Science.gov

Sample records for propane deasphalting unit

  1. Deasphalted oil -- A natural asphaltene solvent

    SciTech Connect

    Jamaluddin, A.K.M.; Nazarko, T.W.; Sills, S.; Fuhr, B.J.

    1995-11-01

    Asphaltene deposition in the near-wellbore region can block pore throats, change wettability characteristics and relative-permeability relationships, and therefore, reduce oil production. Conventional aromatic solvents (e.g., toluene, xylene) alone or in combination with various dispersants are used to remove asphaltene damage from the near-wellbore region. However, these aromatic solvents are expensive and are not environmentally friendly. The objective of this work was to systematically evaluate the asphaltene-solvating power of various non conventional solvents, including deasphalted oil, using a light-scattering technique. Experimental results suggest that deasphalted oil is a strong asphaltene solvent presumably because of its native resin and aromatic contents. Addition of asphaltene dispersants also increases the solubilizing power of the deasphalted oil. Furthermore, various refinery and heavy oil upgrader streams show strong ability to solubilize asphaltenes.

  2. Deasphalted oil: A natural asphaltene solvent

    SciTech Connect

    Jamaluddin, A.K.M.; Nazarko, T.W.; Sills, S.; Fuhr, B.J.

    1996-08-01

    Asphaltene deposition in the near-wellbore region can block pore throats, change wettability characteristics and relative-permeability relationships, and therefore, reduce oil production. Conventional aromatic solvents (e.g., toluene and xylene) alone or in combination with various dispersants are used to remove asphaltene damage from the near-wellbore region. However, these aromatic solvents are expensive and are not environmentally friendly. The objective of this work was to systematically evaluate the asphaltene-solvating power of various nonconventional solvents, including deasphalted oil, using a light-scattering technique. Experimental results suggest that deasphalted oil is a strong asphaltene solvent presumably because of its native resin and aromatic contents. Addition of asphaltene dispersants also increases the solubilizing power of the deasphalted oil. Furthermore, various refinery and heavy oil upgrader streams show strong ability to solubilize asphaltenes.

  3. Process for the solvent deasphalting of asphaltene-containing hydrocarbons

    SciTech Connect

    Ikematsu, M.; Honzyo, I.; Sakai, K.

    1985-06-25

    A process for the solvent deasphalting of asphaltene-containing hydrocarbons which comprising mixing asphaltene-containing hydrocarbons with a metal compound such as aluminum carbonates or titanium (IV) oxide and also with a solvent such as n-heptane, n-hexane, n-heptane or a mixed n-pentane.n-butanol solvent, to form a mixture which is then allowed to stand still to precipitate and separate the asphaltene therefrom thereby obtaining a deasphalted oil.

  4. Process for the solvent deasphalting of asphaltene containing hydrocarbons

    SciTech Connect

    Ikematsu, M.; Honzyo, I.; Sakai, K.

    1985-04-30

    A process for the solvent deasphalting of asphaltene-containing hydrocarbons which comprising mixing asphaltene-containing hydrocarbons with a metal compound such as aluminum sulfate or titanium (IV) oxide and also with a solvent such as n-heptane, n-hexane, n-heptane or a mixed n-pentane.n-butanol solvent, to form a mixture which is then allowed to stand still to precipitate and separate the asphaltene therefrom thereby obtaining a deasphalted oil.

  5. Compact propane fuel processor for auxiliary power unit application

    NASA Astrophysics Data System (ADS)

    Dokupil, M.; Spitta, C.; Mathiak, J.; Beckhaus, P.; Heinzel, A.

    With focus on mobile applications a fuel cell auxiliary power unit (APU) using liquefied petroleum gas (LPG) is currently being developed at the Centre for Fuel Cell Technology (Zentrum für BrennstoffzellenTechnik, ZBT gGmbH). The system is consisting of an integrated compact and lightweight fuel processor and a low temperature PEM fuel cell for an electric power output of 300 W. This article is presenting the current status of development of the fuel processor which is designed for a nominal hydrogen output of 1 k Wth,H2 within a load range from 50 to 120%. A modular setup was chosen defining a reformer/burner module and a CO-purification module. Based on the performance specifications, thermodynamic simulations, benchmarking and selection of catalysts the modules have been developed and characterised simultaneously and then assembled to the complete fuel processor. Automated operation results in a cold startup time of about 25 min for nominal load and carbon monoxide output concentrations below 50 ppm for steady state and dynamic operation. Also fast transient response of the fuel processor at load changes with low fluctuations of the reformate gas composition have been achieved. Beside the development of the main reactors the transfer of the fuel processor to an autonomous system is of major concern. Hence, concepts for packaging have been developed resulting in a volume of 7 l and a weight of 3 kg. Further a selection of peripheral components has been tested and evaluated regarding to the substitution of the laboratory equipment.

  6. Process for the solvent deasphalting of asphaltene-containing hydrocarbons

    SciTech Connect

    Ikematsu, M.; Honzyo, I.; Sakai, K.

    1985-03-05

    A continuous process for solvent deasphalting asphaltene-containing hydrocarbons which comprises mixing (A) 100 parts by weight of asphaltene-containing hydrocarbons with (B) 0.005-0.5 parts by weight of an amorphous silicon dioxide and/or a silicate compound and also with (C) 5-2000 parts by weight of a solvent such as n-heptane, n-hexane, n-heptane or a mixed n-pentane.n-butanol solvent, to form a mixture which is then allowed to stand still to precipitate and separate the asphaltene therefrom thereby obtaining a deasphalted oil.

  7. Propane Basics

    SciTech Connect

    NREL

    2010-03-01

    Propane powers about 190,000 vehicles in the U.S. and more than 14 million worldwide. Propane vehicles are a good choice for many fleet applications including school buses, shuttle buses, taxies and light-duty trucks.

  8. Propane Update.

    ERIC Educational Resources Information Center

    Brantner, Max

    1984-01-01

    Reports on a northern Illinois school bus fleet converted to propane fuel in 1981 and 1982. Includes tables showing, first, total annual fuel costs before and after conversion and, second, fuel efficiency for 16 buses using propane and three using gasoline. Notes precautions for propane use. (MCG)

  9. Propane fear

    SciTech Connect

    Begley, R.

    1992-02-12

    A minor feature of a Congressional energy bill is causing consternation for a number of propane-consuming chemical companies. The firms are fighting the bill`s inclusion of liquefied petroleum gas (LPG) on a list of alternative fuels that can be used to meet its urban fleet vehicles requirements. The firms fear that this added use would drive up the price of propane-an LPG-for homeowners, farmers, and themselves. Speaking for the Propane Consumers Coalition, a Dow Chemical spokesman says 7.7 million households use propane, as does agriculture, and current demand is such that December saw a 23-year low in US inventories. The US depends on imports of propane, he says, and about half the propane sold in the US is derived from the refining of oil, much of which is also imported. Adding demand for vehicle fuel would drive up imports and process, the spokesman says, thereby damaging all users, including the petrochemical industry.

  10. Propane vehicles : status, challenges, and opportunities.

    SciTech Connect

    Rood Werpy, M.; Burnham, A.; Bertram, K.; Energy Systems

    2010-06-17

    Propane as an auto fuel has a high octane value and has key properties required for spark-ignited internal combustion engines. To operate a vehicle on propane as either a dedicated fuel or bi-fuel (i.e., switching between gasoline and propane) vehicle, only a few modifications must be made to the engine. Until recently propane vehicles have commonly used a vapor pressure system that was somewhat similar to a carburetion system, wherein the propane would be vaporized and mixed with combustion air in the intake plenum of the engine. This leads to lower efficiency as more air, rather than fuel, is inducted into the cylinder for combustion (Myers 2009). A newer liquid injection system has become available that injects propane directly into the cylinder, resulting in no mixing penalty because air is not diluted with the gaseous fuel in the intake manifold. Use of a direct propane injection system will improve engine efficiency (Gupta 2009). Other systems include the sequential multi-port fuel injection system and a bi-fuel 'hybrid' sequential propane injection system. Carbureted systems remain in use but mostly for non-road applications. In the United States a closed-loop system is used in after-market conversions. This system incorporates an electronic sensor that provides constant feedback to the fuel controller to allow it to measure precisely the proper air/fuel ratio. A complete conversion system includes a fuel controller, pressure regulator valves, fuel injectors, electronics, fuel tank, and software. A slight power loss is expected in conversion to a vapor pressure system, but power can still be optimized with vehicle modifications of such items as the air/fuel mixture and compression ratios. Cold start issues are eliminated for vapor pressure systems since the air/fuel mixture is gaseous. In light-duty propane vehicles, the fuel tank is typically mounted in the trunk; for medium- and heavy-duty vans and trucks, the tank is located under the body of the vehicle

  11. Propane Vehicle Demonstration Grant Program

    SciTech Connect

    Jack Mallinger

    2004-08-27

    Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

  12. Efficiency gain of solid oxide fuel cell systems by using anode offgas recycle - Results for a small scale propane driven unit

    NASA Astrophysics Data System (ADS)

    Dietrich, Ralph-Uwe; Oelze, Jana; Lindermeir, Andreas; Spitta, Christian; Steffen, Michael; Küster, Torben; Chen, Shaofei; Schlitzberger, Christian; Leithner, Reinhard

    The transfer of high electrical efficiencies of solid oxide fuel cells (SOFC) into praxis requires appropriate system concepts. One option is the anode-offgas recycling (AOGR) approach, which is based on the integration of waste heat using the principle of a chemical heat pump. The AOGR concept allows a combined steam- and dry-reforming of hydrocarbon fuel using the fuel cell products steam and carbon dioxide. SOFC fuel gas of higher quantity and quality results. In combination with internal reuse of waste heat the system efficiency increases compared to the usual path of partial oxidation (POX). The demonstration of the AOGR concept with a 300 Wel-SOFC stack running on propane required: a combined reformer/burner-reactor operating in POX (start-up) and AOGR modus; a hotgas-injector for anode-offgas recycling to the reformer; a dynamic process model; a multi-variable process controller; full system operation for experimental proof of the efficiency gain. Experimental results proof an efficiency gain of 18 percentage points (η·POX = 23%, η·AOGR = 41%) under idealized lab conditions. Nevertheless, further improvements of injector performance, stack fuel utilization and additional reduction of reformer reformer O/C ratio and system pressure drop are required to bring this approach into self-sustaining operation.

  13. Propane-d6 Heterogeneously Hyperpolarized by Parahydrogen

    PubMed Central

    2015-01-01

    Long-lived spin states of hyperpolarized propane-d6 gas were demonstrated following pairwise addition of parahydrogen gas to propene-d6 using heterogeneous parahydrogen-induced polarization (HET-PHIP). Hyperpolarized molecules were synthesized using Rh/TiO2 solid catalyst with 1.6 nm Rh nanoparticles. Hyperpolarized (PH ∼ 1%) propane-d6 was detected at high magnetic field (9.4 T) spectroscopically and by high-resolution 3D gradient-echo MRI (4.7 T) as the gas flowed through the radiofrequency coil with a spatial and temporal resolution of 0.5 × 0.5 × 0.5 mm3 and 17.7 s, respectively. Stopped-flow hyperpolarized propane-d6 gas was also detected at 0.0475 T with an observed nuclear spin polarization of PH ∼ 0.1% and a relatively long lifetime with T1,eff = 6.0 ± 0.3 s. Importantly, it was shown that the hyperpolarized protons of the deuterated product obtained via pairwise parahydrogen addition could be detected directly at low magnetic field. Importantly, the relatively long low-field T1,eff of HP propane-d6 gas is not susceptible to paramagnetic impurities as tested by exposure to ∼0.2 atm oxygen. This long lifetime and nontoxic nature of propane gas could be useful for bioimaging applications including potentially pulmonary low-field MRI. The feasibility of high-resolution low-field 2D gradient-echo MRI was demonstrated with 0.88 × 0.88 mm2 spatial and ∼0.7 s temporal resolution, respectively, at 0.0475 T. PMID:25506406

  14. Adsorptive separation of propylene-propane mixtures

    SciTech Connect

    Jaervelin, H.; Fair, J.R. )

    1993-10-01

    The separation of propylene-propane mixtures is of great commercial importance and is carried out by fractional distillation. It is claimed to be the most energy-intensive distillation practiced in the United States. The purpose of this paper is to describe experimental work that suggests a practical alternative to distillation for separating the C[sub 3] hydrocarbons: adsorption. As studied, the process involves three adsorptive steps: initial separation with molecular sieves with heavy dilution with an inert gas; separation of propylene and propane separately from the inert gas, using activated carbon; and drying of the product streams with any of several available desiccants. The research information presented here deals with the initial step and includes both equilibrium and kinetic data. Isotherms are provided for propylene and propane adsorbed on three zeolites, activated alumina, silica gel, and coconut-based activated carbon. Breakthrough data are provided for both adsorption and regeneration steps for the zeolites, which were found to be superior to the other adsorbents for breakthrough separations. A flow diagram for the complete proposed process is included.

  15. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect

    Smith, M.; Gonzales, J.

    2014-08-01

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  16. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect

    Smith, M.; Gonzales, J.

    2014-08-05

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  17. 75 FR 14131 - Effect on Propane Consumers of the Propane Education and Research Council's Operations, Market...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... comment on whether the operation of the Propane Education and Research Council (PERC), in conjunction with... International Trade Administration Effect on Propane Consumers of the Propane Education and Research Council's... information to fulfill requirements under the Propane Education and Research Act of 1996 that established...

  18. Propane Market Model documentation report

    SciTech Connect

    Not Available

    1993-12-01

    The purpose of this report is to define the objectives of the Propane Market Model (PMM), describe its basic approach, and to provide details on model functions. This report is intended as a reference document for model analysts, users, and the general public. Documentation of the model is in accordance with EIA`s legal obligation to provide adequate documentation in support of its models. The PMM performs a short-term (6- to 9-months) forecast of demand and price for consumer-grad propane in the national US market; it also calculates the end-of-month stock level during the term of the forecast. Another part of the model allows for short-term demand forecasts for certain individual Petroleum Administration for Defense (PAD) districts. The model is used to analyze market behavior assumptions or shocks and to determine the effect on market price, demand, and stock level.

  19. Silane-propane ignitor/burner

    DOEpatents

    Hill, Richard W.; Skinner, Dewey F.; Thorsness, Charles B.

    1985-01-01

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  20. Silane-propane ignitor/burner

    DOEpatents

    Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.

    1983-05-26

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  1. 3-Oxo-3-(piperidin-1-yl)propane­nitrile

    PubMed Central

    Fun, Hoong-Kun; Quah, Ching Kheng; Abdel-Aziz, Hatem A.; Ghabbour, Hazem A.

    2012-01-01

    In the title compound, C8H12N2O, the piperidine ring exhibits a chair conformation and its least-squares plane (all atoms) makes a dihedral angle of 32.88 (12)° with the propane­nitrile unit (r.m.s. deviation = 0.001 Å). In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains along [001]. PMID:22969610

  2. An unnatural death by propan-1-ol and propan-2-ol.

    PubMed

    Skopp, Gisela; Gutmann, Isabelle; Schwarz, Clara-Sophie; Schmitt, Georg

    2016-07-01

    A fatality of an inpatient ingesting a disinfectant containing ethanol, propan-1-ol, and propan-2-ol is reported. The alleged survival time was about 1 h. Major findings at autopsy were an extended hemorrhagic lung edema, an edematous brain, and shock kidneys. Concentrations of alcohols and acetone, a major metabolite of propan-2-ol, were determined from body fluids (blood from the heart and the femoral vein, urine, gastric contents) and tissues (brain, muscle, liver, kidneys, lungs) by headspace/gas chromatography using 2-methylpropan-2-ol as the internal standard. All samples investigated were positive for propan-1-ol, propan-2-ol, ethanol, and acetone except stomach contents, where acetone was not detectable. The low concentration of acetone compared to propan-2-ol likely supports the short survival time. The concentration ratios estimated from the results are in accordance with the physico-chemical properties of the particular alcohols, their different affinities towards alcohol dehydrogenase as well as their interdependence during biotransformation. Autopsy did not reveal the cause of death. According to the few published data, blood concentrations of 1.44 and 1.70 mg/g of propan-2-ol and propan-1-ol, respectively, are considered sufficient to have caused the death. This case also points to the need to restrict access to antiseptic solutions containing alcohols in wards with patients at risk. PMID:26712504

  3. No. 2 heating oil/propane program

    SciTech Connect

    McBrien, J.

    1991-06-01

    During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy's (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

  4. Propane Clathrate Hydrate Formation Accelerated by Methanol.

    PubMed

    Amtawong, Jaruwan; Guo, Jin; Hale, Jared S; Sengupta, Suvrajit; Fleischer, Everly B; Martin, Rachel W; Janda, Kenneth C

    2016-07-01

    The role of methanol as both an inhibitor and a catalyst for the formation of clathrate hydrates (CHs) has been a topic of intense study. We report a new quantitative study of the kinetics of propane CH formation at 253 K from the reaction of propane gas with <75 μm ice particles that have been doped with varying amounts of methanol. We find that methanol significantly accelerates the formation reaction with quite small doping quantities. Even for only 1 methanol molecule per 10 000 water molecules, the maximum uptake rate of propane into CHs is enhanced and the initiation pressure is reduced. These results enable more efficient production of CHs for gas storage. This remarkable acceleration of the CH formation reaction by small quantities of methanol may place constraints on the mechanism of the inhibition effect observed under other conditions, usually employing much larger quantities of methanol. PMID:27275862

  5. . . . While Others Conserve Cash by Converting from Gasoline to Propane.

    ERIC Educational Resources Information Center

    Rasmussen, Scott A.

    1988-01-01

    Since 1983, when the David Douglas Public Schools (Portland, Oregon) converted 30 buses to propane fuel, the district has saved $75,000 in fuel and maintenance costs. Propane is priced consistently lower than gasoline and burns cleaner. Since propane engines do not require a carburetor, there are fewer maintenance problems. (MLH)

  6. 21 CFR 582.1655 - Propane.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Propane. 582.1655 Section 582.1655 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives §...

  7. 21 CFR 582.1655 - Propane.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Propane. 582.1655 Section 582.1655 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives §...

  8. 21 CFR 184.1655 - Propane.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... in the liquid state. Propane is obtained from natural gas by fractionation following absorption in... also known as dimethylmethane or propyl hydrid. It is a colorless, odorless, flammable gas at normal... manufacturing practice conditions of use: (1) The ingredient is used as a propellant, aerating agent, and gas...

  9. 21 CFR 184.1655 - Propane.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... in the liquid state. Propane is obtained from natural gas by fractionation following absorption in... also known as dimethylmethane or propyl hydrid. It is a colorless, odorless, flammable gas at normal... manufacturing practice conditions of use: (1) The ingredient is used as a propellant, aerating agent, and gas...

  10. 21 CFR 184.1655 - Propane.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... state. Propane is obtained from natural gas by fractionation following absorption in oil, adsorption to... dimethylmethane or propyl hydrid. It is a colorless, odorless, flammable gas at normal temperatures and pressures... practice conditions of use: (1) The ingredient is used as a propellant, aerating agent, and gas as...

  11. 21 CFR 184.1655 - Propane.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... in the liquid state. Propane is obtained from natural gas by fractionation following absorption in... also known as dimethylmethane or propyl hydrid. It is a colorless, odorless, flammable gas at normal... manufacturing practice conditions of use: (1) The ingredient is used as a propellant, aerating agent, and gas...

  12. Case Study - Propane School Bus Fleets

    SciTech Connect

    Laughlin, M; Burnham, A.

    2014-08-31

    As part of the U.S. Department of Energy’s (DOE’s) effort to deploy transportation technologies that reduce U.S. dependence on imported petroleum, this study examines five school districts, one in Virginia and four in Texas, successful use of propane school buses. These school districts used school buses equipped with the newly developed liquid propane injection system that improves vehicle performance. Some of the school districts in this study saved nearly 50% on a cost per mile basis for fuel and maintenance relative to diesel. Using Argonne National Laboratory’s Alternative Fuel Life-Cycle Environmental and Economic Transportation (AFLEET) Tool developed for the DOE’s Clean Cities program to help Clean Cities stakeholders estimate petroleum use, greenhouse gas (GHG) emissions, air pollutant emissions and cost of ownership of light-duty and heavy-duty vehicles, the results showed payback period ranges from 3—8 years, recouping the incremental cost of the vehicles and infrastructure. Overall, fuel economy for these propane vehicles is close to that of displaced diesel vehicles, on an energy-equivalent basis. In addition, the 110 propane buses examined demonstrated petroleum displacement, 212,000 diesel gallon equivalents per year, and GHG benefits of 770 tons per year.

  13. Radiolytic oxidation of propane. [Gamma radiation

    SciTech Connect

    Gupta, A.K.

    1983-01-01

    The Co-60 ..gamma.. radiolysis of gaseous propane was studied at 100 torr pressure and 25/sup 0/C, both pure and with 10% added oxygen. In the unscavenged system the major products and their G-values were hydrogen, 4.99; methane, 1.30; ethane, 1.95; iso-butane, 0.61; n-butane, 0.25; i-pentane, 0.42; n-pentane, 0.14; and hexanes, 0.89. Minor products were heptanes, 0.082; octanes, 0.067; nonanes, 0.088, and decanes, 0.033. Small yields of ethylene and propylene were also observed. Yields in the presence of 10% added oxygen were hydrogen, 1.87; methane, 0.83; and ethane, 1.22. Higher saturated hydrocarbons were eliminated. The reaction scheme for formation of major products was examined using computer modeling based on 24 reactions in the unscavenged system and 28 reactions in the propane-oxygen system. Yields could be brought into agreement with the data within experimental error in nearly all cases, but in the pure propane system it was necessary to assume that the molecular hydrogen yield was accompanied by the deposition of polymer on the vessel wall.

  14. Equivalence of pure propane and propane TE gases for microdosimetric measurements.

    PubMed

    Chiriotti, S; Moro, D; Colautti, P; Conte, V; Grosswendt, B

    2015-09-01

    A tissue-equivalent proportional counter (TEPC) simulates micrometric volumes of tissue if the energy deposited in the counter cavity is the same as that in the tissue volume. Nevertheless, a TEPC measures only the ionisations created in the gas, which are later converted into imparted energy. Therefore, the equivalence of the simulated diameter (Dρ) in two gases should be based on the equality of the mean number of ions pairs in the gas rather than on the imparted energy. Propane-based tissue-equivalent gas is the most commonly used gas mixture at present, but it has the drawback that its composition may change with time. From this point of view, the use of pure propane offers practical advantages: higher gas gain and longer stability. In this work, microdosimetric measurements performed with pure propane, at site sizes 0.05 mg cm(-2) ≤ Dρ ≤ 0.3 mg cm(-2), demonstrate that the response of a propane-filled detector in gamma and in neutron fields is almost the same if an appropriate gas density is used. PMID:25944956

  15. 77 FR 2293 - AmeriGas Propane, L.P., AmeriGas Propane, Inc., Energy Transfer Partners, L.P., and Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-17

    ... AmeriGas Propane, L.P., AmeriGas Propane, Inc., Energy Transfer Partners, L.P., and Energy Transfer...'') with AmeriGas Propane, L.P. (``AmeriGas''), AmeriGas Propane, Inc., Energy Transfer Partners, L.P. (``ETP''), and Energy Transfer Partners GP, L.P. (``ETP GP''), which is designed to guard...

  16. Study on propane-butane gas storage by hydrate technology

    NASA Astrophysics Data System (ADS)

    Hamidi, Nurkholis; Wijayanti, Widya; Widhiyanuriyawan, Denny

    2016-03-01

    Different technology has been applied to store and transport gas fuel. In this work the storage of gas mixture of propane-butane by hydrate technology was studied. The investigation was done on the effect of crystallizer rotation speed on the formation of propane-butane hydrate. The hydrates were formed using crystallizer with rotation speed of 100, 200, and 300 rpm. The formation of gas hydrates was done at initial pressure of 3 bar and temperature of 274K. The results indicated that the higher rotation speed was found to increase the formation rate of propane-butane hydrate and improve the hydrates stability.

  17. Temperature-dependent high resolution absorption cross sections of propane

    NASA Astrophysics Data System (ADS)

    Beale, Christopher A.; Hargreaves, Robert J.; Bernath, Peter F.

    2016-10-01

    High resolution (0.005 cm-1) absorption cross sections have been measured for pure propane (C3H8). These cross sections cover the 2550-3500 cm-1 region at five temperatures (from 296 to 700 K) and were measured using a Fourier transform spectrometer and a quartz cell heated by a tube furnace. Calibrations were made by comparison to the integrated cross sections of propane from the Pacific Northwest National Laboratory. These are the first high resolution absorption cross sections of propane for the 3 μm region at elevated temperatures. The cross sections provided may be used to monitor propane in combustion environments and in astronomical sources such as the auroral regions of Jupiter, brown dwarfs and exoplanets.

  18. PREDICTIONS OF AZEOTROPES FORMED FROM FLUORINATED ETHERS, ETHANES, AND PROPANES

    EPA Science Inventory

    The paper discusses an evaluation of the potential for azeotrope formation and performance for fluorinated ethers, ethanes, and propanes. (NOTE: The synthesis of new non-chlorinated refrigerants expands the base of alternatives for replacing ozone-depleting chlorofluorocarbons (O...

  19. Structure and molecular interactions in {ethanol + (propan-1-ol/propan-2-ol)} mixtures at 303.15 K

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Puyad, A. L.

    2014-06-01

    In view of industrial importance of binary {ethyl alcohol + (propan-1-ol/propan-2-ol)} mixtures, the densities (ρ) and refractive indices ( n D ) of these alkanols mixtures were measured for different compositions at 303.15 K. Molar volumes ( V m) and excess molar volumes ( V E) of these binary mixtures were calculated from experimental density data of pure solvents and solvents mixtures. The measured refractive index and density data was used to calculate specific refractions ( R D ), molar refractions ( R M) and apparent molar refractions ( R φ, i ) of binary mixtures. From mole fraction dependence of apparent molar refractions, the limiting apparent molar refractions ( R {φ,/i ○}) of propan-1-ol and propan-2-ol have been determined. The graphical values of R {φ,/i ○} for propan-1-ol and propan-2-ol were found to be 9.5664 and 7.405 cm3 mol-1 respectively. Structural changes, geometrical fittings and molecular interactions in binary mixtures of these alkanols have been discussed.

  20. Crystal structure of di-bromido-tetra-kis(propan-2-ol-κO)nickel(II).

    PubMed

    Lv, Yaokang; Liu, Mingxian; Ji, Lvlv; Zhang, Cheng; Ouyang, Mi

    2015-12-01

    The asymmetric unit of the mononuclear title complex, [NiBr2(C3H8O)4], comprises a Ni(II) cation located on a centre of inversion, one Br(-) anion and two propan-2-ol ligands. The Ni(II) cation exhibits a distorted trans-Br2O4 environment. There are O-H⋯Br hydrogen bonds connecting neighbouring mol-ecules into rows along [100]. These rows are arranged in a distorted hexa-gonal packing and are held together by van der Waals forces only. PMID:26870456

  1. Evaluation of various models of propane-powered mosquito traps.

    PubMed

    Kline, Daniel L

    2002-06-01

    Large cage and field studies were conducted to determine the efficacy of various models of propane-powered mosquito traps. These traps utilized counterflow technology in conjunction with catalytic combustion to produce attractants (carbon dioxide, water vapor, and heat) and a thermoelectric generator that converted excess heat into electricity for stand-alone operation. The cage studies showed that large numbers of Aedes aegypti and Ochlerotatus taeniorhynchus were captured and that each progressive model resulted in increased trapping efficiency. In several field studies against natural populations of mosquitoes two different propane traps were compared against two other trap systems, the professional (PRO) and counterflow geometry (CFG) traps. In these studies the propane traps consistently caught more mosquitoes than the PRO trap and significantly fewer mosquitoes than the CFG traps. The difference in collection size between the CFG and propane traps was due mostly to Anopheles crucians. In spring 1997 the CFG trap captured 3.6X more An. crucians than the Portable Propane (PP) model and in spring 1998 it captured 6.3X more An. crucians than the Mosquito Magnet Beta-1 (MMB-1) trap. Both the PP and MMB-1 captured slightly more Culex spp. than the CFG trap. PMID:12125861

  2. An engineered pathway for the biosynthesis of renewable propane

    PubMed Central

    Kallio, Pauli; Pásztor, András; Thiel, Kati; Akhtar, M. Kalim; Jones, Patrik R.

    2014-01-01

    The deployment of next-generation renewable biofuels can be enhanced by improving their compatibility with the current infrastructure for transportation, storage and utilization. Propane, the bulk component of liquid petroleum gas, is an appealing target as it already has a global market. In addition, it is a gas under standard conditions, but can easily be liquefied. This allows the fuel to immediately separate from the biocatalytic process after synthesis, yet does not preclude energy-dense storage as a liquid. Here we report, for the first time, a synthetic metabolic pathway for producing renewable propane. The pathway is based on a thioesterase specific for butyryl-acyl carrier protein (ACP), which allows native fatty acid biosynthesis of the Escherichia coli host to be redirected towards a synthetic alkane pathway. Propane biosynthesis is markedly stimulated by the introduction of an electron-donating module, optimizing the balance of O2 supply and removal of native aldehyde reductases. PMID:25181600

  3. An engineered pathway for the biosynthesis of renewable propane.

    PubMed

    Kallio, Pauli; Pásztor, András; Thiel, Kati; Akhtar, M Kalim; Jones, Patrik R

    2014-01-01

    The deployment of next-generation renewable biofuels can be enhanced by improving their compatibility with the current infrastructure for transportation, storage and utilization. Propane, the bulk component of liquid petroleum gas, is an appealing target as it already has a global market. In addition, it is a gas under standard conditions, but can easily be liquefied. This allows the fuel to immediately separate from the biocatalytic process after synthesis, yet does not preclude energy-dense storage as a liquid. Here we report, for the first time, a synthetic metabolic pathway for producing renewable propane. The pathway is based on a thioesterase specific for butyryl-acyl carrier protein (ACP), which allows native fatty acid biosynthesis of the Escherichia coli host to be redirected towards a synthetic alkane pathway. Propane biosynthesis is markedly stimulated by the introduction of an electron-donating module, optimizing the balance of O2 supply and removal of native aldehyde reductases. PMID:25181600

  4. Interest in propane futures appears to be growing

    SciTech Connect

    Not Available

    1992-12-01

    The last couple of decades have seen significant and sometimes abrupt change sin world energy markets and prices. In addition to regional politics, war, and changing economic patterns, the energy industry has undergone structural changes that have increased price and supply stability. This paper reports that these changes have filtered through the energy industry to the LPG market giving many in the industry a reason to use the propane futures market. The current operative market is run by the New York Mercantile Exchange (NYMEX). Started up in 1987, this propane futures market is much more successful than its predecessors.

  5. [Frostbite injuries causing compromised airway after inhalation of propane].

    PubMed

    Straarup, Therese Simonsen; Fink, Anders Olsen; Larsen, Jens Kjærgaard Rolighed

    2015-01-01

    We describe a case report of a 23-year-old man with acute pharyngeal injuries due to frostbite subsequent to inhalation of propane. He was fiber-optically intubated on admission to hospital since his airways were considered acutely compromised. He was subsequently kept intubated for 11 days due to persistent pharyngeal oedema and frostbite injuries. The latter is caused by low temperature of propane upon release from a pressurized container. Injuries caused by frostbite often gradually progress and thus caution should be exerted in regards to airway management. PMID:25557449

  6. Diffusion of 2-iodo-propane (1); helium (2)

    NASA Astrophysics Data System (ADS)

    Winkelmann, J.

    This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of (1) 2-iodo-propane; (2) helium

  7. Diffusion of 1-iodo-propane (1); air (2)

    NASA Astrophysics Data System (ADS)

    Winkelmann, J.

    This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of (1) 1-iodo-propane; (2) air

  8. Diffusion of 2-iodo-propane (1); air (2)

    NASA Astrophysics Data System (ADS)

    Winkelmann, J.

    This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of (1) 2-iodo-propane; (2) air

  9. Diffusion of 1-iodo-propane (1); helium (2)

    NASA Astrophysics Data System (ADS)

    Winkelmann, J.

    This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of (1) 1-iodo-propane; (2) helium

  10. Ordered mesoporous carbon catalyst for dehydrogenation of propane to propylene.

    PubMed

    Liu, Lei; Deng, Qing-Fang; Agula, Bao; Zhao, Xu; Ren, Tie-Zhen; Yuan, Zhong-Yong

    2011-08-01

    Metal-free ordered mesoporous carbons were demonstrated to be robust catalysts for direct dehydrogenation of propane to propylene, in the absence of any auxiliary steam, exhibiting high activity and selectivity, as well as long catalytic stability, in comparison with nanostructured carbons. PMID:21687889

  11. Zeolitic imidazolate frameworks for kinetic separation of propane and propene

    DOEpatents

    Li, Jing; Li, Kunhao; Olson, David H.

    2014-08-05

    Zeolitic Imidazolate Frameworks (ZIFs) characterized by organic ligands consisting of imidazole ligands that are either essentially all 2-chloroimidazole ligands or essentially all 2-bromoimidazole ligands are disclosed. Methods for separating propane and propene with the ZIFs of the present invention, as well as other ZIFs, are also disclosed.

  12. Comparison of Propane and Methane Performance and Emissions in a Turbocharged Direct Injection Dual Fuel Engine

    SciTech Connect

    Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2011-01-01

    With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

  13. Two cases of acute propane/butane poisoning in prison.

    PubMed

    Rossi, Riccardo; Suadoni, Fabio; Pieroni, Ludovica; De-Giorgio, Fabio; Lancia, Massimo

    2012-05-01

    Hydrocarbon inhalation is seldom chosen as a means to commit suicide. This practice is exclusively a prerogative of the prison population; it is, however, only exceptionally found in this environment. The two cases of lethal inhalation of propane/butane gas observed by us over a very short time occurred in this context. Toxicologic analyses were performed by means of gas chromatography (head space) and revealed a propane/butane mixture in all specimens (heart blood, bile, and urine) except vitreous humor. Although fatal arrhythmia posthydrocarbon gas abuse is well known, the concentrations of the two hydrocarbons were sufficient to induce death by asphyxiation and were distributed (fairly) homogeneously in all biological fluids and organs examined, a parameter permitting one to assume that death occurred within a relatively short period of time. The absence of finding in vitreous humor and the trace amount in urine suggests that both men died very quickly. PMID:22150071

  14. THERMODYNAMIC EVALUATION OF PREDICTED FLUORINATED ETHER, ETHANE, AND PROPANE AZEOTROPES

    EPA Science Inventory

    The paper gives results of thermodynamic analyses, using basic thermophysical property data, to evaluate seven predicted fluorinated ether, ethane, and propane azeotropes: E125/RC270, E125/R134a, E143a/R134, R134a/E143a, E143a/ R152a, R134/R245cb, and R245cb/R227ea. he performanc...

  15. Gas Phase UTE MRI of Propane and Propene

    PubMed Central

    Kovtunov, Kirill V.; Romanov, Alexey S.; Salnikov, Oleg G.; Barskiy, Danila A.; Chekmenev, Eduard Y.; Koptyug, Igor V.

    2016-01-01

    1H MRI of gases can potentially enable functional lung imaging to probe gas ventilation and other functions. In this work, 1H MR images of hyperpolarized and thermally polarized propane gas were obtained using UTE (ultrashort echo time) pulse sequence. A 2D image of thermally polarized propane gas with ~0.9×0.9 mm2 spatial resolution was obtained in less than 2 seconds, demonstrating that even non-hyperpolarized hydrocarbon gases can be successfully utilized for conventional proton MRI. The experiments were also performed with hyperpolarized propane gas and demonstrated acquisition of high-resolution multi-slice FLASH 2D images in ca. 510 s and non slice-selective 2D UTE MRI images in ca. 2 s. The UTE approach adopted in this study can be potentially used for medical lung imaging. Furthermore, the possibility to combine UTE with selective suppression of 1H signals from one of the two gases in a mixture is demonstrated in this MRI study. The latter can be useful for visualizing industrially important processes where several gases may be present, e.g., gas-solid catalytic reactions. PMID:27478870

  16. The viscosity of gaseous propane and its initial density dependence

    NASA Astrophysics Data System (ADS)

    Vogel, E.

    1995-11-01

    Results of five series of high-precision viscosity measurements on gaseous propane, each differing in density, are reported. The measurements were performed in a quartz oscillating-disk viscometer with small gaps from room temperature up to about 625 K and for densities between 0.01 and 0.05 mol · L-1. The experimental data were evaluated with a first-order expansion, in terms of density, for the viscosity. Reduced values of the second viscosity virial coefficients deduced from the zero-density and initial-density viscosity coefficients for propane and for further n-alkanes are in close agreement with the theoretical representation of the Rainwater-Friend theory for the potential parameter ratios by Bich and Vogel. A new representation of the viscosity of propane in the limit of zero density is provided using the new experimental data and some data sets from literature. The universal correlation based on the extended principle of corresponding states extends over the temperature range 293 to 625 K with an uncertainty of ±0.5 % and deviates from earlier representations by about 1 % at the upper temperature limit.

  17. The viscosity of gaseous propane and its initial density dependence

    SciTech Connect

    Vogel, E.

    1995-11-01

    Results of five series of high-precision viscosity measurements on gaseous propane, each differing in density, are reported. The measurements were performed in a quartz oscillating-disk viscometer with small gaps from room temperature up to about 625 K and for densities between 0.01 and 0.05 mol {center_dot} L{sup -1}. The experimental data were evaluated with a first-order expansion, in terms of density, for the viscosity. Reduced values of the second viscosity virial coefficients deduced from the zero-density and initial-density viscosity coefficients for propane and for further n-alkanes are in close agreement with the theoretical representation of the Rainwater-Friend theory for the potential parameter ratios by Bich and Vogel. A new representation of the viscosity of propane in the limit of zero density is provided using the new experimental data and some data sets from literature. The universal correlation based on the extended principle of corresponding states extends over the temperature range 293 to 625 K with an uncertainty of {plus_minus}0.5% and deviates from earlier representations by about 1% at the upper temperature limit.

  18. New Whole-House Solutions Case Study: Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware

    SciTech Connect

    2014-01-01

    In this project involving two homes, the IBACOS team evaluated the performance of the two space conditioning systems and the modeled efficiency of the two tankless domestic hot water systems relative to actual occupant use. Each house was built by Insight Homes and is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler).

  19. Polymeric reagents with propane-1,3-dithiol functions and their precursors for supported organic syntheses

    PubMed

    Bertini; Lucchesini; Pocci; De Munno A

    2000-08-11

    Reliable completely odorless syntheses of soluble copolymeric reagents of styrene type containing propane-1,3-dithiol functions able to convert carbonyl compounds into 1,3-dithiane derivatives and to support other useful transformations are reported together with their progenitor copolymers containing benzenesulfonate or thioacetate groups perfectly stable in open air and suitable for unlimited storage. The effectiveness of the prepared reagents as tools for polymer-supported syntheses to produce ketones by aldehyde umpolung and alkylation is tested in the conversion of benzaldehyde to phenyl n-hexyl ketone starting from copolymers with different contents of active units and molecular weights. To facilitate the adaptation of the prepared soluble copolymeric reagents to other possible applications, a table of solvents and nonsolvents is presented. PMID:10956461

  20. Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air

    SciTech Connect

    Li, J.; Lai, W.H.; Chung, K.; Lu, F.K.

    2008-08-15

    Two sets of experiments were performed to achieve a strong overdriven state in a weaker mixture by propagating an overdriven detonation wave via a deflagration-to-detonation transition (DDT) process. First, preliminary experiments with a propane/oxygen mixture were used to evaluate the attenuation of the overdriven detonation wave in the DDT process. Next, experiments were performed wherein a propane/oxygen mixture was separated from a propane/air mixture by a thin diaphragm to observe the transmission of an overdriven detonation wave. Based on the characteristic relations, a simple wave intersection model was used to calculate the state of the transmitted detonation wave. The results showed that a rarefaction effect must be included to ensure that there is no overestimate of the post-transmission wave properties when the incident detonation wave is overdriven. The strength of the incident overdriven detonation wave plays an important role in the wave transmission process. The experimental results showed that a transmitted overdriven detonation wave occurs instantaneously with a strong incident overdriven detonation wave. The near-CJ state of the incident wave leads to a transmitted shock wave, and then the transition to the overdriven detonation wave occurs downstream. The attenuation process for the overdriven detonation wave decaying to a near-CJ state occurs in all tests. After the attenuation process, an unstable detonation wave was observed in most tests. This may be attributed to the increase in the cell width in the attenuation process that exceeds the detonability cell width limit. (author)

  1. Computational modeling of a direct propane fuel cell

    NASA Astrophysics Data System (ADS)

    Khakdaman, H.; Bourgault, Y.; Ternan, M.

    2011-03-01

    The first two dimensional mathematical model of a complete direct propane fuel cell (DPFC) is described. The governing equations were solved using FreeFem software that uses finite element methods. Robin boundary conditions were used to couple the anode, membrane, and cathode sub-domains successfully. The model showed that a polytetrafluoroethylene membrane having its pores filled with zirconium phosphate (ZrP-PTFE), in a DPFC at 150 °C performed much the same as other electrolytes; Nafion, aqueous H3PO4, and H2SO4 doped polybenzimidazole, when they were used in DPFCs. One advantage of a ZrP-PTFE at 150 °C is that it operates without liquid phase water. As a result corrosion will be much less severe and it may be possible for non-precious metal catalysts to be used. Computational results showed that the thickness of the catalyst layer could be increased sufficiently so that the pressure drop between the reactant and product channels of the interdigitated flow fields is small. By increasing the width of the land and therefore the reactant's contact time with the catalyst it was possible to approach 100% propane conversion. Therefore fuel cell operation with a minimum concentration of propane in the product stream should be possible. Finally computations of the electrical potential in the ZrP phase, the electron flux in the Pt/C phase, and the overpotential in both the anode and cathode catalyst layers showed that serious errors in the model occurred because proton diffusion, caused by the proton concentration gradient, was neglected in the equation for the conservation of protons.

  2. 1,3-Bis[(4-methylbenzylidene)amino-oxy]propane.

    PubMed

    Wu, Jian-Chao; Gao, Su-Xia; Dong, Wen-Kui; Tong, Jun-Feng; Li, Li

    2009-01-01

    The title bis-oxime compound, C(19)H(22)N(2)O(2), synthesized by the reaction of 4-methyl-2-hydroxy-benzaldehyde with 1,3-bis-(amino-oxy)propane in ethanol, adopts a V-shaped conformation. The dihedral angle between the rings is 84.59 (3)°. The mol-ecule is disposed about a crystallographic twofold rotation axis, with one C atom lying on the axis. In the crystal, mol-ecules are packed by C-H⋯π(Ph) inter-actions, forming chains. PMID:21578377

  3. Novel adsorption distillation hybrid scheme for propane/propylene separation

    SciTech Connect

    Kumar, R.; Golden, T.C.; White, T.R.; Rokicki, A. )

    1992-12-01

    A novel adsorption-distillation hybrid scheme is proposed for propane/propylene separation. The suggested scheme has potential for saving up to [approximately]50% energy and [approximately]15-30% in capital costs as compared with current technology. The key concept of the proposed scheme is to separate olefins from alkanes by adsorption and then separate individual olefins and alkanes by simple distillation, thereby eliminating energy intensive and expensive olefin-alkane distillation. A conceptual flow schematic for the proposed hybrid scheme and potential savings are outlined.s

  4. Supercritical convection, critical heat flux, and coking characteristics of propane

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.; Gross, R. S.; Boyd, W. C.

    1984-01-01

    The heat transfer characteristics of propane at subcritical and supercritical pressure were experimentally evaluated using electrically heated Monel K-500 tubes. A design correlation for supercritical heat transfer coefficient was established using the approach previously applied to supercritical oxygen. Flow oscillations were observed and the onset of these oscillations at supercritical pressures was correlated with wall-to-bulk temperature ratio and velocity. The critical heat flux measured at subcritical pressure was correlated with the product of velocity and subcooling. Long duration tests at fixed heat flux conditions were conducted to evaluate coking on the coolant side tube wall and coking rates comparable to RP-1 were observed.

  5. Documentation for propane fleet conversion cost-effectiveness model

    NASA Astrophysics Data System (ADS)

    Taylor, D.; Euritt, M.; Mahmassani, H.

    1992-10-01

    Increased emphasis on energy efficiency and air quality has resulted in a number of state and federal initiatives examining the use of alternative fuels for motor vehicles. Texas instituted an alternative fuels program for public fleet operations beginning in the 1991-92 fiscal year. Life-cycle cost/benefit models for evaluating the economic implications of the action have been developed at the University of Texas at Austin Center for Transportation Research for both compressed natural gas (CNG) and propane. The report documents the various input data, calculations, and assumptions of the Propane Net Present Value (NPV) model. A similar report (number 983-1) documents the same for the CNG model. Input data with constant values across different fleets and locations are discussed first and include basic parameters for on-board storage capacity, vehicle conversion costs, equipment salvage values, etc. Variable input data, reflecting a given fleet size, composition, and location, include the number and types of vehicles, fuel consumption, etc. The next section presents the formulas for the internal model calculations. The final section discusses the basic assumptions underlying the model.

  6. 40 CFR 1065.341 - CVS and batch sampler verification (propane check).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false CVS and batch sampler verification... Measurements § 1065.341 CVS and batch sampler verification (propane check). (a) A propane check serves as a CVS... system that extracts a sample from a CVS, as described in paragraph (g) of this section. Using...

  7. 40 CFR 721.533 - Propane, 1,1,1,3,3-pentachloro-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.533 Propane, 1,1,1,3,3-pentachloro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as propane, 1,1,1,3,3-pentachloro- (PMN...

  8. 40 CFR 721.533 - Propane, 1,1,1,3,3-pentachloro-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.533 Propane, 1,1,1,3,3-pentachloro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as propane, 1,1,1,3,3-pentachloro- (PMN...

  9. Aromatization of Propane over Element-Alumosilicate Catalysts with ZSM-5 Structure

    NASA Astrophysics Data System (ADS)

    Vosmerikova, L. N.; Volynkina, A. N.; Vosmerikov, A. V.

    2014-08-01

    A method of hydrothermal crystallization of alkaline alumosilicagels is used to manufacture element-alumosilicates with ZSM-5 structure. Their physicochemical and acid properties are investigated and their catalytic activity in the course of propane conversion to aromatic hydrocarbons is determined. The Ga-alumosilicate is found to be the most efficient zeolite catalyst for propane aromatization.

  10. PROGRAM TO DETERMINE PERFORMANCE OF FLUORINATED ETHERS AND FLUORINATED PROPANES IN A COMPRESSOR CALORIMETER

    EPA Science Inventory

    The paper discusses a program to determine the performance of fluorinated ethers and fluorinated propanes in a compressor calorimeter. These chlorine free ethers and propanes are being considered as potential long-term replacements for CFC-11, -12, -114, and -115. A standard comp...

  11. An analysis of US propane markets, winter 1996-1997

    SciTech Connect

    1997-06-01

    In late summer 1996, in response to relatively low inventory levels and tight world oil markets, prices for crude oil, natural gas, and products derived from both began to increase rapidly ahead of the winter heating season. Various government and private sector forecasts indicated the potential for supply shortfalls and sharp price increases, especially in the event of unusually severe winter weather. Following a rapid runup in gasoline prices in the spring of 1996, public concerns were mounting about a possibly similar situation in heating fuels, with potentially more serious consequences. In response to these concerns, the Energy Information Administration (EIA) participated in numerous briefings and meetings with Executive Branch officials, Congressional committee members and staff, State Energy Offices, and consumers. EIA instituted a coordinated series of actions to closely monitor the situation and inform the public. This study constitutes one of those actions: an examination of propane supply, demand, and price developments and trends.

  12. Exhaust gas measurements in a propane fueled swirl stabilized combustor

    NASA Technical Reports Server (NTRS)

    Aanad, M. S.

    1982-01-01

    Exhaust gas temperature, velocity, and composition are measured and combustor efficiencies are calculated in a lean premixed swirl stabilized laboratory combustor. The radial profiles of the data between the co- and the counter swirl cases show significant differences. Co-swirl cases show evidence of poor turbulent mixing across the combustor in comparison to the counter-swirl cases. NO sub x levels are low in the combustor but substantial amounts of CO are present. Combustion efficiencies are low and surprisingly constant with varying outer swirl in contradiction to previous results under a slightly different inner swirl condition. This difference in the efficiency trends is expected to be a result of the high sensitivity of the combustor to changes in the inner swirl. Combustor operation is found to be the same for propane and methane fuels. A mechanism is proposed to explain the combustor operation and a few important characteristics determining combustor efficiency are identified.

  13. Propane spectral resolution enhancement by the maximum entropy method

    NASA Technical Reports Server (NTRS)

    Bonavito, N. L.; Stewart, K. P.; Hurley, E. J.; Yeh, K. C.; Inguva, R.

    1990-01-01

    The Burg algorithm for maximum entropy power spectral density estimation is applied to a time series of data obtained from a Michelson interferometer and compared with a standard FFT estimate for resolution capability. The propane transmittance spectrum was estimated by use of the FFT with a 2 to the 18th data sample interferogram, giving a maximum unapodized resolution of 0.06/cm. This estimate was then interpolated by zero filling an additional 2 to the 18th points, and the final resolution was taken to be 0.06/cm. Comparison of the maximum entropy method (MEM) estimate with the FFT was made over a 45/cm region of the spectrum for several increasing record lengths of interferogram data beginning at 2 to the 10th. It is found that over this region the MEM estimate with 2 to the 16th data samples is in close agreement with the FFT estimate using 2 to the 18th samples.

  14. Chemical kinetic reaction mechanism for the combustion of propane

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.

    1984-01-01

    A detailed chemical kinetic reaction mechanism for the combustion of propane is presented and discussed. The mechanism consists of 27 chemical species and 83 elementary chemical reactions. Ignition and combustion data as determined in shock tube studies were used to evaluate the mechanism. Numerical simulation of the shock tube experiments showed that the kinetic behavior predicted by the mechanism for stoichiometric mixtures is in good agrement with the experimental results over the entire temperature range examined (1150-2600K). Sensitivity and theoretical studies carried out using the mechanism revealed that hydrocarbon reactions which are involved in the formation of the HO2 radical and the H2O2 molecule are very important in the mechanism and that the observed nonlinear behavior of ignition delay time with decreasing temperature can be interpreted in terms of the increased importance of the HO2 and H2O2 reactions at the lower temperatures.

  15. Chemical kinetic modeling of propane oxidation behind shock waves

    NASA Technical Reports Server (NTRS)

    Mclain, A. G.; Jachimowski, C. J.

    1977-01-01

    The stoichiometric combustion of propane behind incident shock waves was studied experimentally and analytically over a temperature range from 1700 K to 2600 K and a pressure range from 1.2 to 1.9 atm. Measurements of the concentrations of carbon monoxide (CO) and carbon dioxide (CO2) and the product of the oxygen atom and carbon dioxide concentrations (O)(CO) were made after passage of the incident shock wave. A kinetic mechanism was developed which, when used in a computer program for a flowing, reacting gas behind an incident shock wave predicted experimentally measured results quite well. Ignition delay times from the literature were also predicted quite well. The kinetic mechanism consisted of 59 individual kinetic steps.

  16. Effect of hydrogen injection stability and emissions of an experimental premixed prevaporized propane burner

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1975-01-01

    Hydrogen in quantities up to 5 percent by weight of the total fuel flow was injected into a premixed propane burner. The hydrogen was either premixed with the propane and air upstream of the burner or introduced as a torch at the flameholder. Emissions of total nitrogen oxides, carbon monoxide, and unburned hydrocarbon are reported as are combustion efficiencies and lean blowout limits. To maintain at least 99 percent combustion efficiency at a 700 K inlet mixture temperature with no hydrogen added, it was necessary to burn with a propane equivalence ratio of 0.525. When 4 percent hydrogen was premixed with the propane and air, a combustion efficiency greater than 99 percent was recorded at a propane equivalence ratio of 0.425. The total nitrogen oxides (NOx) emissions corresponding to these two conditions were 0.8 g NO2/kg equivalent propane and 0.44 g NO2/kg equivalent propane, respectively. The hydrogen torch did not reduce NOx emissions.

  17. Crystal structure of 1-(5-amino-2H-tetra­zol-2-yl)-2-methyl­propan-2-ol

    PubMed Central

    Park, Hyun Sik; Ryu, Ji Yeon; Lee, Junseong

    2015-01-01

    The title compound, C5H11N5O, crystallized with two independent mol­ecules in the asymmetric unit. The two mol­ecules differ in the orientation of the 2-methyl­propan-2-ol unit, with the hy­droxy H atoms pointing in opposite directions. In the crystal, mol­ecules are linked via O—H⋯O and N—H⋯O hydrogen bonds, forming ribbons propagating along [10-1]. The ribbons are linked via N—H⋯N hydrogen bonds, forming a three-dimensional structure. PMID:26870496

  18. Effect of temperature and pressure on the dynamics of nanoconfined propane

    SciTech Connect

    Gautam, Siddharth Liu, Tingting Welch, Susan; Cole, David; Rother, Gernot; Jalarvo, Niina; Mamontov, Eugene

    2014-04-24

    We report the effect of temperature and pressure on the dynamical properties of propane confined in nanoporous silica aerogel studied using quasielastic neutron scattering (QENS). Our results demonstrate that the effect of a change in the pressure dominates over the effect of temperature variation on the dynamics of propane nano-confined in silica aerogel. At low pressures, most of the propane molecules are strongly bound to the pore walls, only a small fraction is mobile. As the pressure is increased, the fraction of mobile molecules increases. A change in the mechanism of motion, from continuous diffusion at low pressures to jump diffusion at higher pressures has also been observed.

  19. State heating oil and propane program: Final report. Survey of No.2 heating oil and propane prices at the retail level, October 1997 through March 1998

    SciTech Connect

    1998-11-01

    The Energy Efficiency Division of the Vermont Department of Public Service (DPS) monitored the price and inventory of residential heating oil and propane during the 1997--98 heating season under a grant from the US Department of Energy`s Energy Information Administration (EIA). DPS staff collected data biweekly between October 5, 1997 and March 16, 1998 on the retail price of {number_sign}2 home heating oil and propane by telephone survey. Propane price quoted was based on the rate for a residential home heating customer using 1,000+ per year. The survey included a sample of fuel dealers selected by the EIA, plus additional dealers and fuels selected by the DPS. The EIA weighted, analyzed, and reported the data collected from their sample.

  20. PHYSICAL PROPERTIES OF FLUORINATED PROPANE AND BUTANE DERIVATIVES AS ALTERNATIVE REFRIGERANTS

    EPA Science Inventory

    Physical property measurements are presented for 24 fluorinated propane and butane derivatives and one fluorinated ether. These measurements include melting point, boiling point, vapor pressure below the boiling point, heat of vaporization at the boiling point, critical propertie...

  1. Highly efficient VOx/SBA-15 mesoporous catalysts for oxidative dehydrogenation of propane.

    PubMed

    Liu, Yong-Mie; Cao, Yong; Zhu, Ka-Ke; Yan, Shi-Run; Dai, Wei-Lin; He, He-Yong; Fan, Kang-Nian

    2002-12-01

    Highly dispersed vanadia species on SBA-15 mesoporous silica have been found to exhibit a highly efficient catalytic performance for the oxidative dehydrogenation (ODH) of propane to light olefins (propene + ethylene). PMID:12478769

  2. Effect of preprocessing and compressed propane extraction on quality of cilantro (Coriandrum sativum L.).

    PubMed

    Sekhon, Jasreen K; Maness, Niels O; Jones, Carol L

    2015-05-15

    Dehydration leads to quality defects in cilantro such as loss in structure, color, aroma and flavor. Solvent extraction with compressed propane may improve the dehydrated quality. In the present study, effect of drying temperature, particle size, and propane extraction on color, volatile composition, and fatty acid composition of cilantro was evaluated. Cilantro was dehydrated (40°C or 60°C), size reduced and separated into three particles sizes, and extracted with compressed propane at 21-27°C. Major volatile compounds found in dried cilantro were E-2-tetradecenal, dodecanal, E-2-dodecenal, and tetradecanal. Major fatty acids were linoleic acid and α-linolenic acid. Drying at 60°C compared to 40°C resulted in better preservation of color (decrease in browning index values) and volatile compounds. Propane extraction led to a positive change in color values and a decrease in volatile composition, oil content, and fatty acid composition. PMID:25577087

  3. Short-Term Energy Outlook Model Documentation: Regional Residential Propane Price Model

    EIA Publications

    2009-01-01

    The regional residential propane price module of the Short-Term Energy Outlook (STEO) model is designed to provide residential retail price forecasts for the 4 Census regions: Northeast, South, Midwest, and West.

  4. THERMODYNAMIC EVALUATION OF FLUORINATED ETHERS, ETHANES, AND PROPANES AS ALTERNATIVE REFRIGERANTS

    EPA Science Inventory

    The visuals, part of a thermodynamic evaluation of fluorinated ethers, ethanes, and propanes as alternative refrigerants, are a useful tool in comparing new chemicals to existing refrigerants in vapor compression cycles. hey present the required suction superheat and the performa...

  5. School Districts Move to the Head of the Class with Propane

    SciTech Connect

    2016-01-01

    Propane has been a proven fuel for buses for decades. For the first time in 2007, Blue Bird rolled out a propane school bus using direct liquid injection, which was later followed by Thomas Built Buses and Navistar. Because this new technology is much more reliable than previous designs, it is essentially reintroducing propane buses to many school districts. During this same time period, vehicle emissions standards have tightened. To meet them, diesel engine manufacturers have added diesel particulate filters (DPF) and, more recently, selective catalytic reduction (SCR) systems. As an alternative to diesel buses with these systems, many school districts have looked to other affordable, clean alternatives, and they've found that propane fits the bill.

  6. Deposit formation in hydrocarbon rocket fuels with an evaluation of a propane heat transfer correlation

    NASA Technical Reports Server (NTRS)

    Masters, P. A.; Aukerman, C. A.

    1982-01-01

    A high pressure fuel coking testing apparatus was designed and developed and was used to evaluate thermal decomposition limits and carbon decomposition rates in heated copper tubes for hydrocarbon fuels. A commercial propane (90% grade) and chemically pure (CP) propane were tested. Heat transfer to supercritical propane was evaluated at 136 atm, bulk fluid velocities of 6 to 30 m/s, and tube wall temperatures in the range of 422 to 811 K. A forced convection heat transfer correlation developed in a previous test effort verified a prediction of most of the experimental data within a + or - 30% range, with good agreement for the CP propane data. No significant differences were apparent in the predictions derived from the correlation when the carbon resistance was included with the film resistance. A post-test scanning electron microprobe analysis indicated occurrences of migration and interdiffusion of copper into the carbon deposit.

  7. Mutagenic activity of halogenated propanes and propenes: effect of bromine and chlorine positioning.

    PubMed

    Låg, M; Omichinski, J G; Dybing, E; Nelson, S D; Søderlund, E J

    1994-10-01

    A series of halogenated propanes and propenes were studied for mutagenic effects in Salmonella typhimurium TA100 in the absence or presence of NADPH plus liver microsomes from phenobarbital-induced rats as an exogenous metabolism system. The cytotoxic and mutagenic effects of the halogenated propane 1,2-dibromo-3-chloropropane (DBCP) has previously been studied in our laboratories. These studies showed that metabolic activation of DBCP was required to exert its detrimental effects. All of the trihalogenated propane analogues were mutagenic when the microsomal activation system was included. The highest mutagenic activity was obtained with 1,2,3-tribromopropane, with approximately 50-fold higher activity than the least mutagenic trihalogenated propane, 1,2,3-trichloropropane. The order of mutagenicity was as follows: 1,2,3-tribromopropane > or = 1,2-dibromo- 3-chloropropane > 1,3-dibromo-2-chloropropane > or = 1,3-dichloro-2-bromopropane > 1-bromo-2,3-dichloropropane > 1,2,3-trichloropropane. Compared to DBCP, the dihalogenated propanes were substantially less mutagenic. Only 1,2-dibromopropane was mutagenic and its mutagenic potential was approximately 1/30 of that of DBCP. In contrast to DBCP, 1,2-dibromopropane showed similar mutagenic activity with and without the addition of an activation system. The halogenated propenes 2,3-dibromopropene and 2-bromo-3-chloropropene were mutagenic to the bacteria both in the absence and presence of the activation system, whereas 2,3-dichloropropene did not show any mutagenic effect. The large differences in mutagenic potential between the various halogenated propanes and propenes are proposed to be due to the formation of different possible proximate and ultimate mutagenic metabolites resulting from the microsomal metabolism of the various halogenated propanes and propenes, and to differences in the rate of formation of the metabolites. Pathways are proposed for the formation of genotoxic metabolites of di- and trihalogenated

  8. Kinetic isotopic effects in oxidative dehydrogenation of propane on vanadium oxide catalysts

    SciTech Connect

    Chen, K.; Iglesia, E.; Bell, A.T.

    2000-05-15

    Kinetic isotopic effects (KIEs) for oxidative dehydrogenation of propane were measured on 10 wt% V{sub 2}O{sub 5}/ZrO{sub 2}. Normal KIEs were obtained using CH{sub 3}CH{sub 2}CH{sub 3} and CD{sub 3}CD{sub 2}CD{sub 3} as reactants for primary dehydrogenation (2.8) and combustion (1.9) of propane and for secondary combustion of propene (2.6), suggesting that in all cases C-H bond dissociation is a kinetically relevant step. CH{sub 3}CH{sub 2}CH{sub 3} and CH{sub 3}CD{sub 2}CH{sub 3} reactants led to normal KIEs for dehydrogenation (2.7) and combustion (1.8) of propane, but to a very small KIE (1.1) for propene combustion. These results show that the methylene C-H bond is activated in the rate-determining steps for propane dehydrogenation and combustion reactions. The rate-determining step in secondary propene combustion involves the allylic C-H bond. In each reaction, the weakest C-H bond in the reactant is cleaved in the initial C-H bond activation step. The measured propane oxidative dehydrogenation KIEs are in agreement with theoretical estimates using a sequence of elementary steps, reaction rate expression, and transition state theory. The much smaller KIE for propane oxidative dehydrogenation (2.8) than the maximum KIE (6) expected for propane thermal dehydrogenation indicates the participation of lattice oxygen. The different KIE values for propane primary dehydrogenation and combustion suggest that these two reactions involve different lattice oxygen sites.

  9. 40 CFR 1065.341 - CVS and batch sampler verification (propane check).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reference mass or a reference flow rate of C3H8 as a tracer gas in a CVS. Note that if you use a reference... gas assumptions in § 1065.640 and § 1065.642. The propane check compares the calculated mass of... for the propane check as follows: (1) If you use a reference mass of C3H8 instead of a reference...

  10. Measurement of position-specific 13C isotopic composition of propane at the nanomole level

    NASA Astrophysics Data System (ADS)

    Gilbert, Alexis; Yamada, Keita; Suda, Konomi; Ueno, Yuichiro; Yoshida, Naohiro

    2016-03-01

    We have developed a novel method for analyzing intramolecular carbon isotopic distribution of propane as a potential new tracer of its origin. The method is based on on-line pyrolysis of propane followed by analysis of carbon isotope ratios of the pyrolytic products methane, ethylene and ethane. Using propane samples spiked with 13C at the terminal methyl carbon, we characterize the origin of the pyrolytic fragments. We show that the exchange between C-atoms during the pyrolytic process is negligible, and thus that relative intramolecular isotope composition can be calculated. Preliminary data from 3 samples show that site-preference (SP) values, defined as the difference of δ13C values between terminal and sub-terminal C-atom positions of propane, range from -1.8‰ to -12.9‰. In addition, SP value obtained using our method for a thermogenic natural gas sample is consistent with that expected from theoretical models of thermal cracking, suggesting that the isotope fractionation associated with propane pyrolysis is negligible. The method will provide novel insights into the characterization of the origin of propane and will help better understand the biogeochemistry of natural gas deposits.

  11. Study of the Low Temperature Oxidation of Propane

    PubMed Central

    Cord, Maximilien; Husson, Benoit; Huerta, Juan Carlos Lizardo; Herbinet, Olivier; Glaude, Pierre-Alexandre; Fournet, René; Sirjean, Baptiste; Battin-Leclerc, Frédérique; Ruiz-Lopez, Manuel; Wang, Zhandong; Xie, Mingfeng; Cheng, Zhanjun; Qi, Fei

    2013-01-01

    The low-temperature oxidation of propane was investigated using a jet-stirred reactor at atmospheric pressure and two methods of analysis: gas chromatography and synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) with direct sampling through a molecular jet. The second method allowed the identification of products, such as molecules with hydroperoxy functions, which are not stable enough to be detected by gas chromatography. Mole fractions of the reactants and reaction products were measured as a function of the temperature (530-730 K), with a particular attention to reaction products involved in the low temperature oxidation, such as cyclic ethers, aldehydes, alcohols, ketones, and hydroperoxides. A new model has been obtained from an automatically generated one, which was used as a starting point, with a large number of re-estimated thermochemical and kinetic data. The kinetic data of the most sensitive reactions, i.e., isomerizations of alkylperoxy radicals and the subsequent decompositions, have been calculated at the CBS-QB3 level of theory. The model allows a satisfactory prediction of the experimental data. A flow rate analysis has allowed highlighting the important reaction channels. PMID:23181456

  12. The ozone formation potential of 1-bromo-propane.

    PubMed

    Whitten, Gary Z; Cohen, Jonathan P; Myers, Thomas C; Carter, William P L

    2003-03-01

    1-Bromo-propane (1-BP) is a replacement for high-end chlorofluorocarbon (HCFC) solvents. Its reaction rate constant with the OH radical is, on a weight basis, significantly less than that of ethane. However, the overall smog formation chemistry of 1-BP appears to be very unusual compared with typical volatile organic compounds (VOCs) and relatively complex because of the presence of bromine. In smog chamber experiments, 1-BP initially shows a faster ozone build-up than what would be expected from ethane, but the secondary products containing bromine tend to destroy ozone such that 1-BP can have a net overall negative reactivity. Alternative sets of reactions are offered to explain this unusual behavior. Follow-up studies are suggested to resolve the chemistry. Using one set of bromine-related reactions in a photochemical grid model shows that 1-BP would be less reactive toward peak ozone formation than ethane with a trend toward even lower ozone impacts in the future. PMID:12661686

  13. Preparation of platinum nanoparticle catalyst for propane dehydrogenation.

    PubMed

    Li, Jun; Wang, Jun; Ma, Zhanhua; Sun, Lanyi; Hu, Yangdong

    2014-09-01

    Supported Pt nanoparticle catalysts were prepared by combing a chemical reduction method with an ultrasonic sonication loading method. Several techniques including transmission electron microscopy (TEM), nitrogen sorption technique and pyridine adsorption Fourier-transform infrared (Py-IR) were applied to characterize the physicochemical properties of these catalysts. The catalytic performance of catalysts was evaluated in the dehydrogenation of propane. The influence of the preparation method of Pt nanoparticles, the ratio of Polyvinyl Pyrrolidone (PVP) to Pt, loading method and different supports on the catalytic performance was investigated. PVP is useful for controlling the size of Pt nanoparticles and a PVP/Pt ratio of 15 is favorable to achieve a good catalytic performance. NaBH4 reduction is better than ethanol refluxing in preparing Pt nanoparticles. The ultrasonic sonication is effective to load the Pt nanoparticles onto the support channels. The mesoporous alumina proved to be a good catalyst support due to its high surface area and unique pore structure. PMID:25924358

  14. Autothermal reforming of propane over Ni-based hydrotalcite catalysts.

    PubMed

    Park, Sun-Young; Kim, Jong-Ho; Moon, Dong-Ju; Park, Nam-Cook; Kim, Young-Chul

    2010-05-01

    Ni-based hydrotalcite catalysts were investigated for ATR of propane in a fixed-bed flow reactor. The reactions were carried out with a H2O/C/O2 stream ratio of 3/1/0.73 at temperatures ranging from 300 to 700 degrees C. The solvents used in the manufacture of Ni-based catalysts noble metal/Ni/MgAl catalysts or substituted active material were changed in order to decrease the level of catalyst deactivation. The use of a mixture of ethanol and water during the formation of the Pd-Ni/MgAl catalyst produced a higher hydrogen yield than that using water only. In addition, the use of acetone in the synthesis of Ru-Ni/MgAl catalyst produced a higher hydrogen yield than using water only. This shows that the solvents used for the noble metals affect the degree of dispersion and particle size of the nickel and prevented carbon deposition resulting in the enhanced hydrogen selectivity and catalyst activity. Active metals were substituted during the preparation of hydrotalcite catalysts. Among the catalysts prepared with various ratio (Ni:Fe) tested at high temperature, the ratio, Ni:Fe = 75:25, showed best performance. There was less sintering of Ni particles due to substitution of the active metal at the optimal ratio. PMID:20358916

  15. Hydrogen and Nitrogen Broadened Ethane and Propane Absorption Cross Sections

    NASA Astrophysics Data System (ADS)

    Hargreaves, Robert J.; Appadoo, Dominique; Billinghurst, Brant E.; Bernath, Peter F.

    2015-06-01

    High-resolution infrared absorption cross sections are presented for the ν9 band of ethane (C2H6) at 823 cm-1. These cross sections make use of spectra recorded at the Australian Synchrotron using a Fourier transform infrared spectrometer with maximum resolution of 0.00096 cm-1. The spectra have been recorded at 150, 120 and 90 K for hydrogen and nitrogen broadened C2H6. They cover appropriate temperatures, pressures and broadening gases associated with the atmospheres of the Outer Planets and Titan, and will improve atmospheric retrievals. The THz/Far-IR beamline at the Australian Synchrotron is unique in combining a high-resolution Fourier transform spectrometer with an 'enclosive flow cooling' (EFC) cell designed to study molecules at low temperatures. The EFC cell is advantageous at temperatures for which the vapor pressure is very low, such as C2H6 at 90 K. Hydrogen broadened absorption cross sections of propane between 700 and 1200 cm-1 will also be presented based on spectra obtained at the Canadian Light Source.

  16. Crystal structure of dioxidobis(pentane-2,4-dionato-κ2 O,O′)[1-phenyl-3-(pyridin-4-yl)propane-κN]uranium(VI)

    PubMed Central

    Kawasaki, Takeshi; Kitazawa, Takafumi

    2015-01-01

    In the title compound, [UO2(C5H7O2)2(C14H15N)], the uran­yl(VI) unit ([O=U=O]2+) is coordinated to two acetyl­acetonate (acac) anions and one 1-phenyl-3-(pyridin-4-yl)propane (ppp) mol­ecule. The geometry around the U atom is UNO6 penta­gonal–bipyramidal; two uran­yl(VI) O atoms are located at the axial positions, whereas four O atoms from two chelating bidentate acac ligands and one N atom of a ppp ligand form the equatorial plane. PMID:25705446

  17. Assessment of the risk of transporting propane by truck and train

    SciTech Connect

    Geffen, C.A.

    1980-03-01

    The risk of shipping propane is discussed and the risk assessment methodology is summarized. The risk assessment model has been constructed as a series of separate analysis steps to allow the risk to be readily reevaluated as additional data becomes available or as postulated system characteristics change. The transportation system and accident environment, the responses of the shipping system to forces in transportation accidents, and release sequences are evaluated to determine both the likelihood and possible consequences of a release. Supportive data and analyses are given in the appendices. The risk assessment results are related to the year 1985 to allow a comparison with other reports in this series. Based on the information presented, accidents involving tank truck shipments of propane will be expected to occur at a rate of 320 every year; accidents involving bobtails would be expected at a rate of 250 every year. Train accidents involving propane shipments would be expected to occur at a rate of about 60 every year. A release of any amount of material from propane trucks, under both normal transportation and transport accident conditions, is to be expected at a rate of about 110 per year. Releases from propane rail tank cars would occur about 40 times a year. However, only those releases that occur during a transportation accident or involve a major tank defect will include sufficient propane to present the potential for danger to the public. These significant releases can be expected at the lower rate of about fourteen events per year for truck transport and about one event every two years for rail tank car transport. The estimated number of public fatalities resulting from these significant releases in 1985 is fifteen. About eleven fatalities per year result from tank truck operation, and approximately half a death per year stems from the movement of propane in rail tank cars.

  18. Dehydrogenation of propane over chromia-pillared zirconium phosphate catalysts

    SciTech Connect

    Perez-Reina, F.J.; Rodriguez-Castellon, E.; Jimenez-Lopez, A.

    1999-11-23

    Two series of porous chromia-pillared {alpha}-zirconium phosphate materials, prepared using two different methods of colloidization of the initial phase and with variable chromium contents (CrZrP-Xa and CrZrP-Xb) have been tested in the oxidative and nonoxidative dehydrogenation of propane in a flow reactor at atmospheric pressure. All catalysts are highly selective to propene under nonoxidative conditions at 823 K. In both series of catalysts, the initial activity increases with the chromium content, but generally CrZrP-Xb catalysts are more active than those of series CrZrP-Xa, which is in good agreement with their higher chromium contents and greater dispersions. In all cases, deactivation was detected due to coke formed from undesired reactions. When the reactions were carried out under oxidative conditions at 673 K, the activities were enhanced and the observed deactivation was minimum. The activities found vary between 0.47 and 1.31 {micro}mol of propene g{sup {minus}1} s{sup {minus}1} and are maintained after 200 min of reaction. These activity values were also related to the chromium content, being slightly higher for CrZrP-Xb materials. A parallel study to evaluate the influence of acidity in the obtained results has been carried out. The activities found of these catalysts seem to be related to the presence of Cr(III) centers with vacancies in their coordination sphere. These vacancies, in nonoxidative conditions, can activate the reactive molecules originating propene and hydrogen. On the other hand, in an oxidative atmosphere, Cr(III) species can activate oxygen molecules, through an electronic transference process, yielding propene and water.

  19. Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances.

    PubMed

    Kwon, Hyuk Taek; Jeong, Hae-Kwon; Lee, Albert S; An, He Seong; Lee, Jong Suk

    2015-09-30

    Propylene/propane separation is one of the most challenging separations, currently achieved by energy-intensive cryogenic distillation. Despite the great potential for energy-efficient membrane-based separations, no commercial membranes are currently available due to the limitations of current polymeric materials. Zeolitic imidazolate framework, ZIF-8, with the effective aperture size of ∼4.0 Å, has been shown to be very promising for propylene/propane separation. Despite the extensive research on ZIF-8 membranes, only a few reported ZIF-8 membranes have displayed good propylene/propane separation performances presumably due to the challenges of controlling the microstructures of polycrystalline membranes. Here we report the first well-intergrown membranes of ZIF-67 (Co-substituted ZIF-8) by heteroepitaxially growing ZIF-67 on ZIF-8 seed layers. The ZIF-67 membranes exhibited impressively high propylene/propane separation capabilities. Furthermore, when a tertiary growth of ZIF-8 layers was applied to heteroepitaxially grown ZIF-67 membranes, the membranes exhibited unprecedentedly high propylene/propane separation factors of ∼200 possibly due to enhanced grain boundary structure. PMID:26364888

  20. No. 2 heating oil/propane program 1994--1995. Final report

    SciTech Connect

    McBrien, J.

    1995-05-01

    During the 1994--95 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1994 through March 1995. This program augmented the existing Massachusetts data collection system and served several important functions. The information helped the federal and state governments respond to consumer, congressional and media inquiries regarding No. 2 oil and propane. The information also provided policy decision-makers with timely, accurate and consistent data to monitor current heating oil and propane markets and develop appropriate state responses when necessary. In addition, the communication network between states and the DOE was strengthened through this program. This final report begins with an overview of the unique events that had an impact on the petroleum markets prior to and during the reporting period. Next, the report summarizes the results from residential heating oil and propane price surveys conducted by DOER over the 1994--95 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by EIA and distributed to the states. Finally, the report outlines DOER`s use of the data.

  1. State Heating Oil & Propane Program. Final report 1997/98 heating season

    SciTech Connect

    Hunton, G.

    1998-06-01

    The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1997/98 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program is funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used for water heating and cooking in areas of the state where natural gas is not available. Lower installation cost, convenience, lower operating costs compared to electricity, and its perception as a clean heating fuel have all worked to increase the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

  2. Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware (Fact Sheet)

    SciTech Connect

    Not Available

    2014-01-01

    Insight Homes constructed two houses in Rehoboth Beach, Delaware, with identical floor plans and thermal envelopes but different heating and domestic hot water (DHW) systems. Each house is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning (HVAC) systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler). Both houses were occupied during the test period. Results indicate that efficiency of the two heating systems was not significantly different. Three issues dominate these results; lower system design performance resulting from the indoor refrigerant coil selected for the standard house, an incorrectly functioning defrost cycle in the standard house, and the low resolution of the natural gas monitoring equipment. The thermal comfort of both houses fell outside the ASHRAE Standard 55 heating range but was within the ACCA room-to-room temperature range when compared to the thermostat temperature. The monitored DHW draw schedules were input into EnergyPlus to evaluate the efficiency of the tankless hot water heater model using the two monitored profiles and the Building America House Simulation Protocols. The results indicate that the simulation is not significantly impacted by the draw profiles.

  3. No. 2 heating oil/propane program. Final report, 1990/91

    SciTech Connect

    McBrien, J.

    1991-06-01

    During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

  4. No. 2 heating oil/propane program. Final report, 1992/93

    SciTech Connect

    McBrien, J.

    1993-05-01

    During the 1992--93 heating season, the Massachusetts Division Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1992 through March, 1993. This final report begins with an overview of the unique events which had an impact on the petroleum markets prior to and during the reporting period. Next, the report summarizes the results from residential heating oil and propane price surveys conducted by DOER over the 1992--93 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data.

  5. CELLULAR LIPIDS OF A NOCARDIA GROWN ON PROPANE AND N-BUTANE.

    PubMed

    DAVIS, J B

    1964-07-01

    Lipid fractions of propane- and n-butane-grown nocardial cells each contain a chloroform-soluble, ether-insoluble polymer not observed previously in liquid n-alkane-grown cells. The polymer in propane-grown cells is poly-beta-hydroxybutyrate. The polymer in n-butane-grown cells apparently contains unsaturation in the molecule, and is identified tentatively as a co-polymer of beta-hydroxybutyric and beta-hydroxybutenoic (specifically 3-hydroxy 2-butenoic) acids. The other major component of the lipid fraction consists of triglycerides containing principally palmitic and stearic acids. There seems to be little qualitative distinction in the glycerides of propane- or n-butane-grown cells. Oxidative assimilation of n-butane is described. PMID:14199017

  6. Number 2 heating oil/propane program. Final report, 1991/92

    SciTech Connect

    McBrien, J.

    1992-06-01

    During the 1991--92 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1991 through March, 1992. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1991--1992 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data and responses to the events which unfolded during the 1991--1992 heating season.

  7. Auto-ignition and upper explosion limit of rich propane-air mixtures at elevated pressures.

    PubMed

    Norman, F; Van den Schoor, F; Verplaetsen, F

    2006-09-21

    The auto-ignition limits of propane-air mixtures at elevated pressures up to 15 bar and for concentrations from 10 mol% up to 70 mol% are investigated. The experiments are performed in a closed spherical vessel with a volume of 8 dm3. The auto-ignition temperatures decrease from 300 degrees C to 250 degrees C when increasing the pressure from 1 bar to 14.5 bar. It is shown that the fuel concentration most sensitive to auto-ignition depends on initial pressure. A second series of experiments investigates the upper flammability limit of propane-air mixtures at initial temperatures up to 250 degrees C and pressures up to 30 bar near the auto-ignition area. Finally the propane auto-oxidation is modelled using several detailed kinetic reaction mechanisms and these numerical calculations are compared with the experimental results. PMID:16716499

  8. Explosive-driven shock wave and vortex ring interaction with a propane flame

    NASA Astrophysics Data System (ADS)

    Giannuzzi, P. M.; Hargather, M. J.; Doig, G. C.

    2016-02-01

    Experiments were performed to analyze the interaction of an explosively driven shock wave and a propane flame. A 30 g explosive charge was detonated at one end of a 3-m-long, 0.6-m-diameter shock tube to produce a shock wave which propagated into the atmosphere. A propane flame source was positioned at various locations outside of the shock tube to investigate the effect of different strength shock waves. High-speed retroreflective shadowgraph imaging visualized the shock wave motion and flame response, while a synchronized color camera imaged the flame directly. The explosively driven shock tube was shown to produce a repeatable shock wave and vortex ring. Digital streak images show the shock wave and vortex ring propagation and expansion. The shadowgrams show that the shock wave extinguishes the propane flame by pushing it off of the fuel source. Even a weak shock wave was found to be capable of extinguishing the flame.

  9. Toxicological investigation of liquid petroleum gas explosion: human model for propane/ethyl mercaptan exposures.

    PubMed

    Lowry, W T; Gamse, B; Armstrong, A T; Corn, J M; Juarez, L; McDowell, J L; Owens, R

    1991-03-01

    Four individuals died as the result of a propane explosion. As with many propane explosions, the question was raised as to the adequacy of the product's odorization after the autopsy studies had been conducted. In most cases, this question leads to litigation. Ethyl mercaptan is a widely used odorant for propane and was used in this instance. Three of the four victims had blood available at autopsy for study. Quantitative analyses of the victims' blood, obtained during autopsy, were performed using gas chromatography/mass spectrometry, without subjecting the samples to hydrolysis. These analyses determined the relative amounts of propane and ethyl mercaptan in the blood to be 90, 63, and 175 mL/m3 headspace, and 0.36, 0.34, and 0.77 microgram/L blood, respectively. Since mercaptans have been reported in human blood as products of metabolism, modeling studies were conducted to establish the validity of the autopsy data and to develop an autopsy toxicology protocol for investigating explosion deaths. When subjects were not exposed to an atmosphere containing ethyl mercaptan, dimethylsulfide was the only mercaptan detectable in their blood without severe hydrolysis prior to analysis. Metabolic ethyl mercaptan is sufficiently bound to be undetectable by the methods used without hydrolysis. Human subjects were exposed to a flammable mixture of air and propane odorized with ethyl mercaptan. The analyses of the blood from these subjects produced results which were comparable with those for the explosion victims, establishing that the question of odorant adequacy can be addressed at the autopsy of propane explosion victims. It is extremely important that the pathologist and toxicologist investigating gas explosion deaths recognize the valuable evidence existing in the victim's blood. PMID:2066720

  10. Foreign-gas pressure broadening parameters of propane near 748/cm

    NASA Technical Reports Server (NTRS)

    Nadler, Schachar; Jennings, D. E.

    1989-01-01

    The pressure-broadening coefficients of the nu sub 19 band of propane near 748/cm due to H2, N2, and He are determined using a tunable diode laser spectrometer at room temperature. The coefficients obtained were 0.183(5)/cm/atm for C3H8-H2, 0.119(2) for C3H8-N2, and 0.105(2) for C3H8-He. The possible implications of the results for propane on Titan, the earth, and Saturn are noted.

  11. 4,4′-(Propane-1,3-di­yl)dipiperidinium sulfate monohydrate

    PubMed Central

    Yang, E; Song, Xu-Chun; Zhuang, Rong-Qiang

    2008-01-01

    In the title compound, C13H28N2 2+·SO4 2−·H2O, extensive hydrogen-bonding inter­actions between the protonated 4,4′-(propane-1,3-di­yl)dipiperidinium ions, the sulfate anions and the water mol­ecules lead to a three-dimensional pillared and layered structure with the 4,4′-(propane-1,3-di­yl)­dipiperidinium ions acting as the pillars. PMID:21201745

  12. RETENTION OF HALOCARBONS ON A HEXAFLUOROPROPYLENE EPOXIDE-MODIFIED GRAPHITIZED CARBON BLACK - IV. PROPANE- BASED COMPOUNDS

    EPA Science Inventory

    The retention characteristics of 25 propane-based bromofluorocarbon, chlorocarbon, chlorofluorocarbon, and fluorocarbon fluids have been studied as a function of temperature on a stationary phase consisting of a 5% (m/m) coating of a low-molecular-mass polymer of hexafluoropropyl...

  13. 16 CFR Figure 7 to Part 1633 - Elements of Propane Flow Control for Each Burner

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Elements of Propane Flow Control for Each Burner 7 Figure 7 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 7 Figure...

  14. 16 CFR Figure 7 to Part 1633 - Elements of Propane Flow Control for Each Burner

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Elements of Propane Flow Control for Each Burner 7 Figure 7 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 7 Figure...

  15. 16 CFR Figure 7 to Part 1633 - Elements of Propane Flow Control for Each Burner

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Elements of Propane Flow Control for Each Burner 7 Figure 7 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 7 Figure...

  16. 16 CFR Figure 7 to Part 1633 - Elements of Propane Flow Control for Each Burner

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Elements of Propane Flow Control for Each Burner 7 Figure 7 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 7 Figure...

  17. 16 CFR Figure 7 to Part 1633 - Elements of Propane Flow Control for Each Burner

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Elements of Propane Flow Control for Each Burner 7 Figure 7 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 7 Figure...

  18. Evaluation of propane combustion traps for collection of Phlebotomus papatasi (Scopoli) in southern Israel.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traps used for mosquitoes can possibly used to capture phlebotomine sand flies as well, but little testing has been done. Traps powered by propane could be extremely useful because most produce their own carbon dioxide (CO2), which can increase the number of sand flies captured. Scientists at the US...

  19. Analysis of U.S. Propane Markets Winter 1996-97, An

    EIA Publications

    1997-01-01

    This study constitutes an examination of propane supply, demand, and price developments and trends. The Energy Information Administration's approach focused on identifying the underlying reasons for the tight supply/demand balance in the fall of 1996, and on examining the potential for a recurrence of these events next year.

  20. THE HEAT CAPACITY OF FLUORINATED PROPANE AND BUTANE DERIVATIVES BY DIFFERENTIAL SCANNING CALORIMETRY

    EPA Science Inventory

    The paper gives results of the measurement (to 3% accuracy) of the constant-pressure liquid-phase heat capacities of 21 hydrogen-containing fluorinated propane and butane derivatives and one fluorinated ether (CF3OCF2H) with boiling points ranging from -34.6 to 76.7 C, using diff...

  1. Surface Termination of M1 Phase and Rational Design of Propane Ammoxidation Catalysts

    SciTech Connect

    Guliants, Vadim

    2015-02-16

    This final report describes major accomplishments in this research project which has demonstrated that the M1 phase is the only crystalline phase required for propane ammoxidation to acrylonitrile and that a surface monolayer terminating the ab planes of the M1 phase is responsible for their activity and selectivity in this reaction. Fundamental studies of the topmost surface chemistry and mechanism of propane ammoxidation over the Mo-V-(Te,Sb)-(Nb,Ta)-O M1 and M2 phases resulted in the development of quantitative understanding of the surface molecular structure – reactivity relationships for this unique catalytic system. These oxides possess unique catalytic properties among mixed metal oxides, because they selectively catalyze three alkane transformation reactions, namely propane ammoxidation to acrylonitrile, propane oxidation to acrylic acid and ethane oxidative dehydrogenation, all of considerable economic significance. Therefore, the larger goal of this research was to expand this catalysis to other alkanes of commercial interest, and more broadly, demonstrate successful approaches to rational design of improved catalysts that can be applied to other selective (amm)oxidation processes.

  2. EXTINCTION STUDIES OF PROPANE/AIR COUNTERFLOW DIFFUSION FLAMES: THE EFFECTIVENESS OF AEROSOLS

    EPA Science Inventory

    The fire suppression effectiveness of solid aerosols as suitable halon replacements has examined. Experiments were performed in a counterflow diffusion burner, consisting of two 1 cm i.d. tubes separated by 1 cm. Aerosols were delivered to propane/air flames in the air flow. Both...

  3. HOMOGENEOUS HYDROLYSIS RATE CONSTANTS FOR SELECTED CHLORINATED METHANES, ETHANES, ETHENES, AND PROPANES

    EPA Science Inventory

    Hydrolysis rate constants of 18 chlorinated methanes, ethanes, ethenes, and propanes have been measured in dilute aqueous solutions within the temperature range of 0 to 180 oC and at pH values of 3 to l4. rrhenius parapmeters were determined for both neutral and alkaline hydrolys...

  4. 40 CFR 721.10360 - 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol mono...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-(triethoxysilyl)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (generic). 721.10360... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10360 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene...

  5. 40 CFR 721.10360 - 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol mono...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-(triethoxysilyl)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (generic). 721.10360... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10360 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene...

  6. 40 CFR 721.10360 - 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol mono...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-(triethoxysilyl)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (generic). 721.10360... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10360 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene...

  7. Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane.

    PubMed

    Tang, Shaobin; Cao, Zexing

    2012-12-28

    Graphene oxides (GOs) may offer extraordinary potential in the design of novel catalytic systems due to the presence of various oxygen functional groups and their unique electronic and structural properties. Using first-principles calculations, we explore the plausible mechanisms for the oxidative dehydrogenation (ODH) of propane to propene by GOs and the diffusion of the surface oxygen-containing groups under an external electric field. The present results show that GOs with modified oxygen-containing groups may afford high catalytic activity for the ODH of propane to propene. The presence of hydroxyl groups around the active sites provided by epoxides can remarkably enhance the C-H bond activation of propane and the activity enhancement exhibits strong site dependence. The sites of oxygen functional groups on the GO surface can be easily tuned by the diffusion of these groups under an external electric field, which increases the reactivity of GOs towards ODH of propane. The chemically modified GOs are thus quite promising in the design of metal-free catalysis. PMID:22801590

  8. Performance and emissions of a catalytic reactor with propane, diesel, and Jet A fuels

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1977-01-01

    Tests were made to determine the performance and emissions of a catalytic reactor operated with propane, No. 2 diesel, and Jet A fuels. A 12-cm diameter and 16-cm long catalytic reactor using a proprietary noble metal catalyst was operated at an inlet temperature of 800 K, a pressure of 300,000 Pa and reference velocities of 10 to 15 m/s. No significant differences between the performance of the three fuels were observed when 98.5 percent purity propane was used. The combustion efficiency for 99.8-percent purity propane tested later was significantly lower, however. The diesel fuel contained 135 ppm of bound nitrogen and consequently produced the highest NOx emissions of the three fuels. As much as 85 percent of the bound nitrogen was converted to NOx. Steady-state emissions goals based on half the most stringent proposed automotive standards were met when the reactor was operated at an adiabatic combustion temperature higher than 1350 K with all fuels except the 99.8-percent purity propane. With that fuel, a minimum temperature of 1480 K was required.

  9. Developing synthesis techniques for zeolitic-imidazolate framework membranes for high resolution propylene/propane separation

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk Taek

    Propylene/propane separation is one of the most challenging separations, currently achieved by energy-intensive cryogenic distillation. Despite the great potentials for energy-efficient membrane-based propylene/propane separation processes, no commercial membranes are available due to the limitations (i.e., low selectivity) of current polymeric materials. Zeolitic imidazolate frameworks (ZIFs) are promising membrane materials primarily due to their well-defined ultra-micropores with controllable surface chemistry along with their relatively high thermal/chemical stabilities. In particular, ZIF-8 with the effective aperture size of ~ 4.0 A has been shown very promising for propylene/propane separation. Despite the extensive research on ZIF-8 membranes, only a few of ZIF-8 membranes have displayed good propylene/propane separation performances presumably due to the challenges of controlling the microstructures of polycrystalline membranes. Since the membrane microstructures are greatly influenced by processing techniques, it is critically important to develop new techniques. In this dissertation, three state-of-the-art ZIF membrane synthesis techniques are developed. The first is a one-step in-situ synthesis technique based on the concept of counter diffusion. The technique enabled us to obtain highly propylene selective ZIF-8 membranes in less than a couple of hours with exceptional mechanical strength. Most importantly, due to the nature of the counter-diffusion concept, the new method offered unique opportunities such as healing defective membranes (i.e., poorly-intergrown) as well as significantly reducing the consumption of costly ligands and organic solvents. The second is a microwave-assisted seeding technique. Using this new seeding technique, we were able to prepare seeded supports with a high packing density in a couple of minutes, which subsequently grown into highly propylene-selective ZIF-8 membranes with an average propylene/propane selectivity of ~40

  10. Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation

    SciTech Connect

    Sun, Pingping; Siddiqi, Georges; Vining, William C.; Chi, Miaofang; Bell, Alexis T.

    2011-10-28

    Catalysts for the dehydrogenation of light alkanes were prepared by dispersing Pt on the surface of a calcined hydrotalcite-like support containing indium, Mg(In)(Al)O. Upon reduction in H{sub 2} at temperatures above 673 K, bimetallic particles of PtIn are observed by TEM, which have an average diameter of 1 nm. Analysis of Pt LIII-edge extended X-ray absorption fine structure (EXAFS) data shows that the In content of the bimetallic particles increases with increasing bulk In/Pt ratio and reduction temperature. Pt LIII-edge X-ray absorption near edge structure (XANES) indicates that an increasing donation of electronic charge from In to Pt occurs with increasing In content in the PtIn particles. The activity and selectivity of the Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation reactions are strongly dependent on the bulk In/Pt ratio. For both reactants, maximum activity was achieved for a bulk In/Pt ratio of 0.48, and at this In/Pt ratio, the selectivity to alkene was nearly 100%. Coke deposition was observed after catalyst use for either ethane or propane dehydrogenation, and it was observed that the alloying of Pt with In greatly reduced the amount of coke deposited. Characterization of the deposit by Raman spectroscopy indicates that the coke is present as highly disordered graphite particles <30 nm in diameter. While the amount of coke deposited during ethane and propane dehydrogenation are comparable, the effects on activity are dependent on reactant composition. Coke deposition had no effect on ethane dehydrogenation activity, but caused a loss in propane dehydrogenation activity. This difference is attributed to the greater ease with which coke produced on the surface of PtIn nanoparticles migrates to the support during ethane dehydrogenation versus propane dehydrogenation.

  11. 'Remote' adiabatic photoinduced deprotonation and aggregate formation of amphiphilic N-alkyl-N-methyl-3-(pyren-1-yl)propan-1-ammonium chloride salts.

    PubMed

    Abraham, Shibu; Weiss, Richard G

    2011-11-30

    The absorption and emission properties of a series of amphiphilic N-alkyl-N-methyl-3-(pyren-1-yl)propan-1-ammonium chloride salts were investigated in solvents of different polarities and over a wide concentration range. For example, at 10(-5) M concentrations in tetrahydrofuran (THF), salts with at least one N-H bond exhibited broad, structureless emissions even though time-correlated single photon counting (TCSPC) experiments indicated negligible static or dynamic intermolecular interactions. Salts with a butylene spacer or lacking an N-H bond showed no discernible structureless emission; their emission spectra were dominated by the normal monomeric fluorescence of a pyrenyl group and the TCSPC histograms could be interpreted on the basis of intramolecular photophysics. The broad, structureless emission is attributed to an unprecedented, rapid, adiabatic proton-transfer to the medium, followed by the formation of an intramolecular exciplex consisting of amine and pyrenyl groups. The proposed mechanism involves excitation of a ground-state conformer of the salts in which the ammonium group sits over the pyrenyl ring due to electrostatic stabilization. At higher concentrations, with longer N-alkyl groups, or in selected solvents, electronic excitation of the salts led to dynamic and static excimeric emissions. For example, whereas the emission spectrum of 10(-3) M N-hexyl-N-methyl-3-(pyren-1-yl)propan-1-ammonium chloride in THF consisted of comparable amounts of monomeric and excimeric emission, the emission from 10(-5) M N-dodecyl-N-methyl-3-(pyren-1-yl)propan-1-ammonium chloride in 1:9 (v:v) ethanol/water solutions was dominated by excimeric emission, and discrete particles near micrometer size were discernible from confocal microscopy and dynamic light scattering experiments. Comparison of the static and dynamic emission characteristics of the particles and of the neat solid of N-dodecyl-N-methyl-3-(pyren-1-yl)propan-1-ammonium chloride indicate that molecular

  12. Marine microbes rapidly adapt to consume ethane, propane, and butane within the dissolved hydrocarbon plume of a natural seep

    NASA Astrophysics Data System (ADS)

    Mendes, Stephanie D.; Redmond, Molly C.; Voigritter, Karl; Perez, Christian; Scarlett, Rachel; Valentine, David L.

    2015-03-01

    Simple hydrocarbon gases containing two to four carbons (ethane, propane, and butane) are among the most abundant compounds present in petroleum reservoirs, and are introduced into the ocean through natural seepage and industrial discharge. Yet little is known about the bacterial consumption of these compounds in ocean waters. To assess the timing by which microbes metabolize these gases, we conducted a three-phase study that tested and applied a radiotracer-based method to quantify the oxidation rates of ethane, propane, and butane in fresh seawater samples. Phase 1 involved the synthesis of tritiated ethane, propane, and butane using Grignard reagents and tritiated water. Phase 2 was a systematic assessment of experimental conditions, wherein the indigenous microbial community was found to rapidly oxidize ethane, propane, and butane. Phase 3 was the application of this tritium method near the Coal Oil Point seeps, offshore California. Spatial and temporal patterns of ethane, propane, and butane oxidation down current from the hydrocarbon seeps demonstrated that >99% of these gases are metabolized within 1.3 days following initial exposure. The oxidation of ethane outpaced oxidation of propane and butane with patterns indicating the microbial community responded to these gases by rapid adaptation or growth. Methane oxidation responded the slowest in plume waters. Estimates based on the observed metabolic rates and carbon mass balance suggest that ethane, propane, and butane-consuming microorganisms may transiently account for a majority of the total microbial community in these impacted waters.

  13. Comparison of combustion characteristics of ASTM A-1, propane, and natural-gas fuels in an annular turbojet combustor

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.

    1973-01-01

    The performance of an annular turbojet combustor using natural-gas fuel is compared with that obtained using ASTM A-1 and propane fuels. Propane gas was used to simulate operation with vaporized kerosene fuels. The results obtained at severe operating conditions and altitude relight conditions show that natural gas is inferior to both ASTM A-1 and propane fuels. Combustion efficiencies were significantly lower and combustor pressures for relight were higher with natural-gas fuel than with the other fuels. The inferior performance of natural gas is shown to be caused by the chemical stability of the methane molecule.

  14. Density and viscosity of mixtures of nitrobenzene with methanol, ethanol, propan-1-ol, propan-2-ol, butan-1-ol, 2-methylpropan-1-ol, and 2-methylpropan-2-ol at 298.15 and 303.15 K

    SciTech Connect

    Nikam, P.S.; Jadhav, M.C.; Hasan, M.

    1995-07-01

    Densities and viscosities of mixtures of nitrobenzene with methanol, ethanol, propan-1-ol, propan-2-ol, butan-1-ol, 2-methylpropan-1-ol, and 2-methylpropan-2-ol were measured at 298.15 and 303.15 K. From these measurements, the excess volumes (V{sup E}) and deviation in viscosity ({delta}{eta}) were calculated. These results were fitted to the Redlich-Kister polynomial.

  15. Density and viscosity of mixtures of dimethyl sulfoxide + methanol, + ethanol, + propan-1-ol, + propan-2-ol, + butan-1-ol, + 2-methylpropan-1-ol, and + 2-methylpropan-2-ol at 298.15 K and 303.15 K

    SciTech Connect

    Nikam, P.S.; Jadhav, M.C.; Hasan, M.

    1996-09-01

    Densities and viscosities have been measured for the binary mixtures of dimethyl sulfoxide + methanol, + ethanol, + propan-1-ol, + propan-2-ol, + butan-1-ol, + 2-methylpropan-1-ol, and + 2-methylpropan-2-ol at 298.15 K and 303.15 K. From these results, the excess molar volume (V{sup E}) and deviation in viscosity ({Delta}{eta}) have been computed. These properties are used to calculate regression coefficients of the Redlich-Kister equation.

  16. An Assessment of steady-state propane-gas tracer method for reaeration coefficients, Cowaselon Creek, New York

    USGS Publications Warehouse

    Yotsukura, N.; Stedfast, D.A.; Draper, R.E.; Brutsaert, W.H.

    1983-01-01

    Three tests were conducted in a straight 5.2-km reach of the Cowaselon Creek, Canastota, New York, in order to assess feasibility of the steady-state propane-gas tracer method as a means of estimating in situ reaeration coefficients. It is concluded that the steady-state method, which combines as instantaneous injection of dye tracer with a long-duration injection of propane tracer, is an operationally feasible field technique and provides a very reliable means of determining the propane desorption coefficient in steady-channel flow. The effect of wind shear on propane desorption coefficients was not detected in any tests, apparently due to the sheltering effect of high banks. The reaeration coefficient is estimated by applying a conversion factor determined from laboratory experiments to the gas desorption coefficient. (USGS)

  17. Operation of gas electron multiplier (GEM) with propane gas at low pressure and comparison with tissue-equivalent gas mixtures

    NASA Astrophysics Data System (ADS)

    De Nardo, L.; Farahmand, M.

    2016-05-01

    A Tissue-Equivalent Proportional Counter (TEPC), based on a single GEM foil of standard geometry, has been tested with pure propane gas at low pressure, in order to simulate a tissue site of about 1 μm equivalent size. In this work, the performance of GEM with propane gas at a pressure of 21 and 28 kPa will be presented. The effective gas gain was measured in various conditions using a 244Cm alpha source. The dependence of effective gain on the electric field strength along the GEM channel and in the drift and induction region was investigated. A maximum effective gain of about 5×103 has been reached. Results obtained in pure propane gas are compared with gas gain measurements in gas mixtures commonly employed in microdosimetry, that is propane and methane based Tissue-Equivalent gas mixtures.

  18. Method to obtain carbon nano-onions by pyrolisys of propane

    NASA Astrophysics Data System (ADS)

    Garcia-Martin, Tomas; Rincon-Arevalo, Pedro; Campos-Martin, Gemma

    2013-11-01

    We present a new and simple method for carbon nano-onions (CNOs) production which is based on the pyrolysis of Propane. CNOs are originated in a laminar premixed Propane/Oxygen flame of approximately 1.8 of stoichiometric coefficient. The stream of gasses resulting from the combustion drives the carbon particles towards the aluminium surface on which nano-onions are deposited and collected. The structure and size of the deposited carbon onion on the metal wall are characterized by High Resolution Transmission Electron Microscopy technique (HRTEM). The experimental images show the presence of two different types of CNOs. The first particles have diameters in the range of 18-25 nm and the second ones around 10 nm.

  19. Propane respiration jump-starts microbial response to a deep oil spill.

    PubMed

    Valentine, David L; Kessler, John D; Redmond, Molly C; Mendes, Stephanie D; Heintz, Monica B; Farwell, Christopher; Hu, Lei; Kinnaman, Franklin S; Yvon-Lewis, Shari; Du, Mengran; Chan, Eric W; Garcia Tigreros, Fenix; Villanueva, Christie J

    2010-10-01

    The Deepwater Horizon event resulted in suspension of oil in the Gulf of Mexico water column because the leakage occurred at great depth. The distribution and fate of other abundant hydrocarbon constituents, such as natural gases, are also important in determining the impact of the leakage but are not yet well understood. From 11 to 21 June 2010, we investigated dissolved hydrocarbon gases at depth using chemical and isotopic surveys and on-site biodegradation studies. Propane and ethane were the primary drivers of microbial respiration, accounting for up to 70% of the observed oxygen depletion in fresh plumes. Propane and ethane trapped in the deep water may therefore promote rapid hydrocarbon respiration by low-diversity bacterial blooms, priming bacterial populations for degradation of other hydrocarbons in the aging plume. PMID:20847236

  20. Effects of Al2O3 phase and Cl component on dehydrogenation of propane

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Liu, Changcheng; Ma, Aizeng; Rong, Junfeng; Da, Zhijian; Zheng, Aiguo; Qin, Ling

    2016-04-01

    The effects of two Al2O3 phases, γ- and θ-Al2O3, and Cl component on the performances of Pt-Al2O3 catalysts in the dehydrogenation of propane were investigated in this work. The catalysts were systematically characterized by various techniques, such as scanning transmission electron microscopy (STEM), temperature-programmed desorption with ammonia as probe molecules (NH3-TPD) and temperature-programmed oxidation (TPO). The characterizations and catalytic results show that: (i) the pore structures and acid properties of the two Al2O3 phases can change the quantity, location and property of the carbon deposition, (ii) the existence of Cl plays a significant role on the agglomeration of Pt particles and carbon deposition, which further influence the catalytic performances of Pt-Al2O3 catalysts with different support phases for propane dehydrogenation.

  1. ZrO2 -Based Alternatives to Conventional Propane Dehydrogenation Catalysts: Active Sites, Design, and Performance.

    PubMed

    Otroshchenko, Tatyana; Sokolov, Sergey; Stoyanova, Mariana; Kondratenko, Vita A; Rodemerck, Uwe; Linke, David; Kondratenko, Evgenii V

    2015-12-21

    Non-oxidative dehydrogenation of propane to propene is an established large-scale process that, however, faces challenges, particularly in catalyst development; these are the toxicity of chromium compounds, high cost of platinum, and catalyst durability. Herein, we describe the design of unconventional catalysts based on bulk materials with a certain defect structure, for example, ZrO2 promoted with other metal oxides. Comprehensive characterization supports the hypothesis that coordinatively unsaturated Zr cations are the active sites for propane dehydrogenation. Their concentration can be adjusted by varying the kind of ZrO2 promoter and/or supporting tiny amounts of hydrogenation-active metal. Accordingly designed Cu(0.05 wt %)/ZrO2 -La2 O3 showed industrially relevant activity and durability over ca. 240 h on stream in a series of 60 dehydrogenation and oxidative regeneration cycles between 550 and 625 °C. PMID:26566072

  2. Numerical Simulation of Turbulent Propane-Air Combustion with Non-Homogeneous Reactants

    NASA Astrophysics Data System (ADS)

    Haworth, D.; Cuenot, B.; Poinsot, T.; Blint, R.

    1998-11-01

    Two-dimensional numerical simulations of turbulent propane-air combustion have been performed including complex chemistry and realistic molecular transport. The aerothermochemical conditions simulated (reactant temperature and pressure, turbulence rms velocity and integral length scale) correspond to conditions at the time of ignition in an automotive gasoline direct-injection reciprocating IC engine at low speed and light load. Both stoichiometric homogeneous reactants and non-homogeneous reactants with fuel-based equivalence ratios ranging from zero to four have been simulated. In the case of non-homogeneous reactants, a primary premixed flame (defined based on disappearance of the propane fuel) is followed by a secondary heat-release zone that is dominated by CO kinetics and turbulent mixing. Beyond a few flame thicknesses behind the primary flame, any remaining fuel has been broken down into carbon monoxide and hydrogen. Quantitative information relevant for modeling turbulent flame propagation through nonhomogeneous reactants has been extracted.

  3. Electrochemical promotion of propane oxidation on Pt deposited on a dense β"-Al2O3 ceramic Ag+ conductor

    NASA Astrophysics Data System (ADS)

    Tsampas, Michail; Kambolis, Anastasios; Obeid, Emil; Lizarraga, Leonardo; Sapountzi, Foteini; Vernoux, Philippe

    2013-08-01

    A new kind of electrochemical catalyst based on a Pt porous catalyst film deposited on a β"-Al2O3 ceramic Ag+ conductor was developed and evaluated during propane oxidation. It was observed that upon anodic polarization, the rate of propane combustion was significantly electropromoted up to 400%. Moreover, for the first time, exponential increase of the catalytic rate was evidenced during galvanostatic transient experiment in excellent agreement with EPOC equation.

  4. Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer

    NASA Astrophysics Data System (ADS)

    Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Neto, E. V. Santos; Eiler, John M.

    2016-09-01

    Site-specific isotope ratio measurements potentially provide valuable information about the formation and degradation of complex molecules-information that is lost in conventional bulk isotopic measurements. Here we discuss the background and possible applications of such measurements, and present a technique for studying the site-specific carbon isotope composition of propane at natural abundance based on mass spectrometric analysis of the intact propane molecule and its fragment ions. We demonstrate the feasibility of this approach through measurements of mixtures of natural propane and propane synthesized with site-specific 13C enrichment, and we document the limits of precision of our technique. We show that mass balance calculations of the bulk δ13C of propane based on our site-specific measurements is generally consistent with independent constraints on bulk δ13C. We further demonstrate the accuracy of the technique, and illustrate one of its simpler applications by documenting the site-specific carbon isotope signature associated with gas phase diffusion of propane, confirming that our measurements conform to the predictions of the kinetic theory of gases. This method can be applied to propane samples of moderate size (tens of micromoles) isolated from natural gases. Thus, it provides a means of studying the site-specific stable isotope systematics of propane at natural isotope abundances on sample sizes that are readily recovered from many natural environments. This method may also serve as a model for future techniques that apply high-resolution mass spectrometry to study the site-specific isotopic distributions of larger organic molecules, with potential applications to biosynthesis, forensics and other geochemical subjects.

  5. Isothermal vapor-liquid equilibria for 1,1,1,2-tetrafluoroethane + propane and propane + 1,1,1,-trifluoroethane at 283.18 K

    SciTech Connect

    Stryjek, R.; Bobbo, S.; Camporese, R.

    1998-03-01

    Isothermal vapor-liquid equilibria (VLE) for the binary systems 1,1,1,2-tetrafluoroethane (R134a) + propane (R290) and propane + 1,1,1-trifluoroethane (R143a) were measured at 283.18 K using a recirculation apparatus in which the vapor phase was forced through the liquid. The phase composition at equilibrium was measured by gas chromatography, calibrating its response using gravimetrically prepared mixtures. The data were correlated using the Carnahan-Starling-De Santis and Peng-Robinson equations of state. The authors found positive homoazeotropes for R134a (1) + R290 (2) at a pressure P = 1,000.5 kPa and a composition x{sub 1} = 0.386, and for R290 (1) + R143a (2) at P = 796 kPa and x{sub 1} = 0.363. For the R134a + R290 there was a valid consistency with the values reported in the literature.

  6. Isolation and Characterization of Ethane, Propane, and Butane Consuming Bacteria from Marine Hydrocarbon Seeps

    NASA Astrophysics Data System (ADS)

    Redmond, M. C.; Valentine, D. L.

    2005-12-01

    Three strains of ethane, propane, or butane consuming bacteria were isolated from marine hydrocarbon seep sediments at Coal Oil Point, off shore Santa Barbara, CA. These three isolates (MR1, MR2 and MR3) were capable of growth at natural environmental temperatures and salinity. Isolate MR2 was capable of growth on ethane or propane as the sole carbon source, isolate MR4 on propane or butane, and isolate MR3 on ethane, propane, or butane. All three isolates were also able to grow on other carbon-containing molecules, including ethanol, 1-propanol, 2-propanol, acetate, butyrate, sucrose, and dextrose, and isolates MR3 and MR4 were able to grow on 1-butanol and 2-butanol. None showed significant growth with methane, methanol, or formate as the sole carbon source. 16S rDNA sequencing indicated that isolate MR2 was most closely related to the gamma-Proteobacterium Pseudomonas stutzeri, while isolates MR3 and MR4 were both Gram-positive and most similar to Rhodococcus wratislaviensis and Rhodococcus opacus, respectively. Compared to methanotrophs, relatively little is known about the organisms that consume the C2-C4 alkanes, but both our isolates and the previously described species appear to be capable of metabolizing a wide variety of carbon compounds, including several common pollutants. The growth of these hydrocarbon-oxidizing bacteria on other organic compounds raises the possibility that the abundance and distribution of organic matter might be expected to impact the oxidation of C2-C4 hydrocarbons. Additional studies will further characterize the range of metabolism, and will investigate the importance of these organisms in natural hydrocarbon seep environments.

  7. Kinetics of Hydrogen Oxidation Downstream of Lean Propane and Hydrogen Flames

    NASA Technical Reports Server (NTRS)

    Fine, Burton

    1961-01-01

    The decay of hydrogen was measured downstream of lean, flat, premixed hydrogen and propane-air flames seated on cooled porous burners. Experimental variables included temperature, pressure, initial equivalence ratio and diluent. Sampling of burned gas was done through uncooled quartz orifice probes, and the analysis was based on gas chromatography. An approximate treatment of the data in which diffusion was neglected led to the following rate expression for the zone downstream of hydrogen flames d[H (sub 2)] divided by (d times t) equals 1.7 times 10 (sup 10) [H (sub 2)] (sup 3) divided by (sub 2) [O (sub 2)]e (sup (-8100 divided by RT)) moles per liters per second. On the basis of a rate expression of this form, the specific rate constant for the reaction downstream of hydrogen flames was about three times as great as that determined downstream of propane flames. This result was explained on the basis of the existence of a steady state between hydrogen and carbon monoxide in the burned gas downstream of propane flames.

  8. Michigan residential heating oil and propane price survey: 1995--1996 heating season. Final report

    SciTech Connect

    Moriarty, C.

    1996-05-01

    This report summarizes the results of a survey of residential No. 2 distillate fuel (home heating oil) and liquefied petroleum gas (propane) prices over the 1995--1996 heating season in Michigan. The Michigan`s Public Service Commission (MPSC) conducted the survey under a cooperative agreement with the US Department of Energy`s (DOE) Energy Information Administration (EIA). This survey was funded in part by a grant from the DOE. From October 1995 through March 1996, the MPSC surveyed participating distributors by telephone for current residential retail home heating oil and propane prices. The MPSC transmitted the data via a computer modem to the EIA using the Petroleum Electronic Data Reporting Option (PEDRO). Survey results were published in aggregate on the MPSC World Wide Web site at http://ermisweb.state.mi.us/shopp. The page was updated with both residential and wholesale prices immediately following the transmission of the data to the EIA. The EIA constructed the survey using a sample of Michigan home heating oil and propane retailers. The sample accounts for different sales volumes, geographic location, and sources of primary supply.

  9. Hydrate decomposition conditions in the system hydrogen sulfide-methane, and propane

    SciTech Connect

    Schroeter, J.P.; Kobayashi, R.; Hildebrand, H.A.

    1982-12-01

    Experimental hydrate decomposition conditions are presented for 3 different H/sub 2/S-containing mixtures in the temperature region 0 C to 30 C. The 3 mixtures investigated were 4% H/sub 2/S, 7% propane, 89% methane; 12% H/sub 2/S, 7% propane, 81% methane; and 30% H/sub 2/S, 7% propane, 63% methane. Hydrate decomposition pressures and temperatures were obtained for each of these mixtures by observation of the pressure-temperature hysteresis curves associated with formation and decomposition of the hydrate crystals. A repeatable decomposition point was observed in every case, and this was identified as the hydrate point. The results for the 4% H/sub 2/S mixture were used to adjust parameters in a computer model based on the Parrish and Prausnitz statistical thermodynamics method, coupled with the BWRS equation of state. After the parameter adjustment, the computer model predicted the behavior of the 12% H/sub 2/S and the 30% H/sub 2/S mixtures to within 2 C. Experimental data for the 3 mixtures are given.

  10. Thermocatalytic Destruction of Gas-Phase Perchloroethylene Using Propane as a Hydrogen Source

    PubMed Central

    Willinger, Marty; Rupp, Erik; Barbaris, Brian; Gao, Song; Arnolda, Robert; Betterton, Eric; Sáez, A. Eduardo

    2009-01-01

    The use of propane in combination with oxygen to promote the destruction of perchloroethylene (PCE) over a platinum (Pt)/rhodium (Rh) catalyst on a cerium/zirconium oxide washcoat supported on an alumina monolith was explored. Conversions of PCE were measured in a continuous flow reactor with residence times less than 0.5 s and temperatures ranging from 200 to 600°C. The presence of propane was shown to increase significantly the conversion of PCE over oxygen-only conditions. Conversions close to 100% were observed at temperatures lower than 450°C with 20% oxygen and 2% propane in the feed, which makes this process attractive from a practical standpoint. In the absence of oxygen, PCE conversion is even higher, but the catalyst suffers significant deactivation in less than an hour. Even though results show that oxygen competes with reactants for active sites on the catalyst, the long-term stability that oxygen confers to the catalyst makes the process an efficient alternative to PCE oxidation. A Langmuir-Hinshelwood competitive adsorption model is proposed to quantify PCE conversion. PMID:19217713

  11. Propanal synthesis from aqueous propylene glycol/hydrogen peroxide on a Ru/alumina catalyst

    SciTech Connect

    Disselkamp, Robert S.; Harris, Benjamin D.; Patel, Jayshribe N.; Hart, Todd R.; Peden, Charles HF

    2008-05-01

    The conversion of polyol materials, including 1,2-diols, into higher commodity chemicals is actively being pursued by many researchers. Here we report the production of propanal from propylene glycol and hydrogen peroxide using a Ru/alumina catalyst. Experiments were conducted by adding up to four peroxide equivalents under steady-state reflux conditions at 371 K. The product propanal and its subsequent reaction product with substrate, 1,3-dioxolane-2-ethyl-4-methyl, was observed to be an intermediate achieving a maximum concentration of 3% of substrate. Buffering using Mg(OH)2 at pH~10 resulted in propanal formation, whereas buffering at similar pH using Na2HSO4 did not, from which we propose that magnesium acts as a promoter in the reaction. The mechanism appears to be a dehydration to enol, followed by rearrangement to product. Experiments utilizing Ru/carbon did not yield any propanol suggesting that the acidic sites of alumina aid the dehydration reaction. To our knowledge, this represents the first time hydrogen peroxide has been used in an alcohol dehydration reaction.

  12. The interaction of water mists and premixed propane-air flames under low-gravity conditions

    NASA Astrophysics Data System (ADS)

    Abbud-Madrid, Angel; Riedel, Edward P.; McKinnon, J. Thomas

    1999-01-01

    A preliminary investigation of the effect of water mists on premixed flame propagation in a cylindrical tube under low-gravity conditions has been conducted to define the scientific and technical objectives of the experiments to be performed on the Space Shuttle and International Space Station microgravity environments. The inhibiting characteristics of water mists in propagating flames of propane-air mixtures at various equivalence ratios are studied. The effects of droplet size and concentration on the laminar flame speed are used as the measure of fire suppression efficacy. Flame speed and propagation behavior are monitored by a video camera. Reduced gravity is obtained with an aircraft flying parabolic trajectories. Measurements and qualitative observations from the low-gravity experiments clearly show the effect of water mist on flame speed abatement, flame shape, and radiant emission. For lean propane-air mixtures, the flame speed increases at first with low water-mist concentrations and then decreases below its dry value when higher water-mist volumes are introduced in the tube. This phenomenon may be due in part to the heating of the unburned mixture ahead of the flame as a result of radiation absorption by the water droplets. For rich propane-air mixtures, similar behavior of flame speed vs. water concentration is encountered but in this case is mostly due to the formation of cellular flames. At high water loads both lean and rich flames exhibit extinction before reaching the end of the tube.

  13. The role of propanal in the reaction of 2-propen-1-ol in H-ZSM-5

    SciTech Connect

    Biaglow, A.I.; Sepa, J.; Gorte, R.J.

    1995-07-01

    The adsorption of 2-propen-1-ol and propanal has been studied in H-ZSM-5 using simultaneous temperature programmed desorption (TPD) and thermogravimetric analysis (TGA) measurements and {sup 13}C NMR. For both adsorbates, the TPD-TGA results for both molecules form a large number of complex products. However, for low exposures, less than one molecule/Broensted site, the initial products can be observed. For 2-propene-1-ol, the initial reaction product, formed between 400 and 425 K, is propanal, formed through either a secondary cation or an epoxide intermediate. The intact desorption of propanal at low coverages was also observed in this temperature range. {sup 13}C NMR spectra of 2-propen-1-ol confirm the formation of propanal and condensation products of propanal. Finally, a potential energy model based on gas-phase proton affinities of the various conjugate bases along possible reaction coordinates for the reaction of 2-propen-1-ol explain the observed chemistry well. 21 refs., 7 figs., 1 tab.

  14. Propane biostimulation in biologically activated carbon (BAC) selects for bacterial clades adept at degrading persistent water pollutants.

    PubMed

    Mikkelson, Kristin M; Homme, Carissa L; Li, Dong; Sharp, Jonathan O

    2015-08-01

    Biologically activated carbon (BAC) can be used in both municipal water and hazardous waste remediation applications to enhance contaminant attenuation in water; however, questions remain about how selective pressures can be applied to increase the capabilities of microbial communities to attenuate recalcitrant contaminants. Here we utilized flow-through laboratory columns seeded with municipally derived BAC and exposed to water from a local drinking water facility to query how propane biostimulation impacts resident microorganisms. Ecological analyses using high throughput phylogenetic sequencing revealed that while propane did not increase the total number of microbiological species, it did select for bacterial communities that were distinct from those without propane. Temporal extractions demonstrated that microbial succession was rapid and established in approximately 2 months. A higher density of propane monooxygenase genes and bacterial clades including the Pelosinus and Dechloromonas genera suggest an enhanced potential for the degradation of persistent water pollutants in propane-stimulated systems. However, the ecological selective pressure was exhausted in less than 15 cm of transit in this flow-through scenario (25 hour retention) indicating a pronounced zonation that could limit the size of a biostimulated zone and require physical mixing, hydraulic manipulation, or other strategies to increase the spatial impact of biostimulation in flow-through scenarios. PMID:26154499

  15. Operating envelope of a short contact time fuel reformer for propane catalytic partial oxidation

    NASA Astrophysics Data System (ADS)

    Waller, Michael G.; Walluk, Mark R.; Trabold, Thomas A.

    2015-01-01

    Fuel cell technology has yet to realize widespread deployment, in part because of the hydrogen fuel infrastructure required for proton exchange membrane systems. One option to overcome this barrier is to produce hydrogen by reforming propane, which has existing widespread infrastructure, is widely used by the general public, easily transported, and has a high energy density. The present work combines thermodynamic modeling of propane catalytic partial oxidation (cPOx) and experimental performance of a Precision Combustion Inc. (PCI) Microlith® reactor with real-time soot measurement. Much of the reforming research using Microlith-based reactors has focused on fuels such as natural gas, JP-8, diesel, and gasoline, but little research on propane reforming with Microlith-based catalysts can be found in literature. The aim of this study was to determine the optimal operating parameters for the reformer that maximizes efficiency and minimizes solid carbon formation. The primary parameters evaluated were reformate composition, carbon concentration in the effluent, and reforming efficiency as a function of catalyst temperature and O2/C ratio. Including the lower heating values for product hydrogen and carbon monoxide, efficiency of 84% was achieved at an O2/C ratio of 0.53 and a catalyst temperature of 940 °C, resulting in near equilibrium performance. Significant solid carbon formation was observed at much lower catalyst temperatures, and carbon concentration in the effluent was determined to have a negative linear relationship at T < 750 °C. The Microlith reactor displayed good stability during more than 80 experiments with temperature cycling from 360 to 1050 °C.

  16. The physical properties of the blast wave produced by a stoichiometric propane/oxygen explosion

    NASA Astrophysics Data System (ADS)

    Dewey, M. C.; Dewey, J. M.

    2014-07-01

    The trajectory of the primary shock produced by the explosion of a nominal 18.14 t (20 tn) hemispherical propane/oxygen charge was analysed previously to provide the physical properties immediately behind the shock, but gave no information about the time-resolved properties throughout the blast wave. The present study maps all the physical properties of the wave throughout and beyond the positive durations for a range of distances from about 1.6-18 m scaled to a 1 kg charge at NTP. The physical properties were calculated using a hydro-code to simulate the flow field produced by a spherical piston moving with a specific trajectory. This technique has been used extensively to determine the physical properties of blast waves from a variety of sources for which the piston path was determined by high-speed photography of smoke tracers established close to the charges immediately before detonation. In the case of the propane/oxygen explosion, smoke tracer data were not available to determine the trajectory of the spherical piston. An arbitrary piston path was used and its trajectory iteratively adjusted until it produced a blast wave with a primary shock whose trajectory exactly matched the measured trajectory from the propane/oxygen explosion. Throughout the studied flow field the time histories of hydrostatic pressure, density and particle velocity are well described by fits to the modified Friedlander equation. The properties are presented as functions of scaled radius and are compared with the properties of the blast wave from a 1 kg TNT surface burst explosion, and with other measurements of the same explosion.

  17. The physical properties of the blast wave produced by a stoichiometric propane/oxygen explosion

    NASA Astrophysics Data System (ADS)

    Dewey, M. C.; Dewey, J. M.

    2014-11-01

    The trajectory of the primary shock produced by the explosion of a nominal 18.14 t (20 tn) hemispherical propane/oxygen charge was analysed previously to provide the physical properties immediately behind the shock, but gave no information about the time-resolved properties throughout the blast wave. The present study maps all the physical properties of the wave throughout and beyond the positive durations for a range of distances from about 1.6-18 m scaled to a 1 kg charge at NTP. The physical properties were calculated using a hydro-code to simulate the flow field produced by a spherical piston moving with a specific trajectory. This technique has been used extensively to determine the physical properties of blast waves from a variety of sources for which the piston path was determined by high-speed photography of smoke tracers established close to the charges immediately before detonation. In the case of the propane/oxygen explosion, smoke tracer data were not available to determine the trajectory of the spherical piston. An arbitrary piston path was used and its trajectory iteratively adjusted until it produced a blast wave with a primary shock whose trajectory exactly matched the measured trajectory from the propane/oxygen explosion. Throughout the studied flow field the time histories of hydrostatic pressure, density and particle velocity are well described by fits to the modified Friedlander equation. The properties are presented as functions of scaled radius and are compared with the properties of the blast wave from a 1 kg TNT surface burst explosion, and with other measurements of the same explosion.

  18. Isolated FeII on Silica As a Selective Propane Dehydrogenation Catalyst

    SciTech Connect

    Hu, Bo; Schweitzer, Neil M.; Zhang, Guanghui; Kraft, Steven J.; Childers, David J.; Lanci, Michael P.; Miller, Jeffrey T.; Hock, Adam S.

    2015-04-17

    ABSTRACT: We report a comparative study of isolated FeII, iron oxide particles, and metallic nanoparticles on silica for non-oxidative propane dehydrogenation. It was found that the most selective catalyst was an isolated FeII species on silica prepared by grafting the open cyclopentadienide iron complex, bis(2,4-dimethyl-1,3-pentadienide) iron(II) or Fe(oCp)2. The grafting and evolution of the surface species was elucidated by 1H NMR, diffuse reflectance infrared Fourier transform spectroscopy and X-ray absorption spectroscopies. The oxidation state and local structure of surface Fe were characterized by X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure. The initial grafting of iron proceeds by one surface hydroxyl Si-OH reacting with Fe(oCp)2 to release one diene ligand (oCpH), generating a SiO2-bound FeII(oCp) species, 1-FeoCp. Subsequent treatment with H2 at 400 °C leads to loss of the remaining diene ligand and formation of nanosized iron oxide clusters, 1-C. Dispersion of these Fe oxide clusters occurs at 650 °C, forming an isolated, ligand-free FeII on silica, 1-FeII, which is catalytically active and highly selective (~99%) for propane dehydrogenation to propene. Under reaction conditions, there is no evidence of metallic Fe by in situ XANES. For comparison, metallic Fe nanoparticles, 2-NP-Fe0, were independently prepared by grafting Fe[N(SiMe3)2]2 onto silica, 2-FeN*, and reducing it at 650 °C in H2. The Fe NPs were highly active for propane conversion but showed poor selectivity (~14%) to propene. Independently prepared Fe oxide clusters on silica display a low activity. The sum of these results suggests that selective propane dehydrogenation occurs at isolated FeII sites.

  19. Remote sensing of propane and methane by means of a differential absorption lidar by topographic reflection

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Geiger, Allen R.

    1996-04-01

    The development of a differential absorption lidar (DIAL) system in the mid-IR region for the detection and monitoring of light hydrocarbons is presented. Two lithium niobate optical parametric oscillators provided the signal and reference wavelengths. With the aid of a retroreflector, the system detected 0.63 ppm of propane and 0.05 ppm of methane in the atmosphere at a greater than 1 mile range in the controlled release tests. Subsequently, the system mapped a petroleum deposit in eastern New Mexico.

  20. Neutron powder diffraction studies as a function of temperature of structure II hydrate formed from propane

    USGS Publications Warehouse

    Rawn, C.J.; Rondinone, A.J.; Chakoumakos, B.C.; Circone, S.; Stern, L.A.; Kirby, S.H.; Ishii, Y.

    2003-01-01

    Neutron powder diffraction data confirm that hydrate samples synthesized with propane crystallize as structure type II hydrate. The structure has been modeled using rigid-body constraints to describe C3H8 molecules located in the eight larger polyhedral cavities of a deuterated host lattice. Data were collected at 12, 40, 100, 130, 160, 190, 220, and 250 K and used to calculate the thermal expansivity from the temperature dependence of the lattice parameters. The data collected allowed for full structural refinement of atomic coordinates and the atomic-displacement parameters.

  1. Emission measurements for a lean premixed propane/air system at pressures up to 30 atmospheres

    NASA Technical Reports Server (NTRS)

    Roffe, G.; Venkataramani, K. S.

    1978-01-01

    The emissions of a lean premixed system of propane/air were measured in a flametube apparatus. Tests were conducted at inlet temperatures of 600K and 800K and pressures of 10 atm and 30 atm over a range of equivalence ratios. The data obtained were combined with previous data taken in the same apparatus to correlate nitrogen oxide emissions with operating conditions. Sampling probe design was found to have a pronounced effect on measured CO levels but did not influence measurements. The most effective probe tested was one which combined thermal and pressure quenching of the gas sample.

  2. Experimental investigation of the phase equilibria in the carbon dioxide-propane-3 M MDEA system

    SciTech Connect

    Jou, F.Y.; Mather, A.E.; Otto, F.D.; Carroll, J.J.

    1995-07-01

    The treating of liquefied petroleum gas (LPG) to remove carbon dioxide and hydrogen sulfide using aqueous alkanolamine solutions is an important aspect of gas processing. One of the amines used in the natural gas industry is methyldiethanolamine (MDEA). Measurements of the phase equilibria in the carbon dioxide-propane-3 M MDEA system have been made at 25 and 40 C at pressures up to 15.5 MPa. Vapor-liquid, liquid-liquid, and vapor-liquid-liquid equilibria were determined. The vapor-liquid equilibrium data were compared with the model of Deshmukh and Mather.

  3. Gas-phase oxidation of propane in the presence of azaporphin compounds

    SciTech Connect

    Enikobpov, N.S.; Moshkina, R.I.; Nikisha, L.V.; Polyak, S.S.; Promyslova, V.V.

    1985-07-01

    The gas-phase oxidation of an equimolar mixture of propane with oxygen was studied in the presence of various polyphthalocyanins: metal-free PPC and mono- and bimetallic complexes PPC-Fe, PPC-Co, PPC-Cu-Fe, and PPC-Mg-Fe. The inhibition of oxidation increases in the series: PPC-Co < PPC-Fe approx. = PPC-Mg-Fe < PPC < PPC-Cu-Fe. The qualitative and quantitative composition of the products is virtually unchanged in comparison with the untreated reactor.

  4. Analysis of ignition behavior in a turbocharged direct injection dual fuel engine using propane and methane as primary fuels

    SciTech Connect

    Polk, A. C.; Gibson, C. M.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2011-10-05

    This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (Ω pilot ∼ 0.2-0.6 and Ω overall ∼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant Ω pilot (> 0.5), increasing Ω overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing Ω overall (at constant Ω pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.

  5. Effect of bromine and chlorine positioning in the induction of renal and testicular toxicity by halogenated propanes.

    PubMed

    Låg, M; Søderlund, E J; Omichinski, J G; Brunborg, G; Holme, J A; Dahl, J E; Nelson, S D; Dybing, E

    1991-01-01

    A series of halogenated propanes were studied for renal and testicular necrogenic effects in the rat and correlated to their ability to induce in vivo renal and testicular DNA damage and in vitro testicular DNA damage. 1,2-Dibromo-3-chloropropane (DBCP) and 1,2,3-tribromopropane were most potent in causing organ damage in both kidney and testes. Extensive necrosis was evident at 85 mumol/kg in kidney and at 170 mumol/kg in testis. The dibromomonochlorinated analogue 1,3-dibromo-2-chloropropane was less organ toxic than DBCP and 1,2,3-tribromopropane, but induced more organ damage than the dichloromonobrominated analogues 1-bromo-2,3-dichloropropane and 1,3-dichloro-2-bromopropane. Dihalogenated propanes were even less necrogenic. These observed differences in toxic potency between the halogenated propanes could not be explained by relative differences in tissue concentrations. The ability of the halogenated propanes to induce DNA damage in vivo correlated well with their ability to induce organ damage. However, DNA damage occurred at lower doses and at a shorter period of exposure than organ necrosis. This indicates that DNA damage might be an initial event in the development of organ necrosis by halogenated propanes in general. Further, testicular DNA damage induced by the halogenated propanes in vivo correlated well with the DNA damage observed in isolated testicular cells in vitro, showing that toxicity was due to in situ activation. The numbers, positions, and the types of halogen substituents appear to be important determinants in causing DNA damage and necrogenic effects.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1793801

  6. Rotational reorientation dynamics of Aerosol-OT reverse micelles formed in near-critical propane

    SciTech Connect

    Heitz, M.P.; Bright, F.V.

    1996-06-01

    The rotational reorientation kinetics of two fluorescent solutes (rhodamine 6G, R6G, and rhodamine 101, R101) have been determined in sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol-OT, AOT) reverse micelles formed in liquid and near-critical propane. We show that the amount of water loading ([water]/[AOT], R), continuous phase density, and temperature all influence the solute rotational dynamics. In all cases, the decay of anisotropy data (i.e., frequency-dependent differential polarized phase angle and polarized modulation ratio) are well described by a bi-exponential decay law. We find that the faster rotational correlation times are similar to but slightly less than the values predicted for an individual AOT reverse micelle rotating in propane. The recovered rotational correlation times range from 200 to 500 ps depending on experimental conditions. This faster rotational process is explained in terms of lateral diffusion of the fluorophore along the water/headgroup interfacial region within the reverse micelle. The recovered values for the slower rotational correlation times range from 7 to 18 ns. These larger rotational reorientation times are assigned to varying micelle-micelle (i.e., tail-tail) interactions in the low-density, highly compressible fluid region. We also quantify the contribution of the reverse micellar {open_quotes}aggregate{close_quotes} to the total decay of anisotropy. {copyright} {ital 1996} {ital Society for Applied Spectroscopy}

  7. Green Bank Telescope Detection of New Interstellar Aldehydes: Propenal and Propanal

    NASA Astrophysics Data System (ADS)

    Hollis, J. M.; Jewell, P. R.; Lovas, F. J.; Remijan, A.; Møllendal, H.

    2004-07-01

    The new interstellar molecules propenal (CH2CHCHO) and propanal (CH3CH2CHO) have been detected largely in absorption toward the star-forming region Sagittarius B2(N) by means of rotational transitions observed with the 100 m Green Bank Telescope (GBT) operating in the range from 18 GHz (λ~1.7 cm) to 26 GHz (λ~1.2 cm). The GBT was also used to observe the previously reported interstellar aldehyde propynal (HC2CHO) in Sagittarius B2(N), which is a known source of large molecules presumably formed on interstellar grains. The presence of these three interstellar aldehydes toward Sagittarius B2(N) strongly suggests that simple hydrogen addition on interstellar grains accounts for successively larger molecular species: from propynal to propenal and from propenal to propanal. Energy sources within Sagittarius B2(N) likely permit the hydrogen addition reactions on grain surfaces to proceed. This work demonstrates that successive hydrogen addition is probably an important chemistry route in the formation of a number of complex interstellar molecules. We also searched for but did not detect the three-carbon sugar glyceraldehyde (CH2OHCHOHCHO).

  8. Catalytic propane reforming mechanism over Mn-Doped CeO2 (111)

    NASA Astrophysics Data System (ADS)

    Krcha, Matthew D.; Janik, Michael J.

    2015-10-01

    MnOx/CeOx mixed oxide systems exhibit encouraging hydrocarbon oxidation activity, without the inclusion of a noble metal. Using density functional theory (DFT) methods, we examined the oxidative reforming path of propane over the Mn-doped CeO2 (1 1 1) surface. A plausible set of elementary reaction steps are identified for conversion of propane to CO/CO2 and H2/H2O over the oxide surface. The rate-limiting reaction process may vary with redox conditions, with C-H dissociation limiting under more oxidizing conditions and more complex reaction sequences, including surface re-oxidation, limiting under highly reducing conditions. The possibility of intermediate desorption from the surface during the reforming process is low, with desorption energies of the intermediates being much less favorable than further surface reactions until CO/CO2 products are formed. The reforming paths over Mn-doped ceria are similar to those previously identified over Zr-doped ceria. The extent of surface reduction and the electronic structure of the surface intermediates are examined.

  9. Surface properties of turbulent premixed propane/air flames at various Lewis numbers

    SciTech Connect

    Lee, T.W.; North, G.L.; Santavicca, D.A. )

    1993-06-01

    Surface properties of turbulent premixed flames including the wrinkled flame perimeter, fraction of the flame pocket perimeter, flame curvature, and orientation distributions have been measured for propane-air flames at Lewis numbers ranging from 0.98 to 1.86 and u[prime]/S[sub L] = 1.42-5.71. The wrinkled flame perimeter is found to be greater for the thermodiffusively unstable Lewis number (Le < 1) by up to 30% in comparison to the most stable condition (Le = 1.86) tested, while the fraction of the flame pocket perimeter shows a similar tendency to be greater for Le < 1. The flame curvature probability density functions are nearly symmetric with respect to the zero mean at all Lewis numbers throughout the range of u[prime]/S[sub L] tested, and show a much stronger dependence on the turbulence condition than on the Lewis number. Similarly, the flame orientation distributions show a trend from anisotropy toward a more uniform distribution with increasing u[prime]/S[sub L] at a similar rate for all Lewis numbers. Thus, for turbulent premixed propane/air flames for a practical range of Lewis number from 0.98 to 1.86, the effect of Lewis number is primarily to affect the flame structures and thereby flame surface areas and flame pocket areas, while the flame curvature and orientation statistics are essentially determined by the turbulence properties.

  10. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect

    Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

    2007-03-01

    Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

  11. Absorption Reveals and Hydrogen Addition Explains New Interstellar Aldehydes: Propenal and Propanal

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Jewell, P. R.; Lovas, F. J.; Remijan, A.; Mollendal, H.

    2004-01-01

    New interstellar molecules propenal (CH2CHCHO) and propanal (CH3CH2CHO) have been detected largely in absorption toward the star-forming region Sagittarius B2(N) by means of rotational transitions observed with the 100-m Green Bank Telescope (GBT) operating in the range of 18 GHz (lambda approximately 1.7 cm) to 26 GHz (lambda approximately 1.2 cm). The GBT was also used to observe the previously reported interstellar aldehyde propynal (HC2CHO) in Sagittarius B2(N) which is known for large molecules believed to form on interstellar grains. The presence of these three interstellar aldehydes toward Sagittarius B2(N) strongly suggests that simple hydrogen addition on interstellar grains accounts for successively larger molecular species: from propynal to propenal and from propenal to propanal. Energy sources within Sagittarius B2(N) likely permit the hydrogen addition reactions on grain surfaces to proceed. This work demonstrates that successive hydrogen addition is probably an important chemistry route in the formation of a number of complex interstellar molecules. We also searched for but did not detect the three-carbon sugar glyceraldehyde (CH2OHCHOHCHO).

  12. Spectral and nonlinear optical studies of Propane-1, 3-diaminium nitrate

    NASA Astrophysics Data System (ADS)

    Ayadi, R.; Lhoste, J.; Ngo, H. M.; Ledoux-Rak, I.; Mhiri, T.; Boujelbene, M.

    2016-08-01

    Propane-1, 3-diaminium nitrate [C3H12N2] (NO3)2 (PDAN), an hybrid organic-inorganic nonlinear optical material combining an acentric octupolar moiety (nitrate) with a centrosymmetric organic molecule (Propane-1, 3-diaminium) was prepared by slow evaporation technique at room temperature from its aqueous solution. Good quality and well-developed crystals of size 0.133 mm×0.092 mm×0.078 mm were harvested from the mother solution. The grown single crystals were characterized for their spectral, thermal, linear and second order nonlinear optical properties. Solid-state 13C and 1H MAS-NMR spectroscopies are in agreement with the X-ray structure. The decomposition of the title compound is confirmed by the thermogravimetric analysis (TGA). The UV-visible absorption spectrum, show that PDAN is suitable for frequency doubling applications in a wide spectral range in the visible and near IR. The NLO response of the crystal was evaluated using a SHG powder technique, indicating an effective quadratic nonlinear coefficient two times higher than that of KDP in spite of the low hyperpolarizability of the nitrate ion and of the centrosymmetric character of the diaminium derivative.

  13. Influence of propane additives on the detonation characteristics of H2-air mixtures

    NASA Astrophysics Data System (ADS)

    Cheng, Guanbing; Bauer, Pascal; Zitoun, Ratiba

    2014-03-01

    Hydrogen is more and more considered as a potential fuel for propulsion applications. However, due to its low ignition energy and wide flammability limits, H2-air mixtures raise a concern in terms of safety. This aspect can be partly solved by adding an alkane to these mixtures, which plays the role of an inhibitor. The present paper provides data on such binary fuel-air mixtures where various amounts of propane are added to hydrogen. The behavior of the corresponding mixtures, in terms of detonation characteristics and other fundamental properties, such as the cell size of the detonation front and induction delay, are presented and discussed for a series of equivalence ratios and propane addition. The experimental detonation velocity is in good agreement with calculated theoretical Chapman-Jouguet values. Based on soot tracks records, the cell size λ is measured, whereas the induction length L i is derived from data using a GRI-Mech kinetic mechanism. These data allow providing a value of the coefficient K = λ/L i .

  14. Elastic properties of methane-propane mixed gas hydrate under high pressure

    NASA Astrophysics Data System (ADS)

    Miwa, Shinya; Kanou, Masaki; Kume, Tetsuji; Sasaki, Shigeo

    2013-06-01

    Methane hydrate (MH) is widely observed in Earth's environment such as permafrost and deep sea floors. At low temperature and low pressure conditions, pure MH crystallizes a cubic structure I (sI) which consists of hydrogen-bonded two small and six medium water cages which enclathrate methane molecules as guests. However, actual MH in deep sea deposits contains not only methane molecules but also ethane and propane molecules. Therefore, the estimation of elastic properties and mechanical stability for both sI and structure II (sII) are required for the safe extraction of methane gas from the deep sea floors. The purpose of this study is to determine the elastic properties of methane-propane mixed gas hydrate (MPH) with sII by applying the high-pressure Brillouin spectroscopy to a single crystal of MPH-sII grown in a diamond anvil cell. The obtained elastic constant C11 of MPH-sII showing independent of pressure is obviously different from that of pure MH-sI. On the other hand, the C12 and C44 are similar to MH-sI. The present results suggest that a variety of gas hydrates have the individual elastic properties and stability depending on the gas hydrate structures.

  15. State Heating Oil and Propane Program, 1990--1991 heating season. Final technical report

    SciTech Connect

    Not Available

    1991-06-06

    The following discussion summarizes the survey approach and results of the Department of Public Service`s survey of retail fuel oil and propane prices during the 1990--91 heating season. The semi-monthly phone surveys were conducted in cooperation with the US Department of Energy`s State Fuel Oil and Propane Program, which coordinated surveys of heating fuel prices by 25 eastern and midwest states. This federal/state program serves as a method for fast collection, analysis, and dissemination of information on current residential prices. No other information source meets needs for timely retail price information over the course of the heating season. For the 1990--91 heating season, the Minnesota Department of Public Service (MN/DPS) expanded the scope of its survey effort to include regional price data. Surveys were conducted with 160 retailers, including 59 respondents from the DOE samples, to provide a reasonable sample size for each region. Fuel oil retailers were also asked for updates on their secondary inventory levels.

  16. State Heating Oil and Propane Program, 1990--1991 heating season

    SciTech Connect

    Not Available

    1991-06-06

    The following discussion summarizes the survey approach and results of the Department of Public Service's survey of retail fuel oil and propane prices during the 1990--91 heating season. The semi-monthly phone surveys were conducted in cooperation with the US Department of Energy's State Fuel Oil and Propane Program, which coordinated surveys of heating fuel prices by 25 eastern and midwest states. This federal/state program serves as a method for fast collection, analysis, and dissemination of information on current residential prices. No other information source meets needs for timely retail price information over the course of the heating season. For the 1990--91 heating season, the Minnesota Department of Public Service (MN/DPS) expanded the scope of its survey effort to include regional price data. Surveys were conducted with 160 retailers, including 59 respondents from the DOE samples, to provide a reasonable sample size for each region. Fuel oil retailers were also asked for updates on their secondary inventory levels.

  17. Assessment of steady-state propane-gas tracer method for determining reaeration coefficients, Chenango River, New York

    USGS Publications Warehouse

    Yotsukura, Nobuhiro; Steadfast, D.A.; Jirka, G.H.

    1984-01-01

    A test was conducted in a meandering 9.6-km reach of the Chenango River, New York, to assess the feasibility of a two-dimensional steady-state propane-gas tracer method as a means of estimating in situ reaeration coefficients. It is concluded that the method, which combines an instantaneous release of dye tracer with a long duration release of propane gas tracer, is very feasible for determining gas-desorption coefficients and wind effects in a wide river. However, the method does not appear to be ready for immediate operational applications. (USGS)

  18. Effect of ultrasonic irradiation on the catalytic performance of PtSnNa/ZSM-5 catalyst for propane dehydrogenation.

    PubMed

    Liu, Hui; Zhang, Shaobo; Zhou, Yuming; Zhang, Yiwei; Bai, Linyang; Huang, Li

    2011-01-01

    Effects of ultrasonic irradiation on the catalytic performance of PtSnNa/ZSM-5 catalyst for propane dehydrogenation were studied. XRD, TEM and TPDA were used to characterize the catalysts. From the results of XRD, the structure of ZSM-5 was not destroyed by the ultrasound. Ultrasound promoted the dispersion of Pt on the surface of the carrier during impregnation and decreased the size of Pt particles. Compared with the catalyst prepared by conventional impregnation, the supported catalyst prepared by ultrasonic irradiation showed better catalytic activity in propane dehydrogenation. PMID:20452811

  19. Propane absorption band intensities and band model parameters from 680 to 1580/cm at 296 and 200 K

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Valero, F. P. J.; Varanasi, P.

    1984-01-01

    Band intensities and profiles have been measured for the propane absorption bands from 680 to 1580/cm at 296 and 200 K. This work was stimulated by the discovery of several propane bands in the spectrum of Titan by the Voyager 1 spacecraft. The low temperature laboratory data show that the bands become narrower and the Q branches of the bands somewhat stronger than they are at room temperature. Random band model parameters were determined over the entire region from the 42 spectra obtained at room temperature.

  20. FT-IR investigation of the partitioning of sodium bis(2-ethylhexyl) sulfosuccinate between an aqueous and a propane phase

    SciTech Connect

    Yee, G.G.; Fulton, J.L.; Blitz, J.P.; Smith, R.D. )

    1991-02-07

    The partitioning of the surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT) from a buffered aqueous phase into a near-critical propane phase was investigated by using Fourier transform infrared spectroscopy. The partitioning of AOT is shown to be dependent upon the fluid pressure as well as upon the molar water-to-surfactant ratio, W. The uptake of water into the propane microemulsion phase coincides with the partitioning of AOT. The phase behavior of this system appears to be controlled by the attractive interactions between droplets in the microemulsion phase, as well as from limitations upon the curvature of the interfacial surfactant layer. Potential application of these systems for separations are discussed.

  1. Formation of M2+(O2)(C3H8) species in alkaline-earth-exchanged Y zeolite during propane selective oxidation.

    PubMed

    Xu, Jiang; Mojet, Barbara L; van Ommen, Jan G; Lefferts, Leon

    2005-10-01

    The adsorption of oxygen and d2-propane (CH3CD2CH3) on a series of alkaline-earth-exchanged Y zeolite at room temperature was studied with in situ infrared spectroscopy. Surprisingly at room temperature, oxygen adsorption led to the formation of supercage M2+(O2) species. Further, at low propane coverage, propane was found to adsorb linearly on Mg2+ cations, but a ring-adsorption structure was observed for propane adsorbing on Ca2+, Sr2+, and Ba2+ cations. It is demonstrated that O2 and propane can simultaneously attach to one active center (M2+) to form a M2+(O2)(C3H8) species, which is proposed to be the precursor in thermal propane selective oxidation. Selectivity to acetone in the propane oxidation reaction decreases with increasing temperature and cation size due to the formation of 2-propanol and carboxylate ions. An extended reaction scheme for the selective oxidation of propane over alkaline earth exchanged Y zeolites is proposed. PMID:16853364

  2. Identification of Methane, Ethane, and Propane Oxidizing Bacteria at Marine Hydrocarbon Seeps by Stable Isotope Probing

    NASA Astrophysics Data System (ADS)

    Redmond, M.; Ding, H.; Friedrich, M. W.; Valentine, D. L.

    2008-12-01

    Hydrocarbon seeps emit substantial amounts of oil and natural gas into the marine environment, where they can be oxidized by microorganisms in the sediment and water column. Here, we used stable isotope probing of DNA and lipid biomarkers to identify the microorganisms actively consuming 13C-labeled natural gas compounds in seep sediment samples. Surface sediment was collected from the Coal Oil Point seep field (offshore Santa Barbara, California, USA) and incubated under aerobic conditions with 13C labeled methane, ethane, or propane for up to 37 days, with sediment sub-samples taken at 3-4 intermediate time points. DNA was extracted from sediment and separated by CsCl density gradient centrifugation. The microbial community in each fraction was profiled using T-RFLP, and bacterial 16S rRNA gene clone libraries were constructed from un-incubated hydrocarbon seep sediment and selected isotopically 'heavy' (13C) and 'light' (12C) gradient fractions from ethane incubations. All clone libraries were dominated by sequences from members of the family Rhodobacteraceae (>25% of sequences) and a diverse group of Gammaproteobacteria, including sequences related to those of methylotrophs and to those of bacteria known to consume the longer-chain alkanes present in crude oil. After 14 days of incubation, the relative abundance of Rhodobacteraceae was higher in 'heavy' fractions from the 13C-ethane incubation than in 'light' fractions, suggesting incorporation of 13C label. The Rhodobacteraceae are very diverse metabolically, but have often been observed in abundance in oil contaminated seawater. Several members of this group have been shown to oxidize longer chain alkanes (C10 or higher), but none have been previously linked to the consumption of the gaseous alkanes ethane, propane, and butane. For the final time point, 13C content of phospholipid fatty acids (PLFA) were also analyzed, showing substantial incorporation of 13C over 37 days. In the methane incubation

  3. Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia

    SciTech Connect

    Argyle, Morris D.; Chen, Kaidong; Bell, Alexis T.; Iglesia, Enrique

    2001-09-11

    The catalytic properties of Al2O3-supported vanadia with a wide range of VOx surface density (1.4-34.2 V/nm2) and structure were examined for the oxidative dehydrogenation of ethane and propane. UV-visible and Raman spectra showed that vanadia is dispersed predominantly as isolated monovanadate species below {approx}2.3 V/nm2. As surface densities increase, two-dimensional polyvanadates appear (2.3-7.0 V/nm2) along with increasing amounts of V2O5 crystallites at surface densities above 7.0 V/nm2. The rate constant for oxidative dehydrogenation (k1) and its ratio with alkane and alkene combustion (k2/k1 and k3/k1, respectively) were compared for both alkane reactants as a function of vanadia surface density. Propene formation rates (per V-atom) are {approx}8 times higher than ethene formation rates at a given reaction temperature, but the apparent ODH activation energies (E1) are similar for the two reactants and relatively insensitive to vanadia surface density. Ethene and propene formation rates (per V-atom) are strongly influenced by vanadia surface density and reach a maximum value at intermediate surface densities ({approx}8 V/nm2). The ratio of k2/k1 depends weakly on reaction temperature, indicating that activation energies for alkane combustion and ODH reactions are similar. The ratio of k2/k1 is independent of surface density for ethane, but increase slightly with vanadia surface density for propane, suggesting that isolated structures prevalent at low surface densities are slightly more selective for alkane dehydrogenation reactions. The ratio of k3/k1 decreases markedly with increasing reaction temperature for both ethane and propane ODH. Thus, the apparent activation energy for alkene combustion (E3) is much lower than that for alkane dehydrogenation (E1) and the difference between these two activation energies decreases with increasing surface density. The lower alkene selectivities observed at high vanadia surface densities are attributed to an

  4. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps

    PubMed Central

    Jaekel, Ulrike; Musat, Niculina; Adam, Birgit; Kuypers, Marcel; Grundmann, Olav; Musat, Florin

    2013-01-01

    The short-chain, non-methane hydrocarbons propane and butane can contribute significantly to the carbon and sulfur cycles in marine environments affected by oil or natural gas seepage. In the present study, we enriched and identified novel propane and butane-degrading sulfate reducers from marine oil and gas cold seeps in the Gulf of Mexico and Hydrate Ridge. The enrichment cultures obtained were able to degrade simultaneously propane and butane, but not other gaseous alkanes. They were cold-adapted, showing highest sulfate-reduction rates between 16 and 20 °C. Analysis of 16S rRNA gene libraries, followed by whole-cell hybridizations with sequence-specific oligonucleotide probes showed that each enrichment culture was dominated by a unique phylotype affiliated with the Desulfosarcina-Desulfococcus cluster within the Deltaproteobacteria. These phylotypes formed a distinct phylogenetic cluster of propane and butane degraders, including sequences from environments associated with hydrocarbon seeps. Incubations with 13C-labeled substrates, hybridizations with sequence-specific probes and nanoSIMS analyses showed that cells of the dominant phylotypes were the first to become enriched in 13C, demonstrating that they were directly involved in hydrocarbon degradation. Furthermore, using the nanoSIMS data, carbon assimilation rates were calculated for the dominant cells in each enrichment culture. PMID:23254512

  5. A metal-organic framework-based splitter for separating propylene from propane.

    PubMed

    Cadiau, A; Adil, K; Bhatt, P M; Belmabkhout, Y; Eddaoudi, M

    2016-07-01

    The chemical industry is dependent on the olefin/paraffin separation, which is mainly accomplished by using energy-intensive processes. We report the use of reticular chemistry for the fabrication of a chemically stable fluorinated metal-organic framework (MOF) material (NbOFFIVE-1-Ni, also referred to as KAUST-7). The bridging of Ni(II)-pyrazine square-grid layers with (NbOF5)(2-) pillars afforded the construction of a three-dimensional MOF, enclosing a periodic array of fluoride anions in contracted square-shaped channels. The judiciously selected bulkier (NbOF5)(2-) caused the looked-for hindrance of the previously free-rotating pyrazine moieties, delimiting the pore system and dictating the pore aperture size and its maximum opening. The restricted MOF window resulted in the selective molecular exclusion of propane from propylene at atmospheric pressure, as evidenced through multiple cyclic mixed-gas adsorption and calorimetric studies. PMID:27387945

  6. Numerical simulation of Jet-A combustion approximated by improved propane chemical kinetics

    NASA Technical Reports Server (NTRS)

    Ying, Shuh-Jing; Nguyen, Hung Lee

    1991-01-01

    Through the effort devoted to the chemical kinetics for propane air combustion, three mechanisms are developed. The full mechanism consists of 131 reactions. This mechanism is used as a guide for the evaluation of other mechanisms, but because of the long expected cpu time, it is not to be incorporated into the computer code KIVA-II for actual simulation. Through the sensitivity analysis, a reduced mechanism of 45 reactions is produced. But the calculated results from the 45 reaction mechanism are always low in temperature. Some efforts are devoted to correct this situation and details are included in this report. A simplified mechanism of reactions is successfully improved and computed results are compared with experimental data. Contour plots of physical parameters and species concentrations and results for emission indices of CO and NOx are presented.

  7. Equation of state and phase behavior of a propane-tetrafluoroethane mixture

    NASA Astrophysics Data System (ADS)

    Vasserman, A. A.; Mal'chevsky, V. P.

    2012-09-01

    A general equation of state was derived for a propane-tetrafluoroethane mixture in a form representing the free Helmholtz energy of a mixture as the function of density, temperature, and composition. Coefficients of equation were determined according to data on the density of the mixture and assuming the equilibrium condition of phases. The equation describes the thermodynamic properties of vapor and liquid in the temperature range from 255 to 400 K under pressures up to 6 MPa. The thermodynamic behavior of the mixture at the saturation state was analyzed. It is established that the difference between the temperatures of saturated vapor and of liquid on isobars for four compositions did not exceed 1.8 K.

  8. Effect of superficial velocity on vaporization pressure drop with propane in horizontal circular tube

    NASA Astrophysics Data System (ADS)

    Novianto, S.; Pamitran, A. S.; Nasruddin, Alhamid, M. I.

    2016-06-01

    Due to its friendly effect on the environment, natural refrigerants could be the best alternative refrigerant to replace conventional refrigerants. The present study was devoted to the effect of superficial velocity on vaporization pressure drop with propane in a horizontal circular tube with an inner diameter of 7.6 mm. The experiments were conditioned with 4 to 10 °C for saturation temperature, 9 to 20 kW/m2 for heat flux, and 250 to 380 kg/m2s for mass flux. It is shown here that increased heat flux may result in increasing vapor superficial velocity, and then increasing pressure drop. The present experimental results were evaluated with some existing correlations of pressure drop. The best prediction was evaluated by Lockhart-Martinelli (1949) with MARD 25.7%. In order to observe the experimental flow pattern, the present results were also mapped on the Wang flow pattern map.

  9. Carbon monoxide exposures from propane-powered floor burnishers following addition of emissions controls

    SciTech Connect

    Demer, F.R.

    1998-11-01

    Previous published work by this author suggests that propane-powered floor burnisher use represents a potentially serious health hazard from carbon monoxide exposures, particularly for susceptible individuals. This earlier study was repeated using burnishers retrofitted with emission controls consisting of self-aspirating catalytic mufflers and computerized air/fuel monitors and alarms. Real-time carbon monoxide detectors with data-logging capabilities were placed on the burnishers in the breathing zones of operators during burnisher use. Carbon monoxide levels were recorded every 30 seconds. Ventilation and physical characteristics of the spaces of burnisher use were characterized, as were burnisher maintenance practices. Thirteen burnishing events were monitored under conditions comparable to previously published monitoring. All carbon monoxide exposures were well below even the most conservative recommended limits from the American Conference of Governmental Industrial Hygienists. Potential failures of the emission controls were also identified and included air filter blockage, spark plug malfunction, and faulty alarm function design.

  10. Quantification of primary versus secondary C-H bond cleavage in alkane activation: Propane on Pt

    SciTech Connect

    Weinberg, W.H.; Sun, Yongkui )

    1991-08-02

    The trapping-mediated dissociative chemisorption of three isotopes of propane (C{sub 3}H{sub 8}, CH{sub 3}, CD{sub 2}CH{sub 3}, and C{sub 3}D{sub 8}) has been investigated on the Pt(110)-(1 {times} 2) surface, and both the apparent activation energies and the preexponential factors of the surface reaction rate coefficients have been measured. In addition, the probabilities of primary and secondary C-H bond cleavage for alkane activation on a surface were evaluated. The activation energy for primary C-H bond cleavage was 425 calories per mole greater than that of secondary C-H bond cleavage, and the two true activation energies that embody the single measured activation energy were determined for each of the three isotopes. Secondary C-H bond cleavage is also preferred on entropic grounds, and the magnitude of the effect was quantified.

  11. Subcritical extraction of flaxseed oil with n-propane: Composition and purity.

    PubMed

    Zanqui, Ana Beatriz; de Morais, Damila Rodrigues; da Silva, Claudia Marques; Santos, Jandyson Machado; Gomes, Sandra Terezinha Marques; Visentainer, Jesuí Vergílio; Eberlin, Marcos Nogueira; Cardozo-Filho, Lúcio; Matsushita, Makoto

    2015-12-01

    Flaxseed (Linum usitatissimum L.) oil was obtained via subcritical n-propane fluid extraction (SubFE) under different temperatures and pressures with an average yield of 28% and its composition, purity and oxidative stability were compared to oils obtained via conventional solvent extraction methods (SEMs). When the oxidative stability was measured by differential scanning calorimetry, the oil was found to be up to 5 times more resistant to lipid oxidation as compared to the SEM oils. Direct infusion electrospray ionization mass spectrometry (ESI-MS) analysis showed characteristic and similar TAG profiles for SubFE and SEMs oils but higher purity for the SubFE oil. The flaxseed oil content of β-tocopherol, campesterol, stigmasterol and sitosterol were quantified via GC-MS. SubFE showed to be a promising alternative to conventional SEM since SubFE provides an oil with higher purity and higher oxidation stability and with comparable levels of biologically active components. PMID:26041217

  12. Oxidative dehydrogenation of ethane and propane over Ca-Co-P catalysts

    NASA Astrophysics Data System (ADS)

    Aaddane, A.; Kacimi, M.; Ziyad, M.

    2005-03-01

    Different compositions of calcium-cobalt phosphate Ca{3-x}Cox(PO{4})2 (0≤ x≤ 3) were synthesized by the precipitation method. The X-ray diffraction patterns showed that in the range 0 ≤x≤0.3 the solid displays a whitlockite-type structure which belongs to rhombohedral symmetry with the space group R3c (Z = 6). U.V-visible investigations showed that Co2+ ions occupy the M(5) sites of the phosphate. The same technique revealed that all cobalt cations exist under the +II oxidation state. Pure tricalcium phosphate β -Ca{3}(PO{4})2 was found inactive in the ODH reactions of ethane and propane. An increase of Co2+ concentration in the catalysts improved the performances.

  13. Emissions measurements for a lean premixed propane/air system at pressures up to 30 atmospheres

    NASA Technical Reports Server (NTRS)

    Roffe, G.

    1979-01-01

    A series of experiments was conducted in which the emissions of a lean premixed system of propane and air were measured at pressures of 5, 10, 20 and 30 atm in a flametube apparatus. Measurements were made for inlet temperatures between 600K and 1000K and combustor residence times from 1.0 to 3.0 msec. A schematic of the test rig is presented along with graphs showing emissions measurements for nitric oxide, carbon monoxide, and UHC as functions of bustor residence time for various equivalence ratios, entrance temperatures and pressures; typical behavior of emissions as a function of equivalence ratio for a fixed residence time. Correlations of nitric oxide emission index with adiabatic flame temperature for a fixed residence time of 2 msec and pressures from 5 to 30 atm; and adiabatic flame temperature corresponding to CO breakpoint conditions for 2 msec residence time as a function of inlet temperature.

  14. Vapor-liquid equilibria for the binary difluoromethane (R-32) + propane (R-290) mixture

    SciTech Connect

    Higashi, Y. . Dept. of Mechanical Engineering)

    1999-03-01

    The vapor-liquid equilibrium of the mixture composed of difluoromethane (R-32) and propane (R-290) was studied in the temperature range between 273.15 and 313.15 K. The experimental uncertainties of temperature, pressure, and composition measurements were estimated to be within [+-]10 mK, [+-]3 kPa, and [+-]0.4 mol%, respectively. Comparisons between the present data and available experimental data were made using the Helmholz free energy mixture model (HMM) adopted in the thermophysical properties program package, REFPOP 6.0, as a baseline. In addition, the existence of an azeotrope and the determination of new adjustable parameters for HMM for the R-32 + R-290 mixture are discussed.

  15. Vapor-liquid equilibria for the binary difluoromethane (R-32) + propane (R-290) mixture

    SciTech Connect

    Higashi, Y.

    1999-03-01

    The vapor-liquid equilibrium of the mixture composed of difluoromethane (R-32) and propane (R-290) was studied in the temperature range between 273.15 and 313.15 K. The experimental uncertainties of temperature, pressure, and composition measurements were estimated to be within {+-}10 mK, {+-}3 kPa, and {+-}0.4 mol%, respectively. Comparisons between the present data and available experimental data were made using the Helmholz free energy mixture model (HMM) adopted in the thermophysical properties program package, REFPOP 6.0, as a baseline. In addition, the existence of an azeotrope and the determination of new adjustable parameters for HMM for the R-32 + R-290 mixture are discussed.

  16. Lean Combustion Limits of a Confined Premixed-Prevaporized Propane Jet

    NASA Technical Reports Server (NTRS)

    Huck, K. L.; Marek, C. J.

    1978-01-01

    Lean blowout limits were reported for a premixed prevaporized propane jet issuing into a cylindrical combustor. A single hole in a flat plate was used as a flameholder. Flameholders with various hole diameters were used. Jet velocities were varied from 3 to 290 meters per second. The combustor cross sectional area was changed by using different quartz liners of 12.7 and 22.2 millimeters diameters. As a result the combustor Reynolds number varied from 1000 to 9000. Stability was achieved at laminar as well as turbulent conditions. Three zones of flame stability were observed. The blowout equivalence ratio varied with step size and the combustor and jet Reynolds numbers. The combustor inlet mixture temperature was 395 K, and the combustor pressure was 1 atmosphere.

  17. Carbon nanofibers modified with heteroatoms as metal-free catalysts for the oxidative dehydrogenation of propane.

    PubMed

    Marco, Yanila; Roldán, Laura; Muñoz, Edgar; García-Bordejé, Enrique

    2014-09-01

    Carbon nanofibres (CNFs) were modified with B and P by an ex situ approach. In addition, CNFs doped with N were prepared in situ using ethylenediamine as the N and C source. After calcination, the doped CNFs were used as catalysts for the oxidative dehydrogenation of propane. For B-CNFs, the effects of boron loading and calcination temperature on B speciation and catalytic conversion were studied. For the same reaction temperatures and conversions, B- and P-doped CNFs exhibited higher selectivities to propene than pristine CNFs. The N-CNFs were the most active but the least selective of the catalysts tested here. Our results also show that the type of P precursor affects the selectivity to propene and that CNFs modified using triphenylphosphine as the precursor provided the highest selectivity at isoconversion. PMID:25138580

  18. Main-group compounds selectively oxidize mixtures of methane, ethane, and propane to alcohol esters.

    PubMed

    Hashiguchi, Brian G; Konnick, Michael M; Bischof, Steven M; Gustafson, Samantha J; Devarajan, Deepa; Gunsalus, Niles; Ess, Daniel H; Periana, Roy A

    2014-03-14

    Much of the recent research on homogeneous alkane oxidation has focused on the use of transition metal catalysts. Here, we report that the electrophilic main-group cations thallium(III) and lead(IV) stoichiometrically oxidize methane, ethane, and propane, separately or as a one-pot mixture, to corresponding alcohol esters in trifluoroacetic acid solvent. Esters of methanol, ethanol, ethylene glycol, isopropanol, and propylene glycol are obtained with greater than 95% selectivity in concentrations up to 1.48 molar within 3 hours at 180°C. Experiment and theory support a mechanism involving electrophilic carbon-hydrogen bond activation to generate metal alkyl intermediates. We posit that the comparatively high reactivity of these d(10) main-group cations relative to transition metals stems from facile alkane coordination at vacant sites, enabled by the overall lability of the ligand sphere and the absence of ligand field stabilization energies in systems with filled d-orbitals. PMID:24626925

  19. Modification of Wood Pellets and Propane Co-firing in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Barmina, Inese; Zake, Maija; Krishko, Vera; Gedrovics, Martins

    2010-01-01

    When burning fossil fuels and renewable energy resources, greenhouse emissions (GHG) are emitted into the atmosphere. One of the options to reduce GHG emissions is to apply a magnetic field. The effect of a gradient magnetic field on the gasification of renewable fuel and the combustion of volatiles by applying the field to the bottom part of the swirl flame with recirculation is studied for the conditions of field-enhanced reverse heat and mass transfer of paramagnetic flame species up to the layer of wood pellets. The aim of research to investigate the magnetic field effect on swirling flame dynamics for the conditions of self-sustaining wood fuel combustion and by cofiring with propane flow.

  20. Synthesis and Characterization of Gold Clusters Ligated with 1,3-Bis(dicyclohexylphosphino)propane

    SciTech Connect

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2013-09-01

    In this multidisciplinary study we combine chemical reduction synthesis of novel gold clusters in solution with high-resolution analytical mass spectrometry (MS) to gain insight into the composition of the gold clusters and how their size, ionic charge state and ligand substitution influences their gas-phase fragmentation pathways. Ultra small cationic gold clusters ligated with 1,3-bis(dicyclohexylphosphino)propane (DCPP) were synthesized for the first time and introduced into the gas phase using electrospray ionization (ESI). Mass-selected cluster ions were fragmented employing collision induced dissociation (CID) and the product ions were analysed using MS. The solutions were found to contain the multiply charged cationic gold clusters Au9L43+, Au13L53+, Au6L32+, Au8L32+ and Au10L42+ (L = DCPP). The gas-phase fragmentation pathways of these cluster ions were examined systematically employing CID combined with MS. In addition, CID experiments were performed on related gold clusters of the same size and ionic charge state but capped with 1,3-bis(diphenylphosphino)propane (DPPP) ligands containing phenyl functional groups at the two phosphine centers instead of cyclohexane rings. It is shown that this relatively small change in the molecular substitution of the two phosphine centers in diphosphine ligands (C6H11 versus C6H5) exerts a pronounced influence on the size of the species that are preferentially formed in solution during reduction synthesis as well as the gas-phase fragmentation channels of otherwise identical gold cluster ions. The mass spectrometry results indicate that in addition to the length of the alkyl chain between the two phosphine centers, the substituents at the phosphine centers also play a crucial role in determining the composition, size and stability of diphosphine ligated gold clusters synthesized in solution.

  1. Flame Inhibition by Phosphorus-Containing Compounds in Lean and Rich Propane Flames

    SciTech Connect

    Curran, H; Korobeinichev, O P; Shvartsberg, V M; Shmakov, A G; Bolshova, T A; Jayaweera, T M; Melius, C F; Pitz, W J; Westbrook, C K

    2003-12-19

    Chemical inhibition of laminar propane flames by organophosphorus compounds has been studied experimentally, using a laboratory Mache Hebra nozzle burner and a flat flame burner with molecular beam mass spectrometry (MBMS), and with a computational flame model using a detailed chemical kinetic reaction mechanism. Both fuel-lean and fuel-rich propane flames were studied to examine the role of equivalence ratio in flame inhibition. The experiments examined a wide variety of organophosphorus compounds. We report on the experimental species flame profiles for tri-methyl phosphate (TMP) and compare them with the species flame profile results from modeling of TMP and di-methyl methyl phosphonate (DMMP). Both the experiments and kinetic modeling support and illustrate previous experimental studies in both premixed and non-premixed flames that inhibition efficiency is effectively the same for all of the organophosphorus compounds examined, independent of the molecular structure of the initial inhibitor molecule. The chemical inhibition is due to reactions involving the small P-bearing species HOPO{sub 2} and HOPO that are produced by the organophosphorus compounds (OPCs). The ratios of the HOPO{sub 2} and HOPO concentrations differ between the lean and rich flames, with HOPO{sub 2} dominant in lean flames while HOPO dominates in rich flames. The resulting HOPO{sub 2} and HOPO species profiles do not depend significantly on the initial source of the HOPO{sub 2} and HOPO and thus are relatively insensitive to the initial OPC inhibitor. A more generalized form of the original Twarowski mechanism for hydrocarbon radical recombination is developed to account for the results observed, and new theoretical values have been determined for heats of formation of the important P-containing species, using the BAC-G2 method.

  2. Third order optical nonlinearity and optical limiting studies of propane hydrazides

    NASA Astrophysics Data System (ADS)

    Naseema, K.; Manjunatha, K. B.; Sujith, K. V.; Umesh, G.; Kalluraya, Balakrishna; Rao, Vijayalakshmi

    2012-09-01

    Four hydrazones, 2-(4-isobutylphenyl)-N'-[phenylmethylene] propanehydrazide (P1), 2-(4-isobutylphenyl)-N'-[(4- tolyl)methylene] propane hydrazide (P2), 2-(4-isobutylphenyl)-N'-[1-(4- chlorophenyl)ethylidene] propanehydrazide (P3) and 2-(4-isobutylphenyl)-N'-[1-(4-Nitrrophenyl)ethylidene] propane hydrazide (P4) were synthesized and their third order nonlinear optical properties have been investigated using a single beam Z-scan technique with nanosecond laser pulses at 532 nm. The measurement on the compound-P1 is not reported as there is no detectable nonlinear response. Open aperture data of the other three compounds indicate two photon absorption at this wavelength. The nonlinear refractive index n2, nonlinear absorption coefficient β, magnitude of effective third order susceptibility χ(3), the second order hyperpolarizability γh and the coupling factor ρ have been estimated. The values obtained are comparable with the values obtained for 4-methoxy chalcone derivatives and dibenzylideneacetone derivatives. The experimentally determined values of β, n2, Re χ(3) and Im χ(3), γh and ρ of the compound-P4 are 1.42 cm/GW, -0.619 × 10-11 esu, -0.663 × 10-13 esu, 0.22 × 10-13 esu, 0.34 × 10-32 esu and 0.33 respectively. Further the compound-P4 exhibited the best optical power limiting behavior at 532 nm among the compounds studied. Our studies suggest that compounds P2, P3 and P4 are potential candidates for the optical device applications such as optical limiters and optical switches.

  3. Crystal structure of bis­(propane-1,3-diaminium) hexa­fluorido­aluminate di­aqua­tetra­fluorido­aluminate tetra­hydrate

    PubMed Central

    Abdi, Insaf; Al-Sadhan, Khulood; Ben Ali, Amor

    2014-01-01

    The title compound, (C3H12N2)2[AlF6][AlF4(H2O)2]·4H2O, was obtained by a solvothermal method in ethanol as solvent and with aluminium hydroxide, HF and 1,3-di­amino­propane as educts. The asymmetric unit contains a quarter each of two crystallographically independent propane-1,3-di­ammonium dicat­ions, [AlF6]3− and [AlF4(H2O)2]− anions and four water mol­ecules. The cations, anions and three of the independent water mol­ecules are situated on special positions mm, while the fourth water mol­ecule is disordered about a mirror plane. In the crystal, inter­molecular N—H⋯F and O—H⋯F hydrogen bonds link the cations and anions into a three-dimensional framework with the voids filled by water mol­ecules, which generate O—H⋯O hydrogen bonds and further consolidate the packing. PMID:25552968

  4. Multiscale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Reactions.

    PubMed

    Burke, Michael P; Goldsmith, C Franklin; Klippenstein, Stephen J; Welz, Oliver; Huang, Haifeng; Antonov, Ivan O; Savee, John D; Osborn, David L; Zádor, Judit; Taatjes, Craig A; Sheps, Leonid

    2015-07-16

    The present paper describes further development of the multiscale informatics approach to kinetic model formulation of Burke et al. (Burke, M. P.; Klippenstein, S. J.; Harding, L. B. Proc. Combust. Inst. 2013, 34, 547-555) that directly incorporates elementary kinetic theories as a means to provide reliable, physics-based extrapolation of kinetic models to unexplored conditions. Here, we extend and generalize the multiscale informatics strategy to treat systems of considerable complexity-involving multiwell reactions, potentially missing reactions, nonstatistical product branching ratios, and non-Boltzmann (i.e., nonthermal) reactant distributions. The methodology is demonstrated here for a subsystem of low-temperature propane oxidation, as a representative system for low-temperature fuel oxidation. A multiscale model is assembled and informed by a wide variety of targets that include ab initio calculations of molecular properties, rate constant measurements of isolated reactions, and complex systems measurements. Active model parameters are chosen to accommodate both "parametric" and "structural" uncertainties. Theoretical parameters (e.g., barrier heights) are included as active model parameters to account for parametric uncertainties in the theoretical treatment; experimental parameters (e.g., initial temperatures) are included to account for parametric uncertainties in the physical models of the experiments. RMG software is used to assess potential structural uncertainties due to missing reactions. Additionally, branching ratios among product channels are included as active model parameters to account for structural uncertainties related to difficulties in modeling sequences of multiple chemically activated steps. The approach is demonstrated here for interpreting time-resolved measurements of OH, HO2, n-propyl, i-propyl, propene, oxetane, and methyloxirane from photolysis-initiated low-temperature oxidation of propane at pressures from 4 to 60 Torr and

  5. Flame behaviors of propane/air premixed flame propagation in a closed rectangular duct with a 90-deg bend

    NASA Astrophysics Data System (ADS)

    He, Xuechao; Sun, Jinhua; Yuen, K. K.; Ding, Yibin; Chen, Sining

    2008-11-01

    Experiments of flame propagation in a small, closed rectangular duct with a 90° bend were performed for a propane-air mixture. The high speed camera and Schlieren techniques were used to record images of flame propagation process in the combustion pipe. Meanwhile, the fine thermocouples and ion current probes were applied to measure the temperature distribution and reaction intensity of combustion. The characteristics of propane-air flame and its microstructure were analyzed in detail by the experimental results. In the test, the special tulip flame formation was observed. Around the bend, the flame tip proceeded more quickly at the lower side with the flame front elongated toward the axial direction. And transition to turbulent flame occurred. It was suggested that fluctuations of velocity, ion current and temperature were mainly due to the comprehensive effects of multi-wave and the intense of turbulent combustion.

  6. Effect of ceria on hydrogen production by auto-thermal reforming of propane over supported nickel catalysts.

    PubMed

    Kim, Woo Ri; Ahn, Ho Geun; Shin, Jae Soon; Kim, Young Chul; Moon, Dong Ju; Park, Nam Cook

    2013-01-01

    Autothermal reforming of propane was studied with respect to the addition of ceria to the supported Ni catalysts. Ni/Al2O3 catalysts showed a higher activity than Ni/MgAl catalysts. It was related to the ease of the catalyst reduction. Ni/Ce/MgAl and Ni/Ce/Al2O3 catalysts showed higher propane conversions and higher hydrogen yields. These were related to the particle size and the reducibilities of the catalysts. XRD analysis showed that the added CeO2 decreased the particle sizes of the supported Ni, but increased the amount of NiO on the catalyst surface, thus it improved the resistance to coking. PMID:23646791

  7. Use of propane as a quench gas in argon-filled proportional counters and comparison with other quench gases

    NASA Technical Reports Server (NTRS)

    Agrawal, P. C.; Ramsey, B. D.

    1988-01-01

    An experimental investigation of propane and six other quench gases was carried out in argon-filled proportional counters. The objective of the study was to find the best gas mixture for optimizing the gas gain and the energy resolution as well as to understand the role of the ionization potential of quench gases in determining these parameters. It was found that the best gas gains and energy resolutions are obtained with propane, ethane, and isobutane in that order. The ionization potentials of these three lie below the argon metastable potentials and have the lowest value of resonance defect compared to the other quench gases. The better results obtained with these mixtures can be explained by an increased ionization yield resulting from the Penning effect. Propylene and trans-2-butene give inferior performance compared to the above three gases. Methane and carbon dioxide, the most commonly used quench gases in the argon-filled detectors, provide the worst results.

  8. Study of GaN doping with carbon from propane in a wide range of MOVPE conditions

    NASA Astrophysics Data System (ADS)

    Lundin, W. V.; Sakharov, A. V.; Zavarin, E. E.; Kazantsev, D. Yu.; Ber, B. Ya.; Yagovkina, M. A.; Brunkov, P. N.; Tsatsulnikov, A. F.

    2016-09-01

    Complex studies of intentional GaN carbon doping from propane during MOVPE were performed in a wide range of growth conditions. A strong dependence of carbon doping efficiency on growth rate and ammonia flow is revealed, while dependence of carbon doping efficiency on reactor pressure is small. Atomic force microscopy confirms the good quality of the GaN:C layers for doping levels as high as 2*1019 cm-3 grown with growth rate up to 45 μm/h. The dependence of carbon incorporation into GaN is proportional to the propane concentration to the power 3/2 in most growth regimes, but for very high growth rate a linear or sub-linear component of the dependence becomes prominent.

  9. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L

    1952-01-01

    Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.

  10. Probing the internal dynamics of reverse micelles formed in highly compressible solvents: Aerosol-OT in near-critical propane

    SciTech Connect

    Zhang, J.; Bright, F.V.

    1992-10-29

    In normal liquids, the rate of water reorganization within the interior of AOT (sodium bis(2-ethylhexyl) sulfosuccinate or Aerosol-OT) reverse micelles in a strong function of water loading and temperature. In this report, we discuss our most recent efforts to understand the internal dynamics of reverse micelles maintained in highly compressible solvents (near-critical propane). By using steady-state and time-resolved fluorescence spectroscopy, we report the first evidence for pressure-assisted control of the rate of solvent relaxation within the core region of a reverse micelle maintained in a highly compressible fluid. Three factors are taken into account in this study: amount of water loading, temperature, and bulk fluid density. The key conclusion is that the continuous phase density can influence the rate of solvent reorientation within the interior of AOT micelles formed in near-critical propane. 58 refs., 10 figs., 3 tabs.

  11. Alkane Activation Initiated by Hydride Transfer: Co-conversion of Propane and Methanol over H-ZSM-5 Zeolite.

    PubMed

    Yu, Si-Min; Wu, Jian-Feng; Liu, Chong; Liu, Wei; Bai, Shi; Huang, Jun; Wang, Wei

    2015-06-15

    Co-conversion of alkane with another reactant over zeolite catalysts has emerged as a new approach to the long-standing challenge of alkane transformation. With the aid of solid-state NMR spectroscopy and GC-MS analysis, it was found that the co-conversion of propane and methanol can be readily initiated by hydride transfer at temperatures of ≥449 K over the acidic zeolite H-ZSM-5. The formation of (13)C-labeled methane and singly (13)C-labeled n-butanes in selective labeling experiments provided the first evidence for the initial hydride transfer from propane to surface methoxy intermediates. The results not only provide new insight into carbocation chemistry of solid acids, but also shed light on the low-temperature transformation of alkanes for industrial applications. PMID:25959356

  12. Propane tank explosion (2 deaths, 7 injuries) at Herrig Brothers Feather Creek Farm, Albert City, Iowa, April 9, 1998. Investigation report

    SciTech Connect

    1999-09-01

    This report explains the explosion/BLEVE that took place on April 9, 1998, at the Herrig Brothers Feather Creek Farm, located in Albert City, Iowa. Two volunteer fire fighters were killed and seven other emergency response personnel were injured. Safety issues covered in the report include protection of propane storage tanks and piping, state regulatory oversight of such installations, and fire fighter response to propane storage tank fires.

  13. Recognition of steric factor in external association of xanthenocrown-5 and bis-napthalenocrown-6 with bis(benzimidazolium)propane borontetrafluoride

    NASA Astrophysics Data System (ADS)

    Karmakar, Animesh; Kundu, Kshama; Ghosh, Sabari; Mukhopadhyay, Chhanda; Nayak, Sandip K.; Chaudhuri, Tandrima

    2016-04-01

    This is the first report of charge transfer band for crown-axel H-bonding interaction in acetonitrile medium. Monte Carlo simulation established external association of small cavity crown with BBIM-propane dication axels. Resonance energy, binding constant and ratiometric detection of association of xanthenocrown-5 (1) and bis-napthalenocrown-6 (2) with bis-(benzimidazolium)propane borontetrafluoride (3a-3d) in acetonitrile determined the effect of steric factor towards association.

  14. Electrochemical promotion of propane oxidation on Pt deposited on a dense β″-Al2O3 ceramic Ag+ conductor

    PubMed Central

    Tsampas, Mihalis N.; Kambolis, Anastasios; Obeid, Emil; Lizarraga, Leonardo; Sapountzi, Foteini M.; Vernoux, Philippe

    2013-01-01

    A new kind of electrochemical catalyst based on a Pt porous catalyst film deposited on a β″-Al2O3 ceramic Ag+ conductor was developed and evaluated during propane oxidation. It was observed that, upon anodic polarization, the rate of propane combustion was significantly electropromoted up to 400%. Moreover, for the first time, exponential increase of the catalytic rate was evidenced during galvanostatic transient experiment in excellent agreement with EPOC equation. PMID:24790942

  15. Semi-insulating GaN:C epilayers grown by metalorganic vapor phase epitaxy using propane as a carbon source

    NASA Astrophysics Data System (ADS)

    Lundin, W. V.; Zavarin, E. E.; Brunkov, P. N.; Yagovkina, M. A.; Sakharov, A. V.; Sinitsyn, M. A.; Ber, B. Ya.; Kazantsev, D. Yu.; Tsatsulnikov, A. F.

    2016-05-01

    The influence of propane present in a reactor at various stages of GaN growth by metalorganic vapor phase epitaxy (MOVPE) on sapphire substrates on the character of epitaxial process and the properties of epilayers has been studied. Doped GaN epilayers with carbon concentration 5 × 1018 cm-3 characterized by high crystalline perfection, an atomically smooth surface, and electric breakdown voltage above 500 V at a doped layer thickness of 4 μm have been obtained.

  16. Theoretical evidence for inconsistencies in experimental bubble nucleation rates of propane/CO2 and R22/CO2 mixtures

    NASA Astrophysics Data System (ADS)

    Němec, Tomáš

    2015-12-01

    A binary formulation of the classical nucleation theory (CNT) is developed for homogeneous bubble nucleation in systems composed of a liquid solvent and a dissolved gas. The CNT predictions coincide with experimental nucleation data from the literature for diethylether/N2 and isobutane/CO2 mixtures, while several inconsistencies are identified for propane/CO2 and R22/CO2 experimental datasets.

  17. Anomalous reactivity of supported V2O5 nanoparticles for propane oxidative dehydrogenation: influence of the vanadium oxide precursor.

    PubMed

    Carrero, Carlos A; Keturakis, Christopher J; Orrego, Andres; Schomäcker, Reinhard; Wachs, Israel E

    2013-09-21

    The oxidative dehydrogenation (ODH) of propane to propylene by supported vanadia catalysts has received much attention in recent years, but different reactivity trends have been reported for this catalytic reaction system. In the present investigation, the origin of these differing trends are investigated with synthesis of supported V/SiO2, V/TiO2, and V/Al2O3 catalysts prepared with three different vanadium oxide precursors (2-propanol/vanadyl triisopropoxide [VO(O-Pri)3] (VTI), oxalic acid/ammonium metavanadate [NH4VO3] (AMV), and toluene/vanadyl acetylacetonate [VO(C5H7O2)2] (VAA)) in order to elucidate the influence of the precursor on supported vanadia phase and propane ODH activity. In situ Raman spectroscopy revealed that the choice of vanadium precursor does not affect the dispersion of the supported vanadium oxide phase below 4 V nm(-2) (0.5 monolayer coverage), where only isolated and oligomeric surface VO4 species are present, and only the AMV precursor favors crystalline V2O5 nanoparticle (NP) formation below monolayer coverage (8 V nm(-2)). The propane ODH specific reactivity trend demonstrated that there is no significant difference in TOF for the isolated and oligomeric surface VO4 sites. Surprisingly, V2O5 NPs in the ∼1-2 nm range exhibit anomalously high propane ODH TOF values for the supported vanadia catalysts. This was found for all supported vanadium oxide catalysts examined. This comparative study with different V-precursors and synthesis methods and oxide supports finally resolves the debate in the catalysis literature about the dependence of TOF on the surface vanadium density that is related to the unusually high reactivity of small V2O5 NPs. PMID:23652298

  18. Adsorption of propane, isopropyl, and hydrogen on cluster models of the M1 phase of Mo-V-Te-Nb-O mixed metal oxide catalyst

    SciTech Connect

    Govindasamy, Agalya; Muthukumar, Kaliappan; Yu, Junjun; Xu, Ye; Guliants, Vadim V.

    2010-01-01

    The Mo-V-Te-Nb-O mixed metal oxide catalyst possessing the M1 phase structure is uniquely capable of directly converting propane into acrylonitrile. However, the mechanism of this complex eight-electron transformation, which includes a series of oxidative H-abstraction and N-insertion steps, remains poorly understood. We have conducted a density functional theory study of cluster models of the proposed active and selective site for propane ammoxidation, including the adsorption of propane, isopropyl (CH{sub 3}CHCH{sub 3}), and H which are involved in the first step of this transformation, that is, the methylene C-H bond scission in propane, on these active site models. Among the surface oxygen species, the telluryl oxo (Te=O) is found to be the most nucleophilic. Whereas the adsorption of propane is weak regardless of the MO{sub x} species involved, isopropyl and H adsorption exhibits strong preference in the order of Te=O > V=O > bridging oxygens > empty Mo apical site, suggesting the importance of TeO{sub x} species for H abstraction. The adsorption energies of isopropyl and H and consequently the reaction energy of the initial dehydrogenation of propane are strongly dependent on the number of ab planes included in the cluster, which points to the need to employ multilayer cluster models to correctly capture the energetics of surface chemistry on this mixed metal oxide catalyst.

  19. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season

    SciTech Connect

    Not Available

    1991-10-01

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

  20. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report

    SciTech Connect

    Not Available

    1991-10-01

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

  1. A small-angle neutron scattering study of intermicellar interactions in microemulsions of AOT, water, and near-critical propane

    SciTech Connect

    Kaler, E.W. ); Billman, J.F. ); Fulton, J.L.; Smith, R.D. )

    1991-01-10

    Small-angle neutron scattering (SANS) measurements of high-pressure solutions of propane/sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/D{sub 2}O have demonstrated that a water-in-oil microemulsion phase can be formed in propane. The dispersed droplets are, within experimental error, the same size as those formed in conventional microemulsions at the same water-to-surfactant ratio, and the size does not depend on propane density. The interdroplet interaction potential was modeled as a hard-core repulsion augmented by a strong and extremely short range attraction. This model describes droplets whose hydrocarbon tails are strongly attractive to the hydrocarbon tails of adjacent droplets. The SANS fit shows that the magnitude of the tail-tail attractive interactions may be much stronger than the longer range van der Waals type attractive interactions between the water cores of the droplets. These findings confirm results of IR and UV-vis spectroscopic studies of near-critical and supercritical fluid microemulsions.

  2. Operation of a Four-Cylinder 1.9L Propane Fueled HCCI Engine

    SciTech Connect

    Flowers, D; Aceves, S M; Martinez-Frias, J; Smith, J R; Au, M; Girard, J; Dibble, R

    2001-03-15

    A four-cylinder 1.9 Volkswagen TDI Engine has been converted to run in Homogeneous Charge Compression Ignition (HCCI) mode. The stock configuration is a turbocharged direct injection Diesel engine. The combustion chamber has been modified by discarding the in-cylinder Diesel fuel injectors and replacing them with blank inserts (which contain pressure transducers). The stock pistons contain a reentrant bowl and have been retained for the tests reported here. The intake and exhaust manifolds have also been retained, but the turbocharger has been removed. A heater has been installed upstream of the intake manifold and fuel is added just downstream of this heater. The performance of this engine in naturally aspirated HCCI operation, subject to variable intake temperature and fuel flow rate, has been studied. The engine has been run with propane fuel at a constant speed of 1800 rpm. This work is intended to characterize the HCCI operation of the engine in this configuration that has been minimally modified from the base Diesel engine. The performance (BMEP, IMEP, efficiency, etc) and emissions (THC, CO, NOx) of the engine are presented, as are combustion process results based on heat release analysis of the pressure traces from each cylinder.

  3. Synthesis, characterization, antibacterial activity and quantum chemical studies of N'-Acetyl propane sulfonic acid hydrazide

    NASA Astrophysics Data System (ADS)

    Alyar, Saliha; Alyar, Hamit; Ozdemir, Ummuhan Ozmen; Sahin, Omer; Kaya, Kerem; Ozbek, Neslihan; Gunduzalp, Ayla Balaban

    2015-08-01

    A new N'-Acetyl propane sulfonic acid hydrazide, C3H7sbnd SO2sbnd NHsbnd NHsbnd COCH3 (Apsh, an sulfon amide compound) has been synthesized for the first time. The structure of Apsh was investigated using elemental analysis, spectral (IR, 1H/13C NMR) measurements. In addition, molecular structure of the Apsh was determined by single crystal X-ray diffraction technique and found that the compound crystallizes in monoclinic, space group P 21/c. 1H and 13C shielding tensors for crystal structure were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The structure of Apsh is optimized using Density Functional Theory (DFT) method. The vibrational band assignments were performed at B3LYP/6-311++G(d,p) theory level combined with scaled quantum mechanics force field (SQMFF) methodology. The theoretical IR frequencies are found to be in good agreement with the experimental IR frequencies. Nonlinear optical (NLO) behaviour of Apsh is also examined by the theoretically predicted values of dipole moment (μ), polarizability (α0) and first hyperpolarizability (βtot). The antibacterial activities of synthesized compound were studied against Gram positive bacteria: Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 23212, Staphylococcus epidermidis ATCC 34384, Gram negative bacteria: Eschericha coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 70063 by using microdilution method (as MICs) and disc diffusion method.

  4. Chromium and Ruthenium-Doped Zinc Oxide Thin Films for Propane Sensing Applications

    PubMed Central

    Gómez-Pozos, Heberto; González-Vidal, José Luis; Torres, Gonzalo Alberto; Rodríguez-Baez, Jorge; Maldonado, Arturo; de la Luz Olvera, María; Acosta, Dwight Roberto; Avendaño-Alejo, Maximino; Castañeda, Luis

    2013-01-01

    Chromium and ruthenium-doped zinc oxide (ZnO:Cr) and (ZnO:Ru) thin solid films were deposited on soda-lime glass substrates by the sol-gel dip-coating method. A 0.6 M solution of zinc acetate dihydrate dissolved in 2-methoxyethanol and monoethanolamine was used as basic solution. Chromium (III) acetylacetonate and Ruthenium (III) trichloride were used as doping sources. The Ru incorporation and its distribution profile into the films were proved by the SIMS technique. The morphology and structure of the films were studied by SEM microscopy and X-ray diffraction measurements, respectively. The SEM images show porous surfaces covered by small grains with different grain size, depending on the doping element, and the immersions number into the doping solutions. The sensing properties of ZnO:Cr and ZnO:Ru films in a propane (C3H8) atmosphere, as a function of the immersions number in the doping solution, have been studied in the present work. The highest sensitivity values were obtained for films doped from five immersions, 5.8 and 900, for ZnO:Cr and ZnO:Ru films, respectively. In order to evidence the catalytic effect of the chromium (Cr) and ruthenium (Ru), the sensing characteristics of undoped ZnO films are reported as well. PMID:23482091

  5. Kinetic mechanism of plasma recombination in methane, ethane and propane after high-voltage nanosecond discharge

    NASA Astrophysics Data System (ADS)

    Anokhin, E. M.; Popov, M. A.; Kochetov, I. V.; Starikovskiy, A. Yu; Aleksandrov, N. L.

    2016-08-01

    The results of the experimental and numerical study of high-voltage nanosecond discharge afterglow in pure methane, ethane and propane are presented for room temperature and pressures from 2 to 20 Torr. Time-resolved electron density during the plasma decay was measured with a microwave interferometer for initial electron densities in the range between 5  ×  1010 and 3  ×  1012 cm‑3 and the effective recombination coefficients were obtained. Measured effective recombination coefficients increased with gas pressure and were much higher than the recombination coefficients for simple molecular hydrocarbon ions. The properties of plasma in the discharge afterglow were numerically simulated by solving the balance equations for charged particles and electron temperature. Calculations showed that electrons had time to thermalize prior to the recombination. The measured data were interpreted under the assumption that cluster hydrocarbon ions are formed during the plasma decay that is controlled by the dissociative electron recombination with these ions at electron room temperature. Based on the analysis of the experimental data, the rates of three-body formation of cluster ions and recombination coefficients for these ions were estimated.

  6. Catalytic propane dehydrogenation over In₂O₃–Ga₂O₃ mixed oxides

    SciTech Connect

    Tan, Shuai; Gil, Laura Briones; Subramanian, Nachal; Sholl, David S.; Nair, Sankar; Jones, Christopher W.; Moore, Jason S.; Liu, Yujun; Dixit, Ravindra S.; Pendergast, John G.

    2015-08-26

    We have investigated the catalytic performance of novel In₂O₃–Ga₂O₃ mixed oxides synthesized by the alcoholic-coprecipitation method for propane dehydrogenation (PDH). Reactivity measurements reveal that the activities of In₂O₃–Ga₂O₃ catalysts are 1–3-fold (on an active metal basis) and 12–28-fold (on a surface area basis) higher than an In₂O₃–Al₂O₃ catalyst in terms of C₃H₈ conversion. The structure, composition, and surface properties of the In₂O₃–Ga₂O₃ catalysts are thoroughly characterized. NH₃-TPD shows that the binary oxide system generates more acid sites than the corresponding single-component catalysts. Raman spectroscopy suggests that catalysts that produce coke of a more graphitic nature suppress cracking reactions, leading to higher C₃H₆ selectivity. Lower reaction temperature also leads to higher C₃H₆ selectivity by slowing down the rate of side reactions. XRD, XPS, and XANES measurements, strongly suggest that metallic indium and In₂O₃ clusters are formed on the catalyst surface during the reaction. The agglomeration of In₂O₃ domains and formation of a metallic indium phase are found to be irreversible under O₂ or H₂ treatment conditions used here, and may be responsible for loss of activity with increasing time on stream.

  7. Mechanism of influence water vapor on combustion characteristics of propane-air mixture

    NASA Astrophysics Data System (ADS)

    Larionov, V. M.; Mitrofanov, G. A.; Sachovskii, A. V.; Kozar, N. K.

    2016-01-01

    The article discusses the results of an experimental study of the effect of water vapor at the flame temperature. Propane-butane mixture with air is burning on a modified Bunsen burner. Steam temperature was varied from 180 to 260 degrees. Combustion parameters changed by steam temperature and its proportion in the mixture with the fuel. The fuel-air mixture is burned in the excess air ratio of 0.1. It has been established that the injection of steam changes the characteristics of combustion fuel-air mixture and increase the combustion temperature. The concentration of CO in the combustion products is substantially reduced. Raising the temperature in the combustion zone is associated with increased enthalpy of the fuel by the added steam enthalpy. Reducing the concentration of CO is caused by decrease in the average temperature in the combustion zone by applying steam. Concentration of active hydrogen radicals and oxygen increases in the combustion zone. That has a positive effect on the process of combustion.

  8. Cell Transfection with a β-Cyclodextrin-PEI-Propane-1,2,3-Triol Nanopolymer

    PubMed Central

    Lai, Wing-Fu; Jung, Han-Sung

    2014-01-01

    Successful gene therapy necessitates safe and efficient gene transfer. This article describes the use of a cationic polymer, which was synthesized by cross-linking low molecular weight branched poly(ethylenimine) (PEI) with both β-cyclodextrin and propane-1,2,3-triol, for efficient and safe non-viral gene delivery. Experimentation demonstrated that the polymer had a pH buffering capacity and DNA condensing ability comparable to those of PEI 25 kDa. In B16-F0 cells, the polymer increased the transfection efficiency of naked DNA by 700-fold and yielded better transfection efficiencies than Fugene HD (threefold higher) and PEI 25 kDa (fivefold higher). The high transfection efficiency of the polymer was not affected by the presence of serum during transfection. In addition to B16-F0 cells, the polymer enabled efficient transfection of HepG2 and U87 cells with low cytotoxicity. Our results indicated that our polymer is a safe and efficient transfection reagent that warrants further development for in vitro, in vivo and clinical applications. PMID:24956480

  9. A rapid compression machine study of the oxidation of propane in the negative temperature coefficient regime

    SciTech Connect

    Gallagher, S.M.; Curran, H.J.; Metcalfe, W.K.; Healy, D.; Simmie, J.M.; Bourque, G.

    2008-04-15

    The oxidation of propane has been studied in the temperature range 680-970 K at compressed gas pressures of 21, 27, and 37 atm and at varying equivalence ratios of 0.5, 1.0, and 2.0. These data are consistent with other experiments presented in the literature for alkane fuels in that, when ignition delay times are plotted as a function of temperature, a characteristic negative coefficient behavior is observed. In addition, these data were simulated using a detailed chemical kinetic model. It was found that qualitatively the model correctly simulated the effect of change in equivalence ratio and pressure, predicting that fuel-rich, high-pressure mixtures ignite fastest, while fuel-lean, low-pressure mixtures ignite slowest. Moreover, reactivity as a function of temperature is well captured, with the model predicting negative temperature coefficient behavior similar to the experiments. Quantitatively the model is faster than experiment for all mixtures at the lowest temperatures (650-750 K) and is also faster than experiment throughout the entire temperature range for fuel-lean mixtures. (author)

  10. Raman spectra of methane, ethylene, ethane, dimethyl ether, formaldehyde and propane for combustion applications

    NASA Astrophysics Data System (ADS)

    Magnotti, G.; KC, U.; Varghese, P. L.; Barlow, R. S.

    2015-09-01

    Spontaneous Raman scattering measurements of temperature and major species concentration in hydrocarbon-air flames require detailed knowledge of the Raman spectra of the hydrocarbons present when fuels more complex than methane are used. Although hydrocarbon spectra have been extensively studied at room temperature, there are no data available at higher temperatures. Quantum mechanical calculations, when available are not sufficiently accurate for combustion applications. This work presents experimental measurements of spontaneous Stokes-Raman scattering spectra of methane, ethylene, ethane, dimethyl ether, formaldehyde and propane in the temperature range 300-860 K. Raman spectra from heated hydrocarbons jets have been collected with a higher resolution than is generally employed for Raman measurements in combustion applications. A set of synthetic spectra have been generated for each hydrocarbon, providing the basis for extrapolation to higher temperatures. The spectra provided here will enable simultaneous measurements of multiple hydrocarbons in flames. This capability will greatly extend the range of applicability of Raman measurements in combustion applications. In addition, the experimental spectra provide a validation dataset for quantum mechanical models.

  11. Cool Flames in Propane-Oxygen Premixtures at Low and Intermediate Temperatures at Reduced-Gravity

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Foster, Michael; Karabacak, Devrez

    2003-01-01

    The Cool Flame Experiment aims to address the role of diffusive transport on the structure and the stability of gas-phase, non-isothermal, hydrocarbon oxidation reactions, cool flames and auto-ignition fronts in an unstirred, static reactor. These reactions cannot be studied on Earth where natural convection due to self-heating during the course of slow reaction dominates diffusive transport and produces spatio-temporal variations in the thermal and thus species concentration profiles. On Earth, reactions with associated Rayleigh numbers (Ra) less than the critical Ra for onset of convection (Ra(sub cr) approx. 600) cannot be achieved in laboratory-scale vessels for conditions representative of nearly all low-temperature reactions. In fact, the Ra at 1g ranges from 10(exp 4) - 10(exp 5) (or larger), while at reduced-gravity, these values can be reduced two to six orders of magnitude (below Ra(sub cr)), depending on the reduced-gravity test facility. Currently, laboratory (1g) and NASA s KC-135 reduced-gravity (g) aircraft studies are being conducted in parallel with the development of a detailed chemical kinetic model that includes thermal and species diffusion. Select experiments have also been conducted at partial gravity (Martian, 0.3gearth) aboard the KC-135 aircraft. This paper discusses these preliminary results for propane-oxygen premixtures in the low to intermediate temperature range (310- 350 C) at reduced-gravity.

  12. Carbon dynamics on the molybdenum carbide surface during catalytic propane dehydrogenation.

    PubMed

    Frank, Benjamin; Cotter, Thomas P; Schuster, Manfred E; Schlögl, Robert; Trunschke, Annette

    2013-12-01

    The effect of the gas-phase chemical potential on surface chemistry and reactivity of molybdenum carbide has been investigated in catalytic reactions of propane in oxidizing and reducing reactant mixtures by adding H2, O2, H2O, and CO2 to a C3H8/N2 feed. The balance between surface oxidation state, phase stability, carbon deposition, and the complex reaction network involving dehydrogenation reactions, hydrogenolysis, metathesis, water-gas shift reaction, hydrogenation, and steam reforming is discussed. Raman spectroscopy and a surface-sensitive study by means of in situ X-ray photoelectron spectroscopy evidence that the dynamic formation of surface carbon species under a reducing atmosphere strongly shifts the product spectrum to the C3-alkene at the expense of hydrogenolysis products. A similar response of selectivity, which is accompanied by a boost of activity, is observed by tuning the oxidation state of Mo in the presence of mild oxidants, such as H2O and CO2, in the feed as well as by V doping. The results obtained allow us to draw a picture of the active catalyst surface and to propose a structure-activity correlation as a map for catalyst optimization. PMID:24248701

  13. Chromium and ruthenium-doped zinc oxide thin films for propane sensing applications.

    PubMed

    Gómez-Pozos, Heberto; González-Vidal, José Luis; Torres, Gonzalo Alberto; Rodríguez-Baez, Jorge; Maldonado, Arturo; Olvera, María de la Luz; Acosta, Dwight Roberto; Avendaño-Alejo, Maximino; Castañeda, Luis

    2013-01-01

    Chromium and ruthenium-doped zinc oxide (ZnO:Cr) and (ZnO:Ru) thin solid films were deposited on soda-lime glass substrates by the sol-gel dip-coating method. A 0.6 M solution of zinc acetate dihydrate dissolved in 2-methoxyethanol and monoethanolamine was used as basic solution. Chromium (III) acetylacetonate and Ruthenium (III) trichloride were used as doping sources. The Ru incorporation and its distribution profile into the films were proved by the SIMS technique. The morphology and structure of the films were studied by SEM microscopy and X-ray diffraction measurements, respectively. The SEM images show porous surfaces covered by small grains with different grain size, depending on the doping element, and the immersions number into the doping solutions. The sensing properties of ZnO:Cr and ZnO:Ru films in a propane (C3H8) atmosphere, as a function of the immersions number in the doping solution, have been studied in the present work. The highest sensitivity values were obtained for films doped from five immersions, 5.8 and 900, for ZnO:Cr and ZnO:Ru films, respectively. In order to evidence the catalytic effect of the chromium (Cr) and ruthenium (Ru), the sensing characteristics of undoped ZnO films are reported as well. PMID:23482091

  14. Soot formation and temperature field structure in laminar propane-air diffusion flames at elevated pressures

    SciTech Connect

    Bento, Decio S.; Guelder, OEmer L.; Thomson, Kevin A.

    2006-06-15

    The effect of pressure on soot formation and the structure of the temperature field was studied in coflow propane-air laminar diffusion flames over the pressure range of 0.1 to 0.73 MPa in a high-pressure combustion chamber. The fuel flow rate was selected so that the soot was completely oxidized within the visible flame and the flame was stable at all pressures. Spectral soot emission was used to measure radially resolved soot volume fraction and soot temperature as a function of pressure. Additional soot volume fraction measurements were made at selected heights using line-of-sight light attenuation. Soot concentration values from these two techniques agreed to within 30% and both methods exhibited similar trends in the spatial distribution of soot concentration. Maximum line-of-sight soot concentration along the flame centerline scaled with pressure; the pressure exponent was about 1.4 for pressures between 0.2 and 0.73 MPa. Peak carbon conversion to soot, defined as the percentage of fuel carbon content converted to soot, also followed a power-law dependence on pressure, where the pressure exponent was near to unity for pressures between 0.2 and 0.73 MPa. Soot temperature measurements indicated that the overall temperatures decreased with increasing pressure; however, the temperature gradients increased with increasing pressure. (author)

  15. New unit for sulfuric acid alkylation of isobutane by olefins

    SciTech Connect

    Khadzhiev, S.N.; Baiburskii, V.L.; Deineko, P.S.; Gruzdev, A.S.; Tagavov, I.T.

    1987-01-01

    The authors describe and illustrate a sulfuric acid alkylation unit with a horizontal contact. As a result of the use of this design solution, the isobutane/olefin ratio is 10/1 in comparison with 4/1 to 5/1 in the other types of units, namely vertical reactors and cascade tank reactors. The unit was designed to process the butane-butylene cut (BBC) and part of the propane-propylene cut (PPC) from the G-43-107 cat cracker. The unit design includes provisions for controlled caustic washing of the feed and dehydration in an electric field. The authors present the basic data obtained in the three months of unit operation after startup, in comparison with the operating indexes of a sulfuric acid alkylation unit.

  16. New insights into low-temperature oxidation of propane from synchrotron photoionization mass spectrometry and multi-scale informatics modeling

    DOE PAGESBeta

    Welz, Oliver; Burke, Michael P.; Antonov, Ivan O.; Goldsmith, C. Franklin; Savee, John David; Osborn, David L.; Taatjes, Craig A.; Klippenstein, Stephen J.; Sheps, Leonid

    2015-04-10

    We studied low-temperature propane oxidation at P = 4 Torr and T = 530, 600, and 670 K by time-resolved multiplexed photoionization mass spectrometry (MPIMS), which probes the reactants, intermediates, and products with isomeric selectivity using tunable synchrotron vacuum UV ionizing radiation. The oxidation is initiated by pulsed laser photolysis of oxalyl chloride, (COCl)2, at 248 nm, which rapidly generates a ~1:1 mixture of 1-propyl (n-propyl) and 2-propyl (i-propyl) radicals via the fast Cl + propane reaction. At all three temperatures, the major stable product species is propene, formed in the propyl + O2 reactions by direct HO2 elimination frommore » both n- and i-propyl peroxy radicals. The experimentally derived propene yields relative to the initial concentration of Cl atoms are (20 ± 4)% at 530 K, (55 ± 11)% at 600 K, and (86 ± 17)% at 670 K at a reaction time of 20 ms. The lower yield of propene at low temperature reflects substantial formation of propyl peroxy radicals, which do not completely decompose on the experimental time scale. In addition, C3H6O isomers methyloxirane, oxetane, acetone, and propanal are detected as minor products. Our measured yields of oxetane and methyloxirane, which are coproducts of OH radicals, suggest a revision of the OH formation pathways in models of low-temperature propane oxidation. The experimental results are modeled and interpreted using a multiscale informatics approach, presented in detail in a separate publication (Burke, M. P.; Goldsmith, C. F.; Klippenstein, S. J.; Welz, O.; Huang H.; Antonov I. O.; Savee J. D.; Osborn D. L.; Zádor, J.; Taatjes, C. A.; Sheps, L. Multiscale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Reactions. J. Phys. Chem A. 2015, DOI: 10.1021/acs.jpca.5b01003). Additionally, we found that the model predicts the time profiles and yields of the experimentally observed primary products well, and shows satisfactory agreement for products

  17. New insights into low-temperature oxidation of propane from synchrotron photoionization mass spectrometry and multi-scale informatics modeling

    SciTech Connect

    Welz, Oliver; Burke, Michael P.; Antonov, Ivan O.; Goldsmith, C. Franklin; Savee, John David; Osborn, David L.; Taatjes, Craig A.; Klippenstein, Stephen J.; Sheps, Leonid

    2015-04-10

    We studied low-temperature propane oxidation at P = 4 Torr and T = 530, 600, and 670 K by time-resolved multiplexed photoionization mass spectrometry (MPIMS), which probes the reactants, intermediates, and products with isomeric selectivity using tunable synchrotron vacuum UV ionizing radiation. The oxidation is initiated by pulsed laser photolysis of oxalyl chloride, (COCl)2, at 248 nm, which rapidly generates a ~1:1 mixture of 1-propyl (n-propyl) and 2-propyl (i-propyl) radicals via the fast Cl + propane reaction. At all three temperatures, the major stable product species is propene, formed in the propyl + O2 reactions by direct HO2 elimination from both n- and i-propyl peroxy radicals. The experimentally derived propene yields relative to the initial concentration of Cl atoms are (20 ± 4)% at 530 K, (55 ± 11)% at 600 K, and (86 ± 17)% at 670 K at a reaction time of 20 ms. The lower yield of propene at low temperature reflects substantial formation of propyl peroxy radicals, which do not completely decompose on the experimental time scale. In addition, C3H6O isomers methyloxirane, oxetane, acetone, and propanal are detected as minor products. Our measured yields of oxetane and methyloxirane, which are coproducts of OH radicals, suggest a revision of the OH formation pathways in models of low-temperature propane oxidation. The experimental results are modeled and interpreted using a multiscale informatics approach, presented in detail in a separate publication (Burke, M. P.; Goldsmith, C. F.; Klippenstein, S. J.; Welz, O.; Huang H.; Antonov I. O.; Savee J. D.; Osborn D. L.; Zádor, J.; Taatjes, C. A.; Sheps, L. Multiscale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Reactions. J. Phys. Chem A. 2015, DOI: 10.1021/acs.jpca.5b01003). Additionally, we found that the model predicts the time profiles and yields of the experimentally observed primary products well

  18. Parametric study of the partial oxidation of propane over nickel and platinum based catalysts

    NASA Astrophysics Data System (ADS)

    Mukka, Mayuri

    Hydrogen production though the partial oxidation of propane over 1%Pt/CeO 2 and 1%Ni/CeO2 catalysts was studied in a fixed-bed reactor. The purpose of the experiments was to study the pathways, priority and the sequence of reactions which occur over each catalyst system. A temperature of 600°C and O2/C3H8 ratio of 1.78 was used for all the runs. The space velocity was varied by varying the flowrates (100, 200, 300, 400 sccm), and also the catalyst loadings. Seven species were found at the outlet of the reactor (C3H8, O2, H2, CO, CO2, H2O and C3H 6). All the species except H2O were analyzed quantitatively by the gas chromatograph. The following reactions can occur during the process at 600°C: total oxidation, partial oxidation, steam reforming, dry reforming, water gas shift, dehydrogenation and water formation. Of these, a Gaussian elimination process yields four independent reactions. This results in ten sets of possible independent reactions. For each set, a material balance on the six outlet compositions allows the calculation of rates of each of the four reactions in the set. Sets containing negative rates for irreversible reactions are discarded. To confirm the validity of sets containing dry reforming, steam reforming and water gas shift, these reactions were carried out over the catalysts at the experimentally determined outlet conditions for the propane partial oxidation process. For the 1%Ni/CeO2 catalyst, both dry and steam reforming reactions were favorable, but the water gas shift reaction was not favorable. The activities of the 1%Pt/CeO2 catalyst for dry reforming and steam reforming were insignificant. The water gas shift reaction was not conducted over the 1%Pt/CeO2 catalyst as no feasible set contained this reaction. These results, coupled with the effect of weight hourly space velocity, allows us to evaluate the relative importance of each reaction in each allowable set as a function of contact time. The results indicate that the pathways

  19. Electrical control of the thermodiffusive instability in premixed propane-air flames

    SciTech Connect

    Wisman, D.L.; Marcum, S.D.; Ganguly, B.N.

    2007-12-15

    This work focuses upon the effects of DC electric fields on the stability of downward propagating atmospheric pressure premixed propane-air flames under experimental conditions that provide close coupling of the electric field to the flame. With the appropriate electrode geometry, modest applied voltages are shown to drive a stable conical flame first into a wrinkled-laminar flamelet geometry, and then further toward either a highly unstable distributed flamelet regime or a collective oscillation of the flame front. Applied potentials up through +5kV over a 40-mm gap encompassing the flame front have been used to force the above transition sequence in flames with equivalence ratios between 0.8 and 1.3 and flow velocities up to 1.7 m/s. Experiments are reported that characterize the field-induced changes in the geometry of the reaction zone and the structure of the resulting unstable flame. The former is quantified by combustion intensity enhancement estimates derived from high-speed two-dimensional direct and spectroscopic imaging of chemiluminescence signals. The flame fluid mechanical response to the applied field, brought about by forcing positive flame ions counter to the flow, drives the effective flame Lewis number to values suitable for the onset of the thermodiffusive instability, even near stoichiometric conditions. Possible field-driven flame ion recombination chemistry that would produce light reactants near the burner head and precipitate the onset of the thermodiffusive instability is proposed. Electrical measurements are also reported that establish that minimal electrical power input is required to produce the observed flame instabilities. Current continuity-based calculations allow estimates of the level of deficient light reactant necessary to cause the flame to become unstable. This applied-electric-field-induced modification of the thermodiffusive effect could serve as a potentially attractive means of controlling flame fluid

  20. Optical measurements of soot and temperature profiles in premixed propane-oxygen flames

    NASA Technical Reports Server (NTRS)

    Lyons, V. J.; Pagni, P. J.

    1988-01-01

    Two laser diagnostic techniques were used to measure soot volume fractions, number densities and soot particle radii in premixed propane/oxygen flat flames. The two techniques used were two wavelength extinction, using 514.5 nm to 632.8 nm and 457.9 nm to 632.8 nm wavelength combinations, and extinction/scattering using 514.5 nm light. The flames were fuel-rich (equivalence ratios from 2.1 to 2.8) and had cold gas velocities varying from 3.4 to 5.5 cm/s. Measurements were made at various heights above the sintered-bronze, water-cooled flat flame burner with the equivalence ratio and cold gas velocity fixed. Also, measurements were made at a fixed height above the burner and fixed cold gas velocity while varying the equivalence ratio. Both laser techniques are based on the same underlying assumptions of particle size distribution and soot optical properties. Full Mie theory was used to determine the extinction coefficients K sub ext, and the scattering efficiencies, Q sub vv. Temperature measurements in the flames were made using infrared radiometry. Good agreement between the two techniques in terms of soot particle radii, number density and volume fraction was found for intensity ratios (I/I sub o) between 0.1 and 0.8. For intensity ratios higher or lower than this range, the differences in extinction coefficients at the wavelengths chosen for the two-wavelength method are too small to give accurate results for comparing particle radii and number densities. However, when comparing only soot volume fractions, the agreement between the two techniques continued to be good for intensity ratios up to 0.95.

  1. Optical measurements of soot and temperature profiles in premixed propane-oxygen flames

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Pagni, Patrick J.

    1988-01-01

    Two laser diagnostic techniques were used to measure soot volume fractions, number densities and soot particle radii in premixed propane/oxygen flat flames. The two techniques used were two wavelength extinction, using 514.5 nm to 632.8 nm and 457.9 nm to 632.8 nm wavelength combinations, and extinction/scattering using 514.5 nm light. The flames wre fuel-rich (equivalence ratios from 2.1 to 2.8) and had cold gas velocities varying from 3.4 to 5.5 cm/s. Measurements were made at various heights above the sintered-bronze, water-cooled flat flame burner with the equivalence ratio and cold gas velocity fixed. Also, measurements were made at a fixed height above the burner and fixed cold gas velocity while varying the equivalence ratio. Both laser techniques are based on the same underlying assumptions of particle size distribution and soot optical properties. Full Mie theory was used to determine the extinction coefficients K sub ext, and the scattering efficiencies, Q sub vv. Temperature measurements in the flames were made using infrared radiometry. Good agreement between the two techniques in terms of soot particle radii, number density and volume fraction was found for intensity ratios (I/I sub o) between 0.1 and 0.8. For intensity ratios higher or lower than this range, the differences in extinction coefficients at the wavelengths chosen for the two-wavelength method are too small to give accurate results for comparing particle radii and number densities. However, when comparing only soot volume fractions, the agreement between the two techniques continued to be good for intensity ratios up to 0.95.

  2. Phase diagrams for clathrate hydrates of methane, ethane, and propane from first-principles thermodynamics.

    PubMed

    Cao, Xiaoxiao; Huang, Yingying; Li, Wenbo; Zheng, Zhaoyang; Jiang, Xue; Su, Yan; Zhao, Jijun; Liu, Changling

    2016-01-28

    Natural gas hydrates are inclusion compounds composed of major light hydrocarbon gaseous molecules (CH4, C2H6, and C3H8) and a water clathrate framework. Understanding the phase stability and formation conditions of natural gas hydrates is crucial for their future exploitation and applications and requires an accurate description of intermolecular interactions. Previous ab initio calculations on gas hydrates were mainly limited by the cluster models, whereas the phase diagram and equilibrium conditions of hydrate formation were usually investigated using the thermodynamic models or empirical molecular simulations. For the first time, we construct the chemical potential phase diagrams of type II clathrate hydrates encapsulated with methane/ethane/propane guest molecules using first-principles thermodynamics. We find that the partially occupied structures (136H2O·1CH4, 136H2O·16CH4, 136H2O·20CH4, 136H2O·1C2H6, and 136H2O·1C3H8) and fully occupied structures (136H2O·24CH4, 136H2O·8C2H6, and 136H2O·8C3H8) are thermodynamically favorable under given pressure-temperature (p-T) conditions. The theoretically predicted equilibrium pressures for pure CH4, C2H6 and C3H8 hydrates at the phase transition point are consistent with the experimental data. These results provide valuable guidance for establishing the relationship between the accurate description of intermolecular noncovalent interactions and the p-T equilibrium conditions of clathrate hydrates and other molecular crystals. PMID:26745181

  3. Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane

    NASA Astrophysics Data System (ADS)

    Kootenaei, A. H. Shahbazi; Towfighi, J.; Khodadadi, A.; Mortazavi, Y.

    2014-04-01

    Titanate nanotubes with a high specific surface area were synthesized by the simple hydrothermal method and investigated as support for V2O5 catalyst in oxidative dehydrogenation of propane (ODP). The structures of pristine nanotubes as well as the prepared catalysts were investigated by XRD, Raman, FTIR, HRTEM, SEM, EDS, BET, and XPS techniques. The characterization of the as-synthesized nanotubes showed the synthesis of hydrogen titanate nanotube. The incipient wetness impregnation method was utilized to prepare VTNT-x (x = 5, 10, and 15 wt.% vanadia supported on nanotube) together with VTi5 (5 wt.% vanadia supported on Degussa P25). The anatase phase was developed in VTNT-x catalysts upon calcination along with specific surface area loss. Higher vanadia loading resulted in the lowering of support capacity in maintaining vanadia in dispersed state such that eventually crystalline vanadia appeared. The measured catalyst activity demonstrates that in spite of major support surface area loss in VTNT-5 catalyst, the propylene yield is superior in comparison with VTi5 catalyst. The catalyst activity can be correlated with maximum reduction temperature. Deactivation of VTi5 and VTNT-5 as well as VTNT-15 were studied for 3,000 min time-on-stream. It was found that the activity of VTNT-5 catalyst remain unchanged while a decline in catalytic activity observed in VTi5 and VTNT-15 catalysts. The development of rutile was considered as being a major element in the deactivation of the investigated catalysts which is influenced by the presence of vanadium and reaction atmosphere.

  4. Critical evaluation of Jet-A spray combustion using propane chemical kinetics in gas turbine combustion simulated by KIVA-2

    NASA Astrophysics Data System (ADS)

    Nguyen, H. L.; Ying, S.-J.

    1990-07-01

    Jet-A spray combustion has been evaluated in gas turbine combustion with the use of propane chemical kinetics as the first approximation for the chemical reactions. Here, the numerical solutions are obtained by using the KIVA-2 computer code. The KIVA-2 code is the most developed of the available multidimensional combustion computer programs for application of the in-cylinder combustion dynamics of internal combustion engines. The released version of KIVA-2 assumes that 12 chemical species are present; the code uses an Arrhenius kinetic-controlled combustion model governed by a four-step global chemical reaction and six equilibrium reactions. Researchers efforts involve the addition of Jet-A thermophysical properties and the implementation of detailed reaction mechanisms for propane oxidation. Three different detailed reaction mechanism models are considered. The first model consists of 131 reactions and 45 species. This is considered as the full mechanism which is developed through the study of chemical kinetics of propane combustion in an enclosed chamber. The full mechanism is evaluated by comparing calculated ignition delay times with available shock tube data. However, these detailed reactions occupy too much computer memory and CPU time for the computation. Therefore, it only serves as a benchmark case by which to evaluate other simplified models. Two possible simplified models were tested in the existing computer code KIVA-2 for the same conditions as used with the full mechanism. One model is obtained through a sensitivity analysis using LSENS, the general kinetics and sensitivity analysis program code of D. A. Bittker and K. Radhakrishnan. This model consists of 45 chemical reactions and 27 species. The other model is based on the work published by C. K. Westbrook and F. L. Dryer.

  5. Low-temperature superacid catalysis: Reactions of n - butane and propane catalyzed by iron- and manganese-promoted sulfated zirconia

    SciTech Connect

    Tsz-Keung, Cheung; d`Itri, J.L.; Lange, F.C.; Gates, B.C.

    1995-12-31

    The primary goal of this project is to evaluate the potential value of solid superacid catalysts of the sulfated zirconia type for light hydrocarbon conversion. The key experiments catalytic testing of the performance of such catalysts in a flow reactor fed with streams containing, for example, n-butane or propane. Fe- and Mn-promoted sulfated zirconia was used to catalyze the conversion of n-butane at atmospheric pressure, 225-450{degrees}C, and n-butane partial pressures in the range of 0.0025-0.01 atm. At temperatures <225{degrees}C, these reactions were accompanied by cracking; at temperatures >350{degrees}C, cracking and isomerization occurred. Catalyst deactivation, resulting at least in part from coke formation, was rapid. The primary cracking products were methane, ethane, ethylene, and propylene. The observation of these products along with an ethane/ethylene molar ratio of nearly 1 at 450{degrees}C is consistent with cracking occurring, at least in part, by the Haag-Dessau mechanism, whereby the strongly acidic catalyst protonates n-butane to give carbonium ions. The rate of methane formation from n-butane cracking catalyzed by Fe- and Mn-promoted sulfated zirconia at 450{degrees}C was about 3 x 10{sup -8} mol/(g of catalyst {center_dot}s). The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.

  6. Critical evaluation of Jet-A spray combustion using propane chemical kinetics in gas turbine combustion simulated by KIVA-2

    NASA Technical Reports Server (NTRS)

    Nguyen, H. L.; Ying, S.-J.

    1990-01-01

    Jet-A spray combustion has been evaluated in gas turbine combustion with the use of propane chemical kinetics as the first approximation for the chemical reactions. Here, the numerical solutions are obtained by using the KIVA-2 computer code. The KIVA-2 code is the most developed of the available multidimensional combustion computer programs for application of the in-cylinder combustion dynamics of internal combustion engines. The released version of KIVA-2 assumes that 12 chemical species are present; the code uses an Arrhenius kinetic-controlled combustion model governed by a four-step global chemical reaction and six equilibrium reactions. Researchers efforts involve the addition of Jet-A thermophysical properties and the implementation of detailed reaction mechanisms for propane oxidation. Three different detailed reaction mechanism models are considered. The first model consists of 131 reactions and 45 species. This is considered as the full mechanism which is developed through the study of chemical kinetics of propane combustion in an enclosed chamber. The full mechanism is evaluated by comparing calculated ignition delay times with available shock tube data. However, these detailed reactions occupy too much computer memory and CPU time for the computation. Therefore, it only serves as a benchmark case by which to evaluate other simplified models. Two possible simplified models were tested in the existing computer code KIVA-2 for the same conditions as used with the full mechanism. One model is obtained through a sensitivity analysis using LSENS, the general kinetics and sensitivity analysis program code of D. A. Bittker and K. Radhakrishnan. This model consists of 45 chemical reactions and 27 species. The other model is based on the work published by C. K. Westbrook and F. L. Dryer.

  7. Anionic starch-induced Cu-based composite with flake-like mesostructure for gas-phase propanal efficient removal.

    PubMed

    He, Chi; Liu, Xiaohe; Shi, Jianwen; Ma, Chunyan; Pan, Hua; Li, Guilin

    2015-09-15

    Highly crystalline flake-like CuCeO2-δ composites (strCCx) with large specific surface area and developed mesoporosity were prepared using an economic and effective bio-template route. Modified starch with abundant surface carboxyl groups was adopted as the chelating agent and template for metal cations immobilization via electrostatic attraction predominately based on the process of -COO(-)⋯Cu(2+) and -COO(-)⋯Ce(3+). Physicochemical properties of prepared materials were systematically explored by FT-IR, XRD, TG, N2 adsorption/desorption, FE-SEM, TEM, H2-TPR, O2-TPD, XPS, DRUV-Vis, and XAFS techniques. Propanal as a typical oxygen-contained VOC was adopted as the probe pollutant to evaluate the catalytic performance of synthesized materials. Characterization results reveal that plenty of copper ions in composite oxides are incorporated into CeO2 lattice, which produces oxygen vacancies and enhances metal reducibility. Both specific surface area and pore volume of strCCx samples decreased with the increasing of Cu loading. The flake-like CuCeO2-δ sample (Cu/(Cu+Ce)=0.15) with highest specific surface area (108.2m(2)/g) and surface oxygen concentration is indentified as the most active catalyst with propanal totally destructed at 230°C. The introduction of H2O has a negative effect on propanal removal, and the synthesized catalyst has high tolerance to moisture. In conclusion, the specific surface area and surface oxygen density are two vital factors governing the catalytic activity of composite catalysts. PMID:26037271

  8. Carbon doped GaN buffer layer using propane for high electron mobility transistor applications: Growth and device results

    SciTech Connect

    Li, X.; Nilsson, D.; Danielsson, Ö.; Pedersen, H.; Janzén, E.; Forsberg, U.; Bergsten, J.; Rorsman, N.

    2015-12-28

    The creation of a semi insulating (SI) buffer layer in AlGaN/GaN High Electron Mobility Transistor (HEMT) devices is crucial for preventing a current path beneath the two-dimensional electron gas (2DEG). In this investigation, we evaluate the use of a gaseous carbon gas precursor, propane, for creating a SI GaN buffer layer in a HEMT structure. The carbon doped profile, using propane gas, is a two stepped profile with a high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) epitaxial layer closest to the substrate and a lower doped layer (3 × 10{sup 16 }cm{sup −3}) closest to the 2DEG channel. Secondary Ion Mass Spectrometry measurement shows a uniform incorporation versus depth, and no memory effect from carbon doping can be seen. The high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) does not influence the surface morphology, and a roughness root-mean-square value of 0.43 nm is obtained from Atomic Force Microscopy. High resolution X-ray diffraction measurements show very sharp peaks and no structural degradation can be seen related to the heavy carbon doped layer. HEMTs are fabricated and show an extremely low drain induced barrier lowering value of 0.1 mV/V, demonstrating an excellent buffer isolation. The carbon doped GaN buffer layer using propane gas is compared to samples using carbon from the trimethylgallium molecule, showing equally low leakage currents, demonstrating the capability of growing highly resistive buffer layers using a gaseous carbon source.

  9. High-temperature catalytic oxidative conversion of propane to propylene and ethylene involving coupling of exothermic and endothermic reactions

    SciTech Connect

    Choudhary, V.R.; Rane, V.H.; Rajput, A.M.

    2000-04-01

    Coupling of the exothermic catalytic oxidative conversion and endothermic thermal cracking (noncatalytic) reactions of propane to propylene and ethylene over the SrO/La{sub 2}O{sub 3}/SA5205 catalyst in the presence of steam and limited oxygen was investigated at different process conditions (temperature, 700--850 C; C{sub 3}H{sub 8}/O{sub 2} ratio in feed, 2.0--8.0; H{sub 2}O/C{sub 3}H{sub 8} ratio, 0.5--2.5; space velocity, 2,000--15,000 cm{sup 3}/g h). In the presence of steam and limited O{sub 2}, the endothermic thermal cracking and exothermic oxidative conversion reactions occur simultaneously and there is no coke formation on the catalyst. Because of the direct coupling of exothermic and endothermic reactions, this process occurs in a most energy efficient and safe manner. The propane conversion, selectivity for propylene, and net heat of reaction ({Delta}H{sub r}) in the process are strongly influenced by the temperature and concentration of O{sub 2} relative to the propane in the feed. The C{sub 3}H{sub 6}/C{sub 2}H{sub 4} product ratio is also strongly influenced by the temperature, C{sub 3}H{sub 8}/O{sub 2} feed ratio, and space velocity. The net heat of reaction can be controlled by manipulating the reaction temperature and C{sub 3}H{sub 8}/O{sub 2} ratio in the feed; the process exothermicity is reduced drastically with increasing the temperature and/or C{sub 3}H{sub 8}/O{sub 2} feed ratio.

  10. Synthesis and spectral characterization of bis(4-amino-5-mercapto-1,2,4-triazol-3-yl)propane

    NASA Astrophysics Data System (ADS)

    Subashchandrabose, S.; Thanikachalam, V.; Manikandan, G.; Saleem, H.; Erdogdu, Y.

    2016-03-01

    Bis(4-amino-5-mercapto-1,2,4-triazol-3-yl)propane (BAMTP) was synthesized and characterized by FT-IR and FT-Raman spectra. Gas phase structure of BAMTP was examined under density functional theory B3LYP/6-311 ++G(d, p) level of basis set, wherein the molecule was subjected to conformational analysis. Thus the identified stable structure utilized for the calculations such as geometry optimization, vibrational behavior, hyperpolarizability analysis, natural bond orbital analysis, band gap, chemical hard/softness and stability. Geometry of BAMTP has been discussed elaborately with related crystal data. The results found from experimental and theoretical methods were reported herewith.

  11. Theoretical study of interactions between 2,2-Bis (ethylferrocenyl) propane and ammonium perchlorate at low temperature

    NASA Astrophysics Data System (ADS)

    Zhou, Junhong; Zhang, Wei; Yang, Jun; Jiang, Benzheng; Chen, Weiming

    2016-05-01

    In order to explore the interaction mechanism between 2,2-Bis (ethylferrocenyl) propane (GFP) and ammonium perchlorate (AP) at low temperature (below 250 °C), all the possible intermolecular interactions between GFP and AP were calculated. The calculations were performed in single molecule, cluster and slab models. The calculation results show that the interactions between GFP and AP at low temperature mainly come from GFP-H+ and GFP-NH4+ pair interactions. We speculate that the interaction mechanism between GFP and AP at low temperature is that GFP/H+ or GFP/NH4+ interactions cause GFP to be protonated, and then protonated GFP is to further oxidized.

  12. New example of spontaneous resolution among aryl glycerol ethers: 3-(2,6-dichlorophenoxy)propane-1,2-diol

    NASA Astrophysics Data System (ADS)

    Bredikhina, Zemfira A.; Kurenkov, Alexey V.; Zakharychev, Dmitry V.; Krivolapov, Dmitry B.; Bredikhin, Alexander A.

    2016-08-01

    Using a set of simple tests, based on the properties of ideal conglomerate phase diagrams, it has been suggested to the conglomerate-formative nature of 3-(2,6-dichlorophenoxy)-propane-1,2-diol 1. Additional arguments have been drawn during the study of a single crystal X-ray diffraction study of the compound. The crystal packing details have been evaluated and discussed. Racemic 1 have been resolved into individual (S)- and (R)-components by a preferential crystallization procedure.

  13. Accurate values of some thermodynamic properties for carbon dioxide, ethane, propane, and some binary mixtures.

    PubMed

    Velasco, Inmaculada; Rivas, Clara; Martínez-López, José F; Blanco, Sofía T; Otín, Santos; Artal, Manuela

    2011-06-30

    Quasicontinuous PρT data of CO(2), ethane, propane, and the [CO(2) + ethane] mixture have been determined along subcritical, critical, and supercritical regions. These data have been used to develop the optimal experimental method and to determine the precision of the results obtained when using an Anton Paar DMA HPM vibrating-tube densimeter. A comparison with data from reference EoS and other authors confirm the quality of our experimental setup, its calibration, and testing. For pure compounds, the value of the mean relative deviation is MRD(ρ) = 0.05% for the liquid phase and for the extended critical and supercritical region. For binary mixtures the mean relative deviation is MRD(ρ) = 0.70% in the range up to 20 MPa and MRD(ρ) = 0.20% in the range up to 70 MPa. The number of experimental points measured and their just quality have enable us to determine some derivated properties with satisfactory precision; isothermal compressibilities, κ(T), have been calculated for CO(2) and ethane (MRD(κ(T)) = 1.5%), isobaric expasion coefficients, α(P), and internal pressures, π(i), for CO(2) (MRD(α(P)) = 5% and MRD(π(i)) = 7%) and ethane (MRD(α(P)) = 7.5% and MRD(π(i)) = 8%). An in-depth discussion is presented on the behavior of the properties obtained along subcritical, critical, and supercritical regions. In addition, PuT values have been determined for water and compressed ethane from 273.19 to 463.26 K up to pressures of 190.0 MPa, using a device based on a 5 MHz pulsed ultrasonic system (MRD(u) = 0.1%). With these data we have calibrated the apparatus and have verified the adequacy of the operation with normal liquids as well as with some compressed gases. From density and speed of sound data of ethane, isentropic compressibilities, κ(s), have been obtained, and from these and our values for κ(T) and α(P), isobaric heat capacities, C(p), have been calculated with MRD(C(p)) = 3%, wich is within that of the EoS. PMID:21639086

  14. Synthesis and characterization of microporous inorganic membranes for propylene/propane separation

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoli

    Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application of these membranes into C3H6/C3H 8 separation has not been well investigated. This dissertation presents fundamental studies on membrane synthesis, characterization and C3H 6/C3H8 separation properties of MFI zeolite membrane and CMS membrane. MFI zeolite membranes were synthesized on α-alumina supports by secondary growth method. Novel positron annihilation spectroscopy (PAS) techniques were used to non-destructively characterize the pore structure of these membranes. PAS reveals a bimodal pore structure consisting of intracrystalline zeolitic micropores of ~0.6 nm in diameter and irregular intercrystalline micropores of 1.4 to 1.8 nm in size for the membranes. The template-free synthesized membrane exhibited a high permeance but a low selectivity in C3H 6/C3H8 mixture separation. CMS membranes were synthesized by coating/pyrolysis method on mesoporous gamma-alumina support. Such supports allow coating of thin, high-quality polymer films and subsequent CMS membranes with no infiltration into support pores. The CMS membranes show strong molecular sieving effect, offering a high C3H 6/C3H8 mixture selectivity of ~30. Reduction in membrane thickness from 500 nm to 300 nm causes an increase in C3H8 permeance and He/N2 selectivity, but a decrease in the permeance of He, N 2 and C3H6 and C3H6/C 3H8 selectivity. This can be explained by the thickness dependent chain mobility of the polymer film resulting in final carbon membrane of reduced pore size with different effects on transport of gas of different sizes, including possible closure of C3H6-accessible micropores. CMS membranes demonstrate excellent C3H6/C 3H8 separation

  15. A Sequential Fluid-mechanic Chemical-kinetic Model of Propane HCCI Combustion

    SciTech Connect

    Aceves, S M; Flowers, D L; Martinez-Frias, J; Smith, J R; Westbrook, C; Pitz, W; Dibble, R; Wright, J F; Akinyemi, W C; Hessel, R P

    2000-11-29

    We have developed a methodology for predicting combustion and emissions in a Homogeneous Charge Compression Ignition (HCCI) Engine. This methodology combines a detailed fluid mechanics code with a detailed chemical kinetics code. Instead of directly linking the two codes, which would require an extremely long computational time, the methodology consists of first running the fluid mechanics code to obtain temperature profiles as a function of time. These temperature profiles are then used as input to a multi-zone chemical kinetics code. The advantage of this procedure is that a small number of zones (10) is enough to obtain accurate results. This procedure achieves the benefits of linking the fluid mechanics and the chemical kinetics codes with a great reduction in the computational effort, to a level that can be handled with current computers. The success of this procedure is in large part a consequence of the fact that for much of the compression stroke the chemistry is inactive and thus has little influence on fluid mechanics and heat transfer. Then, when chemistry is active, combustion is rather sudden, leaving little time for interaction between chemistry and fluid mixing and heat transfer. This sequential methodology has been capable of explaining the main characteristics of HCCI combustion that have been observed in experiments. In this paper, we use our model to explore an HCCI engine running on propane. The paper compares experimental and numerical pressure traces, heat release rates, and hydrocarbon and carbon monoxide emissions. The results show an excellent agreement, even in parameters that are difficult to predict, such as chemical heat release rates. Carbon monoxide emissions are reasonably well predicted, even though it is intrinsically difficult to make good predictions of CO emissions in HCCI engines. The paper includes a sensitivity study on the effect of the heat transfer correlation on the results of the analysis. Importantly, the paper also

  16. High-Pressure Micellar Solutions of Polystyrene-block-Polybutadiene and Polystyrene-block-Polyisoprene Solutions in Propane Exhibit Cloud-Pressure Reduction and Distinct Micellization End Points

    SciTech Connect

    Winoto, Winoto; Radosz, Maciej; Tan, Sugata; Hong, Kunlun; Mays, Jimmy

    2009-01-01

    Micellar solutions of polystyrene-block-polybutadiene and polystyrene-block-polyisoprene in propane are found to exhibit significantly lower cloud pressures than the corresponding hypothetical non-micellar solutions. Such a cloud-pressure reduction indicates the extent to which micelle formation enhances the apparent diblock solubility in near-critical and hence compressible propane. Pressure-temperature points beyond which no micelles can be formed, referred to as the micellization end points, are found to depend on the block type, size and ratio, and on the polymer concentration. For a given pressure, the micellization end-point temperature corresponds to the "critical micelle temperature." The cloud-pressure reduction and the micellization end point measured for styrene-diene diblocks in propane should be characteristic of all amphiphilic diblock copolymer solutions that form micelles in compressible solvents.

  17. Flame Speeds of Methane-Air, Propane-Air, and Ethylene-Air Mixtures at Low Initial Temperatures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L; Heimel, Sheldon

    1952-01-01

    Flame speeds were determined for methane-air, propane-air, and ethylene-air mixtures at -73 C and for methane-air mixtures at -132 C. The data extend the curves of maximum flame speed against initial mixture temperature previously established for the range from room temperature to 344 C. Empirical equations for maximum flame speed u(cm/ sec) as a function of initial mixture temperature T(sub O) were determined to be as follows: for methane, for T(sub O) from 141 to 615 K, u = 8 + 0.000160 T(sub O)(exp 2.11); for propane, for T(sub O) from 200 to 616 K, u = 10 + 0.000342 T(sub O)(exp 2.00); for ethylene, for T(sub O) from 200 to 617 K, u = 10 + 0.00259 T(sub O)(exp 1.74). Relative flame speeds at low initial temperatures were predicted within approximately 20 percent by either the thermal theory as presented by Semenov or by the diffusion theory of Tanford and Pease. The same order was found previously for high initial temperatures. The low-temperature data were also found to extend the linear correlations between maximum flame speed and calculated equilibrium active-radical concentrations, which were established by the previously reported high-temperature data.

  18. Synergistic effect of mixing dimethyl ether with methane, ethane, propane, and ethylene fuels on polycyclic aromatic hydrocarbon and soot formation

    SciTech Connect

    Yoon, S.S.; Anh, D.H.; Chung, S.H.

    2008-08-15

    Characteristics of polycyclic aromatic hydrocarbon (PAH) and soot formation in counterflow diffusion flames of methane, ethane, propane, and ethylene fuels mixed with dimethyl ether (DME) have been investigated. Planar laser-induced incandescence and fluorescence techniques were employed to measure relative soot volume fractions and PAH concentrations, respectively. Results showed that even though DME is known to be a clean fuel in terms of soot formation, DME mixture with ethylene fuel increases PAH and soot formation significantly as compared to the pure ethylene case, while the mixture of DME with methane, ethane, and propane decreases PAH and soot formation. Numerical calculations adopting a detailed kinetics showed that DME can be decomposed to produce a relatively large number of methyl radicals in the low-temperature region where PAH forms and grows; thus the mixture of DME with ethylene increases CH{sub 3} radicals significantly in the PAH formation region. Considering that the increase in the concentration of O radicals is minimal in the PAH formation region with DME mixture, the enhancement of PAH and soot formation in the mixture flames of DME and ethylene can be explained based on the role of methyl radicals in PAH and soot formation. Methyl radicals can increase the concentration of propargyls, which could enhance incipient benzene ring formation through the propargyl recombination reaction and subsequent PAH growth. Thus, the result substantiates the importance of methyl radicals in PAH and soot formation, especially in the PAH formation region of diffusion flames. (author)

  19. Development of an eight-step kinetics mechanism for propane and its application in a transient, thin gap, engine model

    SciTech Connect

    Kiehne, T.M.

    1985-01-01

    An accurate eight-step kinetics mechanism for the oxidation of propane, based on previous research, was developed in ignition delay studies and investigations of freely propagating and quenching flames. Results from a detailed kinetics model and available experimental data were used for comparison and verification. One-dimensional transient calculations were performed at pressures ranging from one to 40 atmospheres, unburned gas temperatures from 400 to 500 K, and near stoichiometric equivalence ratios. The detailed kinetics results confirm the existence of extensive post-quench burnup of propane after the time of flame-arrival at the wall. However, the range of calculations at engine-like conditions using a higher molecular weight fuel than used in previous studies indicates that hydrocarbons other than the fuel contribute significantly to the total of all unburned hydrocarbons in the wall quench layer. Based on the detailed kinetics results, an eight-step kinetics model developed from experiment is shown to be deficient in certain key areas. Therefore, it is modified to improve representation of the induction region, flame speed, postflame region, wall quench behavior, and unburned hydrocarbon evolution. Correlations that extend the model to a wider pressure range and fuel-rich equivalence ratios are developed.

  20. Densities and vapor-liquid equilibria in binary mixtures formed by propyl methanoate + ethanol, + propan-1-ol, and + butan-1-ol at 160.0 kPa

    SciTech Connect

    Falcon, J.; Ortega, J.; Gonzalez, E.

    1996-07-01

    Densities and excess volumes were determined at 298.15 K for propyl methanoate + ethanol, + propan-1-ol, and + butan-1-ol. The results of those quantities were then correlated to get the concentrations of vapor-liquid equilibrium obtained isobarically at 160 kPa for the same mixtures. Two mixtures show azeotropes: for propyl methanoate (1) + ethanol (2), x{sub 1} = 0.443 at T = 358.7 K; and for propyl methanoate (1) + propan-1-ol (2), x{sub 1} = 0.762 at T = 368.2 K. The mixtures are thermodynamically consistent, and the predictions made using several group-contribution models are satisfactory.

  1. Propane σ-Complexes on PdO(101): Spectroscopic Evidence of the Selective Coordination and Activation of Primary C-H Bonds.

    PubMed

    Zhang, Feng; Pan, Li; Choi, Juhee; Mehar, Vikram; Diulus, John T; Asthagiri, Aravind; Weaver, Jason F

    2015-11-16

    Achieving selective C-H bond cleavage is critical for developing catalytic processes that transform small alkanes to value-added products. The present study clarifies the molecular-level origin for an exceptionally strong preference for propane to dissociate on the crystalline PdO(101) surface via primary C-H bond cleavage. Using reflection absorption infrared spectroscopy (RAIRS) and density functional theory (DFT) calculations, we show that adsorbed propane σ-complexes preferentially adopt geometries on PdO(101) in which only primary C-H bonds datively interact with the surface Pd atoms at low propane coverages and are thus activated under typical catalytic reaction conditions. We show that a propane molecule achieves maximum stability on PdO(101) by adopting a bidentate geometry in which a H-Pd dative bond forms at each CH3 group. These results demonstrate that structural registry between the molecule and surface can strongly influence the selectivity of a metal oxide surface in activating alkane C-H bonds. PMID:26420576

  2. Structure of the two-subsite beta-D-xylosidase from Selenomonas ruminantium in complex with 1,3-bis[tris(hydroxymethyl)methylamino]propane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The three-dimensional structure of the catalytically-efficient beta-xylosidase from Selenomonas ruminantium in complex with competitive inhibitor 1,3 bis[tris(hydroxymethyl)methylamino]propane (BTP) was determined by using X-ray crystallography (1.3 Å resolution). Most H bonds between inhibitor and...

  3. Pd-Ag Membrane Coupled to a Two-Zone Fluidized Bed Reactor (TZFBR) for Propane Dehydrogenation on a Pt-Sn/MgAl2O4 Catalyst.

    PubMed

    Medrano, José-Antonio; Julián, Ignacio; Herguido, Javier; Menéndez, Miguel

    2013-01-01

    Several reactor configurations have been tested for catalytic propane dehydrogenation employing Pt-Sn/MgAl2O4 as a catalyst. Pd-Ag alloy membranes coupled to the multifunctional Two-Zone Fluidized Bed Reactor (TZFBR) provide an improvement in propane conversion by hydrogen removal from the reaction bed through the inorganic membrane in addition to in situ catalyst regeneration. Twofold process intensification is thereby achieved when compared to the use of traditional fluidized bed reactors (FBR), where coke formation and thermodynamic equilibrium represent important process limitations. Experiments were carried out at 500-575 °C and with catalyst mass to molar flow of fed propane ratios between 15.1 and 35.2 g min mmol-1, employing three different reactor configurations: FBR, TZFBR and TZFBR + Membrane (TZFBR + MB). The results in the FBR showed catalyst deactivation, which was faster at high temperatures. In contrast, by employing the TZFBR with the optimum regenerative agent flow (diluted oxygen), the process activity was sustained throughout the time on stream. The TZFBR + MB showed promising results in catalytic propane dehydrogenation, displacing the reaction towards higher propylene production and giving the best results among the different reactor configurations studied. Furthermore, the results obtained in this study were better than those reported on conventional reactors. PMID:24958620

  4. Operando Raman spectroscopy study on the deactivation of Pt/Al2O3 and Pt-Sn/Al2O3 propane dehydrogenation catalysts.

    PubMed

    Sattler, Jesper J H B; Beale, Andrew M; Weckhuysen, Bert M

    2013-08-01

    The deactivation of 0.5 wt% Pt/Al2O3 and 0.5 wt% Pt-1.5 wt% Sn/Al2O3 catalysts has been studied by operando Raman spectroscopy during the dehydrogenation of propane and subsequent regeneration in air for 10 successive dehydrogenation-regeneration cycles. Furthermore, the reaction feed was altered by using different propane/propene/hydrogen ratios. It was found that the addition of hydrogen to the feed increases the catalyst performance and decreases the formation of coke deposits, as was revealed by thermogravimetrical analysis. The positive effect of hydrogen on the catalyst performance is comparable to the addition of Sn, a promoter element which increases both the propane conversion and propene selectivity. Operando Raman spectroscopy showed that hydrogen altered the nature of the coke deposits formed during propane dehydrogenation. Due to this approach it was possible to perform a systematic deconvolution procedure on the Raman spectra. By analysing the related intensity, band position and bandwidth of the different Raman features, it was determined that smaller graphite crystallites, which have less defects, are formed when the partial pressure of hydrogen in the feed was increased. PMID:23615824

  5. Pd-Ag Membrane Coupled to a Two-Zone Fluidized Bed Reactor (TZFBR) for Propane Dehydrogenation on a Pt-Sn/MgAl2O4 Catalyst

    PubMed Central

    Medrano, José-Antonio; Julián, Ignacio; Herguido, Javier; Menéndez, Miguel

    2013-01-01

    Several reactor configurations have been tested for catalytic propane dehydrogenation employing Pt-Sn/MgAl2O4 as a catalyst. Pd-Ag alloy membranes coupled to the multifunctional Two-Zone Fluidized Bed Reactor (TZFBR) provide an improvement in propane conversion by hydrogen removal from the reaction bed through the inorganic membrane in addition to in situ catalyst regeneration. Twofold process intensification is thereby achieved when compared to the use of traditional fluidized bed reactors (FBR), where coke formation and thermodynamic equilibrium represent important process limitations. Experiments were carried out at 500–575 °C and with catalyst mass to molar flow of fed propane ratios between 15.1 and 35.2 g min mmol−1, employing three different reactor configurations: FBR, TZFBR and TZFBR + Membrane (TZFBR + MB). The results in the FBR showed catalyst deactivation, which was faster at high temperatures. In contrast, by employing the TZFBR with the optimum regenerative agent flow (diluted oxygen), the process activity was sustained throughout the time on stream. The TZFBR + MB showed promising results in catalytic propane dehydrogenation, displacing the reaction towards higher propylene production and giving the best results among the different reactor configurations studied. Furthermore, the results obtained in this study were better than those reported on conventional reactors. PMID:24958620

  6. Performance and efficiency evaluations of new fluorinated ethers, propanes, and butanes. Report for January-April 1993

    SciTech Connect

    Gage, C.L.; Kazachki, G.S.

    1993-01-01

    The paper gives results of a thermodynamic evaluation that investigates the performance of 15 new chemicals as refrigerants, the impact of the new chemicals on compressor size and operating characteristics, and the efficiency of the refrigerants in vapor compression cycles. Their efficiency in the basic vapor compression cycle is low, but improves substantially in a cycle with internal heat exchange. Several alternatives are identified as promising replacements. As a step in evaluating the potential performance of the 15 compounds, the evaluation using limited property data was performed on the chemicals for use as refrigerants in supermarket, chiller, refrigerator/freezer, heat pump, and air conditioning applications. The 15 chemicals included 10 fluorinated propanes, 3 fluorinated butanes, and 2 fluorinated ethers which are potential chlorofluorocarbon (CFC) and hydrochlorofluorocarbon replacements.

  7. Effects of percentage of blockage and flameholder downstream counterbores on lean combustion limits of premixed, prevaporized propane-air mixture

    NASA Technical Reports Server (NTRS)

    Fernandez, M. A. B.

    1983-01-01

    Lean combustion limits were determined for a premixed prevaporized propane air mixture with flat plate flame stabilizers. Experiments were conducted in a constant area flame tube combustor utilizing flameholders of varying percentages of blockage and downstream counterbores. Combustor inlet air velocity at ambient conditions was varied from 4 to 9 meters per second. Flameholders with a center hole and four half holes surrounding it were tested with 63, 73, and 85 percent blockage and counterbore diameters of 112 and 125 percent of the thru hole diameter, in addition to the no counterbore configuration. Improved stability was obtained by using counterbore flameholders and higher percentages of blockage. Increases in mixture velocity caused the equivalence ratio at blowout to increase in all cases.

  8. The promising chemical kinetics for the simulation of propane-air combustion with KIVA-II code

    NASA Technical Reports Server (NTRS)

    Ying, S. J.; Gorla, Rama S. R.; Kundu, Krishna P.

    1993-01-01

    The development of chemical kinetics for the simulation of propane-air combustion with the use of computer code KIVA-II since 1989 is summarized here. In order to let readers understand the general feature well, a brief description of the KIVA-II code, specially related with the chemical reactions is also given. Then the results of recent work with 20 reaction mechanism is presented. It is also compared with the 5 reaction mechanism. It may be expected that the numerical stability of the 20 reaction mechanism is better as compared to that of 5 reaction mechanism, but the CPU time of the CRAY computer is much longer. Details are presented in the paper.

  9. Portable, fast-response gas sensor for measuring methane and ethane and propane in liquefied natural gas spills

    NASA Astrophysics Data System (ADS)

    Bingham, G. E.; Kiefer, R. D.; Gillespie, C. H.; McRae, T. G.; Goldwire, H. C.; Koopman, R. P.

    1983-10-01

    We have developed a four-band, IR radiometer for measuring methane and ethane plus propane in the 1% to 100% gas per volume of air range in liquefied natural gas spills. The instrument is a small and lightweight open-cell, pyroelectric detector-based sensor designed for field use. It compensates for attenuation because of dense fog and is sufficiently hardened to allow continuous operation in the transient flame front of an ignited natural gas cloud. The sensor transmits five determinations of the gas concentration each second to a data-collection station on an interrupt-driven, serial data link. It has an operational power requirement of 15 W at 12 V dc.

  10. Kinetics of catalytic hydrogenation of 4-nitroaniline in aqueous solutions of propan-2-ol with acid or base additives

    NASA Astrophysics Data System (ADS)

    Kha, Nguen Tkhi Tkhu; Merkin, A. A.; Komarov, A. A.; Korpatenkov, D. O.; Lefedova, O. V.

    2014-04-01

    The effect of addition of acetic acid and sodium hydroxide to an aqueous azeotropic solution of propan-2-ol on the rate of 4-nitroaniline hydrogenation is studied. The base additive accelerates the apparent rate of nitro group reduction, while the presence of acetic acid slows the reaction rate. It is experimentally established that the rate of nitro group conversion calculated from the amount of reacted 4-nitroaniline exceeds the rate of hydrogen uptake from the gas phase in all of the studied solvents. Hydrogen bound by active sites of the catalyst surface is found to participate notably in the reactions. It is proved both experimentally and theoretically that strongly bound atomic forms of adsorbed hydrogen are most active in the reduction of the nitro group.

  11. 4-(3-Fluoro­phen­yl)-1-(propan-2-yl­idene)thio­semicarbazone

    PubMed Central

    Miroslaw, Barbara; Szulczyk, Daniel; Koziol, Anna E.; Struga, Marta

    2011-01-01

    The title compound, C10H12FN3S, crystallizes in the same space group (P21/c) as two polymorphic forms of 4-phenyl-1-(propan-2-yl­idene)thio­semicarbazone [Jian et al. (2005). Acta Cryst. E61, o653–o654; Venkatraman et al. (2005). Acta Cryst. E61, o3914–o3916]. The arrangement of mol­ecules relative to the twofold screw axes is similar to that in the crystal structure of the lower density polymorph. In the solid state, the mol­ecular conformation is stabilized by an intra­molecular N—H⋯N hydrogen bond. The mol­ecules form centrosymmetric R 2 2(8) dimers in the crystal through pairs of N—H⋯S hydrogen bonds. PMID:22220027

  12. Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria.

    PubMed Central

    Steffan, R J; McClay, K; Vainberg, S; Condee, C W; Zhang, D

    1997-01-01

    Several propane-oxidizing bacteria were tested for their ability to degrade gasoline oxygenates, including methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME). Both a laboratory strain and natural isolates were able to degrade each compound after growth on propane. When propane-grown strain ENV425 was incubated with 20 mg of uniformly labeled [14C]MTBE per liter, the strain converted > 60% of the added MTBE to 14CO2 in < 30 h. The initial oxidation of MTBE and ETBE resulted in the production of nearly stoichiometric amounts of tert-butyl alcohol (TBA), while the initial oxidation of TAME resulted in the production of tert-amyl alcohol. The methoxy methyl group of MTBE was oxidized to formaldehyde and ultimately to CO2. TBA was further oxidized to 2-methyl-2-hydroxy-1-propanol and then 2-hydroxy isobutyric acid; however, neither of these degradation products was an effective growth substrate for the propane oxidizers. Analysis of cell extracts of ENV425 and experiments with enzyme inhibitors implicated a soluble P-450 enzyme in the oxidation of both MTBE and TBA. MTBE was oxidized to TBA by camphor-grown Pseudomonas putida CAM, which produces the well-characterized P-450cam, but not by Rhodococcus rhodochrous 116, which produces two P-450 enzymes. Rates of MTBE degradation by propane-oxidizing strains ranged from 3.9 to 9.2 nmol/min/mg of cell protein at 28 degrees C, whereas TBA was oxidized at a rate of only 1.8 to 2.4 nmol/min/mg of cell protein at the same temperature. PMID:9361407

  13. Laboratory measurements of cross sections of propane in the 7 - 15 μm using FT-IR at cold temperatures

    NASA Astrophysics Data System (ADS)

    Sung, K.; Toon, G. C.; Brown, L. R.; Mantz, A. W.; Smith, M. A.

    2012-12-01

    Propane (C3H8) is one of the most abundant non-methane hydrocarbons (NMHC) in the natural environment of the Earth. In addition to biogenic and anthropogenic emissions, the natural degassing from geological processes is also reported to be a significant source (Etiope and Ciccioli, Science, 323, 478, 1999). At Titan, propane is an important component of the photochemistry and may provide insights into pre-biotic chemistry. To support atmospheric remote sensing of propane, absorption cross sections of N2-broadened C3H8 were obtained at temperatures between 145 and 296 K at the Jet Propulsion Laboratory. For this, 17 spectra of pure- and N2-broadened propane were recorded in the 690 to 1550 cm-1 region using a Fourier transform spectrometer (Bruker IFS-125HR) configured with a 20.38 cm long temperature-stabilized cryogenic absorption cell, developed at Connecticut College (Mantz, et al., Mol.Spectrosc. Symposium at OSU, 2010; Sung et al. JMS, 262, 122, 2010). We report the absorption cross sections at the various cold temperatures for several strong propane bands in the region. In addition, we present empirical positions, intensities, and lower state energies' determined by fitting "pseudo-lines" to the high-resolution laboratory spectra, (see http://mark4sun.jpl.nasa.gov/data/ spec/Pseudo/Readme). The resulting compilation will be compared to earlier work, including the C3H8+N2 spectra recorded at PNNL (Sharpe, et al. Appl Spectrosc 58, 1452, 2004) and available line-by-line predictions (Flaud et al., J Chem Phys 114, 9361, 2001; Flaud et al. Mol Phys 108, 699, 2010). [ Research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, Connecticut College, and NASA Langley Research Center, under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  14. Conversion of propan-2-ol on zeolites LaNaY and HY investigated by gas chromatography and in situ MAS NMR spectroscopy under continuous-flow conditions

    SciTech Connect

    Hunger, M.; Horvath, T.

    1997-04-01

    The conversion of propan-2-ol on zeolites HY and LaNaY has been investigated by gas chromatography (GC) and in situ {sup 1}H and {sup 13}C MAS NMR spectroscopy under continuous-flow conditions using a new MAS NMR microreactor with cylindrical catalyst bed. At reaction temperatures of T = 373 K and T = 393 K a propan-2-ol conversion of 50 and 100%, respectively, and the formation of propene, diisopropyl. ether, and small amounts of acetone was determined by GC. Applying in situ {sup 1}H and {sup 13}C MAS NMR spectroscopy, the initial step of the reaction was found to be the physisorption of propan-2-ol on Bronsted acid sites. A formation of isopropoxy species could be excluded by {sup 13}C MAS NMR spectroscopy. {sup 1}H MAS NMR spectroscopy indicated that the Bronsted acid sites of the zeolites LaNaY and HY were hydrated by water molecules in the first part of the induction period. These water molecules were formed in result of the propan-2-ol dehydration. The strong low-field shift of the {sup 1}H MAS NMR signals of the hydrated Bronsted acid sites is due to a partial protonation of adsorbed water molecules. At T = 393 K, a significant {sup 13}C MAS NMR signal of strongly bonded acetone molecules appeared at 220 ppm in the spectra of zeolites LaNaY and HY. As demonstrated by propan-2-ol conversion on a partially dealuminated zeolite HY, this by-reaction is promoted by extra-framework aluminium species. The formation of coke precursors which caused {sup 13}C MAS NMR signals at 10-50 ppm is explained by an oligomerization of propene. In situ {sup 13}C MAS NMR experiments carried out under a continuous flow of propene showed that the above-mentioned coke precursors are also formed on partially rehydrated zeolite HY. 25 refs., 14 figs., 1 tab.

  15. Detailed modeling of low-temperature propane oxidation: 1. The role of the propyl + O(2) reaction.

    PubMed

    Huynh, Lam K; Carstensen, Hans-Heinrich; Dean, Anthony M

    2010-06-24

    Accurate description of reactions between propyl radicals and molecular oxygen is an essential prerequisite for modeling of low-temperature propane oxidation because their multiple reaction pathways either accelerate the oxidation process via chain branching or inhibit it by forming relatively stable products. The CBS-QB3 level of theory was used to construct potential energy surfaces for n-C(3)H(7) + O(2) and i-C(3)H(7) + O(2). High-pressure rate constants were calculated using transition state theory with corrections for tunneling and hindered rotations. These results were used to derive pressure- and temperature-dependent rate constants for the various channels of these reactions under the framework of the Quantum Rice-Ramsperger-Kassel (QRRK) and the modified strong collision (MSC) theories. This procedure resulted in a thermodynamically consistent C(3)H(7) + O(2) submechanism, which was either used directly or as part of a larger extended detailed kinetic mechanism to predict the loss of propyl and the product yields of propylene and HO(2) over a wide range of temperatures, pressures, and residence times. The overall good agreement between predicted and experimental data suggests that this reaction subset is reliable and should be able to properly account for the reactions of propyl radicals with O(2) in propane oxidation. It is also demonstrated that for most conditions of practical interest only a small subset of reactions (e.g., isomerization, concerted elimination of HO(2), and stabilization) controls the oxidation kinetics, which makes it possible to considerably simplify the mechanism. Moreover, we observed strong similarities in the rate coefficients within each reaction class, suggesting the potential for development of relatively simple rate constant estimation rules that could be applied to analogous reactions involving hydrocarbon radicals that are too large to allow accurate detailed electronic structure calculations. PMID:20509639

  16. TIME-VARYING FLAME IONIZATION SENSING APPLIED TO NATURAL GAS AND PROPANE BLENDS IN A PRESSURIZED LEAN PREMIXED (LPM) COMBUSTOR

    SciTech Connect

    D. L. Straub; B. T. Chorpening; E. D. Huckaby; J. D. Thornton; W. L. Fincham

    2008-06-13

    In-situ monitoring of combustion phenomena is a critical need for optimal operation and control of advanced gas turbine combustion systems. The concept described in this paper is based on naturally occurring flame ionization processes that accompany the combustion of hydrocarbon fuels. Previous work has shown that flame ionization techniques may be applied to detect flashback, lean blowout, and some aspects of thermo-acoustic combustion instabilities. Previous work has focused on application of DC electric fields. By application of time-varying electric fields, significant improvements to sensor capabilities have been observed. These data have been collected in a lean premixed combustion test rig operating at 0.51-0.76 MPa (5-7.5 atm) with air preheated to 588 K (600°F). Five percent of the total fuel flow is injected through the centerbody tip as a diffusion pilot. The fuel composition is varied independently by blending approximately 5% (volume) propane with the pipeline natural gas. The reference velocity through the premixing annulus is kept constant for all conditions at a nominal value of 70 m/s. The fuel-air equivalence ratio is varied independently from 0.46 – 0.58. Relative to the DC field version, the time-varying combustion control and diagnostic sensor (TV-CCADS) shows a significant improvement in the correlation between the measured flame ionization current and local fuel-air equivalence ratio. In testing with different fuel compositions, the triangle wave data show the most distinct change in flame ionization current in response to an increase in propane content. Continued development of this sensor technology will improve the capability to control advanced gas turbine combustion systems, and help address issues associated with variations in fuel supplies.

  17. Concerning Units.

    ERIC Educational Resources Information Center

    Wadlinger, Robert L.

    1983-01-01

    SI units come in two distinct types: fundamental (kilogram, meter) and descriptive (atom, molecule). Proper/improper uses of atom/molecule from historical cases are presented followed by a re-introduction of a light "wave (cycle)" unit and the clearly defined photon model which is deduced. Also examines omission of the fundamental unit "radon."…

  18. 2,2′-(Propane-2,2-di­yl)dibenzothia­zole

    PubMed Central

    Knapp, Spring Melody M.; Zakharov, Lev N.; Tyler, David R.

    2010-01-01

    The two symmetry-independent mol­ecules in the asymmetric unit of the title compound, C17H14N2S2, have similar geometry; the dihedral angles between the least-squares planes of the benzothia­zole groups in the two mol­ecules are 83.93 (3) and 81.26 (3)°. PMID:21587514

  19. Cummins Engine Company B5.9 Propane Engine Development, Certification, and Demonstration Project

    SciTech Connect

    The ADEPT Group, Inc.

    1998-12-18

    The objective of this project was to successfuly develop and certify an LPG-dedicated medium-duty original equipment manufacturer (OEM) engine that could be put into production. The engine was launched into production in 1994, and more than 800 B5.9G engines are now in service in the United States and abroad. This engine is now offered by more than 30 bus and truck OEMs.

  20. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2014-11-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, Attenuated Total Reflectance-Fourier Transform Infrared and 1H Nuclear Magnetic Resonance spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene, which was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence for products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and methylglyoxal

  1. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2015-04-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt%) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  2. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    PubMed Central

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2016-01-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40–80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance–Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  3. Poly[[bis­{μ3-2-[(3,5-dimethyl-1H-pyrazol-1-yl)(phen­yl)meth­yl]propane­dioato}tetra­sodium(I)] 7.5-hydrate

    PubMed Central

    Meskini, Ihssan; Daoudi, Maria; Daran, Jean-Claude; Ben Hadda, Taibi; Zouihri, Hafid

    2010-01-01

    The asymmetric unit of the title polymer, {[Na4(C15H14N2O4)2]·7.5H2O}n, contains two 2-[(3,5-dimethyl-1H-pyrazol-1-yl)(phen­yl)meth­yl]propane­dioate (ppmp) anions, eight water mol­ecules (one located on a twofold rotation axis) and five sodium cations (one located on an inversion center and the other one located on a twofold rotation axis). The carboxyl­ate groups of the ppmp anions and the water mol­ecules bridge the Na cations, forming a two-dimensional polymeric structure. In the structure there are two types of coordination environment around the metal cations: one Na cation is coordinated by five O atoms in a distorted square-pyramidal geometry while the other four Na cations are coordinated by six O atoms in a distorted octa­hedral geometry. Extensive O—H⋯O and O—H⋯N hydrogen bonding is present in the crystal structure. The H atoms of one methyl group of the ppmp anion are disordered equally over two positions. PMID:21588089

  4. TECHNICAL JUSTIFICATION FOR CHOOSING PROPANE AS A CALIBRATION AGENT FOR TOTAL FLAMMABLE VOLATILE ORGANIC COMPOUND (VOC) DETERMINATIONS

    SciTech Connect

    DOUGLAS, J.G.

    2006-07-06

    This document presents the technical justification for choosing and using propane as a calibration standard for estimating total flammable volatile organic compounds (VOCs) in an air matrix. A propane-in-nitrogen standard was selected based on a number of criteria: (1) has an analytical response similar to the VOCs of interest, (2) can be made with known accuracy and traceability, (3) is available with good purity, (4) has a matrix similar to the sample matrix, (5) is stable during storage and use, (6) is relatively non-hazardous, and (7) is a recognized standard for similar analytical applications. The Waste Retrieval Project (WRP) desires a fast, reliable, and inexpensive method for screening the flammable VOC content in the vapor-phase headspace of waste containers. Table 1 lists the flammable VOCs of interest to the WRP. The current method used to determine the VOC content of a container is to sample the container's headspace and submit the sample for gas chromatography--mass spectrometry (GC-MS) analysis. The driver for the VOC measurement requirement is safety: potentially flammable atmospheres in the waste containers must be allowed to diffuse prior to processing the container. The proposed flammable VOC screening method is to inject an aliquot of the headspace sample into an argon-doped pulsed-discharge helium ionization detector (Ar-PDHID) contained within a gas chromatograph. No actual chromatography is performed; the sample is transferred directly from a sample loop to the detector through a short, inert transfer line. The peak area resulting from the injected sample is proportional to the flammable VOC content of the sample. However, because the Ar-PDHID has different response factors for different flammable VOCs, a fundamental assumption must be made that the agent used to calibrate the detector is representative of the flammable VOCs of interest that may be in the headspace samples. At worst, we desire that calibration with the selected calibrating

  5. A novel predictive model for formation enthalpies of Si and Ge hydrides with propane- and butane-like structures.

    PubMed

    Weng, C; Kouvetakis, J; Chizmeshya, A V G

    2011-04-15

    Butane- and propane-like silicon-germanium hydrides and chlorinated derivatives represent a new class of precursors for the fabrication of novel metastable materials at low-temperature regimes compatible with selective growth and commensurate with the emerging demand for the reduced thermal budgets of complementary metal oxide semiconductor integration. However, predictive simulation studies of the growth process and reaction mechanisms of these new compounds, needed to accelerate their deployment and fine-tune the unprecedented low-temperature and low-pressure synthesis protocols, require experimental thermodynamic data, which are currently unavailable. Furthermore, traditional quantum chemistry approaches lack the accuracy needed to treat large molecules containing third-row elements such as Ge. Accordingly, here we develop a method to accurately predict the formation enthalpy of these compounds using atom-wise corrections for Si, Ge, Cl, and H. For a test set of 15 well-known hydrides of Si and Ge and their chlorides, such as Si(3)H(8), Ge(2)H(6), SiGeH(6), SiHCl(3), and GeCl(4), our approach reduces the deviations between the experimental and predicted formation enthalpies obtained from complete basis set (CBS-QB3), G2, and B3LPY thermochemistry to levels of 1-3 kcal/mol, or a factor of ∼5 over the corresponding uncorrected values. We show that our approach yields results comparable or better than those obtained using homodesmic reactions while circumventing the need for thermochemical data of the associated reaction species. Optimized atom-wise corrections are then used to generate accurate enthalpies of formation for 39 pure Si-Ge hydrides and a selected group of 20 chlorinated analogs, of which some have recently been synthesized for the first time. Our corrected enthalpies perfectly reproduce the experimental stability trends of heavy butane-like compounds containing Ge. This is in contrast to the direct application of the CBS-QB3 method, which yields

  6. ZnO modified ZSM-5 and Y zeolites fabricated by atomic layer deposition for propane conversion.

    PubMed

    Gong, Ting; Qin, Lijun; Lu, Jian; Feng, Hao

    2016-01-01

    ZnO modified ZSM-5 and Y zeolites are synthesized by performing atomic layer deposition (ALD) of ZnO to HZSM-5 and HY using diethyl zinc and water as the precursors. The surface area and pore volume of ZSM-5 and Y zeolites are progressively reduced with the increasing number of ZnO ALD cycles. XRD and SEM characterization methods show that highly dispersed ZnO species are deposited on the internal and external surfaces of both zeolites. The ZnO species deposited on ZSM-5 are in an amorphous form while nano-crystallites of ZnO are present on Y zeolites after performing ≥2 cycles of ZnO ALD. XPS and TPR characterization methods reveal that isolated Zn(OH)(+) species are predominantly formed on both zeolites after the first cycle of ZnO ALD and the ZnO clusters gradually grow larger with the increasing number of ALD cycles. The type and strength of acid sites on the parent and the ALD ZnO modified zeolites are studied by FTIR spectra of adsorbed pyridine. Incorporation of ZnO into Y zeolite by ALD completely eliminates the Brønsted acid sites and increases the number of strong Lewis acid sites. Similar effects are obtained on ALD ZnO modified ZSM-5 except that the Brønsted acid sites are only partially removed. Catalytic properties of the ALD ZnO modified zeolites are evaluated in propane conversion. Introduction of ZnO species significantly improves the activities of both zeolites. Propylene is the major reaction product on ALD ZnO modified Y zeolite while high selectivities to aromatics are achieved on ALD ZnO modified ZSM-5. These results suggest that ZnO species merely promote the dehydrogenation reaction while the subsequent oligomerization and cyclization reactions require Brønsted acid sites. For both zeolites the catalyst fabricated by only 1 or 2 cycles of ZnO ALD performs better than those fabricated by multiple cycles of ALD, indicating that isolated Zn(OH)(+) species are more effective for the conversion of propane to propylene and aromatics. PMID

  7. Nanostructure of Solid Precipitates Obtained by Expansion of Polystyrene-block-Polybutadiene Solutions in Near Critical Propane: Block Ratio and Micellar Solution Effects

    PubMed Central

    Green, Jade; Tyrrell, Zachary; Radosz, Maciej; Hong, Kunlun; Mays, Jimmy W.

    2011-01-01

    In contrast to incompressible liquid solutions, compressible near-critical solutions of block copolymers allow for controlling rapid structure transformations with pressure alone. For example, when dissolved in near-critical propane, polystyrene-block-polybutadiene can form a random molecular solution at high pressures, a micellar solution at moderate pressures, and a solvent-free precipitate at low pressures. In contrast to the unstructured virgin copolymer, such a propane-treated precipitate rapidly self assembles toward structures characteristic of equilibrated block copolymers, such as lamellae, spheres or cylinders, which depend on the block ratio rather than on the decompression rate or temperature, at least within the rate and temperature ranges investigated in this work. At lower temperatures, however, say below 40 °C, glass transition of the styrene-butadiene diblocks can inhibit independent structure formation while crystallization of their hydrogenated-butadiene analogs can preserve the micellar-solution structure. PMID:21686070

  8. Nanostructure of Solid Precipitates Obtained by Expansion of Polystyrene-block-Polybutadiene Solutions in Near Critical Propane: Block Ratio and Micellar Solution Effects.

    PubMed

    Green, Jade; Tyrrell, Zachary; Radosz, Maciej; Hong, Kunlun; Mays, Jimmy W

    2011-05-19

    In contrast to incompressible liquid solutions, compressible near-critical solutions of block copolymers allow for controlling rapid structure transformations with pressure alone. For example, when dissolved in near-critical propane, polystyrene-block-polybutadiene can form a random molecular solution at high pressures, a micellar solution at moderate pressures, and a solvent-free precipitate at low pressures. In contrast to the unstructured virgin copolymer, such a propane-treated precipitate rapidly self assembles toward structures characteristic of equilibrated block copolymers, such as lamellae, spheres or cylinders, which depend on the block ratio rather than on the decompression rate or temperature, at least within the rate and temperature ranges investigated in this work. At lower temperatures, however, say below 40 °C, glass transition of the styrene-butadiene diblocks can inhibit independent structure formation while crystallization of their hydrogenated-butadiene analogs can preserve the micellar-solution structure. PMID:21686070

  9. Reduction, aggregation and physicochemical properties of silver nanoparticles in propan-2-ol:cyclohexane mixtures induced by a high energy electron beam

    SciTech Connect

    Rele, Medha; Kapoor, Sudhir; Mukherjee, Tulsi

    2002-11-20

    Radiolytic reduction of silver and gold ions and subsequent formation of their aggregates have been studied in propan-2-ol:cyclohexane mixture using pulse radiolysis technique. The silver sol, produced on irradiation of Ag{sup +} solution with a train of electron pulses, has been characterized using XRD and TEM. The size of the particles has been found to be in the range of 30-50 nm. The silver sol emit light with a maximum at 340 nm on irradiation with a high energy electron beam. The intensity of emission has been found to decrease with decrease in concentration of Ag particles. Formation of colloidal gold has also been observed on irradiation of NAuCl{sub 4} solution in propan-2-ol:cyclohexane by train of electron pulses. The particles so formed are oxidized on exposure to air. No light emission has been observed from Au sol.

  10. Nanostructure of Solid Precipitates Obtained by Expansion of Polystyrene-block-Polybutadiene Solutions in Near Critical Propane: Block Ratio and Micellar Solution Effects

    SciTech Connect

    Green, Jade; Tyrrell, Zachary; Radosz, Maciej; Hong, Kunlun; Mays, Jimmy

    2011-01-01

    In contrast to incompressible liquid solutions, compressible near-critical solutions of block copolymers allow for controlling rapid structure transformations with pressure alone. For example, when dissolved in near-critical propane, polystyrene-block-polybutadiene can form a random molecular solution at high pressures, a micellar solution at moderate pressures, and a solvent-free precipitate at low pressures. In contrast to the unstructured virgin copolymer, such a propane-treated precipitate rapidly self-assembles toward structures characteristic of equilibrated block copolymers, such as lamellae, spheres, or cylinders, which depend on the block ratio rather than on the decompression rate or temperature, at least within the rate and temperature ranges investigated in this work. At lower temperatures, however, say below 40 C, glass transition of the styrene-butadiene diblocks can inhibit independent structure formation, while crystallization of their hydrogenated-butadiene analogues can preserve the micellar-solution structure.

  11. Bis(1,10-phenanthroline-κ2 N,N′)(sulfato-κO)zinc(II) propane-1,2-diol monosolvate

    PubMed Central

    Zhong, Kai-Long

    2013-01-01

    In the title compound, [Zn(SO4)(C12H8N2)2]·C3H8O2, the ZnII ion is in a distorted square-pyramidal coordination environment composed of four N atoms from two chelating 1,10-phenanthroline ligands and one O atom from a monodentate sulfate ligand. The ZnII ion lies on a twofold rotation axis. The sulfate ligand and propane-1,2-diol mol­ecules are disordered across the twofold rotation axis. The dihedral angle between the two chelating N2C2 groups is 83.26 (13)°. In the crystal, the complex mol­ecule and the propane-1,2-diol mol­ecule are connected through a pair of O—H⋯O hydrogen bonds. PMID:24098186

  12. Determination of the carbon kinetic isotope effects on propane hydroxylation mediated by the methane monooxygenases from Methylococcus capsulatus (Bath) by using stable carbon isotopic analysis.

    PubMed

    Huang, Ded-Shih; Wu, Suh-Huey; Wang, Yane-Shih; Yu, Steve S-F; Chan, Sunney I

    2002-08-01

    Authentic propane with known position-specific carbon isotope composition at each carbon atom was subjected to hydroxylation by the particulate and soluble methane monooxygenase (pMMO and sMMO) from Methylococcus capsulatus (Bath), and the corresponding position-specific carbon isotope content was redetermined for the product 2-propanol. Neither the reaction mediated by pMMO nor that with sMMO showed an intermolecular (12)C/(13)C kinetic isotope effect effect on the propane hydroxylation at the secondary carbon; this indicates that there is little structural change at the carbon center attacked during formation of the transition state in the rate-determining step. This finding is in line with the concerted mechanism proposed for pMMO (Bath), and suggested for sMMO (Bath), namely, direct side-on insertion of an active "O" species across the C-H bond, as has been previously reported for singlet carbene insertion. PMID:12203974

  13. In Silico Design of Highly Selective Mo-V-Te-Nb-O Mixed Metal Oxide Catalysts for Ammoxidation and Oxidative Dehydrogenation of Propane and Ethane.

    PubMed

    Cheng, Mu-Jeng; Goddard, William A

    2015-10-21

    We used density functional theory quantum mechanics with periodic boundary conditions to determine the atomistic mechanism underlying catalytic activation of propane by the M1 phase of Mo-V-Nb-Te-O mixed metal oxides. We find that propane is activated by Te═O through our recently established reduction-coupled oxo activation mechanism. More importantly, we find that the C-H activation activity of Te═O is controlled by the distribution of nearby V atoms, leading to a range of activation barriers from 34 to 23 kcal/mol. On the basis of the new insight into this mechanism, we propose a synthesis strategy that we expect to form a much more selective single-phase Mo-V-Nb-Te-O catalyst. PMID:26423704

  14. Modeling nitrogen and methane with ethane and propane gas hydrates at low temperatures (173-290 K) with applications to Titan

    NASA Astrophysics Data System (ADS)

    Marion, G. M.; Kargel, J. S.; Tan, S. P.

    2015-09-01

    The FREZCHEM model was primarily designed for cold temperatures (173-298 K) and high pressures (1-1000 bars). Nitrogen gas (95.0%) and methane gas (5.0%) are major gases on the surface of Titan. Recently, we added nitrogen and methane gas hydrates to FREZCHEM model on Titan; and nitrogen-methane gas hydrates formed on Titan at 178 K. The other common but less abundant gases on Titan are ethane (C2H6) and propane (C3H8) that can also form gas hydrates with nitrogen and methane. The specific objectives of this study were to (1) add ethane and propane to gas hydrates, including mixtures with nitrogen, methane, and carbon dioxide, and (2) explore the potential roles of gas hydrates on Titan. At 273 K, the Ln(gas hydrates) were 5.095 for N2, 3.217 for CH4, 2.327 for CO2, 1.288 for C2H6, and 0.281 for C3H8. At 173 K, the Ln(gas hydrates) were -4.968 for N2, -6.102 for CH4, -7.803 for CO2, -5.125 for C2H6, and -5.512 for C3H8. Apparently C2H6 and C3H8 gas hydrates change less at lower temperatures than N2, CH4, and CO2 gas hydrates. In previous papers, we added three mixed CH4-CO2, N2-CH4, and N2-CO2 binary gas hydrates. In this paper, we added ethane and propane to include new binary gas hydrate mixtures of N2-C2H6, N2-C3H8, C2H6-C3H8, CH4-C2H6, CH4-C3H8, CO2-C2H6, and CO2-C3H8. Today, there are ten binary gas hydrates in the FREZCHEM model. In the text, how to cope with more than two species is described. Simulations from 273 K to 173 K used a surface Titan pressure of 1.467 bars with a major gas of nitrogen (94.24%), a minor gas of methane (5.65%), and extremely minor gases of ethane (0.0038%), and propane (0.000343%). Eventually at 178 K, N2·6H2O formed with 0.17694 mol, CH4·6H2O formed with 0.04101 mol, C2H6·6H2O formed with 6.48e-6 mol, and C3H8·6H2O formed with 9.36e-7 mol. Based on the atmospheric conditions of Titan, the trace gases of ethane and propane led to low gas hydrate precipitations of ethane and propane with nitrogen and methane. However, the gas

  15. Effect of primary-zone water injection on pollutants from a combustor burning liquid ASTM A-1 and vaporized propane fuels

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1973-01-01

    A combustor segment 0.457 meter (18 in.) long with a maximum cross section of 0.153 by 0.305 meter (6 by 12 in.) was operated at inlet-air temperatures of 590 and 700 K, inlet-air pressures of 4 and 10 atmospheres, and fuel-air ratios of 0.014 and 0.018 to determine the effect of primary-zone water injection on pollutants from burning either propane or ASTM A-1 fuel. At a simulated takeoff condition of 10 atmospheres and 700 K, multiple-orifice nozzles used to inject water at 1 percent of the airflow rate reduced nitrogen oxides 75 percent with propane and 65 percent with ASTM A-1 fuel. Although carbon monoxide and unburned hydrocarbons increased with water injection, they remained relatively low; and smoke numbers were well below the visibility limit.

  16. Efficient combination of promoter and catalyst for chromic acid oxidation of propan-2-ol to acetone in aqueous acid media at room temperature.

    PubMed

    Mukherjee, Kakali; Saha, Rumpa; Ghosh, Aniruddha; Ghosh, Sumanta K; Saha, Bidyut

    2013-01-15

    Oxidation of propan-2-ol to acetone was carried out in aqueous media at room temperature. The effect of promoter (PA, bpy, phen), micellar catalyst (SDS, CPC, TX-100) and their combination has been studied. The reactions were performed under the condition [Propan-2-ol]T≫[Cr(VI)]T at 30°C. Then kobs and half life of all the reaction were determined to identify which promoter and which combination are the most effective for this oxidation. Among the promoters phen accelerates the reaction most in aqueous media. In absence of promoters anionic surfactant SDS increases the rate more effectively than neutral surfactant TX-100. CPC retards the rate in comparison to aqueous media. The rate of the oxidation is highest in presence of the combination of bpy and SDS. PMID:23123236

  17. The mixed diol-dithiol 2,2-bis(sulfanylmethyl)propane-1,3-diol: characterization of key intermediates on a new synthetic pathway.

    PubMed

    Simmons, Trevor R; Pickett, Christopher J; Wright, Joseph A

    2011-01-01

    A new synthetic route to 2,2-bis(sulfanylmethyl)propane-1,3-diol, (II), is described starting from the commercially available 2,2-bis(hydroxymethyl)propane-1,3-diol. The structures of two intermediates on this route are described. 5,5-Dimethenyl-2,2-dimethyl-1,3-dioxane bis(thiocyanate) (systematic name: {[5-(cyanosulfanyl)-2,2-dimethyl-1,3-dioxan-5-yl]sulfanyl}formonitrile), C(10)H(14)N(2)O(2)S(2), (X), crystallizes in the space group P2(1)/c with no symmetry relationship between the two thiocyanate groups. There is a short intramolecular N...S contact for one thiocyanate group, while the second group is positioned such that this type of interaction is not possible. 1,3-(Hydroxymethyl)propane-1,3-diyl bis(thiocyanate), C(7)H(10)N(2)O(2)S(2), (XI), also features a single short N···S contact in the solid state. Hydrogen bonding between two molecules of compound (XI) results in the formation of dimers in the crystal, which are then linked together by a second hydrogen-bond interaction between the dimers. In addition, the structures of two intermediates from an unsuccessful alternative synthesis of (II) are reported. 2,2-Bis(chloromethyl)propane-1,3-diol, C(5)H(10)Cl(2)O(2), (VI), crystallized as an inversion twin with a minor twin fraction of 0.43 (6). It forms a zigzag structure as a result of intermolecular hydrogen bonding. The structure of 9,9-dimethyl-2,4,8,10-tetraoxa-3λ(4)-thiaspiro[5.5]undecan-3-one, C(8)H(14)O(5)S, (VII), shows evidence for a weak S···O contact with a distance of 3.2529 (11) Å. PMID:21206075

  18. Performance and Emissions Characteristics of Bio-Diesel (B100)-Ignited Methane and Propane Combustion in a Four Cylinder Turbocharged Compression Ignition Engine

    DOE PAGESBeta

    Shoemaker, N. T.; Gibson, C. M.; Polk, A. C.; Krishnan, S. R.; Srinivasan, K. K.

    2011-10-05

    Different combustion strategies and fuel sources are needed to deal with increasing fuel efficiency demands and emission restrictions. One possible strategy is dual fueling using readily available resources. Propane and natural gas are readily available with the current infrastructure and biodiesel is growing in popularity as a renewable fuel. This paper presents experimental results from dual fuel combustion of methane (as a surrogate for natural gas) and propane as primary fuels with biodiesel pilots in a 1.9 liter, turbocharged, 4 cylinder diesel engine at 1800 rev/min. Experiments were performed with different percentage energy substitutions (PES) of propane and methane andmore » at different brake mean effective pressures (BMEP/bmep). Brake thermal efficiency (BTE) and emissions (NOx, HC, CO, CO2, O2 and smoke) were also measured. Maximum PES levels for B100-methane dual fuelling were limited to 70% at 2.5 bar bmep and 48% at 10 bar bmep, and corresponding values for B100-propane dual fuelling were 64% and 43%, respectively. Maximum PES was limited by misfire at 2.5 bar bmep and the onset of engine knock at 10 bar bmep. Dual fuel BTEs approached straight B100 values at 10 bar bmep while they were significantly lower than B100 values at 2.5 bar bmep. In general dual fuelling was beneficial in reducing NOx and smoke emissions by 33% and 50%, respectively from baseline B100 levels; however, both CO and THC emissions were significantly higher than baseline B100 levels at all PES and loads.« less

  19. Platinum-Promoted Ga/Al2O3 as Highly Active, Selective, and Stable Catalyst for the Dehydrogenation of Propane**

    PubMed Central

    Sattler, Jesper J H B; Gonzalez-Jimenez, Ines D; Luo, Lin; Stears, Brien A; Malek, Andrzej; Barton, David G; Kilos, Beata A; Kaminsky, Mark P; Verhoeven, Tiny W G M; Koers, Eline J; Baldus, Marc; Weckhuysen, Bert M

    2014-01-01

    A novel catalyst material for the selective dehydrogenation of propane is presented. The catalyst consists of 1000 ppm Pt, 3 wt % Ga, and 0.25 wt % K supported on alumina. We observed a synergy between Ga and Pt, resulting in a highly active and stable catalyst. Additionally, we propose a bifunctional active phase, in which coordinately unsaturated Ga3+ species are the active species and where Pt functions as a promoter. PMID:24989975

  20. Volumetric Properties of the Mixture Propan-2-one C3H6O + C16H34 Hexadecane (VMSD1141, LB3346_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Propan-2-one C3H6O + C16H34 Hexadecane (VMSD1141, LB3346_V)' providing data from direct measurement of mass density at variable pressure and constant temperature and mole fraction.

  1. Performance and Emissions Characteristics of Bio-Diesel (B100)-Ignited Methane and Propane Combustion in a Four Cylinder Turbocharged Compression Ignition Engine

    SciTech Connect

    Shoemaker, N. T.; Gibson, C. M.; Polk, A. C.; Krishnan, S. R.; Srinivasan, K. K.

    2011-10-05

    Different combustion strategies and fuel sources are needed to deal with increasing fuel efficiency demands and emission restrictions. One possible strategy is dual fueling using readily available resources. Propane and natural gas are readily available with the current infrastructure and biodiesel is growing in popularity as a renewable fuel. This paper presents experimental results from dual fuel combustion of methane (as a surrogate for natural gas) and propane as primary fuels with biodiesel pilots in a 1.9 liter, turbocharged, 4 cylinder diesel engine at 1800 rev/min. Experiments were performed with different percentage energy substitutions (PES) of propane and methane and at different brake mean effective pressures (BMEP/bmep). Brake thermal efficiency (BTE) and emissions (NOx, HC, CO, CO2, O2 and smoke) were also measured. Maximum PES levels for B100-methane dual fuelling were limited to 70% at 2.5 bar bmep and 48% at 10 bar bmep, and corresponding values for B100-propane dual fuelling were 64% and 43%, respectively. Maximum PES was limited by misfire at 2.5 bar bmep and the onset of engine knock at 10 bar bmep. Dual fuel BTEs approached straight B100 values at 10 bar bmep while they were significantly lower than B100 values at 2.5 bar bmep. In general dual fuelling was beneficial in reducing NOx and smoke emissions by 33% and 50%, respectively from baseline B100 levels; however, both CO and THC emissions were significantly higher than baseline B100 levels at all PES and loads.

  2. Synthesis of ZSM-5 galloalumosilicate and investigation of their physicochemical and catalytic properties in the course of conversion of propane into aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Vosmerikova, L. N.; Volynkina, A. N.; Vosmerikov, A. V.

    2015-11-01

    Galloalumosilicates having ZSM-5 structure are manufactured from the alkali alumina silica gels via the method of hydrothermal crystallization using different organic templating agents. Their physico-chemical and acidic properties are investigated and their catalytic reactivity is determined in the course of propane conversion into aromatic hydrocarbons. The highest catalytic reactivity and stability are exhibited by the Ga-containing zeolite synthesized using hexamethylenediamine as a structure-forming additive.

  3. Imperfect Unit.

    ERIC Educational Resources Information Center

    McCarthy, Katherine

    This unit provides visual activities to engage students in learning the imperfect tense in Spanish. Upon completion of the unit, students will be able to do the following: identify imperfect tense conjugation in children's books; conjugate verbs in the imperfect tense; list uses of the imperfect tense; discriminate between the imperfect tense and…

  4. UNIT, ALASKA.

    ERIC Educational Resources Information Center

    Louisiana Arts and Science Center, Baton Rouge.

    THE UNIT DESCRIBED IN THIS BOOKLET DEALS WITH THE GEOGRAPHY OF ALASKA. THE UNIT IS PRESENTED IN OUTLINE FORM. THE FIRST SECTION DEALS PRINCIPALLY WITH THE PHYSICAL GEOGRAPHY OF ALASKA. DISCUSSED ARE (1) THE SIZE, (2) THE MAJOR LAND REGIONS, (3) THE MOUNTAINS, VOLCANOES, GLACIERS, AND RIVERS, (4) THE NATURAL RESOURCES, AND (5) THE CLIMATE. THE…

  5. UNIT, PETROLOGY.

    ERIC Educational Resources Information Center

    Louisiana Arts and Science Center, Baton Rouge.

    THIS TEACHER'S GUIDE FOR A UNIT ON PETROLOGY IS SUITABLE FOR ADAPTATION AT EITHER THE UPPER ELEMENTARY OR THE JUNIOR HIGH SCHOOL LEVELS. THE UNIT BEGINS WITH A STORY THAT INTRODUCES VOLCANIC ACTION AND IGNEOUS ROCK FORMATION. SELECTED CONCEPTS ARE LISTED FOLLOWED BY SUGGESTED ACTIVITIES. A BIBLIOGRAPHY, FILM LIST, VOCABULARY LIST, AND QUESTION AND…

  6. N-Phenyl-2-(propan-2-yl­idene)­hydrazine­carboxamide

    PubMed Central

    Attia, Mohamed I.; Ghabbour, Hazem A.; El-Azzouny, Aida A.; Quah, Ching Kheng; Fun, Hoong-Kun

    2012-01-01

    In the title compound, C10H13N3O, the hydrazinecarboxamide N—N—C(=O)—N unit is nearly planar [maximum deviation = 0.018 (2) Å] and is inclined at a dihedral angle of 8.45 (10)° with respect to the plane of the phenyl ring. The mol­ecular structure is stabilized by an intra­molecular C—H⋯O hydrogen bond which generates an S(6) ring motif. In the crystal, mol­ecules are linked into an inversion dimer by pairs of N—H⋯O and C—H⋯O hydrogen bonds. PMID:22412570

  7. Effects of pressure, temperature, and hydrogen during graphene growth on SiC(0001) using propane-hydrogen chemical vapor deposition

    SciTech Connect

    Michon, A.; Vezian, S.; Roudon, E.; Lefebvre, D.; Portail, M.; Zielinski, M.; Chassagne, T.

    2013-05-28

    Graphene growth from a propane flow in a hydrogen environment (propane-hydrogen chemical vapor deposition (CVD)) on SiC differentiates from other growth methods in that it offers the possibility to obtain various graphene structures on the Si-face depending on growth conditions. The different structures include the (6{radical}3 Multiplication-Sign 6{radical}3)-R30 Degree-Sign reconstruction of the graphene/SiC interface, which is commonly observed on the Si-face, but also the rotational disorder which is generally observed on the C-face. In this work, growth mechanisms leading to the formation of the different structures are studied and discussed. For that purpose, we have grown graphene on SiC(0001) (Si-face) using propane-hydrogen CVD at various pressure and temperature and studied these samples extensively by means of low energy electron diffraction and atomic force microscopy. Pressure and temperature conditions leading to the formation of the different structures are identified and plotted in a pressure-temperature diagram. This diagram, together with other characterizations (X-ray photoemission and scanning tunneling microscopy), is the basis of further discussions on the carbon supply mechanisms and on the kinetics effects. The entire work underlines the important role of hydrogen during growth and its effects on the final graphene structure.

  8. Analysis of solvation structure and thermodynamics of ethane and propane in water by reference interaction site model theory using all-atom models

    NASA Astrophysics Data System (ADS)

    Cui, Qizhi; Smith, Vedene H.

    2001-08-01

    Following our previous paper on methane [Cui and Smith, J. Chem. Phys. 113, 10240 (2000)], we study the solvation structures and thermodynamics of ethane and propane in water at the infinite dilution limit by using the hypernetted chain closure reference interaction site model (HNC-RISM) theory with all-atom representations for solute molecules. At four thermodynamic states: temperature T=283.15, 298.15, 313.15, 328.15 K and the corresponding bulk water density ρ=0.9997, 0.9970, 0.9922, 0.9875 g cm-3, all the atomic solute-solvent radial distribution functions are obtained, and the corresponding running coordination numbers and the hydration free energies, energies, enthalpies, and entropies are calculated with the radial distribution functions as input. The hydration structures of ethane and propane are presented and analyzed at the atomic level in terms of the atomic solute-solvent radial distribution functions. With the optimized nonbonded potential parameters based on the CHARMM96 all-atom model for alkanes [Yin and Mackerell, J. Comput. Chem. 19, 334 (1998)], the ethane and propane hydration thermodynamic properties predicted by the HNC-RISM theory are improved in the specified temperature range (10-55 °C).

  9. Reversal of global atmospheric ethane and propane trends largely due to US oil and natural gas production

    NASA Astrophysics Data System (ADS)

    Helmig, Detlev; Rossabi, Samuel; Hueber, Jacques; Tans, Pieter; Montzka, Stephen A.; Masarie, Ken; Thoning, Kirk; Plass-Duelmer, Christian; Claude, Anja; Carpenter, Lucy J.; Lewis, Alastair C.; Punjabi, Shalini; Reimann, Stefan; Vollmer, Martin K.; Steinbrecher, Rainer; Hannigan, James W.; Emmons, Louisa K.; Mahieu, Emmanuel; Franco, Bruno; Smale, Dan; Pozzer, Andrea

    2016-07-01

    Non-methane hydrocarbons such as ethane are important precursors to tropospheric ozone and aerosols. Using data from a global surface network and atmospheric column observations we show that the steady decline in the ethane mole fraction that began in the 1970s halted between 2005 and 2010 in most of the Northern Hemisphere and has since reversed. We calculate a yearly increase in ethane emissions in the Northern Hemisphere of 0.42 (+/-0.19) Tg yr-1 between mid-2009 and mid-2014. The largest increases in ethane and the shorter-lived propane are seen over the central and eastern USA, with a spatial distribution that suggests North American oil and natural gas development as the primary source of increasing emissions. By including other co-emitted oil and natural gas non-methane hydrocarbons, we estimate a Northern Hemisphere total non-methane hydrocarbon yearly emission increase of 1.2 (+/-0.8) Tg yr-1. Atmospheric chemical transport modelling suggests that these emissions could augment summertime mean surface ozone by several nanomoles per mole near oil and natural gas production regions. Methane/ethane oil and natural gas emission ratios could suggest a significant increase in associated methane emissions; however, this increase is inconsistent with observed leak rates in production regions and changes in methane's global isotopic ratio.

  10. Dynamic light scattering in sooting premixed atmospheric-pressure methane-, propane-, ethene-, and propene-oxygen flames

    SciTech Connect

    Lamprecht, A.; Eimer, W.; Kohse-Hoeinghaus, K.

    1999-07-01

    In a systematic investigation under well-defined flame conditions, dynamic light scattering (DLS) was applied to the determination of soot particle radii with the aim of examining the suitability of this technique for accurate soot particle sizing. In particular, flat premixed methane-, propane-, ethene-, and propene-oxygen flames at atmospheric pressure were investigated, and particle sizes were obtained as a function of stoichiometry and height above the burner surface. In combination with absorption measurements, soot volume fraction and particle number density were determined; also, the temperature was measured at each flame condition. In comparison to absorption techniques, attractive features of DLS are its independence of the particle refractive index and its insensitivity to fluorescence interference; also, it offers spatial resolution. In principle, additional information on the particle size distribution as well as on the global shape of the particles may be obtained from DLS experiments. This study is therefore an evaluation of the potential of DLS as a complement to other soot diagnostic techniques.

  11. Effect of heat recirculation on the self-sustained catalytic combustion of propane/air mixtures in a quartz reactor

    SciTech Connect

    Scarpa, A.; Pirone, R.; Russo, G.; Vlachos, D.G.

    2009-05-15

    The self-sustained catalytic combustion of propane is experimentally studied in a two-pass, quartz heat-recirculation reactor (HRR) and compared to that in a no (heat) recirculation reactor (NRR). Structured monolithic reactors with Pt/{gamma}-Al{sub 2}O{sub 3}, LaMnO{sub 3}/{gamma}-Al{sub 2}O{sub 3}, and Pt doped perovskite catalysts have been compared in the HRR and NRR configurations. Heat recirculation enhances combustion stability, by widening the operating window of self-sustained operation, and changes the mode of stability loss from blowout to extinction. It is found that thermal shields (upstream and downstream of the monolith) play no role in the stability of a HRR but increase the stability of a NRR. The stability of a HRR follows this trend: Pt/{gamma}-Al{sub 2}O{sub 3} > doped perovskite > LaMnO{sub 3}/{gamma}-Al{sub 2}O{sub 3}. Finally, a higher cell density monolith enlarges the operating window of self-sustained combustion, and allows further increase of the power density of the process. (author)

  12. Supramolecular structural, thermal properties and biological activity of 3-(2-methoxyphenoxy)propane-1,2-diol metal complexes

    NASA Astrophysics Data System (ADS)

    Mahmoud, Walaa H.; Mahmoud, Nessma F.; Mohamed, Gehad G.; El-Bindary, Ashraf A.; El-Sonbati, Adel Z.

    2015-04-01

    New bi- and trivalent transition metal complexes of ligand 3-(2-methoxyphenoxy)propane-1,2-diol (GFS) were synthesized. The ligand and complexes were characterized via: melting point, UV/Visible, IR, 1H NMR, mass and diffused reflectance spectroscopy. The molecular structure of the investigated ligand (GFS) is optimized theoretically and the quantum chemical parameters are calculated. In addition, the complexes were characterized based on conductivity measurement, thermal analysis and biological activity. The infrared spectral study of GFS and its complexes, act as monobasic tridentate through the oxygen atom of hydroxyl group and two etheric oxygen atoms. Also, coordination to the unprotonated oxygen is evidenced from the disappearance of the OH signal in the 1H NMR spectra after complexation. The thermogravimetric analysis of the complexes shows metal oxide remaining as the final product. The compounds were tested against four bacterial species; two Gram positive bacteria (Bacillus subtilis and Staphylococcus aureus) and two Gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa) as well as antifungal activity against (Candida albicans). The complexes showed significant activities against Gram positive bacteria than Gram negative bacteria. [Cd(GFS)Cl(H2O)2] complex showed remarkable antifungal activity. However, some complexes showed more chemotherapeutic efficiency than the parent GFS drug. The drug and complexes were also screened for their in vitro anticancer activity against the Breast cell line (MFC7) and the results obtained show that they exhibit a considerable anticancer activity.

  13. Laboratory studies, analysis, and interpretation of the spectra of hydrocarbons present in planetary atmospheres including cyanoacetylene, acetylene, propane, and ethane

    NASA Technical Reports Server (NTRS)

    Blass, William E.; Daunt, Stephen J.; Peters, Antoni V.; Weber, Mark C.

    1990-01-01

    Combining broadband Fourier transform spectrometers (FTS) from the McMath facility at NSO and from NRC in Ottawa and narrow band TDL data from the laboratories with computational physics techniques has produced a broad range of results for the study of planetary atmospheres. Motivation for the effort flows from the Voyager/IRIS observations and the needs of Voyager analysis for laboratory results. In addition, anticipation of the Cassini mission adds incentive to pursue studies of observed and potentially observable constituents of planetary atmospheres. Current studies include cyanoacetylene, acetylene, propane, and ethane. Particular attention is devoted to cyanoacetylen (H3CN) which is observed in the atmosphere of Titan. The results of a high resolution infrared laboratory study of the line positions of the 663, 449, and 22.5/cm fundamental bands are presented. Line position, reproducible to better than 5 MHz for the first two bands, are available for infrared astrophysical searches. Intensity and broadening studies are in progress. Acetylene is a nearly ubiquitous atmospheric constituent of the outer planets and Titan due to the nature of methane photochemistry. Results of ambient temperature absolute intensity measurements are presented for the fundamental and two two-quantum hotband in the 730/cm region. Low temperature hotband intensity and linewidth measurements are planned.

  14. trans-Dichloridobis(propane-1,3-diamine-κ2 N,N′)chromium(III) perchlorate

    PubMed Central

    Choi, Jong-Ha; Clegg, William

    2011-01-01

    In the title compound, [CrCl2(C3H10N2)2]ClO4, the CrIII atom is coordinated equatorially by four N atoms of two propane-1,3-diamine (tn) ligands and axially by two mutually trans Cl atoms, thus displaying a slightly distorted octa­hedral geometry with no crystallographically imposed symmetry. The two six-membered chair chelate rings in the complex cation are in an anti conformation with respect to each other. The Cr—N bond lengths range from 2.0831 (18) to 2.0917 (19) Å, and the Cr—Cl bond lengths are 2.3148 (6) and 2.3135 (6) Å. The perchlorate anions have slightly distorted tetra­hedral geometries. Weak inter­molecular hydrogen bonds involving the tn ligand NH groups as donors, and chloride ligands and anion O atoms as acceptors are observed. PMID:21522301

  15. Research on the nanocrystal FeVxOy catalysts for new reaction from propane to propylene and CO

    NASA Astrophysics Data System (ADS)

    Li, Yanhua; Chen, Shu; Xu, Aixin; Ma, Fei; Chen, Fang; Lu, Weimin

    2014-11-01

    The FeVxOy catalysts, used for selective oxidation of propane to propylene and CO, were prepared via sol-gel method using F-127 as chelating agent. And the catalyst with V/Fe (molar ratio) = 0.1 showed quite good selectivity of propylene and CO and the sum of them can be more than 90%. The catalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Raman, H2-TPR and NH3-TPD. The relationship between the structure and catalytic properties was also preliminarily discussed. The results indicated that chemical interaction took place between the vanadium and iron, which could be referred to Vsbnd Osbnd Fe bonds and the formation of Fe(VO4). Meanwhile, with the increase of vanadium content, the distribution of all the elements proportion and valence state on the surface of the catalysts as well as the acid amount and acid sites changed immensely. All of these affected the catalytic performance and improve the selectivity of CO and inhibit that of CO2.

  16. Study on the structure, acidic properties of V-Zr nanocrystal catalysts in oxidative dehydrogenation of propane

    NASA Astrophysics Data System (ADS)

    Chen, Shu; Ma, Fei; Xu, Aixin; Wang, Lina; Chen, Fang; Lu, Weimin

    2014-01-01

    A series of V-doped zirconia nanocrystal (the molar ratio of V/Zr varying from 0.001 to 0.15) were prepared via hydrothermal method and performed in oxidative dehydrogenation of propane. It was found that vanadium was highly dispersed on the surface and in the bulk of ZrO2. The distribution of the vanadium species, the valence states and the aggregation state of V species on the surface, as well as the acid properties of the catalysts including kinds, number and strength were detected by the various characteristic methods. The correlation between the V content and the surroundings of the different V species has been studied. The function of acid properties, especially Brønsted acid in the catalytic performance has been discussed. Oxidative dehydrogenation reactions were carried out in a continuous flow fixed bed reactor and ZrV0.01 catalyst showed good conversion and selectivity with a yield of propylene of 21.3%.

  17. Insertion of porous chromia in {gamma}-zirconium phosphate and its catalytic performance in the oxidative dehydrogenation of propane

    SciTech Connect

    Jimenez-Lopez, A.; Rodriguez-Castellon, E.; Santamaria-Gonzalez, J.; Braos-Garcia, P.; Felici, E.; Marmottini, F.

    2000-04-04

    An expanded phase of acetate-hydroxide of Cr(III) intercalated into {gamma}-zirconium phosphate has been isolated by refluxing a solution formed by chromium(III) acetate-hydroxide and {gamma}-zirconium phosphate, previously dispersed in 1:1 water-acetone solution at 353 K. By calcination of this phase at 623 K under vacuum, an intercalated compound with a basal spacing of 1.73 nm and a surface area of 147 m{sup 2} g{sup {minus}1} was obtained. A temperature-programmed reduction study reveals that this solid contains a little amount of chromium in high oxidation state. However, when the precursor is heated at 673 K, a collapsed structure with a low surface area was obtained. The inserted porous chromia in {gamma}-zirconium phosphate calcined at 623 K is active in the oxidative dehydrogenation of propane at 623 K with 58% conversion and 10% of selectivity to propene. When this material is calcined at 823 K in air, it is also active in this reaction but only at high temperature, 823 K being necessary to attain catalytic properties similar to those observed for the catalyst prepared at low temperature.

  18. Synthesis of Pt–Pd Core–Shell Nanostructures by Atomic Layer Deposition: Application in Propane Oxidative Dehydrogenation to Propylene

    SciTech Connect

    Lei, Yu; Liu, Bin; Lu, Junling; Lobo-Lapidus, Rodrigo J.; Wu, Tianpin; Feng, Hao; Xia, Xiaoxing; Mane, Anil U.; Libera, Joseph A.; Greeley, Jeffrey P.; Miller, Jeffrey T.; Elam, Jeffrey W.

    2012-08-20

    Atomic layer deposition (ALD) was employed to synthesize supported Pt–Pd bimetallic particles in the 1 to 2 nm range. The metal loading and composition of the supported Pt–Pd nanoparticles were controlled by varying the deposition temperature and by applying ALD metal oxide coatings to modify the support surface chemistry. High-resolution scanning transmission electron microscopy images showed monodispersed Pt–Pd nanoparticles on ALD Al2O3- and TiO2-modified SiO2 gel. X-ray absorption spectroscopy revealed that the bimetallic nanoparticles have a stable Pt-core, Pd-shell nanostructure. Density functional theory calculations revealed that the most stable surface configuration for the Pt–Pd alloys in an H2 environment has a Pt-core, Pd-shell nanostructure. Finally, in comparison to their monometallic counterparts, the small Pt–Pd bimetallic core–shell nanoparticles exhibited higher activity in propane oxidative dehydrogenation as compared to their physical mixture.

  19. Propane dehydrogenation over Pt-Cu bimetallic catalysts: the nature of coke deposition and the role of copper

    NASA Astrophysics Data System (ADS)

    Han, Zhiping; Li, Shuirong; Jiang, Feng; Wang, Tuo; Ma, Xinbin; Gong, Jinlong

    2014-08-01

    This paper describes an investigation of the promotional effect of Cu on the catalytic performance of Pt/Al2O3 catalysts for propane dehydrogenation. We have shown that Pt/Al2O3 catalysts possess higher propylene selectivity and lower deactivation rate as well as enhanced anti-coking ability upon Cu addition. The optimized loading content of Cu is 0.5 wt%, which increases the propylene selectivity to 90.8% with a propylene yield of 36.5%. The origin of the enhanced catalytic performance and anti-coking ability of the Pt-Cu/Al2O3 catalyst is ascribed to the intimate interaction between Pt and Cu, which is confirmed by the change of particle morphology and atomic electronic environment of the catalyst. The Pt-Cu interaction inhibits propylene adsorption and elevates the energy barrier of C-C bond rupture. The inhibited propylene adsorption diminishes the possibility of coke formation and suppresses the cracking reaction towards the formation of lighter hydrocarbons on Pt-Cu/Al2O3, while a higher energy barrier for C-C bond cleavage suppresses the methane formation.

  20. Effect of the initial pressure on the characteristics of the flame propagation in hydrogen-propane-air mixtures

    NASA Astrophysics Data System (ADS)

    Cheng, Guanbing; Bauer, Pascal; Zitoun, Ratiba

    2014-08-01

    This paper is aimed at an experimental investigation on effects of initial pressure on flame propagation characteristics of binary fuels hydrogen-propane-air mixtures at room temperature. The experiments are performed in a square channel equipped with perforated orifice obstacles. Four initial pressures are examined. Based on pressure transducers along the channel, the flame velocity, maximum pressure of the front peak and characteristic distances are measured. Successive stages are observed as flame propagates: (i) a velocity increase at the beginning, (ii) a velocity equal to the sound speed of combustion products and (iii) a decrease of the velocity. When the initial pressure is more important, the flame velocity and the maximal pressure of the front peak are higher, which yields a shorter characteristic distance of flame propagation. By means of a Schlieren photography technique, the physical mechanisms of flame propagation are identified in its initial stage. The physical mechanisms such as flame surface area increase and combustion product expansion as well as delayed combustion between two adjacent plates are responsible for flame acceleration upon its initial stage. The oscillations of the centerline flame velocity are due to the constrained-expanded structure of flow in reactants ahead of flame when it crosses the plates.

  1. Molecular Docking Study of Catecholamines and [4-(Propan-2-yl) Phenyl]Carbamic acid with Tyrosine Hydroxylase

    PubMed Central

    Parveen, Zahida; Nawaz, Muhammad Sulaman; Shakil, Shazi; Greig, Nigel H.; Kamal, Mohammad A.

    2016-01-01

    Parkinson’s disease is a major age-related neurodegenerative disorder. As the classical disease-related motor symptoms are associated with the loss of dopamine-generating cells within the substantia nigra, tyrosine hydroxylase (TH), the rate-limiting enzyme in the synthesis of catecholamines has become an important target in the development of Parkinson’s disease drug candidates, with the focus to augment TH levels or its activity. By contrast, TH inhibitors are of relevance in the treatment of conditions associated with catecholamine over-production, as occurs in pheochromocytomas. To aid characterizing new drug candidates, a molecular docking study of catecholamines and a novel hypothetical compound [4-(propan-2-yl) phenyl]carbamic acid (PPCA) with TH is described. Docking was performed using Autodock4.2 and results were analyzed using Chimera1.5.2. All the studied ligands were found to bind within a deep narrow groove lined with polar aromatic and acidic residues within TH. Our results corroborated a ‘hexa interacting amino acids unit’ located in this deep narrow groove crucial to the interaction of PPCA and the studied catecholamines with TH, whereby the ‘His361-His336 dyad’ was found to be even more crucial to these binding interactions. PPCA displayed a binding interaction with human TH that was comparable to the original TH substrate, L-tyrosine. Hence PPCA may warrant in vitro and in vivo characterization with TH to assess its potential as a candidate therapeutic. PMID:22583429

  2. Ultra-dispersed Pt nanoparticles on SAPO-34/γ-Al2O3 support for efficient propane dehydrogenation.

    PubMed

    Chu, Yue; Zhang, Qiang; Wu, Tongwei; Nawaz, Zeeshan; Wang, Yao; Wei, Fei

    2014-09-01

    Ultra-dispersed precious metal nanoparticles with good thermal stability are highly required for heterogeneous catalysis. However, the efficient and effective strategy to disperse ultra-fine precious metal nanoparticles at high reaction temperature is still not fully understood yet. In this contribution, a family of catalysts with ultra-small Pt nanoparticles were prepared using impregnation method by adjusting the zeolite content in the SAPO-34 and γ-Al2O3 mixed support. The effect of Pt nanoparticle size on the catalytic activity, selectivity, and stability was investigated in the propane dehydrogenation reaction. Catalyst with smaller Pt particles exhibits better catalytic performance. Both the highest Pt dispersion and the best catalytic activity can be achieved by using SAPO-34 and γ-Al2O3 mixed support with 70 wt.% of SAPO-34. The size and structure of the Pt nanoparticles on the optimal catalyst were characterized by transmission electron microscopy. Pt nanoparticles with an average size of 1.32 nm were observed. There were stronger metal-support interactions between the oxidized tin species and Pt particles on SAPO-34 support compared to that on γ-Al2O3 catalyst. These lead to high Pt dispersion and consequently good catalytic performance. PMID:25924347

  3. Propane dehydrogenation over Pt-Cu bimetallic catalysts: the nature of coke deposition and the role of copper.

    PubMed

    Han, Zhiping; Li, Shuirong; Jiang, Feng; Wang, Tuo; Ma, Xinbin; Gong, Jinlong

    2014-09-01

    This paper describes an investigation of the promotional effect of Cu on the catalytic performance of Pt/Al2O3 catalysts for propane dehydrogenation. We have shown that Pt/Al2O3 catalysts possess higher propylene selectivity and lower deactivation rate as well as enhanced anti-coking ability upon Cu addition. The optimized loading content of Cu is 0.5 wt%, which increases the propylene selectivity to 90.8% with a propylene yield of 36.5%. The origin of the enhanced catalytic performance and anti-coking ability of the Pt-Cu/Al2O3 catalyst is ascribed to the intimate interaction between Pt and Cu, which is confirmed by the change of particle morphology and atomic electronic environment of the catalyst. The Pt-Cu interaction inhibits propylene adsorption and elevates the energy barrier of C-C bond rupture. The inhibited propylene adsorption diminishes the possibility of coke formation and suppresses the cracking reaction towards the formation of lighter hydrocarbons on Pt-Cu/Al2O3, while a higher energy barrier for C-C bond cleavage suppresses the methane formation. PMID:24933477

  4. Oxidative dehydrogenation of propane over vanadia-based catalysts supported on high-surface-area mesoporous MgAl2O4

    SciTech Connect

    Evans, Owen R.; Bell, Alexis T.; Tilley, T. Don

    2004-06-01

    The oxidative dehydrogenation of propane to propene was investigated over a series of novel vanadia-based catalysts supported on high-surface-area magnesium spinel. A mesoporous MgAl2O4 support was synthesized via a low-temperature sol gel process involving the heterobimetallic alkoxide precursor, Mg[Al(O iPr)4]2. A high-purity catalyst support was obtained after calcination at 1173 K under O2 atmosphere and active vanadia catalysts were prepared from the thermolysis of OV(O tBu)3 after grafting onto the spinel support. MgAl2O4-supported catalysts prepared in this manner have BET surface areas of 234 245 m2/g. All of the catalysts were characterized by X-ray powder diffraction, and Raman, solid-state NMR, and diffuse-reflectance UV vis spectroscopy. At all vanadium loadings the vanadia supported on MgAl2O4 exist as a combination of isolated monovanadate and tetrahedral polyvanadate species. As the vanadium surface density increases for these catalysts the ratio of polyvanadate species to isolated monovanadate species increases. In addition, as the vanadium surface density increases for these catalysts, the initial rate of propane ODH per V atom increases and reaches a maximum value at 6 VOx/nm2. Increasing the vanadium surface density past this point results in a decrease in the rate of propane ODH owing to the formation of multilayer species in which subsurface vanadium atoms are essentially rendered catalytically inactive. The initial propene selectivity increases with increasing vanadium surface density and reaches a plateau of {approx}95 percent for the V/MgAl catalysts. Rate coefficients for propane ODH (k1), propane combustion (k2), and propene combustion (k3) were calculated for these catalysts. The value of k1 increases with increasing VOx surface density, reaching a maximum at about 5.5 VOx/nm2. On the other hand, the ratio (k2/k1) for V/MgAl decreases with increasing VOx surface density. The ratio (k3/k1) for both sets of catalysts shows no dependence on

  5. Carbon steel flanges and welds evaluation on HF-alkylation unit

    SciTech Connect

    Peiiuela, L.; Chirinos, J.

    1999-11-01

    In 1995, there were two failures in the 20,000 BPD HF Alky unit at the Amuay Refinery causing a shutdown of the unit. The failures occurred in one flange and one weld in the depropanizer charge carbon steel pipe, containing propane, isobutane and anhydrous hydrofluoric acid at 190 F (88 C) and 321psig (22.5 Kg/cm{sup 2}). Examination showed severe uniform corrosion at the inside surface of the flange while the adjacent elbow showed minimal corrosion loss. The other failure showed preferential attack in the weld without corrosion loss in the pipe components. A complete evaluation of the Alky plant was necessary to identify other lines in similar conditions that could cause future emergency shutdown of the unit. An extensive on stream inspection program was performed on critical lines of the unit. This paper summarizes the results and conclusions of this evaluation.

  6. Determination of arsenic metabolic complex excreted in human urine after administration of sodium 2,3-dimercapto-1-propane sulfonate.

    PubMed

    Gong, Zhilong; Jiang, Guifeng; Cullen, William R; Aposhian, H Vasken; Le, X Chris

    2002-10-01

    Sodium 2,3-dimercapto-1-propane sulfonate (DMPS) has been used to treat acute arsenic poisoning. Presumably DMPS functions by chelating some arsenic species to increase the excretion of arsenic from the body. However, the excreted complex of DMPS with arsenic has not been detected. Here we describe a DMPS complex with monomethylarsonous acid (MMA(III)), a key trivalent arsenic in the arsenic methylation process, and show the presence of the DMPS-MMA(III) complex in human urine after the administration of DMPS. The DMPS-MMA(III) complex was characterized using electrospray tandem mass spectrometry and determined by using HPLC separation with hydride generation atomic fluorescence detection (HGAFD). The DMPS-MMA(III) complex did not form a volatile hydride with borohydride treatment. On-line digestion with 0.1 M sodium hydroxide following HPLC separation decomposed the DMPS-MMA(III) complex and allowed for the subsequent quantification by hydride generation atomic fluorescence. Arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA(V)), dimethylarsinic acid (DMA(V)), MMA(III), and DMPS-MMA(III) complex were analyzed in urine samples from human subjects collected after the ingestion of 300 mg of DMPS. The administration of DMPS resulted in a decrease of the DMA(V) concentration and an increase of the MMA(V) concentration excreted in the urine, confirming the previous results. The finding of the DMPS-MMA(III) complex in human urine after DMPS treatment provides an explanation for the inhibition of arsenic methylation by DMPS. Because MMA(III) is the substrate for the biomethylation of arsenic from MMA(V) to DMA(V), the formation of DMPS-MMA(III) complex would reduce the availability of MMA(III) for the subsequent biomethylation. PMID:12387631

  7. Acid-, water- and high-temperature-stable ruthenium complexes for the total catalytic deoxygenation of glycerol to propane.

    PubMed

    Taher, Deeb; Thibault, Michelle E; Di Mondo, Domenico; Jennings, Michael; Schlaf, Marcel

    2009-10-01

    The ruthenium aqua complexes [Ru(H(2)O)(2)(bipy)(2)](OTf)(2), [cis-Ru(6,6'-Cl(2)-bipy)(2)(OH(2))(2)](OTf)(2), [Ru(H(2)O)(2)(phen)(2)](OTf)(2), [Ru(H(2)O)(3)(2,2':6',2''-terpy)](OTf)(2) and [Ru(H(2)O)(3)(Phterpy)](OTf)(2) (bipy = 2,2'-bipyridine; OTf(-) = triflate; phen = phenanthroline; terpy = terpyridine; Phterpy = 4'-phenyl-2,2':6',2''-terpyridine) are water- and acid-stable catalysts for the hydrogenation of aldehydes and ketones in sulfolane solution. In the presence of HOS(O)(2)CF(3) (triflic acid) as a dehydration co-catalyst they directly convert 1,2-hexanediol to n-hexanol and hexane. The terpyridine complexes are stable and active as catalysts at temperatures > or = 250 degrees C and in either aqueous sulfolane solution or pure water convert glycerol into n-propanol and ultimately propane as the final reaction product in up to quantitative yield. For the terpy complexes the active catalyst is postulated to be a carbonyl species [(4'-R-2,2':6',2''-terpy)Ru(CO)(H(2)O)(2)](OTf)(2) (R = H, Ph) formed by the decarbonylation of aldehydes (hexanal for 1,2-hexanediol and 3-hydroxypropanal for glycerol) generated in the reaction mixture through acid-catalyzed dehydration. The structure of the dimeric complex [{(4'-phenyl-2,2':6',2''-terpy)Ru(CO)}(2)(mu-OCH(3))(2)](OTf)(2) has been determined by single crystal X-ray crystallography (Space group P1 (a = 8.2532(17); b = 12.858(3); c = 14.363(3) A; alpha = 64.38(3); beta = 77.26(3); gamma = 87.12(3) degrees, R = 4.36 %). PMID:19693757

  8. Spark Ignition of Flowing Gases. 2: Effect of Electrode Parameters on Energy Required to Ignite a Propane-Air Mixture

    NASA Technical Reports Server (NTRS)

    Swett, Clyde. C., Jr.

    1951-01-01

    Research was conducted to determine the effect of the electrode parameters of spacing, configuration, and material' on the energy required for ignition of a flowing propane-air mixture. In addition, the data were used to indicate the energy distribution along the spark length and to confirm previous observations concerning the effect of spark duration on ignition energy requirements. The data were obtained with a mixture at a fuel-air ratio of 0.0835 (by weight), a pressure of 3 inches of mercury absolute, a temperature of 80 F, and a mixture velocity of 5 feet per second. Results showed that the energy required for ignition decreased as the electrode spacing was increased; a minimum energy occurred at. a spacing of 0.65 inch for large electrodes. For small electrodes, the spacing for minimum energy was not sharply defined. Small-diameter electrodes required less energy than large-diameter electrodes if the spacing was less than the optimum distance of 0.65 inch; at a spacing equal to the optimum distance, no difference was noted. Significant effects of electrode material on ignition energy were ascribed to differences in the type of spark discharges produced; glow discharges required higher energy than the arc-glow discharges. With pure glow discharges, the ignition energy was substantially constant for lead, cadmium, brass, aluminum, and tungsten electrodes. A method is described for determining the energy distribution along a glow discharge. It was found that one-third to one-half of the energy in the spark was concentrated in a small region near the cathode electrode, and the remainder was uniformly distributed across the spark gap. It was impossible to ascertain the dependence of ignition on. this distribution. It was also observed that long-duration (600 microsec) sparks required much less energy for ignition than did short-duration (1 microsec) sparks.

  9. Hardware assembly and prototype testing for the development of a dedicated liquefied propane gas ultra low emission vehicle

    NASA Astrophysics Data System (ADS)

    1995-07-01

    On February 3, 1994, IMPCO Technologies, Inc. started the development of a dedicated LPG Ultra Low Emissions Vehicle (ULEV) under contract to the Midwest Research Institute National Renewable Energy Laboratory Division (NREL). The objective was to develop a dedicated propane vehicle that would meet or exceed the California ULEV emissions standards. The project is broken into four phases to be performed over a two year period. The four phases of the project include: (Phase 1) system design, (Phase 2) prototype hardware assembly and testing, (Phase 3) full-scale systems testing and integration, and (Phase 4) vehicle demonstration. This report describes the approach taken for the development of the vehicle and the work performed through the completion of Phase-2 dynamometer test results. Work was started on Phase 2 (Hardware Assembly and Prototype Testing) in May 1994 prior to completion of Phase 1 to ensure that long lead items would be available in a timely fashion for the Phase 2 work. In addition, the construction and testing of the interim electronic control module (ECM), which was used to test components, was begun prior to the formal start of Phase 2. This was done so that the shortened revised schedule for the project (24 months) could be met. In this report, a brief summary of the activities of each combined Phase 1 and 2 tasks will be presented, as well as project management activities. A technical review of the system is also given, along with test results and analysis. During the course of Phase 2 activities, IMPCO staff also had the opportunity to conduct cold start performance tests of the injectors. The additional test data was most positive and will be briefly summarized in this report.

  10. Hardware assembly and prototype testing for the development of a dedicated liquefied propane gas ultra low emission vehicle

    SciTech Connect

    1995-07-01

    On February 3, 1994, IMPCO Technologies, Inc. started the development of a dedicated LPG Ultra Low Emissions Vehicle (ULEV) under contract to the Midwest Research Institute National Renewable Energy Laboratory Division (NREL). The objective was to develop a dedicated propane vehicle that would meet or exceed the California ULEV emissions standards. The project is broken into four phases to be performed over a two year period. The four phases of the project include: (Phase 1) system design, (Phase 2) prototype hardware assembly and testing, (Phase 3) full-scale systems testing and integration, (Phase 4) vehicle demonstration. This report describes the approach taken for the development of the vehicle and the work performed through the completion of Phase II dynamometer test results. Work was started on Phase 2 (Hardware Assembly and Prototype Testing) in May 1994 prior to completion of Phase 1 to ensure that long lead items would be available in a timely fashion for the Phase 2 work. In addition, the construction and testing of the interim electronic control module (ECM), which was used to test components, was begun prior to the formal start of Phase 2. This was done so that the shortened revised schedule for the project (24 months) could be met. In this report, a brief summary of the activities of each combined Phase 1 and 2 tasks will be presented, as well as project management activities. A technical review of the system is also given, along with test results and analysis. During the course of Phase 2 activities, IMPCO staff also had the opportunity to conduct cold start performance tests of the injectors. The additional test data was most positive and will be briefly summarized in this report.

  11. [Conservation Units.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin.

    Instructional units deal with each aspect of conservation: forests, wildlife, rangelands, water, minerals, and soil. The area of the secondary school curriculum with which each is correlated is indicated. Lists of general and specific objectives are followed by suggested teaching procedures, including ideas for introducing the topic, questions to…

  12. [Conservation Units.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin.

    Each of the six instructional units deals with one aspect of conservation: forests, water, rangeland, minerals (petroleum), and soil. The area of the elementary school curriculum with which each correlates is indicated. Lists of general and specific objectives are followed by suggested teaching procedures, including ideas for introducing the…

  13. A practical grinding-assisted dry synthesis of nanocrystalline NiMoO{sub 4} polymorphs for oxidative dehydrogenation of propane

    SciTech Connect

    Chen Miao; Wu Jialing; Liu Yongmei; Cao Yong; Guo Li; He Heyong; Fan Kangnian

    2011-12-15

    A practical two-stage reactive grinding-assisted pathway waste-free and cost-effective for the synthesis of NiMoO{sub 4} has been successfully developed. It was demonstrated that proper design in synthetic strategy for grinding plays a crucial role in determining the ultimate polymorph of NiMoO{sub 4}. Specifically, direct grinding (DG) of MoO{sub 3} and NiO rendered {alpha}-NiMoO{sub 4} after annealing, whereas sequential grinding (SG) of the two independently pre-ground oxides followed by annealing generated {beta}-NiMoO{sub 4} solid solution. Characterizations in terms of Raman and X-ray diffraction suggest the creation of {beta}-NiMoO{sub 4} precursor in the latter alternative is the key aspect for the formation of {beta}-NiMoO{sub 4}. The DG-derived {alpha}-NiMoO{sub 4} tested by oxidative dehydrogenation of propane exhibited superior activity in contrast to its analog synthesized via conventional coprecipitation. It is suggested that the favorable chemical composition facilely obtained via grinding in contrast to that by coprecipitation was essential for achieving a more selective production of propylene. - Graphical Abstract: Grinding-assisted synthesis of NiMoO{sub 4} offers higher and more reproducible activities in contrast to coprecipitation for oxidative dehydrogenation of propane, and both {alpha}- and {beta}-NiMoO{sub 4} can be synthesized. Highlights: Black-Right-Pointing-Pointer NiMoO{sub 4} was prepared through grinding-assisted pathway. Black-Right-Pointing-Pointer Direct/sequential grinding rendered {alpha}-, {beta}-NiMoO{sub 4}, respectively. Black-Right-Pointing-Pointer Grinding-derived {alpha}-NiMoO{sub 4} showed high and reproducible activity for oxidative dehydrogenation of propane.

  14. Adsorption of acrolein, propanal, and allyl alcohol on Pd(111): a combined infrared reflection-absorption spectroscopy and temperature programmed desorption study.

    PubMed

    Dostert, Karl-Heinz; O'Brien, Casey P; Mirabella, Francesca; Ivars-Barceló, Francisco; Schauermann, Swetlana

    2016-05-18

    Atomistic-level understanding of the interaction of α,β-unsaturated aldehydes and their derivatives with late transition metals is of fundamental importance for the rational design of new catalytic materials with the desired selectivity towards C[double bond, length as m-dash]C vs. C[double bond, length as m-dash]O bond partial hydrogenation. In this study, we investigate the interaction of acrolein, and its partial hydrogenation products propanal and allyl alcohol, with Pd(111) as a prototypical system. A combination of infrared reflection-absorption spectroscopy (IRAS) and temperature programmed desorption (TPD) experiments was applied under well-defined ultrahigh vacuum (UHV) conditions to obtain detailed information on the adsorption geometries of acrolein, propanal, and allyl alcohol as a function of coverage. We compare the IR spectra obtained for multilayer coverages, reflecting the molecular structure of unperturbed molecules, with the spectra acquired for sub-monolayer coverages, at which the chemical bonds of the molecules are strongly distorted. Coverage-dependent IR spectra of acrolein on Pd(111) point to the strong changes in the adsorption geometry with increasing acrolein coverage. Acrolein adsorbs with the C[double bond, length as m-dash]C and C[double bond, length as m-dash]O bonds lying parallel to the surface in the low coverage regime and changes its geometry to a more upright orientation with increasing coverage. TPD studies indicate decomposition of the species adsorbed in the sub-monolayer regime upon heating. Similar strong coverage dependence of the IR spectra were found for propanal and allyl alcohol. For all investigated molecules a detailed assignment of vibrational bands is reported. PMID:27149902

  15. Vapor-liquid equilibrium measurements for methyl propanoate-ethanol and methyl propanoate-propan-1-ol at 101. 32 kPa

    SciTech Connect

    Susial, P.; Ortega, J. ); DeAlfonso, C.; Alonso, C. )

    1989-04-01

    Isobaric vapor-liquid equilibrium measurements on binary systems of methyl propanoate with ethanol and propan-1-ol are taken at a constant pressure of 101.32 +- 0.02 kPa. These systems exhibit significant deviations from ideality and are shown to be thermodynamically consistent. The methyl propanoate-ethanol system forms an azeotrope at x = y = 0.483 and T = 345.58{Kappa}. Experimental data are fitted to a suitable equation and are likewise compared with the values predicted by the UNIFAC and ASOG models.

  16. Synergy between hexavalent chromium ions and TiO2 nanoparticles inside TUD-1 in the photocatalytic oxidation of propane, a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Hamdy, Mohamed S.

    2016-02-01

    Siliceous TUD-1 mesoporous material was bi-functionalized by titanium dioxide nanoparticles and hexavalent chromium ions. The synthesis was carried out by one-pot procedure based on sol-gel technique. The photocatalytic performance of the prepared material was evaluated in the oxidation of propane under the illumination of ultraviolet light (wavelength = 360 nm) and monitored by in situ Fourier transform infrared spectroscopy. The photocatalytic activity of the prepared material exhibited an extra-ordinary activity than the reference samples that contain either hexavalent chromium ions or titanium dioxide nanoparticles only, confirming the true synergy between hexavalent chromium and tetravalent titanium ions of titanium dioxide nanoparticles.

  17. Volumetric Properties of the Mixture Propenenitrile C3H3N + C3H8O Propan-1-ol (VMSD1212, LB4918_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Propenenitrile C3H3N + C3H8O Propan-1-ol (VMSD1212, LB4918_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  18. Volumetric Properties of the Mixture Propenenitrile C3H3N + C3H8O Propan-1-ol (VMSD1511, LB4926_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Propenenitrile C3H3N + C3H8O Propan-1-ol (VMSD1511, LB4926_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  19. Volumetric Properties of the Mixture Propenenitrile C3H3N + C3H8O Propan-1-ol (VMSD1111, LB4910_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Propenenitrile C3H3N + C3H8O Propan-1-ol (VMSD1111, LB4910_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  20. Design, synthesis and docking studies on phenoxy-3-piperazin-1-yl-propan-2-ol derivatives as protein tyrosine phosphatase 1B inhibitors.

    PubMed

    Gupta, Swati; Pandey, Gyanendra; Rahuja, Neha; Srivastava, Arvind K; Saxena, Anil K

    2010-10-01

    A series of substituted phenoxy-3-piperazin-1-yl-propan-2-ols has been synthesized and evaluated for PTP1B inhibitory activity in vitro and for antidiabetic activity in vivo. Two molecules viz. 4a and 5b showed PTP1B inhibition of 31.58% and 35.90% at 100 μM concentration. The compound 4a also showed 40.3% normalization of plasma glucose levels at 100mg/kg in Sugar-loaded model (SLM) and 32% activity in Streptozodocin model (STZ). The docking studies of these molecules revealed that hydrogen bond formation with Arg221 is important for activity. PMID:20797859

  1. Effect of varying the combustion parameters on the emissions of carbon monoxide and nitrogen oxides in the exhaust gases from propane-fueled vehicles.

    PubMed

    Roberge, B

    2000-05-01

    Propane-fueled forklifts are one source of carbon monoxide (CO) contamination of workplace air. The previous study carried out by the Quebec Occupational Health and Safety Research Institute dealt with worker exposure to CO during forklift use in buildings. It recommends that exhaust gas emissions be kept below a 1 percent concentration. However, this control has not produced a significant reduction in worker exposure to CO, when factors (ventilation, type of work tasks, and management of vehicle fleet) specific to companies are taken into account. Consequently, a reduction in CO emissions below the threshold of 0.3 percent should be considered. The experience acquired with propane-fueled ice resurfacers can be used to determine the effect of combustion parameters on exhaust gas emissions. It is known that a reduction in CO emissions from ice resurfacers resulted in the appearance of nitrogen oxides (NOx) and eventually in nitrogen dioxide (NO2) poisoning. Few publications present NOx results in relation to the CO measured in the exhaust gases of propane-fueled vehicles. The objective of this study is to define the level to which CO emissions can be reduced without increasing NOx concentrations. This real-situation study quantified the CO, NO, and NOx in the exhaust gases of a fleet of propane-fueled forklifts in relation to the mixture ratio. The results show the impact of the motor speed and mixture ratio on the CO, NO, and NO2 concentrations. They confirm an increase in NOx concentrations when CO concentrations are reduced. They also show that proper maintenance of forklifts combined with optimal adjustments can reduce CO and NOx emissions. The study proposes a compromise between CO and NOx emissions by taking into account worker health and safety as well as vehicle performance. Monitoring must be done to control air quality in work areas and worker exposure to CO and NO2. A forklift preventive maintenance program and general building ventilation are the favored

  2. Volumetric Properties of the Mixture Carbon disulfide CS2 + C3H6O Propan-2-one (VMSD1211, LB3411_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Carbon disulfide CS2 + C3H6O Propan-2-one (VMSD1211, LB3411_V)' providing data from direct low-pressure dilatometric measurement of molar excess volume at variable mole fraction and constant temperature.

  3. Volumetric Properties of the Mixture Propan-1-ol C3H8O + C5H10O Propyl vinyl ether (VMSD1111, LB5079_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Propan-1-ol C3H8O + C5H10O Propyl vinyl ether (VMSD1111, LB5079_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  4. Volumetric Properties of the Mixture Propan-1-ol C3H8O + C5H10O Propyl vinyl ether (VMSD1212, LB5078_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Propan-1-ol C3H8O + C5H10O Propyl vinyl ether (VMSD1212, LB5078_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  5. Vapor-Liquid Equilibrium in the Mixture Propan-1-ol C3H8O + C5H10O Propyl vinyl ether (EVLM1121, LB5724_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'vapor-Liquid Equilibrium in the Mixture Propan-1-ol C3H8O + C5H10O Propyl vinyl ether (EVLM1121, LB5724_E)' providing data from direct measurement of mole fraction in vapor phase at variable mole fraction in liquid phase and constant temperature.

  6. Volumetric Properties of the Mixture Propan-2-one C3H6O + C16H34 Hexadecane (VMSD1342, LB3357_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Propan-2-one C3H6O + C16H34 Hexadecane (VMSD1342, LB3357_V)' providing data by calculation of isothermal compressibility from direct measurements of mass densities at variable pressure and constant temperature and mole fraction.

  7. Volumetric Properties of the Mixture Propan-2-one C3H6O + C16H34 Hexadecane (VMSD1242, LB3384_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Propan-2-one C3H6O + C16H34 Hexadecane (VMSD1242, LB3384_V)' providing data by calculation of molar excess volume from density measurements at variable pressure and constant temperature and mole fraction.

  8. Synthesis, structural characterization, antibacterial activity and computational studies of new cobalt (II) complexes with 1,1,3,3-tetrakis (3,5-dimethyl-1-pyrazolyl)propane ligand

    NASA Astrophysics Data System (ADS)

    Beheshti, Azizolla; Safaeiyan, Forough; Hashemi, Faeze; Motamedi, Hossein; Mayer, Peter; Bruno, Giuseppe; Rudbari, Hadi Amiri

    2016-11-01

    Two new mono- and dinuclear Co(II) complexes namely [Co(tdmpp)Cl2]2·H2O (1) and [Co2(tdmpp)Cl4] (2) (where tdmpp = 1,1,3,3-tetrakis(3,5-dimethyl-1-pyrazolyl)propane) were prepared by one-pot reactions in methanol as a solvent. These compounds have been characterized by single crystal X-ray diffraction, elemental analysis, infrared spectroscopy, antibacterial activity and computational studies. In both complexes, Co (II) atom is tetrahedrally coordinated by two N atoms from one of the chelating bidentate bis(3,5-dimethylpyrazolyl)methane units of the tdmpp ligand and two Cl as terminal ligands. In these structures, the neighboring [Co(tdmpp)Cl2]2·H2O (1) and [Co2(tdmpp)Cl4] (2) molecules are joined together by the intermolecular Csbnd H⋯Cl hydrogen bonds to form a 1D chain structure. As a consequence of the intermolecular Csbnd H⋯π interactions these chains are further linked to generate a two-dimensional non-covalent bonded structure. The in vitro antibacterial activity studies of the free tdmpp ligand, compounds 1 and 2 show that the ability of these compounds to inhibit growth of the tested bacteria increase progressively from tdmpp to the dinuclear complex 2. Molecular-docking investigations between the five standard antibiotic, free tdmpp ligand, title complexes and five biological macromolecule enzymes (receptors) were carried out from using Autodock vina function. The results of docking studies confirmed that the metal complexes are more active than the free ligand. This is consistent with the results obtained by the antibacterial activities of these compounds.

  9. A novel azo-aldehyde and its Ni(II) chelate; synthesis, characterization, crystal structure and computational studies of 2-hydroxy-5-{(E)-[4-(propan-2-yl)phenyl]diazenyl}benzaldehyde

    NASA Astrophysics Data System (ADS)

    Eren, Tuğba; Kose, Muhammet; Sayin, Koray; McKee, Vickie; Kurtoglu, Mukerrem

    2014-05-01

    A novel azo-salicylaldeyde, 2-hydroxy-5-{(E)-[4-(propan-2-yl)phenyl]diazenyl} benzaldehyde and its Ni(II) chelate were obtained and characterized by analytical and spectral techniques. Molecular structure of the azo chromophore containing azo-aldehyde was determined by single crystal X-ray crystallography. X-ray data show that the compound crystallizes in the orthorhombic, Pbca space group with unit cell parameters a = 11.2706(9), b = 8.3993(7), c = 28.667(2) Å, V = 2713.7(4) Å3 and Z = 8. There is a strong phenol-aldehyde (OH⋯O) hydrogen bond forming a S(6) hydrogen bonding motif in the structure. There is also a weaker inter-molecular phenol-aldeyhde (OH⋯O) hydrogen bonding resulting in a dimeric structure and generating a D22(4) hydrogen bonding motif. Hydrogen bonded dimers are linked by π-π interactions within the structure. The azo-aldehyde ligand behaved as bidentate, coordinating through the nitrogen atom of the azomethine group and or oxygen atom of phenolic hydroxyl group. Additionally, optimized structures of the three possible tautomers of the compound were obtained using B3LYP method with 6-311++G(d,p), 6-31G and 3-21G basis sets in the gas phase. B3LYP/6-311++G(d,p) level is found to be the best level for calculation. The electronic spectra of the compounds in the 200-800 nm range were obtained in three organic solvents.

  10. Crystal structure of [1,3-bis­(di­phenyl­phosphan­yl)propane-κ2 P,P′](N,N′-di­methyl­thio­urea-κS)(thio­cyanato-κN)copper(I)

    PubMed Central

    Wattanakanjana, Yupa; Nimthong-Roldán, Arunpatcha; Ratthiwan, Janejira

    2015-01-01

    The asymmetric unit of the title compound, [Cu(NCS)(C3H8N2S)(C27H26P2)], contains two independent mononuclear complex mol­ecules. In each, the CuI ion exhibits a distorted tetra­hedral geometry by coordination with two P atoms from one 1,3-bis(diphenylphosphino)propane (dppm) ligand, one terminal S atom of one N,N′-di­methyl­thio­urea (dmtu) ligand and one terminal N atom of the thio­cyanato ligand. The dppp ligand is involved in a bidentate coordination mode with the CuI ion, forming a six-membered CuP2C3 ring. In both mol­ecules, the coordination of the dmtu ligand is further stabilized by an intra­molecular N—H⋯N hydrogen bond with an S(6) graph-set motif. In the crystal, mol­ecules are linked by N—H⋯S hydrogen bonds forming a zigzag chain along the a-axis direction. In one independent mol­ecule, one of the phenyl rings of the dppp ligand is disordered over two sites with refined occupancies 0.639 (11):0.361 (11) and this corresponds with a mutual disorder of the dmtu ligand in the other independent mol­ecule giving the same ratio of refined occupancies. The structure was refined as a two-component inversion twin. PMID:25844209

  11. Long-term trends in global trace gas emissions: CH4, ethane, propane, ethyne, C2Cl4, CHCl3

    NASA Astrophysics Data System (ADS)

    Simpson, I. J.; Meinardi, S.; Sulbaek Andersen, M.; Blake, N. J.; Rowland, F. S.; Blake, D. R.

    2011-12-01

    The University of California, Irvine (UC-Irvine) has monitored global atmospheric trace gas mixing ratios since 1978 using ground-based canister measurements in the remote Pacific basin (71N to 47S). The measured gases include methane (CH4), C2-C4 alkanes, ethyne, C1-C3 alkyl nitrates, CFCs, CH3CCl3, CCl4 and H-1211. Long-term records of several of these gases are unique to the UC-Irvine global monitoring network, and here we present our research highlights and inferred global trace gas emission trends. Despite a long-term decline in its global growth rate, the global CH4 mixing ratio has increased by 9% over the past 25 years, from 1647.7 ± 0.6 ppbv in 1985 to 1792.4 ± 0.7 ppbv in 2010, representing a global emission increase of ~48 Tg yr-1 assuming constant global OH levels. Over the same time, the global mixing ratio of ethane has declined by 21%, from 791 ± 19 pptv in 1986 to 625 ± 12 pptv in 2010, or a global emission decrease of ~3.4 Tg yr-1. The global trends of CH4 growth and ethane mixing ratio have shown a remarkably strong correlation in the past 25 years. The long-term global ethane decline has also been accompanied by simultaneous decreases in global levels of propane and the butanes since 1996. This is consistent with a long-term change in a source common to all four compounds, likely a decline in evaporative emissions from the oil and natural gas industry. The combustion tracer ethyne has also shown an 11% decline between 1996 and 2008, most likely related to improved controls on vehicle emissions despite an expanding global vehicle fleet. Global levels of the anthropogenic tracer and CFC-113 precursor tetrachloroethene (C2Cl4) have declined by 60% since 1989, to 2.5 ± 0.2 pptv (or 185 Gg yr-1) in 2009 (Fig. 1). In contrast, global levels of the industrial solvent chloroform (CHCl3) have increased by almost 20% since the late 1990s, from 9.0 ± 0.3 pptv in 1997 to 10.7 ± 0.4 pptv in 2008 (Fig. 1). These results highlight major temporal shifts

  12. Dynamics of Propane in Silica Mesopores Formed upon PropyleneHydrogenation over Pt Nanoparticles by Time-Resolved FT-IRSpectroscopy

    SciTech Connect

    Waslylenko, Walter; Frei, Heinz

    2007-01-31

    Propylene hydrogenation over Pt nanoparticles supported onmesoporous silica type SBA-15 was monitored by time-resolved FT-IRspectroscopy at 23 ms resolution using short propylene gas pulses thatjoined a continuous flow of hydrogen in N2 (1 atm total pressure).Experiments were conducted in the temperature range 323-413 K. Propanewas formed within 100 milliseconds or faster. The CH stretching regionrevealed distinct bands for propane molecules emerging inside thenanoscale channels of the silica support. Spectral analysis gave thedistribution of the propane product between support and surrounding gasphase as function of time. Kinetic analysis showed that the escape ofpropane molecules from the channels occurred within hundreds ofmilliseconds (3.1 + 0.4 s-1 at 383 K). A steady state distribution ofpropane between gas phase and mesoporous support is established as theproduct is swept from the catalyst zone by the continuous flow ofhydrogen co-reactant. This is the first direct spectroscopic observationof emerging products of heterogeneous catalysis on nanoporous supportsunder reaction conditions.

  13. Physical Characterization and Effect of Effective Surface Area on the Sensing Properties of Tin Dioxide Thin Solid Films in a Propane Atmosphere

    PubMed Central

    Gómez-Pozos, Heberto; González-Vidal, José Luis; Torres, Gonzalo Alberto; de la Luz Olvera, María; Castañeda, Luis

    2014-01-01

    The physical properties and the effect of effective surface area (ESA) on the sensing properties of tin dioxide [SnO2] thin films in air and propane [C3H8] atmosphere as a function of operating temperature and gas concentration have been studied in this paper. SnO2 thin films with different estimated thicknesses (50, 100 and 200 nm) were deposited on glass substrates by the chemical spray technique. Besides, they were prepared at two different deposition temperatures (400 and 475 °C). Tin chloride [SnCl4 · 5H2O] with 0.2 M concentration value and ethanol [C2H6O] were used as tin precursor and solvent, respectively. The morphological, and structural properties of the as-prepared films were analyzed by AFM and XRD, respectively. Gas sensing characteristics of SnO2 thin solid films were measured at operating temperatures of 22, 100, 200, and 300 °C, and at propane concentration levels (0, 5, 50, 100, 200, 300, 400, and 500 ppm). ESA values were calculated for each sample. It was found that the ESA increased with the increasing thickness of the films. The results demonstrated the importance of the achieving of a large effective surface area for improving gas sensing performance. SnO2 thin films deposited by spray chemical were chosen to study the ESA effect on gas sensing properties because their very rough surfaces were appropriate for this application. PMID:24379046

  14. Crystal structure of bis­(propane-1,3-di­ammonium) hexa­fluorido­aluminate fluoride trihydrate

    PubMed Central

    Abdi, I.; Al-Sadhan, K. A.; Ben Ali, A.

    2014-01-01

    The title compound, (C3H10N2)2[AlF6]F·3H2O, was obtained using the solvothermal method with aluminium hydroxide, HF and propane-1,3-di­amine as precursors in ethanol as solvent. The structure consists of isolated [AlF6]3− octa­hedra, diprotonated propane-1,3-di­amine cations [(H2dap)2+], free fluoride ions and water mol­ecules of solvation. The Al—F bond lengths in the octa­hedral [AlF6]3− anions range from 1.7690 (19) to 1.8130 (19) Å, with an average value of 1.794 Å. Each [AlF6]3− anion is surrounded by three water mol­ecules and by six diprotonated amine cations. The ‘free’ fluoride ion is hydrogen bonded to four H atoms belonging to four dications and has a distorted tetra­hedral geometry. The three water mol­ecules are connected by hydrogen bonds, forming trimers that connect the AlF6 octa­hedra and dications into a three-dimensional framework. PMID:25309188

  15. Low Temperature Propane Oxidation over Co3O4 based Nano-array Catalysts. Ni Dopant Effect, Reaction Mechanism and Structural Stability

    DOE PAGESBeta

    Ren, Zheng; Wu, Zili; Gao, Puxian; Song, Wenqiao; Xiao, Wen; Guo, Yanbing; Ding, Jun; Suib, Steven L.; Gao, Pu-Xian

    2015-06-09

    Low temperature propane oxidation has been achieved by Co3O4-based nano-array catalysts featuring low catalytic materials loading. The Ni doping into the Co3O4 lattice has led to enhanced reaction kinetics at low temperature by promoting the surface lattice oxygen activity. In situ DRIFTS investigation in tandem with isotopic oxygen exchange reveals that the propane oxidation proceeds via Mars-van Krevelen mechanism where surface lattice oxygen acts as the active site whereas O2 in the reaction feed does not directly participate in CO2 formation. The Ni doping promotes the formation of less stable carbonates on the surface to facilitate the CO2 desorption. Themore » thermal stability of Ni doped Co3O4 decreases with increased Ni concentration while catalytic activity increases. A balance between enhanced activity and compromised thermal stability shall be considered in the Ni doped Co3O4 nano-array catalysts for low temperature hydrocarbon oxidation. This study provides useful and timely guidance for rational catalyst design toward low temperature catalytic oxidation.« less

  16. Hybrid nanocarbon as a catalyst for direct dehydrogenation of propane: formation of an active and selective core-shell sp2/sp3 nanocomposite structure.

    PubMed

    Wang, Rui; Sun, Xiaoyan; Zhang, Bingsen; Sun, Xiaoying; Su, Dangsheng

    2014-05-19

    Hybrid nanocarbon, comprised of a diamond core and a graphitic shell with a variable sp(2)-/sp(3)-carbon ratio, is controllably obtained through sequential annealing treatment (550-1300 °C) of nanodiamond. The formation of sp(2) carbon increases with annealing temperature and the nanodiamond surface is reconstructed from amorphous into a well-ordered, onion-like carbon structure via an intermediate composite structure--a diamond core covered by a defective, curved graphene outer shell. Direct dehydrogenation of propane shows that the sp(2)-/sp(3)-nanocomposite exhibits superior catalytic performance to that of individual nanodiamond and graphitic nanocarbon. The optimum catalytic activity of the diamond/graphene composite depends on the maximum structural defectiveness and high chemical reactivity of the ketone groups. Ketone-type functional groups anchored on the defects/vacancies are active for propene formation; nevertheless, once the oxygen functional groups are desorbed, the defects/vacancies alone might be active sites responsible for the C-H bond activation of propane. PMID:24740731

  17. Coordination behavior of new bis Schiff base ligand derived from 2-furan carboxaldehyde and propane-1,3-diamine. Spectroscopic, thermal, anticancer and antibacterial activity studies

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Zayed, Ehab M.; Hindy, Ahmed M. M.

    2015-06-01

    Novel bis Schiff base ligand, [N1,N3-bis(furan-2-ylmethylene)propane-1,3-diamine], was prepared by the condensation of furan-2-carboxaldehyde with propane-1,3-diamine. Its conformational changes on complexation with transition metal ions [Co(II), Ni(II), Cu(II), Mn(II), Cd(II), Zn(II) and Fe(III)] have been studied on the basis of elemental analysis, conductivity measurements, spectral (infrared, 1H NMR, electronic), magnetic and thermogravimetric studies. The conductance data of the complexes revealed their electrolytic nature suggesting them as 1:2 (for bivalent metal ions) and 1:3 (for Fe(III) ion) electrolytes. The complexes were found to have octahedral geometry based on magnetic moment and solid reflectance measurements. Thermal analysis data revealed the decomposition of the complexes in successive steps with the removal of anions, coordinated water and bis Schiff base ligand. The thermodynamic parameters were calculated using Coats-Redfern equation. The Anticancer screening studies were performed on human colorectal cancer (HCT), hepatic cancer (HepG2) and breast cancer (MCF-7) cell lines. The antimicrobial activity of all the compounds was studied against Gram negative (Escherichia coli and Proteus vulgaris) and Gram positive (Bacillus vulgaris and Staphylococcus pyogones) bacteria. It was observed that the coordination of metal ion has a pronounced effect on the microbial activities of the bis Schiff base ligand. All the metal complexes have shown higher antimicrobial effect than the free bis Schiff base ligand.

  18. Low Temperature Propane Oxidation over Co3O4 based Nano-array Catalysts. Ni Dopant Effect, Reaction Mechanism and Structural Stability

    SciTech Connect

    Ren, Zheng; Wu, Zili; Gao, Puxian; Song, Wenqiao; Xiao, Wen; Guo, Yanbing; Ding, Jun; Suib, Steven L.; Gao, Pu-Xian

    2015-06-09

    Low temperature propane oxidation has been achieved by Co3O4-based nano-array catalysts featuring low catalytic materials loading. The Ni doping into the Co3O4 lattice has led to enhanced reaction kinetics at low temperature by promoting the surface lattice oxygen activity. In situ DRIFTS investigation in tandem with isotopic oxygen exchange reveals that the propane oxidation proceeds via Mars-van Krevelen mechanism where surface lattice oxygen acts as the active site whereas O2 in the reaction feed does not directly participate in CO2 formation. The Ni doping promotes the formation of less stable carbonates on the surface to facilitate the CO2 desorption. The thermal stability of Ni doped Co3O4 decreases with increased Ni concentration while catalytic activity increases. A balance between enhanced activity and compromised thermal stability shall be considered in the Ni doped Co3O4 nano-array catalysts for low temperature hydrocarbon oxidation. This study provides useful and timely guidance for rational catalyst design toward low temperature catalytic oxidation.

  19. High-performance liquid chromatography separation of small molecules on a porous poly (trimethylol propane triacrylate-co-N-isopropylacrylamide-co-ethylene dimethacrylate) monolithic column.

    PubMed

    Liu, Haiyan; Bai, Xiaomei; Wei, Dan; Yang, Gengliang

    2014-01-10

    A porous monolith was prepared by in situ free-radical polymerization using N-isopropylacrylamide (NIPAAm) and trimethylol propane triacrylate (TMPTA) as functional monomers, ethylene dimethacrylate (EDMA) as crosslinking agent. The chemical group of the monolith was assayed by a Fourier transform infrared spectroscopy (FT-IR) method and the morphology of optimized monolithic column was characterized by scanning electron microscopy (SEM). The mechanical strength and permeability have been studied in detail as well. The run-to-run and column-to-column reproducibility of the retention times were less than 0.9% and 3.0%, respectively. Furthermore, the influence of temperature and mobile phase composition on the separation of aromatic compounds was investigated. The results indicated that poly (trimethylol propane triacrylate-co-N-isopropylacrylamide-co-ethylenedimethacrylate) (TMPTA-co-NIPAAm-co-EDMA) monolithic column not only had high porosity and strong rigidity, but also was a promising tool for analyzing small molecule compounds with a short analysis time by controlling the column temperature. PMID:24290767

  20. Experimental study of the removal of copper ions using hydrogels of xanthan, 2-acrylamido-2-methyl-1-propane sulfonic acid, montmorillonite: Kinetic and equilibrium study.

    PubMed

    Aflaki Jalali, Marzieh; Dadvand Koohi, Ahmad; Sheykhan, Mehdi

    2016-05-20

    In this paper, removal of copper ions from aqueous solution using novel xanthan gum (XG) hydrogel, xanthan gum-graft-2-acrylamido-2-methyl-1-propane sulfonic acid (XG-g-P(AMPS)) hydrogel and xanthan gum-graft-2-acrylamido-2-methyl-1-propane sulfonic acid/montmorillonite (XG-g-P(AMPS)/MMT) hydrogel composite were studied. The structure and morphologies of the xanthan-based hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Adsorbents comprised a porous crosslink structure with side chains that carried carboxyl, hydroxyl and sulfonate. Maximum adsorption was observed in the pH=5.2, initial concentrations of Cu(2+)=321.8 mg/L, Temperature=45 °C, contact time=5 h with 0.2 g/50 mL of the hydrogels. Adsorption process was found to follow Langmuir isotherm model with maximum adsorption capacity of 24.57, 39.06 and 29.49 mg/g for the XG, XG-g-P(AMPS) and XG-g-P(AMPS)/MMT, respectively. Adsorption kinetics data fitted well with pseudo second order model. The negative ΔG° values and the positive ΔS° confirmed that the adsorption was a spontaneous process. The positive ΔH° values suggested that the adsorption was endothermic in nature. PMID:26917382

  1. Influence of The Metamorphism Grade and Porosity of Hard Coal on Sorption and Desorption of Propane / Wpływ Stopnia Metamorfizmu I Porowatości Węgli Kamiennych Na Sorpcję I Desorpcję Propanu

    NASA Astrophysics Data System (ADS)

    Dudzińska, Agnieszka; Żyła, Mieczysław; Cygankiewicz, Janusz

    2013-09-01

    In this paper results of investigations of sorption of hard coal samples collected from the extracted coal seams of Polish coal mines are presented. As sorbate propane was used. Examinations were carried out in the temperature of 298 K by means of volumetric assessment with the use of apparatus ASAP 2010 of Micromeritics. On the basis of conducted examinations it has been found out that the amount of sorbed propane depend on a type of coal, its metamorphism grade, content of oxygen element, moisture and porosity of these coals. The greatest amounts of propane are sorbed by low carbonized, high-porosity coals of high content of oxygen and moisture. Sorption of relatively high amounts of propane by these coals (ca. 10 cm3/g) is a result of the influence of polar surface of coals with molecules of propane and good availability of internal microporous structure of these coals for molecules of examined sorbate. Medium and high carbonized coals sorb insignificant amounts of propane. These coals have compact structure and non-polar character of their surface, their internal porous structure is to a minor degree available for propane molecules in conditions of carried out research. Sorption of propane in this case, takes place mainly in surface pores and on the surface of coals. Moreover, measurements of desorption isotherms of propane showing irreversible character of sorption were made. Desorption isotherms do not come together with sorption isotherms forming open hysteresis loop. Amounts of non-desorbing propane remaining in the coal depend on the type of examined coal. W pracy przedstawiono wyniki badań sorpcji próbek węgli kamiennych pobranych z eksploatowanych pokładów węglowych polskich kopalń. Jako sorbat zastosowano propan. Badania przeprowadzono w temperaturze 298 K metodą objętościową z wykorzystaniem aparatu ASAP 2010 firmy Micromeritics. Na podstawie przeprowadzonych badań stwierdzono, że ilości sorbowanego propanu są zależne od rodzaju w

  2. Uptake and Reactions of Formaldehyde, Acetaldehyde, Acetone, Propanal and Ethanol in Sulfuric Acid solutions at 200-240 K: Implications for upper tropospheric aerosol composition

    NASA Astrophysics Data System (ADS)

    Iraci, L. T.; Williams, M. B.; Axson, J.; Michelsen, R.

    2007-12-01

    The production of light absorbing, organic material in aerosol that is normally considered to be transparent in the UV and visible wavelength regions has significant implications for biogeochemical cycling and climate modelling. Production mechanisms likely involve carbonyl compounds such as formaldehyde, acetone, acetaldehyde and propanal that are present in significant quantities in the upper troposphere (UT). In this study, we have performed experiments focusing on a class of acid catalyzed carbonyl reactions, the formation of acetals. R2C=O + 2R'OH --> R2C(OR')2 + H2O Using a Knudsen cell apparatus, we have measured the rate of uptake of formaldehyde, acetaldehyde, acetone, propanal, and ethanol into sulfuric acid solutions ranging between 40-70 wt% of acid, containing 0-0.1 M of ethanol, acetone or formaldehyde at temperatures of 220-250 K. For all reactant pairs, the aldol condensation path, including self reaction, should be insignificant at the acidities studied. Evidence for reaction between organics was observed for all pairs, except those involving propanal which were likely limited by the very low solubility. We attribute enhanced uptake to the formation of acetals, such as 1,1-diethoxyethane and 2,2- diethoxypropane, among others. Enhanced uptake was observed to proceed on timescales > 1 hour and sometimes shows complex dependence on acidity that is likely related to speciation of the individual carbonyls in acidic solution. The acetal products do not absorb in the visible but are less volatile than parent molecules, allowing for accumulation in sulfuric acid particles, and enhanced uptake. Cross reactions of carbonyls with alcohols in sulfuric acid medium have not been previously measured, yet methanol and ethanol show high solubility and are present at significant concentrations in the UT. Thus even at slow reaction rates, the acetal reaction has ample starting material and proceeds under conditions common to the UT. We will present results for the

  3. Ionization cross section data of nitrogen, methane, and propane for light ions and electrons and their suitability for use in track structure simulations

    NASA Astrophysics Data System (ADS)

    Bug, Marion U.; Gargioni, Elisabetta; Nettelbeck, Heidi; Baek, Woon Yong; Hilgers, Gerhard; Rosenfeld, Anatoly B.; Rabus, Hans

    2013-10-01

    Track structure Monte Carlo simulations are frequently applied in micro- and nanodosimetry to calculate the radiation transport in detail. The use of a well-validated set of cross section data in such simulation codes ensures accurate calculations of transport parameters, such as ionization yields. These cross section data are, however, scarce and often discrepant when measured by different groups. This work surveys literature data on ionization and charge-transfer cross sections of nitrogen, methane, and propane for electrons, protons, and helium particles, focusing on the energy range between 100 keV and 20 MeV. Based on the evaluated data, different models for the parametrization of the cross section data are implemented in the code ptra, developed for simulating proton and alpha particle transport in an ion-counting nanodosimeter. The suitability of the cross section data is investigated by comparing the calculated mean ionization cluster size and energy loss with experimental results in either nitrogen or propane. For protons, generally good agreement between measured and simulated data is found when the Rudd model is used in ptra. For alpha particles, however, a considerable influence of different parametrizations of cross sections for ionization and charge transfer is observed. The ptra code using the charge-transfer data is, nevertheless, successfully benchmarked by the experimental data for the calculation of nanodosimetric quantities, but remaining discrepancies still have to be further investigated (up to 13% lower energy loss and 19% lower mean ionization cluster size than in the experiment). A continuation of this work should investigate data for the energy loss per interaction as well as differential cross section data of nitrogen and propane. Interpolation models for ionization and charge-transfer data are proposed. The Barkas model, frequently used for a determination of the effective charge in the ionization cross section, significantly

  4. Ionization cross section data of nitrogen, methane, and propane for light ions and electrons and their suitability for use in track structure simulations.

    PubMed

    Bug, Marion U; Gargioni, Elisabetta; Nettelbeck, Heidi; Baek, Woon Yong; Hilgers, Gerhard; Rosenfeld, Anatoly B; Rabus, Hans

    2013-10-01

    Track structure Monte Carlo simulations are frequently applied in micro- and nanodosimetry to calculate the radiation transport in detail. The use of a well-validated set of cross section data in such simulation codes ensures accurate calculations of transport parameters, such as ionization yields. These cross section data are, however, scarce and often discrepant when measured by different groups. This work surveys literature data on ionization and charge-transfer cross sections of nitrogen, methane, and propane for electrons, protons, and helium particles, focusing on the energy range between 100 keV and 20 MeV. Based on the evaluated data, different models for the parametrization of the cross section data are implemented in the code ptra, developed for simulating proton and alpha particle transport in an ion-counting nanodosimeter. The suitability of the cross section data is investigated by comparing the calculated mean ionization cluster size and energy loss with experimental results in either nitrogen or propane. For protons, generally good agreement between measured and simulated data is found when the Rudd model is used in ptra. For alpha particles, however, a considerable influence of different parametrizations of cross sections for ionization and charge transfer is observed. The ptra code using the charge-transfer data is, nevertheless, successfully benchmarked by the experimental data for the calculation of nanodosimetric quantities, but remaining discrepancies still have to be further investigated (up to 13% lower energy loss and 19% lower mean ionization cluster size than in the experiment). A continuation of this work should investigate data for the energy loss per interaction as well as differential cross section data of nitrogen and propane. Interpolation models for ionization and charge-transfer data are proposed. The Barkas model, frequently used for a determination of the effective charge in the ionization cross section, significantly

  5. Termination unit

    DOEpatents

    Traeholt, Chresten [Frederiksberg, DK; Willen, Dag [Klagshamn, SE; Roden, Mark [Newnan, GA; Tolbert, Jerry C [Carrollton, GA; Lindsay, David [Carrollton, GA; Fisher, Paul W [Heiskell, TN; Nielsen, Carsten Thidemann [Jaegerspris, DK

    2014-01-07

    This invention relates to a termination unit comprising an end-section of a cable. The end section of the cable defines a central longitudinal axis and comprising end-parts of N electrical phases, an end-part of a neutral conductor and a surrounding thermally insulation envelope adapted to comprising a cooling fluid. The end-parts of the N electrical phases and the end-part of the neutral conductor each comprising at least one electrical conductor and being arranged in the cable concentrically around a core former with a phase 1 located relatively innermost, and phase N relatively outermost in the cable, phase N being surrounded by the neutral conductor, electrical insulation being arrange between neighboring electrical phases and between phase N and the neutral conductor, and wherein the end-parts of the neutral conductor and the electrical phases each comprise a contacting surface electrically connected to at least one branch current lead to provide an electrical connection: The contacting surfaces each having a longitudinal extension, and being located sequentially along the longitudinal extension of the end-section of the cable. The branch current leads being individually insulated from said thermally insulation envelope by individual electrical insulators.

  6. Termination unit

    DOEpatents

    Traeholt, Chresten; Willen, Dag; Roden, Mark; Tolbert, Jerry C.; Lindsay, David; Fisher, Paul W.; Nielsen, Carsten Thidemann

    2016-05-03

    Cable end section comprises end-parts of N electrical phases/neutral, and a thermally-insulation envelope comprising cooling fluid. The end-parts each comprises a conductor and are arranged with phase 1 innermost, N outermost surrounded by the neutral, electrical insulation being between phases and N and neutral. The end-parts comprise contacting surfaces located sequentially along the longitudinal extension of the end-section. A termination unit has an insulating envelope connected to a cryostat, special parts at both ends comprising an adapter piece at the cable interface and a closing end-piece terminating the envelope in the end-section. The special parts houses an inlet and/or outlet for cooling fluid. The space between an inner wall of the envelope and a central opening of the cable is filled with cooling fluid. The special part at the end connecting to the cryostat houses an inlet or outlet, splitting cooling flow into cable annular flow and termination annular flow.

  7. Conglomerate formative precursor of chiral drug timolol: 3-(4-Morpholino-1,2,5-thiadiazol-3-yloxy)-propane-1,2-diol

    NASA Astrophysics Data System (ADS)

    Bredikhin, Alexander A.; Zakharychev, Dmitry V.; Fayzullin, Robert R.; Bredikhina, Zemfira A.; Gubaidullin, Aidar T.

    2015-05-01

    Solid state properties of 3-(4-N-morpholino-1,2,5-thiadiazol-3-yloxy)-propane-1,2-diol 3, the synthetic precursor of popular drug timolol, have been investigated. The original solubility test, the data of X-ray diffraction and DSC methods indicate that the compound is prone to spontaneous resolution. Diol 3 crystallizing from both enantiopure or racemic feed material forms "guaifenesin-like" crystal packing in which the classic H-bonded bilayers, framed in both sides by hydrophobic molecular fragments, act as the basic supramolecular motif. The main chain conformation of the molecules in the crystals of diol 3 differs from that in the guaifenesin crystals, and this fact changes the absolute configuration of spiral columns formed by intermolecular hydrogen bonds in crystals of 3 as compared with guaifenesin crystals.

  8. Gas-phase NMR. Part I. Conformational energies of 1,2-disubstituted propanes and a comparison with MM2 and MNDO calculations

    NASA Astrophysics Data System (ADS)

    Miyajima, Takashi; Hirano, Tsuneo; Sato, Hisaya

    1984-11-01

    Gas-phase 1H NMR spectra of 1,2-dichloropropane (1,2-DCP) and 1,2-di(methoxy- d3)-propane (1,2-DMP) have been measured. The conformational energies of these molecules in the gas phase were determined from the observed coupling constants under a three rotational isomeric state model and are compared with the theoretical values from MM2 molecular mechanics and MNDO molecular orbital calculations. The results indicate that gas-phase NMR is useful method for the determination of conformational energies of relatively complex molecules, and that the MNDO results are more reasonable than the MM2 results for molecules containing electronegative atoms such as oxygen.

  9. Crystal structure of diethyl 3-(3-chloro-phen-yl)-2,2-di-cyano-cyclo-propane-1,1-di-carboxyl-ate.

    PubMed

    May, Nóra Veronika; Gál, Gyula Tamás; Rapi, Zsolt; Bakó, Péter

    2016-02-01

    In the racemic title compound, C17H15ClN2O4, which has been synthesized and the crystal structure of the solvent-free mol-ecule determined, the angle between the planes of the benzene and cyclo-propane rings is 54.29 (10)°. The mol-ecular conformation is stabilized by two weak intra-molecular C-H⋯Ocarbox-yl inter-actions. In the crystal, C-H⋯O hydrogen bonds form centrosymmetric cyclic R 2 (2)(10) dimers which are linked into chain substructures extending along c. Further C-H⋯Nnitrile hydrogen bonding, including a centrosymmetric cyclic R 2 (2)(14) association, link the chain substructures, forming a two-dimensional layered structure extending across the approximate ab plane. No significant π-π or halogen-halogen inter-molecular inter-actions are present in the crystal. PMID:26958400

  10. Desorption Kinetics of Ar, Kr, Xe, N2, O2, CO, Methane, Ethane, and Propane from Graphene and Amorphous Solid Water Surfaces.

    PubMed

    Smith, R Scott; May, R Alan; Kay, Bruce D

    2016-03-01

    The desorption kinetics for Ar, Kr, Xe, N2, O2, CO, methane, ethane, and propane from graphene-covered Pt(111) and amorphous solid water (ASW) surfaces are investigated using temperature-programmed desorption (TPD). The TPD spectra for all of the adsorbates from graphene have well-resolved first, second, third, and multilayer desorption peaks. The alignment of the leading edges is consistent the zero-order desorption for all of the adsorbates. An Arrhenius analysis is used to obtain desorption energies and prefactors for desorption from graphene for all of the adsorbates. In contrast, the leading desorption edges for the adsorbates from ASW do not align (for coverages < 2 ML). The nonalignment of TPD leading edges suggests that there are multiple desorption binding sites on the ASW surface. Inversion analysis is used to obtain the coverage dependent desorption energies and prefactors for desorption from ASW for all of the adsorbates. PMID:26595145

  11. Aldol Condensation Products and Polyacetals in Organic Films Formed from Reactions of Propanal in Sulfuric Acid at Upper Troposphere/Lower Stratosphere (UT/LS) Aerosol Acidities

    NASA Astrophysics Data System (ADS)

    Bui, J. V. H.; Perez-Montano, S.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.; Van Wyngarden, A. L.

    2015-12-01

    Aerosols in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt. %) which is highly reflective towards UV and visible radiation. However, airborne measurements have shown that these particles may also contain a significant amount of organic material. Experiments combining organics (propanal, glyoxal and/or methylglyoxal) with sulfuric acid at concentrations typical of UT/LS aerosols produced highly colored surface films (and solutions) that have the potential to impact chemical, optical and/or cloud-forming properties of aerosols. In order to assess the potential for such films to impact aerosol chemistry or climate properties, experiments were performed to identify the chemical processes responsible for film formation. Surface films were analyzed via Attenuated Total Reflectance-FTIR and Nuclear Magnetic Resonance spectroscopies and are shown to consist primarily of aldol condensation products and cyclic and linear polyacetals, the latter of which are likely responsible for separation from the aqueous phase.

  12. 1-[2-(2-Methoxyphenylamino)ethylamino]-3-(naphthalene-1- yloxy)propan-2-ol may be a promising anticancer drug.

    PubMed

    Nishizaki, Tomoyuki; Kanno, Takeshi; Tsuchiya, Ayako; Kaku, Yoshiko; Shimizu, Tadashi; Tanaka, Akito

    2014-01-01

    We have originally synthesized the naftopidil analogue 1-[2-(2-methoxyphenylamino)ethylamino]-3-(naphthalene-1-yloxy)propan-2-ol (HUHS 1015) as a new anticancer drug. HUHS1015 induces cell death in a wide variety of human cancer cell lines originated from malignant pleural mesothelioma, lung cancer, hepatoma, gastric cancer, colorectal cancer, bladder cancer, prostate cancer, and renal cancer. HUHS1015-induced cell death includes necrosis (necroptosis) and apoptosis, and the underlying mechanism differs depending upon cancer cell types. HUHS1015 effectively suppresses tumor growth in mice inoculated with NCI-H2052, MKN45, or CW2 cells, with a potential similar to or higher than that of currently used anticancer drugs. Here we show how HUHS1015 might offer brilliant hope for cancer therapy. PMID:25532843

  13. Anthropogenic emissions of methane in the United States.

    PubMed

    Miller, Scot M; Wofsy, Steven C; Michalak, Anna M; Kort, Eric A; Andrews, Arlyn E; Biraud, Sebastien C; Dlugokencky, Edward J; Eluszkiewicz, Janusz; Fischer, Marc L; Janssens-Maenhout, Greet; Miller, Ben R; Miller, John B; Montzka, Stephen A; Nehrkorn, Thomas; Sweeney, Colm

    2013-12-10

    This study quantitatively estimates the spatial distribution of anthropogenic methane sources in the United States by combining comprehensive atmospheric methane observations, extensive spatial datasets, and a high-resolution atmospheric transport model. Results show that current inventories from the US Environmental Protection Agency (EPA) and the Emissions Database for Global Atmospheric Research underestimate methane emissions nationally by a factor of ∼1.5 and ∼1.7, respectively. Our study indicates that emissions due to ruminants and manure are up to twice the magnitude of existing inventories. In addition, the discrepancy in methane source estimates is particularly pronounced in the south-central United States, where we find total emissions are ∼2.7 times greater than in most inventories and account for 24 ± 3% of national emissions. The spatial patterns of our emission fluxes and observed methane-propane correlations indicate that fossil fuel extraction and refining are major contributors (45 ± 13%) in the south-central United States. This result suggests that regional methane emissions due to fossil fuel extraction and processing could be 4.9 ± 2.6 times larger than in EDGAR, the most comprehensive global methane inventory. These results cast doubt on the US EPA's recent decision to downscale its estimate of national natural gas emissions by 25-30%. Overall, we conclude that methane emissions associated with both the animal husbandry and fossil fuel industries have larger greenhouse gas impacts than indicated by existing inventories. PMID:24277804

  14. Coordination behavior of new bis Schiff base ligand derived from 2-furan carboxaldehyde and propane-1,3-diamine. Spectroscopic, thermal, anticancer and antibacterial activity studies.

    PubMed

    Mohamed, Gehad G; Zayed, Ehab M; Hindy, Ahmed M M

    2015-06-15

    Novel bis Schiff base ligand, [N1,N3-bis(furan-2-ylmethylene)propane-1,3-diamine], was prepared by the condensation of furan-2-carboxaldehyde with propane-1,3-diamine. Its conformational changes on complexation with transition metal ions [Co(II), Ni(II), Cu(II), Mn(II), Cd(II), Zn(II) and Fe(III)] have been studied on the basis of elemental analysis, conductivity measurements, spectral (infrared, (1)H NMR, electronic), magnetic and thermogravimetric studies. The conductance data of the complexes revealed their electrolytic nature suggesting them as 1:2 (for bivalent metal ions) and 1:3 (for Fe(III) ion) electrolytes. The complexes were found to have octahedral geometry based on magnetic moment and solid reflectance measurements. Thermal analysis data revealed the decomposition of the complexes in successive steps with the removal of anions, coordinated water and bis Schiff base ligand. The thermodynamic parameters were calculated using Coats-Redfern equation. The Anticancer screening studies were performed on human colorectal cancer (HCT), hepatic cancer (HepG2) and breast cancer (MCF-7) cell lines. The antimicrobial activity of all the compounds was studied against Gram negative (Escherichia coli and Proteus vulgaris) and Gram positive (Bacillus vulgaris and Staphylococcus pyogones) bacteria. It was observed that the coordination of metal ion has a pronounced effect on the microbial activities of the bis Schiff base ligand. All the metal complexes have shown higher antimicrobial effect than the free bis Schiff base ligand. PMID:25767990

  15. A hybrid sol–gel synthesis of mesostructured SiC with tunable porosity and its application as a support for propane oxidative dehydrogenation.

    PubMed

    Xu, Jie; Liu, Yong-Mei; Xue, Bing; Li, Yong-Xin; Cao, Yong; Fan, Kang-Nian

    2011-06-01

    Porous silicon carbide (SiC) is of great potential as catalyst support in several industrially important reactions because of its unique thermophysical characteristics. Previously porous SiC was mostly obtained by a simple sol–gel or reactive replica technique which can only produce a material with low or medium surface area (< 50 m2 g(−1)). Here we report a new hybrid sol–gel approach to synthesize mesostructured SiC with high surface area (151–345 m2 g(−1)) and tunable porosity. The synthesis route involves a facile co-condensation of TEOS and alkyloxysilane with different alkyl-chain lengths followed by carbothermal reduction of the as-prepared alkyloxysilane precursors at 1350 °C. The resulting materials were investigated by X-ray diffraction, N2 adsorption-desorption, transmission electron microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. A mechanism for the tailored synthesis of mesostructured SiC was tentatively proposed. To demonstrate the catalytic application of these materials, vanadia were loaded on the mesostructured SiC supports, and their catalytic performance in oxidative dehydrogenation of propane was evaluated. Vanadia supported on the mesostructured silicon carbide exhibits higher selectivity to propylene than those on conventional supports such as Al2O3 and SiO2 at the same propane conversion levels, mainly owing to its outstanding thermal conductivity which makes contributions to dissipate the heat generated from reaction thus alleviating the hot spots effect and over-oxidation of propylene. PMID:21739681

  16. Greenhouse gas emissions for refrigerant choices in room air conditioner units.

    PubMed

    Galka, Michael D; Lownsbury, James M; Blowers, Paul

    2012-12-01

    In this work, potential replacement refrigerants for window-mounted room air conditioners (RACs) in the U.S. have been evaluated using a greenhouse gas (GHG) emissions analysis. CO(2)-equivalent emissions for several hydrofluoroethers (HFEs) and other potential replacements were compared to the most widely used refrigerants today. Included in this comparison are pure refrigerants that make up a number of hydrofluorocarbon (HFC) mixtures, pure hydrocarbons, and historically used refrigerants such as propane and ammonia. GHG emissions from direct and indirect sources were considered in this thermodynamic analysis. Propylene, dimethyl ether, ammonia, R-152a, propane, and HFE-152a all performed effectively in a 1 ton window unit and produced slightly lower emissions than the currently used R-22 and R-134a. The results suggest that regulation of HFCs in this application would have some effect on reducing emissions since end-of-life emissions remain at 55% of total refrigerant charge despite EPA regulations that mandate 80% recovery. Even so, offsite emissions due to energy generation dominate over direct GHG emissions and all the refrigerants perform similarly in totals of indirect GHG emissions. PMID:23136858

  17. Short Note on Units: Planetary Units

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2010-01-01

    While the emphasis on SI units in introductory physics textbooks has mercifully eliminated the use of English units, the exclusion of other systems of units is not necessary. For years physicists have simplified calculations by doing things like setting [h-bar] = c = 1. We could not imagine putting 4[pi][epsilon][subscript 0] into the formulas for…

  18. Short Note on Units: Planetary Units

    NASA Astrophysics Data System (ADS)

    Huggins, Elisha

    2010-03-01

    While the emphasis on SI units in introductory physics textbooks has mercifully eliminated the use of English units, the exclusion of other systems of units is not necessary. For years physicists have simplified calculations by doing things like setting ℏ = c = 1. We could not imagine putting 4πɛ0 into the formulas for Bohr orbits.1

  19. cyclo-Tetra­kis{μ-2,2′-dimethyl-1,1′-[2,2-bis­(bromo­meth­yl)propane-1,3-di­yl]di(1H-benzimidazole)-κ2 N 3:N 3′}tetra­kis­[bromidocopper(I)

    PubMed Central

    Wang, Xing; Liu, Chun-Bo; Yan, Yong-Sheng; Wang, Shen-Tang; Liu, Ling

    2012-01-01

    The title compound, [Cu4Br4(C21H22Br2N4)4], features a macrocyclic Cu4 L 4 ring system in which each CuI atom is coordinated by one bromide ion and two N atoms from two 2,2′-dimethyl-1,1′-[2,2-bis­(bromo­meth­yl)propane-1,3-di­yl]di(1H-benzimidazole) (L) ligands in a distorted trigonal–planar geometry. The L ligands adopt either a cis or trans configuration. The asymmetric unit contains one half-mol­ecule with the center of the macrocycle located on a crystallographic center of inversion. Each bromide ion binds to a CuI atom in a terminal mode and is oriented outside the ring. The macrocycles are inter­connected into a two-dimensional network by π–π inter­actions between benzimid­azole groups from different rings [centroid–centroid distance = 3.803 (5) Å. PMID:22346833

  20. Phase behavior and crystal structure of 3-(1-naphthyloxy)- and 3-(4-indolyloxy)-propane-1,2-diol, synthetic precursors of chiral drugs propranolol and pindolol

    NASA Astrophysics Data System (ADS)

    Bredikhin, Alexander A.; Gubaidullin, Aidar T.; Bredikhina, Zemfira A.; Fayzullin, Robert R.; Samigullina, Aida I.; Zakharychev, Dmitry V.

    2013-08-01

    Valuable precursors of popular chiral drugs propranolol and pindolol, 3-(1-naphthyloxy)-propane-1,2-diol 3 and 3-(4-indolyloxy)-propane-1,2-diol 4 were investigated by IR spectroscopy, DSC, and X-ray diffraction methods. Both compounds, crystallizing from enantiopure feed material, form "guaifenesin-like" crystal packing in which the classic H-bonded bilayers, framed in both sides by hydrophobic fragments of the molecules, acts as the basic crystal-forming motif. Diol 4 prone to spontaneous resolution and conserves its packing pattern crystallizing from racemate. Under the same conditions, diol 3 forms weakly stable solid racemic compound. Some reasons for such a behavior are identified and discussed.

  1. Tetrazole activity against Candida albicans. The role of KEX2 mutations in the sensitivity to (±)-1-[5-(2-chlorophenyl)-2H-tetrazol-2-yl]propan-2-yl acetate.

    PubMed

    Bondaryk, Małgorzata; Łukowska-Chojnacka, Edyta; Staniszewska, Monika

    2015-07-01

    Series of 4-(5-aryl-2H-tetrazol-2-yl)butan-2-ol, 1-(5-aryl-2H-tetrazol-2-yl)propan-2-ol and their acetates have been screened against Candida albicans. Among the tested compounds, (±)-1-[5-(2-chlorophenyl)-2H-tetrazol-2-yl]propan-2-yl acetate (E5) proved to be the most effective inhibitor of fungal growth and was further evaluated against young (adhesion phase) and mature biofilm in vitro. The activity exhibited by the tested tetrazole derivatives against C. albicans associated with minor cytotoxicity towards Vero epithelial cells make us suggest that E5 could be a promising structure in the development of new antifungals. Serine protease Kex2 appeared essential for the resistance mechanism. Further investigations of in vivo activity, drug interactions, and E5 structure optimization are needed. PMID:25980908

  2. 10-Methyl-9-[2-(propan-2-yl)phenoxy­carbonyl]­acridinium trifluoro­methane­sulfonate

    PubMed Central

    Trzybiński, Damian; Krzymiński, Karol; Błażejowski, Jerzy

    2010-01-01

    In the crystal of the title compound, C24H22NO2 +·CF3SO3 −, adjacent cations and anions are connected through C—H⋯O, C—H⋯F and S–O⋯π inter­actions, while neighboring cations via π–π inter­actions [centroid–centroid distance = 3.962 (2) Å]. The acridine and benzene ring systems are oriented at a dihedral angle of 14.6 (1)°. The carboxyl group is twisted at an angle of 87.6 (1)° relative to the acridine skeleton. The mean planes of adjacent acridine units are parallel or inclined at an angle of 13.4 (1)° in the crystal structure. PMID:21588973

  3. Operation of a Four-Cylinder 1.9L Propane Fueled Homogeneous Charge Compression Ignition Engine: Basic Operating Characteristics and Cylinder-to-Cylinder Effects

    SciTech Connect

    Flowers, D; Aceves, S M; Martinez-Frias, J; Smith, J R; Au, M; Girard, J; Dibble, R

    2001-03-12

    A four-cylinder 1.9 Volkswagen TDI Engine has been converted to run in Homogeneous Charge Compression Ignition (HCCI) mode. The stock configuration is a turbocharged direct injection Diesel engine. The combustion chamber has been modified by discarding the in-cylinder Diesel fuel injectors and replacing them with blank inserts (which contain pressure transducers). The stock pistons contain a reentrant bowl and have been retained for the tests reported here. The intake and exhaust manifolds have also been retained, but the turbocharger has been removed. A heater has been installed upstream of the intake manifold and fuel is added just downstream of this heater. The performance of this engine in naturally aspirated HCCI operation, subject to variable intake temperature and fuel flow rate, has been studied. The engine has been run with propane fuel at a constant speed of 1800 rpm. This work is intended to characterize the HCCI operation of the engine in this configuration that has been minimally modified from the base Diesel engine. The performance (BMEP, IMEP, efficiency, etc) and emissions (THC, CO, NOx) of the engine are presented, as are combustion process results based on heat release analysis of the pressure traces from each cylinder.

  4. AlGaN/GaN high electron mobility transistors with intentionally doped GaN buffer using propane as carbon precursor

    NASA Astrophysics Data System (ADS)

    Bergsten, Johan; Li, Xun; Nilsson, Daniel; Danielsson, Örjan; Pedersen, Henrik; Janzén, Erik; Forsberg, Urban; Rorsman, Niklas

    2016-05-01

    AlGaN/GaN high electron mobility transistors (HEMTs) fabricated on a heterostructure grown by metalorganic chemical vapor deposition using an alternative method of carbon (C) doping the buffer are characterized. C-doping is achieved by using propane as precursor, as compared to tuning the growth process parameters to control C-incorporation from the gallium precursor. This approach allows for optimization of the GaN growth conditions without compromising material quality to achieve semi-insulating properties. The HEMTs are evaluated in terms of isolation and dispersion. Good isolation with OFF-state currents of 2 × 10-6 A/mm, breakdown fields of 70 V/µm, and low drain induced barrier lowering of 0.13 mV/V are found. Dispersive effects are examined using pulsed current-voltage measurements. Current collapse and knee walkout effects limit the maximum output power to 1.3 W/mm. With further optimization of the C-doping profile and GaN material quality this method should offer a versatile approach to decrease dispersive effects in GaN HEMTs.

  5. Gas-Sensing Performance of M-Doped CuO-Based Thin Films Working at Different Temperatures upon Exposure to Propane

    PubMed Central

    Rydosz, Artur; Szkudlarek, Aleksandra

    2015-01-01

    Cupric oxide (CuO) thin films are promising materials in gas sensor applications. The CuO-based gas sensors behaved as p-type semiconductors and can be used as part of an e-nose or smart sensor array for breath analysis. The authors present the investigation results on M-doped CuO-based (M = Ag, Au, Cr, Pd, Pt, Sb, Si) sensors working at various temperatures upon exposure to a low concentration of C3H8, which can be found in exhaled human breath, and it can be considered as a one of the biomarkers of several diseases. The films have been deposited in magnetron sputtering technology on low temperature cofired ceramics substrates. The results of the gas sensors’ response are also presented and discussed. The Cr:CuO-based structure, annealed at 400 °C for 4 h in air, showed the highest sensor response, of the order of 2.7 at an operation temperature of 250 °C. The response and recovery time(s) were 10 s and 24 s, respectively. The results show that the addition of M-dopants in the cupric oxide films effectively act as catalysts in propane sensors and improve the gas sensing properties. The films’ phase composition, microstructure and surface topography have been assessed by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) methods. PMID:26287204

  6. Deposition of antibacterial of poly(1,3-bis-(p-carboxyphenoxy propane)-co-(sebacic anhydride)) 20:80/gentamicin sulfate composite coatings by MAPLE

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Popescu, C.; Socol, G.; Visan, A.; Mihailescu, I. N.; Gittard, S. D.; Miller, P. R.; Martin, T. N.; Narayan, R. J.; Andronie, A.; Stamatin, I.; Chrisey, D. B.

    2011-04-01

    We report on thin film deposition of poly(1,3-bis-(p-carboxyphenoxy propane)-co-sebacic anhydride)) 20:80 thin films containing several gentamicin concentrations by matrix assisted pulsed laser evaporation (MAPLE). A pulsed KrF* excimer laser was used to deposit the polymer-drug composite thin films. Release of gentamicin from these MAPLE-deposited polymer conjugate structures was assessed. Fourier transform infrared spectroscopy was used to demonstrate that the functional groups of the MAPLE-transferred materials were not changed by the deposition process nor were new functional groups formed. Scanning electron microscopy confirmed that MAPLE may be used to fabricate thin films of good morphological quality. The activity of gentamicin-doped films against Escherichia coli and Staphylococcus aureus bacteria was demonstrated using disk diffusion and antibacterial drop test. Our studies indicate that deposition of polymer-drug composite thin films prepared by MAPLE is a suitable technique for performing controlled drug delivery. Antimicrobial thin film coatings have several medical applications, including use for indwelling catheters and implanted medical devices.

  7. A Novel Gas Sensor Based on MgSb2O6 Nanorods to Indicate Variations in Carbon Monoxide and Propane Concentrations

    PubMed Central

    Guillén-Bonilla, Héctor; Flores-Martínez, Martín; Rodríguez-Betancourtt, Verónica-María; Guillen-Bonilla, Alex; Reyes-Gómez, Juan; Gildo-Ortiz, Lorenzo; de la Luz Olvera Amador, María; Santoyo-Salazar, Jaime

    2016-01-01

    Bystromite (MgSb2O6) nanorods were prepared using a colloidal method in the presence of ethylenediamine, after a calcination step at 800 °C in static air. From X-ray powder diffraction analyses, a trirutile-type structure with lattice parameters a = 4.64 Å and c = 9.25 Å and space group P42/mnm was identified. Using scanning electron microscopy (SEM), microrods with sizes from 0.2 to 1.6 μm were observed. Transmission electron microscopy (TEM) analyses revealed that the nanorods had a length of ~86 nm and a diameter ~23.8 nm. The gas-sensing properties of these nanostructures were tested using pellets elaborated with powders of the MgSb2O6 oxide (calcined at 800 °C) at temperatures 23, 150, 200, 250 and 300 °C. The pellets were exposed to different concentrations of carbon monoxide (CO) and propane (C3H8) at these temperatures. The results showed that the MgSb2O6 nanorods possess excellent stability and high sensitivity in these atmospheres. PMID:26840318

  8. Brillouin spectroscopy studies of two-component polymerizable liquid system: 2,2-bis[4-(2-hydroxymethacryloxypropoxy)phenyl]propane/benzyl methacrylate.

    PubMed

    Łapsa, K; Marcinkowska, A; Andrzejewska, E; Drozdowski, M

    2011-08-15

    Brillouin spectroscopy was used to investigate viscoelastic properties of a two-component system consisting of a high viscosity liquid (HVL) and a low viscosity liquid (LVL), both able to polymerize. The model liquids were: 2,2-bis[4-(2-hydroxymethacryloxypropoxy)phenyl]propane (abbreviated as bis-GMA, HVL) and benzyl methacrylate (BzMA, LVL). The viscosity of the system was regulated by changing the monomer ratio. Hypersonic velocity and attenuation coefficient were investigated in a temperature range covering viscoelastic relaxation process. The dependence of the longitudinal viscosity on the system composition was determined. Additionally, the Brillouin studies were accompanied by some supplementary experimental methods, like low frequency shear viscosity measurements and observations of phase transitions by differential scanning calorimetry (DSC). The investigated monomer mixtures were then polymerized in a light-induced process and the polymerization kinetic curves were measured to find the possible correlation between the viscoelastic properties of the monomer mixture (as observed by Brillouin spectroscopy) and the polymerization course. PMID:20934905

  9. The effect of mixed HCl-KCl competitive adsorbate on Pt adsorption and catalytic properties of Pt-Sn/Al2O3 catalysts in propane dehydrogenation

    NASA Astrophysics Data System (ADS)

    Zangeneh, Farnaz Tahriri; Taeb, Abbas; Gholivand, Khodayar; Sahebdelfar, Saeed

    2015-12-01

    The effect of competitive adsorbate concentration and combination on the adsorption of H2PtCl6 onto γ-Al2O3 in the preparation and performance of PtSnK/γ-Al2O3 catalyst for propane dehydrogenation was investigated. The catalysts were prepared by sequential impregnation of Sn and Pt precursors. The effect of competitor concentration on Pt adsorption was studied by using hydrochloric acid (0.1-0.3 M) and the effect of pH was studied by using KCl/HCl mixtures at constant (0.1 M) total chloride ion concentration. The catalysts were characterized by nitrogen adsorption/desorption, XRD, XRF, SEM and CO chemisorption. The catalytic performance tests were carried out in a fixed-bed quartz reactor under kinetic controlled condition for proper catalyst screening. It was found that the corrosive competitor HCl could be partially substituted with KCl without appreciable impact on catalyst performance with the advantage of lower acid attack on the support and reduced leaching of the deposited tin. A model based on initial concentration and uptake of the adsorbates was developed to obtain the adsorption parameters. Values of 890 μmol/g and 600 lit/mol were obtained for adsorption site concentration of the tin-impregnated support and equilibrium constant for Pt adsorption, respectively, for HCl concentration range of 0.1-0.3 M.

  10. Utilization of Trihalogenated Propanes by Agrobacterium radiobacter AD1 through Heterologous Expression of the Haloalkane Dehalogenase from Rhodococcus sp. Strain m15-3

    PubMed Central

    Bosma, Tjibbe; Kruizinga, Edwin; de Bruin, Erik J.; Poelarends, Gerrit J.; Janssen, Dick B.

    1999-01-01

    Trihalogenated propanes are toxic and recalcitrant organic compounds. Attempts to obtain pure bacterial cultures able to use these compounds as sole carbon and energy sources were unsuccessful. Both the haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 (DhlA) and that from Rhodococcus sp. strain m15-3 (DhaA) were found to dehalogenate trihalopropanes to 2,3-dihalogenated propanols, but the kinetic properties of the latter enzyme are much better. Broad-host-range dehalogenase expression plasmids, based on RSF1010 derivatives, were constructed with the haloalkane dehalogenase from Rhodococcus sp. strain m15-3 under the control of the heterologous promoters Plac, PdhlA, and Ptrc. The resulting plasmids yielded functional expression in several gram-negative bacteria. A catabolic pathway for trihalopropanes was designed by introducing these broad-host-range dehalogenase expression plasmids into Agrobacterium radiobacter AD1, which has the ability to utilize dihalogenated propanols for growth. The recombinant strain AD1(pTB3), expressing the haloalkane dehalogenase gene under the control of the dhlA promoter, was able to utilize both 1,2,3-tribromopropane and 1,2-dibromo-3-chloropropane as sole carbon sources. Moreover, increased expression of the haloalkane dehalogenase resulted in elevated resistance to trihalopropanes. PMID:10508091

  11. Beneficial effect of propane sultone and tris(trimethylsilyl) borate as electrolyte additives on the cycling stability of the lithium rich nickel manganese cobalt (NMC) oxide

    NASA Astrophysics Data System (ADS)

    Birrozzi, Agnese; Laszczynski, Nina; Hekmatfar, Maral; von Zamory, Jan; Giffin, Guinevere A.; Passerini, Stefano

    2016-09-01

    This study reports the investigation of several compounds as electrolyte additives for Li[Li0.2Mn0.56 Ni0.16 Co0.08]O2 (a.k.a lithium rich NMC) cathode material. Among the compounds investigated via electrochemical and ex-situ analytical techniques, i.e. XRD, XPS and RAMAN spectroscopy, only 1,3-propane sultone and tris(trimethylsilyl) borate show a beneficial effect on the capacity retention and coulombic efficiency of the layered cathode. The results suggest that the improved capacity retention of the cells containing the two above-mentioned additives mainly originates from their participation in the formation of the cathode passive layer, which prevents the dissolution of the metals from the cathode material. Additionally, the borate additive reduces the lithium consumption upon the passive layer formation thus leaving a higher amount of lithium available in the electrolyte. Graphite/Li[Li0.2Mn0.56 Ni0.16 Co0.08]O2 cells containing the borate additive in the electrolyte showed 85% capacity retention after 485 cycles, confirming the feasibility of its employment for practical applications.

  12. Evaluation of anti-coccidial effects of 1-[4-(4-nitrophenoxy)phenyl]propane-1-one and identification of its potential target proteins in Toxoplasma gondii.

    PubMed

    Choi, Hwa-Jung; Lee, Jae-Hoon; Yeo, Seon-Ju; Kaewintajuk, Kusuma; Yi, Kyu-Yang; Kim, Suk; Song, Hyun-Ok; Park, Hyun

    2015-01-01

    Coccidiosis affects many vertebrates worldwide, but treatment with known anti-coccidial drugs causes several adverse side effects. There is a critical need for the development and evaluation of new drugs. The anti-coccidial effect of 1-[4-(4-nitrophenoxy)phenyl]propane-1-one (NPPP), a synthetic compound, was studied in vitro and in vivo. Treatment with NPPP showed anti-Toxoplasma activity in vitro with a lower EC50 value than pyrimethamine. In ICR mice infected with Toxoplasma gondii, oral administration of NPPP for 4 days showed statistically significant anti-Toxoplasma activity with lower numbers of tachyzoite than those of the negative control (p < 0.01). NPPP also exhibited strong anti-Eimeria activity in Eimeria tenella-infected chickens when treated for 4 days with orally administered NPPP at a dose of 100 mg/kg. Potential target proteins of NPPP were analyzed by proteomic profiles of T. gondii tachyzoites. Two hypothetical proteins were identified as possible targets of NPPP, a putative ortholog of vacuolar ATP synthase subunit C and a class I S-adenosylmethionine-dependent methyltransferase. Our data show that the NPPP might be an anti-coccidial drug candidate for clinical application against coccidial infections. Future investigations will focus on identifying the function of proteins regulated by NPPP. PMID:24824336

  13. First High Resolution Analysis of the ν21 Band of Propane at 921.4 wn: Evidence of Large-Amplitude Tunnelling Effects

    NASA Astrophysics Data System (ADS)

    Perrin, Agnes; Kwabia Tchana, F.; Flaud, Jean-Marie; Manceron, Laurent; Demaison, Jean; Vogt, Natalja; Groner, Peter; Lafferty, Walter

    2015-06-01

    A high resolution (0.0015 wn) IR spectrum of propane, C_3H_8, has been recorded with synchrotron radiation at the French light source facility at SOLEIL coupled to a Bruker IFS-125 Fourier transform spectrometer. A preliminary analysis of the ν21 fundamental band (B1, CH3 rock) near 921.4 wn reveals that the rotational energy levels of 211 are split by interactions with the internal rotations of the methyl groups. Conventional analysis of this A-type band yielded band centers at 921.3724(38), 921.3821(33) and 921.3913(44) wn for the AA, EE and AE+EA tunneling splitting components, respectively. These torsional splittings most probably are due to anharmonic and/or Coriolis resonance coupling with nearby highly excited states of both internal rotations of the methyl groups. In addition, several vibrational-rotational resonances were observed that affect the torsional components in different ways. The analysis of the B-type band near 870 wn (ν8, sym. C-C stretch) which also contains split rovibrational transitions due to internal rotation is in progress. It is performed by using the effective rotational Hamiltonian method ERHAM with a code that allows prediction and least-squares fitting of such vibration-rotation spectra. A. Perrin et al., submitted to J. Mol. Spectrosc. P. Groner, J. Chem. Phys. 107 (1997) 4483; J. Mol. Spectrosc. 278 (2012) 52.

  14. Brillouin spectroscopy studies of two-component polymerizable liquid system: 2,2-Bis[4-(2-hydroxymethacryloxypropoxy)phenyl]propane/benzyl methacrylate

    NASA Astrophysics Data System (ADS)

    Łapsa, K.; Marcinkowska, A.; Andrzejewska, E.; Drozdowski, M.

    2011-08-01

    Brillouin spectroscopy was used to investigate viscoelastic properties of a two-component system consisting of a high viscosity liquid (HVL) and a low viscosity liquid (LVL), both able to polymerize. The model liquids were: 2,2-bis[4-(2-hydroxymethacryloxypropoxy)phenyl]propane (abbreviated as bis-GMA, HVL) and benzyl methacrylate (BzMA, LVL). The viscosity of the system was regulated by changing the monomer ratio. Hypersonic velocity and attenuation coefficient were investigated in a temperature range covering viscoelastic relaxation process. The dependence of the longitudinal viscosity on the system composition was determined. Additionally, the Brillouin studies were accompanied by some supplementary experimental methods, like low frequency shear viscosity measurements and observations of phase transitions by differential scanning calorimetry (DSC). The investigated monomer mixtures were then polymerized in a light-induced process and the polymerization kinetic curves were measured to find the possible correlation between the viscoelastic properties of the monomer mixture (as observed by Brillouin spectroscopy) and the polymerization course.

  15. Phenylmercury and its mobilization in the organism by a metal complex-forming substance: 2,3-dimercapto-1-propane sodium sulfonate.

    PubMed

    Gombos, B; Merva, M; Sekula, F; Koci, M

    1996-01-01

    Workers handling dressing machines for seed treatment with the product Agronal, containing a phenylmercury chloride fungicide, were exposed to high concentrations of phenylmercury dust in the working environment. Urine analyses for mercury result in concentration of up to 0.1 mg Hg/l of urine. After administration of a complex-forming substance-Unitol (2,3-dimercapto-1-propane sodium sulfonate)-a higher urinary excretion of mercury occurred. The amount of mercury excreted confirmed its deposit in the organism. It was speculated that subjective complaints by workers handling dressing machines could be caused by high exposure to phenylmercury. This suggestion cannot, however, be fully accepted because the complaints were not necessarily specific for mercury only, but could also have been caused by factors of nontoxic origin, such as stress at the workplace, discontent with work and environmental hygiene conditions, conflicts and alcoholism. Most probably, it was a case of interpotentiation of the effects of toxic and non-toxic nature. PMID:8956542

  16. Generation of a structurally diverse library through alkylation and ring closure reactions using 3-dimethylamino-1-(thiophen-2-yl)propan-1-one hydrochloride.

    PubMed

    Roman, Gheorghe

    2013-01-01

    3-Dimethylamino-1-(thiophen-2-yl)propan-1-one hydrochloride (2), a ketonic Mannich base derived from 2-acetylthiophene, was used as a starting material in different types of alkylation and ring closure reactions with a view to generate a structurally diverse library of compounds. Compound 2 reacts with S-alkylated dithiocarbamic acid salts and aryl mercaptans to produce dithiocarbamates and thioethers, respectively. The dimethylamino moiety in compound 2 was exchanged with various aliphatic secondary and aromatic primary and secondary amines, whereas monocyclic NH-azoles such as pyrazole, imidazole, 1,2,4-triazole, and tetrazole were N-alkylated by compound 2. Ketones, pyrrole and indoles have been the substrates subjected to C-alkylation reactions by compound 2. Ring closure reactions of compound 2 with a suitable bifunctional nucleophile yielded pyrazolines, pyridines, 2,3-dihydro-1,5-1H-benzodiazepines, 2,3-dihydro-1,5-1H-benzothiazepine, pyrimido[1,2-a]benzimidazole and 4-hydroxypiperidine derivatives. PMID:23841334

  17. Gas-Sensing Performance of M-Doped CuO-Based Thin Films Working at Different Temperatures upon Exposure to Propane.

    PubMed

    Rydosz, Artur; Szkudlarek, Aleksandra

    2015-01-01

    Cupric oxide (CuO) thin films are promising materials in gas sensor applications. The CuO-based gas sensors behaved as p-type semiconductors and can be used as part of an e-nose or smart sensor array for breath analysis. The authors present the investigation results on M-doped CuO-based (M = Ag, Au, Cr, Pd, Pt, Sb, Si) sensors working at various temperatures upon exposure to a low concentration of C3H8, which can be found in exhaled human breath, and it can be considered as a one of the biomarkers of several diseases. The films have been deposited in magnetron sputtering technology on low temperature cofired ceramics substrates. The results of the gas sensors' response are also presented and discussed. The Cr:CuO-based structure, annealed at 400 °C for 4 h in air, showed the highest sensor response, of the order of 2.7 at an operation temperature of 250 °C. The response and recovery time(s) were 10 s and 24 s, respectively. The results show that the addition of M-dopants in the cupric oxide films effectively act as catalysts in propane sensors and improve the gas sensing properties. The films' phase composition, microstructure and surface topography have been assessed by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) methods. PMID:26287204

  18. Preparation of a novel porous poly (trimethylol propane triacrylate-co-ethylene dimethacrylate) monolithic column for highly efficient HPLC separations of small molecules.

    PubMed

    Bai, Xiaomei; Liu, Haiyan; Wei, Dan; Yang, Gengliang

    2014-02-01

    A novel poly (trimethylol propane triacrylate-co-ethylene dimethacrylate) [poly (TMPTA-co-EDMA)] monolith was prepared by in situ free-radical polymerization in a 50 mm × 4.6mm i.d. stainless steel column and was investigated for high performance liquid chromatography (HPLC). The porous structure of monolith was optimized by changing the conditions of polymerization. The chemical group of the monolithic column was confirmed by a Fourier transform infrared spectroscopy (FT-IR) method and the morphology of column structure was characterized by scanning electron microscopy (SEM). The mechanical strength and permeability were also studied. Finally, a series of low-molecular-weight organic compounds were utilized to evaluate the retention behaviors of the monolithic column. The result demonstrated that the prepared column exhibited an RP-chromatographic behavior and good separation performance. The method reproducibility was obtained by evaluating the run-to-run and column-to-column with relative standard deviations (RSDs) less than 0.7% (n=6) and 2.9% (n=6), respectively, which indicated that prepared monolithic columns had good reproducibility and stability. PMID:24401444

  19. Synthesis and properties of cellulose functionalized -4, 4'-(propane-2, 2'-diyl) diphenol-SiO2/TiO2 hybrid nanocomposites materials for high performance applications

    NASA Astrophysics Data System (ADS)

    Ramesh, Sivalingam; Kim, Gwang-Hoon; Kim, Heung-Soo; Kim, Jaehwan; Kim, Joo-Hyung

    2013-04-01

    The general class of organic-inorganic hybrid nanocomposites materials is a fast growing area of research. The significant effort is focused on the ability to control the nanoscale structures via organic functional synthetic approaches with inorganic metal oxides. The properties of nanocomposites material depends on the properties of their individual components but also their morphological and interfacial characteristics. This rapidly expanding field is generating many exciting new materials with novel properties. Mainly, cellulose is considered as the richest renewable materials are presently among the most promising candidates for use in photonics due to their versatility, flexibility, light weight, low cost and ease of modification. Cellulose-metal oxide nanomaterials were developed the technologies to manipulate selfassembly and multifunctionallity, of new technologies to the point where industry can produce advanced and costcompetitive cellulose metal oxide hybrid materials. Therefore, the present study is focused on cellulose-functionalized - 4, 4'-(propane-2, 2'-diyl) diphenol-SiO2/TiO2 hybrid nano-composites materials by in-situ sol-gel process. The chemical and morphological properties of cellulose-functionalized SiO2/TiO2 materials via covalent crosslinking hybrids were characterized by FTIR, XRD, TGA, DSC, SEM, TEM and optical properties.

  20. In vitro and in vivo antiherpetic effects of (1R,2R)-1-(5'-methylful-3'-yl)propane-1,2,3-triol.

    PubMed

    Sasaki, Kohei; Hayashi, Kyoko; Matsuya, Yuji; Sugimoto, Kenji; Lee, Jung-Bum; Kurosaki, Fumiya; Hayashi, Toshimitsu

    2016-04-01

    In this study, we demonstrated the in vitro and in vivo antiherpetic activities of a stable furan derivative, (1R,2R)-1-(5'-methylful-3'-yl)propane-1,2,3-triol (MFPT), which had originally been isolated from Streptomyces sp. strain FV60. In the present study, we synthesized MFPT from (5-methylfuran-3-yl)methanol in 6 steps for use in the experiments. MFPT showed potent in vitro antiviral activities against two acyclovir (ACV)-sensitive (KOS and HF) strains and an ACV-resistant (A4-3) strain of herpes simplex virus type 1 (HSV-1) and an ACV-sensitive HSV type 2 (HSV-2) UW 268 strain, their selectivity indices ranging from 310 to 530. By intravaginal application of MFPT to mice, the virus yields decreased dose-dependently against the three strains of HSV-1 and HSV-2. When MFPT was applied at a dose of 1.0 mg/day, the lesion scores, as clinical signs manifested by viral infection, were extensively suppressed in HSV-1-infected mice, whereas the lesion scores in HSV-2-infected mice were not markedly decreased. Interestingly, MFPT exerted an inhibitory effect against ACV-resistant HSV-1 in mice to a similar degree as in ACV-sensitive HSV-1-infected mice. Therefore, the compound might have potential for developing a topical antiviral agent that could be also applied to the infections caused by ACV-resistant viruses. PMID:26763002

  1. Propane conversion on Ga-HZSM-5: Effect of aging on the dehydrogenating and acid functions using pyridine as an IR probe

    SciTech Connect

    Meriaudeau, P.; Naccache, C. ); Abdul Hamid, S.B. )

    1993-02-01

    Gallium-loaded zeolite (Ga-HZSM-5) catalysts have been extensively studied in the recent past, not only in respect of their interesting catalytic activity in the aromatization of C[sub 3]-C[sub 5] alkanes (Cyclar Process) but also in respect of theoretical considerations. There is clear evidence that in the reaction of alkanes these catalysts behave as bifunctional catalysts, the acid function being provided by the protons and the dehydrogenation function deriving from Ga[sub 2]O[sub 3] or Ga[sup n+] ions in ionic-exchange positions. Ga-HZSM-5 catalysts deactivate with time on-stream. The deactivation can result from poisoning of the acid centers and/or the dehydrogenating sites by coke deposition or from sintering or phase transformation of the dehydrogenating gallium species. The aim of the present study was to investigate the possible modifications of Ga centers and H[sup +] sites which may result from the propane reaction. The active centers were studied by infrared spectroscopy of adsorbed pyridine, pyridine adsorption being used to probe both H[sup +] and Al, Ga Lewis-acid centers. 11 refs., 2 figs., 1 tab.

  2. Position-specific and clumped stable isotope studies: comparison of the Urey and path-integral approaches for carbon dioxide, nitrous oxide, methane, and propane.

    PubMed

    Webb, Michael A; Miller, Thomas F

    2014-01-16

    We combine path-integral Monte Carlo methods with high-quality potential energy surfaces to compute equilibrium isotope effects in a variety of systems relevant to 'clumped' isotope analysis and isotope geochemistry, including CO2, N2O, methane, and propane. Through a systematic study of heavy-atom isotope-exchange reactions, we quantify and analyze errors that arise in the widely used Urey model for predicting equilibrium constants of isotope-exchange reactions using reduced partition function ratios. These results illustrate that the Urey model relies on a nontrivial cancellation of errors that can shift the apparent equilibrium temperature by as much as 35 K for a given distribution of isotopologues. The calculations reported here provide the same level of precision as the best existing analytical instrumentation, resolving the relative enrichment of certain isotopologues to as little as 0.01‰. These findings demonstrate path-integral methods to be a rigorous and viable alternative to more approximate methods for heavy-atom geochemical applications. PMID:24372450

  3. A Novel Gas Sensor Based on MgSb2O6 Nanorods to Indicate Variations in Carbon Monoxide and Propane Concentrations.

    PubMed

    Guillén-Bonilla, Héctor; Flores-Martínez, Martín; Rodríguez-Betancourtt, Verónica-María; Guillen-Bonilla, Alex; Reyes-Gómez, Juan; Gildo-Ortiz, Lorenzo; de la Luz Olvera Amador, María; Santoyo-Salazar, Jaime

    2016-01-01

    Bystromite (MgSb2O6) nanorods were prepared using a colloidal method in the presence of ethylenediamine, after a calcination step at 800 °C in static air. From X-ray powder diffraction analyses, a trirutile-type structure with lattice parameters a = 4.64 Å and c = 9.25 Å and space group P4₂/mnm was identified. Using scanning electron microscopy (SEM), microrods with sizes from 0.2 to 1.6 μm were observed. Transmission electron microscopy (TEM) analyses revealed that the nanorods had a length of ~86 nm and a diameter ~23.8 nm. The gas-sensing properties of these nanostructures were tested using pellets elaborated with powders of the MgSb2O6 oxide (calcined at 800 °C) at temperatures 23, 150, 200, 250 and 300 °C. The pellets were exposed to different concentrations of carbon monoxide (CO) and propane (C3H8) at these temperatures. The results showed that the MgSb2O6 nanorods possess excellent stability and high sensitivity in these atmospheres. PMID:26840318

  4. Flame quenching by a variable-width rectangular-slot burner as a function of pressure for various propane-oxygen-nitrogen mixtures

    NASA Technical Reports Server (NTRS)

    Berlad, Abraham L

    1954-01-01

    Flame quenching by a variable-width rectangular-slot burner as a function of pressure for various propane-oxygen-nitrogen mixtures was investigated. It was found that for cold gas temperatures of 27 degrees C, pressures of 0.1 ro 1.0 atmosphere, and volumetric oxygen reactions of the oxidant of 0.17, 0.21, 0.30, 0.50, and 0.70, the relation between pressure p and quenching distance d is approximately given by d (unity) p (superscript -r) with r = 1, for equivalence ratios approximately equal to one. The quenching equation of Simon and Belles was tested. For equivalence ratios less than or equal to unity, this equation may by used, together with one empirical constant, to predict the observed quenching distance within 4.2 percent. The equation in it's present form does not appear to be suitable for values of the equivalence ratio greater than unity. A quantitative theoretical investigation has also been made of the error implicit in the assumption that flame quenching by plane parallel plates of infinite extent is equivalent to that of a rectangular burner. A curve is presented which relates the magnitude of this error to the length-to-width ratio of the rectangular burner.

  5. Simultaneous particle image velocimetry and chemiluminescence visualization of millisecond-pulsed current-voltage-induced perturbations of a premixed propane/air flame

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob; Kostka, Stanislav; Lynch, Amy; Ganguly, Biswa

    2011-09-01

    The effects of millisecond-wide, pulsed current-voltage-induced behavior in premixed laminar flames have been investigated through the simultaneous collection of particle image velocimetry (PIV) and chemiluminescence data with particular attention paid to the onset mechanisms. Disturbances caused by applied voltages of 2 kV over a 30-mm gap to a downward propagating, atmospheric pressure, premixed propane/air flame with a flow speed near 2 m/s and an equivalence ratio of 1.06 are investigated. The combined PIV and chemiluminescence-based experimental data show the observed disturbance originates only in or near the cathode fall region very close to the burner base. The data also suggest that the coupling mechanism responsible for the flame disturbance behavior is fluidic in nature, developing from the radial positive chemi-ion distribution and an ion-drift current-induced net body force that acts along the annular space discharge distribution in the reaction zone in or near the cathode fall. This net body force causes a reduction in flow speed above these near cathodic regions causing the base of the flame to laterally spread. Also, this effect seems to produce a velocity gradient leading to the transition of a laminar flame to turbulent combustion for higher applied current-voltage conditions as shown in previous work (Marcum and Ganguly in Combust Flame 143:27-36, 2005; Schmidt and Ganguly in 48th AIAA aerospace sciences meeting. Orlando, 2010).

  6. Effects of soot absorption coefficient-Planck function correlation on radiative heat transfer in oxygen-enriched propane turbulent diffusion flame

    NASA Astrophysics Data System (ADS)

    Consalvi, J. L.; Nmira, F.

    2016-03-01

    The main objective of this article is to quantify the influence of the soot absorption coefficient-Planck function correlation on radiative loss and flame structure in an oxygen-enhanced propane turbulent diffusion flame. Calculations were run with and without accounting for this correlation by using a standard k-ε model and the steady laminar flamelet model (SLF) coupled to a joint Probability Density Function (PDF) of mixture fraction, enthalpy defect, scalar dissipation rate, and soot quantities. The PDF transport equation is solved by using a Stochastic Eulerian Field (SEF) method. The modeling of soot production is carried out by using a flamelet-based semi-empirical acetylene/benzene soot model. Radiative heat transfer is modeled by using a wide band correlated-k model and turbulent radiation interactions (TRI) are accounted for by using the Optically-Thin Fluctuation Approximation (OTFA). Predicted soot volume fraction, radiant wall heat flux distribution and radiant fraction are in good agreement with the available experimental data. Model results show that soot absorption coefficient and Planck function are negatively correlated in the region of intense soot emission. Neglecting this correlation is found to increase significantly the radiative loss leading to a substantial impact on flame structure in terms of mean and rms values of temperature. In addition mean and rms values of soot volume fraction are found to be less sensitive to the correlation than temperature since soot formation occurs mainly in a region where its influence is low.

  7. Inductively coupled plasma optical emission spectrometry for trace multi-element determination in vegetable oils, margarine and butter after stabilization with propan-1-ol and water

    NASA Astrophysics Data System (ADS)

    de Souza, Roseli M.; Mathias, Bárbara M.; da Silveira, Carmem Lúcia P.; Aucélio, Ricardo Q.

    2005-06-01

    The quantitative evaluation of trace elements in foodstuffs is of considerable interest due to the potential toxicity of many elements, and because the presence of some metallic species might affect the overall quality (flavor and stability) of these products. In the present work, an inductively coupled plasma optical emission spectrometric method has been developed for the determination of six elements (Cd, Co, Cr, Cu, Ni and Mn) in olive oil, soy oil, margarine and butter. Organic samples (oils and fats) were stabilized using propan-1-ol and water, which enabled long-time sample dispersion in the solution. This simple sample preparation procedure, together with an efficient sample introduction strategy (using a Meinhard K3 nebulizer and a twister cyclonic spray chamber), facilitated the overall analytical procedure, allowing quantification using calibration curves prepared with inorganic standards. Internal standardization (Sc) was used for correction of matrix effects and signal fluctuations. Good sensitivities with limits of detection in the ng g -1 range were achieved for all six elements. These sensitivities were appropriate for the intended application. The method was tested through the analysis of laboratory-fortified samples with good recoveries (between 91.3% and 105.5%).

  8. Effect of propane-2-sulfonic acid octadec-9-enyl-amide on the expression of adhesion molecules in human umbilical vein endothelial cells.

    PubMed

    Chen, Cai-Xia; Yang, Li-Chao; Xu, Xu-Dong; Wei, Xiao; Gai, Ya-Ting; Peng, Lu; Guo, Han; Hao-Zhou; Wang, Yi-Qing; Jin, Xin

    2015-06-01

    Oleoylethanolamide (OEA), an endogenous agonist of PPARα, has been reported to have anti-atherosclerotic properties. However, OEA can be enzymatically hydrolyzed to oleic acid and ethanolamine and, thus, is not expected to be orally active. In the present study, we designed and synthesized an OEA analog, propane-2-sulfonic acid octadec-9-enyl-amide (N15), which is resistant to enzymatic hydrolysis. The purpose of this study was to investigate the effects of N15 on the expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs). The results showed that N15 inhibited TNFα-induced production of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 and the adhesion of monocytes to TNFα-induced HUVECs. Furthermore, the protective effect of N15 on inflammation is dependent upon a PPAR-α/γ-mediated mechanism. In conclusion, N15 protects against TNFα-induced vascular endothelial inflammation. This anti-inflammatory effect of N15 is dependent on PPAR-α/γ dual targets. PMID:25797284

  9. REACH. Electricity Units. Secondary.

    ERIC Educational Resources Information Center

    Smith, Gene; Sappe, Hoyt

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of electricity. The instructional units focus on electricity fundamentals and electric motors. Each unit follows a typical format that includes a unit sheet,…

  10. Regents Biology Resource Units.

    ERIC Educational Resources Information Center

    Will, Nancy A., Comp.

    This publication provides supplemental information which can be used by the teacher to accompany each unit in the Regents Biology Syllabus. Each unit of the supplement addresses topics and understandings in the corresponding unit of the syllabus. These units are: (1) unity and diversity among living things; (2) maintenance in living things; (3)…

  11. Hepta-carbonyl-bis-(μ-propane-1,3-di-thiol-ato)triiron(I,II)(2 Fe-Fe).

    PubMed

    Hu, Mingqiang; Ma, Chengbing; Wen, Huimin; Cui, Honghua; Chen, Changneng

    2014-04-01

    The trinuclear title compound, [Fe3(C3H6S2)2(CO)7], is a mixed-valent Fe(I)/Fe(II) complex and crystallizes with two mol-ecules of similar configuration in the asymmetric unit. The three Fe atoms in each mol-ecule display a bent arrangement [Fe-Fe-Fe = 156.22 (4) and 157.06 (3)°]. Both outer Fe(I) atoms are six-coordinated in a distorted ocahedral coordination geometry defined by the bridging Fe(II) atom, three carbonyl C atoms and two bridging S atoms. The coordination number of the central Fe(II) atom is seven and includes bonding to the two outer Fe(I) atoms, four bridging S atoms and one carbonyl C atom. The resulting coordination polyhedron might be described as a highly distorted monocapped trigonal prism. In the crystal packing, the mol-ecules exhibit a chain-like arrangement parallel to [100] and [001], and the resulting layers are stacked along [010]. The cohesion of the structure is dominated by van der Waals inter-actions. PMID:24826090

  12. Polyacrylamido-2-methyl-1-propane sulfonic acid-grafted-natural rubber as bio-adsorbent for heavy metal removal from aqueous standard solution and industrial wastewater.

    PubMed

    Phetphaisit, Chor Wayakron; Yuanyang, Siriwan; Chaiyasith, Wipharat Chuachuad

    2016-01-15

    Bio-adsorbent modified natural rubber (modified NR) was prepared, by placing the sulfonic acid functional group on the isoprene chain. This modification was carried out with the aim to prepare material capable to remove heavy metals from aqueous solution. The structures of modified NR materials were characterized by FT-IR and NMR spectroscopies. Thermal gravimetric analysis of modified NR showed that the initial degradation temperature of rubber decreases with increasing amount of polyacrylamido-2-methyl-1-propane sulfonic acid (PAMPS) in the structure. In addition, water uptake of the rubber based materials was studied as a function of time and content of PAMPS. The influence of the amount of PAMPS grafted onto NR, time, pH, concentration of metal ions, temperature, and regeneration were studied in terms of their influence on the adsorption of heavy metals (Pb(2+), Cd(2+) and Cu(2+)). The adsorption isotherms of Pb(2+) and Cd(2+) were fitted to the Freundlich isotherm model, while Cu(2+) was fitted to the Langmuir isotherm. However, the results from these two isotherms resulted in a similar behavior. The adsorption capacity of the modified NR for the various heavy metals was in the following order: Pb(2+)∼Cd(2+)>Cu(2+). The maximum adsorption capacities of Pb(2+), Cd(2+), and Cu(2+) were 272.7, 267.2, and 89.7 mg/g of modified rubber, respectively. Moreover, the modified natural rubber was used for the removal of metal ions in real samples of industrial effluents where the efficiency and regeneration were also investigated. PMID:26348149

  13. Highly correlated ab initio study of the low frequency modes of propane and various monosubstituted isotopologues containing D and 13C.

    PubMed

    Villa, M; Senent, M L; Carvajal, M

    2013-07-01

    With the purpose of providing some clues that could encourage the spectral recordings of propane and various monodeuterated and (13)C isotopologues and also to explore their far infrared spectra at low temperatures, the energy levels corresponding to their three lowest frequency modes are determined variationally using a flexible model in three dimensions. Five vibrationally corrected potential energy surfaces are computed using CCSD(T) ab initio calculations. In spite of the quality of these highly correlated potentials in molecules with similar structures, it was proven that an empirical adjustment of the surfaces would enclose accurately the experimental and theoretical frequency residuals and therefore it is also used in the present work. Interacting terms, energy levels and tunneling splittings are provided for CH3CH2CH3, CH3(13)CH2CH3, (13)CH3CH2CH3, CH2DCH2CH3 and CH3CHDCH3. Infrared and Raman transitions of CH3CH2CH3 are assigned. Correlation between symmetry species of the five isotopologue symmetry groups (G36, G36, G18, G6 and G'18, respectively) is established for the classification of the levels and torsional splittings. The rotational constants are determined with CCSD(T)/CBS (A0 = 29263.46 MHz, B0 = 8454.10 MHz and C0 = 7466.64 MHz) using a non-relativistic procedure. Fundamental anharmonic frequencies corresponding to the high and medium amplitude modes are computed for all the isotopologues. The adjusted parameters are accurate enough to be employed in further spectral analysis. PMID:23604056

  14. Gold(I) chloride adducts of 1,3-bis(di-2-pyridylphosphino)propane: synthesis, structural studies and antitumour activity

    SciTech Connect

    Humphreys, Anthony S.; Filipovska, Aleksandra; Berners-Price, Susan J.; Koutsantonis, George A.; Skelton, Brian W.; White, Allan H.

    2008-06-30

    The novel water soluble bidentate phosphine ligand 1,3-bis(di-2-pyridylphosphino)propane (d2pypp) has been synthesized by a convenient route involving treatment of 2-pyridyllithium with Cl{sub 2}P(CH{sub 2}){sub 3}PCl{sub 2} and isolation in crystalline form as the hydrochloride salt. The synthesis of the precursor Cl{sub 2}P(CH{sub 2}){sub 3}PCl{sub 2} has been optimized by the use of triphosgene as the chlorinating agent. The 2:1 and 1:2 AuCl:d2pypp adducts have been synthesized and characterized by NMR spectroscopy and single crystal X-ray studies, and shown to be of the form (AuCl){sub 2}({mu}-d2pypp-P,P{prime}) and Au(d2pypp-P,P{prime}){sub 2}Cl(-3.75H{sub 2}O), respectively. The latter is more lipophilic than analogous 1:2 adducts of gold(I) chloride with the diphosphine ligands 1,2-bis(di-n-pyridylphosphino)ethane (dnpype) for n = 2, 3 and 4, based on measurement of the n-octanol-water partition coefficient (log P = -0.46). A single crystal structure determination of the 1:2 Au(I) complex of the 3-pyridyl ethane ligand shows it to be of the form [Au(d3pype-P,P{prime}){sub 2}]Cl {center_dot} 5H{sub 2}O. The in vitro cytotoxic activity of [Au(d2pypp){sub 2}]Cl was assessed in human normal and cancer breast cells and selective toxicity to the cancer cells found. The significance of these results to the antitumour properties of chelated 1:2 Au(I) diphosphine complexes is discussed.

  15. Computational study of human tyrosine hydroxylase mutants to uphold [4-(Propan-2-yl) Phenyl]Carbamic acid as a potential inhibitor.

    PubMed

    Nawaz, Muhammad S; Parveen, Zahida; Wang, Liyong; Rashid, Sajid; Fatmi, Muhammad Q; Kamal, Mohammad A

    2014-01-01

    Neurodegenerative diseases that afflict nervous system are characterized by progressive nervous system dysfunction and associated with the one-set of many diseases like Segawa's syndrome (recessive form), autosomal recessive L-dopa-responsive dystonia, L-dopa non-responsive dystonia or progressive early-onset encephalopathy and recessive L-dopa-responsive parkinsonism. It has been reported that a number of mutations in coding regions, splice sites and promoter regions of tyrosine hydroxylase (TH) are associated with many such diseases. TH is responsible for catalyzing the conversion of L-tyrosine to L-3,4-dihydroxyphenylalanine. This reaction is considered as rate-limiting step in the biosynthesis of catecholamines, dopamine, norepinephrine and epinephrine, which has made TH an important target for drug development. In our previous study using comparative molecular docking approach, it was concluded that [4-(Propan-2-yl) Phenyl]Carbamic acid (PPCA) may serve as a potential inhibitor. By further extending, our focus is to determine the binding affinities of PPCA and mutated TH. 3D structures of mutated TH were predicted and subjected to molecular docking studies. PPCA was found to bind in the deep narrow groove lined with polar and aromatic amino acids in 14 out of 17 mutants under study (R202H, L205P, H215Y, G216S, T245P, F278P, T283M, R297W, R306H, C328F, A345V, L356M, T368M, Q381K, P461L, T463M and D467G). Our results corroborate efficient binding of PPCA with normal and mutated TH, indicating that PPCA might be a strong therapeutic candidate for the management of Parkinson's disease and other related disorders. It may be a valuable target for evaluation in preclinical models. PMID:25230230

  16. Raman spectrum, conformational stability, barriers to internal rotations and DFT calculations of 1,1,1-trifluoro-propane-2-thione with double-internal-symmetric rotor.

    PubMed

    Mohamed, Tarek A; Farag, Rabei S

    2005-12-01

    The Raman spectrum (3500-100 cm-1) of 1,1,1-trifluoro-propane-2-thione (TFPT), CF3C(S)CH3 of the solid phase has been recorded. The internal rotation of CH3 and/or CF3 moieties around CC bonds in TFPT allow five hypothetical conformers (Cs and C1 point groups). Aided by quantum chemical (QC) calculations, the Cc conformer is the only stable form (CF3 and CH3 groups are eclipsing the CS bond) which contains a planar FCC(S)CH backbone and possess intramolecular hydrogen sulfur interactions. However, other conformations (with the orientation of sulfur atom being trans to either hydrogen or fluorine atom) are either transition states or not fully converged geometry with "gauche" orientation. Moreover, the calculation were carried out at the level of Becke three Lee-Yan-Parr (B3LYP) parameters up to 6-311++G(d,p) basis sets. The torsional barriers are adequately described by a three-fold potential, V3 which have been determined utilizing the optimized structural parameters from the B3LYP/6-31G(d) basis set along with potential surface scan. Barriers of 1.28 kcal/mol (448 cm-1) and 1.94 kcal/mol (678 cm-1) were calculated for CH3 and CF3 symmetric rotors, respectively. Complete vibrational assignments have been reported for the stable Cc isomer which is supported by normal coordinate analysis and potential energy distributions (PEDs) for all fundamentals. Moreover, equilibrium geometries, vibrational frequencies are compared to the corresponding experimental values of acetone, 1,1,1-trifluoroacetone (TFA), hexafluoroacetone (HFA) and other molecules having the CF3 moiety whenever appropriate. PMID:16303627

  17. United Cerebral Palsy

    MedlinePlus

    ... of UCP blog for the latest updates. United Cerebral Palsy UCP educates, advocates and provides support services to ... Partners Merz Logo Sprint Relay Copyright © 2015 United Cerebral Palsy 1825 K Street NW Suite 600 Washington, DC ...

  18. United Leukodystrophy Foundation

    MedlinePlus

    ... matters. Please make your tax-deductible gift today! United Leukodystrophy Foundation 224 N. Second Street, Suite 2 ... validation purposes and should be left unchanged. Copyright © United Leukodystrophy Foundation, Inc. 224 North Second Street, Suite ...

  19. REACH. Heating Units.

    ERIC Educational Resources Information Center

    Stanfield, Carter; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized units in the area of heating. The instructional units focus on electric heating systems, gas heating systems, and oil burning systems. Each unit follows a typical format that includes a unit…

  20. The Manipulation of Units.

    ERIC Educational Resources Information Center

    Stead, Keith

    1983-01-01

    Proposes a method for dealing with units that require involvement of units of each physical quantity at every stage of a calculation. Preliminary ideas on algebra and the concept of a physical quantity, equations relating two or more units, calculations of physical quantities, and logarithms are considered. (JM)

  1. catena-Poly[[tetra­kis(μ2-acetato-κ2 O:O′)dicopper(II)(Cu—Cu)]-μ2-acetato-κ2 O:O′-[bis­[μ2-3-(dimethyl­amino)propan-1-olato]-κ2 N,O:O;κ2 O:N,O-bis­[(tetra­hydro­furan-κO)copper(II)

    PubMed Central

    Shahid, Muhammad; Mazhar, Muhammad; Helliwell, Madeleine; Akhtar, Javeed; Ahmad, Kibriya

    2008-01-01

    The title complex, [Cu4(C5H12NO)2(C2H3O2)6(C4H8O)2]n, consists of dinuclear [Cu2(C5H12NO)2(THF)2] (THF is tetra­hydro­furan) and [Cu2(CH3COO)4] units linked through acetate ions, generating parallel one-dimensional polymeric chains propagating in the [10] direction. In the first dinuclear unit, CuII ions related by inversion symmetry are bridged by two 3-(dimethyl­amino)propan-1-olate ligands. Likewise, a pair of inversion-related CuII ions are bridged by four acetate groups. The crystallographically independent Cu centers are linked to one another by a single bridging acetate group, generating an infinite chain. The distorted square-pyramidal coordination of the first metal center is completed with an apical THF mol­ecule, with a long Cu—O bond length of 2.476 (5) Å. The geometry around the other metal atom is close to octa­hedral, and the Cu⋯Cu separation in this unit is 2.652 (1) Å. The distance between the metal centers in the first dinuclear unit is considerably longer [3.068 (1) Å], suggesting little or no bonding inter­action. The Cu⋯Cu separation between two acetate-bridged independent Cu centers is 4.860 (2) Å. The THF mol­ecule has methyl­ene groups disordered over two positions, with occupancies of 0.608 (13) and 0.392 (13). PMID:21201596

  2. Poly[bis­[μ-1,3-bis­(diphenyl­phosphan­yl)propane-κ2 P:P′]-di-μ-thio­cyanato-κ2 S:N;κ2 N:S-disilver(I)

    PubMed Central

    Cui, Li-Na; Jiang, Yu-Han; Zhou, Li-Li; Jin, Qiong-Hua; Zhang, Cun-Lin

    2011-01-01

    In the title coordination polymer, [Ag2(NCS)2(C27H26P2)2]n, two centrosymmetrically related Ag+ cations are linked by two thio­cyanate anions into binuclear eight-membered macrocycles. The Ag⋯Ag separation within the macrocycle is 5.4400 (6) Å. The distorted tetra­hedral coordination about each metal atom is completed by the P atoms of two bridging 1,3-bis­(diphenyl­phosphan­yl)propane ligands, forming polymeric ribbons parallel to the a axis. PMID:22219775

  3. In situ UV-vis-NIR diffuse reflectance and Raman spectroscopy and catalytic activity studies of propane oxidative dehydrogenation over supported CrO3/ZrO2 catalysts.

    PubMed

    Malleswara Rao, T V; Deo, Goutam; Jehng, Jih-Mirn; Wachs, Israel E

    2004-08-17

    The molecular structures, oxidation states, and reactivity of 3 and 6% CrO3/ZrO2 catalysts prepared by incipient wetness impregnation were examined under different conditions. The in situ Raman spectroscopic studies under dehydrated conditions reveal that the 3 and 6% CrO3/ZrO2 catalysts possess equal amounts of monochromate and polychromate species. Consequently, monolayer coverage on this ZrO2 support is about 3% CrO3. The 6% CrO3/ZrO2 possesses an additional Raman band due to Cr2O3 crystals corresponding to the remaining 3% CrO3. Furthermore, during reaction conditions the polychromate species is preferentially reduced, the monochromate species are slightly affected, and the Cr2O3 crystals are not affected. The in situ UV-vis-NIR diffuse reflectance spectroscopy results reveal that under steady-state reaction conditions the extent of reduction and edge energy position of surface Cr6+ cations increase with an increase in reduction environment for the 3 and 6% CrO3/ZrO2 samples. Propane oxidative dehydrogenation (ODH) studies reveal that the catalytic activity expressed in moles of propane converted per gram catalyst per second is similar for the two catalysts, which is consistent with equal amounts of molecularly dispersed chromia present. The turnover frequency for the 6% CrO3/ZrO2 catalyst is, however, smaller than that for the 3% CrO3/ZrO2 sample due to the presence of Cr2O3 crystals, which are relatively inactive for propane ODH. For this catalytic system and for the experimental conditions used, propene, CO, and CO2 are primary products. Furthermore, the 33-39% propene selectivity is not affected by the C3H8/O2 ratio for both catalysts. Structure-reactivity studies suggest that the molecularly dispersed species are present in equal amounts in the 3 and 6% CrO3/ZrO2 samples as Cr6+ monochromate and polychromate species are the most effective catalytic active sites taking part in the propane ODH reaction. PMID:15301500

  4. Design of new antifungal agents: synthesis and evaluation of 1-[(1H-indol-5-ylmethyl)amino]-2-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-2-ols.

    PubMed

    Guillon, Rémi; Giraud, Francis; Logé, Cédric; Le Borgne, Marc; Picot, Carine; Pagniez, Fabrice; Le Pape, Patrice

    2009-10-15

    We previously reported on the design and synthesis of 1-[((hetero)aryl- or piperidinylmethyl)amino]-2-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-2-ols showing various degrees of antifungal activity against Candida albicans and Aspergillus fumigatus strains. Now we have identified a series of 1-[(1H-indol-5-ylmethyl)amino] derivatives which exhibited potent MICs (<65 ng mL(-1)) against C. albicans strain. The synthesis and SAR behind the indole scaffold will be discussed. PMID:19762235

  5. Development of a pre-concentration system and auto-analyzer for dissolved methane, ethane, propane, and butane concentration measurements with a GC-FID

    NASA Astrophysics Data System (ADS)

    Chepigin, A.; Leonte, M.; Colombo, F.; Kessler, J. D.

    2014-12-01

    Dissolved methane, ethane, propane, and butane concentrations in natural waters are traditionally measured using a headspace equilibration technique and gas chromatograph with flame ionization detector (GC-FID). While a relatively simple technique, headspace equilibration suffers from slow equilibration times and loss of sensitivity due to concentration dilution with the pure gas headspace. Here we present a newly developed pre-concentration system and auto-analyzer for use with a GC-FID. This system decreases the time required for each analysis by eliminating the headspace equilibration time, increases the sensitivity and precision with a rapid pre-concentration step, and minimized operator time with an autoanalyzer. In this method, samples are collected from Niskin bottles in newly developed 1 L plastic sample bags rather than glass vials. Immediately following sample collection, the sample bags are placed in an incubator and individually connected to a multiport sampling valve. Water is pumped automatically from the desired sample bag through a small (6.5 mL) Liqui-Cel® membrane contactor where the dissolved gas is vacuum extracted and directly flushed into the GC sample loop. The gases of interest are preferentially extracted with the Liqui-Cel and thus a natural pre-concentration effect is obtained. Daily method calibration is achieved in the field with a five-point calibration curve that is created by analyzing gas standard-spiked water stored in 5 L gas-impermeable bags. Our system has been shown to substantially pre-concentrate the dissolved gases of interest and produce a highly linear response of peak areas to dissolved gas concentration. The system retains the high accuracy, precision, and wide range of measurable concentrations of the headspace equilibration method while simultaneously increasing the sensitivity due to the pre-concentration step. The time and labor involved in the headspace equilibration method is eliminated and replaced with the

  6. Intramolecular Excimer Formation Dynamics of 1,3-Bis-(1-pyrenyl)propane within 1-Butyl-3-methylimidazolium Hexafluorophosphate and Its Polyethylene Glycol Mixtures.

    PubMed

    Yadav, Anita; Kurur, Narayanan D; Pandey, Siddharth

    2015-10-22

    Mixtures of ionic liquid with polyethylene glycol (PEG) have shown interesting features as solubilizing media. Intramolecular excimer formation dynamics of 1,3-bis-(1-pyrenyl)propane [1Py(3)1Py] is investigated within mixtures of a common and popular ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) with PEGs of average molecular weight (MW) 200 (PEG200), average MW 400 (PEG400), number-average MW Mn 570-630 (PEG600), and number-average MW Mn 950-1050 (PEG1000) over the complete composition range at a 10° interval in the temperature range 10-90 °C. Irrespective of the composition of the medium and the temperature, excited-state intensity decay of the excimer fluorescence best fits to a three-exponential decay function, suggesting the presence of one excited-state monomer and two kinetically distinguishable excimers where both excimers are populated simultaneously by the excited monomer with no interconversion between the two excimers. In neat PEGs for temperatures ≤ 50 °C, intensity decay data of monomer fluorescence best fits to a single-exponential decay function, which implies the dissociation of both excimers back to the monomer to be insignificant. As the temperature is increased, the fits become closer to a double-exponential decay function, implying dissociation of one of the excimers to become significant. In neat [bmim][PF6], while a double-exponential decay function is required to fit the monomer excited-state intensity decay data at lower temperatures, three exponentials are required to satisfactorily fit the data at higher temperatures, suggesting both excimers significantly dissociate back to the monomer at higher temperatures within the ionic liquid. Within long-chain PEG-containing ([bmim][PF6] + PEG) mixtures, PEG as opposed to [bmim][PF6] controls the excimer formation dynamics by supposedly wrapping around the excimer, thus hindering dissociation back to the monomer. The overall rate constant of the excimer formation

  7. Alterations in Bacillus subtilis transforming DNA induced by beta-propiolactone and 1,3-propane sultone, two mutagenic and carcinogenic alkylating agents.

    PubMed Central

    Kubinski, Z O; Kubinski, H

    1978-01-01

    Transforming DNA was exposed to either beta-propiolactone or 1,3-propane sultone and then used for transformation of competent bacteria to nutritional independence from tyrosine and tryptophan (linked markers) and leucine (an unlinked marker). The ability to transform was progressively lost by the DNA during incubation with either of these two chemicals. For all three markers the inactivation curve was biphasic, with a short period of rapid inactivation followed by one characterized by a much slower rate. The overall rate of inactivation was different for all three markers and presumably was related to the size of the marker. The decrease in the transforming activity was in part due to the slower rate of penetration of alkylated DNA through the cellular membrane and its inability to enter the recipient bacteria. This decrease in the rate of cellular uptake, even for DNA eventually destined to enter the cell, began almost immediately after its exposure to the chemical and ended up with an almost complete lack of recognition of the heavily alkylated DNA by the specific surface receptors of competent cells. Such DNA attached to sites on the surface of competent bacteria which were different from receptors specific for the untreated nucleic acid. This attachment was not followed by uptake of the altered DNA. Presence of albumin during the incubation with a carcinogen further increased the degree of inactivation, indicating that the artificial nucleoproteins produced under such conditions were less efficient in the transformation assay than was the naked DNA. Cotransfomration of close markers progressively decreased, beginning immediately after the start of incubation of DNA with the chemicals. Extensively alkylated DNA fractionated by sedimentation through sucrose density gradients showed a peculiar distribution of cotransforming activity for such markers; namely, molecules larger than the bulk of DNA ("megamolecules") showed less ability to transform the second marker

  8. The effects of a garlic oil chemical compound, propyl-propane thiosulfonate, on ruminal fermentation and fatty acid outflow in a dual-flow continuous culture system.

    PubMed

    Foskolos, A; Siurana, A; Rodriquez-Prado, M; Ferret, A; Bravo, D; Calsamiglia, S

    2015-08-01

    The ban on the use of antibiotics as growth promoters in animal feeds in the European Union has stimulated research on potential alternatives. Recently, propyl-propane thiosulfonate (PTSO), a stable organosulfurate compound of garlic, was purified. The objectives of the current study were to investigate the potential effects of PTSO on rumen microbial fermentation and to define effective doses. Two experiments were conducted using dual-flow continuous culture fermenters in 2 replicated periods. Each experimental period consisted of 5 d for adaptation of the ruminal fluid and 3 d for sampling. Temperature (39°C), pH (6.4), and liquid (0.10 h(-1)) and solid (0.05 h(-1)) dilution rates were maintained constant. Samples were taken 2 h after feeding and from the 24-h effluent. Samples were analyzed for volatile fatty acids (VFA) and nitrogen fractions, and degradation of nutrients was calculated. In addition, 24-h effluents from experiment 2 were analyzed for their fatty acid (FA) profile. Treatments in experiment 1 included a negative control without additive, a positive control with monensin (12mg/L), and PTSO at 30 and 300mg/L. The addition of 30mg/L did not affect any of the measurements tested. The addition of 300mg/L reduced microbial fermentation, as suggested by the decreased total VFA concentration, true degradation of organic matter and acid detergent fiber, and a tendency to decrease neutral detergent fiber degradation. Experiment 2 was conducted to test increasing doses of PTSO (0, 50, 100, and 150mg/L) on rumen microbial fermentation. At 2 h postfeeding, total VFA and molar proportion of propionate responded quadratically, with higher values in the intermediate doses. Molar proportions of butyrate increased and branched-chain VFA decreased linearly as the dose of PTSO increased. In the 24-h effluents, total VFA, acetate, and branched-chain VFA concentrations decreased linearly and those of propionate responded cubically with the highest value at 100mg

  9. Unit commitment literature synopsis

    SciTech Connect

    Sheble, G.B. . Dept. of Electrical Engineering); Fahd, G.N. )

    1994-02-01

    Several optimization techniques have been applied to the solution of the thermal unit commitment problem. They range from heuristics such as complete enumeration to the more sophisticated ones such as Augmented LaGrangian. The heuristics have even reappeared as expert systems. The problem to solve is the optimal scheduling of generating units over a short-term horizon, typically 168 hours. This paper is an overview of the literature in the unit commitment field over the past twenty five years.

  10. 31 CFR 535.321 - United States; continental United States.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false United States; continental United... General Definitions § 535.321 United States; continental United States. The term United States means the United States and all areas under the jurisdiction or authority thereof including the Trust Territory...

  11. 31 CFR 515.321 - United States; continental United States.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false United States; continental United... General Definitions § 515.321 United States; continental United States. The term United States means the United States and all areas under the jurisdiction or authority thereof, including the Trust Territory...

  12. 31 CFR 535.321 - United States; continental United States.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false United States; continental United... General Definitions § 535.321 United States; continental United States. The term United States means the United States and all areas under the jurisdiction or authority thereof including the Trust Territory...

  13. 31 CFR 515.321 - United States; continental United States.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false United States; continental United... General Definitions § 515.321 United States; continental United States. The term United States means the United States and all areas under the jurisdiction or authority thereof, including the Trust Territory...

  14. 31 CFR 500.321 - United States; continental United States.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false United States; continental United... General Definitions § 500.321 United States; continental United States. The term United States means the United States and all areas under the jurisdiction or authority thereof, including U.S. trust...

  15. Crystal structure of [μ2-3,3-dimethyl-4-(propan-2-yl­idene)thietane-2,2-dithiol­ato-κ4 S:S′:S:S′]bis[tricarbonyl­iron(I)](Fe—Fe)

    PubMed Central

    Zhao, Peihua; Bertke, Jeffery A.; Rauchfuss, Thomas B.

    2015-01-01

    The title complex, [Fe2(C8H12S3)(CO)6] or [{Fe(CO)3}2(μ-L)] [L = 3,3-dimethyl-4-(propan-2-yl­idene)thietane-2,2-bis­(thiol­ato)], consists of two Fe(CO)3 moieties double-bridged by a di­thiol­ate ligand. Each of the two FeI atoms has a distorted anti-prismatic coordination environment consisting of three carbonyl groups, two S atoms of the di­thiol­ate ligand and the neighboring FeI atom [Fe—Fe = 2.4921 (4) Å]. Weak C—H⋯O inter­molecular inter­actions result in the formation of dimers. This is the second crystal structure reported with the 3,3-dimethyl-4-(propan-2-yl­idene)thietane-2,2-bis­(thiol­ate) ligand and the first in which it bridges two metal atoms. PMID:26594495

  16. Camp Unit Design Guidelines.

    ERIC Educational Resources Information Center

    Hultsman, John T.; Cottrell, Richard L.

    This document provides a set of generalized guidelines for the design of units in large family campgrounds. Managers of recreational lands have two responsibilities and goals: to protect the natural resources, and to provide an enjoyable experience for users. With these goals in mind, unique variables to each unit such as shade, site aesthetics,…

  17. REACH. Air Conditioning Units.

    ERIC Educational Resources Information Center

    Garrison, Joe; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of air conditioning. The instructional units focus on air conditioning fundamentals, window air conditioning, system and installation, troubleshooting and…

  18. Quantities, Units, and Symbols.

    ERIC Educational Resources Information Center

    Royal Society, London (England).

    This booklet provides a reference to the quantities, units, and their symbols which are used in physical science. It is a revision of a 1969 report and takes account of the progress which has been made in obtaining international agreement on the definitions, names, and symbols for units and on the rules for the expression of relations involving…

  19. REACH. Refrigeration Units.

    ERIC Educational Resources Information Center

    Snow, Rufus; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of refrigeration. The instructional units focus on refrigeration fundamentals, tubing and pipe, refrigerants, troubleshooting, window air conditioning, and…

  20. Neighbors United for Health

    ERIC Educational Resources Information Center

    Westhoff, Wayne W.; Corvin, Jaime; Virella, Irmarie

    2009-01-01

    Modeled upon the ecclesiastic community group concept of Latin America to unite and strengthen the bond between the Church and neighborhoods, a community-based organization created Vecinos Unidos por la Salud (Neighbors United for Health) to bring health messages into urban Latino neighborhoods. The model is based on five tenants, and incorporates…

  1. Composite stabilizer unit

    DOEpatents

    Ebaugh, Larry R.; Sadler, Collin P.; Carter, Gary D.

    1992-01-01

    An improved fin stabilized projectile including multiple stabilizer fins upon a stabilizer unit situated at the aft end of the projectile is provided, the improvement wherein the stabilizer fins are joined into the stabillizer unit by an injection molded engineering grade polymer.

  2. Units of Measurement

    ERIC Educational Resources Information Center

    Fava, N. A.; Molter, U.

    2002-01-01

    It is shown that the symbols for the fundamental units of mechanics, namely length, time and mass, are capable of a meaningful interpretation as positive real parameters. Then a suitable parameter domain allows one to take the derived units into account. The formal manipulations usually carried out with symbols of physical quantities, involving…

  3. Conflict Resolution Unit.

    ERIC Educational Resources Information Center

    Busselle, Tish

    This 7-day unit, intended for use with secondary students, contains a statement of rationale and objectives, lesson plans, class assignments, teacher and student bibliographies, and suggestions for instructional materials on conflict resolution between individuals, groups, and nations. Among the six objectives listed for the unit are: 1) explain…

  4. Associative list processing unit

    DOEpatents

    Hemmert, Karl Scott; Underwood, Keith D.

    2013-01-29

    An associative list processing unit and method comprising employing a plurality of prioritized cell blocks and permitting inserts to occur in a single clock cycle if all of the cell blocks are not full. Also, an associative list processing unit and method comprising employing a plurality of prioritized cell blocks and using a tree of prioritized multiplexers descending from the plurality of cell blocks.

  5. The United Nations University

    ERIC Educational Resources Information Center

    Salam, Abdus

    1973-01-01

    Reports the progress already made toward the establishment of a postgraduate international university under United Nations auspices. The resolution adopted by the U.N. General Assembly provides a concise statement of the nature and aims of the United Nations University, which is likely to start operating in 1974. (JR)

  6. Commercial Carpentry: Instructional Units.

    ERIC Educational Resources Information Center

    Diehl, Donald W.; Penner, Wayman R.

    This manual contains instructional materials which measure student performance on commercial carpentry behavioral objectives; criterion-referenced evaluation instruments are also included. Each of the manual's eleven sections consists of one or more units of instruction. Each instructional unit includes behavioral objectives, suggested activities…

  7. Fan Unit Physics

    NASA Astrophysics Data System (ADS)

    Morse, Robert A.

    2005-03-01

    A lightweight motor-driven propeller mounted on a low-friction cart provides a nearly constant thrust over a moderate range of velocities and can be a powerful pedagogical tool for investigating force and motion. A variety of homemade and commercial versions are now available. This article revisits and extends the topic of fan unit use described earlier. It looks at the rationale for use of fan units, gives examples of teaching ideas, and describes construction of two homemade versions of fan units.

  8. Room temperature dehydrogenation of ethane, propane, linear alkanes C4-C8, and some cyclic alkanes by titanium-carbon multiple bonds.

    PubMed

    Crestani, Marco G; Hickey, Anne K; Gao, Xinfeng; Pinter, Balazs; Cavaliere, Vincent N; Ito, Jun-Ichi; Chen, Chun-Hsing; Mindiola, Daniel J

    2013-10-01

    The transient titanium neopentylidyne, [(PNP)Ti≡C(t)Bu] (A; PNP(-)≡N[2-P(i)Pr2-4-methylphenyl]2(-)), dehydrogenates ethane to ethylene at room temperature over 24 h, by sequential 1,2-CH bond addition and β-hydrogen abstraction to afford [(PNP)Ti(η(2)-H2C═CH2)(CH2(t)Bu)] (1). Intermediate A can also dehydrogenate propane to propene, albeit not cleanly, as well as linear and volatile alkanes C4-C6 to form isolable α-olefin complexes of the type, [(PNP)Ti(η(2)-H2C═CHR)(CH2(t)Bu)] (R = CH3 (2), CH2CH3 (3), (n)Pr (4), and (n)Bu (5)). Complexes 1-5 can be independently prepared from [(PNP)Ti═CH(t)Bu(OTf)] and the corresponding alkylating reagents, LiCH2CHR (R = H, CH3(unstable), CH2CH3, (n)Pr, and (n)Bu). Olefin complexes 1 and 3-5 have all been characterized by a diverse array of multinuclear NMR spectroscopic experiments including (1)H-(31)P HOESY, and in the case of the α-olefin adducts 2-5, formation of mixtures of two diastereomers (each with their corresponding pair of enantiomers) has been unequivocally established. The latter has been spectroscopically elucidated by NMR via C-H coupled and decoupled (1)H-(13)C multiplicity edited gHSQC, (1)H-(31)P HMBC, and dqfCOSY experiments. Heavier linear alkanes (C7 and C8) are also dehydrogenated by A to form [(PNP)Ti(η(2)-H2C═CH(n)Pentyl)(CH2(t)Bu)] (6) and [(PNP)Ti(η(2)-H2C═CH(n)Hexyl)(CH2(t)Bu)] (7), respectively, but these species are unstable but can exchange with ethylene (1 atm) to form 1 and the free α-olefin. Complex 1 exchanges with D2C═CD2 with concomitant release of H2C═CH2. In addition, deuterium incorporation is observed in the neopentyl ligand as a result of this process. Cyclohexane and methylcyclohexane can be also dehydrogenated by transient A, and in the case of cyclohexane, ethylene (1 atm) can trap the [(PNP)Ti(CH2(t)Bu)] fragment to form 1. Dehydrogenation of the alkane is not rate-determining since pentane and pentane-d12 can be dehydrogenated to 4 and 4-d12 with comparable

  9. Voltage verification unit

    DOEpatents

    Martin, Edward J.

    2008-01-15

    A voltage verification unit and method for determining the absence of potentially dangerous potentials within a power supply enclosure without Mode 2 work is disclosed. With this device and method, a qualified worker, following a relatively simple protocol that involves a function test (hot, cold, hot) of the voltage verification unit before Lock Out/Tag Out and, and once the Lock Out/Tag Out is completed, testing or "trying" by simply reading a display on the voltage verification unit can be accomplished without exposure of the operator to the interior of the voltage supply enclosure. According to a preferred embodiment, the voltage verification unit includes test leads to allow diagnostics with other meters, without the necessity of accessing potentially dangerous bus bars or the like.

  10. UnitedHealth Group

    Cancer.gov

    UnitedHealth Group provides accessible and affordable services, improved quality of care, coordinated health care efforts, and a supportive environment for shared decision making between patients and their physicians.

  11. Insects: An Interdisciplinary Unit

    ERIC Educational Resources Information Center

    Leger, Heather

    2007-01-01

    The author talks about an interdisciplinary unit on insects, and presents activities that can help students practice communication skills (interpersonal, interpretive, and presentational) and learn about insects with hands-on activities.

  12. Associative list processing unit

    DOEpatents

    Hemmert, Karl Scott; Underwood, Keith D

    2014-04-01

    An associative list processing unit and method comprising employing a plurality of prioritized cell blocks and permitting inserts to occur in a single clock cycle if all of the cell blocks are not full.

  13. Evaporative precooling unit

    SciTech Connect

    Rogers, A.R.

    1988-03-15

    In combination with a refrigeration unit, an evaporative heat exchange unit for precooling an air stream traveling toward and over the condensing coil of the refrigeration unit is described. The heat exchange unit includes: (a) a frame, (b) a porous heat transfer pad mounted in the frame; (c) nozzle means carried on the frame for directing a spray mist forwardly of the heat transfer pad, the spray mist emitted from the nozzle means initially traveling in a direction of travel such that the mist will not contact the porous heat transfer pad; (d) means mounted on the frame for causing the turbulent intermixing of the air stream with the spray mist prior to the air stream passing through the porous heat transfer pad; and (e) means for controlling the quantity of water emitted by the nozzle means such that substantially all of the spray mist is intermixed with the air stream prior to the air stream passing through the heat transfer pad.

  14. Your favourite units

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2010-02-01

    Units are among the most intriguing features of science. They are the "bridges" between the empirical world of physical phenomena and the non-empirical abstract world of mathematics, allowing us to traffic back and forth. Once upon a time, many bridges of different varieties existed independently of each other. Over the years, the International Bureau of Weights and Measures (BIPM) has consolidated them into a single network, the "International System of Units" (SI).

  15. Water sample filtration unit

    USGS Publications Warehouse

    Skougstad, M.W.; Scarbro, G.F., Jr.

    1968-01-01

    A readily portable, all plastic, pressure filtration unit is described which greatly facilitates rapid micropore membrane field filtration of up to several liters of water with a minimum risk of inorganic chemical alteration or contamination of the sample. The unit accommodates standard 10.2-cm. (4-inch) diameter filters. The storage and carrying case serves as a convenient filter stand for both field and laboratory use.

  16. Design, synthesis, and in vitro antifungal activity of 1-[(4-substituted-benzyl)methylamino]-2-(2,4-difluorophenyl)-3-(1H-1,2,4-triazol-1-yl)propan-2-ols.

    PubMed

    Guillon, Rémi; Pagniez, Fabrice; Giraud, Francis; Crépin, Damien; Picot, Carine; Le Borgne, Marc; Morio, Florent; Duflos, Muriel; Logé, Cédric; Le Pape, Patrice

    2011-05-01

    As part of our studies focused on the design of 1-[((hetero)aryl- and piperidinylmethyl)amino]-2-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-2-ols as antifungal agents, we report the development of new extended benzylamine derivatives substituted at the para position by sulfonamide or retrosulfonamide groups linked to alkyl or aryl chains. These molecules have broad-spectrum antifungal activities not only against Candida spp., including fluconazole-resistant strains, but also against a filamentous species (A. fumigatus). Concerning fluconazole resistance, selected compounds exhibit the capacity to overcome CDR and ERG11 gene upregulation and to maintain antifungal activity despite a recognized critical CYP51 substitution in C. albicans isolates. Synthesis, investigation of the mechanism of action by sterol analysis in a C. albicans strain, and structure-activity relationships (SARs) are reported. PMID:21370476

  17. 4-tert-Butyl-pyridinium chloride-4,4'-(propane-2,2-di-yl)bis-(2,6-di-methyl-phenol)-toluene (2/2/1).

    PubMed

    Nielson, Alastair J; Waters, Joyce M

    2014-04-01

    In the title solvated salt, C9H14N(+)·Cl(-)·C19H24O2·0.5C7H7, two mol-ecules of 4,4'-(propane-2,2-di-yl)bis-(2,6-di-methyl-phenol) are linked via O-H⋯Cl hydrogen bonds to two chloride ions, each of which is also engaged in N-H⋯Cl hydrogen bonding to a 4-tert-butyl-pyridinium cation, giving a cyclic hydrogen-bonded entity centred at 1/2, 1/2, 1/2. The toluene solvent mol-ecule resides in the lattice and resides on an inversion centre; the disorder of the methyl group requires it to have a site-occupancy factor of 0.5. No crystal packing channels are observed. PMID:24826127

  18. First high resolution analysis of the ν21 band of propane CH3CH2CH3 at 921.382 cm-1: Evidence of large amplitude tunneling effects

    NASA Astrophysics Data System (ADS)

    Perrin, A.; Kwabia-Tchana, F.; Flaud, J. M.; Manceron, L.; Demaison, J.; Vogt, N.; Groner, P.; Lafferty, W. J.

    2015-09-01

    A high resolution (0.0015 cm-1) IR spectrum of propane, C3H8, has been recorded with synchrotron radiation at the French light source facility at SOLEIL coupled to a Bruker IFS-125 Fourier transform spectrometer. A preliminary analysis of the ν21 fundamental band (B1, CH3 rock) at 921.382 cm-1 reveals that the rotational energy levels of 211 are split by interactions with the internal rotations of the methyl groups. The AA, EE and AE + EA components of this A-type band have their band centers at 921.3724(38), 921.3821(33) and 921.3913(44) cm-1, respectively. These torsional splittings most probably are due to anharmonic and/or Coriolis resonance couplings with nearby highly excited states of both internal rotations of the methyl groups. In addition, several vibrational-rotational resonances were observed that affect the torsional components in different ways.

  19. Battery thermal management unit

    NASA Astrophysics Data System (ADS)

    Sanders, Nicholas A.

    1989-03-01

    A battery warming device has been designed which uses waste heat from an operating internal combustion engine to warm a battery. A portion of the waste heat is stored in the sensible and latent heat of a phase change type material for use in maintaining the battery temperature after the engine is shut off. The basic design of the device consists of a Phase Change Material (PCM) reservoir and a simple heat exchanger connected to the engineer's cooling system. Two types of units were built, tested and field trialed. A strap-on type which was strapped to the side of an automotive battery and was intended for the automotive after-market and a tray type on which a battery or batteries sat. This unit was intended for the heavy duty truck market. It was determined that both types of units increased the average cranking power of the batteries they were applied to. Although there were several design problems with the units such as the need for an automatic thermostatically controlled bypass valve, the overall feeling is that there is a market opportunity for both the strap-on and tray type battery warming units.

  20. Intramolecular, Exciplex-Mediated, Proton-Coupled, Charge-Transfer Processes in N,N-Dimethyl-3-(1-pyrenyl)propan-1-ammonium Cations: Influence of Anion, Solvent Polarity, and Temperature.

    PubMed

    Safko, Trevor M; Faleiros, Marcelo M; Atvars, Teresa D Z; Weiss, Richard G

    2016-06-16

    An intramolecular exciplex-mediated, proton-coupled, charge-transfer (PCCT) process has been investigated for a series of N,N-dimethyl-3-(1-pyrenyl)propan-1-ammonium cations with different anions (PyS) in solvents of low to intermediate polarity over a wide temperature range. Solvent mediates both the equilibrium between conformations of the cation that place the pyrenyl and ammonium groups in proximity (conformation C) or far from each other (conformation O) and the ability of the ammonium group to transfer a proton adiabatically in the PyS excited singlet state. Thus, exciplex emission, concurrent with the PCCT process, was observed only in hydrogen-bond accepting solvents of relatively low polarity (tetrahydrofuran, ethyl acetate, and 1,4-dioxane) and not in dichloromethane. From the exciplex emission and other spectroscopic and thermodynamic data, the acidity of the ammonium group in conformation C of the excited singlet state of PyS (pKa*) has been estimated to be ca. -3.4 in tetrahydrofuran. The ratios between the intensities of emission from the exciplex and the locally excited state (IEx/ILE) appear to be much more dependent on the nature of the anion than are the rates of exciplex formation and decay, although the excited state data do not provide a quantitative measure of the anion effect on the C-O equilibrium. The activation energies associated with exciplex formation in THF are calculated to be 0.08 to 0.15 eV lower than for the neutral amine, N,N-dimethyl-3-(1-pyrenyl)propan-1-amine. Decay of the exciplexes formed from the deprotonation of PyS is hypothesized to occur through charge-recombination processes. To our knowledge, this is the first example in which photoacidity and intramolecular exciplex formation (i.e., a PCCT reaction) are coupled. PMID:27268751

  1. Universal thermoelectric unit

    SciTech Connect

    Fedorov, M.I.; Engalychev, A.E.; Zaitsev, V.K.; Kaliazin, A.E.; Solomkin, F.Y.

    1994-08-10

    The problems of energy supply of low power electric devices very often can be solved with thermoelectric generator even with low coefficient of performance, when other electric energy sources are not convenient. The problems of thermoelectric and construction choice for such generators are discussed in the paper. A series of domestic thermoelectric generators was designed by the authors. The work is based on designing an universal thermoelectric unit---a battery which consist of ten thermoelements. The coefficient of performance of the unit is about 4%. Any thermoelectric generator can be made as a combination of these units. Principal opportunity of production such thermoelectric generators on industrial scale was proved. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  2. Three conceptual units for behavior

    PubMed Central

    Moxley, Roy

    1987-01-01

    Three generic units for behavior are examined in terms of their background: an if-then unit for stimulus and response (S-R), a holistic unit for Kantor's behavior segment, and an AB-because-of-C unit for Skinner's three-term contingency. The units are distinguished in terms of their respective historical backgrounds, causal modes, advantages, and disadvantages. The ways in which these units may be compatible are discussed. PMID:22477957

  3. TRW utility demonstration unit

    SciTech Connect

    Not Available

    1990-01-01

    The TRW Advanced Entrained Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O R) Utility Corporation's Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/oil unit to fire 2.5% sulfur coal. The slagging combustor process will provide NO{sub x} and SO{sub x} emissions that meet NSPS and New York State Environmental Standards. During this report period, activity continued to address the total program funding shortfall. Ideas and responsibilities for further evaluation have been put forward to reduce the shortfall. In addition, an effort aimed at gaining additional program sponsorships, was initiated.

  4. Eensey, weensey units

    NASA Astrophysics Data System (ADS)

    Huffman, B. Todd; Doyle, Keith; Atkin, J. Keith

    2010-05-01

    You reported last month (April p3) on the efforts of Austin Sendek, a physics student from the University of California, Davis, to establish the "hella" as an official International System of Units (SI) prefix for 1027. You also asked for suggestions on unit prefixes that go down to 10-27 - but surely this is not difficult. I have long declared the "tini" (pronounced with an "ee" sound) to denote this quantity. This designation has the additional value of suggesting the subsequent two prefixes as well: the "insi" (pronounced "eensey") for 10-30, to be followed closely by the "winsi" (pronounced "weensey").

  5. 3-(4-Bromo­anilino)-3-(4-chloro­phen­yl)-1-phenyl­propan-1-one

    PubMed Central

    Pourayoubi, Mehrdad; Shobeiri, Zohreh; Bruno, Giuseppe; Amiri Rudbari, Hadi

    2011-01-01

    The asymmetric C atom in the title compound, C21H17BrClNO, is in a slightly distorted tetra­hedral environment and the NH unit adopts a gauche orientation with respect to the CO group. In the crystal, pairs of inter­molecular N—H⋯O hydrogen bonds form centrosymmetric dimers. PMID:22064785

  6. (1R,3S)-3-Hydroxy­meth­yl-N-isopropyl-2,2-dimethyl­cyclo­propane­carboxamide

    PubMed Central

    Zhong, Jiangchun; Zheng, Bing; Hou, Shicong

    2010-01-01

    The asymmetric unit of the title compound, C10H19NO2, prepared from (−)-1R-cis-caronaldehyde, contains two independent mol­ecules. In the crystal structure, inter­molecular O—H⋯O and O—H⋯N hydrogen bonds form an extensive three-dimensional hydrogen-bonding network. PMID:21580007

  7. SI Units to be Used in Place of Imperial Units and Old Metric Units

    ERIC Educational Resources Information Center

    Australian Science Teachers Journal, 1975

    1975-01-01

    A table lists the following quantities in imperial units, old metric units, and SI units: mass, force, energy, torque, power, pressure, temperature, thermal conductivity, frequency, dynamic viscosity, and kinematic viscosity. (MLH)

  8. Gemini facility calibration unit

    NASA Astrophysics Data System (ADS)

    Ramsay-Howat, Suzanne K.; Harris, John W.; Gostick, David C.; Laidlaw, Ken; Kidd, Norrie; Strachan, Mel; Wilson, Ken

    2000-08-01

    High-quality, efficient calibration instruments is a pre- requisite for the modern observatory. Each of the Gemini telescopes will be equipped with identical facility calibration units (GCALs) designed to provide wavelength and flat-field calibrations for the suite of instruments. The broad range of instrumentation planned for the telescopes heavily constrains the design of GCAL. Short calibration exposures are required over wavelengths from 0.3micrometers to 5micrometers , field sizes up to 7 arcminutes and spectral resolution from R-5 to 50,000. The output from GCAL must mimic the f-16 beam of the telescope and provide a uniform illumination of the focal plane. The calibration units are mounted on the Gemini Instrument Support Structure, two meters from the focal pane, necessitating the use of large optical components. We will discuss the opto-mechanical design of the Gemini calibration unit, with reference to those feature which allow these stringent requirements to be met. A novel reflector/diffuser unit replaces the integration sphere more normally found in calibration systems. The efficiency of this system is an order of magnitude greater than for an integration sphere. A system of two off-axis mirrors reproduces the telescope pupil and provides the 7 foot focal plane. The results of laboratory test of the uniformity and throughput of the GCAL will be presented.

  9. Wyoming Indians, Unit II.

    ERIC Educational Resources Information Center

    Robinson, Terry

    This unit on Wyoming Indians provides concepts, activities, Indian stories, and resources for elementary school students. Indian values and contributions are summarized. Concepts include the incorrectness of the term "Indian," the Indians' democratic society and sophisticated culture, historical events, and conflicts with whites over the land.…

  10. Understanding Haugh Units

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hand candling is the most common method of assessing interior egg quality. While this method is non-destructive, it is very subjective and takes some skill. The Haugh unit was developed in 1937 by R. Haugh and is revered as the “gold standard” for measuring interior egg quality. This objective me...

  11. Why Measure Haugh Units?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most people associate the determination of interior egg quality with candling eggs. While this is the most commonly utilized method, it is very subjective and takes some skill. The Haugh unit was developed in 1937 by R. Haugh and is revered as the “gold standard” for measuring interior egg quality...

  12. Unit III: International Conflict.

    ERIC Educational Resources Information Center

    Maxey, Phyllis

    1983-01-01

    This lesson helps students understand the global network involved in international events. Students have an opportunity to examine the impact of international law and the role of international organizations, national governments, and private individuals in the effort to secure the release of United States hostages in Iran. (AM)

  13. Outdoorsman, Unit I.

    ERIC Educational Resources Information Center

    Alberta Dept. of Agriculture, Edmonton.

    The first of three units of the 4-H Outdoorsman Program is designed to teach basic campcraft skills and to promote environmental awareness for 4-H members in British Columbia, Alberta, Saskatchewan, and Manitoba. The manual contains information and instruction on; special responsibilities in the outdoors (including conservation and clean up),…

  14. Police. An Experimental Unit.

    ERIC Educational Resources Information Center

    Otero, George G.

    This unit examines four topic areas related to police: rules and enforcement, police discretion, variety of police tasks, and police differences among societies as products of certain social pressures. High-school students learn about the police as an institution that responds to social and historical pressures. Students study police systems in…

  15. NOVA SCIENCE UNIT 14.

    ERIC Educational Resources Information Center

    1964

    THE MAJOR CONCEPT OF THE UNIT IS THAT SOMETHING MUST BE DONE TO PARTICLES IN ORDER TO STUDY THEM. ATOMS ARE COMPOSED OF TWO KINDS OF CHARGED PARTICLES--PROTONS AND ELECTRONS. ANY DIFFERENCE IN THEIR NUMBERS RESULTS IN A CHARGED BODY. IF ENOUGH CHARGED BODIES ARE PRODUCED, THEY WILL AFFECT CHARGE DETECTORS. CONCLUSIONS CAN BE DRAWN FROM THE…

  16. Sickle Cell Unit.

    ERIC Educational Resources Information Center

    Canipe, Stephen L.

    Included in this high school biology unit on sickle cell anemia are the following materials: a synopsis of the history of the discovery and the genetic qualities of the disease; electrophoresis diagrams comparing normal, homozygous and heterozygous conditions of the disease; and biochemical characteristics and population genetics of the disease. A…

  17. Insects. Thematic Unit.

    ERIC Educational Resources Information Center

    Gosnell, Kathee

    This book is a captivating whole-language thematic unit about the study of insects, relating it to our understanding of the past and our hopes for using our knowledge in the present to balance the ecosystem in the future. It contains a wide variety of lesson ideas and reproducible pages designed for use with intermediate students. At its core,…

  18. Whale Teaching Unit.

    ERIC Educational Resources Information Center

    Peninsula Humane Society, San Mateo, CA.

    Materials in this teaching unit are designed to foster an interest in whale preservation among intermediate grade and junior high school students. Several readings provide background information on various types of whales and the economic value of whales. Student activities include a true and false game, a crossword, and a mobile. A resource list…

  19. Theme Unit. Horse Sense.

    ERIC Educational Resources Information Center

    Flagg, Ann

    1999-01-01

    This integrated, cross-curricular theme unit has children become immersed in the equine world as they broaden their vocabulary, participate in hands-on science and math, explore art, become aware of the horse's important role in history, and learn about good grooming. A student reproducible, a poetry poster, and a poster on the coloring of horses…

  20. CEU [Continuing Education Unit].

    ERIC Educational Resources Information Center

    Adult Basic Education Region V Staff Development Bulletin, 1974

    1974-01-01

    The Continuing Education Unit (CEU) is a means of recording and accounting non-credit programs and activities which are professional in nature. Seven criteria have been established to assure the professionalism and quality of instruction. The criteria concern the need, objectives, and rationale of the activity; the course planning and…

  1. Outdoorsman, Unit II.

    ERIC Educational Resources Information Center

    Alberta Dept. of Agriculture, Edmonton.

    The second of three units of the 4-H Outdoorsman Program introduces more advanced camping and survival techniques for 4-H members in British Columbia, Alberta, Saskatchewan, and Manitoba. Backpacking, finding food in the wild, making a fire without matches, lashing techniques, axemanship, finding your way (with and without a compass), making a…

  2. Outdoorsman, Unit III.

    ERIC Educational Resources Information Center

    Alberta Dept. of Agriculture, Edmonton.

    The third and final unit of the 4-H Outdoorsman Program covers the most advanced and challenging campcraft skills for 4-H members in British Columbia, Alberta, Saskatchewan and Manitoba. Survival camping (including building shelters and finding food), in-depth map-reading and orienteering, game management, hiking themes and recordkeeping are all…

  3. Prefixes as Processing Units.

    ERIC Educational Resources Information Center

    Laudanna, Alessandro; And Others

    1994-01-01

    Two experiments assessed the performance of subjects on prefixed nonwords resulting from the incorrect combination of a prefix and a real word in Italian. The results support the view that prefixes may be represented as units of access or representation in the mental lexicon. (41 references) (MDM)

  4. Theme Unit: Veggie Power.

    ERIC Educational Resources Information Center

    Flagg, Ann

    2000-01-01

    Presents a selection of activities for a cross-curricular unit based on vegetables. Activities address vocabulary, language arts, social studies, and health education. A student reproducible presents a tossed salad game. Game cards can be incorporated into the other activities. A poster describes plant parts that are edible. A sidebar offers…

  5. Everglades Environmental Study Units.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Office of Environment Education.

    These environmental study units consist of four modules and a tape-slide presentation on the Everglades National Park. Although not required for completion of the modules, the slide-tape presentation provides a resource for orientation of teachers and parents to camping experience for school children in an environmental education program. The four…

  6. Social Studies Resource Units.

    ERIC Educational Resources Information Center

    Bemiss, Clair W.

    Based on the premise that fundamental solutions to environmental problems must include social solutions, these three resource units are designed to study the interrelation of man and nature as part of the social studies curriculum. A series of inquiry questions are posed with the intent of stimulating students to find solutions to our…

  7. Planter unit test stand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A planter test stand was developed to evaluate individual row-crop metering units in early 2013. This test stand provided the ability to quantify actual seed metering in terms of population, seed spacing, skips, and multiples over a range of meter RPMs and vacuum pressures. Preliminary data has been...

  8. Wyoming Government, Unit VII.

    ERIC Educational Resources Information Center

    Robinson, Terry

    This unit on Wyoming government presents concepts, activities, and stories for elementary school students. Concepts stress that the functions of government are determined according to the demands, needs, and traditions of the people; each part of government has a special function; as citizens, we should be loyal to the underlying concepts of our…

  9. Family Treatment Unit.

    ERIC Educational Resources Information Center

    Sawicki, Donna

    The document describes the Family Treatment Unit, a demonstration program to provide a variety of family treatment services to status offenders (11 to 17 years old) and their families. The goals of the program are: (1) to provide family services to families of status offenders; (2) to maintain status offenders in their natural homes by…

  10. Unitized paramagnetic salt thermometer

    SciTech Connect

    Abraham, B.M.

    1982-06-01

    The details of construction and assembly of a cerous magnesium nitrate (CMN) paramagnetic thermometer are presented. The thermometer is a small unit consisting of a primary, two secondaries, the salt pill, and thermal links. The thermometer calibration changes very little on successive coolings and is reliable to 35 mK. A typical calibration curve is also presented.

  11. Teletype test unit

    NASA Technical Reports Server (NTRS)

    Couch, R. H.; Beall, H. C.

    1979-01-01

    Device may be used to facilitate testing and fault isolation in teletype and modem systems that are used for communication by people who having hearing disabilities. Unit uses CMOS digital integrated circuitry which may be operated from relatively inexpensive battery of any voltage from 3 to 18 volts.

  12. Gloucester Marine Biology Unit.

    ERIC Educational Resources Information Center

    Shearer, Sonja; And Others

    Objectives and activities for a field trip study of the seacoast environment of Gloucester, Massachusetts, are outlined in this guide. One phase of a six-week tenth grade biology unit, the field trip features study of tidal pool and salt marsh ecosystems. Specific objectives of the trip relate to observation and identification of various forms of…

  13. Extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    Carson, M. A.; Rouen, M. N.; Lutz, C. C.; Mcbarron, J. W., II

    1975-01-01

    The Apollo extravehicular mobility unit (EMU) consisted of a highly mobile, anthropomorphic pressure vessel and a portable life support system. The EMU used for the first lunar landing is described along with the changes made in the EMU design during the program to incorporate the results of experience and to provide new capabilities. The performance of the EMU is discussed.

  14. Crystal structures of 2,2′-bipyridin-1-ium 1,1,3,3-tetracyano-2-ethoxyprop-2-en-1-ide and bis(2,2′-bipyridin-1-ium) 1,1,3,3-tetracyano-2-(dicyanomethylene)propane-1,3-diide

    PubMed Central

    Setifi, Zouaoui; Valkonen, Arto; Fernandes, Manuel A.; Nummelin, Sami; Boughzala, Habib; Setifi, Fatima; Glidewell, Christopher

    2015-01-01

    In 2,2′-bipyridin-1-ium 1,1,3,3-tetra­cyano-2-eth­oxy­prop-2-en-1-ide, C10H9N2 +·C9H5N4O−, (I), the ethyl group in the anion is disordered over two sets of atomic sites with occupancies 0.634 (9) and 0.366 (9), and the dihedral angle between the ring planes in the cation is 2.11 (7)°. The two independent C(CN)2 groups in the anion make dihedral angles of 10.60 (6) and 12.44 (4)° with the central propenide unit, and the bond distances in the anion provide evidence for extensive electronic delocalization. In bis­(2,2′-bipyridin-1-ium) 1,1,3,3-tetra­cyano-2-(di­cyano­methyl­ene)propane-1,3-diide [alternative name bis­(2,2′-bipyridin-1-ium) tris­(di­cyano­methyl­ene)methane­diide], 2C10H9N2 +·C10N6 2− (II), the dihedral angles between the ring planes in the two independent cations are 7.7 (2) and 10.92 (17)°. The anion exhibits approximate C 3 symmetry, consistent with extensive electronic delocalization, and the three independent C(CN)2 groups make dihedral angles of 23.8 (2), 27.0 (3) and 27.4 (2)° with the central plane. The ions in (I) are linked by an N—H⋯N hydrogen bond and the resulting ion pairs are linked by two independent C—H⋯N hydrogen bonds, forming a ribbon containing alternating R 4 4(18) and R 4 4(26) rings, where both ring types are centrosymmetric. The ions in (II) are linked by two independent N—H⋯N hydrogen bonds and the resulting ion triplets are linked by a C—H⋯N hydrogen bond, forming a C 2 1(7) chain containing anions and only one type of cation, with the other cation linked to the chain by a further C—H⋯N hydrogen bond. PMID:25995868

  15. Teaching about the United Nations.

    ERIC Educational Resources Information Center

    Osborne, Ken, Ed.

    1995-01-01

    This theme issue focuses on the 50th anniversary of the founding of the United Nations. Articles deal with aspects of the United Nations and include suggestions for teaching about the United Nations and using various teaching materials. Articles in this issue include: (1) "Celebrating United Nations Day" (Ken Osborne); (2) "Educating for World…

  16. Units that Make It Simple.

    ERIC Educational Resources Information Center

    Rayner-Canham, Geoffrey

    1985-01-01

    The International System of Units (SI) or the metric system contains related units which make science simpler for students and teachers. By emphasizing descriptive units, requiring unit use throughout calculations, and using negative exponents, teachers can help students have a better understanding of energy, pressure, and mass concepts. (DH)

  17. Thermal insulated glazing unit

    DOEpatents

    Selkowitz, Stephen E.; Arasteh, Dariush K.; Hartmann, John L.

    1991-01-01

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

  18. Thermal insulated glazing unit

    DOEpatents

    Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

    1988-04-05

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

  19. Contamination analysis unit

    DOEpatents

    Gregg, H.R.; Meltzer, M.P.

    1996-05-28

    The portable Contamination Analysis Unit (CAU) measures trace quantities of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surfaces by measuring residual hazardous surface contamination, such as tritium and trace organics. It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings. 1 fig.

  20. Contamination analysis unit

    DOEpatents

    Gregg, Hugh R.; Meltzer, Michael P.

    1996-01-01

    The portable Contamination Analysis Unit (CAU) measures trace quantifies of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surface by measuring residual hazardous surface contamination, such as tritium and trace organics It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings.