high white blood cell (WBC) count and coagulopathy. Occurrence of thrombosis during treatment with ATRA may be associated with differentiation syndrome (DS) or represent an isolated event. Some prognostic factors have been reported to be associated with thrombosis, including increased WBC or aberrant immunophenotype of leukemic promyelocytes. Aim of this review is to report the incidence, severity, possible pathogenesis and clinical manifestations of thrombo-haemorrhagic deaths in APL. PMID:24862130

  7. Massive Pulmonary Embolism at the Onset of Acute Promyelocytic Leukemia

    PubMed Central

    Sorà, Federica; Chiusolo, Patrizia; Laurenti, Luca; Autore, Francesco; Giammarco, Sabrina; Sica, Simona

    2016-01-01

    Life-threatening bleeding is a major and early complication of acute promyelocytic leukemia (APL), but in the last years there is a growing evidence of thromboses in APL. We report the first case of a young woman with dyspnea as the first symptom of APL due to massive pulmonary embolism (PE) successfully treated with thrombolysis for PE and heparin. APL has been processed with a combination of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) obtaining complete remission. PMID:27413520

  8. Regulated expression of the MRP8 and MRP14 genes in human promyelocytic leukemic HL-60 cell treated with the differentiation-inducing agents mycophenolic acid and 1{alpha},25-Dihydroxyvitamin D{sub 3}

    SciTech Connect

    Warner-Bartnicki, A.L.; Murao, S.; Collart, F.R.; Huberman, E.

    1992-12-31

    The calcium-binding proteins MRP8 and MEP14 are present in mature monomyelocytic cells and are induced during differentiation. Previous studies have demonstrated that the proteins may mediate the growth arrest in differentiating HL-60 cells. We determined the levels of a protein complex (PC) containing MRP8 and MRP14 and investigated the mechanism by which the genes encoding these proteins are regulated in HL-60 cells treated with the differentiation-inducing agent mycophenorc acid (MPA)While the PC was barely detectable in untreated cells, MPA treatment resulted in elevated levels of the PC which were maximal at 3-4 d, and were found to directly parallel gains in the steady-state levels of MRP8 and MRP14 MRNA. Transcription studies with the use of nuclear run-on experiments revealed increased transcription initiation at the MRP8 and MRP14 promoters after MPA treatment. 1{alpha},25-Dihydroxyvitamin D{sub 3}, which induces HL-60 cell differentiation by another mechanism, was also found to increase transcription initiation at the MRP8 and MRP14 promoters. Our results suggest that this initiation is the major control of maturation agent-mediated increases in MRP8 and MRPl4 gene expression, and support a role for the PC in terminal differentiation of human monomyelocytic cells.

  9. Purification and Characterization of Glutaminase Free Asparaginase from Enterobacter cloacae: In-Vitro Evaluation of Cytotoxic Potential against Human Myeloid Leukemia HL-60 Cells.

    PubMed

    Husain, Islam; Sharma, Anjana; Kumar, Suresh; Malik, Fayaz

    2016-01-01

    Asparaginase is an important antileukemic agent extensively used worldwide but the intrinsic glutaminase activity of this enzymatic drug is responsible for serious life threatening side effects. Hence, glutaminase free asparaginase is much needed for upgradation of therapeutic index of asparaginase therapy. In the present study, glutaminase free asparaginase produced from Enterobacter cloacae was purified to apparent homogeneity. The purified enzyme was found to be homodimer of approximately 106 kDa with monomeric size of approximately 52 kDa and pI 4.5. Purified enzyme showed optimum activity between pH 7-8 and temperature 35-40°C, which is close to the internal environment of human body. Monovalent cations such as Na+ and K+ enhanced asparaginase activity whereas divalent and trivalent cations, Ca2+, Mg2+, Zn2+, Mn2+, and Fe3+ inhibited the enzyme activity. Kinetic parameters Km, Vmax and Kcat of purified enzyme were found to be 1.58×10-3 M, 2.22 IU μg-1 and 5.3 × 104 S-1, respectively. Purified enzyme showed prolonged in vitro serum (T1/2 = ~ 39 h) and trypsin (T1/2 = ~ 32 min) half life, which is therapeutically remarkable feature. The cytotoxic activity of enzyme was examined against a panel of human cancer cell lines, HL-60, MOLT-4, MDA-MB-231 and T47D, and highest cytotoxicity observed against HL-60 cells (IC50 ~ 3.1 IU ml-1), which was comparable to commercial asparaginase. Cell and nuclear morphological studies of HL-60 cells showed that on treatment with purified asparaginase symptoms of apoptosis were increased in dose dependent manner. Cell cycle progression analysis indicates that enzyme induces apoptosis by cell cycle arrest in G0/G1 phase. Mitochondrial membrane potential loss showed that enzyme also triggers the mitochondrial pathway of apoptosis. Furthermore, the enzyme was found to be nontoxic for human noncancerous cells FR-2 and nonhemolytic for human erythrocytes. PMID:26891220

  10. Purification and Characterization of Glutaminase Free Asparaginase from Enterobacter cloacae: In-Vitro Evaluation of Cytotoxic Potential against Human Myeloid Leukemia HL-60 Cells

    PubMed Central

    Husain, Islam; Sharma, Anjana; Kumar, Suresh; Malik, Fayaz

    2016-01-01

    Asparaginase is an important antileukemic agent extensively used worldwide but the intrinsic glutaminase activity of this enzymatic drug is responsible for serious life threatening side effects. Hence, glutaminase free asparaginase is much needed for upgradation of therapeutic index of asparaginase therapy. In the present study, glutaminase free asparaginase produced from Enterobacter cloacae was purified to apparent homogeneity. The purified enzyme was found to be homodimer of approximately 106 kDa with monomeric size of approximately 52 kDa and pI 4.5. Purified enzyme showed optimum activity between pH 7–8 and temperature 35–40°C, which is close to the internal environment of human body. Monovalent cations such as Na+ and K+ enhanced asparaginase activity whereas divalent and trivalent cations, Ca2+, Mg2+, Zn2+, Mn2+, and Fe3+ inhibited the enzyme activity. Kinetic parameters Km, Vmax and Kcat of purified enzyme were found to be 1.58×10−3 M, 2.22 IU μg-1 and 5.3 × 104 S-1, respectively. Purified enzyme showed prolonged in vitro serum (T1/2 = ~ 39 h) and trypsin (T1/2 = ~ 32 min) half life, which is therapeutically remarkable feature. The cytotoxic activity of enzyme was examined against a panel of human cancer cell lines, HL-60, MOLT-4, MDA-MB-231 and T47D, and highest cytotoxicity observed against HL-60 cells (IC50 ~ 3.1 IU ml-1), which was comparable to commercial asparaginase. Cell and nuclear morphological studies of HL-60 cells showed that on treatment with purified asparaginase symptoms of apoptosis were increased in dose dependent manner. Cell cycle progression analysis indicates that enzyme induces apoptosis by cell cycle arrest in G0/G1 phase. Mitochondrial membrane potential loss showed that enzyme also triggers the mitochondrial pathway of apoptosis. Furthermore, the enzyme was found to be nontoxic for human noncancerous cells FR-2 and nonhemolytic for human erythrocytes. PMID:26891220

  11. Mountain grown ginseng induces apoptosis in HL-60 cells and its mechanism have little relation with TNF-alpha production.

    PubMed

    Koo, Hyun-Na; Jeong, Hyun-Ja; Choi, In-Young; An, Hyo-Jin; Moon, Phil-Dong; Kim, Seong-Jin; Jee, Seon-Young; Um, Jae-Young; Hong, Seung-Heon; Shin, Soon-Shik; Yang, Deok-Chun; Seo, Yong-Suk; Kim, Hyung-Min

    2007-01-01

    The root of ginseng is one of the most popular natural tonics in Oriental countries. Ginseng grown in the wild, deep in the mountains, is known as Sansam (mountain grown ginseng, MGG). MGG belongs to Araliaceae and Panax. In this study, we investigated the effects of MGG on the cytotoxicity, induction of apoptosis and the putative pathways of its actions in human promyelocytic leukemia cells, HL-60. Using apoptosis analysis, we found that MGG is a potent inducer of apoptosis, but it has less effect on human peripheral blood mononuclear cells. Caspase-3 activation and subsequent apoptotic cell death in MGG-treated cells were partially blocked by the caspase-3 inhibitor, Z-DEVD-FMK. MGG also inhibited the caspase-8 activity. To determine whether MGG-induced apoptosis is involved in tumor necrosis factor-alpha (TNF-alpha) secretion, TNF-alpha secretion was quantified by enzyme-linked immunosorbent assay (ELISA) method. Unexpectedly, MGG significantly decreased the TNF-alpha secretion compared to the control. These results suggest that MGG-induced cytotoxicity have little relation with the secretion of TNF-alpha in HL-60 cells. Furthermore, MGG with rIFN-gamma synergistically increased nitric oxide (NO) production in mouse peritoneal macrophages. Taken together, our data indicate that MGG is a potent inducer of apoptosis on HL-60 cells and these abilities could be used clinically for the treatment of cancer. PMID:17265560

  12. Chemical modulation of the ultra-weak photon emission from Saccharomyces cerevisiae and differentiated HL-60 cells

    NASA Astrophysics Data System (ADS)

    Červinková, Kateřina; Nerudová, Michaela; Hašek, Jiří; Cifra, Michal

    2015-01-01

    The ultra-weak photon emission (UPE) is a universal phenomenon common to all cells with active oxidative metabolism. Generally accepted mechanism of the origin of the ultra-weak photon emission considers reactions of radical or nonradical reactive oxygen species (ROS) with biomolecules such as lipids and proteins which lead to the formation of electron excited species. During the transition to the ground state the excess energy is released as a photon with a wavelength in the visible range of the electromagnetic spectrum. Since the intensity of the light is very low it is possible to be measured only by highly sensitive devices. We used Hamamatsu Photonics PMT module H7360-01 mounted into a light-tight chamber for the purposes of this work. The goal of our research is to delineate an origin of UPE from two model organisms; differentiated HL-60 cells (human promyelocytic leukemia) and yeast cells Saccharomyces cerevisiae. While the UPE from the yeast cells arises spontaneously during the growth without any external stimuli, UPE from HL-60 is induced by phorbol 12-myristate, 13-acetate (PMA). It is possible to modulate the UPE production by certain antioxidants which scavenge ROS formed during the metabolism (yeast cells) or respiratory burst (HL-60 cells). The experiments are focused on the description of effects caused by antioxidants. Several kinds of antioxidants (ascorbic acid, mannitol, glutathione) with different concentration were used and we studied the changes in the UPE intensities of and the temporal developments of the optical signal.

  13. Differentiation of HL60 cells: involvement of protein phosphorylation

    SciTech Connect

    Spearman, T.N.; Fontana, J.A.; Butcher, F.R.; Durham, J.P.

    1986-05-01

    The addition of retinoic acid (RA) to the human promyelocytic leukemic cell line HL60 in culture results in the cessation of growth and the acquisition of a more mature phenotype. Previous work in these laboratories has demonstrated a concomitant increase in the activity of calcium-dependent, phospholipid-sensitive protein kinase (PK-C). HL60 cells were incubated with /sup 32/P-P/sub i/ in the absence and presence of RA, homogenized, and aliquots subjected to two-dimensional electrophoresis. A comparison of autoradiograms made from these gels revealed several phosphoproteins whose radiolabeling was affected by RA. The radiolabeling of one particular phosphoprotein (49kd, pI 4.8) was found to be increased prior to phenotypic evidence of differentiation. It was demonstrated via incubating HL60 cytosol with /sup 32/P -ATP and Ca/sup 2 +/ in the absence and presence of phosphatidylserine and resolving the labeled proteins as above that this protein is phosphorylated by PK-C. The labeling of this protein was also increased by RA in other leukemic cell lines which showed phenotypic evidence of differentiation while no effect was seen in HL60 sublines resistant to RA or in mature neutrophils (the end product of myeloid differentiation). These results suggest that this protein may be an important intermediate in myeloid differentiation.

  14. Retinoic acid induces nuclear accumulation of Raf1 during differentiation of HL-60 cells

    SciTech Connect

    Smith, James; Bunaciu, Rodica P.; Reiterer, Gudrun; Coder, David; George, Thaddeus; Asaly, Michael; Yen, Andrew

    2009-08-01

    All trans-retinoic acid (RA) is a standard therapeutic agent used in differentiation induction therapy treatment of acute promyelocytic leukemia (APL). RA and its metabolites use a diverse set of signal transduction pathways during the differentiation program. In addition to the direct transcriptional targets of the nuclear RAR and RXR receptors, signals derived from membrane receptors and the Raf-MEK-ERK pathway are required. Raf1 phosphorylation and the prolonged activation of Raf1 persisting during the entire differentiation process are required for RA-dependent differentiation of HL-60 cells. Here we identify a nuclear redistribution of Raf1 during the RA-induced differentiation of HL-60 cells. In addition, the nuclear accumulation of Raf1 correlates with an increase in Raf1 phosphorylated at serine 621. The serine 621 phosphorylated Raf1 is predominantly localized in the nucleus. The RA-dependent nuclear accumulation of Raf1 suggests a novel nuclear role for Raf1 during the differentiation process.

  15. Cytoprotective effect of isoniazid against H2O2 derived injury in HL-60 cells.

    PubMed

    Khan, Saifur R; Aljuhani, Naif; Morgan, Andrew G M; Baghdasarian, Argishti; Fahlman, Richard P; Siraki, Arno G

    2016-01-25

    To combat tuberculosis (TB), host phagocytic cells need to survive against self-generating oxidative stress-induced necrosis. However, the effect of isoniazid (INH) in protecting cells from oxidative stress-induced necrosis has not been previously investigated. In this in vitro study, the cytotoxic effect of H2O2 generation using glucose oxidase (a model of oxidative stress) was found to be abrogated by INH in a concentration-dependent manner in HL-60 cells (a human promyelocytic leukemia cell). In cells treated with glucose oxidase, both ATP and mitochondrial membrane potential were found to be decreased. However, treatment with INH demonstrated small but significant attenuation in decreasing ATP levels, and complete reversal for the decrease in mitochondrial membrane potential. Quantitative proteomics analysis identified up-regulation of 15 proteins and down-regulation of 14 proteins which all together suggest that these proteomic changes signal for increasing cellular replication, structural integrity, ATP synthesis, and inhibiting cell death. In addition, studies demonstrated that myeloperoxidase (MPO) was involved in catalyzing INH-protein adduct formation. Unexpectedly, these covalent protein adducts were correlated with INH-induced cytoprotection in HL-60 cells. Further studies are needed to determine whether the INH-protein adducts were causative in the mechanism of cytoprotection. PMID:26658028

  16. Sonoporation induces apoptosis and cell cycle arrest in human promyelocytic leukemia cells.

    PubMed

    Zhong, Wenjing; Sit, Wai Hung; Wan, Jennifer M F; Yu, Alfred C H

    2011-12-01

    Despite being a transient biophysical phenomenon, sonoporation is known to disturb the homeostasis of living cells. This work presents new evidence on how sonoporation may lead to antiproliferation effects including cell-cycle arrest and apoptosis through disrupting various cell signaling pathways. Our findings were obtained from sonoporation experiments conducted on HL-60 human promyelocytic leukemia cells (with 1% v/v microbubbles; 1 MHz ultrasound; 0.3 or 0.5MPa peak negative pressure; 10% duty cycle; 1 kHz pulse repetition frequency; 1 min exposure period). Membrane resealing in these sonoporated cells was first verified using scanning electron microscopy. Time-lapse flow cytometry analysis of cellular deoxyribonucleic acid (DNA) contents was then performed at four post-sonoporation time points (4 h, 8 h, 12 h and 24 h). Results indicate that an increasing trend in the apoptotic cell population can be observed for at least 12 h after sonoporation, whilst viable sonoporated cells are found to temporarily accumulate in the G(2)/M (gap-2/mitosis) phase of the cell cycle. Further analysis using western blotting reveals that sonoporation-induced apoptosis involves cleavage of poly adenosine diphosphate ribose polymerase (PARP) proteins: a pro-apoptotic hallmark related to loss of DNA repair functionality. Also, mitochondrial signaling seems to have taken part in triggering this cellular event as the expression of two complementary regulators for mitochondrial release of pro-apoptotic molecules, Bcl-2 (B-cell lymphoma 2) and Bax (Bcl-2-associated X), are seen to be imbalanced in sonoporated cells. Furthermore, sonoporation is found to induce cell-cycle arrest through perturbing the expression of various cyclin and Cdk (cyclin-dependent kinase) checkpoint proteins that play an enabling role in cell-cycle progression. These bioeffects should be taken into account when using sonoporation for therapeutic purposes. PMID:22033133

  17. Treatment of Acute Promyelocytic Leukemia for Older Patients

    PubMed Central

    Prebet, Thomas; Gore, Steven D.

    2013-01-01

    Acute promyelocytic leukemia (APL) represents a remarkable disease in which leukemogenesis is driven by the PML-RARα oncogene and for which targeted treatment with all-trans retinoic acid (ATRA)–based therapy allows substantial chance of cure. APL is seen in a small subset of older patients, with age representing one of the most important prognostic factors for outcome of treatment. Unlike other acute leukemias, the inferior outcomes for APL in older patients relates less to changes in disease biology and more to increased toxicity of ATRA and chemotherapy combination regimens used to induce hematologic and molecular responses. Risk-adapted strategies that use less-toxic agents, such as arsenic trioxide, allow treatment of older patients, with greater efficiency and better chances of cure. PMID:21393443

  18. Expression of human kinase suppressor of Ras 2 (hKSR-2) gene in HL60 leukemia cells is directly upregulated by 1,25-dihydroxyvitamin D{sub 3} and is required for optimal cell differentiation

    SciTech Connect

    Wang Xuening; Wang, T.-T.; White, John H.; Studzinski, George P. . E-mail: studzins@umdnj.edu

    2007-08-15

    Induction of terminal differentiation of neoplastic cells offers potential for a novel approach to cancer therapy. One of the agents being investigated for this purpose in preclinical studies is 1,25-dihydroxyvitamin D{sub 3} (1,25D), which can convert myeloid leukemia cells into normal monocyte-like cells, but the molecular mechanisms underlying this process are not fully understood. Here, we report that 1,25D upregulates the expression of hKSR-2, a new member of a small family of proteins that exhibit evolutionarily conserved function of potentiating ras signaling. The upregulation of hKSR-2 is direct, as it occurs in the presence of cycloheximide, and occurs primarily at the transcriptional level, via activation of vitamin D receptor, which acts as a ligand-activated transcription factor. Two VDRE-type motifs identified in the hKSR-2 gene bind VDR-RXR alpha heterodimers present in nuclear extracts of 1,25D-treated HL60 cells, and chromatin immunoprecipitation assays show that these VDRE motifs bind VDR in 1,25D-dependent manner in intact cells, coincident with the recruitment of RNA polymerase II to these motifs. Treatment of the cells with siRNA to hKSR-2 reduced the proportion of the most highly differentiated cells in 1,25D-treated cultures. These results demonstrate that hKSR-2 is a direct target of 1,25D in HL60 cells, and is required for optimal monocytic differentiation.

  19. Treatment advances have not improved the early death rate in acute promyelocytic leukemia

    PubMed Central

    McClellan, James Scott; Kohrt, Holbrook E.; Coutre, Steven; Gotlib, Jason R.; Majeti, Ravindra; Alizadeh, Ash A.; Medeiros, Bruno C.

    2012-01-01

    Early mortality in acute promyelocytic leukemia has been reported to occur in less than 10% of patients treated in clinical trials. This study reports the incidence and clinical features of acute promyelocytic leukemia patients treated at Stanford Hospital, CA, USA since March 1997, focusing on early mortality. We show that the risk of early death in acute promyelocytic leukemia patients is higher than previously reported. In a cohort of 70 patients who received induction therapy at Stanford Hospital, 19% and 26% died within seven and 30 days of admission, respectively. High early mortality was not limited to our institution as evaluation of the Surveillance, Epidemiology and End Results Database demonstrated that 30-day mortality for acute promyelocytic leukemia averaged 20% from 1977–2007 and did not improve significantly over this interval. Our findings show that early death is now the greatest contributor to treatment failure in this otherwise highly curable form of leukemia. PMID:21993679

  20. Interferon regulatory factor-1 binds c-Cbl, enhances mitogen activated protein kinase signaling and promotes retinoic acid-induced differentiation of HL-60 human myelo-monoblastic leukemia cells

    PubMed Central

    Shen, Miaoqing; Bunaciu, Rodica P.; Congleton, Johanna; Jensen, Holly A.; Sayam, Lavanya G.; Varner, Jeffrey D.; Yen, Andrew

    2014-01-01

    All-trans retinoic acid (RA) and interferons (IFNs) have efficacy in treating certain leukemias and lymphomas, respectively, motivating interest in their mechanism of action to improve therapy. Both RA and IFNs induce interferon regulatory factor-1 (IRF-1). We find that in HL-60 myeloblastic leukemia cells which undergo mitogen activated protien kinase (MAPK)-dependent myeloid differentiation in response to RA, IRF-1 propels differentiation. RA induces MAPK-dependent expression of IRF-1. IRF-1 binds c-Cbl, a MAPK related adaptor. Ectopic IRF-1 expression causes CD38 expression and activation of the Raf/MEK/ERK axis, and enhances RA-induced differentiation by augmenting CD38, CD11b, respiratory burst and G0 arrest. Ectopic IRF-1 expression also decreases the activity of aldehyde dehydrogenase 1, a stem cell marker, and enhances RA-induced ALDH1 down-regulation. Interestingly, expression of aryl hydrocarbon receptor (AhR), which is RA-induced and known to down-regulate Oct4 and drive RA-induced differentiation, also enhances IRF-1 expression. The data are consistent with a model whereby IRF-1 acts downstream of RA and AhR to enhance Raf/MEK/ERK activation and propel differentiation. PMID:21740303

  1. Enhanced expression of extracellular calcium sensing receptor in monocyte-differentiated versus undifferentiated HL-60 cells: potential role in regulation of a nonselective cation channel

    NASA Technical Reports Server (NTRS)

    Yamaguchi, T.; Ye, C.; Chattopadhyay, N.; Sanders, J. L.; Vassilev, P. M.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

    2000-01-01

    Human promyelocytic leukemia cells (HL-60) have been used widely as a model for studying the differentiation of hematopoietic progenitor cells in vitro. After treatment with phorbol-12-myristate-13-acetate (PMA) or 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], HL-60 cells differentiate into cells with the phenotype of monocytes/macrophages. We previously showed that peripheral blood monocytes and the murine J774 monocytic cell line express the CaR, and myeloid progenitors in the bone marrow and myeloid cells in peripheral blood other than monocytes express lower levels of the CaR. Therefore, we investigated whether undifferentiated HL-60 cells express a functional G protein-coupled, extracellular calcium (Ca(2+)(o))-sensing receptor (CaR) and if the expression of the CaR increases as these cells differentiate along the monocytic lineage. The use of reverse transcription-polymerase chain reaction (RT-PCR) with CaR-specific primers, followed by sequencing of the amplified products, identified an authentic CaR transcript in undifferentiated HL-60 cells. Both immunocytochemistry and Western blot analysis using a CaR-specific antiserum detected low levels of CaR protein expression in undifferentiated HL-60 cells. The levels of CaR protein increased considerably following treatment of the cells with PMA (50 nM) or 1,25(OH)(2)D(3) (100 nM) for 5 days. Northern analysis using a CaR-specific riboprobe identified CaR transcripts in undifferentiated HL-60 cells, but CaR mRNA levels did not change appreciably after treatment with either agent, suggesting that upregulation of CaR protein occurs at a translational level. PMA-treated HL-60 cells expressed a nonselective cation channel (NCC), and the calcimimetic CaR activator, NPS R-467, but not its less active stereoisomer, NPS S-467, as well as the polycationic CaR agonist, neomycin, activated this NCC, demonstrating that the CaR expressed in these cells is functionally active. Therefore, HL-60 cells exhibit an increase in Ca

  2. Enhanced expression of extracellular calcium sensing receptor in monocyte-differentiated versus undifferentiated HL-60 cells: potential role in regulation of a nonselective cation channel.

    PubMed

    Yamaguchi, T; Ye, C; Chattopadhyay, N; Sanders, J L; Vassilev, P M; Brown, E M

    2000-05-01

    Human promyelocytic leukemia cells (HL-60) have been used widely as a model for studying the differentiation of hematopoietic progenitor cells in vitro. After treatment with phorbol-12-myristate-13-acetate (PMA) or 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], HL-60 cells differentiate into cells with the phenotype of monocytes/macrophages. We previously showed that peripheral blood monocytes and the murine J774 monocytic cell line express the CaR, and myeloid progenitors in the bone marrow and myeloid cells in peripheral blood other than monocytes express lower levels of the CaR. Therefore, we investigated whether undifferentiated HL-60 cells express a functional G protein-coupled, extracellular calcium (Ca(2+)(o))-sensing receptor (CaR) and if the expression of the CaR increases as these cells differentiate along the monocytic lineage. The use of reverse transcription-polymerase chain reaction (RT-PCR) with CaR-specific primers, followed by sequencing of the amplified products, identified an authentic CaR transcript in undifferentiated HL-60 cells. Both immunocytochemistry and Western blot analysis using a CaR-specific antiserum detected low levels of CaR protein expression in undifferentiated HL-60 cells. The levels of CaR protein increased considerably following treatment of the cells with PMA (50 nM) or 1,25(OH)(2)D(3) (100 nM) for 5 days. Northern analysis using a CaR-specific riboprobe identified CaR transcripts in undifferentiated HL-60 cells, but CaR mRNA levels did not change appreciably after treatment with either agent, suggesting that upregulation of CaR protein occurs at a translational level. PMA-treated HL-60 cells expressed a nonselective cation channel (NCC), and the calcimimetic CaR activator, NPS R-467, but not its less active stereoisomer, NPS S-467, as well as the polycationic CaR agonist, neomycin, activated this NCC, demonstrating that the CaR expressed in these cells is functionally active. Therefore, HL-60 cells exhibit an increase in Ca

  3. From molecular interaction to acute promyelocytic leukemia: Calculating leukemogenesis and remission from endogenous molecular-cellular network.

    PubMed

    Yuan, Ruoshi; Zhu, Xiaomei; Radich, Jerald P; Ao, Ping

    2016-01-01

    Acute promyelocytic leukemia (APL) remains the best example of a malignancy that can be cured clinically by differentiation therapy. We demonstrate that APL may emerge from a dynamical endogenous molecular-cellular network obtained from normal, non-cancerous molecular interactions such as signal transduction and translational regulation under physiological conditions. This unifying framework, which reproduces APL, normal progenitor, and differentiated granulocytic phenotypes as different robust states from the network dynamics, has the advantage to study transition between these states, i.e. critical drivers for leukemogenesis and targets for differentiation. The simulation results quantitatively reproduce microarray profiles of NB4 and HL60 cell lines in response to treatment and normal neutrophil differentiation, and lead to new findings such as biomarkers for APL and additional molecular targets for arsenic trioxide therapy. The modeling shows APL and normal states mutually suppress each other, both in "wiring" and in dynamical cooperation. Leukemogenesis and recovery under treatment may be a consequence of spontaneous or induced transitions between robust states, through "passes" or "dragging" by drug effects. Our approach rationalizes leukemic complexity and constructs a platform towards extending differentiation therapy by performing "dry" molecular biology experiments. PMID:27098097

  4. From molecular interaction to acute promyelocytic leukemia: Calculating leukemogenesis and remission from endogenous molecular-cellular network

    PubMed Central

    Yuan, Ruoshi; Zhu, Xiaomei; Radich, Jerald P.; Ao, Ping

    2016-01-01

    Acute promyelocytic leukemia (APL) remains the best example of a malignancy that can be cured clinically by differentiation therapy. We demonstrate that APL may emerge from a dynamical endogenous molecular-cellular network obtained from normal, non-cancerous molecular interactions such as signal transduction and translational regulation under physiological conditions. This unifying framework, which reproduces APL, normal progenitor, and differentiated granulocytic phenotypes as different robust states from the network dynamics, has the advantage to study transition between these states, i.e. critical drivers for leukemogenesis and targets for differentiation. The simulation results quantitatively reproduce microarray profiles of NB4 and HL60 cell lines in response to treatment and normal neutrophil differentiation, and lead to new findings such as biomarkers for APL and additional molecular targets for arsenic trioxide therapy. The modeling shows APL and normal states mutually suppress each other, both in “wiring” and in dynamical cooperation. Leukemogenesis and recovery under treatment may be a consequence of spontaneous or induced transitions between robust states, through “passes” or “dragging” by drug effects. Our approach rationalizes leukemic complexity and constructs a platform towards extending differentiation therapy by performing “dry” molecular biology experiments. PMID:27098097

  5. Induction of promyelocytic leukemia (PML) oncogenic domains (PODs) by papillomavirus

    SciTech Connect

    Nakahara, Tomomi; Lambert, Paul F.

    2007-09-30

    Promyelocytic leukemia oncogenic domains (PODs), also called nuclear domain 10 (ND10), are subnuclear structures that have been implicated in a variety of cellular processes as well as the life cycle of DNA viruses including papillomaviruses. In order to investigate the interplay between papillomaviruses and PODs, we analyzed the status of PODs in organotypic raft cultures of human keratinocytes harboring HPV genome that support the differentiation-dependent HPV life cycle. The number of PODs per nucleus was increased in the presence of HPV genomes selectively within the poorly differentiated layers but was absent in the terminally differentiated layers of the stratified epithelium. This increase in PODs was correlated with an increase in abundance of post-translationally modified PML protein. Neither the E2-dependent transcription nor viral DNA replication was reliant upon the presence of PML. Implications of these findings in terms of HPV's interaction with its host are discussed.

  6. 1,25-Dihydroxyvitamin D{sub 3} induces biphasic NF-{kappa}B responses during HL-60 leukemia cells differentiation through protein induction and PI3K/Akt-dependent phosphorylation/degradation of I{kappa}B

    SciTech Connect

    Tse, A.K.-W.; Wan, C.-K.; Shen, X.-L.; Zhu, G.-Y.; Cheung, H.-Y.; Yang, M.; Fong, W.-F. . E-mail: wffong@hkbu.edu.hk

    2007-05-01

    1,25-Dihydroxyvitamin D{sub 3} (VD{sub 3}) induces differentiation in a number of leukemia cell lines and under various conditions is able to either stimulate or inhibit nuclear factor kappa B (NF-{kappa}B) activity. Here we report a time-dependent biphasic regulation of NF-{kappa}B in VD{sub 3}-treated HL-60 leukemia cells. After VD{sub 3} treatment there was an early {approx} 4 h suppression and a late 8-72 h prolonged reactivation of NF-{kappa}B. The reactivation of NF-{kappa}B was concomitant with increased IKK activities, IKK-mediated I{kappa}B{alpha} phosphorylation, p65 phosphorylation at residues S276 and S536, p65 nuclear translocation and p65 recruitment to the NF-{kappa}B/vitamin D responsive element promoters. In parallel with NF-{kappa}B stimulation, there was an up-regulation of NF-{kappa}B controlled inflammatory and anti-apoptotic genes such as TNF{alpha}, IL-1{beta} and Bcl-xL. VD{sub 3}-triggered reactivation of NF-{kappa}B was associated with PI3K/Akt phosphorylation. PI3K/Akt antagonists suppressed VD{sub 3}-stimulated I{kappa}B{alpha} phosphorylation as well as NF-{kappa}B-controlled gene expression. The early {approx} 4 h VD{sub 3}-mediated NF-{kappa}B suppression coincided with a prolonged increase of I{kappa}B{alpha} protein which require de novo protein synthesis, lasted for as least 72 h and was insensitive to MAPK, IKK or PI3K/Akt inhibitors. Our data suggest a novel biphasic regulation of NF-{kappa}B in VD{sub 3}-treated leukemia cells and our results may have provided the first molecular explanation for the contradictory observations reported on VD{sub 3}-mediated immune-regulation.

  7. Toxic-dose warfarin-induced apoptosis and its enhancement by gamma ionizing radiation in leukemia K562 and HL-60 cells is not mediated by induction of oxidative stress.

    PubMed

    Onaran, Ilhan; Sencan, Sevide; Demirtaş, Halil; Aydemir, Birsen; Ulutin, Turgut; Okutan, Murat

    2008-11-01

    The purpose of this study was to test the hypothesis that warfarin may enhance free radical production and oxidative damage on cancer cells. We examined the possible concentration-dependent effect of warfarin on cytotoxicity with respect to oxidative stress on leukemia cell lines (K562 and HL-60) and normal human peripheral blood mononuclear cells (PBMC). Gamma radiation was used as a positive control agent for oxidative stress. At all concentrations of warfarin (5-200 muM), 5-amino-2,3-dihydro-1,4-phthalazinedione (luminol)- and bis-N-methylacridinium nitrate (lucigenin)-amplified chemiluminescence responses and lipid peroxidation and protein oxidation were stable after 72 h incubation at 37 degrees C. However, The 2',7'-dichlorofluorescein diacetate (DCFH-DA) oxidation was increased when cells were incubated with high concentrations (50-200 muM) of warfarin. In these concentration ranges, warfarin reduced cell growth in a dose-dependent manner, producing apoptosis. Our results also revealed that at concentrations above 5 muM, warfarin had a potentiating effect on radiation-mediated growth inhibition and apoptosis. Furthermore, marked effects were observed on leukemic cells compared with PBMC. We report here that the increase of DCFH oxidation might be due to the increase in the release of cytochrome C caused by warfarin, as cytosolic cytochrome C content was significantly elevated in the warfarin-treated cells compared with control cells, and because cotreatment with antioxidants N- acetylcysteine or 4,5-dihydroxy-1,3-benzene-disulfonic acid (Tiron) was unable to prevent cytochrome C release and DCFH oxidation induced by the drug. Taken together, these results suggest that high warfarin concentrations may be toxic to leukemic cells in vitro through apoptosis, although at the pharmacological concentrations (<50 muM), warfarin has no prooxidant or cytotoxic effect on PBMC, K562, and HL-60 cells. In addition, when the treatment of leukemic cells with warfarin at

  8. Emerging role for microRNAs in acute promyelocytic leukemia.

    PubMed

    Nervi, C; Fazi, F; Rosa, A; Fatica, A; Bozzoni, I

    2007-01-01

    Hematopoiesis is highly controlled by lineage-specific transcription factors that, by interacting with specific DNA sequences, directly activate or repress specific gene expression. These transcription factors have been found mutated or altered by chromosomal translocations associated with leukemias, indicating their role in the pathogenesis of these malignancies. The post-genomic era, however, has shown that transcription factors are not the only key regulators of gene expression. Epigenetic mechanisms such as DNA methylation, posttranslational modifications of histones, remodeling of nucleosomes, and expression of small regulatory RNAs all contribute to the regulation of gene expression and determination of cell and tissue specificity. Deregulation ofthese epigenetic mechanisms cooperates with genetic alterations to the establishment and progression of tumors. MicroRNAs (miRNAs) are negative regulators of the expression of genes involved in development, differentiation, proliferation, and apoptosis. Their expression appears to be tissue-specific and highly regulated according to the cell's developmental lineage and stage. Interestingly, miRNAs expressed in hematopoietic cells have been found mutated or altered by chromosomal translocations associated with leukemias. The expression levels of a specific miR-223 correlate with the differentiation fate of myeloid precursors. The activation of both pathways of transcriptional regulation by the myeloid lineage-specific transcription factor C/EBPalpha (CCAAT/enhancer-binding protein-alpha), and posttranscriptional regulation by miR-223 appears essential for granulocytic differentiation and clinical response of acute promyelocytic leukemia (APL) blasts to all-trans retinoic acid (ATRA). Together, this evidence underlies transcription factors, chromatin remodeling, and miRNAs as ultimate determinants for the correct organization of cell type-specific gene arrays and hematopoietic differentiation, therefore providing new

  9. Current management of newly diagnosed acute promyelocytic leukemia.

    PubMed

    Cicconi, L; Lo-Coco, F

    2016-08-01

    The management of acute promyelocytic leukemia (APL) has considerably evolved during the past two decades. The advent of all-trans retinoic acid (ATRA) and its inclusion in combinatorial regimens with anthracycline chemotherapy has provided cure rates exceeding 80%; however, this widely adopted approach also conveys significant toxicity including severe myelosuppression and rare occurrence of secondary leukemias. More recently, the advent of arsenic trioxide (ATO) and its use in association with ATRA with or without chemotherapy has further improved patient outcome by allowing to minimize the intensity of chemotherapy, thus reducing serious toxicity while maintaining high anti-leukemic efficacy. The advantage of ATRA-ATO over ATRA chemotherapy has been recently demonstrated in two large randomized trials and this option has now become the new standard of care in low-risk (i.e. non-hyperleukocytic) patients. In light of its rarity, abrupt onset and high risk of early death and due to specific treatment requirements, APL remains a challenging condition that needs to be managed in highly experienced centers. We review here the results of large clinical studies conducted in newly diagnosed APL as well as the recommendations for appropriate diagnosis, prevention and management of the main complications associated with modern treatment of the disease. PMID:27084953

  10. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia

    SciTech Connect

    Orfali, Nina; McKenna, Sharon L.; Cahill, Mary R.; Gudas, Lorraine J.; Mongan, Nigel P.

    2014-05-15

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies. - Highlights: • Normal and aberrant retinoid signaling in hematopoiesis and leukemia is reviewed. • We suggest a novel role for RARα in the development of X-RARα gene fusions in APL. • ATRA therapy in APL activates transcription and promotes onco-protein degradation. • Autophagy may be involved in both onco-protein degradation and differentiation. • Pharmacologic autophagy induction may potentiate ATRA's therapeutic effects.

  11. HOXB1 restored expression promotes apoptosis and differentiation in the HL60 leukemic cell line

    PubMed Central

    2013-01-01

    Background Homeobox (HOX) genes deregulation has been largely implicated in the development of human leukemia. Among the HOXB cluster, HOXB1 was silent in a number of analyzed acute myeloid leukemia (AML) primary cells and cell lines, whereas it was expressed in normal terminally differentiated peripheral blood cells. Methods We evaluated the biological effects and the transcriptome changes determined by the retroviral transduction of HOXB1 in the human promyelocytic cell line HL60. Results Our results suggest that the enforced expression of HOXB1 reduces cell growth proliferation, inducing apoptosis and cell differentiation along the monocytic and granulocytic lineages. Accordingly, gene expression analysis showed the HOXB1-dependent down-regulation of some tumor promoting genes, paralleled by the up-regulation of apoptosis- and differentiation-related genes, thus supporting a tumor suppressor role for HOXB1 in AML. Finally, we indicated HOXB1 promoter hypermethylation as a mechanism responsible for HOXB1 silencing. Conclusions We propose HOXB1 as an additional member of the HOX family with tumour suppressor properties suggesting a HOXB1/ATRA combination as a possible future therapeutic strategy in AML. PMID:24148231

  12. The Effect of Combined Exposure of 900 MHz Radiofrequency Fields and Doxorubicin in HL-60 Cells

    PubMed Central

    Jiang, Bingcheng; Zhou, Zhen; Tong, Jian; Cao, Yi

    2012-01-01

    Human promyelocytic leukemia HL-60 cells were pre-exposed to non-ionizing 900 MHz radiofrequency fields (RF) at 12 µW/cm2 power density for 1 hour/day for 3 days and then treated with a chemotherapeutic drug, doxorubicin (DOX, 0.125 mg/L). Several end-points related to toxicity, viz., viability, apoptosis, mitochondrial membrane potential (MMP), intracellular free calcium (Ca2+) and Ca2+-Mg2+ -ATPase activity were measured. The results obtained in un-exposed and sham-exposed control cells were compared with those exposed to RF alone, DOX alone and RF+DOX. The results indicated no significant differences between un-exposed, sham-exposed control cells and those exposed to RF alone while treatment with DOX alone showed a significant decrease in viability, increased apoptosis, decreased MMP, increased Ca2+ and decreased Ca2+-Mg2+-ATPase activity. When the latter results were compared with cells exposed RF+DOX, the data showed increased cell proliferation, decreased apoptosis, increased MMP, decreased Ca2+ and increased Ca2+-Mg2+-ATPase activity. Thus, RF pre-exposure appear to protect the HL-60 cells from the toxic effects of subsequent treatment with DOX. These observations were similar to our earlier data which suggested that pre-exposure of mice to 900 MHz RF at 120 µW/cm2 power density for 1 hours/day for 14 days had a protective effect in hematopoietic tissue damage induced by subsequent gamma-irradiation. PMID:23029402

  13. Biological activities of 2alpha-substituted analogues of 1alpha,25-dihydroxyvitamin D3 in transcriptional regulation and human promyelocytic leukemia (HL-60) cell proliferation and differentiation.

    PubMed

    Takahashi, Eiji; Nakagawa, Kimie; Suhara, Yoshitomo; Kittaka, Atsushi; Nihei, Ken-ichi; Konno, Katsuhiro; Takayama, Hiroaki; Ozono, Keiichi; Okano, Toshio

    2006-11-01

    Biological activities of 2alpha-substituted 1alpha,25-dihydroxyvitamin D3 analogues were evaluated in vitro. Their binding affinity was examined with calf thymus cytosolic vitamin D receptor (VDR) and rat plasma vitamin D-binding protein (DBP). In addition, the transcriptional activity of the analogues was measured using a rat 25-hydroxyvitamin D3-24-hydroxylase gene promoter, a human osteocalcin gene promoter, and VDR-GAL4 system. This study investigated the biological activities of 2alpha-substituted analogues in comparison with 2beta-substitued analogues at the molecular level, with regard to the structural differences of alkyl, hydroxyalkyl, hydroxyalkoxy substituents at the 2-position of 1alpha,25-dihydroxyvitamin D3. PMID:17077522

  14. Molecular mechanisms of cisplatin cytotoxicity in acute promyelocytic leukemia cells

    PubMed Central

    Kumar, Sanjay; Tchounwou, Paul B.

    2015-01-01

    Cis-diamminedichloroplatinum (II) (cisplatin) is a widely used anti-tumor drug for the treatment of a broad range of human malignancies with successful therapeutic outcomes for head and neck, ovarian, and testicular cancers. It has been found to inhibit cell cycle progression and to induce oxidative stress and apoptosis in acute promyelocytic leukemia (APL) cells. However, its molecular mechanisms of cytotoxic action are poorly understood. We hypothesized that cisplatin induces cytotoxicity through DNA adduct formation, oxidative stress, transcriptional factors (p53 and AP-1), cell cycle regulation, stress signaling and apoptosis in APL cells. We used the APL cell line as a model, and applied a variety of molecular tools to elucidate the cytototoxic mode of action of cisplatin. We found that cisplatin inhibited cell proliferation by a cytotoxicity, characterized by DNA damage and modulation of oxidative stress. Cisplatin also activated p53 and phosphorylated activator protein (AP-1) component, c-Jun at serine (63, 73) residue simultaneously leading to cell cycle arrest through stimulation of p21 and down regulation of cyclins and cyclin dependent kinases in APL cell lines. It strongly activated the intrinsic pathway of apoptosis through alteration of the mitochondrial membrane potential, release of cytochrome C, and up-regulation of caspase 3 activity. It also down regulated the p38MAPK pathway. Overall, this study highlights the molecular mechanisms that underline cisplatin toxicity to APL cells, and provides insights into selection of novel targets and/or design of therapeutic agents to treat APL. PMID:26486083

  15. Acute promyelocytic leukemia during pregnancy: a systematic analysis of outcome.

    PubMed

    Verma, Vivek; Giri, Smith; Manandhar, Samyak; Pathak, Ranjan; Bhatt, Vijaya Raj

    2016-03-01

    The outcomes of acute promyelocytic leukemia (APL) in pregnancy are largely unknown. The MEDLINE database was systematically searched to obtain 43 articles with 71 patients with new-onset APL during pregnancy. Induction therapy included various regimens of all-trans retinoic acid (ATRA), cytarabine, and anthracycline and resulted in a complete remission rate of 93%. Obstetric and fetal complications included pre-term deliveries (46%), spontaneous/therapeutic abortion/intrauterine death (33.3%) and other neonatal complications (25.9%). Mothers diagnosed in the first trimester were more likely to experience obstetric (p < 0.01) and fetal (p < 0.01) complications. To our knowledge, this is the largest systematic review of APL in pregnancy. The vast majority of APL patients in pregnancy may achieve remission with initial induction therapy. APL or its therapy in pregnancy, however, is associated with a high risk of fetal and obstetrical complications. The results of our study may help in patient counseling and informed decision-making. PMID:26110880

  16. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia

    PubMed Central

    Orfali, Nina; McKenna, Sharon L.; Cahill, Mary R.; Gudas, Lorraine J.; Mongan, Nigel P.

    2014-01-01

    Retinoids are a family of signaling molecules derived from Vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies. PMID:24694321

  17. Acute Promyelocytic Leukemia (APL): Comparison Between Children and Adults

    PubMed Central

    Testi, Anna Maria; D’Angiò, Mariella; Locatelli, Franco; Pession, Andrea; Lo Coco, Francesco

    2014-01-01

    The outcome of adults and children with Acute Promyelocytic Leukemia (APL) has dramatically changed since the introduction of all trans retinoic acid (ATRA) therapy. Based on the results of several multicenter trials, the current recommendations for the treatment of patients with APL include ATRA and anthracycline-based chemotherapy for the remission induction and consolidation, and ATRA combined with low-dose chemotherapy for maintenance. This has improved the prognosis of APL by increasing the complete remission (CR) rate, actually > 90%, decreasing the induction deaths and by reducing the relapse rate, leading to cure rates nowadays exceeding 80% considering both adults and children.1–9 More recently the combination of ATRA and arsenic trioxide (ATO) as induction and consolidation therapy has been shown to be at least not inferior and possibly superior to ATRA plus chemotherapy in adult patients with APL conventionally defined as non-high risk (Sanz score).10 Childhood APL has customarily been treated on adult protocols. Data from several trials have shown that the overall outcome in pediatric APL appears similar to that reported for the adult population; however, some clinical and therapeutic aspects differ in the two cohorts which require some important considerations and treatment adjustments. PMID:24804005

  18. Emerging New Approaches for the Treatment of Acute Promyelocytic Leukemia

    PubMed Central

    Park, Jae; Jurcic, Joseph G.; Rosenblat, Todd; Tallman, Martin S.

    2011-01-01

    The introduction of all-trans retinoic acid (ATRA) in the late 1980s combined with anthracycline-based chemotherapy has revolutionized the prognosis of acute promyelocytic leukemia (APL) with more than 90% complete response rates and cure rates of approximately 80%. The subsequent advent of arsenic trioxide (ATO) in 1990s and progress in the treatment of APL have changed its course from a highly fatal to a highly curable disease. Despite the dramatic improvement in clinical outcome of APL, treatment failure still occurs due most often to early death. Relapse has become increasingly less frequent, most commonly occurring in patients with high-risk disease. A major focus of research for the past decade has been to develop risk-adapted and rationally targeted nonchemotherapy treatment strategies to reduce treatment-related morbidity and mortality to low- and intermediate-risk or older patients while targeting more intensive or alternative therapy to those patients at most risk of relapse. In this review, emerging new approaches to APL treatment with special emhasis on strategies to reduce early deaths, risk-adapted therapy during induction, consolidation and maintenance, as well as an overview of current and future clinical trials in APL will be discussed. PMID:23556100

  19. [Inhibition effect of hedyotis diffusa wild injection on HL-60 cells and its mechanism].

    PubMed

    Chen, Xiao-Hong; Gao, Rui-Lan; Qian, Xu-Dai; Wang, Xiao; Tan, Pan-Li; Yin, Li-Ming; Zhou, Yu-Hong

    2008-10-01

    This study was aimed to explore the inhibition effect and mechanism of hedyotis diffusa wild injection (HDI) on leukemia cell line (HL-60) in vitro. The leukemia cell line HL-60 was used as target cells. The inhibitory effects of HDI on proliferation of HL-60 cells were observed by MTT assay. The positive rate of cell apoptosis and the surface marker of granulocytic differentiation (CD33 and CD15) were measured by flow cytometry. The expressions of anti-apoptosis related gene (survivin and bcl-2) were detected by RT-PCR. The results showed that the growth of HL-60 cells was inhibited by higher concentration of HDI (3.12 - 12.5 ml/L) and inhibited obviously in dose-dependent manner (p < 0.05 or p < 0.01), but not suppressed by low concentration of HDI (1.56 ml/L) in liquid culture system (p > 0.05). The FCM and DNA Ladder results showed that the phenomenon of typical apoptosis did not detected after HL-60 cells were treated with the different concentrations of HDI for 24, 48 and 72 hours respectively. After HL-60 cells were treated with HDI (1.56, 3.12, 6.25 and 12.5 ml/L) for one week, the expression level of CD15 surface marker was all enhanced obviously. When treated with HDI (6.25 ml/L) for 3 weeks, the expression levels of survivin and bcl-2 gene were also decreased obviously by 60% and 44% respectively. It is concluded that HDI can inhibit HL-60 cells in the presence of its higher concentrations. The mechanisms of HDI may induce HL-60 cells differentiation, and suppress the expression of anti-apoptosis related gene (survivin or bcl-2) to inhibit the growth of HL-60 cells. PMID:18928590

  20. Granulocyte colony-stimulating factor inhibits CXCR4/SDF-1α signaling and overcomes stromal-mediated drug resistance in the HL-60 cell line

    PubMed Central

    SHENG, XIANFU; ZHONG, HUA; WAN, HAIXIA; ZHONG, JIHUA; CHEN, FANGYUAN

    2016-01-01

    Combining cytarabine, aclarubicin and granulocyte colony-stimulating factor (G-CSF) has demonstrated marked efficacy in the treatment of elderly and relapsed/refractory patients with acute myeloid leukemia (AML); however, the role of G-CSF remains poorly understood. The present study aimed to investigate the ability of G-CSF to overcome stromal-mediated drug resistance and the underlying molecular mechanism. Two types of co-culture models were established in the HS-5 human bone marrow/stromal and HL-60 human promyelocytic leukemia cell lines, in order to imitate the interactions between stromal and leukemia cells in vitro, which is mediated by the stromal cell-derived factor (SDF)-1α signaling axis. In the present study, HL-60 cells were attracted and adhered to HS-5 cells using migration assay and flow cytometry, respectively; however, these interactions were inhibited by treatment with G-CSF and/or the C-X-C chemokine receptor type 4 (CXCR4) antagonist, AMD3100. Co-culture with HS-5 cells, including direct and indirect contact, protected HL-60 cells against spontaneous apoptosis or drug-induced apoptosis; however, these protective effects were disrupted by treatment with G-CSF and/or AMD3100. Notably, G-CSF and/or AMD3100 did not alter cell viability or apoptosis when HL-60 cells were cultured with medium alone. In addition, G-CSF significantly reduced the expression levels of surface CXCR4 protein, total CXCR4 protein and CXCR4 mRNA, and significantly upregulated the expression of microRNA (miR)-146a. Conversely, AMD3100 significantly reduced surface CXCR4 expression levels, but not the total CXCR4, CXCR4 mRNA or miR-146a expression levels. The results of the present study suggested that interfering with the CXCR4/SDF-1α signaling axis via G-CSF inhibited the migration and adhesion of HL-60 cells to HS-5 cells and eliminated HS5 cell-mediated protective effects. Furthermore, G-CSF administration reduced CXCR4 expression levels by upregulating the expression of

  1. Enhancement of the incorporation of 5-fluorodeoxyuridylate into DNA of HL-60 cells by metabolic modulations

    SciTech Connect

    Tanaka, M.; Kimura, K.; Yoshida, S.

    1983-11-01

    The exposure of HL-60 human promyelocytic leukemia cells to 0.5 microM 5-fluoro-2'-(/sup 3/H)deoxyuridine (FdUrd) for 16 hr resulted in the incorporation of 5.14 +/- 0.31 (S.D.) X 10(-7) mol FdUrd into DNA per mol of DNA nucleotide, which corresponds to 0.146 +/- 0.082 pmol FdUrd per 10(7) cells. Pretreatment with 50 microM deoxythymidine for 24 hr led to a 2.7-fold increase in the incorporation of this analogue into newly synthesized DNA during the ensuing 16-hr exposure to 0.5 microM (/sup 3/H)FdUrd. Pretreatment with 0.5 microM methotrexate for 3 hr also increased the (/sup 3/H)FdUrd incorporation into newly synthesized DNA approximately 5-fold. The coexistence of deoxythymidine or methotrexate with (/sup 3/H)FdUrd, however, led to decreased incorporation of FdUrd into DNA. More than 50% of the radioactivity in DNA separated by Cs2SO4 equilibrium density gradient centrifugation was proven to be fluorodeoxyuridylate by means of its binding to Lactobacillus casei deoxythymidine monophosphate synthetase.

  2. PML, a growth suppressor disrupted in acute promyelocytic leukemia.

    PubMed Central

    Mu, Z M; Chin, K V; Liu, J H; Lozano, G; Chang, K S

    1994-01-01

    The nonrandom chromosomal translocation t(15;17)(q22;q21) in acute promyelocytic leukemia (APL) juxtaposes the genes for retinoic acid receptor alpha (RAR alpha) and the putative zinc finger transcription factor PML. The breakpoint site encodes fusion protein PML-RAR alpha, which is able to form a heterodimer with PML. It was hypothesized that PML-RAR alpha is a dominant negative inhibitor of PML. Inactivation of PML function in APL may play a critical role in APL pathogenesis. Our results demonstrated that PML, but not PML-RAR alpha, is a growth suppressor. This is supported by the following findings: (i) PML suppressed anchorage-independent growth of APL-derived NB4 cells on soft agar and tumorigenicity in nude mice, (ii) PML suppressed the oncogenic transformation of rat embryo fibroblasts by cooperative oncogenes, and (iii) PML suppressed transformation of NIH 3T3 cells by the activated neu oncogene. Cotransfection of PML with PML-RAR alpha resulted in a significant reduction in PML's transformation suppressor function in vivo, indicating that the fusion protein can be a dominant negative inhibitor of PML function in APL cells. This observation was further supported by the finding that cotransfection of PML and PML-RAR alpha resulted in altered normal cellular localization of PML. Our results also demonstrated that PML, but not PML-RAR alpha, is a promoter-specific transcription suppressor. Therefore, we hypothesized that disruption of the PML gene, a growth or transformation suppressor, by the t(15;17) translocation in APL is one of the critical events in leukemogenesis. Images PMID:7935403

  3. Tamoxifen enhances the differentiation-inducing and growth-inhibitory effects of all-trans retinoic acid in acute promyelocytic leukemia cells.

    PubMed

    Adachi, Koji; Honma, Yoshio; Miyake, Takaaki; Kawakami, Koshi; Takahashi, Tsutomu; Suzumiya, Junji

    2016-03-01

    All-trans retinoic acid (ATRA) is valuable in differentiation therapy for acute promyelocytic leukemia (APL). However, ATRA has had limited success as a single agent, due to the development of resistance. We found that tamoxifen effectively enhanced the differentiation-inducing effect of ATRA. Tamoxifen alone inhibited the proliferation of myeloid leukemia cell lines while only slightly increasing morphologic differentiation. Tamoxifen effectively enhanced the growth-inhibiting actions of various differentiation-inducing agents. ATRA in the presence of tamoxifen increased NBT reduction and the expression of CD11b in HL-60 cells more effectively than ATRA alone. Tamoxifen also enhanced the differentiation induced by the other inducers tested. ATRA induced the differentiation of APL cell lines NB4 and HT93 and APL cells in primary culture, and this differentiation was also enhanced by tamoxifen. Tamoxifen is one of the most widely used drugs for the treatment of cancer and has few side effects. The combination of ATRA and tamoxifen might be considered for the treatment of APL patients in whom it can be difficult to apply arsenic trioxide or anthracyclines. PMID:26797574

  4. Acute promyelocytic leukemia transformation in a patient with aplastic anemia: a case report with literature review

    PubMed Central

    Wang, Xiaoning; Yuan, Tingting; Wang, Wenjuan; Chen, Limei; Wang, Huaiyu; Liu, Yalin

    2015-01-01

    Aplastic anemia (AA) is a hematological disorder presenting with pancytopenia in peripheral blood and hypocellularity in bone marrow. AA patients with immunosuppressive therapy and granulocyte colony-stimulating factor treatment have a risk of development of acute leukemia including acute myeloid leukemia (M0, M1, M2, M4, M5, M6) and acute lymphoblastic leukemia. However, AA with transformation to acute promyelocytic leukemia (APL) has never been reported. Here, we reported a patient initially diagnosed with AA. while 19 years later, PML/RAR αfusion gene were detected and the patient was eventually diagnosed as APL. The diagnosis and management of this interesting case are discussed. PMID:26884990

  5. Development of Acute Promyelocytic Leukemia in a Patient With Gouty Arthritis on Long Term Colchicine.

    PubMed

    Buyukkurt, Nurhilal; Korur, Asli; Boga, Can

    2016-06-01

    Colchicine is a frequently used drug in rheumatological diseases. Acute promyelocytic leukemia developed in a patient who used colchicine for gouty arthritis since 10 years is presented and the possible relation between the long term use of colchicine and hematological malignancies is discussed. PMID:27408362

  6. The possibility of simvastatin as a chemotherapeutic agent for all-trans retinoic acid-resistant promyelocytic leukemia.

    PubMed

    Tomiyama, Naoki; Matzno, Sumio; Kitada, Chihiro; Nishiguchi, Eri; Okamura, Noboru; Matsuyama, Kenji

    2008-03-01

    In this study, the authors evaluated the possible use of 3-hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) in anti-leukemic chemotherapy. Cytotoxic potency against HL-60 was as follows; simvastatin (SV)>atorvastatin>cerivastatin>fluvastatin. Interestingly, HL-60-R2, an all-trans retinoic acid (ATRA)-resistant HL-60 variant, was twice as sensitive to SV than HL-60. Further studies revealed the particular mechanism of action of SV-induced apoptosis in leukemia. SV directly and rapidly disordered mitochondria with a loss of its membrane potential, reactive oxygen species (ROS) generation and subsequent irreversible damage with cytochrome c leakage and, finally, SV induced apoptosis through caspase-9 activation, whereas several studies have shown that other statins induced apoptosis to leukemia by the depletion of isoprenoids used for the prenylation of small GTPases, which are essential for cellular signal transduction. Our findings suggest that the mitochondrial pathway plays an important role in the higher potency of SV as a new class of agents for anti-leukemic therapy alone and/or in combination with agents. PMID:18310894

  7. Curing All Patients with Acute Promyelocytic Leukemia: Are We There Yet?

    PubMed Central

    Baljevic, Muhamed; Park, Jae H.; Stein, Eytan; Douer, Dan; Altman, Jessica K.; Tallman, Martin S.

    2014-01-01

    Acute promyelocytic leukemia (APL) is a distinct morphologic variant of acute myeloid leukemia (AML), accounting for approximately 10% to 15% of the adult cases of AML diagnosed in the United States annually.1 The leukemia cells are usually easy to distinguish morphologically from others2 and are characterized by a specific reciprocal translocation t(15;17),3 which fuses the PML (promyelocyte) gene from chromosome 15 to the RAR-α (retinoic acid receptor-α) gene of chromosome 17.4 Consistently found in all cases of t(15;17) APL, the resulting PML-RARα fusion gene on der(15) encodes a chimeric transcript of the 2 DNA-binding domains that shows altered transcriptional regulatory properties, eventually leading to the block of retinoic-acid– induced myeloid differentiation.4 PMID:22093584

  8. Use of arsenic trioxide in a hemodialysis-dependent patient with relapsed acute promyelocytic leukemia.

    PubMed

    Perreault, Sarah; Moeller, Julie; Patel, Kejal; Eyler, Rachel; Pham, Trinh; Russell, Kerry; Podoltsev, Nikolai

    2016-08-01

    Arsenic trioxide has been established for use in both relapsed and front-line treatment of acute promyelocytic leukemia. Dose adjustments are recommended to be considered in severe renal impairment although dosage reduction guidelines are not provided. In addition, toxicities of arsenic are significant. The use of arsenic trioxide has not been well studied in dialysis patients and there is a paucity of data in the literature to support the use in such a situation. We describe an 81-year-old relapsed acute promyelocytic leukemia hemodialysis-dependent patient with a pre-existing cardiac condition who was treated with 10 mg arsenic trioxide three times weekly after dialysis. These findings provide support along with the marginal amount of currently published data for an arsenic trioxide dosing regimen in hemodialysis patients. PMID:25972392

  9. Promyelocytic Leukemia Zinc Finger Protein Regulates Interferon-Mediated Innate Immunity

    PubMed Central

    Xu, Dakang; Holko, Michelle; Sadler, Anthony J.; Scott, Bernadette; Higashiyama, Shigeki; Berkofsky-Fessler, Windy; McConnell, Melanie J.; Pandolfi, Pier Paolo; Licht, Jonathan D.; Williams, Bryan R.G.

    2009-01-01

    Summary Interferons (IFNs) direct innate and acquired immune responses and, accordingly, are used therapeutically to treat a number of diseases, yet the diverse effects they elicit are not fully understood. Here we identify the promyelocytic leukemia zinc finger (PLZF) protein as a previously unrecognized component of the IFN response. IFN stimulates an association between PLZF, the promyelocytic leukemia protein and histone deacetylase 1, to induce a decisive subset of IFN-stimulated genes (ISGs). Consequently, PLZF-deficient mice have a specific ISG defect and as a result are more susceptible to viral infection. This susceptibility correlates with a marked decrease in the expression of the key antiviral mediators and an impaired IFN-mediated induction of natural killer cell function. These results provide new insights into the regulatory mechanisms of IFN signaling and the induction of innate antiviral immunity. PMID:19523849

  10. [Molecular remission induced by gemtuzumab ozogamicin in an elderly patient with relapsed acute promyelocytic leukemia].

    PubMed

    Yago, Kazuhiro; Aono, Maki; Shimada, Hideto

    2010-04-01

    A 79-year-old female with acute promyelocytic leukemia (APL) presented with second hematological relapse. She had been treated previously with modified AIDA protocol as the front-line therapy and had achieved complete remission. During ATRA maintenance therapy, the first hematological relapse occurred and she was treated with arsenic trioxide (ATO), achieving the second complete remission. After four courses of consolidation therapy of ATO, the second hematological relapse occurred. At this time, except for a transient effect of tamibarotene, neither arsenic trioxide nor combination chemotherapy was effective. The patient was then treated with two courses of gemtuzumab ozogamicin (GO) and achieved the third complete remission. At present, she is maintaining molecular remission more than one year after GO treatment. GO is considered to be a promising agent for elderly patients with relapsed acute promyelocytic leukemia resistant to arsenic trioxide. PMID:20467227

  11. Activation of retinoid X receptors induces apoptosis in HL-60 cell lines.

    PubMed Central

    Nagy, L; Thomázy, V A; Shipley, G L; Fésüs, L; Lamph, W; Heyman, R A; Chandraratna, R A; Davies, P J

    1995-01-01

    Retinoids induce myeloblastic leukemia (HL-60) cells to differentiate into granulocytes, which subsequently die by apoptosis. Retinoid action is mediated through at least two classes of nuclear receptors: retinoic acid receptors, which bind both all-trans retinoic acid and 9-cis retinoic acid, and retinoid X receptors, which bind only 9-cis retinoic acid. Using receptor-selective synthetic retinoids and HL-60 cell sublines with different retinoid responsiveness, we have investigated the contribution that each class of receptors makes to the processes of cellular differentiation and death. Our results demonstrate that ligand activation of retinoic acid receptors is sufficient to induce differentiation, whereas ligand activation of retinoid X receptors is essential for the induction of apoptosis in HL-60 cell lines. PMID:7791761

  12. Preclinical Assessment of Low Doses of Cisplatin in the Management of Acute Promyelocytic Leukemia

    PubMed Central

    Dasari, Shaloam R; Velma, Venkatramreddy; Yedjou, Clement G; Tchounwou, Paul B

    2016-01-01

    Cis-diamminedichloroplatinum (II) (cisplatin) is the most widely used chemotherapeutic drug for various cancers, but its effectiveness is limited by tumor cell resistance and the severe side effects it causes. Since high level of cisplatin is cytotoxic to both cancer and normal cells, the goal of the present study was to explore the effectiveness of prolonged low doses of cisplatin in the management of leukemia. To achieve our goal, human leukemia (HL-60) cells were treated with different doses (1, 2, or 3 µM) of cisplatin for 24, 48, 72 and 96 hours. Cell viability was assessed by MTS assay. Both oxidative stress damage and genotoxicity were estimated by antioxidants, lipid peroxidation, and comet assays, respectively. Data obtained from the MTS assay demonstrated that cisplatin treatment decreased the number of viable tumor cells by direct cell killing or by simply decreasing the rate of cellular proliferation in a dose- and time-dependent fashion. The results of the lipid peroxidation showed a significant increase (p<0.05) of malondialdehyde levels with increasing cisplatin doses. Results obtained from super oxide dismutase and catalase assays showed a gradual increase in antioxidant enzyme activity in cisplatin-treated cells compared to control cells. Data generated from the Comet assay demonstrated a significant dose-dependent increase in genotoxicity with respect to DNA damage as a result of cisplatin treatment. Taken together, our research demonstrated that cisplatin-induced cytotoxicity in HL-60 cells is mediated at least in part via induction of oxidative stress and oxidative damage. PMID:26900603

  13. Allogeneic stem cell transplantation for advanced acute promyelocytic leukemia in the ATRA and ATO era

    PubMed Central

    Ramadan, Safaa M.; Di Veroli, Ambra; Camboni, Agnese; Breccia, Massimo; Iori, Anna Paola; Aversa, Franco; Cupelli, Luca; Papayannidis, Cristina; Bacigalupo, Andrea; Arcese, William; Lo-Coco, Francesco

    2012-01-01

    The role of allogeneic stem cell transplant in advanced acute promyelocytic leukemia patients who received standard first- and second-line therapy is still unknown. We report the outcome of 31 acute promyelocytic leukemia patients (median age 39 years) who underwent allogeneic transplant in second remission (n=15) or beyond (n=16). Sixteen patients were real-time polymerase chain reaction positive and 15 negative for PML/RARA pre-transplant. The 4-year overall survival was 62% and 31% for patients transplanted in second remission and beyond, respectively (P=0.05), and 64% and 27% for patients with pre-transplant negative and positive real-time polymerase chain reaction, respectively (P=0.03). The 4-year cumulative incidence of relapse was 32% and 44% for patients transplanted in second remission and beyond, respectively (P=0.37), and 30% and 47% for patients transplanted with negative and positive real-time polymerase chain reaction, respectively (P=0.30). Transplant-related mortality was 19.6%. In conclusion, allogeneic transplant is effective in advanced acute promyelocytic leukemia in the all-trans-retinoic acid and arsenic trioxide era, and should be considered once relapse is diagnosed. PMID:22689684

  14. 1Alpha,25-dihydroxyvitamin D3 inhibits programmed cell death in HL-60 cells by activation of sphingosine kinase.

    PubMed

    Kleuser, B; Cuvillier, O; Spiegel, S

    1998-05-01

    Sphingolipid breakdown products [ceramide, sphingosine, and sphingosine-1-phosphate (SPP)] are emerging as a new class of bioactive molecules. In agreement with previous studies, treatment of human promyelocytic leukemia HL-60 cells with 1-alpha,25-dihydroxyvitamin D3 [1,25-(OH)2D3] induced a transient increase of ceramide levels within 2 h, which then returned to basal levels within 8 h. In contrast, sphingosine kinase activity increased more slowly and reached maximal levels only after 20 h of exposure, leading to a concomitant increase in SPP level. Unlike treatments with cell-permeable ceramide analogues or sphingomyelinase, which induce apoptosis, 1,25-(OH)2D3 did not induce apoptosis, despite the early formation of ceramide. Moreover, prolonged treatment of HL-60 cells with 1,25-(OH)2D3 suppressed ceramide-induced apoptosis. There was a correlation between the time course and dose response of the activation of sphingosine kinase by 1,25-(OH)2D3 and the protection against apoptosis. In contrast, treatment with all-trans-retinoic acid neither stimulated sphingosine kinase activity nor protected cells from ceramide-induced apoptosis. Treatment with SPP protected HL-60 cells from ceramide-induced apoptosis, and N,N-dimethylsphingosine (DMS), a competitive inhibitor of sphingosine kinase, prevented the survival effect of 1,25-(OH)2D3. The effect of DMS was counteracted by SPP, suggesting that SPP is a critical component of the cytoprotective effect of 1,25-(OH)2D3. Chelerythrine chloride, an inhibitor of protein kinase C, markedly reduced sphingosine kinase activity and the apoptosis-sparing effect of 1,25-(OH)2D3, and conversely, the tumor promoter 12-O-tetradecanoylphorhol-13-acetate not only suppressed ceramide-induced apoptosis but also stimulated sphingosine kinase activity. Moreover, the protective effect of 12-O-tetradecanoylphorbol-13-acetate was blocked by DMS. Collectively, our observations indicate that the cytoprotective effect of 1,25-(OH)2D3 is

  15. [Effect of honokiol on proliferation and apoptosis in HL-60 cells and its potential mechanism].

    PubMed

    Fan, Jia-Xin; Zeng, Ying-Jian; Weng, Guang-Yang; Wu, Jian-Wei; Li, Zhang-Qiu; Li, Yuan-Ming; Zheng, Rong; Guo, Kun-Yuan

    2014-12-01

    This study was aimed to investigate the effect of Honokiol (HNK) on proliferation and apoptosis of acute myeloid leukemia HL-60 cells and its potential mechanism. Inhibitory effect of HNK on the HL-60 cell proliferation was detected by MTT assay. Flow cytometry was used to detect the change of cell cycle and AnnexinV/PI staining was used to detect apoptosis. Western blot was applied to analyze the cell cycle protein (cyclins), cyclin-dependent kinase (CDK), P53, P21, P27, BCL-2, BCL-XL, Bax, caspase-3/9 and proteins for MAPK signal pathway. The results showed that HNK could inhibit the proliferation of HL-60 cells in time- and dose dependent ways. HNK arrested HL-60 cells in G0/G1 phase, and S phase cells decreased significantly (P < 0.05). The expression of cyclin D1, cyclin A, cyclin E and CDK2/4/6 were significantly down-regulated (P < 0.05), the expression of P53 and P21 was significantly upregulated after treating for 24 h with HNK (P < 0.05). After 24 h treatment with HNK, HL-60 cell apoptosis increased significantly with the upregulation of activated caspase-3, -9, BAX expression and the downregulation of BCL-2, BCL-XL expression. The MAPK subfamily, P38 and JNK were not significantly changed, but the expression of MEK1/2-ERK1/2 was significantly downregulated (P < 0.05). It is concluded that HNK arrestes the cells at G0/G1 phase and induces HL-60 cell apoptosis through the intervention of MEK1/2-ERK1/2 signaling pathway. PMID:25543478

  16. Epidemiology and Treatment of Acute Promyelocytic Leukemia in Latin America

    PubMed Central

    Rego, E.M.; Jácomo, R.H.

    2011-01-01

    Distinct epidemiological characteristics have been described in Acute Promielocytic Leukemia (APL). Populations from Latin America have a higher incidence of APL and in some geographic areas a distinct distribution of the PML-RARA isoforms is present. Here, we review the main differences in APL epidemilogy in Latin America as well as treatment outcomes. PMID:22110899

  17. In vitro cytotoxicity of Artemisia vulgaris L. essential oil is mediated by a mitochondria-dependent apoptosis in HL-60 leukemic cell line

    PubMed Central

    2014-01-01

    Background The essential oil (EO) of Artemisia vulgaris L. has been traditionally used worldwide for treating a large number of diseases. Although major components in A. vulgaris EO have been shown to inhibit growth of different cancer cells, as pure compounds or part of other plants extracted oil, no information is known about its anti-proliferative activities. Therefore, the current investigation has evaluated the toxicity of the plant extracted oil from buds (AVO-b) and leaves (AVO-l) and characterized their growth inhibitory effects on cancer cells. Methods AVO-b and AVO-l from A. vulgaris L. were extracted by hydrodistillation, and their effect on the viability of human HL-60 promyelocytic leukemia and various other cancer cell lines was tested using MTT assay. Flow cytometric analysis of apoptosis, DNA fragmentation assay, caspases enzymatic activities and Western blotting were used to determine the apoptotic pathway triggered by their action on HL-60 cells. Results Low concentrations of AVO-b and AVO-l inhibited the growth of HL-60 cells in a dose- and time-dependent manner. Employing flow cytometric, DNA fragmentation and caspase activation analyses, demonstrated that the cytotoxic effect of the oils is mediated by a caspase-dependent apoptosis. Kinetic studies in the presence and absence specific caspase inhibitors showed that activation of caspase-8 was dependent and subsequent to the activation of caspases-9 and -3. In addition, the essential oil caused a disruption of the mitochondrial transmembrane potential (ΔΨm), increased the release of cytochrome c to the cytosol, and altered the expression of certain members of Bcl-2 family (Bcl-2, Bax and Bid), Apaf-1 and XIAP. Interestingly, low doses of AVO-b and AVO-1 also induced apoptosis in various cancer cell lines, but not in noncancerous cells. Conclusions The results demonstrate that the EO-induced apoptosis in HL-60 cells is mediated by caspase-dependent pathways, involving caspases-3, -9, and -8

  18. Extramedullary Disease in Acute Promyelocytic Leukemia: Two-In-One Disease

    PubMed Central

    Albano, Francesco; Specchia, Giorgina

    2011-01-01

    In acute promyelocytic leukemia (APL), extramedullary disease (EMD) is particularly rare and shows special clinical and biological features. It is estimated that about 3–5% of APL patients will suffer extramedullary relapse. The most common site of EMD in APL is the central nervous system (CNS). At present, there are still many issues of EMD in APL needing further clarification, including pathogenesis, risk factors, prognosis and treatment. A better understanding of the biological mechanisms underlying EMD is important to be able to devise more effective CNS prophylaxis and induction-consolidation therapeutic strategies. PMID:22220263

  19. Cytotoxicity of electrophilic iron(II)-clathrochelates in human promyelocytic leukemia cell line.

    PubMed

    Blechinger, Jenny; Varzackii, Oleg A; Kovalska, Vladyslava; Zelinskii, Genrikh E; Voloshin, Yan Z; Kinski, Elisa; Mokhir, Andriy

    2016-01-15

    We observed that electrophilic iron(II)-clathrochelates exhibit significant cytotoxicity in human promyelocytic leukemia cells (IC50=6.5±4.6μM), which correlates with the enhancement of intracellular oxidative stress (17-fold increase with respect to the cells treated with the solvent only). Based on in vitro studies we suggested that this effect is caused by alkylation of glutathione leading to inhibition of the cellular antioxidative system and by catalytic generation of reactive oxygen species by products of the alkylation reaction. PMID:26631314

  20. Addition of Arsenic Trioxide into Induction Regimens Could Not Accelerate Recovery of Abnormality of Coagulation and Fibrinolysis in Patients with Acute Promyelocytic Leukemia

    PubMed Central

    Zhang, Ye; Wu, SiJing; Luo, Dan; Zhou, JianFeng; Li, DengJu

    2016-01-01

    Aim All-trans retinoic acid combined to anthracycline-based chemotherapy is the standard regimen of acute promyelocytic leukemia. The advent of arsenic trioxide has contributed to improve the anti-leukemic efficacy in acute promyelocytic leukemia. The objectives of the current study were to evaluate if dual induction by all-trans retinoic acid and arsenic trioxide could accelerate the recovery of abnormality of coagulation and fibrinolysis in patients with acute promyelocytic leukemia. Methods Retrospective analysis was performed in 103 newly-diagnosed patients with acute promyelocytic leukemia. Hemostatic variables and the consumption of component blood were comparably analyzed among patients treated by different induction regimen with or without arsenic trioxide. Results Compared to patients with other subtypes of de novo acute myeloid leukemia, patients with acute promyelocytic leukemia had lower platelet counts and fibrinogen levels, significantly prolonged prothrombin time and elevated D-dimers (P<0.001). Acute promyelocytic leukemia patients with high or intermediate risk prognostic stratification presented lower initial fibrinogen level than that of low-risk group (P<0.05). After induction treatment, abnormal coagulation and fibrinolysis of patients with acute promyelocytic leukemia was significantly improved before day 10. The recovery of abnormal hemostatic variables (platelet, prothrombin time, fibrinogen and D-dimer) was not significantly accelerated after adding arsenic trioxide in induction regimens; and the consumption of transfused component blood (platelet and plasma) did not dramatically change either. Acute promyelocytic leukemia patients with high or intermediate risk prognostic stratification had higher platelet transfusion demands than that of low-risk group (P<0.05). Conclusions Unexpectedly, adding arsenic trioxide could not accelerate the recovery of abnormality of coagulation and fibrinolysis in acute promyelocytic leukemia patients who

  1. Significance of ETV6 rearrangement in acute promyelocytic leukemia with t(15;17)/promyelocytic leukemia/retinoic acid receptor alpha

    PubMed Central

    GAO, NA; YU, WEN-ZHENG; WANG, XUE-XIA; SUN, JIAN-RONG; YU, NING; LIU, ZENG-YAN; LIU, XIAO-DAN; LIU, REN-TONG; FENG, RUI; DING, BU-TONG; SANG, TAN; GUO, NONG-JIAN

    2016-01-01

    Acute promyelocytic leukemia (APL) is a common subtype of acute myeloid leukemia in China. Since the application of arsenic trioxide and all-trans retinoic acid in the treatment of APL, the prognosis has greatly improved. However, ~20% of patients with APL relapse upon completing chemotherapy. Decreasing the relapse rate and incidence of early mortality may pose the greatest challenges for the future management of APL. Recently, Ets variant 6 (ETV6) was reported to be involved in a variety of translocations associated with hematological malignancies of myeloid and lymphoid origin. To date, little is known about the clinical implication of ETV6 rearrangement in APL. In the present study, ETV6 rearrangement was examined by split-signal fluorescence in situ hybridization in 258 adults with APL, and its association with the clinical features and outcomes of the patients was analyzed. The data suggested that ETV6 rearrangement may be an independent unfavorable prognostic factor for overall survival in APL patients. PMID:27313723

  2. CD34+ therapy-related acute promyelocytic leukemia in a patient previously treated for breast cancer

    PubMed Central

    Savooji, John; Shakil, Fouzia; Islam, Humayun; Liu, Delong

    2016-01-01

    Therapy-related acute myeloid leukemia (AML) is a long term complication of chemotherapy for a variety of cancers. In most cases, the marrow demonstrates high risk cytogenetics and the prognosis is poor. In a minority of patients “good risk” cytogenetics, including t(15;17)(q22;q12), are seen and the patient’s prognosis is similar to those who have de novo disease. Currently we present a patient who developed therapy-related acute promyelocytic leukemia (APL) after chemoradiotherapy for breast cancer. This case was especially atypical because the leukemic cells were CD34+, which is an unusual immunophenotype for APL. Recognition that this patient had APL, rather than the more common therapy-related MDS or AML, was imperative to initiate chemotherapy in a timely manner. PMID:27358899

  3. Treatment with 5-Azacytidine Accelerates Acute Promyelocytic Leukemia Leukemogenesis in a Transgenic Mouse Model

    PubMed Central

    Scaglioni, Pier Paolo; Cai, Lu Fan; Majid, Samia M.; Yung, Thomas M.; Socci, Nicholas D.; Kogan, Scott C.; Kopelovich, Levy; Pandolfi, Pier Paolo

    2011-01-01

    A key oncogenic force in acute promyelocytic leukemia (APL) is the ability of the promyelocytic leukemia–retinoic acid receptor α (PML-RARA) oncoprotein to recruit transcriptional repressors and DNA methyltransferases at retinoic acid–responsive elements. Pharmacological doses of retinoic acid relieve transcriptional repression inducing terminal differentiation/apoptosis of the leukemic blasts. APL blasts often harbor additional recurrent chromosomal abnormalities, and significantly, APL prevalence is increased in Latino populations. These observations suggest that multiple genetic and environmental/dietary factors are likely implicated in APL. We tested whether dietary or targeted chemopreventive strategies relieving PML-RARA transcriptional repression would be effective in a transgenic mouse model. Surprisingly, we found that 1) treatment with a demethylating agent, 5-azacytidine, results in a striking acceleration of APL; 2) a high fat, low folate/choline–containing diet resulted in a substantial but nonsignificant APL acceleration; and 3) all-trans retinoic acid (ATRA) is ineffective in preventing leukemia and results in ATRA-resistant APL. Our findings have important clinical implications because ATRA is a drug of choice for APL treatment and indicate that global demethylation, whether through dietary manipulations or through the use of a pharmacologic agent such as 5-azacytidine, may have unintended and detrimental consequences in chemopreventive regimens. PMID:21779489

  4. A case of central nervous system relapse in acute promyelocytic leukemia.

    PubMed

    Hasuike, Yuhei; Yamaguchi, Hiroshi; Mitsui, Hideki; Nishikawa, Yoshiro; Sugai, Fuminobu

    2016-04-28

    A 70-year-old woman who have achieved complete remission (CR) of acute promyelocytic leukemia (APL) with all-trans retinoic acid and chemotherapy presented with abnormal sensation in the right lateral thigh and the bilateral legs. In addition, neurological examination revealed weakness of the left shoulder abduction, the right hand, and the bilateral lower limbs. Atypical promyelocytes were detected in the cerebrospinal fluid, in spite of normal finding in the peripheral blood smear. Magnetic resonance imaging showed gadolinium-enhanced multiple intradural/extramedullary lesions in the whole spine. Nerve conduction studies of the right limbs revealed sensorimotor conduction abnormalities, conspicuously in the posterior tibial and sural nerves. As a result, she was diagnosed as having intrathecal relapse of APL, associated with multiple mononeuropathy. The neurological symptoms were completely disappeared by intrathecal chemotherapy and whole-spine radiotherapy, suggesting that the neuropathy was possibly caused by meningeal infiltration affecting multiple spinal nerve roots. Since extramedullary or intrathecal relapse is extremely rare in APL compared with other types of leukemia, precise neurological evaluations and suitable treatment should be performed immediately, when APL patients with CR manifest some neurological symptoms. PMID:27025992

  5. Additional chromosome abnormalities in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy

    PubMed Central

    Cervera, José; Montesinos, Pau; Hernández-Rivas, Jesús M.; Calasanz, María J.; Aventín, Anna; Ferro, María T.; Luño, Elisa; Sánchez, Javier; Vellenga, Edo; Rayón, Chelo; Milone, Gustavo; de la Serna, Javier; Rivas, Concha; González, José D.; Tormo, Mar; Amutio, Elena; González, Marcos; Brunet, Salut; Lowenberg, Bob; Sanz, Miguel A.

    2010-01-01

    Background Acute promyelocytic leukemia is a subtype of acute myeloid leukemia characterized by the t(15;17). The incidence and prognostic significance of additional chromosomal abnormalities in acute promyelocytic leukemia is still a controversial matter. Design and Methods Based on cytogenetic data available for 495 patients with acute promyelocytic leukemia enrolled in two consecutive PETHEMA trials (LPA96 and LPA99), we analyzed the incidence, characteristics, and outcome of patients with acute promyelocytic leukemia with and without additional chromosomal abnormalities who had been treated with all-trans retinoic acid plus anthracycline monochemotherapy for induction and consolidation. Results Additional chromosomal abnormalities were observed in 140 patients (28%). Trisomy 8 was the most frequent abnormality (36%), followed by abn(7q) (5%). Patients with additional chromosomal abnormalities more frequently had coagulopathy (P=0.03), lower platelet counts (P=0.02), and higher relapse-risk scores (P=0.02) than their counterparts without additional abnormalities. No significant association with FLT3/ITD or other clinicopathological characteristics was demonstrated. Patients with and without additional chromosomal abnormalities had similar complete remission rates (90% and 91%, respectively). Univariate analysis showed that additional chromosomal abnormalities were associated with a lower relapse-free survival in the LPA99 trial (P=0.04), but not in the LPA96 trial. However, neither additional chromosomal abnormalities overall nor any specific abnormality was identified as an independent risk factor for relapse in multivariate analysis. Conclusions The lack of independent prognostic value of additional chromosomal abnormalities in acute promyelocytic leukemia does not support the use of alternative therapeutic strategies when such abnormalities are found. PMID:19903674

  6. Induction of hypoxia-inducible factor-1α inhibits drug-induced apoptosis in the human leukemic cell line HL-60

    PubMed Central

    Yook, Yeon-Joo; Seo, Young-Jin; Kang, Hyoung Jin; Ko, Sang-Hyeok; Shin, Hee Young; Lee, Jeong Jin; Jeong, Gajin

    2010-01-01

    Background Leukemic cells originate from hypoxic bone marrow, which protects them from anti-cancer drugs. Although many factors that cause drug resistance in leukemic cells have been studied, the effect of hypoxia on drug-induced apoptosis is still poorly understood. Methods In this study, we examined the effect of hypoxia on anti-leukemic drug resistance in leukemic cell lines treated with cobalt chloride (CoCl2), a hypoxia-mimetic agent. Cellular proliferation was evaluated using the methyl thiazolyl tetrazolium (MTT) assay. Flow cytometry analysis and western blots were performed to investigate apoptosis-related proteins. Results Unlike its previously known apoptotic effect, the expression of HIF-1α increased the survival rate of human promyelocytic leukemia HL-60 cells when these cells were exposed to anti-leukemic drugs; these effects were mediated by heat-shock protein HSP70 and the pro-apoptotic protein Bax. Conclusion These findings may provide new insights for understanding the mechanisms underlying hypoxia and for designing new therapeutic strategies for acute myeloid leukemia. PMID:21120203

  7. NPM and BRG1 Mediate Transcriptional Resistance to Retinoic Acid in Acute Promyelocytic Leukemia.

    PubMed

    Nichol, Jessica N; Galbraith, Matthew D; Kleinman, Claudia L; Espinosa, Joaquín M; Miller, Wilson H

    2016-03-29

    Perturbation in the transcriptional control of genes driving differentiation is an established paradigm whereby oncogenic fusion proteins promote leukemia. From a retinoic acid (RA)-sensitive acute promyelocytic leukemia (APL) cell line, we derived an RA-resistant clone characterized by a block in transcription initiation, despite maintaining wild-type PML/RARA expression. We uncovered an aberrant interaction among PML/RARA, nucleophosmin (NPM), and topoisomerase II beta (TOP2B). Surprisingly, RA stimulation in these cells results in enhanced chromatin association of the nucleosome remodeler BRG1. Inhibition of NPM or TOP2B abrogated BRG1 recruitment. Furthermore, NPM inhibition and targeting BRG1 restored differentiation when combined with RA. Here, we demonstrate a role for NPM and BRG1 in obstructing RA differentiation and implicate chromatin remodeling in mediating therapeutic resistance in malignancies. NPM mutations are the most common genetic change in patients with acute leukemia (AML); therefore, our model may be applicable to other more common leukemias driven by NPM. PMID:26997274

  8. Down-regulation of Mcl-1 through GSK-3β activation contributes to arsenic trioxide-induced apoptosis in acute myeloid leukemia cells

    PubMed Central

    Wang, Rui; Xia, Lijuan; Gabrilove, Janice; Waxman, Samuel; Jing, Yongkui

    2012-01-01

    Arsenic trioxide (ATO) induces disease remission in acute promyelocytic leukemia (APL) patients, but not in non-APL acute myeloid leukemia (AML) patients. ATO at therapeutic concentrations (1-2 μM) induce APL NB4, but not non-APL HL-60, cells to undergo apoptosis through the mitochondrial pathway. The role of antiapoptotic protein Mcl-1 in ATO-induced apoptosis was determined. The levels of Mcl-1 were decreased in NB4, but not in HL-60, cells after ATO treatment through proteasomal degradation. Both GSK3β inhibitor SB216763 and siRNA blocked ATO-induced Mcl-1 reduction as well as attenuated ATO-induced apoptosis in NB4 cells. Silencing Mcl-1 sensitized HL-60 cells to ATO-induced apoptosis. Both ERK and AKT inhibitors decreased Mcl-1 levels and enhanced ATO-induced apoptosis in HL-60 cells. Sorafenib, a Raf inhibitor, activated GSK3β by inhibiting its phosphorylation, decreased Mcl-1 levels, and decreased intracellular glutathione levels in HL-60 cells. Sorafenib plus ATO augmented ROS production and apoptosis induction in HL-60 cells and in primary AML cells. These results indicate that ATO induces Mcl-1 degradation through activation of GSK3β in APL cells and provide a rationale for utilizing ATO in combination with sorafenib for the treatment of non-APL AML patients. PMID:22751450

  9. Oncogene Regulation during the Growth and Differentiation of a Human Promyelocytic Leukemia Cell Line.

    NASA Astrophysics Data System (ADS)

    Ely, Constance Marie

    To determine the significance of the regulation of the cellular oncogenes c-myc and c-myb during myeloid and monocytic differentiation, we analyzed oncogene expression concurrent with functional and morphological differences in HL-60 cells and in a partial differentiation resistant HL-60 clone (HL-60-1E3). Although HL-60-1E3 cells are unable to develop mature terminally differentiated features with PDBu or DMSO stimulation, they do exhibit partial differentiation features with these conditions. Treatments of HL-60-1E3 cells with PDBu preceded by treatment with dimethylsulfoxide (DMSO), results in complete maturation to macrophage-like cells. Using parallel PDBu-induction studies, we analyzed the kinetics of expression of c-myc, c-myb, c-fms, c-fos, c-raf, and histone H4, together with cell cycle frequency distribution, cytotoxic effector activity and clonogenic potential in HL-60 and HL-60-1E3 cells. The results of these studies revealed altered c-myc and c-myb regulation in resistant cells corresponding to a lack of terminal commitment as assessed by an increase in clonogenic potential and the inability to acquire cytotoxic function. These data suggest that maintenance of the suppressed state of c-myc and c-myb gene expression may be an important component of the regulatory mechanisms which allow HL-60 cells to complete macrophage-like terminal differentiation. A similar series of experiments examining the DMSO-induced granulocyte pathway revealed that differentiation resistance of HL-60-1E3 cells corresponded to altered regulation of both c-myc and c-myb, strengthening the hypothesis that regulation of both of these genes is integral to HL-60 differentiation. Biphasic c-myb expression was observed in both cell populations in the presence of DMSO where maximal expression took place at approximately 72 hours post-induction and was not linked to proliferation. Introduction of SV40:c-myc recombinant plasmids into HL-60 cells resulted in altered nuclear morphology

  10. Acute promyelocytic leukemia presenting as pulmonary thromboembolism: Not all APLs bleed

    PubMed Central

    Vaid, Ashok K; Batra, Sandeep; Karanth, Suman S; Gupta, Sachin

    2015-01-01

    We present a rare case of acute promyelocytic leukemia (APL) presenting as pulmonary thromboembolism being misdiagnosed as community-acquired pneumonia. Thrombotic phenomenon in APL are poorly understood and grossly underreported. In our case, following no response to standard antibiotic treatment, the patient was further investigated and detected to have an acute pulmonary thromboembolism following right lower limb deep vein thrombosis (DVT). Though, complete blood picture revealed only mild hyperleukocytosis, bone marrow biopsy and aspiration revealed 60% blasts and a positive t (15,17)(q22,12) and PML retinoic acid receptor alpha (RARA) fusion protein on molecular cytogenetics. He was diagnosed as APL and received treatment with all-transretinoic acid (ATRA) and arsenic trioxide (ATO) and therapeutic anticoagulation PMID:26629469

  11. Erythema multiforme due to arsenic trioxide in a case of acute promyelocytic leukemia: A diagnostic challenge

    PubMed Central

    Badarkhe, Girish V.; Sil, Amrita; Bhattacharya, Sabari; Nath, Uttam Kumar; Das, Nilay Kanti

    2016-01-01

    Erythema multiforme (EM) is an acute, self-limited, Type IV hypersensitivity reactions associated with infections and drugs. In this case of acute promyelocytic leukemia, EM diagnosed during the induction phase was mistakenly attributed to vancomycin used to treat febrile neutropenia during that period. However, the occurrence of the lesions of EM again during the consolidation phase with arsenic trioxide (ATO) lead to a re-evaluation of the patient and both the Naranjo and World Health Organization-Uppsala Monitoring Centre scale showed the causality association as “probable.” The rash responded to topical corticosteroids and antihistamines. This rare event of EM being caused by ATO may be attributed to the genetic variation of methyl conjugation in the individual which had triggered the response, and the altered metabolic byproducts acted as a hapten in the subsequent keratinocyte necrosis. PMID:27114640

  12. Acute promyelocytic leukemia harbouring rare FLT3-TKD and WT1 mutations: A case report

    PubMed Central

    LIU, TING-TING; ZENG, KE; WANG, LIN; LIU, TING; NIU, TING

    2015-01-01

    The involvement of the central nervous system (CNS) is rare in acute promyelocytic leukemia (APL). The present study reported the case of a 34-year-old male patient with APL that possessed a rare point mutation (p.Asn841Gly, c.2523C>A) in the tyrosine kinase domain of the FMS-like tyrosine kinase 3 (FLT3) gene and a novel Wilm tumor gene mutation (c.1209_1210insT/p.K404X). The patient suffered central nervous system and systemic relapses twice during systemic and intrathecal chemotherapy. At present, the patient is undergoing alternative induction and consolidation therapies, including the administration of FLT3 inhibitor, tetraarsenic tetrasulfide and novel cytotherapy, and is prepared for salvage allogeneic hematopoietic stem cell transplantion (allo-HSCT). The present study indicated that patients with APL that are at a high risk of relapse and unfavorable gene mutations should receive immediate allo-HSCT, whenever possible. PMID:26622765

  13. Disseminated intravascular coagulation observed following treatment with gemtuzumab ozogamicin for relapsed/refractory acute promyelocytic leukemia

    PubMed Central

    AZUMA, YOSHIKO; NAKAYA, AYA; HOTTA, MASAAKI; FUJITA, SHINYA; TSUBOKURA, YUKIE; YOSHIMURA, HIDEAKI; SATAKE, ATSUSHI; ISHII, KAZUYOSHI; ITO, TOMOKI; NOMURA, SHOSAKU

    2016-01-01

    Gemtuzumab ozogamicin (GO) is a recombinant humanized immunoglobulin G4 anti-cluster of differentiation (CD)33 monoclonal antibody conjugated to N-acetyl-γ calicheamicin dimethylhydrazide, a naturally potent antibiotic. It has been introduced for the treatment of acute promyelocytic leukemia (APL), since large quantities of CD33 are commonly expressed on the surface of APL cells. The present study reported two cases with prominent disseminated intravascular coagulation (DIC), which was transiently observed following treatment with GO with relapsed/refractory APL. Very limited information exists regarding DIC occurring following GO, and its mechanism remains to be elucidated. In the present study, recombinant human soluble thrombomodulin was used for DIC treatment, and the patients recovered promptly. Since DIC is the most serious adverse event associated with GO treatment, elucidation of its mechanism and establishment of a treatment strategy are warranted. PMID:27330760

  14. Erythema multiforme due to arsenic trioxide in a case of acute promyelocytic leukemia: A diagnostic challenge.

    PubMed

    Badarkhe, Girish V; Sil, Amrita; Bhattacharya, Sabari; Nath, Uttam Kumar; Das, Nilay Kanti

    2016-01-01

    Erythema multiforme (EM) is an acute, self-limited, Type IV hypersensitivity reactions associated with infections and drugs. In this case of acute promyelocytic leukemia, EM diagnosed during the induction phase was mistakenly attributed to vancomycin used to treat febrile neutropenia during that period. However, the occurrence of the lesions of EM again during the consolidation phase with arsenic trioxide (ATO) lead to a re-evaluation of the patient and both the Naranjo and World Health Organization-Uppsala Monitoring Centre scale showed the causality association as "probable." The rash responded to topical corticosteroids and antihistamines. This rare event of EM being caused by ATO may be attributed to the genetic variation of methyl conjugation in the individual which had triggered the response, and the altered metabolic byproducts acted as a hapten in the subsequent keratinocyte necrosis. PMID:27114640

  15. CCY-1a-E2 induces G2/M phase arrest and apoptotic cell death in HL-60 leukemia cells through cyclin-dependent kinase 1 signaling and the mitochondria-dependent caspase pathway.

    PubMed

    Lin, Chin-Fen; Yang, Jai-Sing; Lin, Chingju; Tsai, Fuu-Jen; Lu, Chi-Cheng; Lee, Miau-Rong

    2016-09-01

    Our previous study demonstrated that 2-[(3-methoxybenzyl)oxy]benzaldehyde (CCY-1a-E2) is a potent compound that acts against multiple human leukemia cell lines. CCY-1a-E2 was also shown to have efficacious anti‑leukemic activity in vivo. However, the molecular mechanism of action of CCY‑1a‑E2 attributed to its anticancer effect remains poorly understood. In the present study, CCY‑1a‑E2 suppressed cell viability in multiple leukemia cell lines (HL‑60, K562, KG‑1 and KG‑1a) via inhibition of cell proliferation, cell cycle arrest and induction of apoptosis. CCY‑1a‑E2 exhibited a marked toxic effect on HL‑60 cells and displayed low cytotoxicity in normal human peripheral blood mononuclear cells (PBMCs). Results from flow cytometric analysis indicated that CCY‑1a‑E2 promoted G2/M phase arrest and promoted apoptosis in the HL‑60 cells. CCY‑1a‑E2 treatment upregulated cyclin B, cyclin‑dependent kinase 1 (CDK1), cell division cycle 25C (cdc25C) and p21 protein expression. CCY‑1a‑E2 caused apoptotic cell death and DNA fragmentation as determined by 4',6‑diamidino‑2‑phenylindole (DAPI) staining and DNA gel electrophoresis. Elevated activities of caspase‑8, ‑9 and ‑3 were observed during CCY‑1a‑E2‑induced cell apoptosis; their specific inhibitors were found to block CCY‑1a‑E2‑induced apoptosis, respectively. Moreover, CCY‑1a‑E2 time‑dependently disrupted the mitochondrial membrane potential (ΔΨm), and it enhanced the protein levels of Fas/CD95, cytochrome c, Bax, cleaved PARP, as well as attenuated Bcl‑2 expression in the HL‑60 cells. Our results provide direct evidence that supports the future potential therapeutic application of CCY-1a-E2 in leukemia. PMID:27461132

  16. Acute promyelocytic leukemia: where did we start, where are we now, and the future

    PubMed Central

    Coombs, C C; Tavakkoli, M; Tallman, M S

    2015-01-01

    Historically, acute promyelocytic leukemia (APL) was considered to be one of the most fatal forms of acute leukemia with poor outcomes before the introduction of the vitamin A derivative all-trans retinoic acid (ATRA). With considerable advances in therapy, including the introduction of ATRA initially as a single agent and then in combination with anthracyclines, and more recently by development of arsenic trioxide (ATO)-containing regimens, APL is now characterized by complete remission rates of 90% and cure rates of ∼80%, even higher among low-risk patients. Furthermore, with ATRA–ATO combinations, chemotherapy may safely be omitted in low-risk patients. The disease is now considered to be the most curable subtype of acute myeloid leukemia (AML) in adults. Nevertheless, APL remains associated with a significant incidence of early death related to the characteristic bleeding diathesis. Early death, rather than resistant disease so common in all other subtypes of AML, has emerged as the major cause of treatment failure. PMID:25885425

  17. Acute promyelocytic leukemia: where did we start, where are we now, and the future.

    PubMed

    Coombs, C C; Tavakkoli, M; Tallman, M S

    2015-01-01

    Historically, acute promyelocytic leukemia (APL) was considered to be one of the most fatal forms of acute leukemia with poor outcomes before the introduction of the vitamin A derivative all-trans retinoic acid (ATRA). With considerable advances in therapy, including the introduction of ATRA initially as a single agent and then in combination with anthracyclines, and more recently by development of arsenic trioxide (ATO)-containing regimens, APL is now characterized by complete remission rates of 90% and cure rates of ∼80%, even higher among low-risk patients. Furthermore, with ATRA-ATO combinations, chemotherapy may safely be omitted in low-risk patients. The disease is now considered to be the most curable subtype of acute myeloid leukemia (AML) in adults. Nevertheless, APL remains associated with a significant incidence of early death related to the characteristic bleeding diathesis. Early death, rather than resistant disease so common in all other subtypes of AML, has emerged as the major cause of treatment failure. PMID:25885425

  18. Evolution of a FLT3-TKD mutated subclone at meningeal relapse in acute promyelocytic leukemia

    PubMed Central

    Bochtler, Tilmann; Fröhling, Stefan; Weichert, Wilko; Endris, Volker; Thiede, Christian; Hutter, Barbara; Hundemer, Michael; Ho, Anthony D.; Krämer, Alwin

    2016-01-01

    Here, we report the case of an acute promyelocytic leukemia (APL) patient who—although negative for FLT3 mutations at diagnosis—developed isolated FLT3 tyrosine kinase II domain (FLT3-TKD)-positive meningeal relapse, which, in retrospect, could be traced back to a minute bone marrow subclone present at first diagnosis. Initially, the 48-yr-old female diagnosed with high-risk APL had achieved complete molecular remission after standard treatment with all-trans retinoic acid (ATRA) and chemotherapy according to the AIDA (ATRA plus idarubicin) protocol. Thirteen months after the start of ATRA maintenance, the patient suffered clinically overt meningeal relapse along with minute molecular traces of PML/RARA (promyelocytic leukemia/retinoic acid receptor alpha) in the bone marrow. Following treatment with arsenic trioxide and ATRA in combination with intrathecal cytarabine and methotrexate, the patient achieved a complete molecular remission in both cerebrospinal fluid (CSF) and bone marrow, which currently lasts for 2 yr after completion of therapy. Whole-exome sequencing and subsequent ultradeep targeted resequencing revealed a heterozygous FLT3-TKD mutation in CSF leukemic cells (p.D835Y, c.2503G>T, 1000/1961 reads [51%]), which was undetectable in the concurrent bone marrow sample. Interestingly, the FLT3-TKD mutated meningeal clone originated from a small bone marrow subclone present in a variant allele frequency of 0.4% (6/1553 reads) at initial diagnosis. This case highlights the concept of clonal evolution with a subclone harboring an additional mutation being selected as the “fittest” and leading to meningeal relapse. It also further supports earlier suggestions that FLT3 mutations may play a role for migration and clonal expansion in the CSF sanctuary site. PMID:27626069

  19. Effects of arsenic on modification of promyelocytic leukemia (PML): PML responds to low levels of arsenite

    SciTech Connect

    Hirano, Seishiro; Watanabe, Takayuki; Kobayashi, Yayoi

    2013-12-15

    Inorganic arsenite (iAs{sup 3+}) is a two-edged sword. iAs{sup 3+} is a well-known human carcinogen; nevertheless, it has been used as a therapeutic drug for acute promyelocytic leukemia (APL), which is caused by a fusion protein comprising retinoic acid receptor-α and promyelocytic leukemia (PML). PML, a nuclear transcription factor, has a RING finger domain with densely positioned cysteine residues. To examine PML-modulated cellular responses to iAs{sup 3+}, CHO-K1 and HEK293 cells were each used to establish cell lines that expressed ectopic human PML. Overexpression of PML increased susceptibility to iAs{sup 3+} in CHO-K1 cells, but not in HEK293 cells. Exposure of PML-transfected cells to iAs{sup 3+} caused PML to change from a soluble form to less soluble forms, and this modification of PML was observable even with just 0.1 μM iAs{sup 3+} (7.5 ppb). Western blot and immunofluorescent microscopic analyses revealed that the biochemical changes of PML were caused at least in part by conjugation with small ubiquitin-like modifier proteins (SUMOylation). A luciferase reporter gene was used to investigate whether modification of PML was caused by oxidative stress or activation of antioxidant response element (ARE) in CHO-K1 cells. Modification of PML protein occurred faster than activation of the ARE in response to iAs{sup 3+}, suggesting that PML was not modified as a consequence of oxidative stress-induced ARE activation. - Highlights: • PML was found in nuclear microspecles in response to arsenite. • Arsenite triggers SUMOylation of PML. • Arsenite modifies PML at as low as 0.1 μM. • Modification of PML is not caused by ARE activation.

  20. Evolution of a FLT3-TKD mutated subclone at meningeal relapse in acute promyelocytic leukemia.

    PubMed

    Bochtler, Tilmann; Fröhling, Stefan; Weichert, Wilko; Endris, Volker; Thiede, Christian; Hutter, Barbara; Hundemer, Michael; Ho, Anthony D; Krämer, Alwin

    2016-09-01

    Here, we report the case of an acute promyelocytic leukemia (APL) patient who-although negative for FLT3 mutations at diagnosis-developed isolated FLT3 tyrosine kinase II domain (FLT3-TKD)-positive meningeal relapse, which, in retrospect, could be traced back to a minute bone marrow subclone present at first diagnosis. Initially, the 48-yr-old female diagnosed with high-risk APL had achieved complete molecular remission after standard treatment with all-trans retinoic acid (ATRA) and chemotherapy according to the AIDA (ATRA plus idarubicin) protocol. Thirteen months after the start of ATRA maintenance, the patient suffered clinically overt meningeal relapse along with minute molecular traces of PML/RARA (promyelocytic leukemia/retinoic acid receptor alpha) in the bone marrow. Following treatment with arsenic trioxide and ATRA in combination with intrathecal cytarabine and methotrexate, the patient achieved a complete molecular remission in both cerebrospinal fluid (CSF) and bone marrow, which currently lasts for 2 yr after completion of therapy. Whole-exome sequencing and subsequent ultradeep targeted resequencing revealed a heterozygous FLT3-TKD mutation in CSF leukemic cells (p.D835Y, c.2503G>T, 1000/1961 reads [51%]), which was undetectable in the concurrent bone marrow sample. Interestingly, the FLT3-TKD mutated meningeal clone originated from a small bone marrow subclone present in a variant allele frequency of 0.4% (6/1553 reads) at initial diagnosis. This case highlights the concept of clonal evolution with a subclone harboring an additional mutation being selected as the "fittest" and leading to meningeal relapse. It also further supports earlier suggestions that FLT3 mutations may play a role for migration and clonal expansion in the CSF sanctuary site. PMID:27626069

  1. Arsenic trioxide-based therapy of relapsed acute promyelocytic leukemia: registry results from the European LeukemiaNet.

    PubMed

    Lengfelder, E; Lo-Coco, F; Ades, L; Montesinos, P; Grimwade, D; Kishore, B; Ramadan, S M; Pagoni, M; Breccia, M; Huerta, A J G; Nloga, A M; González-Sanmiguel, J D; Schmidt, A; Lambert, J-F; Lehmann, S; Di Bona, E; Cassinat, B; Hofmann, W-K; Görlich, D; Sauerland, M-C; Fenaux, P; Sanz, M

    2015-05-01

    In 2008, a European registry of relapsed acute promyelocytic leukemia was established by the European LeukemiaNet. Outcome data were available for 155 patients treated with arsenic trioxide in first relapse. In hematological relapse (n=104), 91% of the patients entered complete hematological remission (CR), 7% had induction death and 2% resistance, 27% developed differentiation syndrome and 39% leukocytosis, whereas no death or side effects occurred in patients treated in molecular relapse (n=40). The rate of molecular (m)CR was 74% in hematological and 62% in molecular relapse (P=0.3). All patients with extramedullary relapse (n=11) entered clinical and mCR. After 3.2 years median follow-up, the 3-year overall survival (OS) and cumulative incidence of second relapse were 68% and 41% in hematological relapse, 66% and 48% in molecular relapse and 90 and 11% in extramedullary relapse, respectively. After allogeneic or autologous transplantation in second CR (n=93), the 3-year OS was 80% compared with 59% without transplantation (n=55) (P=0.03). Multivariable analysis demonstrated the favorable prognostic impact of first remission duration ⩾1.5 years, achievement of mCR and allogeneic or autologous transplantation on OS of patients alive after induction (P=0.03, P=0.01, P=0.01) and on leukemia-free survival (P=0.006, P<0.0001, P=0.003), respectively. PMID:25627637

  2. Novel treatment of acute promyelocytic leukemia: As₂O₃, retinoic acid and retinoid pharmacology.

    PubMed

    Zhu, George; Mische, Sarah E; Seigneres, Beatrice

    2013-01-01

    Acute promyelocytic leukemia(APL), a specific characteristic of t(15;17) chromosome translocation, represents 5% to 15% of cases of acute nonlymphocytic leukemia. An alternative approach is to consider retinoic acid(all-trans RA, ATRA or 13-cis RA or 9-cis RA) plus chemotherapy or RA plus As₂O₃ regimens as now novel therapy. Molecular gene analyses are conclusive in vivo evidence that oncogenic PML/RARa plays a crucial role in APL leukemogenesis. As a novel approach to APL treatment, one possible the action of RA, A consense sequence (5'-TCAGGTCATGACCTGA-3') has been postulated for the thyroid hormone (TRE) and retinoic acid responsive element (RARE) containing half palindromes, which located in the promoter region of target genes. High dose (100-fold) of RA-RARE-PML/RARa complex in intracellular localization appears to relieve repressor from DNA binding, including corepressors N-CoR, SMRT and HDACs, release PML/RARa- mediated transcriptional repression, and release histone deacetylase activity from PMLRARa. The resulting PML/RARa oncoprotein proteolytic degradation through the autophagy-lysosome pathway and the ubiquitin SUMO-proteasome system (UPS), as well as caspase 3 (cleavage site Asp522 within a-helics region of PML component of the fusion protein) or neutrophil elastase, or lysosomal protease enzyme induction. PML protein relocalizes into the wild-type nuclear body (PML-NB) configuration or/and wild-type RARa upregulated. An effect to relieve the blockade (inhibition) of PML/RARA-mediated RA dependent promyelocytic differentiation, and retinoic acid in APL therapy (see Figure in the full text, George Zhu, 1991). Here, like v-erbA, PML/RARa is a (strong) transcriptional repressor of the RA receptor (RAR) complex, and PML/RARa fusion receptor gene act as conditional oncogenic receptor (translocated chimeric retinoic acid a signaling) or oncogenic PML/RARa may participate in leukemogenesis of APL through blocking RA-mediated promyelocytic differentiation

  3. Prophylaxis of symptoms of hyperhistaminemia after the treatment of acute promyelocytic leukemia with all-trans retinoic acid.

    PubMed

    Shimamoto, Y; Suga, K; Yamaguchi, M; Kuriyama, K; Tomonaga, M

    1994-01-01

    A 61-year-old man with acute promyelocytic leukemia (APL) is described in whom some leukemic promyelocytes contained granules similar to those of basophils, and hyperhistaminemia developed after treatment with all-trans retinoic acid. The symptoms of hyperhistaminemia, mediated via H2 receptors, were prevented by the administration of an H2-blocker, famotidine, but wheezing due to bronchospasms, mediated via H1 receptors, developed and was improved by administration of chlorpheniramine. In APL, it is generally thought that the maturation of neutrophilic leukocytes is arrested at the level of abnormal promyelocytes. However, heterogeneity of leukemic promyelocytes has been described and in a few patients some leukemic promyelocytes have been known to show basophilic features. Marked basophilia and severe symptoms due to hyperhistaminemia have recently been reported after the treatment of APL with all-trans retinoic acid. Our case presented similar basophilic features, but indicated that the symptoms of hyperhistaminemia after administration of retinoic acid can be prevented with antihistaminic drugs and suggested that both H1- and H2-blockers should be administered to such APL patients with basophilia. PMID:7817703

  4. Sorafenib induces apoptosis in HL60 cells by inhibiting Src kinase-mediated STAT3 phosphorylation.

    PubMed

    Zhao, Wei; Zhang, Tao; Qu, Bingqian; Wu, Xingxin; Zhu, Xu; Meng, Fanyu; Gu, Yanhong; Shu, Yongqian; Shen, Yan; Sun, Yang; Xu, Qiang

    2011-01-01

    Signal transducer and activator of transcription 3 (STAT3) is constitutively active in approximately 50% of acute myeloid leukemia (AML) cases and mediates multiple cellular processes including cell resistance to apoptosis. Inhibition of constitutively active STAT3 has been shown to induce AML cell apoptosis. Our aim was to ascertain if sorafenib, a multikinase inhibitor, may also inhibit STAT3 signaling and, therefore, be efficacious for AML. We found that sorafenib inhibited proliferation and induced apoptosis in human AML cell line (HL60) cells. In addition, sorafenib exposure reduced constitutive STAT3 phosphorylation in HL60 cells and repressed STAT3 DNA-binding activity and Mcl-1 and Bcl-2 expression. Similar results were obtained with the Src kinase inhibitor I, suggesting that sorafenib suppresses STAT3 phosphorylation by inhibiting Src-kinase activity. Furthermore, significant inhibition of Src kinase activity by sorafenib was observed in the kinase assay. In addition, Src could be co-immunoprecipitated with STAT3, and the phosphorylation of STAT3 was significantly inhibited by sorafenib only in cell lines in which phosphorylated Src is highly expressed. Taken together, our study indicates that sorafenib blocks Src kinase-mediated STAT3 phosphorylation and decreases the expression of apoptosis regulatory proteins Mcl-1 and Bcl-2, which are associated with increased apoptosis in HL60 cells. These findings provide a rationale for the treatment of human AML. PMID:20881478

  5. Epstein - Barr virus latent membrane protein 1 suppresses reporter activity through modulation of promyelocytic leukemia protein-nuclear bodies

    PubMed Central

    2011-01-01

    The Epstein-Barr virus (EBV) encoded Latent Membrane Protein 1 (LMP1) has been shown to increase the expression of promyelocytic leukemia protein (PML) and the immunofluorescent intensity of promyelocytic leukemia nuclear bodies (PML NBs). PML NBs have been implicated in the modulation of transcription and the association of reporter plasmids with PML NBs has been implicated in repression of reporter activity. Additionally, repression of various reporters in the presence of LMP1 has been noted. This study demonstrates that LMP1 suppresses expression of reporter activity in a dose responsive manner and corresponds with the LMP1 induced increase in PML NB intensity. Disruption of PML NBs with arsenic trioxide or a PML siRNA restores reporter activity. These data offer an explanation for previously conflicting data on LMP1 signaling and calls attention to the possibility of false-positives and false-negatives when using reporter assays as a research tool in cells expressing LMP1. PMID:21975125

  6. Hibiscus anthocyanins rich extract-induced apoptotic cell death in human promyelocytic leukemia cells

    SciTech Connect

    Chang, Y.-C.; Huang, H.-P.; Hsu, J.-D.; Yang, S.-F.; Wang, C.-J. . E-mail: wcj@csmu.edu.tw

    2005-06-15

    Hibiscus sabdariffa Linne (Malvaceae), an attractive plant believed to be native to Africa, is cultivated in the Sudan and Eastern Taiwan. Anthocyanins exist widely in many vegetables and fruits. Some reports demonstrated that anthocyanins extracted from H. sabdariffa L., Hibiscus anthocyanins (HAs) (which are a group of natural pigments existing in the dried calyx of H. sabdariffa L.) exhibited antioxidant activity and liver protection. Therefore, in this study, we explored the effect of HAs on human cancer cells. The result showed that HAs could cause cancer cell apoptosis, especially in HL-60 cells. Using flow cytometry, we found that HAs treatment (0-4 mg/ml) markedly induced apoptosis in HL-60 cells in a dose- and time-dependent manner. The result also revealed increased phosphorylation in p38 and c-Jun, cytochrome c release, and expression of tBid, Fas, and FasL in the HAs-treated HL-60 cells. We further used SB203580 (p38 inhibitor), PD98059 (MEK inhibitor), SP600125 (JNK inhibitor), and wortmannin (phosphatidylinositol 3-kinase; PI-3K inhibitor) to evaluate their effect on the HAs-induced HL-60 death. The data showed that only SB203580 had strong potential in inhibiting HL-60 cell apoptosis and related protein expression and phosphorylation. Therefore, we suggested that HAs mediated HL-60 apoptosis via the p38-FasL and Bid pathway. According to these results, HAs could be developed as chemopreventive agents. However, further investigations into the specificity and mechanism(s) of HAs are needed.

  7. PML-RARA requires DNA methyltransferase 3A to initiate acute promyelocytic leukemia.

    PubMed

    Cole, Christopher B; Verdoni, Angela M; Ketkar, Shamika; Leight, Elizabeth R; Russler-Germain, David A; Lamprecht, Tamara L; Demeter, Ryan T; Magrini, Vincent; Ley, Timothy J

    2016-01-01

    The DNA methyltransferases DNMT3A and DNMT3B are primarily responsible for de novo methylation of specific cytosine residues in CpG dinucleotides during mammalian development. While loss-of-function mutations in DNMT3A are highly recurrent in acute myeloid leukemia (AML), DNMT3A mutations are almost never found in AML patients with translocations that create oncogenic fusion genes such as PML-RARA, RUNX1-RUNX1T1, and MLL-AF9. Here, we explored how DNMT3A is involved in the function of these fusion genes. We used retroviral vectors to express PML-RARA, RUNX1-RUNX1T1, or MLL-AF9 in bone marrow cells derived from WT or DNMT3A-deficient mice. Additionally, we examined the phenotypes of hematopoietic cells from Ctsg-PML-RARA mice, which express PML-RARA in early hematopoietic progenitors and myeloid precursors, with or without DNMT3A. We determined that the methyltransferase activity of DNMT3A, but not DNMT3B, is required for aberrant PML-RARA-driven self-renewal ex vivo and that DNMT3A is dispensable for RUNX1-RUNX1T1- and MLL-AF9-driven self-renewal. Furthermore, both the PML-RARA-driven competitive transplantation advantage and development of acute promyelocytic leukemia (APL) required DNMT3A. Together, these findings suggest that PML-RARA requires DNMT3A to initiate APL in mice. PMID:26595813

  8. Swallowing a bitter pill-oral arsenic trioxide for acute promyelocytic leukemia.

    PubMed

    Torka, Pallawi; Al Ustwani, Omar; Wetzler, Meir; Wang, Eunice S; Griffiths, Elizabeth A

    2016-05-01

    Parenteral arsenic trioxide (ATO) has been firmly established as a standard therapy for acute promyelocytic leukemia (APL). Despite widespread use of oral arsenicals in medicine historically, they had disappeared from modern pharmacopeia until oral ATO was redeveloped in Hong Kong in 2000. Since then, over 200 patients with leukemia (predominantly APL) have been treated with oral ATO in Hong Kong and China. Oral arsenic trioxide and other formulations of arsenic appear to have a clinical efficacy comparable to that of IV formulations. These drugs given orally also appear to have a slightly better safety profile, lower operational costs and improved convenience for patients. The clinical experience with oral ATO has previously been reported piecemeal as case series, pilot studies or subgroup analyses rather than in a comprehensive cohort. In this report we attempt to synthesize the published English language literature on oral arsenicals and present the argument for further development of these compounds. Systematic study of this drug with well-designed randomized multi-center clinical trials is needed to accelerate its development and incorporation into clinical practice. PMID:26709030

  9. Occurrence of thrombotic events in acute promyelocytic leukemia correlates with consistent immunophenotypic and molecular features.

    PubMed

    Breccia, M; Avvisati, G; Latagliata, R; Carmosino, I; Guarini, A; De Propris, M S; Gentilini, F; Petti, M C; Cimino, G; Mandelli, F; Lo-Coco, F

    2007-01-01

    Although the occurrence of thrombosis in acute promyelocytic leukemia (APL) has been reported during retinoic acid treatment, no studies carried out in large clinical cohorts have specifically addressed this issue. We analyzed 124 APL patients treated with the all-trans retinoic acid and idarubicin protocol and compared clinico-biologic characteristics of 11 patients who developed thrombosis with those of 113 patients who had no thrombosis. In seven patients, the events were recorded during induction, whereas in four patients deep vein thrombosis occurred in the post-induction phase. Comparison of clinico-biological characteristics of patients with and without thrombosis revealed in the former group higher median white blood cell (WBC) count (17 x 10(9)/l, range 1.2-56, P=0.002), prevalence of the bcr3 transcript type (72 vs 48%, P=0.01), of FLT3-ITD (64 vs 28%, P=0.02), CD2 (P=0.0001) and CD15 (P=0.01) expression. No correlation was found with sex, age, French-American-British subtype, all-trans-retinoic acid syndrome or with thrombophilic state that was investigated in 5/11 patients. Our findings suggest that, in APL patients consistent biologic features of leukemia cells may predict increased risk of developing thrombosis. PMID:16932337

  10. Secondary acute promyelocytic leukemia following chemotherapy for gastric cancer: A case report

    PubMed Central

    Zhang, Ying-Cheng; Zhou, Yu-Qi; Yan, Bing; Shi, Jun; Xiu, Li-Juan; Sun, Yu-Wei; Liu, Xuan; Qin, Zhi-Feng; Wei, Pin-Kang; Li, Yong-Jin

    2015-01-01

    Therapy-related acute myeloid leukemia (t-AML) refers to a heterogeneous group of myeloid neoplasms that develop in patients following extensive exposure to either cytotoxic agents or radiation. The development of t-AML has been reported following treatment of cancers ranging from hematological malignancies to solid tumors; however, to our knowledge, t-AML has never been reported following treatment of gastric cancer. In this study, we report the development of t-acute promyelocytic leukemia in a cT4N1M0 gastric cancer patient after an approximate 44 mo latency period following treatment with 4 cycles of oxaliplatin (OXP) (85 mg/m2 on day 1) plus capecitabine (1250 mg/m2 orally twice daily on days 1-14) in combination with recombinant human granulocyte-colony stimulating factor treatment. Karyotype analysis of the patient revealed 46,XY,t(15;17)(q22;q21)[15]/46,idem,-9,+add(9)(p22)[2]/46,XY[3], which, according to previous studies, includes some “favorable” genetic abnormalities. The patient was then treated with all-trans retinoic acid (ATRA, 25 mg/m2/d) plus arsenic trioxide (ATO, 10 mg/d) and attained complete remission. Our case illuminated the role of certain cytotoxic agents in the induction of t-AML following gastric cancer treatment. We recommend instituting a mandatory additional evaluation for patients undergoing these therapies in the future. PMID:25892894

  11. Citrus flavone tangeretin inhibits leukaemic HL-60 cell growth partially through induction of apoptosis with less cytotoxicity on normal lymphocytes.

    PubMed Central

    Hirano, T.; Abe, K.; Gotoh, M.; Oka, K.

    1995-01-01

    Certain anti-cancer agents are known to induce apoptosis in human tumour cells. However, these agents are intrinsically cytotoxic against cells of normal tissue origin, including myelocytes and immunocytes. Here we show that a naturally occurring flavone of citrus origin, tangeretin (5,6,7,8,4'-pentamethoxyflavone), induces apoptosis in human promyelocytic leukaemia HL-60 cells, whereas the flavone showed no cytotoxicity against human peripheral blood mononuclear cells (PBMCs). The growth of HL-60 cells in vitro assessed by [3H]thymidine incorporation or tetrazolium crystal formation was strongly suppressed in the presence of tangeretin; the IC50 values range between 0.062 and 0.173 microM. Apoptosis of HL-60 cells, assessed by cell morphology and DNA fragmentation, was demonstrated in the presence of > 2.7 microM tangeretin. Flow cytometric analysis of tangeretin-treated HL-60 cells also demonstrated apoptotic cells with low DNA content and showed a decrease of G1 cells and a concomitant increase of S and/or G2/M cells. Apoptosis was evident after 24 h of incubation with tangeretin, and the tangeretin effect as assessed by DNA fragmentation or growth inhibition was significantly attenuated in the presence of Zn2+, which is known to inhibit Ca(2+)-dependent endonuclease activity. Ca2+ and Mg2+, in contrast, promoted the effect of tangeretin. Cycloheximide significantly decreased the tangeretin effect on HL-60 cell growth, suggesting that protein synthesis is required for flavonoid-induced apoptosis. Tangeretin showed no cytotoxicity against either HL-60 cells or mitogen-activated PBMCs even at high concentration (27 microM) as determined by a dye exclusion test. Moreover, the flavonoid was less effective on growth of human T-lymphocytic leukaemia MOLT-4 cells or on blastogenesis of PBMCs. These results suggest that tangeretin inhibits growth of HL-60 cells in vitro, partially through induction of apoptosis, without causing serious side-effects on immune cells

  12. Acute promyelocytic leukemia co-existing with JAK2 V617F positive myeloproliferative neoplasm: a case report

    PubMed Central

    Mamorska-Dyga, Aleksandra; Wu, Jingjing; Khattar, Pallavi; Ronny, Faisal M. H.; Islam, Humayun; Seiter, Karen

    2016-01-01

    The V617F mutation of Janus-associated kinase 2 (JAK2) is commonly seen in myeloproliferative neoplasms (MPN). Transformation of JAK2 positive MPNs to acute leukemia has been reported. We here report a case of acute promyelocytic leukemia which was later confirmed to have a co-existing JAK2 V617F positive MPN. In addition, the patient was found to have FLT3-TKD mutation, which, together with PML/RARa, could play a role in the MPN transformation to APL. PMID:27358900

  13. Opposite effects of the acute promyelocytic leukemia PML-retinoic acid receptor alpha (RAR alpha) and PLZF-RAR alpha fusion proteins on retinoic acid signalling.

    PubMed Central

    Ruthardt, M; Testa, U; Nervi, C; Ferrucci, P F; Grignani, F; Puccetti, E; Grignani, F; Peschle, C; Pelicci, P G

    1997-01-01

    Fusion proteins involving the retinoic acid receptor alpha (RAR alpha) and the PML or PLZF nuclear protein are the genetic markers of acute promyelocytic leukemias (APLs). APLs with the PML-RAR alpha or the PLZF-RAR alpha fusion protein are phenotypically indistinguishable except that they differ in their sensitivity to retinoic acid (RA)-induced differentiation: PML-RAR alpha blasts are sensitive to RA and patients enter disease remission after RA treatment, while patients with PLZF-RAR alpha do not. We here report that (i) like PML-RAR alpha expression, PLZF-RAR alpha expression blocks terminal differentiation of hematopoietic precursor cell lines (U937 and HL-60) in response to different stimuli (vitamin D3, transforming growth factor beta1, and dimethyl sulfoxide); (ii) PML-RAR alpha, but not PLZF-RAR alpha, increases RA sensitivity of hematopoietic precursor cells and restores RA sensitivity of RA-resistant hematopoietic cells; (iii) PML-RAR alpha and PLZF-RAR alpha have similar RA binding affinities; and (iv) PML-RAR alpha enhances the RA response of RA target genes (those for RAR beta, RAR gamma, and transglutaminase type II [TGase]) in vivo, while PLZF-RAR alpha expression has either no effect (RAR beta) or an inhibitory activity (RAR gamma and type II TGase). These data demonstrate that PML-RAR alpha and PLZF-RAR alpha have similar (inhibitory) effects on RA-independent differentiation and opposite (stimulatory or inhibitory) effects on RA-dependent differentiation and that they behave in vivo as RA-dependent enhancers or inhibitors of RA-responsive genes, respectively. Their different activities on the RA signalling pathway might underlie the different responses of PML-RAR alpha and PLZF-RAR alpha APLs to RA treatment. The PLZF-RAR alpha fusion protein contains an approximately 120-amino-acid N-terminal motif (called the POZ domain), which is also found in a variety of zinc finger proteins and a group of poxvirus proteins and which mediates protein

  14. Autologous is Superior to Allogeneic Hematopoietic Cell Transplantation for Acute Promyelocytic Leukemia in Second Complete Remission

    PubMed Central

    Chakrabarty, Jennifer L. Holter; Rubinger, Morel; Le-Rademacher, Jennifer; Wang, Hai-Lin; Grigg, Andrew; Selby, George B.; Szer, Jeffrey; Rowe, Jacob M.; Weisdorf, Daniel J.; Tallman, Martin S.

    2014-01-01

    PURPOSE To identify favored choice of transplantation in patients with acute promyelocytic leukemia in second complete remission. PATIENTS We studied 294 acute promyelocytic leukemia (APL) patients receiving allogeneic (n=232) or autologous (62) hematopoietic cell transplantation (HCT) in second complete remission (CR2) reported to the Center for International Blood and Marrow Transplantation Research (CIBMTR) from 1995 to 2006 including pre-HCT PML/RAR∝ status in 155 (49% of allogeneic and 66% of autologous). METHODS Patient characteristics and transplant characteristics including treatment related mortality, overall survival, and disease free survival were collected and analyzed for both univariate and multivariate outcomes. RESULTS With median follow-up of 115 (allogeneic) and 72 months (autologous), 5-year disease-free survival (DFS) favored autologous 63% (49-75%) compared to allogeneic 50% (44-57%) (p=0.10) and overall survival (OS) 75% (63-85%) vs. 54% (48-61%) (p=.002) Multivariate analysis showed significantly worse DFS after allogeneic HCT (HR=1.88, 95% CI=1.16-3.06, p=0.011) and age >40 years (HR=2.30, 95% CI 1.44-3.67, p=0.0005). OS was significantly worse after allogeneic HCT (HR=2.66, 95%CI 1.52-4.65, p=0.0006; age >40 (HR=3.29, 95% CI 1.95-5.54, p<0.001) and CR1<12 months (HR=1.56 95% CI 1.07-2.26, p=0.021). Positive pre-HCT PML-RAR∝ status in 17/114 allogeneic and 6/41 autologous transplants did not influence relapse, treatment failure or survival in either group. The survival advantage for autografting was attributable to increased 3 years TRM: allogeneic 30%; autologous 2%, and GVHD. CONCLUSION We conclude that autologous HCT yields superior overall survival for APL in CR2. Long term DFS in autologous recipients, even with MRD+ grafts remains an important subject for further study. PMID:24691221

  15. Assembly of Epstein-Barr Virus Capsid in Promyelocytic Leukemia Nuclear Bodies

    PubMed Central

    Wang, Wen-Hung; Kuo, Chung-Wen; Chang, Li-Kwan; Hung, Chen-Chia; Chang, Tzu-Hsuan

    2015-01-01

    ABSTRACT The Epstein-Barr virus (EBV) capsid contains a major capsid protein, VCA; two minor capsid proteins, BDLF1 and BORF1; and a small capsid protein, BFRF3. During the lytic cycle, these capsid proteins are synthesized and imported into the host nucleus for capsid assembly. This study finds that EBV capsid proteins colocalize with promyelocytic leukemia (PML) nuclear bodies (NBs) in P3HR1 cells during the viral lytic cycle, appearing as nuclear speckles under a confocal laser scanning microscope. In a glutathione S-transferase pulldown study, we show that BORF1 interacts with PML-NBs in vitro. BORF1 also colocalizes with PML-NBs in EBV-negative Akata cells after transfection and is responsible for bringing VCA and the VCA-BFRF3 complex from the cytoplasm to PML-NBs in the nucleus. Furthermore, BDLF1 is dispersed throughout the cell when expressed alone but colocalizes with PML-NBs when BORF1 is also present in the cell. In addition, this study finds that knockdown of PML expression by short hairpin RNA does not influence the intracellular levels of capsid proteins but reduces the number of viral particles produced by P3HR1 cells. Together, these results demonstrate that BORF1 plays a critical role in bringing capsid proteins to PML-NBs, which may likely be the assembly sites of EBV capsids. The mechanisms elucidated in this study are critical to understanding the process of EBV capsid assembly. IMPORTANCE Capsid assembly is an important event during the Epstein-Barr virus (EBV) lytic cycle, as this process is required for the production of virions. In this study, confocal microscopy revealed that the EBV capsid protein BORF1 interacts with promyelocytic leukemia (PML) nuclear bodies (NBs) in the host nucleus and is responsible for transporting the other EBV capsid proteins, including VCA, BDLF1, and BFRF3, to these subnuclear locations prior to initiation of capsid assembly. This study also found that knockdown of PML expression by short hairpin RNA

  16. Serum-dependent expression of promyelocytic leukemia protein suppresses propagation of influenza virus

    SciTech Connect

    Iki, Shigeo; Yokota, Shin-ichi; Okabayashi, Tamaki; Yokosawa, Noriko; Nagata, Kyosuke; Fujii, Nobuhiro . E-mail: fujii@sapmed.ac.jp

    2005-12-05

    The rate of propagation of influenza virus in human adenocarcinoma Caco-2 cells was found to negatively correlate with the concentration of fetal bovine serum (FBS) in the culture medium. Virus replicated more rapidly at lower FBS concentrations (0 or 2%) than at higher concentrations (10 or 20%) during an early stage of infection. Basal and interferon (IFN)-induced levels of typical IFN-inducible anti-viral proteins, such as 2',5'-oligoadenylate synthetase, dsRNA-activated protein kinase and MxA, were unaffected by variation in FBS concentrations. But promyelocytic leukemia protein (PML) was expressed in a serum-dependent manner. In particular, the 65 to 70 kDa isoform of PML was markedly upregulated following the addition of serum. In contrast, other isoforms were induced by IFN treatment, and weakly induced by FBS concentrations. Immunofluorescence microscopy indicated that PML was mainly formed nuclear bodies in Caco-2 cells at various FBS concentrations, and the levels of the PML-nuclear bodies were upregulated by FBS. Overexpression of PML isoform consisting of 560 or 633 amino acid residues by transfection of expression plasmid results in significantly delayed viral replication rate in Caco-2 cells. On the other hand, downregulation of PML expression by RNAi enhanced viral replication. These results indicate that PML isoforms which are expressed in a serum-dependent manner suppress the propagation of influenza virus at an early stage of infection.

  17. Role of Signal Regulatory Protein α in Arsenic Trioxide-induced Promyelocytic Leukemia Cell Apoptosis.

    PubMed

    Pan, Chaoyun; Zhu, Dihan; Zhuo, Jianjiang; Li, Limin; Wang, Dong; Zhang, Chen-Yu; Liu, Yuan; Zen, Ke

    2016-01-01

    Signal regulatory protein α (SIRPα) has been shown to operate as a negative regulator in cancer cell survival. The mechanism underneath such function, however, remains poorly defined. In the present study, we demonstrate that overexpression of SIRPα in acute promyelocytic leukemia (APL) cells results in apoptosis possibly via inhibiting the β-catenin signaling pathway and upregulating Foxo3a. Pharmacological activation of β-catenin signal pathway attenuates apoptosis caused by SIRPα. Interestingly, we also find that the pro-apoptotic effect of SIRPα plays an important role in arsenic trioxide (ATO)-induced apoptosis in APL cells. ATO treatment induces the SIRPα protein expression in APL cells and abrogation of SIRPα induction by lentivirus-mediated SIRPα shRNA significantly reduces the ATO-induced apoptosis. Mechanistic study further shows that induction of SIRPα protein in APL cells by ATO is mediated through suppression of c-Myc, resulting in reduction of three SIRPα-targeting microRNAs: miR-17, miR-20a and miR-106a. In summary, our results demonstrate that SIRPα inhibits tumor cell survival and significantly contributes to ATO-induced APL cell apoptosis. PMID:27010069

  18. Role of Signal Regulatory Protein α in Arsenic Trioxide-induced Promyelocytic Leukemia Cell Apoptosis

    PubMed Central

    Pan, Chaoyun; Zhu, Dihan; Zhuo, Jianjiang; Li, Limin; Wang, Dong; Zhang, Chen-Yu; Liu, Yuan; Zen, Ke

    2016-01-01

    Signal regulatory protein α (SIRPα) has been shown to operate as a negative regulator in cancer cell survival. The mechanism underneath such function, however, remains poorly defined. In the present study, we demonstrate that overexpression of SIRPα in acute promyelocytic leukemia (APL) cells results in apoptosis possibly via inhibiting the β-catenin signaling pathway and upregulating Foxo3a. Pharmacological activation of β-catenin signal pathway attenuates apoptosis caused by SIRPα. Interestingly, we also find that the pro-apoptotic effect of SIRPα plays an important role in arsenic trioxide (ATO)-induced apoptosis in APL cells. ATO treatment induces the SIRPα protein expression in APL cells and abrogation of SIRPα induction by lentivirus-mediated SIRPα shRNA significantly reduces the ATO-induced apoptosis. Mechanistic study further shows that induction of SIRPα protein in APL cells by ATO is mediated through suppression of c-Myc, resulting in reduction of three SIRPα-targeting microRNAs: miR-17, miR-20a and miR-106a. In summary, our results demonstrate that SIRPα inhibits tumor cell survival and significantly contributes to ATO-induced APL cell apoptosis. PMID:27010069

  19. Lithium chloride antileukemic activity in acute promyelocytic leukemia is GSK-3 and MEK/ERK dependent.

    PubMed

    Zassadowski, F; Pokorna, K; Ferre, N; Guidez, F; Llopis, L; Chourbagi, O; Chopin, M; Poupon, J; Fenaux, P; Ann Padua, R; Pla, M; Chomienne, C; Cassinat, B

    2015-12-01

    We recently identified that the MEK/ERK1/2 pathway synergized with retinoic acid (RA) to restore both transcriptional activity and RA-induced differentiation in RA-resistant acute promyelocytic leukemia (APL) cells. To target the MEK/ERK pathway, we identified glycogen synthase kinase-3β (GSK-3β) inhibitors including lithium chloride (LiCl) as activators of this pathway in APL cells. Using NB4 (RA-sensitive) and UF-1 (RA-resistant) APL cell lines, we observed that LiCl as well as synthetic GSK-3β inhibitors decreased proliferation, induced apoptosis and restored, in RA-resistant cells, the expression of RA target genes and the RA-induced differentiation. Inhibition of the MEK/ERK1/2 pathway abolished these effects. These results were corroborated in primary APL patient cells and translated in vivo using an APL preclinical mouse model in which LiCl given alone was as efficient as RA in increasing survival of leukemic mice compared with untreated mice. When LiCl was combined with RA, we observed a significant survival advantage compared with mice treated by RA alone. In this work, we demonstrate that LiCl, a well-tolerated agent in humans, has antileukemic activity in APL and that it has the potential to restore RA-induced transcriptional activation and differentiation in RA-resistant APL cells in an MEK/ERK-dependent manner. PMID:26108692

  20. Nucleus accumbens associated 1 is recruited within the promyelocytic leukemia nuclear body through SUMO modification

    PubMed Central

    Tatemichi, Yoshinori; Shibazaki, Masahiko; Yasuhira, Shinji; Kasai, Shuya; Tada, Hiroshi; Oikawa, Hiroki; Suzuki, Yuji; Takikawa, Yasuhiro; Masuda, Tomoyuki; Maesawa, Chihaya

    2015-01-01

    Nucleus accumbens associated 1 (NACC1) is a cancer-associated BTB/POZ (pox virus and zinc finger/bric-a-brac tramtrack broad complex) gene, and is involved in several cellular functions in neurons, cancer and stem cells. Some of the BTB/POZ proteins associated with cancer biology are SUMOylated, which appears to play an important role in transcription regulation. We show that NACC1 is SUMOylated on a phylogenetically conserved lysine (K167) out of three consensus SUMOylation motif sites. Amino acid substitution in the SIM sequence (SIM/M) within the BTB/POZ domain partially reduced K167 SUMOylation activity of NACC1. Overexpression of GFP-NACC1 fusion protein leads to formation of discrete nuclear foci similar to promyelocytic leukemia nuclear bodies (PML-NB), which colocalized with SUMO paralogues (SUMO1/2/3). Both NACC1 nuclear body formation and colocalization with SUMO paralogues were completely suppressed in the GFP-NACC1-SIM/M mutant, whereas they were partially maintained in the NACC1 K167R mutant. Confocal immunofluorescence analysis showed that endogenous and exogenous NACC1 proteins colocalized with endogenous PML protein. A pull-down assay revealed that the consensus motifs of the SUMO acceptor site at K167 and the SIM within the BTB/POZ domain were both necessary for efficient binding to PML protein. Our study demonstrates that NACC1 can be modified by SUMO paralogues, and cooperates with PML protein. PMID:25891951

  1. Severe Acute Axonal Neuropathy following Treatment with Arsenic Trioxide for Acute Promyelocytic Leukemia: a Case Report

    PubMed Central

    Kühn, Marcus; Sammartin, Kety; Nabergoj, Mitja; Vianello, Fabrizio

    2016-01-01

    Peripheral neuropathy is a common complication of arsenic toxicity. Symptoms are usually mild and reversible following discontinuation of treatment. A more severe chronic sensorimotor polyneuropathy characterized by distal axonal-loss neuropathy can be seen in chronic arsenic exposure. The clinical course of arsenic neurotoxicity in patients with coexistence of thiamine deficiency is only anecdotally known but this association may potentially lead to severe consequences. We describe a case of acute irreversible axonal neuropathy in a patient with hidden thiamine deficiency who was treated with a short course of arsenic trioxide for acute promyelocytic leukemia. Thiamine replacement therapy and arsenic trioxide discontinuation were not followed by neurological recovery and severe polyneuropathy persisted at 12-month follow-up. Thiamine plasma levels should be measured in patients who are candidate to arsenic trioxide therapy. Prophylactic administration of vitamin B1 may be advisable. The appearance of polyneuropathy signs early during the administration of arsenic trioxide should prompt electrodiagnostic testing to rule out a pattern of axonal neuropathy which would need immediate discontinuation of arsenic trioxide. PMID:27158436

  2. Cardiac Glycosides Activate the Tumor Suppressor and Viral Restriction Factor Promyelocytic Leukemia Protein (PML)

    PubMed Central

    Milutinovic, Snezana; Heynen-Genel, Susanne; Chao, Elizabeth; Dewing, Antimone; Solano, Ricardo; Milan, Loribelle; Barron, Nikki; He, Min; Diaz, Paul W.; Matsuzawa, Shu-ichi; Reed, John C.; Hassig, Christian A.

    2016-01-01

    Cardiac glycosides (CGs), inhibitors of Na+/K+-ATPase (NKA), used clinically to treat heart failure, have garnered recent attention as potential anti-cancer and anti-viral agents. A high-throughput phenotypic screen designed to identify modulators of promyelocytic leukemia protein (PML) nuclear body (NB) formation revealed the CG gitoxigenin as a potent activator of PML. We demonstrate that multiple structurally distinct CGs activate the formation of PML NBs and induce PML protein SUMOylation in an NKA-dependent fashion. CG effects on PML occur at the post-transcriptional level, mechanistically distinct from previously described PML activators and are mediated through signaling events downstream of NKA. Curiously, genomic deletion of PML in human cancer cells failed to abrogate the cytotoxic effects of CGs and other apoptotic stimuli such as ceramide and arsenic trioxide that were previously shown to function through PML in mice. These findings suggest that alternative pathways can compensate for PML loss to mediate apoptosis in response to CGs and other apoptotic stimuli. PMID:27031987

  3. PML-RARalpha inhibitors (ATRA, tamibaroten, arsenic troxide) for acute promyelocytic leukemia.

    PubMed

    Ohnishi, Kazunori

    2007-10-01

    Acute promyelocytic leukemia (APL) is characterized by generation of the PML-RARalpha fusion gene. PML-RARalpha can homodimerize with another PML-RARalpha, and the hybrid binds the histone-deacetylase recruiting co-repressor complex with higher affinity than the wild-type RARalpha. However, the co-repressor complex is releasable by pharmacological doses of all-trans retinoic acid (ATRA). More than 90% of patients with APL achieve a complete remission (CR) with differentiation therapy consisting of ATRA combined with chemotherapy. A new synthetic retinoid, tamibaroten, showed therapeutic effectiveness in patients with ATRA-resistant APL with increased expression of cellular retinoic acid binding protein (CRABP), and about 60% of patients with relapsed APL achieved a CR. Arsenic trioxide triggers the rapid degradation of PML-RARalpha through the targeting of the PML moieties of the fusion protein and showed a high CR rate in relapsed APL. The combination of ATRA, chemotherapy, and/or new agents improved the long-term survival in patients with APL. PMID:17929112

  4. An antiviral disulfide compound blocks interaction between arenavirus Z protein and cellular promyelocytic leukemia protein

    SciTech Connect

    Garcia, C.C.; Topisirovic, I.; Djavani, M.; Borden, K.L.B.; Damonte, E.B.; Salvato, M.S.

    2010-03-19

    The promyelocytic leukemia protein (PML) forms nuclear bodies (NB) that can be redistributed by virus infection. In particular, lymphocytic choriomeningitis virus (LCMV) influences disruption of PML NB through the interaction of PML with the arenaviral Z protein. In a previous report, we have shown that the disulfide compound NSC20625 has antiviral and virucidal properties against arenaviruses, inducing unfolding and oligomerization of Z without affecting cellular RING-containing proteins such as the PML. Here, we further studied the effect of the zinc-finger-reactive disulfide NSC20625 on PML-Z interaction. In HepG2 cells infected with LCMV or transiently transfected with Z protein constructs, treatment with NSC20625 restored PML distribution from a diffuse-cytoplasmic pattern to punctate, discrete NB which appeared identical to NB found in control, uninfected cells. Similar results were obtained in cells transfected with a construct expressing a Z mutant in zinc-binding site 2 of the RING domain, confirming that this Z-PML interaction requires the integrity of only one zinc-binding site. Altogether, these results show that the compound NSC20625 suppressed Z-mediated PML NB disruption and may be used as a tool for designing novel antiviral strategies against arenavirus infection.

  5. Cardiac Glycosides Activate the Tumor Suppressor and Viral Restriction Factor Promyelocytic Leukemia Protein (PML).

    PubMed

    Milutinovic, Snezana; Heynen-Genel, Susanne; Chao, Elizabeth; Dewing, Antimone; Solano, Ricardo; Milan, Loribelle; Barron, Nikki; He, Min; Diaz, Paul W; Matsuzawa, Shu-ichi; Reed, John C; Hassig, Christian A

    2016-01-01

    Cardiac glycosides (CGs), inhibitors of Na+/K+-ATPase (NKA), used clinically to treat heart failure, have garnered recent attention as potential anti-cancer and anti-viral agents. A high-throughput phenotypic screen designed to identify modulators of promyelocytic leukemia protein (PML) nuclear body (NB) formation revealed the CG gitoxigenin as a potent activator of PML. We demonstrate that multiple structurally distinct CGs activate the formation of PML NBs and induce PML protein SUMOylation in an NKA-dependent fashion. CG effects on PML occur at the post-transcriptional level, mechanistically distinct from previously described PML activators and are mediated through signaling events downstream of NKA. Curiously, genomic deletion of PML in human cancer cells failed to abrogate the cytotoxic effects of CGs and other apoptotic stimuli such as ceramide and arsenic trioxide that were previously shown to function through PML in mice. These findings suggest that alternative pathways can compensate for PML loss to mediate apoptosis in response to CGs and other apoptotic stimuli. PMID:27031987

  6. Expression pattern of the RAR alpha-PML fusion gene in acute promyelocytic leukemia.

    PubMed

    Alcalay, M; Zangrilli, D; Fagioli, M; Pandolfi, P P; Mencarelli, A; Lo Coco, F; Biondi, A; Grignani, F; Pelicci, P G

    1992-06-01

    Two chimeric genes, PML-RAR alpha and RAR alpha-PML, are formed as a consequence of the acute promyelocytic leukemia (APL)-specific reciprocal translocation of chromosomes 15 and 17 [t(15;17)]. PML-RAR alpha is expressed as a fusion protein. We investigated the organization and expression pattern of the RAR alpha-PML gene in a series of APL patients representative of the molecular heterogeneity of the t(15;17) and found (i) two types of RAR alpha-PML mRNA junctions (RAR alpha exon 2/PML exon 4 or RAR alpha exon 2/PML exon 7) that maintain the RAR alpha and PML longest open reading frames aligned and are the result of chromosome 15 breaking at two different sites; and (ii) 10 different RAR alpha-PML fusion transcripts that differ for the assembly of their PML coding exons. A RAR alpha-PML transcript was present in most, but not all, APL patients. PMID:1317574

  7. Live Cell Dynamics of Promyelocytic Leukemia Nuclear Bodies upon Entry into and Exit from Mitosis

    PubMed Central

    Chen, Yi-Chun M.; Kappel, Constantin; Beaudouin, Joel; Eils, Roland

    2008-01-01

    Promyelocytic leukemia nuclear bodies (PML NBs) have been proposed to be involved in tumor suppression, viral defense, DNA repair, and/or transcriptional regulation. To study the dynamics of PML NBs during mitosis, we developed several U2OS cell lines stably coexpressing PML-enhanced cyan fluorescent protein with other individual marker proteins. Using three-dimensional time-lapse live cell imaging and four-dimensional particle tracking, we quantitatively demonstrated that PML NBs exhibit a high percentage of directed movement when cells progressed from prophase to prometaphase. The timing of this increased dynamic movement occurred just before or upon nuclear entry of cyclin B1, but before nuclear envelope breakdown. Our data suggest that entry into prophase leads to a loss of tethering between regions of chromatin and PML NBs, resulting in their increased dynamics. On exit from mitosis, Sp100 and Fas death domain-associated protein (Daxx) entered the daughter nuclei after a functional nuclear membrane was reformed. However, the recruitment of these proteins to PML NBs was delayed and correlated with the timing of de novo PML NB formation. Together, these results provide insight into the dynamic changes associated with PML NBs during mitosis. PMID:18480407

  8. Analysis of factors affecting hemorrhagic diathesis and overall survival in patients with acute promyelocytic leukemia

    PubMed Central

    Lee, Ho Jin; Kim, Dong Hyun; Lee, Seul; Koh, Myeong Seok; Kim, So Yeon; Lee, Ji Hyun; Lee, Suee; Oh, Sung Yong; Han, Jin Yeong; Kim, Hyo-Jin; Kim, Sung-Hyun

    2015-01-01

    Background/Aims: This study investigated whether patients with acute promyelocytic leukemia (APL) truly fulfill the diagnostic criteria of overt disseminated intravascular coagulation (DIC), as proposed by the International Society on Thrombosis and Haemostasis (ISTH) and the Korean Society on Thrombosis and Hemostasis (KSTH), and analyzed which component of the criteria most contributes to bleeding diathesis. Methods: A single-center retrospective analysis was conducted on newly diagnosed APL patients between January 1995 and May 2012. Results: A total of 46 newly diagnosed APL patients were analyzed. Of these, 27 patients (58.7%) showed initial bleeding. The median number of points per patient fulfilling the diagnostic criteria of overt DIC by the ISTH and the KSTH was 5 (range, 1 to 7) and 3 (range, 1 to 4), respectively. At diagnosis of APL, 22 patients (47.8%) fulfilled the overt DIC diagnostic criteria by either the ISTH or KSTH. In multivariate analysis of the ISTH or KSTH diagnostic criteria for overt DIC, the initial fibrinogen level was the only statistically significant factor associated with initial bleeding (p = 0.035), but it was not associated with overall survival (OS). Conclusions: Initial fibrinogen level is associated with initial presentation of bleeding of APL patients, but does not affect OS. PMID:26552464

  9. Cellular Promyelocytic Leukemia Protein Is an Important Dengue Virus Restriction Factor

    PubMed Central

    Giovannoni, Federico; Damonte, Elsa B.; García, Cybele C.

    2015-01-01

    The intrinsic antiviral defense is based on cellular restriction factors that are constitutively expressed and, thus, active even before a pathogen enters the cell. The promyelocytic leukemia (PML) nuclear bodies (NBs) are discrete nuclear foci that contain several cellular proteins involved in intrinsic antiviral responses against a number of viruses. Accumulating reports have shown the importance of PML as a DNA virus restriction factor and how these pathogens evade this antiviral activity. However, very little information is available regarding the antiviral role of PML against RNA viruses. Dengue virus (DENV) is an RNA emerging mosquito-borne human pathogen affecting millions of individuals each year by causing severe and potentially fatal syndromes. Since no licensed antiviral drug against DENV infection is currently available, it is of great importance to understand the factors mediating intrinsic immunity that may lead to the development of new pharmacological agents that can boost their potency and thereby lead to treatments for this viral disease. In the present study, we investigated the in vitro antiviral role of PML in DENV-2 A549 infected cells. PMID:25962098

  10. Activity of cyclin B1 in HL-60 cells treated with etoposide.

    PubMed

    Żuryń, Agnieszka; Krajewski, Adrian; Szulc, Dawid; Litwiniec, Anna; Grzanka, Alina

    2016-06-01

    Cyclin B1 triggers G2/M phase transition phosphorylating with its catalytical partner - Cdc2 many of the molecular targets essential for cell cycle progression. Human leukemia cell line HL-60 were treated with increasing doses of etoposide (ETP) (0.5; 0.75; 1μM) to investigate how the drug affects cell morphology, viability, cell cycle distribution and expression of cyclin B1. To achieve this aim we applied light and transmission electron microscopy to observe morphological and ultra structural changes, image-based cytometry for apoptosis evaluation and cell cycle analysis, and then we conducted immunohistochemical and immunofluorescence staining to visualize cyclin localization and expression. Quantitive data about cyclin B1 expression were obtained from flow cytometry. Etoposide caused decrease in cell viability, induced apoptosis and G2/M arrest accompanied by enhanced expression of cyclin B1. Changes in expression and localization of cyclin B1 may constitute a part of the mechanism responsible for resistance of HL-60 cells to etoposide. Our results may reflect involvement of cyclin B1 in opposite processes - apoptosis induction and maintenance of cell viability in leukemia cells. We hypothesized possible roles and pathways by which cyclin B1 takes part in drug treatment response and chemosensitivity. PMID:27297620

  11. The significance of low PU.1 expression in patients with acute promyelocytic leukemia

    PubMed Central

    2012-01-01

    Background Although the importance of the hematopoietic transcription factor PU.1 in acute myeloid leukemia (AML) has been demonstrated, the expression of PU.1 in acute promyelocytic leukemia (APL) patient samples awaits further investigation. The current study used APL patient samples to assess the expression pattern of PU.1 in the initiation and progression of APL. Findings We used real-time RT-PCR to compare PU.1 expression between de novo APL patient samples and normal blood specimens, and the results indicated that PU.1 expression was significantly lower in newly diagnosed APL patient samples as compared to normal hematopoietic cells. Further evidence showed a significant inverse correlation between the expression level of PML-RARα and that of PU.1. In addition, we analyzed the correlation between PML-RARα and PU.1 expression in a large population of AML patients retrieved from the expression profiles. The results showed that PU.1 expression was lower in patients with APL than other AML subtypes and there was also a trend towards increasing PU.1 expression from AML-M0 to AML-M5, with the exception of AML-M3 (APL). These observations suggested that PU.1 expression was reduced by PML-RARα in APL patients. Furthermore, we measured PU.1 expression in APL-initiating cells isolated from de novo APL patients by side population cell analysis and found that suppression of PU.1 expression occurred concurrently with PML-RARα expression, indicating the pivotal role of PU.1 in APL initiation. Conclusion Our findings provide evidence that low PU.1 expression in APL patients is required for disease initiation and progression. PMID:22569057

  12. Prognostic factors in acute promyelocytic leukemia: strategies to define high-risk patients.

    PubMed

    Testa, Ugo; Lo-Coco, Francesco

    2016-04-01

    All trans retinoic acid (ATRA) has revolutionized the therapy of acute promyelocytic leukemia (APL). Treatment of this leukemia with ATRA in combination with chemotherapy has resulted in complete remission rates >90 % and long-term remission rates above 80 %. Furthermore, the combination of ATRA and arsenic trioxide (ATO) was shown to be safe and effective in frontline treatment and, for patients with low and intermediate risk disease, possibly superior to the standard ATRA and anthracycline-based regimen. However, in spite of this tremendous progress, APL still remains associated with a high incidence of early death due to the frequent occurrence of an abrupt bleeding diathesis. This hemorrhagic syndrome more frequently develops in high-risk APL patients, currently defined as those exhibiting >10 × 10(9)/L WBC at presentation. In addition to high WBC count, other molecular and immunophenotypic features have been associated with high-risk APL. Among them, the expression in APL blasts of the stem/progenitor cell antigen CD34, the neural adhesion molecule (CD56), and the T cell antigen CD2 help to identify a subset of patients at higher risk of relapse and often the expression of these markers is associated with high WBC count. At the molecular level, the short PML/RARA isoform and FLT3-internal tandem duplication (ITD) mutations have been associated with increased relapse risk. These observations indicate that extended immunophenotypic and molecular characterization of APL at diagnosis including evaluation of CD2, CD56, and CD34 antigens and of FLT3 mutations may help to better design risk-adapted treatment in this disease. PMID:26920716

  13. Metformin induces differentiation in acute promyelocytic leukemia by activating the MEK/ERK signaling pathway

    SciTech Connect

    Huai, Lei; Wang, Cuicui; Zhang, Cuiping; Li, Qihui; Chen, Yirui; Jia, Yujiao; Li, Yan; Xing, Haiyan; Tian, Zheng; Rao, Qing; Wang, Min; Wang, Jianxiang

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer Metformin induces differentiation in NB4 and primary APL cells. Black-Right-Pointing-Pointer Metformin induces activation of the MEK/ERK signaling pathway in APL cells. Black-Right-Pointing-Pointer Metformin synergizes with ATRA to trigger maturation of NB4 and primary APL cells. Black-Right-Pointing-Pointer Metformin induces the relocalization and degradation of the PML-RAR{alpha} fusion protein. Black-Right-Pointing-Pointer The study may be applicable for new differentiation therapy in cancer treatment. -- Abstract: Recent studies have shown that metformin, a widely used antidiabetic agent, may reduce the risk of cancer development. In this study, we investigated the antitumoral effect of metformin on both acute myeloid leukemia (AML) and acute promyelocytic leukemia (APL) cells. Metformin induced apoptosis with partial differentiation in an APL cell line, NB4, but only displayed a proapoptotic effect on several non-M3 AML cell lines. Further analysis revealed that a strong synergistic effect existed between metformin and all-trans retinoic acid (ATRA) during APL cell maturation and that metformin induced the hyperphosphorylation of extracellular signal-regulated kinase (ERK) in APL cells. U0126, a specific MEK/ERK activation inhibitor, abrogated metformin-induced differentiation. Finally, we found that metformin induced the degradation of the oncoproteins PML-RAR{alpha} and c-Myc and activated caspase-3. In conclusion, these results suggest that metformin treatment may contribute to the enhancement of ATRA-induced differentiation in APL, which may deepen the understanding of APL maturation and thus provide insight for new therapy strategies.

  14. Induced myelomonocytic differentiation in leukemia cells is accompanied by noncanonical transcription factor expression

    PubMed Central

    Jensen, Holly A.; Yourish, Harmony B.; Bunaciu, Rodica P.; Varner, Jeffrey D.; Yen, Andrew

    2015-01-01

    Transcription factors that drive non-neoplastic myelomonocytic differentiation are well characterized but have not been systematically analyzed in the leukemic context. We investigated widely used, patient-derived myeloid leukemia cell lines with proclivity for differentiation into granulocytes by retinoic acid (RA) and/or monocytes by 1,25-dihyrdroxyvitamin D3 (D3). Using K562 (FAB M1), HL60 (FAB M2), RA-resistant HL60 sublines, NB4 (FAB M3), and U937 (FAB M5), we correlated nuclear transcription factor expression to immunophenotype, G1/G0 cell cycle arrest and functional inducible oxidative metabolism. We found that myelomonocytic transcription factors are aberrantly expressed in these cell lines. Monocytic-lineage factor EGR1 was not induced by D3 (the monocytic inducer) but instead by RA (the granulocytic inducer) in lineage bipotent myeloblastic HL60. In promyelocytic NB4 cells, EGR1 levels were increased by D3, while Gfi-1 expression (which promotes the granulocytic lineage) was upregulated during D3-induced monocytic differentiation in HL60, and by RA treatment in monocytic U937 cells. Furthermore, RARα and VDR expression were not strongly correlated to differentiation. In response to different differentiation inducers, U937 exhibited the most distinct transcription factor expression profile, while similarly mature NB4 and HL60 were better coupled. Overall, the differentiation induction agents RA and D3 elicited cell-specific responses across these common FAB M1-M5 cell lines. PMID:26566473

  15. Stepwise discriminant function analysis for rapid identification of acute promyelocytic leukemia from acute myeloid leukemia with multiparameter flow cytometry.

    PubMed

    Chen, Zhanguo; Li, Yan; Tong, Yongqing; Gao, Qingping; Mao, Xiaolu; Zhang, Wenjing; Xia, Zunen; Fu, Chaohong

    2016-03-01

    Diagnosis of acute promyelocytic leukemia (APL) has been accelerated by multiparameter flow cytometry (MFC). However, diagnostic interpretation of MFC readouts for APL depends on individual experience and knowledge, which inevitably increases the risk of arbitrariness. We appraised the feasibility of using stepwise discriminant function analysis (SDFA) based on MFC to optimize the minimal variables needed to distinguish APL from other acute myeloid leukemia (AML) without complicated data interpretation. Samples from 327 patients with APL (n = 51) and non-APL AML (n = 276) were randomly allocated into training (243 AML) and test sets (84 AML) for SDFA. The discriminant functions from SDFA were examined by correct classification, and the final variables were validated by differential expression. Finally, additional 20 samples from patients with atypical APL and AML confusable with APL were also identified by SDFA method and morphological analysis. The weighed discriminant function reveals seven differentially expressed variables (CD2/CD9/CD11b/CD13/CD34/HLA-DR/CD117), which predict a molecular result for APL characterization with an accuracy that approaches 99 % (99.6 and 98.8 % for AML samples in training and test sets, respectively). Furthermore, the SDFA outperformed either single variable analysis or the more limited 3-component analysis (CD34/CD117/HLA-DR) via separate SDFA, and was also superior to morphological analysis in terms of diagnostic efficacy. The established SDFA based on MFC with seven variables can precisely and rapidly differentiate APL and non-APL AML, which may contribute to the urgent initiation of all-trans-retinoic acid-based APL therapy. PMID:26759321

  16. Radiosensitization of Human Leukemic HL-60 Cells by ATR Kinase Inhibitor (VE-821): Phosphoproteomic Analysis

    PubMed Central

    Šalovská, Barbora; Fabrik, Ivo; Ďurišová, Kamila; Link, Marek; Vávrová, Jiřina; Řezáčová, Martina; Tichý, Aleš

    2014-01-01

    DNA damaging agents such as ionizing radiation or chemotherapy are frequently used in oncology. DNA damage response (DDR)—triggered by radiation-induced double strand breaks—is orchestrated mainly by three Phosphatidylinositol 3-kinase-related kinases (PIKKs): Ataxia teleangiectasia mutated (ATM), DNA-dependent protein kinase (DNA-PK) and ATM and Rad3-related kinase (ATR). Their activation promotes cell-cycle arrest and facilitates DNA damage repair, resulting in radioresistance. Recently developed specific ATR inhibitor, VE-821 (3-amino-6-(4-(methylsulfonyl)phenyl)-N-phenylpyrazine-2-carboxamide), has been reported to have a significant radio- and chemo-sensitizing effect delimited to cancer cells (largely p53-deficient) without affecting normal cells. In this study, we employed SILAC-based quantitative phosphoproteomics to describe the mechanism of the radiosensitizing effect of VE-821 in human promyelocytic leukemic cells HL-60 (p53-negative). Hydrophilic interaction liquid chromatography (HILIC)-prefractionation with TiO2-enrichment and nano-liquid chromatography—tandem mass spectrometry (LC-MS/MS) analysis revealed 9834 phosphorylation sites. Proteins with differentially up-/down-regulated phosphorylation were mostly localized in the nucleus and were involved in cellular processes such as DDR, all phases of the cell cycle, and cell division. Moreover, sequence motif analysis revealed significant changes in the activities of kinases involved in these processes. Taken together, our data indicates that ATR kinase has multiple roles in response to DNA damage throughout the cell cycle and that its inhibitor VE-821 is a potent radiosensitizing agent for p53-negative HL-60 cells. PMID:25003641

  17. Treatment related acute promyelocytic leukemia (t-APML) in breast cancer survivor treated with anthracycline based chemotherapy: rare case report

    PubMed Central

    Madabhavi, Irappa; Modi, Gaurang; Panchal, Harsha; Patel, Apurva; Anand, Asha; Parikh, Sonia

    2015-01-01

    Treatment related acute myeloid leukemia (t-AML) is well documented phenomenon after chemotherapy. In this subgroup of patients acute promyelocytic leukemia (APML) due to delayed complication of using anthracycline is very rare occurrence. Very few cases are reported in world literature. We are reporting a rare case of occurrence of t-APML in cured breast cancer patient treated with doxorubicin. 43 year old female presented with triple negative early breast cancer treated initially with Right modified radical mastectomy. Pathological staging was pT2N0M0. She was treated with 6 cycle of adjuvant AC (Doxorubicin, Cyclophosphamide). After latent period of 23 months she developed symptoms of fever, weakness and generalized body ache. On further investigation she was found to have acute promyelocytic leukemia (APML). We had successfully treated t-APML with conventional 7+3 induction and subsequent consolidation with ATRA (All Trans Retinoic Acid) and arsenic trioxide. Patient was given maintenance treatment for 18 months after confirming negative PML RARA by RT PCR and declared cured. Patient is under regular surveillance in our centre. PMID:26865933

  18. TRAIL Recombinant Adenovirus Triggers Robust Apoptosis in Multidrug-Resistant HL-60/Vinc Cells Preferentially Through Death Receptor DR5

    PubMed Central

    Wu, Ching-Huang; Kao, Ching-Hai

    2008-01-01

    Abstract Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic because of its highly selective apoptosis-inducing action on neoplastic versus normal cells. However, some cancer cells express resistance to recombinant soluble TRAIL. To overcome this problem, we used a TRAIL adenovirus (Ad5/35-TRAIL) to induce apoptosis in a drug-sensitive and multidrug-resistant variant of HL-60 leukemia cells and determined the molecular mechanisms of Ad5/35-TRAIL-induced apoptosis. Ad5/35-TRAIL did not induce apoptosis in normal human lymphocytes, but caused massive apoptosis in acute myelocytic leukemia cells. It triggered more efficient apoptosis in drug-resistant HL-60/Vinc cells than in HL-60 cells. Treating the cells with anti-DR4 and anti-DR5 neutralizing antibodies (particularly anti-DR5) reduced, whereas anti-DcR1 antibody enhanced, the apoptosis triggered by Ad5/35-TRAIL. Whereas Ad5/35-TRAIL induced apoptosis in both cell lines through activation of caspase-3 and caspase-10, known to link the cell death receptor pathway to the mitochondrial pathway, it triggered increased mitochondrial membrane potential change (Δψm) only in HL-60/Vinc cells. Ad5/35-TRAIL also increased the production of reactive oxygen species, which play an important role in apoptosis. Therefore, using Ad5/35-TRAIL may be an effective therapeutic strategy for eliminating TRAIL-resistant malignant cells and these studies may provide clues to treat and eradicate acute myelocytic leukemias. PMID:18476767

  19. High pseudotumor cerebri incidence in tretinoin and arsenic treated acute promyelocytic leukemia and the role of topiramate after acetazolamide failure

    PubMed Central

    Smith, Morgan B.; Griffiths, Elizabeth A.; Thompson, James E.; Wang, Eunice S.; Wetzler, Meir; Freyer, Craig W.

    2014-01-01

    Dual differentiation therapy with arsenic trioxide and tretinoin (all-trans-retinoic acid; ATRA) for the management of low and intermediate risk acute promyelocytic leukemia has recently been recommended by the National Comprehensive Cancer Network. Some less common toxicities of the combination may have yet to be fully realized. Of ten patients we have treated thus far, five (50%) have developed pseudotumor cerebri. In one patient, temporary discontinuation of ATRA and initiation of acetazolamide controlled symptoms. In four patients, topiramate was substituted for acetazolamide to relieve symptoms and allow ATRA dose re-escalation. We conclude that providers should monitor for pseudotumor cerebri and consider topiramate if acetazolamide fails. PMID:25180154

  20. Trafficking of the Transcription Factor Nrf2 to Promyelocytic Leukemia-Nuclear Bodies

    PubMed Central

    Malloy, Melanie Theodore; McIntosh, Deneshia J.; Walters, Treniqka S.; Flores, Andrea; Goodwin, J. Shawn; Arinze, Ifeanyi J.

    2013-01-01

    Ubiquitylation of Nrf2 by the Keap1-Cullin3/RING box1 (Cul3-Rbx1) E3 ubiquitin ligase complex targets Nrf2 for proteasomal degradation in the cytoplasm and is an extensively studied mechanism for regulating the cellular level of Nrf2. Although mechanistic details are lacking, reports abound that Nrf2 can also be degraded in the nucleus. Here, we demonstrate that Nrf2 is a target for sumoylation by both SUMO-1 and SUMO-2. HepG2 cells treated with As2O3, which enhances attachment of SUMO-2/3 to target proteins, increased SUMO-2/3-modification (polysumoylation) of Nrf2. We show that Nrf2 traffics, in part, to promyelocytic leukemia-nuclear bodies (PML-NBs). Cell fractions harboring key components of PML-NBs did not contain biologically active Keap1 but contained modified Nrf2 as well as RING finger protein 4 (RNF4), a poly-SUMO-specific E3 ubiquitin ligase. Overexpression of wild-type RNF4, but not the catalytically inactive mutant, decreased the steady-state levels of Nrf2, measured in the PML-NB-enriched cell fraction. The proteasome inhibitor MG-132 interfered with this decrease, resulting in elevated levels of polysumoylated Nrf2 that was also ubiquitylated. Wild-type RNF4 accelerated the half-life (t½) of Nrf2, measured in PML-NB-enriched cell fractions. These results suggest that RNF4 mediates polyubiquitylation of polysumoylated Nrf2, leading to its subsequent degradation in PML-NBs. Overall, this work identifies Nrf2 as a target for sumoylation and provides a novel mechanism for its degradation in the nucleus, independent of Keap1. PMID:23543742

  1. Acute promyelocytic leukemia in patients aged >70 years: the cure beyond the age.

    PubMed

    Finsinger, Paola; Breccia, Massimo; Minotti, Clara; Carmosino, Ida; Girmenia, Corrado; Chisini, Marta; Volpicelli, Paola; Vozella, Federico; Romano, Angela; Montagna, Chiara; Colafigli, Gioia; Cimino, Giuseppe; Avvisati, Giuseppe; Petti, Maria Concetta; Lo-Coco, Francesco; Foà, Roberto; Latagliata, Roberto

    2015-02-01

    All-trans retinoic acid (ATRA) has made acute promyelocytic leukemia (APL) a very curable disease also in patients aged >60 years; however, there are only few case reports in very elderly APL patients. To address this issue, we reviewed treatment results in 13 patients aged >70 years with newly diagnosed APL followed at our institution from January 1991 to December 2008. According to Sanz score, seven patients were at low risk, five at intermediate risk, and one at high risk. Induction therapy consisted of ATRA + idarubicin in nine patients (3/9 with reduced idarubicin dosage) and ATRA alone in four patients; in this latter group, however, 2/4 needed to add chemotherapy (CHT) due to hyperleukocytosis during ATRA treatment. All patients achieved both morphological and molecular complete remission (CR) after a median time of 51 [interquartile range (IR) 43-55] and 114 (IR 74-155) days, respectively. Infective complications were observed in 10/13 patients, APL differentiation syndrome in 3/13 patients. Twelve patients received consolidation therapy, followed by maintenance treatment in nine patients. Five patients relapsed after 7, 8, 11, 35, and 56 months. At present, seven patients are still alive, five died due to disease progression (four) or senectus while in CR (one), and one was lost to follow-up while in CR. The 5-year event-free survival was 56.1 % (95 % CI, 26.0-86.2); the 5-year overall survival (OS) was 64.5 % (95 % CI, 35.6-93.4). ATRA-based treatment of APL is safe and effective also in very elderly patients, with long-lasting disease-free OS. PMID:25186786

  2. Current routine practice and clinico-pathological characteristics associated with acute promyelocytic leukemia in Korea

    PubMed Central

    Ahn, Sunhyun; Park, Joon Seong; Jeong, Seong Hyun; Lee, Hyun Woo; Park, Jun Eun; Kim, Mi Hyang; Kim, Yang Soo; Lee, Ho Sup; Park, Tae Sung; You, Eunkyoung; Rheem, Insoo; Park, Joowon; Huh, JI Young; Kang, Myung Seo

    2013-01-01

    Background Acute promyelocytic leukemia (APL) can be life threatening, necessitating emergency therapy with prompt diagnosis by morphologic findings, immunophenotyping, cytogenetic analysis, or molecular studies. This study aimed to assess the current routine practices in APL and the clinico-pathologic features of APL. Methods We reviewed the medical records of 48 Korean patients (25 men, 23 women; median age, 51 (20-80) years) diagnosed with APL in 5 university hospitals between March 2007 and February 2012. Results The WBC count at diagnosis and platelet count varied from 0.4 to 81.0 (median 2.0)×109/L and 2.7 to 124.0 (median 54.5)×109/L, respectively. The median values for prothrombin time and activated partial thromboplastin time were 14.7 (11.3-44.1) s and 29 (24-62) s, respectively. All but 2 patients (96%) showed a fibrin/fibrinogen degradation product value of >20 µg/mL. The D-dimer median value was 5,000 (686-55,630) ng/mL. The t(15;17)(q22;q12 and PML-RARA fusion was found in all patients by chromosome analysis and/or multiplex reverse transcriptase-polymerase chain reaction (RT-PCR), with turnaround times of 8 (2-19) d and 7 (2-13) d, respectively. All patients received induction chemotherapy: all-trans retinoic acid (ATRA) alone (N=11, 26%), ATRA+idarubicin (N=25, 58%), ATRA+cytarabine (N=3, 7%), ATRA+idarubicin+cytarabine (N=4, 9%). Conclusion Since APL is a medical emergency and an accurate diagnosis is a prerequisite for prompt treatment, laboratory support to implement faster diagnostic tools to confirm the presence of PML-RARA is required. PMID:23589792

  3. The Promyelocytic Leukemia Zinc Finger Transcription Factor Is Critical for Human Endometrial Stromal Cell Decidualization

    PubMed Central

    Kommagani, Ramakrishna; Szwarc, Maria M.; Vasquez, Yasmin M.; Peavey, Mary C.; Mazur, Erik C.; Gibbons, William E.; Lanz, Rainer B.; DeMayo, Francesco J.; Lydon, John P.

    2016-01-01

    Progesterone, via the progesterone receptor (PGR), is essential for endometrial stromal cell decidualization, a cellular transformation event in which stromal fibroblasts differentiate into decidual cells. Uterine decidualization supports embryo implantation and placentation as well as subsequent events, which together ensure a successful pregnancy. Accordingly, impaired decidualization results not only in implantation failure or early fetal miscarriage, but also may lead to potential adverse outcomes in all three pregnancy trimesters. Transcriptional reprogramming on a genome-wide scale underlies progesterone dependent decidualization of the human endometrial stromal cell (hESC). However, identification of the functionally essential signals encoded by these global transcriptional changes remains incomplete. Importantly, this knowledge-gap undercuts future efforts to improve diagnosis and treatment of implantation failure based on a dysfunctional endometrium. By integrating genome-wide datasets derived from decidualization of hESCs in culture, we reveal that the promyelocytic leukemia zinc finger (PLZF) transcription factor is rapidly induced by progesterone and that this induction is indispensable for progesterone-dependent decidualization. Chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) identified at least ten progesterone response elements within the PLZF gene, indicating that PLZF may act as a direct target of PGR signaling. The spatiotemporal expression profile for PLZF in both the human and mouse endometrium offers further support for stromal PLZF as a mediator of the progesterone decidual signal. To identify functional targets of PLZF, integration of PLZF ChIP-Seq and RNA Pol II RNA-Seq datasets revealed that the early growth response 1 (EGR1) transcription factor is a PLZF target for which its level of expression must be reduced to enable progesterone dependent hESC decidualization. Apart from furnishing essential insights

  4. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia.

    PubMed

    Garzon, R; Pichiorri, F; Palumbo, T; Visentini, M; Aqeilan, R; Cimmino, A; Wang, H; Sun, H; Volinia, S; Alder, H; Calin, G A; Liu, C-G; Andreeff, M; Croce, C M

    2007-06-14

    MicroRNAs (miRNAs) are small non-coding RNAs of 19-25 nucleotides that are involved in the regulation of critical cell processes such as apoptosis, cell proliferation and differentiation. However, little is known about the role of miRNAs in granulopoiesis. Here, we report the expression of miRNAs in acute promyelocytic leukemia patients and cell lines during all-trans-retinoic acid (ATRA) treatment by using a miRNA microarrays platform and quantitative real time-polymerase chain reaction (qRT-PCR). We found upregulation of miR-15a, miR-15b, miR-16-1, let-7a-3, let-7c, let-7d, miR-223, miR-342 and miR-107, whereas miR-181b was downregulated. Among the upregulated miRNAs, miR-107 is predicted to target NFI-A, a gene that has been involved in a regulatory loop involving miR-223 and C/EBPa during granulocytic differentiation. Indeed, we have confirmed that miR-107 targets NF1-A. To get insights about ATRA regulation of miRNAs, we searched for ATRA-modulated transcription factors binding sites in the upstream genomic region of the let-7a-3/let-7b cluster and identified several putative nuclear factor-kappa B (NF-kappaB) consensus elements. The use of reporter gene assays, chromatin immunoprecipitation and site-directed mutagenesis revealed that one proximal NF-kappaB binding site is essential for the transactivation of the let-7a-3/let-7b cluster. Finally, we show that ATRA downregulation of RAS and Bcl2 correlate with the activation of known miRNA regulators of those proteins, let-7a and miR-15a/miR-16-1, respectively. PMID:17260024

  5. Significance of AZD1152 as a potential treatment against Aurora B overexpression in acute promyelocytic leukemia.

    PubMed

    Ghanizadeh-Vesali, Samad; Zekri, Ali; Zaker, Farhad; Zaghal, Azam; Yousefi, Meysam; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir; Ghaffari, Seyed H

    2016-06-01

    Aurora B kinase as a chromosomal passenger protein plays multiple roles in regulating mitosis and cytokinesis. The function of Aurora B in leukemic cells has made it an important treatment target. In this study, we explored the expressions of Aurora (A, B, and C) kinases in newly diagnosed acute promyelocytic leukemia (APL) patients. In addition, we investigated the effects of AZD1152 as a specific inhibitor of Aurora B on cell survival, DNA synthesis, nuclear morphology, apoptosis induction, cell cycle distribution, and gene expression in an APL-derived NB4 cell line. Our results showed that Aurora B was overexpressed in 88 % of APL patients. AZD1152 treatment of NB4 cells led to viability reduction and G2/M arrest followed by an increase in cell size and polyploidy induction. These giant cells showed morphological evidence of mitotic catastrophe. AZD1152 treatment induced activation of G2/M checkpoint which in turn led to transient G2/M arrest in a p21-independent manner. Lack of functional p53 in NB4 cells might provide an opportunity to escape from G2/M block and to endure repeated rounds of replication and polyploidy. Treated cells were probably eliminated via p73-mediated overexpression of BAX, PUMA, and APAF1 and downregulation of survivin and MCL-1. In summary, AZD1152 treatment led to endomitosis and polyploidy in TP53-mutated NB4 cells. These giant polyploid cells might undergo mitotic catastrophe and p73-mediated apoptosis. It seems that induction of polyploidy via AZD1152 could be a novel form of anti-cancer therapy for APL that may be clinically accessible in the near future. PMID:27091351

  6. The Promyelocytic Leukemia Zinc Finger Transcription Factor Is Critical for Human Endometrial Stromal Cell Decidualization.

    PubMed

    Kommagani, Ramakrishna; Szwarc, Maria M; Vasquez, Yasmin M; Peavey, Mary C; Mazur, Erik C; Gibbons, William E; Lanz, Rainer B; DeMayo, Francesco J; Lydon, John P

    2016-04-01

    Progesterone, via the progesterone receptor (PGR), is essential for endometrial stromal cell decidualization, a cellular transformation event in which stromal fibroblasts differentiate into decidual cells. Uterine decidualization supports embryo implantation and placentation as well as subsequent events, which together ensure a successful pregnancy. Accordingly, impaired decidualization results not only in implantation failure or early fetal miscarriage, but also may lead to potential adverse outcomes in all three pregnancy trimesters. Transcriptional reprogramming on a genome-wide scale underlies progesterone dependent decidualization of the human endometrial stromal cell (hESC). However, identification of the functionally essential signals encoded by these global transcriptional changes remains incomplete. Importantly, this knowledge-gap undercuts future efforts to improve diagnosis and treatment of implantation failure based on a dysfunctional endometrium. By integrating genome-wide datasets derived from decidualization of hESCs in culture, we reveal that the promyelocytic leukemia zinc finger (PLZF) transcription factor is rapidly induced by progesterone and that this induction is indispensable for progesterone-dependent decidualization. Chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) identified at least ten progesterone response elements within the PLZF gene, indicating that PLZF may act as a direct target of PGR signaling. The spatiotemporal expression profile for PLZF in both the human and mouse endometrium offers further support for stromal PLZF as a mediator of the progesterone decidual signal. To identify functional targets of PLZF, integration of PLZF ChIP-Seq and RNA Pol II RNA-Seq datasets revealed that the early growth response 1 (EGR1) transcription factor is a PLZF target for which its level of expression must be reduced to enable progesterone dependent hESC decidualization. Apart from furnishing essential insights

  7. Simple, rapid and accurate molecular diagnosis of acute promyelocytic leukemia by loop mediated amplification technology

    PubMed Central

    Spinelli, Orietta; Rambaldi, Alessandro; Rigo, Francesca; Zanghì, Pamela; D'Agostini, Elena; Amicarelli, Giulia; Colotta, Francesco; Divona, Mariadomenica; Ciardi, Claudia; Coco, Francesco Lo; Minnucci, Giulia

    2015-01-01

    The diagnostic work-up of acute promyelocytic leukemia (APL) includes the cytogenetic demonstration of the t(15;17) translocation and/or the PML-RARA chimeric transcript by RQ-PCR or RT-PCR. This latter assays provide suitable results in 3-6 hours. We describe here two new, rapid and specific assays that detect PML-RARA transcripts, based on the RT-QLAMP (Reverse Transcription-Quenching Loop-mediated Isothermal Amplification) technology in which RNA retrotranscription and cDNA amplification are carried out in a single tube with one enzyme at one temperature, in fluorescence and real time format. A single tube triplex assay detects bcr1 and bcr3 PML-RARA transcripts along with GUS housekeeping gene. A single tube duplex assay detects bcr2 and GUSB. In 73 APL cases, these assays detected in 16 minutes bcr1, bcr2 and bcr3 transcripts. All 81 non-APL samples were negative by RT-QLAMP for chimeric transcripts whereas GUSB was detectable. In 11 APL patients in which RT-PCR yielded equivocal breakpoint type results, RT-QLAMP assays unequivocally and accurately defined the breakpoint type (as confirmed by sequencing). Furthermore, RT-QLAMP could amplify two bcr2 transcripts with particularly extended PML exon 6 deletions not amplified by RQ-PCR. RT-QLAMP reproducible sensitivity is 10−3 for bcr1 and bcr3 and 10−2 for bcr2 thus making this assay particularly attractive at diagnosis and leaving RQ-PCR for the molecular monitoring of minimal residual disease during the follow up. In conclusion, PML-RARA RT-QLAMP compared to RT-PCR or RQ-PCR is a valid improvement to perform rapid, simple and accurate molecular diagnosis of APL. PMID:25815362

  8. Aberrant phenotypic expression of CD15 and CD56 identifies poor prognostic acute promyelocytic leukemia patients.

    PubMed

    Breccia, Massimo; De Propris, Maria Stefania; Minotti, Clara; Stefanizzi, Caterina; Raponi, Sara; Colafigli, Gioia; Latagliata, Roberto; Guarini, Anna; Foà, Robin

    2014-02-01

    Limited information is available on the relationship between expression of some additional aberrant phenotypic features and outcome of acute promyelocytic leukemia (APL) patients. Here, we set out to assess the frequency of CD15 and CD56 expression, and their prognostic value in a large series of APL patients. One hundred and fourteen adult patients consecutively diagnosed with PML/RARα-positive APL and homogeneously treated with the AIDA induction schedule at a single institution were included in the study. Twelve (10.5%) and 9 (8%) of the 114 patients expressed CD15 and CD56, respectively. CD15 expression identified a subset of patients with a classic morphologic subtype (92%), a prevalent association with a bcr1 expression (67%) with an unexpectedly higher frequency of relapses (42% vs 20% for the CD15- patients, p=0.03) and a low overall survival (OS) (median OS at 5 years 58% vs 85% for the CD15- patients, p=0.01). CD56 expression was detected only in patients with a classic morphologic subtype, a prevalent bcr3 expression (67%), high incidence of differentiation syndrome (55%), higher frequency of relapse (34% vs 20% for the CD56- population, p=0.04) and a low OS (60% vs 85% for the CD56- population p=0.02). We hereby confirm the negative prognostic value of CD56 and we show that the same applies also to cases expressing CD15. These aberrant markers may be considered for the refinement of risk-adapted therapeutic strategies in APL patients. PMID:24296270

  9. A new transcriptional variant and small azurophilic granules in an acute promyelocytic leukemia case with NPM1/RARA fusion gene.

    PubMed

    Kikuma, Tomoe; Nakamachi, Yuji; Noguchi, Yoriko; Okazaki, Yoko; Shimomura, Daisuke; Yakushijin, Kimikazu; Yamamoto, Katsuya; Matsuoka, Hiroshi; Minami, Hironobu; Itoh, Tomoo; Kawano, Seiji

    2015-12-01

    We report here the first case of NPM1/RARA-positive acute promyelocytic leukemia (APL) preceded by myeloid sarcoma (MS) in the vertebra. A 52-year-old man was diagnosed with MS, as the tumor cells were positive for myeloperoxidase and CD68 but negative for CD163. After treatment with steroids and radiation, the size of the tumor was markedly reduced and peripheral blood count was normal. Bone marrow examination showed 89.2% consisted of unclassified promyelocytes characterized by round nuclei and abundant small azurophilic granules but no Auer rods. The results of chromosome analysis showed 46,XY,t(5;17)(q35;q12). Reverse-transcription polymerase chain reaction amplified the NPM1/RARA fusion transcripts derived from a combination of NPM1 exon 4 and RARA exon 5, or of NPM1 exon 1 and RARA exon 5; the latter of these has not been reported previously. Electron microscopic examination of the promyelocyte nuclei showed they were oval with mild nuclear chromatin condensation and small- to medium-sized nucleoli. Hematological and molecular complete remission was attained after induction therapy including all-trans retinoic acid. As MS was also diagnosed in two of the seven other reported cases of APL with NPM1/RARA, MS may occur more frequently in APL with NPM1/RARA than APL with PML/RARA. PMID:26342691

  10. MDI 301 suppresses myeloid leukemia cell growth in vitro and in vivo without the toxicity associated with all-trans retinoic acid therapy.

    PubMed

    Aslam, Muhammad N; McClintock, Shannon; Khan, Shazli P; Perone, Patricia; Allen, Ronald; Ouillette, Peter D; Dame, Michael K; Cheng, Jason X; Kunkel, Steven L; Varani, James

    2015-08-01

    MDI 301 is a novel 9-cis retinoic acid derivative in which the terminal carboxylic acid group has been replaced by a picolinate ester. MDI 301, a retinoic acid receptor-α - agonist, suppressed the growth of several human myeloid leukemia cell lines (HL60, NB4, OCI-M2, and K562) in vitro and induced cell-substrate adhesion in conjunction with upregulation of CD11b. Tumor growth in HL60-injected athymic nude mice was reduced. In vitro, MDI 301 was comparable to all-trans retinoic acid (ATRA) whereas in vivo, MDI 301 was slightly more efficacious than ATRA. Most importantly, unlike what was found with ATRA treatment, MDI 301 did not induce a cytokine response in the treated animals and the severe inflammatory changes and systemic toxicity seen with ATRA did not occur. A retinoid with these characteristics might be valuable in the treatment of promyelocytic leukemia, or, perhaps, other forms of myeloid leukemia. PMID:26010252

  11. Allogeneic Transplantation for Patients With Acute Leukemia or Chronic Myelogenous Leukemia (CML)

    ClinicalTrials.gov

    2016-06-14

    Leukemia, Lymphocytic, Acute; Leukemia; Leukemia Acute Promyelocytic Leukemia (APL); Leukemia Acute Lymphoid Leukemia (ALL); Leukemia Chronic Myelogenous Leukemia (CML); Leukemia Acute Myeloid Leukemia (AML); Leukemia Chronic Lymphocytic Leukemia (CLL)

  12. Cell cycle-dependence of HL-60 cell deformability.

    PubMed Central

    Tsai, M A; Waugh, R E; Keng, P C

    1996-01-01

    In this study, the role of cytoskeleton in HL-60 deformability during the cell cycle was investigated. G1, S, and G2/M cell fractions were separated by centrifugal elutriation. Cell deformability was evaluated by pipette aspiration. Tested at the same aspiration pressures, S cells were found to be less deformable than G1 cells. Moreover, HL-60 cells exhibited power-law fluid behavior: mu = mu c(gamma m/ gamma c)-b, where mu is cytoplasmic viscosity, gamma m is mean shear rate, mu c is the characteristic viscosity at the characteristic shear rate gamma c, and b is a material constant. At a given shear rate, S cells (mu c = 276 +/- 14 Pa.s, b = 0.51 +/- 0.03) were more viscous than G1 cells (mu c = 197 +/- 25, b = 0.53 +/- 0.02). To evaluate the relative importance of different cytoskeletal components in these cell cycle-dependent properties, HL-60 cells were treated with 30 microM dihydrocytochalasin B (DHB) to disrupt F-actin or 100 microM colchicine to collapse microtubules. DHB dramatically softened both G1 and S cells, which reduced the material constants mu c by approximately 65% and b by 20-30%. Colchicine had a limited effect on G1 cells but significantly reduced mu c of S cells (approximately 25%). Thus, F-actin plays the predominate role in determining cell mechanical properties, but disruption of microtubules may also influence the behavior of proliferating cells in a cell cycle-dependent fashion. Images FIGURE 1 PMID:8785361

  13. [Analysis of empirical treatment for newly diagnosed acute promyelocytic leukemia combined with disseminated intravascular coagulation].

    PubMed

    Yang, Hua; Zhu, Cheng-Ying; Wang, Quan-Shun; Niu, Jian-Hua; Zhang, Qi; Zhu, Hai-Yan; Yao, Zi-Long; Xu, Yuan-Yuan; Jing, Yu; Yu, Li

    2014-04-01

    This study was aimed to explore the clinical characteristics and optimal therapeutic methods for newly diagnosed acute promyelocytic leukemia (APL) combined with disseminated intravascular coagulation (DIC) so as to guide the clinical therapy. The clinical date and therapeutic outcome of 25 cases of APL combined with DIC treated from January 2008 to March 2013 in our department were analysed retrospectively. The 25 patients were given ATRA 20 mg orally twice a day and arsenic trioxide (ATO) 10 mg intravenously once a day to induce differentiation therapy, the chemotherapy was added after degranulation of promyelocytes. At the same time the platelets, fresh frozen plasma, fibrinogen, cryoprecipitate,prothrombin complex and amino methylbenzoic acid, low molecular weight heparin were given to treat DIC. According to the laboratorial examination of coagulation and fibrinolysis, the medication was adjusted.The white blood cell count, platelet level, prothrombin time (PT), partial thromboplastin time of plasma (APTT), fibrinogen level were detected, and the relation of those factors and age with bleeding severity was analyzed by multivariate manner. The results showed that among 25 patients with APL (low-risk 5 cases, intermediate risk 13 cases and high risk 7 cases), 22 cases combined with DIC, incidence of DIC was 88%. Out of 22 patients with DIC 21 patients (95.5%) were corrected, except 1 case death. After the first course of treatment, 23 cases (92%) gained complete remission (CR) with average CR time 31.8 ± 7.2 days. During the induction of CR, the average platelet transfusion level was 75.68 ± 55.88 U, the RBC level was 8.90 ± 5.69 U, the average level of fresh frozen plasma transfusion of APL patients with DIC was 21.92 ± 19.32 U. The recovery time of platelet level to normal was 29.3 ± 9.3 days, the recovery time of PT, APTT, FDP and fibrinogen to normal were 12.7 ± 9.5 days, 11.6 ± 8.6 days, 16.0 ± 9.3 days and 125.3 ± 85.3 days respectively. The

  14. Synthesis of minoxidil conjugates and their evaluation as HL-60 differentiation agents.

    PubMed

    Stoica, Sonia; Magoulas, George E; Antoniou, Antonia I; Suleiman, Sherif; Cassar, Analisse; Gatt, Lucienne; Papaioannou, Dionissios; Athanassopoulos, Constantinos M; Schembri-Wismayer, Pierre

    2016-02-15

    Activation of minoxidil (MNX) with N,N'-carbonyldiimidazole and coupling with natural polyamines (PAs) and commercially available aliphatic or aromatic amines provided a series of new conjugates which were evaluated for their ability to induce differentiation to HL-60 acute myeloid leukemia cancer cells, using a modified NBTZ reduction test. Although neither MNX nor 4,4'-methylenedianiline (MDA) or 2,7-diaminofluorene (DAF), alone or in combination, had any effect, the MNX-spermine (SPM) conjugate (11) and the conjugates 7 and 8 of MNX with MDA and DAF exhibited a differentiation-inducing effect at a concentration of 10 μM without being toxic on proliferating human peripheral blood mononuclear cells. PMID:26832215

  15. Flow-Through Electroporation of HL-60 White Blood Cell Suspensions using Nanoporous Membrane Electrodes.

    PubMed

    Chen, Zhiqiang; Akenhead, Michael A; Sun, Xinghua; Sapper, Harrison; Shin, Hainsworth Y; Hinds, Bruce J

    2016-08-01

    A flow-through electroporation system, based on a novel nanoporous membrane/electrode design, for the delivery of cell wall-impermeant molecules into model leukocytes, HL-60 promyelocytes, was demonstrated. The ability to apply low voltages to cell populations, with nm-scale concentrated electric field in a periodic array, contributes to high cell viability. With applied biases of 1-4V, delivery of target molecules was achieved with 90% viability and up to 65% transfection efficiency. More importantly, the system allowed electrophoretic pumping of molecules from a microscale reservoir across the membrane/electrode system into a microfluidic flow channel for transfection of cells, a design that can reduce reagent amount by eightfold compared to current strategies. The flow-through system, which forces intimate membrane/electrode contact by using a 10μm channel height, can be easily scaled-up by adjusting the microfluidic channel geometry and/or the applied voltage pulse frequency to control cell residence times at the cell membrane/electrode interface. The demonstrated system shows promise in clinical applications where low-cost, high cell viability and high volume transfection methods are needed without the risk of viral vectors. In particular genetic modification of freely mobile white blood cells to either target disease cells or to express desired protein/enzyme biomolecules is an important target platform enabled by this device system. PMID:27377174

  16. The content of DNA and RNA in microparticles released by Jurkat and HL-60 cells undergoing in vitro apoptosis

    SciTech Connect

    Reich, Charles F.; Pisetsky, David S.

    2009-03-10

    Microparticles are small membrane-bound vesicles that are released from apoptotic cells during blebbing. These particles contain DNA and RNA and display important functional activities, including immune system activation. Furthermore, nucleic acids inside the particle can be analyzed as biomarkers in a variety of disease states. To elucidate the nature of microparticle nucleic acids, DNA and RNA released in microparticles from the Jurkat T and HL-60 promyelocytic cell lines undergoing apoptosis in vitro were studied. Microparticles were isolated from culture media by differential centrifugation and characterized by flow cytometry and molecular approaches. In these particles, DNA showed laddering by gel electrophoresis and was present in a form that allowed direct binding by a monoclonal anti-DNA antibody, suggesting antigen accessibility even without fixation. Analysis of RNA by gel electrophoresis showed intact 18s and 28s ribosomal RNA bands, although lower molecular bands consistent with 28s ribosomal RNA degradation products were also present. Particles also contained messenger RNA as shown by RT-PCR amplification of sequences for {beta}-actin and GAPDH. In addition, gel electrophoresis showed the presence of low molecular weight RNA in the size range of microRNA. Together, these results indicate that microparticles from apoptotic Jurkat and HL-60 cells contain diverse nucleic acid species, indicating translocation of both nuclear and cytoplasmic DNA and RNA as particle release occurs during death.

  17. TRIM32 promotes retinoic acid receptor {alpha}-mediated differentiation in human promyelogenous leukemic cell line HL60

    SciTech Connect

    Sato, Tomonobu; Okumura, Fumihiko; Iguchi, Akihiro; Ariga, Tadashi; Hatakeyama, Shigetsugu

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer TRIM32 enhanced RAR{alpha}-mediated transcriptional activity even in the absence of RA. Black-Right-Pointing-Pointer TRIM32 stabilized RAR{alpha} in the human promyelogenous leukemic cell line HL60. Black-Right-Pointing-Pointer Overexpression of TRIM32 in HL60 cells induced granulocytic differentiation. Black-Right-Pointing-Pointer TRIM32 may function as a coactivator for RAR{alpha}-mediated transcription in APL cells. -- Abstract: Ubiquitination, one of the posttranslational modifications, appears to be involved in the transcriptional activity of nuclear receptors including retinoic acid receptor {alpha} (RAR{alpha}). We previously reported that an E3 ubiquitin ligase, TRIM32, interacts with several important proteins including RAR{alpha} and enhances transcriptional activity of RAR{alpha} in mouse neuroblastoma cells and embryonal carcinoma cells. Retinoic acid (RA), which acts as a ligand to nuclear receptors including RAR{alpha}, plays crucial roles in development, differentiation, cell cycles and apoptosis. In this study, we found that TRIM32 enhances RAR{alpha}-mediated transcriptional activity even in the absence of RA and stabilizes RAR{alpha} in the human promyelogenous leukemic cell line HL60. Moreover, we found that overexpression of TRIM32 in HL60 cells suppresses cellular proliferation and induces granulocytic differentiation even in the absence of RA. These findings suggest that TRIM32 functions as one of the coactivators for RAR{alpha}-mediated transcription in acute promyelogenous leukemia (APL) cells, and thus TRIM32 may become a potentially therapeutic target for APL.

  18. Antiproliferative activity of the isoindigo 5'-Br in HL-60 cells is mediated by apoptosis, dysregulation of mitochondrial functions and arresting cell cycle at G0/G1 phase.

    PubMed

    Saleh, Ayman M; El-Abadelah, Mustafa M; Aziz, Mohammad Azhar; Taha, Mutasem O; Nasr, Amre; Rizvi, Syed A A

    2015-06-01

    Our new compound, 5'-Br [(E)-1-(5'-bromo-2'-oxoindolin-3'-ylidene)-6-ethyl-2,3,6,9-tetrahydro-2,9-dioxo-1H-pyrrolo[3,2-f]quinoline-8-carboxylic acid], had shown strong, selective antiproliferative activity against different cancer cell lines. Here, we aim to comprehensively characterize the mechanisms associated with its cytotoxicity in the human promyelocytic leukemia HL-60 cells. We focused at studying the involvement of apoptotic pathway and cell cycle effects. 5'-Br significantly inhibited proliferation by inducing caspase-dependent apoptosis. Involvement of caspase independent mechanism is also possible due to observed inability of z-VAD-FMK to rescue apoptotic cells. 5'-Br was found to trigger intrinsic apoptotic pathway as indicated by depolarization of the mitochondrial inner membrane, decreased level of cellular ATP, modulated expression and phosphorylation of Bcl-2 leading to loss of its association with Bax, and increased release of cytochrome c. 5'-Br treated cells were found arrested at G0/G1 phase with modulation in protein levels of cyclins, dependent kinases and their inhibitors. Expression and enzymatic activity of CDK2 and CDK4 was found inhibited. Retinoblastoma protein (Rb) phosphorylation was also inhibited whereas p21 protein levels were increased. These results suggest that the antiproliferative mechanisms of action of 5'-Br could involve apoptotic pathways, dysregulation of mitochondrial functions and disruption of cell cycle checkpoint. PMID:25790909

  19. Refractory acute promyelocytic leukemia successfully treated with combination therapy of arsenic trioxide and tamibarotene: A case report

    PubMed Central

    Kojima, Minoru; Ogiya, Daisuke; Ichiki, Akifumi; Hara, Ryujiro; Amaki, Jun; Kawai, Hidetsugu; Numata, Hiroki; Sato, Ai; Miyamoto, Mitsuki; Suzuki, Rikio; Machida, Shinichiro; Matsushita, Hiromichi; Ogawa, Yoshiaki; Kawada, Hiroshi; Ando, Kiyoshi

    2016-01-01

    A 40-year-old male developed refractory acute promyelocytic leukemia (APL) after various treatments including all-trans retinoic acid, tamibarotene, arsenic trioxide (As2O3), conventional chemotherapy, and autologous peripheral blood stem cell transplantation. We attempted to use both tamibarotene and As2O3 as a combination therapy, and he achieved molecular complete remission. Grade 2 prolongation of the QTc interval on the electrocardiogram was observed during the therapy. The combination therapy of As2O3 and tamibarotene may be effective and tolerable for treating refractory APL cases who have no treatment options, even when they have previously been treated with tamibarotene and As2O3as a single agent. PMID:27144119

  20. Promyelocytic leukemia protein interacts with the apoptosis-associated speck-like protein to limit inflammasome activation.

    PubMed

    Dowling, Jennifer K; Becker, Christine E; Bourke, Nollaig M; Corr, Sinead C; Connolly, Dympna J; Quinn, Susan R; Pandolfi, Paolo P; Mansell, Ashley; O'Neill, Luke A J

    2014-03-01

    The apoptosis-associated speck-like protein containing a caspase-activating recruitment domain (ASC) is an essential component of several inflammasomes, multiprotein complexes that regulate caspase-1 activation and inflammation. We report here an interaction between promyelocytic leukemia protein (PML) and ASC. We observed enhanced formation of ASC dimers in PML-deficient macrophages. These macrophages also display enhanced levels of ASC in the cytosol. Furthermore, IL-1β production was markedly enhanced in these macrophages in response to both NLRP3 and AIM2 inflammasome activation and following bone marrow-derived macrophage infection with herpes simplex virus-1 (HSV-1) and Salmonella typhimurium. Collectively, our data indicate that PML limits ASC function, retaining ASC in the nucleus. PMID:24407287

  1. Refractory acute promyelocytic leukemia successfully treated with combination therapy of arsenic trioxide and tamibarotene: A case report.

    PubMed

    Kojima, Minoru; Ogiya, Daisuke; Ichiki, Akifumi; Hara, Ryujiro; Amaki, Jun; Kawai, Hidetsugu; Numata, Hiroki; Sato, Ai; Miyamoto, Mitsuki; Suzuki, Rikio; Machida, Shinichiro; Matsushita, Hiromichi; Ogawa, Yoshiaki; Kawada, Hiroshi; Ando, Kiyoshi

    2016-01-01

    A 40-year-old male developed refractory acute promyelocytic leukemia (APL) after various treatments including all-trans retinoic acid, tamibarotene, arsenic trioxide (As2O3), conventional chemotherapy, and autologous peripheral blood stem cell transplantation. We attempted to use both tamibarotene and As2O3 as a combination therapy, and he achieved molecular complete remission. Grade 2 prolongation of the QTc interval on the electrocardiogram was observed during the therapy. The combination therapy of As2O3 and tamibarotene may be effective and tolerable for treating refractory APL cases who have no treatment options, even when they have previously been treated with tamibarotene and As2O3 as a single agent. PMID:27144119

  2. Arsenic mediated disruption of promyelocytic leukemia protein nuclear bodies induces ganciclovir susceptibility in Epstein-Barr positive epithelial cells

    SciTech Connect

    Sides, Mark D.; Block, Gregory J.; Shan, Bin; Esteves, Kyle C.; Lin, Zhen; Flemington, Erik K.; Lasky, Joseph A.

    2011-06-20

    Promyelocytic leukemia protein nuclear bodies (PML NBs) have been implicated in host immune response to viral infection. PML NBs are targeted for degradation during reactivation of herpes viruses, suggesting that disruption of PML NB function supports this aspect of the viral life cycle. The Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1) has been shown to suppress EBV reactivation. Our finding that LMP1 induces PML NB immunofluorescence intensity led to the hypothesis that LMP1 may modulate PML NBs as a means of maintaining EBV latency. Increased PML protein and morphometric changes in PML NBs were observed in EBV infected alveolar epithelial cells and nasopharyngeal carcinoma cells. Treatment with low dose arsenic trioxide disrupted PML NBs, induced expression of EBV lytic proteins, and conferred ganciclovir susceptibility. This study introduces an effective modality to induce susceptibility to ganciclovir in epithelial cells with implications for the treatment of EBV associated pathologies.

  3. Arsenic mediated disruption of promyelocytic leukemia protein nuclear bodies induces ganciclovir susceptibility in Epstein-Barr positive epithelial cells.

    PubMed

    Sides, Mark D; Block, Gregory J; Shan, Bin; Esteves, Kyle C; Lin, Zhen; Flemington, Erik K; Lasky, Joseph A

    2011-07-20

    Promyelocytic leukemia protein nuclear bodies (PML NBs) have been implicated in host immune response to viral infection. PML NBs are targeted for degradation during reactivation of herpes viruses, suggesting that disruption of PML NB function supports this aspect of the viral life cycle. The Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1) has been shown to suppress EBV reactivation. Our finding that LMP1 induces PML NB immunofluorescence intensity led to the hypothesis that LMP1 may modulate PML NBs as a means of maintaining EBV latency. Increased PML protein and morphometric changes in PML NBs were observed in EBV infected alveolar epithelial cells and nasopharyngeal carcinoma cells. Treatment with low dose arsenic trioxide disrupted PML NBs, induced expression of EBV lytic proteins, and conferred ganciclovir susceptibility. This study introduces an effective modality to induce susceptibility to ganciclovir in epithelial cells with implications for the treatment of EBV associated pathologies. PMID:21605886

  4. Dihydropyridines as inhibitors of capacitative calcium entry in leukemic HL-60 cells

    PubMed Central

    Harper, Jacquie L.; Camerini-Otero, Carol S.; Li, An-Hu; Kim, Soon-Ai; Jacobson, Kenneth A.; Daly, John W.

    2016-01-01

    A series of 1,4-dihydropyridines (DHPs) were investigated as inhibitors of capacitative calcium influx through store-operated calcium (SOC) channels. Such channels activate after ATP-elicited release of inositol trisphosphate (IP3)-sensitive calcium stores in leukemia HL-60 cells. The most potent DHPs were those containing a 4-phenyl group with an electron-withdrawing substituent, such as m- or p-nitro- or m-trifluoromethyl (IC50 values: 3–6 μM). Benzyl esters, corresponding to the usual ethyl/methyl esters of the DHPs developed as L-type calcium channel blockers, retained potency at SOC channels, as did N-substituted DHPs. N-Methylation reduced by orders of magnitude the potency at L-type channels resulting in DHPs nearly equipotent at SOC and L-type channels. DHPs with N-ethyl, N-allyl, and N-propargyl groups also had similar potencies at SOC and L-type channels. Replacement of the usual 6-methyl group of DHPs with larger groups, such as cyclobutyl or phenyl, eliminated activity at the SOC channels; such DHPs instead elicited formation of inositol phosphates and release of IP3-sensitive calcium stores. Other DHPs also caused a release of calcium stores, but usually at significantly higher concentrations than those required for the inhibition of capacitative calcium influx. Certain DHPs appeared to cause an incomplete blockade of SOC channel-dependent elevations of calcium, suggesting the presence of more than one class of such channels in HL-60 cells. N-Methylnitrendipine (IC50 2.6 μM, MRS 1844) and N-propargylnifrendipine (IC50 1.7 μM, MRS 1845) represent possible lead compounds for the development of selective SOC channel inhibitors. PMID:12527326

  5. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents

    PubMed Central

    Yu, Yan; Xie, Yangchun; Cao, Lizhi; Yang, Liangchun; Yang, Minghua; Lotze, Michael T.; Zeh, Herbert J.; Kang, Rui; Tang, Daolin

    2015-01-01

    Acute myeloid leukemia (AML) is the most common type of leukemia in adults. Development of resistance to chemotherapeutic agents is a major hurdle in the effective treatment of patients with AML. The quinazolinone derivative erastin was originally identified in a screen for small molecules that exhibit synthetic lethality with expression of the RAS oncogene. This lethality was subsequently shown to occur by induction of a novel form of cell death termed ferroptosis. In this study we demonstrate that erastin enhances the sensitivity of AML cells to chemotherapeutic agents in an RAS-independent manner. Erastin dose-dependently induced mixed types of cell death associated with ferroptosis, apoptosis, necroptosis, and autophagy in HL-60 cells (AML, NRAS_Q61L), but not Jurkat (acute T-cell leukemia, RAS wild type), THP-1 (AML, NRAS_G12D), K562 (chronic myelogenous leukemia, RAS wild type), or NB-4 (acute promyelocytic leukemia M3, KRAS_A18D) cells. Treatment with ferrostatin-1 (a potent ferroptosis inhibitor) or necrostatin-1 (a potent necroptosis inhibitor), but not with Z-VAD-FMK (a general caspase inhibitor) or chloroquine (a potent autophagy inhibitor), prevented erastin-induced growth inhibition in HL-60 cells. Moreover, inhibition of c-JUN N-terminal kinase and p38, but not of extracellular signal-regulated kinase activation, induced resistance to erastin in HL-60 cells. Importantly, low-dose erastin significantly enhanced the anticancer activity of 2 first-line chemotherapeutic drugs (cytarabine/ara-C and doxorubicin/adriamycin) in HL-60 cells. Collectively, the induction of ferroptosis and necroptosis contributed to erastin-induced growth inhibition and overcame drug resistance in AML cells. PMID:27308510

  6. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents.

    PubMed

    Yu, Yan; Xie, Yangchun; Cao, Lizhi; Yang, Liangchun; Yang, Minghua; Lotze, Michael T; Zeh, Herbert J; Kang, Rui; Tang, Daolin

    2015-01-01

    Acute myeloid leukemia (AML) is the most common type of leukemia in adults. Development of resistance to chemotherapeutic agents is a major hurdle in the effective treatment of patients with AML. The quinazolinone derivative erastin was originally identified in a screen for small molecules that exhibit synthetic lethality with expression of the RAS oncogene. This lethality was subsequently shown to occur by induction of a novel form of cell death termed ferroptosis. In this study we demonstrate that erastin enhances the sensitivity of AML cells to chemotherapeutic agents in an RAS-independent manner. Erastin dose-dependently induced mixed types of cell death associated with ferroptosis, apoptosis, necroptosis, and autophagy in HL-60 cells (AML, NRAS_Q61L), but not Jurkat (acute T-cell leukemia, RAS wild type), THP-1 (AML, NRAS_G12D), K562 (chronic myelogenous leukemia, RAS wild type), or NB-4 (acute promyelocytic leukemia M3, KRAS_A18D) cells. Treatment with ferrostatin-1 (a potent ferroptosis inhibitor) or necrostatin-1 (a potent necroptosis inhibitor), but not with Z-VAD-FMK (a general caspase inhibitor) or chloroquine (a potent autophagy inhibitor), prevented erastin-induced growth inhibition in HL-60 cells. Moreover, inhibition of c-JUN N-terminal kinase and p38, but not of extracellular signal-regulated kinase activation, induced resistance to erastin in HL-60 cells. Importantly, low-dose erastin significantly enhanced the anticancer activity of 2 first-line chemotherapeutic drugs (cytarabine/ara-C and doxorubicin/adriamycin) in HL-60 cells. Collectively, the induction of ferroptosis and necroptosis contributed to erastin-induced growth inhibition and overcame drug resistance in AML cells. PMID:27308510

  7. Histone modifications patterns in tissues and tumours from acute promyelocytic leukemia xenograft model in response to combined epigenetic therapy.

    PubMed

    Valiulienė, Giedrė; Treigytė, Gražina; Savickienė, Jūratė; Matuzevičius, Dalius; Alksnė, Milda; Jarašienė-Burinskaja, Rasa; Bukelskienė, Virginija; Navakauskas, Dalius; Navakauskienė, Rūta

    2016-04-01

    Xenograft models are suitable for in vivo study of leukemia's pathogenesis and the preclinical development of anti-leukemia agents but understanding of epigenetic regulatory mechanisms linking to adult cell functions in pathological conditions during different in vivo treatments is yet unknown. In this study, for the first time epigenetic chromatin modifications were characterized in tissues and tumours from murine xenograft model generated using the human acute promyelocytic leukemia (APL) NB4 cells engrafted in immunodeficient NOG mice. Xenografts were subjected to combined epigenetic treatment by histone deacetylase inhibitor Belinostat, histone methyltransferase inhibitor 3-DZNeaplanocin A and all-trans-retinoic acid based on in vitro model, where such combination inhibited NB4 cell growth and enhanced retinoic acid-induced differentiation to granulocytes. Xenotransplantation was assessed by peripheral blood cells counts, the analysis of cell surface markers (CD15, CD33, CD45) and the expression of certain genes (PML-RAR alpha, CSF3, G-CSFR, WT1). The combined treatment prolonged APL xenograft mice survival and prevented tumour formation. The analysis of the expression of histone marks such as acetylation of H4, trimethylation of H3K4, H3K9 and H3K27 in APL xenograft mice tumours and tissues demonstrated tissue-specific changes in the level of histone modifications and the APL prognostic mark, WT1 protein. In summary, the effects of epigenetic agents used in this study were positive for leukemia prevention and linked to a modulation of the chromatin epigenetic environment in adult tissues of malignant organism. PMID:27044813

  8. Queuine, a tRNA anticodon wobble base, maintains the proliferative and pluripotent potential of HL-60 cells in the presence of the differentiating agent 6-thioguanine.

    PubMed Central

    French, B T; Patrick, D E; Grever, M R; Trewyn, R W

    1991-01-01

    6-Thioguanine (6-TG)-induced differentiation of hypoxanthine phosphoribosyltransferase (IMP: pyrophosphate phosphoribosyltransferase, EC 2.4.2.8)-deficient HL-60 cells is characterized by 2 days of growth, after which morphological differentiation proceeds. Addition of the tRNA wobble base queuine, in the presence of 6-TG, maintains the proliferative capability of the cells. The ability of 6-TG to induce differentiation correlates with c-myc mRNA down-regulation, but queuine has no effect on this parameter. Treatment with 6-TG for 2-3 days commits HL-60 cells to granulocytic differentiation, and, once committed, these cells do not respond to the monocytic inducer phorbol 12-myristate 13-acetate. Nonetheless, when cells are treated with queuine and 6-TG, they maintain the promyelocytic morphology and are capable of being induced down the monocytic pathway by phorbol 12-myristate 13-acetate as indicated by stabilization of c-fms mRNA and cell adherence. In the absence of queuine, phorbol 12-myristate 13-acetate is incapable of inducing monocytic markers in the 6-TG-treated cells. The data presented indicate that 6-TG-induced differentiation of HL-60 cells is a tRNA-facilitated event and that the tRNA wobble base queuine is capable of maintaining both the proliferative and pluripotent potential of the cells. Images PMID:1988936

  9. Acute promyelocytic leukemia with cryptic t(15;17) on isochromosome 17: a case report and review of literature

    PubMed Central

    Tang, Yuting; Wang, Ying; Hu, Liang; Meng, Fankai; Xu, Danmei; Wan, Kai; Huang, Lifang; Li, Chunrui; Zhou, Jianfeng

    2015-01-01

    Acute Promyelocytic Leukemia (APL) is one of the most curable leukemia which shows great sensitivity to all-trans retinoic acid (ATRA) although a small number of the patients present poor prognosis and short survival. Isochromosome 17 in APL which usually bears an additional copy of RARA/PML fusion gene is considered to be a negative factor on its prognosis. Cryptic t(15;17) on i(17q) leads to an extra copy of PML/RARA rather than RARA/PML which may confer a worse prognosis. We describe here a rare APL case with complex chromosomal abnormality including isochromosome 17 bearing cryptic t(15;17) showing poor outcome. The patient lacks a classic t(15;17) and fluorescence in situ hybridization (FISH) presents 2 PML/RARA fusion signals on both long arms of the isochromosome. The patient also acquired a secondary mutation at relapse when the initial karyotype was already a complex karyotype involving chromosome 13, 17 and 22 at the same time. The poor response of this patient to traditional chemotherapy like ATRA and novel therapy like arsenic trioxide (ATO) suggests that early auto-hematological stem cell transplantation may be the choice of APL with isochromosome 17 especially with cryptic t(15;17) on i(17q). We are the first to show a clear history and evidence of FISH of these kind of cases. A small summary of cases with cryptic t(15;17) on isochromosome 17 is also made. PMID:26823883

  10. Decitabine in Treating Children With Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-01-22

    Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Promyelocytic Leukemia (M3); Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  11. Alteration of C-MYB DNA binding to cognate responsive elements in HL-60 variant cells

    PubMed Central

    Gaillard, C; Le Rouzic, E; Créminon, C; Perbal, B

    2002-01-01

    Aims: To establish whether the MYB protein expressed in HL-60 variant cells, which are cells resistant to 12-O-tetradecanoylphorbol-13-acetate (TPA) induced differentiation, is able to bind MYB recognition elements (MREs) involved in the transcriptional regulation of myb target genes. In addition, to determine whether alterations in the binding of the MYB protein to MREs affects HL-60 cell proliferation and differentiation. Methods: Nuclear extracts of HL-60 variant cells exhibiting different degrees of resistance to TPA induced monocytic differentiation were used in electrophoretic mobility shift experiments (EMSAs), bandshift experiments performed with labelled oliogonucleotides containing the MYB consensus binding sequences. Results: The MYB protein contained in nuclear extracts from HL-60 variant cells did not bind efficiently to the MYB recognition elements identified in the mim-1 and PR264 promoters. Molecular cloning of the myb gene and analysis of the MYB protein expressed in the HL-60 variant cells established that the lack of binding did not result from a structural alteration of MYB in these cells. The lack of MRE binding did not abrogate the ability of variant HL-60s to proliferate and to undergo differentiation. Furthermore, the expression of the PR264/SC35 splicing factor was not affected as a result of the altered MYB DNA binding activity. Conclusions: Because the MYB protein expressed in HL-60 variant cells did not appear to be structurally different from the MYB protein expressed in parental HL-60 cells, it is possible that the HL-60 variant cells contain a MYB binding inhibitory factor (MBIF) that interferes with MYB binding on MREs. The increased proliferation rate of HL-60 variant cells and their reduced serum requirement argues against the need for direct MYB binding in the regulation of cell growth. PMID:12354938

  12. The role of bioreductive activation of doxorubicin in cytotoxic activity against leukaemia HL60-sensitive cell line and its multidrug-resistant sublines

    PubMed Central

    Kostrzewa-Nowak, D; Paine, M J I; Wolf, C R; Tarasiuk, J

    2005-01-01

    Clinical usefulness of doxorubicin (DOX) is limited by the occurrence of multidrug resistance (MDR) associated with the presence of membrane transporters (e.g. P-glycoprotein, MRP1) responsible for the active efflux of drugs out of resistant cells. Doxorubicin is a well-known bioreductive antitumour drug. Its ability to undergo a one-electron reduction by cellular oxidoreductases is related to the formation of an unstable semiquionone radical and followed by the production of reactive oxygen species. There is an increasing body of evidence that the activation of bioreductive drugs could result in the alkylation or crosslinking binding of DNA and lead to the significant increase in the cytotoxic activity against tumour cells. The aim of this study was to examine the role of reductive activation of DOX by the human liver NADPH cytochrome P450 reductase (CPR) in increasing its cytotoxic activity especially in regard to MDR tumour cells. It has been evidenced that, upon CPR catalysis, DOX underwent only the redox cycling (at low NADPH concentration) or a multistage chemical transformation (at high NADPH concentration). It was also found, using superoxide dismutase (SOD), that the first stage undergoing reductive activation according to the mechanism of the redox cycling had the key importance for the metabolic conversion of DOX. In the second part of this work, the ability of DOX to inhibit the growth of human promyelocytic-sensitive leukaemia HL60 cell line as well as its MDR sublines exhibiting two different phenotypes of MDR related to the overexpression of P-glycoprotein (HL60/VINC) or MRP1 (HL60/DOX) was studied in the presence of exogenously added CPR. Our assays showed that the presence of CPR catalysing only the redox cycling of DOX had no effect in increasing its cytotoxicity against sensitive and MDR tumour cells. In contrast, an important increase in cytotoxic activity of DOX after its reductive conversion by CPR was observed against HL60 as well as HL60

  13. Expression of CD56 is an unfavorable prognostic factor for acute promyelocytic leukemia with higher initial white blood cell counts

    PubMed Central

    Ono, Takaaki; Takeshita, Akihiro; Kishimoto, Yuji; Kiyoi, Hitoshi; Okada, Masaya; Yamauchi, Takahiro; Emi, Nobuhiko; Horikawa, Kentaro; Matsuda, Mitsuhiro; Shinagawa, Katsuji; Monma, Fumihiko; Ohtake, Shigeki; Nakaseko, Chiaki; Takahashi, Masatomo; Kimura, Yukihiko; Iwanaga, Masako; Asou, Norio; Naoe, Tomoki

    2014-01-01

    Expression of CD56 has recently been introduced as one of the adverse prognostic factors in acute promyelocytic leukemia (APL). However, the clinical significance of CD56 antigen in APL has not been well elucidated. We assessed the clinical significance of CD56 antigen in 239 APL patients prospectively treated with all-trans retinoic acid and chemotherapy according to the Japan Adult Leukemia Study Group APL97 protocol. All patients were prospectively treated by the Japan Adult Leukemia Study Group APL97 protocol. The median follow-up period was 8.5 years. Positive CD56 expression was found in 23 APL patients (9.6%). Expression of CD56 was significantly associated with lower platelet count (P = 0.04), severe disseminated intravascular coagulation (P = 0.04), and coexpression of CD2 (P = 0.03), CD7 (P = 0.04), CD34 (P < 0.01) and/or human leukocyte antigen-DR (P < 0.01). Complete remission rate and overall survival were not different between the two groups. However, cumulative incidence of relapse and event-free survival (EFS) showed an inferior trend in CD56+ APL (P = 0.08 and P = 0.08, respectively). Among patients with initial white blood cell counts of 3.0 × 109/L or more, EFS and cumulative incidence of relapse in CD56+ APL were significantly worse (30.8% vs 63.6%, P = 0.008, and 53.8% vs 28.9%, P = 0.03, respectively), and in multivariate analysis, CD56 expression was an unfavorable prognostic factor for EFS (P = 0.04). In conclusion, for APL with higher initial white blood cell counts, CD56 expression should be regarded as an unfavorable prognostic factor. PMID:24206578

  14. The impact of molecularly targeted therapies upon the understanding of leukemogenesis and the role of hematopoietic stem cell transplantation in acute promyelocytic leukemia.

    PubMed

    Nagai, Sumimasa; Takahashi, Tsuyoshi; Kurokawa, Mineo

    2010-12-01

    Acute promyelocytic leukemia (APL) is a distinct subset of acute myeloid leukemia. An abnormal fusion gene, PML/RARA is detected in approximately 98% of patients with APL. PML/RARA confers long-term self-renewal properties to promyelocytes. All-trans retinoic acid (ATRA) and arsenic trioxide (ATO), which are the major molecularly targeted therapies in APL, affect the PML/RARA fusion protein and cause differentiation and apoptosis of APL cells. Although the leukemia-initiating cells of APL may be present in a myeloid progenitor committed compartment, the precise population of those remains to be elucidated. However, recent studies have demonstrated the effect of ATRA and ATO on APL leukemia-initiating cells. Through these studies, we can understand more deeply how current clinical therapies lead to long-lasting remission of APL. ATRA and ATO have improved the prognosis of APL patients and have changed the role of hematopoietic stem cell transplantation (HSCT). At present, HSCT is not indicated for patients with APL in first complete remission, and considered for patients with relapsed APL. In this review, we discuss the three main topics as follows: the leukemia-initiating cells in APL, the current state-of-the-art treatment for newly diagnosed and relapsed APL, and the role of HSCT in APL patients. PMID:20528759

  15. Recurrent Arterial Thrombosis as a Presenting Feature of a Variant M3-Acute Promyelocytic Leukemia

    PubMed Central

    Chotai, Pranit N.; Kasangana, Kalenda; Chandra, Abhinav B.; Rao, Atul S.

    2016-01-01

    Acute limb ischemia (ALI) is a common vascular emergency. Hematologic malignancies are commonly associated with derangement of normal hemostasis and thrombo-hemorrhagic symptoms during the course of the disease are common. However, ALI as an initial presenting feature of acute leukemia is rare. Due to the rarity of this presentation, there is a scarcity of prospective randomized data to optimally guide the management of these patients. Current knowledge is mainly based on isolated cases. We report our experience managing a patient who presented with ALI and was found to have occult leukemia. A review of all cases with ALI as a presenting feature of acute leukemia is also presented. PMID:27386455

  16. Recurrent Arterial Thrombosis as a Presenting Feature of a Variant M3-Acute Promyelocytic Leukemia.

    PubMed

    Chotai, Pranit N; Kasangana, Kalenda; Chandra, Abhinav B; Rao, Atul S

    2016-06-01

    Acute limb ischemia (ALI) is a common vascular emergency. Hematologic malignancies are commonly associated with derangement of normal hemostasis and thrombo-hemorrhagic symptoms during the course of the disease are common. However, ALI as an initial presenting feature of acute leukemia is rare. Due to the rarity of this presentation, there is a scarcity of prospective randomized data to optimally guide the management of these patients. Current knowledge is mainly based on isolated cases. We report our experience managing a patient who presented with ALI and was found to have occult leukemia. A review of all cases with ALI as a presenting feature of acute leukemia is also presented. PMID:27386455

  17. Comparative study of the efficacy of Wright-Giemsa stain and Liu's stain in the detection of Auer rods in acute promyelocytic leukemia.

    PubMed

    Yue, Qing Fang; Xiong, Bei; Chen, Wan Xin; Liu, Xin Yue

    2014-07-01

    In view of the importance of Auer rods in the rapid diagnosis of acute promyelocytic leukemia, we compared the results of Wright-Giemsa stain and Liu's stain (a rapid and simple stain, which is also a kind of modified Romanowsky stain) in the detection of Auer rods. This study was based on 53 cases of acute promyelocytic leukemia. Two staining methods were respectively performed on the bone marrow smears of these cases, and presence of Auer rods as well as nuclear features, cytoplasmic features and the degree of granularity of the cytoplasm were compared in each case. Our results showed that the occurrence of Auer rods as well as faggots in leukemic promyelocytes were significantly higher under Liu's stain than under Wright-Giemsa stain. Significant differences also existed in the occurrence of hypergranular cells and cytoplasmic protrusions between smears stained with Liu's stain and Wright-Giemsa stain. Liu's stain is important for the rapid diagnosis of suspicious APL, especially in recognizing Auer rods. PMID:24958342

  18. Signal-dependent Regulation of Transcription by Histone Deacetylase 7 Involves Recruitment to Promyelocytic Leukemia Protein Nuclear Bodies

    PubMed Central

    Gao, Chengzhuo; Cheng, Xiwen; Lam, Minh; Liu, Yu; Liu, Qing; Chang, Kun-Sang

    2008-01-01

    Promyelocytic leukemia protein (PML) nuclear bodies (NBs) are dynamic subnuclear compartments that play roles in several cellular processes, including apoptosis, transcriptional regulation, and DNA repair. Histone deacetylase (HDAC) 7 is a potent corepressor that inhibits transcription by myocyte enhancer factor 2 (MEF2) transcription factors. We show here that endogenous HDAC7 and PML interact and partially colocalize in PML NBs. Tumor necrosis factor (TNF)-α treatment recruits HDAC7 to PML NBs and enhances association of HDAC7 with PML in human umbilical vein endothelial cells. Consequently, TNF-α promotes dissociation of HDAC7 from MEF2 transcription factors and the promoters of MEF2 target genes such as matrix metalloproteinase (MMP)-10, leading to accumulation of MMP-10 mRNA. Conversely, knockdown of PML enhances the association between HDAC7 and MEF2 and decreases MMP-10 mRNA accumulation. Accordingly, ectopic expression of PML recruits HDAC7 to PML NBs and leads to activation of MEF2 reporter activity. Notably, small interfering RNA knockdown of PML decreases basal and TNF-α-induced MMP-10 mRNA accumulation. Our results reveal a novel mechanism by which PML sequesters HDAC7 to relieve repression and up-regulate gene expression. PMID:18463162

  19. The Mutational Landscape of Acute Promyelocytic Leukemia Reveals an Interacting Network of Co-Occurrences and Recurrent Mutations.

    PubMed

    Ibáñez, Mariam; Carbonell-Caballero, José; García-Alonso, Luz; Such, Esperanza; Jiménez-Almazán, Jorge; Vidal, Enrique; Barragán, Eva; López-Pavía, María; LLop, Marta; Martín, Iván; Gómez-Seguí, Inés; Montesinos, Pau; Sanz, Miguel A; Dopazo, Joaquín; Cervera, José

    2016-01-01

    Preliminary Acute Promyelocytic Leukemia (APL) whole exome sequencing (WES) studies have identified a huge number of somatic mutations affecting more than a hundred different genes mainly in a non-recurrent manner, suggesting that APL is a heterogeneous disease with secondary relevant changes not yet defined. To extend our knowledge of subtle genetic alterations involved in APL that might cooperate with PML/RARA in the leukemogenic process, we performed a comprehensive analysis of somatic mutations in APL combining WES with sequencing of a custom panel of targeted genes by next-generation sequencing. To select a reduced subset of high confidence candidate driver genes, further in silico analysis were carried out. After prioritization and network analysis we found recurrent deleterious mutations in 8 individual genes (STAG2, U2AF1, SMC1A, USP9X, IKZF1, LYN, MYCBP2 and PTPN11) with a strong potential of being involved in APL pathogenesis. Our network analysis of multiple mutations provides a reliable approach to prioritize genes for additional analysis, improving our knowledge of the leukemogenesis interactome. Additionally, we have defined a functional module in the interactome of APL. The hypothesis is that the number, or the specific combinations, of mutations harbored in each patient might not be as important as the disturbance caused in biological key functions, triggered by several not necessarily recurrent mutations. PMID:26886259

  20. The Mutational Landscape of Acute Promyelocytic Leukemia Reveals an Interacting Network of Co-Occurrences and Recurrent Mutations

    PubMed Central

    García-Alonso, Luz; Such, Esperanza; Jiménez-Almazán, Jorge; Vidal, Enrique; Barragán, Eva; López-Pavía, María; LLop, Marta; Martín, Iván; Gómez-Seguí, Inés; Montesinos, Pau; Sanz, Miguel A.; Dopazo, Joaquín; Cervera, José

    2016-01-01

    Preliminary Acute Promyelocytic Leukemia (APL) whole exome sequencing (WES) studies have identified a huge number of somatic mutations affecting more than a hundred different genes mainly in a non-recurrent manner, suggesting that APL is a heterogeneous disease with secondary relevant changes not yet defined. To extend our knowledge of subtle genetic alterations involved in APL that might cooperate with PML/RARA in the leukemogenic process, we performed a comprehensive analysis of somatic mutations in APL combining WES with sequencing of a custom panel of targeted genes by next-generation sequencing. To select a reduced subset of high confidence candidate driver genes, further in silico analysis were carried out. After prioritization and network analysis we found recurrent deleterious mutations in 8 individual genes (STAG2, U2AF1, SMC1A, USP9X, IKZF1, LYN, MYCBP2 and PTPN11) with a strong potential of being involved in APL pathogenesis. Our network analysis of multiple mutations provides a reliable approach to prioritize genes for additional analysis, improving our knowledge of the leukemogenesis interactome. Additionally, we have defined a functional module in the interactome of APL. The hypothesis is that the number, or the specific combinations, of mutations harbored in each patient might not be as important as the disturbance caused in biological key functions, triggered by several not necessarily recurrent mutations. PMID:26886259

  1. Active Pin1 is a key target of all-trans retinoic acid in acute promyelocytic leukemia and breast cancer

    PubMed Central

    Wei, Shuo; Kozono, Shingo; Kats, Lev; Nechama, Morris; Li, Wenzong; Guarnerio, Jlenia; Luo, Manli; You, Mi-Hyeon; Yao, Yandan; Kondo, Asami; Hu, Hai; Bozkurt, Gunes; Moerke, Nathan J.; Cao, Shugeng; Reschke, Markus; Chen, Chun-Hau; Rego, Eduardo M.; LoCoco, Francesco; Cantley, Lewis; Lee, Tae Ho; Wu, Hao; Zhang, Yan; Pandolfi, Pier Paolo; Zhou, Xiao Zhen; Lu, Kun Ping

    2015-01-01

    A common key regulator of oncogenic signaling pathways in multiple tumor types is the unique isomerase Pin1. However, available Pin1 inhibitors lack the required specificity and potency. Using mechanism-based screening, here we find that all-trans retinoic acid (ATRA)--a therapy for acute promyelocytic leukemia (APL) that is considered the first example of targeted therapy in cancer, but its drug target remains elusive--inhibits and degrades active Pin1 selectively in cancer cells by directly binding to the substrate phosphate- and proline-binding pockets in the Pin1 active site. ATRA-induced Pin1 ablation degrades the fusion oncogene PML-RARα and treats APL in cell and animal models and human patients. ATRA-induced Pin1 ablation also inhibits triple negative breast cancer cell growth in human cells and in animal models by acting on many Pin1 substrate oncogenes and tumor suppressors. Thus, ATRA simultaneously blocks multiple Pin1-regulated cancer-driving pathways, an attractive property for treating aggressive and drug-resistant tumors. PMID:25849135

  2. BIBR 1532 increases arsenic trioxide-mediated apoptosis in acute promyelocytic leukemia cells: therapeutic potential for APL.

    PubMed

    Bashash, Davood; Ghaffari, Seyed H; Zaker, Farhad; Kazerani, Maryam; Hezave, Kebria; Hassani, Saeed; Rostami, Masomeh; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir

    2013-09-01

    The current treatment of acute promyelocytic leukemia with arsenic trioxide (ATO) has increased long-lasting complete remissions; however, a proportion of patients continues to die eventually as a result of disease recurrence. In an effort to enhance the effectiveness of the APL treatment, we designed experiments to evaluate the effects of ATO in combination with the lead compound of non-nucleoside inhibitor of telomerase, BIBR 1532. After combined treatments with BIBR 1532 and ATO, decreased cell viability index with a concomitant increase in apoptotic cell death was observed in NB4 leukemic cells. Apoptosis induced by the combined treatments was accompanied by elevated Bax/Bcl-2 molecular ratio and enhanced caspase 3 activation. Our study has also demonstrated that the combined treatment suppressed NB4 cell proliferative capacity and inhibited telomerase activity probably via transcriptional suppression of c-Myc and hTERT. In conclusion, this study may supply insight into the application of this new combination therapy to APL cells intrinsically less sensitive to routine therapies and suggested a novel combination therapy for patients with more aggressive disease; those who may not respond favorably to the arsenic mono-therapy. PMID:23293885

  3. SUMO-dependent compartmentalization in promyelocytic leukemia protein nuclear bodies prevents the access of LRH-1 to chromatin.

    PubMed

    Chalkiadaki, Angeliki; Talianidis, Iannis

    2005-06-01

    Posttranslational modification by SUMO elicits a repressive effect on many transcription factors. In principle, sumoylation may either influence transcription factor activity on promoters, or it may act indirectly by targeting the modified factors to specific cellular compartments. To provide direct experimental evidence for the above, not necessarily mutually exclusive models, we analyzed the role of SUMO modification on the localization and the activity of the orphan nuclear receptor LRH-1. We demonstrate, by using fluorescence resonance energy transfer (FRET) and fluorescence recovery after photobleaching (FRAP) assays, that sumoylated LRH-1 is exclusively localized in promyelocytic leukemia protein (PML) nuclear bodies and that this association is a dynamic process. Release of LRH-1 from nuclear bodies correlated with its desumoylation, pointing to the pivotal role of SUMO conjugation in keeping LRH-1 in these locations. SUMO-dependent shuttling of LRH-1 into PML bodies defines two spatially separated pools of the protein, of which only the soluble, unmodified one is associated with actively transcribed target genes. The results suggest that SUMO-PML nuclear bodies may primarily function as dynamic molecular reservoirs, controlling the availability of certain transcription factors to active chromatin domains. PMID:15923626

  4. Outcome of Therapy-Related Acute Promyelocytic Leukemia With or Without Arsenic Trioxide as a Component of Frontline Therapy

    PubMed Central

    Dayyani, Farshid; Kantarjian, Hagop; O’Brien, Susan; Pierce, Sherry; Jones, Dan; Faderl, Stefan; Garcia-Manero, Guillermo; Cortes, Jorge; Ravandi, Farhad

    2015-01-01

    BACKGROUND Patients with therapy-related acute promyelocytic leukemia (t-APL) have been commonly exposed to topoisomerase inhibitors and may potentially benefit from induction regimens omitting anthracyclines. METHODS Retrospective analysis of the outcomes of 29 patients with t-APL who were either treated with arsenic trioxide (ATO) and all-trans-retinoic acid (ATRA) or with standard ATRA plus anthracycline-based chemotherapy was performed. RESULTS Prior therapy included chemotherapy alone, radiation alone, or a combination of the 2 in 19%, 33%, and 47% of patients, respectively. The combination of ATO and ATRA (n = 19) for induction resulted in a similar remission rate compared with ATRA plus chemotherapy (n = 10) (89% vs 70%; P = .35). The median overall survival for the patients treated with ATRA plus ATO was not reached compared with that for patients treated with ATRA plus chemotherapy (161 weeks; P =.79). CONCLUSIONS In this cohort of t-APL patients, outcomes with ATO and ATRA appeared to be comparable to anthracycline-containing induction regimens. This combination may be preferable in t-APL patients to avoid any risk of anthracycline-induced toxicities. PMID:20803607

  5. Promyelocytic leukemia zinc-finger induction signs mesenchymal stem cell commitment: identification of a key marker for stemness maintenance?

    PubMed Central

    2014-01-01

    Introduction Mesenchymal stem cells (MSCs) are an attractive cell source for cartilage and bone tissue engineering given their ability to differentiate into chondrocytes and osteoblasts. However, the common origin of these two specialized cell types raised the question about the identification of regulatory pathways determining the differentiation fate of MSCs into chondrocyte or osteoblast. Methods Chondrogenesis, osteoblastogenesis, and adipogenesis of human and mouse MSC were induced by using specific inductive culture conditions. Expression of promyelocytic leukemia zinc-finger (PLZF) or differentiation markers in MSCs was determined by RT-qPCR. PLZF-expressing MSC were implanted in a mouse osteochondral defect model and the neotissue was analyzed by routine histology and microcomputed tomography. Results We found out that PLZF is not expressed in MSCs and its expression at early stages of MSC differentiation is the mark of their commitment toward the three main lineages. PLZF acts as an upstream regulator of both Sox9 and Runx2, and its overexpression in MSC enhances chondrogenesis and osteogenesis while it inhibits adipogenesis. In vivo, implantation of PLZF-expressing MSC in mice with full-thickness osteochondral defects resulted in the formation of a reparative tissue resembling cartilage and bone. Conclusions Our findings demonstrate that absence of PLZF is required for stemness maintenance and its expression is an early event at the onset of MSC commitment during the differentiation processes of the three main lineages. PMID:24564963

  6. Consolidation therapy of arsenic trioxide alternated with chemotherapy achieves remarkable efficacy in newly diagnosed acute promyelocytic leukemia

    PubMed Central

    Liu, Cheng-cheng; Wang, Hua; Wang, Wei-da; Zhu, Meng-yuan; Geng, Qi-rong; Lu, Yue

    2015-01-01

    Background Currently, all-trans retinoic acid (ATRA) combined with daunorubicin and ATRA combined with arsenic trioxide (ATO) therapies are considered the standard induction therapy regimens for adult patients newly diagnosed with acute promyelocytic leukemia (APL). However, there is no consensus concerning the optimal consolidation and maintenance therapies after induction therapy. In this study, we explored a new therapeutic strategy for APL that may be simple, effective, and safe. Methods The patients in our study were divided into high white blood cell (WBC) group and low WBC group according to the numeration of leukocytes at the first visit. The low WBC group received ATRA and ATO until complete remission (CR), and the high WBC group received anthracycline, ATRA, and ATO until CR. After achieving hematologic CR, ATO was alternated with chemotherapy for consolidation therapy. Three cycles were completed in the 1st year with no maintenance therapy. The patients were followed for a median of 5 years after their initial treatment. Results After induction therapy, the rate of CR for the 18 patients was 100%. The rate of negativity for the PML/RARα fusion gene following induction therapy was 100%. There was no mortality during the treatment. Both the 5-year event-free survival rate and 5-year overall survival rate were 100%. No relapses occurred during the follow-up period. Conclusion This study proposes a novel treatment for APL that is efficient, well-tolerated, and very simple to perform. PMID:26622182

  7. Cholinergic activation enhances retinoic acid-induced differentiation in the human NB-4 acute promyelocytic leukemia cell line.

    PubMed

    Chotirat, Sadudee; Suriyo, Tawit; Hokland, Marianne; Hokland, Peter; Satayavivad, Jutamaad; Auewarakul, Chirayu U

    2016-07-01

    The non-neuronal cholinergic system (NNCS) has been shown to play a role in regulating hematopoietic differentiation. We determined the expression of cholinergic components in leukemic cell lines by Western blotting and in normal leukocyte subsets by flow cytometry and found a heterogeneous expression of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), choline transporter (CHT), M3 muscarinic acetylcholine receptor (M3-mAChR) and α7 nicotinic acetylcholine receptor (α7-nAChR). We then evaluated NNCS role in differentiation of human NB-4 acute promyelocytic leukemia cell line and discovered a dramatic induction of M3-mAChR after all-trans retinoic acid (ATRA) treatment (p<0.0001). Adding carbachol which is a cholinergic agonist to the ATRA treatment resulted in an increase of a granulocytic differentiation marker (CD11b) as compared with ATRA treatment alone (p<0.05), indicating that cholinergic activation enhanced ATRA in inducing NB-4 maturation. The combination of carbachol and ATRA treatment for 72h also resulted in decreased viability and increased cleaved caspase-3 expression when compared with ATRA treatment alone (p<0.05). However, this combination did not cause poly (ADP-ribose) polymerase (PARP) cleavage. Overall, we have shown that NB-4 cells expressed M3-mAChR in a differentiation-dependent manner and cholinergic stimulation induced maturation and death of ATRA-induced differentiated NB-4 cells. PMID:27282572

  8. [Treatment of acute promyelocytic leukemia with trans-retinoic acid. Experience of the Santa Maria Hospital, Medical School of Lisbon].

    PubMed

    De Lacerda, J F; Do Carmo, J A; De Moura, M C; Guerra, M L; Lopes, C; Raposo, J; Melo, A; De Oliveira, J J; De Lacerda, J M

    1994-12-01

    Acute promyelocytic leukemia (APL) is a rare subtype of acute myelogenous leukemia that is usually associated with a fatal hemorrhagic diathesis. All trans-retinoic acid (ATRA) is an active metabolite of vitamin A that differentiates the malignant cell clone, corrects the coagulopathy, and induces complete remission in the vast majority of patients with APL. Between June 1992 and September 1993, 8 patients with APL (4 previously untreated, 3 in first relapse and 1 in second relapse) received ATRA. Complete remission was achieved in 7 patients; in 5 with ATRA alone and in 2 with ATRA followed by cytotoxic chemotherapy due to the development of asymptomatic hyperleukocytosis. The earliest signs of response were the correction of the coagulopathy and an increase in the white blood cell count. Sequential morphological and immunophenotypical analyses of the bone marrow revealed differentiation of the malignant cell clone, in the absence of bone marrow hypoplasia. 4 of 5 patients treated only with ATRA until complete remission had late leukopenia. The most frequent adverse effects were dryness of skin and mucosae, hypertrigliceridemia and hypercholesterolemia, and a moderate increase in liver transaminases. An increase in the white blood cell count was common, and in two cases exceeded 35.0 x 10(9)/l. One of these patients developed multiple thrombosis of the extremities after cytotoxic chemotherapy. We frequently observed an increase in lactic dehydrogenase levels that was concomitant with the peak in the white blood cell count. The only patient on whom complete remission was not achieved was 60 years old, had chronic obstructive pulmonary disease, and died in the third week of therapy with a pulmonary distress syndrome.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7717119

  9. Phase I Dose-Escalation Trial of Clofarabine Followed by Escalating Doses of Fractionated Cyclophosphamide in Children With Relapsed or Refractory Acute Leukemias

    ClinicalTrials.gov

    2010-09-21

    Myelodysplastic Syndrome; Acute Myeloid Leukemia; Myeloproliferative Disorders; Acute Lymphocytic Leukemia; Acute Promyelocytic Leukemia; Acute Leukemia; Chronic Myelogenous Leukemia; Myelofibrosis; Chronic Myelomonocytic Leukemia; Juvenile Myelomonocytic Leukemia

  10. Induction of apoptosis in HL-60 cells through the ROS-mediated mitochondrial pathway by ramentaceone from Drosera aliciae.

    PubMed

    Kawiak, Anna; Zawacka-Pankau, Joanna; Wasilewska, Aleksandra; Stasilojc, Grzegorz; Bigda, Jacek; Lojkowska, Ewa

    2012-01-27

    Ramentaceone (1) is a naphthoquinone constituent of Drosera aliciae that exhibits potent cytotoxic activity against various tumor cell lines. However, its molecular mechanism of cell death induction has still not been determined. The present study demonstrates that 1 induces apoptosis in human leukemia HL-60 cells. Typical morphological and biochemical features of apoptosis were observed in 1-treated cells. Compound 1 induced a concentration-dependent increase in the sub-G1 fraction of the cell cycle. A decrease in the mitochondrial transmembrane potential (ΔΨm) was also observed. Furthermore, 1 reduced the ratio of anti-apoptotic Bcl-2 to pro-apoptotic Bax and Bak, induced cytochrome c release, and increased the activity of caspase 3. The generation of reactive oxygen species (ROS) was detected in 1-treated HL-60 cells, which was attenuated by the pretreatment of cells with a free radical scavenger, N-acetylcysteine (NAC). NAC also prevented the increase of the sub-G1 fraction induced by 1. These results indicate that ramentaceone induces cell death through the ROS-mediated mitochondrial pathway. PMID:22250825