Sample records for propane oxidative dehydrogenation

  1. Combining CO 2 reduction with propane oxidative dehydrogenation over bimetallic catalysts

    DOE PAGES

    Gomez, Elaine; Kattel, Shyam; Yan, Binhang; ...

    2018-04-11

    In this paper, the inherent variability and insufficiencies in the co-production of propylene from steam crackers has raised concerns regarding the global propylene production gap and has directed industry to develop more on-purpose propylene technologies. The oxidative dehydrogenation of propane by CO 2 (CO 2-ODHP) can potentially fill this gap while consuming a greenhouse gas. Non-precious FeNi and precious NiPt catalysts supported on CeO 2 have been identified as promising catalysts for CO 2-ODHP and dry reforming, respectively, in flow reactor studies conducted at 823 K. In-situ X-ray absorption spectroscopy measurements revealed the oxidation states of metals under reaction conditionsmore » and density functional theory calculations were utilized to identify the most favorable reaction pathways over the two types of catalysts.« less

  2. Hexagonal boron nitride catalyst in a fixed-bed reactor for exothermic propane oxidation dehydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Jinshu; Lin, Jinhan; Xu, Mingliang

    Hexagonal boron nitride (h-BN) with high thermal conductivity is potentially an effective catalyst for highly exothermic propane oxidative dehydrogenation (ODH) reaction. Here, we report our experimental and theoretic studies of such a catalyst for propane ODH in a fixed-bed reactor. Based on the computational fluid dynamics calculation (CFD) results, the catalyst bed temperature increases by less than 1°C in the h-BN catalyst bed which is much smaller than that (8°C) in the VO x/γ-Al 2O 3 catalyst bed at a similar propane conversion (25%) using a micro-tubular reactor with a diameter of 6 mm. Even in an industrially relevant reactormore » with an inner diameter of 60 mm, a uniform temperature profile can still be maintained using the h-BN catalyst bed due to its excellent thermal conductivity as opposed to a temperature gradient of 47°C in the VO x/γ-Al 2O 3 catalyst bed. The results reported here provide useful information for potential application of h-BN catalyst in propane ODH.« less

  3. Hexagonal boron nitride catalyst in a fixed-bed reactor for exothermic propane oxidation dehydrogenation

    DOE PAGES

    Tian, Jinshu; Lin, Jinhan; Xu, Mingliang; ...

    2018-04-17

    Hexagonal boron nitride (h-BN) with high thermal conductivity is potentially an effective catalyst for highly exothermic propane oxidative dehydrogenation (ODH) reaction. Here, we report our experimental and theoretic studies of such a catalyst for propane ODH in a fixed-bed reactor. Based on the computational fluid dynamics calculation (CFD) results, the catalyst bed temperature increases by less than 1°C in the h-BN catalyst bed which is much smaller than that (8°C) in the VO x/γ-Al 2O 3 catalyst bed at a similar propane conversion (25%) using a micro-tubular reactor with a diameter of 6 mm. Even in an industrially relevant reactormore » with an inner diameter of 60 mm, a uniform temperature profile can still be maintained using the h-BN catalyst bed due to its excellent thermal conductivity as opposed to a temperature gradient of 47°C in the VO x/γ-Al 2O 3 catalyst bed. The results reported here provide useful information for potential application of h-BN catalyst in propane ODH.« less

  4. A practical grinding-assisted dry synthesis of nanocrystalline NiMoO{sub 4} polymorphs for oxidative dehydrogenation of propane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Miao, E-mail: chenmiao@sinochem.com; Zhejiang Chemical Industry Research Institute, Hangzhou 310023; Wu Jialing

    2011-12-15

    A practical two-stage reactive grinding-assisted pathway waste-free and cost-effective for the synthesis of NiMoO{sub 4} has been successfully developed. It was demonstrated that proper design in synthetic strategy for grinding plays a crucial role in determining the ultimate polymorph of NiMoO{sub 4}. Specifically, direct grinding (DG) of MoO{sub 3} and NiO rendered {alpha}-NiMoO{sub 4} after annealing, whereas sequential grinding (SG) of the two independently pre-ground oxides followed by annealing generated {beta}-NiMoO{sub 4} solid solution. Characterizations in terms of Raman and X-ray diffraction suggest the creation of {beta}-NiMoO{sub 4} precursor in the latter alternative is the key aspect for the formationmore » of {beta}-NiMoO{sub 4}. The DG-derived {alpha}-NiMoO{sub 4} tested by oxidative dehydrogenation of propane exhibited superior activity in contrast to its analog synthesized via conventional coprecipitation. It is suggested that the favorable chemical composition facilely obtained via grinding in contrast to that by coprecipitation was essential for achieving a more selective production of propylene. - Graphical Abstract: Grinding-assisted synthesis of NiMoO{sub 4} offers higher and more reproducible activities in contrast to coprecipitation for oxidative dehydrogenation of propane, and both {alpha}- and {beta}-NiMoO{sub 4} can be synthesized. Highlights: Black-Right-Pointing-Pointer NiMoO{sub 4} was prepared through grinding-assisted pathway. Black-Right-Pointing-Pointer Direct/sequential grinding rendered {alpha}-, {beta}-NiMoO{sub 4}, respectively. Black-Right-Pointing-Pointer Grinding-derived {alpha}-NiMoO{sub 4} showed high and reproducible activity for oxidative dehydrogenation of propane.« less

  5. Catalytic properties of the VO x /Ce0.46Zr0.54O2 oxide system in the oxidative dehydrogenation of propane

    NASA Astrophysics Data System (ADS)

    Turakulova, A. O.; Kharlanov, A. N.; Levanov, A. V.; Isaikina, O. Ya.; Lunin, V. V.

    2017-01-01

    Ce0.46Zr0.54O2 solid solution prepared using a cellulose template was employed as a carrier for vanadium catalysts of the oxidative dehydrogenation of propane. The properties of VO x /Ce0.46Zr0.54O2 catalyst (5 wt % vanadium) are compared with the properties of the neat support. The carrier and catalyst are studied by means of BET, SEM, DTA, XRD, and Raman spectroscopy. It is shown that the CeVO4 phase responsible for the ODH process is formed upon interaction between vanadate ions and cerium ions on the surface of the solid solution. The catalytic properties of the catalyst and the support are studied in the propane oxidation reaction at temperatures of 450 and 500°C with pulse feeding of the reagent. It is found that the complete oxidation of propane occurs on the support with formation of CO2 and H2O. Three products (propene, CO2, and H2O) form in the presence of the vanadium catalyst. It is suggested that there are two types of catalytic centers on the catalyst's surface. It is concluded that the centers responsible for the complete oxidation of propane are concentrated mainly on the carrier, while the centers responsible for propane ODH are on the CeVO4.

  6. Effects of the state of Co species in Co/Al2O3 catalysts on the catalytic performance of propane dehydrogenation

    NASA Astrophysics Data System (ADS)

    Li, Xiuyi; Wang, Pengzhao; Wang, Haoren; Li, Chunyi

    2018-05-01

    In this paper, the Co/Al2O3 catalyst was prepared by incipient wetness impregnation method, and different post treatment methods were used to promote its dehydrogenation properties. Interestingly, we found that Co/Al2O3 catalysts with different post treatment protocols exhibited totally different catalytic behaviors in propane dehydrogenation. Fresh catalyst showed an induction period and was highly active for pyrolysis and coking at 10-30 min of reaction. The pre-reduction led to complete pyrolysis and coking at the beginning of reaction. However, the re-oxidation treatment gave a high selectivity (∼93.0%) to propylene at the whole process. XRD, H2-TPR, XPS, TEM and hydrogen chemisorption investigations showed that the post treatment has a great impact on the state of cobalt species and the performance of propane dehydrogenation over Co/Al2O3 catalysts. Specifically, the poorly dispersed metal Co led to pyrolysis and coking, while highly dispersed metal Co were responsible for the dehydrogenation of propane. The large Co3O4 particles (DFresh = 33.68 nm) result in the large metal Co grains (DPre-reduced = 24.90 nm) after the reduction or reaction process. While during the re-oxidization process, the surface metal Co was re-oxidized in a mild environment and got re-dispersion (DRe-oxidized = 6.07 nm). And the surface cobalt oxides layer is more readily to be reduced to metal Co during the reaction thus leading to the shortened induction period.

  7. Catalytic propane dehydrogenation over In₂O₃–Ga₂O₃ mixed oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Shuai; Gil, Laura Briones; Subramanian, Nachal

    2015-08-26

    We have investigated the catalytic performance of novel In₂O₃–Ga₂O₃ mixed oxides synthesized by the alcoholic-coprecipitation method for propane dehydrogenation (PDH). Reactivity measurements reveal that the activities of In₂O₃–Ga₂O₃ catalysts are 1–3-fold (on an active metal basis) and 12–28-fold (on a surface area basis) higher than an In₂O₃–Al₂O₃ catalyst in terms of C₃H₈ conversion. The structure, composition, and surface properties of the In₂O₃–Ga₂O₃ catalysts are thoroughly characterized. NH₃-TPD shows that the binary oxide system generates more acid sites than the corresponding single-component catalysts. Raman spectroscopy suggests that catalysts that produce coke of a more graphitic nature suppress cracking reactions, leading tomore » higher C₃H₆ selectivity. Lower reaction temperature also leads to higher C₃H₆ selectivity by slowing down the rate of side reactions. XRD, XPS, and XANES measurements, strongly suggest that metallic indium and In₂O₃ clusters are formed on the catalyst surface during the reaction. The agglomeration of In₂O₃ domains and formation of a metallic indium phase are found to be irreversible under O₂ or H₂ treatment conditions used here, and may be responsible for loss of activity with increasing time on stream.« less

  8. Metal–organic framework supported cobalt catalysts for the oxidative dehydrogenation of propane at low temperature

    DOE PAGES

    Li, Zhanyong; Peters, Aaron W.; Bernales, Varinia; ...

    2016-11-30

    Here, Zr-based metal–organic frameworks (MOFs) have been shown to be excellent catalyst supports in heterogeneous catalysis due to their exceptional stability. Additionally, their crystalline nature affords the opportunity for molecular level characterization of both the support and the catalytically active site, facilitating mechanistic investigations of the catalytic process. We describe herein the installation of Co(II) ions to the Zr 6 nodes of the mesoporous MOF, NU-1000, via two distinct routes, namely, solvothermal deposition in a MOF (SIM) and atomic layer deposition in a MOF (AIM), denoted as Co-SIM+NU-1000 and Co-AIM+NU-1000, respectively. The location of the deposited Co species in themore » two materials is determined via difference envelope density (DED) analysis. Upon activation in a flow of O 2 at 230 °C, both materials catalyze the oxidative dehydrogenation (ODH) of propane to propene under mild conditions. Catalytic activity as well as propene selectivity of these two catalysts, however, is different under the same experimental conditions due to differences in the Co species generated in these two materials upon activation as observed by in situ X-ray absorption spectroscopy. A potential reaction mechanism for the propane ODH process catalyzed by Co-SIM+NU-1000 is proposed, yielding a low activation energy barrier which is in accord with the observed catalytic activity at low temperature.« less

  9. Nature of active tin species and promoting effect of nickle in silica supported tin oxide for dehydrogenation of propane

    NASA Astrophysics Data System (ADS)

    Wang, Haoren; Wang, Hui; Li, Xiuyi; Li, Chunyi

    2017-06-01

    Different with Wang et. al.'s study, we found that polymeric Si-O-Sn2+ rather than Ni-Sn alloy and metallic Sn are active species in silica-supported tin oxide catalysts for dehydrogenation of propane. The results showed that high surface area of mesoporous silica brought about high dispersion of tin oxide species, as a result, catalytic activity and stability were both improved. DRUV-vis, XPS, TPR and XRD studies of fresh and reduced catalysts indicated that the deactivation was related to the reduction of active species rather than the coke formation since active tin species cannot maintain its oxidation state at reaction conditions (high temperature and reducing atmosphere). The formed Ni3Sn2 alloy after reduction just functioned as promoter which accelerated the desorption of H2 and regeneration of active site. A synergy effect between active tin species and Ni3Sn2 alloy were observed.

  10. Fine-Tuning the Activity of Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhanyong; Peters, Aaron W.; Platero-Prats, Ana E.

    Few-atom cobalt-oxide clusters, when dispersed on a Zr-based metal–organic framework (MOF) NU-1000, have previously been shown to be active for the oxidative dehydrogenation (ODH) of propane at low temperatures (< 230 °C), affording a selective and stable propene production catalyst. In our current work, a series of promoter ions with varying Lewis acidity, including Ni(II), Zn(II), Al(III), Ti(IV) and Mo(VI), are anchored as metal-oxide,hydroxide clusters to NU-1000 via SIM (solvothermal deposition within MOFs–specifically the nodes) followed by incorporation of Co(II) ions via vapor-phase AIM (atomic layer deposition (ALD) in MOFs). This process yields a series of NU-1000-supported bimetallic-oxo,hydroxo,aqua clusters. Usingmore » difference envelope density (DED) analyses, the spatial locations of the promoter ions and catalytic cobalt ions are determined. For all samples the SIM-anchored promoter ions are sited between pairs of Zr 6 nodes along the MOF c-axis (channel-aligned axis) whereas the location of the AIM-anchored cobalt ions varies depending on the identity of promoter metal ion. With Ni(II)-, Al(III)-, or Ti(IV)-containing clusters as promoters, the oxy-cobalt species are sited atop the promoter sites; with Mo(VI) they grow exclusively on the MOF nodes sites (hexa-Zr(IV)- oxo,hydroxo,aqua units); with Zn(II) they grow on both the node and promoter. The NU-1000- supported bimetallic-oxide clusters are active for propane ODH after thermal activation under O 2 to open a cobalt coordination site and to oxidize Co(II) to Co(III), as evidenced by operando Xray absorption spectroscopy at the Co K-edge. The cobalt component is exclusively responsible for the observed catalysis. In accord with the decreasing Lewis acidity of the promoter ion, catalytic activity increases in the order: Mo(VI)« less

  11. Fine-Tuning the Activity of Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane

    DOE PAGES

    Li, Zhanyong; Peters, Aaron W.; Platero-Prats, Ana E.; ...

    2017-10-04

    Few-atom cobalt-oxide clusters, when dispersed on a Zr-based metal–organic framework (MOF) NU-1000, have previously been shown to be active for the oxidative dehydrogenation (ODH) of propane at low temperatures (< 230 °C), affording a selective and stable propene production catalyst. In our current work, a series of promoter ions with varying Lewis acidity, including Ni(II), Zn(II), Al(III), Ti(IV) and Mo(VI), are anchored as metal-oxide,hydroxide clusters to NU-1000 via SIM (solvothermal deposition within MOFs–specifically the nodes) followed by incorporation of Co(II) ions via vapor-phase AIM (atomic layer deposition (ALD) in MOFs). This process yields a series of NU-1000-supported bimetallic-oxo,hydroxo,aqua clusters. Usingmore » difference envelope density (DED) analyses, the spatial locations of the promoter ions and catalytic cobalt ions are determined. For all samples the SIM-anchored promoter ions are sited between pairs of Zr 6 nodes along the MOF c-axis (channel-aligned axis) whereas the location of the AIM-anchored cobalt ions varies depending on the identity of promoter metal ion. With Ni(II)-, Al(III)-, or Ti(IV)-containing clusters as promoters, the oxy-cobalt species are sited atop the promoter sites; with Mo(VI) they grow exclusively on the MOF nodes sites (hexa-Zr(IV)- oxo,hydroxo,aqua units); with Zn(II) they grow on both the node and promoter. The NU-1000- supported bimetallic-oxide clusters are active for propane ODH after thermal activation under O 2 to open a cobalt coordination site and to oxidize Co(II) to Co(III), as evidenced by operando Xray absorption spectroscopy at the Co K-edge. The cobalt component is exclusively responsible for the observed catalysis. In accord with the decreasing Lewis acidity of the promoter ion, catalytic activity increases in the order: Mo(VI)« less

  12. Pd-Ag Membrane Coupled to a Two-Zone Fluidized Bed Reactor (TZFBR) for Propane Dehydrogenation on a Pt-Sn/MgAl2O4 Catalyst

    PubMed Central

    Medrano, José-Antonio; Julián, Ignacio; Herguido, Javier; Menéndez, Miguel

    2013-01-01

    Several reactor configurations have been tested for catalytic propane dehydrogenation employing Pt-Sn/MgAl2O4 as a catalyst. Pd-Ag alloy membranes coupled to the multifunctional Two-Zone Fluidized Bed Reactor (TZFBR) provide an improvement in propane conversion by hydrogen removal from the reaction bed through the inorganic membrane in addition to in situ catalyst regeneration. Twofold process intensification is thereby achieved when compared to the use of traditional fluidized bed reactors (FBR), where coke formation and thermodynamic equilibrium represent important process limitations. Experiments were carried out at 500–575 °C and with catalyst mass to molar flow of fed propane ratios between 15.1 and 35.2 g min mmol−1, employing three different reactor configurations: FBR, TZFBR and TZFBR + Membrane (TZFBR + MB). The results in the FBR showed catalyst deactivation, which was faster at high temperatures. In contrast, by employing the TZFBR with the optimum regenerative agent flow (diluted oxygen), the process activity was sustained throughout the time on stream. The TZFBR + MB showed promising results in catalytic propane dehydrogenation, displacing the reaction towards higher propylene production and giving the best results among the different reactor configurations studied. Furthermore, the results obtained in this study were better than those reported on conventional reactors. PMID:24958620

  13. Platinum-Promoted Ga/Al2O3 as Highly Active, Selective, and Stable Catalyst for the Dehydrogenation of Propane**

    PubMed Central

    Sattler, Jesper J H B; Gonzalez-Jimenez, Ines D; Luo, Lin; Stears, Brien A; Malek, Andrzej; Barton, David G; Kilos, Beata A; Kaminsky, Mark P; Verhoeven, Tiny W G M; Koers, Eline J; Baldus, Marc; Weckhuysen, Bert M

    2014-01-01

    A novel catalyst material for the selective dehydrogenation of propane is presented. The catalyst consists of 1000 ppm Pt, 3 wt % Ga, and 0.25 wt % K supported on alumina. We observed a synergy between Ga and Pt, resulting in a highly active and stable catalyst. Additionally, we propose a bifunctional active phase, in which coordinately unsaturated Ga3+ species are the active species and where Pt functions as a promoter. PMID:24989975

  14. Microchannel apparatus and methods of conducting catalyzed oxidative dehydrogenation

    DOEpatents

    Tonkovich, Anna Lee [Dublin, OH; Yang, Bin [Columbus, OH; Perry, Steven T [Galloway, OH; Mazanec, Terry [Solon, OH; Arora, Ravi [New Albany, OH; Daly, Francis P [Delaware, OH; Long, Richard [New Albany, OH; Yuschak, Thomas D [Lewis Center, OH; Neagle, Paul W [Westerville, OH; Glass, Amanda [Galloway, OH

    2011-08-16

    Methods of oxidative dehydrogenation are described. Surprisingly, Pd and Au alloys of Pt have been discovered to be superior for oxidative dehydrogenation in microchannels. Methods of forming these catalysts via an electroless plating methodology are also described. An apparatus design that minimizes heat transfer to the apparatus' exterior is also described.

  15. Reaction of propane with the ordered NiO/Rh(1 1 1) studied by XPS and LEISS

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Wang, Wenyi; Chen, Mingshu; Wan, Huilin

    2018-05-01

    Nickel oxide has been reported to be an efficient catalyst for oxidative dehydrogenation of propane (ODP) to propene at low temperature. In this paper, ultrathin NiO films with various thickness were prepared on a Rh(1 1 1) surface and characterized by X-ray photoemission spectroscopy (XPS) and Low-energy ion scattering spectroscopy (LEISS). Results show that NiO forms a two-dimensional (2D) network with a O-Ni-O structure at submonolayer coverages, and a bulk-like NiO at multilayer coverages. The submonolayer NiO films are less stable than the thick ones when annealed in ultra-high vacuum (UHV) due to the strong interaction with the Rh substrate. Propane was dosed onto the model surfaces at different temperatures to investigate the activation of propane and reactivity of NiO films with propane. The reactions of propane with the thin and thick NiO films are significantly different. Propane activates on the O defect sites for the thick NiO films, whereas activation occurs on the interface of nickel oxide and substrate for the thin films with a higher activity.

  16. Vanadium Oxide Deposited on Strontium Titanate and Related Supports: Structural, Redox, and Catalytic Properties in Oxidative Dehydrogenation Reactions

    NASA Astrophysics Data System (ADS)

    McCarthy, James A.

    The field of heterogeneous catalysis has advanced largely through the understanding of structure-function relationships, and novel support materials constitute one possible strategy to further this knowledge through the determination of support effects. To this end, the synthesis, characterization, and reactivity of a new catalytic system are reported herein. Vanadium oxide supported on SrTiO3 (VOx/STO) was prepared by atomic layer deposition, and its activity was investigated in various oxidative dehydrogenation (ODH) reactions. In cyclohexane and propane ODH experiments at 500 °C, selectivity toward COx was found to decrease with greater VOx density and minimal STO surface exposure. This indicates that the support itself is an effective total oxidation catalyst, which complicates VOx performance measurements. In the propane studies, VOx/STO achieved lower turnover frequency (TOF) and propylene yield compared to conventional supported VO x materials. The lower activity of VOx/STO catalysts was correlated with their VOx species being less easily reducible, as determined by temperature-programmed reduction (TPR). The suppressed reducibility is attributed to the stronger surface basicity of STO, which is induced by the presence of relatively electropositive Sr2+ within the perovskite lattice. Studies of cyclohexene ODH at 300 °C were conducted to minimize intrinsic conversion from the supports. The VOx/STO catalysts were mostly found to be less active than VOx/TiO2 and VOx/Al 2O3, in accordance with reducibility measurements. However, one sample containing 0.75% vanadium on STO was particularly active, achieving a TOF greater than 0.01 s-1, while maintaining almost 90% dehydrogenation selectivity. In general, VOx/STO materials were found to be more selective for 1,3-cyclohexadiene compared to traditional catalysts. Other titanates of the form A2+TiO3 were also investigated as supports, and the reducibility of VOx was found to trend with the electronegativity of the

  17. Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons

    DOEpatents

    Kung, H.H.; Chaar, M.A.

    1988-10-11

    Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M[sub 3](VO[sub 4])[sub 2] and MV[sub 2]O[sub 6], M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.

  18. Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons

    DOEpatents

    Kung, Harold H.; Chaar, Mohamed A.

    1988-01-01

    Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M.sub.3 (VO.sub.4).sub.2 and MV.sub.2 O.sub.6, M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.

  19. Selective bio-oxidation of propane to acetone using methane-oxidizing Methylomonas sp. DH-1.

    PubMed

    Hur, Dong Hoon; Nguyen, Thu Thi; Kim, Donghyuk; Lee, Eun Yeol

    2017-07-01

    Propane is the major component of liquefied petroleum gas (LPG). Nowadays, the use of LPG is decreasing, and thus utilization of propane as a chemical feedstock is in need of development. An efficient biological conversion of propane to acetone using a methanotrophic whole cell as the biocatalyst was proposed and investigated. A bio-oxidation pathway of propane to acetone in Methylomonas sp. DH-1 was analyzed by gene expression profiling via RNA sequencing. Propane was oxidized to 2-propanol by particulate methane monooxygenase and subsequently to acetone by methanol dehydrogenases. Methylomonas sp. DH-1 was deficient in acetone-converting enzymes and thus accumulated acetone in the absence of any enzyme inhibition. The maximum accumulation, average productivity and specific productivity of acetone were 16.62 mM, 0.678 mM/h and 0.141 mmol/g cell/h, respectively, under the optimized conditions. Our study demonstrates a novel method for the bioconversion of propane to acetone using methanotrophs under mild reaction condition.

  20. Reversible catalytic dehydrogenation of alcohols for energy storage

    PubMed Central

    Bonitatibus, Peter J.; Chakraborty, Sumit; Doherty, Mark D.; Siclovan, Oltea; Jones, William D.; Soloveichik, Grigorii L.

    2015-01-01

    Reversibility of a dehydrogenation/hydrogenation catalytic reaction has been an elusive target for homogeneous catalysis. In this report, reversible acceptorless dehydrogenation of secondary alcohols and diols on iron pincer complexes and reversible oxidative dehydrogenation of primary alcohols/reduction of aldehydes with separate transfer of protons and electrons on iridium complexes are shown. This reactivity suggests a strategy for the development of reversible fuel cell electrocatalysts for partial oxidation (dehydrogenation) of hydroxyl-containing fuels. PMID:25588879

  1. Reversible catalytic dehydrogenation of alcohols for energy storage

    DOE PAGES

    Bonitatibus, Jr., Peter J.; Chakraborty, Sumit; Doherty, Mark D.; ...

    2015-01-14

    Reversibility of a dehydrogenation/hydrogenation catalytic reaction has been an elusive target for homogeneous catalysis. In this paper, reversible acceptorless dehydrogenation of secondary alcohols and diols on iron pincer complexes and reversible oxidative dehydrogenation of primary alcohols/reduction of aldehydes with separate transfer of protons and electrons on iridium complexes are shown. Finally, this reactivity suggests a strategy for the development of reversible fuel cell electrocatalysts for partial oxidation (dehydrogenation) of hydroxyl-containing fuels.

  2. High rates of anaerobic oxidation of methane, ethane and propane coupled to thiosulphate reduction.

    PubMed

    Suarez-Zuluaga, Diego A; Weijma, Jan; Timmers, Peer H A; Buisman, Cees J N

    2015-03-01

    Anaerobic methane oxidation coupled to sulphate reduction and the use of ethane and propane as electron donors by sulphate-reducing bacteria represent new opportunities for the treatment of streams contaminated with sulphur oxyanions. However, growth of microbial sulphate-reducing populations with methane, propane or butane is extremely slow, which hampers research and development of bioprocesses based on these conversions. Thermodynamic calculations indicate that the growth rate with possible alternative terminal electron acceptors such as thiosulphate and elemental sulphur may be higher, which would facilitate future research. Here, we investigate the use of these electron acceptors for oxidation of methane, ethane and propane, with marine sediment as inoculum. Mixed marine sediments originating from Aarhus Bay (Denmark) and Eckernförde Bay (Germany) were cultivated anaerobically at a pH between 7.2 and 7.8 and a temperature of 15 °C in the presence of methane, ethane and propane and various sulphur electron acceptors. The sulphide production rates in the conditions with methane, ethane and propane with sulphate were respectively 2.3, 2.2 and 1.8 μmol S L(-1) day(-1). For sulphur, no reduction was demonstrated. For thiosulphate, the sulphide production rates were up to 50 times higher compared to those of sulphate, with 86.2, 90.7 and 108.1 μmol S L(-1) day(-1) for methane, ethane and propane respectively. This sulphide production was partly due to disproportionation, 50 % for ethane but only 7 and 14 % for methane and propane respectively. The oxidation of the alkanes in the presence of thiosulphate was confirmed by carbon dioxide production. This is, to our knowledge, the first report of thiosulphate use as electron acceptor with ethane and propane as electron donors. Additionally, these results indicate that thiosulphate is a promising electron acceptor to increase start-up rates for sulphate-reducing bioprocesses coupled to short-chain alkane oxidation.

  3. Experimental and analytical study of nitric oxide formation during combustion of propane in a jet-stirred combustor

    NASA Technical Reports Server (NTRS)

    Wakelyn, N. T.; Jachimowski, C. J.; Wilson, C. H.

    1978-01-01

    A jet-stirred combustor, constructed of castable zirconia and with an Inconel injector, was used to study nitric oxide formation in propane-air combustion with residence times in the range from 3.2 to 3.3 msec and equivalence ratios varying from 0.7 to 1.4. Measurements were made of combustor operating temperature and of nitric oxide concentration. Maximum nitric oxide concentrations of the order of 55 ppm were found in the range of equivalence ratio from 1.0 to 1.1. A finite-rate chemical kinetic mechanism for propane combustion and nitric oxide formation was assembled by coupling an existing propane oxidation mechanism with the Zeldovich reactions and reactions of molecular nitrogen with hydrocarbon fragments. Analytical studies using this mechanism in a computer simulation of the experimental conditions revealed that the hydrocarbon-fragment-nitrogen reactions play a significant role in nitric oxide formation during fuel-rich combustion.

  4. Moessbauer spectra of ferrite catalysts used in oxidative dehydrogenation

    NASA Technical Reports Server (NTRS)

    Cares, W. R.; Hightower, J. W.

    1971-01-01

    Room temperature Mossbauer spectroscopy was used to examine bulk changes which occur in low surface area CoFe2O4 and CuFe2O4 catalysts as a result of contact with various mixtures of trans-2-butene and O2 during oxidative dehydrogenation reactions at about 420 C. So long as there was at least some O2 in the gas phase, the CoFe2O4 spectrum was essentially unchanged. However, the spectrum changed from a random spinel in the oxidized state to an inverse spinel as it was reduced by oxide ion removal. The steady state catalyst lies very near the fully oxidized state. More dramatic solid state changes occurred as the CuFe2O4 underwent reduction. Under severe reduction, the ferrite was transformed into Cu and Fe3O4, but it could be reversibly recovered by oxidation. An intense doublet located near zero velocity persisted in all spectra of CuFe2O4 regardless of the state of reduction.

  5. Silane-propane ignitor/burner

    DOEpatents

    Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.

    1983-05-26

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  6. Silane-propane ignitor/burner

    DOEpatents

    Hill, Richard W.; Skinner, Dewey F.; Thorsness, Charles B.

    1985-01-01

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  7. Reforming and oxidative dehydrogenation of ethane with CO 2 as a soft oxidant over bimetallic catalysts

    DOE PAGES

    Myint, MyatNoeZin; Yan, Binhang; Wan, Jie; ...

    2016-02-26

    An efficient mitigation of abundantly available CO 2 is critical for sustainable environmental impact as well as for novel industrial applications. Using ethane, CO 2 can be catalytically converted into a useful feedstock (synthesis gas) and a value-added monomer (ethylene) via the dry reforming pathway through the C–C bond scission and the oxidative dehydrogenation pathway through the C–H bond scission, respectively. Results from the current flow-reactor study show that the precious metal bimetallic CoPt/CeO 2 catalyst undergoes the reforming reaction to produce syngas with enhanced activity and stability compared to the parent monometallic catalysts. In this paper, in order tomore » replace Pt, the activities of non-precious CoMo/CeO 2 and NiMo/CeO 2 are investigated and the results indicate that NiMo/CeO 2 is nearly as active as CoPt/CeO 2 for the reforming pathway. Furthermore, FeNi/CeO 2 is identified as a promising catalyst for the oxidative dehydrogenation to produce ethylene. Finally, density functional theory (DFT) calculations are performed to further understand the different pathways of the CoPt/CeO 2 and FeNi/CeO 2 catalysts.« less

  8. Reforming and oxidative dehydrogenation of ethane with CO 2 as a soft oxidant over bimetallic catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myint, MyatNoeZin; Yan, Binhang; Wan, Jie

    An efficient mitigation of abundantly available CO 2 is critical for sustainable environmental impact as well as for novel industrial applications. Using ethane, CO 2 can be catalytically converted into a useful feedstock (synthesis gas) and a value-added monomer (ethylene) via the dry reforming pathway through the C–C bond scission and the oxidative dehydrogenation pathway through the C–H bond scission, respectively. Results from the current flow-reactor study show that the precious metal bimetallic CoPt/CeO 2 catalyst undergoes the reforming reaction to produce syngas with enhanced activity and stability compared to the parent monometallic catalysts. In this paper, in order tomore » replace Pt, the activities of non-precious CoMo/CeO 2 and NiMo/CeO 2 are investigated and the results indicate that NiMo/CeO 2 is nearly as active as CoPt/CeO 2 for the reforming pathway. Furthermore, FeNi/CeO 2 is identified as a promising catalyst for the oxidative dehydrogenation to produce ethylene. Finally, density functional theory (DFT) calculations are performed to further understand the different pathways of the CoPt/CeO 2 and FeNi/CeO 2 catalysts.« less

  9. Hydrogen transport membranes for dehydrogenation reactions

    DOEpatents

    Balachandran,; Uthamalingam, [Hinsdale, IL

    2008-02-12

    A method of converting C.sub.2 and/or higher alkanes to olefins by contacting a feedstock containing C.sub.2 and/or higher alkanes with a first surface of a metal composite membrane of a sintered homogenous mixture of an Al oxide or stabilized or partially stabilized Zr oxide ceramic powder and a metal powder of one or more of Pd, Nb, V, Zr, Ta and/or alloys or mixtures thereof. The alkanes dehydrogenate to olefins by contact with the first surface with substantially only atomic hydrogen from the dehydrogenation of the alkanes passing through the metal composite membrane. Apparatus for effecting the conversion and separation is also disclosed.

  10. Porous AgPt@Pt Nanooctahedra as an Efficient Catalyst toward Formic Acid Oxidation with Predominant Dehydrogenation Pathway.

    PubMed

    Jiang, Xian; Yan, Xiaoxiao; Ren, Wangyu; Jia, Yufeng; Chen, Jianian; Sun, Dongmei; Xu, Lin; Tang, Yawen

    2016-11-16

    For direct formic acid fuel cells (DFAFCs), the dehydrogenation pathway is a desired reaction pathway, to boost the overall cell efficiency. Elaborate composition tuning and nanostructure engineering provide two promising strategies to design efficient electrocatalysts for DFAFCs. Herein, we present a facile synthesis of porous AgPt bimetallic nanooctahedra with enriched Pt surface (denoted as AgPt@Pt nanooctahedra) by a selective etching strategy. The smart integration of geometric and electronic effect confers a substantial enhancement of desired dehydrogenation pathway as well as electro-oxidation activity for the formic acid oxidation reaction (FAOR). We anticipate that the obtained nanocatalyst may hold great promises in fuel cell devices, and furthermore, the facile synthetic strategy demonstrated here can be extendable for the fabrication of other multicomponent nanoalloys with desirable morphologies and enhanced electrocatalytic performances.

  11. Process economics and safety considerations for the oxidative dehydrogenation of ethane using the M1 catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baroi, Chinmoy; Gaffney, Anne M.; Fushimi, Rebecca

    Olefins or unsaturated hydrocarbons play a vital role as feedstock for many industrially significant processes. Ethylene is the simplest olefin and a key raw material for consumer products. Oxidative Dehydrogenation (ODH) is one of the most promising new routes for ethylene production that can offer a significant advantage in energy efficiency over the conventional steam pyrolysis process. This study is focused on the ODH chemistry using the mixed metal oxide MoVTeNbOx catalysts, generally referred to as M1 for the key phase known to be active for dehydrogenation. Using performance results from the patent literature a series of process simulations weremore » conducted to evaluate the effect of feed composition on operating costs, profitability and process safety. The key results of this study indicate that the ODH reaction can be made safer and more profitable without use of an inert diluent and furthermore by replacing O2 with CO2 as an oxidant. Modifications of the M1 catalyst composition in order to adopt these changes are discussed.« less

  12. Water co-catalyzed selective dehydrogenation of methanol to formaldehyde and hydrogen

    NASA Astrophysics Data System (ADS)

    Shan, Junjun; Lucci, Felicia R.; Liu, Jilei; El-Soda, Mostafa; Marcinkowski, Matthew D.; Allard, Lawrence F.; Sykes, E. Charles H.; Flytzani-Stephanopoulos, Maria

    2016-08-01

    The non-oxidative dehydrogenation of methanol to formaldehyde is considered a promising method to produce formaldehyde and clean hydrogen gas. Although Cu-based catalysts have an excellent catalytic activity in the oxidative dehydrogenation of methanol, metallic Cu is commonly believed to be unreactive for the dehydrogenation of methanol in the absence of oxygen adatoms or oxidized copper. Herein we show that metallic Cu can catalyze the dehydrogenation of methanol in the absence of oxygen adatoms by using water as a co-catalyst both under realistic reaction conditions using silica-supported PtCu nanoparticles in a flow reactor system at temperatures below 250 °C, and in ultra-high vacuum using model PtCu(111) catalysts. Adding small amounts of isolated Pt atoms into the Cu surface to form PtCu single atom alloys (SAAs) greatly enhances the dehydrogenation activity of Cu. Under the same reaction conditions, the yields of formaldehyde from PtCu SAA nanoparticles are more than one order of magnitude higher than on the Cu nanoparticles, indicating a significant promotional effect of individual, isolated Pt atoms. Moreover, this study also shows the unexpected role of water in the activation of methanol. Water, a catalyst for methanol dehydrogenation at low temperatures, becomes a reactant in the methanol steam reforming reactions only at higher temperatures over the same metal catalyst.

  13. Understanding oxidative dehydrogenation of ethane on Co 3O 4 nanorods from density functional theory

    DOE PAGES

    Fung, Victor; Tao, Franklin; Jiang, De-en

    2016-05-20

    Co 3O 4 is a metal oxide catalyst with weak, tunable M–O bonds promising for catalysis. Here, density functional theory (DFT) is used to study the oxidative dehydrogenation (ODH) of ethane on Co 3O 4 nanorods based on the preferred surface orientation (111) from the experimental electron-microscopy image. The pathway and energetics of the full catalytic cycle including the first and second C–H bond cleavages, hydroxyl clustering, water formation, and oxygen-site regeneration are determined. We find that both lattice O and Co may participate as active sites in the dehydrogenation, with the lattice-O pathway being favored. Here, we identify themore » best ethane ODH pathway based on the overall energy profiles of several routes. We identify that water formation from the lattice oxygen has the highest energy barrier and is likely a rate-determining step. This work of the complete catalytic cycle of ethane ODH will allow further study into tuning the surface chemistry of Co 3O 4 nanorods for high selectivity of alkane ODH reactions.« less

  14. Organometallic model complexes elucidate the active gallium species in alkane dehydrogenation catalysts based on ligand effects in Ga K-edge XANES

    DOE PAGES

    Getsoian, Andrew "Bean"; Das, Ujjal; Camacho-Bunquin, Jeffrey; ...

    2016-06-13

    Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order tomore » better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. Furthermore, these findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.« less

  15. Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing.

    PubMed

    Redmond, Molly C; Valentine, David L; Sessions, Alex L

    2010-10-01

    Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with (13)C-labeled methane, ethane, or propane, we confirmed the incorporation of (13)C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in (13)C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, (13)C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, (13)C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the (13)C-labeled DNA may encode an ethane monooxygenase. Third, (13)C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes.

  16. New Insights into Low-Temperature Oxidation of Propane from Synchrotron Photoionization Mass Spectrometry and Multiscale Informatics Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welz, Oliver; Burke, Michael P.; Antonov, Ivan O.

    2015-07-16

    We investigated the low-temperature oxidation of propane at 4 Torr and temperatures of 530, 600, and 670 K. The oxidation is initiated by pulsed laser photolysis of oxalyl chloride, (COCl)2, at 248 nm, which rapidly generates a ~1:1 mixture of 1-propyl (n-propyl) and 2-propyl (i-propyl) radicals via the fast Cl + propane reaction. Reactants, intermediates and products are probed with isomeric selectivity by time-resolved multiplexed photoionization mass spectrometry (MPIMS) with tunable synchrotron vacuum UV radiation as the ionization source. At all three temperatures, the major stable product species is propene, formed in the C3H7 + O2 reactions by direct HO2-eliminationmore » from both n- and i-propyl peroxy radicals. The experimentally derived propene yields relative to the initial concentration of Cl atoms are (20 ± 4)% at 530 K, (55 ± 11)% at 600 K, and (86 ± 17)% at 670 K at a reaction time of 20 ms. The lower yield of propene at low temperature reflects substantial formation of propyl peroxy radicals, which do not completely decompose on the experimental time scale. In addition, we detect the C3H6O isomers methyloxirane, oxetane, acetone and propanal as minor products. Our measured yields of oxetane and methyloxirane, which are co-products of OH radicals, suggest a revision of the OH formation pathways in models of low-temperature propane oxidation. The experimental results are modeled and interpreted using a multi-scale informatics approach that is presented in detail in a separate publication (Burke, M. P.; Goldsmith, C. F.; Klippenstein, S. J.; Welz, O.; Huang H.; Antonov I. O.; Savee J. D.; Osborn D. L.; Zádor, J.; Taatjes, C. A.; Sheps, L., Multi-Scale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Rections, submitted, 2015). The model predicts the time profiles and yields of the experimentally observed primary products well, and shows satisfactory agreement for products formed mostly via secondary

  17. Green synthesis of Ni-Nb oxide catalysts for low-temperature oxidative dehydrogenation of ethane.

    PubMed

    Zhu, Haibo; Rosenfeld, Devon C; Anjum, Dalaver H; Caps, Valérie; Basset, Jean-Marie

    2015-04-13

    The straightforward solid-state grinding of a mixture of Ni nitrate and Nb oxalate crystals led to, after mild calcination (T<400 °C), nanostructured Ni-Nb oxide composites. These new materials efficiently catalyzed the oxidative dehydrogenation (ODH) of ethane to ethylene at a relatively low temperature (T<300 °C). These catalysts appear to be much more stable than the corresponding composites prepared by other chemical methods; more than 90 % of their original intrinsic activity was retained after 50 h with time on-stream. Furthermore, the stability was much less affected by the Nb content than in composites prepared by classical "wet" syntheses. These materials, obtained in a solvent-free way, are thus promising green and sustainable alternatives to the current Ni-Nb candidates for the low-temperature ODH of ethane. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Dehydrogenation of indanol by rabbit liver 3-hydroxyhexobarbital dehydrogenase.

    PubMed

    Takenoshita, R; Toki, S

    1977-06-01

    1. Among the several enzyme activities in rabbit liver cytosol able to dehydrogenate 1-indanol, only the main activity was not separable from 3-hydroxyhexobarbital dehydrogenase during purification including polyacrylamide gel disc electrophoresis. 2. Results of mixed substrate method indicated that the same enzyme catalyses the dehydrogenation of 1-indanol and 3-hydroxyhexobarbital. The ratio between the two dehydrogenation activities was almost constant as the enzyme underwent thermal inactivation. The Ki values of p-chloromercuribenzoate, the Km values for NAD+, and the Km values for NADP+ were very similar for the two dehydrogenations. These results lead to the conclusion that the same enzyme catalyses the dehydrogenation of 3-hydroxyhexobarbital and 1-indanol. 3. 1-Tetralol, 1-acenaphthenol, 9-fluorenol, thiochroman-4-ol and 4-chromanol also served as substrate of the enzyme, but 2-indanol, 2-tetralol, and trans- and cis-indan-1,2-diol were not oxidized. 4. Reversibility of the reaction was also confirmed using 1-indanone as substrate.

  19. New insights into low-temperature oxidation of propane from synchrotron photoionization mass spectrometry and multi-scale informatics modeling

    DOE PAGES

    Welz, Oliver; Burke, Michael P.; Antonov, Ivan O.; ...

    2015-04-10

    We studied low-temperature propane oxidation at P = 4 Torr and T = 530, 600, and 670 K by time-resolved multiplexed photoionization mass spectrometry (MPIMS), which probes the reactants, intermediates, and products with isomeric selectivity using tunable synchrotron vacuum UV ionizing radiation. The oxidation is initiated by pulsed laser photolysis of oxalyl chloride, (COCl) 2, at 248 nm, which rapidly generates a ~1:1 mixture of 1-propyl (n-propyl) and 2-propyl (i-propyl) radicals via the fast Cl + propane reaction. At all three temperatures, the major stable product species is propene, formed in the propyl + O 2 reactions by direct HOmore » 2 elimination from both n- and i-propyl peroxy radicals. The experimentally derived propene yields relative to the initial concentration of Cl atoms are (20 ± 4)% at 530 K, (55 ± 11)% at 600 K, and (86 ± 17)% at 670 K at a reaction time of 20 ms. The lower yield of propene at low temperature reflects substantial formation of propyl peroxy radicals, which do not completely decompose on the experimental time scale. In addition, C 3H 6O isomers methyloxirane, oxetane, acetone, and propanal are detected as minor products. Our measured yields of oxetane and methyloxirane, which are coproducts of OH radicals, suggest a revision of the OH formation pathways in models of low-temperature propane oxidation. The experimental results are modeled and interpreted using a multiscale informatics approach, presented in detail in a separate publication (Burke, M. P.; Goldsmith, C. F.; Klippenstein, S. J.; Welz, O.; Huang H.; Antonov I. O.; Savee J. D.; Osborn D. L.; Zádor, J.; Taatjes, C. A.; Sheps, L. Multiscale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Reactions. J. Phys. Chem A. 2015, DOI: 10.1021/acs.jpca.5b01003). Additionally, we found that the model predicts the time profiles and yields of the experimentally observed primary products well, and shows satisfactory agreement for

  20. Spectroscopic evidence for origins of size and support effects on selectivity of Cu nanoparticle dehydrogenation catalysts.

    PubMed

    Witzke, M E; Dietrich, P J; Ibrahim, M Y S; Al-Bardan, K; Triezenberg, M D; Flaherty, D W

    2017-01-03

    Selective dehydrogenation catalysts that produce acetaldehyde from bio-derived ethanol can increase the efficiency of subsequent processes such as C-C coupling over metal oxides to produce 1-butanol or 1,3-butadiene or oxidation to acetic acid. Here, we use in situ X-ray absorption spectroscopy and steady state kinetics experiments to identify Cu δ+ at the perimeter of supported Cu clusters as the active site for esterification and Cu 0 surface sites as sites for dehydrogenation. Correlation of dehydrogenation and esterification selectivities to in situ measures of Cu oxidation states show that this relationship holds for Cu clusters over a wide-range of diameters (2-35 nm) and catalyst supports and reveals that dehydrogenation selectivities may be controlled by manipulating either.

  1. Copper-Catalyzed Oxidative Dehydrogenative Carboxylation of Unactivated Alkanes to Allylic Esters via Alkenes

    PubMed Central

    2015-01-01

    We report copper-catalyzed oxidative dehydrogenative carboxylation (ODC) of unactivated alkanes with various substituted benzoic acids to produce the corresponding allylic esters. Spectroscopic studies (EPR, UV–vis) revealed that the resting state of the catalyst is [(BPI)Cu(O2CPh)] (1-O2CPh), formed from [(BPI)Cu(PPh3)2], oxidant, and benzoic acid. Catalytic and stoichiometric reactions of 1-O2CPh with alkyl radicals and radical probes imply that C–H bond cleavage occurs by a tert-butoxy radical. In addition, the deuterium kinetic isotope effect from reactions of cyclohexane and d12-cyclohexane in separate vessels showed that the turnover-limiting step for the ODC of cyclohexane is C–H bond cleavage. To understand the origin of the difference in products formed from copper-catalyzed amidation and copper-catalyzed ODC, reactions of an alkyl radical with a series of copper–carboxylate, copper–amidate, and copper–imidate complexes were performed. The results of competition experiments revealed that the relative rate of reaction of alkyl radicals with the copper complexes follows the trend Cu(II)–amidate > Cu(II)–imidate > Cu(II)–benzoate. Consistent with this trend, Cu(II)–amidates and Cu(II)–benzoates containing more electron-rich aryl groups on the benzamidate and benzoate react faster with the alkyl radical than do those with more electron-poor aryl groups on these ligands to produce the corresponding products. These data on the ODC of cyclohexane led to preliminary investigation of copper-catalyzed oxidative dehydrogenative amination of cyclohexane to generate a mixture of N-alkyl and N-allylic products. PMID:25389772

  2. Spectroscopic evidence for origins of size and support effects on selectivity of Cu nanoparticle dehydrogenation catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witzke, M. E.; Dietrich, P. J.; Ibrahim, M. Y. S.

    2016-12-12

    Selective dehydrogenation catalysts that produce acetaldehyde from bio-derived ethanol can increase the efficiency of subsequent processes such as C–C coupling over metal oxides to produce 1-butanol or 1,3-butadiene or oxidation to acetic acid. Here, we use in situ X-ray absorption spectroscopy and steady state kinetics experiments to identify Cuδ+ at the perimeter of supported Cu clusters as the active site for esterification and Cu0 surface sites as sites for dehydrogenation. Correlation of dehydrogenation and esterification selectivities to in situ measures of Cu oxidation states show that this relationship holds for Cu clusters over a wide-range of diameters (2–35 nm) andmore » catalyst supports and reveals that dehydrogenation selectivities may be controlled by manipulating either.« less

  3. Identification of Novel Methane-, Ethane-, and Propane-Oxidizing Bacteria at Marine Hydrocarbon Seeps by Stable Isotope Probing ▿ †

    PubMed Central

    Redmond, Molly C.; Valentine, David L.; Sessions, Alex L.

    2010-01-01

    Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with 13C-labeled methane, ethane, or propane, we confirmed the incorporation of 13C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in 13C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, 13C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, 13C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the 13C-labeled DNA may encode an ethane monooxygenase. Third, 13C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes. PMID:20675448

  4. Theoretical investigation of the selective dehydration and dehydrogenation of ethanol catalyzed by small molecules.

    PubMed

    Wang, Yanqun; Tang, Yizhen; Shao, Youxiang

    2017-09-01

    Catalytic dehydration and dehydrogenation reactions of ethanol have been investigated systematically using the ab initio quantum chemistry methods The catalysts include water, hydrogen peroxide, formic acid, phosphoric acid, hydrogen fluoride, ammonia, and ethanol itself. Moreover, a few clusters of water and ethanol were considered to simulate the catalytic mechanisms in supercritical water and supercritical ethanol. The barriers for both dehydration and dehydrogenation can be reduced significantly in the presence of the catalysts. It is revealed that the selectivity of the catalytic dehydration and dehydrogenation depends on the acidity and basicity of the catalysts and the sizes of the clusters. The acidic catalyst prefers dehydration while the basic catalysts tend to promote dehydrogenation more effectively. The calculated water-dimer catalysis mechanism supports the experimental results of the selective oxidation of ethanol in the supercritical water. It is suggested that the solvent- and catalyst-free self-oxidation of the supercritical ethanol could be an important mechanism for the selective dehydrogenation of ethanol on the theoretical point of view. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Study of the Low Temperature Oxidation of Propane

    PubMed Central

    Cord, Maximilien; Husson, Benoit; Huerta, Juan Carlos Lizardo; Herbinet, Olivier; Glaude, Pierre-Alexandre; Fournet, René; Sirjean, Baptiste; Battin-Leclerc, Frédérique; Ruiz-Lopez, Manuel; Wang, Zhandong; Xie, Mingfeng; Cheng, Zhanjun; Qi, Fei

    2013-01-01

    The low-temperature oxidation of propane was investigated using a jet-stirred reactor at atmospheric pressure and two methods of analysis: gas chromatography and synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) with direct sampling through a molecular jet. The second method allowed the identification of products, such as molecules with hydroperoxy functions, which are not stable enough to be detected by gas chromatography. Mole fractions of the reactants and reaction products were measured as a function of the temperature (530-730 K), with a particular attention to reaction products involved in the low temperature oxidation, such as cyclic ethers, aldehydes, alcohols, ketones, and hydroperoxides. A new model has been obtained from an automatically generated one, which was used as a starting point, with a large number of re-estimated thermochemical and kinetic data. The kinetic data of the most sensitive reactions, i.e., isomerizations of alkylperoxy radicals and the subsequent decompositions, have been calculated at the CBS-QB3 level of theory. The model allows a satisfactory prediction of the experimental data. A flow rate analysis has allowed highlighting the important reaction channels. PMID:23181456

  6. KINETICS OF THE DEHYDROGENATION AND DEHYDRATION OF ISOPROPYL ALCOHOL AND THE DEHYDROGENATION OF TETRALIN ON LANTHANUM OXIDE (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolstopyatova, A.A.; Balandin, A.A.; Yu, C.

    1963-10-01

    All the relative adsorption coefficients of the dehydrogenation and dehydration products of isopropyl alcohol and dehydrogenation products of tetralin are temperaturedependent. The inhibiting action of the products, propylene, water, and acetone in the isopropyl alcohol reaction and hydrogen in the tetralin reaction diminishes as the temperature is raised. Acetone and water possess a relatively high inhibiting effect. The bond energies of C, H, and 0 with La/sub 2/O/sub 3/ were determined by means of the kinetic method from the activation energies. It was found that Q/sub C-Cat/ < Q/sub H-Cat/ < Q/sub O-Cat/ . (auth)

  7. Facile Dehydrogenation of Ethane on the IrO2(110) Surface.

    PubMed

    Bian, Yingxue; Kim, Minkyu; Li, Tao; Asthagiri, Aravind; Weaver, Jason F

    2018-02-21

    Realizing the efficient and selective conversion of ethane to ethylene is important for improving the utilization of hydrocarbon resources, yet remains a major challenge in catalysis. Herein, ethane dehydrogenation on the IrO 2 (110) surface is investigated using temperature-programmed reaction spectroscopy (TPRS) and density functional theory (DFT) calculations. The results show that ethane forms strongly bound σ-complexes on IrO 2 (110) and that a large fraction of the complexes undergo C-H bond cleavage during TPRS at temperatures below 200 K. Continued heating causes as much as 40% of the dissociated ethane to dehydrogenate and desorb as ethylene near 350 K, with the remainder oxidizing to CO x species. Both TPRS and DFT show that ethylene desorption is the rate-controlling step in the conversion of ethane to ethylene on IrO 2 (110) during TPRS. Partial hydrogenation of the IrO 2 (110) surface is found to enhance ethylene production from ethane while suppressing oxidation to CO x species. DFT predicts that hydrogenation of reactive oxygen atoms of the IrO 2 (110) surface effectively deactivates these sites as H atom acceptors, and causes ethylene desorption to become favored over further dehydrogenation and oxidation of ethane-derived species. The study reveals that IrO 2 (110) exhibits an exceptional ability to promote ethane dehydrogenation to ethylene near room temperature, and provides molecular-level insights for understanding how surface properties influence selectivity toward ethylene production.

  8. An In-Situ XAS Study of the Structural Changes in a CuO-CeO2/Al2O3 Catalyst during Total Oxidation of Propane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silversmith, Geert; Poelman, Hilde; Poelman, Dirk

    2007-02-02

    A CuOx-CeOx/Al2O3 catalyst was studied with in-situ transmission Cu K XAS for the total oxidation of propane as model reaction for the catalytic elimination of volatile organic compounds. The local Cu structure was determined for the catalyst as such, after pre-oxidation and after reduction with propane. The catalyst as such has a local CuO structure. No structural effect was observed upon heating in He up to 600 deg. C or after pre-oxidation at 150 deg. C. A full reduction of the Cu2+ towards metallic Cu0 occurred, when propane was fed to the catalyst. The change in local Cu structure duringmore » propane reduction was followed with a time resolution of 1 min. The {chi}(k) scans appeared as linear combinations of start and end spectra, CuO and Cu structure, respectively. However, careful examination of the XANES edge spectra indicates the presence of a small amount of additional Cu1+ species.« less

  9. Novel Acetone Metabolism in a Propane-Utilizing Bacterium, Gordonia sp. Strain TY-5▿

    PubMed Central

    Kotani, Tetsuya; Yurimoto, Hiroya; Kato, Nobuo; Sakai, Yasuyoshi

    2007-01-01

    In the propane-utilizing bacterium Gordonia sp. strain TY-5, propane was shown to be oxidized to 2-propanol and then further oxidized to acetone. In this study, the subsequent metabolism of acetone was studied. Acetone-induced proteins were found in extracts of cells induced by acetone, and a gene cluster designated acmAB was cloned on the basis of the N-terminal amino acid sequences of acetone-induced proteins. The acmA and acmB genes encode a Baeyer-Villiger monooxygenase (BVMO) and esterase, respectively. The BVMO encoded by acmA was purified from acetone-induced cells of Gordonia sp. strain TY-5 and characterized. The BVMO exhibited NADPH-dependent oxidation activity for linear ketones (C3 to C10) and cyclic ketones (C4 to C8). Escherichia coli expressing the acmA gene oxidized acetone to methyl acetate, and E. coli expressing the acmB gene hydrolyzed methyl acetate. Northern blot analyses revealed that polycistronic transcription of the acmAB gene cluster was induced by propane, 2-propanol, and acetone. These results indicate that the acmAB gene products play an important role in the metabolism of acetone derived from propane oxidation and clarify the propane metabolism pathway of strain TY-5 (propane → 2-propanol → acetone → methyl acetate → acetic acid + methanol). This paper provides the first evidence for BVMO-dependent acetone metabolism. PMID:17071761

  10. Effects of Alloyed Metal on the Catalysis Activity of Pt for Ethanol Partial Oxidation: Adsorption and Dehydrogenation on Pt3M (M=Pt, Ru, Sn, Re, Rh, and Pd)

    PubMed Central

    Xu, Zhen-Feng; Wang, Yixuan

    2011-01-01

    The adsorption and dehydrogenation reactions of ethanol over bimetallic clusters, Pt3M (M = Pt, Ru, Sn, Re, Rh, and Pd), have been extensively investigated with density functional theory. Both the α-hydrogen and hydroxyl adsorptions on Pt as well as on the alloyed transition metal M sites of PtM were considered as initial reaction steps. The adsorptions of ethanol on Pt and M sites of some PtM via the α-hydrogen were well established. Although the α-hydrogen adsorption on Pt site is weaker than the hydroxyl, the potential energy profiles show that the dehydrogenation via the α-hydrogen path has much lower energy barrier than that via the hydroxyl path. Generally for the α-hydrogen path the adsorption is a rate-determining-step because of rather low dehydrogenation barrier for the α-hydrogen adsorption complex (thermodynamic control), while the hydroxyl path is determined by its dehydrogenation step (kinetic control). The effects of alloyed metal on the catalysis activity of Pt for ethanol partial oxidation, including adsorption energy, energy barrier, electronic structure, and eventually rate constant were discussed. Among all of the alloyed metals only Sn enhances the rate constant of the dehydrogenation via the α-hydrogen path on the Pt site of Pt3Sn as compared with Pt alone, which interprets why the PtSn is the most active to the oxidation of ethanol. PMID:22102920

  11. Epoxidation of Short-Chain Alkenes by Resting-Cell Suspensions of Propane-Grown Bacteria

    PubMed Central

    Hou, Ching T.; Patel, Ramesh; Laskin, Allen I.; Barnabe, Nancy; Barist, Irene

    1983-01-01

    Sixteen new cultures of propane-utilizing bacteria were isolated from lake water from Warinanco Park, Linden, N.J. and from lake and soil samples from Bayway Refinery, Linden, N.J. In addition, 19 known cultures obtained from culture collections were also found to be able to grow on propane as the sole carbon and energy source. In addition to their ability to oxidize n-alkanes, resting-cell suspensions of both new cultures and known cultures grown on propane oxidize short-chain alkenes to their corresponding 1,2-epoxides. Among the substrate alkenes, propylene was oxidized at the highest rate. In contrast to the case with methylotrophic bacteria, the product epoxides are further metabolized. Propane and other gaseous n-alkanes inhibit the epoxidation of propylene. The optimum conditions for in vivo epoxidation are described. Results from inhibition studies indicate that a propane monooxygenase system catalyzes both the epoxidation and hydroxylation reactions. Experiments with cell-free extracts show that both hydroxylation and epoxidation activities are located in the soluble fraction obtained after 80,000 × g centrifugation. PMID:16346338

  12. Open-cage fullerene-like graphitic carbons as catalysts for oxidative dehydrogenation of isobutane.

    PubMed

    Liang, Chengdu; Xie, Hong; Schwartz, Viviane; Howe, Jane; Dai, Sheng; Overbury, Steven H

    2009-06-10

    We report herein a facile synthesis of fullerene-like cages, which can be opened and closed through simple thermal treatments. A glassy carbon with enclosed fullerene-like cages of 2-3 nm was synthesized through a soft-template approach that created open mesopores of 7 nm. The open mesopores provided access to the fullerene-like cages, which were opened and closed through heat treatments in air and inert gas at various temperatures. Catalytic measurements showed that the open cages displayed strikingly higher activity for the oxidative dehydrogenation of isobutane in comparison to the closed ones. We anticipate that this synthesis approach could unravel an avenue for pursuing fundamental understanding of the unique catalytic properties of graphitic carbon nanostructures.

  13. Propane poisoning

    MedlinePlus

    Propane is a colorless and odorless flammable gas that can turn into liquid under very cold temperatures. This article discusses the harmful effects from breathing in or swallowing propane. Breathing in or swallowing propane can be ...

  14. Significance of β-dehydrogenation in ethanol electro-oxidation on platinum doped with Ru, Rh, Pd, Os and Ir.

    PubMed

    Sheng, Tian; Lin, Wen-Feng; Hardacre, Christopher; Hu, P

    2014-07-14

    In the exploration of highly efficient direct ethanol fuel cells (DEFCs), how to promote the CO2 selectivity is a key issue which remains to be solved. Some advances have been made, for example, using bimetallic electrocatalysts, Rh has been found to be an efficient additive to platinum to obtain high CO2 selectivity experimentally. In this work, the mechanism of ethanol electrooxidation is investigated using the first principles method. It is found that CH3CHOH* is the key intermediate during ethanol electrooxidation and the activity of β-dehydrogenation is the rate determining factor that affects the completeness of ethanol oxidation. In addition, a series of transition metals (Ru, Rh, Pd, Os and Ir) are alloyed on the top layer of Pt(111) in order to analyze their effects. The elementary steps, α-, β-C-H bond and C-C bond dissociations, are calculated on these bimetallic M/Pt(111) surfaces and the formation potential of OH* from water dissociation is also calculated. We find that the active metals increase the activity of β-dehydrogenation but lower the OH* formation potential resulting in the active site being blocked. By considering both β-dehydrogenation and OH* formation, Ru, Os and Ir are identified to be unsuitable for the promotion of CO2 selectivity and only Rh is able to increase the selectivity of CO2 in DEFCs.

  15. The role of CO 2 as a soft oxidant for dehydrogenation of ethylbenzene to styrene over a high-surface-area ceria catalyst

    DOE PAGES

    Zhang, Li; Wu, Zili; Nelson, Nicholas; ...

    2015-09-22

    Catalytic performance and the nature of surface adsorbates were investigated for high-surface-area ceria during ethylbenzene oxidative dehydrogenation (ODH) reaction using CO2 as a soft oxidant. A template assisted method was used to synthesize the high-surface-area ceria. The interactions between ethylbenzene, styrene and CO2 on the surface of ceria and the role of CO2 for the ethylbenzene ODH reaction have been investigated in detail by using activity test, in situ Diffuse Reflectance Infrared and Raman spectroscopy. Not only did CO2 as an oxidant favor the higher yield of styrene, but it also inhibited the deposition of coke during the ethylbenzene ODHmore » reaction. Ethylbenzene ODH reaction over ceria followed a two-step pathway: Ethylbenzene is first dehydrogenated to styrene with H2 formed simultaneously, and then CO2 reacts with H2 via the reverse water gas shift. The styrene produced can easily polymerize to form polystyrene, a key intermediate for coke formation. In the absence of CO2, the polystyrene transforms into graphite-like coke at temperatures above 500 °C, which leads to catalyst deactivation. While in the presence of CO2, the coke deposition can be effectively removed via oxidation with CO2.« less

  16. Propane Update.

    ERIC Educational Resources Information Center

    Brantner, Max

    1984-01-01

    Reports on a northern Illinois school bus fleet converted to propane fuel in 1981 and 1982. Includes tables showing, first, total annual fuel costs before and after conversion and, second, fuel efficiency for 16 buses using propane and three using gasoline. Notes precautions for propane use. (MCG)

  17. Propane fear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begley, R.

    1992-02-12

    A minor feature of a Congressional energy bill is causing consternation for a number of propane-consuming chemical companies. The firms are fighting the bill`s inclusion of liquefied petroleum gas (LPG) on a list of alternative fuels that can be used to meet its urban fleet vehicles requirements. The firms fear that this added use would drive up the price of propane-an LPG-for homeowners, farmers, and themselves. Speaking for the Propane Consumers Coalition, a Dow Chemical spokesman says 7.7 million households use propane, as does agriculture, and current demand is such that December saw a 23-year low in US inventories. Themore » US depends on imports of propane, he says, and about half the propane sold in the US is derived from the refining of oil, much of which is also imported. Adding demand for vehicle fuel would drive up imports and process, the spokesman says, thereby damaging all users, including the petrochemical industry.« less

  18. Open-cage Fullerene-like Graphitic Carbons as Catalysts for Oxidative Dehydrogenation of Isobutane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Chengdu; Xie, Hong; Schwartz, Viviane

    We report herein a facile synthesis of fullerene-like cages, which can be opened and closed through simple thermal treatments. A glassy carbon with enclosed fullerene-like cages of 2-3 nm was synthesized through a soft-template approach that created open mesopores of 7 nm. The open mesopores provided access to the fullerene-like cages, which were opened and closed through heat treatments in air and inert gas at various temperatures. Catalytic measurements showed that the open cages displayed strikingly higher activity for the oxidative dehydrogenation of isobutane in comparison to the close ones. We anticipate that this synthesis approach could unravel an avenuemore » for pursuing fundamental understanding of the unique catalytic properties of graphitic carbon nanostructures.« less

  19. Mesoporous xEr 2O 3·CoTiO 3 composite oxide catalysts for low temperature dehydrogenation of ethylbenzene to styrene using CO 2 as a soft oxidant

    DOE PAGES

    Yue, Yanfeng; Zhang, Li; Chen, Jihua; ...

    2016-01-01

    A series of mesoporous xEr 2O 3·CoTiO 3 composite oxide catalysts have been prepared using template method and tested as a new type of catalyst for the oxidative dehydrogenation of ethylbenzene to styrene by using CO 2 as a soft oxidant. Among the catalysts tested, the 0.25Er 2O 3 CoTiO 3 sample with a ratio of 1:4:4 content and calcined at 600 oC exhibited the highest ethylbenzene conversion (58%) and remarkable styrene selectivity (95%) at low temperature (450 °C).

  20. Low Temperature Propane Oxidation over Co 3O 4 based Nano-array Catalysts. Ni Dopant Effect, Reaction Mechanism and Structural Stability

    DOE PAGES

    Ren, Zheng; Wu, Zili; Gao, Puxian; ...

    2015-06-09

    Low temperature propane oxidation has been achieved by Co 3O 4-based nano-array catalysts featuring low catalytic materials loading. The Ni doping into the Co 3O 4 lattice has led to enhanced reaction kinetics at low temperature by promoting the surface lattice oxygen activity. In situ DRIFTS investigation in tandem with isotopic oxygen exchange reveals that the propane oxidation proceeds via Mars-van Krevelen mechanism where surface lattice oxygen acts as the active site whereas O 2 in the reaction feed does not directly participate in CO 2 formation. The Ni doping promotes the formation of less stable carbonates on the surfacemore » to facilitate the CO 2 desorption. The thermal stability of Ni doped Co 3O 4 decreases with increased Ni concentration while catalytic activity increases. A balance between enhanced activity and compromised thermal stability shall be considered in the Ni doped Co 3O 4 nano-array catalysts for low temperature hydrocarbon oxidation. This study provides useful and timely guidance for rational catalyst design toward low temperature catalytic oxidation.« less

  1. Aerobic, Metal-Free, and Catalytic Dehydrogenative Coupling of Heterocycles: En Route to Hedgehog Signaling Pathway Inhibitors.

    PubMed

    Bering, Luis; Paulussen, Felix M; Antonchick, Andrey P

    2018-04-06

    The nitrosonium ion-catalyzed dehydrogenative coupling of heteroarenes under mild reaction conditions is reported. The developed method utilizes ambient molecular oxygen as a terminal oxidant, and only water is produced as byproduct. Dehydrogenative coupling of heteroarenes translated into the rapid discovery of novel hedgehog signaling pathway inhibitors, emphasizing the importance of the developed methodology.

  2. Partial oxidation catalyst

    DOEpatents

    Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv

    2000-01-01

    A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion. The dehydrogenation portion is a group VIII metal and the oxide-ion conducting portion is selected from a ceramic oxide crystallizing in the fluorite or perovskite structure. There is also disclosed a method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  3. Marine microbes rapidly adapt to consume ethane, propane, and butane within the dissolved hydrocarbon plume of a natural seep

    NASA Astrophysics Data System (ADS)

    Mendes, Stephanie D.; Redmond, Molly C.; Voigritter, Karl; Perez, Christian; Scarlett, Rachel; Valentine, David L.

    2015-03-01

    Simple hydrocarbon gases containing two to four carbons (ethane, propane, and butane) are among the most abundant compounds present in petroleum reservoirs, and are introduced into the ocean through natural seepage and industrial discharge. Yet little is known about the bacterial consumption of these compounds in ocean waters. To assess the timing by which microbes metabolize these gases, we conducted a three-phase study that tested and applied a radiotracer-based method to quantify the oxidation rates of ethane, propane, and butane in fresh seawater samples. Phase 1 involved the synthesis of tritiated ethane, propane, and butane using Grignard reagents and tritiated water. Phase 2 was a systematic assessment of experimental conditions, wherein the indigenous microbial community was found to rapidly oxidize ethane, propane, and butane. Phase 3 was the application of this tritium method near the Coal Oil Point seeps, offshore California. Spatial and temporal patterns of ethane, propane, and butane oxidation down current from the hydrocarbon seeps demonstrated that >99% of these gases are metabolized within 1.3 days following initial exposure. The oxidation of ethane outpaced oxidation of propane and butane with patterns indicating the microbial community responded to these gases by rapid adaptation or growth. Methane oxidation responded the slowest in plume waters. Estimates based on the observed metabolic rates and carbon mass balance suggest that ethane, propane, and butane-consuming microorganisms may transiently account for a majority of the total microbial community in these impacted waters.

  4. Dehydrogenation of liquid fuel in microchannel catalytic reactor

    DOEpatents

    Toseland, Bernard Allen; Pez, Guido Peter; Puri, Pushpinder Singh

    2010-08-03

    The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.

  5. Dehydrogenation of liquid fuel in microchannel catalytic reactor

    DOEpatents

    Toseland, Bernard Allen [Allentown, PA; Pez, Guido Peter [Allentown, PA; Puri, Pushpinder Singh [Emmaus, PA

    2009-02-03

    The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.

  6. Oxidative dehydrogenation of isobutane over vanadia catalysts supported by titania nanoshapes

    DOE PAGES

    Kraemer, Shannon K.; Rondinone, Adam Justin; Tsai, Yu-Tung; ...

    2015-11-02

    Support plays a complex role in catalysis by supported metal oxides and the exact support effect still remains elusive. One of the approaches to gain fundamental insights into the support effect is to utilize model support systems. In this study, we employed for the first time titania nanoshapes as the model supports and investigated how the variation of surface structure of the support (titania, TiO 2) impacts the catalysis of supported oxide (vanadia, VO x). TiO 2 truncated rhombi, spheres and rods were synthesized via hydrothermal method and characterized with XRD and TEM. These TiO 2 nanoshapes represent different mixturesmore » of surface facets including [1 0 1], [0 1 0] and [0 0 1] and were used to support vanadia. The structure of supported VO x species was characterized in detail with in situ Raman spectroscopy as a function of loading on the three TiO 2 nanoshapes. Oxidative dehydrogenation (ODH) of isobutane to isobutene was used as a model reaction to test how the support shape influences the activity, selectivity and activation energy of the surface VO x species. It was shown that the shape of TiO 2 support does not pose evident effect on either the structure of surface VO x species or the catalytic performance of surface VO x species in isobutane ODH reaction. Finally, this insignificant support shape effect was ascribed to the small difference in the surface oxygen vacancy formation energy among the different TiO 2 surfaces and the multi-faceting nature of the TiO 2 nanoshapes.« less

  7. Oxidative dehydrogenation of isobutane over vanadia catalysts supported by titania nanoshapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraemer, Shannon; Rondinone, Adam J.; Tsai, Yu-Tong

    2016-04-01

    Support plays a complex role in catalysis by supported metal oxides and the exact support effect still remains elusive. One of the approaches to gain fundamental insights into the support effect is to utilize model support systems. In this paper, we employed for the first time titania nanoshapes as the model supports and investigated how the variation of surface structure of the support (titania, TiO2) impacts the catalysis of supported oxide (vanadia, VOx). TiO2 truncated rhombi, spheres and rods were synthesized via hydrothermal method and characterized with XRD and TEM. These TiO2 nanoshapes represent different mixtures of surface facets includingmore » [1 0 1], [0 1 0] and [0 0 1] and were used to support vanadia. The structure of supported VOx species was characterized in detail with in situ Raman spectroscopy as a function of loading on the three TiO2 nanoshapes. Oxidative dehydrogenation (ODH) of isobutane to isobutene was used as a model reaction to test how the support shape influences the activity, selectivity and activation energy of the surface VOx species. It was shown that the shape of TiO2 support does not pose evident effect on either the structure of surface VOx species or the catalytic performance of surface VOx species in isobutane ODH reaction. This insignificant support shape effect was ascribed to the small difference in the surface oxygen vacancy formation energy among the different TiO2 surfaces and the multi-faceting nature of the TiO2 nanoshapes.« less

  8. Characterization of MoVTeNbO x catalysts during oxidation reactions using in situ/operando techniques: A review

    DOE PAGES

    Lwin, Soe; Diao, Weijian; Baroi, Chinmoy; ...

    2017-04-08

    The domestic fossil feedstock in recent years is shifting towards light hydrocarbons due to abundance of shale gas from hydraulic fracturing. This shift induces a need for greater flexibility in both new and existing processing plants to produce consumer products (polymers, paints, lubricants, etc.) from new feedstocks. The oxidative catalytic reactions operate at milder conditions than the processing of feedstocks through steam cracking. The conversion of light feedstocks (C3 and shorter hydrocarbons) to high value chemicals through highly selective catalysts in the presence of oxygen plays a crucial role in eliminating wastes, reducing greenhouse gas emissions and lowering market prices.more » Among all catalysts for light hydrocarbon processing through oxidation reactions, bulk mixed metal oxides such as MoVTe(Sb)NbO x catalysts are the most promising due to their performance under favorable reaction conditions (temperature, pressure, etc). Here, state-of-the-art in situ/operando techniques along with transient kinetics can revolutionize the development of catalysts by providing information about the nature of active sites, intermediates and kinetics under realistic industrial conditions. Only through detailed understanding of these catalyst behaviors can new synthesis methods be developed that will improve reactivity, selectivity and lifetimes of these catalysts. In this review, dynamic changes of this mixed oxide catalyst during the reaction (such as changes in surface composition, oxidation states, acidity, etc) are discussed mainly from knowledge and insights obtained from these in situ/operando approaches. The most common oxidation reactions driven by the MoVTeNbO x catalysts and studied under operando/in situ conditions to be discussed here are: (1) oxidative dehydrogenation of light alkanes (ethane and propane), (2) propane ammoxidation to acrylonitrile and (3) selective oxidation of propane to acrylic acid.« less

  9. Characterization of MoVTeNbO x catalysts during oxidation reactions using in situ/operando techniques: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lwin, Soe; Diao, Weijian; Baroi, Chinmoy

    The domestic fossil feedstock in recent years is shifting towards light hydrocarbons due to abundance of shale gas from hydraulic fracturing. This shift induces a need for greater flexibility in both new and existing processing plants to produce consumer products (polymers, paints, lubricants, etc.) from new feedstocks. The oxidative catalytic reactions operate at milder conditions than the processing of feedstocks through steam cracking. The conversion of light feedstocks (C3 and shorter hydrocarbons) to high value chemicals through highly selective catalysts in the presence of oxygen plays a crucial role in eliminating wastes, reducing greenhouse gas emissions and lowering market prices.more » Among all catalysts for light hydrocarbon processing through oxidation reactions, bulk mixed metal oxides such as MoVTe(Sb)NbO x catalysts are the most promising due to their performance under favorable reaction conditions (temperature, pressure, etc). Here, state-of-the-art in situ/operando techniques along with transient kinetics can revolutionize the development of catalysts by providing information about the nature of active sites, intermediates and kinetics under realistic industrial conditions. Only through detailed understanding of these catalyst behaviors can new synthesis methods be developed that will improve reactivity, selectivity and lifetimes of these catalysts. In this review, dynamic changes of this mixed oxide catalyst during the reaction (such as changes in surface composition, oxidation states, acidity, etc) are discussed mainly from knowledge and insights obtained from these in situ/operando approaches. The most common oxidation reactions driven by the MoVTeNbO x catalysts and studied under operando/in situ conditions to be discussed here are: (1) oxidative dehydrogenation of light alkanes (ethane and propane), (2) propane ammoxidation to acrylonitrile and (3) selective oxidation of propane to acrylic acid.« less

  10. Lanthanoid-free perovskite oxide catalyst for dehydrogenation of ethylbenzene working with redox mechanism.

    PubMed

    Watanabe, Ryo; Ikushima, Maiko; Mukawa, Kei; Sumomozawa, Fumitaka; Ogo, Shuhei; Sekine, Yasushi

    2013-01-01

    For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH) to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1 - x SrxFe y Mn1 - y O3 - δ (0 ≤ x ≤ 1, 0.2 ≤ y ≤ 0.8), perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst with that of an industrial potassium promoted iron (Fe-K) catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst showed higher initial activity than the industrial Fe-K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe-K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ and the Fe-K catalysts in a H2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst while the Fe-K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst had higher potential for activating the steam than the Fe-K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ was superior to that of Fe-K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ perovskite oxide.

  11. Lanthanoid-free perovskite oxide catalyst for dehydrogenation of ethylbenzene working with redox mechanism

    NASA Astrophysics Data System (ADS)

    Watanabe, Ryo; Ikushima, Maiko; Mukawa, Kei; Sumomozawa, Fumitaka; Ogo, Shuhei; Sekine, Yasushi

    2013-10-01

    For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH) to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1-xSrxFeyMn1-yO3-d(0 ≤ x≤ 1, 0.2 ≤ y≤ 0.8), perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst with that of an industrial potassium promoted iron (Fe-K) catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst showed higher initial activity than the industrial Fe-K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe-K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3-d and the Fe-K catalysts in aH2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst while the Fe-K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst had higher potential for activating the steam than the Fe-K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3-d was superior to that of Fe-K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3-d perovskite oxide.

  12. Lanthanoid-free perovskite oxide catalyst for dehydrogenation of ethylbenzene working with redox mechanism

    PubMed Central

    Watanabe, Ryo; Ikushima, Maiko; Mukawa, Kei; Sumomozawa, Fumitaka; Ogo, Shuhei; Sekine, Yasushi

    2013-01-01

    For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH) to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1 − xSrxFeyMn1 − yO3 − δ (0 ≤ x ≤ 1, 0.2 ≤ y ≤ 0.8), perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst with that of an industrial potassium promoted iron (Fe–K) catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst showed higher initial activity than the industrial Fe–K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe–K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ and the Fe–K catalysts in a H2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst while the Fe–K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst had higher potential for activating the steam than the Fe–K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ was superior to that of Fe–K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ perovskite oxide. PMID:24790949

  13. AlNbO oxides as new supports for hydrocarbon oxidation II. Catalytic properties of VO sub x -grafted AlNbO oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, P.G. Pries de; Eon, J.G.; Volta, J.C.

    1992-09-01

    Vanadium oxides were immobilized by grafting VOCl{sub 3} on AlNbO oxides calcined between 500 and 750 C. Chemical analysis, XPS, and STEM measurements suggest an incomplete but homogeneous stoichiometric reaction between superficial hydroxyl groups and vanadyl oxychloride. By FTIR studies, it is observed that the interaction involves preferentially basic hydroxyl groups bonded to aluminium cations. UV-visible spectra show that mainly V{sup 5+} is present at the solid surface. Corresponding spectra are compatible with tetrahedral symmetry, in agreement with a previous {sup 51}V NMR investigation. The acido-basic properties of the catalyst were tested by isopropanol decomposition and compared with the correspondingmore » supports. It has been observed that basicity is higher for VO{sub x} grafted on AlBnO oxide calcined at high temperature and corresponding to the AlNbO{sub 4} structure. VO{sub x} grafted on AlNbO oxides calcined at intermediate temperatures and corresponding to a AlNbO disorganized structure present a good selectivity for the oxidative dehydrogenation of propane into propene. It has been observed that, for both reactions, the turnover number increases with the temperature of calcination of the catalysts. The reactivity of the aluminium niobiate support.« less

  14. A Mössbauer spectroscopic study of an industrial catalyst for dehydrogenation of etylbenzene to styrene

    NASA Astrophysics Data System (ADS)

    Jiang, K. Y.; Fan, Q.; Zhao, Z. J.; Mao, L. S.; Yang, X. L.

    Iron oxide catalyst with spinel structure used for dehydrogenation of ethylbenzene is one kind of importantcatalyst in petrochemical industry. In this work several series of industrial catalyst were prepared with differentcomponents and differentmanufacturing processes. Mössbauer Spectroscopy has been used to determine the optimal components and the better manufacturing process for spinel structure formation. The results may prove useful for producing the industrial dehydrogenation catalyst with better catalytic property.

  15. An Inducible Propane Monooxygenase Is Responsible for N-Nitrosodimethylamine Degradation by Rhodococcus sp. Strain RHA1▿

    PubMed Central

    Sharp, Jonathan O.; Sales, Christopher M.; LeBlanc, Justin C.; Liu, Jie; Wood, Thomas K.; Eltis, Lindsay D.; Mohn, William W.; Alvarez-Cohen, Lisa

    2007-01-01

    Rhodococci are common soil heterotrophs that possess diverse functional enzymatic activities with economic and ecological significance. In this study, the correlation between gene expression and biological removal of the water contaminant N-nitrosodimethylamine (NDMA) is explored. NDMA is a hydrophilic, potent carcinogen that has gained recent notoriety due to its environmental persistence and emergence as a widespread micropollutant in the subsurface environment. In this study, we demonstrate that Rhodococcus sp. strain RHA1 can constitutively degrade NDMA and that activity toward this compound is enhanced by approximately 500-fold after growth on propane. Transcriptomic analysis of RHA1 and reverse transcriptase quantitative PCR assays demonstrate that growth on propane elicits the upregulation of gene clusters associated with (i) the oxidation of propane and (ii) the oxidation of substituted benzenes. Deletion mutagenesis of prmA, the gene encoding the large hydroxylase component of propane monooxygenase, abolished both growth on propane and removal of NDMA. These results demonstrate that propane monooxygenase is responsible for NDMA degradation by RHA1 and explain the enhanced cometabolic degradation of NDMA in the presence of propane. PMID:17873074

  16. A Mössbauer spectroscopic study of an industrial catalyst for dehydrogenation of etylbenzene to styrene

    NASA Astrophysics Data System (ADS)

    Jiang, K. Y.; Fan, Q.; Zhao, Z. J.; Mao, L. S.; Yang, X. L.

    2006-01-01

    Iron oxide catalyst with spinel structure used for dehydrogenation of ethylbenzene is one kind of important catalyst in petrochemical industry. In this work several series of industrial catalyst were prepared with different components and different manufacturing processes. Mössbauer Spectroscopy has been used to determine the optimal components and the better manufacturing process for spinel structure formation. The results may prove useful for producing the industrial dehydrogenation catalyst with better catalytic property.

  17. [Regioselectivity in the dehydrogenation of substituted ethylenediamines as nicotine models].

    PubMed

    Möhrle, H; Berlitz, J

    2009-09-01

    The direction of dehydrogenation with Hg(II)-EDTA of 2-substituted pyrrolidines and piperidines is examined at the model substances 1-4 featuring a N-(2-amino-2-phenylethyl) substituent, which is able to capture an iminium intermediate. Compounds 1-4 represent mixtures of diastereomers; the separation of 2-phenylpyrrolidine derivative 1 into the racemic diastereomers 1A and 1B is achieved. The oxidation of 1 results in a double dehydrogenation to give the pyrrolizidine amidine 5, which, depending on the work-up conditions is partially hydrolyzed to pyrrolidone 6. The dehydrogenation of the 2-phenylpiperidine compound 2 yields as sole product nearly quantitatively the cyclic amidine 10, which shows no hydrolysis due a minor strain compared to 5. Thus, in both reactions the primary intermediate is the less substituted iminium ion in 5- and 6-position, respectively. On the contrary, the Hg(II)-EDTA treatment of the 2-methylpyrrolidine 3 leads to an electron withdrawal with a different regioselectivity and gives predominantly rise to the angular methylaminal 14. To a minor amount, the azapyrrolizidine 12 is received from the 5-iminium precursor 11. In the oxidation of the 2-methylpiperidine 4, an essentially similar regioselectivity is observed. Besides the angular methylindolizidine 15 as main product, the indolizidine aminal resulting from the less substituted iminium intermediate is due to a favourable steric situation further oxidized to the cyclic amidine 16. The diastereomeric mixtures of the anellated imidazolines 5, 10 and 16 were transfered by boiling with Pd/C in toluene or with activated MnO2 in chloroform to the racemic imidazoles 19-21 in good yields.

  18. A two-dimensional study of ethane and propane oxidation in the troposphere

    NASA Technical Reports Server (NTRS)

    Kanakidou, M.; Valentin, K. M.; Crutzen, P. J.; Singh, H. B.

    1991-01-01

    The chemistry of ethane and propane is studied using a global two-dimensional 'zonally averaged' height- and latitude-dependent tropospheric model. The purpose of the study is to derive theoretical estimates of the seasonal and latitudinal distributions of a variety of intermediate organic compounds formed by the photochemical oxidation of C2H6 and C3H8. It is shown that C2H6 and C3H8 emitted at rates of 16 Tg C2H6/a and 23 Tg C3H8/a do not affect the overall photochemistry of the troposphere significantly. Major global effects on O3 and OH concentrations are suggested to be coming from the formation of peroxyacetyl nitrate by the interactions of NOx with other hydrocarbons with strong and spatially correlated anthropogenic or natural sources at the earth's surface. It is pointed out that attention should be given to organic nitrates produced by the oxidation of NMHC other than C2H6 and C3H8.

  19. Interstellar dehydrogenated PAH anions: vibrational spectra

    NASA Astrophysics Data System (ADS)

    Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter; Gour, Nand Kishor

    2018-03-01

    Interstellar polycyclic aromatic hydrocarbon (PAH) molecules exist in diverse forms depending on the local physical environment. Formation of ionized PAHs (anions and cations) is favourable in the extreme conditions of the interstellar medium (ISM). Besides in their pure form, PAHs are also likely to exist in substituted forms; for example, PAHs with functional groups, dehydrogenated PAHs etc. A dehydrogenated PAH molecule might subsequently form fullerenes in the ISM as a result of ongoing chemical processes. This work presents a density functional theory (DFT) calculation on dehydrogenated PAH anions to explore the infrared emission spectra of these molecules and discuss any possible contribution towards observed IR features in the ISM. The results suggest that dehydrogenated PAH anions might be significantly contributing to the 3.3 μm region. Spectroscopic features unique to dehydrogenated PAH anions are highlighted that may be used for their possible identification in the ISM. A comparison has also been made to see the size effect on spectra of these PAHs.

  20. Dehydrogenation of benzene on Pt(111) surface

    NASA Astrophysics Data System (ADS)

    Gao, W.; Zheng, W. T.; Jiang, Q.

    2008-10-01

    The dehydrogenation of benzene on Pt(111) surface is studied by ab initio density functional theory. The minimum energy pathways for benzene dehydrogenation are found with the nudge elastic band method including several factors of the associated barriers, reactive energies, intermediates, and transient states. The results show that there are two possible parallel minimum energy pathways on the Pt(111) surface. Moreover, the tilting angle of the H atom in benzene can be taken as an index for the actual barrier of dehydrogenation. In addition, the properties of dehydrogenation radicals on the Pt(111) surface are explored through their adsorption energy, adsorption geometry, and electronic structure on the surface. The vibrational frequencies of the dehydrogenation radicals derived from the calculations are in agreement with literature data.

  1. Dehydrogenation of benzene on Pt(111) surface.

    PubMed

    Gao, W; Zheng, W T; Jiang, Q

    2008-10-28

    The dehydrogenation of benzene on Pt(111) surface is studied by ab initio density functional theory. The minimum energy pathways for benzene dehydrogenation are found with the nudge elastic band method including several factors of the associated barriers, reactive energies, intermediates, and transient states. The results show that there are two possible parallel minimum energy pathways on the Pt(111) surface. Moreover, the tilting angle of the H atom in benzene can be taken as an index for the actual barrier of dehydrogenation. In addition, the properties of dehydrogenation radicals on the Pt(111) surface are explored through their adsorption energy, adsorption geometry, and electronic structure on the surface. The vibrational frequencies of the dehydrogenation radicals derived from the calculations are in agreement with literature data.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Pingping; Siddiqi, Georges; Vining, William C.

    Catalysts for the dehydrogenation of light alkanes were prepared by dispersing Pt on the surface of a calcined hydrotalcite-like support containing indium, Mg(In)(Al)O. Upon reduction in H{sub 2} at temperatures above 673 K, bimetallic particles of PtIn are observed by TEM, which have an average diameter of 1 nm. Analysis of Pt LIII-edge extended X-ray absorption fine structure (EXAFS) data shows that the In content of the bimetallic particles increases with increasing bulk In/Pt ratio and reduction temperature. Pt LIII-edge X-ray absorption near edge structure (XANES) indicates that an increasing donation of electronic charge from In to Pt occurs withmore » increasing In content in the PtIn particles. The activity and selectivity of the Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation reactions are strongly dependent on the bulk In/Pt ratio. For both reactants, maximum activity was achieved for a bulk In/Pt ratio of 0.48, and at this In/Pt ratio, the selectivity to alkene was nearly 100%. Coke deposition was observed after catalyst use for either ethane or propane dehydrogenation, and it was observed that the alloying of Pt with In greatly reduced the amount of coke deposited. Characterization of the deposit by Raman spectroscopy indicates that the coke is present as highly disordered graphite particles <30 nm in diameter. While the amount of coke deposited during ethane and propane dehydrogenation are comparable, the effects on activity are dependent on reactant composition. Coke deposition had no effect on ethane dehydrogenation activity, but caused a loss in propane dehydrogenation activity. This difference is attributed to the greater ease with which coke produced on the surface of PtIn nanoparticles migrates to the support during ethane dehydrogenation versus propane dehydrogenation.« less

  3. Kinetics of Hydrogen Oxidation Downstream of Lean Propane and Hydrogen Flames

    NASA Technical Reports Server (NTRS)

    Fine, Burton

    1961-01-01

    The decay of hydrogen was measured downstream of lean, flat, premixed hydrogen and propane-air flames seated on cooled porous burners. Experimental variables included temperature, pressure, initial equivalence ratio and diluent. Sampling of burned gas was done through uncooled quartz orifice probes, and the analysis was based on gas chromatography. An approximate treatment of the data in which diffusion was neglected led to the following rate expression for the zone downstream of hydrogen flames d[H (sub 2)] divided by (d times t) equals 1.7 times 10 (sup 10) [H (sub 2)] (sup 3) divided by (sub 2) [O (sub 2)]e (sup (-8100 divided by RT)) moles per liters per second. On the basis of a rate expression of this form, the specific rate constant for the reaction downstream of hydrogen flames was about three times as great as that determined downstream of propane flames. This result was explained on the basis of the existence of a steady state between hydrogen and carbon monoxide in the burned gas downstream of propane flames.

  4. Main-group compounds selectively oxidize mixtures of methane, ethane, and propane to alcohol esters.

    PubMed

    Hashiguchi, Brian G; Konnick, Michael M; Bischof, Steven M; Gustafson, Samantha J; Devarajan, Deepa; Gunsalus, Niles; Ess, Daniel H; Periana, Roy A

    2014-03-14

    Much of the recent research on homogeneous alkane oxidation has focused on the use of transition metal catalysts. Here, we report that the electrophilic main-group cations thallium(III) and lead(IV) stoichiometrically oxidize methane, ethane, and propane, separately or as a one-pot mixture, to corresponding alcohol esters in trifluoroacetic acid solvent. Esters of methanol, ethanol, ethylene glycol, isopropanol, and propylene glycol are obtained with greater than 95% selectivity in concentrations up to 1.48 molar within 3 hours at 180°C. Experiment and theory support a mechanism involving electrophilic carbon-hydrogen bond activation to generate metal alkyl intermediates. We posit that the comparatively high reactivity of these d(10) main-group cations relative to transition metals stems from facile alkane coordination at vacant sites, enabled by the overall lability of the ligand sphere and the absence of ligand field stabilization energies in systems with filled d-orbitals.

  5. Price-skid boosts propane sales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, P.

    1979-02-05

    Lower propane costs have prompted industrial users to switch from natural gas, although dealers are cautioning that they are gambling on an unstable price competition. Analysis of price and use trends indicates that the propane market is growing where users have relied on the interstate gas market, which will be experiencing incremental price increases. Those buying propane on the spot market will get the best prices because the propane market is now glutted as a result of conservation and large gas supplies. A further drop in propane price is not anticipated because producers would lack incentive to extract propane frommore » higher-priced natural gas unless it becomes justified by demand for unleaded gas, of which propane is a by-product.« less

  6. Cellular Lipids of a Nocardia Grown on Propane and n-Butane

    PubMed Central

    Davis, J. B.

    1964-01-01

    Lipid fractions of propane- and n-butane-grown nocardial cells each contain a chloroform-soluble, ether-insoluble polymer not observed previously in liquid n-alkane-grown cells. The polymer in propane-grown cells is poly-β-hydroxybutyrate. The polymer in n-butane-grown cells apparently contains unsaturation in the molecule, and is identified tentatively as a co-polymer of β-hydroxybutyric and β-hydroxybutenoic (specifically 3-hydroxy 2-butenoic) acids. The other major component of the lipid fraction consists of triglycerides containing principally palmitic and stearic acids. There seems to be little qualitative distinction in the glycerides of propane- or n-butane-grown cells. Oxidative assimilation of n-butane is described. PMID:14199017

  7. Mechanisms for the dehydrogenation of alkanes on platinum: insights gained from the reactivity of gaseous cluster cations, Ptn + n=1-21.

    PubMed

    Adlhart, Christian; Uggerud, Einar

    2007-01-01

    Rates for the dihydrogen elimination of methane, ethane, and propane with cationic platinum clusters, Pt(n) (+) (1propane, all clusters react efficiently, while the reactivity of ethane lies in-between that of methane and propane. By necessity, dihydrogen elimination of methane occurs according to a 1,1-elimination mechanism. Ethane dehydrogenation takes place according to both a 1,1- and a 1,2-mechanism. The difference between the 1,1- and 1,2-mechanisms is well displayed in specifically increased rates for those clusters that were inefficient in the reaction with methane, as well as in the observed selectivity for H2, HD, and D2 elimination in the reaction with [D3]-1,1,1-ethane. Some twofold dihydrogen elimination is observed as well. The outcome of reactions with C2H6 in the presence of D(2) demonstrates exchange of all hydrogen atoms in [PtnC2H4]+ with deuterium atoms. A potential energy diagram with a high barrier for the second H2 elimination summarizes these observations. For propane twofold dihydrogen elimination is dominating, and for these reactions a far less regiospecific and more random loss of the hydrogens can be inferred, as was demonstrated by the reactions with [D6]-1,1,1,3,3,3-propane.

  8. Alternative Fuels Data Center: Propane Basics

    Science.gov Websites

    released, the liquid propane vaporizes and turns into gas that is used in combustion. An odorant, ethyl petroleum gas (LPG) or propane autogas, propane is a cleaner-burning alternative fuel that's been used for decades to power light-, medium- and heavy-duty propane vehicles. Propane is a three-carbon alkane gas

  9. Cross-dehydrogenative coupling for the intermolecular C–O bond formation

    PubMed Central

    Krylov, Igor B; Vil’, Vera A

    2015-01-01

    Summary The present review summarizes primary publications on the cross-dehydrogenative C–O coupling, with special emphasis on the studies published after 2000. The starting compound, which donates a carbon atom for the formation of a new C–O bond, is called the CH-reagent or the C-reagent, and the compound, an oxygen atom of which is involved in the new bond, is called the OH-reagent or the O-reagent. Alcohols and carboxylic acids are most commonly used as O-reagents; hydroxylamine derivatives, hydroperoxides, and sulfonic acids are employed less often. The cross-dehydrogenative C–O coupling reactions are carried out using different C-reagents, such as compounds containing directing functional groups (amide, heteroaromatic, oxime, and so on) and compounds with activated C–H bonds (aldehydes, alcohols, ketones, ethers, amines, amides, compounds containing the benzyl, allyl, or propargyl moiety). An analysis of the published data showed that the principles at the basis of a particular cross-dehydrogenative C–O coupling reaction are dictated mainly by the nature of the C-reagent. Hence, in the present review the data are classified according to the structures of C-reagents, and, in the second place, according to the type of oxidative systems. Besides the typical cross-dehydrogenative coupling reactions of CH- and OH-reagents, closely related C–H activation processes involving intermolecular C–O bond formation are discussed: acyloxylation reactions with ArI(O2CR)2 reagents and generation of O-reagents in situ from C-reagents (methylarenes, aldehydes, etc.). PMID:25670997

  10. Visible Light Driven Benzyl Alcohol Dehydrogenation in a Dye-Sensitized Photoelectrosynthesis Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Wenjing; Vannucci, Aaron K.; Farnum, Byron H.

    2014-06-27

    Light-driven dehydrogenation of benzyl alcohol (BnOH) to benzaldehyde and hydrogen has been shown to occur in a dye-sensitized photoelectrosynthesis cell (DSPEC). In the DSPEC, the photoanode consists of mesoporous films of TiO2 nanoparticles or of core/shell nanoparticles with tin-doped In2O3 nanoparticle (nanoITO) cores and thin layers of TiO2 deposited by atomic layer deposition (nanoITO/TiO2). Metal oxide surfaces were coderivatized with both a ruthenium polypyridyl chromophore in excess and an oxidation catalyst. Chromophore excitation and electron injection were followed by cross-surface electron-transfer activation of the catalyst to RuIV=O2+, which then oxidizes benzyl alcohol to benzaldehyde. The injected electrons are transferred tomore » a Pt electrode for H2 production. The nanoITO/TiO2 core/shell structure causes a decrease of up to 2 orders of magnitude in back electron-transfer rate compared to TiO2. At the optimized shell thickness, sustained absorbed photon to current efficiency of 3.7% was achieved for BnOH dehydrogenation, an enhancement of ~10 compared to TiO2.« less

  11. Multiscale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Michael P.; Goldsmith, C. Franklin; Klippenstein, Stephen J.

    2015-07-16

    We have developed a multi-scale approach (Burke, M. P.; Klippenstein, S. J.; Harding, L. B. Proc. Combust. Inst. 2013, 34, 547–555.) to kinetic model formulation that directly incorporates elementary kinetic theories as a means to provide reliable, physics-based extrapolation to unexplored conditions. Here, we extend and generalize the multi-scale modeling strategy to treat systems of considerable complexity – involving multi-well reactions, potentially missing reactions, non-statistical product branching ratios, and non-Boltzmann (i.e. non-thermal) reactant distributions. The methodology is demonstrated here for a subsystem of low-temperature propane oxidation, as a representative system for low-temperature fuel oxidation. A multi-scale model is assembled andmore » informed by a wide variety of targets that include ab initio calculations of molecular properties, rate constant measurements of isolated reactions, and complex systems measurements. Active model parameters are chosen to accommodate both “parametric” and “structural” uncertainties. Theoretical parameters (e.g. barrier heights) are included as active model parameters to account for parametric uncertainties in the theoretical treatment; experimental parameters (e.g. initial temperatures) are included to account for parametric uncertainties in the physical models of the experiments. RMG software is used to assess potential structural uncertainties due to missing reactions. Additionally, branching ratios among product channels are included as active model parameters to account for structural uncertainties related to difficulties in modeling sequences of multiple chemically activated steps. The approach is demonstrated here for interpreting time-resolved measurements of OH, HO2, n-propyl, i-propyl, propene, oxetane, and methyloxirane from photolysis-initiated low-temperature oxidation of propane at pressures from 4 to 60 Torr and temperatures from 300 to 700 K. In particular, the multi

  12. Site-Directed Synthesis of Cobalt Oxide Clusters in a Metal–Organic Framework

    DOE PAGES

    Peters, Aaron W.; Otake, Kenichi; Platero-Prats, Ana E.; ...

    2018-04-19

    Here, direct control over structure and location of catalytic species deposited on amorphous supports represents a formidable challenge in heterogeneous catalysis. In contrast, a structurally well-defined, crystalline metal–organic framework (MOF) can be rationally designed using post-synthetic techniques to allow for desired structural or locational changes of deposited metal ions. Herein, naphthalene dicarboxylate linkers are incorporated in the MOF, NU-1000, to block the small cavities where few-atom clusters of cobalt oxide preferentially grow, inducing catalyst deposition towards hither-to ill-favored grafting sites orientated toward NU-1000’s mesoporous channels. Despite the different cobalt oxide location, the resulting material is still an active propane oxidativemore » dehydrogenation catalyst at low temperature, reaching a turnover frequency of 0.68 ± 0.05 h –1 at 230 °C and confirming the utility of MOFs as crystalline supports to guide rational design of catalysts.« less

  13. Site-Directed Synthesis of Cobalt Oxide Clusters in a Metal–Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Aaron W.; Otake, Kenichi; Platero-Prats, Ana E.

    Here, direct control over structure and location of catalytic species deposited on amorphous supports represents a formidable challenge in heterogeneous catalysis. In contrast, a structurally well-defined, crystalline metal–organic framework (MOF) can be rationally designed using post-synthetic techniques to allow for desired structural or locational changes of deposited metal ions. Herein, naphthalene dicarboxylate linkers are incorporated in the MOF, NU-1000, to block the small cavities where few-atom clusters of cobalt oxide preferentially grow, inducing catalyst deposition towards hither-to ill-favored grafting sites orientated toward NU-1000’s mesoporous channels. Despite the different cobalt oxide location, the resulting material is still an active propane oxidativemore » dehydrogenation catalyst at low temperature, reaching a turnover frequency of 0.68 ± 0.05 h –1 at 230 °C and confirming the utility of MOFs as crystalline supports to guide rational design of catalysts.« less

  14. NiCu single atom alloys catalyze the C—H bond activation in the selective non- oxidative ethanol dehydrogenation reaction

    DOE PAGES

    Shan, Junjun; Liu, Jilei; Li, Mengwei; ...

    2017-12-29

    Here, NiCu single atom alloy (SAA) nanoparticles supported on silica are reported to catalyze the non-oxidative dehydrogenation of ethanol, selectively to acetaldehyde and hydrogen products by facilitating the C—H bond cleavage. The activity and selectivity of the NiCu SAA catalysts were compared to monometallic copper and to PtCu and PdCu single atom alloys, in a flow reactor at moderate temperatures. In-situ DRIFTS showed that the silica support facilitates the O—H bond cleavage of ethanol to form ethoxy intermediates over all the supported alloy catalysts. However, these remain unreactive up to 250°C for the Cu/SiO 2 monometallic nanoparticles, while in themore » NiCu SAA, acetaldehyde is formed at much lower temperatures, below 150°C. In situ DRIFTS was also used to identify the C—H activation step as the rate determining step of this reaction on all the copper catalysts we examined. The presence of atomically dispersed Ni in Cu significantly lowers the C—H bond activation barrier, whereas Pt and Pd atoms were found less effective. This work provides direct evidence that the C—H bond cleavage is the rate determining step in ethanol dehydrogenation over this type catalyst.« less

  15. NiCu single atom alloys catalyze the C—H bond activation in the selective non- oxidative ethanol dehydrogenation reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Junjun; Liu, Jilei; Li, Mengwei

    Here, NiCu single atom alloy (SAA) nanoparticles supported on silica are reported to catalyze the non-oxidative dehydrogenation of ethanol, selectively to acetaldehyde and hydrogen products by facilitating the C—H bond cleavage. The activity and selectivity of the NiCu SAA catalysts were compared to monometallic copper and to PtCu and PdCu single atom alloys, in a flow reactor at moderate temperatures. In-situ DRIFTS showed that the silica support facilitates the O—H bond cleavage of ethanol to form ethoxy intermediates over all the supported alloy catalysts. However, these remain unreactive up to 250°C for the Cu/SiO 2 monometallic nanoparticles, while in themore » NiCu SAA, acetaldehyde is formed at much lower temperatures, below 150°C. In situ DRIFTS was also used to identify the C—H activation step as the rate determining step of this reaction on all the copper catalysts we examined. The presence of atomically dispersed Ni in Cu significantly lowers the C—H bond activation barrier, whereas Pt and Pd atoms were found less effective. This work provides direct evidence that the C—H bond cleavage is the rate determining step in ethanol dehydrogenation over this type catalyst.« less

  16. Thermocatalytic Destruction of Gas-Phase Perchloroethylene Using Propane as a Hydrogen Source

    PubMed Central

    Willinger, Marty; Rupp, Erik; Barbaris, Brian; Gao, Song; Arnolda, Robert; Betterton, Eric; Sáez, A. Eduardo

    2009-01-01

    The use of propane in combination with oxygen to promote the destruction of perchloroethylene (PCE) over a platinum (Pt)/rhodium (Rh) catalyst on a cerium/zirconium oxide washcoat supported on an alumina monolith was explored. Conversions of PCE were measured in a continuous flow reactor with residence times less than 0.5 s and temperatures ranging from 200 to 600°C. The presence of propane was shown to increase significantly the conversion of PCE over oxygen-only conditions. Conversions close to 100% were observed at temperatures lower than 450°C with 20% oxygen and 2% propane in the feed, which makes this process attractive from a practical standpoint. In the absence of oxygen, PCE conversion is even higher, but the catalyst suffers significant deactivation in less than an hour. Even though results show that oxygen competes with reactants for active sites on the catalyst, the long-term stability that oxygen confers to the catalyst makes the process an efficient alternative to PCE oxidation. A Langmuir-Hinshelwood competitive adsorption model is proposed to quantify PCE conversion. PMID:19217713

  17. Catalytic dehydrogenation of alcohol over solid-state molybdenum sulfide clusters with an octahedral metal framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamiguchi, Satoshi, E-mail: kamigu@riken.jp; Organometallic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0198; Okumura, Kazu

    Graphical abstract: - Highlights: • Solid-state molybdenum sulfide clusters catalyzed the dehydrogenation of alcohol. • The dehydrogenation proceeded without the addition of any oxidants. • The catalytic activity developed when the cluster was activated at 300–500 °C in H{sub 2}. • The Lewis-acidic molybdenum atom and basic sulfur ligand were catalytically active. • The clusters function as bifunctional acid–base catalysts. - Abstract: Solid-state molybdenum sulfide clusters with an octahedral metal framework, the superconducting Chevrel phases, are applied to catalysis. A copper salt of a nonstoichiometric sulfur-deficient cluster, Cu{sub x}Mo{sub 6}S{sub 8–δ} (x = 2.94 and δ ≈ 0.3), is storedmore » in air for more than 90 days. When the oxygenated cluster is thermally activated in a hydrogen stream above 300 °C, catalytic activity for the dehydrogenation of primary alcohols to aldehydes and secondary alcohols to ketones develops. The addition of pyridine or benzoic acid decreases the dehydrogenation activity, indicating that both a Lewis-acidic coordinatively unsaturated molybdenum atom and a basic sulfur ligand synergistically act as the catalytic active sites.« less

  18. Alternative Fuels Data Center: Propane Benefits

    Science.gov Websites

    Benefits to someone by E-mail Share Alternative Fuels Data Center: Propane Benefits on Facebook Tweet about Alternative Fuels Data Center: Propane Benefits on Twitter Bookmark Alternative Fuels Data Center: Propane Benefits on Google Bookmark Alternative Fuels Data Center: Propane Benefits on Delicious

  19. Acid-catalyzed dehydrogenation of amine-boranes

    DOEpatents

    Stephens, Frances Helen; Baker, Ralph Thomas

    2010-01-12

    A method of dehydrogenating an amine-borane using an acid-catalyzed reaction. The method generates hydrogen and produces a solid polymeric [R.sup.1R.sup.2B--NR.sup.3R.sup.4].sub.n product. The method of dehydrogenating amine-boranes may be used to generate H.sub.2 for portable power sources.

  20. Alternative Fuels Data Center: Propane Fueling Stations

    Science.gov Websites

    Fueling Station Locations by State More Propane Data | All Maps & Data Case Studies Michigan School Prisons Adopt Propane, Establish Fuel Savings for Years to Come More Propane Case Studies | All Case Studies Publications The Growing Presence of Propane in Pupil Transportation Costs Associated With Propane

  1. An experimental survey of additives for improving dehydrogenation properties of magnesium hydride

    NASA Astrophysics Data System (ADS)

    Zhou, Chengshang; Fang, Zhigang Zak; Sun, Pei

    2015-03-01

    The use of a wide range of additives has been known as an important method for improving hydrogen storage properties of MgH2. There is a lack of a standard methodology, however, that can be used to select or compare the effectiveness of different additives. A systematic experimental survey was carried out in this study to compare a wide range of additives including transitions metals, transition metal oxides, hydrides, intermetallic compounds, and carbon materials, with respect to their effects on dehydrogenation properties of MgH2. MgH2 with various additives were prepared by using a high-energy-high-pressure planetary ball milling method and characterized by using thermogravimetric analysis (TGA) techniques. The results showed that additives such as Ti and V-based metals, hydride, and certain intermetallic compounds have strong catalytic effects. Additives such as Al, In, Sn, Si showed minor effects on the kinetics of the dehydrogenation of MgH2, while exhibiting moderate thermodynamic destabilizing effects. In combination, MgH2 with both kinetic and thermodynamic additives, such as the MgH2-In-TiMn2 system, exhibited a drastically decreased dehydrogenation temperature.

  2. Homologs from sulfur oxidation (Sox) and methanol dehydrogenation (Xox) enzyme systems collaborate to give rise to a novel pathway of chemolithotrophic tetrathionate oxidation.

    PubMed

    Pyne, Prosenjit; Alam, Masrure; Rameez, Moidu Jameela; Mandal, Subhrangshu; Sar, Abhijit; Mondal, Nibendu; Debnath, Utsab; Mathew, Boby; Misra, Anup Kumar; Mandal, Amit Kumar; Ghosh, Wriddhiman

    2018-04-18

    The SoxXAYZB(CD) 2 -mediated pathway of bacterial sulfur-chemolithotrophy explains the oxidation of thiosulfate, sulfide, sulfur and sulfite, but not tetrathionate. Advenella kashmirensis, which oxidizes tetrathionate to sulfate, besides forming it as an intermediate during thiosulfate-oxidation, possesses a soxCDYZAXOB operon. Knock-out-mutations proved that only SoxBCD is involved in A. kashmirensis tetrathionate-oxidation, whereas thiosulfate-to-tetrathionate-conversion is Sox-independent. Expression of two glutathione-metabolism-related proteins increased under chemolithotrophic conditions, as compared to the chemoorganotrophic one. Substrate-dependent oxygen-consumption pattern of whole-cells, and sulfur-oxidizing enzyme activities of cell-free-extracts, measured in the presence/absence of thiol-inhibitors/glutathione, corroborated glutathione-involvement in tetrathionate-oxidation. Furthermore, proteome analyses detected a sulfite:acceptor oxidoreductase (SorAB) exclusively under chemolithotrophic conditions, while expression of a methanol dehydrogenase (XoxF) homolog, subsequently named thiol dehydrotransferase (ThdT), was found to increase three- and ten-fold during thiosulfate-to-tetrathionate-conversion and tetrathionate-oxidation, respectively. A thdT-knocked-out mutant did not oxidize tetrathionate, but converted half of the supplied 40-mM-S thiosulfate to tetrathionate. Knock-out of another thiosulfate dehydrogenase (tsdA) gene proved that both ThdT and TsdA individually converted ∼20-mM-S thiosulfate to tetrathionate. The overexpressed and isolated ThdT protein exhibited PQQ-dependent thiosulfate dehydrogenation, whereas its PQQ-independent thiol-transfer activity involving tetrathionate and glutathione potentially produced a glutathione:sulfodisulfane adduct and sulfite. SoxBCD and SorAB were hypothesized to oxidize the aforesaid adduct and sulfite, respectively. This article is protected by copyright. All rights reserved. © 2018 John Wiley & Sons

  3. Identifying Different Types of Catalysts for CO2 Reduction by Ethane through Dry Reforming and Oxidative Dehydrogenation.

    PubMed

    Porosoff, Marc D; Myint, Myat Noe Zin; Kattel, Shyam; Xie, Zhenhua; Gomez, Elaine; Liu, Ping; Chen, Jingguang G

    2015-12-14

    The recent shale gas boom combined with the requirement to reduce atmospheric CO2 have created an opportunity for using both raw materials (shale gas and CO2 ) in a single process. Shale gas is primarily made up of methane, but ethane comprises about 10 % and reserves are underutilized. Two routes have been investigated by combining ethane decomposition with CO2 reduction to produce products of higher value. The first reaction is ethane dry reforming which produces synthesis gas (CO+H2 ). The second route is oxidative dehydrogenation which produces ethylene using CO2 as a soft oxidant. The results of this study indicate that the Pt/CeO2 catalyst shows promise for the production of synthesis gas, while Mo2 C-based materials preserve the CC bond of ethane to produce ethylene. These findings are supported by density functional theory (DFT) calculations and X-ray absorption near-edge spectroscopy (XANES) characterization of the catalysts under in situ reaction conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Identifying different types of catalysts for CO 2 reduction by ethane through dry reforming and oxidative dehydrogenation

    DOE PAGES

    Marc D. Porosoff; Chen, Jingguang G.; Myint, Myat Noe Zin; ...

    2015-11-10

    In this study, the recent shale gas boom combined with the requirement to reduce atmospheric CO 2 have created an opportunity for using both raw materials (shale gas and CO 2) in a single process. Shale gas is primarily made up of methane, but ethane comprises about 10 % and reserves are underutilized. Two routes have been investigated by combining ethane decomposition with CO 2 reduction to produce products of higher value. The first reaction is ethane dry reforming which produces synthesis gas (CO+H 2). The second route is oxidative dehydrogenation which produces ethylene using CO 2 as a softmore » oxidant. The results of this study indicate that the Pt/CeO 2 catalyst shows promise for the production of synthesis gas, while Mo 2C-based materials preserve the C—C bond of ethane to produce ethylene. These findings are supported by density functional theory (DFT) calculations and X-ray absorption near-edge spectroscopy (XANES) characterization of the catalysts under in situ reaction conditions.« less

  5. Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis

    PubMed Central

    West, Julian G.; Huang, David; Sorensen, Erik J.

    2015-01-01

    The dehydrogenation of unactivated alkanes is an important transformation both in industrial and biological systems. Recent efforts towards this reaction have revolved around high temperature, organometallic C–H activation by noble metal catalysts that produce alkenes and hydrogen gas as the sole products. Conversely, natural desaturase systems proceed through stepwise hydrogen atom transfer at physiological temperature; however, these transformations require a terminal oxidant. Here we show combining tetra-n-butylammonium decatungstate (TBADT) and cobaloxime pyridine chloride (COPC) can catalytically dehydrogenate unactivated alkanes and alcohols under near-UV irradiation at room temperature with hydrogen as the sole by-product. This noble metal-free process follows a nature-inspired pathway of high- and low-energy hydrogen atom abstractions. The hydrogen evolution ability of cobaloximes is leveraged to render the system catalytic, with cooperative turnover numbers up to 48 and yields up to 83%. Our results demonstrate how cooperative base metal catalysis can achieve transformations previously restricted to precious metal catalysts. PMID:26656087

  6. Functional characterization of propane-enhanced N-nitrosodimethylamine degradation by two actinomycetales.

    PubMed

    Sharp, Jonathan O; Sales, Christopher M; Alvarez-Cohen, Lisa

    2010-12-15

    Propane-induced cometabolic degradation of n-nitrosodimethylamine (NDMA) by two propanotrophs is characterized through kinetic, gene presence, and expression studies. After growth on propane, resting cells of Rhodococcus sp. RR1 possessed a maximum transformation rate (v(max,n)) of 44 ± 5 µg NDMA (mg protein)(-1) h(-1); the rate for Mycobacterium vaccae (austroafricanum) JOB-5 was modestly lower with v(max,n) of 28 ± 3 µg NDMA (mg protein)(-1) h(-1). Both strains were capable of degrading environmentally relevant, trace quantities of NDMA to below the experimental limit of detection, calculated as 20 ng NDMA L(-1). However, a comparison of half saturation constants (K(s,n)) and NDMA degradation in the presence of propane revealed pronounced differences between the strains. The K(s,n) for strain RR1 was 36 ± 10 µg NDMA L(-1) while the propane concentration needed to inhibit NDMA rates by 50% (K(inh)) occurred at 7,700 µg propane L(-1) (R(2) = 0.9669). In contrast, strain JOB-5 had a markedly lower affinity for NDMA verses propane with a calculated K(s,n) of 2,200 ± 1,000 µg NDMA L(-1) and K(inh) of 120 µg propane L(-1) (R(2) = 0.9895). Genomic and transcriptional investigations indicated that the functional enzymes involved in NDMA degradation and propane metabolism are different for each strain. For Rhodococcus sp. RR1, a putative propane monooxygenase (PrMO) was identified and implicated in NDMA oxidation. In contrast, JOB-5 was not found to possess a PrMO homologue and two functionally analogous alkane monoxygenases (AlkMOs) were not induced by growth on propane. Differences between the PrMO in this Rhodococcus and the unidentified enzyme(s) in the Mycobacterium may explain differences in NDMA degradation and inhibition kinetics between these strains. © 2010 Wiley Periodicals, Inc.

  7. Understanding complete oxidation of methane on spinel oxides at a molecular level

    DOE PAGES

    Tao, Franklin Feng; Shan, Jun-jun; Nguyen, Luan; ...

    2015-08-04

    It is crucial to develop a catalyst made of earth-abundant elements highly active for a complete oxidation of methane at a relatively low temperature. NiCo 2O 4 consisting of earth-abundant elements which can completely oxidize methane in the temperature range of 350-550 °C. Being a cost-effective catalyst, NiCo 2O 4 exhibits activity higher than precious-metal-based catalysts. Here we report that the higher catalytic activity at the relatively low temperature results from the integration of nickel cations, cobalt cations and surface lattice oxygen atoms/oxygen vacancies at the atomic scale. Finally, in situ studies of complete oxidation of methane on NiCo 2Omore » 4 and theoretical simulations show that methane dissociates to methyl on nickel cations and then couple with surface lattice oxygen atoms to form -CH 3O with a following dehydrogenation to -CH 2O; a following oxidative dehydrogenation forms CHO; CHO is transformed to product molecules through two different sub-pathways including dehydrogenation of OCHO and CO oxidation.« less

  8. Methanol Oxidative Dehydrogenation on Oxide Catalysts: Molecular and Dissociative Routes and Hydrogen Addition Energies as Descriptors of Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshlahra, Prashant; Iglesia, Enrique

    The oxidative dehydrogenation (ODH) of alkanols on oxide catalysts is generally described as involving H-abstraction from alkoxy species formed via O–H dissociation. Kinetic and isotopic data cannot discern between such routes and those involving kinetically-relevant H-abstraction from undissociated alkanols. Here, we combine such experiments with theoretical estimates of activation energies and entropies to show that the latter molecular routes prevail over dissociative routes for methanol reactions on polyoxometalate (POM) clusters at all practical reaction temperatures. The stability of the late transition states that mediate H-abstraction depend predominantly on the stability of the O–H bond formed, making H-addition energies (HAE) accuratemore » and single-valued descriptors of reactivity. Density functional theory-derived activation energies depend linearly on HAE values at each O-atom location on clusters with a range of composition (H3PMo12, H4SiMo12, H3PW12, H4PV1Mo11, and H4PV1W11); both barriers and HAE values reflect the lowest unoccupied molecular orbital energy of metal centers that accept the electron and the protonation energy of O-atoms that accept the proton involved in the H-atom transfer. Bridging O-atoms form O–H bonds that are stronger than those of terminal atoms and therefore exhibit more negative HAE values and higher ODH reactivity on all POM clusters. For each cluster composition, ODH turnover rates reflect the reactivity-averaged HAE of all accessible O-atoms, which can be evaluated for each cluster composition to provide a rigorous and accurate predictor of ODH reactivity for catalysts with known structure. These relations together with oxidation reactivity measurements can then be used to estimate HAE values and to infer plausible structures for catalysts with uncertain active site structures.« less

  9. Experimental investigations about the effect of trace amount of propane on the formation of mixed hydrates of methane and propane

    NASA Astrophysics Data System (ADS)

    Cai, W.; Lu, H.; Huang, X.

    2016-12-01

    In natural gas hydrates, some heavy hydrocarbons are always detected in addition to methane. However, it is still not well understood how the trace amount of heavy gas affect the hydrate properties. Intensive studies have been carried out to study the thermodynamic properties and structure types of mixed gases hydrates, but comparatively few investigations have been carried out on the cage occupancies of guest molecules in mixed gases hydrates. For understanding how trace amount of propane affects the formation of mixed methane-propane hydrates, X-ray diffraction, Raman spectroscopy, and gas chromatography were applied to the synthesized mixed methane-propane hydrate specimens, to get their structural characteristics (structure type, structural parameters, cage occupancy, etc.) and gas compositions. The mixed methane-propane hydrates were prepared by reacting fine ice powders with various gas mixtures of methane and propane. When the propane content was below 0.4%, the hydrates synthesized were found containing both sI methane hydrate and sII methane-propane hydrate; while the hydrates were found always sII when propane was over certain content. Detail studies about the cage occupancies of propane and methane in sII hydrate revealed that: 1) with the increase in propane content of methane-propane mixture, the occupancy of propane in large cage increased as accompanied with the decrease in methane occupancy in large cage, however the occupancy of methane in small cage didn't experience significant change; 2) temperature and pressure seemed no obvious influence on cage occupancy.

  10. Microbiological and chemical dehydrogenation of withaferin A.

    PubMed

    Fuska, J; Proska, B; Williamson, J; Rosazza, J P

    1987-01-01

    Arthrobacter simplex dehydrogenated withaferin A to 4-dehydrowithaferin A but it was not able to dehydrogenate this substrate in position 27. 27-Dehydrowithaferin A was prepared chemically using pyridinium chlorochromate. Whereas 4-dehydrowithaferin A surpassed in its effect on leukemic (388 cells the original compound and all its derivates synthesized so far, 27-dehydrowithaferin A was biologically inactive.

  11. Decarbonylation and dehydrogenation of carbohydrates

    DOEpatents

    Andrews, Mark A.; Klaeren, Stephen A.

    1991-01-01

    Carbohydrates, especially aldose or ketose sugars, including those whose carbonyl group is masked by hemi-acetal or hemi-ketal formation, are decarbonylated by heating the feed carbohydrate together with a transition metal complex in a suitable solvent. Also, primary alcohols, including sugar alditols are simultaneously dehydrogenated and decarbonylated by heating a mixture of rhodium and ruthenium complexes and the alcohol and optionally a hydrogen acceptor in an acceptable solvent. Such defarbonylation and/or dehydrogenation of sugars provides a convenient procedure for the synthesis of certain carbohydrates and may provide a means for the conversion of biomass into useful products.

  12. Mechanistic Insights into the Catalytic Oxidation of Carboxylic Acids on Au/TiO 2: Partial Oxidation of Propionic and Butyric Acid to Gold Ketenylidene through Unsaturated Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEntee, Monica; Tang, Wenjie; Neurock, Matthew

    Here, the partial oxidation of model C 2–C 4 (acetic, propionic, and butyric) carboxylic acids on Au/TiO 2 catalysts consisting of Au particles ~3 nm in size was investigated using transmission infrared spectroscopy and density functional theory. All three acids readily undergo oxidative dehydrogenation on Au/TiO 2. Propionic and butyric acid dehydrogenate at the C2–C3 positions, whereas acetic acid dehydrogenates at the C1–C2 position. The resulting acrylate and crotonate intermediates are subsequently oxidized to form β-keto acids that decarboxylate. All three acids form a gold ketenylidene intermediate, Au 2C=C=O, along the way to their full oxidation to form CO 2.more » Infrared measurements of Au 2C=C=O formation as a function of time provides a surface spectroscopic probe of the kinetics for the activation and oxidative dehydrogenation of the alkyl groups in the carboxylate intermediates that form.« less

  13. Mechanistic Insights into the Catalytic Oxidation of Carboxylic Acids on Au/TiO 2: Partial Oxidation of Propionic and Butyric Acid to Gold Ketenylidene through Unsaturated Acids

    DOE PAGES

    McEntee, Monica; Tang, Wenjie; Neurock, Matthew; ...

    2014-12-12

    Here, the partial oxidation of model C 2–C 4 (acetic, propionic, and butyric) carboxylic acids on Au/TiO 2 catalysts consisting of Au particles ~3 nm in size was investigated using transmission infrared spectroscopy and density functional theory. All three acids readily undergo oxidative dehydrogenation on Au/TiO 2. Propionic and butyric acid dehydrogenate at the C2–C3 positions, whereas acetic acid dehydrogenates at the C1–C2 position. The resulting acrylate and crotonate intermediates are subsequently oxidized to form β-keto acids that decarboxylate. All three acids form a gold ketenylidene intermediate, Au 2C=C=O, along the way to their full oxidation to form CO 2.more » Infrared measurements of Au 2C=C=O formation as a function of time provides a surface spectroscopic probe of the kinetics for the activation and oxidative dehydrogenation of the alkyl groups in the carboxylate intermediates that form.« less

  14. The Millimeter-Wave Spectrum of Propanal

    NASA Astrophysics Data System (ADS)

    Zingsheim, Oliver; Müller, Holger S. P.; Lewen, Frank; Schlemmer, Stephan

    2017-06-01

    The microwave spectrum of propanal, also known as propionaldehyde, CH_3CH_2CHO, has been investigated in the laboratory already since 1964^1 and has also been detected in space^2. Recently, propanal was detected with the Atacama Large Millimeter/submillimeter Array (ALMA), Protostellar Interferometric Line Survey (PILS)^3. The high sensitivity and resolution of ALMA indicated small discrepancies between observed and predicted rotational spectra of propanal. As higher accuracies are desired the spectrum of propanal was measured up to 500 GHz with the Cologne (Sub-)Millimeter spectrometer. Propanal has two stable conformers, syn and gauche, which differ mainly in the rotation of the aldehyd group with respect to the rigid C-atom framework of the molecule. We extensively studied both of them. The lower syn-conformer shows small splittings caused by the internal rotation of the methyl group, whereas the spectrum of gauche-propanal is complicated due to the tunneling rotation interaction from two stable degenerate conformers. Additionally, we analyzed vibrationally excited states. ^1 Butcher et al., J. Chem. Phys. 40 6 (1964) ^2 Hollis et al., Astrophys. J. 610 L21 (2004) ^3 Lykke et al., A&A 597 A53 (2017)

  15. Base metal dehydrogenation of amine-boranes

    DOEpatents

    Blacquiere, Johanna Marie [Ottawa, CA; Keaton, Richard Jeffrey [Pearland, TX; Baker, Ralph Thomas [Los Alamos, NM

    2009-06-09

    A method of dehydrogenating an amine-borane having the formula R.sup.1H.sub.2N--BH.sub.2R.sup.2 using base metal catalyst. The method generates hydrogen and produces at least one of a [R.sup.1HN--BHR.sup.2].sub.m oligomer and a [R.sup.1N--BR.sup.2].sub.n oligomer. The method of dehydrogenating amine-boranes may be used to generate H.sub.2 for portable power sources, such as, but not limited to, fuel cells.

  16. Alternative Fuels Data Center: Propane Laws and Incentives

    Science.gov Websites

    Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Propane Laws and and Incentives on Digg Find More places to share Alternative Fuels Data Center: Propane Laws and

  17. Recovery Act: Demonstration of a SOFC Generator Fueled by Propane to Provide Electrical Power to Real World Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bessette, Norman

    The objective of this project provided with funds through the American Recovery and Reinvestment Act of 2009 (ARRA) was to demonstrate a Solid Oxide Fuel Cell (SOFC) generator capable of operation on propane fuel to improve efficiency and reduce emissions over commercially available portable generators. The key objectives can be summarized as: Development of two portable electrical generators in the 1-3kW range utilizing Solid Oxide Fuel Cells and propane fuel; The development and demonstration of a proof-of-concept electro-mechanical propane fuel interface that provides a user friendly capability for managing propane fuel; The deployment and use of the fuel cell portablemore » generators to power media production equipment over the course of several months at multiple NASCAR automobile racing events; The deployment and use of the fuel cell portable generators at scheduled events by first responders (police, fire) of the City of Folsom California; and Capturing data with regard to the systems’ ability to meet Department of Energy (DOE) Technical Targets and evaluating the ease of use and potential barriers to further adoption of the systems.« less

  18. Alternative Fuels Data Center: Propane Vehicle Availability

    Science.gov Websites

    Availability to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Google Bookmark Alternative Fuels

  19. Alternative Fuels Data Center: Propane Vehicle Conversions

    Science.gov Websites

    Conversions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Google Bookmark Alternative Fuels

  20. 77 FR 2293 - AmeriGas Propane, L.P., AmeriGas Propane, Inc., Energy Transfer Partners, L.P., and Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-17

    ... GP in which AmeriGas proposed to acquire ETP's Heritage Propane business through the approximately $2..., Titan Energy Partner, L.P., and Titan Energy GP, L.L.C. ETP's Heritage Propane business includes Heritage Propane Express, an entity that is engaged in the business of preparing, filling, distributing and...

  1. Propane - A Mid-Heating Season Assessment

    EIA Publications

    2001-01-01

    This report will analyze some of the factors leading up to the rapid increase in propane demand and subsequent deterioration in supply that propelled propane prices to record high levels during December and early January.

  2. Chromium and Ruthenium-Doped Zinc Oxide Thin Films for Propane Sensing Applications

    PubMed Central

    Gómez-Pozos, Heberto; González-Vidal, José Luis; Torres, Gonzalo Alberto; Rodríguez-Baez, Jorge; Maldonado, Arturo; de la Luz Olvera, María; Acosta, Dwight Roberto; Avendaño-Alejo, Maximino; Castañeda, Luis

    2013-01-01

    Chromium and ruthenium-doped zinc oxide (ZnO:Cr) and (ZnO:Ru) thin solid films were deposited on soda-lime glass substrates by the sol-gel dip-coating method. A 0.6 M solution of zinc acetate dihydrate dissolved in 2-methoxyethanol and monoethanolamine was used as basic solution. Chromium (III) acetylacetonate and Ruthenium (III) trichloride were used as doping sources. The Ru incorporation and its distribution profile into the films were proved by the SIMS technique. The morphology and structure of the films were studied by SEM microscopy and X-ray diffraction measurements, respectively. The SEM images show porous surfaces covered by small grains with different grain size, depending on the doping element, and the immersions number into the doping solutions. The sensing properties of ZnO:Cr and ZnO:Ru films in a propane (C3H8) atmosphere, as a function of the immersions number in the doping solution, have been studied in the present work. The highest sensitivity values were obtained for films doped from five immersions, 5.8 and 900, for ZnO:Cr and ZnO:Ru films, respectively. In order to evidence the catalytic effect of the chromium (Cr) and ruthenium (Ru), the sensing characteristics of undoped ZnO films are reported as well. PMID:23482091

  3. Propane-Fueled Jet Engine

    NASA Astrophysics Data System (ADS)

    Farwell, D. A.; Svenson, A. J.; Ramsier, R. D.

    2001-04-01

    We present our recent efforts to design, construct, and test a gas turbine, or jet, engine. Our design utilizes a turbocharger and ignition system from an automobile, and a flame tube/reaction chamber unit fabricated by hand from stainless steel. Once the engine is running, it is completely self-sustaining as long as there is a fuel supply, which in our case is propane. Air is forced into the intake where it is compressed and then injected into the combustion chamber where it is mixed with propane. The spark plugs ignite the air-propane mixture which burns to produce thrust at the exhaust. We have performed operational tests under different environmental conditions and with several turbochargers. We are currently working on adding a lubrication system to the engine, and will discuss our plan to experiment with the reaction chamber and flame tube design in an effort to improve performance and efficiency. *Corresponding author: rex@uakron.edu

  4. Chemical kinetic modeling of propane oxidation behind shock waves

    NASA Technical Reports Server (NTRS)

    Mclain, A. G.; Jachimowski, C. J.

    1977-01-01

    The stoichiometric combustion of propane behind incident shock waves was studied experimentally and analytically over a temperature range from 1700 K to 2600 K and a pressure range from 1.2 to 1.9 atm. Measurements of the concentrations of carbon monoxide (CO) and carbon dioxide (CO2) and the product of the oxygen atom and carbon dioxide concentrations (O)(CO) were made after passage of the incident shock wave. A kinetic mechanism was developed which, when used in a computer program for a flowing, reacting gas behind an incident shock wave predicted experimentally measured results quite well. Ignition delay times from the literature were also predicted quite well. The kinetic mechanism consisted of 59 individual kinetic steps.

  5. Photocatalytic acceptorless alkane dehydrogenation: scope, mechanism, and conquering deactivation with carbon dioxide.

    PubMed

    Chowdhury, Abhishek Dutta; Julis, Jennifer; Grabow, Kathleen; Hannebauer, Bernd; Bentrup, Ursula; Adam, Martin; Franke, Robert; Jackstell, Ralf; Beller, Matthias

    2015-01-01

    Alkane dehydrogenation is of special interest for basic science but also offers interesting opportunities for industry. The existing dehydrogenation methodologies make use of heterogeneous catalysts, which suffer from harsh reaction conditions and a lack of selectivity, whereas homogeneous methodologies rely mostly on unsolicited waste generation from hydrogen acceptors. Conversely, acceptorless photochemical alkane dehydrogenation in the presence of trans-Rh(PMe3 )2 (CO)Cl can be regarded as a more benign and atom efficient alternative. However, this methodology suffers from catalyst deactivation over time. Herein, we provide a detailed investigation of the trans-Rh(PMe3 )2 (CO)Cl-photocatalyzed alkane dehydrogenation using spectroscopic and theoretical investigations. These studies inspired us to utilize CO2 to prevent catalyst deactivation, which leads eventually to improved catalyst turnover numbers in the dehydrogenation of alkanes that include liquid organic hydrogen carriers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Exploring low-temperature dehydrogenation at ionic Cu sites in beta zeolite to enable alkane recycle in dimethyl ether homologation

    DOE PAGES

    Farberow, Carrie A.; Cheah, Singfoong; Kim, Seonah; ...

    2017-04-24

    Cu-based catalysts containing targeted functionalities including metallic Cu, oxidized Cu, ionic Cu, and Bronsted acid sites were synthesized and evaluated for isobutane dehydrogenation. Hydrogen productivities, combined with operando X-ray absorption spectroscopy, indicated that Cu(I) sites in Cu/BEA catalysts activate C-H bonds in isobutane. Computational analysis revealed that isobutane dehydrogenation at a Cu(I) site proceeds through a two-step mechanism with a maximum energy barrier of 159 kJ/mol. Furthermore, these results demonstrate that light alkanes can be reactivated on Cu/BEA, which may enable re-entry of these species into the chain-growth cycle of dimethyl ether homologation, thereby increasing gasoline-range (C 5+) hydrocarbon yield.

  7. Alternative Fuels Data Center: Propane Production and Distribution

    Science.gov Websites

    produced from liquid components recovered during natural gas processing. These components include ethane & Incentives Propane Production and Distribution Propane is a by-product of natural gas processing distribution showing propane originating from three sources: 1) gas well and gas plant, 2) oil well and

  8. Dehydrogenation of goethite in Earth’s deep lower mantle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Qingyang; Kim, Duck Young; Liu, Jin

    2017-01-31

    The cycling of hydrogen influences the structure, composition, and stratification of Earth’s interior. Our recent discovery of pyrite-structured iron peroxide (designated as the P phase) and the formation of the P phase from dehydrogenation of goethite FeO 2H implies the separation of the oxygen and hydrogen cycles in the deep lower mantle beneath 1,800 km. Here we further characterize the residual hydrogen, x, in the P-phase FeO 2Hx. Using a combination of theoretical simulations and high-pressure–temperature experiments, we calibrated the x dependence of molar volume of the P phase. Within the current range of experimental conditions, we observed a compositionalmore » range of P phase of 0.39 < x < 0.81, corresponding to 19–61% dehydrogenation. Increasing temperature and heating time will help release hydrogen and lower x, suggesting that dehydrogenation could be approaching completion at the high-temperature conditions of the lower mantle over extended geological time. Our observations indicate a fundamental change in the mode of hydrogen release from dehydration in the upper mantle to dehydrogenation in the deep lower mantle, thus differentiating the deep hydrogen and hydrous cycles.« less

  9. Dehydrogenation and dehalogenation of amines in MALDI-TOF MS investigated by isotopic labeling.

    PubMed

    Kang, Chuanqing; Zhou, Yihan; Du, Zhijun; Bian, Zheng; Wang, Jianwei; Qiu, Xuepeng; Gao, Lianxun; Sun, Yuequan

    2013-12-01

    Secondary and tertiary amines have been reported to form [M-H](+) that correspond to dehydrogenation in matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). In this investigation, we studied the dehydrogenation of amines in MALDI-TOF MS by isotopic labeling. Aliphatic amines were labeled with deuterium on the methylene of an N-benzyl group, which resulted in the formation of [M-D](+) and [M-H](+) ions by dedeuteration and dehydrogenation, respectively. This method revealed the proton that was removed. The spectra of most tertiary amines with an N-benzyl group showed high-intensity [M-D](+) and [M-H](+) ion peaks, whereas those of secondary amines showed low-intensity ion peaks. Ratios between the peak intensities of [M-D](+) and [M-H](+) greater than 1 suggested chemoselective dehydrogenation at the N-benzyl groups. The presence of an electron donor group on the N-benzyl groups enhanced the selectivity. The dehalogenation of amines with an N-(4-halobenzyl) group was also observed alongside dehydrogenation. The amino ions from dehalogenation can undergo second dehydrogenation. These results provide the first direct evidence about the position at which dehydrogenation of an amine occurs and the first example of dehalogenation of haloaromatic compounds in MALDI-TOF MS. These results should be helpful in the structural identification and elucidation of synthetic and natural molecules. Copyright © 2013 John Wiley & Sons, Ltd.

  10. An operando Raman study of molecular structure and reactivity of molybdenum(VI) oxide supported on anatase for the oxidative dehydrogenation of ethane.

    PubMed

    Tsilomelekis, George; Boghosian, Soghomon

    2012-02-21

    Supported molybdenum oxide catalysts on TiO(2) (anatase) with surface densities in the range of 1.8-17.0 Mo per nm(2) were studied at temperatures of 410-480 °C for unraveling the configuration and molecular structure of the deposited (MoO(x))(n) species and examining their behavior for the ethane oxidative dehydrogenation (ODH). In situ Raman and in situ FTIR spectra under oxidizing conditions combined with (18)O/(16)O isotope exchange studies provide the first sound evidence for mono-oxo configuration for the deposited (MoO(x))(n) species on anatase. Isolated O=Mo(-O-)(3) tetra-coordinated species in C(3v)-like symmetry prevail at all surface coverages with a low presence of associated (polymeric) species (probably penta-coordinated) evidenced at high coverages, below the approximate monolayer of 6 Mo per nm(2). A mechanistic scenario for (18)O/(16)O isotope exchange and next-nearest-neighbor vibrational isotope effect is proposed at the molecular level to account for the pertinent spectral observations. Catalytic measurements for ethane ODH with simultaneous monitoring of operando Raman spectra were performed. The selectivity to ethylene increases with increasing surface density up to the monolayer coverage, where primary steps of ethane activation follow selective reaction pathways leading to ∼100% C(2)H(4) selectivity. The operando Raman spectra and a quantitative exploitation of the relative normalized Mo=O band intensities for surface densities of 1.8-5.9 Mo per nm(2) and various residence times show that the terminal Mo=O sites are involved in non-selective reaction turnovers. Reaction routes follow primarily non-selective pathways at low coverage and selective pathways at high coverage. Trends in the initial rates of ethane consumption (apparent reactivity per Mo) as a function of Mo surface density are discussed on the basis of several factors.

  11. RMP Guidance for Propane Storage Facilities - Main Text

    EPA Pesticide Factsheets

    This document is intended as comprehensive Risk Management Program guidance for larger propane storage or distribution facilities who already comply with propane industry standards. Includes sample RMP, and release calculations.

  12. Supported organoiridium catalysts for alkane dehydrogenation

    DOEpatents

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  13. Dehydrogenation of aromatic molecules under a scanning tunneling microscope: pathways and inelastic spectroscopy simulations.

    PubMed

    Lesnard, Hervé; Bocquet, Marie-Laure; Lorente, Nicolas

    2007-04-11

    We have performed a theoretical study on the dehydrogenation of benzene and pyridine molecules on Cu(100) induced by a scanning tunneling microscope (STM). Density functional theory calculations have been used to characterize benzene, pyridine, and different dehydrogenation products. The adiabatic pathways for single and double dehydrogenation have been evaluated with the nudge elastic band method. After identification of the transition states, the analysis of the electronic structure along the reaction pathway yields interesting information on the electronic process that leads to H-scission. The adiabatic barriers show that the formation of double dehydrogenated fragments is difficult and probably beyond reach under the actual experimental conditions. However, nonadiabatic processes cannot be ruled out. Hence, in order to identify the final dehydrogenation products, the inelastic spectra are simulated and compared with the experimental ones. We can then assign phenyl (C6H5) and alpha-pyridil (alpha-C5H4N) as the STM-induced dehydrogenation products of benzene and pyridine, respectively. Our simulations permit us to understand why phenyl, pyridine, and alpha-pyridil present tunneling-active C-H stretch modes in opposition to benzene.

  14. Synergy between hexavalent chromium ions and TiO2 nanoparticles inside TUD-1 in the photocatalytic oxidation of propane, a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Hamdy, Mohamed S.

    2016-02-01

    Siliceous TUD-1 mesoporous material was bi-functionalized by titanium dioxide nanoparticles and hexavalent chromium ions. The synthesis was carried out by one-pot procedure based on sol-gel technique. The photocatalytic performance of the prepared material was evaluated in the oxidation of propane under the illumination of ultraviolet light (wavelength = 360 nm) and monitored by in situ Fourier transform infrared spectroscopy. The photocatalytic activity of the prepared material exhibited an extra-ordinary activity than the reference samples that contain either hexavalent chromium ions or titanium dioxide nanoparticles only, confirming the true synergy between hexavalent chromium and tetravalent titanium ions of titanium dioxide nanoparticles.

  15. Direct and Efficient Dehydrogenation of Tetrahydroquinolines and Primary Amines Using Corona Discharge Generated on Ambient Hydrophobic Paper Substrate.

    PubMed

    Davis, Kathryn M; Badu-Tawiah, Abraham K

    2017-04-01

    The exposure of an aqueous-based liquid drop containing amines and graphite particles to plasma generated by a corona discharge results in heterogeneous aerobic dehydrogenation reactions. This green oxidation reaction occurring in ambient air afforded the corresponding quinolines and nitriles from tetrahydroquinolines and primary amines, respectively, at >96% yields in less than 2 min of reaction time. The accelerated dehydrogenation reactions occurred on the surface of a low energy hydrophobic paper, which served both as container for holding the reacting liquid drop and as a medium for achieving paper spray ionization of reaction products for subsequent characterization by ambient mass spectrometry. Control experiments indicate superoxide anions (O 2 •- ) are the main reactive species; the presence of graphite particles introduced heterogeneous surface effects, and enabled the efficient sampling of the plasma into the grounded analyte droplet solution. Graphical Abstract ᅟ.

  16. Direct and Efficient Dehydrogenation of Tetrahydroquinolines and Primary Amines Using Corona Discharge Generated on Ambient Hydrophobic Paper Substrate

    NASA Astrophysics Data System (ADS)

    Davis, Kathryn M.; Badu-Tawiah, Abraham K.

    2017-04-01

    The exposure of an aqueous-based liquid drop containing amines and graphite particles to plasma generated by a corona discharge results in heterogeneous aerobic dehydrogenation reactions. This green oxidation reaction occurring in ambient air afforded the corresponding quinolines and nitriles from tetrahydroquinolines and primary amines, respectively, at >96% yields in less than 2 min of reaction time. The accelerated dehydrogenation reactions occurred on the surface of a low energy hydrophobic paper, which served both as container for holding the reacting liquid drop and as a medium for achieving paper spray ionization of reaction products for subsequent characterization by ambient mass spectrometry. Control experiments indicate superoxide anions (O2 •-) are the main reactive species; the presence of graphite particles introduced heterogeneous surface effects, and enabled the efficient sampling of the plasma into the grounded analyte droplet solution.

  17. Case Study - Propane School Bus Fleets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laughlin, M; Burnham, A.

    As part of the U.S. Department of Energy’s (DOE’s) effort to deploy transportation technologies that reduce U.S. dependence on imported petroleum, this study examines five school districts, one in Virginia and four in Texas, successful use of propane school buses. These school districts used school buses equipped with the newly developed liquid propane injection system that improves vehicle performance. Some of the school districts in this study saved nearly 50% on a cost per mile basis for fuel and maintenance relative to diesel. Using Argonne National Laboratory’s Alternative Fuel Life-Cycle Environmental and Economic Transportation (AFLEET) Tool developed for the DOE’smore » Clean Cities program to help Clean Cities stakeholders estimate petroleum use, greenhouse gas (GHG) emissions, air pollutant emissions and cost of ownership of light-duty and heavy-duty vehicles, the results showed payback period ranges from 3—8 years, recouping the incremental cost of the vehicles and infrastructure. Overall, fuel economy for these propane vehicles is close to that of displaced diesel vehicles, on an energy-equivalent basis. In addition, the 110 propane buses examined demonstrated petroleum displacement, 212,000 diesel gallon equivalents per year, and GHG benefits of 770 tons per year.« less

  18. Effect of carbon-sulphur bond in a sulphur/dehydrogenated polyacrylonitrile/reduced graphene oxide composite cathode for lithium-sulphur batteries

    NASA Astrophysics Data System (ADS)

    Konarov, Aishuak; Bakenov, Zhumabay; Yashiro, Hitoshi; Sun, Yang-Kook; Myung, Seung-Taek

    2017-07-01

    A S/DPAN (dehydrogenated polyacrylonitrile) composite shows promising electrode performances as a cathode material for Li-S batteries though its electric conductivity is insufficient for high rate tests. In an attempt to enhance the electric conductivity, the S/DPAN composite is attached on reduced graphene oxide (rGO) sheets via self-assembling modification. As a result, the conductivity improves to ∼10-4 S cm-1, and the S/DPAN/rGO composite thereby delivers approximately 90% of the theoretical capacity of sulphur at a rate of 0.2C (0.34 A g-1) over 700 mAh (g-S)-1 even at 2C (3.4 A g-1). We first report on the Csbnd S bond between sulphur and DPAN in a composite that maintains the bond even after an extensive cycling test, as confirmed by time-of-flight secondary-ion mass spectroscopy (ToF-SIMS). These synergistic effects enable facile electron transport such that the S/DPAN/rGO composite electrode is able to maintain superior electrode performances.

  19. . . . While Others Conserve Cash by Converting from Gasoline to Propane.

    ERIC Educational Resources Information Center

    Rasmussen, Scott A.

    1988-01-01

    Since 1983, when the David Douglas Public Schools (Portland, Oregon) converted 30 buses to propane fuel, the district has saved $75,000 in fuel and maintenance costs. Propane is priced consistently lower than gasoline and burns cleaner. Since propane engines do not require a carburetor, there are fewer maintenance problems. (MLH)

  20. Alternative Fuels Data Center: Propane Buses Save Money for Virginia

    Science.gov Websites

    Schools Propane Buses Save Money for Virginia Schools to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Twitter Bookmark Alternative Fuels

  1. Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane

    Science.gov Websites

    Vans Renzenberger Inc Saves Money With Propane Vans to someone by E-mail Share Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Facebook Tweet about Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Twitter Bookmark Alternative Fuels

  2. Gold-catalyzed heterogeneous aerobic dehydrogenative amination of α,β-unsaturated aldehydes to enaminals.

    PubMed

    Jin, Xiongjie; Yamaguchi, Kazuya; Mizuno, Noritaka

    2014-01-07

    Although enaminals (β-enaminals) are very important compounds and have been utilized as useful synthons for various important compounds, they have been synthesized through non-green and/or limited procedures until now. Herein, we have successfully developed a green synthetic procedure using a heterogeneous catalyst. In the presence of gold nanoparticles supported on manganese-oxide-based octahedral molecular sieves OMS-2 (Au/OMS-2), dehydrogenative amination of α,β-unsaturated aldehydes with amines proceeded efficiently, with the corresponding enaminals isolated in moderate to high yields (50-97 %). The catalysis was truly heterogeneous, and Au/OMS-2 could be reused. Furthermore, the formal Wacker-type oxidation of α,β-unsaturated aldehydes to enaminones has been realized. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Structural and dynamic properties of propane coordinated to TpRh(CNR) from a confrontation between theory and experiment

    PubMed Central

    Clot, Eric; Eisenstein, Odile; Jones, William D.

    2007-01-01

    Density functional calculations with the B3PW91 functional have been carried out on the TpRh(CNMe) species [Tp = HB(pyrazolyl)3] as a model for Tp′Rh(CNCH2CMe3) [Tp′ = HB(3,5-dimethylpyrazolyl)3] in interaction with propane. Two σ complexes have been found as minima coordinated through either a methyl or a methylene CH bond, the former being more stable. The approach of the alkane to TpRh(CNMe) has been studied. Although no transition state could be located, study of this path reveals the key importance of the partial decoordination of one pyrazole ring. The full coordination of the alkane can only be achieved when the metal is essentially in a square pyramid coordination with one of the three pyrazole groups only weakly interacting with Rh. The main reaction of the methyl σ complex is oxidative addition, leading to the n-propyl hydride complex. In contrast, two reactions are found for the methylene σ complex: (i) oxidative addition to give the isopropyl complex and (ii) exchange between the secondary and primary CH bonds to convert the methylene complex of propane into a methyl complex of propane. This latter reaction has a much lower barrier than the oxidative addition at the methylene CH bond. The results account well for most of the experimental results obtained from kinetic studies. Steric factors are found to control the energy barriers between these various processes, disfavoring any process that brings the central carbon into close proximity to Rh. PMID:17412834

  4. Cluster size selectivity in the product distribution of ethene dehydrogenation on niobium clusters.

    PubMed

    Parnis, J Mark; Escobar-Cabrera, Eric; Thompson, Matthew G K; Jacula, J Paul; Lafleur, Rick D; Guevara-García, Alfredo; Martínez, Ana; Rayner, David M

    2005-08-18

    Ethene reactions with niobium atoms and clusters containing up to 25 constituent atoms have been studied in a fast-flow metal cluster reactor. The clusters react with ethene at about the gas-kinetic collision rate, indicating a barrierless association process as the cluster removal step. Exceptions are Nb8 and Nb10, for which a significantly diminished rate is observed, reflecting some cluster size selectivity. Analysis of the experimental primary product masses indicates dehydrogenation of ethene for all clusters save Nb10, yielding either Nb(n)C2H2 or Nb(n)C2. Over the range Nb-Nb6, the extent of dehydrogenation increases with cluster size, then decreases for larger clusters. For many clusters, secondary and tertiary product masses are also observed, showing varying degrees of dehydrogenation corresponding to net addition of C2H4, C2H2, or C2. With Nb atoms and several small clusters, formal addition of at least six ethene molecules is observed, suggesting a polymerization process may be active. Kinetic analysis of the Nb atom and several Nb(n) cluster reactions with ethene shows that the process is consistent with sequential addition of ethene units at rates corresponding approximately to the gas-kinetic collision frequency for several consecutive reacting ethene molecules. Some variation in the rate of ethene pick up is found, which likely reflects small energy barriers or steric constraints associated with individual mechanistic steps. Density functional calculations of structures of Nb clusters up to Nb(6), and the reaction products Nb(n)C2H2 and Nb(n)C2 (n = 1...6) are presented. Investigation of the thermochemistry for the dehydrogenation of ethene to form molecular hydrogen, for the Nb atom and clusters up to Nb6, demonstrates that the exergonicity of the formation of Nb(n)C2 species increases with cluster size over this range, which supports the proposal that the extent of dehydrogenation is determined primarily by thermodynamic constraints. Analysis of

  5. Rhodium-Catalyzed Dehydrogenative Borylation of Cyclic Alkenes

    PubMed Central

    Kondoh, Azusa; Jamison, Timothy F.

    2010-01-01

    A rhodium-catalyzed dehydrogenative borylation of cyclic alkenes is described. This reaction provides direct access to cyclic 1-alkenylboronic acid pinacol esters, useful intermediates in organic synthesis. Suzuki-Miyaura cross-coupling applications are also presented. PMID:20107646

  6. Alternative Fuels Data Center: How Do Propane Vehicles Work?

    Science.gov Websites

    gasoline vehicles with spark-ignited internal combustion engines. There are two types of propane fuel -injection systems available: vapor and liquid injection. In both types, propane is stored as a liquid in a

  7. Demonstration of a Fast, Precise Propane Measurement Using Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zahniser, M. S.; Roscioli, J. R.; Nelson, D. D.; Herndon, S. C.

    2016-12-01

    Propane is one of the primary components of emissions from natural gas extraction and processing activities. In addition to being an air pollutant, its ratio to other hydrocarbons such as methane and ethane can serve as a "fingerprint" of a particular facility or process, aiding in identifying emission sources. Quantifying propane has typically required laboratory analysis of flask samples, resulting in low temporal resolution and making plume-based measurements infeasible. Here we demonstrate fast (1-second), high precision (<300 ppt) measurements of propane using high resolution mid-infrared spectroscopy at 2967 wavenumbers. In addition, we explore the impact of nearby water and ethane absorption lines on the accuracy and precision of the propane measurement. Finally, we discuss development of a dual-laser instrument capable of simultaneous measurements of methane, ethane, and propane (the C1-C3 compounds), all within a small spatial package that can be easily deployed aboard a mobile platform.

  8. Evaluation of various models of propane-powered mosquito traps.

    PubMed

    Kline, Daniel L

    2002-06-01

    Large cage and field studies were conducted to determine the efficacy of various models of propane-powered mosquito traps. These traps utilized counterflow technology in conjunction with catalytic combustion to produce attractants (carbon dioxide, water vapor, and heat) and a thermoelectric generator that converted excess heat into electricity for stand-alone operation. The cage studies showed that large numbers of Aedes aegypti and Ochlerotatus taeniorhynchus were captured and that each progressive model resulted in increased trapping efficiency. In several field studies against natural populations of mosquitoes two different propane traps were compared against two other trap systems, the professional (PRO) and counterflow geometry (CFG) traps. In these studies the propane traps consistently caught more mosquitoes than the PRO trap and significantly fewer mosquitoes than the CFG traps. The difference in collection size between the CFG and propane traps was due mostly to Anopheles crucians. In spring 1997 the CFG trap captured 3.6X more An. crucians than the Portable Propane (PP) model and in spring 1998 it captured 6.3X more An. crucians than the Mosquito Magnet Beta-1 (MMB-1) trap. Both the PP and MMB-1 captured slightly more Culex spp. than the CFG trap.

  9. Infrared absorption cross sections of propane broadened by hydrogen

    NASA Astrophysics Data System (ADS)

    Wong, A.; Hargreaves, R. J.; Billinghurst, B.; Bernath, P. F.

    2017-09-01

    Fourier transform infrared absorption cross-sections of pure propane (C3H8) and propane broadened with H2 have been calculated from transmittance spectra recorded at temperatures from 292 K to 205 K. Transmittance spectra were recorded at the Canadian Light Source (CLS) Far-Infrared beamline, utilizing both the synchrotron source and the internal glowbar source. The absorption cross-sections have been calibrated to Pacific Northwest National Laboratory (PNNL) reference cross-sections of propane and can be used to interpret astronomical observations of giant planets such as Jupiter and Saturn as well as exoplanets.

  10. Alternative Fuels Data Center: Michigan School Buses Get Rolling on Propane

    Science.gov Websites

    Michigan School Buses Get Rolling on Propane to someone by E-mail Share Alternative Fuels Data Center: Michigan School Buses Get Rolling on Propane on Facebook Tweet about Alternative Fuels Data Center: Michigan School Buses Get Rolling on Propane on Twitter Bookmark Alternative Fuels Data Center

  11. Uncatalyzed, Regioselective Oxidation of Saturated Hydrocarbons in an Ambient Corona Discharge.

    PubMed

    Ayrton, Stephen T; Jones, Rhys; Douce, David S; Morris, Mike R; Cooks, R Graham

    2018-01-15

    Atmospheric pressure chemical ionization (APCI) in air or in nitrogen with just traces of oxygen is shown to yield regioselective oxidation, dehydrogenation, and fragmentation of alkanes. Ozone is produced from ambient oxygen in situ and is responsible for the observed ion chemistry, which includes partial oxidation to ketones and C-C cleavage to give aldehydes. The mechanism of oxidation is explored and relationships between ionic species produced from individual alkanes are established. Unusually, dehydrogenation occurs by water loss. Competitive incorporation into the hydrocarbon chain of nitrogen versus oxygen as a mode of ionization is also demonstrated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Alternative Fuels Data Center: How Do Bi-fuel Propane Vehicles Work?

    Science.gov Websites

    Vehicles Work? Bi-fuel propane vehicles typically use a spark-ignited internal combustion engine. A bi-fuel stored on board and the driver can switch between the fuels. The vehicle is equipped with fuel tanks Propane vehicle image Key Components of a Bi-fuel Propane Vehicle Battery: The battery provides

  13. Using ceramic membranes for the separation of hydrogen produced by dehydrogenation of perhydro- m-terphenyl

    NASA Astrophysics Data System (ADS)

    Kalenchuk, A. N.; Bogdan, V. I.; Kustov, L. M.

    2015-01-01

    The efficiency of a variety of ceramic membranes for the purification of hydrogen obtained by dehydrogenation of perhydro- m-terphenyl in a catalytic flow reactor from vapors of initial hydrocarbons and dehydrogenation products is investigated.

  14. The physicochemical properties and catalytic performance of carbon-covered alumina for oxidative dehydrogenation of ethylbenzene with CO2

    NASA Astrophysics Data System (ADS)

    Wang, Tehua; Chong, Siying; Wang, Tongtong; Lu, Huiyi; Ji, Min

    2018-01-01

    In order to correlate the physicochemical properties of carbon-covered alumina (CCA) materials with their catalytic performance for oxidative dehydrogenation of ethylbenzene with CO2 (CO2-ODEB), a series of CCA materials with diverse carbon contents (8.7-31.3 wt%) and pyrolysis temperatures (600-800 °C), which were synthesized via an impregnation method followed by pyrolysis, were applied. These catalytic materials were characterized by TGA, N2 physisorption, XRD, Raman spectroscopy and XPS techniques. It was found that the catalytic performance of these CCA materials highly depended on their physicochemical properties, and the optimum CCA catalyst exhibited much better catalytic stability than conventional hydroxyl carbon nanotubes. Below an optimum value of carbon content, the CCA catalyst preserved the main pore characteristics of the Al2O3 support and its catalytic activity increased with the carbon content. Excessive carbon loading resulted in significant textural alterations and thereby decreased both the ethylbenzene conversion and styrene selectivity. On the other hand, high pyrolysis temperature was detrimental to the ordered graphitic structure of the carbon species within the Al2O3 pore. The decreased ordered graphitic degree was found to be associated with the loss of the surface active carbonyl groups, consequently hampering the catalytic efficiency of the CCA catalyst.

  15. Final Technical Report: Tandem and Bimetallic Catalysts for Oxidative Dehydrogenation of Light Hydrocarbon with Renewable Feedstock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abu-Omar, Mahdi

    2017-01-06

    An estimated 490 million metric tons of lignocellulosic biomass is available annually from U.S. agriculture and forestry. With continuing concerns over greenhouse gas emission, the development of efficient catalytic processes for conversion of biomass derived compounds is an important area of research. Since carbohydrates and polyols are rich in oxygen, approximately one oxygen atom per carbon, removal of hydroxyl groups via deoxygenation is needed. The necessary hydrogen required for hydrodeoxygenation (HDO) would either come from reforming biomass itself or from steam reforming of natural gas. Both processes contribute to global CO2 emission. The hope is that eventually renewable sources suchmore » as wind and solar for hydrogen production will become more viable and economic in the future. In the meantime, unconventional natural gas production in North America has boomed. As a result, light hydrocarbons present an opportunity when coupled with biomass derived oxygenates to generate valuable products from both streams without co-production of carbon dioxide. This concept is the focus of our current funding period. The objective of the project requires coupling two different types of catalysis, HDO and dehydrogenation. Our hypothesis was formulated around our success in establishing oxorhenium catalysts for polyol HDO reactions and known literature precedence for the use of iridium hydrides in alkane dehydrogenation. To examine our hypothesis we set out to investigate the reaction chemistry of binuclear complexes of oxorhenium and iridium hydride.« less

  16. Microbial synthesis of propane by engineering valine pathway and aldehyde-deformylating oxygenase.

    PubMed

    Zhang, Lei; Liang, Yajing; Wu, Wei; Tan, Xiaoming; Lu, Xuefeng

    2016-01-01

    Propane, a major component of liquid petroleum gas (LPG) derived from fossil fuels, has widespread applications in vehicles, cooking, and ambient heating. Given the concerns about fossil fuel depletion and carbon emission, exploiting alternative and renewable source of propane have become attractive. In this study, we report the construction of a novel propane biosynthetic pathway in Escherichia coli. We constructed an aldehyde reductases (ALR)-deprived E. coli strain BW25113(DE3) Δ13 via genetic engineering, which produced sufficient isobutyraldehyde precursors and finally achieved de novo synthesis of propane (91 μg/L) by assembling the engineered valine pathway and cyanobacterial aldehyde-deformylating oxygenase (ADO). Additionally, after extensive screening of ADO mutants generated by engineering the active center to accommodate branched-chain isobutyraldehyde, we identified two ADO mutants (I127G, I127G/A48G) which exhibited higher catalytic activity for isobutyraldehyde and improved propane productivity by three times (267 μg/L). The propane biosynthetic pathway constructed here through the engineered valine pathway can produce abundant isobutyraldehyde for ADO and overcome the low availability of precursors in propane production. Furthermore, the rational design aiming at the ADO active center illustrates the plasticity and catalytic potential of ADO. These results together highlight the potential for developing a microbial biomanufacturing platform for propane.

  17. Silica-supported isolated gallium sites as highly active, selective and stable propane dehydrogenation catalysts† †Electronic supplementary information (ESI) available: Experimental details, material characterization data, catalytic measurement details and crystallographic details. CCDC 1499756. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6sc05178b Click here for additional data file. Click here for additional data file.

    PubMed Central

    Searles, Keith; Siddiqi, Georges; Safonova, Olga V.

    2017-01-01

    Single-site gallium centers on the surface of silica are prepared via grafting of [Ga(OSi(OtBu)3)3(THF)] on SiO2–700 followed by a thermolysis step. The resulting surface species corresponds to well-defined tetra-coordinate gallium single-sites, [( 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 SiO)3Ga(XOSi)] (X = –H or Si) according to IR, X-ray absorption near-edge structure and extended X-ray absorption fine structure analysis. These gallium sites show high activity, selectivity and stability for propane dehydrogenation with an initial turnover frequency of 20 per h per gallium center, propylene selectivity of ≥93% and remarkable stability over 20 h. The stability of the catalyst probably results from site-isolation of the active site on a non-reducible support such as silica, diminishing facile reduction typical of Ga2O3-based

  18. Millimeter and submillimeter wave spectroscopy of propanal

    NASA Astrophysics Data System (ADS)

    Zingsheim, Oliver; Müller, Holger S. P.; Lewen, Frank; Jørgensen, Jes K.; Schlemmer, Stephan

    2017-12-01

    The rotational spectra of the two stable conformers syn- and gauche-propanal (CH3CH2CHO) were studied in the millimeter and submillimeter wave regions from 75 to 500 GHz with the Cologne (Sub-)Millimeter wave Spectrometer. Furthermore, the first excited states associated with the aldehyde torsion and with the methyl torsion, respectively, of the syn-conformer were analyzed. The newly obtained spectroscopic parameters yield better predictions, thus fulfill sensitivity and resolution requirements in new astronomical observations in order to unambiguously assign pure rotational transitions of propanal. This is demonstrated on a radio astronomical spectrum from the Atacama Large Millimeter/submillimeter Array Protostellar Interferometric Line Survey (ALMA-PILS). In particular, an accurate description of observed splittings, caused by internal rotation of the methyl group in the syn-conformer and by tunneling rotation interaction from two stable degenerate gauche-conformers, is reported. The rotational spectrum of propanal is of additional interest because of its two large amplitude motions pertaining to the methyl and the aldehyde group, respectively.

  19. Heating Oil and Propane Update

    EIA Publications

    2017-01-01

    Weekly residential, wholesale, and spot prices; and production, demand, and stocks of heating fuels. (Weekly heating oil and propane prices are only collected during the heating season which extends from October through March.)

  20. Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish

    Science.gov Websites

    , Establish Fuel Savings for Years to Come on Facebook Tweet about Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come on Twitter Bookmark Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come on Google Bookmark

  1. Activation mechanism and dehydrogenation behavior in bulk hypo/hyper-eutectic Mg-Ni alloy

    NASA Astrophysics Data System (ADS)

    Ding, Xin; Chen, Ruirun; Jin, Yinling; Chen, Xiaoyu; Guo, Jingjie; Su, Yanqing; Ding, Hongsheng; Fu, Hengzhi

    2018-01-01

    To investigate the effect of microstructure on the better de-/hydrogenation property of Mg-based alloy, hypo-eutectic Mg-8Ni (at. %) alloy and hyper-eutectic Mg-15Ni alloy are prepared by metallurgy method. The phase constitutions and microstructures are characterized by XRD and SEM/EDS. Mg-8/15Ni alloy is composed of primary Mg/Mg2Ni and eutectic Mg-Mg2Ni. In isothermal sorption test, Mg-15Ni alloy shows preferable activation performance and faster de-/hydrogenation rates than Mg-8Ni alloy. The respective hydrogen uptake capacity in 165min is 5.62 wt% and 5.76 wt% H2 at 300 °C 3 MPa. Intersections of Mg-Mg2Ni eutectic phase boundaries with particle surface provide excellent sites and paths for the dissociation and permeation of hydrogen. The de-/hydrogenation enthalpy and entropy values are determined by PCI measurement. Based on the DSC curves at different heating rates, the desorption behavior of Mg-8/15Ni hydride is revealed and the respective activation energy is calculated to be 134.67 kJ mol-1 and 88.34 kJ mol-1 H2 by Kissinger method. Synergic dehydrogenation occurs in eutectic MgH2-Mg2NiH4, which facilitates the primary MgH2 in Mg-8Ni hydride to decompose at a lower temperature. The rapid H diffusion and synergic effect in eutectic MgH2-Mg2NiH4 collectively contribute to the lower dehydrogenation energy barrier of Mg-15Ni hydride.

  2. School Districts Move to the Head of the Class with Propane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Propane has been a proven fuel for buses for decades. For the first time in 2007, Blue Bird rolled out a propane school bus using direct liquid injection, which was later followed by Thomas Built Buses and Navistar. Because this new technology is much more reliable than previous designs, it is essentially reintroducing propane buses to many school districts. During this same time period, vehicle emissions standards have tightened. To meet them, diesel engine manufacturers have added diesel particulate filters (DPF) and, more recently, selective catalytic reduction (SCR) systems. As an alternative to diesel buses with these systems, many schoolmore » districts have looked to other affordable, clean alternatives, and they've found that propane fits the bill.« less

  3. Shape Effect Undermined by Surface Reconstruction: Ethanol Dehydrogenation over Shape-Controlled SrTiO 3 Nanocrystals

    DOE PAGES

    Foo, Guo Shiou; Hood, Zachary D.; Wu, Zili

    2017-12-05

    For this research, to gain an in-depth understanding of the surface properties relevant for catalysis using ternary oxides, we report the acid–base pair reactivity of shape-controlled SrTiO 3 (STO) nanocrystals for the dehydrogenation of ethanol. Cubes, truncated cubes, dodecahedra, and etched cubes of STO with varying ratios of (001) and (110) crystal facets were synthesized using a hydrothermal method. Low-energy ion scattering (LEIS) analysis revealed that the (001) surface on cubes of STO is enriched with SrO due to surface reconstruction, resulting in a high ratio of strong base sites. Chemical treatment with dilute nitric acid to form etched cubesmore » of STO resulted in a surface enriched with Ti cations and strong acidity. Furthermore, the strength and distribution of surface acidic sites increase with the ratio of (110) facet from cubes to truncated cubes to dodecahedra for STO. Kinetic, isotopic, and spectroscopy methods show that the dehydrogenation of ethanol proceeds through the facile dissociation of the alcohol group, followed by the cleavage of the C α–H bond, which is the rate-determining step. Co-feeding of various probe molecules during catalysis, such as NH 3, 2,6-di-tert-butylpyridine, CO 2, and SO 2, reveals that a pair of Lewis acid site and basic surface oxygen atom is involved in the dehydrogenation reaction. The surface density of acid–base site pairs was measured using acetic acid as a probe molecule, allowing initial acetaldehyde formation turnover rates to be obtained. Comparison among various catalysts reveals no simple correlation between ethanol turnover rate and the percentage of either surface facet ((001) or (110)) of the STO nanocrystals. Instead, the reaction rate is found to increase with the strength of acid sites but reversely with the strength of base sites. The acid–base property is directly related to the surface composition as a result from different surface reconstruction behaviors of the shaped STO

  4. Shape Effect Undermined by Surface Reconstruction: Ethanol Dehydrogenation over Shape-Controlled SrTiO 3 Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foo, Guo Shiou; Hood, Zachary D.; Wu, Zili

    For this research, to gain an in-depth understanding of the surface properties relevant for catalysis using ternary oxides, we report the acid–base pair reactivity of shape-controlled SrTiO 3 (STO) nanocrystals for the dehydrogenation of ethanol. Cubes, truncated cubes, dodecahedra, and etched cubes of STO with varying ratios of (001) and (110) crystal facets were synthesized using a hydrothermal method. Low-energy ion scattering (LEIS) analysis revealed that the (001) surface on cubes of STO is enriched with SrO due to surface reconstruction, resulting in a high ratio of strong base sites. Chemical treatment with dilute nitric acid to form etched cubesmore » of STO resulted in a surface enriched with Ti cations and strong acidity. Furthermore, the strength and distribution of surface acidic sites increase with the ratio of (110) facet from cubes to truncated cubes to dodecahedra for STO. Kinetic, isotopic, and spectroscopy methods show that the dehydrogenation of ethanol proceeds through the facile dissociation of the alcohol group, followed by the cleavage of the C α–H bond, which is the rate-determining step. Co-feeding of various probe molecules during catalysis, such as NH 3, 2,6-di-tert-butylpyridine, CO 2, and SO 2, reveals that a pair of Lewis acid site and basic surface oxygen atom is involved in the dehydrogenation reaction. The surface density of acid–base site pairs was measured using acetic acid as a probe molecule, allowing initial acetaldehyde formation turnover rates to be obtained. Comparison among various catalysts reveals no simple correlation between ethanol turnover rate and the percentage of either surface facet ((001) or (110)) of the STO nanocrystals. Instead, the reaction rate is found to increase with the strength of acid sites but reversely with the strength of base sites. The acid–base property is directly related to the surface composition as a result from different surface reconstruction behaviors of the shaped STO

  5. I. Synthesis, characterization, and base catalysis of novel zeolite supported super-basic materials II. Oxidative dehydrogenation of ethane over reduced heteropolyanion catalysts

    NASA Astrophysics Data System (ADS)

    Galownia, Jonathan M.

    reliable precursor for the formation of zeolite supported super-basic materials. The second part of this thesis describes the oxidative dehydrogenation of ethane over partially reduced heteropolyanions. Niobium and pyridine exchanged salts of phosphomolybdic (NbPMo12Pyr) and phosphovanadomolybdic (NbPMo11VPyr) acids are investigated as catalyst precursors to prepare materials for catalyzing the oxidative dehydrogenation of ethane to ethylene and acetic acid at atmospheric pressure. The effects of feed composition, steam flow, temperature, and precursor composition on catalytic activity and selectivity are presented for both ethane and ethylene oxidation. Production of ethylene and acetic acid from ethane using the catalytic materials exceeds that reported in the literature for Mo-V-Nb-Ox systems under atmospheric or elevated pressure. Production of acetic acid from ethylene is also greater than that observed for Mo-V-Nb-Ox systems. Addition of vanadium reduces catalytic activity and selectivity to both ethylene and acetic acid while niobium is essential for the formation of acetic acid from ethane. Other metals such as antimony, iron, and gallium do not provide the same beneficial effect as niobium. Molybdenum in close proximity to niobium is the active site for ethane activation while niobium is directly involved in the transformation of ethylene to acetic acid. A balance of niobium and protonated pyridine is required to produce an active catalyst. Water is found to aid in desorption of acetic acid, thereby limiting deep oxidation to carbon oxides. A reaction scheme is proposed for the production of acetic acid from ethane over the catalytic materials.

  6. Oxidative Dehydrogenation on Nanocarbon: Insights into the Reaction Mechanism and Kinetics via in Situ Experimental Methods.

    PubMed

    Qi, Wei; Yan, Pengqiang; Su, Dang Sheng

    2018-03-20

    Sustainable and environmentally benign catalytic processes are vital for the future to supply the world population with clean energy and industrial products. The replacement of conventional metal or metal oxide catalysts with earth abundant and renewable nonmetallic materials has attracted considerable research interests in the field of catalysis and material science. The stable and efficient catalytic performance of nanocarbon materials was discovered at the end of last century, and these materials are considered as potential alternatives for conventional metal-based catalysts. With its rapid development in the past 20 years, the research field of carbon catalysis has been experiencing a smooth transition from the discovery of novel nanocarbon materials or related new reaction systems to the atomistic-level mechanistic understanding on the catalytic process and the subsequent rational design of the practical catalytic reaction systems. In this Account, we summarize the recent progress in the kinetic and mechanistic studies on nanocarbon catalyzed alkane oxidative dehydrogenation (ODH) reactions. The paper attempts to extract general concepts and basic regularities for carbon catalytic process directing us on the way for rational design of novel efficient metal-free catalysts. The nature of the active sites for ODH reactions has been revealed through microcalorimetric analysis, ambient pressure X-ray photoelectron spectroscopy (XPS) measurement, and in situ chemical titration strategies. The detailed kinetic analysis and in situ catalyst structure characterization suggests that carbon catalyzed ODH reactions involve the redox cycles of the ketonic carbonyl-hydroxyl pairs, and the key physicochemical parameters (activation energy, reaction order, and rate/equilibrium constants, etc.) of the carbon catalytic systems are proposed and compared with conventional transition metal oxide catalysts. The proposal of the intrinsic catalytic activity (TOF) provides the

  7. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    NASA Astrophysics Data System (ADS)

    Amende, Max; Kaftan, Andre; Bachmann, Philipp; Brehmer, Richard; Preuster, Patrick; Koch, Marcus; Wasserscheid, Peter; Libuda, Jörg

    2016-01-01

    The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al2O3 model catalysts, and near-ambient pressure (NAP) measurements on real core⿿shell Pt/Al2O3 catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al2O3 model catalyst and core⿿shell pellet were only partially restored under the applied reaction conditions. Whereas partial regeneration on facet-like sites on supported catalysts is more facile than on Pt(111), carbonaceous deposits adsorbed at low-coordinated defect sites impede full regeneration of the Pt/Al2O3 catalysts.

  8. Dehydration and Dehydrogenation of Ethylene Glycol on Rutile TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhenjun; Kay, Bruce D.; Dohnalek, Zdenek

    2013-08-07

    The interactions of ethylene glycol (EG) with partially reduced rutile TiO2(110) surface have been studied using temperature programmed desorption (TPD). The saturation coverage on the surface Ti rows is determined to be 0.43 monolayer (ML), slightly less than one EG per two Ti sites. Most of the adsorbed ethanol (~80%) undergoes further reactions to other products. Two major channels are observed, dehydration yielding ethylene and water and dehydrogenation yielding acetaldehyde and hydrogen. Hydrogen formation is rather surprising as it has not been observed previously on TiO2(110) from simple organic molecules. The coverage dependent yields of ethylene and acetaldehyde correlate wellmore » with that of water and hydrogen, respectively. Dehydration dominates at lower EG coverages (< 0.2 ML) and plateaus as the coverage is increased to saturation. Dehydrogenation is observed primarily at higher EG coverages (>0.2 ML). Our results suggest that the observed dehydration and dehydrogenation reactions proceed via different surface intermediates.« less

  9. Efficiency gain of solid oxide fuel cell systems by using anode offgas recycle - Results for a small scale propane driven unit

    NASA Astrophysics Data System (ADS)

    Dietrich, Ralph-Uwe; Oelze, Jana; Lindermeir, Andreas; Spitta, Christian; Steffen, Michael; Küster, Torben; Chen, Shaofei; Schlitzberger, Christian; Leithner, Reinhard

    The transfer of high electrical efficiencies of solid oxide fuel cells (SOFC) into praxis requires appropriate system concepts. One option is the anode-offgas recycling (AOGR) approach, which is based on the integration of waste heat using the principle of a chemical heat pump. The AOGR concept allows a combined steam- and dry-reforming of hydrocarbon fuel using the fuel cell products steam and carbon dioxide. SOFC fuel gas of higher quantity and quality results. In combination with internal reuse of waste heat the system efficiency increases compared to the usual path of partial oxidation (POX). The demonstration of the AOGR concept with a 300 Wel-SOFC stack running on propane required: a combined reformer/burner-reactor operating in POX (start-up) and AOGR modus; a hotgas-injector for anode-offgas recycling to the reformer; a dynamic process model; a multi-variable process controller; full system operation for experimental proof of the efficiency gain. Experimental results proof an efficiency gain of 18 percentage points (η·POX = 23%, η·AOGR = 41%) under idealized lab conditions. Nevertheless, further improvements of injector performance, stack fuel utilization and additional reduction of reformer reformer O/C ratio and system pressure drop are required to bring this approach into self-sustaining operation.

  10. PROPANE BUBBLE CHAMBER (in Italian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loria, A.; Mittner, P.; Scotoni, I.

    1959-03-01

    A propane bubble chamber of about two liters volume is described: details concerning the membrane expansion mechanism, the structure of the windows and the illuminating system are given. Some features of the use of it, recently made at the CERN synchrocyclotron, are indicated. (auth)

  11. Size-controllable APTS stabilized ruthenium(0) nanoparticles catalyst for the dehydrogenation of dimethylamine-borane at room temperature.

    PubMed

    Zahmakıran, Mehmet; Philippot, Karine; Özkar, Saim; Chaudret, Bruno

    2012-01-14

    Dimethylamine-borane, (CH(3))(2)NHBH(3), has been considered as one of the attractive materials for the efficient storage of hydrogen, which is still one of the key issues in the "Hydrogen Economy". In a recent communication we have reported the synthesis and characterization of 3-aminopropyltriethoxysilane stabilized ruthenium(0) nanoparticles with the preliminary results for their catalytic performance in the dehydrogenation of dimethylamine-borane at room temperature. Herein, we report a complete work including (i) effect of initial [APTS]/[Ru] molar ratio on both the size and the catalytic activity of ruthenium(0) nanoparticles, (ii) collection of extensive kinetic data under non-MTL conditions depending on the substrate and catalyst concentrations to define the rate law of Ru(0)/APTS-catalyzed dehydrogenation of dimethylamine-borane at room temperature, (iii) determination of activation parameters (E(a), ΔH(#) and ΔS(#)) for Ru(0)/APTS-catalyzed dehydrogenation of dimethylamine-borane; (iv) demonstration of the catalytic lifetime of Ru(0)/APTS nanoparticles in the dehydrogenation of dimethylamine-borane at room temperature, (v) testing the bottlability and reusability of Ru(0)/APTS nanocatalyst in the room-temperature dehydrogenation of dimethylamine-borane, (vi) quantitative carbon disulfide (CS(2)) poisoning experiments to find a corrected TTO and TOF values on a per-active-ruthenium-atom basis, (vii) a summary of extensive literature review for the catalysts tested in the catalytic dehydrogenation of dimethylamine-borane as part of the results and discussions.

  12. Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; Lai, W.H.; Chung, K.

    2008-08-15

    Two sets of experiments were performed to achieve a strong overdriven state in a weaker mixture by propagating an overdriven detonation wave via a deflagration-to-detonation transition (DDT) process. First, preliminary experiments with a propane/oxygen mixture were used to evaluate the attenuation of the overdriven detonation wave in the DDT process. Next, experiments were performed wherein a propane/oxygen mixture was separated from a propane/air mixture by a thin diaphragm to observe the transmission of an overdriven detonation wave. Based on the characteristic relations, a simple wave intersection model was used to calculate the state of the transmitted detonation wave. The resultsmore » showed that a rarefaction effect must be included to ensure that there is no overestimate of the post-transmission wave properties when the incident detonation wave is overdriven. The strength of the incident overdriven detonation wave plays an important role in the wave transmission process. The experimental results showed that a transmitted overdriven detonation wave occurs instantaneously with a strong incident overdriven detonation wave. The near-CJ state of the incident wave leads to a transmitted shock wave, and then the transition to the overdriven detonation wave occurs downstream. The attenuation process for the overdriven detonation wave decaying to a near-CJ state occurs in all tests. After the attenuation process, an unstable detonation wave was observed in most tests. This may be attributed to the increase in the cell width in the attenuation process that exceeds the detonability cell width limit. (author)« less

  13. Origins and trends in ethane and propane in the United Kingdom from 1993 to 2012

    NASA Astrophysics Data System (ADS)

    Derwent, R. G.; Field, R. A.; Dumitrean, P.; Murrells, T. P.; Telling, S. P.

    2017-05-01

    Continuous, high frequency in situ observations of ethane and propane began in the United Kingdom in 1993 and have continued through to the present day at a range of kerbside, urban background and rural locations. Whilst other monitored C2 - C8 hydrocarbons have shown dramatic declines in concentrations by close to or over an order of magnitude, ethane and propane levels have remained at or close to their 1993 values. Urban ethane sources appear to be dominated by natural gas leakage. Background levels of ethane associated with long range transport are rising. However, natural gas leakage is not the sole source of urban propane. Oil and gas operations lead to elevated propane levels in urban centres when important refinery operations are located nearby. Weekend versus weekday average diurnal curves for ethane and propane at an urban background site in London show the importance of natural gas leakage for both ethane and propane, and road traffic sources for propane. The road traffic source of propane was tentatively identified as arising from petrol-engined motor vehicle refuelling and showed a strong downwards trend at the long-running urban background and rural sites. The natural gas leakage source of ethane and propane in the observations exhibits an upwards trend whereas that in the UK emission inventory trends downwards. Also, inventory emissions for natural gas leakage appeared to be significantly underestimated compared with the observations. In addition, the observed ethane to propane ratio found here for natural gas leakage strongly disagreed with the inventory ratio.

  14. Alternative Fuels Data Center: Boston Public Schools Moves to Propane

    Science.gov Websites

    Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus to Alternative Fuel Vehicles June 8, 2012 Natural Gas School Buses Help Kansas City Save Money Nov National Park Commits to Alternative Fuels Oct. 16, 2010 Propane Buses Save Money for Virginia Schools Feb

  15. An efficient strategy for designing ambipolar organic semiconductor material: Introducing dehydrogenated phosphorus atoms into pentacene core

    NASA Astrophysics Data System (ADS)

    Tang, Xiao-Dan

    2017-09-01

    The charge transport properties of phosphapentacene (P-PEN) derivatives were systematically explored by theoretical calculation. The dehydrogenated P-PENs have reasonable frontier molecular orbital energy levels to facilitate both electron and hole injection. The reduced reorganization energies of dehydrogenated P-PENs could be intimately connected to the bonding nature of phosphorus atoms. From the idea of homology modeling, the crystal structure of TIPSE-4P-2p is constructed and fully optimized. Fascinatingly, TIPSE-4P-2p shows the intrinsic property of ambipolar transport in both hopping and band models. Thus, introducing dehydrogenated phosphorus atoms into pentacene core could be an efficient strategy for designing ambipolar material.

  16. 21 CFR 184.1655 - Propane.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Propane. 184.1655 Section 184.1655 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...

  17. Kinetics and selectivity of 2-propanol conversion on oxidized anatase TiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rekoske, J.E.; Barteau, M.A.

    1997-01-01

    The steady-state kinetics of 2-propanol decomposition on oxidized anatase TiO{sub 2} have been determined at temperatures ranging from 448 to 598 K and 2-propanol partial pressures from 8.9 to 102.7 Torr. The effects of the addition of O{sub 2} and water to the carrier gas were also investigated. The steady-state reaction results primarily in the formation of a dehydration product, propylene, and a dehydrogenation product, acetone, with small amounts of carbon oxides also being observed. Depending on the reaction conditions, the selectivity to either propylene or acetone can range between 5 and 95%. The rate of dehydrogenation increases dramatically withmore » the addition of both O{sub 2} and water, while the dehydration rate is unaffected by their presence. Accordingly, the kinetics of 2-propanol decomposition were investigated using both air and an inert carrier. Using air as the carrier gas, the dehydration and dehydrogenation reactions were determined to be approximately one-half order with respect to 2-propanol partial pressure. The activation energies determined for the two processes are substantially different, 68 kJ mol{sup -1} for dehydrogenation and 130 kJ mol{sup -1} for dehydration, as evidenced by the strong temperature dependence of the decomposition selectivity. Using an inert carrier, the reaction kinetics depend in a complex fashion on the conversion of 2-propanol. The dependence on conversion was found to arise from the influence of water on the dehydrogenation kinetics. The presence of water, whether produced by 2-propanol dehydration or added independently, was found to increase the rate of 2-propanol dehydrogenation. 48 refs., 9 figs., 6 tabs.« less

  18. Catalytic Dehydrogenation of Dimethylamine Borane by Highly Active Thorium and Uranium Metallocene Complexes

    DOE PAGES

    Erickson, Karla A.; Kiplinger, Jaqueline L.

    2017-05-19

    In the thorium and uranium complexes (C 5Me 5) 2AnMe 2, [(C 5Me 5) 2An(H)(μ-H)] 2 (An = Th, U) and [(C 5Me 5) 2U(H)] 2 dehydrogenate dimethylamine borane (Me2NH·BH3) at room temperature. Upon mild heating at 45 °C, turnover frequencies (TOFs) of 400 h –1 are obtained, which is comparable to some of the fastest Me 2NH·BH 3 dehydrogenation catalysts known in the literature. We propose a β-hydride elimination mechanism for dehydrogenation because of the observation of Me 2N=BH 2, Me 2N=BMe 2, and Me 2N=BHMe in the 11B NMR spectra of catalytic and stoichiometric reactions. The similar catalyticmore » metrics between the actinide dimethyl and hydride complexes with Me 2NH·BH 3 indicate that the actinide hydride complexes are the active catalysts in this chemistry.« less

  19. Catalytic Dehydrogenation of Dimethylamine Borane by Highly Active Thorium and Uranium Metallocene Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Karla A.; Kiplinger, Jaqueline L.

    In the thorium and uranium complexes (C 5Me 5) 2AnMe 2, [(C 5Me 5) 2An(H)(μ-H)] 2 (An = Th, U) and [(C 5Me 5) 2U(H)] 2 dehydrogenate dimethylamine borane (Me2NH·BH3) at room temperature. Upon mild heating at 45 °C, turnover frequencies (TOFs) of 400 h –1 are obtained, which is comparable to some of the fastest Me 2NH·BH 3 dehydrogenation catalysts known in the literature. We propose a β-hydride elimination mechanism for dehydrogenation because of the observation of Me 2N=BH 2, Me 2N=BMe 2, and Me 2N=BHMe in the 11B NMR spectra of catalytic and stoichiometric reactions. The similar catalyticmore » metrics between the actinide dimethyl and hydride complexes with Me 2NH·BH 3 indicate that the actinide hydride complexes are the active catalysts in this chemistry.« less

  20. Communication: Visualization and spectroscopy of defects induced by dehydrogenation in individual silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Kislitsyn, Dmitry A.; Mills, Jon M.; Kocevski, Vancho; Chiu, Sheng-Kuei; DeBenedetti, William J. I.; Gervasi, Christian F.; Taber, Benjamen N.; Rosenfield, Ariel E.; Eriksson, Olle; Rusz, Ján; Goforth, Andrea M.; Nazin, George V.

    2016-06-01

    We present results of a scanning tunneling spectroscopy (STS) study of the impact of dehydrogenation on the electronic structures of hydrogen-passivated silicon nanocrystals (SiNCs) supported on the Au(111) surface. Gradual dehydrogenation is achieved by injecting high-energy electrons into individual SiNCs, which results, initially, in reduction of the electronic bandgap, and eventually produces midgap electronic states. We use theoretical calculations to show that the STS spectra of midgap states are consistent with the presence of silicon dangling bonds, which are found in different charge states. Our calculations also suggest that the observed initial reduction of the electronic bandgap is attributable to the SiNC surface reconstruction induced by conversion of surface dihydrides to monohydrides due to hydrogen desorption. Our results thus provide the first visualization of the SiNC electronic structure evolution induced by dehydrogenation and provide direct evidence for the existence of diverse dangling bond states on the SiNC surfaces.

  1. Mechanistic Insights and Computational Design of Transition-Metal Catalysts for Hydrogenation and Dehydrogenation Reactions.

    PubMed

    Chen, Xiangyang; Yang, Xinzheng

    2016-10-01

    Catalytic hydrogenation and dehydrogenation reactions are fundamentally important in chemical synthesis and industrial processes, as well as potential applications in the storage and conversion of renewable energy. Modern computational quantum chemistry has already become a powerful tool in understanding the structures and properties of compounds and elucidating mechanistic insights of chemical reactions, and therefore, holds great promise in the design of new catalysts. Herein, we review our computational studies on the catalytic hydrogenation of carbon dioxide and small organic carbonyl compounds, and on the dehydrogenation of amine-borane and alcohols with an emphasis on elucidating reaction mechanisms and predicting new catalytic reactions, and in return provide some general ideas for the design of high-efficiency, low-cost transition-metal complexes for hydrogenation and dehydrogenation reactions. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Alternative Fuels Data Center: Baton Rouge School District Adds Propane

    Science.gov Websites

    Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus Michigan Transports Students Vehicles June 8, 2012 Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Electric Trucks Alternative Fuels Oct. 16, 2010 Propane Buses Save Money for Virginia Schools Feb. 25, 2010 MedCorp Fuels

  3. Alternative Fuels Data Center: Propane Vehicles

    Science.gov Websites

    dedicated and bi-fuel vehicles is also comparable. Extra storage tanks can increase range, but the tank size propane or gasoline vehicles have. Likewise, larger storage tanks can increase range, but the additional

  4. Development and Demonstration of Advanced Technologies for Direct Electrochemical Oxidation of Hydrocarbons (Methanol, Methane, Propane)

    DTIC Science & Technology

    1994-07-01

    Propane) Final Report Prepared by: J.A. Kosek A.B. LaConti C.C. Cropley ŕ 1:July 1994 U.S. ARMY RESEARCH OFFICE Contract No. DAAL03-92-C-001 1 GINER, INC...LaConti, C.C. Cropley 7. PERFORMING ORGANIZATION NAME(S) AND AORESS(E5 U. PERFORMING ORGANIZATION GINER, INC. REPORT NUMBER 14 Spring Street Waltham...SCIENTIFIC PERSONNEL A.B. LaConti and J.A. Kosek - Principal Investigators; C.C. Cropley , G. Wilson, J. Unger, S. McCatty, A. Griffith, and M. Hamdan

  5. Synthesis of benzimidazoles via iridium-catalyzed acceptorless dehydrogenative coupling.

    PubMed

    Sun, Xiang; Lv, Xiao-Hui; Ye, Lin-Miao; Hu, Yu; Chen, Yan-Yan; Zhang, Xue-Jing; Yan, Ming

    2015-07-21

    Iridium-catalyzed acceptorless dehydrogenative coupling of tertiary amines and arylamines has been developed. A number of benzimidazoles were prepared in good yields. An iridium-mediated C-H activation mechanism is suggested. This finding represents a novel strategy for the synthesis of benzimidazoles.

  6. Experimental and theoretical screening of nanoscale oxide reactivity with LiBH4

    NASA Astrophysics Data System (ADS)

    Opalka, S. M.; Tang, X.; Laube, B. L.; Vanderspurt, T. H.

    2009-05-01

    Experimentation, thermodynamic modeling, and atomic modeling were combined to screen the reactivity of SiO2, Al2O3, and ZrO2 nanoscale oxides with LiBH4. Equilibrium thermodynamic modeling showed that the reactions of oxides with LiBH4 could lead to formation of stable Li-bearing oxide and metal boride phases. Experimentation was conducted to evaluate the discharge/recharge reaction products of nanoscale oxide-LiBH4 mixtures. Thermal gravimetric analyses-mass spectroscopy and x-ray diffraction revealed significant SiO2 destabilization of LiBH4 dehydrogenation, resulting in the formation of lithium silicate and boric acid. A smaller amount of lithium metaborate and boric acid was formed with Al2O3. No destabilization products were observed with ZrO2. Density functional theory atomic modeling predicted much stronger LiBH4 interfacial adsorption on the SiO2 and Al2O3 surfaces than on the ZrO2 surface, which was consistent with the experimental findings. Following dehydrogenation, interfacial Li atoms were predicted to strongly adsorb on the oxide surfaces effectively competing with LiH formation. The interfacial Li interactions with Al2O3 and ZrO2 were equal in strength in the fully hydrided and dehydrided states, so that their predicted net effect on LiBH4 dehydrogenation was insignificant. Zirconia was selected for nanoframework development based on the combined observations of compatibility and weaker associative interactions with LiBH4.

  7. Effect of temperature and pressure on the dynamics of nanoconfined propane

    NASA Astrophysics Data System (ADS)

    Gautam, Siddharth; Liu, Tingting; Rother, Gernot; Jalarvo, Niina; Mamontov, Eugene; Welch, Susan; Cole, David

    2014-04-01

    We report the effect of temperature and pressure on the dynamical properties of propane confined in nanoporous silica aerogel studied using quasielastic neutron scattering (QENS). Our results demonstrate that the effect of a change in the pressure dominates over the effect of temperature variation on the dynamics of propane nano-confined in silica aerogel. At low pressures, most of the propane molecules are strongly bound to the pore walls, only a small fraction is mobile. As the pressure is increased, the fraction of mobile molecules increases. A change in the mechanism of motion, from continuous diffusion at low pressures to jump diffusion at higher pressures has also been observed.

  8. Role of catalysts in dehydrogenation of MgH2 nanoclusters

    PubMed Central

    Larsson, Peter; Araújo, C. Moysés; Larsson, J. Andreas; Jena, Puru; Ahuja, Rajeev

    2008-01-01

    A fundamental understanding of the role of catalysts in dehydrogenation of MgH2 nanoclusters is provided by carrying out first-principles calculations based on density functional theory. It is shown that the transition metal atoms Ti, V, Fe, and Ni not only lower desorption energies significantly but also continue to attract at least four hydrogen atoms even when the total hydrogen content of the cluster decreases. In particular, Fe is found to migrate from the surface sites to the interior sites during the dehydrogenation process, releasing more hydrogen as it diffuses. This diffusion mechanism may account for the fact that a small amount of catalysts is sufficient to improve the kinetics of MgH2, which is essential for the use of this material for hydrogen storage in fuel-cell applications. PMID:18550815

  9. Dehydrogenation of methanol to formaldehyde catalyzed by pristine and defective ceria surfaces.

    PubMed

    Beste, Ariana; Overbury, Steven H

    2016-04-21

    We have explored the dehydrogenation of methoxy on pristine and defective (111), (100), and (110) ceria surfaces with density functional methods. Methanol conversion is used as a probe reaction to understand structure sensitivity of the oxide catalysis. Differences in reaction selectivity have been observed experimentally as a function of crystallographically exposed faces and degree of reduction. We find that the barrier for carbon-hydrogen cleavage in methoxy is similar for the pristine and defective (111), (100), and (110) surfaces. However, there are large differences in the stability of the surface intermediates on the different surfaces. The variations in experimentally observed product selectivities are a consequence of the interplay between barrier controlled bond cleavage and desorption processes. Subtle differences in activation energies for carbon-hydrogen cleavage on the different crystallographic faces of ceria could not be correlated with structural or electronic descriptors.

  10. Characterization of Emissions from Liquid Fuel and Propane Open Burns.

    PubMed

    Aurell, Johanna; Hubble, David; Gullett, Brian K; Holder, Amara; Washburn, Ephraim; Tabor, Dennis

    2017-11-07

    The effect of accidental fires are simulated to understand the response of items such as vehicles, fuel tanks, and military ordnance and to remediate the effects through re-design of the items or changes in operational procedures. The comparative combustion emissions of using jet propellant (JP-5) liquid fuel pools or a propane manifold grid to simulate the effects of accidental fires was investigated. A helium-filled tethered aerostat was used to maneuver an instrument package into the open fire plumes to measure CO, CO 2 , fine particulate matter (PM 2.5 ), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and elemental/organic/total carbon (EC/OC/TC). The results showed that all emissions except CO 2 were significantly higher from JP-5 burns than from propane. The major portion of the PM mass from fires of both fuels was less than 1 μm in diameter and differed in carbon content. The PM 2.5 emission factor from JP-5 burns (129 ± 23 g/kg Fuel c ) was approximately 150 times higher than the PM 2.5 emission factor from propane burns (0.89 ± 0.21 g/kg Fuel c ). The PAH emissions as well as some VOCs were more than one hundred times higher for the JP-5 burns than the propane burns. Using the propane test method to study flammability responses, the environmental impact of PM 2.5 , PAHs, and VOCs would be reduced by 2300, 700, and 100 times per test, respectively.

  11. ZnO/perovskite core–shell nanorod array based monolithic catalysts with enhanced propane oxidation and material utilization efficiency at low temperature

    DOE PAGES

    Wang, Sibo; Ren, Zheng; Song, Wenqiao; ...

    2015-04-24

    Here, a hydrothermal strategy combined with colloidal deposition synthesis was successfully used to grow ZnO/perovskite (LaBO 3, B=Mn, Co, Ni) core-shell nanorod arrays within three dimensional (3-D) honeycomb cordierite substrates. A facile sonication assisted colloidal wash coating process is able to coat a uniformly dispersed perovskite nanoparticles onto the large scale ZnO nanorod arrays rooted on the channel surfaces of the 3D cordierite substrate achieved by hydrothermal synthesis. Compared to traditional wash-coated perovskite catalysts, an enhanced catalytic performance was observed for propane oxidation with 25°C lower light-off temperature than wash-coated perovskite catalyst of similar LaMnO 3 loading (4.3mg). Temperature programmedmore » reduction and desorption under H 2 and O 2 atmosphere, respectively, were used to study the reducibility and oxygen activity of these core-shell nanorod arrays based monolithic catalysts, revealing a catalytic activity sequence of LaCoO 3>LaMnO 3>La 2NiO 4 at the initial stage of catalytic reaction. The good dispersion and size control in La-based perovskite nanoparticles and their interfaces to ZnO nanorod arrays support may contribute to the enhancement of catalytic performance. Lastly, this work may provide a new type of Pt-group metals (PGM) free catalysts with improved catalytic performance for hydrocarbon oxidations at low temperatures.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, Elaine; Kattel, Shyam; Yan, Binhang

    In this paper, the inherent variability and insufficiencies in the co-production of propylene from steam crackers has raised concerns regarding the global propylene production gap and has directed industry to develop more on-purpose propylene technologies. The oxidative dehydrogenation of propane by CO 2 (CO 2-ODHP) can potentially fill this gap while consuming a greenhouse gas. Non-precious FeNi and precious NiPt catalysts supported on CeO 2 have been identified as promising catalysts for CO 2-ODHP and dry reforming, respectively, in flow reactor studies conducted at 823 K. In-situ X-ray absorption spectroscopy measurements revealed the oxidation states of metals under reaction conditionsmore » and density functional theory calculations were utilized to identify the most favorable reaction pathways over the two types of catalysts.« less

  13. Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in

    Science.gov Websites

    electric car. College Students Engineer Efficient Vehicles in EcoCAR 2 Competition Aug. 2, 2014 Photo of a Columbus, OhioA> Yellow Cab Converts Taxis to Propane in Columbus, Ohio to someone by E-mail how Yellow Cab is overhauling their fleet in Columbus, Ohio, with propane power. For information about

  14. APMP.QM-K111—propane in nitrogen

    NASA Astrophysics Data System (ADS)

    Lin, Tsai-Yin; Liu, Hsin-Wang; Huang, Chiung-Kun; Kang, Namgoo; Bae, Hyun Kil; Woo, Jin Chun; Bi, Zhe; Zhou, Zeyi; Sinweeruthai, Ratirat; Wongjuk, Arnuttachai; Li, Hou; Beng Keat, Teo; Hui, Liu; Wu, Thomas; Hock Ann, Chua; Smeulders, Damian; Briton McCallum, John; Tendai Satumba, Raymond; Shimosaka, Takuya; Matsumoto, Nobuhiro; Kadir, Haslina Abdul; Fauzi Ahmad, Mohamad; Nasir, Noor Hidaya Abdul; Nishino, Tomoe; Akima, Dai; Uehara, Shinji

    2018-01-01

    This document describes the result of a key comparison for propane in nitrogen. The nominal amount-of-substance fraction of propane is 1000 μmol/mol. The comparison aimed to assess the measurement capability of participants in gas analysis. Nine NMIs or DIs participated in the comparison. CERI participated in a key comparison CCQM-K111—propane in nitrogen, and coordinated this key comparison. Therefore, every participants' results of this comparison are linking to the CCQM-K111. Gravimetric values of the samples were used as key comparison reference values (KCRVs). Measured values of eight participants were within +/- 0.25 % of the KCRVs. Many participants reported purity or impurity analysis of materials. These results are also able to assess the participants' capability of the analysis. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  15. Gas Phase UTE MRI of Propane and Propene

    PubMed Central

    Kovtunov, Kirill V.; Romanov, Alexey S.; Salnikov, Oleg G.; Barskiy, Danila A.; Chekmenev, Eduard Y.; Koptyug, Igor V.

    2016-01-01

    1H MRI of gases can potentially enable functional lung imaging to probe gas ventilation and other functions. In this work, 1H MR images of hyperpolarized and thermally polarized propane gas were obtained using UTE (ultrashort echo time) pulse sequence. A 2D image of thermally polarized propane gas with ~0.9×0.9 mm2 spatial resolution was obtained in less than 2 seconds, demonstrating that even non-hyperpolarized hydrocarbon gases can be successfully utilized for conventional proton MRI. The experiments were also performed with hyperpolarized propane gas and demonstrated acquisition of high-resolution multi-slice FLASH 2D images in ca. 510 s and non slice-selective 2D UTE MRI images in ca. 2 s. The UTE approach adopted in this study can be potentially used for medical lung imaging. Furthermore, the possibility to combine UTE with selective suppression of 1H signals from one of the two gases in a mixture is demonstrated in this MRI study. The latter can be useful for visualizing industrially important processes where several gases may be present, e.g., gas-solid catalytic reactions. PMID:27478870

  16. Bio-Oil Separation and Stabilization by Near-Critical Propane Fractionation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginosar, Daniel M.; Petkovic, Lucia M.; Agblevor, Foster A.

    Bio-oils produced by thermal process are promising sources of sustainable, low greenhouse gas alternative fuels. These thermal processes are also well suited to decentralized energy production due to low capital and operating costs. Algae feedstocks for bio-oil production are of particular interest, due in part to their high-energy growth yields. Further, algae can be grown in non-arable areas in fresh, brackish, salt water, or even waste water. Unfortunately, bio-oils produced by thermal processes present significant stability challenges. These oils have complex chemical compositions, are viscous, reactive, and thermally unstable. Further, the components within the oils are difficult to separate bymore » fractional distillation. By far, the most effective separation and stabilization method has been solvent extraction. However, liquid phase extraction processes pose two main obstacles to commercialization; they require a significant amount of energy to remove and recover the solvent from the product, and they have a propensity for the solvent to become contaminated with minerals from the char and ash present in the original bio-oil. Separation and fractionation of thermally produced bio-oils using supercritical fluids (SCF) offers the advantages of liquid solvent extraction while drastically reducing energy demands and the predisposition to carry over solids into the extracted phase. SCFs are dense fluids with liquid-like solvent properties and gas-like transport properties. Further, SCF density and solvent strength can be tuned with minor adjustments in pressure, co-solvent addition, or gas anti-solvent addition. Catalytic pyrolysis oils were produced from Scenedesmus dimorphus algae using a fluid catalytic cracking catalyst. Bio-oil produced from catalytic fast pyrolysis (CFP) was separated using critical fluids. Propane extraction was performed at 65 °C at a fluid reduced pressure of 2.0 (85 bar) using an eight to one solvent to feed ratio by weight

  17. Dehydrogenation of methanol to formaldehyde catalyzed by pristine and defective ceria surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beste, Ariana; Overbury, Steven H.

    We have explored the dehydrogenation of methoxy on pristine and defective (111), (100), and (110) ceria surfaces with density functional methods. Methanol conversion is used as a probe reaction to understand structure sensitivity of the oxide catalysis. Differences in reaction selectivity have been observed experimentally as a function of crystallographically exposed faces and degree of reduction. We find that the barrier for carbon-hydrogen cleavage in methoxy is similar for the pristine and defective (111), (100), and (110) surfaces. However, there are large differences in the stability of the surface intermediates on the different surfaces. The variations in experimentally observed productmore » selectivities are a consequence of the interplay between barrier controlled bond cleavage and desorption processes. Ultimately, subtle differences in activation energies for carbon-hydrogen cleavage on the different crystallographic faces of ceria could not be correlated with structural or electronic descriptors.« less

  18. Dehydrogenation of methanol to formaldehyde catalyzed by pristine and defective ceria surfaces

    DOE PAGES

    Beste, Ariana; Overbury, Steven H.

    2016-03-09

    We have explored the dehydrogenation of methoxy on pristine and defective (111), (100), and (110) ceria surfaces with density functional methods. Methanol conversion is used as a probe reaction to understand structure sensitivity of the oxide catalysis. Differences in reaction selectivity have been observed experimentally as a function of crystallographically exposed faces and degree of reduction. We find that the barrier for carbon-hydrogen cleavage in methoxy is similar for the pristine and defective (111), (100), and (110) surfaces. However, there are large differences in the stability of the surface intermediates on the different surfaces. The variations in experimentally observed productmore » selectivities are a consequence of the interplay between barrier controlled bond cleavage and desorption processes. Ultimately, subtle differences in activation energies for carbon-hydrogen cleavage on the different crystallographic faces of ceria could not be correlated with structural or electronic descriptors.« less

  19. Effect of primary-zone water injection on pollutants from a combustor burning liquid ASTM A-1 and vaporized propane fuels

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1973-01-01

    A combustor segment 0.457 meter (18 in.) long with a maximum cross section of 0.153 by 0.305 meter (6 by 12 in.) was operated at inlet-air temperatures of 590 and 700 K, inlet-air pressures of 4 and 10 atmospheres, and fuel-air ratios of 0.014 and 0.018 to determine the effect of primary-zone water injection on pollutants from burning either propane or ASTM A-1 fuel. At a simulated takeoff condition of 10 atmospheres and 700 K, multiple-orifice nozzles used to inject water at 1 percent of the airflow rate reduced nitrogen oxides 75 percent with propane and 65 percent with ASTM A-1 fuel. Although carbon monoxide and unburned hydrocarbons increased with water injection, they remained relatively low; and smoke numbers were well below the visibility limit.

  20. Research on propane leak detection system and device based on mid infrared laser

    NASA Astrophysics Data System (ADS)

    Jiang, Meng; Wang, Xuefeng; Wang, Junlong; Wang, Yizhao; Li, Pan; Feng, Qiaoling

    2017-10-01

    Propane is a key component of liquefied petroleum gas (LPG) and crude oil volatile. This issue summarizes the recent progress of propane detection technology. Meanwhile, base on the development trend, our latest progress is also provided. We demonstrated a mid infrared propane sensor system, which is based on wavelength modulation spectroscopy (WMS) technique with a CW interband cascade laser (ICL) emitting at 3370.4nm. The ICL laser scanned over a sharp feature in the broader spectrum of propane, and harmonic signals are obtained by lock-in amplifier for gas concentration deduction. The surrounding gas is extracted into the fine optical absorption cell through the pump to realize online detection. The absorption cell is designed in mid infrared windows range. An example experimental setup is shown. The second harmonic signals 2f and first harmonic signals1f are obtained. We present the sensor performance test data including dynamic precision and temperature stability. The propane detection sensor system and device is portable can carried on the mobile inspection vehicle platforms or intelligent robot inspection platform to realize the leakage monitoring of whole oil gas tank area.

  1. Study on catalytic properties and carbon deposition of Ni-Cu/SBA-15 for cyclohexane dehydrogenation

    NASA Astrophysics Data System (ADS)

    Xia, Zhijun; Liu, Huayan; Lu, Hanfeng; Zhang, Zekai; Chen, Yinfei

    2017-11-01

    A series of Ni-Cu supported on SBA-15 were prepared by impregnation, and used as catalysts in cyclohexane dehydrogenation for hydrogen production. The results indicated that the addition of Cu into Ni changes the crystal structure of metal Ni, and forms Ni-Cu alloy. Thus, Cu improves the reduction properties of Ni. Conversely, Ni stables and disperses metal Cu. With the space limitation of the ordered channels and high surface area of SBA-15, the bimetallic Ni-Cu/SBA-15 catalysts expose large amounts of selective active sites composed uniformly with Ni and Cu. Therefore, they present not only excellent catalytic performance for cyclohexane dehydrogenation, but also low coke formation. The in-situ DRIFT studies have shown the vinyl species, indicating the existence of alkenes in the reactive intermediates. Additionally, the strong absorption of benzene on the metal could induce benzene was dehydrogenated further to carbon.

  2. Specific glutaryl-CoA dehydrogenating activity is deficient in cultured fibroblasts from glutaric aciduria patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyman, D.B.; Tanaka, K.

    Patients with glutaric aciduria (GA) have greatly increased urinary excretion of glutarate. Their leukocyte and fibroblast sonicates have deficient ability to produce /sup 14/CO2 from (1,5-/sup 14/C)glutaryl-CoA, an enzymatic process with two sequential reaction steps, dehydrogenation and decarboxylation. In normal individuals, it is not known whether these two reaction steps require one or two enzymes, and currently it is assumed that a single enzyme, glutaryl-CoA dehydrogenase (GDH), carries out these two reactions. Since GA patients also excrete increased amounts of 3-hydroxyglutarate and glutaconate in urine, it was thought that glutaryl-CoA in these patients may be dehydrogenated but not decarboxylated. Wemore » developed a new assay specific for glutaryl-CoA dehydrogenation which measures enzyme-catalyzed tritium release from (2,3,4-3H)glutaryl-CoA, and we studied the glutaryl-CoA dehydrogenating activity in cultured normal human fibroblasts and those from patients with GA. The Michaelis constant (Km) of normal human fibroblast GDH for (2,3,4-3H)glutaryl-CoA was 5.9 microM, and activity was severely inhibited by (methylenecyclopropyl)acetyl-CoA at low concentrations. Sonicates from all five GA fibroblast lines examined showed 2-9% of control glutaryl-CoA dehydrogenating activity, corresponding to the deficient 14CO2 releasing activity. These results indicate either that the conversion of glutaryl-CoA to crotonyl-CoA is accomplished by two enzymes, and patients with GA are deficient in the activity of the first component, or alternatively, that this process is carried out by a single enzyme which is deficient in these patients. It is unlikely that urinary glutaconate and 3-hydroxyglutarate in GA patients are produced via GDH.« less

  3. Bioinspired organocatalytic aerobic C-H oxidation of amines with an ortho-quinone catalyst.

    PubMed

    Qin, Yan; Zhang, Long; Lv, Jian; Luo, Sanzhong; Cheng, Jin-Pei

    2015-03-20

    A simple bioinspired ortho-quinone catalyst for the aerobic oxidative dehydrogenation of amines to imines is reported. Without any metal cocatalysts, the identified optimal ortho-quinone catalyst enables the oxidations of α-branched primary amines and cyclic secondary amines. Mechanistic studies have disclosed the origins of different performances of ortho-quinone vs para-quinone in biomimetic amine oxidations.

  4. Novel Hybrid Catalyst for the Oxidation of Organic Acids: Pd Nanoparticles Supported on Mn-N-3D-Graphene Nanosheets

    DOE PAGES

    Perry, Albert; Kabir, Sadia; Matanovic, Ivana; ...

    2017-06-16

    This paper reports the fabrication and electrochemical performance of a hybrid catalyst composed of Pd nanoparticles and atomically dispersed Mn active centers integrated into the nitrogen-doped three-dimensional graphene nanosheets (Pd/Mn-N-3D-GNS). Our results show that the synergistic integration of both Pd nanoparticles and atomically dispersed Mn can be used to enhance the activity toward the electrochemical oxidation of organic acids at biologically relevant pH values. The hybrid catalyst (Pd/Mn-N-3D-GNS) showed increased maximum currents toward the oxidation of oxalic acid when compared to its individual catalysts, namely, Pd/3D-GNS and Mn N-3D-GNS catalysts. The hybrid also showed a decreased onset potential for oxidationmore » of mesoxalic acid as compared to Mn-N-3D-GNS and decreased onset potentials for the oxidation of glyoxalic acid when compared to both of its constituent catalysts. Oxidation of formic acid was also tested and the hybrid was shown to catalyze both dehydration and dehydrogenation mechanisms of formic acid electro-oxidation. Using density functional theory calculations, it was elucidated that a two-site catalysis most likely promotes dehydrogenation reaction for formic acid oxidation, which can explain the selectivity of Pd nanoparticles and atomically dispersed Mn towards the dehydrogenation/ dehydration pathway.« less

  5. Novel Hybrid Catalyst for the Oxidation of Organic Acids: Pd Nanoparticles Supported on Mn-N-3D-Graphene Nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Albert; Kabir, Sadia; Matanovic, Ivana

    This paper reports the fabrication and electrochemical performance of a hybrid catalyst composed of Pd nanoparticles and atomically dispersed Mn active centers integrated into the nitrogen-doped three-dimensional graphene nanosheets (Pd/Mn-N-3D-GNS). Our results show that the synergistic integration of both Pd nanoparticles and atomically dispersed Mn can be used to enhance the activity toward the electrochemical oxidation of organic acids at biologically relevant pH values. The hybrid catalyst (Pd/Mn-N-3D-GNS) showed increased maximum currents toward the oxidation of oxalic acid when compared to its individual catalysts, namely, Pd/3D-GNS and Mn N-3D-GNS catalysts. The hybrid also showed a decreased onset potential for oxidationmore » of mesoxalic acid as compared to Mn-N-3D-GNS and decreased onset potentials for the oxidation of glyoxalic acid when compared to both of its constituent catalysts. Oxidation of formic acid was also tested and the hybrid was shown to catalyze both dehydration and dehydrogenation mechanisms of formic acid electro-oxidation. Using density functional theory calculations, it was elucidated that a two-site catalysis most likely promotes dehydrogenation reaction for formic acid oxidation, which can explain the selectivity of Pd nanoparticles and atomically dispersed Mn towards the dehydrogenation/ dehydration pathway.« less

  6. Secondary coenzyme Q10 deficiency and oxidative stress in cultured fibroblasts from patients with riboflavin responsive multiple Acyl-CoA dehydrogenation deficiency.

    PubMed

    Cornelius, Nanna; Byron, Colleen; Hargreaves, Iain; Guerra, Paula Fernandez; Furdek, Andrea K; Land, John; Radford, Weston W; Frerman, Frank; Corydon, Thomas J; Gregersen, Niels; Olsen, Rikke K J

    2013-10-01

    Coenzyme Q10 (CoQ10) is essential for the energy production of the cells and as an electron transporter in the mitochondrial respiratory chain. CoQ10 links the mitochondrial fatty acid β-oxidation to the respiratory chain by accepting electrons from electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO). Recently, it was shown that a group of patients with the riboflavin responsive form of multiple acyl-CoA dehydrogenation deficiency (RR-MADD) carrying inherited amino acid variations in ETF-QO also had secondary CoQ10 deficiency with beneficial effects of CoQ10 treatment, thus adding RR-MADD to an increasing number of diseases involving secondary CoQ10 deficiency. In this study, we show that moderately decreased CoQ10 levels in fibroblasts from six unrelated RR-MADD patients were associated with increased levels of mitochondrial reactive oxygen species (ROS). Treatment with CoQ10, but not with riboflavin, could normalize the CoQ10 level and decrease the level of ROS in the patient cells. Additionally, riboflavin-depleted control fibroblasts showed moderate CoQ10 deficiency, but not increased mitochondrial ROS, indicating that variant ETF-QO proteins and not CoQ10 deficiency are the causes of mitochondrial ROS production in the patient cells. Accordingly, the corresponding variant Rhodobacter sphaeroides ETF-QO proteins, when overexpressed in vitro, bind a CoQ10 pseudosubstrate, Q10Br, less tightly than the wild-type ETF-QO protein, suggesting that molecular oxygen can get access to the electrons in the misfolded ETF-QO protein, thereby generating superoxide and oxidative stress, which can be reversed by CoQ10 treatment.

  7. Number 2 heating oil/propane program. Final report, 1991/92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBrien, J.

    1992-06-01

    During the 1991--92 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1991 through March, 1992. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over themore » 1991--1992 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data and responses to the events which unfolded during the 1991--1992 heating season.« less

  8. Ultrasound promoted catalytic liquid-phase dehydrogenation of isopropanol for Isopropanol-Acetone-Hydrogen chemical heat pump.

    PubMed

    Xu, Min; Xin, Fang; Li, Xunfeng; Huai, Xiulan; Liu, Hui

    2015-03-01

    The apparent kinetic of the ultrasound assisted liquid-phase dehydrogenation of isopropanol over Raney nickel catalyst was determined in the temperature range of 346-353 K. Comparison of the effects of ultrasound and mechanical agitation on the isopropanol dehydrogenation was investigated. The ultrasound assisted dehydrogenation rate was significantly improved when relatively high power density was used. Moreover, the Isopropanol-Acetone-Hydrogen chemical heat pump (IAH-CHP) with ultrasound irradiation, in which the endothermic reaction is exposure to ultrasound, was proposed. A mathematical model was established to evaluate its energy performance in term of the coefficient of performance (COP) and the exergy efficiency, into which the apparent kinetic obtained in this work was incorporated. The operating performances between IAH-CHP with ultrasound and mechanical agitation were compared. The results indicated that the superiority of the IAH-CHP system with ultrasound was present even if more than 50% of the power of the ultrasound equipment was lost. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Catalysis by Atomic-Sized Centers: Methane Activation for Partial Oxidation and Combustion

    DTIC Science & Technology

    2012-05-09

    cation it replaces in the host oxide. For example, a La dopant in CeO2 is a low-valence dopant because La is trivalent when it combines with oxygen...Kim, H. M. Lee, R. G. S. Pala, and H. Metiu, Oxidative dehydrogenation of methanol to formaldehyde by isolated vanadium, molybdenum, and chromium

  10. Isoelectronic Manganese and Iron Hydrogenation/Dehydrogenation Catalysts: Similarities and Divergences.

    PubMed

    Gorgas, Nikolaus; Kirchner, Karl

    2018-06-19

    Sustainable processes that utilize nontoxic, readily available, and inexpensive starting materials for organic synthesis constitute a major objective in modern chemical research. In this context, it is highly important to perform reactions under catalytic conditions and to replace precious metal catalysts by earth-abundant nonprecious metal catalysts. In particular, iron and manganese are promising candidates, as these are among the most abundant metals in the earth's crust, are inexpensive, and exhibit a low environmental impact. As far as chemical processes are concerned, hydrogenations and acceptorless alcohol dehydrogenation (AAD), sometimes in conjunction with hydrogen autotransfer reactions, are becoming important areas of research. While the first is a very important synthetic process representing a highly atom-efficient and clean methodology, AAD is an oxidant-free, environmentally benign reaction where carbonyl compounds together with dihydrogen as a valuable product and/or reactant (autotransfer) and water are formed. Carbonyl compounds, typically generated in situ, can be converted into other useful organic materials such as amines, imines, or heterocycles. In 2016 several groups, including ours, discovered for the first time the potential of hydride biscarbonyl Mn(I) complexes bearing strongly bound PNP pincer ligands or related tridentate ligands as highly effective and versatile catalysts for hydrogenation, transfer hydrogenation, and dehydrogenation reactions. These complexes are isoelectronic analogues of the respective hydride monocarbonyl Fe(II) PNP compounds and display similar reactivities but also quite divergent behavior depending on the coligands. Moreover, manganese compounds show improved long-term stability and high robustness toward harsh reaction conditions. In light of these recent achievements, this Account contrasts Mn(I) and Fe(II) PNP pincer catalysts, highlighting specific features that are connected to particular structural and

  11. School Districts Move to the Head of the Class with Propane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    School districts across the country are under pressure to reduce their cost of operations and ensure their budgets are spent wisely. School bus fleets operate more than 675,000 buses in the United States, and many school districts have found the answer to their budget woes in the form of propane, or liquefied petroleum gas (LPG). Propane is a reliable, domestic fuel, and it's used in approximately 2% of school buses nationwide.

  12. Emission measurements for a lean premixed propane/air system at pressures up to 30 atmospheres

    NASA Technical Reports Server (NTRS)

    Roffe, G.; Venkataramani, K. S.

    1978-01-01

    The emissions of a lean premixed system of propane/air were measured in a flametube apparatus. Tests were conducted at inlet temperatures of 600K and 800K and pressures of 10 atm and 30 atm over a range of equivalence ratios. The data obtained were combined with previous data taken in the same apparatus to correlate nitrogen oxide emissions with operating conditions. Sampling probe design was found to have a pronounced effect on measured CO levels but did not influence measurements. The most effective probe tested was one which combined thermal and pressure quenching of the gas sample.

  13. 40 CFR 721.8140 - Substituted propane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....8140 Section 721.8140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8140 Substituted propane (generic). (a) Chemical substance and significant new uses subject...

  14. Hybrid Mo-CT nanowires as highly efficient catalysts for direct dehydrogenation of isobutane.

    PubMed

    Mu, Jiali; Shi, Junjun; France, Liam John; Wu, Yongshan; Zeng, Qiang; Liu, Baoan; Jiang, Lilong; Long, Jinxing; Li, Xuehui

    2018-06-20

    Direct dehydrogenation of isobutane to isobutene has drawn extensive attention for synthesizing various chemicals. The Mo-based catalysts hold promise as an alternative to the toxic CrOx- and scarce Pt-based catalysts. However, the low activity and rapid deactivation of the Mo-based catalysts greatly hinder their practical applications. Herein, we demonstrate a feasible approach towards the development of efficient and non-noble metal dehydrogenation catalysts basing on Mo-CT hybrid nanowires calcined at different temperatures. In particular, the optimal Mo-C700 catalyst exhibits isobutane consumption rate of 3.9 mmol g-1 h-1, and isobutene selectivity of 73% with production rate of 2.8 mmol g-1 h-1. The catalyst maintained 90% of its initial activity after 50 h of reaction. Extensive characterizations reveal that such prominent performance is well-correlated with the adsorption abilities of isobutane and isobutene, and the formation of η-MoC species. By contrast, the generation of β-Mo2C crystalline phase during long-term reaction causes minor decline in activity. Compared to MoO2 and β-Mo2C, η-MoC plays a role more likely in suppressing the cracking reaction. This work demonstrates a feasible approach towards the development of efficient and non-noble metal dehydrogenation catalysts.

  15. Experimental study of isopropanol dehydrogenation over amorphous alloy raney nickel catalysts

    NASA Astrophysics Data System (ADS)

    Xin, Fang; Xu, Min; Li, Xun-Feng; Huai, Xiu-Lan

    2013-12-01

    The dehydrogenation reaction of isopropanol occurring at low temperature is of great industrial importance. It is a key procedure in isopropanol/acetone/hydrogen chemical heat pump system. An experimental investigation was performed to study the behavior of the liquid phase dehydrogenation of isopropanol over amorphous alloy Raney nickel catalysts. Un-promoted and promoted catalysts were used and their performances were compared under various catalyst amounts, acetone content in the reactant and reaction temperature ranging from 348 K to 355 K. It is found that there exists an optimum catalyst concentration which is about 0.34 g in 300 ml isopropanol. The temperature has evident effect on the reaction. The presence of activities of Fe-promoted catalyst decrease slightly compared to the un-promoted catalyst when the temperature are 348 K and 351 K. Besides, the reaction rate decreases almost linearly with the increase of acetone volume fraction in the reactant.

  16. PROGRAM TO DETERMINE PERFORMANCE OF FLUORINATED ETHERS AND FLUORINATED PROPANES IN A COMPRESSOR CALORIMETER

    EPA Science Inventory

    The paper discusses a program to determine the performance of fluorinated ethers and fluorinated propanes in a compressor calorimeter. These chlorine free ethers and propanes are being considered as potential long-term replacements for CFC-11, -12, -114, and -115. A standard comp...

  17. CO2 as a hydrogen vector - transition metal diamine catalysts for selective HCOOH dehydrogenation.

    PubMed

    Fink, Cornel; Laurenczy, Gábor

    2017-01-31

    The homogeneous catalytic dehydrogenation of formic acid in aqueous solution provides an efficient in situ method for hydrogen production, under mild conditions, and at an adjustable rate. We synthesized a series of catalysts with the chemical formula [(Cp*)M(N-N')Cl] (M = Ir, Rh; Cp* = pentamethylcyclopentadienyl; N-N = bidentate chelating nitrogen donor ligands), which have been proven to be active in selective formic acid decomposition in aqueous media. The scope of the study was to examine the relationship between stability and activity of catalysts for formic acid dehydrogenation versus electronic and steric properties of selected ligands, following a bottom-up approach by increasing the complexity of the N,N'-ligands progressively. The highest turnover frequency, TOF = 3300 h -1 was observed with a Cp*Ir(iii) complex bearing 1,2-diaminocyclohexane as the N,N'-donor ligand. From the variable temperature studies, the activation energy of formic acid dehydrogenation has been determined, E a = 77.94 ± 3.2 kJ mol -1 . It was observed that the different steric and electronic properties of the bidentate nitrogen donor ligands alter the catalytic activity and stability of the Ir and Rh compounds profoundly.

  18. Methane, Ethane, and Propane Sensor for Real-time Leak Detection and Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roscioli, Joseph R.; Herndon, Scott; Nelson, David D.

    2017-03-24

    The Phase I effort demonstrated the technical viability of a fast, sensitive, mobile hydrocarbon monitor. The instrument will enable the oil and gas industry, researchers, and regulators to rapidly identify and chemically profile leaks from facilities. This capability will allow operators to quickly narrow down and mitigate probable leaking equipment, minimizing product loss and penalties due to regulatory non-compliance. During the initial development phase, we demonstrated operation of a prototype monitor that is capable of measuring methane, ethane, and propane at sub-part-per-billion sensitivities in 1 second, using direct absorption infrared spectroscopy. To our knowledge, this is the first instrument capablemore » of fast propane measurements at atmospheric concentrations. In addition, the electrical requirements of the monitor have been reduced from the 1,200 W typical of a spectrometer, to <500 W, making it capable of being powered by a passenger vehicle, and easily deployed by the industry. The prototype monitor leverages recent advances in laser technology, using high-efficiency interband cascade lasers to access the 3 μm region of the mid-infrared, where the methane, ethane, and propane absorptions are strongest. Combined with established spectrometer technology, we have achieved precisions below 200 ppt for each compound. This allows the monitor to measure fast plumes from oil and gas facilities, as well as ambient background concentrations (typical ambient levels are 2 ppm, 1.5 ppb, and 0.7 ppb for methane, ethane and propane, respectively). Increases in instrument operating pressure were studied in order to allow for a smaller 125 W pump to be used, and passive cooling was explored to reduce the cooling load by almost 90% relative to active (refrigerated) cooling. In addition, the simulated infrared absorption profiles of ethane and propane were modified to minimize crosstalk between species, achieving <1% crosstalk between ethane and propane

  19. Theory of C2Hx species on Pt{110} (1×2): Reaction pathways for dehydrogenation

    NASA Astrophysics Data System (ADS)

    Anghel, A. T.; Wales, D. J.; Jenkins, S. J.; King, D. A.

    2007-01-01

    A complete reaction sequence for molecular dissociation at a surface has been characterized using density functional theory. The barriers for sequential ethane dehydrogenation on Pt{110} are found to fall into distinct energy sets: very low barriers, with values in the range of 0.29-0.42eV, for the initial ethane dissociation to ethene and ethylidene at the surface; medium barriers, in the range of 0.72-1.10eV, for dehydrogenation of C2H4 fragments to vinylidene and ethyne; and high barriers, requiring more than 1.45eV, for further dehydrogenation. For dissociation processes where more than one pathway has been found, the lowest energetic route links the most stable reactant adsorbed state at the surface to a product state involving the hydrocarbon moiety adsorbed in its most stable configuration at the surface. Hence there is a clear link between surface stability and kinetics for these species.

  20. A comparative DFT study on the dehydrogenation of methanol on Rh(100) and Rh(110)

    NASA Astrophysics Data System (ADS)

    Zhang, Minhua; Wu, Xingyu; Yu, Yingzhe

    2018-04-01

    Numerous density functional theory calculations have been performed to investigate the complete mechanisms of methanol dehydrogenation on Rh(100) and Rh(110) surfaces. The adsorption properties of relevant species were discussed in details. In addition, a comprehensive reaction network including four reaction pathways was built and analyzed. It is found that the initial Osbnd H bond scission of CH3OH seems to be more favorable than Csbnd H bond cleavage on both Rh(100) and Rh(110) surfaces from the perspective of activation barriers. It is also concluded that path1 (CH3OH → CH3O → CH2O → CHO → CO) is the predominant pathway on both Rh(100) and Rh (110) surfaces. On the whole, in most of the dehydrogenation reactions investigated, the energy barriers on Rh(100) are lower than those on Rh (110). Remarkable differences in the activity and predominant reaction pathway on Rh(100), Rh(110) and Rh(111) indicate that the dehydrogenation of methanol might be structure-sensitive.

  1. Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer

    NASA Astrophysics Data System (ADS)

    Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Neto, E. V. Santos; Eiler, John M.

    2016-09-01

    Site-specific isotope ratio measurements potentially provide valuable information about the formation and degradation of complex molecules-information that is lost in conventional bulk isotopic measurements. Here we discuss the background and possible applications of such measurements, and present a technique for studying the site-specific carbon isotope composition of propane at natural abundance based on mass spectrometric analysis of the intact propane molecule and its fragment ions. We demonstrate the feasibility of this approach through measurements of mixtures of natural propane and propane synthesized with site-specific 13C enrichment, and we document the limits of precision of our technique. We show that mass balance calculations of the bulk δ13C of propane based on our site-specific measurements is generally consistent with independent constraints on bulk δ13C. We further demonstrate the accuracy of the technique, and illustrate one of its simpler applications by documenting the site-specific carbon isotope signature associated with gas phase diffusion of propane, confirming that our measurements conform to the predictions of the kinetic theory of gases. This method can be applied to propane samples of moderate size (tens of micromoles) isolated from natural gases. Thus, it provides a means of studying the site-specific stable isotope systematics of propane at natural isotope abundances on sample sizes that are readily recovered from many natural environments. This method may also serve as a model for future techniques that apply high-resolution mass spectrometry to study the site-specific isotopic distributions of larger organic molecules, with potential applications to biosynthesis, forensics and other geochemical subjects.

  2. Alternative Fuels Data Center: Propane Fueling Station Locations

    Science.gov Websites

    petroleum gas (propane) fueling stations near an address or ZIP code or along a route in the United States Location Map a Route Laws & Incentives Search Federal State Key Legislation Data & Tools Widgets

  3. Discrepancy between simulated and observed ethane and propane levels explained by underestimated fossil emissions

    NASA Astrophysics Data System (ADS)

    Dalsøren, Stig B.; Myhre, Gunnar; Hodnebrog, Øivind; Myhre, Cathrine Lund; Stohl, Andreas; Pisso, Ignacio; Schwietzke, Stefan; Höglund-Isaksson, Lena; Helmig, Detlev; Reimann, Stefan; Sauvage, Stéphane; Schmidbauer, Norbert; Read, Katie A.; Carpenter, Lucy J.; Lewis, Alastair C.; Punjabi, Shalini; Wallasch, Markus

    2018-03-01

    Ethane and propane are the most abundant non-methane hydrocarbons in the atmosphere. However, their emissions, atmospheric distribution, and trends in their atmospheric concentrations are insufficiently understood. Atmospheric model simulations using standard community emission inventories do not reproduce available measurements in the Northern Hemisphere. Here, we show that observations of pre-industrial and present-day ethane and propane can be reproduced in simulations with a detailed atmospheric chemistry transport model, provided that natural geologic emissions are taken into account and anthropogenic fossil fuel emissions are assumed to be two to three times higher than is indicated in current inventories. Accounting for these enhanced ethane and propane emissions results in simulated surface ozone concentrations that are 5-13% higher than previously assumed in some polluted regions in Asia. The improved correspondence with observed ethane and propane in model simulations with greater emissions suggests that the level of fossil (geologic + fossil fuel) methane emissions in current inventories may need re-evaluation.

  4. Site-Specific Hydrogen Isotope Composition of Propane: Mass spectrometric methods, equilibrium temperature dependence, and kinetics of exchange

    NASA Astrophysics Data System (ADS)

    Xie, H.; Ponton, C.; Kitchen, N.; Lloyd, M. K.; Lawson, M.; Formolo, M. J.; Eiler, J. M.

    2016-12-01

    Intramolecular isotope ordering can constrain temperatures of synthesis, mechanisms of formation, and/or source substrates of organic compounds. Here we explore site-specific hydrogen isotope variations of propane. Statistical thermodynamic models predict that at equilibrium methylene hydrogen (-CH2-) in propane will be 10's of per mil higher in D/H ratio than methyl hydrogen (-CH3) at geologically relevant temperatures, and that this difference is highly temperature dependent ( 0.5-1 ‰/°C). Chemical-kinetic controls on site-specific D/H in propane could constrain the mechanisms, conditions and extents of propane synthesis or destruction. We have developed a method for measuring the difference in D/H ratio between methylene and methyl hydrogen in propane by gas source mass spectrometry. The data were measured using the Thermo Fisher Double Focusing Sector high resolution mass spectrometer (DFS), and involve comparison of the D/H ratios of molecular ion (C3H8+) and the ethyl fragmental ion (C2H5+). We demonstrate the accuracy and precision of this method through analysis of D-labeled and independently analyzed propanes. In the exchange experiments, propane was heated (100-200 oC) either alone or in the presence of D-enriched water (δD=1,1419 ‰ SMOW), with or without one of several potentially catalytic substrates for hours to weeks. Propane was found to exchange hydrogen with water vigorously at 200 °C in the presence of metal catalysts. In the presence of Ni catalyst, methylene hydrogen exchanges 2.5 times faster than methyl hydrogen. Hydrogen exchange in the presence of Pd catalyst is more effective and can equilibrate hydrogen isotope distribution on propane on the order of 7 days. Isotopic exchange in the presence of natural materials have also been tested, but is only measurable in the methylene group at 200 °C. High catalytic activity of Pd permits attainment of a bracketed, time-invariant equilibrium state that we use to calibrate the site

  5. Cross-dehydrogenative coupling and oxidative-amination reactions of ethers and alcohols with aromatics and heteroaromatics

    PubMed Central

    Vuram, Prasanna K.

    2017-01-01

    Cross-dehydrogenative coupling (CDC) is a process in which, typically, a C–C bond is formed at the expense of two C–H bonds, either catalyzed by metals or other organic compounds, or via uncatalyzed processes. In this perspective, we present various modes of C–H bond-activation at sp3 centers adjacent to ether oxygen atoms, followed by C–C bond formation with aromatic systems as well as with heteroaromatic systems. C–N bond-formation with NH-containing heteroaromatics, leading to hemiaminal ethers, is also an event that can occur analogously to C–C bond formation, but at the expense of C–H and N–H bonds. A large variety of hemiaminal ether-forming reactions have recently appeared in the literature and this perspective also includes this complementary chemistry. In addition, the participation of C–H bonds in alcohols in such processes is also described. Facile access to a wide range of compounds can be attained through these processes, rendering such reactions useful for synthetic applications via Csp3 bond activations. PMID:28970941

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Getsoian, Andrew "Bean"; Das, Ujjal; Camacho-Bunquin, Jeffrey

    Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order tomore » better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. Furthermore, these findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Getsoian, Andrew “Bean”; Das, Ujjal; Camacho-Bunquin, Jeffrey

    Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order tomore » better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. These findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.« less

  8. Reduced chemical kinetics for propane combustion

    NASA Technical Reports Server (NTRS)

    Ying, Shuh-Jing; Nguyen, Hung Lee

    1990-01-01

    It is pointed out that a detailed chemical kinetics mechanism for the combustion of propane consists of 40 chemical species and 118 elementary chemical reactions. An attempt is made to reduce the number of chemical species and elementary chemical reactions so that the computer run times and storage requirements may be greatly reduced in three-dimensional gas turbine combustion flow calculations, while maintaining accurate predictions of the propane combustion and exhaust emissions. By way of a sensitivity analysis, the species of interest and chemical reactions are classified in descending order of importance. Nineteen species are chosen, and their pressure, temperature, and concentration profiles are presented for the reduced mechanisms, which are then compared with those from the full 118 reactions. It is found that 45 reactions involving 27 species have to be kept for comparable agreement. A comparison of the results obtained from the 45 reactions to that of the full 118 shows that the pressure and temperature profiles and concentrations of C3H8, O2, N2, H2O, CO, and CO2 are within 10 percent of maximum change.

  9. Continuous Flow Aerobic Alcohol Oxidation Reactions Using a Heterogeneous Ru(OH)x/Al2O3 Catalyst

    PubMed Central

    2015-01-01

    Ru(OH)x/Al2O3 is among the more versatile catalysts for aerobic alcohol oxidation and dehydrogenation of nitrogen heterocycles. Here, we describe the translation of batch reactions to a continuous-flow method that enables high steady-state conversion and single-pass yields in the oxidation of benzylic alcohols and dehydrogenation of indoline. A dilute source of O2 (8% in N2) was used to ensure that the reaction mixture, which employs toluene as the solvent, is nonflammable throughout the process. A packed bed reactor was operated isothermally in an up-flow orientation, allowing good liquid–solid contact. Deactivation of the catalyst during the reaction was modeled empirically, and this model was used to achieve high conversion and yield during extended operation in the aerobic oxidation of 2-thiophene methanol (99+% continuous yield over 72 h). PMID:25620869

  10. Variation of the pressure limits of flame propagation with tube diameter for propane-air mixtures

    NASA Technical Reports Server (NTRS)

    Belles, Frank E; Simon, Dorothy M

    1951-01-01

    An investigation was made of the variation of the pressure limits of flame propagation with tube diameter for quiescent propane with tube diameter for quiescent propane-air mixtures. Pressure limits were measured in glass tubes of six different inside diameters, with a precise apparatus. Critical diameters for flame propagation were calculated and the effect of pressure was determined. The critical diameters depended on the pressure to the -0.97 power for stoichiometric mixtures. The pressure dependence decreased with decreasing propane concentration. Critical diameters were related to quenching distance, flame speeds, and minimum ignition energy.

  11. Chemistry and temperature-assisted dehydrogenation of C60H30 molecules on TiO2(110) surfaces

    NASA Astrophysics Data System (ADS)

    Sánchez-Sánchez, Carlos; Martínez, José Ignacio; Lanzilotto, Valeria; Biddau, Giulio; Gómez-Lor, Berta; Pérez, Rubén; Floreano, Luca; López, María Francisca; Martín-Gago, José Ángel

    2013-10-01

    The thermal induced on-surface chemistry of large polycyclic aromatic hydrocarbons (PAHs) deposited on dielectric substrates is very rich and complex. We evidence temperature-assisted (cyclo)dehydrogenation reactions for C60H30 molecules and the subsequent bottom-up formation of assembled nanostructures, such as nanodomes, on the TiO2(110) surface. To this aim we have deposited, under ultra-high vacuum, a submonolayer coverage of C60H30 and studied, by a combination of experimental techniques (STM, XPS and NEXAFS) and theoretical methods, the different chemical on-surface interaction stages induced by the increasing temperature. We show that room temperature adsorbed molecules exhibit a weak interaction and freely diffuse on the surface, as previously reported for other aromatics. Nevertheless, a slight annealing induces a transition from this (meta)stable configuration into chemisorbed molecules. This adsorbate-surface interaction deforms the C60H30 molecular structure and quenches surface diffusion. Higher annealing temperatures lead to partial dehydrogenation, in which the molecule loses some of the hydrogen atoms and LUMO levels spread in the gap inducing a net total energy gain. Further annealing, up to around 750 K, leads to complete dehydrogenation. At these temperatures the fully dehydrogenated molecules link between them in a bottom-up coupling, forming nanodomes or fullerene-like monodisperse species readily on the dielectric surface. This work opens the door to the use of on-surface chemistry to generate new bottom-up tailored structures directly on high-K dielectric surfaces.The thermal induced on-surface chemistry of large polycyclic aromatic hydrocarbons (PAHs) deposited on dielectric substrates is very rich and complex. We evidence temperature-assisted (cyclo)dehydrogenation reactions for C60H30 molecules and the subsequent bottom-up formation of assembled nanostructures, such as nanodomes, on the TiO2(110) surface. To this aim we have deposited

  12. Deposit formation in hydrocarbon rocket fuels with an evaluation of a propane heat transfer correlation

    NASA Technical Reports Server (NTRS)

    Masters, P. A.; Aukerman, C. A.

    1982-01-01

    A high pressure fuel coking testing apparatus was designed and developed and was used to evaluate thermal decomposition limits and carbon decomposition rates in heated copper tubes for hydrocarbon fuels. A commercial propane (90% grade) and chemically pure (CP) propane were tested. Heat transfer to supercritical propane was evaluated at 136 atm, bulk fluid velocities of 6 to 30 m/s, and tube wall temperatures in the range of 422 to 811 K. A forced convection heat transfer correlation developed in a previous test effort verified a prediction of most of the experimental data within a + or - 30% range, with good agreement for the CP propane data. No significant differences were apparent in the predictions derived from the correlation when the carbon resistance was included with the film resistance. A post-test scanning electron microprobe analysis indicated occurrences of migration and interdiffusion of copper into the carbon deposit.

  13. Imaging sequential dehydrogenation of methanol on Cu(110) with a scanning tunneling microscope.

    PubMed

    Kitaguchi, Y; Shiotari, A; Okuyama, H; Hatta, S; Aruga, T

    2011-05-07

    Adsorption of methanol and its dehydrogenation on Cu(110) were studied by using a scanning tunneling microscope (STM). Upon adsorption at 12 K, methanol preferentially forms clusters on the surface. The STM could induce dehydrogenation of methanol sequentially to methoxy and formaldehyde. This enabled us to study the binding structures of these products in a single-molecule limit. Methoxy was imaged as a pair of protrusion and depression along the [001] direction. This feature is fully consistent with the previous result that it adsorbs on the short-bridge site with the C-O axis tilted along the [001] direction. The axis was induced to flip back and forth by vibrational excitations with the STM. Two configurations were observed for formaldehyde, whose structures were proposed based on their characteristic images and motions.

  14. Design and Operation of the Synthesis Gas Generator System for Reformed Propane and Glycerin Combustion

    NASA Astrophysics Data System (ADS)

    Pickett, Derek Kyle

    Due to an increased interest in sustainable energy, biodiesel has become much more widely used in the last several years. Glycerin, one major waste component in biodiesel production, can be converted into a hydrogen rich synthesis gas to be used in an engine generator to recover energy from the biodiesel production process. This thesis contains information detailing the production, testing, and analysis of a unique synthesis generator rig at the University of Kansas. Chapter 2 gives a complete background of all major components, as well as how they are operated. In addition to component descriptions, methods for operating the system on pure propane, reformed propane, reformed glycerin along with the methodology of data acquisition is described. This chapter will serve as a complete operating manual for future students to continue research on the project. Chapter 3 details the literature review that was completed to better understand fuel reforming of propane and glycerin. This chapter also describes the numerical model produced to estimate the species produced during reformation activities. The model was applied to propane reformation in a proof of concept and calibration test before moving to glycerin reformation and its subsequent combustion. Chapter 4 first describes the efforts to apply the numerical model to glycerin using the calibration tools from propane reformation. It then discusses catalytic material preparation and glycerin reformation tests. Gas chromatography analysis of the reformer effluent was completed to compare to theoretical values from the numerical model. Finally, combustion of reformed glycerin was completed for power generation. Tests were completed to compare emissions from syngas combustion and propane combustion.

  15. Alternative Fuels Data Center: Propane Vehicle Emissions

    Science.gov Websites

    compared to conventional gasoline and diesel fuel. When used as a vehicle fuel, propane can offer life , processing, manufacturing, distribution, use, and disposal or recycling. When comparing fuels, a life cycle GREET model estimates the life cycle petroleum use and GHG emissions for multiple fuels. When this model

  16. Performance and emissions of a catalytic reactor with propane, diesel, and Jet A fuels

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1977-01-01

    Tests were made to determine the performance and emissions of a catalytic reactor operated with propane, No. 2 diesel, and Jet A fuels. A 12-cm diameter and 16-cm long catalytic reactor using a proprietary noble metal catalyst was operated at an inlet temperature of 800 K, a pressure of 300,000 Pa and reference velocities of 10 to 15 m/s. No significant differences between the performance of the three fuels were observed when 98.5 percent purity propane was used. The combustion efficiency for 99.8-percent purity propane tested later was significantly lower, however. The diesel fuel contained 135 ppm of bound nitrogen and consequently produced the highest NOx emissions of the three fuels. As much as 85 percent of the bound nitrogen was converted to NOx. Steady-state emissions goals based on half the most stringent proposed automotive standards were met when the reactor was operated at an adiabatic combustion temperature higher than 1350 K with all fuels except the 99.8-percent purity propane. With that fuel, a minimum temperature of 1480 K was required.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Haifeng; Lin, Sen; Goetze, Joris

    CeO2 supports are unique in their ability to trap ionic Pt, providing exceptional stability for isolated single atoms of Pt. Here, we explore the reactivity and stability of single atom Pt species for the industrially important reaction of light alkane dehydrogenation. The single atom Pt/CeO2 catalysts are stable during propane dehydrogenation, but we observe no selectivity towards propene. DFT calculations show strong adsorption of the olefin produced, leading to further unwanted reactions. In contrast, when Sn is added to ceria, the single atom Pt catalyst undergoes an activation phase where it transforms into Pt-Sn clusters under reaction conditions. Formation ofmore » small Pt-Sn clusters allows the catalyst to achieve high selectivity towards propene, due to facile desorption of the product. The CeO2-supported Pt-Sn clusters are very stable, even during extended reaction at 680 °C. By adding water vapor to the feed, coke formation can almost completely be suppressed. Furthermore, the Pt-Sn clusters can be readily transformed back to the atomically dispersed species on ceria via oxidation, making Pt-Sn/CeO2 a fully regenerable catalyst.« less

  18. Metal-Borohydride-Modified Zr(BH4 )4 ⋅8 NH3 : Low-Temperature Dehydrogenation Yielding Highly Pure Hydrogen.

    PubMed

    Huang, Jianmei; Ouyang, Liuzhang; Gu, Qinfen; Yu, Xuebin; Zhu, Min

    2015-10-12

    Due to its high hydrogen density (14.8 wt %) and low dehydrogenation peak temperature (130 °C), Zr(BH4 )4 ⋅8 NH3 is considered to be one of the most promising hydrogen-storage materials. To further decrease its dehydrogenation temperature and suppress its ammonia release, a strategy of introducing LiBH4 and Mg(BH4 )2 was applied to this system. Zr(BH4 )4 ⋅8 NH3 -4 LiBH4 and Zr(BH4 )4 ⋅8 NH3 -2 Mg(BH4 )2 composites showed main dehydrogenation peaks centered at 81 and 106 °C as well as high hydrogen purities of 99.3 and 99.8 mol % H2 , respectively. Isothermal measurements showed that 6.6 wt % (within 60 min) and 5.5 wt % (within 360 min) of hydrogen were released at 100 °C from Zr(BH4 )4 ⋅8 NH3 -4 LiBH4 and Zr(BH4 )4 ⋅8 NH3 -2 Mg(BH4 )2 , respectively. The lower dehydrogenation temperatures and improved hydrogen purities could be attributed to the formation of the diammoniate of diborane for Zr(BH4 )4 ⋅8 NH3 -4 LiBH4 , and the partial transfer of NH3 groups from Zr(BH4 )4 ⋅8 NH3 to Mg(BH4 )2 for Zr(BH4 )4 ⋅8 NH3 -2 Mg(BH4 )2 , which result in balanced numbers of BH4 and NH3 groups and a more active H(δ+) ⋅⋅⋅(-δ) H interaction. These advanced dehydrogenation properties make these two composites promising candidates as hydrogen-storage materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Case Study - Propane Bakery Delivery Step Vans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laughlin, M.; Burnham, A.

    2016-04-01

    A switch to propane from diesel by a major Midwest bakery fleet showed promising results, including a significant displacement of petroleum, a drop in greenhouse gases and a fuel cost savings of seven cents per mile, according to a study recently completed by the U.S. Department of Energy's Argonne National Laboratory for the Clean Cities program.

  20. Dehydrogenation of n-Alkanes by Solid-Phase Molecular Pincer-Iridium Catalysts. High Yields of α-Olefin Product.

    PubMed

    Kumar, Akshai; Zhou, Tian; Emge, Thomas J; Mironov, Oleg; Saxton, Robert J; Krogh-Jespersen, Karsten; Goldman, Alan S

    2015-08-12

    We report the transfer-dehydrogenation of gas-phase alkanes catalyzed by solid-phase, molecular, pincer-ligated iridium catalysts, using ethylene or propene as hydrogen acceptor. Iridium complexes of sterically unhindered pincer ligands such as (iPr4)PCP, in the solid phase, are found to give extremely high rates and turnover numbers for n-alkane dehydrogenation, and yields of terminal dehydrogenation product (α-olefin) that are much higher than those previously reported for solution-phase experiments. These results are explained by mechanistic studies and DFT calculations which jointly lead to the conclusion that olefin isomerization, which limits yields of α-olefin from pincer-Ir catalyzed alkane dehydrogenation, proceeds via two mechanistically distinct pathways in the case of ((iPr4)PCP)Ir. The more conventional pathway involves 2,1-insertion of the α-olefin into an Ir-H bond of ((iPr4)PCP)IrH2, followed by 3,2-β-H elimination. The use of ethylene as hydrogen acceptor, or high pressures of propene, precludes this pathway by rapid hydrogenation of these small olefins by the dihydride. The second isomerization pathway proceeds via α-olefin C-H addition to (pincer)Ir to give an allyl intermediate as was previously reported for ((tBu4)PCP)Ir. The improved understanding of the factors controlling rates and selectivity has led to solution-phase systems that afford improved yields of α-olefin, and provides a framework required for the future development of more active and selective catalytic systems.

  1. Theoretical Study of the Metal-Controlled Dehydrogenation Mechanism of MN2H3BH3 (M = Li, Na, K): A New Family of Hydrogen Storage Material.

    PubMed

    Li, Tong; Zhang, Jian-Guo

    2018-02-08

    Metal hydrazineboranes (MHBs), as a kind of new hydrogen storage materials, show excellent hydrogen storage performance and dehydrogenation properties. Herein, we designed multiple dehydrogenation pathways to compare the metal-controlled effect. Quantum chemistry theory is used to calculate the crystal structure for determining the molecular structure. With an increase of the metal radius, the energy difference of the isomers also increases. The dehydrogenation pathways of lithium hydrazineborane (path A) and sodium hydrazineborane (path B) appear totally similar to each other in the dehydrogenation process despite the energy barrier, as well as the comparison paths A' (for LiHB) and B' (for NaHB). In contrast with LiHB and NaHB, the tautomeric reaction occurs in the potassium hydrazineborane (KHB) first, and the following dehydrogenation path is similar to that of the LiHB and NaHB. It explores the hydrogen-release properties of the different metal hydrazineboranes and also indcates the affection of the metal in the metal hydrazineboranes hydrogen-storage system.

  2. Method to obtain carbon nano-onions by pyrolisys of propane

    NASA Astrophysics Data System (ADS)

    Garcia-Martin, Tomas; Rincon-Arevalo, Pedro; Campos-Martin, Gemma

    2013-11-01

    We present a new and simple method for carbon nano-onions (CNOs) production which is based on the pyrolysis of Propane. CNOs are originated in a laminar premixed Propane/Oxygen flame of approximately 1.8 of stoichiometric coefficient. The stream of gasses resulting from the combustion drives the carbon particles towards the aluminium surface on which nano-onions are deposited and collected. The structure and size of the deposited carbon onion on the metal wall are characterized by High Resolution Transmission Electron Microscopy technique (HRTEM). The experimental images show the presence of two different types of CNOs. The first particles have diameters in the range of 18-25 nm and the second ones around 10 nm.

  3. 40 CFR 721.8145 - Propane,1,1,1,2,2,3,3-heptafluoro-3-methoxy-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8145 Propane,1,1,1,2,2,3,3-heptafluoro-3-methoxy-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as propane,1...

  4. Theoretical study of interactions between 2,2-Bis (ethylferrocenyl) propane and ammonium perchlorate at low temperature

    NASA Astrophysics Data System (ADS)

    Zhou, Junhong; Zhang, Wei; Yang, Jun; Jiang, Benzheng; Chen, Weiming

    2016-05-01

    In order to explore the interaction mechanism between 2,2-Bis (ethylferrocenyl) propane (GFP) and ammonium perchlorate (AP) at low temperature (below 250 °C), all the possible intermolecular interactions between GFP and AP were calculated. The calculations were performed in single molecule, cluster and slab models. The calculation results show that the interactions between GFP and AP at low temperature mainly come from GFP:-H+ and GFP-NH4+ pair interactions. We speculate that the interaction mechanism between GFP and AP at low temperature is that GFP/H+ or GFP/NH4+ interactions cause GFP to be protonated, and then protonated GFP is to further oxidized.

  5. Propane and butane emission sources to ambient air of Mexico City metropolitan area.

    PubMed

    Jaimes, L; Sandoval, J

    2002-04-22

    Samples of volatile organic compounds (VOCs) were collected in a smog chamber in order to determine whether automotive exhausts or LP Gas emissions play a greater role in the source of propane and butane, which affect ozone formation and other pollutants in the ambient air of the Mexico City metropolitan area (MCMA). These samples were collected in April 1995 during mornings and evenings. The testing methodology used for measuring exhaust emission were FTP or EPA-74 tests, and SHED type tests were also conducted in order to evaluate evaporative emissions. The finding from analysis of the VOCs collected in the morning demonstrate that in the atmosphere, propane concentrations are higher than that of butane but the reverse in evaporative and exhaust emissions, with the concentration of propane lower than that of butane. Our conclusion is that most of C3 and C4 in the ambient air comes from LP gas and not vehicle exhaust or evaporative emission, due to the higher levels of propane than butane in its formulation. The analysis of VOCs also indicates that although the conversion (in the smog chamber) of alkanes is low during the day, due to the high initial concentration, their contribution in the reaction mechanism to produce ozone can be appreciable.

  6. THE ANGULAR DISTRIBUTION OF POSITRONS IN $pi$$sup +$-$mu$$sup +$-e$sup +$ DECAY IN PROPANE (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alikhanyan, A.I.; Kirillov-Ugryumov, V.G.; Kotenko, L.P.

    1958-01-01

    In consideration of the wide use of propane bubble cameras, investigations were made of the angular distribution of electrons from pi /sup +/ -- mu /sup +/--e/sup +/ decay in propane to determine the possibility of using propane in angular correlation measurements of processes simlar to mu --e decay. The scheme of the experiment made with a bubble chamber of (7.2 x 6.5 x 16)cm/ dmensions bombarded by a 175-Mev pi -meson beam from a phasotron is described. (R.V.J.)

  7. 2. View of Liquified Propane Air Plant (New), former Exhaust ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of Liquified Propane Air Plant (New), former Exhaust and Compressor Building and former Purifying Plant in background. - Concord Gas Light Company, South Main Street, Concord, Merrimack County, NH

  8. Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions

    DOEpatents

    Huffman, Gerald P.

    2012-11-13

    A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

  9. Developing synthesis techniques for zeolitic-imidazolate framework membranes for high resolution propylene/propane separation

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk Taek

    Propylene/propane separation is one of the most challenging separations, currently achieved by energy-intensive cryogenic distillation. Despite the great potentials for energy-efficient membrane-based propylene/propane separation processes, no commercial membranes are available due to the limitations (i.e., low selectivity) of current polymeric materials. Zeolitic imidazolate frameworks (ZIFs) are promising membrane materials primarily due to their well-defined ultra-micropores with controllable surface chemistry along with their relatively high thermal/chemical stabilities. In particular, ZIF-8 with the effective aperture size of ~ 4.0 A has been shown very promising for propylene/propane separation. Despite the extensive research on ZIF-8 membranes, only a few of ZIF-8 membranes have displayed good propylene/propane separation performances presumably due to the challenges of controlling the microstructures of polycrystalline membranes. Since the membrane microstructures are greatly influenced by processing techniques, it is critically important to develop new techniques. In this dissertation, three state-of-the-art ZIF membrane synthesis techniques are developed. The first is a one-step in-situ synthesis technique based on the concept of counter diffusion. The technique enabled us to obtain highly propylene selective ZIF-8 membranes in less than a couple of hours with exceptional mechanical strength. Most importantly, due to the nature of the counter-diffusion concept, the new method offered unique opportunities such as healing defective membranes (i.e., poorly-intergrown) as well as significantly reducing the consumption of costly ligands and organic solvents. The second is a microwave-assisted seeding technique. Using this new seeding technique, we were able to prepare seeded supports with a high packing density in a couple of minutes, which subsequently grown into highly propylene-selective ZIF-8 membranes with an average propylene/propane selectivity of ~40

  10. Computational Study of Formic Acid Dehydrogenation Catalyzed by Al(III)-Bis(imino)pyridine.

    PubMed

    Lu, Qian-Qian; Yu, Hai-Zhu; Fu, Yao

    2016-03-18

    The mechanism of formic acid dehydrogenation catalyzed by the bis(imino)pyridine-ligated aluminum hydride complex (PDI(2-))Al(THF)H (PDI=bis(imino)pyridine) was studied by density functional theory calculations. The overall transformation is composed of two stages: catalyst activation and the catalytic cycle. The catalyst activation begins with O-H bond cleavage of HCOOH promoted by aluminum-ligand cooperation, followed by HCOOH-assisted Al-H bond cleavage, and protonation of the imine carbon atom of the bis(imino)pyridine ligand. The resultant doubly protonated complex ((H,H) PDI)Al(OOCH)3 is the active catalyst for formic acid dehydrogenation. Given this, the catalytic cycle includes β-hydride elimination of ((H,H) PDI)Al(OOCH)3 to produce CO2, and the formed ((H,H) PDI)Al(OOCH)2 H mediates HCOOH to release H2. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Dimethylammonium hexanoate stabilized rhodium(0) nanoclusters identified as true heterogeneous catalysts with the highest observed activity in the dehydrogenation of dimethylamine-borane.

    PubMed

    Zahmakiran, Mehmet; Ozkar, Saim

    2009-09-21

    Herein we report the discovery of a superior dimethylamine-borane dehydrogenation catalyst, more active than the prior best heterogeneous catalyst (Jaska, C. A.; Manners, I. J. Am. Chem. Soc. 2004, 126, 9776) reported to date for the dehydrogenation of dimethylamine-borane. The new catalyst system consists of rhodium(0) nanoclusters stabilized by C(5)H(11)COO(-) anions and Me(2)H(2)N(+) cations and can reproducibly be formed from the reduction of rhodium(II) hexanoate during dehydrogenation of dimethylamine-borane at room temperature. Rhodium(0) nanoclusters in an average particle size of 1.9 +/- 0.6 nm Rh(0)(approximately 190) nanoclusters) provide 1040 turnovers over 26 h with a record initial turnover frequency (TOF) of 60 h(-1) (the average TOF value is 40 h(-1)) in the dehydrogenation of dimethylamine-borane, yielding 100% of the cyclic product (Me(2)NBH(2))(2) at room temperature. The work reported here also includes the full experimental details of the following major components: (i) Characterization of dimethylammonium hexanoate stabilized rhodium(0) nanoclusters by using TEM, STEM, EDX, XRD, UV-vis, XPS, FTIR, (1)H, (13)C, and (11)B NMR spectroscopy, and elemental analysis. (ii) Collection of a wealth of previously unavailable kinetic data to determine the rate law and activation parameters for catalytic dehydrogenation of dimethylamine-borane. (iii) Monitoring of the formation kinetics of the rhodium(0) nanoclusters by a fast dimethylamine-borane dehydrogenation catalytic reporter reaction (Watzky, M. A.; Finke, R. G. J. Am. Chem. Soc. 1997, 119, 10382) at various [Me(2)NH.BH(3)]/[Rh] ratios and temperatures. Significantly, sigmoidal kinetics of catalyst formation was found to be well fit to the two-step, slow nucleation and then autocatalytic surface growth mechanism, A --> B (rate constant k(1)) and A + B --> 2B (rate constant k(2)), in which A is [Rh(C(5)H(11)CO(2))(2)](2) and B is the growing, catalytically active rhodium(0) nanoclusters. (iv) Mercury

  12. Dehydrogenation reactions of cyclic C(2)B(2)N(2)H(12) and C(4)BNH(12) isomers.

    PubMed

    Matus, Myrna H; Liu, Shih-Yuan; Dixon, David A

    2010-02-25

    The energetics for different dehydrogenation pathways of C(2)B(2)N(2)H(12) and C(4)BNH(12) cycles were calculated at the B3LYP/DGDZVP2 and G3(MP2) levels with additional calculations at the CCSD(T)/complete basis set level. The heats of formation of the different isomers were calculated from the G3(MP2) relative energies and the heats of formation of the most stable isomers of c-C(2)B(2)N(2)H(6), c-C(2)B(2)N(2)H(12), and c-C(4)BNH(12) at the CCSD(T)/CBS including additional corrections together with the previously reported value for c-C(4)BNH(6). Different isomers were analyzed for c-C(2)B(2)N(2)H(x) and c-C(4)BNH(x) (x = 6 and 12), and the most stable cyclic structures were those with C-C-B-N-B-N and C-C-C-C-B-N sequences, respectively. The energetics for the stepwise loss of three H(2) were predicted, and the most feasible thermodynamic pathways were found. Dehydrogenation of the lowest energy c-C(2)B(2)N(2)H(12) isomer (6-H(12)) is almost thermoneutral with DeltaH(3dehydro) = 3.4 kcal/mol at the CCSD(T)/CBS level and -0.6 kcal/mol at the G3(MP2) level at 298 K. Dehydrogenation of the lowest energy c-C(4)BNH(12) isomer (7-H(12)) is endothermic with DeltaH(3dehydro) = 27.9 kcal/mol at the CCSD(T)/CBS level and 23.5 kcal/mol at the G3(MP2) level at 298 K. Dehydrogenation across the B-N bond is more favorable as opposed to dehydrogenation across the B-C, N-C, and C-C bonds. Resonance stabilization energies in relation to that of benzene are reported as are NICS NMR chemical shifts for correlating with the potential aromatic character of the rings.

  13. Chemical kinetic models for combustion of hydrocarbons and formation of nitric oxide

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.; Wilson, C. H.

    1980-01-01

    The formation of nitrogen oxides NOx during combustion of methane, propane, and a jet fuel, JP-4, was investigated in a jet stirred combustor. The results of the experiments were interpreted using reaction models in which the nitric oxide (NO) forming reactions were coupled to the appropriate hydrocarbon combustion reaction mechanisms. Comparison between the experimental data and the model predictions reveals that the CH + N2 reaction process has a significant effect on NO formation especially in stoichiometric and fuel rich mixtures. Reaction models were assembled that predicted nitric oxide levels that were in reasonable agreement with the jet stirred combustor data and with data obtained from a high pressure (5.9 atm (0.6 MPa)), prevaporized, premixed, flame tube type combustor. The results also suggested that the behavior of hydrocarbon mixtures, like JP-4, may not be significantly different from that of pure hydrocarbons. Application of the propane combustion and nitric oxide formation model to the analysis of NOx emission data reported for various aircraft gas turbines showed the contribution of the various nitric oxide forming processes to the total NOx formed.

  14. Alternative Fuels Data Center: Propane Vans Keep Kansas City Transportation

    Science.gov Websites

    anxiety. More recently, the company has been exploring dedicated-propane vehicles in Kansas City to ensure technologies and petroleum-use reduction strategies, then deployed bi-fuel vans; currently exploring dedicated

  15. Cobalt-catalysed site-selective intra- and intermolecular dehydrogenative amination of unactivated sp3 carbons

    PubMed Central

    Wu, Xuesong; Yang, Ke; Zhao, Yan; Sun, Hao; Li, Guigen; Ge, Haibo

    2015-01-01

    Cobalt-catalysed sp2 C–H bond functionalization has attracted considerable attention in recent years because of the low cost of cobalt complexes and interesting modes of action in the process. In comparison, much less efforts have been devoted to the sp3 carbons. Here we report the cobalt-catalysed site-selective dehydrogenative cyclization of aliphatic amides via a C–H bond functionalization process on unactivated sp3 carbons with the assistance of a bidentate directing group. This method provides a straightforward synthesis of monocyclic and spiro β- or γ-lactams with good to excellent stereoselectivity and functional group tolerance. In addition, a new procedure has been developed to selectively remove the directing group, which enables the synthesis of free β- or γ-lactam compounds. Furthermore, the first cobalt-catalysed intermolecular dehydrogenative amination of unactivated sp3 carbons is also realized. PMID:25753366

  16. Origin of the selectivity in the gold-mediated oxidation of benzyl alcohol

    NASA Astrophysics Data System (ADS)

    Rodríguez-Reyes, Juan Carlos F.; Friend, Cynthia M.; Madix, Robert J.

    2012-08-01

    Benzyl alcohol has received substantial attention as a probe molecule to test the selectivity and efficiency of novel metallic gold catalysts. Herein, the mechanisms of benzyl alcohol oxidation on a gold surface covered with atomic oxygen are elucidated; the results show direct correspondence to the reaction on gold-based catalysts. The selective, partial oxidation of benzyl alcohol to benzaldehyde is achieved with low oxygen surface concentrations and takes place through dehydrogenation of the alcohol to form benzaldehyde via a benzyloxy (C6H5-CH2O) intermediate. While in this case atomic oxygen plays solely a dehydrogenating role, at higher concentrations it leads to the formation of intermediates from benzaldehyde, producing benzoic acid and CO2. Facile ester (benzyl benzoate) formation also occurs at low oxygen concentrations, which indicates that benzoic acid is not a precursor of further oxidation of the ester; instead, the ester is produced by the coupling of adsorbed benzyloxy and benzaldehyde. Key to the high selectivity seen at low oxygen concentrations is the fact that the production of the aldehyde (and esters) is kinetically favored over the production of benzoic acid.

  17. High-density defects on PdAg nanowire networks as catalytic hot spots for efficient dehydrogenation of formic acid and reduction of nitrate.

    PubMed

    Liu, Hu; Yu, Yongsheng; Yang, Weiwei; Lei, Wenjuan; Gao, Manyi; Guo, Shaojun

    2017-07-13

    Controlling the surface defects of nanocrystals is a new way of tuning/boosting their catalytic properties. Herein, we report networked PdAg nanowires (NWs) with high-density defects as catalytic hot spots for efficient catalytic dehydrogenation of formic acid (FA) and catalytic reduction of nitrates. The networked PdAg NWs exhibit composition-dependent catalytic activity for the dehydrogenation reaction of FA without any additive, with Pd 5 Ag 5 NWs exhibiting the highest activity. They also show good durability, reflected by the retention of their initial activity during the dehydrogenation reaction of FA even after five cycles. Their initial TOF is 419 h -1 at 60 °C in water solution, much higher than those of the most Pd-based catalysts with a support. Moreover, they can efficiently reduce nitrates to alleviate nitrate pollution in water (conversion yield >99%). This strategy opens up a new green synthetic technique to design support-free heterogeneous catalysts with high-density defects as catalytic hot spots for efficient dehydrogenation catalysis of FA to meet the requirement of fuel cell applications and catalytic reduction of nitrates in water polluted with nitrates.

  18. Ni-Al films induced surface modification of La2Mg17 alloy leading to improved dehydrogenation properties

    NASA Astrophysics Data System (ADS)

    Zhang, Huaiwei; Fu, Li; Xuan, Weidong; Qin, Haiying; Ji, Zhenguo

    2018-05-01

    The effects of surface coating with Ni-Al nano-films to the hydrogenation properties of the La2Mg17 alloy are studied in the paper. The reversible hydrogen storage capacities, thermodynamics and kinetics process are all improved for the coating samples, and the comprehensive performances reach the best when the sputtering time is 5min with the film thickness 71.7 nm. The dehydrogenation temperature of the coating sample can be reduced to about 560K from above 720K comparing to the body alloy. The XPS analysis shows that the Ni-Al film coating layer can act as the catalyst in the dehydrogenation process.

  19. Hydrogenation and dehydrogenation of cyclohexene on Pt(1 0 0): A sum frequency generation vibrational spectroscopic and kinetic study

    NASA Astrophysics Data System (ADS)

    Bratlie, Kaitlin M.; Flores, Lucio D.; Somorjai, Gabor A.

    2005-12-01

    Sum frequency generation (SFG) vibrational spectroscopy and kinetic measurements were performed during cyclohexene hydrogenation/dehydrogenation over a range of pressures (10 -8-5 Torr) and temperatures (300-500 K) on the Pt(1 0 0) surface. Upon adsorption at pressures below 1.5 Torr and at 300 K, cyclohexene dehydrogenates to form π-allyl c-C 6H 9 and hydrogenates to form cyclohexyl (C 6H 11) surface intermediates. Increasing the pressure to 1.5 Torr produces adsorbed 1,4-cyclohexadiene, π-allyl c-C 6H 9, and cyclohexyl species. These adsorbed molecules are found both in the absence and presence of excess hydrogen on the Pt(1 0 0) surface at high pressures and up to 380 K and 360 K, respectively. π-Allyl c-C 6H 9 and cyclohexyl are adsorbed on the surface up to 440 K in the absence of excess hydrogen and 460 K in the presence of excess hydrogen, at which point they are no longer detectable by SFG. Kinetic studies in the absence of excess hydrogen show that the apparent activation energy for the dehydrogenation pathway (14.3 ± 1.2 kcal/mol) is similar to that of the hydrogenation pathway (12.9 ± 0.6 kcal/mol). Different apparent activation energies are observed for the dehydrogenation pathway (22.4 ± 1.6 kcal/mol) and the hydrogenation pathway (18.8 ± 0.9 kcal/mol) in the presence of excess hydrogen.

  20. Sprawling nursery unveils propane backup for natural gas boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-02-01

    First, take the most authoritative policy- making body in the pervasive problem area of Southern California air pollution (South Coast Air Quality Management District - SCAQMD). Then apply that organization's recently- enacted regulation prohibiting the use of diesel fuel in boilers to a well-known commercial establishment. The result is an alternative fuel story, that's too engaging to overlook. Monrovia Nursery, a 65-year-old, 500-acre wholesale growing facility in Azusa, Calif., has installed two 200-hp Dixon boilers, a 14 MMBtuh Sam Dick Industries vaporizer, and six 1150-gal. tanks on the property for the use of propane as a backup fuel. While themore » nursery ordinarily uses natural gas for water heating, there are times during the winter when the supply may be curtailed or interrupted. It is then that propane would be used to heat water to keep more than 1200 varieties of plants growing as they should.« less

  1. Two cases of acute propane/butane poisoning in prison.

    PubMed

    Rossi, Riccardo; Suadoni, Fabio; Pieroni, Ludovica; De-Giorgio, Fabio; Lancia, Massimo

    2012-05-01

    Hydrocarbon inhalation is seldom chosen as a means to commit suicide. This practice is exclusively a prerogative of the prison population; it is, however, only exceptionally found in this environment. The two cases of lethal inhalation of propane/butane gas observed by us over a very short time occurred in this context. Toxicologic analyses were performed by means of gas chromatography (head space) and revealed a propane/butane mixture in all specimens (heart blood, bile, and urine) except vitreous humor. Although fatal arrhythmia posthydrocarbon gas abuse is well known, the concentrations of the two hydrocarbons were sufficient to induce death by asphyxiation and were distributed (fairly) homogeneously in all biological fluids and organs examined, a parameter permitting one to assume that death occurred within a relatively short period of time. The absence of finding in vitreous humor and the trace amount in urine suggests that both men died very quickly. © 2011 American Academy of Forensic Sciences.

  2. Dehydrogenation of ammonia-borane by cationic Pd(II) and Ni(II) complexes in a nitromethane medium: hydrogen release and spent fuel characterization.

    PubMed

    Kim, Sung-Kwan; Hong, Sung-Ahn; Son, Ho-Jin; Han, Won-Sik; Michalak, Artur; Hwang, Son-Jong; Kang, Sang Ook

    2015-04-28

    A highly electrophilic cationic Pd(II) complex, [Pd(MeCN)4][BF4]2 (1), brings about the preferential activation of the B-H bond in ammonia-borane (NH3·BH3, AB). At room temperature, the reaction between 1 in CH3NO2 and AB in tetraglyme leads to Pd nanoparticles and formation of spent fuels of the general formula MeNHxBOy as reaction byproducts, while 2 equiv. of H2 is efficiently released per AB equiv. at room temperature within 60 seconds. For a mechanistic understanding of dehydrogenation by 1, the chemical structures of spent fuels were intensely characterized by a series of analyses such as elemental analysis (EA), X-ray photoelectron spectroscopy (XPS), solid state magic-angle-spinning (MAS) NMR spectra ((2)H, (13)C, (15)N, and (11)B), and cross polarization (CP) MAS methods. During AB dehydrogenation, the involvement of MeNO2 in the spent fuels showed that the mechanism of dehydrogenation catalyzed by 1 is different from that found in the previously reported results. This AB dehydrogenation derived from MeNO2 is supported by a subsequent digestion experiment of the AB spent fuel: B(OMe)3 and N-methylhydroxylamine ([Me(OH)N]2CH2), which are formed by the methanolysis of the AB spent fuel (MeNHxBOy), were identified by means of (11)B NMR and single crystal structural analysis, respectively. A similar catalytic behavior was also observed in the AB dehydrogenation catalyzed by a nickel catalyst, [Ni(MeCN)6][BF4]2 (2).

  3. Dehydrogenative coupling of silanes with alcohols catalyzed by Cu3(BTC)2.

    PubMed

    Dhakshinamoorthy, Amarajothi; Concepcion, Patricia; Garcia, Hermenegildo

    2016-02-14

    Cu3(BTC)2 is an efficient and reusable heterogeneous catalyst for the dehydrogenative coupling of silanes with alcohols. Activity data and CO adsorption suggest that Cu(II) and in situ generated Cu(I) are the active species. Other MOFs such as Fe(BTC), MIL-101(Cr) and UiO-66(Zr) are unable to promote this cross-coupling.

  4. Supercritical CO(2) and subcritical propane extraction of pungent paprika and quantification of carotenoids, tocopherols, and capsaicinoids.

    PubMed

    Gnayfeed, M H; Daood, H G; Illés, V; Biacs, P A

    2001-06-01

    Ground paprika (Capsicum annuum L.) was extracted with supercritical carbon dioxide (SC-CO(2)) and subcritical propane at different conditions of pressure and temperature to estimate the yield and variation in carotenoid, tocopherol, and capsaicinoid contents and composition. The yield of paprika extract was found to be affected by the extraction conditions with SC-CO(2) but fairly constant at different conditions with subcritical propane. The maximum yields of oleoresin were 7.9 and 8.1% of ground paprika by SC-CO(2) and subcritical propane, respectively. The quantitative distribution of carotenoids, tocopherols, and capsaicinoids between paprika extract and powder was influenced by extraction conditions. SC-CO(2) was inefficient in the extraction of diesters of xanthophylls even at 400 bar and 55 degrees C, whereas tocopherols and capsaicinoids were easy to extract at these conditions. Under mild conditions subcritical propane was superior to SC-CO(2) in the extraction of carotenoids and tocopherols but less efficient in the extraction of capsaicinoids.

  5. Size and Site Dependence of the Catalytic Activity of Iridium Clusters toward Ethane Dehydrogenation.

    PubMed

    Ge, Yingbin; Jiang, Hao; Kato, Russell; Gummagatta, Prasuna

    2016-12-01

    This research focuses on optimizing transition metal nanocatalyst immobilization and activity to enhance ethane dehydrogenation. Ethane dehydrogenation, catalyzed by thermally stable Ir n (n = 8, 12, 18) atomic clusters that exhibit a cuboid structure, was studied using the B3LYP method with triple-ζ basis sets. Relativistic effects and dispersion corrections were included in the calculations. In the dehydrogenation reaction Ir n + C 2 H 6 → H-Ir n -C 2 H 5 → (H) 2 -Ir n -C 2 H 4 , the first H-elimination is the rate-limiting step, primarily because the reaction releases sufficient heat to facilitate the second H-elimination. The catalytic activity of the Ir clusters strongly depends on the Ir cluster size and the specific catalytic site. Cubic Ir 8 is the least reactive toward H-elimination in ethane: Ir 8 + C 2 H 6 → H-Ir 8 -C 2 H 5 has a large (65 kJ/mol) energy barrier, whereas Ir 12 (3 × 2 × 2 cuboid) and Ir 18 (3 × 3 × 2 cuboid) lower this energy barrier to 22 and 3 kJ/mol, respectively. The site dependence is as prominent as the size effect. For example, the energy barrier for the Ir 18 + C 2 H 6 → H-Ir 18 -C 2 H 5 reaction is 3, 48, and 71 kJ/mol at the corner, edge, or face-center sites of the Ir 18 cuboid, respectively. Energy release due to Ir cluster insertion into an ethane C-H bond facilitates hydrogen migration on the Ir cluster surface, and the second H-elimination of ethane. In an oxygen-rich environment, oxygen molecules may be absorbed on the Ir cluster surface. The oxygen atoms bonded to the Ir cluster surface may slightly increase the energy barrier for H-elimination in ethane. However, the adsorption of oxygen and its reaction with H atoms on the Ir cluster releases sufficient heat to yield an overall thermodynamically favored reaction: Ir n + C 2 H 6 + 1 / 2 O 2 → Ir n + C 2 H 4 + H 2 O. These results will be useful toward reducing the energy cost of ethane dehydrogenation in industry.

  6. Position-specific 13C distributions within propane from experiments and natural gas samples

    NASA Astrophysics Data System (ADS)

    Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Santos Neto, E. V.; Ellis, Geoffrey S.; Lewan, Michael D.; Eiler, John M.

    2018-01-01

    Site-specific carbon isotope measurements of organic compounds potentially recover information that is lost in a conventional, 'bulk' isotopic analysis. Such measurements are useful because isotopically fractionating processes may have distinct effects at different molecular sites, and thermodynamically equilibrated populations of molecules tend to concentrate heavy isotopes in one molecular site versus another. Most recent studies of site-specific 13C in organics use specialized Nuclear Magnetic Resonance (NMR) techniques or complex chemical degradations prior to mass spectrometric measurements. Herein we present the first application of a new mass spectrometric technique that reconstructs the site-specific carbon isotope composition of propane based on measurements of the 13C/12C ratios of two or more fragment ions that sample different proportions of the terminal and central carbon sites. We apply this method to propane from laboratory experiments and natural gas samples to explore the relationships between site-specific carbon isotope composition, full-molecular δ13C, thermal maturity, and variation in organic matter precursors. Our goal is to advance the understanding of the sources and histories of short-chain alkanes within geologic systems. Our findings suggest that propane varies in its site-specific carbon isotope structure, which is correlated with increasing thermal maturity, first increasing in terminal position δ13C and then increasing in both center and terminal position δ13C. This pattern is observed in both experimental and natural samples, and is plausibly explained by a combination of site-specific, temperature-dependent isotope effects associated with conversion of different precursor molecules (kerogen, bitumen, and/or oil) to propane, differences in site-specific isotopic contents of those precursors, and possibly distillation of reactive components of those precursors with increasing maturity. We hypothesize that the largest changes in

  7. Position-specific 13C distributions within propane from experiments and natural gas samples

    USGS Publications Warehouse

    Piasecki, Alison; Sessions, Alex L.; Lawson, Michael; Ferreira, A.A.; Santos Neto, E. V.; Ellis, Geoffrey S.; Lewan, Michael; Eilers, J.M.

    2018-01-01

    Site-specific carbon isotope measurements of organic compounds potentially recover information that is lost in a conventional, ‘bulk’ isotopic analysis. Such measurements are useful because isotopically fractionating processes may have distinct effects at different molecular sites, and thermodynamically equilibrated populations of molecules tend to concentrate heavy isotopes in one molecular site versus another. Most recent studies of site-specific 13C in organics use specialized Nuclear Magnetic Resonance (NMR) techniques or complex chemical degradations prior to mass spectrometric measurements. Herein we present the first application of a new mass spectrometric technique that reconstructs the site-specific carbon isotope composition of propane based on measurements of the 13C/12C ratios of two or more fragment ions that sample different proportions of the terminal and central carbon sites. We apply this method to propane from laboratory experiments and natural gas samples to explore the relationships between site-specific carbon isotope composition, full-molecular δ13C, thermal maturity, and variation in organic matter precursors. Our goal is to advance the understanding of the sources and histories of short-chain alkanes within geologic systems. Our findings suggest that propane varies in its site-specific carbon isotope structure, which is correlated with increasing thermal maturity, first increasing in terminal position δ13C and then increasing in both center and terminal position δ13C. This pattern is observed in both experimental and natural samples, and is plausibly explained by a combination of site-specific, temperature-dependent isotope effects associated with conversion of different precursor molecules (kerogen, bitumen, and/or oil) to propane, differences in site-specific isotopic contents of those precursors, and possibly distillation of reactive components of those precursors with increasing maturity. We hypothesize that the largest changes in

  8. Studies of the kinetics and mechanisms of perfluoroether reactions on iron and oxidized iron surfaces

    NASA Technical Reports Server (NTRS)

    Napier, Mary E.; Stair, Peter C.

    1992-01-01

    Polymeric perfluoroalkylethers are being considered for use as lubricants in high temperature applications, but have been observed to catalytically decompose in the presence of metals. X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD) were used to explore the decomposition of three model fluorinated ethers on clean polycrystalline iron surfaces and iron surfaces chemically modified with oxygen. Low temperature adsorption of the model fluorinated ethers on the clean, oxygen modified and oxidized iron surfaces was molecular. Thermally activated defluorination of the three model compounds was observed on the clean iron surface at remarkably low temperatures, 155 K and below, with formation of iron fluoride. Preferential C-F bond scission occurred at the terminal fluoromethoxy, CF3O, of perfluoro-1-methoxy-2-ethoxy ethane and perfluoro-1-methoxy-2-ethoxy propane and at CF3/CF2O of perfluoro-1,3-diethoxy propane. The reactivity of the clean iron toward perfluoroalkylether decomposition when compared to other metals is due to the strength of the iron fluoride bond and the strong electron donating ability of the metallic iron. Chemisorption of an oxygen overlayer lowered the reactivity of the iron surface to the adsorption and decomposition of the three model fluorinated ethers by blocking active sites on the metal surface. Incomplete coverage of the iron surface with chemisorbed oxygen results in a reaction which resembles the defluorination reaction observed on the clean iron surface. Perfluoro-1-methoxy-2-ethoxy ethane reacts on the oxidized iron surface at 138 K, through a Lewis acid assisted cleavage of the carbon oxygen bond, with preferential attack at the terminal fluoromethoxy, CF3O. The oxidized iron surface did not passivate, but became more reactive with time. Perfluoro-1-methoxy-2-ethoxy propane and perfluoro-1,3-diethoxy propane desorbed prior to the observation of decomposition on the oxidized iron surface.

  9. Biological formation of ethane and propane in the deep marine subsurface.

    PubMed

    Hinrichs, Kai-Uwe; Hayes, John M; Bach, Wolfgang; Spivack, Arthur J; Hmelo, Laura R; Holm, Nils G; Johnson, Carl G; Sylva, Sean P

    2006-10-03

    Concentrations and isotopic compositions of ethane and propane in cold, deeply buried sediments from the southeastern Pacific are best explained by microbial production of these gases in situ. Reduction of acetate to ethane provides one feasible mechanism. Propane is enriched in (13)C relative to ethane. The amount is consistent with derivation of the third C from inorganic carbon dissolved in sedimentary pore waters. At typical sedimentary conditions, the reactions yield free energy sufficient for growth. Relationships with competing processes are governed mainly by the abundance of H(2). Production of C(2) and C(3) hydrocarbons in this way provides a sink for acetate and hydrogen but upsets the general belief that hydrocarbons larger than methane derive only from thermal degradation of fossil organic material.

  10. Dimethyl ether electro-oxidation on platinum surfaces

    DOE PAGES

    Roling, Luke T.; Herron, Jeffrey A.; Budiman, Winny; ...

    2016-02-27

    A first-principles density functional theory study was performed in this paper to elucidate the mechanism of dimethyl ether electro-oxidation on three low-index platinum surfaces (Pt(111), Pt(100), and Pt(211)). The goal of this study is to provide a fundamental explanation for the high activity observed experimentally on Pt(100) compared to Pt(111) and stepped surfaces. We determine that the enhanced activity of Pt(100) stems from more facile C–O bond breaking kinetics, as well as from easier removal of CO as a surface poison through activation of water. In general, the C–O bond (in CH xOCH y) becomes easier to break as dimethylmore » ether is dehydrogenated to a greater extent. In contrast, dehydrogenation becomes more difficult as more hydrogen atoms are removed. We perform two analyses of probable reaction pathways, which both identify CHOC and CO as the key reaction intermediates on these Pt surfaces. We show that the reaction mechanism on each surface is dependent on the cell operating potential, as increasing the potential facilitates C–H bond scission, in turn promoting the formation of intermediates for which C–O scission is more facile. We additionally demonstrate that CO oxidation determines the high overpotential required for electro-oxidation on Pt surfaces. Finally, at practical operating potentials (~0.60 V RHE), we determine that C–O bond breaking is most likely the most difficult step on all three Pt surfaces studied.« less

  11. Dehydrogenation kinetics and reversibility of LiAlH4-LiBH4 doped with Ti-based additives and MWCNT

    NASA Astrophysics Data System (ADS)

    Thaweelap, Natthaporn; Utke, Rapee

    2016-11-01

    Dehydrogenation kinetics and reversibility of LiAlH4-LiBH4 doped with Ti-based additives (TiCl3 and Ti-isopropoxide), multiwall carbon nanotubes (MWCNT), and MWCNT impregnated with Ti-based additives are proposed. Reduction of dehydrogenation temperature as well as improvements of kinetics and reversibility, especially decomposition of thermodynamically stable hydride (LiBH4) is obtained from the samples doped with Ti-isopropoxide and MWCNT. This can be due to the fact that the formations of LixAl(1-x)B2 and LiH-Al containing phase during dehydrogenation favor decomposition of LiH, leading to increment of hydrogen capacity, and stabilization of boron in solid state, resulting in improvement of reversibility. Besides, the curvatures and thermal conductivity of MWCNT benefit hydrogen diffusion and heat transfer during de/rehydrogenation. Nevertheless, deficient hydrogen content reversible is observed in all samples due to the irreversible of LiAlH4 and/or Li3AlH6 as well as the formation of stable phase (Li2B12H12) during de/rehydrogenation.

  12. A new and selective cycle for dehydrogenation of linear and cyclic alkanes under mild conditions using a base metal

    NASA Astrophysics Data System (ADS)

    Solowey, Douglas P.; Mane, Manoj V.; Kurogi, Takashi; Carroll, Patrick J.; Manor, Brian C.; Baik, Mu-Hyun; Mindiola, Daniel J.

    2017-11-01

    Selectively converting linear alkanes to α-olefins under mild conditions is a highly desirable transformation given the abundance of alkanes as well as the use of olefins as building blocks in the chemical community. Until now, this reaction has been primarily the remit of noble-metal catalysts, despite extensive work showing that base-metal alkylidenes can mediate the reaction in a stoichiometric fashion. Here, we show how the presence of a hydrogen acceptor, such as the phosphorus ylide, when combined with the alkylidene complex (PNP)Ti=CHtBu(CH3) (PNP=N[2-P(CHMe2)2-4-methylphenyl]2-), catalyses the dehydrogenation of cycloalkanes to cyclic alkenes, and linear alkanes with chain lengths of C4 to C8 to terminal olefins under mild conditions. This Article represents the first example of a homogeneous and selective alkane dehydrogenation reaction using a base-metal titanium catalyst. We also propose a unique mechanism for the transfer dehydrogenation of hydrocarbons to olefins and discuss a complete cycle based on a combined experimental and computational study.

  13. A new and selective cycle for dehydrogenation of linear and cyclic alkanes under mild conditions using a base metal.

    PubMed

    Solowey, Douglas P; Mane, Manoj V; Kurogi, Takashi; Carroll, Patrick J; Manor, Brian C; Baik, Mu-Hyun; Mindiola, Daniel J

    2017-11-01

    Selectively converting linear alkanes to α-olefins under mild conditions is a highly desirable transformation given the abundance of alkanes as well as the use of olefins as building blocks in the chemical community. Until now, this reaction has been primarily the remit of noble-metal catalysts, despite extensive work showing that base-metal alkylidenes can mediate the reaction in a stoichiometric fashion. Here, we show how the presence of a hydrogen acceptor, such as the phosphorus ylide, when combined with the alkylidene complex (PNP)Ti=CH t Bu(CH 3 ) (PNP=N[2-P(CHMe 2 ) 2 -4-methylphenyl] 2 - ), catalyses the dehydrogenation of cycloalkanes to cyclic alkenes, and linear alkanes with chain lengths of C 4 to C 8 to terminal olefins under mild conditions. This Article represents the first example of a homogeneous and selective alkane dehydrogenation reaction using a base-metal titanium catalyst. We also propose a unique mechanism for the transfer dehydrogenation of hydrocarbons to olefins and discuss a complete cycle based on a combined experimental and computational study.

  14. Short-Term Energy Outlook Model Documentation: Regional Residential Propane Price Model

    EIA Publications

    2009-01-01

    The regional residential propane price module of the Short-Term Energy Outlook (STEO) model is designed to provide residential retail price forecasts for the 4 Census regions: Northeast, South, Midwest, and West.

  15. Influence of the Crystal Structure of Titanium Oxide on the Catalytic Activity of Rh/TiO2 in Steam Reforming of Propane at Low Temperature.

    PubMed

    Yu, Lin; Sato, Katsutoshi; Toriyama, Takaaki; Yamamoto, Tomokazu; Matsumura, Syo; Nagaoka, Katsutoshi

    2018-06-21

    Solid oxide fuel cells (SOFCs) with liquefied petroleum gas (LPG) reduce CO 2 emissions due to their high-energy-conversion efficiency. Although SOFCs can convert LPG directly, coking occurs easily by decomposition of hydrocarbons, including C-C bonds on the electrode of fuel cell stacks. It is therefore necessary to develop an active steam pre-reforming catalyst that eliminates the hydrocarbons at low temperature, in which waste heat of SOFCs is used. Herein, we show that the crystal structure of the TiO 2 that anchors Rh particles is crucial for catalytic activity of Rh/TiO 2 catalysts for propane pre-reforming. Our experimental results revealed that strong metal support interaction (SMSI) induced during H 2 pre-reduction were optimized over Rh/TiO 2 with a rutile structure; this catalyst catalyzed the reaction much more effectively than conventional Rh/γ-Al 2 O 3 . In contrast, the SMSI was too strong for Rh/TiO 2 with an anatase structure, and the surface of the Rh particles was therefore covered mostly with partially reduced TiO 2 . The result was very low activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Critical evaluation of Jet-A spray combustion using propane chemical kinetics in gas turbine combustion simulated by KIVA-2

    NASA Technical Reports Server (NTRS)

    Nguyen, H. L.; Ying, S.-J.

    1990-01-01

    Jet-A spray combustion has been evaluated in gas turbine combustion with the use of propane chemical kinetics as the first approximation for the chemical reactions. Here, the numerical solutions are obtained by using the KIVA-2 computer code. The KIVA-2 code is the most developed of the available multidimensional combustion computer programs for application of the in-cylinder combustion dynamics of internal combustion engines. The released version of KIVA-2 assumes that 12 chemical species are present; the code uses an Arrhenius kinetic-controlled combustion model governed by a four-step global chemical reaction and six equilibrium reactions. Researchers efforts involve the addition of Jet-A thermophysical properties and the implementation of detailed reaction mechanisms for propane oxidation. Three different detailed reaction mechanism models are considered. The first model consists of 131 reactions and 45 species. This is considered as the full mechanism which is developed through the study of chemical kinetics of propane combustion in an enclosed chamber. The full mechanism is evaluated by comparing calculated ignition delay times with available shock tube data. However, these detailed reactions occupy too much computer memory and CPU time for the computation. Therefore, it only serves as a benchmark case by which to evaluate other simplified models. Two possible simplified models were tested in the existing computer code KIVA-2 for the same conditions as used with the full mechanism. One model is obtained through a sensitivity analysis using LSENS, the general kinetics and sensitivity analysis program code of D. A. Bittker and K. Radhakrishnan. This model consists of 45 chemical reactions and 27 species. The other model is based on the work published by C. K. Westbrook and F. L. Dryer.

  17. Carbon nanotube-supported Au-Pd alloy with cooperative effect of metal nanoparticles and organic ketone/quinone groups as a highly efficient catalyst for aerobic oxidation of amines.

    PubMed

    Deng, Weiping; Chen, Jiashu; Kang, Jincan; Zhang, Qinghong; Wang, Ye

    2016-05-21

    Functionalised carbon nanotube (CNT)-supported Au-Pd alloy nanoparticles were highly efficient catalysts for the aerobic oxidation of amines. We achieved the highest turnover frequencies (>1000 h(-1)) for the oxidative homocoupling of benzylamine and the oxidative dehydrogenation of dibenzylamine. We discovered a cooperative effect between Au-Pd nanoparticles and ketone/quinone groups on CNTs.

  18. Engineering Escherichia coli for selective geraniol production with minimized endogenous dehydrogenation.

    PubMed

    Zhou, Jia; Wang, Chonglong; Yoon, Sang-Hwal; Jang, Hui-Jeong; Choi, Eui-Sung; Kim, Seon-Won

    2014-01-01

    Geraniol, a monoterpene alcohol, has versatile applications in the fragrance industry, pharmacy and agrochemistry. Moreover, geraniol could be an ideal gasoline alternative. In this study, recombinant overexpression of geranyl diphosphate synthase and the bottom portion of a foreign mevalonate pathway in Escherichia coli MG1655 produced 13.3mg/L of geraniol. Introduction of Ocimum basilicum geraniol synthase increased geraniol production to 105.2mg/L. However, geraniol production encountered a loss from its endogenous dehydrogenization and isomerization into other geranoids (nerol, neral and geranial). Three E. coli enzymes (YjgB, YahK and YddN) were identified with high sequence identity to plant geraniol dehydrogenases. YjgB was demonstrated to be the major one responsible for geraniol dehydrogenization. Deletion of yjgB increased geraniol production to 129.7mg/L. Introduction of the whole mevalonate pathway for enhanced building block synthesis from endogenously synthesized mevalonate improved geraniol production up to 182.5mg/L in the yjgB mutant after 48h of culture, which was a double of that obtained in the wild type control (96.5mg/L). Our strategy for improving geraniol production in engineered E. coli should be generalizable for addressing similar problems during metabolic engineering. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Comparison of combustion characteristics of ASTM A-1, propane, and natural-gas fuels in an annular turbojet combustor

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.

    1973-01-01

    The performance of an annular turbojet combustor using natural-gas fuel is compared with that obtained using ASTM A-1 and propane fuels. Propane gas was used to simulate operation with vaporized kerosene fuels. The results obtained at severe operating conditions and altitude relight conditions show that natural gas is inferior to both ASTM A-1 and propane fuels. Combustion efficiencies were significantly lower and combustor pressures for relight were higher with natural-gas fuel than with the other fuels. The inferior performance of natural gas is shown to be caused by the chemical stability of the methane molecule.

  20. In-situ TEM on (de)hydrogenation of Pd at 0.5-4.5 bar hydrogen pressure and 20-400°C.

    PubMed

    Yokosawa, Tadahiro; Alan, Tuncay; Pandraud, Gregory; Dam, Bernard; Zandbergen, Henny

    2012-01-01

    We have developed a nanoreactor, sample holder and gas system for in-situ transmission electron microscopy (TEM) of hydrogen storage materials up to at least 4.5 bar. The MEMS-based nanoreactor has a microheater, two electron-transparent windows and a gas inlet and outlet. The holder contains various O-rings to have leak-tight connections with the nanoreactor. The system was tested with the (de)hydrogenation of Pd at pressures up to 4.5 bar. The Pd film consisted of islands being 15 nm thick and 50-500 nm wide. In electron diffraction mode we observed reproducibly a crystal lattice expansion and shrinkage owing to hydrogenation and dehydrogenation, respectively. In selected-area electron diffraction and bright/dark-field modes the (de)hydrogenation of individual Pd particles was followed. Some Pd islands are consistently hydrogenated faster than others. When thermally cycled, thermal hysteresis of about 10-16°C between hydrogen absorption and desorption was observed for hydrogen pressures of 0.5-4.5 bar. Experiments at 0.8 bar and 3.2 bar showed that the (de)hydrogenation temperature is not affected by the electron beam. This result shows that this is a fast method to investigate hydrogen storage materials with information at the nanometer scale. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Application of Heterogeneous Copper Catalyst in a Continuous Flow Process: Dehydrogenation of Cyclohexanol

    ERIC Educational Resources Information Center

    Glin´ski, Marek; Ulkowska, Urszula; Iwanek, Ewa

    2016-01-01

    In this laboratory experiment, the synthesis of a supported solid catalyst (Cu/SiO2) and its application in the dehydrogenation of cyclohexanol performed under flow conditions was studied. The experiment was planned for a group of two or three students for two 6 h long sessions. The copper catalyst was synthesized using incipient wetness…

  2. Facile synthesis of highly stable and well-dispersed mesoporous ZrO(2)/carbon composites with high performance in oxidative dehydrogenation of ethylbenzene.

    PubMed

    Li, Qiang; Xu, Jie; Wu, Zhangxiong; Feng, Dan; Yang, Jianping; Wei, Jing; Wu, Qingling; Tu, Bo; Cao, Yong; Zhao, Dongyuan

    2010-09-28

    Highly ordered mesoporous ZrO(2)/carbon (FDU-15) composites have been synthesized via a facile evaporation induced triconstituent co-assembly (EISA) approach by using Pluronic F127 as a template and zirconium oxychloride octahydrate and resol as Zr and carbon sources. The synthesized mesoporous composites exhibit a highly ordered two-dimensional (2-D) hexagonal mesostructure with relatively high specific surface areas (up to 947 m(2) g(-1)), pore sizes around 3.8 nm and high pore volumes (up to 0.71 cm(3) g(-1)). The results clearly show that the crystalline zirconia nanoparticles (ca. 1.9-3.9 nm) are well-dispersed in amorphous matrices of the ordered mesoporous carbon FDU-15 materials, which construct the nanocomposites. The ordered mesostructures of the obtained ZrO(2)/FDU-15 composites can be well-retained even at the high pyrolysis temperature (up to 900 degrees C), suggesting a high thermal stability. The zirconia content of the ZrO(2)/FDU-15 composites can be tunable in a wide range (up to 47%). Moreover, the resultant mesoporous ZrO(2)/FDU-15 composites exhibit high catalytic activity in oxidative dehydrogenation (ODH) of ethylbenzene (EB) to styrene (ST), with high ethylbenzene conversion (59.6%) and styrene selectivity (90.4%), which is mainly attributed to the synergistic catalytic effect between the oxygen-containing groups located on the carbon pore walls and weakly basic sites of the nanocrystalline ZrO(2). Furthermore, the high specific surface areas and opening pore channels are also responsible for their high catalytic activity. Therefore, it is a very promising catalyst material in styrene production on an industrial scale.

  3. Direct conversion of bio-ethanol to isobutene on nanosized Zn(x)Zr(y)O(z) mixed oxides with balanced acid-base sites.

    PubMed

    Sun, Junming; Zhu, Kake; Gao, Feng; Wang, Chongmin; Liu, Jun; Peden, Charles H F; Wang, Yong

    2011-07-27

    We report the design and synthesis of nanosized Zn(x)Zr(y)O(z) mixed oxides for direct and high-yield conversion of bio-ethanol to isobutene (~83%). ZnO is addded to ZrO(2) to selectively passivate zirconia's strong Lewis acidic sites and weaken Brönsted acidic sites, while simultaneously introducing basicity. As a result, the undesired reactions of bio-ethanol dehydration and acetone polymerization/coking are suppressed. Instead, a surface basic site-catalyzed ethanol dehydrogenation to acetaldehyde, acetaldehyde to acetone conversion via a complex pathway including aldol-condensation/dehydrogenation, and a Brönsted acidic site-catalyzed acetone-to-isobutene reaction pathway dominates on the nanosized Zn(x)Zr(y)O(z) mixed oxide catalyst, leading to a highly selective process for direct conversion of bio-ethanol to isobutene.

  4. Biological formation of ethane and propane in the deep marine subsurface

    PubMed Central

    Hinrichs, Kai-Uwe; Hayes, John M.; Bach, Wolfgang; Spivack, Arthur J.; Hmelo, Laura R.; Holm, Nils G.; Johnson, Carl G.; Sylva, Sean P.

    2006-01-01

    Concentrations and isotopic compositions of ethane and propane in cold, deeply buried sediments from the southeastern Pacific are best explained by microbial production of these gases in situ. Reduction of acetate to ethane provides one feasible mechanism. Propane is enriched in 13C relative to ethane. The amount is consistent with derivation of the third C from inorganic carbon dissolved in sedimentary pore waters. At typical sedimentary conditions, the reactions yield free energy sufficient for growth. Relationships with competing processes are governed mainly by the abundance of H2. Production of C2 and C3 hydrocarbons in this way provides a sink for acetate and hydrogen but upsets the general belief that hydrocarbons larger than methane derive only from thermal degradation of fossil organic material. PMID:16990430

  5. Dehydrogenation of secondary amines: synthesis, and characterization of rare-earth metal complexes incorporating imino- or amido-functionalized pyrrolyl ligands.

    PubMed

    Li, Qinghai; Zhou, Shuangliu; Wang, Shaowu; Zhu, Xiancui; Zhang, Lijun; Feng, Zhijun; Guo, Liping; Wang, Fenhua; Wei, Yun

    2013-02-28

    The dehydrogenation of pyrrolyl-functionalized secondary amines initiated by rare-earth metal amides was systematically studied. Reactions of the rare-earth metal amides [(Me(3)Si)(2)N](3)RE(μ-Cl)Li(THF)(3) with pyrrolyl-functionalized secondary amines 2-(t)BuNHCH(2)-5-R-C(4)H(2)NH (R = H (1), R = (t)Bu (2)) led to dehydrogenation of the secondary amines with isolation of imino-functionalized pyrrolyl rare-earth metal complexes [2-(t)BuN=CH-5-R-C(4)H(2)N](2)REN(SiMe(3))(2) (R = H, RE = Y (3a), Dy (3b), Yb (3c), Eu (3d); R = (t)Bu, RE = Y (4a), Dy (4b), Er (4c)). The mixed ligands erbium complex [2-(t)BuNCH(2)-5-(t)Bu-C(4)H(2)N]Er[2-(t)BuN=CH-5-(t)BuC(4)H(2)N](2)ClLi(2)(THF) (4c') was isolated in a short reaction time for the synthesis of complex 4c. Reaction of the deuterated pyrrolyl-functionalized secondary amine 2-((t)BuNHCHD)C(4)H(3)NH with yttrium amide [(Me(3)Si)(2)N](3)Y(μ-Cl)Li(THF)(3) further proved that pyrrolyl-amino ligands were transferred to pyrrolyl-imino ligands. Treatment of 2-((t)BuNHCH(2))C(4)H(3)NH (1) with excess (Me(3)Si)(2)NLi gave the only pyrrole deprotonated product {[η(5):η(2):η(1)-2-((t)BuNHCH(2))C(4)H(3)N]Li(2)N(SiMe(3))(2)}(2) (5), indicating that LiN(SiMe(3))(2) could not dehydrogenate the secondary amines to imines and rare-earth metal ions had a decisive effect on the dehydrogenation. The reaction of the rare-earth metal amides [(Me(3)Si)(2)N](3)RE(μ-Cl)Li(THF)(3) with 1 equiv. of more bulky pyrrolyl-functionalized secondary amine 2-[(2,6-(i)Pr(2)C(6)H(3))NHCH(2)](C(4)H(3)NH) (6) in toluene afforded the only amine and pyrrole deprotonated dinuclear rare-earth metal amido complexes {(μ-η(5):η(1)):η(1)-2-[(2,6-(i)Pr(2)C(6)H(3))NCH(2)]C(4)H(3)N]LnN(SiMe(3))(2)}(2) (RE = Nd (7a), Sm (7b), Er (7c)), no dehydrogenation of secondary amine to imine products were observed. On the basis of experimental results, a plausible mechanism for the dehydrogenation of secondary amines to imines was proposed.

  6. Soft Argon-Propane Dielectric Barrier Discharge Ionization.

    PubMed

    Schütz, Alexander; Lara-Ortega, Felipe J; Klute, Felix David; Brandt, Sebastian; Schilling, Michael; Michels, Antje; Veza, Damir; Horvatic, Vlasta; García-Reyes, Juan F; Franzke, Joachim

    2018-03-06

    Dielectric barrier discharges (DBDs) have been used as soft ionization sources (DBDI) for organic mass spectrometry (DBDI-MS) for approximately ten years. Helium-based DBDI is often used because of its good ionization efficiency, low ignition voltage, and homogeneous plasma conditions. Argon needs much higher ignition voltages than helium when the same discharge geometry is used. A filamentary plasma, which is not suitable for soft ionization, may be produced instead of a homogeneous plasma. This difference results in N 2 , present in helium and argon as an impurity, being Penning-ionized by helium but not by metastable argon atoms. In this study, a mixture of argon and propane (C 3 H 8 ) was used as an ignition aid to decrease the ignition and working voltages, because propane can be Penning-ionized by argon metastables. This approach leads to homogeneous argon-based DBDI. Furthermore, operating DBDI in an open environment assumes that many uncharged analyte molecules do not interact with the reactant ions. To overcome this disadvantage, we present a novel approach, where the analyte is introduced in an enclosed system through the discharge capillary itself. This nonambient DBDI-MS arrangement is presented and characterized and could advance the novel connection of DBDI with analytical separation techniques such as gas chromatography (GC) and high-pressure liquid chromatography (HPLC) in the near future.

  7. SCATTERING OF SLOW NEUTRONS FROM PROPANE GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strong, K.A.; Marshall, G.D.; Brugger, R.M.

    1962-02-01

    Measurements of the partial differential neutron scattering cross sections for room-temperature propane gas are reported. These measurements were made at incident energies of 0.0l01, 0.0254, 0.0736, and 0.102 ev at seven scattering angles between 16.3 and 84.7 deg using the Materials Testing Reactor phased chopper velocity selector. The data are convented to the scattering-law presentation and compared with three theoretical calculations: The ideal gas, using an effective mass obtained from an average of the mass tensors for the three types of H atoms in propane, gives poor agreement. The Krieger-Nelkin approximation, which includes the effect of zero-point vibrations, gives limitedmore » agreement for energy transfer less than 0.5 k/sub b/T at intermediate momentum transfers. At large momentum transfers where vibrational effects become important it underestimates the cross section. A modification of the Krieger- Nelkin theory that includes the effects of single-quantum transitions from the three lowest vibratlonal states gives better agreement. The discrepancies still present at large momentum and energy transfers are attributed to an uncertainty in the methylgroup barrier height for the three lowest energy modes, to the harmonlc oscillator approximation for these modes, and to the approximate molecular orientation averaging used in the calculation. (auth)« less

  8. Carbon Nanotubes as Support in the Platinum-Catalyzed Hydrolytic Dehydrogenation of Ammonia Borane.

    PubMed

    Chen, Wenyao; Duan, Xuezhi; Qian, Gang; Chen, De; Zhou, Xinggui

    2015-09-07

    We report remarkable support effects for carbon nanotubes (CNTs) in the Pt/CNT-catalyzed hydrolytic dehydrogenation of ammonia borane. The origin of the support-dependent activity and durability is elucidated by combining the catalytic and durability testing with characterization by a range of spectroscopy and high-angle annular dark-field scanning transmission electron microscopy techniques and ICP analysis. The effects mainly arise from different electronic properties and different abilities for the adsorption of boron-containing species on platinum surfaces and changes in size and shape of the platinum particles during the reaction. Defect-rich CNTs in particular are a promising support material, as it not only enhances the platinum binding energy, leading to the highest hydrogen generation rate, but also inhibits the adsorption of boron-containing species and stabilizes the platinum nanoparticles to resist the agglomeration during the reaction, leading to the highest durability. The insights revealed herein may pave the way for the rational design of highly active and durable metal/carbon catalysts for the hydrolytic dehydrogenation of ammonia borane. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. From nano- to macro-engineering of oxide-encapsulated-nanoparticles for harsh reactions: one-step organization via cross-linking molecules.

    PubMed

    Zhang, Qiaofei; Zhao, Guofeng; Zhang, Zhiqiang; Han, Lupeng; Fan, Songyu; Chai, Ruijuan; Li, Yakun; Liu, Ye; Huang, Jun; Lu, Yong

    2016-09-29

    A strategy of "macro-micro-nano" organization is reported for embedding oxide-encapsulated-nanoparticles onto monolithic substrates in one-step with the aid of molecularly defined cross-linking agents. Such catalysts, with enhanced heat/mass transfer and high permeability, are qualified for several harsh reaction processes such as CH 4 /VOC abatement, gas-phase hydrogenation of dimethyl oxalate and oxidative dehydrogenation of ethane.

  10. Characterization of Emissions from Liquid Fuel and Propane Open Burns

    EPA Science Inventory

    The comparative combustion emissions of using jet propellant (JP-5) liquid fuel pools or a propane manifold grid to simulate the effects of accidental fires was investigated. A helium-filled tethered aerostat was used to maneuver an instrument package into the open fire plumes ...

  11. Molecular dynamics simulations of propane in slit shaped silica nano-pores: direct comparison with quasielastic neutron scattering experiments.

    PubMed

    Gautam, Siddharth; Le, Thu; Striolo, Alberto; Cole, David

    2017-12-13

    Molecular motion under confinement has important implications for a variety of applications including gas recovery and catalysis. Propane confined in mesoporous silica aerogel as studied using quasielastic neutron scattering (QENS) showed anomalous pressure dependence in its diffusion coefficient (J. Phys. Chem. C, 2015, 119, 18188). Molecular dynamics (MD) simulations are often employed to complement the information obtained from QENS experiments. Here, we report an MD simulation study to probe the anomalous pressure dependence of propane diffusion in silica aerogel. Comparison is attempted based on the self-diffusion coefficients and on the time scales of the decay of the simulated intermediate scattering functions. While the self-diffusion coefficients obtained from the simulated mean squared displacement profiles do not exhibit the anomalous pressure dependence observed in the experiments, the time scales of the decay of the intermediate scattering functions calculated from the simulation data match the corresponding quantities obtained in the QENS experiment and thus confirm the anomalous pressure dependence of the diffusion coefficient. The origin of the anomaly in pressure dependence lies in the presence of an adsorbed layer of propane molecules that seems to dominate the confined propane dynamics at low pressure, thereby lowering the diffusion coefficient. Further, time scales for rotational motion obtained from the simulations explain the absence of rotational contribution to the QENS spectra in the experiments. In particular, the rotational motion of the simulated propane molecules is found to exhibit large angular jumps at lower pressure. The present MD simulation work thus reveals important new insights into the origin of anomalous pressure dependence of propane diffusivity in silica mesopores and supplements the information obtained experimentally by QENS data.

  12. Alternative Fuels Data Center: Michigan Converts Vehicles to Propane,

    Science.gov Websites

    , Reducing Emissions Learn how Detroit reduces emissions and saves money by converting vehicles to run on , 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of an electric vehicle at a Natural Gas Fueling Stations July 1, 2010 Hybrid Electric Shuttle Buses Offer Free Rides in Maryland June

  13. On-Surface Domino Reactions: Glaser Coupling and Dehydrogenative Coupling of a Biscarboxylic Acid To Form Polymeric Bisacylperoxides.

    PubMed

    Held, Philipp Alexander; Gao, Hong-Ying; Liu, Lacheng; Mück-Lichtenfeld, Christian; Timmer, Alexander; Mönig, Harry; Barton, Dennis; Neugebauer, Johannes; Fuchs, Harald; Studer, Armido

    2016-08-08

    Herein we report the on-surface oxidative homocoupling of 6,6'-(1,4-buta-1,3-diynyl)bis(2-naphthoic acid) (BDNA) via bisacylperoxide formation on different Au substrates. By using this unprecedented dehydrogenative polymerization of a biscarboxylic acid, linear poly-BDNA with a chain length of over 100 nm was prepared. It is shown that the monomer BDNA can be prepared in situ at the surface via on-surface Glaser coupling of 6-ethynyl-2-naphthoic acid (ENA). Under the Glaser coupling conditions, BDNA directly undergoes polymerization to give the polymeric peroxide (poly-BDNA) representing a first example of an on-surface domino reaction. It is shown that the reaction outcome varies as a function of surface topography (Au(111) or Au(100)) and also of the surface coverage, to give branched polymers, linear polymers, or 2D metal-organic networks. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Photodissociation dynamics of propanal and isobutanal: The Norrish Type I pathway

    NASA Astrophysics Data System (ADS)

    Harrison, Aaron W.; Kable, Scott H.

    2018-04-01

    The Norrish Type I photodissociation of two aliphatic aldehydes, propanal and isobutanal, has been investigated using velocity-map imaging. The HCO photoproduct of this reaction was probed using a 1+1 resonance-enhanced multiphoton ionization scheme via the 3p2Π Rydberg state. The velocity map images of HCO+ were collected across a range of photolysis energies for both species from 30 500 to 33 000 cm-1 (λ = 312-327 nm). The corresponding translational energy distributions show that the majority of the available energy goes into the translational motion of the products (55%-68%) with this fraction increasing as the T1 barrier is approached. Analysis of the translational energy distributions was also used to determine the aldehyde α C-C bond dissociation energies which were found to be 339.8 ± 2.5 and 331.2 ± 2.5 kJ/mol for propanal and isobutanal, respectively. These values were also found to be in good agreement with the computed dissociation energies using G4 and CCSD(T)/aug-cc-pVTZ//M062X/aug-cc-pVTZ levels of theory. Furthermore, these dissociation energies, combined with the known ΔfH (0 K) of the reaction products, provided the ΔfH (0 K) of propanal and isobutanal which were calculated to be -167.3 ± 2.5 and -184.0 ± 2.5 kJ/mol, respectively.

  15. Analysis of Ignition Behavior in a Turbocharged Direct Injection Dual Fuel Engine Using Propane and Methane as Primary Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polk, A. C.; Gibson, C. M.; Shoemaker, N. T.

    2013-05-24

    This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (© pilot ¼ 0.2-0.6 and © overall ¼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant © pilot (> 0.5), increasing ©more » overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing © overall (at constant © pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.« less

  16. PHYSICAL PROPERTIES OF FLUORINATED PROPANE AND BUTANE DERIVATIVES AS ALTERNATIVE REFRIGERANTS

    EPA Science Inventory

    Physical property measurements are presented for 24 fluorinated propane and butane derivatives and one fluorinated ether. These measurements include melting point, boiling point, vapor pressure below the boiling point, heat of vaporization at the boiling point, critical propertie...

  17. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps.

    PubMed

    Jaekel, Ulrike; Musat, Niculina; Adam, Birgit; Kuypers, Marcel; Grundmann, Olav; Musat, Florin

    2013-05-01

    The short-chain, non-methane hydrocarbons propane and butane can contribute significantly to the carbon and sulfur cycles in marine environments affected by oil or natural gas seepage. In the present study, we enriched and identified novel propane and butane-degrading sulfate reducers from marine oil and gas cold seeps in the Gulf of Mexico and Hydrate Ridge. The enrichment cultures obtained were able to degrade simultaneously propane and butane, but not other gaseous alkanes. They were cold-adapted, showing highest sulfate-reduction rates between 16 and 20 °C. Analysis of 16S rRNA gene libraries, followed by whole-cell hybridizations with sequence-specific oligonucleotide probes showed that each enrichment culture was dominated by a unique phylotype affiliated with the Desulfosarcina-Desulfococcus cluster within the Deltaproteobacteria. These phylotypes formed a distinct phylogenetic cluster of propane and butane degraders, including sequences from environments associated with hydrocarbon seeps. Incubations with (13)C-labeled substrates, hybridizations with sequence-specific probes and nanoSIMS analyses showed that cells of the dominant phylotypes were the first to become enriched in (13)C, demonstrating that they were directly involved in hydrocarbon degradation. Furthermore, using the nanoSIMS data, carbon assimilation rates were calculated for the dominant cells in each enrichment culture.

  18. Zeolitic imidazolate frameworks for kinetic separation of propane and propene

    DOEpatents

    Li, Jing; Li, Kunhao; Olson, David H.

    2014-08-05

    Zeolitic Imidazolate Frameworks (ZIFs) characterized by organic ligands consisting of imidazole ligands that are either essentially all 2-chloroimidazole ligands or essentially all 2-bromoimidazole ligands are disclosed. Methods for separating propane and propene with the ZIFs of the present invention, as well as other ZIFs, are also disclosed.

  19. Analysis of U.S. Propane Markets Winter 1996-97, An

    EIA Publications

    1997-01-01

    This study constitutes an examination of propane supply, demand, and price developments and trends. The Energy Information Administration's approach focused on identifying the underlying reasons for the tight supply/demand balance in the fall of 1996, and on examining the potential for a recurrence of these events next year.

  20. Improved dehydrogenation performance of LiBH4 by 3D hierarchical flower-like MoS2 spheres additives

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Liu, Yongchang; Liu, Huiqiao; Kang, Hongyan; Cao, Kangzhe; Wang, Qinghong; Zhang, Chunling; Wang, Yijing; Yuan, Huatang; Jiao, Lifang

    2015-12-01

    In this work, 3D hierarchical flower-like MoS2 spheres are successfully fabricated via a hydrothermal method followed by a heat treatment. The obtained product is composed of few-layered MoS2 nanosheets with enlarged interlayer distance (ca. 0.66 nm) of the (002) plane. Meanwhile, the hydrogen storage properties of the as-prepared MoS2 ball milled with LiBH4 are systematically investigated. The results of temperature programmed desorption (TPD) and isothermal measurement suggest that the LiBH4-MoS2 (as-prepared) mixture exhibits favorable dehydrogenation properties in both lowering the hydrogen release temperature and improving kinetics of hydrogen release rate. LiBH4-MoS2 (as-prepared) sample (the preparation mass ratio is 1:1) starts to release hydrogen at 171 °C, and roughly 5.6 wt% hydrogen is released within 1 h when isothermally heated to 320 °C, which presents superior dehydrogenation performance compared to that of the bulk LiBH4. The excellent dehydrogenation performance of the LiBH4-MoS2 (as-prepared) mixture may be attributed to the high active site density and enlarged interlayer distance of the MoS2 nanosheets, 3D architectures and hierarchical structures.

  1. Enhanced Oxidative Dehydrogenation of Ethane with Facilitated Transport Membranes for Low Cost Production of Ethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemser, Stuart; Shangguan, Ning; Pennisi, Kenneth

    This SBIR program has been extremely successful. We have met or exceeded all of the key objectives. We have successfully demonstrated the product and process feasibility. Compact Membrane Systems proposed a membrane separation technology which can efficiently separate ethylene from ethane in the presence of H 2O and CO 2. The CMS ethylene/ethane separation will significantly improve the economics of the Oxidative Dehydrogenation (ODH) process. We have developed membranes with high ethylene flux and high ethylene/ethane selectivity. These membranes have also shown good resistance to high concentration CO 2 and CO. Economic analysis shows at least **% cost savings comparedmore » with conventional distillation used for ethylene/ethane separation. Given our success to date, we have been able to establish key direct partnerships with other collaborators. The primary objective of the Phase I program was to develop a stable membrane that is capable of providing very efficient and cost effective production of ethylene from ethane. The CMS fluorinated membrane developed during this program was found to be able to provide very good C 2H 4/C 2H 6 selectivity and outstanding C 2H 4 permeance. With the development of the fast and highly selective ethylene CMS membrane, we have achieved all our Phase I program objectives. This is especially true of the estimated cost of ethylene production that is projected to be over **% less than the conventional method (distillation) at scale applications (** Nm3/h). The final result is better than the Phase I goal of 30% less. In summary, during the Phase I, we developed a CMS membrane with a high C 2H 4 permeance good C 2H 4/C 2H 6 selectivity. The stability and anti-fouling ability of the CMS membrane was demonstrated by exposing the membrane to a C 2H 4/C 2H 6 mixture gas for 7 weeks. A membrane based ODH production and separation system was designed and the economic and engineering evaluation using the VMGSim models predicted a cost of

  2. Synthesis of 1,3,5-triazines via Cu(OAc)2-catalyzed aerobic oxidative coupling of alcohols and amidine hydrochlorides.

    PubMed

    You, Qing; Wang, Fei; Wu, Chaoting; Shi, Tianchao; Min, Dewen; Chen, Huajun; Zhang, Wu

    2015-06-28

    Cu(OAc)2 was found to be an efficient catalyst for dehydrogenative synthesis of 1,3,5-triazine derivatives via oxidative coupling reaction of amidine hydrochlorides and alcohols in air. Both aromatic and aliphatic alcohols can be involved in the reaction and thirty-three products were obtained with good to excellent yields. Moreover, the use of a ligand, strong base and organic oxidant is unnecessary.

  3. THERMODYNAMIC EVALUATION OF FLUORINATED ETHERS, ETHANES, AND PROPANES AS ALTERNATIVE REFRIGERANTS

    EPA Science Inventory

    The visuals, part of a thermodynamic evaluation of fluorinated ethers, ethanes, and propanes as alternative refrigerants, are a useful tool in comparing new chemicals to existing refrigerants in vapor compression cycles. hey present the required suction superheat and the performa...

  4. Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane

    Science.gov Websites

    Money With Propane Vans Feb. 1, 2014 Photo of an electric vehicle at a charging station Companies Power Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Electric Trucks Deliver at Kansas City Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus in Michigan June 3

  5. Surface-catalyzed air oxidation reactions of hydrazines: Tubular reactor studies

    NASA Technical Reports Server (NTRS)

    Kilduff, Jan E.; Davis, Dennis D.; Koontz, Steven L.

    1988-01-01

    The surface-catalyzed air oxidation reactions of hydrazine, monomethylhydrazine, unsymmetrical dimethylhydrazine, symmetrical dimethylhydrazine, trimethylhydrazine and tetramethylhydrazine were investigated in a metal-powder packed turbular flow reactor at 55 plus or minus 3 C. Hydrazine was completely reacted on all surfaces studied. The major products of monomethylhydrazine (MMH) oxidation were methanol, methane and methyldiazene. The di-, tri- and tetra-methyl hydrazines were essentially unreactive under these conditions. The relative catalytic reactivities toward MMH are: Fe greater than Al2O3 greater than Ti greater than Zn greater than 316 SS greater than Cr greater than Ni greater than Al greater than 304L SS. A kinetic scheme and mechanism involving adsorption, oxidative dehydrogenation and reductive elimination reactions on a metal oxide surface are proposed.

  6. Transfer hydrogenation over sodium-modified ceria: Enrichment of redox sites active for alcohol dehydrogenation

    DOE PAGES

    Nelson, Nicholas C.; Boote, Brett W.; Naik, Pranjali; ...

    2017-01-17

    Ceria (CeO 2) and sodium-modified ceria (Ce-Na) were prepared through combustion synthesis. Palladium was deposited onto the supports (Pd/CeO 2 and Pd/Ce-Na) and their activity for the aqueous-phase transfer hydrogenation of phenol using 2-propanol under liquid flow conditions was studied. Pd/Ce-Na showed a marked increase (6×) in transfer hydrogenation activity over Pd/CeO 2. Material characterization indicated that water-stable sodium species were not doped into the ceria lattice, but rather existed as subsurface carbonates. Modification of ceria by sodium provided more adsorption and redox active sites (i.e. defects) for 2-propanol dehydrogenation. This effect was an intrinsic property of the Ce-Na supportmore » and independent of Pd. The redox sites active for 2-propanol dehydrogenation were thermodynamically equivalent on both supports/catalysts. At high phenol concentrations, the reaction was limited by 2-propanol adsorption. Furthermore, the difference in catalytic activity was attributed to the different numbers of 2-propanol adsorption and redox active sites on each catalyst.« less

  7. Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane

    NASA Astrophysics Data System (ADS)

    Green, M. A.

    2006-04-01

    The hydrogen economy is not possible if the safety standards currently applied to liquid hydrogen and hydrogen gas by many laboratories are applied to devices that use either liquid or gaseous hydrogen. Methane and propane are commonly used by ordinary people without the special training. This report asks, "How is hydrogen different from flammable gasses that are commonly being used all over the world?" This report compares the properties of hydrogen, methane and propane and how these properties may relate to safety when they are used in both the liquid and gaseous state. Through such an analysis, sensible safety standards for the large-scale (or even small-scale) use of liquid and gaseous hydrogen systems can be developed. This paper is meant to promote discussion of issues related to hydrogen safety so that engineers designing equipment can factor sensible safety standards into their designs.

  8. Hydrogen Safety Issues Compared to Safety Issues with Methane andPropane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Michael A.

    The hydrogen economy is not possible if the safety standards currently applied to liquid hydrogen and hydrogen gas by many laboratories are applied to devices that use either liquid or gaseous hydrogen. Methane and propane are commonly used by ordinary people without the special training. This report asks, 'How is hydrogen different from flammable gasses that are commonly being used all over the world?' This report compares the properties of hydrogen, methane and propane and how these properties may relate to safety when they are used in both the liquid and gaseous state. Through such an analysis, sensible safety standardsmore » for the large-scale (or even small-scale) use of liquid and gaseous hydrogen systems can be developed. This paper is meant to promote discussion of issues related to hydrogen safety so that engineers designing equipment can factor sensible safety standards into their designs.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, C.C.

    A process is described of dehydrogenating para-ethyltoluene to selectively form para-methylstyrene comprising contacting to para-ethyltoluene under dehydrogenation reaction conditions with a catalyst composition comprising: (a) from about 30% to 60% by weight of iron oxide, calculated as ferric oxide; (b) from about 13% to 48% by weight of a potassium compound, calculated as potassium oxide; and (c) from about 0% to 5% by weight of a chromium compound, calculated as chromic oxide. The improvement is described comprising dehydrogenating the para-ethyltoluene with a catalyst composition comprising, in addition to the components (a), (b) and (c), a modifying component (d) capable ofmore » rendering the para-methylstyrene-containing dehydrogenation reaction effluent especially resistant to the subsequent formation of popcorn polymers when the dehydrogenation of para-ethyltoluene is conducted over the modified catalyst, the modifying component (d) being a bismuth compound present to the extent of from about 1% to 20% by weight of the catalyst composition, calculated as bismuth trioxide.« less

  10. Coupling Glucose Dehydrogenation with CO2 Hydrogenation by Hydrogen Transfer in Aqueous Media at Room Temperature.

    PubMed

    Ding, Guodong; Su, Ji; Zhang, Cheng; Tang, Kan; Yang, Lisha; Lin, Hongfei

    2018-05-08

    Conversion of carbon dioxide into value-added chemicals and fuels provides a direct solution to reduce excessive CO2 in the atmosphere. Herein, a novel catalytic reaction system is presented by coupling the dehydrogenation of glucose with the hydrogenation of a CO2 derived salt, ammonium carbonate, in the ethanol-water mixture. For the first time, the hydrogenation of CO2 into formate by glucose has been achieved under ambient conditions. Under the optimal reaction conditions, the highest yield of formate reached ~ 46 %. We find that the apparent pH value in the ethanol-water mixture plays a central role in determining the performance of the hydrogen transfer reaction. Based on the 13C NMR and ESI-MS results, a possible pathway of the coupled glucose dehydrogenation and CO2 hydrogenation reactions was proposed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fabrication of Large Lateral Polycrystalline Silicon Film by Laser Dehydrogenation and Lateral Crystallization of Hydrogenated Nanocrystalline Silicon Films

    NASA Astrophysics Data System (ADS)

    Sato, Tadashi; Yamamoto, Kenichi; Kambara, Junji; Kitahara, Kuninori; Hara, Akito

    2009-12-01

    Hydrogenated nanocrystalline silicon (nc-Si:H) thin-film transistors (TFTs) have attracted attention for application to the operation of organic light-emitting diodes (OLEDs). The monolithic integration of nc-Si:H TFTs and polycrystalline silicon (poly-Si) TFTs and the use of nc-Si:H TFTs for operating an OLED are candidate technologies to achieve OLED system-on-glass. To develop such a system, it is necessary to fabricate poly-Si films without employing thermal dehydrogenation because hydrogen needs to be maintained in the channel region of nc-Si:H TFTs. In this study, we optimized the laser dehydrogenation process as a substitute for thermal dehydrogenation by using a diode-pumped solid-state continuous-wave green laser (Nd:YVO4, 2ω=532 nm) to fabricate large lateral poly-Si films with grain sizes of 3×20 µm2. The performance of poly-Si TFTs is well known to be sensitive to the quality of poly-Si films. In order to evaluate the electrical properties of poly-Si films, TFTs were fabricated by conventional processes. The field-effect mobility, threshold voltage, and S-value of the poly-Si TFTs were 220 cm2 V-1 s-1, -1.0 V, and 0.45 V/dec, respectively. The quality of the poly-Si film fabricated in this experiment was sufficiently high for the integration of peripheral circuits.

  12. Dehydrogenative [2 + 2 + 2] Cycloaddition of Cyano-yne-allene Substrates: Convenient Access to 2,6-Naphthyridine Scaffolds.

    PubMed

    Haraburda, Ewelina; Lledó, Agustí; Roglans, Anna; Pla-Quintana, Anna

    2015-06-19

    A rhodium-catalyzed [2 + 2 + 2] cycloaddition of cyano-yne-allene scaffolds followed by a dehydrogenative process enabling the direct synthesis of unsaturated pyridine-containing compounds that can be conveniently converted to 2,6-naphthyridine derivatives is reported.

  13. Laboratory-Scale Demonstration Using Dilute Ammonia Gas-Induced Alkaline Hydrolysis of Soil Contaminants (Chlorinated Propanes and Explosives)

    DTIC Science & Technology

    2016-06-01

    Hydrolysis of Soil Contaminants (Chlorinated Propanes and Explosives) En vi ro nm en ta l L ab or at or y Victor F. Medina, Scott A. Waisner, Charles...Using Dilute Ammonia Gas-Induced Alkaline Hydrolysis of Soil Contaminants (Chlorinated Propanes and Explosives) Victor F. Medina, Scott A. Waisner...hydrolysis. This project explored the use of ammonia gas to raise soil pH in order to stimulate alkaline hydrolysis. When ammonia gas dissolves in water

  14. 40 CFR 721.533 - Propane, 1,1,1,3,3-pentachloro-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....533 Section 721.533 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.533 Propane, 1,1,1,3,3-pentachloro-. (a) Chemical substance and significant new uses subject...

  15. Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine

    Science.gov Websites

    Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of an electric School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles Relies on Natural Gas Fueling Stations July 1, 2010 Hybrid Electric Shuttle Buses Offer Free Rides in

  16. Alternative Fuels Data Center: Propane Powers School Buses in Tuscaloosa,

    Science.gov Websites

    Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus and Plug-In Electric Vehicles March 31, 2012 Natural Gas School Buses Help Kansas City Save Money Nov Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Electric Trolley Boosts Business in

  17. Alternative Fuels Data Center: South Florida Fleet Fuels with Propane

    Science.gov Websites

    Alternative Fuel Use and Public Transit Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Electric Vehicles March 31, 2012 Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus in Michigan June 3

  18. Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in

    Science.gov Websites

    . 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of an electric vehicle at School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Texas Taxis Go Hybrid May 6, 2010

  19. Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve

    Science.gov Websites

    information about this project, contact Twin Cities Clean Cities Coalition. Download QuickTime Video QuickTime videos provided by Clean Cities TV and FuelEconomy.gov. MotorWeek - Television's Original Automotive Propane Aug. 22, 2015 A photo of two national parks buses parked in front of Redwood trees. Clean Cities

  20. Study of a specific lignin model: γ-oxidation and how it influences the hydrolysis efficiency of alcohol-aldehyde dehydrogenation copolymers.

    PubMed

    Bouxin, Florent; Baumberger, Stéphanie; Renault, Jean-Hugues; Dole, Patrice

    2011-05-01

    Six coniferyl alcohol-coniferaldehyde dehydrogenation copolymers (DHcoPs) were synthesized in order to determine the influence of an increased number of aldehyde functions on hydrolysis. After heterogeneous hydrolysis using acidic Montmorillonite K10 clay, the DHcoPs were thioacidolyzed and analyzed by gel permeation chromatography (GPC). Comparison of the thioacidolyzed products, with and without the hydrolysis step, showed that there was a greater proportion of condensation reaction in the absence of aldehyde. When the coniferaldehyde content in the initial synthetic mixture was more than 30% (w/w), only a low fraction of condensed products was generated during the K10 clay hydrolysis step. This suggests that condensation pathways are mainly due to the alcohol present in the γ-position in the DHcoPs. Investigation of the reactivity and the potential condensation of aldehyde and alcohol monomers under hydrolysis conditions showed the important conversion of coniferyl alcohol and conversely the stability of coniferaldehyde. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Process for alkane group dehydrogenation with organometallic catalyst

    DOEpatents

    Kaska, W.C.; Jensen, C.M.

    1998-07-14

    An improved process is described for the catalytic dehydrogenation of organic molecules having a ##STR1## group to produce a ##STR2## group. The organic molecules are: ##STR3## wherein: A.sup.1, A.sup.2, A.sup.3, and A.sup.4 are each independently P, As or N: E.sup.2 is independently C or N; E.sup.3 is independently C, Si or Ge; E.sup.4 is independently C, Si, or Ge; and E.sup.5 is independently C, Si or Ge; M.sup.1, M.sup.2, M.sup.3, and M.sup.4 each is a metal atom independently selected from the group consisting of ruthenium, rhodium, palladium, osmium, iridium and platinum; Q.sup.1, Q.sup.2, Q.sup.3, and Q.sup.4 are each independently a direct bond, --CH.sub.2 --, --CH.sub.2 CH.sub.2 --, or CH.dbd.CH--; in structure I, structure II or structure IV, R.sup.1, R.sup.2, R.sup.3, and R.sup.4 are each independently selected from alkyl, alkenyl, cycloalkyl, and aryl, or R.sup.1 and R.sup.2 together and R.sup.3 and R.sup.4 together form a ring structure having from 4 to 10 carbon atoms, or in structure III, R.sup.5, R.sup.6, R.sup.7, and R.sup.8 are each independently selected from alkyl, alkenyl, cycloalkyl, and aryl, or R.sup.5 and R.sup.6 together and R.sup.7 and R.sup.8 together form a ring structure having from 4 to 10 carbon atoms, at a temperature of between about 100.degree. and 250.degree. C. for between about 1 hr and 300 days in the absence of N.sub.2. The surprisingly stable catalyst is a complex of an organic ligand comprising H, C, Si, N, P atoms, and a platinum group metal. The dehydrogenation is performed between about 100 to 200.degree. C., and has increased turnover.

  2. Process for alkane group dehydrogenation with organometallic catalyst

    DOEpatents

    Kaska, William C.; Jensen, Craig M.

    1998-01-01

    An improved process is described for the catalytic dehydrogenation of organic molecules having a ##STR1## group to produce a ##STR2## group. The organic molecules are: ##STR3## wherein: A.sup.1, A.sup.2, A.sup.3, and A.sup.4 are each independently P, As or N: E.sup.2 is independently C or N; E.sup.3 is independently C, Si or Ge; E.sup.4 is independently C, Si, or Ge; and E.sup.5 is independently C, Si or Ge; M.sup.1, M.sup.2, M.sup.3, and M.sup.4 each is a metal atom independently selected from the group consisting of ruthenium, rhodium, palladium, osmium, iridium and platinum; Q.sup.1, Q.sup.2, Q.sup.3, and Q.sup.4 are each independently a direct bond, --CH.sub.2 --, --CH.sub.2 CH.sub.2 --, or CH.dbd.CH--; in structure I, structure II or structure IV, R.sup.1, R.sup.2, R.sup.3, and R.sup.4 are each independently selected from alkyl, alkenyl, cycloalkyl, and aryl, or R.sup.1 and R.sup.2 together and R.sup.3 and R.sup.4 together form a ring structure having from 4 to 10 carbon atoms, or in structure III, R.sup.5, R.sup.6, R.sup.7, and R.sup.8 are each independently selected from alkyl, alkenyl, cycloalkyl, and aryl, or R.sup.5 and R.sup.6 together and R.sup.7 and R.sup.8 together form a ring structure having from 4 to 10 carbon atoms, at a temperature of between about 100.degree. and 250.degree. C. for between about 1 hr and 300 days in the absence of N.sub.2. The surprisingly stable catalyst is a complex of an organic ligand comprising H, C, Si, N, P atoms, and a platinum group metal. The dehydrogenation is performed between about 100 to 200.degree. C., and has increased turnover.

  3. An analytical study of nitrogen oxides and carbon monoxide emissions in hydrocarbon combustion with added nitrogen, preliminary results

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1979-01-01

    The effect of combustor operating conditions on the conversion of fuel-bound nitrogen (FBN) to nitrogen oxides NO sub x was analytically determined. The effect of FBN and of operating conditions on carbon monoxide (CO) formation was also studied. For these computations, the combustor was assumed to be a two stage, adiabatic, perfectly-stirred reactor. Propane-air was used as the combustible mixture and fuel-bound nitrogen was simulated by adding nitrogen atoms to the mixture. The oxidation of propane and formation of NO sub x and CO were modeled by a fifty-seven reaction chemical mechanism. The results for NO sub x and CO formation are given as functions of primary and secondary stage equivalence ratios and residence times.

  4. Synthesis of HIV-Maturation Inhibitor BMS-955176 from Betulin by an Enabling Oxidation Strategy.

    PubMed

    Ortiz, Adrian; Soumeillant, Maxime; Savage, Scott A; Strotman, Neil A; Haley, Matthew; Benkovics, Tamas; Nye, Jeffrey; Xu, Zhongmin; Tan, Yichen; Ayers, Sloan; Gao, Qi; Kiau, Susanne

    2017-05-05

    A concise and scalable second generation synthesis of HIV maturation inhibitor BMS-955176 is described. The synthesis is framed by an oxidation strategy highlighted by a Cu I mediated aerobic oxidation of betulin, a highly selective PIFA mediated dehydrogenation of an oxime, and a subsequent Lossen rearrangement which occurs through a unique reaction mechanism for the installation of the C17 amino functionality. The synthetic route proceeds in 7 steps with 47% overall yield and begins from the abundant and inexpensive natural product betulin.

  5. Role of Sn in the regeneration of Pt/γ-Al 2O 3 light alkane dehydrogenation catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Hien N.; Sattler, Jesper J. H. B.; Weckhuysen, Bert M.

    Alumina-supported Pt is one of the major industrial catalysts for light alkane dehydrogenation. This catalyst loses activity during reaction, with coke formation often considered as the reason for deactivation. As we show in this study, the amount and nature of carbon deposits do not directly correlate with the loss of activity. Rather, it is the transformation of subnanometer Pt species into larger Pt nanoparticles that appears to be responsible for the loss of catalytic activity. Surprisingly, a portion of the Sn remains atomically dispersed on the alumina surface in the spent catalyst and helps in the redispersion of the Pt.more » In the absence of Sn on the alumina support, the larger Pt nanoparticles formed during reaction are not redispersed during oxidative regeneration. It is known that Sn is added as a promoter in the industrial catalyst to help in achieving high propene selectivity and to minimize coke formation. This work shows that an important role of Sn is to help in the regeneration of Pt, by providing nucleation sites on the alumina surface. Finally aberration-corrected scanning transmission electron microscopy helps to provide unique insights into the operating characteristics of an industrially important catalyst by demonstrating the role of promoter elements, such as Sn, in the oxidative regeneration of Pt on γ-Al 2O 3.« less

  6. Role of Sn in the regeneration of Pt/γ-Al 2O 3 light alkane dehydrogenation catalysts

    DOE PAGES

    Pham, Hien N.; Sattler, Jesper J. H. B.; Weckhuysen, Bert M.; ...

    2016-02-23

    Alumina-supported Pt is one of the major industrial catalysts for light alkane dehydrogenation. This catalyst loses activity during reaction, with coke formation often considered as the reason for deactivation. As we show in this study, the amount and nature of carbon deposits do not directly correlate with the loss of activity. Rather, it is the transformation of subnanometer Pt species into larger Pt nanoparticles that appears to be responsible for the loss of catalytic activity. Surprisingly, a portion of the Sn remains atomically dispersed on the alumina surface in the spent catalyst and helps in the redispersion of the Pt.more » In the absence of Sn on the alumina support, the larger Pt nanoparticles formed during reaction are not redispersed during oxidative regeneration. It is known that Sn is added as a promoter in the industrial catalyst to help in achieving high propene selectivity and to minimize coke formation. This work shows that an important role of Sn is to help in the regeneration of Pt, by providing nucleation sites on the alumina surface. Finally aberration-corrected scanning transmission electron microscopy helps to provide unique insights into the operating characteristics of an industrially important catalyst by demonstrating the role of promoter elements, such as Sn, in the oxidative regeneration of Pt on γ-Al 2O 3.« less

  7. Hydrogen-bond symmetrization breakdown and dehydrogenation mechanism in FeO2H at high pressure

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Zhu, S.; Mao, H. K.; Mao, W. L.; Sheng, H.

    2017-12-01

    The cycling of hydrogen plays an important role in the geochemical evolution of our planet. In Earth's interiors, hydrogen cycling is mainly carried out by hydrous minerals. Under high-pressure conditions, asymmetric hydroxyl bonds in hydrous minerals tend to form a symmetric O-H-O configuration that improves their thermal stability. Therefore it is possible to transport water into the deeper part of the Earth's lower mantle. Here, we employ first-principles free-energy landscape sampling methods based on a recently developed stochastic surface walking algorithm to reveal the transition mechanism of a water-bearing mineral, FeO2H, at deep mantle conditions. By resolving the lowest-energy transition pathway from ɛ-FeO2H to the high-pressure Py-phase, we demonstrate that half of the O-H bonds in the mineral rupture during the structural transition, leading toward the breakdown of symmetrized hydrogen bonds and eventual dehydrogenation. Our study sheds new light on the stability of symmetric hydrogen bonds in hydrous minerals during structural transitions and suggests a dehydrogenation mechanism from water in the deep mantle.

  8. Ru-N-C Hybrid Nanocomposite for Ammonia Dehydrogenation: Influence of N-doping on Catalytic Activity

    PubMed Central

    Hien, Nguyen Thi Bich; Kim, Hyo Young; Jeon, Mina; Lee, Jin Hee; Ridwan, Muhammad; Tamarany, Rizcky; Yoon, Chang Won

    2015-01-01

    For application to ammonia dehydrogenation, novel Ru-based heterogeneous catalysts, Ru-N-C and Ru-C, were synthesized via simple pyrolysis of a mixture of RuCl3·6H2O and carbon black with or without dicyandiamide as a nitrogen-containing precursor at 550 °C. Characterization of the prepared Ru-N-C and Ru-C catalysts via scanning transmission electron microscopy, in conjunction with energy dispersive X-ray spectroscopy, indicated the formation of hollow nanocomposites in which the average sizes of the Ru nanoparticles were 1.3 nm and 5.1 nm, respectively. Compared to Ru-C, the Ru-N-C nanocomposites not only proved to be highly active for ammonia dehydrogenation, giving rise to a NH3 conversion of >99% at 550 °C, but also exhibited high durability. X-ray photoelectron spectroscopy revealed that the Ru active sites in Ru-N-C were electronically perturbed by the incorporated nitrogen atoms, which increased the Ru electron density and ultimately enhanced the catalyst activity.

  9. High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film

    PubMed Central

    Primo, Ana; Esteve-Adell, Ivan; Blandez, Juan F.; Dhakshinamoorthy, Amarajothi; Álvaro, Mercedes; Candu, Natalia; Coman, Simona M.; Parvulescu, Vasile I.; García, Hermenegildo

    2015-01-01

    Metal oxide nanoparticles supported on graphene exhibit high catalytic activity for oxidation, reduction and coupling reactions. Here we show that pyrolysis at 900 °C under inert atmosphere of copper(II) nitrate embedded in chitosan films affords 1.1.1 facet-oriented copper nanoplatelets supported on few-layered graphene. Oriented (1.1.1) copper nanoplatelets on graphene undergo spontaneous oxidation to render oriented (2.0.0) copper(I) oxide nanoplatelets on few-layered graphene. These films containing oriented copper(I) oxide exhibit as catalyst turnover numbers that can be three orders of magnitude higher for the Ullmann-type coupling, dehydrogenative coupling of dimethylphenylsilane with n-butanol and C–N cross-coupling than those of analogous unoriented graphene-supported copper(I) oxide nanoplatelets. PMID:26509224

  10. Selective oxidation of methanol and ethanol on supported ruthenium oxide clusters at low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Haichao; Iglesia, Enrique

    RuO2 domains supported on SnO2, ZrO2, TiO2, Al2O3, and SiO2 catalyze the oxidative conversion of methanol to formaldehyde, methylformate, and dimethoxymethane with unprecedented rates and high combined selectivity (>99 percent) and yield at low temperatures (300-400 K). Supports influence turnover rates and the ability of RuO2 domains to undergo redox cycles required for oxidation turnovers. Oxidative dehydrogenation turnover rates and rates of stoichiometric reduction of RuO2 in H2 increased in parallel when RuO2 domains were dispersed on more reducible supports. These support effects, the kinetic effects of CH3OH and O2 on reaction rates, and the observed kinetic isotope effects withmore » CH3OD and CD3OD reactants are consistent with a sequence of elementary steps involving kinetically relevant H-abstraction from adsorbed methoxide species using lattice oxygen atoms and with methoxide formation in quasi-equilibrated CH3OH dissociation on nearly stoichiometric RuO2 surfaces. Anaerobic transient experiments confirmed that CH3OH oxidation to HCHO requires lattice oxygen atoms and that selectivities are not influenced by the presence of O2. Residence time effects on selectivity indicate that secondary HCHO-CH3OH acetalization reactions lead to hemiacetal or methoxymethanol intermediates that convert to dimethoxymethane in reactions with CH3OH on support acid sites or dehydrogenate to form methylformate on RuO2 and support redox sites. These conclusions are consistent with the tendency of Al2O3 and SiO2 supports to favor dimethoxymethane formation, while SnO2, ZrO2, and TiO2 preferentially form methylformate. These support effects on secondary reactions were confirmed by measured CH3OH oxidation rates and selectivities on physical mixtures of supported RuO2 catalysts and pure supports. Ethanol also reacts on supported RuO2 domains to form predominately acetaldehyde and diethoxyethane at 300-400 K. The bifunctional nature of these reaction pathways and the

  11. A prolific catalyst for dehydrogenation of neat formic acid

    PubMed Central

    Celaje, Jeff Joseph A.; Lu, Zhiyao; Kedzie, Elyse A.; Terrile, Nicholas J.; Lo, Jonathan N.; Williams, Travis J.

    2016-01-01

    Formic acid is a promising energy carrier for on-demand hydrogen generation. Because the reverse reaction is also feasible, formic acid is a form of stored hydrogen. Here we present a robust, reusable iridium catalyst that enables hydrogen gas release from neat formic acid. This catalysis works under mild conditions in the presence of air, is highly selective and affords millions of turnovers. While many catalysts exist for both formic acid dehydrogenation and carbon dioxide reduction, solutions to date on hydrogen gas release rely on volatile components that reduce the weight content of stored hydrogen and/or introduce fuel cell poisons. These are avoided here. The catalyst utilizes an interesting chemical mechanism, which is described on the basis of kinetic and synthetic experiments. PMID:27076111

  12. Catalytic dehydrogenation of isobutane in the presence of hydrogen over Cs-modified Ni2P supported on active carbon

    NASA Astrophysics Data System (ADS)

    Xu, Yanli; Sang, Huanxin; Wang, Kang; Wang, Xitao

    2014-10-01

    In this article, an environmentally friendly non-noble-metal class of Cs-Ni2P/active carbon (AC) catalyst was prepared and demonstrated to exhibit enhanced catalytic performance in isobutane dehydrogenation. The results of activity tests reveal that Ni/AC catalyst was highly active for isobutane cracking, which led to the formation of abundant methane and coke. After the introduction of phosphorus through impregnation with ammonium di-hydrogen phosphate and H2-temperature programmed reduction, undesired cracking reactions were effectively inhibited, and the selectivity to isobutene and stability of catalyst increased remarkably. The characterization results indicate that, after the addition of phosphorous, the improvement of dehydrogenation selectivity is ascribed to the partial positive charges carried on Ni surface in Ni2P particles, which decreases the strength of Nisbnd C bond between Ni and carbonium-ion intermediates and the possibility of excessive dehydrogenation. In addition, Cs-modified Ni2P/AC catalysts display much higher catalytic performance as compared to Ni2P/AC catalyst. Cs-Ni2P-6.5 catalyst has the highest catalytic performance, and the selectivity to isobutene higher than 93% can be obtained even after 4 h reaction. The enhancement in catalytic performance of the Cs-modified catalysts is mainly attributed to the function of Cs to improve the dispersion of Ni2P particles, transfer electron from Cs to Ni, and decrease acid site number and strength.

  13. Autothermal hydrogen storage and delivery systems

    DOEpatents

    Pez, Guido Peter [Allentown, PA; Cooper, Alan Charles [Macungie, PA; Scott, Aaron Raymond [Allentown, PA

    2011-08-23

    Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

  14. Enhancing aerobic biodegradation of 1,2-dibromoethane in groundwater using ethane or propane and inorganic nutrients.

    PubMed

    Hatzinger, Paul B; Streger, Sheryl H; Begley, James F

    2015-01-01

    1,2-Dibromoethane (ethylene dibromide; EDB) is a probable human carcinogen that was previously used as both a soil fumigant and a scavenger in leaded gasoline. EDB has been observed to persist in soils and groundwater, particularly under oxic conditions. The objective of this study was to evaluate options to enhance the aerobic degradation of EDB in groundwater, with a particular focus on possible in situ remediation strategies. Propane gas and ethane gas were observed to significantly stimulate the biodegradation of EDB in microcosms constructed with aquifer solids and groundwater from the FS-12 EDB plume at Joint Base Cape Cod (Cape Cod, MA), but only after inorganic nutrients were added. Ethene gas was also effective, but rates were appreciably slower than for ethane and propane. EDB was reduced to <0.02 μg/L, the Massachusetts state Maximum Contaminant Level (MCL), in microcosms that received ethane gas and inorganic nutrients. An enrichment culture (BE-3R) that grew on ethane or propane gas but not EDB was obtained from the site materials. The degradation of EDB by this culture was inhibited by acetylene gas, suggesting that degradation is catalyzed by a monooxygenase enzyme. The BE-3R culture was also observed to biodegrade 1,2-dichloroethane (DCA), a compound commonly used in conjunction with EDB as a lead scavenger in gasoline. The data suggest that addition of ethane or propane gas with inorganic nutrients may be a viable option to enhance degradation of EDB in groundwater aquifers to below current state or federal MCL values. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Rapid Production of High-Purity Hydrogen Fuel through Microwave-Promoted Deep Catalytic Dehydrogenation of Liquid Alkanes with Abundant Metals.

    PubMed

    Jie, Xiangyu; Gonzalez-Cortes, Sergio; Xiao, Tiancun; Wang, Jiale; Yao, Benzhen; Slocombe, Daniel R; Al-Megren, Hamid A; Dilworth, Jonathan R; Thomas, John M; Edwards, Peter P

    2017-08-14

    Hydrogen as an energy carrier promises a sustainable energy revolution. However, one of the greatest challenges for any future hydrogen economy is the necessity for large scale hydrogen production not involving concurrent CO 2 production. The high intrinsic hydrogen content of liquid-range alkane hydrocarbons (including diesel) offers a potential route to CO 2 -free hydrogen production through their catalytic deep dehydrogenation. We report here a means of rapidly liberating high-purity hydrogen by microwave-promoted catalytic dehydrogenation of liquid alkanes using Fe and Ni particles supported on silicon carbide. A H 2 production selectivity from all evolved gases of some 98 %, is achieved with less than a fraction of a percent of adventitious CO and CO 2 . The major co-product is solid, elemental carbon. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D.

    PubMed

    Liu, Lichen; Díaz, Urbano; Arenal, Raul; Agostini, Giovanni; Concepción, Patricia; Corma, Avelino

    2017-01-01

    Single metal atoms and metal clusters have attracted much attention thanks to their advantageous capabilities as heterogeneous catalysts. However, the generation of stable single atoms and clusters on a solid support is still challenging. Herein, we report a new strategy for the generation of single Pt atoms and Pt clusters with exceptionally high thermal stability, formed within purely siliceous MCM-22 during the growth of a two-dimensional zeolite into three dimensions. These subnanometric Pt species are stabilized by MCM-22, even after treatment in air up to 540 °C. Furthermore, these stable Pt species confined within internal framework cavities show size-selective catalysis for the hydrogenation of alkenes. High-temperature oxidation-reduction treatments result in the growth of encapsulated Pt species to small nanoparticles in the approximate size range of 1 to 2 nm. The stability and catalytic activity of encapsulated Pt species is also reflected in the dehydrogenation of propane to propylene.

  17. Propane in nitrogen, 1000 μmol/mol

    NASA Astrophysics Data System (ADS)

    Konopelko, L. A.; Kustikov, Y. A.; Kolobova, A. V.; Pankratov, V. V.; Pankov, A. A.; Efremova, O. V.; Rozhnov, M. S.; Melnyk, D. M.; Petryshyn, P. V.; Levbarg, O. S.; Kisel, S. P.; Shpilnyi, S. A.; Yakubov, S. Ye; Bakovec, N. V.; Mironchik, A. M.; Aleksandrov, V. V.

    2017-01-01

    This article presents the report on the COOMET key comparison COOMET.QM-K111, which is linking to the appropriate CCQM comparison—CCQM-K111 'Propane in nitrogen 1000 μmol/mol'. CCQM-K111 was carried out in 2014-2016 and it was one of a series of key comparisons in the gas analysis area assessing core competences. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  18. Stability and Behaviors of Methane/Propane and Hydrogen Micro Flames

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Takamitsu; Kinoshita, Koichiro; Kitamura, Hideki; Tanigawa, Ryoichi

    The flame stability limits essentially define the fundamental operation of the combustion system. Recently the micro diffusion flame has been remarked. The critical conditions of the flame stability limit are highly dependent on nozzle diameter, species of fuel and so on. The micro diffusion flame of Methane/Propane and Hydrogen is formed by using the micro-scale nozzle of which inner diameter is less than 1mm. The configurations and behaviors of the flame are observed directly and visualized by the high speed video camera The criteria of stability limits are proposed for the micro diffusion flame. The objectives of the present study are to get further understanding of lifting/blow-off for the micro diffusion flame. The results obtained are as follows. (1) The behaviors of the flames are classified into some regions for each diffusion flame. (2) The micro diffusion flame of Methane/Propane cannot be sustained, when the nozzle diameter is less than 0.14 mm. (3) The diffusion flame cannot be sustained below the critical fuel flow rate. (4) The minimum flow which is formed does not depends on the average jet velocity, but on the fuel flow rate. (5) the micro flame is laminar. The flame length is decided by fuel flow rate.

  19. NMR Spin-Lock Induced Crossing (SLIC) Dispersion and Long-Lived Spin States of Gaseous Propane at Low Magnetic Field (0.05 T)

    PubMed Central

    Barskiy, Danila A.; Salnikov, Oleg G.; Romanov, Alexey S.; Feldman, Matthew A.; Coffey, Aaron M.; Kovtunov, Kirill V.; Koptyug, Igor V.; Chekmenev, Eduard Y.

    2017-01-01

    When parahydrogen reacts with propylene in low magnetic fields (e.g., 0.05 T), the reaction product propane develops an overpopulation of pseudo-singlet nuclear spin states. We studied how the spin-lock induced crossing (SLIC) technique can be used to convert these pseudo-singlet spin states of hyperpolarized gaseous propane into observable magnetization and to detect 1H NMR signal directly at 0.05 T. The theoretical simulation and experimental study of the NMR signal dependence on B1 power (SLIC amplitude) exhibits a well-resolved dispersion, which is induced by the spin-spin couplings in the eight-proton spin system of propane. We also measured the exponential decay time constants (TLLSS or TS) of these pseudo-singlet long-lived spin states (LLSS) by varying the time between hyperpolarized propane production and SLIC detection. We have found that, on average, TS is approximately 3 times longer than the corresponding T1 value under the same conditions in the range of pressures studied (up to 7.6 atm). Moreover, TS may exceed 13 seconds at pressures above 7 atm in the gas phase. These results are in agreement with the previous reports, and they corroborate a great potential of long-lived hyperpolarized propane as an inhalable gaseous contrast agent for lung imaging and as a molecular tracer to study porous media using low-field NMR and MRI. PMID:28152435

  20. NMR Spin-Lock Induced Crossing (SLIC) dispersion and long-lived spin states of gaseous propane at low magnetic field (0.05 T)

    NASA Astrophysics Data System (ADS)

    Barskiy, Danila A.; Salnikov, Oleg G.; Romanov, Alexey S.; Feldman, Matthew A.; Coffey, Aaron M.; Kovtunov, Kirill V.; Koptyug, Igor V.; Chekmenev, Eduard Y.

    2017-03-01

    When parahydrogen reacts with propylene in low magnetic fields (e.g., 0.05 T), the reaction product propane develops an overpopulation of pseudo-singlet nuclear spin states. We studied how the Spin-Lock Induced Crossing (SLIC) technique can be used to convert these pseudo-singlet spin states of hyperpolarized gaseous propane into observable magnetization and to detect 1H NMR signal directly at 0.05 T. The theoretical simulation and experimental study of the NMR signal dependence on B1 power (SLIC amplitude) exhibits a well-resolved dispersion, which is induced by the spin-spin couplings in the eight-proton spin system of propane. We also measured the exponential decay time constants (TLLSS or TS) of these pseudo-singlet long-lived spin states (LLSS) by varying the time between hyperpolarized propane production and SLIC detection. We have found that, on average, TS is approximately 3 times longer than the corresponding T1 value under the same conditions in the range of pressures studied (up to 7.6 atm). Moreover, TS may exceed 13 s at pressures above 7 atm in the gas phase. These results are in agreement with the previous reports, and they corroborate a great potential of long-lived hyperpolarized propane as an inhalable gaseous contrast agent for lung imaging and as a molecular tracer to study porous media using low-field NMR and MRI.

  1. A Thermal Dehydrogenative Diels–Alder Reaction of Styrenes for the Concise Synthesis of Functionalized Naphthalenes

    PubMed Central

    Kocsis, Laura S.; Benedetti, Erica

    2012-01-01

    Functionalized naphthalenes are valuable building blocks in many important areas. A microwave-assisted, intramolecular dehydrogenative Diels-Alder reaction of styrenyl derivatives to provide cyclopenta[b]naphthalene substructures not previously accessible using existing synthetic methods is described. The synthetic utility of these uniquely functionalized naphthalenes was demonstrated by a single-step conversion of one of these cycloadducts to a fluorophore bearing a structural resemblance to Prodan. PMID:22913473

  2. A thermal dehydrogenative Diels-Alder reaction of styrenes for the concise synthesis of functionalized naphthalenes.

    PubMed

    Kocsis, Laura S; Benedetti, Erica; Brummond, Kay M

    2012-09-07

    Functionalized naphthalenes are valuable building blocks in many important areas. A microwave-assisted, intramolecular dehydrogenative Diels-Alder reaction of styrenyl derivatives to provide cyclopenta[b]naphthalene substructures not previously accessible using existing synthetic methods is described. The synthetic utility of these uniquely functionalized naphthalenes was demonstrated by a single-step conversion of one of these cycloadducts to a fluorophore bearing a structural resemblance to Prodan.

  3. Copper(II)-catalyzed oxidative [3+2] cycloaddition reactions of secondary amines with α-diazo compounds: a facile and efficient synthesis of 1,2,3-triazoles.

    PubMed

    Li, Yi-Jin; Li, Xue; Zhang, Shao-Xiao; Zhao, Yu-Long; Liu, Qun

    2015-07-25

    A novel copper-catalyzed [3+2] cycloaddition reaction of secondary amines with α-diazo compounds has been developed via a cross-dehydrogenative coupling process. The reaction involves a sequential aerobic oxidation/[3+2] cycloaddition/oxidative aromatization procedure and provides an efficient method for the construction of 1,2,3-triazoles in a single step in an atom-economic manner from readily available starting materials under very mild conditions.

  4. Ultraviolet-Visible (UV-Vis) Microspectroscopic System Designed for the In Situ Characterization of the Dehydrogenation Reaction Over Platinum Supported Catalytic Microchannel Reactor.

    PubMed

    Suarnaba, Emee Grace Tabares; Lee, Yi Fuan; Yamada, Hiroshi; Tagawa, Tomohiko

    2016-11-01

    An ultraviolet visible (UV-Vis) microspectroscopic system was designed for the in situ characterization of the activity of the silica supported platinum (Pt) catalyst toward the dehydrogenation of 1-methyl-1,4-cyclohexadiene carried out in a custom-designed catalytic microreactor cell. The in situ catalytic microreactor cell (ICMC) with inlet/outlet ports was prepared using quartz cover as the optical window to facilitate UV-Vis observation. A fabricated thermometric stage was adapted to the UV-Vis microspectrophotometer to control the reaction temperature inside the ICMC. The spectra were collected by focusing the UV-Vis beam on a 30 × 30 µm area at the center of ICMC. At 393 K, the sequential measurement of the spectra recorded during the reaction exhibited a broad absorption peak with maximum absorbance at 260 nm that is characteristic for gaseous toluene. This result indicates that the silica supported Pt catalyst is active towards the dehydrogenation of 1-methyl-1,4-cyclohexadiene at the given experimental conditions. The onset of coke formation was also detected based on the appearance of absorption bands at 300 nm. The UV-Vis microspectroscopic system developed can be used further in studying the mechanism of the dehydrogenation reaction. © The Author(s) 2016.

  5. Oxidative degradation of alkylphenols by horseradish peroxidase.

    PubMed

    Sakuyama, Hisae; Endo, Yasushi; Fujimoto, Kenshiro; Hatana, Yasuhiko

    2003-01-01

    Alkylphenols such as bisphenol A (2,2-bis(4-hydroxyphenyl)propane; BPA), p-nonylphenol (p-NP), and p-octylphenol (p-OP) that are known as endocrine disrupters were oxidized by horseradish (Armoracia rusticana) peroxidase (HRP) with H2O2. The optimal pHs for BPA, p-NP, and p-OP were 8.0, 7.0, and 5.0, respectively. The optimal temperature for BPA was 20 degrees C. Although BPA was rapidly degraded by HRP, its degradation depended on the concentration of HRP. Most of the oxidation products of BPA were polymers, although some 4-isopropenylphenol was produced. When male Japanese medaka (Oryzias latipes) were exposed to BPA, vitellogenin in the blood increased. However, no increased vitellogenin was observed in medaka exposed to HRP-oxidized BPA. The enzymatic oxidation of BPA using HRP was able to eliminate its estrogen-like activity.

  6. International comparison CCQM-K111—propane in nitrogen

    NASA Astrophysics Data System (ADS)

    van der Veen, Adriaan M. H.; Wouter van der Hout, J.; Ziel, Paul R.; Oudwater, Rutger J.; Fioravante, Andreia L.; Augusto, Cristiane R.; Coutinho Brum, Mariana; Uehara, Shinji; Akima, Dai; Bae, Hyun Kil; Kang, Namgoo; Woo, Jin-Chun; Liaskos, Christina E.; Rhoderick, George C.; Jozela, Mudalo; Tshilongo, James; Ntsasa, Napo G.; Botha, Angelique; Brewer, Paul J.; Brown, Andrew S.; Bartlett, Sam; Downey, Michael L.; Konopelko, L. A.; Kolobova, A. V.; Pankov, A. A.; Orshanskaya, A. A.; Efremova, O. V.

    2017-01-01

    This key comparison aims to assess the core capabilities of the participants in gas analysis. Such competences include, among others, the capabilities to prepare primary standard gas Mixtures (PSMs), perform the necessary purity analysis on the materials used in the gas mixture preparation, the verification of the composition of newly prepared PSMs against existing ones, and the capability of calibrating the composition of a gas mixture. According to the Strategy for Key Comparisons of the Gas Analysis Working Group, this key comparison is classified as a track A key comparison, which means that the results of this key comparison can be used to underpin calibration and measurement capabilities using the flexible scheme, and for propane under the default scheme. The artefacts were binary mixtures of propane in nitrogen at a nominal amount-of-substance fraction level of 1000 μmol/mol. The values and uncertainties from the gravimetric gas mixture preparation were used as key comparison reference values (KCRVs). Each transfer standard had its own KCRV. The results are generally good. All results but one are within +/- 0.2 % of the KCRV. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  7. Triazolylidene-Iridium Complexes with a Pendant Pyridyl Group for Cooperative Metal-Ligand Induced Catalytic Dehydrogenation of Amines.

    PubMed

    Valencia, Marta; Pereira, Ana; Müller-Bunz, Helge; Belderraín, Tomás R; Pérez, Pedro J; Albrecht, Martin

    2017-07-03

    Two iridium(III) complexes containing a C,N-bidentate pyridyl-triazolylidene ligand were prepared that are structurally very similar but differ in their pendant substituent. Whereas complex 1 contains a non-coordinating pyridyl unit, complex 2 has a phenyl group on the triazolylidene substituent. The presence of the basic pyridyl unit has distinct effects on the catalytic activity of the complex in the oxidative dehydrogenation of benzylic amines, inducing generally higher rates, higher selectivity towards formation of imines versus secondary amines, and notable quantities of tertiary amines when compared to the phenyl-functionalized analogue. The role of the pyridyl functionality has been elucidated from a set of stoichiometric experiments, which demonstrate hydrogen bonding between the pendant pyridyl unit and the amine protons of the substrate. Such N pyr ⋅⋅⋅H-N interactions are demonstrated by X-ray diffraction analysis, 1 H NMR, and IR spectroscopy, and suggest a pathway of substrate bond-activation that involves concerted substrate binding through the Lewis acidic iridium center and the Lewis basic pyridyl site appended to the triazolylidene ligand, in agreement with ligand-metal cooperative substrate activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electrooxidative Rhodium-Catalyzed C-H/C-H Activation: Electricity as Oxidant for Cross-Dehydrogenative Alkenylation.

    PubMed

    Qiu, Youai; Kong, Wei-Jun; Struwe, Julia; Sauermann, Nicolas; Rogge, Torben; Scheremetjew, Alexej; Ackermann, Lutz

    2018-05-14

    Rhodium(III) catalysis has enabled a plethora of oxidative C-H functionalizations, which predominantly employ stoichiometric amounts of toxic and/or expensive metal oxidants. In contrast, we herein describe the first electrochemical rhodium-catalyzed C-H activation that avoids hazardous chemical oxidants. Environmentally benign twofold C-H/C-H functionalizations were accomplished with weakly coordinating benzoic acids and benzamides, employing electricity as the terminal oxidant and generating H 2 as the sole byproduct. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Rhodium-Catalyzed Synthesis of Chiral Spiro-9-silabifluorenes by Dehydrogenative Silylation: Mechanistic Insights into the Construction of Tetraorganosilicon Stereocenters.

    PubMed

    Murai, Masahito; Takeuchi, Yutaro; Yamauchi, Kanae; Kuninobu, Yoichiro; Takai, Kazuhiko

    2016-04-18

    Mechanistic insight into the construction of quaternary silicon chiral centers by rhodium-catalyzed synthesis of spiro-9-silabifluorenes through dehydrogenative silylation is reported. The C2 -symmetric bisphosphine ligand, BINAP, was effective in controlling enantioselectivity, and axially chiral spiro-9-silabifluorenes were obtained in excellent yields with high enantiomeric excess. Monitoring of the reaction revealed the presence of a monohydrosilane intermediate as a mixture of two constitutional isomers. The reaction proceeded through two consecutive dehydrogenative silylations, and the absolute configuration was determined in the first silylative cyclization. Competitive reactions with electron-rich and electron-deficient dihydrosilanes indicated that the rate of silylative cyclization increased with decreasing electron density on the silicon atom of the starting dihydrosilane. Further investigation disclosed a rare interconversion between the two constitutional isomers of the monohydrosilane intermediate with retention of the absolute configuration. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Alternative Fuels Data Center: Propane Rolls on as Reliable Fleet Fuel

    Science.gov Websites

    AddThis.com... March 6, 2015 Propane Rolls on as Reliable Fleet Fuel " If we can save the district money alternative fuels program for our buses as a way to save money and clean up the air and environment for our can save the district money and prevent pollution for our kids' sake in the process, I don't see a

  11. ReaxFF Study of the Oxidation of Softwood Lignin in View of Carbon Fiber Production

    DOE PAGES

    Beste, Ariana

    2014-10-06

    We investigate the oxidative, thermal conversion of softwood lignin by performing molecular dynamics simulations based on a reactive force field (ReaxFF). The lignin samples are constructed from coniferyl alcohol units, which are connected through linkages that are randomly selected from a natural distribution of linkages in softwood. The goal of this work is to simulate the oxidative stabilization step during carbon fiber production from lignin precursor. We find that at simulation conditions where stabilization reactions occur, the lignin fragments have already undergone extensive degradation. The 5-5 linkage shows the highest reactivity towards cyclization and dehydrogenation.

  12. Vacancy-mediated dehydrogenation of sodium alanate

    PubMed Central

    Gunaydin, Hakan; Houk, Kendall N.; Ozoliņš, Vidvuds

    2008-01-01

    Clarification of the mechanisms of hydrogen release and uptake in transition-metal-doped sodium alanate, NaAlH4, a prototypical high-density complex hydride, has fundamental importance for the development of improved hydrogen-storage materials. In this and most other modern hydrogen-storage materials, H2 release and uptake are accompanied by long-range diffusion of metal species. Using first-principles density-functional theory calculations, we have determined that the activation energy for Al mass transport via AlH3 vacancies is Q = 85 kJ/mol·H2, which is in excellent agreement with experimentally measured activation energies in Ti-catalyzed NaAlH4. The activation energy for an alternate decomposition mechanism via NaH vacancies is found to be significantly higher: Q = 112 kJ/mol·H2. Our results suggest that bulk diffusion of Al species is the rate-limiting step in the dehydrogenation of Ti-doped samples of NaAlH4 and that the much higher activation energies measured for uncatalyzed samples are controlled by other processes, such as breaking up of AlH4− complexes, formation/dissociation of H2 molecules, and/or nucleation of the product phases. PMID:18299582

  13. THE HEAT CAPACITY OF FLUORINATED PROPANE AND BUTANE DERIVATIVES BY DIFFERENTIAL SCANNING CALORIMETRY

    EPA Science Inventory

    The paper gives results of the measurement (to 3% accuracy) of the constant-pressure liquid-phase heat capacities of 21 hydrogen-containing fluorinated propane and butane derivatives and one fluorinated ether (CF3OCF2H) with boiling points ranging from -34.6 to 76.7 C, using diff...

  14. An automatic flow system for NIR screening analysis of liquefied petroleum gas with respect to propane content.

    PubMed

    Dantas, Hebertty V; Barbosa, Mayara F; Nascimento, Elaine C L; Moreira, Pablo N T; Galvão, Roberto K H; Araújo, Mário C U

    2013-03-15

    This paper proposes a NIR spectrometric method for screening analysis of liquefied petroleum gas (LPG) samples. The proposed method is aimed at discriminating samples with low and high propane content, which can be useful for the adjustment of burn settings in industrial applications. A gas flow system was developed to introduce the LPG sample into a NIR flow cell at constant pressure. In addition, a gas chromatographer was employed to determine the propane content of the sample for reference purposes. The results of a principal component analysis, as well as a classification study using SIMCA (soft independent modeling of class analogies), revealed that the samples can be successfully discriminated with respect to propane content by using the NIR spectrum in the range 8100-8800 cm(-1). In addition, by using SPA-LDA (linear discriminant analysis with variables selected by the successive projections algorithm), it was found that perfect discrimination can also be achieved by using only two wavenumbers (8215 and 8324 cm(-1)). This finding may be of value for the design of a dedicated, low-cost instrument for routine analyses. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Synthesis of fructooligosaccharides from Aspergillus niger commercial inulinase immobilized in montmorillonite pretreated in pressurized propane and LPG.

    PubMed

    de Oliveira Kuhn, Graciele; Rosa, Clarissa Dalla; Silva, Marceli Fernandes; Treichel, Helen; de Oliveira, Débora; Oliveira, J Vladimir

    2013-02-01

    Commercial inulinase from Aspergillus niger was immobilized in montmorillonite and then treated in pressurized propane and liquefied petroleum gas (LPG). Firstly, the effects of system pressure, exposure time, and depressurization rate, using propane and LPG, on enzymatic activity were evaluated through central composite design 2³. Residual activities of 145.1 and 148.5% were observed for LPG (30 bar, 6 h, and depressurization rate of 20 bar min⁻¹) and propane (270 bar, 1 h, and depressurization rate of 100 bar min⁻¹), respectively. The catalysts treated at these conditions in both fluids were then used for the production of fructooligosaccharides (FOS) using sucrose and inulin as substrates in aqueous and organic systems. The main objective of this step was to evaluate the yield and productivity in FOS, using alternatives for enhancing enzyme activity by means of pressurized fluids and also using low-cost supports for enzyme immobilization, aiming at obtaining a stable biocatalyst to be used for synthesis reactions. Yields of 18% were achieved using sucrose as substrate in aqueous medium, showing the potential of this procedure, hence suggesting a further optimization step to increase the process yield.

  16. Monodisperse gold-palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions.

    PubMed

    Metin, Önder; Sun, Xiaolian; Sun, Shouheng

    2013-02-07

    Monodisperse 4 nm AuPd alloy nanoparticles with controlled composition were synthesized by co-reduction of hydrogen tetrachloroaurate(III) hydrate and palladium(II) acetylacetonate with a borane-morpholine complex in oleylamine. These NPs showed high activity (TOF = 230 h(-1)) and stability in catalyzing formic acid dehydrogenation and hydrogen production in water at 50 °C without any additives.

  17. Influence of cobalt and manganese content on the dehydrogenation capacity and kinetics of air-exposed LaNi 5+ x-type alloys in solid gas and electrochemical reactions

    NASA Astrophysics Data System (ADS)

    Raekelboom, E.; Cuevas, F.; Knosp, B.; Percheron-Guégan, A.

    The effect of cobalt and manganese content on the dehydrogenation properties of air-exposed MmB 5+ x-type (Mm = mischmetal; B = Ni, Al, Co and Mn) alloys was investigated both in solid gas and electrochemical reactions. The cobalt and manganese content were varied separately while keeping constant the plateau pressure of the hydrides. The increase of the cobalt content leads to a decrease of the hydrogen capacity whereas the manganese content has no much effect. In solid gas reactions, the kinetics were found to be limited by the hydrogen diffusion through the surface oxidation layer. As for the electrochemistry, the kinetics are limited by a corrosion layer formed in alkaline medium. The desorption rates for both processes increase as the cobalt or manganese content decreases. This is thought to be due to an enhancement of the hydrogen diffusivity through the oxidation layer. As a result, a low cobalt or manganese content in MmB 5+ x alloys is found to be beneficial for the hydrogen desorption kinetics in both processes.

  18. Improvement of gas hydrate preservation by increasing compression pressure to simple hydrates of methane, ethane, and propane

    NASA Astrophysics Data System (ADS)

    Kida, Masato; Jin, Yusuke; Watanabe, Mizuho; Murayama, Tetsuro; Nagao, Jiro

    2017-09-01

    In this report, we describe the dissociation behavior of gas hydrate grains pressed at 1 and 6 MPa. Certain simple gas hydrates in powder form show anomalous preservation phenomenon under their thermodynamic unstable condition. Investigation of simple hydrates of methane, ethane, and propane reveals that high pressure applied to the gas hydrate particles enhances their preservation effects. Application of high pressure increases the dissociation temperature of methane hydrate and has a restrictive effect against the dissociation of ethane and propane hydrate grains. These improvements of gas hydrate preservation by increasing pressure to the initial gas hydrate particles imply that appropriate pressure applied to gas hydrate particles enhances gas hydrate preservation effects.

  19. Propane tank explosion (2 deaths, 7 injuries) at Herrig Brothers Feather Creek Farm, Albert City, Iowa, April 9, 1998. Investigation report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-09-01

    This report explains the explosion/BLEVE that took place on April 9, 1998, at the Herrig Brothers Feather Creek Farm, located in Albert City, Iowa. Two volunteer fire fighters were killed and seven other emergency response personnel were injured. Safety issues covered in the report include protection of propane storage tanks and piping, state regulatory oversight of such installations, and fire fighter response to propane storage tank fires.

  20. High Resolution Spectra of Carbon Monoxide, Propane and Ammonia for Atmospheric Remote Sensing

    NASA Astrophysics Data System (ADS)

    Beale, Christopher Andrew

    Spectroscopy is a critical tool for analyzing atmospheric data. Identification of atmospheric parameters such as temperature, pressure and the existence and concentrations of constituent gases via remote sensing techniques are only possible with spectroscopic data. These form the basis of model atmospheres which may be compared to observations to determine such parameters. To this end, this dissertation explores the spectroscopy of three molecules: ammonia, propane and carbon monoxide. Infrared spectra have been recorded for ammonia in the region 2400-9000 cm-1. These spectra were recorded at elevated temperatures (from 293-973 K) using a Fourier Transform Spectrometer (FTS). Comparison between the spectra recorded at different temperatures yielded experimental lower state energies. These spectra resulted in the measurement of roughly 30000 lines and about 3000 quantum assignments. In addition spectra of propane were recorded at elevated temperatures (296-700 K) using an FTS. Atmospheres with high temperatures require molecular data at appropriate conditions. This dissertation describes collection of such data and the potential application to atmospheres in our solar system, such as auroral regions in Jupiter, to those of planets orbiting around other stars and cool sub-stellar objects known as brown dwarfs. The spectra of propane and ammonia provide the highest resolution and most complete experimental study of these gases in their respective spectral regions at elevated temperatures. Detection of ammonia in an exoplanet or detection of propane in the atmosphere of Jupiter will most likely rely on the work presented here. The best laboratory that we have to study atmospheres is our own planet. The same techniques that are applied to these alien atmospheres originated on Earth. As such it is appropriate to discuss remote sensing of our own atmosphere. This idea is explored through analysis of spectroscopic data recorded by an FTS on the Atmospheric Chemistry

  1. Fe-Based Nano-Materials in Catalysis

    PubMed Central

    Konstantopoulos, Christos

    2018-01-01

    The role of iron in view of its further utilization in chemical processes is presented, based on current knowledge of its properties. The addition of iron to a catalyst provides redox functionality, enhancing its resistance to carbon deposition. FeOx species can be formed in the presence of an oxidizing agent, such as CO2, H2O or O2, during reaction, which can further react via a redox mechanism with the carbon deposits. This can be exploited in the synthesis of active and stable catalysts for several processes, such as syngas and chemicals production, catalytic oxidation in exhaust converters, etc. Iron is considered an important promoter or co-catalyst, due to its high availability and low toxicity that can enhance the overall catalytic performance. However, its operation is more subtle and diverse than first sight reveals. Hence, iron and its oxides start to become a hot topic for more scientists and their findings are most promising. The scope of this article is to provide a review on iron/iron-oxide containing catalytic systems, including experimental and theoretical evidence, highlighting their properties mainly in view of syngas production, chemical looping, methane decomposition for carbon nanotubes production and propane dehydrogenation, over the last decade. The main focus goes to Fe-containing nano-alloys and specifically to the Fe–Ni nano-alloy, which is a very versatile material. PMID:29772842

  2. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities.

    PubMed

    Van Wyngarden, A L; Pérez-Montaño, S; Bui, J V H; Li, E S W; Nelson, T E; Ha, K T; Leong, L; Iraci, L T

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H 2 SO 4 ) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and 1 H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal

  3. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    PubMed Central

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2016-01-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40–80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance–Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  4. Direction to practical production of hydrogen by formic acid dehydrogenation with Cp*Ir complexes bearing imidazoline ligands

    DOE PAGES

    Onishi, Naoya; Ertem, Mehmed Z.; Xu, Shaoan; ...

    2016-11-10

    In a Cp*Ir complex with a bidentate pyridyl-imidazoline ligand achieved the evolution of 1.02 m 3 of H 2/CO 2 gases by formic acid dehydrogenation without any additives or adjustments in the solution system. Furthermore, the pyridyl-imidazoline moieties provided the optimum pH to be 1.7, resulting in high activity and stability even at very acidic conditions.

  5. Direction to practical production of hydrogen by formic acid dehydrogenation with Cp*Ir complexes bearing imidazoline ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Naoya; Ertem, Mehmed Z.; Xu, Shaoan

    In a Cp*Ir complex with a bidentate pyridyl-imidazoline ligand achieved the evolution of 1.02 m 3 of H 2/CO 2 gases by formic acid dehydrogenation without any additives or adjustments in the solution system. Furthermore, the pyridyl-imidazoline moieties provided the optimum pH to be 1.7, resulting in high activity and stability even at very acidic conditions.

  6. Base-free production of H2 by dehydrogenation of formic acid using an iridium-bisMETAMORPhos complex.

    PubMed

    Oldenhof, Sander; de Bruin, Bas; Lutz, Martin; Siegler, Maxime A; Patureau, Frederic W; van der Vlugt, Jarl Ivar; Reek, Joost N H

    2013-08-26

    Erase the base: An iridium complex based on a cooperative ligand that functions as an internal base is reported. This complex can rapidly and cleanly dehydrogenate formic acid in absence of external base, a reaction that is required if formic acid is to be exploited as an energy carrier (see scheme). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Evaluation of propane combustion traps for the collection of Phlebotomus papatasi (Scopoli) in southern Israel.

    PubMed

    Kline, Daniel L; Müller, Günter C; Hogsette, Jerome A

    2011-03-01

    In this study, we evaluated the efficacy of eleven commercial models of propane combustion traps for catching male and female Phlebotomus papatasi. The traps differed in physical appearance, amount of carbon dioxide produced and released, type and location of capturing device, and the method by which the trap suction fans were powered. The traps tested were the Mosquito Magnet™(MM)-Pro, MM-Liberty, MM-Liberty Plus, MM-Defender, SkeeterVac®(SV)-35, SV-27, Mosquito Deleto™(MD)-2200, MD-2500, MT150-Power Trap, and two models of The Guardian Mosquito Traps (MK-01 and MK-12). All trap models except the SV-35, the SV-27, the MD-2500, and the MK-12 attracted significantly more females than males. The SV-35 was the most efficient trap, catching significantly more females than all the other models. The MD-2200 and MK-12 models were the least effective in catching either female or male sand flies. These data indicate that several models of propane combustion traps might be suitable substitutes for either CO(2) -baited or unbaited light traps for adult sand fly surveillance tools. One advantageous feature is the traps' ability to remain operational 24/7 for ca. 20 days on a single tank of propane. Additionally, the models that produce their own electricity to power the trap's fans have an important logistical advantage in field operations over light traps, which require daily battery exchange and charging. © 2011 The Society for Vector Ecology.

  8. Absorption Reveals and Hydrogen Addition Explains New Interstellar Aldehydes: Propenal and Propanal

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Jewell, P. R.; Lovas, F. J.; Remijan, A.; Mollendal, H.

    2004-01-01

    New interstellar molecules propenal (CH2CHCHO) and propanal (CH3CH2CHO) have been detected largely in absorption toward the star-forming region Sagittarius B2(N) by means of rotational transitions observed with the 100-m Green Bank Telescope (GBT) operating in the range of 18 GHz (lambda approximately 1.7 cm) to 26 GHz (lambda approximately 1.2 cm). The GBT was also used to observe the previously reported interstellar aldehyde propynal (HC2CHO) in Sagittarius B2(N) which is known for large molecules believed to form on interstellar grains. The presence of these three interstellar aldehydes toward Sagittarius B2(N) strongly suggests that simple hydrogen addition on interstellar grains accounts for successively larger molecular species: from propynal to propenal and from propenal to propanal. Energy sources within Sagittarius B2(N) likely permit the hydrogen addition reactions on grain surfaces to proceed. This work demonstrates that successive hydrogen addition is probably an important chemistry route in the formation of a number of complex interstellar molecules. We also searched for but did not detect the three-carbon sugar glyceraldehyde (CH2OHCHOHCHO).

  9. Catalytic oxidative dehydrogenation process

    DOEpatents

    Schmidt, Lanny D.; Huff, Marylin

    2002-01-01

    A process for the production of a mono-olefin from a gaseous paraffinic hydrocarbon having at least two carbon atoms or mixtures thereof comprising reacting said hydrocarbons and molecular oxygen in the presence of a platinum catalyst. The catalyst consist essentially of platinum supported on alumina or zirconia monolith, preferably zirconia and more preferably in the absence of palladium, rhodium and gold.

  10. Influence of propane additives on the detonation characteristics of H2-air mixtures

    NASA Astrophysics Data System (ADS)

    Cheng, Guanbing; Bauer, Pascal; Zitoun, Ratiba

    2014-03-01

    Hydrogen is more and more considered as a potential fuel for propulsion applications. However, due to its low ignition energy and wide flammability limits, H2-air mixtures raise a concern in terms of safety. This aspect can be partly solved by adding an alkane to these mixtures, which plays the role of an inhibitor. The present paper provides data on such binary fuel-air mixtures where various amounts of propane are added to hydrogen. The behavior of the corresponding mixtures, in terms of detonation characteristics and other fundamental properties, such as the cell size of the detonation front and induction delay, are presented and discussed for a series of equivalence ratios and propane addition. The experimental detonation velocity is in good agreement with calculated theoretical Chapman-Jouguet values. Based on soot tracks records, the cell size λ is measured, whereas the induction length L i is derived from data using a GRI-Mech kinetic mechanism. These data allow providing a value of the coefficient K = λ/L i .

  11. Effect of an alternating electric field on the polluting emission from propane flame.

    NASA Astrophysics Data System (ADS)

    Ukradiga, I.; Turlajs, D.; Purmals, M.; Barmina, I.; Zake, M.

    2001-12-01

    The experimental investigations of the AC field effect on the propane combustion and processes that cause the formation of polluting emissions (NO_x, CO, CO_2) are performed. The AC-enhanced variations of the temperature and composition of polluting emissions are studied for the fuel-rich and fuel-lean conditions of the flame core. The results show that the AC field-enhanced mixing of the fuel-rich core with the surrounding air coflow enhances the propane combustion with increase in the mass fraction of NO_x and CO_2 in the products. The reverse field effect on the composition of polluting emissions is observed under the fuel-lean conditions in the flame core. The field-enhanced CO_2 destruction is registered when the applied voltage increase. The destruction of CO_2 leads to a correlating increase in the mass fraction of CO in the products and enhances the process of NO_x formation within the limit of the fuel lean and low temperature combustion. Figs 11, Refs 18.

  12. RETENTION OF HALOCARBONS ON A HEXAFLUOROPROPYLENE EPOXIDE-MODIFIED GRAPHITIZED CARBON BLACK - IV. PROPANE- BASED COMPOUNDS

    EPA Science Inventory

    The retention characteristics of 25 propane-based bromofluorocarbon, chlorocarbon, chlorofluorocarbon, and fluorocarbon fluids have been studied as a function of temperature on a stationary phase consisting of a 5% (m/m) coating of a low-molecular-mass polymer of hexafluoropropyl...

  13. Modifying the catalytic and adsorption properties of metals and oxides

    NASA Astrophysics Data System (ADS)

    Yagodovskii, V. D.

    2015-11-01

    A new approach to interpreting the effect of promoters (inhibitors) of nonmetals and metals added to a host metal (catalyst) is considered. Theoretical calculations are based on a model of an actual two-dimensional electron gas and adsorbate particles. An equation is derived for the isotherm of induced adsorption on metals and semiconductors with respect to small fillings of θ ~ 0.1-0.15. The applicability of this equation is verified experimentally for metals (Ag, Pd, Cu, Fe, and Ni), graphitized ash, and semiconductor oxides Ta2O5, ZnO, and Ni. The applicability of the theoretical model of promotion is verified by the hydrogenation reaction of CO on ultradispersed nickel powder. The use of plasmachemical surface treatments of metals and oxides, accompanied by an increase in activity and variation in selectivity, are investigated based on the dehydrocyclization reactions of n-hexane and the dehydrogenation and dehydration of alcohols. It is established that such treatments for metals (Pt, Cu, Ni, and Co) raise their activity due to the growth of the number of active centers upon an increase in the activation energy. Applying XPES and XRD methods to metallic catalysts, it is shown that the rise in activity is associated with a change in their surface states (variation in the structural characteristics of metal particles and localization of certain forms of carbon in catalytically active centers). It is shown that plasmachemical treatments also alter their surface composition, surface activity, and raise their activity when used with complex phosphate oxides of the NASICON type. It is shown by the example of conversion of butanol-2 that abrupt variations in selectivity (prevalence of dehydration over dehydrogenation and vice versa) occur, depending on the type of plasma. It is concluded that plasmachemical treatments of metals and ZnO and NiO alter the isosteric heats and entropies of adsorption of isopropanol.

  14. Hydrogenation and dehydrogenation of interstellar PAHs: Spectral characteristics and H2 formation

    NASA Astrophysics Data System (ADS)

    Andrews, H.; Candian, A.; Tielens, A. G. G. M.

    2016-10-01

    Context. We have modelled the abundance distribution and IR emission of the first 3 members of the coronene family in the north-west photodissociation region of the well-studied reflection nebulae NGC 7023. Aims: Our aim was 3-fold: I) analyze the distribution of abundances; (II) examine the spectral footprints from the hydrogenation state of polycyclic aromatic hydrocarbons (PAHs); and (III) assess the role of PAHs in the formation of H2 in photodissociation regions. Methods: To model the physical conditions inside the cloud, we used the Meudon PDR Code, and we gave this as input to our kinetic model. We used specific molecular properties for each PAH, based on the latest data available at the present time. We considered the loss of an H atom or an H2 molecule as multiphoton processes, and we worked under the premise that PAHs with extra H atoms can form H2 through an Eley-Rideal abstraction mechanism. Results: In terms of abundances, we can distinguish clear differences with PAH size. The smallest PAH, coronene (C24H12), is found to be easily destroyed down to the complete loss of all of its H atoms. The largest species circumcircumcoronene (C96H24), is found in its normal hydrogenated state. The intermediate size molecule, circumcoronene (C54H18), shows an intermediate behaviour with respect to the other two, where partial dehydrogenation is observed inside the cloud. Regarding spectral variations, we find that the emission spectra in NGC 7023 are dominated by the variation in the ionization of the dominant hydrogenation state of each species at each point inside the cloud. It is difficult to "catch" the effect of dehydrogenation in the emitted PAH spectra since, for any conditions, only PAHs within a narrow size range will be susceptible to dehydrogenation, being quickly stripped off of all H atoms (and may isomerize to cages or fullerenes). The 3 μm region is the most sensitive one towards the hydrogenation level of PAHs. Conclusions: Based on our results, we

  15. Microwave-assisted intramolecular dehydrogenative Diels-Alder reactions for the synthesis of functionalized naphthalenes/solvatochromic dyes.

    PubMed

    Kocsis, Laura S; Benedetti, Erica; Brummond, Kay M

    2013-04-01

    Functionalized naphthalenes have applications in a variety of research fields ranging from the synthesis of natural or biologically active molecules to the preparation of new organic dyes. Although numerous strategies have been reported to access naphthalene scaffolds, many procedures still present limitations in terms of incorporating functionality, which in turn narrows the range of available substrates. The development of versatile methods for direct access to substituted naphthalenes is therefore highly desirable. The Diels-Alder (DA) cycloaddition reaction is a powerful and attractive method for the formation of saturated and unsaturated ring systems from readily available starting materials. A new microwave-assisted intramolecular dehydrogenative DA reaction of styrenyl derivatives described herein generates a variety of functionalized cyclopenta[b]naphthalenes that could not be prepared using existing synthetic methods. When compared to conventional heating, microwave irradiation accelerates reaction rates, enhances yields, and limits the formation of undesired byproducts. The utility of this protocol is further demonstrated by the conversion of a DA cycloadduct into a novel solvatochromic fluorescent dye via a Buchwald-Hartwig palladium-catalyzed cross-coupling reaction. Fluorescence spectroscopy, as an informative and sensitive analytical technique, plays a key role in research fields including environmental science, medicine, pharmacology, and cellular biology. Access to a variety of new organic fluorophores provided by the microwave-assisted dehydrogenative DA reaction allows for further advancement in these fields.

  16. Microwave-assisted Intramolecular Dehydrogenative Diels-Alder Reactions for the Synthesis of Functionalized Naphthalenes/Solvatochromic Dyes

    PubMed Central

    Kocsis, Laura S.; Benedetti, Erica; Brummond, Kay M.

    2013-01-01

    Functionalized naphthalenes have applications in a variety of research fields ranging from the synthesis of natural or biologically active molecules to the preparation of new organic dyes. Although numerous strategies have been reported to access naphthalene scaffolds, many procedures still present limitations in terms of incorporating functionality, which in turn narrows the range of available substrates. The development of versatile methods for direct access to substituted naphthalenes is therefore highly desirable. The Diels-Alder (DA) cycloaddition reaction is a powerful and attractive method for the formation of saturated and unsaturated ring systems from readily available starting materials. A new microwave-assisted intramolecular dehydrogenative DA reaction of styrenyl derivatives described herein generates a variety of functionalized cyclopenta[b]naphthalenes that could not be prepared using existing synthetic methods. When compared to conventional heating, microwave irradiation accelerates reaction rates, enhances yields, and limits the formation of undesired byproducts. The utility of this protocol is further demonstrated by the conversion of a DA cycloadduct into a novel solvatochromic fluorescent dye via a Buchwald-Hartwig palladium-catalyzed cross-coupling reaction. Fluorescence spectroscopy, as an informative and sensitive analytical technique, plays a key role in research fields including environmental science, medicine, pharmacology, and cellular biology. Access to a variety of new organic fluorophores provided by the microwave-assisted dehydrogenative DA reaction allows for further advancement in these fields. PMID:23609566

  17. Thermal induced BCN nanosheets evolution and its usage as metal-free catalyst in ethylbenzene dehydrogenation

    NASA Astrophysics Data System (ADS)

    Wang, Liancheng; Wang, Conghui; Zhang, Zhenwei; Wu, Jianghong; Ding, Ruimin; Lv, Baoliang

    2017-11-01

    Compared with mushroomed progress in metal-free C-rich BCN catalysts, little is known about the BN-rich BCN or even BN ones. Its related study has drawn great interest recently but still in its infancy stage. In this study, three kinds of BCN nanosheets (NSs) with tuned surface carbon contents (5.5-14.3%), specific surface area (SSA, 82-290 m2/g) and morphologies (ultrathin nanosheets, triangular plates) were fabricated through a solid state reaction by simply adjusting the reaction temperature, and those effects on the ethylbenzene dehydrogenation performances were studied in CO2 atmosphere. The morphology evolution of BCN NSs from ultrathin nanosheets to the triangular plates was observed and control experiments were carried out. The BCN nanosheets show relatively strong interaction with CO2 and distinct CO2 absorption properties. The CO2 temperature programmed desorption also indicates that the desorption peaks of CO2 are above 400 °C, enabling them potential CO2 utilization catalysts. A weak association was found between the surface C contents and the catalytic performance as it normalized with SSA, and the B-O species could be taken as an active site in CO2 atmosphere. Though much progress still needed, it is convincing that the BCN catalyst could be a promising metal-free catalyst in dehydrogenation beyond carbocatalyst.

  18. Numerical study of influences of crosswind and additional steam on the flow field and temperature of propane non-premixed turbulence flame

    NASA Astrophysics Data System (ADS)

    Wusnah; Bindar, Y.; Yunardi; Nur, F. M.; Syam, A. M.

    2018-03-01

    This paper presents results the process of combustion propane using computational fluid dynamics (CFD) to simulate the turbulent non-premixed flame under the influences of crosswinds and the ratio of fuel (propane) to steam, S. Configuration, discretization and boundary conditions of the flame are described using GambitTM software and integrated with FluentTM software for calculations of flow and reactive fields. This work focuses on the influence of various crosswind speeds (0–10 m/s) and values of S (0.14–2.35) while the velocity of fuel issued from the nozzle was kept constant at 20 m/s. A turbulence model, k-ɛ standard and combustion model, Eddy Dissipation model were employed for the calculation of velocity and temperature fields, respectively. The results are displayed in the form of predictive terrain profile of the propane flame at different crosswind speeds. The results of the propane flame profile demonstrated that the crosswind significantly affect the structure velocity and position of the flame which was off-center moving towards the direction of crosswind, eventually affect the temperature along the flame. As the values of S is increasing, the flame contour temperature decreases, until the flame was extinguished at S equals to 2.35. The combustion efficiency for a variety of crosswind speeds decreases with increasing values of S.

  19. Time-resolved XAFS spectroscopic studies of B-H and N-H oxidative addition to transition metal catalysts relevant to hydrogen storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bitterwolf, Thomas E.

    2014-12-09

    Successful catalytic dehydrogenation of aminoborane, H 3NBH 3, prompted questions as to the potential role of N-H oxidative addition in the mechanisms of these processes. N-H oxidative addition reactions are rare, and in all cases appear to involve initial dative bonding to the metal by the amine lone pairs followed by transfer of a proton to the basic metal. Aminoborane and its trimethylborane derivative block this mechanism and, in principle, should permit authentic N-H oxidative attrition to occur. Extensive experimental work failed to confirm this hypothesis. In all cases either B-H complexation or oxidative addition of solvent C-H bonds dominatemore » the chemistry.« less

  20. Time-resolved method to distinguish protein/peptide oxidation during electrospray ionization mass spectrometry.

    PubMed

    Pei, Jiying; Hsu, Cheng-Chih; Yu, Kefu; Wang, Yinghui; Huang, Guangming

    2018-06-29

    Electrospray ionization mass spectrometry (ESI-MS) is one of the most prevalent techniques used to monitor protein/peptide oxidation induced by reactive oxygen species (ROSs). However, both corona discharge (CD) and electrochemistry (EC) can also lead to protein/peptide oxidation during ESI. Because the two types of oxidation occur almost simultaneously, determining the extent to which the two pathways contribute to protein/peptide oxidation is difficult. Herein, a time-resolved method was introduced to identify and differentiate CD- and EC-induced oxidation. Using this approach, we separated the instantaneous CD-induced oxidation from the hysteretic EC-induced oxidation, and the effects of the spray voltage and flow rate of the ESI source on both oxidation types were investigated with a homemade ESI source. For angiotensin II analogue (b-DRVYVHPF-y), the dehydrogenation and oxygenation species were the detected EC-induced oxidation products, while the oxygenation species were the major CD-induced oxidation products. This time-resolved approach was also applicable to a commercial HESI source, in which both CD and EC were responsible for hemoglobin and cytochrome c oxidation with upstream grounding while CD dominated the oxidation without upstream grounding. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. CH4 dehydrogenation on Cu(1 1 1), Cu@Cu(1 1 1), Rh@Cu(1 1 1) and RhCu(1 1 1) surfaces: A comparison studies of catalytic activity

    NASA Astrophysics Data System (ADS)

    Zhang, Riguang; Duan, Tian; Ling, Lixia; Wang, Baojun

    2015-06-01

    In the CVD growth of graphene, the reaction barriers of the dehydrogenation for hydrocarbon molecules directly decide the graphene CVD growth temperature. In this study, density functional theory method has been employed to comparatively probe into CH4 dehydrogenation on four types of Cu(1 1 1) surface, including the flat Cu(1 1 1) surface (labeled as Cu(1 1 1)) and the Cu(1 1 1) surface with one surface Cu atom substituted by one Rh atom (labeled as RhCu(1 1 1)), as well as the Cu(1 1 1) surface with one Cu or Rh adatom (labeled as Cu@Cu(1 1 1) and Rh@Cu(1 1 1), respectively). Our results show that the highest barrier of the whole CH4 dehydrogenation process is remarkably reduced from 448.7 and 418.4 kJ mol-1 on the flat Cu(1 1 1) and Cu@Cu(1 1 1) surfaces to 258.9 kJ mol-1 on RhCu(1 1 1) surface, and to 180.0 kJ mol-1 on Rh@Cu(1 1 1) surface, indicating that the adsorbed or substituted Rh atom on Cu catalyst can exhibit better catalytic activity for CH4 complete dehydrogenation; meanwhile, since the differences for the highest barrier between Cu@Cu(1 1 1) and Cu(1 1 1) surfaces are smaller, the catalytic behaviors of Cu@Cu(1 1 1) surface are very close to the flat Cu(1 1 1) surface, suggesting that the morphology of Cu substrate does not obviously affect the dehydrogenation of CH4, which accords with the reported experimental observations. As a result, the adsorbed or substituted Rh atom on Cu catalyst exhibit a better catalytic activity for CH4 dehydrogenation compared to the pure Cu catalyst, especially on Rh-adsorbed Cu catalyst, we can conclude that the potential of synthesizing high-quality graphene with the help of Rh on Cu foils may be carried out at relatively low temperatures. Meanwhile, the adsorbed Rh atom is the reaction active center, namely, the CVD growth can be controlled by manipulating the graphene nucleation position.

  2. The TiAl channel mechanism for enhanced (de)hydrogenation kinetics in Mg-based films

    NASA Astrophysics Data System (ADS)

    Hao, Shiqiang

    2010-09-01

    The transport properties of hydrogen in metal additives are very important for understanding the enhanced kinetic processes of (de)hydrogenation in metal hydrides. Based on the first-principles calculations, we found that the H2 dissociation rates on TiAl surfaces are very facile and the dissociated H diffusion in TiAl lattice is much faster than that in host material MgH2. We propose that the "catalytic" effect of additives Ti and Al is the H transport channel within the Mg and MgH2 host materials for the enhanced reaction kinetics.

  3. Evaluation of Propane Combustion Traps for the Collection of Phlebotomus papatasi (Scopoli) in Southern Israel

    DTIC Science & Technology

    2011-03-01

    traps for the consumer market , which utilize the combustion of propane to produce carbon dioxide (CO2) and other attractants. While these...Z. Abramsky, B.P. Kotler , R.S. Ostfeld, I.Yarom, and A.Warburg. 2003a. Anthropogenic disturbances enhance occurrence of cutaneous

  4. Heterogeneous electrolyte (YSZ-Al 2O 3) based direct oxidation solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Thokchom, J. S.; Xiao, H.; Rottmayer, M.; Reitz, T. L.; Kumar, B.

    Bilayers comprised of dense and porous YSZ-Al 2O 3 (20 wt%) composite were tape cast, processed, and then fabricated into working solid oxide fuel cells (SOFCs). The porous part of the bilayer was converted into anode for direct oxidation of fuels by infiltrating CeO 2 and Cu. The cathode side of the bilayer was coated with an interlayer [YSZ-Al 2O 3 (20 wt%)]: LSM (1:1) and LSM as cathode. Several button cells were evaluated under hydrogen/air and propane/air atmospheres in intermediate temperature range and their performance data were analyzed. For the first time the feasibility of using YSZ-Al 2O 3 material for fabricating working SOFCs with high open circuit voltage (OCV) and power density is demonstrated. AC impedance spectroscopy and scanning electron microscopy (SEM) techniques were used to characterize the membrane and cell.

  5. Evaluation of propane combustion traps for collection of Phlebotomus papatasi (Scopoli) in southern Israel.

    USDA-ARS?s Scientific Manuscript database

    Traps used for mosquitoes can possibly used to capture phlebotomine sand flies as well, but little testing has been done. Traps powered by propane could be extremely useful because most produce their own carbon dioxide (CO2), which can increase the number of sand flies captured. Scientists at the US...

  6. Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4: Calculated dehydrogenation enthalpy, including zero point energy, and the structure of the phonon spectra.

    PubMed

    Marashdeh, Ali; Frankcombe, Terry J

    2008-06-21

    The dehydrogenation enthalpies of Ca(AlH(4))(2), CaAlH(5), and CaH(2)+6LiBH(4) have been calculated using density functional theory calculations at the generalized gradient approximation level. Harmonic phonon zero point energy (ZPE) corrections have been included using Parlinski's direct method. The dehydrogenation of Ca(AlH(4))(2) is exothermic, indicating a metastable hydride. Calculations for CaAlH(5) including ZPE effects indicate that it is not stable enough for a hydrogen storage system operating near ambient conditions. The destabilized combination of LiBH(4) with CaH(2) is a promising system after ZPE-corrected enthalpy calculations. The calculations confirm that including ZPE effects in the harmonic approximation for the dehydrogenation of Ca(AlH(4))(2), CaAlH(5), and CaH(2)+6LiBH(4) has a significant effect on the calculated reaction enthalpy. The contribution of ZPE to the dehydrogenation enthalpies of Ca(AlH(4))(2) and CaAlH(5) calculated by the direct method phonon analysis was compared to that calculated by the frozen-phonon method. The crystal structure of CaAlH(5) is presented in the more useful standard setting of P2(1)c symmetry and the phonon density of states of CaAlH(5), significantly different to other common complex metal hydrides, is rationalized.

  7. Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4: Calculated dehydrogenation enthalpy, including zero point energy, and the structure of the phonon spectra

    NASA Astrophysics Data System (ADS)

    Marashdeh, Ali; Frankcombe, Terry J.

    2008-06-01

    The dehydrogenation enthalpies of Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4 have been calculated using density functional theory calculations at the generalized gradient approximation level. Harmonic phonon zero point energy (ZPE) corrections have been included using Parlinski's direct method. The dehydrogenation of Ca(AlH4)2 is exothermic, indicating a metastable hydride. Calculations for CaAlH5 including ZPE effects indicate that it is not stable enough for a hydrogen storage system operating near ambient conditions. The destabilized combination of LiBH4 with CaH2 is a promising system after ZPE-corrected enthalpy calculations. The calculations confirm that including ZPE effects in the harmonic approximation for the dehydrogenation of Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4 has a significant effect on the calculated reaction enthalpy. The contribution of ZPE to the dehydrogenation enthalpies of Ca(AlH4)2 and CaAlH5 calculated by the direct method phonon analysis was compared to that calculated by the frozen-phonon method. The crystal structure of CaAlH5 is presented in the more useful standard setting of P21/c symmetry and the phonon density of states of CaAlH5, significantly different to other common complex metal hydrides, is rationalized.

  8. Ethene adsorption and dehydrogenation on clean and oxygen precovered Ni(111) studied by high resolution x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Lorenz, M. P. A.; Fuhrmann, T.; Streber, R.; Bayer, A.; Bebensee, F.; Gotterbarm, K.; Kinne, M.; Tränkenschuh, B.; Zhu, J. F.; Papp, C.; Denecke, R.; Steinrück, H.-P.

    2010-07-01

    The adsorption and thermal evolution of ethene (ethylene) on clean and oxygen precovered Ni(111) was investigated with high resolution x-ray photoelectron spectroscopy using synchrotron radiation at BESSY II. The high resolution spectra allow to unequivocally identify the local environment of individual carbon atoms. Upon adsorption at 110 K, ethene adsorbs in a geometry, where the two carbon atoms within the intact ethene molecule occupy nonequivalent sites, most likely hollow and on top; this new result unambiguously solves an old puzzle concerning the adsorption geometry of ethene on Ni(111). On the oxygen precovered surface a different adsorption geometry is found with both carbon atoms occupying equivalent hollow sites. Upon heating ethene on the clean surface, we can confirm the dehydrogenation to ethine (acetylene), which adsorbs in a geometry, where both carbon atoms occupy equivalent sites. On the oxygen precovered surface dehydrogenation of ethene is completely suppressed. For the identification of the adsorbed species and the quantitative analysis the vibrational fine structure of the x-ray photoelectron spectra was analyzed in detail.

  9. Microbial oxidation of gaseous hydrocarbons: production of methylketones from corresponding n-alkanes by methane-utilizing bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, R.N.; Hou, C.T.; Laskin, A.I.

    Cell suspensions of methane-utilizing bacteria grown on methane oxidized n-alkanes (propane, butane, pentane, hexane) to their corresponding methylketones (acetone, 2-butanone, 2-pentanone, 2-hexanone). The product methylketones accumulated extracellularly. The rate of production of methylketones varied with the organism used for oxidation; however, the average rate of acetone, 2-butanone, 2-pentanone, and 2-hexanone production was 1.2, 1.0, 0.15, and 0.025 ..mu..mol/h per 5.0 mg of protein in cell suspensions. Primary alcohols and aldehydes were also detected in low amounts as products of n-alkane (propane and butane) oxidation, but were rapidly metabolized further by cell suspensions. The optimal conditions for in vivo methylketone formationmore » from n-alkanes were compared in Methylococcus capsulatus (Texas strain), Methylosinus sp. (CRL-15), and Methylobacterium sp. (CRL-26). The rate of acetone and 2-butanone production was linear for the first 60 min of incubation and directly increased with cell concentration up to 10 mg of protein per ml for all three cultures tested. The optimal temperatures for the production of acetone and 2-butanone were 35/sup 0/C for Methylosinus trichosporium sp. (CRL-15) and Methylobacterium sp. (CRL-26) and 40/sup 0/C for Methylococcus capsulatus (Texas). Metal-chelating agents inhibited the production of methylketones, suggesting the involvement of a metal-containing enzymatic system in the oxidation of n-alkanes to the corresponding methylketones. The soluble crude extracts derived from methane-utilizing bacteria contained an oxidized nicotinamide adenine dinucleotide-dependent dehydrogenase which catalyzed the oxidation of secondary alcohols.« less

  10. Phytochemical profile, antioxidant and antimicrobial activity of extracts obtained from erva-mate (Ilex paraguariensis) fruit using compressed propane and supercritical CO2.

    PubMed

    Fernandes, Ciro E F; Scapinello, Jaqueline; Bohn, Aline; Boligon, Aline A; Athayde, Margareth L; Magro, Jacir Dall; Palliga, Marshall; Oliveira, J Vladimir; Tres, Marcus V

    2017-01-01

    Traditionally, Ilex paraguariensis leaves are consumed in tea form or as typical drinks like mate and terere, while the fruits are discarded processing and has no commercial value. The aim of this work to evaluate phytochemical properties, total phenolic compounds, antioxidant and antimicrobial activity of extracts of Ilex paraguariensis fruits obtained from supercritical CO 2 and compressed propane extraction. The extraction with compressed propane yielded 2.72 wt%, whereas with supercritical CO 2 1.51 wt% was obtained. The compound extracted in larger amount by the two extraction solvents was caffeine, 163.28 and 54.17 mg/g by supercritical CO 2 and pressurized propane, respectively. The antioxidant activity was more pronounced for the supercritical CO 2 extract, with no difference found in terms of minimum inhibitory concentration for Staphylococcus aureus for the two extracts and better results observed for Escherichia coli when using supercritical CO 2 .

  11. Computational fluid dynamic on the temperature simulation of air preheat effect combustion in propane turbulent flame

    NASA Astrophysics Data System (ADS)

    Elwina; Yunardi; Bindar, Yazid

    2018-04-01

    this paper presents results obtained from the application of a computational fluid dynamics (CFD) code Fluent 6.3 to modelling of temperature in propane flames with and without air preheat. The study focuses to investigate the effect of air preheat temperature on the temperature of the flame. A standard k-ε model and Eddy Dissipation model are utilized to represent the flow field and combustion of the flame being investigated, respectively. The results of calculations are compared with experimental data of propane flame taken from literature. The results of the study show that a combination of the standard k-ε turbulence model and eddy dissipation model is capable of producing reasonable predictions of temperature, particularly in axial profile of all three flames. Both experimental works and numerical simulation showed that increasing the temperature of the combustion air significantly increases the flame temperature.

  12. Iron-catalyzed urea synthesis: dehydrogenative coupling of methanol and amines† †Electronic supplementary information (ESI) available: Experimental details, characterization data, and select NMR spectra. See DOI: 10.1039/c8sc00775f

    PubMed Central

    Lane, Elizabeth M.; Hazari, Nilay

    2018-01-01

    Substituted ureas have numerous applications but their synthesis typically requires the use of highly toxic starting materials. Herein we describe the first base-metal catalyst for the selective synthesis of symmetric ureas via the dehydrogenative coupling of methanol with primary amines. Using a pincer supported iron catalyst, a range of ureas was generated with isolated yields of up to 80% (corresponding to a catalytic turnover of up to 160) and with H2 as the sole byproduct. Mechanistic studies indicate a stepwise pathway beginning with methanol dehydrogenation to give formaldehyde, which is trapped by amine to afford a formamide. The formamide is then dehydrogenated to produce a transient isocyanate, which reacts with another equivalent of amine to form a urea. These mechanistic insights enabled the development of an iron-catalyzed method for the synthesis of unsymmetric ureas from amides and amines. PMID:29780531

  13. PhI(OAc)2-mediated one-pot oxidative decarboxylation and aromatization of tetrahydro-β-carbolines: synthesis of norharmane, harmane, eudistomin U and eudistomin I.

    PubMed

    Kamal, Ahmed; Tangella, Yellaiah; Manasa, Kesari Lakshmi; Sathish, Manda; Srinivasulu, Vunnam; Chetna, Jadala; Alarifi, Abdullah

    2015-08-28

    Iodobenzene diacetate was employed as a mild and efficient reagent for one-pot oxidative decarboxylation of tetrahydro-β-carboline acids and dehydrogenation of tetrahydro-β-carbolines to access the corresponding aromatic β-carbolines. To the best of our knowledge this is the first synthesis of β-carbolines via a one-pot oxidative decarboxylation at ambient temperature. The utility of this protocol has been demonstrated in the synthesis of β-carboline alkaloids norharmane (2o), harmane (2p), eudistomin U (9) and eudistomin I (12).

  14. Poly[4,4'-(propane-1,3-diyl)dipyridinium bis{tetraaquabis(μ2-5-carboxybenzene-1,2,4-tricarboxylato)bis[μ2-1,3-bis(4-pyridyl)propane]dicobalt(II)} pentahydrate].

    PubMed

    Atria, Ana María; Corsini, Gino; Garland, Maria Teresa; Baggio, Ricardo

    2011-11-01

    The title polymeric compound, {(C(13)H(16)N(2))[Co(C(10)H(3)O(8))(C(13)H(14)N(2))(H(2)O)(2)](2)·5H(2)O}(n), is an ionic structure comprising an anionic two-dimensional mesh characterized by a {[Co(Hbtc)(bpp)(H(2)O)(2)](-)}(2) motif [Hbtc is 5-carboxybenzene-1,2,4-tricarboxylate and bpp is 1,3-bis(4-pyridyl)propane], with interspersed 4,4'-(propane-1,3-diyl)dipyridinium cations, denoted (H(2)bpp)(2+), and water molecules providing the charge balance and structure stabilization. The reticular mesh consists of two independent types of [Co(H(2)O)(2)](2+) cationic nodes (lying on inversion centres), interconnected in the [101] direction by two independent sets of neutral bridging bpp ligands, both types of ligands being split by non-equivalent twofold axes. One set is formed by genuinely symmetric moieties, while those in the second set are only symmetric by disorder in the central propane bridge. These chains contain only one type of Co(II) centre and one type of bpp ligand; the metal cations therein are laterally bridged by Hbtc anions, thus forming transverse chains of alternating types of Co(II) cations. The elemental motif of the resulting grid is a highly distorted parallelogram, with metal-metal distances of 13.5242 (14) Å in the bpp direction and 9.105 (2) Å in the Hbtc direction, and a large internal angle of 138.42 (18)°. These two-dimensional structures have a profusion of hydrogen-bonding interactions with each other, either directly (with the aqua molecules as donors and the Hbtc anions as acceptors) or mediated by the unbound (H(2)bpp)(2+) cations and water molecules of hydration. These interactions generate a very complex hydrogen-bonding scheme involving all of the available N-H and O-H groups and which links these two-dimensional grids into a three-dimensional network.

  15. GO-Cu7S4 catalyzed ortho-aminomethylation of phenol derivatives with N,N-dimethylbenzylamines: site-selective oxidative CDC.

    PubMed

    Gupta, Sonu; Chandna, Nisha; Dubey, Pooja; Singh, Ajai K; Jain, Nidhi

    2018-06-21

    Copper chalcogenide nanoparticles (Cu7S4) supported on graphene oxide (GO) have been synthesized for the first time from Cu2S, and used as highly efficient heterogeneous catalysts for oxidative ortho-selective C-H aminomethylation of phenols with N,N-dimethylbenzylamines. The NPs (30-80 nm) have been characterized by HRTEM, SEM-EDX, PXRD, FTIR, Raman, ICP-AES and XPS analyses. The NP catalyzed sp2-sp3 cross dehydrogenative coupling (CDC) features a broad substrate scope, excellent functional group tolerance, high yields, use of an inexpensive and reusable copper catalyst, mild conditions, and no need for pre-functionalization of substrates.

  16. International comparison CCQM-K111.1—propane in nitrogen

    NASA Astrophysics Data System (ADS)

    van der Veen, Adriaan M. H.; Wouter van der Hout, J.; Ziel, Paul R.; Jozela, Mudalo; Tshilongo, James; Ntsasa, Napo G.; Botha, Angelique

    2017-01-01

    This key comparison aims to assess the core capabilities of the participants in gas analysis. Such competences include, among others, the capability of preparing Primary Standard gas Mixtures (PSMs), performing the necessary purity analysis on the materials used in the gas mixture preparation, the verification of the composition of newly prepared PSMs against existing ones, and the capability of calibrating the composition of a gas mixture. According to the Strategy for Key Comparisons of the Gas Analysis Working Group, this subsequent key comparison is classified as a track B key comparison, which means that the results of this key comparison can be used to underpin calibration and measurement capabilities for propane under the default scheme. The artefact was a binary mixture of propane in nitrogen at a nominal amount-of-substance fraction level of 1000 μmol/mol. The values and uncertainties from the gravimetric gas mixture preparation were used as key comparison reference values (KCRVs). Each transfer standard had its own KCRV. The result of the participating laboratory is consistent with the key comparison reference value within the respective expanded uncertainties and deviates less than 0.1 %. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  17. Flavin-mediated dual oxidation controls an enzymatic Favorskii-type rearrangement

    PubMed Central

    Louie, Gordon; Noel, Joseph P.; Baran, Phil S.; Palfey, Bruce; Moore, Bradley S.

    2013-01-01

    Flavoproteins catalyze a diversity of fundamental redox reactions and are one of the most studied enzyme families1,2. As monooxygenases, they are universally thought to control oxygenation by means of a peroxyflavin species that transfers a single atom of molecular oxygen to an organic substrate1,3,4. Here we report that the bacterial flavoenzyme EncM5,6 catalyzes the peroxyflavin-independent oxygenation-dehydrogenation dual oxidation of a highly reactive poly(β-carbonyl). The crystal structure of EncM with bound substrate mimics coupled with isotope labeling studies reveal previously unknown flavin redox biochemistry. We show that EncM maintains an unanticipated stable flavin oxygenating species, proposed to be a flavin-N5-oxide, to promote substrate oxidation and trigger a rare Favorskii-type rearrangement that is central to the biosynthesis of the antibiotic enterocin. This work provides new insight into the fine-tuning of the flavin cofactor in offsetting the innate reactivity of a polyketide substrate to direct its efficient electrocyclization. PMID:24162851

  18. Ammonia removal in electrochemical oxidation: mechanism and pseudo-kinetics.

    PubMed

    Li, Liang; Liu, Yan

    2009-01-30

    This paper investigated the mechanism and pseudo-kinetics for removal of ammonia by electrochemical oxidation with RuO(2)/Ti anode using batch tests. The results show that the ammonia oxidation rates resulted from direct oxidation at electrode-liquid interfaces of the anode by stepwise dehydrogenation, and from indirect oxidation by hydroxyl radicals were so slow that their contribution to ammonia removal was negligible under the condition with Cl(-). The oxidation rates of ammonia ranged from 1.0 to 12.3 mg N L(-1)h(-1) and efficiency reached nearly 100%, primarily due to the indirect oxidation of HOCl, and followed pseudo zero-order kinetics in electrochemical oxidation with Cl(-). About 88% ammonia was removed from the solution. The removed one was subsequently found in the form of N(2) in the produced gas. The rate at which Cl(-) lost electrons at the anode was a major factor in the overall ammonia oxidation. Current density and Cl(-) concentration affected the constant of the pseudo zero-order kinetics, expressed by k=0.0024[Cl(-)]xj. The ammonia was reduced to less than 0.5 mg N L(-1) after 2h of electrochemical oxidation for the effluent from aerobic or anaerobic reactors which treated municipal wastewater. This result was in line with the strict discharge requirements.

  19. Iodine-Mediated Intramolecular Dehydrogenative Coupling: Synthesis of N-Alkylindolo[3,2-c]- and -[2,3-c]quinoline Iodides.

    PubMed

    Volvoikar, Prajesh S; Tilve, Santosh G

    2016-03-04

    An I2/TBHP-mediated intramolecular dehydrogenative coupling reaction is developed for the synthesis of a library of medicinally important 5,11-dialkylindolo[3,2-c]quinoline salts and 5,7-dimethylindolo[2,3-c]quinoline salts. The annulation reaction is followed by aromatization to yield tetracycles in good yield. This protocol is also demonstrated for the synthesis of the naturally occurring isocryptolepine in salt form.

  20. Helium broadened propane absorption cross sections in the far-IR

    NASA Astrophysics Data System (ADS)

    Wong, A.; Billinghurst, B.; Bernath, P. F.

    2017-09-01

    Infrared absorption spectra for pure and He broadened propane have been recorded in the far-IR region (650-1300 cm-1) at the Canadian Light Source (CLS) facility using either the synchrotron or internal glowbar source depending on the required resolution. The measurements were made for 4 temperatures in the range 202-292 K and for 3 pressures of He broadening gas up to 100 Torr. Infrared absorption cross sections are derived from the spectra and the integrated cross sections are within 10 % of the corresponding values from the Pacific Northwest National Laboratory (PNNL) for all temperatures and pressures.

  1. Novel dihydropyridine thioglycosides and their corresponding dehydrogenated forms as potent anti-hepatocellular carcinoma agents.

    PubMed

    Elgemeie, Galal H; El-Naggar, Dina H

    2018-05-03

    A novel method for preparation of a new class of dihydropyridine thioglycosides and their corresponding dehydrogenated forms, via reaction of piperidinium salts of dihydropyridinethiones with 2,3,4,6-tetra-O-acetyl-α-D-gluco- and galactopyranosyl bromides has been studied. The evaluation of antiproliferative activity against HepG-2 cell lines (liver carcinoma cell lines) of the dihydropyridine thioglycosides and pyridine thioglycosides revealed that many of the thioglycosides have interesting antitumor activities specifically 5c, 5g, 5l, 5o, 5p, 7a, 7i, 7p, 8b, 8f, 8s, and 8v.

  2. In situ formed catalytically active ruthenium nanocatalyst in room temperature dehydrogenation/dehydrocoupling of ammonia-borane from Ru(cod)(cot) precatalyst.

    PubMed

    Zahmakiran, Mehmet; Ayvalı, Tuğçe; Philippot, Karine

    2012-03-20

    The development of simply prepared and effective catalytic materials for dehydrocoupling/dehydrogenation of ammonia-borane (AB; NH(3)BH(3)) under mild conditions remains a challenge in the field of hydrogen economy and material science. Reported herein is the discovery of in situ generated ruthenium nanocatalyst as a new catalytic system for this important reaction. They are formed in situ during the dehydrogenation of AB in THF at 25 °C in the absence of any stabilizing agent starting with homogeneous Ru(cod)(cot) precatalyst (cod = 1,5-η(2)-cyclooctadiene; cot = 1,3,5-η(3)-cyclooctatriene). The preliminary characterization of the reaction solutions and the products was done by using ICP-OES, ATR-IR, TEM, XPS, ZC-TEM, GC, EA, and (11)B, (15)N, and (1)H NMR, which reveal that ruthenium nanocatalyst is generated in situ during the dehydrogenation of AB from homogeneous Ru(cod)(cot) precatalyst and B-N polymers formed at the initial stage of the catalytic reaction take part in the stabilization of this ruthenium nanocatalyst. Moreover, following the recently updated approach (Bayram, E.; et al. J. Am. Chem. Soc.2011, 133, 18889) by performing Hg(0), CS(2) poisoning experiments, nanofiltration, time-dependent TEM analyses, and kinetic investigation of active catalyst formation to distinguish single metal or in the present case subnanometer Ru(n) cluster-based catalysis from polymetallic Ru(0)(n) nanoparticle catalysis reveals that in situ formed Ru(n) clusters (not Ru(0)(n) nanoparticles) are kinetically dominant catalytically active species in our catalytic system. The resulting ruthenium catalyst provides 120 total turnovers over 5 h with an initial turnover frequency (TOF) value of 35 h(-1) at room temperature with the generation of more than 1.0 equiv H(2) at the complete conversion of AB to polyaminoborane (PAB; [NH(2)BH(2)](n)) and polyborazylene (PB; [NHBH](n)) units.

  3. Computational Design of Cobalt Catalysts for Hydrogenation of Carbon Dioxide and Dehydrogenation of Formic Acid.

    PubMed

    Ge, Hongyu; Jing, Yuanyuan; Yang, Xinzheng

    2016-12-05

    A series of cobalt complexes with acylmethylpyridinol and aliphatic PNP pincer ligands are proposed based on the active site structure of [Fe]-hydrogenase. Density functional theory calculations indicate that the total free energy barriers of the hydrogenation of CO 2 and dehydrogenation of formic acid catalyzed by these Co complexes are as low as 23.1 kcal/mol in water. The acylmethylpyridinol ligand plays a significant role in the cleavage of H 2 by forming a strong Co-H δ- ···H δ+ -O dihydrogen bond in a fashion of frustrated Lewis pairs.

  4. Palladium-Catalyzed Dehydrogenative Coupling: An Efficient Synthetic Strategy for the Construction of the Quinoline Core

    PubMed Central

    Carral-Menoyo, Asier; Ortiz-de-Elguea, Verónica; Martinez-Nunes, Mikel; Sotomayor, Nuria; Lete, Esther

    2017-01-01

    Palladium-catalyzed dehydrogenative coupling is an efficient synthetic strategy for the construction of quinoline scaffolds, a privileged structure and prevalent motif in many natural and biologically active products, in particular in marine alkaloids. Thus, quinolines and 1,2-dihydroquinolines can be selectively obtained in moderate-to-good yields via intramolecular C–H alkenylation reactions, by choosing the reaction conditions. This methodology provides a direct method for the construction of this type of quinoline through an efficient and atom economical procedure, and constitutes significant advance over the existing procedures that require preactivated reaction partners. PMID:28867803

  5. Development of a 100 nmol mol(-1) propane-in-air SRM for automobile-exhaust testing for new low-emission requirements.

    PubMed

    Rhoderick, George C

    2007-04-01

    New US federal low-level automobile emission requirements, for example zero-level-emission vehicle (ZLEV), for hydrocarbons and other species, have resulted in the need by manufacturers for new certified reference materials. The new emission requirement for hydrocarbons requires the use, by automobile manufacturing testing facilities, of a 100 nmol mol(-1) propane in air gas standard. Emission-measurement instruments are required, by federal law, to be calibrated with National Institute of Standards and Technology (NIST) traceable reference materials. Because a NIST standard reference material (SRM) containing 100 nmol mol(-1) propane was not available, the US Environmental Protection Agency (EPA) and the Automobile Industry/Government Emissions Research Consortium (AIGER) requested that NIST develop such an SRM. A cylinder lot of 30 gas mixtures containing 100 nmol mol(-1) propane in air was prepared in 6-L aluminium gas cylinders by a specialty gas company and delivered to the Gas Metrology Group at NIST. Another mixture, contained in a 30-L aluminium cylinder and included in the lot, was used as a lot standard (LS). Using gas chromatography with flame-ionization detection all 30 samples were compared to the LS to obtain the average of six peak-area ratios to the LS for each sample with standard deviations of <0.31%. The average sample-to-LS ratio determinations resulted in a range of 0.9828 to 0.9888, a spread of 0.0060, which corresponds to a relative standard deviation of 0.15% of the average for all 30 samples. NIST developed its first set of five propane in air primary gravimetric standards covering a concentration range 91 to 103 nmol mol(-1) with relative uncertainties of 0.15%. This new suite of propane gravimetric standards was used to analyze and assign a concentration value to the SRM LS. On the basis of these data each SRM sample was individually certified, furnishing the desired relative expanded uncertainty of +/-0.5%. Because automobile companies

  6. Bioinspired Aerobic Oxidation of Secondary Amines and Nitrogen Heterocycles with a Bifunctional Quinone Catalyst

    PubMed Central

    Wendlandt, Alison E.; Stahl, Shannon S.

    2014-01-01

    Copper amine oxidases are a family of enzymes with quinone cofactors that oxidize primary amines to aldehydes. The native mechanism proceeds via an iminoquinone intermediate that promotes high selectivity for reactions with primary amines, thereby constraining the scope of potential biomimetic synthetic applications. Here, we report a novel bioinspired quinone catalyst system, consisting of 1,10-phenanthroline-5,6-dione/ZnI2, that bypasses these constraints via an abiological pathway involving a hemiaminal intermediate. Efficient aerobic dehydrogenation of non-native secondary amine substrates, including pharmaceutically relevant nitrogen heterocycles, is demonstrated. The ZnI2 cocatalyst activates the quinone toward amine oxidation and provides a source of iodide, which plays an important redox-mediator role to promote aerobic catalytic turnover. These findings provide a valuable foundation for broader development of aerobic oxidation reactions employing quinone-based catalysts. PMID:24328193

  7. Bioinspired aerobic oxidation of secondary amines and nitrogen heterocycles with a bifunctional quinone catalyst.

    PubMed

    Wendlandt, Alison E; Stahl, Shannon S

    2014-01-08

    Copper amine oxidases are a family of enzymes with quinone cofactors that oxidize primary amines to aldehydes. The native mechanism proceeds via an iminoquinone intermediate that promotes high selectivity for reactions with primary amines, thereby constraining the scope of potential biomimetic synthetic applications. Here we report a novel bioinspired quinone catalyst system consisting of 1,10-phenanthroline-5,6-dione/ZnI2 that bypasses these constraints via an abiological pathway involving a hemiaminal intermediate. Efficient aerobic dehydrogenation of non-native secondary amine substrates, including pharmaceutically relevant nitrogen heterocycles, is demonstrated. The ZnI2 cocatalyst activates the quinone toward amine oxidation and provides a source of iodide, which plays an important redox-mediator role to promote aerobic catalytic turnover. These findings provide a valuable foundation for broader development of aerobic oxidation reactions employing quinone-based catalysts.

  8. Gas-phase advanced oxidation for effective, efficient in situ control of pollution.

    PubMed

    Johnson, Matthew S; Nilsson, Elna J K; Svensson, Erik A; Langer, Sarka

    2014-01-01

    In this article, gas-phase advanced oxidation, a new method for pollution control building on the photo-oxidation and particle formation chemistry occurring in the atmosphere, is introduced and characterized. The process uses ozone and UV-C light to produce in situ radicals to oxidize pollution, generating particles that are removed by a filter; ozone is removed using a MnO2 honeycomb catalyst. This combination of in situ processes removes a wide range of pollutants with a comparatively low specific energy input. Two proof-of-concept devices were built to test and optimize the process. The laboratory prototype was built of standard ventilation duct and could treat up to 850 m(3)/h. A portable continuous-flow prototype built in an aluminum flight case was able to treat 46 m(3)/h. Removal efficiencies of >95% were observed for propane, cyclohexane, benzene, isoprene, aerosol particle mass, and ozone for concentrations in the range of 0.4-6 ppm and exposure times up to 0.5 min. The laboratory prototype generated a OH(•) concentration derived from propane reaction of (2.5 ± 0.3) × 10(10) cm(-3) at a specific energy input of 3 kJ/m(3), and the portable device generated (4.6 ± 0.4) × 10(9) cm(-3) at 10 kJ/m(3). Based on these results, in situ gas-phase advanced oxidation is a viable control strategy for most volatile organic compounds, specifically those with a OH(•) reaction rate higher than ca. 5 × 10(-13) cm(3)/s. Gas-phase advanced oxidation is able to remove compounds that react with OH and to control ozone and total particulate mass. Secondary pollution including formaldehyde and ultrafine particles might be generated, depending on the composition of the primary pollution.

  9. Screening based approach and dehydrogenation kinetics for MgH2: Guide to find suitable dopant using first-principles approach.

    PubMed

    Kumar, E Mathan; Rajkamal, A; Thapa, Ranjit

    2017-11-14

    First-principles based calculations are performed to investigate the dehydrogenation kinetics considering doping at various layers of MgH 2 (110) surface. Doping at first and second layer of MgH 2 (110) has a significant role in lowering the H 2 desorption (from surface) barrier energy, whereas the doping at third layer has no impact on the barrier energy. Molecular dynamics calculations are also performed to check the bonding strength, clusterization, and system stability. We study in details about the influence of doping on dehydrogenation, considering the screening factors such as formation enthalpy, bulk modulus, and gravimetric density. Screening based approach assist in finding Al and Sc as the best possible dopant in lowering of desorption temperature, while preserving similar gravimetric density and Bulk modulus as of pure MgH 2 system. The electron localization function plot and population analysis illustrate that the bond between Dopant-Hydrogen is mainly covalent, which weaken the Mg-Hydrogen bonds. Overall we observed that Al as dopant is suitable and surface doping can help in lowering the desorption temperature. So layer dependent doping studies can help to find the best possible reversible hydride based hydrogen storage materials.

  10. Cu3(BTC)2 catalyzed dehydrogenative coupling of dimethylphenylsilane with phenol and homocoupling of dimethylphenylsilane to disiloxane.

    PubMed

    Anbu, Nagaraj; Dhakshinamoorthy, Amarajothi

    2017-03-15

    Cu 3 (BTC) 2 (BTC: 1,3,5-benzenetricarboxylic acid) showed to be an efficient and reusable heterogeneous solid catalyst for the formation of SiO bond through dehydrogenative coupling of dimethylphenylsilane (1) with phenol under mild reaction conditions. It is observed that Fe(BTC), MIL-101(Cr) and UiO-66(Zr) are not able to promote this cross coupling between 1 and phenol. Cu 3 (BTC) 2 exhibits higher stability and activity compared to other MOFs studied here. Furthermore, Cu 3 (BTC) 2 is reused for three consecutive cycles with a slight decay in its activity. Comparison of the powder XRD patterns of the fresh with three times used Cu 3 (BTC) 2 showed no significant difference in the crystalline structure, thus, indicating the catalyst stability under the optimized reaction conditions. Furthermore, EPR, FT-IR and SEM images of the fresh and reused Cu 3 (BTC) 2 did not show any change in the oxidation state of copper or structural morphology. Also, no leaching of copper is detected under optimized reaction conditions. In addition, Cu 3 (BTC) 2 showed higher activity compared to Pt, Pd, Au and Cu supported on active carbon as heterogeneous catalysts in the synthesis of disiloxane from 1 through SiH activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Gadolinium nanoparticle based switchable mirrors: quenching of hydrogenation-dehydrogenation hysteresis.

    PubMed

    Aruna, I; Mehta, B R; Malhotra, L K

    2007-06-01

    A continuous and reversible 'structural, optical, and electronic' transition between the reflecting metallic dihydride and transparent semiconducting trihydride states observed in rare earth metals on hydrogenation make these materials and their hydrides suitable for switchable mirror, sensing, and other technological applications. Recently Pd capped Gd nanoparticle based 'new generation' switchable mirrors have been fabricated with extended color neutrality, better optical contrast, and faster kinetics in comparison to the polycrystalline, epitaxial, alloy, and multilayer films. The present report aims at investigating the effect of nanoparticle nature on the hydrogenation-dehydrogenation hysteresis in switchable mirrors by carrying out in situ measurement of optical transmittance and electrode potentials during electrochemical hydrogen loading-deloading of Gd nanoparticle samples. Interestingly, Gd nanoparticle samples were observed to exhibit quenched hysteresis. The quenching of hysteresis in hydrogen-induced properties has been attributed to the absence of structural transition upon hydrogenation, reduction in topographical interlocking of the grains and elimination of lateral clamping of the slack nanoparticle layer to the substrate.

  12. Ethanol dehydrogenation on copper catalysts with ytterbium stabilized tetragonal ZrO2 support

    NASA Astrophysics Data System (ADS)

    Chuklina, S. G.; Pylinina, A. I.; Podzorova, L. I.; Mikhailina, N. A.; Mikhalenko, I. I.

    2016-12-01

    The physicochemical and catalytic properties of Cu-containing crystalline zirconia, obtained via sol-gel synthesis in the presence of Yb3+ ions and polyvinylpyrrolidone, are studied. DTG/DSC, TEM, XRD and BET methods are used to analyze the crystallization, texture, phase uniformity, surface and porosity of ZrO2 nanopowders. It is shown that increasing the copper content (1, 3, and 5 wt % from ZrO2) raises the dehydrogenation activity in the temperature range of 100-400°C and lowers the activation energy of acetaldehyde formation. It is found that the activity of all Cu/ t-ZrO2 catalysts grows under the effects of the reaction medium, due to the migration and redispersion of copper.

  13. Supercritical convection, critical heat flux, and coking characteristics of propane

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.; Gross, R. S.; Boyd, W. C.

    1984-01-01

    The heat transfer characteristics of propane at subcritical and supercritical pressure were experimentally evaluated using electrically heated Monel K-500 tubes. A design correlation for supercritical heat transfer coefficient was established using the approach previously applied to supercritical oxygen. Flow oscillations were observed and the onset of these oscillations at supercritical pressures was correlated with wall-to-bulk temperature ratio and velocity. The critical heat flux measured at subcritical pressure was correlated with the product of velocity and subcooling. Long duration tests at fixed heat flux conditions were conducted to evaluate coking on the coolant side tube wall and coking rates comparable to RP-1 were observed.

  14. 41 CFR 102-74.280 - Are privately owned vehicles converted for propane carburetion permitted in underground parking...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Parking... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Are privately owned vehicles converted for propane carburetion permitted in underground parking facilities? 102-74.280 Section...

  15. Update from the Analysis of High Resolution Propane Spectra and the Interpretation of Titan's Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Klavans, V.; Nixon, C.; Hewagama, T.; Jennings, D. E.

    2012-01-01

    Titan has an extremely thick atmosphere dominated by nitrogen, but includes a range of trace species such as hydrocarbons and nitriles. One such hydrocarbon is propane (C3H8). Propane has 21 active IR bands covering broad regions of the mid-infrared. Therefore, its ubiquitous signature may potentially mask weaker signatures of other undetected species with important roles in Titan's chemistry. Cassini's Composite Infrared Spectrometer (CIRS) observations of Titan's atmosphere hint at the presence of such molecules. Unfortunately, C3H8 line atlases for the vibration bands V(sub 8), V(sub 21), V(sub 20), and V(sub 7) (869, 922, 1054, and 1157 per centimeter, respectively) are not currently available for subtracting the C3H8 signal to reveal, or constrain, the signature of underlying chemical species. Using spectra previously obtained by Jennings, D. E., et al. at the McMath-Pierce FTIR at Kitt Peak, AZ, as the source and automated analysis utilities developed for this application, we are compiling an atlas of spectroscopic parameters for propane that characterize the ro-vibrational transitions in the above bands. In this paper, we will discuss our efforts for inspecting and fitting the aforementioned bands, present updated results for spectroscopic parameters including absolute line intensities and transition frequencies in HITRAN and GEISA formats, and show how these optical constants will be used in searching for other trace chemical species in Titan's atmosphere. Our line atlas for the V(sub 21) band contains a total number of 2971 lines. The band integrated strength calculated for the V(sub 21) band is 1.003 per centimeter per (centimeter-atm).

  16. Mechanistic insights into iron catalyzed dehydrogenation of formic acid: β-hydride elimination vs. direct hydride transfer.

    PubMed

    Yang, Xinzheng

    2013-09-07

    Density functional theory calculations reveal a complete reaction mechanism with detailed energy profiles and transition state structures for the dehydrogenation of formic acid catalyzed by an iron complex, [P(CH2CH2PPh2)3FeH](+). In the cationic reaction pathway, a β-hydride elimination process is confirmed to be the rate-determining step in this catalytic reaction. A potential reaction pathway starting with a direct hydride transfer from HCOO(-) to Fe is found to be possible, but slightly less favorable than the catalytic cycle with a β-hydride elimination step.

  17. Cool Flames in Propane-Oxygen Premixtures at Low and Intermediate Temperatures at Reduced-Gravity

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Foster, Michael; Karabacak, Devrez

    2003-01-01

    The Cool Flame Experiment aims to address the role of diffusive transport on the structure and the stability of gas-phase, non-isothermal, hydrocarbon oxidation reactions, cool flames and auto-ignition fronts in an unstirred, static reactor. These reactions cannot be studied on Earth where natural convection due to self-heating during the course of slow reaction dominates diffusive transport and produces spatio-temporal variations in the thermal and thus species concentration profiles. On Earth, reactions with associated Rayleigh numbers (Ra) less than the critical Ra for onset of convection (Ra(sub cr) approx. 600) cannot be achieved in laboratory-scale vessels for conditions representative of nearly all low-temperature reactions. In fact, the Ra at 1g ranges from 10(exp 4) - 10(exp 5) (or larger), while at reduced-gravity, these values can be reduced two to six orders of magnitude (below Ra(sub cr)), depending on the reduced-gravity test facility. Currently, laboratory (1g) and NASA s KC-135 reduced-gravity (g) aircraft studies are being conducted in parallel with the development of a detailed chemical kinetic model that includes thermal and species diffusion. Select experiments have also been conducted at partial gravity (Martian, 0.3gearth) aboard the KC-135 aircraft. This paper discusses these preliminary results for propane-oxygen premixtures in the low to intermediate temperature range (310- 350 C) at reduced-gravity.

  18. Frustrated Lewis pairs beyond the main group: cationic zirconocene-phosphinoaryloxide complexes and their application in catalytic dehydrogenation of amine boranes.

    PubMed

    Chapman, Andy M; Haddow, Mairi F; Wass, Duncan F

    2011-06-15

    The cationic zirconocene-phosphinoaryloxide complexes [Cp(2)ZrOC(6)H(4)P(t-Bu)(2)][B(C(6)F(5))(4)] (3) and [Cp*(2)ZrOC(6)H(4)P(t-Bu)(2)][B(C(6)F(5))(4)] (4) were synthesized by the reaction of Cp(2)ZrMe(2) or Cp*(2)ZrMe(2) with 2-(diphenylphosphino)phenol followed by protonation with [2,6-di-tert-butylpyridinium][B(C(6)F(5))(4)]. Compound 3 exhibits a Zr-P bond, whereas the bulkier Cp* derivative 4 was isolated as a chlorobenzene adduct without this Zr-P interaction. These compounds can be described as transition-metal-containing versions of linked frustrated Lewis pairs (FLPs), and treatment of 4 with H(2) under mild conditions cleaved H(2) in a fashion analogous to that for main-group FLPs. Their reactivity in amine borane dehydrogenation also mimics that of main-group FLPs, and they dehydrogenate a range of amine borane adducts. However, in contrast to main-group FLPs, 3 and 4 achieve this transformation in a catalytic rather than stoichiometric sense, with rates superior to those for previous high-valent catalysts. © 2011 American Chemical Society

  19. Multiple Acyl-CoA Dehydrogenation Deficiency (Glutaric Aciduria Type II) with a Novel Mutation of Electron Transfer Flavoprotein-Dehydrogenase in a Cat.

    PubMed

    Wakitani, Shoichi; Torisu, Shidow; Yoshino, Taiki; Hattanda, Kazuhisa; Yamato, Osamu; Tasaki, Ryuji; Fujita, Haruo; Nishino, Koichiro

    2014-01-01

    Multiple acyl-CoA dehydrogenation deficiency (MADD; also known as glutaric aciduria type II) is a human autosomal recessive disease classified as one of the mitochondrial fatty-acid oxidation disorders. MADD is caused by a defect in the electron transfer flavoprotein (ETF) or ETF dehydrogenase (ETFDH) molecule, but as yet, inherited MADD has not been reported in animals. Here we present the first report of MADD in a cat. The affected animal presented with symptoms characteristic of MADD including hypoglycemia, hyperammonemia, vomiting, diagnostic organic aciduria, and accumulation of medium- and long-chain fatty acids in plasma. Treatment with riboflavin and L-carnitine ameliorated the symptoms. To detect the gene mutation responsible for MADD in this case, we determined the complete cDNA sequences of feline ETFα, ETFβ, and ETFDH. Finally, we identified the feline patient-specific mutation, c.692T>G (p.F231C) in ETFDH. The affected animal only carries mutant alleles of ETFDH. p.F231 in feline ETFDH is completely conserved in eukaryotes, and is located on the apical surface of ETFDH, receiving electrons from ETF. This study thus identified the mutation strongly suspected to have been the cause of MADD in this cat.

  20. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L

    1952-01-01

    Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.

  1. Rotational reorientation dynamics of Aerosol-OT reverse micelles formed in near-critical propane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heitz, M.P.; Bright, F.V.

    1996-06-01

    The rotational reorientation kinetics of two fluorescent solutes (rhodamine 6G, R6G, and rhodamine 101, R101) have been determined in sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol-OT, AOT) reverse micelles formed in liquid and near-critical propane. We show that the amount of water loading ([water]/[AOT], R), continuous phase density, and temperature all influence the solute rotational dynamics. In all cases, the decay of anisotropy data (i.e., frequency-dependent differential polarized phase angle and polarized modulation ratio) are well described by a bi-exponential decay law. We find that the faster rotational correlation times are similar to but slightly less than the values predicted for an individualmore » AOT reverse micelle rotating in propane. The recovered rotational correlation times range from 200 to 500 ps depending on experimental conditions. This faster rotational process is explained in terms of lateral diffusion of the fluorophore along the water/headgroup interfacial region within the reverse micelle. The recovered values for the slower rotational correlation times range from 7 to 18 ns. These larger rotational reorientation times are assigned to varying micelle-micelle (i.e., tail-tail) interactions in the low-density, highly compressible fluid region. We also quantify the contribution of the reverse micellar {open_quotes}aggregate{close_quotes} to the total decay of anisotropy. {copyright} {ital 1996} {ital Society for Applied Spectroscopy}« less

  2. In-situ catalyzation approach for enhancing the hydrogenation/dehydrogenation kinetics of MgH2 powders with Ni particles

    PubMed Central

    El-Eskandarany, M. Sherif; Shaban, Ehab; Ali, Naser; Aldakheel, Fahad; Alkandary, Abdullah

    2016-01-01

    One practical solution for utilizing hydrogen in vehicles with proton-exchange fuel cells membranes is storing hydrogen in metal hydrides nanocrystalline powders. According to its high hydrogen capacity and low cost of production, magnesium hydride (MgH2) is a desired hydrogen storage system. Its slow hydrogenation/dehydrogenation kinetics and high thermal stability are the major barriers restricting its usage in real applications. Amongst the several methods used for enhancing the kinetics behaviors of MgH2 powders, mechanically milling the powders with one or more catalyst species has shown obvious advantages. Here we are proposing a new approach for gradual doping MgH2 powders with Ni particles upon ball milling the powders with Ni-balls milling media. This proposed is-situ method showed mutually beneficial for overcoming the agglomeration of catalysts and the formation of undesired Mg2NiH4 phase. Moreover, the decomposition temperature and the corresponding activation energy showed low values of 218 °C and 75 kJ/mol, respectively. The hydrogenation/dehydrogenation kinetics examined at 275 °C of the powders milled for 25 h took place within 2.5 min and 8 min, respectively. These powders containing 5.5 wt.% Ni performed 100-continuous cycle-life time of hydrogen charging/discharging at 275 °C within 56 h without failure or degradation. PMID:27849033

  3. In-situ catalyzation approach for enhancing the hydrogenation/dehydrogenation kinetics of MgH2 powders with Ni particles

    NASA Astrophysics Data System (ADS)

    El-Eskandarany, M. Sherif; Shaban, Ehab; Ali, Naser; Aldakheel, Fahad; Alkandary, Abdullah

    2016-11-01

    One practical solution for utilizing hydrogen in vehicles with proton-exchange fuel cells membranes is storing hydrogen in metal hydrides nanocrystalline powders. According to its high hydrogen capacity and low cost of production, magnesium hydride (MgH2) is a desired hydrogen storage system. Its slow hydrogenation/dehydrogenation kinetics and high thermal stability are the major barriers restricting its usage in real applications. Amongst the several methods used for enhancing the kinetics behaviors of MgH2 powders, mechanically milling the powders with one or more catalyst species has shown obvious advantages. Here we are proposing a new approach for gradual doping MgH2 powders with Ni particles upon ball milling the powders with Ni-balls milling media. This proposed is-situ method showed mutually beneficial for overcoming the agglomeration of catalysts and the formation of undesired Mg2NiH4 phase. Moreover, the decomposition temperature and the corresponding activation energy showed low values of 218 °C and 75 kJ/mol, respectively. The hydrogenation/dehydrogenation kinetics examined at 275 °C of the powders milled for 25 h took place within 2.5 min and 8 min, respectively. These powders containing 5.5 wt.% Ni performed 100-continuous cycle-life time of hydrogen charging/discharging at 275 °C within 56 h without failure or degradation.

  4. Solvent-free cross-dehydrogenative coupling reactions under high speed ball-milling conditions applied to the synthesis of functionalized tetrahydroisoquinolines.

    PubMed

    Su, Weike; Yu, Jingbo; Li, Zhenhua; Jiang, Zhijiang

    2011-11-04

    Solvent-free reaction using a high-speed ball milling technique has been first applied to cross-dehydrogenative coupling (CDC) reactions between tetrahydroisoquinolines and three types of pronucleophiles such as nitroalkanes, alkynes, and indoles. All coupling products were obtained in good yields at short reaction times (no more than 40 min). When alkynes and indoles were used as pronucleophile, the reactions can be catalyzed efficiently by recoverable copper balls without any additional metal catalyst.

  5. Spectroscopic Identification of the Carbyne Hydride Structure of the Dehydrogenation Product of Methane Activation by Osmium Cations

    NASA Astrophysics Data System (ADS)

    Armentrout, P. B.; Kuijpers, Stach E. J.; Lushchikova, Olga V.; Hightower, Randy L.; Boles, Georgia C.; Bakker, Joost M.

    2018-04-01

    The present work explores the structures of species formed by dehydrogenation of methane (CH4) and perdeuterated methane (CD4) by the 5d transition metal cation osmium (Os+). Using infrared multiple photon dissociation (IRMPD) action spectroscopy and density functional theory (DFT), the structures of the [Os,C,2H]+ and [Os,C,2D]+ products are explored. This study complements previous work on the related species formed by dehydrogenation of methane by four other 5d transition metal cations (M+ = Ta+, W+, Ir+, and Pt+). Osmium cations are formed in a laser ablation source, react with methane pulsed into a reaction channel downstream, and the resulting products spectroscopically characterized through photofragmentation using the Free-Electron Laser for IntraCavity Experiments (FELICE) in the 300-1800 cm-1 range. Photofragmentation was monitored by the loss of H2/D2. Comparison of the experimental spectra and DFT calculated spectra leads to identification of the ground state carbyne hydride, HOsCH+ (2A') as the species formed, as previously postulated theoretically. Further, a full description of the systematic spectroscopic shifts observed for deuterium labeling of these complexes, some of the smallest systems to be studied using IRMPD action spectroscopy, is achieved. A full rotational contour analysis explains the observed linewidths as well as the observation of doublet structures in several bands, consistent with previous observations for HIrCH+ (2A'). [Figure not available: see fulltext.

  6. Flame behaviors of propane/air premixed flame propagation in a closed rectangular duct with a 90-deg bend

    NASA Astrophysics Data System (ADS)

    He, Xuechao; Sun, Jinhua; Yuen, K. K.; Ding, Yibin; Chen, Sining

    2008-11-01

    Experiments of flame propagation in a small, closed rectangular duct with a 90° bend were performed for a propane-air mixture. The high speed camera and Schlieren techniques were used to record images of flame propagation process in the combustion pipe. Meanwhile, the fine thermocouples and ion current probes were applied to measure the temperature distribution and reaction intensity of combustion. The characteristics of propane-air flame and its microstructure were analyzed in detail by the experimental results. In the test, the special tulip flame formation was observed. Around the bend, the flame tip proceeded more quickly at the lower side with the flame front elongated toward the axial direction. And transition to turbulent flame occurred. It was suggested that fluctuations of velocity, ion current and temperature were mainly due to the comprehensive effects of multi-wave and the intense of turbulent combustion.

  7. Method for making hydrogen rich gas from hydrocarbon fuel

    DOEpatents

    Krumpelt, M.; Ahmed, S.; Kumar, R.; Doshi, R.

    1999-07-27

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400 C for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide. 4 figs.

  8. Method for making hydrogen rich gas from hydrocarbon fuel

    DOEpatents

    Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv

    1999-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  9. End-group-functionalized poly(N,N-diethylacrylamide) via free-radical chain transfer polymerization: Influence of sulfur oxidation and cyclodextrin on self-organization and cloud points in water

    PubMed Central

    Reinelt, Sebastian; Steinke, Daniel

    2014-01-01

    Summary In this work we report the synthesis of thermo-, oxidation- and cyclodextrin- (CD) responsive end-group-functionalized polymers, based on N,N-diethylacrylamide (DEAAm). In a classical free-radical chain transfer polymerization, using thiol-functionalized 4-alkylphenols, namely 3-(4-(1,1-dimethylethan-1-yl)phenoxy)propane-1-thiol and 3-(4-(2,4,4-trimethylpentan-2-yl)phenoxy)propane-1-thiol, poly(N,N-diethylacrylamide) (PDEAAm) with well-defined hydrophobic end-groups is obtained. These end-group-functionalized polymers show different cloud point values, depending on the degree of polymerization and the presence of randomly methylated β-cyclodextrin (RAMEB-CD). Additionally, the influence of the oxidation of the incorporated thioether linkages on the cloud point is investigated. The resulting hydrophilic sulfoxides show higher cloud point values for the lower critical solution temperature (LCST). A high degree of functionalization is supported by 1H NMR-, SEC-, FTIR- and MALDI–TOF measurements. PMID:24778720

  10. Gas-Sensing Performance of M-Doped CuO-Based Thin Films Working at Different Temperatures upon Exposure to Propane

    PubMed Central

    Rydosz, Artur; Szkudlarek, Aleksandra

    2015-01-01

    Cupric oxide (CuO) thin films are promising materials in gas sensor applications. The CuO-based gas sensors behaved as p-type semiconductors and can be used as part of an e-nose or smart sensor array for breath analysis. The authors present the investigation results on M-doped CuO-based (M = Ag, Au, Cr, Pd, Pt, Sb, Si) sensors working at various temperatures upon exposure to a low concentration of C3H8, which can be found in exhaled human breath, and it can be considered as a one of the biomarkers of several diseases. The films have been deposited in magnetron sputtering technology on low temperature cofired ceramics substrates. The results of the gas sensors’ response are also presented and discussed. The Cr:CuO-based structure, annealed at 400 °C for 4 h in air, showed the highest sensor response, of the order of 2.7 at an operation temperature of 250 °C. The response and recovery time(s) were 10 s and 24 s, respectively. The results show that the addition of M-dopants in the cupric oxide films effectively act as catalysts in propane sensors and improve the gas sensing properties. The films’ phase composition, microstructure and surface topography have been assessed by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) methods. PMID:26287204

  11. Picolinamide-Based Iridium Catalysts for Dehydrogenation of Formic Acid in Water: Effect of Amide N Substituent on Activity and Stability

    DOE PAGES

    Kanega, Ryoichi; Onishi, Naoya; Wang, Lin; ...

    2018-03-01

    To develop highly efficient catalysts for dehydrogenation of formic acid in water, we investigated in this paper several Cp*Ir catalysts with various amide ligands. The catalyst with an N-phenylpicolinamide ligand exhibited a TOF of 118 000 h -1 at 60 °C. A constant rate (TOF>35 000 h -1) was maintained for six hours, and a TON of 1 000 000 was achieved at 50 °C.

  12. Picolinamide-Based Iridium Catalysts for Dehydrogenation of Formic Acid in Water: Effect of Amide N Substituent on Activity and Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanega, Ryoichi; Onishi, Naoya; Wang, Lin

    To develop highly efficient catalysts for dehydrogenation of formic acid in water, we investigated in this paper several Cp*Ir catalysts with various amide ligands. The catalyst with an N-phenylpicolinamide ligand exhibited a TOF of 118 000 h -1 at 60 °C. A constant rate (TOF>35 000 h -1) was maintained for six hours, and a TON of 1 000 000 was achieved at 50 °C.

  13. Optimal Electrocatalytic Pd/MWNTs Nanocatalysts toward Formic Acid Oxidation

    PubMed Central

    Wang, Yiran; He, Qingliang; Wei, Huige; Guo, Jiang; Ding, Keqiang; Wang, Qiang; Wang, Zhe; Wei, Suying; Guo, Zhanhu

    2017-01-01

    The operating conditions such as composition of electrolyte and temperature can greatly influence the formic acid (HCOOH) oxidation reaction (FAOR). Palladium decorated multi-walled carbon nanotubes (Pd/MWNTs) were successfully synthesized and employed as nanocatalysts to explore the effects of formic acid, sulfuric acid (H2SO4) concentration and temperature on FAOR. Both the hydrogen adsorption in low potential range and the oxidation of poisoning species during the high potential range in cyclic voltammetry were demonstrated to contribute to the enhanced electroactivity of Pd/MWNTs. The as-synthesized Pd/MWNTs gave the best performance under a condition with balanced adsorptions of HCOOH and H2SO4 molecules. The dominant dehydrogenation pathway on Pd/MWNTs can be largely depressed by the increased dehydration pathway, leading to an increased charge transfer resistance (Rct). Increasing HCOOH concentration could directly increase the dehydration process proportion and cause the production of COads species. H2SO4 as donor of H+ greatly facilitated the onset oxidation of HCOOH in the beginning process but it largely depressed the HCOOH oxidation with excess amount of H+. Enhanced ion mobility with increasing the temperature was mainly responsible for the increased current densities, improved tolerance stabilities and reduced Rct values, while dehydration process was also increased simultaneously. PMID:29622817

  14. Autothermal reforming of propane over Mg-Al hydrotalcite-like catalysts.

    PubMed

    Lim, You-Soon; Park, Nam-Cook; Shin, Jae-Soon; Kim, Jong-Ho; Moon, Dong-Ju; Kim, Young-Chul

    2008-10-01

    The performance of hydrotalcite-like catalysts in propane autothermal reforming for hydrogen production was studied in fixed-bed flow reactor. Hydrotalcite-like catalysts were synthesized by coprecipitation and modified co-precipitation by the impregnation method and those were promoted by the addition of noble metals. Reaction test results indicated that hydrotalcite-like catalysts of modified method were showed higher H2-yield than co-precipitation method because surface Ni particles of catalysts by modified method were more abundant. When added noble metals, the activity was enhanced because the size of nickel particles was decreased and degree of dispersion was increased. Also the carbon deposit is low after the reaction. When solvent of solution was changed, activity was increased. It is because degree of dispersion was increased.

  15. Catalyst- and Reagent-free Electrochemical Azole C-H Amination.

    PubMed

    Qiu, Youai; Struwe, Julia; Meyer, Tjark H; Oliveira, Joao Carlos Agostinho Carlos Agostinho; Ackermann, Lutz

    2018-06-14

    Catalyst-, and chemical oxidant-free electrochemical azole C-H aminations were accomplished via cross-dehydrogenative C-H/N-H functionalization. The catalyst-free electrochemical C-H amination proved feasible on azoles with high levels of efficacy and selectivity, avoiding the use of stoichiometric oxidants under ambient conditions. Likewise, the C(sp3)-H nitrogenation proved viable under otherwise identical conditions. The dehydrogenative C-H amination featured ample scope, including cyclic and acyclic aliphatic amines as well as anilines, and employed sustainable electricity as the sole oxidant. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Role of Metal Electronegativity in the Dehydrogenation Thermodynamics and Kinetics of Composite Metal Borohydride-LiNH2 Hydrogen Storage Materials.

    PubMed

    Bai, Ying; Pei, Ziwei; Wu, Feng; Wu, Chuan

    2018-03-21

    The composites of M(BH 4 ) n -LiNH 2 (1/2 n molar ratio, n = 1 or 2, M = Ca, Mg, Li) were synthesized by liquid ball milling. Samples were characterized by X-ray diffraction, thermogravimetry-differential thermal analysis-mass spectroscopy (TG-DTA-MS), and kinetic models (Achar differential/Coats-Redfern integral method). The higher-electronegativity metal M in M(BH 4 ) n -4LiNH 2 (M = Ca, Mg) samples not only enables [BH 4 ] - group to release easily, so as to facilitate the interaction of [BH 4 ] - and [NH 2 ] - groups, but also restrains the NH 3 release and slightly decreases the onset dehydrogenation temperature concluded by TG-MS. Moreover, in stage 1 (200-350 °C), the kinetics performances of M(BH 4 ) n -4LiNH 2 (M = Ca, Mg) samples are distinctly improved, that is, the activation energies of them are reduced by ca. 30% compared to those of sample LiBH 4 -2LiNH 2 . The outstanding contribution of the replacement of M(BH 4 ) n with high-electronegativity metal ion is to both improve the kinetics performance by changing the kinetics mechanism and decrease the temperature range of the initial dehydrogenation region.

  17. Tuning the oxidative power of free iron-sulfur clusters.

    PubMed

    Lang, Sandra M; Zhou, Shaodong; Schwarz, Helmut

    2017-03-15

    The gas-phase reactions between a series of di-iron sulfur clusters Fe 2 S x + (x = 1-3) and the small alkenes C 2 H 4 , C 3 H 6 , and C 4 H 8 have been investigated by means of Fourier-transform ion-cyclotron resonance mass spectrometry. For all studied alkenes, the reaction efficiency is found to increase in the order Fe 2 S + < Fe 2 S 2 + < Fe 2 S 3 + . In particular, Fe 2 S + and Fe 2 S 2 + only form simple association products, whereas the sulfur-rich Fe 2 S 3 + is able to dehydrogenate propene and 2-butene via desulfurization of the cluster and formation of H 2 S. This indicates an increased propensity to induce oxidation reactions, i.e. oxidative power, of Fe 2 S 3 + that is attributed to an increased formal oxidation state of the iron atoms. Furthermore, the ability of Fe 2 S 3 + to activate and dissociate the C-H bonds of the alkenes is observed to increase with increasing size of the alkene and thus correlates with the alkene ionization energy.

  18. Use of propane as a quench gas in argon-filled proportional counters and comparison with other quench gases

    NASA Technical Reports Server (NTRS)

    Agrawal, P. C.; Ramsey, B. D.

    1988-01-01

    An experimental investigation of propane and six other quench gases was carried out in argon-filled proportional counters. The objective of the study was to find the best gas mixture for optimizing the gas gain and the energy resolution as well as to understand the role of the ionization potential of quench gases in determining these parameters. It was found that the best gas gains and energy resolutions are obtained with propane, ethane, and isobutane in that order. The ionization potentials of these three lie below the argon metastable potentials and have the lowest value of resonance defect compared to the other quench gases. The better results obtained with these mixtures can be explained by an increased ionization yield resulting from the Penning effect. Propylene and trans-2-butene give inferior performance compared to the above three gases. Methane and carbon dioxide, the most commonly used quench gases in the argon-filled detectors, provide the worst results.

  19. Laboratory Investigations into the Spectra and Origin of Propylene Oxide: A Chiral Interstellar Molecule

    NASA Technical Reports Server (NTRS)

    Hudson, R. L.; Loeffler, M. J.; Yocum, K. M.

    2017-01-01

    Propylene oxide was recently identified in the interstellar medium, but few laboratory results are available for this molecule to guide current and future investigations. To address this situation, here we report infrared spectra, absorption coefficients, and band strengths of solid propylene oxide along with the first measurement of its refractive index and a calculation of its density, all for the amorphous solid form of the compound. We present the first experimental results showing a low-temperature formation pathway for propylene oxide near 10 K in interstellar ice analogs. Connections are drawn between our new results and the interstellar molecules propanal and acetone, and predictions are made about several as yet unobserved vinyl alcohols and methylketene. Comparisons are given to earlier laboratory work and a few applications to interstellar and solar system astrochemistry are described.

  20. Laboratory Investigations into the Spectra and Origin of Propylene Oxide: A Chiral Interstellar Molecule

    NASA Astrophysics Data System (ADS)

    Hudson, R. L.; Loeffler, M. J.; Yocum, K. M.

    2017-02-01

    Propylene oxide was recently identified in the interstellar medium, but few laboratory results are available for this molecule to guide current and future investigations. To address this situation, here we report infrared spectra, absorption coefficients, and band strengths of solid propylene oxide along with the first measurement of its refractive index and a calculation of its density, all for the amorphous solid form of the compound. We present the first experimental results showing a low-temperature formation pathway for propylene oxide near 10 K in interstellar ice analogs. Connections are drawn between our new results and the interstellar molecules propanal and acetone, and predictions are made about several as yet unobserved vinyl alcohols and methylketene. Comparisons are given to earlier laboratory work and a few applications to interstellar and solar system astrochemistry are described.

  1. Catalytic Conversion of Short-Chain Alcohols on Atomically Dispersed Au and Pd Supported on Nanoscale Metal Oxides

    NASA Astrophysics Data System (ADS)

    Wang, Chongyang

    With the development of technologies for cellulosic biomass conversion to fuels and chemicals, bio-alcohols are among the main alternative feedstocks to fossil fuels. The research pursued in my thesis was the investigation of gold and palladium as catalysts for the application of short aliphatic alcohols to hydrogen generation and value-added chemicals production. Specifically, selective methanol steam reforming and non-oxidative ethanol dehydrogenation to hydrogen and acetaldehyde were investigated in this thesis work. A major aim of the thesis was to develop atomically efficient catalysts with tuned surface chemistry for the desired reactions, using suitable synthesis methods. Methanol steam reforming (SRM) for hydrogen production has recently been investigated on gold catalysts to overcome the drawbacks of copper catalysts (deactivation, pyrophoricity). Previous work at Tufts University has shown that both CeO2 and ZnO are suitable supports for gold. In this thesis, nanoscale composite oxides ZnZrOx were prepared by a carbon hard-template method, which resulted in homogeneous distribution of Zn species in the matrix of ZrO2. Tunable surface chemistry of ZnZrO x was demonstrated by varying the Zn/Zr ratio to suppress the strong Lewis acidity of ZrO2, which leads to undesired production of CO through methanol decomposition. With atomic dispersion of gold, Au/ZnZrO x catalyzes the SRM reaction exclusively via the methanol self-coupling pathway up to 375°C. The activity of Au/ZnZrOx catalysts was compared to Au/TiO2, which is another catalyst system demonstrating atomic dispersion of gold. Similarity in the apparent activation energy of SRM on all the supported gold catalysts studied in this thesis and in the literature further confirms the same single-site Au-Ox-MO centers as active sites for SRM with indirect effects of the supports exploited. With this fundamental understanding of gold-catalyzed C1 alcohol reforming, the Au/ZnZrOx catalyst was evaluated for the

  2. Polydopamine-Coated TiO2 Nanotubes for Selective Photocatalytic Oxidation of Benzyl Alcohol to Benzaldehyde Under Visible Light.

    PubMed

    Tripathy, Jyotsna; Loget, Gabriel; Altomare, Marco; Schmuki, Patrik

    2016-05-01

    TiO2 nanotube arrays grown by anodization were coated with thin layers of polydopamine as visible light sensitizer. The PDA-coated TiO2 scaffolds were used as photocatalyst for selective oxidation of benzyl alcohol under monochromatic irradiation at 473 nm. Benzaldehyde was selectively formed and no by-products could be detected. A maximized reaction yield was obtained in O2-saturated acetonitrile. A mechanism is proposed that implies firstly the charge carrier generation in polydopamine as a consequence of visible light absorption. Secondly, photo-promoted electrons are injected in TiO2 conduction band, and subsequently transferred to dissolved O2 to form O*2- radicals. These radicals react with benzyl alcohol and lead to its selective dehydrogenation oxidation towards benzaldehyde.

  3. The oxidation products of crude mesobilirubinogen

    PubMed Central

    Stoll, M. S.; Gray, C. H.

    1970-01-01

    Bile pigment esters were separated by ascending t.l.c. Apparently pure pigments, obtained by ferric chloride oxidation of crude mesobilirubinogen, derived from commercial bilirubin by reduction with sodium amalgam, were shown to be complex mixtures. Successive chromatography of their dimethyl esters on silica gel in methyl acetate–methyl propionate–dichloromethane–carbon tetrachloride (1:1:1:1, by vol.), ethyl methyl ketone–1,2-dichloroethane (1:2, v/v) and benzene–ethanol (100:3, v/v) revealed two major blue pigments (verdins), six major violet pigments (violins) and a red pigment (rhodin) together with numerous minor components. i-Urobilin dimethyl ester, prepared from mesobilirubinogen by dehydrogenation with aqueous iodine, was resolved into three major and at least four minor components on silica gel–kieselguhr (3:1, w/w) in benzene–ethanol (25:2, v/v). The chemical nature of these pigments was investigated by oxidation, by visible and u.v. spectroscopy, by mass spectrometry and by n.m.r. spectrometry. The evidence suggests unusual rearrangement of bilirubin during reduction leading to the formation of IIIα and XIIIα isomers. Isomeric forms of mesobiliviolin IXα and of i-urobilin IXα may also be formed. PMID:5420035

  4. Select Components and Finish System Design of a Window Air Conditioner with Propane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Abdelaziz, Omar

    This report describes the technical targets for developing a high efficiency window air conditioner (WAC) using propane (R-290). The baseline unit selected for this activity is a GE R-410A WAC. We established collaboration with a Chinese rotary compressor manufacturer, to select an R-290 compressor. We first modelled and calibrated the WAC system model using R-410A. Next, we applied the calibrated system model to design the R-290 WAC, and decided the strategies to reduce the system charge below 260 grams and achieve the capacity and efficiency targets.

  5. Carbon doped GaN buffer layer using propane for high electron mobility transistor applications: Growth and device results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X.; Nilsson, D.; Danielsson, Ö.

    2015-12-28

    The creation of a semi insulating (SI) buffer layer in AlGaN/GaN High Electron Mobility Transistor (HEMT) devices is crucial for preventing a current path beneath the two-dimensional electron gas (2DEG). In this investigation, we evaluate the use of a gaseous carbon gas precursor, propane, for creating a SI GaN buffer layer in a HEMT structure. The carbon doped profile, using propane gas, is a two stepped profile with a high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) epitaxial layer closest to the substrate and a lower doped layer (3 × 10{sup 16 }cm{sup −3}) closest to the 2DEG channel. Secondary Ion Mass Spectrometry measurement showsmore » a uniform incorporation versus depth, and no memory effect from carbon doping can be seen. The high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) does not influence the surface morphology, and a roughness root-mean-square value of 0.43 nm is obtained from Atomic Force Microscopy. High resolution X-ray diffraction measurements show very sharp peaks and no structural degradation can be seen related to the heavy carbon doped layer. HEMTs are fabricated and show an extremely low drain induced barrier lowering value of 0.1 mV/V, demonstrating an excellent buffer isolation. The carbon doped GaN buffer layer using propane gas is compared to samples using carbon from the trimethylgallium molecule, showing equally low leakage currents, demonstrating the capability of growing highly resistive buffer layers using a gaseous carbon source.« less

  6. Catalyst design with atomic layer deposition

    DOE PAGES

    O'Neill, Brandon J.; Jackson, David H. K.; Lee, Jechan; ...

    2015-02-06

    Atomic layer deposition (ALD) has emerged as an interesting tool for the atomically precise design and synthesis of catalytic materials. Herein, we discuss examples in which the atomic precision has been used to elucidate reaction mechanisms and catalyst structure-property relationships by creating materials with a controlled distribution of size, composition, and active site. We highlight ways ALD has been utilized to design catalysts with improved activity, selectivity, and stability under a variety of conditions (e.g., high temperature, gas and liquid phase, and corrosive environments). In addition, due to the flexibility and control of structure and composition, ALD can create myriadmore » catalytic structures (e.g., high surface area oxides, metal nanoparticles, bimetallic nanoparticles, bifunctional catalysts, controlled microenvironments, etc.) that consequently possess applicability for a wide range of chemical reactions (e.g., CO 2 conversion, electrocatalysis, photocatalytic and thermal water splitting, methane conversion, ethane and propane dehydrogenation, and biomass conversion). Lastly, the outlook for ALD-derived catalytic materials is discussed, with emphasis on the pending challenges as well as areas of significant potential for building scientific insight and achieving practical impacts.« less

  7. Catalyst design with atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neill, Brandon J.; Jackson, David H. K.; Lee, Jechan

    Atomic layer deposition (ALD) has emerged as an interesting tool for the atomically precise design and synthesis of catalytic materials. Herein, we discuss examples in which the atomic precision has been used to elucidate reaction mechanisms and catalyst structure-property relationships by creating materials with a controlled distribution of size, composition, and active site. We highlight ways ALD has been utilized to design catalysts with improved activity, selectivity, and stability under a variety of conditions (e.g., high temperature, gas and liquid phase, and corrosive environments). In addition, due to the flexibility and control of structure and composition, ALD can create myriadmore » catalytic structures (e.g., high surface area oxides, metal nanoparticles, bimetallic nanoparticles, bifunctional catalysts, controlled microenvironments, etc.) that consequently possess applicability for a wide range of chemical reactions (e.g., CO 2 conversion, electrocatalysis, photocatalytic and thermal water splitting, methane conversion, ethane and propane dehydrogenation, and biomass conversion). Lastly, the outlook for ALD-derived catalytic materials is discussed, with emphasis on the pending challenges as well as areas of significant potential for building scientific insight and achieving practical impacts.« less

  8. Dehydrogenation involved Coulomb explosion of molecular C2H4FBr in an intense laser field

    NASA Astrophysics Data System (ADS)

    Pei, Minjie; Yang, Yan; Zhang, Jian; Sun, Zhenrong

    2018-04-01

    The dissociative double ionization (DDI) of molecular 1-fluo-2-bromoethane (FBE) in an intense laser field has been investigated by dc-slice imaging technology. The DDI channels involved with dehydrogenation are revealed and it's believed both the charge distribution and the bound character of real potential energy surfaces of parent ions play important roles in the dissociation process. The relationship between the potential energy surfaces of the precursor species and the photofragment ejection angles are also discussed and analyzed. Furthermore, the competition between the DDI channels has been studied and the Csbnd C bond cleavages dominate the DDI process at relative higher laser intensity.

  9. A Novel Gas Sensor Based on MgSb2O6 Nanorods to Indicate Variations in Carbon Monoxide and Propane Concentrations

    PubMed Central

    Guillén-Bonilla, Héctor; Flores-Martínez, Martín; Rodríguez-Betancourtt, Verónica-María; Guillen-Bonilla, Alex; Reyes-Gómez, Juan; Gildo-Ortiz, Lorenzo; de la Luz Olvera Amador, María; Santoyo-Salazar, Jaime

    2016-01-01

    Bystromite (MgSb2O6) nanorods were prepared using a colloidal method in the presence of ethylenediamine, after a calcination step at 800 °C in static air. From X-ray powder diffraction analyses, a trirutile-type structure with lattice parameters a = 4.64 Å and c = 9.25 Å and space group P42/mnm was identified. Using scanning electron microscopy (SEM), microrods with sizes from 0.2 to 1.6 μm were observed. Transmission electron microscopy (TEM) analyses revealed that the nanorods had a length of ~86 nm and a diameter ~23.8 nm. The gas-sensing properties of these nanostructures were tested using pellets elaborated with powders of the MgSb2O6 oxide (calcined at 800 °C) at temperatures 23, 150, 200, 250 and 300 °C. The pellets were exposed to different concentrations of carbon monoxide (CO) and propane (C3H8) at these temperatures. The results showed that the MgSb2O6 nanorods possess excellent stability and high sensitivity in these atmospheres. PMID:26840318

  10. A Novel Gas Sensor Based on MgSb2O6 Nanorods to Indicate Variations in Carbon Monoxide and Propane Concentrations.

    PubMed

    Guillén-Bonilla, Héctor; Flores-Martínez, Martín; Rodríguez-Betancourtt, Verónica-María; Guillen-Bonilla, Alex; Reyes-Gómez, Juan; Gildo-Ortiz, Lorenzo; de la Luz Olvera Amador, María; Santoyo-Salazar, Jaime

    2016-01-30

    Bystromite (MgSb2O6) nanorods were prepared using a colloidal method in the presence of ethylenediamine, after a calcination step at 800 °C in static air. From X-ray powder diffraction analyses, a trirutile-type structure with lattice parameters a = 4.64 Å and c = 9.25 Å and space group P4₂/mnm was identified. Using scanning electron microscopy (SEM), microrods with sizes from 0.2 to 1.6 μm were observed. Transmission electron microscopy (TEM) analyses revealed that the nanorods had a length of ~86 nm and a diameter ~23.8 nm. The gas-sensing properties of these nanostructures were tested using pellets elaborated with powders of the MgSb2O6 oxide (calcined at 800 °C) at temperatures 23, 150, 200, 250 and 300 °C. The pellets were exposed to different concentrations of carbon monoxide (CO) and propane (C3H8) at these temperatures. The results showed that the MgSb2O6 nanorods possess excellent stability and high sensitivity in these atmospheres.

  11. The synthesis of benzimidazoles and quinoxalines from aromatic diamines and alcohols by iridium-catalyzed acceptorless dehydrogenative alkylation.

    PubMed

    Hille, Toni; Irrgang, Torsten; Kempe, Rhett

    2014-05-05

    Benzimidazoles and quinoxalines are important N-heteroaromatics with many applications in pharmaceutical and chemical industry. Here, the synthesis of both classes of compounds starting from aromatic diamines and alcohols (benzimidazoles) or diols (quinoxalines) is reported. The reactions proceed through acceptorless dehydrogenative condensation steps. Water and two equivalents of hydrogen are liberated in the course of the reactions. An Ir complex stabilized by the tridentate P^N^P ligand N(2) ,N(6) -bis(di-isopropylphosphino)pyridine-2,6-diamine revealed the highest catalytic activity for both reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Quinone-Catalyzed Selective Oxidation of Organic Molecules

    PubMed Central

    Wendlandt, Alison E.

    2016-01-01

    Lead In Quinones are common stoichiometric reagents in organic chemistry. High potential para-quinones, such as DDQ and chloranil, are widely used and typically promote hydride abstraction. In recent years, many catalytic applications of these methods have been achieved by using transition metals, electrochemistry or O2 to regenerate the oxidized quinone in situ. Complementary studies have led to the development of a different class of quinones that resemble the ortho-quinone cofactors in Copper Amine Oxidases and mediate efficient and selective aerobic and/or electrochemical dehydrogenation of amines. The latter reactions typically proceed via electrophilic transamination and/or addition-elimination reaction mechanisms, rather than hydride abstraction pathways. The collective observations show that the quinone structure has a significant influence on the reaction mechanism and have important implications for the development of new quinone reagents and quinone-catalyzed transformations. PMID:26530485

  13. Evaluation of the Parameters and Conditions of Process in the Ethylbenzene Dehydrogenation with Application of Permselective Membranes to Enhance Styrene Yield

    PubMed Central

    Araújo, Paulo Jardel P.; Leite, Manuela Souza; Kakuta Ravagnani, Teresa M.

    2016-01-01

    Styrene is an important monomer in the manufacture of thermoplastic. Most of it is produced by the catalytic dehydrogenation of ethylbenzene. In this process that depends on reversible reactions, the yield is usually limited by the establishment of thermodynamic equilibrium in the reactor. The styrene yield can be increased by using a hybrid process, with reaction and separation simultaneously. It is proposed using permselective composite membrane to remove hydrogen and thus suppress the reverse and secondary reactions. This paper describes the simulation of a dehydrogenation process carried out in a tubular fixed-bed reactor wrapped in a permselective composite membrane. A mathematical model was developed, incorporating the various mass transport mechanisms found in each of the membrane layers and in the catalytic fixed bed. The effects of the reactor feed conditions (temperature, steam-to-oil ratio, and the weight hourly space velocity), the fixed-bed geometry (length, diameter, and volume), and the membrane geometry (thickness of the layers) on the styrene yield were analyzed. These variables were used to determine experimental conditions that favour the production of styrene. The simulation showed that an increase of 40.98% in the styrene yield, compared to a conventional fixed-bed process, could be obtained by wrapping the reactor in a permselective composite membrane. PMID:27069982

  14. Evaluation of the Parameters and Conditions of Process in the Ethylbenzene Dehydrogenation with Application of Permselective Membranes to Enhance Styrene Yield.

    PubMed

    Araújo, Paulo Jardel P; Leite, Manuela Souza; Ravagnani, Teresa M Kakuta

    2016-01-01

    Styrene is an important monomer in the manufacture of thermoplastic. Most of it is produced by the catalytic dehydrogenation of ethylbenzene. In this process that depends on reversible reactions, the yield is usually limited by the establishment of thermodynamic equilibrium in the reactor. The styrene yield can be increased by using a hybrid process, with reaction and separation simultaneously. It is proposed using permselective composite membrane to remove hydrogen and thus suppress the reverse and secondary reactions. This paper describes the simulation of a dehydrogenation process carried out in a tubular fixed-bed reactor wrapped in a permselective composite membrane. A mathematical model was developed, incorporating the various mass transport mechanisms found in each of the membrane layers and in the catalytic fixed bed. The effects of the reactor feed conditions (temperature, steam-to-oil ratio, and the weight hourly space velocity), the fixed-bed geometry (length, diameter, and volume), and the membrane geometry (thickness of the layers) on the styrene yield were analyzed. These variables were used to determine experimental conditions that favour the production of styrene. The simulation showed that an increase of 40.98% in the styrene yield, compared to a conventional fixed-bed process, could be obtained by wrapping the reactor in a permselective composite membrane.

  15. Quantification of malondialdehyde and 4-hydroxynonenal adducts to lysine residues in native and oxidized human low-density lipoprotein.

    PubMed Central

    Requena, J R; Fu, M X; Ahmed, M U; Jenkins, A J; Lyons, T J; Baynes, J W; Thorpe, S R

    1997-01-01

    Malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are major end-products of oxidation of polyunsaturated fatty acids, and are frequently measured as indicators of lipid peroxidation and oxidative stress in vivo. MDA forms Schiff-base adducts with lysine residues and cross-links proteins in vitro; HNE also reacts with lysines, primarily via a Michael addition reaction. We have developed methods using NaBH4 reduction to stabilize these adducts to conditions used for acid hydrolysis of protein, and have prepared reduced forms of lysine-MDA [3-(N epsilon-lysino)propan-1-ol (LM)], the lysine-MDA-lysine iminopropene cross-link [1,3-di(N epsilon-lysino)propane (LML)] and lysine-HNE [3-(N epsilon-lysino)-4-hydroxynonan-l-ol (LHNE)]. Gas chromatography/MS assays have been developed for quantification of the reduced compounds in protein. RNase incubated with MDA or HNE was used as a model for quantification of the adducts by gas chromatography/MS. There was excellent agreement between measurement of MDA bound to RNase as LM and LML, and as thiobarbituric acid-MDA adducts measured by HPLC; these adducts accounted for 70-80% of total lysine loss during the reaction with MDA. LM and LML (0.002-0.12 mmol/ mol of lysine) were also found in freshly isolated low-density lipoprotein (LDL) from healthy subjects. LHNE was measured in RNase treated with HNE, but was not detectable in native LDL. LM, LML and LHNE increased in concert with the formation of conjugated dienes during the copper-catalysed oxidation of LDL, but accounted for modification of < 1% of lysine residues in oxidized LDL. These results are the first report of direct chemical measurement of MDA and HNE adducts to lysine residues in LDL. LM, LML and LHNE should be useful as biomarkers of lipid peroxidative modification of protein and of oxidative stress in vitro and in vivo. PMID:9078279

  16. Low-temperature superacid catalysis: Reactions of n - butane and propane catalyzed by iron- and manganese-promoted sulfated zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsz-Keung, Cheung; d`Itri, J.L.; Lange, F.C.

    1995-12-31

    The primary goal of this project is to evaluate the potential value of solid superacid catalysts of the sulfated zirconia type for light hydrocarbon conversion. The key experiments catalytic testing of the performance of such catalysts in a flow reactor fed with streams containing, for example, n-butane or propane. Fe- and Mn-promoted sulfated zirconia was used to catalyze the conversion of n-butane at atmospheric pressure, 225-450{degrees}C, and n-butane partial pressures in the range of 0.0025-0.01 atm. At temperatures <225{degrees}C, these reactions were accompanied by cracking; at temperatures >350{degrees}C, cracking and isomerization occurred. Catalyst deactivation, resulting at least in part frommore » coke formation, was rapid. The primary cracking products were methane, ethane, ethylene, and propylene. The observation of these products along with an ethane/ethylene molar ratio of nearly 1 at 450{degrees}C is consistent with cracking occurring, at least in part, by the Haag-Dessau mechanism, whereby the strongly acidic catalyst protonates n-butane to give carbonium ions. The rate of methane formation from n-butane cracking catalyzed by Fe- and Mn-promoted sulfated zirconia at 450{degrees}C was about 3 x 10{sup -8} mol/(g of catalyst {center_dot}s). The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.« less

  17. Chemical kinetic reaction mechanism for the combustion of propane

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.

    1984-01-01

    A detailed chemical kinetic reaction mechanism for the combustion of propane is presented and discussed. The mechanism consists of 27 chemical species and 83 elementary chemical reactions. Ignition and combustion data as determined in shock tube studies were used to evaluate the mechanism. Numerical simulation of the shock tube experiments showed that the kinetic behavior predicted by the mechanism for stoichiometric mixtures is in good agrement with the experimental results over the entire temperature range examined (1150-2600K). Sensitivity and theoretical studies carried out using the mechanism revealed that hydrocarbon reactions which are involved in the formation of the HO2 radical and the H2O2 molecule are very important in the mechanism and that the observed nonlinear behavior of ignition delay time with decreasing temperature can be interpreted in terms of the increased importance of the HO2 and H2O2 reactions at the lower temperatures.

  18. Propane spectral resolution enhancement by the maximum entropy method

    NASA Technical Reports Server (NTRS)

    Bonavito, N. L.; Stewart, K. P.; Hurley, E. J.; Yeh, K. C.; Inguva, R.

    1990-01-01

    The Burg algorithm for maximum entropy power spectral density estimation is applied to a time series of data obtained from a Michelson interferometer and compared with a standard FFT estimate for resolution capability. The propane transmittance spectrum was estimated by use of the FFT with a 2 to the 18th data sample interferogram, giving a maximum unapodized resolution of 0.06/cm. This estimate was then interpolated by zero filling an additional 2 to the 18th points, and the final resolution was taken to be 0.06/cm. Comparison of the maximum entropy method (MEM) estimate with the FFT was made over a 45/cm region of the spectrum for several increasing record lengths of interferogram data beginning at 2 to the 10th. It is found that over this region the MEM estimate with 2 to the 16th data samples is in close agreement with the FFT estimate using 2 to the 18th samples.

  19. Laboratory Investigations into the Spectra and Origin of Propylene Oxide: A Chiral Interstellar Molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, R. L.; Loeffler, M. J.; Yocum, K. M., E-mail: Reggie.Hudson@nasa.gov

    Propylene oxide was recently identified in the interstellar medium, but few laboratory results are available for this molecule to guide current and future investigations. To address this situation, here we report infrared spectra, absorption coefficients, and band strengths of solid propylene oxide along with the first measurement of its refractive index and a calculation of its density, all for the amorphous solid form of the compound. We present the first experimental results showing a low-temperature formation pathway for propylene oxide near 10 K in interstellar ice analogs. Connections are drawn between our new results and the interstellar molecules propanal andmore » acetone, and predictions are made about several as yet unobserved vinyl alcohols and methylketene. Comparisons are given to earlier laboratory work and a few applications to interstellar and solar system astrochemistry are described.« less

  20. Quantitative determination of n-propane, iso-butane, and n-butane by headspace GC-MS in intoxications by inhalation of lighter fluid.

    PubMed

    Bouche, Marie-Paule L A; Lambert, Willy E; Van Bocxlaer, Jan F P; Piette, Michel H; De Leenheer, André P

    2002-01-01

    This report describes a fully elaborated and validated method for quantitation of the hydrocarbons n-propane, iso-butane, and n-butane in blood samples. The newly developed analytical procedure is suitable for both emergency cases and forensic medicine investigations. Its practical applicability is illustrated with a forensic blood sample after acute inhalative intoxication with lighter fluid; case history and toxicological findings are included. Identification and quantitation of the analytes were performed using static headspace extraction combined with gas chromatography-mass spectrometry. In order to reconcile the large gas volumes injected (0.5 mL) with the narrowbore capillary column and thus achieve preconcentration, cold trapping on a Tenax sorbent followed by flash desorption was applied. Adequate retention and separation were achieved isothermally at 35 degrees C on a thick-film capillary column. Sample preparation was kept to a strict minimum and involved simply adding 2.5 microL of a liquid solution of 1,1,2-trichlorotrifluoroethane in t-butyl-methylether as an internal standard to aliquots of blood in a capped vial. Standards were created by volumetric dilution departing from a gravimetrically prepared calibration gas mixture composed of 0.3% of n-propane, 0.7% of iso-butane, and 0.8% of n-butane in nitrogen. In the forensic blood sample, the following concentrations were measured: 90.0 microg/L for n-propane, 246 microg/L for iso-butane, and 846 microg/L for n-butane.

  1. Metallic glassy Zr70Ni20Pd10 powders for improving the hydrogenation/dehydrogenation behavior of MgH2

    PubMed Central

    El-Eskandarany, M. Sherif

    2016-01-01

    Because of its low density, storage of hydrogen in the gaseous and liquids states possess technical and economic challenges. One practical solution for utilizing hydrogen in vehicles with proton-exchange fuel cells membranes is storing hydrogen in metal hydrides. Magnesium hydride (MgH2) remains the best hydrogen storage material due to its high hydrogen capacity and low cost of production. Due to its high activation energy and poor hydrogen sorption/desorption kinetics at moderate temperatures, the pure form of MgH2 is usually mechanically treated by high-energy ball mills and catalyzed with different types of catalysts. These steps are necessary for destabilizing MgH2 to enhance its kinetics behaviors. In the present work, we used a small mole fractions (5 wt.%) of metallic glassy of Zr70Ni20Pd10 powders as a new enhancement agent to improve its hydrogenation/dehydrogenation behaviors of MgH2. This short-range ordered material led to lower the decomposition temperature of MgH2 and its activation energy by about 121 °C and 51 kJ/mol, respectively. Complete hydrogenation/dehydrogenation processes were successfully achieved to charge/discharge about 6 wt.%H2 at 100 °C/200 °C within 1.18 min/3.8 min, respectively. In addition, this new nanocomposite system shows high performance of achieving continuous 100 hydrogen charging/discharging cycles without degradation. PMID:27220994

  2. Pathways for Ethanol Dehydrogenation and Dehydration Catalyzed by Ceria (111) and (100) Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beste, Ariana; Steven Overbury

    2015-01-08

    We have performed computations to better understand how surface structure affects selectivity in dehydrogenation and dehydration reactions of alcohols. Ethanol reactions on the (111) and (100) ceria surfaces were studied starting from the dominant surface species, ethoxy. We used DFT (PBE+U) to explore reaction pathways leading to ethylene and acetaldehyde and calculated estimates of rate constants employing transition state theory. To assess pathway contributions, we carried out kinetic analysis. Our results show that intermediate and transition state structures are stabilized on the (100) surface compared to the (111) surface. Formation of acetaldehyde over ethylene is kinetically and thermodynamically preferred onmore » both surfaces. Our results are consistent with temperature programmed surface reaction and steady-state experiments, where acetaldehyde was found as the main product and evidence was presented that ethylene formation at higher temperature originates from changes in adsorbate and surface structure.« less

  3. Influence of The Metamorphism Grade and Porosity of Hard Coal on Sorption and Desorption of Propane / Wpływ Stopnia Metamorfizmu I Porowatości Węgli Kamiennych Na Sorpcję I Desorpcję Propanu

    NASA Astrophysics Data System (ADS)

    Dudzińska, Agnieszka; Żyła, Mieczysław; Cygankiewicz, Janusz

    2013-09-01

    In this paper results of investigations of sorption of hard coal samples collected from the extracted coal seams of Polish coal mines are presented. As sorbate propane was used. Examinations were carried out in the temperature of 298 K by means of volumetric assessment with the use of apparatus ASAP 2010 of Micromeritics. On the basis of conducted examinations it has been found out that the amount of sorbed propane depend on a type of coal, its metamorphism grade, content of oxygen element, moisture and porosity of these coals. The greatest amounts of propane are sorbed by low carbonized, high-porosity coals of high content of oxygen and moisture. Sorption of relatively high amounts of propane by these coals (ca. 10 cm3/g) is a result of the influence of polar surface of coals with molecules of propane and good availability of internal microporous structure of these coals for molecules of examined sorbate. Medium and high carbonized coals sorb insignificant amounts of propane. These coals have compact structure and non-polar character of their surface, their internal porous structure is to a minor degree available for propane molecules in conditions of carried out research. Sorption of propane in this case, takes place mainly in surface pores and on the surface of coals. Moreover, measurements of desorption isotherms of propane showing irreversible character of sorption were made. Desorption isotherms do not come together with sorption isotherms forming open hysteresis loop. Amounts of non-desorbing propane remaining in the coal depend on the type of examined coal. W pracy przedstawiono wyniki badań sorpcji próbek węgli kamiennych pobranych z eksploatowanych pokładów węglowych polskich kopalń. Jako sorbat zastosowano propan. Badania przeprowadzono w temperaturze 298 K metodą objętościową z wykorzystaniem aparatu ASAP 2010 firmy Micromeritics. Na podstawie przeprowadzonych badań stwierdzono, że ilości sorbowanego propanu są zależne od rodzaju w

  4. Phase behavior and crystal structure of 3-(1-naphthyloxy)- and 3-(4-indolyloxy)-propane-1,2-diol, synthetic precursors of chiral drugs propranolol and pindolol

    NASA Astrophysics Data System (ADS)

    Bredikhin, Alexander A.; Gubaidullin, Aidar T.; Bredikhina, Zemfira A.; Fayzullin, Robert R.; Samigullina, Aida I.; Zakharychev, Dmitry V.

    2013-08-01

    Valuable precursors of popular chiral drugs propranolol and pindolol, 3-(1-naphthyloxy)-propane-1,2-diol 3 and 3-(4-indolyloxy)-propane-1,2-diol 4 were investigated by IR spectroscopy, DSC, and X-ray diffraction methods. Both compounds, crystallizing from enantiopure feed material, form "guaifenesin-like" crystal packing in which the classic H-bonded bilayers, framed in both sides by hydrophobic fragments of the molecules, acts as the basic crystal-forming motif. Diol 4 prone to spontaneous resolution and conserves its packing pattern crystallizing from racemate. Under the same conditions, diol 3 forms weakly stable solid racemic compound. Some reasons for such a behavior are identified and discussed.

  5. On the Structure Sensitivity of Dimethyl Ether Electro-oxidation on Eight FCC Metals: A First-Principles Study

    DOE PAGES

    Herron, Jeffrey A.; Ferrin, Peter; Mavrikakis, Manos

    2015-09-24

    The electro-oxidation of dimethyl ether (DME) was investigated using periodic, self-consistent density functional theory (DFT) calculations on the (111) and (100) facets of eight fcc metals: Au, Ag, Cu, Pt, Pd, Ni, Ir, and Rh. The goal of this study is to understand the experimentally observed structure sensitivity of this reaction on Pt, and to predict trends in structure sensitivity of this reaction across the other seven metals studied. The main conclusion is that the enhanced activity of Pt(100) originates from more facile C–O bond breaking and removal of surface poisoning species, including CO and CH. When comparing C–O bondmore » breaking energetics, we do not find a universal trend where these elementary steps are always more exergonic on the (100) facet. However, we find that, at a given potential, DME can be dehydrogenated (prior to breaking the C–O bond) to a greater extent on the (100) facet. Additionally, we find that the reaction energy for C–O bond breaking in CHxOCHy-type species becomes increasingly exergonic as the species becomes increasingly dehydrogenated. Together, the more facile dehydrogenation on the (100) facets provides more favorable routes to C–O bond activation. Though we calculate a lower onset potential on Au(100), Ag(100), Cu(100), Pt(100), and Pd(100) than their respective (111) facets, the calculated onset potential for Ni(100), Ir(100), and Rh(100) are actually higher than for their respective (111) facets. Lastly, by constructing theoretical volcano plots, we conclude that Au(100), Ag(100), Cu(100), Pt(100), and Pd(100) should be more active than their respective (111) facets, while Ni(100), Rh(100), and Ir(100) will show the opposite trend.« less

  6. Light-induced yellowing of selectively 13C-enriched dehydrogenation polymers (DHPs). Part 1, Side-chain 13C-enriched DHP ([alpha], [beta], and [gamma]-13C)

    Treesearch

    Jim Parkas; Magnus Paulsson; Terashima Noritsugu; Ulla Westermark; Sally Ralph

    2004-01-01

    Light-induced yellowing has been studied using side-chain ([alpha], [beta], and [gamma]) 13C-enriched DHP (dehydrogenation polymer) and quantitative solution state 13C NMR spectroscopy. The DHP was formed from 13C-enriched coniferin using an enzymatic system consisting of [beta]-glucosidase, glucose oxidase, and peroxidase in a pH 6 buffer solution. The DHP was applied...

  7. Can Supported Reduced Vanadium Oxides form H2 from CH3OH? A Computational Gas-Phase Mechanistic Study.

    PubMed

    González-Navarrete, Patricio; Andrés, Juan; Calatayud, Monica

    2018-02-01

    A detailed density functional theory study is presented to clarify the mechanistic aspects of the methanol (CH 3 OH) dehydrogenation process to yield hydrogen (H 2 ) and formaldehyde (CH 2 O). A gas-phase vanadium oxide cluster is used as a model system to represent reduced V(III) oxides supported on TiO 2 catalyst. The theoretical results provide a complete scenario, involving several reaction pathways in which different methanol adsorption sites are considered, with presence of hydride and methoxide intermediates. Methanol dissociative adsorption process is both kinetically and thermodynamically feasible on V-O-Ti and V═O sites, and it might lead to form hydride species with interesting catalytic reactivity. The formation of H 2 and CH 2 O on reduced vanadium sites, V(III), is found to be more favorable than for oxidized vanadium species, V(V), taking place along energy barriers of 29.9 and 41.0 kcal/mol, respectively.

  8. Picolinamide-Based Iridium Catalysts for Dehydrogenation of Formic Acid in Water: Effect of Amide N Substituent on Activity and Stability.

    PubMed

    Kanega, Ryoichi; Onishi, Naoya; Wang, Lin; Murata, Kazuhisa; Muckerman, James T; Fujita, Etsuko; Himeda, Yuichiro

    2018-03-01

    To develop highly efficient catalysts for dehydrogenation of formic acid in water, we investigated several Cp*Ir catalysts with various amide ligands. The catalyst with an N-phenylpicolinamide ligand exhibited a TOF of 118 000 h -1 at 60 °C. A constant rate (TOF>35 000 h -1 ) was maintained for six hours, and a TON of 1 000 000 was achieved at 50 °C. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Lanthanum-mediated dehydrogenation of butenes: Spectroscopy and formation of La(C4H6) isomers

    NASA Astrophysics Data System (ADS)

    Cao, Wenjin; Hewage, Dilrukshi; Yang, Dong-Sheng

    2018-01-01

    La atom reactions with 1-butene, 2-butene, and isobutene are carried out in a laser-vaporization molecular beam source. The three reactions yield the same La-hydrocarbon products from the dehydrogenation and carbon-carbon bond cleavage and coupling of the butenes. The dehydrogenated species La(C4H6) is the major product, which is characterized with mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical computations. The MATI spectrum of La(C4H6) produced from the La+1-butene reaction exhibits two band systems, whereas the MATI spectra produced from the La+2-butene and isobutene reactions display only a single band system. Each of these spectra shows a strong origin band and several vibrational progressions. The two band systems from the spectrum of the 1-butene reaction are assigned to the ionization of two isomers: La[C(CH2)3] (Iso A) and La(CH2CHCHCH2) (Iso B), and the single band system from the spectra of the 2-butene and isobutene reactions is attributed to Iso B and Iso A, respectively. The ground electronic states are 2A1 (C3v) for Iso A and 2A' (Cs) for Iso B. The ionization of the doublet state of each isomer removes a La 6s-based electron and leads to the 1A1 ion of Iso A and the 1A' ion of Iso B. The formation of both isomers consists of La addition to the C=C double bond, La insertion into two C(sp3)—H bonds, and H2 elimination. In addition to these steps, the formation of Iso A from the La+1-butene reaction may involve the isomerization of 1-butene to isobutene prior to the C—H bond activation, whereas the formation of Iso B from the La+trans-2-butene reaction may include the trans- to cis-butene isomerization after the C—H bond activation.

  10. Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl 2 O 4 spinel in oxidizing atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei-Zhen; Nie, Lei; Cheng, Yingwen

    With the capability of MgAl2O4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement in Pt exposure was achieved when themore » sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. A dynamic stabilization mechanism involving wetting\

  11. Reversible Interconversion between 2,5-Dimethylpyrazine and 2,5-Dimethylpiperazine by Iridium-Catalyzed Hydrogenation/Dehydrogenation for Efficient Hydrogen Storage.

    PubMed

    Fujita, Ken-Ichi; Wada, Tomokatsu; Shiraishi, Takumi

    2017-08-28

    A new hydrogen storage system based on the hydrogenation and dehydrogenation of nitrogen heterocyclic compounds, employing a single iridium catalyst, has been developed. Efficient hydrogen storage using relatively small amounts of solvent compared with previous systems was achieved by this new system. Reversible transformations between 2,5-dimethylpyrazine and 2,5-dimethylpiperazine, accompanied by the uptake and release of three equivalents of hydrogen, could be repeated almost quantitatively at least four times without any loss of efficiency. Furthermore, hydrogen storage under solvent-free conditions was also accomplished. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Highly Cooperative Tetrametallic Ruthenium-μ-Oxo-μ-Hydroxo Catalyst for the Alcohol Oxidation Reaction

    PubMed Central

    Yi, Chae S.; Zeczycki, Tonya N.; Guzei, Ilia A.

    2008-01-01

    The tetrametallic ruthenium-oxo-hydroxo-hydride complex {[(PCy3)(CO)RuH]4(μ4-O)(μ3-OH)(μ2-OH)} (1) was synthesized in two steps from the monomeric complex (PCy3)(CO)RuHCl (2). The tetrameric complex 1 was found to be a highly effective catalyst for the transfer dehydrogenation of alcohols. Complex 1 showed a different catalytic activity pattern towards primary and secondary benzyl alcohols, as indicated by the Hammett correlation for the oxidation reaction of p-X-C6H4CH2OH (ρ = −0.45) and p-X-C6H4CH(OH)CH3 (ρ = +0.22) (X = OMe, CH3, H, Cl, CF3). Both a sigmoidal curve from the plot of initial rate vs [PhCH(OH)CH3] (K0.5 = 0.34 M; Hill coefficient, n = 4.2±0.1) and the phosphine inhibition kinetics revealed the highly cooperative nature of the complex for the oxidation of secondary alcohols. PMID:18726005

  13. Mechanisms of deep benzene oxidation on the Pt(1 1 1) surface using temperature-programmed reaction methods

    NASA Astrophysics Data System (ADS)

    Marsh, Anderson L.; Gland, John L.

    2003-06-01

    The catalytic oxidation of benzene on the Pt(1 1 1) surface has been characterized using temperature-programmed reaction spectroscopy (TPRS) over a wide range of benzene and oxygen coverages. Coadsorbed atomic oxygen and benzene are the primary reactants on the surface during the initial oxidation step. Benzene is oxidized over the 300-500 K range to produce carbon dioxide and water. Carbon-hydrogen and carbon-carbon bond activation are clearly rate-limiting steps for these reactions. Preferential oxidation causes depletion of bridge-bonded benzene, suggesting enhanced reactivity in this bonding configuration. When oxygen is in excess on the surface, all of the surface carbon and hydrogen is oxidized. When benzene is in excess on the surface, hydrogen produced by dehydrogenation is desorbed after all of the surface oxygen has been consumed. Repulsive interactions between benzene and molecular oxygen dominate at low temperatures. Preadsorption of oxygen inhibits adsorption of less reactive benzene in threefold hollow sites. The desorption temperature of this non-reactive chemisorbed benzene decreases and overlaps with the multilayer desorption peak with increasing oxygen exposure. The results presented here provide a clear picture of rate-limiting steps during deep oxidation of benzene on the Pt(1 1 1) surface.

  14. Highly robust hydrogen generation by bio-inspired Ir complexes for dehydrogenation of formic acid in water: Experimental and theoretical mechanistic investigations at different pH

    DOE PAGES

    Wang, Wan -Hui; Fujita, Etsuko; Ertem, Mehmed Z.; ...

    2015-07-30

    Hydrogen generation from formic acid (FA), one of the most promising hydrogen storage materials, has attracted much attention due to the demand for the development of renewable energy carriers. Catalytic dehydrogenation of FA in an efficient and green manner remains challenging. Here, we report a series of bio-inspired Ir complexes for highly robust and selective hydrogen production from FA in aqueous solutions without organic solvents or additives. One of these complexes bearing an imidazoline moiety (complex 6) achieved a turnover frequency (TOF) of 322,000 h⁻¹ at 100 °C, which is higher than ever reported. The novel catalysts are very stablemore » and applicable in highly concentrated FA. For instance, complex 3 (1 μmol) affords an unprecedented turnover number (TON) of 2,050,000 at 60 °C. Deuterium kinetic isotope effect experiments and density functional theory (DFT) calculations employing a “speciation” approach demonstrated a change in the rate-determining step with increasing solution pH. This study provides not only more insight into the mechanism of dehydrogenation of FA but also offers a new principle for the design of effective homogeneous organometallic catalysts for H₂ generation from FA.« less

  15. Experimental investigation of the phase equilibria in the carbon dioxide-propane-3 M MDEA system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jou, F.Y.; Mather, A.E.; Otto, F.D.

    1995-07-01

    The treating of liquefied petroleum gas (LPG) to remove carbon dioxide and hydrogen sulfide using aqueous alkanolamine solutions is an important aspect of gas processing. One of the amines used in the natural gas industry is methyldiethanolamine (MDEA). Measurements of the phase equilibria in the carbon dioxide-propane-3 M MDEA system have been made at 25 and 40 C at pressures up to 15.5 MPa. Vapor-liquid, liquid-liquid, and vapor-liquid-liquid equilibria were determined. The vapor-liquid equilibrium data were compared with the model of Deshmukh and Mather.

  16. Effect of Oxygen Enrichment in Propane Laminar Diffusion Flames under Microgravity and Earth Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Bhatia, Pramod; Singh, Ravinder

    2017-06-01

    Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.

  17. Exhaust gas measurements in a propane fueled swirl stabilized combustor

    NASA Technical Reports Server (NTRS)

    Aanad, M. S.

    1982-01-01

    Exhaust gas temperature, velocity, and composition are measured and combustor efficiencies are calculated in a lean premixed swirl stabilized laboratory combustor. The radial profiles of the data between the co- and the counter swirl cases show significant differences. Co-swirl cases show evidence of poor turbulent mixing across the combustor in comparison to the counter-swirl cases. NO sub x levels are low in the combustor but substantial amounts of CO are present. Combustion efficiencies are low and surprisingly constant with varying outer swirl in contradiction to previous results under a slightly different inner swirl condition. This difference in the efficiency trends is expected to be a result of the high sensitivity of the combustor to changes in the inner swirl. Combustor operation is found to be the same for propane and methane fuels. A mechanism is proposed to explain the combustor operation and a few important characteristics determining combustor efficiency are identified.

  18. Adsorption of acrolein, propanal, and allyl alcohol on Pd(111): a combined infrared reflection–absorption spectroscopy and temperature programmed desorption study

    PubMed Central

    Dostert, Karl-Heinz; O'Brien, Casey P.; Mirabella, Francesca; Ivars-Barceló, Francisco

    2016-01-01

    Atomistic-level understanding of the interaction of α,β-unsaturated aldehydes and their derivatives with late transition metals is of fundamental importance for the rational design of new catalytic materials with the desired selectivity towards C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 C vs. CO bond partial hydrogenation. In this study, we investigate the interaction of acrolein, and its partial hydrogenation products propanal and allyl alcohol, with Pd(111) as a prototypical system. A combination of infrared reflection–absorption spectroscopy (IRAS) and temperature programmed desorption (TPD) experiments was applied under well-defined ultrahigh vacuum (UHV) conditions to obtain detailed information on the adsorption geometries of acrolein, propanal, and allyl alcohol as a function of coverage. We compare the IR spectra obtained for

  19. Conversion of alkanes to linear alkylsilanes using an iridium-iron-catalysed tandem dehydrogenation-isomerization-hydrosilylation

    NASA Astrophysics Data System (ADS)

    Jia, Xiangqing; Huang, Zheng

    2016-02-01

    The conversion of inexpensive, saturated hydrocarbon feedstocks into value-added speciality chemicals using regiospecific, catalytic functionalization of alkanes is a major goal of organometallic chemistry. Linear alkylsilanes represent one such speciality chemical—they have a wide range of applications, including release coatings, silicone rubbers and moulding products. Direct, selective, functionalization of alkanes at primary C-H bonds is difficult and, to date, methods for catalytically converting alkanes into linear alkylsilanes are unknown. Here, we report a well-defined, dual-catalyst system for one-pot, two-step alkane silylations. The system comprises a pincer-ligated Ir catalyst for alkane dehydrogenation and an Fe catalyst that effects a subsequent tandem olefin isomerization-hydrosilylation. This method exhibits exclusive regioselectivity for the production of terminally functionalized alkylsilanes. This dual-catalyst strategy has also been applied to regioselective alkane borylations to form linear alkylboronate esters.

  20. Cell-based evaluation of a novel Dictyophora indusiata polysaccharide against oxidative-induced erythrocyte hemolysis.

    PubMed

    Liao, W; Chen, L; Yu, B; Lei, Z; Wu, X; Yang, J; Ren, J

    2016-01-11

    The protective effect of a polysaccharide from Dictyophora indusiata(DP1)against oxidative hemolysis was comprehensively evaluated. The 2, 2-azobis (2-amidino-propane) dihydrochloride (AAPH)-induced erythrocyte hemolysis assay showed that DP1 exhibited excellent anti-hemolytic activity(87.4% hemolysis suppression ratio at 20 nmol/mL). Also, the formation of conjugated diene induced by cupric chloride (CuCl2) in plasma was significantly inhibited by DP1. Besides, DP1 could effectively inhibit AAPH-induced overproduction of reactive oxygen species (81.5% inhibition at 20 nmol/mL) and alleviated the enhancement of intracellular antioxidant enzymes including superoxide dismutase(SOD), glutathione peroxidase (GPX) and catalase (CAT) activities. Also, the malondialdehyde (MDA) formation caused by oxidative stress was suppressed by 57.0% at DP1 concentration of 20 nmol/mL. Taken together, the possible intracellular antioxidant detoxifying mechanism of DP1 was probably via preserving the activities of the antioxidant enzymes (SOD, GPx and CAT) as well as inhibiting lipid peroxidation, and thus alleviated erythrocytes oxidation and plasma oxidation.

  1. Flame quenching by a variable-width rectangular-slot burner as a function of pressure for various propane-oxygen-nitrogen mixtures

    NASA Technical Reports Server (NTRS)

    Berlad, Abraham L

    1954-01-01

    Flame quenching by a variable-width rectangular-slot burner as a function of pressure for various propane-oxygen-nitrogen mixtures was investigated. It was found that for cold gas temperatures of 27 degrees C, pressures of 0.1 ro 1.0 atmosphere, and volumetric oxygen reactions of the oxidant of 0.17, 0.21, 0.30, 0.50, and 0.70, the relation between pressure p and quenching distance d is approximately given by d (unity) p (superscript -r) with r = 1, for equivalence ratios approximately equal to one. The quenching equation of Simon and Belles was tested. For equivalence ratios less than or equal to unity, this equation may by used, together with one empirical constant, to predict the observed quenching distance within 4.2 percent. The equation in it's present form does not appear to be suitable for values of the equivalence ratio greater than unity. A quantitative theoretical investigation has also been made of the error implicit in the assumption that flame quenching by plane parallel plates of infinite extent is equivalent to that of a rectangular burner. A curve is presented which relates the magnitude of this error to the length-to-width ratio of the rectangular burner.

  2. Oxidative coupling of sp 2 and sp 3 carbon-hydrogen bonds to construct dihydrobenzofurans.

    PubMed

    Shi, Jiang-Ling; Wang, Ding; Zhang, Xi-Sha; Li, Xiao-Lei; Chen, Yu-Qin; Li, Yu-Xue; Shi, Zhang-Jie

    2017-08-10

    Metal-catalyzed cross-couplings provide powerful, concise, and accurate methods to construct carbon-carbon bonds from organohalides and organometallic reagents. Recent developments extended cross-couplings to reactions where one of the two partners connects with an aryl or alkyl carbon-hydrogen bond. From an economic and environmental point of view, oxidative couplings between two carbon-hydrogen bonds would be ideal. Oxidative coupling between phenyl and "inert" alkyl carbon-hydrogen bonds still awaits realization. It is very difficult to develop successful strategies for oxidative coupling of two carbon-hydrogen bonds owning different chemical properties. This article provides a solution to this challenge in a convenient preparation of dihydrobenzofurans from substituted phenyl alkyl ethers. For the phenyl carbon-hydrogen bond activation, our choice falls on the carboxylic acid fragment to form the palladacycle as a key intermediate. Through careful manipulation of an additional ligand, the second "inert" alkyl carbon-hydrogen bond activation takes place to facilitate the formation of structurally diversified dihydrobenzofurans.Cross-dehydrogenative coupling is finding increasing application in synthesis, but coupling two chemically distinct sites remains a challenge. Here, the authors report an oxidative coupling between sp 2 and sp 3 carbons by sequentially activating the more active aryl site followed by the alkyl position.

  3. Infrared Absorption Cross Sections of Cold Propane in the Low Frequency Region Between 600 - 1300 \\wn

    NASA Astrophysics Data System (ADS)

    Wong, Andy; Hargreaves, Robert J.; Billinghurst, Brant E.; Bernath, Peter F.

    2017-06-01

    Propane is one of several hydrocarbons present in the atmospheres of the Giant Planets, Jupiter and Saturn. In order to characterize the atmospheres of the Giant Planets, it is necessary to provide absorption cross sections which can be used to determine abundances. Absorption cross sections have been obtained from high resolution transmission spectra recorded at the Canadian Light Source Far Infrared beamline. The experimental conditions used mimic those of the atmospheres belonging to the Giant Planets using He and H_{2} as foreign broadeners.

  4. Supramolecular engineering through temperature-induced chemical modification of 2H-tetraphenylporphyrin on Ag(111): flat phenyl conformation and possible dehydrogenation reactions.

    PubMed

    Di Santo, Giovanni; Blankenburg, Stephan; Castellarin-Cudia, Carla; Fanetti, Mattia; Borghetti, Patrizia; Sangaletti, Luigi; Floreano, Luca; Verdini, Alberto; Magnano, Elena; Bondino, Federica; Pignedoli, Carlo A; Nguyen, Manh-Thuong; Gaspari, Roberto; Passerone, Daniele; Goldoni, Andrea

    2011-12-16

    Scratching the surface: Formation of a monolayer of 2H-tetraphenylporphyrins (2H-TPP) on Ag(111), either by sublimation of a multilayer in the range 525-600 K or by annealing (at the same temperature) a monolayer deposited at room temperature, induces a chemical modification of the molecules. Rotation of the phenyl rings into a flat conformation is observed and tentatively explained, by using DFT calculations, as a peculiar reaction due to molecular dehydrogenation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl 2O 4 spinel in oxidizing atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei -Zhen; Nie, Lei; Cheng, Yingwen

    With the capability of MgAl 2O 4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated in this paper, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2 nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement inmore » Pt exposure was achieved when the sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H 2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. Finally, a dynamic stabilization mechanism involving wetting/nucleation seems to be responsible for the evolution of surface compositions upon cyclic oxidizing and reducing thermal treatments.« less

  6. Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl 2O 4 spinel in oxidizing atmosphere

    DOE PAGES

    Li, Wei -Zhen; Nie, Lei; Cheng, Yingwen; ...

    2017-01-13

    With the capability of MgAl 2O 4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated in this paper, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2 nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement inmore » Pt exposure was achieved when the sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H 2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. Finally, a dynamic stabilization mechanism involving wetting/nucleation seems to be responsible for the evolution of surface compositions upon cyclic oxidizing and reducing thermal treatments.« less

  7. Role of CO2 in the oxy-dehydrogenation of ethylbenzene to styrene on the CeO2(111) surface

    NASA Astrophysics Data System (ADS)

    Fan, Hong-Xia; Feng, Jie; Li, Wen-Ying; Li, Xiao-Hong; Wiltowski, Tomasz; Ge, Qing-Feng

    2018-01-01

    The role of CO2 in the ethylbenzene oxy-dehydrogenation to styrene on the CeO2(111) surface was thoroughly investigated by the density functional theory (DFT) calculations. Results show that the first Csbnd H bond of ethylbenzene is activated via the oxo-insertion with a barrier of 1.70 eV, resulting in a 2-phenylethyl species and an H atom adsorbed on two-adjacent-lattice oxygen. The H adatom forms a hydroxyl-like species (denoted as O*H). The subsequent dehydrogenation to styrene can be assisted by either the next lattice oxygen (pathway R1) or the O*H species (pathway R2). The two pathways have almost the same activation energy (0.84 eV for R1 and 0.85 eV for R2), forming a new O*H and desorbing a H2O molecule while leaving an oxygen vacancy on the surface, respectively. In the presence of CO2, it will react with O*H through the reverse water gas shift reaction with an activation barrier of 0.98 eV and reaction energy of 0.30 eV. The reverse water gas shift reaction helps to clear the H adatoms from the lattice oxygen, thereby competing with styrene formation via pathway R2. However, the activation energy following the reverse water gas shift mechanism is 0.13 eV higher than that of styrene formation via pathway R2. Therefore, the formation of oxygen vacancy cannot be inhibited, while CO2 can react with the surface oxygen vacancy to produce CO with a high activation energy of 2.10 eV.

  8. Upgrading Lignocellulosic Products to Drop-In Biofuels via Dehydrogenative Cross-Coupling and Hydrodeoxygenation Sequence.

    PubMed

    Sreekumar, Sanil; Balakrishnan, Madhesan; Goulas, Konstantinos; Gunbas, Gorkem; Gokhale, Amit A; Louie, Lin; Grippo, Adam; Scown, Corinne D; Bell, Alexis T; Toste, F Dean

    2015-08-24

    Life-cycle analysis (LCA) allows the scientific community to identify the sources of greenhouse gas (GHG) emissions of novel routes to produce renewable fuels. Herein, we integrate LCA into our investigations of a new route to produce drop-in diesel/jet fuel by combining furfural, obtained from the catalytic dehydration of lignocellulosic pentose sugars, with alcohols that can be derived from a variety of bio- or petroleum-based feedstocks. As a key innovation, we developed recyclable transition-metal-free hydrotalcite catalysts to promote the dehydrogenative cross-coupling reaction of furfural and alcohols to give high molecular weight adducts via a transfer hydrogenation-aldol condensation pathway. Subsequent hydrodeoxygenation of adducts over Pt/NbOPO4 yields alkanes. Implemented in a Brazilian sugarcane biorefinery such a process could result in a 53-79% reduction in life-cycle GHG emissions relative to conventional petroleum fuels and provide a sustainable source of low carbon diesel/jet fuel. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Minor dehydrogenated and cleavaged dammarane-type saponins from the steamed roots of Panax notoginseng.

    PubMed

    Gu, Cheng-Zhen; Lv, Jun-Jiang; Zhang, Xiao-Xia; Yan, Hui; Zhu, Hong-Tao; Luo, Huai-Rong; Wang, Dong; Yang, Chong-Ren; Xu, Min; Zhang, Ying-Jun

    2015-06-01

    Nine new minor dehydrogenated and cleavaged dammarane-type triterpenoid saponins, namely notoginsenosides ST6-ST14 (1-9) were isolated from the steamed roots of Panax notoginseng, together with 14 known ones. Among them, 5-7 and 21-22 were protopanaxadiol type and the left 18 compounds, including 1-4, 8-20, and 23 were protopanaxatriol type saponins. Their structures were identified by extensive analysis of MS, 1D and 2D NMR spectra, and acidic hydrolysis. Resulted from the side chain cleavage, the new saponins 1 and 2 featured in a ketone group at C-25, and 3-5 had an aldehyde unit at C-23. The known saponins 12, 16 and 18 displayed the enhancing potential of neurite outgrowth of NGF-mediated PC12 cells at a concentration of 10 μM, while 20 exhibited acetyl cholinesterase inhibitory activity, with IC50 value of 13.97 μM. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Prediction of equilibrium distributions of isotopologues for methane, ethane and propane using density functional theory

    NASA Astrophysics Data System (ADS)

    Piasecki, Alison; Sessions, Alex; Peterson, Brian; Eiler, John

    2016-10-01

    Many previous studies have examined abundances of deuterium (D) and 13C within small organic molecules. Recent advances in analytical instrumentation add the abilities to measure site-specific and multiply substituted isotopologues of natural organics. Here we perform first-principles calculations of the equilibrium distributions of 13C and D in the volatile alkanes (including both single and multiple substitutions), as a guide to the interpretation of current measurements and as a basis for anticipating isotope effects that might be examined with future analytical techniques. The models we present illustrate several common themes of the isotopic structures of the small alkanes, including; temperature dependent enrichment of clumped isotope species, with amplitudes in the order D-D > 13C-D > 13C-13C; similarity in strength of such clumped isotope effects between different molecules (e.g., 13C-D clumping is ∼5‰ enriched at 300 K in methane, ethane and propane); a ∼10× contrast between the amplitudes of stronger adjacent substitution of two heavy isotopes vs. weaker non-adjacent substitution; temperature-dependent site-specific fractionation of D and 13C into interior positions of molecules relative to terminal methyl groups; and a relatively simple additive effect to the overall amplitude of enrichment when clumped and site specific effects combine in the same isotopologue. We suggest that the most promising tools suggested by our results are isotopic thermometers based on site-specific distribution of deuterium, which exhibits strong (∼100‰), highly temperature dependent fractionation between methyl groups and methylene carbon positions in propane (and likely other larger n-alkanes).

  11. Bulk gold catalyzed oxidation reactions of amines and isocyanides and iron porphyrin catalyzed N-H and O-H bond insertion/cyclization reactions of diamines and aminoalcohols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klobukowski, Erik

    2011-01-01

    This work involves two projects. The first project entails the study of bulk gold as a catalyst in oxidation reactions of isocyanides and amines. The main goal of this project was to study the activation and reactions of molecules at metal surfaces in order to assess how organometallic principles for homogeneous processes apply to heterogeneous catalysis. Since previous work had used oxygen as an oxidant in bulk gold catalyzed reactions, the generality of gold catalysis with other oxidants was examined. Amine N-oxides were chosen for study, due to their properties and use in the oxidation of carbonyl ligands in organometallicmore » complexes. When amine N-oxides were used as an oxidant in the reaction of isocyanides with amines, the system was able to produce ureas from a variety of isocyanides, amines, and amine N-oxides. In addition, the rate was found to generally increase as the amine N-oxide concentration increased, and decrease with increased concentrations of the amine. Mechanistic studies revealed that the reaction likely involves transfer of an oxygen atom from the amine N-oxide to the adsorbed isocyanide to generate an isocyanate intermediate. Subsequent nucleophilic attack by the amine yields the urea. This is in contrast to the bulk gold-catalyzed reaction mechanism of isocyanides with amines and oxygen. Formation of urea in this case was proposed to proceed through a diaminocarbene intermediate. Moreover, formation of the proposed isocyanate intermediate is consistent with the reactions of metal carbonyl ligands, which are isoelectronic to isocyanides. Nucleophilic attack at coordinated CO by amine N-oxides produces CO{sub 2} and is analogous to the production of an isocyanate in this gold system. When the bulk gold-catalyzed oxidative dehydrogenation of amines was examined with amine N-oxides, the same products were afforded as when O{sub 2} was used as the oxidant. When the two types of oxidants were directly compared using the same reaction system

  12. Influence of dissolved gases and heat treatments on the oxidative degradation of polyunsaturated fatty acids enriched dairy beverage.

    PubMed

    Giroux, Hélène J; Acteau, Geneviève; Sabik, Hassan; Britten, Michel

    2008-07-23

    The combined effect of dissolved gas composition and heat treatment on the oxidative degradation of a dairy beverage enriched with 2% linseed oil was studied. The dairy beverage was saturated with air, nitrogen, or a nitrogen/hydrogen mixture (4% hydrogen) before pasteurization or sterilization. Saturation with either nitrogen or a nitrogen/hydrogen mixture decreased the dissolved oxygen concentration in dairy beverages (Delta = 7.7 ppm), and the presence of hydrogen significantly reduced the redox potential (Delta = 287 mV). Heat treatments also reduced the oxygen content and redox potential, sterilization being more effective than pasteurization. Both pasteurization and sterilization induced the oxidative degradation of the beverages. On average, the propanal concentration increased by a factor of 2.3 after pasteurization and by a factor of 6.2 after sterilization. However, during storage, sterilized beverages resisted light-induced oxidation better than unheated or pasteurized beverages. Furthermore, saturation with nitrogen or a nitrogen/hydrogen mixture significantly reduced oxidative degradation and provided some protection against color changes during storage.

  13. Light-induced yellowing of selectively 13C-enriched dehydrogenation polymers (DHPs). Part 2, NMR assignments and photoyellowing of aromatic ring 1-, 3-, 4-, and 5-13C DHPs

    Treesearch

    Jim Parkas; Magnus Paulsson; Terashima Noritsugu; Ulla Westermark; Sally Ralph

    2004-01-01

    Light-induced yellowing of lignocellulosicmaterials has been studied using 13C-enriched DHP (dehydrogenation polymer), selectively 13C-enriched at positions 1, 3, 4, and 5 in the aromatic ring, and quantitative solution state 13C NMR spectroscopy. The NMR study confirmed the results of previous studies using side-chain labeled DHP, mainly that coniferyl alcohol end...

  14. The dehydrogenation mechanism during the incubation period in nanocrystalline MgH2.

    PubMed

    Shantilal Gangrade, Apurva; Aditya Varma, Akhil; Kishor Gor, Nikhil; Shriniwasan, Sweta; Tatiparti, Sankara Sarma V

    2017-03-01

    The dehydrogenation mechanism during the incubation period in nanocrystalline MgH 2 (low α: converted metal fraction and dα/dt) and the reasons for the occurrence of the incubation period at 320, 350, and 400 °C were investigated. Pre-existing Mg crystallites can enhance Mg nucleation during the incubation period, as suggested by the estimated activation energy for nucleation (12 ± 2 kJ per mol H). The released H-atoms enter MgH 2 as interstitials, as indicated by the MgH 2 unit-cell contraction, resulting in increased equatorial Mg-H bond length, decreased charge-density distribution in the interstitial region, as observed from the charge-density maps, and decreased H-H distance in the {001} plane up to the midway of the incubation period. Eventually, hydrogen vacancies are created, as indicated by the red shift in the E g and A 1g peaks of Raman spectra. The high estimated activation energy for the growth of Mg (209 ± 8 kJ per mol H) renders it difficult and explains the reason for the presence of an incubation period.

  15. Neutron powder diffraction studies as a function of temperature of structure II hydrate formed from propane

    USGS Publications Warehouse

    Rawn, C.J.; Rondinone, A.J.; Chakoumakos, B.C.; Circone, S.; Stern, L.A.; Kirby, S.H.; Ishii, Y.

    2003-01-01

    Neutron powder diffraction data confirm that hydrate samples synthesized with propane crystallize as structure type II hydrate. The structure has been modeled using rigid-body constraints to describe C3H8 molecules located in the eight larger polyhedral cavities of a deuterated host lattice. Data were collected at 12, 40, 100, 130, 160, 190, 220, and 250 K and used to calculate the thermal expansivity from the temperature dependence of the lattice parameters. The data collected allowed for full structural refinement of atomic coordinates and the atomic-displacement parameters.

  16. A computational study of the catalytic aerobic epoxidation of propylene over the coordinatively unsaturated metal-organic framework Fe3(btc)2: formation of propylene oxide and competing reactions.

    PubMed

    Maihom, Thana; Sawangphruk, Montree; Probst, Michael; Limtrakul, Jumras

    2018-02-28

    The aerobic epoxidation of propylene over the metal-organic framework Fe 3 (btc) 2 (btc = 1,3,5-benzentricarboxylate) as catalyst has been investigated by means of density functional calculations. The mechanisms of the reaction towards propylene oxide, carbonylic products (acetone and propanal) and a pi-allyl radical were investigated to assess the efficiency of Fe 3 (btc) 2 for the selective formation of propylene oxide. Propylene oxide and carbonylic products are formed on Fe 3 (btc) 2 by proceeding via propyleneoxy intermediates in the first step. Subsequently, the intermediates can then either be transformed to propylene oxide by way of ring closure of the intermediate or to the carbonylic compounds of propanal and acetone via 1,2-hydride shift. The results show that the formation of propylene oxide is favored over the formation of carbonylic products mainly due to the activation barriers being 2-3 times smaller. The activation barriers for the formation of the propyleneoxy intermediates on the Fe 3 (btc) 2 catalyst for the first and second reaction cycle are also lower than the barriers obtained for the formation of the pi-allyl radical that acts as the precursor to combustion products. On the basis of these computational results, we therefore expect a high catalytic selectivity of the Fe 3 (btc) 2 catalyst with respect to the formation of propylene oxide. We also compared the catalytic activities of Fe 3 (btc) 2 and Cu 3 (btc) 2 . The activation energy of the rate-determining step is almost 2 times lower for Fe 3 (btc) 2 than that for Cu 3 (btc) 2 , due to a larger charge transfer from the catalytic site to the O 2 molecule in the case of Fe 3 (btc) 2 .

  17. Hydrogen and Nitrogen Broadened Ethane and Propane Absorption Cross Sections

    NASA Astrophysics Data System (ADS)

    Hargreaves, Robert J.; Appadoo, Dominique; Billinghurst, Brant E.; Bernath, Peter F.

    2015-06-01

    High-resolution infrared absorption cross sections are presented for the ν9 band of ethane (C2H6) at 823 cm-1. These cross sections make use of spectra recorded at the Australian Synchrotron using a Fourier transform infrared spectrometer with maximum resolution of 0.00096 cm-1. The spectra have been recorded at 150, 120 and 90 K for hydrogen and nitrogen broadened C2H6. They cover appropriate temperatures, pressures and broadening gases associated with the atmospheres of the Outer Planets and Titan, and will improve atmospheric retrievals. The THz/Far-IR beamline at the Australian Synchrotron is unique in combining a high-resolution Fourier transform spectrometer with an 'enclosive flow cooling' (EFC) cell designed to study molecules at low temperatures. The EFC cell is advantageous at temperatures for which the vapor pressure is very low, such as C2H6 at 90 K. Hydrogen broadened absorption cross sections of propane between 700 and 1200 cm-1 will also be presented based on spectra obtained at the Canadian Light Source.

  18. Temperature and pressure influence on maximum rates of pressure rise during explosions of propane-air mixtures in a spherical vessel.

    PubMed

    Razus, D; Brinzea, V; Mitu, M; Movileanu, C; Oancea, D

    2011-06-15

    The maximum rates of pressure rise during closed vessel explosions of propane-air mixtures are reported, for systems with various initial concentrations, pressures and temperatures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.3 bar; T(0)=298-423 K). Experiments were performed in a spherical vessel (Φ=10 cm) with central ignition. The deflagration (severity) index K(G), calculated from experimental values of maximum rates of pressure rise is examined against the adiabatic deflagration index, K(G, ad), computed from normal burning velocities and peak explosion pressures. At constant temperature and fuel/oxygen ratio, both the maximum rates of pressure rise and the deflagration indices are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, the maximum rates of pressure rise and deflagration indices are slightly influenced by the initial temperature; some influence of the initial temperature on maximum rates of pressure rise is observed only for propane-air mixtures far from stoichiometric composition. The differentiated temperature influence on the normal burning velocities and the peak explosion pressures might explain this behaviour. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Synthesis of ZnMn₂O₄ Nanoparticles by a Microwave-Assisted Colloidal Method and their Evaluation as a Gas Sensor of Propane and Carbon Monoxide.

    PubMed

    Morán-Lázaro, Juan Pablo; Guillen-López, Erwin Said; López-Urias, Florentino; Muñoz-Sandoval, Emilio; Blanco-Alonso, Oscar; Guillén-Bonilla, Héctor; Guillén-Bonilla, Alex; Rodríguez-Betancourtt, Verónica María; Sanchez-Tizapa, Marciano; Olvera-Amador, María de la Luz

    2018-02-27

    Spinel-type ZnMn₂O₄ nanoparticles were synthesized via a simple and inexpensive microwave-assisted colloidal route. Structural studies by X-ray diffraction showed that a spinel crystal phase of ZnMn₂O₄ was obtained at a calcination temperature of 500 °C, which was confirmed by Raman and UV-vis characterizations. Spinel-type ZnMn₂O₄ nanoparticles with a size of 41 nm were identified by transmission electron microscopy. Pellet-type sensors were fabricated using ZnMn₂O₄ nanoparticles as sensing material. Sensing measurements were performed by exposing the sensor to different concentrations of propane or carbon monoxide at temperatures in the range from 100 to 300 °C. Measurements performed at an operating temperature of 300 °C revealed a good response to 500 ppm of propane and 300 ppm of carbon monoxide. Hence, ZnMn₂O₄ nanoparticles possess a promising potential in the gas sensors field.

  20. Redox Chemistry of Gold(I) Phosphine Thiolates: Sulfur-Based Oxidation

    PubMed Central

    Jiang, Tong; Wei, Gang; Turmel, Cristopher; Bruce, Alice E.

    1994-01-01

    The redox chemistry of mononuclear and dinuclear gold(I) phosphine arylthiolate complexes was recently investigated by using electrochemical, chemical, and photochemical techniques. We now report the redox chemistry of dinuclear gold(I) phosphine complexes containing aliphatic dithiolate ligands. These molecules differ from previously studied gold(I) phosphine thiolate complexes in that they are cyclic and contain aliphatic thiolates. Cyclic voltammetry experiments of Au2 (LL)(pdt) [pdt = propanedithiol; LL = 1,2-bis(diphenylphosphino)-ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp), 1,4-bis(diphenylphosphino)butane (dppb), 1,5-bis(diphenylphosphino)pentane (dpppn)] in 0.1 M TBAH/CH3CN or CH2Cl2 solutions at 50 to 500 mV/sec using glassy carbon or platinum electrodes, show two irreversible anodic processes at ca. +0.6 and +1.1 V (vs. SCE). Bulk electrolyses at +0.9 V and +1.4 V result in n values of 0.95 and 3.7, respectively. Chemical oxidation of Au2(dppp)(pdt) using one equivalent of Br2 (2 oxidizing equivalents) yields 1,2-dithiolane and Au2(dppp)Br2. The reactivity seen upon mild oxidation ≤ +1.0 V is consistent with formal oxidation of a thiolate ligand, followed by a fast chemical reaction that results in cleavage of a second gold-sulfur bond. Oxidation at higher potentials (≥ +1.3 V) is consistent with oxidation of gold(I) to gold(III). Structural and electrochemical differences between gold(I) aromatic and aliphatic thiolate oxidation processes are discussed. PMID:18476260