Science.gov

Sample records for propidium iodide-stained cells

  1. Detection of apoptotic cells using propidium iodide staining.

    PubMed

    Newbold, Andrea; Martin, Ben P; Cullinane, Carleen; Bots, Michael

    2014-11-01

    Flow cytometry assays are often used to detect apoptotic cells in in vitro cultures. Depending on the experimental model, these assays can also be useful in evaluating apoptosis in vivo. In this protocol, we describe a propidium iodide (PI) flow cytometry assay to evaluate B-cell lymphomas that have undergone apoptosis in vivo. B-cell lymphoma cells are injected into recipient mice and, on tumor formation, the mice are treated with the apoptosis inducer vorinostat (a histone deacetylase inhibitor). Tumor samples collected from the lymph nodes and/or the spleen are used to prepare a single-cell suspension that is exposed to a hypotonic solution containing the fluorochrome PI. The DNA content of the cells, now labeled with PI, is analyzed by flow cytometry. Nuclear DNA content is lost during apoptosis, resulting in a hypodiploid (or sub-G1) DNA profile during flow cytometry. In contrast, healthy cells display a sharp diploid DNA profile. PMID:25368311

  2. Quantification of apoptosis and necroptosis at the single cell level by a combination of Imaging Flow Cytometry with classical Annexin V/propidium iodide staining.

    PubMed

    Pietkiewicz, Sabine; Schmidt, Jörn H; Lavrik, Inna N

    2015-08-01

    Precisely identifying the type of programmed cell death is one of the key questions in contemporary biomedical research. We developed a straightforward approach allowing quantitative discrimination between two types of cell death on the single cell level: apoptosis and necroptosis. This method uses the combination of imaging flow cytometry with classical Annexin V/propidium iodide staining, which allows for the ascertainment of typical features of dying cells: exposure of the phospholipid phosphatidylserine and the loss of membrane integrity. Image-based analysis of nuclear morphology enables us to distinguish between secondary necrotic/late apoptotic and necroptotic cells directly in one assay. This is a major advantage compared to other contemporary approaches of necroptosis detection, which require a parallel application of several methods. This approach can be used for the quantitative assessment of cell death in cell and systems biology studies of signal transduction networks. PMID:25975759

  3. NEW METHOD TO DETERMINE 'GIARDIA' CYST VIABILITY: CORRELATION OF FLUORESCEIN DIACETATE AND PROPIDIUM IODIDE STAINING WITH ANIMAL INFECTIVITY

    EPA Science Inventory

    The viability of Giardia muris cysts was studied using the fluorogenic dyes, fluorescein diacetate (FDA) and propidium iodide (PI). Using the mouse model for giardiasis, FDA or PI stained cysts were inoculated into neonatal mice. Feces were examined at days 3, 5, 8, and 11 post-i...

  4. Flow cytometric lifetime-based cell viability assay using propidium iodide

    NASA Astrophysics Data System (ADS)

    Steinkamp, John A.; Lehnert, Bruce E.; Lehnert, Nancy M.

    1999-05-01

    Assays which discriminate and enumerate dying or dead cells are important in various types of cellular studies. In many instances, there is a need to identify dead cells that interfere with fluorescent probes which are used to measure functional and physiological properties in viable cells. For example, dead cells can introduce analytical errors arising from (1) nonspecific uptake of fluorescent probes, leading to erroneous percentages of positive labeled cells, (2) increased autofluorescence, and (3) altered antigen expression. The ability to detect dead cells is also of importance in determining the effectiveness of cytotoxic agents. Propidium iodide (PPI) exclusion, which is analogous to the non- fluorescent trypan blue dye test for viability, is used extensively in flow cytometry assays. However, the use of PI can potentially limit the application of additional fluorescent probes due to spectral overlap of the probe with PI. In this report we present phase-resolved fluorescence studies on rat and murine thymus cells labeled with phycoerythrin-antiThy 1.1 and phycoerythrin/Texas Red-antiThy 1.2 immunofluorescence markers, respectively, and PI. Overlapping emission spectra are resolved based on differences in fluorescence lifetimes of the probes and PI. These studies demonstrate a new lifetime-based viability method for use in analysis of immunofluorescent probes and for assaying the dynamics of cell killing.

  5. Comparative Analysis and Limitations of Ethidium Monoazide and Propidium Monoazide Treatments for the Differentiation of Viable and Nonviable Campylobacter Cells

    PubMed Central

    Seinige, Diana; Krischek, Carsten; Klein, Günter

    2014-01-01

    The lack of differentiation between viable and nonviable bacterial cells limits the implementation of PCR-based methods for routine diagnostic approaches. Recently, the combination of a quantitative real-time PCR (qPCR) and ethidium monoazide (EMA) or propidium monoazide (PMA) pretreatment has been described to circumvent this disadvantage. In regard to the suitability of this approach for Campylobacter spp., conflicting results have been reported. Thus, we compared the suitabilities of EMA and PMA in various concentrations for a Campylobacter viability qPCR method. The presence of either intercalating dye, EMA or PMA, leads to concentration-dependent shifts toward higher threshold cycle (CT) values, especially after EMA treatment. However, regression analysis resulted in high correlation coefficient (R2) values of 0.99 (EMA) and 0.98 (PMA) between Campylobacter counts determined by qPCR and culture-based enumeration. EMA (10 ?g/ml) and PMA (51.10 ?g/ml) removed DNA selectively from nonviable cells in mixed samples at viable/nonviable ratios of up to 1:1,000. The optimized EMA protocol was successfully applied to 16 Campylobacter jejuni and Campylobacter coli field isolates from poultry and indicated the applicability for field isolates as well. EMA-qPCR and culture-based enumeration of Campylobacter spiked chicken leg quarters resulted in comparable bacterial cell counts. The correlation coefficient between the two analytical methods was 0.95. Nevertheless, larger amounts of nonviable cells (>104) resulted in an incomplete qPCR signal reduction, representing a serious methodological limitation, but double staining with EMA considerably improved the signal inhibition. Hence, the proposed Campylobacter viability EMA-qPCR provides a promising rapid method for diagnostic applications, but further research is needed to circumvent the limitation. PMID:24487529

  6. A new method for the analysis of plasma cell DNA content in multiple myeloma samples using a CD38/propidium iodide double staining technique.

    PubMed

    Orfäo, A; García-Sanz, R; López-Berges, M C; Belén Vidriales, M; González, M; Caballero, M D; San Miguel, J F

    1994-12-01

    In the present paper a CD38/propidium iodide double staining technique is described which separately assesses the cell cycle distribution of myelomatous plasma cells from that of the residual normal hemopoietic cells. For this purpose, bone marrow (BM) cells from a group of 42 untreated multiple myeloma patients were analyzed. Of these, 23 cases were aneuploid (55%) and 19 diploid (45%). The use of the CD38/propidium iodide double staining method allowed a clear separation between CD38 strong positive cells from the remaining bone marrow populations, cell sorting experiments confirming that plasma cells were almost exclusively contained in the former fraction where they represented 97 +/- 2% of the total cells sorted. In all cases, the S-phase in plasma cells and in the remaining normal hemopoietic bone marrow cells was assessed, being higher in normal hemopoietic cells (8.0 +/- 6.3%) than in plasma cells (3.3 +/- 2.6%, P < 0.002). In addition, there was no correlation between the S-phase of the neoplastic and normal bone marrow cells (r = 0.22; P > 0.10); this work therefore shows that the assessment of the total proliferative rate of bone marrow samples does not reflect either the proliferation of normal cells or that of neoplastic plasma cells but will depend on the proliferative rate and the percentage of each population within the sample, which can be assessed by the technique described here. PMID:7533074

  7. FV peptide induces apoptosis in HEp 2 and HeLa cells: an insight into the mechanism of induction.

    PubMed

    Sri Balasubashini, M; Karthigayan, S; Somasundaram, S T; Balasubramanian, T; Rukkumani, R; Menon, Venugopal P

    2006-01-01

    The present study is an attempt to evaluate the antiproliferative potential of peptide (7.6 kDa) from lionfish (Pterios volitans) venom on cultured HEp2 and HeLa cells. Different dose of purified peptide (1, 2 and 4 microg/ml) at different time points (12, 24 and 36 hrs) were tested for antiproliferative index of the peptide. Among them, 2 microg/ml at 24 hrs was found to effectively inhibit cancer cell growth in vitro and did not cause any adverse effect on normal human lymphocytes. Apoptosis was examined by propidium iodide staining, confirmed by the expression of caspase-8 and caspase-3, down regulation of Bcl-2 expression and DNA fragmentation in treated cells, when compared to untreated HEp2 and HeLa cells. Thus fish venom peptide was found to selectively induce apoptosis in cancer cell. PMID:17137521

  8. FV peptide induces apoptosis in HEp 2 and HeLa cells: an insight into the mechanism of induction

    PubMed Central

    Sri Balasubashini, M; Karthigayan, S; Somasundaram, ST; Balasubramanian, T; Rukkumani, R; Menon, Venugopal P

    2006-01-01

    The present study is an attempt to evaluate the antiproliferative potential of peptide (7.6 kDa) from lionfish (Pterios volitans) venom on cultured HEp2 and HeLa cells. Different dose of purified peptide (1, 2 and 4 ?g/ml) at different time points (12, 24 and 36 hrs) were tested for antiproliferative index of the peptide. Among them, 2 ?g/ml at 24 hrs was found to effectively inhibit cancer cell growth in vitro and did not cause any adverse effect on normal human lymphocytes. Apoptosis was examined by propidium iodide staining, confirmed by the expression of caspase-8 and caspase-3, down regulation of Bcl-2 expression and DNA fragmentation in treated cells, when compared to untreated HEp2 and HeLa cells. Thus fish venom peptide was found to selectively induce apoptosis in cancer cell. PMID:17137521

  9. Limitations in the Use of Fluorescein Diacetate/Propidium Iodide (FDA/PI) and Cell Permeable Nucleic Acid Stains for Viability Measurements of Isolated Islets of Langerhans.

    PubMed

    Boyd, Vinc; Cholewa, Olivia Maria; Papas, Klearchos K

    2008-03-01

    BACKGROUND: A review of current literature shows that the combined use of the cell permeable esterase-substrate fluorescein diacetate (FDA) and the cell impermeant nucleic acid stain propidium iodide (PI) to be one of the most common fluorescence-based methods to assess the viability of isolated islets of Langerhans, and it is currently used for islet product release prior to transplantation in humans. However, results from this assay do not correlate with islet viability and function or islet transplantation success in animals or humans (Eckhard et al. 2004; Ricordi et al. 2001). This may be in part attributed to considerable differences as well as discrepancies in the use of these reagents on islets. We critically surveyed the literature and evaluated the impact of a number of variables associated with the use of FDA/PI to determine their reliability in assessing islet cell viability. In addition, we evaluated other fluorescent stains, such as SYTO(R)13, SYTO(R)24 and SYBR(R)14 as possible alternatives to FDA. RESULTS: We found that the stability of stains in storage and stock solutions, the number of islets stained, concentration of stains, staining incubation time, the buffer/media used, and the method of examining islets were significant in the final scoring of viability. For archival file photos, the exposure time and camera/software settings can also impact interpretation of viability. Although our results show that FDA does detect intracellular esterase activity and staining with PI does assess cell membrane integrity, the results obtained from using these stains did not correlate directly with expected islet function and viability per transplantation into diabetic athymic nude mice (Papas et al. 2007). In addition, the use of two nucleic acid stains, such as SYTO(R)13 and PI, for live/dead scoring exhibited staining anomalies which limit their accuracy in assessing islet viability. CONCLUSIONS: From a review of the literature and from our observations on the impact of reagent handling and various staining and imaging parameters used to visually evaluate islets, consistent interpretation of islet cell membrane integrity and viability is dependent upon a number of factors. We discuss the utility and limitations of these reagents in evaluating islet cell membrane integrity and viability. PMID:20814586

  10. Pleiotropic effects of cadmium in mesangial cells

    SciTech Connect

    Xiao Weiqun; Liu Ying; Templeton, Douglas M.

    2009-08-01

    The mesangial cell of the renal glomerulus is exposed to circulating toxic substances and is a target involved in the glomerular component of chronic occupational and environmental exposure to cadmium. We review evidence for the involvement of cadmium in mesangial cell pathology, including effects on cell signaling, oncogene expression, and cell death. Previously we have shown that cadmium can inhibit apoptosis initiated through both the extrinsic (death ligand receptor) and intrinsic (mitochondrial) pathways, whereas exposure of mesangial cells to 10 {mu}M CdCl{sub 2} for 6 h initiates caspase-independent cell death through both apoptotic and apoptotic-like (annexin V positive, propidium iodide staining) mechanisms. Apoptotic death is dependent upon activation of Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMK-II). In the present study we show that low level exposure of mesangial cells to Cd{sup 2+} (0.5 {mu}M) initiates cell survival signals including PI3 kinase/Akt signaling, also dependent on CaMK-II, that are eventually overcome resulting in caspase-dependent cell death. These studies underscore the roles of cell signaling in various modes of cell death, and in particular the central role of CaMK-II in cadmium toxicology of the mesangial cell.

  11. Multinucleation and cell dysfunction induced by amorphous silica nanoparticles in an L-02 human hepatic cell line.

    PubMed

    Wang, Wen; Li, Yang; Liu, Xiaomei; Jin, Minghua; Du, Haiying; Liu, Ying; Huang, Peili; Zhou, Xianqing; Yuan, Lan; Sun, Zhiwei

    2013-01-01

    Silica nanoparticles (SNPs) are one of the most important nanomaterials, and have been widely used in a variety of fields. Therefore, their effects on human health and the environment have been addressed in a number of studies. In this work, the effects of amorphous SNPs were investigated with regard to multinucleation in L-02 human hepatic cells. Our results show that L-02 cells had an abnormally high incidence of multinucleation upon exposure to silica, that increased in a dose-dependent manner. Propidium iodide staining showed that multinucleated cells were arrested in G2/M phase of the cell cycle. Increased multinucleation in L-02 cells was associated with increased generation of cellular reactive oxygen species and mitochondrial damage on flow cytometry and confocal microscopy, which might have led to failure of cytokinesis in these cells. Further, SNPs inhibited cell growth and induced apoptosis in exposed cells. Taken together, our findings demonstrate that multinucleation in L-02 human hepatic cells might be a failure to undergo cytokinesis or cell fusion in response to SNPs, and the increase in cellular reactive oxygen species could be responsible for the apoptosis seen in both mononuclear cells and multinucleated cells. PMID:24092974

  12. Altered antioxidant system stimulates dielectric barrier discharge plasma-induced cell death for solid tumor cell treatment.

    PubMed

    Kaushik, Nagendra K; Kaushik, Neha; Park, Daehoon; Choi, Eun H

    2014-01-01

    This study reports the experimental findings and plasma delivery approach developed at the Plasma Bioscience Research Center, Korea for the assessment of antitumor activity of dielectric barrier discharge (DBD) for cancer treatment. Detailed investigation of biological effects occurring after atmospheric pressure non-thermal (APNT) plasma application during in vitro experiments revealed the role of reactive oxygen species (ROS) in modulation of the antioxidant defense system, cellular metabolic activity, and apoptosis induction in cancer cells. To understand basic cellular mechanisms, we investigated the effects of APNT DBD plasma on antioxidant defense against oxidative stress in various malignant cells as well as normal cells. T98G glioblastoma, SNU80 thyroid carcinoma, KB oral carcinoma and a non-malignant HEK293 embryonic human cell lines were treated with APNT DBD plasma and cellular effects due to reactive oxygen species were observed. Plasma significantly decreased the metabolic viability and clonogenicity of T98G, SNU80, KB and HEK293 cell lines. Enhanced ROS in the cells led to death via alteration of total antioxidant activity, and NADP+/NADPH and GSH/GSSG ratios 24 hours (h) post plasma treatment. This effect was confirmed by annexin V-FITC and propidium iodide staining. These consequences suggested that the failure of antioxidant defense machinery, with compromised redox status, might have led to sensitization of the malignant cells. These findings suggest a promising approach for solid tumor therapy by delivering a lethal dose of APNT plasma to tumor cells while sparing normal healthy tissues. PMID:25068311

  13. Altered Antioxidant System Stimulates Dielectric Barrier Discharge Plasma-Induced Cell Death for Solid Tumor Cell Treatment

    PubMed Central

    Park, Daehoon; Choi, Eun H.

    2014-01-01

    This study reports the experimental findings and plasma delivery approach developed at the Plasma Bioscience Research Center, Korea for the assessment of antitumor activity of dielectric barrier discharge (DBD) for cancer treatment. Detailed investigation of biological effects occurring after atmospheric pressure non-thermal (APNT) plasma application during in vitro experiments revealed the role of reactive oxygen species (ROS) in modulation of the antioxidant defense system, cellular metabolic activity, and apoptosis induction in cancer cells. To understand basic cellular mechanisms, we investigated the effects of APNT DBD plasma on antioxidant defense against oxidative stress in various malignant cells as well as normal cells. T98G glioblastoma, SNU80 thyroid carcinoma, KB oral carcinoma and a non-malignant HEK293 embryonic human cell lines were treated with APNT DBD plasma and cellular effects due to reactive oxygen species were observed. Plasma significantly decreased the metabolic viability and clonogenicity of T98G, SNU80, KB and HEK293 cell lines. Enhanced ROS in the cells led to death via alteration of total antioxidant activity, and NADP+/NADPH and GSH/GSSG ratios 24 hours (h) post plasma treatment. This effect was confirmed by annexin V-FITC and propidium iodide staining. These consequences suggested that the failure of antioxidant defense machinery, with compromised redox status, might have led to sensitization of the malignant cells. These findings suggest a promising approach for solid tumor therapy by delivering a lethal dose of APNT plasma to tumor cells while sparing normal healthy tissues. PMID:25068311

  14. Comparative analysis of the cytotoxic effect of 7-prenyloxycoumarin compounds and herniarin on MCF-7 cell line

    PubMed Central

    Mousavi, Seyed Hadi; Davari, Atiyeh-Sadat; Iranshahi, Mehrdad; Sabouri-Rad, Sarvenaz; Tayarani Najaran, Zahra

    2015-01-01

    Objective: 7-prenyloxycoumarins are a group of secondary metabolites that are found mainly in plants belonging to the Rutaceae and Umbelliferae families. This study was designed to evaluate and compare the cytotoxic and apoptotic activity of 7-prenyloxycoumarin compounds and herniarin on MCF-7, a breast carcinoma cell line. Materials and Methods: Cells were cultured in RPMI medium and incubated with different concentrations of auraptene, herniarin, umbelliferone, and umbelliprenin. Cell viability was quantified by MTT assay. Apoptotic cells were determined using propidium iodide staining of DNA fragmentation by flow cytometry (sub-G1peak). Bax protein expression was detected by western blot to investigate the underlying mechanism. Results: Doses which induced 50% cell growth inhibition (IC50) against MCF-7 cells with auraptene, herniarin, umbelliferone, and umbelliprenin were calculated (59.7, 207.6, 476.3, and 73.4 µM), respectively. Auraptene induced a sub-G1 peak in the flow cytometry histogram of treated cells compared to control cells, and DNA fragmentation suggested the induction of apoptosis. Western blot analysis showed that auraptene significantly up-regulated Bax expression in MCF-7 cells compared to untreated controls. Conclusion: Auraptene exerts cytotoxic and apoptotic effects in breast carcinoma cell line and can be considered for further mechanistic evaluations in human cancer cells. These results candidate auraptene for further studies to evaluate its biosafety and anti-cancer effects. PMID:26693409

  15. Phloroglucinol Protects INS-1 Pancreatic ?-cells Against Glucotoxicity-Induced Apoptosis.

    PubMed

    Park, Mi Hwa; Han, Ji Sook

    2015-11-01

    Decreasing numbers, and impaired function, of pancreatic ?-cells are key factors in the development of type 2 diabetes. This study was designed to investigate whether phloroglucinol protected pancreatic ?-cells against glucotoxicity-induced apoptosis using a rat insulinoma cell line (INS-1). High glucose treatment (30?mM) induced INS-1 cell death; however, the level of glucose-induced apoptosis was significantly reduced in cells treated with 100-?M phloroglucinol. Treatment with 10-100-?M phloroglucinol increased cell viability and decreased intracellular levels of reactive oxygen species, nitric oxide, and lipid peroxidation dose-dependently in INS-1 cells pretreated with high glucose. Furthermore, phloroglucinol treatment markedly reduced the protein expression of Bax, cytochrome c, and caspase 9, while increasing anti-apoptotic Bcl-2 protein expression. Cell death type was examined using annexin V/propidium iodide staining, revealing that phloroglucinol markedly reduced high glucose-induced apoptosis. These results demonstrated that phloroglucinol could be useful as a potential therapeutic agent for the protection of pancreatic ?-cells against glucose-induced apoptosis. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26152514

  16. Synthesis, structural characterization, and anticancer activity of a monobenzyltin compound against MCF-7 breast cancer cells

    PubMed Central

    Fani, Somayeh; Kamalidehghan, Behnam; Lo, Kong Mun; Hashim, Najihah Mohd; Chow, Kit May; Ahmadipour, Fatemeh

    2015-01-01

    A new monoorganotin Schiff base compound, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, (compound C1), was synthesized, and its structural features were investigated by spectroscopic techniques and single-crystal X-ray diffractometry. Compound C1 was exposed to several human cancer cell lines, including breast adenocarcinoma cell lines MCF-7 and MDA-MB-231, ovarian adenocarcinoma cell lines Skov3 and Caov3, and prostate cancer cell line PC3, in order to examine its cytotoxic effect for different forms of cancer. Human hepatic cell line WRL-68 was used as a normal cell line. We concentrated on the MCF-7 cell line to detect possible underlying mechanism involvement of compound C1. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed the strongest cytotoxicity of compound C1 against MCF-7 cells, with a half maximal inhibitory concentration (IC50) value of 2.5±0.50 ?g/mL after 48 hours treatment. The IC50 value was >30 ?g/mL in WRL-68 cells. Induced antiproliferative activity of compound C1 for MCF-7 cells was further confirmed by lactate dehydrogenase, reactive oxygen species, acridine orange/propidium iodide staining, and DNA fragmentation assays. A significant increase of lactate dehydrogenase release in treated cells was observed via fluorescence analysis. Luminescent analysis showed significant growth in intracellular reactive oxygen species production after treatment. Morphological changes of necrosis and early and late apoptosis stages were observed in treated cells after staining with acridine orange/propidium iodide. DNA fragmentation was observed as a characteristic of apoptosis in treated cells. Results of the present study obviously reveal potential cytotoxic effects of compound C1 against human breast cancer MCF-7 cells. PMID:26648695

  17. In Vitro Antiproliferative Effect of the Acetone Extract of Rubus fairholmianus Gard. Root on Human Colorectal Cancer Cells

    PubMed Central

    Plackal Adimuriyil George, Blassan; Tynga, Ivan Mfouo

    2015-01-01

    Plants and plant derived products exert chemopreventive effects on various cancer cell lines by the induction of cell death mechanisms. The effects of root acetone extract of Rubus fairholmianus (RFRA) on the proliferation of human colorectal cancer (Caco-2) cells have been investigated in this study. The extract led to a dose dependent decrease in both viability and proliferation and increased cytotoxicity using trypan blue exclusion, adenosine 5?-triphosphate (ATP), and lactate dehydrogenase (LDH) assay. The morphological features of the treated cells were supportive for the antiproliferative activity. The Annexin V/propidium iodide staining indicated that R. fairholmianus induced toxic effects in Caco-2 cells and the percentages of the early and late apoptotic population significantly increased when compared with control cells. Also we studied the apoptosis inducing ability of the extract by analysing caspase 3/7 activity and the induction of cell death via the effector caspases was confirmed; the activity increased in treated cells compared with control. Thus the present findings highlight that the R. fairholmianus root acetone extract exhibits antiproliferative activity on Caco-2 cells by the induction of apoptosis via caspase dependent pathway. PMID:26078938

  18. Allicin induces apoptosis in gastric cancer cells through activation of both extrinsic and intrinsic pathways.

    PubMed

    Zhang, Wenlu; Ha, Minwen; Gong, Yuehua; Xu, Ying; Dong, Nannan; Yuan, Yuan

    2010-12-01

    Allicin is an active compound derived from garlic that has been shown to have antitumor properties in vitro. The current study was designed to explore the effects and the underlying mechanism of allicin on gastric cancer cells. The MTT assay was used to detect cell viability. Transmission electron microscopy, Rh123 and propidium iodide staining, annexin V/FITC assay and the mitochondrial membrane potential were used to assess for the presence of apoptosis. Immunocytochemistry, western blot analysis, and Q-RT-PCR were used to detect gene expression. We found that allicin reduced cell viability in a dose- and time-dependent manner, partly through induction of apoptosis in gastric cancer cells. At the molecular level, allicin induced cytochrome c release from the mitochondria and increased caspase-3, -8, and -9 activation, with concomitant upregulation of bax and fas expression in the tumor cells. Allicin treatment inhibited proliferation and induced apoptosis in SGC-7901 cancer cells. Both intrinsic mitochondrial and extrinsic Fas/FasL-mediated pathways of apoptosis occur simultaneously in SGC-7901 cells following allicin treatment. Data from the current study demonstrated that allicin should be further investigated as a novel cancer preventive or therapeutic agent in control of gastric cancer, with potential uses in other tumor types. PMID:21042755

  19. Apoptosis induced by oxysterols in murine lymphoma cells and in normal thymocytes.

    PubMed Central

    Christ, M; Luu, B; Mejia, J E; Moosbrugger, I; Bischoff, P

    1993-01-01

    Oxygenated derivatives of cholesterol (oxysterols), a family of naturally occurring compounds, possess marked anti-proliferative and immunosuppressive activities, in particular they have been shown to inhibit T-cell responses to different stimuli. 25-Hydroxycholesterol (25-OHC) and 7 beta,25-dihydroxycholesterol (7.25-OHC) are able to kill not only RDM4 murine lymphoma in vitro, but also, surprisingly, mouse thymocytes after several hours of incubation. In this study, we report that the death of RDM4 and thymocytes induced by oxysterols exhibits the features of apoptosis. This phenomenon was identified by agarose gel electrophoresis of DNA fragments extracted from the cells and quantified by flow cytometric analysis of the DNA fluorescence of propidium iodide-stained cells. Cycloheximide and actinomycin D were found to decrease the number of apoptotic cells and to increase cell viability, indicating a requirement for the synthesis of macromolecules in oxysterol-induced programmed cell death. The pathway by which 25-OHC and 7.25-OHC are able to induce apoptosis in this type of cell and the possible contribution of these compounds to thymus involution during development are discussed. Images Figure 2 Figure 4 PMID:7682990

  20. Methods to isolate a large amount of generative cells, sperm cells and vegetative nuclei from tomato pollen for “omics” analysis

    PubMed Central

    Lu, Yunlong; Wei, Liqin; Wang, Tai

    2015-01-01

    The development of sperm cells (SCs) from microspores involves a set of finely regulated molecular and cellular events and the coordination of these events. The mechanisms underlying these events and their interconnections remain a major challenge. Systems analysis of genome-wide molecular networks and functional modules with high-throughput “omics” approaches is crucial for understanding the mechanisms; however, this study is hindered because of the difficulty in isolating a large amount of cells of different types, especially generative cells (GCs), from the pollen. Here, we optimized the conditions of tomato pollen germination and pollen tube growth to allow for long-term growth of pollen tubes in vitro with SCs generated in the tube. Using this culture system, we developed methods for isolating GCs, SCs and vegetative cell nuclei (VN) from just-germinated tomato pollen grains and growing pollen tubes and their purification by Percoll density gradient centrifugation. The purity and viability of isolated GCs and SCs were confirmed by microscopy examination and fluorescein diacetate staining, respectively, and the integrity of VN was confirmed by propidium iodide staining. We could obtain about 1.5 million GCs and 2.0 million SCs each from 180 mg initiated pollen grains, and 10 million VN from 270 mg initiated pollen grains germinated in vitro in each experiment. These methods provide the necessary preconditions for systematic biology studies of SC development and differentiation in higher plants. PMID:26082789

  1. Mefloquine inhibits chondrocytic proliferation by arresting cell cycle in G2/M phase

    PubMed Central

    Li, Qiong; Chen, Zeng-Gan; Xia, Qing; Lin, Jian-Ping; Yan, Zuo-Qin; Yao, Zheng-Jun; Dong, Jian

    2015-01-01

    Mefloquine (MQ), an analog of chloroquine, exhibits a promising cytotoxic activity against carcinoma cell lines and for the treatment of glioblastoma patients. The present study demonstrates the effect of mefloquine on proliferation and cell cycle in chondrocytes. MTT assay and propidium iodide staining were used for the analysis of proliferation and cell cycle distribution, respectively. Western blot analysis was used to examine the expression levels of cyclin B1/cdc2, cdc25c, p21WAF1/CIP1 and p53. The results revealed that mefloquine inhibited the proliferation of chondrocytes and caused cell cycle arrests in the G2/M phase. The proliferation of chondrocytes was reduced to 27% at 40 ?M concentration of mefloquine after 48 h. The population of chondrocytes in G2/M phase was found to be 15.7 and 48.4%, respectively at 10 and 40 ?M concentration of mefloquine at 48 h following treatment. The expression of the cell cycle regulatory proteins including, cyclin B1/cdc2 and cdc25c was inhibited. On the other hand, mefloquine treatment promoted the expression of p21WAF1/CIP1 and p53 at 40 ?M concentration after 48 h. Therefore, mefloquine inhibits proliferation and induces cell cycle arrest in chondrocytes. PMID:26722448

  2. Cytotoxic Effect of Coscinium fenestratum on Human Head and Neck Cancer Cell Line (HN31)

    PubMed Central

    Potikanond, Saranyapin; Khonsung, Parirat

    2015-01-01

    Coscinium fenestratum is widely used as a medicinal plant in many Asian countries. This study aimed to investigate the cytotoxic effect of a crude water extract of C. fenestratum (CF extract) compared to 5-fluorouracil (5-FU) on human HN31 cell line, a metastatic squamous cell carcinoma of the pharynx. The results revealed that cell morphology visualized under inverted light microscopy was changed from flat with a polygonal appearance to round appearance after CF extract application. The cell viability assay (MTT test) showed that the concentration producing 50% growth inhibition (IC50) at 48-hour incubation of CF extract on HN31 was 0.12?mg/mL, while the IC50 of 5-FU was 6.6?mg/mL, indicating that CF extract has a higher potency. However, combining various concentrations of 5-FU and CF extract at IC50 did not show synergistic effect. The CF extract dose dependently increased cell apoptosis determined by Annexin-V and propidium iodide staining. It decreased the phosphorylation of p38 MAPK and pAkt, while it increased the tumor suppressor protein p53. In conclusion, the cytotoxicity of CF extract was associated with the modulation of p38 MAPK, pAkt, and p53 signal molecules, leading to inhibiting cell survival and increasing apoptosis. No synergistic effects of CF extract and 5-FU were observed. PMID:26074999

  3. Role of LM23 in cell proliferation and apoptosis and its expression during the testis development

    PubMed Central

    Liu, Qing; Song, Ya-Juan; Meng, Li-Jun; Hu, Fen; Gou, Li-Xia; Jia, Chang-Hong; Tang, Hong-Mei; Wang, Wei-Jie; Li, Mi; Zhang, Xiu-Jun; Jia, Meng-Chun

    2013-01-01

    LM23, a gene expressed specifically in the testis in a stage-specific manner, has a diverse range of functions that are important in both the life and death of spermatogenic cells. The aim of this study was to further investigate the expression of LM23 in the developing rat testis and the biological function of LM23 in proliferation and antiapoptosis in vitro. Semiquantitative reverse transcription (RT)-PCR and real-time PCR were used to examine the expression of LM23 in testis at different developmental stages. The results suggested that LM23 mRNA levels in the testis increased progressively after birth. The role of LM23 in proliferation was analyzed with cell counting kit-8 (CCK8), colony-forming efficiency (CFE) and flow cytometry assays. The results indicated that ectopic expression of LM23 in 293T cells significantly promoted cell proliferation by increasing cell numbers in S phase. Several methods were used, including CCK8, annexin V and propidium iodide staining and western blotting, to determine the role of LM23 in apoptosis. The results showed that LM23 played a protective role in H2O2-induced apoptosis of 293T cells, mediated at least in part through the Akt/PI3K signal pathway. Taken together, these results provide new insights into the role of LM23 in the development of the testes and spermatogenesis. PMID:23685908

  4. Anti-tumor studies with extracts of Calotropis procera (Ait.) R.Br. root employing Hep2 cells and their possible mechanism of action.

    PubMed

    Mathur, Rajani; Gupta, Suresh K; Mathur, Sandeep R; Velpandian, Thirumurthy

    2009-05-01

    Anti-tumor potential of root extracts of Calotropis procera: methanolic extract (CM), hexane extract (CH), aqueous extract (CW) and ethylacetate extract (CE) and its possible mechanism against Hep2 cancer cells has been investigated. Cellular proliferation activities were assayed by tetrazolium bromide (MTT) colorimetry. Morphological changes of cancer cells were observed under inverted microscope and cell cycle parameters were determined by flow cytometry following propidium iodide staining. Treatment with the extracts at various doses of 1, 5, 10 and 25 microg/ml revealed that CM, CH and CE possessed cytotoxicity, whereas CW did not have cytotoxic effect. CE (10 microg/ml) showed strongest cytotoxic effect (96.3%) on Hep2 at 48 hr following treatment, whereas CM and CH showed cytotoxicity of 72.7 and 60.5%, respectively. Extract-treated cells exhibited typical morphological changes of apoptosis. Results of flow cytometric analysis clearly demonstrated that root extracts initiated apoptosis of Hep2 cells through cell cycle arrest at S phase, thus preventing cells from entering G2/M phase. Results of the study indicate that the root extracts of C. procera inhibit the proliferation of Hep2 cells via apoptotic and cell cycle disruption based mechanisms. PMID:19579799

  5. Cytotoxic Activities of Physalis minima L. Chloroform Extract on Human Lung Adenocarcinoma NCI-H23 Cell Lines by Induction of Apoptosis

    PubMed Central

    Leong, Ooi Kheng; Muhammad, Tengku Sifzizul Tengku; Sulaiman, Shaida Fariza

    2011-01-01

    Physalis minima L. is reputed for having anticancer property. In this study, the chloroform extract of this plant exhibited remarkable cytotoxic activities on NCI-H23 (human lung adenocarcinoma) cell line at dose- and time-dependent manners (after 24, 48 and 72?h of incubation). Analysis of cell-death mechanism demonstrated that the extract exerted apoptotic programed cell death in NCI-H23 cells with typical DNA fragmentation, which is a biochemical hallmark of apoptosis. Morphological observation using transmission electron microscope (TEM) also displayed apoptotic characteristics in the treated cells, including clumping and margination of chromatins, followed by convolution of the nuclear and budding of the cells to produce membrane-bound apoptotic bodies. Different stages of apoptotic programed cell death as well as phosphatidylserine externalization were confirmed using annexin V and propidium iodide staining. Furthermore, acute exposure to the extract produced a significant regulation of c-myc, caspase-3 and p53?mRNA expression in this cell line. Due to its apoptotic effect on NCI-H23 cells, it is strongly suggested that the extract could be further developed as an anticancer drug. PMID:19541726

  6. Kefir induces apoptosis and inhibits cell proliferation in human acute erythroleukemia.

    PubMed

    Jalali, Fatemeh; Sharifi, Mohammadreza; Salehi, Rasoul

    2016-01-01

    Acute erythroleukemia is an uncommon subtype of acute myeloid leukemia which has been considered to be a subtype of AML with a worse prognosis. Intensive chemotherapy is the first line of treatment. In recent years, the effect of kefir on some malignancies has been experimented. Kefir is a kind of beverage, which obtained by incubation of kefir grains with raw milk. Kefir grains are a symbiotic complex of different kinds of yeasts and bacteria, especially lactic acid bacteria which gather in a mostly carbohydrate matrix, named kefiran. We investigated the effect of kefir on acute erythroleukemia cell line (KG-1) and peripheral blood mononuclear cells (PBMCs). The cell line and PBMCs were treated with different doses of kefir and milk and incubated for three different times. We used Polymixin B to block the lipopolysaccharide and NaOH (1 mol/l) to neutralize the acidic media. Viability was detected by MTT assay. Apoptosis and necrosis were assessed by annexin-propidium iodide staining. Our results showed that kefir induced apoptosis and necrosis in KG-1 cell line. It was revealed that kefir decreased proliferation in erythroleukemia cell line. We did not observe a remarkable effect of kefir on PBMCs. Our study suggested that kefir may have potential to be an effective treatment for erythroleukemia. PMID:26708130

  7. Propofol attenuates hydrogenperoxide-induced apoptosis in human umbilical vein endothelial cells via multiple signaling pathways

    PubMed Central

    Xie, Cheng Lan; Pan, Yin Bing; Hu, Liu Qing

    2015-01-01

    Background Propofol has been reported to protect vascular endothelial cells against oxidative stress. In this study we investigated its effect on hydrogen peroxide (H2O2)-induced apoptosis of human umbilical vein endothelial cells (HUVECs) and examined the possible signaling pathways. Methods HUVECs were pretreated with propofol (1, 5, 25, and 50 µM) for 30 min and then co-incubated with 0.4 mM H2O2 for 4 h. Cell viability was assessed using a Cell Counting Kit-8. Cell apoptosis was analyzed using flow cytometry with annexin V/propidium iodide staining, and evaluated by quantifying caspase-3, Bax, and Bcl-2 expression levels. The expression levels of p38 mitogen activated protein kinase (MAPK), phosphorylated (p)-p38 MAPK, cJun-N-terminal kinases (JNK), phosphorylated (p)-JNK, Akt and phosphorylated Akt [(p)-Akt] (Ser473) were measured by western blotting. Results H2O2 treatment induced the activation of caspase-3, downregulated Bcl-2 expression, and up-regulated Bax expression, all of which were dose-dependently attenuated by propofol pretreatment. Furthermore, propofol significantly ameliorated H2O2-induced phosphorylation of p38 MAPK, JNK, and Akt in HUVECs. Conclusions Propofol can protect HUVECs against H2O2-induced apoptosis via a mechanism that may involve p38 MAPK, JNK, and Akt signaling pathways. PMID:26495060

  8. Effects of STAT3 Gene Silencing and Rapamycin on Apoptosis in Hepatocarcinoma Cells

    PubMed Central

    Zhang, Yi; Zhang, Jun-Wei; Lv, Guo-Yue; Xie, Shu-Li; Wang, Guang-Yi

    2012-01-01

    The PI3K/Akt/mTOR and JAK/STAT3 signaling pathways are important for regulating apoptosis, and are frequently activated in cancers. In this study, we targeted STAT3 and mTOR in human hepatocellular carcinoma Bel-7402 cells and examined the subsequent alterations in cellular apoptosis. The expression of STAT3 was silenced with small interfering RNA (siRNA)-expressing plasmid. The activity of mTOR was inhibited using rapamycin. Following treatment, Annexin V/propidium iodide staining followed by flow cytometry and Hoechst33258 immunofluorescence staining was used to examine cellular apoptosis. JC-1 staining was used to monitor depolarization of mitochondrial membrane (??m). Furthermore, the expression of activated caspase 3 protein was analyzed by Western blotting. Compared to non-treated or control siRNA-transfected cells, significantly higher levels of apoptosis were detected in siSTAT3-transfected or rapamycin-treated cells (P < 0.05), which was further enhanced in cells targeted for both molecules (P < 0.05). The pro-apoptotic effects were accompanied with concomitant depolarization of mitochondrial membrane and up-regulation of activated caspase 3. Combined treatments using rapamycin and STAT3 gene silencing significantly increases apoptosis in Bel-7402 cells, displaying more dramatic effect than any single treatment. This study provides evidence for targeting multiple molecules in cancer therapy. PMID:22408571

  9. Dual role of the caspase enzymes in satellite cells from aged and young subjects

    PubMed Central

    Fulle, S; Sancilio, S; Mancinelli, R; Gatta, V; Di Pietro, R

    2013-01-01

    Satellite cell (SC) proliferation and differentiation have critical roles in skeletal muscle recovery after injury and adaptation in response to hypertrophic stimuli. Normal ageing hinders SC proliferation and differentiation, and is associated with increased expression of a number of pro-apoptotic factors in skeletal muscle. In light of previous studies that have demonstrated age-related altered expression of genes involved in SC antioxidant and repair activity, this investigation was aimed at evaluating the incidence of apoptotic features in human SCs. Primary cells were obtained from vastus lateralis of nine young (27.3±2.0 years old) and nine old (71.1±1.8 years old) subjects, and cultured in complete medium for analyses at 4, 24, 48, and 72?h. Apoptosis was assessed using AnnexinV/propidium iodide staining, the terminal deoxynucleotidyl transferase dUTP nick-end labelling technique, RT-PCR, DNA microarrays, flow cytometry, and immunofluorescence analysis. There was an increased rate of apoptotic cells in aged subjects at all of the experimental time points, with no direct correlation between AnnexinV-positive cells and caspase-8 activity. On the other hand, CASP2, CASP6, CASP7, and CASP9 and a number of cell death genes were upregulated in the aged SCs. Altogether, our data show age-related enhanced susceptibility of human SCs to apoptosis, which might be responsible for their reduced response to muscle damage. PMID:24336075

  10. Effect of methoxychlor on Ca²? homeostasis and apoptosis in HA59T human hepatoma cells.

    PubMed

    Horng, Chi-Ting; Chou, Chiang-Ting; Tseng, Hui-Wen; Cheng, Jin-Shiung; Chang, Hong-Tai; Chang, Po-Min; Chen, I-Li; Hung, Ming-Chi; Tsai, Yi-Jen; Tsai, Peng-Chih; Liang, Wei-Zhe; Kuo, Chun-Chi; Kuo, Daih-Huang; Ho, Chin-Man; Lin, Jia-Rong; Shieh, Pochuen; Jan, Chung-Ren

    2015-02-28

    Methoxychlor, an organochlorine pesticide, is thought to be an endocrine disrupter that affects Ca²? homeostasis and cell viability in different cell models. This study explored the action of methoxychlor on cytosolic free Ca²? concentrations ([Ca²?]i) and apoptosis in HA59T human hepatoma cells. Fura-2, a Ca²?-sensitive fluorescent dye, was applied to measure [Ca²?]i. Methoxychlor at concentrations of 0.1-1 ?M caused a [Ca²?]i rise in a concentration-dependent manner. Removal of external Ca²? abolished methoxychlor's effect. Methoxychlor-induced Ca²? influx was confirmed by Mn²?-induced quench of fura-2 fluorescence. Methoxychlor-induced Ca²? entry was inhibited by nifedipine, econazole, SK&F96365, and protein kinase C modulators. Methoxychlor killed cells at concentrations of 10-130 ?M in a concentration-dependent fashion. Chelation of cytosolic Ca²? with 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid/AM (BAPTA/AM) did not prevent methoxychlor's cytotoxicity. Methoxychlor (10 and 50 ?M) induced apoptosis concentration-dependently as determined by using Annexin V/propidium iodide staining. Together, in HA59T cells, methoxychlor induced a [Ca²?]i rise by inducing Ca²? entry via protein kinase C-sensitive Ca²?-permeable channels, without causing Ca²? release from stores. Methoxychlor also induced apoptosis that was independent of [Ca²?]i rises. PMID:25687486

  11. Phosphoinositide 3-kinase/Akt pathway is involved in pingyangmycin?induced growth inhibition, apoptosis and reduction of invasive potential in EOMA mouse hemangioendothelioma cells.

    PubMed

    Peng, Li-Xia; Zhao, Ping; Zhao, Hong-Sheng; Pan, Er; Yang, Bin-Bin; Li, Qin

    2015-12-01

    Pingyangmycin (PYM), a glycopeptide antibiotic, has been recommended as a stand treatment for hemangioma. However, the underlying mechanisms of its anti?tumor effects have remained elusive. The purpose of the present study was to explore the effects of PYM on the biological behavior of the EOMA mouse hemangioendothelioma cell line and investigate the possible mechanisms. The effects of PYM on EOMA cell viability were determined by an MTT assay, apoptosis was evaluated by Annexin V/propidium iodide staining and flow cytometric analysis, and cell invasion ability was determined using a Transwell invasion assay. In order to investigate the underlying mechanism of action of PYM, the expression of angiogenic signaling proteins was determined by western blot analysis. PYM treatment (0.5?500 µg/ml) inhibited cell growth in a time- and dose?dependent manner. PYM at 100 µg/ml significantly induced apoptosis and reduced the invasive ability of EOMA cells. Effects of PYM on cell viability, apoptosis and invasion ability were completely blocked by co?treatment with phosphoinositide 3?kinase (PI3K) activator insulin?like growth factor?1 (IGF?1). Furthermore, treatment with PYM reduced the expression of PI3K and phosphorylated Akt. In conclusion, the present study indicated that the PI3K/Akt pathway is likely to be involved in the anti-cancer effects of PYM on EOMA cells. PMID:26498320

  12. Encorafenib (LGX818), a potent BRAF inhibitor, induces senescence accompanied by autophagy in BRAFV600E melanoma cells.

    PubMed

    Li, Zhen; Jiang, Ke; Zhu, Xiaofang; Lin, Guibin; Song, Fei; Zhao, Yongfu; Piao, Yongjun; Liu, Jiwei; Cheng, Wei; Bi, Xiaolin; Gong, Peng; Song, Zhiqi; Meng, Songshu

    2016-01-28

    Encorafenib (LGX818) is a new-generation BRAF inhibitor that is under evaluation in clinical trials. However, the underlying mechanism remains to be elucidated. Here we show that LGX818 potently decreased ERK phosphorylation and inhibited proliferation in BRAFV600E melanoma cell lines. Moreover, LGX818 downregulated CyclinD1 in a glycogen synthase kinase 3?-independent manner and induced cell cycle arrest in the G1 phase, Surprisingly, LGX818 triggered cellular senescence in BRAFV600E melanoma cells, as evidenced by increased ?-galactosidase staining, while no appreciable induction of apoptosis was detected, as determined by Annexin V and propidium iodide staining and immunoblot analysis of caspase-3 processing and poly (ADP-ribose) polymerase cleavage. Increased p27KIP1 expression and retinoblastoma protein activation were detected during LGX818-induced senescence. Additionally, inhibition of dual-specificity tyrosine phosphorylation-regulated kinase 1B by AZ191 reversed LGX818-induced CyclinD1 turnover and senescence. Interestingly, autophagy is triggered through inhibition of the mTOR/70S6K pathway during LGX818-induced senescence. Moreover, autophagy inhibition by pharmacological and genetic regulation attenuates LGX818-induced senescence. Notably, combining LGX818 with autophagy modulators has anti-proliferative effect in LGX818-resistant BRAF mutant melanoma cells. Altogether, we uncovered a mechanism by which LGX818 exerts its anti-tumor activity in BRAFV600E melanoma cells. PMID:26586345

  13. Paroxetine-induced apoptosis in human osteosarcoma cells: Activation of p38 MAP kinase and caspase-3 pathways without involvement of [Ca{sup 2+}]{sub i} elevation

    SciTech Connect

    Chou, C.-T.; He Shiping; Jan, C.-R. . E-mail: crjan@isca.vghks.gov.tw

    2007-02-01

    Selective serotonin reuptake inhibitors (SSRIs), a group of antidepressants, are generally used for treatment of various mood and anxiety disorders. There has been much research showing the anti-tumor and cytotoxic activities of some antidepressants; but the detailed mechanisms were unclear. In cultured human osteosarcoma cells (MG63), paroxetine reduced cell viability in a concentration- and time-dependent manner. Paroxetine caused apoptosis as assessed by propidium iodide-stained cells and increased caspase-3 activation. Although immunoblotting data revealed that paroxetine could activate the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun NH{sub 2}-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), only SB203580 (a p38 MAPK inhibitor) partially prevented cells from apoptosis. Paroxetine also induced [Ca{sup 2+}]{sub i} increases which involved the mobilization of intracellular Ca{sup 2+} stored in the endoplasmic reticulum and Ca{sup 2+} influx from extracellular medium. However, pretreatment with BAPTA/AM, a Ca{sup 2+} chelator, to prevent paroxetine-induced [Ca{sup 2+}]{sub i} increases did not protect cells from death. The results suggest that in MG63 cells, paroxetine caused Ca{sup 2+}-independent apoptosis via inducing p38 MAPK-associated caspase-3 activation.

  14. Prion Protein Does Not Confer Resistance to Hippocampus-Derived Zpl Cells against the Toxic Effects of Cu2+, Mn2+, Zn2+ and Co2+ Not Supporting a General Protective Role for PrP in Transition Metal Induced Toxicity

    PubMed Central

    Cingaram, Pradeep Kumar Reddy; Nyeste, Antal; Dondapati, Divya Teja; Fodor, Elfrieda; Welker, Ervin

    2015-01-01

    The interactions of transition metals with the prion protein (PrP) are well-documented and characterized, however, there is no consensus on their role in either the physiology of PrP or PrP-related neurodegenerative disorders. PrP has been reported to protect cells from the toxic stimuli of metals. By employing a cell viability assay, we examined the effects of various concentrations of Cu2+, Zn2+, Mn2+, and Co2+ on Zpl (Prnp-/-) and ZW (Prnp+/+) hippocampus-derived mouse neuronal cells. Prnp-/- Zpl cells were more sensitive to all four metals than PrP-expressing Zw cells. However, when we introduced PrP or only the empty vector into Zpl cells, we could not discern any protective effect associated with the presence of PrP. This observation was further corroborated when assessing the toxic effect of metals by propidium-iodide staining and fluorescence activated cell sorting analysis. Thus, our results on this mouse cell culture model do not seem to support a strong protective role for PrP against transition metal toxicity and also emphasize the necessity of extreme care when comparing cells derived from PrP knock-out and wild type mice. PMID:26426582

  15. Effect of polypeptides in bee venom on growth inhibition and apoptosis induction of the human hepatoma cell line SMMC-7721 in-vitro and Balb/c nude mice in-vivo.

    PubMed

    Hu, Haiyang; Chen, Dawei; Li, Yanfeng; Zhang, Xiguo

    2006-01-01

    Polypeptides in bee venom (PBV) produced a significant growth inhibition against SMMC-7721 human hepatoma cell line. Analysis of the mechanisms of cell death indicated that PBV induced an apoptotic cell death. SMMC-7721 cells exposed to PBV (10.0 microg mL(-1)) produced an insignificant morphological change. Analysis of the cytotoxicity with the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) assay confirmed that the cytotoxic effects of PBV were dose- and timedependent. The result of Ki67 immunohistochemistry demonstrated that the proliferation of SMMC-7721 cells treated with PBV (10.0 mug mL(-1)) was inhibited. The apoptotic cell death was then confirmed by annexin V, propidium iodide staining and DNA fragmentation analysis. In in-vivo experiments, treatment with PBV (1.5 or 3 mg kg(-1)) resulted in a significant retardation of SMMC-7721 cell growth in Balb/c nude mice. These findings suggested that PBV could be used as a chemotherapeutic agent against tumours. PMID:16393467

  16. Involvement of Mst1 in tumor necrosis factor-{alpha}-induced apoptosis of endothelial cells

    SciTech Connect

    Ohtsubo, Hideki; Ichiki, Toshihiro Imayama, Ikuyo; Ono, Hiroki; Fukuyama, Kae; Hashiguchi, Yasuko; Sadoshima, Junichi; Sunagawa, Kenji

    2008-03-07

    Mammalian sterile 20-kinase 1 (Mst1), a member of the sterile-20 family protein kinase, plays an important role in the induction of apoptosis. However, little is know about the physiological activator of Mst1 and the role of Mst1 in endothelial cells (ECs). We examined whether Mst1 is involved in the tumor necrosis factor (TNF)-{alpha}-induced apoptosis of ECs. Western blot analysis revealed that TNF-{alpha} induced activation of caspase 3 and Mst1 in a time- and dose-dependent manner. TNF-{alpha}-induced Mst1 activation is almost completely prevented by pretreatment with Z-DEVD-FMK, a caspase 3 inhibitor. Nuclear staining with Hoechst 33258 and fluorescence-activated cell sorting of propidium iodide-stained cells showed that TNF-{alpha} induced apoptosis of EC. Diphenyleneiodonium, an inhibitor of NADPH oxidase, and N-acetylcysteine, a potent antioxidant, also inhibited TNF-{alpha}-induced activation of Mst1 and caspase 3, as well as apoptosis. Knockdown of Mst1 expression by short interfering RNA attenuated TNF-{alpha}-induced apoptosis but not cleavage of caspase 3. These results suggest that Mst1 plays an important role in the induction of TNF-{alpha}-induced apoptosis of EC. However, positive feedback mechanism between Mst1 and caspase 3, which was shown in the previous studies, was not observed. Inhibition of Mst1 function may be beneficial for maintaining the endothelial integrity and inhibition of atherogenesis.

  17. Quinones and halogenated monoterpenes of algal origin show anti-proliferative effects against breast cancer cells in vitro.

    PubMed

    de la Mare, Jo-Anne; Lawson, Jessica C; Chiwakata, Maynard T; Beukes, Denzil R; Edkins, Adrienne L; Blatch, Gregory L

    2012-12-01

    Red and brown algae have been shown to produce a variety of compounds with chemotherapeutic potential. A recent report described the isolation of a range of novel polyhalogenated monoterpene compounds from the red algae Plocamium corallorhiza and Plocamium cornutum collected off the coast of South Africa, together with the previously described tetraprenylquinone, sargaquinoic acid (SQA), from the brown algae Sargassum heterophyllum. In our study, the algal compounds were screened for anti-proliferative activity against metastatic MDA-MB-231 breast cancer cells revealing that a number of compounds displayed anti-cancer activity with IC(50) values in the micromolar range. A subset of the compounds was tested for differential toxicity in the MCF-7/MCF12A system and five of these, including sargaquinoic acid, were found to be at least three times more toxic to the breast cancer than the non-malignant cell line. SQA was further analysed in terms of its mechanism of cytotoxicity in MDA-MB-231 cells. The ability to initiate apoptosis was distinguished from the induction of an inflammatory necrotic response via flow cytometry with propidium iodide and Hoescht staining, confocal microscopy with Annexin V and propidium iodide staining as well as the PARP cleavage assay. We report that SQA induced apoptosis while a polyhalogenated monoterpene RU015 induced necrosis in metastatic breast cancer cells in vitro. Furthermore, we demonstrated that apoptosis induction by SQA occurs via caspase-3, -6, -8, -9 and -13 and was associated with down-regulation of Bcl-2. In addition, cell cycle analyses revealed that the compound causes G(1) arrest in MDA-MB-231 cells. PMID:22249429

  18. Amyloid-like aggregates of neuronal tau induced by formaldehyde promote apoptosis of neuronal cells

    PubMed Central

    Nie, Chun Lai; Wang, Xing Sheng; Liu, Ying; Perrett, Sarah; He, Rong Qiao

    2007-01-01

    Background The microtubule associated protein tau is the principle component of neurofibrillar tangles, which are a characteristic marker in the pathology of Alzheimer's disease; similar lesions are also observed after chronic alcohol abuse. Formaldehyde is a common environmental contaminant and also a metabolite of methanol. Although many studies have been done on methanol and formaldehyde intoxication, none of these address the contribution of protein misfolding to the pathological mechanism, in particular the effect of formaldehyde on protein conformation and polymerization. Results We found that unlike the typical globular protein BSA, the natively-unfolded structure of human neuronal tau was induced to misfold and aggregate in the presence of ~0.01% formaldehyde, leading to formation of amyloid-like deposits that appeared as densely staining granules by electron microscopy and atomic force microscopy, and bound the amyloid-specific dyes thioflavin T and Congo Red. The amyloid-like aggregates of tau were found to induce apoptosis in the neurotypic cell line SH-SY5Y and in rat hippocampal cells, as observed by Hoechst 33258 staining, assay of caspase-3 activity, and flow cytometry using Annexin V and Propidium Iodide staining. Further experiments showed that Congo Red specifically attenuated the caspase-3 activity induced by amyloid-like deposits of tau. Conclusion The results suggest that low concentrations of formaldehyde can induce human tau protein to form neurotoxic aggregates, which could play a role in the induction of tauopathies. PMID:17241479

  19. Involvement of reactive oxygen species and calcium in photo-induced membrane damage in HeLa cells by a bis-methanophosphonate fullerene.

    PubMed

    Qiao, Xinge; Huang, Cheng; Ying, Yabing; Yang, Xinlin; Liu, Yang; Tian, Qiu

    2010-03-01

    Photo-excited bioactivities of fullerene derivatives are attracting much attention. In this report, a bis-methanophosphonate fullerene (BMPF) and the other two fullerene derivatives, a bis-malonic acid fullerene (BMAF) and a fullerol were incubated with HeLa cells and irradiated with a green light emitted from a mercury lamp on a fluorescent microscopy. By using DNA fluorescent probe propidium iodide staining method, damage towards cell membrane could be detected when cells were treated by irradiation altogether with BMPF or BMAF at a low concentration (4 microM), and the damage was dose-dependent. The activity of BMPF was much higher than that of BMAF, while fullerol had no effects under the same condition. It was also revealed that different kinds of reactive oxygen species (ROS) correlated to BMPF and BMAF. Additionally, presence of extracellular calcium could promote the activities of both derivatives, while removal of extracellular calcium could not abort their membrane-damaged activities. These results indicated that ROS and calcium were involved in the photosensitization of fullerene derivatives, and BMPF was a superior photosensitizer which would find potential application in biomedical field. PMID:20144875

  20. Cell cycle stage-specific differential expression of topoisomerase I in tobacco BY-2 cells and its ectopic overexpression and knockdown unravels its crucial role in plant morphogenesis and development.

    PubMed

    Singh, Badri Nath; Mudgil, Yashwanti; John, Riffat; Achary, V Mohan Murali; Tripathy, Manas Kumar; Sopory, Sudhir K; Reddy, Malireddy K; Kaul, Tanushri

    2015-11-01

    DNA topoisomerases catalyze the inter-conversion of different topological forms of DNA. Cell cycle coupled differential accumulation of topoisomerase I (Topo I) revealed biphasic expression maximum at S-phase and M/G1-phase of cultured synchronized tobacco BY-2 cells. This suggested its active role in resolving topological constrains during DNA replication (S-phase) and chromosome decondensation (M/G1 phase). Immuno-localization revealed high concentrations of Topo I in nucleolus. Propidium iodide staining and Br-UTP incorporation patterns revealed direct correlation between immunofluorescence intensity and rRNA transcription activity within nucleolus. Immuno-stained chromosomes during metaphase and anaphase suggested possible role of Topo I in resolving topological constrains during mitotic chromosome condensation. Inhibitor studies showed that in comparison to Topo I, Topo II was essential in resolving topological constrains during chromosome condensation. Probably, Topo II substituted Topo I functioning to certain extent during chromosome condensation, but not vice-versa. Transgenic Topo I tobacco lines revealed morphological abnormalities and highlighted its crucial role in plant morphogenesis and development. PMID:26475198

  1. Anticancer effects of crocetin in human esophageal squamous cell carcinoma KYSE-150 cells

    PubMed Central

    LI, SHENG; JIANG, SHENG; JIANG, WEI; ZHOU, YUE; SHEN, XIU-YIN; LUO, TAO; KONG, LING-PING; WANG, HUA-QIAO

    2015-01-01

    Crocetin is the main pharmacologically-active component of saffron and has been considered as a promising candidate for cancer chemoprevention. The purpose of the present study was to investigate the anticancer effects of crocetin and the possible mechanisms of these properties in the esophageal squamous cell carcinoma cell line KYSE-150. The KYSE-150 cells were cultured in Dulbecco’s modified Eagle’s medium and incubated with 0, 12.5, 25, 50, 100 or 200 ?mol/l crocetin for 48 h. Cell proliferation was measured using an MTT assay. Hoechst 33258 staining and observation under fluorescent microscopy were used to analyze the proapoptotic effects of crocetin. The migration rate was assessed by a wound-healing assay. The cell cycle distribution was analyzed using flow cytometry analysis subsequent to propidium iodide staining. The expression of B-cell lymphoma-2-associated X protein (Bax) and cleaved caspase 3 was determined by western blot analysis. It was found that treatment of KYSE-150 cells with crocetin for 48 h significantly inhibited the proliferation of the cells in a concentration-dependent manner, and the inhibition of proliferation was associated with S phase arrest. Crocetin was also found to induce morphological changes and cell apoptosis in a dose-dependent manner through increased expression of proapoptotic Bax and activated caspase 3. In addition, crocetin suppressed the migration of KYSE-150 cells. The present study provides evidence that crocetin exerts a prominent chemopreventive effect against esophageal cancer through the inhibition of cell proliferation, migration and induction of apoptosis. These findings reveal that crocetin may be considered to be a promising future chemotherapeutic agent for esophageal cancer therapy. PMID:25663893

  2. Thymoquinone Induces Cell Death in Human Squamous Carcinoma Cells via Caspase Activation-Dependent Apoptosis and LC3-II Activation-Dependent Autophagy

    PubMed Central

    Yu, Cheng-Chia; Lai, Yi-Yeh; Chen, Pei-Ni

    2014-01-01

    Background Thymoquinone (TQ), an active component of Nigella sativa or black cumin, elicits cytotoxic effects on various cancer cell lines. However, the anti-cancer effects of TQ on head and neck squamous cell carcinoma (HNSCC) remain unclear. Methodology/Principal Findings In this study, TQ elicited a strong cytotoxic effect on SASVO3, a highly malignant HNSCC cell line. The mechanisms of this cytotoxic effect were concentration dependent. TQ also induced apoptotic cell death in SASVO3 cells as indicated by an increase in Bax expression and caspase-9 activation. Apoptosis was possibly caspase-9 dependent because the exposure of cells to a caspase-9 inhibitor partially prevented cell death. The exposed cells also showed increased levels of autophagic vacuoles and LC3-II proteins, which are specific autophagy markers. Cell viability assay results further revealed that bafilomycin-A1, an autophagy inhibitor, enhanced TQ cytotoxicity; by comparison, Annexin V and propidium-iodide staining assay results showed that this inhibitor did not promote apoptosis. TQ treatment also increased the accumulation of autophagosomes. Using a lentivirus-shRNA system for LC3 silencing, we found that cell viability was eradicated in autophagy-defective cells. An in vivo BALB/c nude mouse xenograft model further showed that TQ administered by oral gavage reduced tumor growth via induced autophagy and apoptosis. Conclusions These findings indicated that TQ induced cell death in oral cancer cells via two distinct anti-neoplastic activities that can induce apoptosis and autophagy. Therefore, TQ is a promising candidate in phytochemical-based, mechanistic, and pathway-targeted cancer prevention strategies. PMID:25000169

  3. Carboxy-terminal domain phosphatase 1 silencing results in the inhibition of tumor formation ability in gastric cancer cells

    PubMed Central

    FU, HONGBING; YANG, DEJUN; WANG, CHANGMING; XU, JIAPENG; WANG, WEIMIN; YAN, RONGLIN; CAI, QINGPING

    2015-01-01

    Gastric cancer (GC), one of the most malignant types of cancer, is the second greatest cause of cancer-associated mortality worldwide. Novel therapeutic targets for GC treatment are therefore urgently required. Carboxy-terminal domain phosphatase 1 (CTDP1) has a crucial role in the regulation of gene expression. However, to the best of our knowledge, the role of CTDP1 in GC has not previously been explored. In the present study, reverse transcription-quantitative polymerase chain reaction analysis was used to detect CTDP1 messenger RNA expression in various GC cell lines. CTDP1 was subsequently silenced in GC cells by lentivirus-mediated small interfering RNA (siRNA) infection, and the effects of CTDP1 inhibition on cell proliferation were evaluated by cell number counting, cell cycle analysis with propidium iodide staining and fluorescence-activated cell sorting (FACS) analysis, apoptotic rate with Annexin V staining and FACS analysis, as well as colony formation assay in GC cells. The results revealed that CTDP1 was highly expressed in certain GC cell lines and lentivirus-mediated siRNA infection was able to effectively silence CTDP1 expression in GC cells. CTDP1 inhibition decreased cell proliferation, arrested the cell cycle at G0/G1 phase and increased cell apoptosis in GC cells. Furthermore, the colony formation ability of GC cells was also suppressed by silencing CTDP1. Taken together these results indicated that CTDP1 has a significant role in the tumor formation ability of GC cells and is a novel and promising therapeutic target for the treatment of GC. PMID:26722269

  4. Dihydroorotate dehydrogenase inhibitor A771726 (leflunomide) induces apoptosis and diminishes proliferation of multiple myeloma cells.

    PubMed

    Baumann, Philipp; Mandl-Weber, Sonja; Völkl, Andreas; Adam, Christian; Bumeder, Irmgard; Oduncu, Fuat; Schmidmaier, Ralf

    2009-02-01

    Multiple myeloma is still an incurable disease; therefore, new therapeutics are urgently needed. A771726 is the active metabolite of the immunosuppressive drug leflunomide, which is currently applied in the treatment of rheumatoid arthritis, BK virus nephropathy, and cytomegaly viremia. Here, we show that dihydroorotate dehydrogenase (DHODH) is commonly expressed in multiple myeloma cell lines and primary multiple myeloma cells. The DHODH inhibitor A771726 inhibits cell growth in common myeloma cell lines at clinically achievable concentrations in a time- and dose-dependent manner. Annexin V-FITC/propidium iodide staining revealed induction of apoptosis of multiple myeloma cell lines and primary multiple myeloma cells. The 5-bromo-2'-deoxyuridine cell proliferation assay showed that inhibition of cell growth was partly due to inhibition of multiple myeloma cell proliferation. A771726 induced G(1) cell cycle arrest via modulation of cyclin D2 and pRb expression. A771726 decreased phosphorylation of protein kinase B (Akt), p70S6K, and eukaryotic translation initiation factor 4E-binding protein-1 as shown by Western blotting experiments. Furthermore, we show that the stimulatory effect of conditioned medium of HS-5 bone marrow stromal cells on multiple myeloma cell growth is completely abrogated by A771726. In addition, synergism studies revealed synergistic and additive activity of A771726 together with the genotoxic agents melphalan, treosulfan, and doxorubicin as well as with dexamethasone and bortezomib. Taken together, we show that inhibition of DHODH by A771726/leflunomide is effective in multiple myeloma. Considering the favorable toxicity profile and the great clinical experience with leflunomide in rheumatoid arthritis, this drug represents a potential new candidate for targeted therapy in multiple myeloma. PMID:19174558

  5. Immunofluorescence analysis of cytokeratin 8/18 staining is a sensitive assay for the detection of cell apoptosis

    PubMed Central

    DONG, QIAO-MEI; LING, CHUN; ZHAO, LI

    2015-01-01

    Apoptosis is one of the major types of programmed cell death. During this process, cells experience a series of morphological and biochemical changes. Flow cytometric analysis of Annexin V staining of cell surface phosphatidylserine, in combination with a DNA-staining dye to probe the permeability of the cell membrane, is an established method for detecting apoptosis. The present study aimed to show that the immunofluorescence analysis of cytokeratin (CK) 8/18 staining may provide a new and sensitive assay for the detection of apoptotic cells. Tumor cells were treated with 20 ?M cisplatin to induce apoptosis. Following 12 and 24 h of cisplatin treatment, cells were collected and stained with 4?,6-diamidine-2?-phenylindole dihydrochloride (DAPI) and fluorescein-labeled anti-CK8/18 antibody. The apoptotic cells were subsequently examined by fluorescence microscopy. Annexin V-fluorescein isothiocyanate/propidium iodide staining followed by flow cytometric analysis confirmed that cisplatin was able to induce apoptosis in tumor cells. Immunofluorescence analysis demonstrated that apoptotic cells had a distinct CK8/18 staining pattern. In living cells, CK8/18 was uniformly distributed in the cytoplasm and cytosol; however in the apoptotic cells with a condensed and/or fragmented apoptotic nucleus (as identified by DAPI staining), fluorescein-labeled anti-CK8/18 antibody exhibited unusual punctate and/or bubbly staining in the cytosol. In the apoptotic cells that could not be identified by DAPI staining, fluorescein-labeled CK8/18 displayed polarized aggregated staining in the cytosol. These results indicate that fluorescein-conjugated CK8/18 may be a useful and sensitive indicator of cell apoptosis. PMID:25663887

  6. Real-time direct cell concentration and viability determination using a fully automated microfluidic platform for standalone process monitoring.

    PubMed

    Nunes, P S; Kjaerulff, S; Dufva, M; Mogensen, K B

    2015-06-21

    The industrial production of cells has a large unmet need for greater process monitoring, in addition to the standard temperature, pH and oxygen concentration determination. Monitoring the cell health by a vast range of fluorescence cell-based assays can greatly improve the feedback control and thereby ensure optimal cell production, by prolonging the fermentation cycle and increasing the bioreactor output. In this work, we report on the development of a fully automated microfluidic system capable of extracting samples directly from a bioreactor, diluting the sample, staining the cells, and determining the total cell and dead cells concentrations, within a time frame of 10.3 min. The platform consists of custom made stepper motor actuated peristaltic pumps and valves, fluidic interconnections, sample to waste liquid management and image cytometry-based detection. The total concentration of cells is determined by brightfield microscopy, while fluorescence detection is used to detect propidium iodide stained non-viable cells. This method can be incorporated into facilities with bioreactors to monitor the cell concentration and viability during the cultivation process. Here, we demonstrate the microfluidic system performance by monitoring in real time the cell concentration and viability of yeast extracted directly from an in-house made bioreactor. This is the first demonstration of using the Dean drag force, generated due to the implementation of a curved microchannel geometry in conjunction with high flow rates, to promote passive mixing of cell samples and thus homogenization of the diluted cell plug. The autonomous operation of the fluidics furthermore allows implementation of intelligent protocols for administering air bubbles from the bioreactor in the microfluidic system, so that these will be guided away from the imaging region, thereby significantly improving both the robustness of the system and the quality of the data. PMID:25923294

  7. Isoflurane Decreases Self-Renewal Capacity of Rat Cultured Neural Stem Cells

    PubMed Central

    Culley, Deborah J.; Boyd, Justin D.; Palanisamy, Arvind; Xie, Zhongcong; Kojima, Koji; Vacanti, Charles A.; Tanzi, Rudolph E.; Crosby, Gregory

    2012-01-01

    Background Isoflurane produces neural and behavioral deficits in in-vitro and in-vivo models. This study tested the hypothesis that neural stem cells are adversely affected by isoflurane such that it inhibits proliferation and kills these cells. Methods Sprague Dawley rat embryonic neural stem cells were plated onto 96 well plates and treated with 0.7%, 1.4% or 2.8% isoflurane in 21% oxygen for 6 hours and fixed either at the end of treatment or 6 or 24 hours later. Control plates received 21% oxygen under identical conditions. Cell proliferation was assessed immunocytochemically using 5-ethynyl-2’-deoxyuridine incorporation and death by propidium iodide staining, lactate dehydrogenase release, and nuclear expression of cleaved caspase 3. Data were analyzed at each concentration using an ANOVA; P < 0.05 was considered significant. Results Isoflurane did not kill neural stem cells by any measure at any time. Isoflurane 1.4% and 2.8% reduced cell proliferation based upon 5-ethynyl-2’-deoxyuridine incorporation whereas 0.7 % had no effect. At 24 h after treatment, the net effect was a 20–30% decrease in the number of cells in culture. Conclusions Isoflurane does not kill neural stem cells in vitro. However, at concentrations at and above the minimum alveolar concentrations required for general anesthesia (1.4 and 2.8%), isoflurane inhibits proliferation of these cells but has no such effect at a sub-minimum alveolar concentrations (0.7%). These data imply that dosages of isoflurane at and above minimum alveolar concentrations may reduce the pool of neural stem cells in vivo but that lower dosages may be devoid of such adverse effects. PMID:21666433

  8. Crocetin induces cytotoxicity and enhances vincristine-induced cancer cell death via p53-dependent and -independent mechanisms

    PubMed Central

    Zhong, Ying-jia; Shi, Fang; Zheng, Xue-lian; Wang, Qiong; Yang, Lan; Sun, Hong; He, Fan; Zhang, Lin; Lin, Yong; Qin, Yong; Liao, Lin-chuan; Wang, Xia

    2011-01-01

    Aim: To investigate the anticancer effect of crocetin, a major ingredient in saffron, and its underlying mechanisms. Methods: Cervical cancer cell line HeLa, non-small cell lung cancer cell line A549 and ovarian cancer cell line SKOV3 were treated with crocetin alone or in combination with vincristine. Cell proliferation was examined using MTT assay. Cell cycle distribution and sub-G1 fraction were analyzed using flow cytometric analysis after propidium iodide staining. Apoptosis was detected using the Annexin V-FITC Apoptosis Detection Kit with flow cytometry. Cell death was measured based on the release of lactate dehydrogenase (LDH). The expression levels of p53 and p21WAF1/Cip1 as well as caspase activation were examined using Western blot analysis. Results: Treatment of the 3 types of cancer cells with crocetin (60-240 ?mol/L) for 48 h significantly inhibited their proliferation in a concentration-dependent manner. Crocetin (240 ?mol/L) significantly induced cell cycle arrest through p53-dependent and -independent mechanisms accompanied with p21WAF1/Cip1 induction. Crocetin (120-240 ?mol/L) caused cytotoxicity in the 3 types of cancer cells by enhancing apoptosis in a time-dependent manner. In the 3 types of cancer cells, crocetin (60 ?mol/L) significantly enhanced the cytotoxicity induced by vincristine (1 ?mol/L). Furthermore, this synergistic effect was also detected in the vincristine-resistant breast cancer cell line MCF-7/VCR. Conclusion: Ccrocetin is a potential anticancer agent, which may be used as a chemotherapeutic drug or as a chemosensitizer for vincristine. PMID:21986580

  9. Infrasound sensitizes human glioblastoma cells to cisplatin-induced apoptosis.

    PubMed

    Rachlin, Kenneth; Moore, Dan H; Yount, Garret

    2013-11-01

    The development of nontoxic agents that can selectively enhance the cytotoxicity of chemotherapy is an important aim in oncology. This study evaluates the ability of infrasound exposure to sensitize glioblastoma cells to cisplatin-induced apoptosis. The infrasound was delivered using a device designed to replicate the unique infrasound emissions measured during external Qigong treatments. Human glioblastoma cell lines harboring wild-type p53 (U87) or mutant p53 (U251, SF210, and SF188) were treated in culture with cisplatin, infrasound emissions, or the combination of the 2 agents. Induction of apoptosis was quantified after 24 hours by flow cytometry following annexin V/propidium iodide staining. Infrasound emissions alone, delivered at moderate levels (~10 mPa) with dynamic frequency content (7-13 Hz), did not induce apoptosis, yet combining infrasound with cisplatin augmented the induction of apoptosis by cisplatin in all the 4 cell lines (P < .05). Increased cellular uptake of the fluorophore calcein associated with infrasound exposure was quantified by fluorescence microscopy as well as flow cytometry, demonstrating increased cell membrane permeability. The 4 cell lines differed in the degree to which infrasound exposure increased calcein uptake, and these differences were predictive of the extent to which infrasound enhanced cisplatin-induced apoptosis. When exposed to specific frequencies, membrane permeabilization also appeared to be differentially responsive for each cell line, suggesting the potential for selective targeting of tissue types using isolated infrasonic frequencies. Additionally, the pressure amplitudes used in this study were several orders of magnitude less than those used in similar studies involving ultrasound and shock waves. The results of this study provide support for using infrasound to enhance the chemotherapeutic effects of cisplatin in a clinical setting. PMID:23165942

  10. NF-Kappa B Modulation Is Involved in Celastrol Induced Human Multiple Myeloma Cell Apoptosis

    PubMed Central

    Ni, Haiwen; Zhao, Wanzhou; Kong, Xiangtu; Li, Haitao; Ouyang, Jian

    2014-01-01

    Celastrol is an active compound extracted from the root bark of the traditional Chinese medicine Tripterygium wilfordii Hook F. To investigate the effect of celastrol on human multiple myeloma cell cycle arrest and apoptosis and explore its molecular mechanism of action. The activity of celastrol on LP-1 cell proliferation was detected by WST-8 assay. The celastrol-induced cell cycle arrest was analyzed by flow cytometry after propidium iodide staining. Nuclear translocation of the nuclear factor kappa B (NF-?B) was observed by fluorescence microscope. Celastrol inhibited cell proliferation of LP-1 myeloma cell in a dose-dependent manner with IC50 values of 0.8817 µM, which was mediated through G1 cell cycle arrest and p27 induction. Celastrol induced apoptosis in LP-1 and RPMI 8226 myeloma cells in a time and dose dependent manner, and it involved Caspase-3 activation and NF-?B pathway. Celastrol down-modulated antiapoptotic proteins including Bcl-2 and survivin expression. The expression of NF-?B and IKKa were decreased after celastrol treatment. Celastrol effectively blocked the nuclear translocation of the p65 subunit and induced human multiple myeloma cell cycle arrest and apoptosis by p27 upregulation and NF-kB modulation. It has been demonstrated that the effect of celastrol on NF-kB was HO-1-independent by using zinc protoporphyrin-9 (ZnPPIX), a selective heme oxygenase inhibitor. From the results, it could be inferred that celastrol may be used as a NF-kB inhibitor to inhibit myeloma cell proliferation. PMID:24755677

  11. SOX18 knockdown suppresses the proliferation and metastasis, and induces the apoptosis of osteosarcoma cells.

    PubMed

    Wu, Zhong; Liu, Junjian; Wang, Jianguang; Zhang, Fan

    2016-01-01

    Sex determining region Y?box 18 (SOX18) has been found to be overexpressed in several types of tumor. However, the molecular mechanism underlying the biological function of SOX18 in osteosarcoma remains to be elucidated. The present study aimed to elucidate the roles of SOX18 in regulating the biological behavior of osteosarcoma cells. First, SOX18 mRNA expression was analyzed in osteosarcoma tissues using reverse transcription?quantitative polymerase chain reaction (RT?qPCR). The results demonstrated that the expression of SOX18 was elevated in osteosarcoma tissue, compared with normal bone tissue. In addition, the knockdown of SOX18 in U2OS or MG63 osteosarcoma cells inhibited cell proliferation and significantly increased the population of cells in the S?phase of the cell cycle, as measured by the CCK?8 assay and flow cytometric analysis, respectively. Additionally, suppression of the expression of SOX18 in the osteosarcoma cells significantly induced cell apoptosis as evaluated by annexin V/propidium iodide staining and flow cytometric analysis. The downregulation of SOX18 was found to significantly inhibit cell adhesion and invasion. The mRNA and protein expression levels of transforming growth factor??, platelet?derived growth factor (PDGF)?A, PDGF?B and RhoA were also reduced by SOX18 silencing, as assessed by RT?qPCR and western blot analysis, respectively. These results indicated that SOX18 may function as an oncogene, and may provide a novel and promising therapeutic strategy for osteosarcoma. PMID:26573263

  12. Inhibition of enteropathogenic Escherichia coli adhesion on host epithelial cells by Holarrhena antidysenterica (L.) WALL.

    PubMed

    Kavitha, D; Niranjali, S

    2009-09-01

    Bacterial adhesion is the first step in the sequence of events leading to infection. Previous data are available on the effect of Holarrhena antidysenterica on antidiarrhoeal and antibacterial action, but there is little information on the mechanism of action of the various aspects of EPEC-induced diarrhoea, namely adherence and translocation of the effector molecule to intestinal epithelial cells. The aim of the present study was to investigate the effects of alkaloids of Holarrhena antidysenterica (AHA) on interference in the mechanism of enteropathogenic Escherichia coli (EPEC) adhesion on host epithelial cells (INT 407 and HEp2). To determine the impact of AHA on epithelial cells, cytotoxicity (LDH), adherence, apoptotic and ultrastructural studies were performed. To analyse the effect of AHA on EPEC secreted proteins, especially EspD, INT 407 monolayers were infected with EPEC and AHA-treated EPEC, followed by immunoblotting, probed with anti EspD antisera. The maximum percentage of LDH leakage was reduced in AHA-treated EPEC (400 microg/mL) in both cell lines. Reduced bacterial adherence was observed under light microscopy and altered apoptotic changes were visualized using propidium iodide staining in conjunction with fluorescence microscopy, in both cell lines infected with AHA-treated EPEC and these results were confirmed with transmission electron microscope images. The suppression of type III secretory proteins (TTSPs), EspD ( approximately 40 kDa), was detected in INT 407 cells infected with AHA-treated EPEC. In conclusion, AHA reduces initial bacterial adhesion to intact epithelial cells and it may exert an antiadherence effect against the pathogenesis of EPEC in host epithelial cells. Thus, the investigations provide a rational basis for the treatment of EPEC-mediated diarrhoea with AHA. PMID:19441013

  13. Cytotoxic and apoptogenic effects of Strobilanthes crispa Blume extracts on nasopharyngeal cancer cells.

    PubMed

    Koh, Rhun Yian; Sim, Yi Chi; Toh, Hwee Jin; Liam, Liang Kuan; Ong, Rachael Sze Lynn; Yew, Mei Yeng; Tiong, Yee Lian; Ling, Anna Pick Kiong; Chye, Soi Moi; Ng, Khuen Yen

    2015-10-01

    The chemotherapeutic agents used to treat nasopharyngeal cancer (NPC) exhibit low efficacy. Strobilanthes crispa Blume is widely used for its anticancer, diuretic and anti?diabetic properties. The present study aimed to determine the cytotoxic and apoptogenic effects of S. crispa on CNE?1 NPC cells. A 3?(4,5?dimethylthiazol?2?yl)?2,5 diphenyl tetrazolium bromide assay was used to evaluate the cytotoxic effects of S. crispa against CNE?1 cells. The rate of apoptosis was determined using propidium iodide staining and caspase assays. Ethyl acetate, hexane and chloroform extracts of S. crispa leaves all exhibited cytotoxic effects on CNE?1 cells, at a half maximal inhibitory concentration (IC50) of 119, 123.5 and 161.7 µg/ml, respectively. In addition, hexane, chloroform and ethyl acetate extracts of S. crispa stems inhibited CNE?1 cell proliferation, at a IC50 of 49.4, 148.3 and 163.5 µg/ml, respectively. Flow cytometric analysis revealed an increased proportion of cells in the sub G1 phase and a decreased proportion of cells in the G2/M phase, following treatment with the extracts. However, the extracts did not alter the activities of caspase ?3/7, ?8 and ?9. No cytotoxic effect was observed when the cells were treated with the methanol and water extracts of S. crispa stems and leaves. In conclusion, the S. crispa extracts were cytotoxic against CNE?1 cells and these extracts were able to induce apoptosis, independent of caspase activation. PMID:26239257

  14. Transforming growth factor-beta1 inhibits luteinization and promotes apoptosis in bovine granulosa cells.

    PubMed

    Zheng, Xiaofeng; Boerboom, Derek; Carrière, Paul D

    2009-06-01

    We have previously shown that TGFB1 inhibits estradiol (E(2)) and progesterone (P(4)) biosynthesis in FSH-stimulated bovine granulosa cells by selective inhibition of steroidogenic enzymes. The objective of this study was to assess the effects of TGFB1 on E(2) and P(4) steroidogenesis in bovine granulosa cells cultured in the absence of FSH and to measure the effects of TGFB1 on cell proliferation and apoptosis in the presence and absence of FSH. Bovine granulosa cells from 2 to 5 mm follicles were cultured in serum-free medium for 2-6 days. In the absence of FSH, the secretion of P(4) increased with time in culture (P<0.05). Addition of TGFB1 for 6 days decreased P(4) secretion and mRNA levels of the P(4) synthesis-associated genes STAR, CYP11A1, HSD3B1, and GSTA (P<0.05). In the absence of FSH, the secretion of E(2) decreased and addition of TGFB1 for 6 days partially reversed this decline and stimulated E(2) biosynthesis, CYP19A1 and HSD17B1 mRNA levels and CYP19A1 activity (P<0.05). Conversely, TGFB1 did not affect HSD17B7 expression and HSD17B-reducing activity. TGFB1 decreased the proportion of cells in the G0/G1 and S+G2/M phases in FSH-stimulated and unstimulated granulosa cells (P<0.05). Furthermore, in the presence or absence of FSH, TGFB1 increased the proportion of cells in apoptosis measured by propidium iodide staining and flow cytometry and confirmed by increased levels of cleaved caspase-3 (P<0.05). Our results therefore indicate that TGFB1 inhibits luteinization in cultured bovine granulosa cells while maintaining an estrogenic phenotype, and this effect was associated with increased apoptosis. PMID:19307427

  15. Bortezomib and fenretinide induce synergistic cytotoxicity in mantle cell lymphoma through apoptosis, cell-cycle dysregulation, and I?B? kinase downregulation.

    PubMed

    Cowan, Andrew J; Frayo, Shani L; Press, Oliver W; Palanca-Wessels, Maria C; Pagel, John M; Green, Damian J; Gopal, Ajay K

    2015-10-01

    Mantle cell lymphoma (MCL) remains incurable for most patients, and proteasome inhibitors like bortezomib induce responses in a minority of patients with relapsed disease. Fenretinide is a retinoid that has shown preclinical activity in B-cell lymphomas. We hypothesized that these agents could yield augmented antitumor activity. MCL lines (Granta-519, Jeko-1, and Rec-1) were treated with escalating concentrations of bortezomib and fenretinide singly and in combination. Cytotoxicity was assessed using the MTT assay. Flow cytometric methods were used to assess apoptosis and necrosis, with annexin V-FITC/propidium iodide staining, and G1 and G2 cell-cycle changes were assessed by DAPI staining. Changes in cyclin D1, cyclin B, I?B?, and IKK? expressions were quantified by western blotting. Cytotoxicity was mediated through apoptosis; both agents showed observed versus expected cytotoxicities of 92.2 versus 55.1% in Granta-519, of 87.6 versus 36.3% in Jeko-1, and of 63.2 versus 29.8% in Rec-1. Isobolographic analysis confirmed synergy in Jeko-1 and Rec-1 cell lines. Bortezomib induced G2-phase arrest, with a 1.7-fold increase compared with control, and fenretinide resulted in G1-phase arrest, with an increase of 1.3-fold compared with control. In the combination, G2-phase arrest predominated, with a 1.4-fold increase compared with control, and there was reduced expression of cyclin D1 to 24%, cyclin B to 52 and 64%, cyclin D3 to 25 and 43%, I?B? to 23 and 46%, and I?B? kinase to 34 and 44%. Bortezomib and fenretinide exhibit synergistic cytotoxicity against MCL cell lines. This activity is mediated by I?B? kinase modulation, decreased cyclin expression, cell cycle dysregulation, and apoptotic cell death. PMID:26237500

  16. A Novel Peptide to Treat Oral Mucositis Blocks Endothelial and Epithelial Cell Apoptosis

    SciTech Connect

    Wu Xiaoyan; Chen Peili; Sonis, Stephen T.; Lingen, Mark W.; Berger, Ann; Toback, F. Gary

    2012-07-01

    Purpose: No effective agents currently exist to treat oral mucositis (OM) in patients receiving chemoradiation for the treatment of head-and-neck cancer. We identified a novel 21-amino acid peptide derived from antrum mucosal protein-18 that is cytoprotective, mitogenic, and motogenic in tissue culture and animal models of gastrointestinal epithelial cell injury. We examined whether administration of antrum mucosal protein peptide (AMP-p) could protect against and/or speed recovery from OM. Methods and Materials: OM was induced in established hamster models by a single dose of radiation, fractionated radiation, or fractionated radiation together with cisplatin to simulate conventional treatments of head-and-neck cancer. Results: Daily subcutaneous administration of AMP-p reduced the occurrence of ulceration and accelerated mucosal recovery in all three models. A delay in the onset of erythema after irradiation was observed, suggesting that a protective effect exists even before injury to mucosal epithelial cells occurs. To test this hypothesis, the effects of AMP-p on tumor necrosis factor-{alpha}-induced apoptosis were studied in an endothelial cell line (human dermal microvascular endothelial cells) as well as an epithelial cell line (human adult low-calcium, high-temperature keratinocytes; HaCaT) used to model the oral mucosa. AMP-p treatment, either before or after cell monolayers were exposed to tumor necrosis factor-{alpha}, protected against development of apoptosis in both cell types when assessed by annexin V and propidium iodide staining followed by flow cytometry or ligase-mediated polymerase chain reaction. Conclusions: These observations suggest that the ability of AMP-p to attenuate radiation-induced OM could be attributable, at least in part, to its antiapoptotic activity.

  17. Effects of topical corticosteroids on cell proliferation, cell cycle progression and apoptosis: in vitro comparison on HaCaT.

    PubMed

    Guichard, Alexandre; Humbert, Philippe; Tissot, Marion; Muret, Patrice; Courderot-Masuyer, Carole; Viennet, Céline

    2015-02-20

    Topical-corticosteroids are mainly used for the treatment of inflammatory or hyperproliferative skin diseases. The in vivo assay to rank topical-corticosteroids potency, based on the skin blanching, is not adapted to compare their anti-proliferative efficacy. We have compared the antiproliferative effect of six topical-corticosteroids on a model of hyperproliferant keratinocytes (HaCaT). Betamethasone-dipropionate; clobetasol-propionate; betamethasone-valerate; desonide; hydrocortisone-butyrate and hydrocortisone-base, at different concentrations (10(-8)-10(-4)M) have been compared. HaCaT proliferation has been evaluated by MTT-assay and the mechanism of the death was evaluated by annexin V/propidium iodide staining and cell cycle phases analysis. Topical corticosteroids reduced cell growth in a dose-dependent manner. At 10(-4)M, betamethasone dipropionate was the most antiproliferative compound while hydrocortisone-butyrate was the less. Hydrocortisone-base which is usually considered as the less potent topical-corticosteroids showed a clear cytotoxic effect. Betamethasone-dipropionate and betamethasone-valerate induced more apoptosis than necrosis whereas the reverse has been observed for other topical-corticosteroids. All topical-corticosteroids, except clobetasol-propionate, arrested cell cycle mainly in G2-phase. Clobetasol-propionate arrested cell cycle in S-phase population. At 10(-8)M, topical-corticosteroids induced HaCaT proliferation. In terms of antiproliferative effect at 10(-4)M, we propose to rank topical corticosteroids as follow: betamethasone-dipropionate>desonide?betamethasone-valerate=hydrocortisone-base=clobetasol-propionate>hydrocortisone-butyrate. This classification differs from the current ranking, based on the vasoconstrictive effect, but is more adapted for hyperproliferative disease treatment. PMID:25556056

  18. Acetyl-11-keto-beta-boswellic acid induces apoptosis in HL-60 and CCRF-CEM cells and inhibits topoisomerase I.

    PubMed

    Hoernlein, R F; Orlikowsky, T; Zehrer, C; Niethammer, D; Sailer, E R; Simmet, T; Dannecker, G E; Ammon, H P

    1999-02-01

    Antiproliferative action of different pentacyclic triterpenes has repeatedly been reported, and some lipoxygenase inhibitors have been shown to induce cell death in various cell systems. Acetyl-11-keto-beta-boswellic acid (AKBA) is a pentacyclic triterpene that inhibits 5-lipoxygenase in a selective, enzymedirected, nonredox, and noncompetitive manner. To investigate a possible effect of AKBA on leukemic cell growth, proliferation of HL-60 and CCRF-CEM cells was assayed in the presence of AKBA and a structural analog without effect on 5-lipoxygenase, amyrin. Cell counts and [3H]thymidine incorporation were significantly reduced in a dose-dependent manner in the presence of AKBA (IC50 = 30 microM) but not amyrin. An additive effect of AKBA with the crosslinking of the CD95 receptor was also observed. Flow cytometric analysis of propidium iodide-stained cells indicated that the cells underwent apoptosis. This was confirmed by flow cytometric detection of sub-G1 peaks in AKBA-treated cells and by DNA laddering. However, because HL-60 and CCRF-CEM do not express 5-lipoxygenase mRNA constitutively, a mechanism distinct from inhibition of 5-lipoxygenase must account for the effect of AKBA. In a DNA relaxation assay with phiX174RF DNA, AKBA inhibited topoisomerase I from calf thymus at concentrations of >/=10 microM. A semiquantitative cDNA polymerase chain reaction approach was used to estimate the relative level of expression of topoisomerases in both cell lines. The data suggest that induction of apoptosis in HL-60 and CCRF-CEM by AKBA may be due to inhibition of topoisomerase I in these cells. PMID:9918566

  19. Naproxen-induced Ca2+ movement and death in MDCK canine renal tubular cells.

    PubMed

    Cheng, H-H; Chou, C-T; Sun, T-K; Liang, W-Z; Cheng, J-S; Chang, H-T; Tseng, H-W; Kuo, C-C; Chen, F-A; Kuo, D-H; Shieh, P; Jan, C-R

    2015-11-01

    Naproxen is an anti-inflammatory drug that affects cellular calcium ion (Ca(2+)) homeostasis and viability in different cells. This study explored the effect of naproxen on [Ca(2+)]i and viability in Madin-Darby canine kidney cells (MDCK) canine renal tubular cells. At concentrations between 50 ?M and 300 ?M, naproxen induced [Ca(2+)]i rises in a concentration-dependent manner. This Ca(2+) signal was reduced partly when extracellular Ca(2+) was removed. The Ca(2+) signal was inhibited by a Ca(2+) channel blocker nifedipine but not by store-operated Ca(2+) channel inhibitors (econazole and SKF96365), a protein kinase C (PKC) activator phorbol 12-myristate 13-acetate, and a PKC inhibitor GF109203X. In Ca(2+)-free medium, pretreatment with 2,5-di-tert-butylhydroquinone or thapsigargin, an inhibitor of endoplasmic reticulum Ca(2+) pumps, partly inhibited naproxen-induced Ca(2+) signal. Inhibition of phospholipase C with U73122 did not alter naproxen-evoked [Ca(2+)]i rises. At concentrations between 15 ?M and 30 ?M, naproxen killed cells in a concentration-dependent manner, which was not reversed by prechelating cytosolic Ca(2+) with the acetoxymethyl ester of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl. Annexin V/propidium iodide staining data suggest that naproxen induced apoptosis. Together, in MDCK renal tubular cells, naproxen induced [Ca(2+)]i rises by inducing Ca(2+) release from multiple stores that included the endoplasmic reticulum and Ca(2+) entry via nifedipine-sensitive Ca(2+) channels. Naproxen induced cell death that involved apoptosis. PMID:25636639

  20. Pseudolaric acid B exerts antitumor activity via suppression of the Akt signaling pathway in HeLa cervical cancer cells.

    PubMed

    Li, Mingqun; Hong, Li

    2015-08-01

    Pseudolaric acid B (PAB) is a diterpene acid isolated from the bark of the root and trunk of Pseudolarix kaempferi Gordon (Pinaceae), which has demonstrated cytotoxic effects against various types of cancer. However, the mechanisms underlying the anticancer effects of PAB have remained to be elucidated. In the present study, the effects of PAB on the viability and apoptosis of HeLa cells were investigated by MTT assay, flow cytometric analysis of Annexin V-fluorescein isothiocyanate/propidium iodide staining, Rhodamine 123 staining and western blot analysis. The results demonstrated that PAB had antiproliferative and apoptosis-inducing effects on HeLa cells. PAB markedly inhibited HeLa cell viability in a time- and concentration-dependent manner. Flow cytometric analysis indicated that PAB induced apoptosis in HeLa cells in a dose-dependent manner. Treatment with PAB suppressed the expression of anti-apoptotic factor B cell lymphoma-2, and promoted the expression of pro-apoptotic factor Bcl-2-associated X protein. In addition, PAB induced an increase in Caspase-3 activity and loss of mitochondrial membrane potential, suggesting that this apoptosis may be mediated by mitochondrial pathways. Furthermore, the results of western blot analysis indicated that PAB was able to reduce Akt phosphorylation, thereby inhibiting the Akt pathway. These results suggested that PAB inhibited cell proliferation and induced apoptosis in HeLa cells, and that the anti-tumor effects of PAB were associated with inhibition of the Akt pathway. In conclusion, the results of the present study suggested that PAB may represent a novel therapeutic strategy for the treatment of human cervical cancer. However, additional studies are required to investigate the underlying apoptotic mechanisms. PMID:25891953

  1. The Mechanism of Safrole-Induced [Ca²?]i Rises and Non-Ca²?-Triggered Cell Death in SCM1 Human Gastric Cancer Cells.

    PubMed

    Hung, Tzu-Yi; Chou, Chiang-Ting; Sun, Te-Kung; Liang, Wei-Zhe; Cheng, Jin-Shiung; Fang, Yi-Chien; Li, Yih-Do; Shieh, Pochuen; Ho, Chin-Man; Kuo, Chun-Chi; Lin, Jia-Rong; Kuo, Daih-Huang; Jan, Chung-Ren

    2015-10-31

    Safrole is a carcinogen found in plants. The effect of safrole on cytosolic free Ca²? concentrations ([Ca²?]i) and viability in SCM1 human gastric cancer cells was explored. The Ca²?-sensitive fluorescent dye fura-2 was applied to measure [Ca²?]i. Safrole at concentrations of 150-450 ?M induced a [Ca²?]i rise in a concentration-dependent manner. The response was reduced by 60% by removing extracellular Ca²?. Safrole-evoked Ca²? entry was not altered by nifedipine, econazole, SKF96365, and protein kinase C activator or inhibitor. In Ca²?-free medium, treatment with the endoplasmic reticulum Ca²? pump inhibitor thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) abolished safrole-evoked [Ca²?]i rises. Conversely, treatment with safrole abolished thapsigargin or BHQ-evoked [Ca²?]i rises. Inhibition of phospholipase C (PLC) with U73122 abolished safrole-induced [Ca²?]i rises. At 250-550 ?M, safrole decreased cell viability concentration-dependently, which was not reversed by chelating cytosolic Ca²? with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/acetoxy methyl (BAPTA/AM). Annexin V/propidium iodide staining data suggest that safrole (350-550 ?M) induced apoptosis concentration-dependently. These studies suggest that in SCM1 human gastric cancer cells, safrole induced [Ca²?]i rises by inducing PLC-dependent Ca²? release from the endoplasmic reticulum and Ca²? influx via non-store-operated Ca²? entry pathways. Safrole-induced cell death may involve apoptosis. PMID:26387654

  2. Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility.

    PubMed

    Eitan, Yuval; Sarig, Udi; Dahan, Nitsan; Machluf, Marcelle

    2010-08-01

    We have developed an efficient decellularization process for the isolation of extracellular matrix (ECM) from native cardiac tissue. The isolated ECM exhibited desirable mechanical properties in terms of elasticity, strength and durability-properties required from scaffolds used for cardiac tissue repair. This study further investigates the potential use of this scaffold for cardiac tissue engineering in terms of interactions with seeded cells and biocompatibility. We used the commonly studied fibroblasts, cardiomyocytes, and mesenchymal stem cells, which were isolated and seeded onto the scaffold. Cell density and distribution were followed by 3,3'-dioctadecyloxacarbocyanine perchlorate staining, and their proliferation and viability were assessed by AlamarBlue assay and fluorecein-diacetate/propidium iodide staining. Fibroblast-seeded scaffolds shrank to 1-2 mm(3) spheroids, and their glycosaminoglycans significantly increased by 23%. The expression of ECM remodeling-related mRNAs of collagens I and III, matrix metalloproteinase 2, and type 1 tissue inhibitor of metalloproteinases was quantified by real-time polymerase chain reaction, and was found significantly elevated in fibroblast-seeded scaffold, compared with the control cells on plates. Fibroblast-seeded scaffolds lost some flexibility, yet gained strength compared with the acellular scaffolds, as shown by mechanical testing. Scaffold seeded with cardiomyocyte began to beat in concert few days after seeding, and the myocytes expressed typical functional cardiac markers such as alpha-actinin, troponin I, and connexin43. The cells revealed aligned elongated morphology, as presented by immunofluorescent staining and scanning electron microscopy. Mesenchymal stem cell-seeded scaffolds maintained viability over 24 days in culture. These findings further strengthen the potential use of acellular cardiac ECM as a biomaterial for heart regeneration. PMID:19780649

  3. Anticancer Activity of Cobra Venom Polypeptide, Cytotoxin-II, against Human Breast Adenocarcinoma Cell Line (MCF-7) via the Induction of Apoptosis

    PubMed Central

    Shirazi, Farshad H.; Vatanpour, Hosein; zare, Abas; Kobarfard, Farzad; Rabiei, Hadi

    2014-01-01

    Purpose Breast cancer is a significant health problem worldwide, accounting for a quarter of all cancer diagnoses in women. Current strategies for breast cancer treatment are not fully effective, and there is substantial interest in the identification of novel anticancer agents especially from natural products including toxins. Cytotoxins are polypeptides found in the venom of cobras and have various physiological effects. In the present study, the anticancer potential of cytotoxin-II against the human breast adenocarcinoma cell line (MCF-7) was investigated. Methods The cytotoxic effects of cytotoxin-II were determined by morphological analysis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The mode and mechanism of cell death were investigated via acridine orange/ethidium bromide (AO/EtBr) double staining, flow cytometric analysis of cell death, detection of mitochondrial membrane potential, measurement of intracellular reactive oxygen species (ROS), annexin V/propidium iodide staining, and caspase-9 activity assays. Results The half maximal inhibitory concentration (IC50) of cytotoxin-II in MCF-7 cells was 4.18±1.23 µg/mL, while the value for cisplatin was approximately 28.02±1.87 µg/mL. Morphological analysis and AO/EtBr double staining showed typical manifestations of apoptotic cell death (in doses lower than 8 µg/mL). Dose- and time-dependent ROS generation, loss of mitochondrial membrane potential, caspase-9 activation, and cell cycle arrest were observed in their respective tests. Conclusion In conclusion, cytotoxin-II has potent anticancer effects in the MCF-7 cell line, which are induced via the intrinsic pathways of apoptosis. Based on these findings, cytotoxin-II is a suitable choice for breast cancer treatment. PMID:25548578

  4. Autophagy limits the cytotoxic effects of the AKT inhibitor AZ7328 in human bladder cancer cells

    PubMed Central

    Dickstein, Rian J.; Nitti, Giovanni; Dinney, Colin P.; Davies, Barry R.; Kamat, Ashish M.; McConkey, David J.

    2012-01-01

    Background: Mutations that activate the PI3K/AKT/mTOR pathway are relatively common in urothelial (bladder) cancers, but how these pathway mutations affect AKT dependency is not known. We characterized the relationship between AKT pathway mutational status and sensitivity to the effects of the selective AKT kinase inhibitor AZ7328 using a panel of 12 well-characterized human bladder cancer cell lines. Methods: Sequenome DNA sequencing was performed to identify mutations in a panel of 12 urothelial cancer cell lines. Drug-induced proliferative inhibition and apoptosis were quantified using MTT assays and propidium iodide staining with FACS analyses. Protein activation via phosphorylation was measured by immunoblotting. Autophagy was measured by LC3 immunofluorescence and immunoblotting. Results: AZ7328 inhibited proliferation and AKT substrate phosphorylation in a concentration-dependent manner but had minimal effects on apoptosis. Proliferative inhibition correlated loosely with the presence of activating PIK3CA mutations and was strengthened in combination with the mTOR inhibitor rapamycin. AZ7328 induced autophagy in some of the lines, and in the cells exposed to a combination of AZ7328 and chemical autophagy inhibitors apoptosis was induced. Conclusions: The cytostatic effects of AZ7328 correlate with PIK3CA mutations and are greatly enhanced by dual pathway inhibition using an mTOR inhibitor. Furthermore, AZ7328 can interact with autophagy inhibitors to induce apoptosis in some cell lines. Overall, our results support the further evaluation of combinations of PI3K/AKT/mTOR pathway and autophagy inhibitors in pre-clinical in vivo models and ultimately in patients with PIK3CA mutant bladder cancers. PMID:22895070

  5. Anticancer Activity of Certain Herbs and Spices on the Cervical Epithelial Carcinoma (HeLa) Cell Line.

    PubMed

    Berrington, Danielle; Lall, Namrita

    2012-01-01

    Acetone extracts of selected plant species were evaluated for their in vitro cytotoxicity against a noncancerous African green monkey kidney (Vero) cell line and an adenocarcinoma cervical cancer (HeLa) cell line. The plants studied were Origanum vulgare L. (Oregano), Rosmarinus officinalis L. (Upright and ground cove rosemary), Lavandula spica L. (Lavender), Laurus nobilis L. (Bay leaf), Thymus vulgaris L. (Thyme), Lavandula x intermedia L. (Margaret Roberts Lavender), Petroselinum crispum Mill. (Curly leaved parsley), Foeniculum vulgare Mill. (Fennel), and Capsicum annuum L. (Paprika). Antioxidant activity was determined using a quantitative DPPH (1,1-diphenyl-2-picryl hydrazyl) assay. The rosemary species exhibited effective radical scavenging capacity with 50% inhibitory concentration (IC(50)) of 3.48 ± 0.218??g/mL and 10.84 ± 0.125??g/mL and vitamin C equivalents of 0.351?g and 1.09?g for McConnell's Blue and Tuscan Blue, respectively. Cytotoxicity was measured using XTT (Sodium 3'-[1-(phenyl amino-carbonyl)-3,4-tetrazolium]-bis-[4-methoxy-6-nitro] benzene sulfonic acid hydrate) colorimetric assay. Only L. nobilis and O. vulgare exhibited pronounced effects on the HeLa cell line. Dose-dependent studies revealed IC(50) of 34.46 ± 0.48??g/mL and 126.3 ± 1.00??g/mL on the HeLa cells and on the Vero cells 124.1??g/mL ± 18.26 and 163.8??g/mL ± 2.95 for L. nobilis and O. vulgare, respectively. Light (eosin and haematoxylin staining) and confocal microscopy (Hoechst 33342, acridine orange, and propidium iodide staining) were used to evaluate the cytotoxic mechanism of action for L. nobilis and O. vulgare. PMID:22649474

  6. Postexposure application of Fas receptor small-interfering RNA to suppress sulfur mustard-induced apoptosis in human airway epithelial cells: implication for a therapeutic approach.

    PubMed

    Keyser, Brian M; Andres, Devon K; Nealley, Eric; Holmes, Wesley W; Benton, Betty; Paradiso, Danielle; Appell, Ashley; Carpin, Chris; Anderson, Dana R; Smith, William J; Ray, Radharaman

    2013-01-01

    Sulfur mustard (SM) is a vesicant chemical warfare and terrorism agent. Besides skin and eye injury, respiratory damage has been mainly responsible for morbidity and mortality after SM exposure. Previously, it was shown that suppressing the death receptor (DR) response by the dominant-negative Fas-associated death domain protein prior to SM exposure blocked apoptosis and microvesication in skin. Here, we studied whether antagonizing the Fas receptor (FasR) pathway by small-interfering RNA (siRNA) applied after SM exposure would prevent apoptosis and, thus, airway injury. Normal human bronchial/tracheal epithelial (NHBE) cells were used as an in vitro model with FasR siRNA, FasR agonistic antibody CH11, and FasR antagonistic antibody ZB4 as investigative tools. In NHBE cells, both SM (300 µM) and CH11 (100 ng/ml) induced caspase-3 activation, which was inhibited by FasR siRNA and ZB4, indicating that SM-induced apoptosis was via the Fas response. FasR siRNA inhibited SM-induced caspase-3 activation when added to NHBE cultures up to 8 hours after SM. Results using annexin V/propidium iodide-stained cells showed that both apoptosis and necrosis were involved in cell death due to SM; FasR siRNA decreased both apoptotic and necrotic cell populations. Bronchoalveolar lavage fluid (BALF) of rats exposed to SM (1 mg/kg, 50 minutes) revealed a significant (P < 0.05) increase in soluble Fas ligand and active caspase-3 in BALF cells. These findings suggest an intervention of Fas-mediated apoptosis as a postexposure therapeutic strategy with a therapeutic window for SM inhalation injury and possibly other respiratory diseases involving the Fas response. PMID:23129783

  7. Effects of nanosecond pulsed electrical fields (nsPEFs) on the cell cycle of CHO and Jurkat cells

    NASA Astrophysics Data System (ADS)

    Mahlke, Megan A.; Navara, Christopher; Ibey, Bennett L.

    2014-03-01

    Exposure to nano-second pulsed electrical fields (nsPEFs) can cause poration of external and internal cell membranes, DNA damage, and disassociation of cytoskeletal components, all of which are capable of disrupting a cell's ability to replicate. Variations between cell lines in membrane and cytoskeletal structure as well as in survival of nsPEF exposure should correspond to unique line-dependent cell cycle effects. Additionally, phase of cell cycle during exposure may be linked to differential sensitivities to nsPEFs across cell lines, as DNA structure, membrane elasticity, and cytoskeletal structure change dramatically during the cell cycle. Populations of Jurkat and Chinese Hamster Ovary (CHO) cells were examined post-exposure (10 ns pulse trains at 150kV/cm) by analysis of DNA content via propidium iodide staining and flow cytometric analysis at various time points (1, 6, and 12h post-exposure) to determine population distribution in cell cycle phases. Additionally, CHO and Jurkat cells were synchronized in G1/S and G2/M phases, pulsed, and analyzed to evaluate role of cell cycle phase in survival of nsPEFs. CHO populations recovered similarly to sham populations postnsPEF exposure and did not exhibit a phase-specific change in response. Jurkat cells exhibited considerable apoptosis/necrosis in response to nsPEF exposure and were unable to recover and proliferate in a manner similar to sham exposed cells. Additionally, Jurkat cells appear to be more sensitive to nsPEFs in G2/M phases than in G1/S phases. Recovery of CHO populations suggests that nsPEFs do not inhibit proliferation in CHO cells; however, inhibition of Jurkat cells post-nsPEF exposure coupled with preferential cell death in G2/M phases suggest that cell cycle phase during exposure may be an important factor in determining nsPEF toxicity in certain cell lines. Interestingly, CHO cells have a more robust and rigid cytoskeleton than Jurkat cells which is thought to contribute to their ability to survive nsPEFs. The ability of the CHO cytoskeleton to recover and complete mitosis after nsPEF-induced damage in G2/M phase may be integral to the cell line's higher tolerance of nsPEF exposure.

  8. Differential nanoreprotoxicity of silver nanoparticles in male somatic cells and spermatogonial stem cells

    PubMed Central

    Zhang, Xi-Feng; Choi, Yun-Jung; Han, Jae Woong; Kim, Eunsu; Park, Jung Hyun; Gurunathan, Sangiliyandi; Kim, Jin-Hoi

    2015-01-01

    Background Silver nanoparticles (AgNPs) possess unique physical, chemical, and biological properties. AgNPs have been increasingly used as anticancer, antiangiogenic, and antibacterial agents for the treatment of bacterial infections in open wounds as well as in ointments, bandages, and wound dressings. The present study aimed to investigate the effects of two different sizes of AgNPs (10 nm and 20 nm) in male somatic Leydig (TM3) and Sertoli (TM4) cells and spermatogonial stem cells (SSCs). Methods Here, we demonstrate a green and simple method for the synthesis of AgNPs using Bacillus cereus culture supernatants. The synthesized AgNPs were characterized using ultraviolet and visible absorption spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy (TEM). The toxicity of the synthesized AgNPs was evaluated by the effects on cell viability, metabolic activity, oxidative stress, apoptosis, and expression of genes encoding steroidogenic and tight junction proteins. Results AgNPs inhibited the viability and proliferation of TM3 and TM4 cells in a dose- and size-dependent manner by damaging cell membranes and inducing the generation of reactive oxygen species, which in turn affected SSC growth on TM3 and TM4 as feeder cells. Small AgNPs (10 nm) were more cytotoxic than medium-sized nanoparticles (20 nm). TEM revealed the presence of AgNPs in the cell cytoplasm and nucleus, and detected mitochondrial damage and enhanced formation of autosomes and autolysosomes in the AgNP-treated cells. Flow cytometry analysis using Annexin V/propidium iodide staining showed massive cell death by apoptosis or necrosis. Real-time polymerase chain reaction and western blot analyses indicated that in TM3 and TM4 cells, AgNPs activated the p53, p38, and pErk1/2 signaling pathways and significantly downregulated the expression of genes related to testosterone synthesis (TM3) and tight junctions (TM4). Furthermore, the exposure of TM3 and TM4 cells to AgNPs inhibited proliferation and self-renewal of SSCs. Conclusion Our results suggest that AgNPs exhibit size-dependent nanoreprotoxicity in male somatic cells and SSCs, strongly suggesting that applications of AgNPs in commercial products must be carefully evaluated. Further studies of AgNPs-induced nanoreprotoxicity in animal models are required. PMID:25733828

  9. Heterogeneities in inflammatory and cytotoxic responses of RAW 264.7 macrophage cell line to urban air coarse, fine, and ultrafine particles from six European sampling campaigns

    SciTech Connect

    Jalava, P.I.; Salonen, R.O.; Pennanen, A.S.; Sillanpaa, M.; Halinen, A.I.; Happo, M.S.; Hillamo, R.; Brunekreef, B.; Katsouyanni, K.; Sunyer, J.; Hirvonen, M.R.

    2007-03-15

    We investigated the cytotoxic and inflammatory activities of size-segregated particulate samples (particulate matter, PM) from contrasting air pollution situations in Europe. Coarse (PM10-2.5), fine (PM2.5-0.2), and ultrafine (PM0.2) particulate samples were collected with a modified Harvard high-volume cascade impactor (HVCI). Mouse RAW 264.7 macrophages were exposed to the samples for 24 h. Selected inflammatory mediators, nitric oxide (NO) and cytokines (tumor necrosis factor alpha (TNF alpha), interleukin 6 (IL-6), macrophage inflammatory protein-2 (MIP-2)), were measured together with cytotoxicity (MTT test), and analysis of apoptosis and cell cycle (propidium iodide staining). The PM10-2.5 samples had a much higher inflammatory activity than the PM2.5-0.2 and PM0.2 samples, but the PM2.5-0.2 samples showed the largest differences in inflammatory activity, and the PM0.2 samples in cytotoxicity, between the sampling campaigns. The PM2.5-0.2 samples from traffic environments in springtime Barcelona and summertime Athens had the highest inflammatory activities, which may be related to the high photochemical activity in the atmosphere during the sampling campaigns. The PM0.2 sample from wintertime Prague with proven impacts from local coal and biomass combustion had very high cytotoxic and apoptotic activities and caused a distinct cell cycle arrest. Thus, particulate size, sources, and atmospheric transformation processes affect the toxicity profile of urban air particulate matter. These factors may explain some of the heterogeneity observed in particulate exposure-response relationships of human health effects in epidemiological studies.

  10. The Effect of Ursolic Acid on Leishmania (Leishmania) amazonensis Is Related to Programed Cell Death and Presents Therapeutic Potential in Experimental Cutaneous Leishmaniasis.

    PubMed

    Yamamoto, Eduardo S; Campos, Bruno L S; Jesus, Jéssica A; Laurenti, Márcia D; Ribeiro, Susan P; Kallás, Esper G; Rafael-Fernandes, Mariana; Santos-Gomes, Gabriela; Silva, Marcelo S; Sessa, Deborah P; Lago, João H G; Levy, Débora; Passero, Luiz F D

    2015-01-01

    Among neglected tropical diseases, leishmaniasis is one of the most important ones, affecting more than 12 million people worldwide. The available treatments are not well tolerated, and present diverse side effects, justifying the search for new therapeutic compounds. In the present study, the activity of ursolic acid (UA) and oleanolic acid (OA) were assayed in experimental cutaneous leishmaniasis (in vitro and in vivo). Promastigote forms of L. amazonensis were incubated with OA and UA for 24h, and effective concentration 50% (EC50) was estimated. Ultraestructural alterations in Leishmania amazonensis promastigotes after UA treatment were evaluated by transmission electron microscopy, and the possible mode of action was assayed through Annexin V and propidium iodide staining, caspase 3/7 activity, DNA fragmentation and transmembrane mitochondrial potential. The UA potential was evaluated in intracellular amastigotes, and its therapeutic potential was evaluated in L. amazonensis infected BALB/c mice. UA eliminated L. amazonensis promastigotes with an EC50 of 6.4 ?g/mL, comparable with miltefosine, while OA presented only a marginal effect on promastigote forms at 100 ?g/mL. The possible mechanism by which promastigotes were eliminated by UA was programmed cell death, independent of caspase 3/7, but it was highly dependent on mitochondria activity. UA was not toxic for peritoneal macrophages from BALB/c mice, and it was able to eliminate intracellular amastigotes, associated with nitric oxide (NO) production. OA did not eliminate amastigotes nor trigger NO. L. amazonensis infected BALB/c mice submitted to UA treatment presented lesser lesion size and parasitism compared to control. This study showed, for the first time, that UA eliminate promastigote forms through a mechanism associated with programed cell death, and importantly, was effective in vivo. Therefore, UA can be considered an interesting candidate for future tests as a prototype drug for the treatment of cutaneous leishmaniasis. PMID:26674781

  11. Molecular Mechanism of the Cell Death Induced by the Histone Deacetylase Pan Inhibitor LBH589 (Panobinostat) in Wilms Tumor Cells

    PubMed Central

    Fang, Fang; Jun, Lu; Gang, Li; Lan, Cao; Na-Na, Wang; Xiao-Juan, Du; Li-Chao, Sun; Wen-Li, Zhao; Pei-Fang, Xiao; He, Zhao; Guang-Hao, Su; Yan-Hong, Li; Yi-Ping, Li; Yun-Yun, Xu; Hui-Ting, Zhou; Yi, Wu; Mei-Fang, Jin; Lin, Liu; Jian, Ni; Shao-Yan, Hu; Xue-Ming, Zhu; Xing, Feng; Jian, Wang; Jian, Pan

    2015-01-01

    Background Wilms tumor (WT) is an embryonic kidney cancer, for which histone acetylation might be a therapeutic target. LBH589, a novel targeted agent, suppresses histone deacetylases in many tumors. This study investigated the antitumor activity of LBH589 in SK-NEP-1 and G401 cells. Methods SK-NEP-1 and G401 cell growth was assessed by CCK-8 and in nude mice experiments. Annexin V/propidium iodide staining followed by flow cytometry detected apoptosis in cell culture. Gene expressions of LBH589-treated tumor cells were analyzed using an Arraystar Human LncRNA Array. The Multi Experiment View cluster software analyzed the expression data. Differentially expressed genes from the cluster analyses were imported into the Ingenuity Pathway Analysis tool. Results LBH589 inhibited cell proliferation of SK-NEP-1 and G401 cells in a dose-dependent manner. Annexin V, TUNEL and Hochest 33342 staining analysis showed that LBH589-treated cells showed more apoptotic features compared with the control. LBH589 treatment inhibited the growth of SK-NEP-1 xenograft tumors in nude mice. Arraystar Human LncRNA Array analysis of genes and lncRNAs regulated by LBH589 identified 6653 mRNAs and 8135 lncRNAs in LBH589-treated SK-NEP-1 cells. The most enriched gene ontology terms were those involved in nucleosome assembly. KEGG pathway analysis identified cell cycle proteins, including CCNA2, CCNB2, CCND1, CCND2, CDK4, CDKN1B and HDAC2, etc. Ingenuity Pathway Analysis identified important upstream molecules: HIST2H3C, HIST1H4A, HIST1A, HIST1C, HIST1D, histone H1, histone H3, RPRM, HSP70 and MYC. Conclusions LBH589 treatment caused apoptosis and inhibition of cell proliferation of SK-NEP-1and G401 cells. LBH589 had a significant effect and few side effects on SK-NEP-1 xenograft tumors. Expression profiling, and GO, KEGG and IPA analyses identified new targets and a new “network” of genes responding to LBH589 treatment in SK-NEP-1 cells. RPRM, HSP70 and MYC may be important regulators during LBH589 treatment. Our results provide new clues to the proapoptotic mechanism of LBH589. PMID:26176219

  12. A simple sperm nuclear vacuole assay with propidium iodide.

    PubMed

    Zhu, W-J; Li, J

    2015-09-01

    Our aim was to develop a new simple sperm nuclear vacuole assay (SNVA) with propidium iodide (PI) to determine the status of nuclear vacuole (NV) of individual spermatozoa. After PI staining, sperm nuclei were classified into the 14 categories according to both nuclear morphology and the status of NV. The incidence was 57.8% (range 28-84%) in fertile controls (n = 40), and 85.1% (range 67-99%) in men with varicocele (n = 40). In the fertile group, normal nuclear-shaped spermatozoa without NV or with one small NV located in the ante-nuclear region were significantly more in comparison with the varicocele group. In the varicocele group, abnormal nuclear-shaped spermatozoa with one large NV and with multiple NVs located in the ante-nuclear region were most frequent findings. Besides, spermatozoa with NVs in both ante- and post-nuclear regions in the varicocele group were significantly more than those in the fertile group. In both fertile and varicocele groups, normal or abnormal nuclear-shaped spermatozoa with one or more vacuoles only located in the post-nuclear region occurred sparingly. The SNVA provides a useful additional approach to identify the status of NV in human spermatozoa for diagnostic purposes. A good sperm sample would have more spermatozoa without NV or with one small NV located in the ante-nuclear region. PMID:25220411

  13. Involvement of mitogen-activated protein kinase pathway in T-2 toxin-induced cell cycle alteration and apoptosis in human neuroblastoma cells.

    PubMed

    Agrawal, Mona; Bhaskar, A S B; Lakshmana Rao, P V

    2015-06-01

    T-2 toxin is the most toxic trichothecene and a frequent contaminant in many agriculture products. Dietary ingestion represents the most common route of T-2 toxin exposure in humans. T-2 toxin exposure leads to many pathological conditions like nervous disorders, cardiovascular alterations, immune depression and dermal inflammation. However, the neuronal toxicity of T-2 toxin in vitro remains unclear. In the present study, we investigated the mechanism of T-2 toxin-induced apoptosis in human neuroblastoma cells (IMR-32). T-2 toxin was cytotoxic at a low concentration of 10 ng/ml. The 50% inhibitory concentration (IC50) of T-2 toxin was found to be 40 ng/ml as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, crystal violet dye exclusion test and lactate dehydrogenase (LDH) leakage. T-2 toxin increased intracellular reactive oxygen species generation as early as 15 min and peaked at 60 min as analyzed by flow cytometry. Annexin V?+?propidium iodide staining showed time-dependent increase in percent apoptotic cells. DNA gel electrophoresis showed oligonucleosomal DNA fragmentation typical of apoptotic cells. Additionally, casapse-3 activation and PARP cleavage indicated involvement of mitochondrial mediated caspase-dependent pathway of apoptosis. Cell cycle analysis revealed time-dependent increase in sub-G1 population of cells and significant up-regulation of CDK2, CDK6, cyclin A and p21 messenger RNA (mRNA) levels. Exposure to T-2 toxin induced the phosphorylation of extracellular signal-regulated kinase (ERK), p38-mitogen-activated protein kinase and c-jun N-terminal kinases (JNK). Analysis of human phospho-mitogen-activated protein kinase (MAPK) antibody array revealed time-dependent increase in phosphorylation. Upstream of ERK pathway Grb2, Ras and Raf and downstream transcription factors c-fos and c-jun were significantly up-regulated. Z-VAD-FMK and MAPK inhibitors (PD 98059, SB 203580 and ZM 336372) exposure prior to T-2 toxin treatment significantly decreased percent of apoptotic cells compared to only T-2 toxin-exposed cells. Results of the present study show that T-2 toxin at nanogram concentrations can induce apoptosis in human neuronal cells through multiple signal transduction pathways. The study provides possible leads for developing therapeutic approaches to prevent T-2 toxin-induced neurotoxicity. PMID:25084755

  14. Transcriptional regulation of kinases downstream of the T cell receptor: another immunomodulatory mechanism of glucocorticoids

    PubMed Central

    2014-01-01

    Background Glucocorticoids affect peripheral immune responses, including modulation of T-cell activation, differentiation, and apoptosis. The quantity and quality of T-cell receptor (TCR)-triggered intracellular signals modulate T-cell function. Thus, glucocorticoids may affect T cells by interfering with the TCR signaling cascade. The purpose of the study was to search for glucocorticoid-modulated kinases downstream of the TCR. Methods Gene modulation in lymphoid cells either treated with glucocorticoids or from glucocorticoid-treated mice was studied using a RNase protection assay, real-time PCR, and western blotting. The sensitivity of genetically modified thymocytes to glucocorticoid-induced apoptosis was studied by performing hypotonic propidium iodide staining and flow cytometry. The Student’s t-test was employed for statistical evaluation. Results We found that transcription of Itk, a non-receptor tyrosine kinase of the Tec family, was up-regulated in a mouse T-cell hybridoma by the synthetic glucocorticoid dexamethasone. In contrast, dexamethasone down-regulated the expression of Txk, a Tec kinase that functions redundantly with Itk, and Lck, the Src kinase immediately downstream of the TCR. We investigated the expression of Itk, Txk, and Lck in thymocytes and mature lymphocytes following in vitro and in vivo dexamethasone treatment at different time points and doses. Kinase expression was differentially modulated and followed distinct kinetics. Itk was up-regulated in all cell types and conditions tested. Txk was strongly up-regulated in mature lymphocytes but only weakly up-regulated or non-modulated in thymocytes in vitro or in vivo, respectively. Conversely, Lck was down-regulated in thymocytes, but not modulated or up-regulated in mature lymphocytes in the different experimental conditions. This complex behaviour correlates with the presence of both positive and negative glucocorticoid responsive elements (GRE and nGRE, respectively) in the Itk, Txk and Lck genes. To investigate the function associated with Itk up-regulation, dexamethasone-induced apoptosis of thymocytes from Itk-deficient mice was evaluated. Our results demonstrated that Itk deficiency causes increased sensitivity to dexamethasone but not to other pro-apoptotic stimuli. Conclusions Modulation of Itk, Txk, and Lck in thymocytes and mature lymphocytes is another mechanism by which glucocorticoids modulate T-cell activation and differentiation. Itk up-regulation plays a protective role in dexamethasone-treated thymocytes. PMID:24993777

  15. CXC195 induces apoptosis and endoplastic reticulum stress in human hepatocellular carcinoma cells by inhibiting the PI3K/Akt/mTOR signaling pathway.

    PubMed

    Chen, Xiao-Liang; Fu, Jian-Ping; Shi, Jun; Wan, Ping; Cao, Hong; Tang, Zhi-Mou

    2015-12-01

    CXC195 exhibits strong protective effects against neuronal apoptosis by exerting antioxidant activity. However, the pharmacological function of CXC195 in cancer remains to be elucidated. The present study demonstrated that CXC195 exhibited significant cytotoxic effects, and induced cell cycle arrest and apoptosis in HepG2 human hepatocellular carcinoma (HCC) cell lines. Following treatment of HepG2 cells with 150 µ? CXC195 for 24 , cell viability and the apoptotic rate were assessed using an MTT assay and Annexin V/propidium iodide staining followed by ?ow cytometric analysis. Molecular markers of the cell cycle, apoptosis, mitochondrial function and endoplasmic reticulum (ER) stress were analyzed by western blot or polymerase chain reaction analysis. Caspase activation, cytochrome c and apoptosis?inducing factor release, and analysis of the B cell lymphoma 2 (Bcl?2)?associated X protein/Bcl?2 ratio demonstrated that the anticancer effects of CXC195 in HepG2 cells were mediated by caspase and mitochondria?dependent apoptosis. CXC195 also induced the expression of ER stress?associated proteins, including CCAAT?enhancer?binding protein homologous protein, and glucose?regulated proteins 94 and 78, and led to the activation of multiple branches of ER stress transducers, including inositol?requiring enzyme 1??apoptosis signal?regulating kinase?p38/c?Jun N?terminal kinase, and protein kinase R?like endoplasmic reticulum kinase?eukaryotic translation initiation factor 2??activating transcription factor (ATF)4 and ATF6, in the HepG2 cells. In addition, CXC195 inhibited the phosphorylation of phosphoinositide 3?kinase (PI3K), Akt and mammalian target of rapamycin (mTOR) in the HepG2 cells. These effects were enhanced following treatment with selected inhibitors of PI3K (LY294002), Akt (SH?6) and mTOR (rapamycin). Furthermore, these inhibitors enhanced the pro?apoptotic effects of CXC195 in the HepG2 cells. In conclusion, the results of the present study indicated that CXC195 induced apoptosis and ER stress in HepG2 cells through the inhibition of the PI3K/Akt/mTOR signaling pathway. PMID:26496900

  16. Involvement of NF-?B and HSP70 signaling pathways in the apoptosis of MDA-MB-231 cells induced by a prenylated xanthone compound, ?-mangostin, from Cratoxylum arborescens

    PubMed Central

    Ibrahim, Mohamed Yousif; Hashim, Najihah Mohd; Mohan, Syam; Abdulla, Mahmood Ameen; Abdelwahab, Siddig Ibrahim; Kamalidehghan, Behnam; Ghaderian, Mostafa; Dehghan, Firouzeh; Ali, Landa Zeenelabdin; Karimian, Hamed; Yahayu, Maizatulakmal; Ee, Gwendoline Cheng Lian; Farjam, Abdoreza Soleimani; Ali, Hapipah Mohd

    2014-01-01

    Background Cratoxylum arborescens has been used traditionally in Malaysia for the treatment of various ailments. Methods ?-Mangostin (AM) was isolated from C. arborescens and its cell death mechanism was investigated. AM-induced cytotoxicity was observed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Acridine orange/propidium iodide staining and annexin V were used to detect cells in early phases of apoptosis. High-content screening was used to observe the nuclear condensation, cell permeability, mitochondrial membrane potential, and cytochrome c release. The role of caspases-3/7, -8, and -9, reactive oxygen species, Bcl-2 and Bax expression, and cell cycle arrest were also investigated. To determine the role of the central apoptosis-related proteins, a protein array followed by immunoblot analysis was conducted. Moreover, the involvement of nuclear factor-kappa B (NF-?B) was also analyzed. Results Apoptosis was confirmed by the apoptotic cells stained with annexin V and increase in chromatin condensation in nucleus. Treatment of cells with AM promoted cell death-transducing signals that reduced MMP by downregulation of Bcl-2 and upregulation of Bax, triggering cytochrome c release from the mitochondria to the cytosol. The released cytochrome c triggered the activation of caspase-9 followed by the executioner caspase-3/7 and then cleaved the PARP protein. Increase of caspase-8 showed the involvement of extrinsic pathway. AM treatment significantly arrested the cells at the S phase (P<0.05) concomitant with an increase in reactive oxygen species. The protein array and Western blotting demonstrated the expression of HSP70. Moreover, AM significantly blocked the induced translocation of NF-?B from cytoplasm to nucleus. Conclusion Together, the results demonstrate that the AM isolated from C. arborescens inhibited the proliferation of MDA-MB-231 cells, leading to cell cycle arrest and programmed cell death, which was suggested to occur through both the extrinsic and intrinsic apoptosis pathways with involvement of the NF-?B and HSP70 signaling pathways. PMID:25395836

  17. Synergistic anticancer effects of a bioactive subfraction of Strobilanthes crispus and tamoxifen on MCF-7 and MDA-MB-231 human breast cancer cell lines

    PubMed Central

    2014-01-01

    Background Development of tumour resistance to chemotherapeutic drugs and concerns over their toxic effects has led to the increased use of medicinal herbs or natural products by cancer patients. Strobilanthes crispus is a traditional remedy for many ailments including cancer. Its purported anticancer effects have led to the commercialization of the plant leaves as medicinal herbal tea, although the scientific basis for its use has not been established. We previously reported that a bioactive subfraction of Strobilanthes crispus leaves (SCS) exhibit potent cytotoxic activity against human breast cancer cell lines. The current study investigates the effect of this subfraction on cell death activities induced by the antiestrogen drug, tamoxifen, in estrogen receptor-responsive and nonresponsive breast cancer cells. Methods Cytotoxic activity of SCS and tamoxifen in MCF-7 and MDA-MB-231 human breast cancer cells was determined using lactate dehydrogenase release assay and synergism was evaluated using the CalcuSyn software. Apoptosis was quantified by flow cytometry following Annexin V and propidium iodide staining. Cells were also stained with JC-1 dye to determine changes in the mitochondrial membrane potential. Fluorescence imaging using FAM-FLICA assay detects caspase-8 and caspase-9 activities. DNA damage in the non-malignant breast epithelial cell line, MCF-10A, was evaluated using Comet assay. Results The combined SCS and tamoxifen treatment displayed strong synergistic inhibition of MCF-7 and MDA-MB-231 cell growth at low doses of the antiestrogen. SCS further promoted the tamoxifen-induced apoptosis that was associated with modulation of mitochondrial membrane potential and activation of caspase-8 and caspase-9, suggesting the involvement of intrinsic and extrinsic signaling pathways. Interestingly, the non-malignant MCF-10A cells displayed no cytotoxicity or DNA damage when treated with either SCS or SCS-tamoxifen combination. Conclusions The combined use of SCS and lower tamoxifen dose could potentially reduce the side effects/toxicity of the drug. However, further studies are needed to determine the effectiveness and safety of the combination treatment in vivo. PMID:25034326

  18. Sanguinarine inhibits angiotensin II-induced apoptosis in H9c2 cardiac cells via restoring reactive oxygen species-mediated decreases in the mitochondrial membrane potential

    PubMed Central

    LIU, YUAN; JIAO, RONG; MA, ZHEN-GUO; LIU, WEI; WU, QING-QING; YANG, ZHENG; LI, FANG-FANG; YUAN, YUAN; BIAN, ZHOU-YAN; TANG, QI-ZHU

    2015-01-01

    Cell apoptosis induced by Angiotensin II (Ang II) has a critical role in the development of cardiovascular diseases. The aim of the present study was to investigate whether sanguinarine (SAN), a drug which was proved to have anti-oxidant, anti-proliferative and immune enhancing effects, can abolish cell apoptosis induced by Ang II. In the present study, H9c2 cardiac cells were stimulated with 10 µM Ang II with or without SAN. The level of intracellular reactive oxygen species (ROS) generation was assessed using dichlorodihydrofluorescein diacetate, and changes of the mitochondrial membrane potential (MMP) were assessed using JC-1 staining. Furthermore, mRNA expression of NOX2 was determined by reverse transcription quantitative polymerase chain reaction, and apoptosis was detected by Annexin V/propidium iodide staining and flow cytometry. The expression of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax) as well as cleaved (c)-caspase 3 and -9 were detected by western blot analysis, and the activity of caspase 3 and -9 was detected using an ELISA. The results of the present study showed that NOX2 expression and ROS generation induced by Ang II were inhibited by SAN, and the Ang 2-induced MMP loss was also ameliorated. Furthermore, Ang II-induced H9c2 cardiac cell apoptosis as well as c-caspase 3 and -9 levels were significantly reduced by SAN. Investigation of the possible pathway involved in the anti-apoptotic effect of SAN showed that the expression of Bcl-2 was decreased, while that of Bax was increased following stimulation with Ang II, which was reversed following treatment with SAN. In addition, Ang II enhanced the activity of caspase 9 and cleaved downstream caspases such as caspase-3, initiating the caspase cascade, while pre-treatment of H9c2 cardiac cells with SAN blocked these effects. In conclusion, the findings of the present study indicated that SAN inhibits the apoptosis of H9c2 cardiac cells induced by Ang II, most likely via restoring ROS-mediated decreases of the MMP. PMID:26017473

  19. Diffuse, non-polar electropermeabilization and reduced propidium uptake distinguish the effect of nanosecond electric pulses.

    PubMed

    Semenov, Iurii; Zemlin, Christian; Pakhomova, Olga N; Xiao, Shu; Pakhomov, Andrei G

    2015-10-01

    Ca2+ activation and membrane electroporation by 10-ns and 4-ms electric pulses (nsEP and msEP) were compared in rat embryonic cardiomyocytes. The lowest electric field which triggered Ca2+ transients was expectedly higher for nsEP (36 kV/cm) than for msEP (0.09 kV/cm) but the respective doses were similar (190 and 460 mJ/g). At higher intensities, both stimuli triggered prolonged firing in quiescent cells. An increase of basal Ca2+ level by >10 nM in cells with blocked voltage-gated Ca2+ channels and depleted Ca2+ depot occurred at 63 kV/cm (nsEP) or 0.14 kV/cm (msEP) and was regarded as electroporation threshold. These electric field values were at 150-230% of stimulation thresholds for both msEP and nsEP, notwithstanding a 400,000-fold difference in pulse duration. For comparable levels of electroporative Ca2+ uptake, msEP caused at least 10-fold greater uptake of propidium than nsEP, suggesting increased yield of larger pores. Electroporation by msEP started Ca2+ entry abruptly and locally at the electrode-facing poles of cell, followed by a slow diffusion to the center. In a stark contrast, nsEP evoked a "supra-electroporation" pattern of slower but spatially uniform Ca2+ entry. Thus nsEP and msEP had comparable dose efficiency, but differed profoundly in the size and localization of electropores. PMID:26112464

  20. Cisplatin Enhances Protein Kinase R-Like Endoplasmic Reticulum Kinase- and CD95-Dependent Melanoma Differentiation-Associated Gene-7/Interleukin-24–Induced Killing in Ovarian Carcinoma CellsS?

    PubMed Central

    Yacoub, Adly; Liu, Renyan; Park, Margaret A.; Hamed, Hossein A.; Dash, Rupesh; Schramm, Danielle N.; Sarkar, Devanand; Dimitriev, Igor P.; Bell, Jessica K.; Grant, Steven; Farrell, Nicholas P.; Curiel, David T.; Fisher, Paul B.

    2010-01-01

    Melanoma differentiation associated gene-7/interleukin 24 (mda-7/IL-24) is a unique interleukin (IL)-10 family cytokine displaying selective apoptosis-inducing activity in transformed cells without harming normal cells. The present studies focused on defining the mechanism(s) by which recombinant adenoviral delivery of MDA-7/IL-24 inhibits cell survival of human ovarian carcinoma cells. Expression of MDA-7/IL-24 induced phosphorylation of protein kinase R-like endoplasmic reticulum kinase (PERK) and eukaryotic initiation factor2? (eIF2?). In a PERK-dependent fashion, MDA-7/IL-24 reduced ERK1/2 and AKT phosphorylation and activated c-Jun NH2-terminal kinase (JNK) 1/2 and p38 mitogen-activated protein kinase (MAPK). MDA-7/IL-24 reduced MCL-1 and BCL-XL and increased BAX levels via PERK signaling; cell-killing was mediated via the intrinsic pathway, and cell killing was primarily necrotic as judged using Annexin V/propidium iodide staining. Inhibition of p38 MAPK and JNK1/2 abolished MDA-7/IL-24 toxicity and blocked BAX and BAK activation, whereas activation of mitogen-activated extracellular-regulated kinase (MEK) 1/2 or AKT suppressed enhanced killing and JNK1/2 activation. MEK1/2 signaling increased expression of the MDA-7/IL-24 and PERK chaperone BiP/78-kDa glucose regulated protein (GRP78), and overexpression of BiP/GRP78 suppressed MDA-7/IL-24 toxicity. MDA-7/IL-24-induced LC3-green fluorescent protein vesicularization and processing of LC3; and knockdown of ATG5 suppressed MDA-7/IL-24-mediated toxicity. MDA-7/IL-24 and cisplatin interacted in a greater than additive fashion to kill tumor cells that was dependent on a further elevation of JNK1/2 activity and recruitment of the extrinsic CD95 pathway. MDA-7/IL-24 toxicity was enhanced in a weak additive fashion by paclitaxel; paclitaxel enhanced MDA-7/IL-24 + cisplatin lethality in a greater than additive fashion via BAX. Collectively, our data demonstrate that MDA-7/IL-24 induces an endoplasmic reticulum stress response that activates multiple proapoptotic pathways, culminating in decreased ovarian tumor cell survival. PMID:19910452

  1. Intraoperative intravenous lidocaine exerts a protective effect on cell-mediated immunity in patients undergoing radical hysterectomy.

    PubMed

    Wang, Huan-Liang; Yan, Hong-Dan; Liu, Ya-Yang; Sun, Bao-Zhu; Huang, Rui; Wang, Xiao-Shuang; Lei, Wei-Fu

    2015-11-01

    Surgical procedures cause a decrease in lymphocyte proliferation rate, an increase in apoptosis and shifts the balance of T?helper (Th)1/Th2 cells towards anti?cell?mediated immunity (CMI) Th2 dominance, which is relevant to the immunosuppressive effects of CMI, postoperative septic complications and the formation of tumor metastasis. Previous studies have revealed that lidocaine exhibits antibacterial actions; regulating inflammatory responses, reducing postoperative pain and affecting the duration spent in hospital. Thus, the present study hypothesized that lidocaine may exert a protective effect on the CMI of patients undergoing surgery for the removal of a primary tumor. A total of 30 adult female patients diagnosed with cervical cancer were recruited to the present study and were randomized into two groups. The lidocaine group received an intravenous bolus dose of 1.5 mg/kg lidocaine, followed by continuous infusion at 1.5 mg/kg/h until discharge from the operating room. The control group received the same volume of normal saline. A 10 ml sample of venous blood was drawn, and the lymphocytes were isolated using Ficoll?paque 1 day prior to surgery, at discharge from the operating room and 48 h post?surgery. The proliferation rate of the lymphocytes was assessed using a Cell Counting Kit?8 assay and was found to be higher in the lidocaine group. The early apoptosis of lymphocytes was attenuated following lidocaine treatment at 48 h post?surgery, as detected using flow cytometry with Annexin V?fluorescein isothiocyanate/propidium iodide staining. The level of interferon (IFN)?? in the serum at 48 h was significantly decreased following surgery in the control group, compared with the pre?surgical values (3.782±0.282, vs. 4.089±0.339 pg/ml, respectively) and the ratio of IFN?? to interleukin?4 was well preserved in the lidocaine group. In conclusion, the present study demonstrated that the intraoperative systemic administration of lidocaine exerted a protective effect on CMI in patients with cervical cancer undergoing radical hysterectomy. This may be beneficial in reducing the occurrence of postoperative septic complications and tumor metastasis formation. PMID:26299324

  2. Nanosecond pulsed electric fields and the cell cycle

    NASA Astrophysics Data System (ADS)

    Mahlke, Megan A.

    Exposure to nanosecond pulsed electrical fields (nsPEFs) can cause poration of external and internal cell membranes, DNA damage, and disassociation of cytoskeletal components, all of which are capable of disrupting a cell's ability to replicate. The phase of the cell cycle at the time of exposure is linked to differential sensitivities to nsPEFs across cell lines, as DNA structure, membrane elasticity, and cytoskeletal structure change dramatically during the cell cycle. Additionally, nsPEFs are capable of activating cell cycle checkpoints, which could lead to apoptosis or slow population growth. NsPEFs are emerging as a method for treating tumors via apoptotic induction; therefore, investigating the relevance of nsPEFs and the cell cycle could translate into improved efficacy in tumor treatment. Populations of Jurkat and Chinese Hamster Ovary (CHO) cells were examined post-exposure (10 ns pulse trains at 150kV/cm) by analysis of DNA content via propidium iodide staining and flow cytometric analysis at various time points (1, 6, and 12h post-exposure) to determine population distribution in cell cycle phases. Additionally, CHO and Jurkat cells were synchronized in G1/S and G2/M phases, pulsed, and analyzed to evaluate the role of cell cycle phase in survival of nsPEFs. CHO populations appeared similar to sham populations post-nsPEFs but exhibited arrest in the G1 phase at 6h after exposure. Jurkat cells exhibited increased cell death after nsPEFs compared to CHO cells but did not exhibit checkpoint arrest at any observed time point. The G1/S phase checkpoint is partially controlled by the action of p53; the lack of an active p53 response in Jurkat cells could contribute to their ability to pass this checkpoint and resist cell cycle arrest. Both cell lines exhibited increased sensitivity to nsPEFs in G2/M phase. Live imaging of CHO cells after nsPEF exposure supports the theory of G1/S phase arrest, as a reduced number of cells undergo mitosis within 24 h when compared to sham treated cells. CHO cells undergoing mitosis after exposure also exhibit improper separation of chromatids which could indicate loss of function of the mitotic spindle checkpoint. Activation and loss of function of checkpoints in CHO but not Jurkat cells after nsPEF exposure suggests that activation of cell cycle checkpoints could be important in defining the character of cell line specific recovery after nsPEF exposure. Moreover, the increased sensitivity in G2/M phase exhibited by both cell lines indicates that cell cycle phase is an important consideration during nsPEF exposure, particularly when aiming to induce apoptosis.

  3. Parthenolide generates reactive oxygen species and autophagy in MDA-MB231 cells. A soluble parthenolide analogue inhibits tumour growth and metastasis in a xenograft model of breast cancer

    PubMed Central

    D'Anneo, A; Carlisi, D; Lauricella, M; Puleio, R; Martinez, R; Di Bella, S; Di Marco, P; Emanuele, S; Di Fiore, R; Guercio, A; Vento, R; Tesoriere, G

    2013-01-01

    Triple-negative breast cancers (TNBCs) are clinically aggressive forms associated with a poor prognosis. We evaluated the cytotoxic effect exerted on triple-negative MDA-MB231 breast cancer cells both by parthenolide and its soluble analogue dimethylamino parthenolide (DMAPT) and explored the underlying molecular mechanism. The drugs induced a dose- and time-dependent decrement in cell viability, which was not prevented by the caspase inhibitor z-VAD-fmk. In particular in the first hours of treatment (1–3?h), parthenolide and DMAPT strongly stimulated reactive oxygen species (ROS) generation. The drugs induced production of superoxide anion by activating NADPH oxidase. ROS generation caused depletion of thiol groups and glutathione, activation of c-Jun N-terminal kinase (JNK) and downregulation of nuclear factor kB (NF-kB). During this first phase, parthenolide and DMAPT also stimulated autophagic process, as suggested by the enhanced expression of beclin-1, the conversion of microtubule-associated protein light chain 3-I (LC3-I) to LC3-II and the increase in the number of cells positive to monodansylcadaverine. Finally, the drugs increased RIP-1 expression. This effect was accompanied by a decrement of pro-caspase 8, while its cleaved form was not detected and the expression of c-FLIPS markedly increased. Prolonging the treatment (5–20?h) ROS generation favoured dissipation of mitochondrial membrane potential and the appearance of necrotic events, as suggested by the increased number of cells positive to propidium iodide staining. The administration of DMAPT in nude mice bearing xenografts of MDA-MB231 cells resulted in a significant inhibition of tumour growth, an increment of animal survival and a marked reduction of the lung area invaded by metastasis. Immunohistochemistry data revealed that treatment with DMAPT reduced the levels of NF-kB, metalloproteinase-2 and -9 and vascular endothelial growth factor, while induced upregulation of phosphorylated JNK. Taken together, our data suggest a possible use of parthenolide for the treatment of TNBCs. PMID:24176849

  4. Quantifying fungal viability in air and water samples using quantitative PCR after treatment with propidium monoazide (PMA)

    SciTech Connect

    Vesper, Stephen; McKinstry, Craig A.; Hartmann, Chris; Neace, Michelle; Yoder, Stephanie; Vesper, Alex

    2007-11-28

    A method is described to discriminate between live and dead cells of the infectious fungi Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus, Mucor racemosus, Rhizopus stolonifer and Paecilomyces variotii. To test the method, conidial suspensions were heat inactivated at 85 °C or held at 5 °C (controls) for 1 h. Polycarbonate filters (25 mm diameter, 0.8 ?m pore size) were placed on "welled" slides (14 mm diameter) and the filters treated with either PBS or PMA. Propidium monoazide (PMA), which enters dead cells but not live cells, was incubated with cell suspensions, exposed to blue wavelength light-emitting diodes (LED) to inactivate remaining PMA and secure intercalation of PMAwith DNA of dead cells. Treated cells were extracted and the live and dead cells evaluated with quantitative PCR (QPCR). After heat treatment and DNA modification with PMA, all fungal species tested showed an approximate 100- to 1000-fold difference in cell viability estimated by QPCR analysis which was consistent with estimates of viability based on culturing.

  5. Mycobacterium avium subsp. paratuberculosis viability determination using F57 quantitative PCR in combination with propidium monoazide treatment.

    PubMed

    Kralik, P; Nocker, A; Pavlik, I

    2010-07-31

    Mycobacterium avium subsp. paratuberculosis (MAP) is known to be a very slow-growing organism. The fact that cells typically need several weeks to form visible colonies severely compromises the suitability of plate counting for assessment of viable cell counts. This problem might be overcome by the application of fast molecular methods containing a viability component. We have evaluated a promising technology combining sample treatment with propidium monoazide (PMA) prior to DNA extraction for selective detection of cells with intact cell membranes with detection of sequence element F57 by quantitative PCR (F57 qPCR). Element F57 is unique for MAP and is not known to exist in any other bacterial species. Conditions of PMA treatment were optimised for MAP isolate 7082 using live and heat-killed cells and comparing different DNA extraction procedures. The subsequent successful application of the optimised protocol to four other MAP isolates of different origins suggested that the optimised protocol might be broadly applicable to different MAP strains. Furthermore, different equations were compared to use the data resulting from this technology to optimally predict the percentage of live MAP cells in mixtures containing both live and dead cells. The presented protocol holds promise to be used routinely for detecting MAP with intact cell membranes in research applications. PMID:20385417

  6. Quantitative Real-Time PCR Analysis of Total Propidium Monazide -Resistant Fecal Indicator Bacteria in Wastewater

    EPA Science Inventory

    A real-time quantitative PCR (qPCR) method and a modification of this method incorporating pretreatment of samples with propidium monoazide (PMA) were evaluated for respective analyses of total and presumptively viable Enterococcus and Bacteroidales fecal indicator bacteria. Thes...

  7. Silencing of HSulf-2 expression in MCF10DCIS.com cells attenuate ductal carcinoma in situ progression to invasive ductal carcinoma in vivo

    PubMed Central

    2012-01-01

    Introduction Ductal carcinoma in situ (DCIS) of the breast is a heterogeneous group of proliferative cellular lesions that have the potential to become invasive. Very little is known about the molecular alterations involved in the progression from DCIS to invasive ductal carcinoma (IDC). Heparan endosulfatase (HSulf-2) edits sulfate moieties on heparan sulfate proteoglycans (HSPGs) and has been implicated in modulating heparin binding growth factor signaling, angiogenesis and tumorigenesis. However, the role of HSulf-2 in breast cancer progression is poorly understood. MCF10DCIS.com cells (referred as MCF10DCIS) express HSulf-2 and form comedo type DCIS and progress to IDC when transplanted in immune-deficient mice and, therefore, is an ideal model to study breast cancer progression. We evaluated the role of HSulf-2 in progression from DCIS to IDC using mouse fat pad mammary xenografts. Methods Non-target control (NTC) and HSulf-2 knockdown in MCF10DCIS breast cancer cells were achieved by NTC shRNA and two different lentiviral shRNA against HSulf-2 respectively. Xenografts were established by injecting NTC and HSulf-2 deficient MCF10DCIS cells in mouse mammary fat pads. Xenografts were subjected to H&E staining for morphological analysis, TUNEL and Propidium iodide staining (to determine the extent of apoptosis), Western blot analysis and zymography. Results Using a mouse mammary fat pad derived xenograft model, we observed that compared to control treated xenografts, down-regulation of HSulf-2 was associated with significant delays in growth at Week 7 (P-value < 0.05). Histological examination of the tumors demonstrated substantial differences in comedo necrosis, with marked luminal apoptosis and up-regulation of apoptotic markers Bim, cleaved PARP and cleaved caspase 3 in HSulf-2 depleted xenografts. Furthermore, HSulf-2 depleted xenografts retained the basement membrane integrity with decreased activity and expression of matrix metalloproteinase 9 (MMP-9), an enzyme critical for degradation of extracellular matrix compared to nontargeted control. Conclusion Our data suggest that HSulf-2 expression may be critical for human breast cancer progression. Down-regulation of HSulf-2 leads to retention of comedo type DCIS and delays the progression of DCIS to IDC. Further studies are necessary to determine if therapeutic targeting of HSulf-2 expression might delay the progression of DCIS to IDC. PMID:22410125

  8. Use of ethidium monoazide and propidium monoazide to determine viral infectivity upon inactivation by heat, UV- exposure and chlorine.

    PubMed

    Leifels, Mats; Jurzik, Lars; Wilhelm, Michael; Hamza, Ibrahim Ahmed

    2015-11-01

    Despite the great sensitivity of PCR in monitoring enteric viruses in an aquatic environment, PCR detects viral nucleic acids of both infectious and noninfectious viruses, limiting the conclusions regarding significance for public health. Ethidium monoazide (EMA) and propidium monoazide (PMA) are closely related membrane impermeant dyes that selectively penetrate cells with compromised membranes. Inside the cells, the dye can intercalate into nucleic acids and inhibit PCR amplification. To assess whether EMA and PMA pretreatment is a suitable approach to inhibit DNA amplification from noninfectious viruses upon heat treatment, UV exposure or chlorine treatment, viruses were measured by qPCR, EMA-qPCR, PMA-qPCR and cell culture titration. EMA/PMA-qPCR of UV- and heat-treated viruses did not correlate with the results of the cell culture assay. However, the data from EMA/PMA-qPCR of chlorine-inactivated viruses was consistent with the cell culture infectivity assay. Therefore, a dye treatment approach could be a rapid and inexpensive tool to screen the efficacy of chlorine disinfection, but it is not able to distinguish between infectious and noninfectious viruses inactivated via heat treatment or UV irradiation. Indeed, different viruses may have different trends and mechanisms of inactivation; thus, the assay must be evaluated for each virus separately. PMID:25747544

  9. From red to green: the propidium iodide-permeable membrane of Shewanella decolorationis S12 is repairable.

    PubMed

    Yang, Yonggang; Xiang, Yinbo; Xu, Meiying

    2015-01-01

    Viability is a common issue of concern in almost all microbial processes. Fluorescence-based assays are extensively used in microbial viability assessment, especially for mixed-species samples or biofilms. Propidium iodide (PI) is the most frequently used fluorescence indicator for cell viability based on the membrane permeability. Our results showed that the accumulation of succinate from fumarate respiration could induce PI-permeability in Shewanella decolorationis biofilm cells. Confocal laser scanning microscope further showed that the PI-permeable membrane could be repaired in situ when the extracellular succinate was eliminated by switching fumarate respiration to electrode respiration. Simultaneously with the membrane repair, the electrode respiring capacity of the originally PI-permeable cells was recovered. Agar-colony counts suggested that a major portion of the repaired cells were viable but nonculturable (VBNC). The results evidenced that S. decolorationis S12 has the capacity to repair PI-permeable membranes which suggests a reevaluation of the fate and function of the PI-permeable bacteria and expanded our knowledge on the flexibility of bacterial survival status in harsh environments. PMID:26687136

  10. From red to green: the propidium iodide-permeable membrane of Shewanella decolorationis S12 is repairable

    PubMed Central

    Yang, Yonggang; Xiang, Yinbo; Xu, Meiying

    2015-01-01

    Viability is a common issue of concern in almost all microbial processes. Fluorescence-based assays are extensively used in microbial viability assessment, especially for mixed-species samples or biofilms. Propidium iodide (PI) is the most frequently used fluorescence indicator for cell viability based on the membrane permeability. Our results showed that the accumulation of succinate from fumarate respiration could induce PI-permeability in Shewanella decolorationis biofilm cells. Confocal laser scanning microscope further showed that the PI-permeable membrane could be repaired in situ when the extracellular succinate was eliminated by switching fumarate respiration to electrode respiration. Simultaneously with the membrane repair, the electrode respiring capacity of the originally PI-permeable cells was recovered. Agar-colony counts suggested that a major portion of the repaired cells were viable but nonculturable (VBNC). The results evidenced that S. decolorationis S12 has the capacity to repair PI-permeable membranes which suggests a reevaluation of the fate and function of the PI-permeable bacteria and expanded our knowledge on the flexibility of bacterial survival status in harsh environments. PMID:26687136

  11. Notch1 downregulation combined with interleukin-24 inhibits invasion and migration of hepatocellular carcinoma cells

    PubMed Central

    Han, Bing; Liu, Shi-Hai; Guo, Wei-Dong; Zhang, Bin; Wang, Jian-Ping; Cao, Yu-Kun; Liu, Jun

    2015-01-01

    AIM: To confirm the anti-invasion and anti-migration effects of down-regulation of Notch1 combined with interleukin (IL)-24 in hepatocellular carcinoma (HCC) cells. METHODS: ?-secretase inhibitors (GSIs) were used to down-regulate Notch1. HepG2 and SMMC7721 cells were seeded in 96-well plates and treated with GSI-I or/and IL-24 for 48 h. Cell viability was measured by MTT assay. The cellular and nuclear morphology was observed under a fluorescence microscope. To further verify the apoptotic phenotype, cell cultures were also analyzed by flow cytometry with Annexin V-FITC/propidium iodide staining. The expression of Notch1, SNAIL1, SNAIL2, E-cadherin, IL-24, XIAP and VEGF was detected by Western blot. The invasion and migration capacities of HCC cells were detected by wound healing assays. Notch1 and Snail were down-regulated by RNA interference, and the target proteins were analyzed by Western blot. To investigate the mechanism of apoptosis, we analyzed HepG2 cells treated with siNotch1 or siCON plus IL-24 or not for 48 h by caspase-3/7 activity luminescent assay. RESULTS: GSI-I at a dose of 2.5 ?mol/L for 24 h caused a reduction in cell viability of about 38% in HepG2 cells. The addition of 50 ng/mL IL-24 in combination with 1 or 2.5 ?mol/L GSI-I reduced cell viability of about 30% and 15%, respectively. Treatment with IL-24 alone did not induce any cytotoxic effect. In SMMC7721 cells with the addition of IL-24 to GSI-I (2.5 ?mol/L), the reduction of cell viability was only about 25%. Following GSI-I/IL-24 combined treatment for 6 h, the apoptotic rate of HepG2 cells was 47.2%, while no significant effect was observed in cells treated with the compounds employed separately. Decreased expression of Notch1 and its associated proteins SNAIL1 and SNAIL2 was detected in HepG2 cells. Increased E-cadherin protein expression was noted in the presence of IL-24 and GSI-I. Furthermore, the increased GSI-I and IL-24 in HepG2 cell was associated with downregulation of MMP-2, XIAP and VEGF. In the absence of treatment, HepG2 cells could migrate into the scratched space in 24 h. With IL-24 or GSI-I treatment, the wound was still open after 24 h. And the distance of the wound closure strongly correlated with the concentrations of IL-24 and GSI-I. Treatment of Notch-1 silenced HepG2 cells with 50 ng/mL IL-24 alone for 48 h induced cytotoxic effects very similar to those observed in non-silenced cells treated with GSI-I/IL-24 combination. Caspase-3/7 activity was increased in the presence of siNotch1 plus IL-24 treatment. CONCLUSION: Down-regulation of Notch1 by GSI-I or siRNA combined with IL-24 can sensitize apoptosis and decrease the invasion and migration capabilities of HepG2 cells. PMID:26361419

  12. Effect of exposure to stress conditions on propidium monoazide (PMA)-qPCR based Campylobacter enumeration in broiler carcass rinses.

    PubMed

    Duarte, A; Botteldoorn, N; Coucke, W; Denayer, S; Dierick, K; Uyttendaele, M

    2015-06-01

    Campylobacter quantification by qPCR is unable to distinguish viable vs. dead cells in contrast to the culture-based ISO 10272-2 reference method. Propidium monoazide (PMA) has been used to overcome this disadvantage. A Campylobacter PMA-qPCR enumeration method was evaluated for its consistency and compared to the culture-based enumeration for both artificially and natural contaminated broiler carcass rinses. The PMA effect was further evaluated on stressed cells. Five conditions, commonly encountered during the slaughter process and storage (acid, heat, cold, oxidation and freezing), were inflicted to the broiler carcass rinses artificially contaminated with Campylobacter jejuni or Campylobacter coli. A better correlation between the reference method and the qPCR enumeration was obtained when PMA was used. The two cultured-based methods used showed a significant CFU reduction for heat, cold and acid stresses although the PMA-qPCR enumeration showed that viable bacteria were underestimated. Freezing showed the highest reduction effect, while the reduction extend was also overestimated by the microbiological enumeration procedure. Exposure to a mild oxidative stress was the only stress condition applied at temperatures permitting adaptation of Campylobacter and did not lead to either reduction in CFU nor in the PMA-qPCR signal. PMID:25791007

  13. Limitations of Using Propidium Monoazide with qPCR to Discriminate between Live and Dead Legionella in Biofilm Samples

    PubMed Central

    Taylor, Michael J; Bentham, Richard H; Ross, Kirstin E

    2014-01-01

    Accurately quantifying Legionella for regulatory purposes to protect public health is essential. Real-time PCR (qPCR) has been proposed as a better method for detecting and enumerating Legionella in samples than conventional culture method. However, since qPCR amplifies any target DNA in the sample, the technique’s inability to discriminate between live and dead cells means that counts are generally significantly overestimated. Propidium monoazide (PMA) has been used successfully in qPCR to aid live/dead discrimination. We tested PMA use as a method to count only live Legionella cells in samples collected from a modified chemostat that generates environmentally comparable samples. Counts from PMA-treated samples that were pretreated with either heat or three types of disinfectants (to kill the cells) were highly variable, with the only consistent trend being the relationship between biofilm mass and numbers of Legionella cells. Two possibilities explain this result: 1. PMA treatment worked and the subsequent muted response of Legionella to disinfection treatment is a factor of biofilm/microbiological effects; although this does not account for the relationship between the amount of biofilm sampled and the viable Legionella count as determined by PMA-qPCR; or 2. PMA treatment did not work, and any measured decrease or increase in detectable Legionella is because of other factors affecting the method. This is the most likely explanation for our results, suggesting that higher concentrations of PMA might be needed to compensate for the presence of other compounds in an environmental sample or that lower amounts of biofilm need to be sampled. As PMA becomes increasingly toxic at higher concentrations and is very expensive, augmenting the method to include higher PMA concentrations is both counterproductive and cost prohibitive. Conversely, if smaller volumes of biofilm are used, the reproducibility of the method is reduced. Our results suggest that using PMA is not an appropriate method for discriminating between live and dead cells to enumerate Legionella for regulatory purposes. PMID:25288885

  14. Detection of viable antibiotic-resistant/sensitive Acinetobacter baumannii in indoor air by propidium monoazide quantitative polymerase chain reaction.

    PubMed

    Tseng, C-C; Hsiao, P-K; Chang, K-C; Cheng, C-C; Yiin, L-M; Hsieh, C-J

    2015-10-01

    Acinetobacter baumannii represents a significant cause of nosocomial infections. Therefore, we combined real-time quantitative polymerase chain reaction (PCR) with the propidium monoazide (PMA-qPCR) to assess the feasibility of detecting viable, airborne A. baumannii. The biological collection efficiencies of three samplers for collecting airborne A. baumannii were evaluated by PMA-qPCR in a chamber study. After sampling, the effects of storage in collection fluid on A. baumannii were evaluated. The results showed that the culturable ratio of A. baumannii measured using the culture method was significantly correlated with the viable ratio measured using PMA-qPCR, but was not significantly correlated with the qPCR results. It was indicated that the AGI-30 impinger and the BioSampler were much more effective than the Nuclepore filter sampler for collecting airborne A. baumannii. The storage temperature was critical for aerosol samples, as the loss of viable A. baumannii was minimized when the PMA-bound DNA was stored at -20°C or if the collected cells were stored at 4°C and subsequently processed by PMA-qPCR within 1 month. The PMA-qPCR method was also to distinguish between colistin-sensitive and colistin-resistant A. baumannii, and no colistin-sensitive A. baumannii was detected by PMA-qPCR upon treatment of the BioSampler collection medium with 2 ?g/ml colistin for 5 min. PMID:25283547

  15. Evaluation of Propidium Monoazide Real-Time PCR for Early Detection of Viable Mycobacterium tuberculosis in Clinical Respiratory Specimens

    PubMed Central

    Kim, Young Jin; Lee, Sun Min; Park, Byung Kyu; Kim, Sung Soo; Yi, Jongyoun; Kim, Hyung Hoi; Lee, Eun Yup

    2014-01-01

    Background Conventional acid-fast bacilli (AFB) staining cannot differentiate viable from dead cells. Propidium monoazide (PMA) is a photoreactive DNA-binding dye that inhibits PCR amplification by DNA modification. We evaluated whether PMA real-time PCR is suitable for the early detection of viable Mycobacterium tuberculosis (MTB) in clinical respiratory specimens. Methods A total of 15 diluted suspensions from 5 clinical MTB isolates were quadruplicated and subjected to PMA treatment and/or heat inactivation. Eighty-three AFB-positive sputum samples were also tested to compare the ?CT values (CT value in PMA-treated sputum samples-CT value in non-PMA-treated sputum samples) between culture-positive and culture-negative specimens. Real-time PCR was performed using Anyplex MTB/NTM Real-Time Detection (Seegene, Korea), and the CT value changes after PMA treatment were compared between culture-positive and culture-negative groups. Results In MTB suspensions, the increase in the CT value after PMA treatment was significant in dead cells (P=0.0001) but not in live cells (P=0.1070). In 14 culture-negative sputum samples, the median ?CT value was 5.3 (95% confidence interval [CI], 4.1-8.2; P<0.0001), whereas that in 69 culture-positive sputum samples was 1.1 (95% CI, 0.7-2.0). In the ROC curve analysis, the cutoff ?CT value for maximum sensitivity (89.9%) and specificity (85.7%) for differentiating dead from live cells was 3.4. Conclusions PMA real-time PCR is a useful approach for differentiating dead from live bacilli in AFB smear-positive sputum samples. PMID:24790907

  16. Monochloramine disinfection kinetics of Nitrosomonas europaea by propidium monoazide quantitative PCR and Live/Dead BacLight Methods

    EPA Science Inventory

    Monochloramine disinfection kinetics were determined for the pure culture ammonia-oxidizing bacterium Nitrosomonas europaea (ATCC 19718) by two culture independent methods: (1) LIVE/DEAD® BacLight™ (LD) and (2) propidium monoazide quantitative PCR (PMA-qPCR). Both methods were f...

  17. Propidium monoazide combined with real-time PCR for selective detection of viable Staphylococcus aureus in milk powder and meat products.

    PubMed

    Zhang, Zhihong; Liu, Wenting; Xu, Hengyi; Aguilar, Zoraida P; Shah, Nagendra P; Wei, Hua

    2015-03-01

    Staphylococcus aureus is a spherical, gram-positive, pathogenic bacterium commonly associated with bovine mastitis and clinical infections. It is also recognized as a pathogen that causes outbreaks of food poisoning. The objective of this study was to develop and evaluate a rapid and reliable technique that combines propidium monoazide (PMA) staining with real-time quantitative (q)PCR to detect and quantify viable cells of Staph. aureus in milk powder and meat products. The inclusivity and exclusivity of the assay were evaluated using 58 strains belonging to 14 species. Serial dilutions of Staph. aureus cells were used to establish a standard curve and to confirm the effect of PMA treatment. Milk powder and meat products were used as the spiked foods, and the ability of PMA-qPCR to eliminate nonviable cells was determined in milk powder. Furthermore, meat products were inoculated with different concentrations of Staph. aureus and 10(5) cfu/g of Bacillus cereus and Salmonella enterica to test the interference by nontarget microorganisms. When PMA treatment was applied before DNA extraction, we were able to eliminate false-positive results with little effect on viable cells. The PMA-qPCR assay was specific and more sensitive than conventional PCR, and the level of detection was 3.0×10(2) cfu/g in spiked milk powder. Additionally, we observed no significant interference for the detection of viable Staph. aureus from other nontarget bacteria. The PMA-qPCR protocol is an effective and rapid method to quantify viable cells of Staph. aureus in food samples. The PMA-qPCR assay is specific and reliable, offering a valuable diagnostic tool for routine analysis in food and clinical diagnostic research at a reasonable cost. PMID:25582587

  18. Effects of ionizing radiation on bone cell differentiation in an experimental murine bone cell model

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, Christa; Lau, Patrick; Hellweg, Christine; Reitz, Guenther

    During long-term space travel astronauts are exposed to a complex mixture of different radiation types under conditions of dramatically reduced weight-bearing activity. It has been validated that astronauts loose a considerable amount of bone mass at a rate up to one to two percent each month in space. Therapeutic doses of ionizing radiation cause bone damage and increase fracture risks after treatment for head-and-neck cancer and in pelvic irradiation. For low radiation doses, the possibility of a disturbed healing potential of bone was described. Radiation induced damage has been discussed to inflict mainly on immature and healing bone. Little is known about radiation effects on bone remodelling and even less on the combined action of microgravity and radiation. Bone remodelling is a life-long process performed by balanced action of cells from the osteoblast and osteoclast lineages. While osteoblasts differentiate either into bone-lining cells or into osteocytes and play a crucial role in bone matrix synthesis, osteoclasts are responsible for bone resorption. We hypothesize that the balance between bone matrix assembly by osteocytes and bone degradation by osteoclasts is modulated by microgravity as well as by ionizing radiation. To address this, a cell model consisting of murine cell lines with the potential to differentiate into bone-forming osteoblasts (OCT-1, MC3T3-E1 S24, and MC3T3-E1 S4) was used for studying radiation response after exposure to simulated components of cosmic radiation. Cells were exposed to graded doses of 150 kV X-rays, ? particles (0.525 MeV/u, 160 keV/µm; PTB, Braunschweig, Germany) and accelerated heavy ions (75 MeV/u carbon, 29 keV/µm; 95 MeV/u argon, 230 keV/µm; GANIL, Caen, France). Cell survival was measured as colony forming ability; cell cycle progression was analyzed via fluorescence-activated cell scanning (FACS) by measurement of the content of propidium iodide-stained DNA, DNA damage was visualized by ?H2AX-immunostaining. Osteoblastogenesis was estimated by measurement of alkaline phosphatase (ALP) activity and production of mineralized matrix (von-Kossa staining, Alizarin Red staining). During the process of osteoblastic cell differentiation, the expression of the bone specific marker genes osteocalcin (OCN) and osteopontin (OPN) were recorded by quantitative real time reverse transcription PCR (qRT-PCR). Compared with standard culture conditions, the osteogenic marker genes OCN and OPN were highly expressed during the differentiation process induced either by osteo-inductive media additives (50 µg/ml ascorbic acid, 10 mmol/l ?-glycero phosphate) or by sparsely ionizing radiation (X-rays). After 21 days of postirradiation incubation sparsely ionizing radiation could be shown to induce the formation of bone-like nodules (von-Kossa staining) for OCT-1 and MC3T3-E1 S4 cells but nor for MC3T3- E1 S24 cells. Ionizing radiation leads to a cell cycle arrest which is resolved in a dose and time dependent way. This was accompanied by a dose dependent regulation of the cyclin kinase inhibitor CDKN1A (p21/WAF) and transforming growth factor beta 1 (TGF-?1). TGF-?1 is known to affect osteoblast differentiation, matrix formation and mineralization. Modulation of its expression could influence the expression of main osteogenic transcription factors. For exposure with high LET radiation a pronounced cell cycle block was evident. The expression of the osteogenic marker genes OCN and Osterix (OSX) was increased in the OCT-1 cells with differentiation potential for exposure to ? particles and accelerated carbon and argon ions. The results on the expression of differentiation markers during radiation-induced premature differentiation of bone cells of the osteoblast lineage show that densely ionizing radiation results in expression of proteins essential for bone formation and consequently in an increase in bone volume. Such an effect has been observed in in-vivo carbon ion irradiated rats. As radiation dependent permanent cell cycle blocks lead to a depletion of proliferation-competent cel

  19. Advantageous Direct Quantification of Viable Closely Related Probiotics in Petit-Suisse Cheeses under In Vitro Gastrointestinal Conditions by Propidium Monoazide - qPCR

    PubMed Central

    Villarreal, Martha Lissete Morales; Padilha, Marina; Vieira, Antonio Diogo Silva; Franco, Bernadette Dora Gombossy de Melo; Martinez, Rafael Chacon Ruiz; Saad, Susana Marta Isay

    2013-01-01

    Species-specific Quantitative Real Time PCR (qPCR) alone and combined with the use of propidium monoazide (PMA) were used along with the plate count method to evaluate the survival of the probiotic strains Lactobacillus acidophilus La-5 and Bifidobacterium animalis subsp. lactis Bb-12, and the bacteriocinogenic and potentially probiotic strain Lactobacillus sakei subsp. sakei 2a in synbiotic (F1) and probiotic (F2) petit-suisse cheeses exposed throughout shelf-life to in vitro simulated gastrointestinal tract conditions. The three strains studied showed a reduction in their viability after the 6 h assay. Bb-12 displayed the highest survival capacity, above 72.6 and 74.6% of the initial populations, respectively, by plate count and PMA-qPCR, maintaining population levels in the range or above 6 log CFU/g. The prebiotic mix of inulin and FOS did not offer any additional protection for the strains against the simulated gastrointestinal environment. The microorganisms' populations were comparable among the three methods at the initial time of the assay, confirming the presence of mainly viable and culturable cells. However, with the intensification of the stress induced throughout the various stages of the in vitro test, the differences among the methods increased. The qPCR was not a reliable enumeration method for the quantification of intact bacterial populations, mixed with large numbers of injured and dead bacteria, as confirmed by the scanning electron microscopy results. Furthermore, bacteria plate counts were much lower (P<0.05) than with the PMA-qPCR method, suggesting the accumulation of stressed or dead microorganisms unable to form colonies. The use of PMA overcame the qPCR inability to differentiate between dead and alive cells. The combination of PMA and species-specific qPCR in this study allowed a quick and unequivocal way of enumeration of viable closely related species incorporated into probiotic and synbiotic petit-suisse cheeses and under stress conditions. PMID:24358142

  20. Propidium monoazide (PMA) and ethidium bromide monoazide (EMA) improve DNA array and high-throughput sequencing of porcine reproductive and respiratory syndrome virus identification.

    PubMed

    Bellehumeur, Christian; Boyle, Brian; Charette, Steve J; Harel, Josée; L'Homme, Yvan; Masson, Luke; Gagnon, Carl A

    2015-09-15

    Pan-viral DNA array (PVDA) and high-throughput sequencing (HTS) are useful tools to identify novel viruses of emerging diseases. However, both techniques have difficulties to identify viruses in clinical samples because of the host genomic nucleic acid content (hg/cont). Both propidium monoazide (PMA) and ethidium bromide monoazide (EMA) have the capacity to bind free DNA/RNA, but are cell membrane-impermeable. Thus, both are unable to bind protected nucleic acid such as viral genomes within intact virions. However, EMA/PMA modified genetic material cannot be amplified by enzymes. In order to assess the potential of EMA/PMA to lower the presence of amplifiable hg/cont in samples and improve virus detection, serum and lung tissue homogenates were spiked with porcine reproductive and respiratory virus (PRRSV) and were processed with EMA/PMA. In addition, PRRSV RT-qPCR positive clinical samples were also tested. EMA/PMA treatments significantly decreased amplifiable hg/cont and significantly increased the number of PVDA positive probes and their signal intensity compared to untreated spiked lung samples. EMA/PMA treatments also increased the sensitivity of HTS by increasing the number of specific PRRSV reads and the PRRSV percentage of coverage. Interestingly, EMA/PMA treatments significantly increased the sensitivity of PVDA and HTS in two out of three clinical tissue samples. Thus, EMA/PMA treatments offer a new approach to lower the amplifiable hg/cont in clinical samples and increase the success of PVDA and HTS to identify viruses. PMID:26129867

  1. Propidium monoazide reverse transcription PCR and RT-qPCR for detecting infectious enterovirus and norovirus

    EPA Science Inventory

    Presently there is no established cell line or small animal model that allows for the detection of infectious human norovirus. Current methods based on RT-PCR and RT-qPCR detect both infectious and non-infectious virus and thus the conclusions that may be drawn regarding the publ...

  2. [Proliferative activity in gastric cancer with Ki-67 and propidium iodide: analysis by flow cytometry].

    PubMed

    Kimura, H; Yonemura, Y; Ohyama, S; Kamata, T; Yamaguchi, A; Miwa, K; Miyazaki, I

    1992-04-01

    Growth fractions in the cell cycle were demonstrated by flow cytometry with monoclonal antibody Ki-67 for gastric cancer. By setting the cut off line at the lowest channel number of S-phase, the Ki-67 labeling rate was calculated by Ki-DNA dual fluorescence analysis. In addition to 32 gastric cancers, we examined three cell lines (Colo 320, NUGC4 and MKN28) and compared the result with the BrdUrd labeling rate. The G0G1 ratio obtained with BrdUrd was generally correlated with the G0 + G1 ratio obtained with Ki-67. The S-phase fractions obtained with Ki-67, however were a little different from those obtained with BrdUrd because of the existence of S0. The mean Ki-67 labeling rate of gastric cancer was 45.1% (16.2-66.3%). Fifteen cases received Ki-67 immunohistochemical study in the same samples. The results of flow cytometric analysis were parallel to those of microscopic study, and a correlation line: y = 0.626x + 15.9145, r = 0.8031, (p less than 0.001) was obtained. Ki-67 antibodies may provide useful information on cell kinetics. PMID:1603045

  3. Toxicity ranking of heavy metals with screening method using adult Caenorhabditis elegans and propidium iodide replicates toxicity ranking in rat.

    PubMed

    Hunt, Piper Reid; Olejnik, Nicholas; Sprando, Robert L

    2012-09-01

    The utility of any model system for toxicity screening depends on the level of correlation between test responses and toxic reactions in humans. Assays in Caenorhabditis elegans can be fast and inexpensive, however few studies have been done comparing toxic responses in this easily cultured nematode with data on mammalian toxicity. Here we report that a screening assay for acute toxicity, using adult C. elegans grown in axenic liquid culture, replicated LD50 toxicity ranking in rat for five metals. This assay utilized the COPAS Biosort and propidium iodide (PI) as a fluorescent indicator of morbidity and mortality after 30-h exposures. We found that chronic toxicity assays of 2-week treatment duration, followed by analysis of PI induced red fluorescence levels, produced less consistent results than the acute assays. However, other chronic toxicity endpoints were compound and concentration specific, including changes in vulval and gonadal morphology, intestinal thickness and integrity, and the presence of retained internal eggs in post-reproductive animals. Some of these endpoints reflect similar findings in mammals, indicating that measurements of morbidity and mortality in conjunction with morphology analyses in C. elegans may have the potential to predict mammalian toxic responses. PMID:22771366

  4. Propidium monoazide reverse transcriptase PCR and RT-qPCR for detecting infectious enterovirus and norovirus.

    PubMed

    Karim, Mohammad R; Fout, G Shay; Johnson, Clifford H; White, Karen M; Parshionikar, Sandhya U

    2015-07-01

    Presently there is no established cell line or small animal model that allows for the detection of infectious human norovirus. Current methods based on RT-PCR and RT-qPCR detect both infectious and non-infectious virus and thus the conclusions that may be drawn regarding the public health significance of positive findings are limited. In this study, PMA RT-PCR and RT-qPCR assays were evaluated for selective detection of infectious poliovirus, murine norovirus (MNV-1), and Norwalk virus. Viruses were inactivated using heat, chlorine, and ultraviolet light (UV). Infectious and non-infectious viruses were treated with PMA before RT-PCR and RT-qPCR. PMA RT-PCR was able to differentiate selectively between infectious and heat and chlorine inactivated poliovirus. PMA RT-PCR was able to differentiate selectively between infectious and noninfectious murine norovirus only when inactivated by chlorine. However, PMA RT-PCR could not differentiate infectious Norwalk virus from virus particles rendered non-infectious by any treatment. PMA RT-PCR assay was not able to differentiate between infectious and UV inactivated viruses suggesting that viral capsid damage may be necessary for PMA to enter and bind to the viral genome. PMA RT-PCR on naked MNV-1 and Norwalk virus RNA suggest that PMA RT-PCR can be used to detect intact, potentially infectious MNV-1 and Norwalk viruses and can be used to exclude the detection of free viral RNA by PCR assay. PMID:25796356

  5. Anthocyanin Inhibits Propidium Iodide DNA Fluorescence in Euphorbia pulcherrima: Implications for Genome Size Variation and Flow Cytometry

    PubMed Central

    Bennett, Michael D.; Price, H. James; Johnston, J. Spencer

    2008-01-01

    Background Measuring genome size by flow cytometry assumes direct proportionality between nuclear DNA staining and DNA amount. By 1997 it was recognized that secondary metabolites may affect DNA staining, thereby causing inaccuracy. Here experiments are reported with poinsettia (Euphorbia pulcherrima) with green leaves and red bracts rich in phenolics. Methods DNA content was estimated as fluorescence of propidium iodide (PI)-stained nuclei of poinsettia and/or pea (Pisum sativum) using flow cytometry. Tissue was chopped, or two tissues co-chopped, in Galbraith buffer alone or with six concentrations of cyanidin-3-rutinoside (a cyanidin-3-rhamnoglucoside contributing to red coloration in poinsettia). Key Results There were large differences in PI staining (35–70 %) between 2C nuclei from green leaf and red bract tissue in poinsettia. These largely disappeared when pea leaflets were co-chopped with poinsettia tissue as an internal standard. However, smaller (2·8–6·9 %) differences remained, and red bracts gave significantly lower 1C genome size estimates (1·69–1·76 pg) than green leaves (1·81 pg). Chopping pea or poinsettia tissue in buffer with 0–200 µm cyanidin-3-rutinoside showed that the effects of natural inhibitors in red bracts of poinsettia on PI staining were largely reproduced in a dose-dependent way by this anthocyanin. Conclusions Given their near-ubiquitous distribution, many suspected roles and known affects on DNA staining, anthocyanins are a potent, potential cause of significant error variation in genome size estimations for many plant tissues and taxa. This has important implications of wide practical and theoretical significance. When choosing genome size calibration standards it seems prudent to select materials producing little or no anthocyanin. Reviewing the literature identifies clear examples in which claims of intraspecific variation in genome size are probably artefacts caused by natural variation in anthocyanin levels or correlated with environmental factors known to induce variation in pigmentation. PMID:18158306

  6. Lenticular mitoprotection. Part A: Monitoring mitochondrial depolarization with JC-1 and artifactual fluorescence by the glycogen synthase kinase-3? inhibitor, SB216763

    PubMed Central

    Brooks, Morgan M.; Neelam, Sudha; Fudala, Rafal; Gryczynski, Ignacy

    2013-01-01

    Purpose Dissipation of the electrochemical gradient across the inner mitochondrial membrane results in mitochondrial membrane permeability transition (mMPT), a potential early marker for the onset of apoptosis. In this study, we demonstrate a role for glycogen synthase kinase-3? (GSK-3?) in regulating mMPT. Using direct inhibition of GSK-3? with the GSK-3? inhibitor SB216763, mitochondria may be prevented from depolarizing (hereafter referred to as mitoprotection). Cells treated with SB216763 showed an artifact of fluorescence similar to the green emission spectrum of the JC-1 dye. We demonstrate the novel use of spectral deconvolution to negate the interfering contributing fluorescence by SB216763, thus allowing an unfettered analysis of the JC-1 dye to determine the mitochondrial membrane potential. Methods Secondary cultures of virally transfected human lens epithelial cells (HLE-B3) were exposed to acute hypoxic conditions (approximately 1% O2) followed by exposure to atmospheric oxygen (approximately 21% O2). The fluorescent dye JC-1 was used to monitor the extent of mitochondrial depolarization upon exposure of inhibitor treatment relative to the control cells (mock inhibition) in atmospheric oxygen. Annexin V-fluorescein isothiocyanate/propidium iodide staining was implemented to determine cell viability. Results Treatment of HLE-B3 cells with SB216763 (12 µM), when challenged by oxidative stress, suppressed mitochondrial depolarization relative to control cells as demonstrated with JC-1 fluorescent dye analysis. Neither the control nor the SB216763-treated HLE-B3 cells tested positive with annexin V-fluorescein isothiocyanate/propidium iodide staining under the conditions of the experiment. Conclusions Inhibition of GSK-3? activity by SB216763 blocked mMPT relative to the slow but consistent depolarization observed with the control cells. We conclude that inhibition of GSK-3? activity by the GSK-3? inhibitor SB216763 provides positive protection against mitochondrial depolarization. PMID:23825920

  7. Effect of DNA extraction procedure, repeated extraction and ethidium monoazide (EMA)/propidium monoazide (PMA) treatment on overall DNA yield and impact on microbial fingerprints for bacteria, fungi and archaea in a reference soil

    PubMed Central

    Wagner, Andreas O.; Praeg, Nadine; Reitschuler, Christoph; Illmer, Paul

    2015-01-01

    Different DNA extraction protocols were evaluated on a reference soil. A wide difference was found in the total extractable DNA as derived from different extraction protocols. Concerning the DNA yield phenol–chloroform–isomyl alcohol extraction resulted in high DNA yield but also in a remarkable co-extraction of contaminants making PCR from undiluted DNA extracts impossible. By comparison of two different extraction kits, the Macherey&Nagel SoilExtract II kit resulted in the highest DNA yields when buffer SL1 and the enhancer solution were applied. The enhancer solution not only significantly increased the DNA yield but also the amount of co-extracted contaminates, whereas additional disintegration strategies did not. Although a three times repeated DNA extraction increased the total amount of extracted DNA, microbial fingerprints were merely affected. However, with the 5th extraction this changed. A reduction of total DGGE band numbers was observed for archaea and fungi, whereas for bacteria the diversity increased. The application of ethidium monoazide (EMA) or propidium monoazide (PMA) treatment aiming on the selective removal of soil DNA derived from cells lacking cell wall integrity resulted in a significant reduction of total extracted DNA, however, the hypothesized effect on microbial fingerprints failed to appear indicating the need for further investigations. PMID:26339125

  8. Journal of Andrology, Vol. 22, No. 4, July/August 2001 Copyright American Society of Andrology

    E-print Network

    Yandell, Brian S.

    Relationship of Bull Fertility to Sperm Nuclear Shape G. CHARLES OSTERMEIER,* GLEN A. SARGEANT, BRIAN S: The relationship between sperm nuclear shape and bull fertility was determined. Two groups of bulls, 3 per group of propidium iodide-stained sperm from each bull were collected and shape-evaluated by Fourier harmonic ampli

  9. Dual induction of mitochondrial apoptosis and senescence in chronic myelogenous leukemia by myrtucommulone A.

    PubMed

    Grandjenette, Cindy; Schnekenburger, Michael; Morceau, Franck; Mack, Fabienne; Wiechmann, Katja; Werz, Oliver; Dicato, Mario; Diederich, Marc

    2015-01-01

    Despite recent advances in the treatment of chronic myelogenous leukemia (CML), the development of drug resistance and minimal residual disease remain major challenges for the treatment of CML patients, thus highlighting the need to develop innovative new approaches to improve therapeutic outcome. Myrtucommulone A (MCA) is a nonprenylated acylphloroglucinol isolated from the leaves of myrtle, a plant traditionally used in folk medicine. To date, studies addressing bioactivities of myrtle and its specific components are rare. Here, we investigated the biological effects of MCA, focusing on its anti-leukemic activity. As evidenced by fragmented nuclei after Hoechst/propidium iodide staining and poly (ADP-ribose) polymerase cleavage, MCA induces apoptosis in CML cells through down-regulation of anti-apoptotic proteins. Interestingly, we showed that chronic treatment with MCA at low doses induced senescence in CML cells. Taken together, this study highlights the chemotherapeutical potential of this natural product in human leukemia. PMID:25469628

  10. Effect of short- and long-term antibiotic exposure on the viability of Mycobacterium avium subsp. paratuberculosis as measured by propidium monoazide F57 real time quantitative PCR and culture.

    PubMed

    Pribylova, Radka; Kubickova, Lucie; Babak, Vladimir; Pavlik, Ivo; Kralik, Petr

    2012-12-01

    Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of paratuberculosis in ruminants, has a lipid-rich cell wall which facilitates its survival and persistence in the environment. This property of the organism is exploited when it is cultured as decontaminating agents and antibiotics are used to suppress the growth of contaminating microflora, but such treatments can also negatively affect the isolation of MAP itself. The objective of this study was to assess the effect of the 'VAN' antibiotics (vancomycin, amphotericin B and nalidixic acid) on the viability of MAP using a propidium monoazide real time quantitative PCR (PMA qPCR) and culture. Long-term (5 week) treatment with VAN antibiotics resulted in a larger decrease in bacterial numbers compared to short-term (3 day) exposure. The PMA qPCR assay indicated that 50 ?g/mL of vancomycin, 50 ?g/mL of nalidixic acid, and 200 ?g/mL of amphotericin B were 'threshold' concentrations, respectively, above which the decline in the viability of MAP was statistically significant. Using culture, these threshold concentrations were 100 ?g/mL of vancomycin, 50-100 ?g/mL of nalidixic acid, and 100 ?g/mL of amphotericin B, respectively. Given that the two methods were found to be comparable, the PMA qPCR is a potentially more convenient and effective alternative to culture in detecting MAP. PMID:22704136

  11. Determination of the Effects of Medium Composition on the Monochloramine Disinfection Kinetics of Nitrosomonas europaea by the Propidium Monoazide Quantitative PCR and Live/Dead BacLight Methods

    EPA Science Inventory

    Various media compositions (phosphate 1-50 mM; ionic strength 2.8-150 meq/L) significantly affected Nitrosomonas europaea monochloramine disinfection kinetics determined by Live/Dead BacLight (LD) and propidium monoazide quantitative PCR (PMA-qPCR) methods (lag coefficient 37-490...

  12. Comparison of propidium monoazide-quantitative PCR and reverse transcription quantitative PCR for viability detection of fresh Cryptosporidium oocysts following disinfection and after long-term storage in water samples

    EPA Science Inventory

    Purified oocysts of Cryptosporidium parvum were used to evaluate applicability of two quantitative PCR (qPCR) viability detection methods in raw surface water and disinfection treated water. Propidium monoazide-qPCR targeting hsp70 gene was compared to reverse transcription (RT)-...

  13. Quantifying Fungal Viability in Air and Water Samples using Quantitative PCR after Treatment with Propidium Monoazide (PMA)

    EPA Science Inventory

    A method is described to discriminate between live and dead cells of the infectious fungi Aspergillus fumigatus, A. flavus, A. terreus, Mucor racemosus, Rhizopus stolonifer and Paecilomyces variotii. To test the method, conidial suspensions were heat inactivated at 85oC or held ...

  14. Repeated cycles of chemical and physical disinfection and their influence on Mycobacterium avium subsp. paratuberculosis viability measured by propidium monoazide F57 quantitative real time PCR.

    PubMed

    Kralik, Petr; Babak, Vladimir; Dziedzinska, Radka

    2014-09-01

    Mycobacterium avium subsp. paratuberculosis (MAP) has a high degree of resistance to chemical and physical procedures frequently used for the elimination of other bacteria. Recently, a method for the determination of viability by exposure of MAP to propidium monoazide (PMA) and subsequent real time quantitative PCR (qPCR) was established and found to be comparable with culture. The aim of this study was to apply the PMA qPCR method to determine the impact of increasing concentration or time and repeated cycles of the application of selected disinfectants on MAP viability. Different MAP isolates responded to the same type of stress in different ways. The laboratory strain CAPM 6381 had the highest tolerance, while the 8819 low-passage field isolate was the most sensitive. Ultraviolet exposure caused only a partial reduction in MAP viability; all MAP isolates were relatively resistant to chlorine. Only the application of peracetic acid led to the total elimination of MAP. Repeated application of the treatments resulted in more significant decreases in MAP viability compared to single increases in the concentration or time of exposure to the disinfectant. PMID:24934261

  15. Noncontact microsurgery of cell membranes using femtosecond laser pulses for optoinjection of specified substances into cells

    SciTech Connect

    Il'ina, I V; Ovchinnikov, A V; Chefonov, O V; Sitnikov, D S; Agranat, Mikhail B; Mikaelyan, A S

    2013-04-30

    IR femtosecond laser pulses were used for microsurgery of a cell membrane aimed at local and short-duration change in its permeability and injection of specified extracellular substances into the cells. The possibility of noncontact laser delivery of the propidium iodide fluorescent dye and the pEGFP plasmid, encoding the green fluorescent protein, into the cells with preservation of the cell viability was demonstrated. (extreme light fields and their applications)

  16. Selective transfection with osmotically active sorbitol modified PEI nanoparticles for enhanced anti-cancer gene therapy.

    PubMed

    Nguyen, Kim Cuc Thi; Muthiah, Muthunarayanan; Islam, Mohammad Ariful; Kalash, R Santhosh; Cho, Chong-Su; Park, Hansoo; Lee, Il-Kwon; Kim, Hyeoung-Joon; Park, In-Kyu; Cho, Kyung A

    2014-07-01

    Polysorbitol-mediated transporter (PSMT) has been previously shown to achieve high transfection efficiency with minimal cytotoxicity. Polysorbitol backbone possesses osmotic properties and leads to enhanced cellular uptake. The PSMT/pDNA nanoparticles were prepared and the particle size, surface charge of the nanoparticles was determined for the study. PSMT delivers genes into cells by the caveolae mediated endocytic pathway. Caveolae expression is usually altered in transformed cancer cells. Transfection through the caveolae may help PSMT to selectively transfect cancer cells rather than normal cells. Transfection of the luciferase gene by PSMT was tested in various cell types including cancer cell lines, primary cells, and immortalized cells. Luciferase transgene expression mediated by PSMT was remarkably increased in HeLa cells compared to expression using the control carrier Lipofectamine. Moreover, the toxicity of PSMT was comparable to the control carrier (Lipofectamine) in the same cells. Selective transfection of cancer cells using PSMT was further confirmed by co-culture of cancer and normal cells, which showed that transgene expression was pre-dominantly achieved in cancer cells. A functional p53 gene was also delivered into HeLa cells using PSMT and the selective transgene expression of p53 protein in cancer cells was analyzed through western blotting and confocal microscopy. HeLa cells transfected with PSMT/p53 plasmid nanoparticles showed cellular damage and apoptosis, which was confirmed through propidium iodide staining. PMID:24880989

  17. Detection of viable murine norovirus using the plaque assay and propidium-monoazide-combined real-time reverse transcription-polymerase chain reaction.

    PubMed

    Lee, Minhwa; Seo, Dong Joo; Seo, Jina; Oh, Hyejin; Jeon, Su Been; Ha, Sang-Do; Myoung, Jinjong; Choi, In-Soo; Choi, Changsun

    2015-09-01

    Human norovirus (HuNoV) is the most common cause of gastroenteritis worldwide. The lack of a virus culture system makes it difficult to determine the viability of norovirus by only reverse transcription-polymerase chain reaction (RT-PCR) or real-time quantitative RT-PCR (qRT-PCR). The aim of this study was to investigate the detection of viable murine norovirus (MNV) by combining propidium monoazide (PMA) or ethidium monoazide (EMA) with qRT-PCR. MNV (5.21log10PFU/mL) was subjected to heat treatment at room temperature, 65, 70, 75, 80, 85, or 90°C in a water bath for 1min. The plaque assay, qRT-PCR, PMA-combined qRT-PCR, and EMA-combined qRT-PCR were then performed with heat exposed MNV samples. The MNV titer was reduced by 0.38, 1.34, and 3.71log10PFU/mL at temperatures of 65, 70, and 75°C, respectively. MNV was reduced >4.21log10PFU/mL at 80, 85, and 90°C heat inactivation. PMA (EMA) value equation for the interpretation of the viability of MNV was derived as follows: PMA (EMA) value=-logRN-logRP (RN: the relative quantity value of the not-treated sample, and RP: the relative quantity value of the PMA- or EMA-treated sample as determined by qRT-PCR). By PMA-combined qRT-PCR, the viable PMA value was 0.32, 0.83, and 2.62 for the 65, 70, and 75°C preheated MNVs, respectively. The viable PMA values for the viruses heated at 80, 85, and 90°C were all greater than 3.0, which was the cutoff value for discriminating between live and dead MNVs. The results of EMA-combined qRT-PCR were similar to those of qRT-PCR. Thus, PMA-combined qRT-PCR correlated well with the plaque assay in detecting viable MNVs. PMID:25920568

  18. The effect of dietary n-3 polyunsaturated fatty acids on T cell subset activation-induced cell death 

    E-print Network

    Switzer, Kirsten Collette

    2004-11-15

    (control) or n-3 PUFA for 14 d. Splenic T cells were stimulated with ?CD3/?CD28, ?CD3/PMA, or PMA/Ionomycin for 48 h followed by reactivation with the same stimuli for 5 h. Apoptosis was measured using Annexin V/propidium iodide and flow cytometry...

  19. Tumor-targeting novel manganese complex induces ROS-mediated apoptotic and autophagic cancer cell death

    PubMed Central

    LIU, JIA; GUO, WENJIE; LI, JING; LI, XIANG; GENG, JI; CHEN, QIUYUN; GAO, JING

    2015-01-01

    In this study, the antitumor activity of the novel manganese (II) compound, Adpa-Mn {[(Adpa)Mn(Cl)(H2O)] (Adpa=bis(2-pyridylmethyl)amino-2-propionic acid)}, and its possible mechanisms of action were investigated. In vitro, the growth inhibitory effects of Adpa-Mn (with IC50 values lower than 15 ?M) on tumor cell lines were examined by MTT assay. We found that this compound was more selective against cancer cells than the popular chemotherapeutic reagent, cisplatin. We then found that Adpa-Mn achieved its selectivity against cancer cells through the transferrin (Tf)-transferrin receptor (TfR) system, which is highly expressed in tumor cells. Furthermore, Adpa-Mn induced both apoptosis and autophagy, as indicated by chromatin condensation, the activation of poly(ADP-ribose) polymerase (PARP), Annexin V/prop-idium iodide staining, an enhanced fluorescence intensity of monodansylcadaverine (MDC), as well as the elevated expression of the autophagy-related protein, microtubule-associated protein 1 light chain 3 (LC3). In addition, Adpa-Mn induced the generation of intracellular reactive oxygen species (ROS) and its anticancer effects were significantly reduced following pre-treatment with the antioxidant, N-acetyl cysteine, indicating that ROS triggered cell death. In vivo, the induction of apoptosis and autophagy in tumor tissue was confirmed following treatment with Adpa-Mn, which contributed to its significant antitumor activity against hepatocellular carcinoma (Hep-A cell) xenografts at 10 mg/kg. Taken together, these data suggest the possible use of Adpa-Mn as a novel anticancer drug. PMID:25604962

  20. Melanoma differentiation associated gene-7 (mda-7): a novel anti-tumor gene for cancer gene therapy.

    PubMed Central

    Mhashilkar, A. M.; Schrock, R. D.; Hindi, M.; Liao, J.; Sieger, K.; Kourouma, F.; Zou-Yang, X. H.; Onishi, E.; Takh, O.; Vedvick, T. S.; Fanger, G.; Stewart, L.; Watson, G. J.; Snary, D.; Fisher, P. B.; Saeki, T.; Roth, J. A.; Ramesh, R.; Chada, S.

    2001-01-01

    BACKGROUND: The mda-7 gene (melanoma differentiation associated gene-7) is a novel tumor suppressor gene. The anti-proliferative activity of MDA-7 has been previously reported. In this report, we analyze the anti-tumor efficacy of Ad-mda7 in a broad spectrum of cancer lines. MATERIALS AND METHODS: Ad-mda7-transduced cancer or normal cell lines were assayed for cell proliferation (tritiated thymidine incorporation assay, Alamar blue assay, and trypan-blue exclusion assay), apoptosis (TUNEL, and Annexin V staining visualized by fluorescent microscopy or FACs analysis), and cell cycle regulation (Propidium Iodide staining and FACs analysis). RESULTS: Ad-mda7 treatment of tumor cells resulted in growth inhibition and apoptosis in a temporal and dose-dependent manner. The anti-tumor effects were independent of the genomic status of p53, RB, p16, ras, bax, and caspase 3 in these cells. In addition, normal cell lines did not show inhibition of proliferation or apoptotic response to Ad-mda7. Moreover, Ad-mda7-transduced cancer cells secreted a soluble form of MDA-7 protein. Thus, Ad-mda7 may represent a novel gene-therapeutic agent for the treatment of a variety of cancers. CONCLUSIONS: The potent and selective killing activity of Ad-mda7 in cancer cells but not in normal cells makes this vector a potential candidate for cancer gene therapy. PMID:11471572

  1. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus

    PubMed Central

    Rice, Kelly C.; Mann, Ethan E.; Endres, Jennifer L.; Weiss, Elizabeth C.; Cassat, James E.; Smeltzer, Mark S.; Bayles, Kenneth W.

    2007-01-01

    The Staphylococcus aureus cidA and lrgA genes have been shown to affect cell lysis under a variety of conditions during planktonic growth. It is hypothesized that these genes encode holins and antiholins, respectively, and may serve as molecular control elements of bacterial cell lysis. To examine the biological role of cell death and lysis, we studied the impact of the cidA mutation on biofilm development. Interestingly, this mutation had a dramatic impact on biofilm morphology and adherence. The cidA mutant (KB1050) biofilm exhibited a rougher appearance compared with the parental strain (UAMS-1) and was less adherent. Propidium iodide staining revealed that KB1050 accumulated more dead cells within the biofilm population relative to UAMS-1, indicative of reduced cell lysis. In agreement with this finding, quantitative real-time PCR experiments demonstrated the presence of 5-fold less genomic DNA in the KB1050 biofilm relative to UAMS-1. Furthermore, treatment of the UAMS-1 biofilm with DNase I caused extensive cell detachment, whereas similar treatment of the KB1050 biofilm had only a modest effect. These results demonstrate that cidA-controlled cell lysis plays a significant role during biofilm development and that released genomic DNA is an important structural component of S. aureus biofilm. PMID:17452642

  2. Synthesis and pharmacological evaluation of novel bisindole derivatives bearing oximes moiety: identification of novel proapoptotic agents.

    PubMed

    Qu, Hong-En; Huang, Ri-Zhen; Yao, Gui-Yang; Li, Jiu-Ling; Ye, Man-Yi; Wang, Heng-Shan; Liu, Liangxian

    2015-05-01

    In an effort to develop potent anti-cancer chemopreventive agents, a novel series of bisindole derivatives bearing oxime moiety were synthesized. Structures of all compounds were characterized by NMR and HRMS. Anti-proliferative activities for all of these compounds were investigated by the method of MTT assay on 7 human cancer lines and the normal cell lines (HUVEC). Most of them showed a noteworthy anti-cancer activity in vitro, the half maximal inhibitory concentration (IC50) value is 4.31 ?M of 4e against T24. The results from Hoechst 33258 and acridine orange/propidium iodide staining as well as annexinV-FITC assays provided evidence for an apoptotic cell death. The further mechanisms of compound 4e-induced apoptosis in T24 cells demonstrated that compound 4e induced the productions of ROS, and altered anti- and pro-apoptotic proteins, leading to mitochondrial dysfunction and activations of caspase-9 and caspase-3 for causing cell apoptosis. Moreover, the cell cycle analysis and western-blot analysis indicated that compound 4e effectively arrested T24 cells in G1 stage and possibly has an effect on cell cycle regulatory proteins particularly cyclin D1. PMID:25841196

  3. Cytotoxic activity of extracts of marine sponges from NW Spain on a neuroblastoma cell line.

    PubMed

    Ferreira, Martiña; Cabado, Ana G; Chapela, María-José; Fajardo, Paula; Atanassova, Miroslava; Garrido, Alejandro; Vieites, Juan M; Lago, Jorge

    2011-11-01

    Six species of marine sponges collected at intertidal and sublittoral sites of the coast of Galicia (NW Spain) were screened for potential cytotoxic properties on Neuroblastoma BE(2)-M17 cell line. Exposure to Halichondria panicea, Pachymatisma johnstonia, Ophlitaspongia seriata and Haliclona sp. aqueous extracts strongly affected cell appearance, inducing loss of neuron-like morphology and the formation of clumps. Extracts from these species also caused significant rates of cell detachment and decrease of mitochondrial membrane potential. Incubation with P. johnstonia, O. seriata and Suberites massa extracts also decreased the rate of cell proliferation. The increase of incubation time enhanced propidium iodide uptake by neuroblastoma cells. Toxic responses triggered by sponge extracts are compatible with apoptotic phenomena in neuroblastoma cells, even though increasing propidium uptake at long periods of exposure might indicate the induction of secondary necrosis. The cytotoxic properties of the tested extracts suggest the presence of compounds with potential pharmacological or biotechnological applications in the screened sponge species. PMID:22004963

  4. DBS-relevant electric fields increase hydraulic conductivity of in vitro endothelial monolayers

    NASA Astrophysics Data System (ADS)

    Lopez-Quintero, S. V.; Datta, A.; Amaya, R.; Elwassif, M.; Bikson, M.; Tarbell, J. M.

    2010-02-01

    Deep brain stimulation (DBS) achieves therapeutic outcome through generation of electric fields (EF) in the vicinity of energized electrodes. Targeted brain regions are highly vascularized, and it remains unknown if DBS electric fields modulate blood-brain barrier (BBB) function, either through electroporation of individual endothelial cells or electro-permeation of barrier tight junctions. In our study, we calculated the intensities of EF generated around energized Medtronic 3387 and 3389 DBS leads by using a finite element model. Then we designed a novel stimulation system to study the effects of such fields with DBS-relevant waveforms and intensities on bovine aortic endothelial cell (BAEC) monolayers, which were used as a basic analog for the blood-brain barrier endothelium. Following 5 min of stimulation, we observed a transient increase in endothelial hydraulic conductivity (Lp) that could be related to the disruption of the tight junctions (TJ) between cells, as suggested by zonula occludens-1 (ZO-1) protein staining. This 'electro-permeation' occurred in the absence of cell death or single cell electroporation, as indicated by propidium iodide staining and cytosolic calcein uptake. Our in vitro results, using uniform fields and BAEC monolayers, thus suggest that electro-permeation of the BBB may occur at electric field intensities below those inducing electroporation and within intensities generated near DBS electrodes. Further studies are necessary to address potential BBB disruption during clinical studies, with safety and efficacy implications.

  5. Rigosertib Is a More Effective Radiosensitizer Than Cisplatin in Concurrent Chemoradiation Treatment of Cervical Carcinoma, In Vitro and In Vivo

    SciTech Connect

    Agoni, Lorenzo; Basu, Indranil; Gupta, Seema; Alfieri, Alan; Gambino, Angela; Goldberg, Gary L.; Reddy, E. Premkumar; Guha, Chandan

    2014-04-01

    Purpose: To compare rigosertib versus cisplatin as an effective radiosensitizing agent for cervical malignancies. Methods and Materials: Rigosertib and cisplatin were tested in cervical cancer cell lines, HeLa and C33A. A 24-hour incubation with rigosertib and cisplatin, before irradiation (2-8 Gy), was used for clonogenic survival assays. Cell cycle analysis (propidium iodide staining) and DNA damage (?-H2AX expression) were evaluated by fluorescence-activated cell sorter cytometry. Rigosertib was also tested in vivo in tumor growth experiments on cervical cancer xenografts. Results: Rigosertib was demonstrated to induce a G{sub 2}/M block in cancer cells. Survival curve comparison revealed a dose modification factor, as index of radiosensitization effect, of 1.1-1.3 for cisplatin and 1.4-2.2 for rigosertib. With 6-Gy irradiation, an increase in DNA damage of 15%-25% was achieved in both HeLa and C33A cells with cisplatin pretreatment, and a 71-108% increase with rigosertib pretreatment. In vivo tumor growth studies demonstrated higher performance of rigosertib when compared with cisplatin, with 53% longer tumor growth delay. Conclusions: Rigosertib was more effective than cisplatin when combined with radiation and caused minimal toxicity. These data support the need for clinical trials with rigosertib in combination therapy for patients with cervical carcinoma.

  6. Crystal Structure of Crataeva tapia Bark Protein (CrataBL) and Its Effect in Human Prostate Cancer Cell Lines

    E-print Network

    M of the protein for 48 h caused maximum growth inhibition in MTT assay (47% of DU145 cells and 43% of PC3 cells). The apoptosis of DU145 and PC3 cell lines was confirmed by flow cytometry using Annexin V/FITC and propidium and in the activation of caspase-3 in DU145 and PC3 cells. Citation: Ferreira RdS, Zhou D, Ferreira JG, Silva MCC, Silva

  7. The Extracellular Matrix Regulates Granuloma Necrosis in Tuberculosis.

    PubMed

    Al Shammari, Basim; Shiomi, Takayuki; Tezera, Liku; Bielecka, Magdalena K; Workman, Victoria; Sathyamoorthy, Tarangini; Mauri, Francesco; Jayasinghe, Suwan N; Robertson, Brian D; D'Armiento, Jeanine; Friedland, Jon S; Elkington, Paul T

    2015-08-01

    A central tenet of tuberculosis pathogenesis is that caseous necrosis leads to extracellular matrix destruction and bacterial transmission. We reconsider the underlying mechanism of tuberculosis pathology and demonstrate that collagen destruction may be a critical initial event, causing caseous necrosis as opposed to resulting from it. In human tuberculosis granulomas, regions of extracellular matrix destruction map to areas of caseous necrosis. In mice, transgenic expression of human matrix metalloproteinase 1 causes caseous necrosis, the pathological hallmark of human tuberculosis. Collagen destruction is the principal pathological difference between humanised mice and wild-type mice with tuberculosis, whereas the release of proinflammatory cytokines does not differ, demonstrating that collagen breakdown may lead to cell death and caseation. To investigate this hypothesis, we developed a 3-dimensional cell culture model of tuberculosis granuloma formation, using bioelectrospray technology. Collagen improved survival of Mycobacterium tuberculosis-infected cells analyzed on the basis of a lactate dehydrogenase release assay, propidium iodide staining, and measurement of the total number of viable cells. Taken together, these findings suggest that collagen destruction is an initial event in tuberculosis immunopathology, leading to caseous necrosis and compromising the immune response, revealing a previously unappreciated role for the extracellular matrix in regulating the host-pathogen interaction. PMID:25676469

  8. Cytotoxicity of All-Trans-Retinal Increases Upon Photodegradation†

    PubMed Central

    Ró?anowska, Ma?gorzata; Handzel, Kinga; Boulton, Michael E.; Ró?anowski, Bartosz

    2013-01-01

    All-trans-retinal (AtRal) can accumulate in the retina as a result of excessive exposure to light. The purpose of this study was to compare cytotoxicity of AtRal and photodegraded AtRal (dAtRal) on cultured human retinal pigment epithelial cells in dark and upon exposure to visible light. AtRal was degraded by exposure to visible light. Cytotoxicity was monitored by imaging of cell morphology, propidium iodide staining of cells with permeable plasma membrane and measurements of reductive activity of cells. Generation of singlet oxygen photosensitized by AtRal and dAtRal was monitored by time-resolved measurements of characteristic singlet oxygen phosphorescence. Photodegradation of AtRal resulted in a decrease in absorption of visible light and accumulation of the degradation products with absorption maximum at ~330 nm. Toxicity of dAtRal was concentration-dependent and was greater during irradiation with visible light than in dark. DAtRal was more cytotoxic than AtRal both in dark and during exposure to visible light. Photochemical properties of dAtRal indicate that it may be responsible for the maximum in the action spectra of retinal photodamage recorded in animals. In conclusion, photodegradation products of AtRal may impose a significant threat to the retina and therefore their roles in retinal pathology need to be explored. PMID:22515697

  9. Assessment of the adverse effects of the acaricide amitraz: in vitro evaluation of genotoxicity.

    PubMed

    Padula, Gisel; Ponzinibbio, María Virginia; Picco, Sebastián; Seoane, Analía

    2012-11-01

    Amitraz is a formamidine widely used in Veterinary Medicine for the treatment of ectoparasites. It is a highly liposoluble compound that is quickly absorbed through the skin and mucous membranes, thus making exposure potentially dangerous for humans and animals. The aim of this study was to compare the genotoxic potential of the active constituent of the insecticide amitraz and a commercial product containing amitraz in vitro in hamster cells. The induction of primary DNA damage was evaluated by alkaline single-cell gel electrophoresis (comet assay) and the apoptotic ability was examined by the Annexin V/propidium iodide staining assay. The commercial formulation significantly increased the index of DNA damage at concentrations of 2.50-3.75 µg/mL compared to the control. The active constituent only induced significant DNA damage with the highest concentration (3.75 µg/mL). Although both tested products increased the frequency of cell death, neither of them induced significant differences. Genotoxic potential is a primary risk factor for long-term effects such as carcinogenic and reproductive toxicology. Results presented here highlight the need for further investigation of the potential health risk of this veterinary medicine. PMID:22394339

  10. Antitumor activity of jujuboside B and the underlying mechanism via induction of apoptosis and autophagy.

    PubMed

    Xu, Mei-Ying; Lee, So Young; Kang, Sam Sik; Kim, Yeong Shik

    2014-02-28

    Jujuboside B (1) is one of the saponins isolated from the seeds of Zizyphus jujuba var. spinosa, which are used as a well-known traditional medicine for the treatment of insomnia and anxiety in East Asian countries. This is the first study to investigate the antitumor mechanism of 1 in vivo and in vitro. The results showed that 1 induced apoptosis and autophagy in AGS and HCT 116 human cancer cells and also effectively suppressed tumor growth in a nude mouse xenograft model bearing HCT 116 cells. The apoptosis-inducing effect of 1 was characterized by annexin V/propidium iodide staining, sub-G1 phase increase, and caspase-3 activation. Mechanistic studies showed that 1-induced apoptosis is associated with the extrinsic pathway through an increase in FasL and caspase-8 activation. Moreover, 1 activated p38/c-Jun N-terminal kinase (JNK), and the extrinsic pathway-mediated apoptosis was attenuated by both SB202190 (a p38 inhibitor) and SP600125 (a JNK inhibitor). The autophagy-inducing effect was indicated by the formation of cytoplasmic vacuoles and microtubule-associated protein 1 light chain-3 II (LC3-II) conversion. The autophagy inhibitor bafilomycin A1 (BaF) decreased 1-induced cell viability and increased pp38, pJNK, FasL, caspase-8 activation, and caspase-3 activation. Taken together, these results demonstrate that 1 induced protective autophagy to retard extrinsic pathway-mediated apoptosis. PMID:24547878

  11. Discovery of an algicidal compound from Brevibacterium sp. BS01 and its effect on a harmful algal bloom-causing species, Alexandrium tamarense

    PubMed Central

    An, Xinli; Zhang, Bangzhou; Zhang, Huajun; Li, Yi; Zheng, Wei; Yu, Zhiming; Fu, Lijun; Zheng, Tianling

    2015-01-01

    Blooms of the dinoflagellate Alexandrium tamarense have become worldwide phenomena and have detrimental impacts on aquatic ecosystems and human health. In this study, a culture supernatant of the marine actinomycete BS01 exerted a strong algicidal effect on A. tamarense (ATGD98-006). The target algicide from BS01 was separated by adsorption chromatography and identified by MALDI-TOF-MS and NMR analysis. The results suggested that the purified algicidal component corresponded to a hydrophobic compound (2-isobutoxyphenyl)amine (C10H15NO) with a molecular weight of 165 Da, which exhibited a significant algicidal effect (64.5%) on A. tamarense. After incubation in 5 ?g/mL of (2-isobutoxyphenyl)amine for 24 h, the algae lost mobility and sank to the bottom of the flasks, and 56.5% of the algae cells lost vitality at a concentration of 20 ?g/mL (p < 0.01) despite having intact cell profiles. Morphological analysis revealed that the cell structure of A. tamarense was altered by (2-isobutoxyphenyl)amine resulting in cytoplasm degradation and the loss of organelle integrity. The images following propidium iodide staining suggested that the algal nucleus was also severely damaged and eventually degraded due to exposure to the algicidal compound. All of the results indicate that (2-isobutoxyphenyl)amine from the actinomycete might be a candidate for the control of bloom-forming A. tamarense. PMID:26594205

  12. Design, synthesis and biological evaluation of 3,5-disubstituted 2-amino thiophene derivatives as a novel class of antitumor agents

    PubMed Central

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Lopez-Cara, Carlota; Salvador, Maria Kimatrai; Preti, Delia; Tabrizi, Mojgan Aghazadeh; Balzarini, Jan; Nussbaumer, Peter; Bassetto, Marcella; Brancale, Andrea; Fu, Xian-Hua; Yang-Gao; Li, Jun; Zhang, Su-Zhan; Hamel, Ernest; Bortolozzi, Roberta; Basso, Giuseppe; Viola, Giampietro

    2014-01-01

    In search of new compounds with strong antiproliferative activity and simple molecular structure, we designed a novel series of agents based on the 2-amino-3-alkoxycarbonyl/cyano-5-arylethylthiophene scaffold. The presence of the ethyl spacer between the 2?,5?-dimethoxyphenyl and the 5-position of the thiophene ring, as well as the number and location of methoxy substitutents on the phenyl ring, played a profound role in affecting the antiproliferative activity. Among the synthesized compounds, we identified the 2-amino-3-cyano-[2-(2,5-dimethoxyphenyl)ethyl] thiophene 2c as the most promising derivative against a wide panel of cancer cell lines (IC50 = 17–130 nM). The antiproliferative activity of this compound appears to correlate well with its ability to inhibit tubulin assembly and the binding of colchicine to tubulin. Moreover 2c, as determined by flow cytometry, strongly induced arrest in the G2/M phase of the cell cycle, and annexin-V and propidium iodide staining indicate that cell death proceeds through an apoptotic mechanism that follows the intrinsic mitochondrial pathway. PMID:24398384

  13. A Study of Aberrant Glycosylation in Simulated Microgravity Using Laser Induced AutoFluorescence and Flow Cytometry

    NASA Technical Reports Server (NTRS)

    Lawless, B. DeSales

    1999-01-01

    A number of pathologies and cellular dysfunctions including neoplasms have been correlated with autofluorescence. The complications of aging and diabetes have been associated with the accumulation of non-enzymatic glycosylations of tissue macromolecules. These products are known as the Advanced Glycosylated End Products (AGEs). A physical property associated with AGEs is the emission of 570 mn or 630 nm light energy (autofluorescence) following the absorption of 448 mm energy associated with the argon laser. This investigation sought to assess the induction of argon-laser induced autofluorescence in a variety of in vitro culture systems. Different fluorescence intensities distinguished tumor lines from normal cell populations. Laser-stimulated autofluorescence discriminated primary cultures of lymphocytes grown in the presence of excess glucose as opposed to normal glucose concentrations. The effects of deglycosylating agents upon laser-induced autofluorescence were also assessed. The studies included studies of cell cycle analysis using Propidium Iodide stained DNA of cells grown in simulated microgravity using NASA Bioreactor Vessels in media of normal and elevated glucose concentrations.

  14. The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract

    NASA Astrophysics Data System (ADS)

    Kumara Swamy, M.; Sudipta, K. M.; Jayanta, K.; Balasubramanya, S.

    2015-01-01

    Biosynthesis of silver nanoparticles (Ag Nps) was carried out using methanol leaves extract of L. reticulata. Ag Nps were characterized based on the observations of UV-visible spectroscopy, transmission electron microscopy, and X-ray diffraction (XRD) analysis. These Ag Nps were tested for antimicrobial activity by agar well diffusion method against different pathogenic microorganisms and antioxidant activity was performed using DPPH assay. Further, the in vitro cytotoxic effects of Ag Nps were screened against HCT15 cancer cell line and viability of tumor cells was confirmed using MTT ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole)) assay. The nuclear condensation was studied using the propidium iodide-staining method. The color change from green to dark brown and the absorbance peak at about 420 nm indicated the formation of nanoparticles. XRD pattern showed characteristic peaks indexed to the crystalline planes (111), (200) and (220) of face-centered cubic silver. The nanoparticles were of spherical shape with varying sizes ranging from 50 to 70 nm. Biosynthesized Ag Nps showed potent antibacterial activity and effective radical scavenging activity. MTT assay revealed a dose-dependent decrease in cell viability. Microscopic observations showed distinct cellular morphological changes indicating unhealthy cells, whereas the control appeared normal. Increase in the number of propidium iodide positive cells were observed in maximum concentration. Methanolic leaf extract of L. reticulata acts as an excellent capping agent for the formation of silver nanoparticles and demonstrates immense biological activities. Hence, these Ag NPs can be used as antibacterial, antioxidant as well as cytotoxic agent in treating many medical complications.

  15. Analysis of cell-tissue grafts under weightless conditions using confocal fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Volova, L. T.; Milyakova, M. N.; Rossinskaya, V. V.; Boltovskaya, V. V.; Kulagina, L. N.; Kurganskaya, L. V.; Timchenko, P. E.; Timchenko, E. V.; Zherdeva Taskina, Larisa A.

    2015-03-01

    The research results of monitoring of viable cells in a cellular-tissue graft using confocal laser fluorescence microscopy at 488 nm and 561 nm with the use of fluorophore propidium iodide (propidium iodide, PI Sigma Aldrich USA) are presented. The processing of the received images was carried out using the software ANDOR. It is experimentally shown that the method of confocal fluorescence microscopy is one of the informational methods for detecting cells populated in a 3-D bio-carrier with a resolution of at least 400 nm. Analysis of the received micrographs suggests that the cells that were in a bio-carrier for 30 days in a synchronous ground-based experiment retained their viability compared to a similar space-based experiment in which the cells were hardly detected in a bio-carrier.

  16. Experimental Procedures for Demonstration of MicroRNA Mediated Enhancement of Functional Neuroprotective Effects of Estrogen Receptor Agonists.

    PubMed

    Chakrabarti, Mrinmay; Ray, Swapan K

    2016-01-01

    Protection of motoneurons is an important therapeutic goal in the treatment of neurological disorders. Recent reports have suggested that specific microRNAs (miRs) could modulate the expression of particular proteins for significant alterations in the pathogenesis of different neurological disorders. Thus, combination of overexpression of a specific neuroprotective miR and treatment with a neuroprotective agent could be a novel strategy for functional protection of motoneurons. The protocols described herein demonstrate that miR-7-1, a neuroprotective miR, can enhance the functional neuroprotective effects of estrogen receptor agonists such as 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT), Way 200070 (WAY), and estrogen (E2) in preventing apoptosis in A23187 calcium ionophore (CI) exposed VSC4.1 motoneurons. This article describes the protocols for the cell viability assay, transfection of VSC4.1 motoneurons with miRs, Annexin V/propidium iodide staining for apoptosis, Western blotting, patch-clamp recording of whole-cell membrane potential, and JC-1 staining for detection of mitochondrial membrane potential. Taken together, these protocols are used to demonstrate that miR-7-1 caused significant enhancement of the efficacy of estrogen receptor agonists for functional neuroprotection in VSC4.1 motoneurons. PMID:26585150

  17. Comparison of vitrification and conventional freezing for cryopreservation of caprine embryos.

    PubMed

    Araújo-Lemos, Paula F B; Freitas Neto, Leopoldo M; Moura, Marcelo T; Melo, Janaína V; Lima, Paulo F; Oliveira, Marcos A L

    2015-08-01

    The experiment aimed to compare conventional freezing and different vitrification protocols for cryopreservation of caprine embryos at morphological, ultrastructural, and functional levels. Caprine embryos produced in vivo were allocated randomly to three groups: (1) conventional freezing with ethylene glycol (EG); (2) dimethyl sulfoxide + EG (DMSO/EG) vitrification; and (3) dimethylformamide + EG (DMF/EG) vitrification. All groups were scored for cell viability (propidium iodide staining and ultrastructural levels) and re-expansion rate after thawing or warming. Embryos subjected to DMSO/EG vitrification showed higher cell viability (73.33%), compared with DMF/EG vitrification and conventional freezing group embryos (40.00 and 66.66%, respectively). The ultrastructural study revealed that vitrified embryos had greater preservation of cellular structure than embryos from conventional freezing with EG. DMSO/EG vitrification resulted in higher rates of re-expansion in vitro (47.36%) than DMF/EG vitrification (31.58%), and conventional freezing (25.00%). In conclusion, caprine embryos produced in vivo are better cryopreserved after vitrification than conventional freezing, therefore we conclude that DMSO/EG vitrification is the most effective protocol for cryopreservation. PMID:24964134

  18. Purely aqueous PLGA nanoparticulate formulations of curcumin exhibit enhanced anticancer activity with dependence on the combination of the carrier.

    PubMed

    Nair, K Lekha; Thulasidasan, Arun Kumar T; Deepa, G; Anto, Ruby John; Kumar, G S Vinod

    2012-04-01

    Curcumin, a yellow pigment present in turmeric, possess potential anti-proliferative and anti-inflammatory activities but poor aqueous solubility limits its applications. In this study we report a novel comparative study of the formulation and characterization of curcumin nanoparticles (nanocurcumin) using two poly (lactide-co-glycolide) (PLGA) combinations, 50:50 and 75:25 having different lactide to glycolide ratios. Nanocurcumin 50:50 showed smaller size with higher encapsulation efficiency. Thermal evaluation suggested the presence of curcumin in molecular dispersion form which supported its sustained release up to a week where nanocurcumin 50:50 showed faster release. Cellular uptake studies in human epithelial cervical cancer cells (HeLa) exhibited enhanced intracellular fluorescence with nanocurcumin when compared to free curcumin, when both given in purely aqueous media. Antiproliferative studies using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, Annexin V/propidium iodide staining, poly (ADP-ribose) polymerase (PARP) cleavage and downregulation of clonogenic potential of HeLa cells proved the better antitumor activity of nanocurcumin 50:50 administered in aqueous media. Superior efficacy of nanocurcumin 50:50 in comparison to free curcumin was further demonstrated by electrophoretic mobility shift assay and immunocytochemical analysis. In conclusion, the enhanced aqueous solubility and higher anticancer efficacy of nanocurcumin administered in aqueous media clearly demonstrates its potential against cancer chemotherapy, with dependence on the combination of PLGA. PMID:22266528

  19. Cationic surfactants in the form of nanoparticles and micelles elicit different human neutrophil responses: a toxicological study.

    PubMed

    Hwang, Tsong-Long; Sung, Calvin T; Aljuffali, Ibrahim A; Chang, Yuan-Ting; Fang, Jia-You

    2014-02-01

    Cationic surfactants are an ingredient commonly incorporated into nanoparticles for clinical practicability; however, the toxicity of cationic surfactants in nanoparticles is not fully elucidated. We aimed to evaluate the inflammatory responses of cationic nanobubbles and micelles in human neutrophils. Soyaethyl morpholinium ethosulfate (SME) and hexadecyltrimethyl-ammonium bromide (CTAB) are the two cationic surfactants employed in this study. The zeta potential of CTAB nanobubbles was 80 mV, which was the highest among all formulations. Nanobubbles, without cationic surfactants, showed no cytotoxic effects on neutrophils in terms of inflammatory responses. Cationic nanobubbles caused a concentration-dependent cytotoxicity of degranulation (elastase release) and membrane damage (release of lactate dehydrogenase, LDH). Among all nanoparticles and micelles, CTAB-containing nanosystems showed the greatest inflammatory responses. A CTAB nanobubble diluent (1/150) increased the LDH release 80-fold. Propidium iodide staining and scanning electron microscopy (SEM) verified cell death and morphological change of neutrophils treated by CTAB nanobubbles. SME, in a micelle form, strengthened the inflammatory response more than SME-loaded nanobubbles. Membrane interaction and subsequent Ca(2+) influx were the mechanisms that triggered inflammation. The information obtained from this work is beneficial in designing nanoparticulate formulations for balancing clinical activity and toxicity. PMID:24246197

  20. Characterisation of the efficacy of endodontic medications using a three-dimensional fluorescent tooth model: An ex vivo study.

    PubMed

    Chen, Emily W; Carey, Alison J; Ulett, Glen C; George, Roy

    2015-08-01

    The purpose of this study was to establish a three-dimensional fluorescent tooth model to investigate bacterial viability against intra-canal medicaments across the thickness and surface of root dentine. Dental microbial biofilms (Enterococcus faecalis and Streptococcus mutans) were established on the external root surface and bacterial kill was monitored over time against intra-canal medicament (Ca(OH)2 ) using fluorescent microscopy in conjunction with BacLight SYTO9 and propidium iodide stains. An Olympus digital camera fitted to SZX16 fluorescent microscope captured images of bacterial cells in biofilms on the external root surface. Viability of biofilm was measured by calculating the total pixel area of green (viable bacteria) and red (non-viable bacteria) for each image using ImageJ® software. All data generated were assessed for normality and then analysed using a Mann-Whitney t-test. The viability of S.?mutans biofilm following Ca(OH)2 treatment showed a significant decline compared with the untreated group (P?=?0.0418). No significant difference was seen for E.?faecalis biofilm between the Ca(OH)2 and untreated groups indicating Ca(OH)2 medicament is ineffective against E.?faecalis biofilm. This novel three-dimensional fluorescent biofilm model provides a new clinically relevant tool for testing of medicaments against dental biofilms. PMID:25583457

  1. The mechanism of UVB irradiation induced-apoptosis in cataract.

    PubMed

    Ji, Yinghong; Cai, Lei; Zheng, Tianyu; Ye, Hongfei; Rong, Xianfang; Rao, Jun; Lu, Yi

    2015-03-01

    Cataract is the most common eye disease that causes blindness in patients. Ultraviolet B (UVB) irradiation is considered an important factor leading to cataract by inducing apoptosis in human lens epithelial cells (HLECs), but the mechanism is currently unclear. In this study, we investigated HLECs under different intensities of UVB irradiation and different exposure time. The annexin V-FITC/propidium iodide staining results showed that UVB irradiation could efficiently lead to HLECs apoptosis in time- and dose-dependent manner. The expression of pro-apoptotic Bax gene was promoted by UVB irradiation, while anti-apoptotic Bcl-2 gene expression was inhibited at both transcript and protein levels. Notably, the ratio of Bax/Bcl-2 displayed a high and positive correlation to the proportion of apoptotic HLECs. Mitochondrial dysfunction was also observed with rapid loss of potential (?? m), as well as changes of the levels of reactive oxygen species, malondialdehyde, total antioxidative capabilities, and superoxide dismutase. In caspase pathway, the level of caspase-3 protein increased after UVB irradiation. All these discovered changes may play important roles in UVB-induced HLECs apoptosis, and would be helpful in understanding the mechanism of UVB-induced cataract and providing potential prevention and treatment strategies. PMID:25445170

  2. The Edible Marine Alga Gracilariopsis chorda Alleviates Hypoxia/Reoxygenation-Induced Oxidative Stress in Cultured Hippocampal Neurons.

    PubMed

    Mohibbullah, Md; Hannan, Md Abdul; Choi, Ji-Young; Bhuiyan, Mohammad Maqueshudul Haque; Hong, Yong-Ki; Choi, Jae-Suk; Choi, In Soon; Moon, Il Soo

    2015-09-01

    Age-related neurological disorders are of growing concern among the elderly, and natural products with neuroprotective properties have been attracting increasing attention as candidates for the prevention or treatment of neurological disorders induced by oxidative stress. In an effort to explore natural resources, we collected some common marine seaweed from the Korean peninsula and Indonesia and screened them for neuroprotective activity against hypoxia/reoxygenation (H/R)-induced oxidative stress. Of the 23 seaweeds examined, the ethanol extract of Gracilariopsis chorda (GCE) provided maximum neuroprotection at an optimum concentration of 15 ?g/mL, followed by Undaria pinnatifida. GCE increased cell viability after H/R, decreased the formation of reactive oxygen species (measured by 2',7'-dichlorodihydrofluorescein diacetate [DCF-DA] staining), and inhibited the double-stranded DNA breaks (measured by H2AX immunocytochemistry), apoptosis (measured by Annexin V/propidium iodide staining), internucleosomal DNA fragmentation (measured by DNA laddering), and dissipation of mitochondrial membrane potential (measured by JC-1 staining). Using reverse-phase high-pressure liquid chromatography, we quantitated the arachidonic acid (AA) in GCE, which provides neuroprotection against H/R-induced oxidative stress. This neuroprotective effect of AA was comparable to that of GCE. These findings suggest that the neuroprotective effect of GCE against H/R-induced neuronal death is due, at least in part, to the AA content that suppresses neuronal apoptosis. PMID:26106876

  3. Whole-mount immunolocalization to study female meiosis in Arabidopsis.

    PubMed

    Escobar-Guzmán, Rocio; Rodríguez-Leal, Daniel; Vielle-Calzada, Jean-Philippe; Ronceret, Arnaud

    2015-10-01

    Here we describe a whole-mount immunolocalization protocol to follow the subcellular localization of proteins during female meiosis in Arabidopsis thaliana, a model species that is used to study sexual reproduction in flowering plants. By using confocal microscopy, the procedure allows one to follow megasporogenesis at all stages before differentiation of the functional megaspore. This in particular includes stages that occur during prophase I, such as the installation of the axial and central elements of the synaptonemal complex along the meiotic chromosomes. In contrast to procedures that require microtome sectioning or enzymatic isolation and smearing to separate female meiocytes from neighboring cells, this 3-day protocol preserves the constitution of the developing primordium and incorporates the architecture of the ovule to provide a temporal and spatial context to meiotic divisions. This opens up the possibility to systematically compare the dynamics of protein localization during female and male meiosis. Steps describe tissue collection and fixation, preparation of slides and polyacrylamide embedding, tissue permeabilization, antibody incubation, propidium iodide staining, and finally image acquisition by confocal microscopy. The procedure adds an essential technique to the toolkit of plant meiotic analysis, and it represents a framework for technical adaptations that could soon allow the analysis of plant reproductive alternatives to sexual reproduction. PMID:26357009

  4. Silver ions disrupt K+ homeostasis and cellular integrity in intact barley (Hordeum vulgare L.) roots

    PubMed Central

    Coskun, Devrim; Britto, Dev T.; Jean, Yuel-Kai; Schulze, Lasse M.; Becker, Alexander; Kronzucker, Herbert J.

    2012-01-01

    The heavy metals silver, gold, and mercury can strongly inhibit aquaporin-mediated water flow across plant cell membranes, but critical examinations of their side effects are rare. Here, the short-lived radiotracer 42K is used to demonstrate that these metals, especially silver, profoundly change potassium homeostasis in roots of intact barley (Hordeum vulgare L.) plants, by altering unidirectional K+ fluxes. Doses as low as 5??M AgNO3 rapidly reduced K+ influx to 5% that of controls, and brought about pronounced and immediate increases in K+ efflux, while higher doses of Au3+ and Hg2+ were required to produce similar responses. Reduced influx and enhanced efflux of K+ resulted in a net loss of >40% of root tissue K+ during a 15?min application of 500??M AgNO3, comprising the entire cytosolic potassium pool and about a third of the vacuolar pool. Silver also brought about major losses of UV-absorbing compounds, total electrolytes, and NH4+. Co-application, with silver, of the channel blockers Cs+, TEA+, or Ca2+, did not affect the enhanced efflux, ruling out the involvement of outwardly rectifying ion channels. Taken together with an examination of propidium iodide staining under confocal microscopy, the results indicate that silver ions affect K+ homeostasis by directly inhibiting K+ influx at lower concentrations, and indirectly inhibiting K+ influx and enhancing K+ efflux, via membrane destruction, at higher concentrations. Ni2+, Cd2+, and Pb2+, three heavy metals not generally known to affect aquaporins, did not enhance K+ efflux or cause propidium iodide incorporation. The study reveals strong and previously unknown effects of major aquaporin inhibitors and recommends caution in their application. PMID:21948852

  5. Lack of Direct Cytotoxicity of Extracellular ATP against Hepatocytes: Role in the Mechanism of Acetaminophen Hepatotoxicity

    PubMed Central

    Xie, Yuchao; Woolbright, Benjamin L.; Kos, Milan; McGill, Mitchell R.; Dorko, Kenneth; Kumer, Sean C.; Schmitt, Timothy M.; Jaeschke, Hartmut

    2015-01-01

    Background Acetaminophen (APAP) hepatotoxicity is a major cause of acute liver failure in many countries. Mechanistic studies in mice and humans have implicated formation of a reactive metabolite, mitochondrial dysfunction and oxidant stress as critical events in the pathophysiology of APAP-induced liver cell death. It was recently suggested that ATP released from necrotic cells can directly cause cell death in mouse hepatocytes and in a hepatoma cell line (HepG2). Aim To assess if ATP can directly cause cell toxicity in hepatocytes and evaluate their relevance in the human system. Methods Primary mouse hepatocytes, human HepG2 cells, the metabolically competent human HepaRG cell line and freshly isolated primary human hepatocytes were exposed to 10-100 ?M ATP or AT?P in the presence or absence of 5-10 mM APAP for 9-24 h. Results ATP or AT?P was unable to directly cause cell toxicity in all 4 types of hepatocytes. In addition, ATP did not enhance APAP-induced cell death observed in primary mouse or human hepatocytes, or in HepaRG cells as measured by LDH release and by propidium iodide staining in primary mouse hepatocytes. Furthermore, addition of ATP did not cause mitochondrial dysfunction or enhance APAP-induced mitochondrial dysfunction in primary murine hepatocytes, although ATP did cause cell death in murine RAW macrophages. Conclusions It is unlikely that ATP released from necrotic cells can significantly affect cell death in human or mouse liver during APAP hepatotoxicity. Relevance for Patients Understanding the mechanisms of APAP-induced cell injury is critical for identifying novel therapeutic targets to prevent liver injury and acute liver failure in APAP overdose patients. PMID:26722668

  6. : Catechin, green tea component, causes caspase independent necrosis-like cell death in chronic myelogenous leukemia

    E-print Network

    Huang, Ching-Tsan

    and Yuko Sato Cancer Science 100: 349­356, 2009 Cheng-Yang Hsu R98B47412 Chin-Tin Chen, PhD April 26th Z-VAD-FMK imatinib DMSO 0.1% EGCG DiOC6(3) ethanol PBS Propidium iodide (PI) (Cell viability imatinib caspase PARP EGCG caspase-9 caspase-8 caspase-3 PARP caspase Z- VAD-FMK Imatinib

  7. Artemisia absinthium (AA): a novel potential complementary and alternative medicine for breast cancer.

    PubMed

    Shafi, Gowhar; Hasan, Tarique N; Syed, Naveed Ahmed; Al-Hazzani, Amal A; Alshatwi, Ali A; Jyothi, A; Munshi, Anjana

    2012-07-01

    Natural products have become increasingly important in pharmaceutical discoveries, and traditional herbalism has been a pioneering specialty in biomedical science. The search for effective plant-derived anticancer agents has continued to gain momentum in recent years. The present study aimed to investigate the role of crude extracts of the aerial parts of Artemisia absinthium (AA) extract in modulating intracellular signaling mechanisms, in particular its ability to inhibit cell proliferation and promote apoptosis in a human breast carcinoma estrogenic-unresponsive cell line, MDA-MB-231, and an estrogenic-responsive cell line, MCF-7. Cells were incubated with various concentrations of AA, and anti-proliferative activity was assessed by MTT assays, fluorescence microscopy after propidium iodide staining, western blotting and cell cycle analysis. Cell survival assays indicated that AA was cytotoxic to both MDA-MB-231 and MCF-7 cells. The morphological features typical of nucleic staining and the accumulation of sub-G1 peak revealed that the extract triggered apoptosis. Treatment with 25 ?g/mL AA resulted in activation of caspase-7 and upregulation of Bad in MCF-7 cells, while exposure to 20 ?g/mL AA induced upregulation of Bcl-2 protein in a time-dependent response in MDA-MB-231 cells. Both MEK1/2 and ERK1/2 was inactivated in both cell lines after AA treatment in a time-dependent manner. These results suggest that AA-induced anti-proliferative effects on human breast cancer cells could possibly trigger apoptosis in both cell lines through the modulation of Bcl-2 family proteins and the MEK/ERK pathway. This might lead to its possible development as a therapeutic agent for breast cancer following further investigations. PMID:22311047

  8. Concurrent use of flow cytometry and fluorescence in-situ hybridization techniques for detecting faulty meiosis in a human sperm sample.

    PubMed

    Weissenberg, R; Aviram, A; Golan, R; Lewin, L M; Levron, J; Madgar, I; Dor, J; Barkai, G; Goldman, B

    1998-01-01

    Routine semen analysis in an infertile patient revealed severe teratospermia associated with malformation of head and tail in 100% of the sperm cells. Flow cytometry and fluorescence in-situ hybridization (FISH) were shown to supplement routine semen analysis by providing information on the sperm chromatin. Using flow cytometry, propidium iodide-stained spermatozoa from the same sperm sample were compared with a normal reference pool, and with human lymphocytes. The results point to a population of diploid sperm cells rather than to mature haploid spermatozoa. Numerical chromosomal abnormalities of the spermatozoa were subsequently evaluated using FISH. A total of 1000 sperm cells were scored for X and Y chromosomes, and an additional 1128 sperm cells for chromosome 18. Aneuploidy of chromosomes X and Y was revealed in 96.9% of the cells and of chromosome 18 in 90.3% of the cells. Non-disjunction of chromosome X and Y in meiosis I and II occurred in 54.8 and 2.7% of the sperm cells respectively. Non-disjunction in both meiosis I and II occurred in 39.4% of the sperm cells. A normal haploid pattern for chromosomes X and Y was observed in only 3.1%, and for chromosome 18 in 9.7%, of the cells. Using three colour FISH for the sex chromosomes and for chromosome 18, diploidy was demonstrated in 19.4% of 500 sperm cells and aneuploidy in virtually all sperm cells (99.2%). The use of flow cytometry and FISH in cases where genetic and developmental chromatin abnormalities are suspected is a valuable adjunct to other available techniques, and can guide the clinicians to decide which samples are unsuitable for intracytoplasmic injection. PMID:9510012

  9. Manipulation of cell volume and membrane pore comparison following single cell permeabilization with 60- and 600-ns electric pulses

    PubMed Central

    Nesin, Olena M.; Pakhomova, Olga N.; Xiao, Shu; Pakhomov, Andrei G.

    2010-01-01

    Intense nanosecond-duration electric pulses (nsEP) open stable nanopores in cell plasma membrane, followed by cell volume changesdue to water uptake or expulsion, as regulated by the osmolality balance of pore-impermeable solutes inside and outside the cell. The size of pores opened by 50, 60-ns EP (10 Hz, ~13 kV/cm) and 5, 600-ns EP (1 Hz, ~6 kV/cm) in GH3 cells was estimated by isoosmotic replacement of bath NaCl with (polyethylene glycols and sugars. Such replacement reduced cell swelling and/or turned it into a transient or sustained shrinking, depending on the availability of pores permeable to the test solute. Unexpectedly, solute substitutions showed that for the same integral area of pores opened by 60- and 600-ns treatments (as indicated by cell volume changes), the pore sizes were similar. However, the 600-ns exposure triggered significantly higher cell uptake of propidium. We concluded that 600-ns EP opened a greater number of larger (propidium-permeable pores), but the fraction of the larger pores in the entire pore population was insufficient to contribute to cell volume changes. For both the 60- and 600-ns exposures, cell volume changes were determined by pores smaller than 0.9 nm in diameter; however, the diameter increased with increasing the nsEP intensity. PMID:21182825

  10. Can Platelet rich plasma stimulate human ACL growth in culture? A preliminary experience

    PubMed Central

    Dhillon, Mandeep Singh; Karna, Saroj Kumar; Dhatt, Sarvdeep Singh; Behera, Prateek; Bhatia, Alka

    2015-01-01

    Summary Introduction Platelet Rich Plasma (PRP) contains numerous growth factors; Platelet poor plasma (PPP) is plasma proteins without platelets, containing growth factors other than platelet derived. We planned to evaluate the effect of both autologous PRP & PPP on human ACL cell growth characteristics in culture conditions to see if one was better than the other. Methods ACL remnants were collected from eleven patients during ACL reconstruction surgery; PPP and PRP were prepared from blood of these patients. Cells were isolated, identified and cultured and were then divided into six groups. Groups A–D had Fetal Bovine Serum (FBS) added to them along with different concentrations of PRP and PPP. Groups E and F had 5% and 10% PRP respectively but lacked FBS. Cell viability was assayed by MTT and Annexin V assay, and DNA content was evaluated by propidium iodide staining and flow cytometry. Results analysis of cultured cells showed that addition of PRP (5 or 10%) increased the viability of ACL cells in 4 out of 11 and promoted cell proliferation in 8 of 11 donor samples; 10% PRP was more effective than 5% PRP. However, the difference in effectiveness of 10% PRP was not significantly better than 5% PRP. 5% PPP had no significant effect on cell viability, but it led to an increase in DNA content in 5 of 11. There was no statistically significant effect of either PRP or PPP in preventing cell death (depicted by apoptosis rate). Conclusion PRP may have an enhancing effect on ACL cell viability and promotion of cell proliferation but the ideal concentration of PRP for these positive effects needs to be determined before it could be used in clinical settings for enhancing primary repair of torn ACL. Also larger, more controlled and better studies are needed to confirm its clinical utility. PMID:26605188

  11. Interleukin-6 counteracts therapy-induced cellular oxidative stress in multiple myeloma by up-regulating manganese superoxide dismutase

    PubMed Central

    Brown, Charles O.; Salem, Kelley; Wagner, Brett A.; Bera, Soumen; Singh, Neeraj; Tiwari, Ajit; Choudhury, Amit; Buettner, Garry R.; Goel, Apollina

    2012-01-01

    IL (interleukin)-6, an established growth factor for multiple myeloma cells, induces myeloma therapy resistance, but the resistance mechanisms remain unclear. The present study determines the role of IL-6 in re-establishing intracellular redox homoeostasis in the context of myeloma therapy. IL-6 treatment increased myeloma cell resistance to agents that induce oxidative stress, including IR (ionizing radiation) and Dex (dexamethasone). Relative to IR alone, myeloma cells treated with IL-6 plus IR demonstrated reduced annexin/propidium iodide staining, caspase 3 activation, PARP [poly(ADP-ribose) polymerase] cleavage and mitochondrial membrane depolarization with increased clonogenic survival. IL-6 combined with IR or Dex increased early intracellular pro-oxidant levels that were causally related to activation of NF-?B (nuclear factor ?B) as determined by the ability of N-acetylcysteine to suppress both pro-oxidant levels and NF-?B activation. In myeloma cells, upon combination with hydrogen peroxide treatment, relative to TNF (tumour necrosis factor)-?, IL-6 induced an early perturbation in reduced glutathione level and increased NF-?B-dependent MnSOD (manganese superoxide dismutase) expression. Furthermore, knockdown of MnSOD suppressed the IL-6-induced myeloma cell resistance to radiation. MitoSOX Red staining showed that IL-6 treatment attenuated late mitochondrial oxidant production in irradiated myeloma cells. The present study provides evidence that increases in MnSOD expression mediate IL-6-induced resistance to Dex and radiation in myeloma cells. The results of the present study indicate that inhibition of antioxidant pathways could enhance myeloma cell responses to radiotherapy and/or chemotherapy. PMID:22471522

  12. Interleukin-6 counteracts therapy-induced cellular oxidative stress in multiple myeloma by up-regulating manganese superoxide dismutase.

    PubMed

    Brown, Charles O; Salem, Kelley; Wagner, Brett A; Bera, Soumen; Singh, Neeraj; Tiwari, Ajit; Choudhury, Amit; Buettner, Garry R; Goel, Apollina

    2012-06-15

    IL (interleukin)-6, an established growth factor for multiple myeloma cells, induces myeloma therapy resistance, but the resistance mechanisms remain unclear. The present study determines the role of IL-6 in re-establishing intracellular redox homoeostasis in the context of myeloma therapy. IL-6 treatment increased myeloma cell resistance to agents that induce oxidative stress, including IR (ionizing radiation) and Dex (dexamethasone). Relative to IR alone, myeloma cells treated with IL-6 plus IR demonstrated reduced annexin/propidium iodide staining, caspase 3 activation, PARP [poly(ADP-ribose) polymerase] cleavage and mitochondrial membrane depolarization with increased clonogenic survival. IL-6 combined with IR or Dex increased early intracellular pro-oxidant levels that were causally related to activation of NF-?B (nuclear factor ?B) as determined by the ability of N-acetylcysteine to suppress both pro-oxidant levels and NF-?B activation. In myeloma cells, upon combination with hydrogen peroxide treatment, relative to TNF (tumour necrosis factor)-?, IL-6 induced an early perturbation in reduced glutathione level and increased NF-?B-dependent MnSOD (manganese superoxide dismutase) expression. Furthermore, knockdown of MnSOD suppressed the IL-6-induced myeloma cell resistance to radiation. MitoSOX Red staining showed that IL-6 treatment attenuated late mitochondrial oxidant production in irradiated myeloma cells. The present study provides evidence that increases in MnSOD expression mediate IL-6-induced resistance to Dex and radiation in myeloma cells. The results of the present study indicate that inhibition of antioxidant pathways could enhance myeloma cell responses to radiotherapy and/or chemotherapy. PMID:22471522

  13. Stabilizing the eIF4G1 ?-helix increases its binding affinity with eIF4E: implications for peptidomimetic design strategies.

    PubMed

    Brown, C J; Lim, J J; Leonard, T; Lim, H C A; Chia, C S B; Verma, C S; Lane, D P

    2011-01-21

    Eukaryotic initiation factor (eIF)4E is overexpressed in many types of cancer such as breast, head and neck, and lung. A consequence of increased levels of eIF4E is the preferential translation of pro-tumorigenic proteins such as c-Myc, cyclin D1, and vascular endothelial growth factor. Inhibition of eIF4E is therefore a potential therapeutic target for human cancers. A novel peptide based on the eIF4E-binding peptide eIF4G1, where the ?-helix was stabilized by the inclusion of ?-helix inducers as shown by CD measurements, was synthesized. The helically stabilized peptide binds with an apparent K(d) of 9.43±2.57 nM, which is ?15.7-fold more potent than the template peptide from which it is designed. The helically stabilized peptide showed significant biological activity at a concentration of 400 ?M, unlike the naturally occurring eIFG1 peptide when measured in cell-based cap-dependent translational reporter and WST-1 (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate) assays. Fusion of the template peptide and the stabilized peptide to the cell-penetrating peptide TAT produced more active but equally potent inhibitors of cap-dependent translation in cell lines. They also equally disrupted cell metabolism as measured in a WST-1 assay. Propidium iodide staining revealed that the TAT-fused, helically stabilized peptide caused more cell death than the TAT-fused eIF4G1 template peptide with substantial decreases in the G1 and G2 cell populations. Annexin-staining experiments also indicated that the TAT-fused eIF4G1 derivative peptides caused cell death by apoptosis. The results presented should offer further insight into peptidomimetics development for eIF4E. PMID:21094167

  14. Isolation of a Glucosamine Binding Leguminous Lectin with Mitogenic Activity towards Splenocytes and Anti-Proliferative Activity towards Tumor Cells

    PubMed Central

    Chan, Yau Sang; Wong, Jack Ho; Fang, Evandro Fei; Pan, Wenliang; Ng, Tzi Bun

    2012-01-01

    A dimeric 64-kDa glucosamine-specific lectin was purified from seeds of Phaseolus vulgaris cv. “brown kidney bean.” The simple 2-step purification protocol involved affinity chromatography on Affi-gel blue gel and gel filtration by FPLC on Superdex 75. The lectin was absorbed on Affi-gel blue gel and desorbed using 1M NaCl in the starting buffer. Gel filtration on Superdex 75 yielded a major absorbance peak that gave a single 32-kDa band in SDS-PAGE. Hemagglutinating activity was completely preserved when the ambient temperature was in the range of 20°C–60°C. However, drastic reduction of the activity occurred at temperatures above 65°C. Full hemagglutinating activity of the lectin was observed at an ambient pH of 3 to 12. About 50% activity remained at pH 0–2, and only residual activity was observed at pH 13–14. Hemagglutinating activity of the lectin was inhibited by glucosamine. The brown kidney bean lectin elicited maximum mitogenic activity toward murine splenocytes at 2.5 µM. The mitogenic activity was nearly completely eliminated in the presence of 250 mM glucosamine. The lectin also increased mRNA expression of the cytokines IL-2, TNF-? and IFN-?. The lectin exhibited antiproliferative activity toward human breast cancer (MCF7) cells, hepatoma (HepG2) cells and nasopharyngeal carcinoma (CNE1 and CNE2) cells with IC50 of 5.12 µM, 32.85 µM, 3.12 µM and 40.12 µM respectively after treatment for 24 hours. Flow cytometry with Annexin V and propidum iodide staining indicated apoptosis of MCF7 cells. Hoechst 33342 staining also indicated formation of apoptotic bodies in MCF7 cells after exposure to brown kidney bean lectin. Western blotting revealed that the lectin-induced apoptosis involved ER stress and unfolded protein response. PMID:22720002

  15. Structure-activity relationship of trifluoromethyl-containing metallocenes: electrochemistry, lipophilicity, cytotoxicity, and ROS production.

    PubMed

    Maschke, Marcus; Alborzinia, Hamed; Lieb, Max; Wölfl, Stefan; Metzler-Nolte, Nils

    2014-06-01

    We report the synthesis of trifluoromethylated metallocenes (M=Fe, Ru) and related metal-free compounds for comparison of their biological properties with the aim to establish structure-activity relationships toward the anti-proliferative activity of this compound class. All new compounds were comprehensively characterized by NMR spectroscopy ((1) H, (13) C, (19) F), mass spectrometry, IR spectroscopy, and elemental analysis. A single-crystal X-ray structure was obtained on the Ru derivative, 1-(1-hydroxy-1-hexafluoromethylethyl)ruthenocene (3). The cytotoxicity of all compounds was tested on MCF-7, HT-29, and PT-45 cells, and IC50 values as low as 12 ?M were observed. Both the metallocene moiety and the hydroxy function are crucial for cytotoxicity. In addition, the activity decreased sharply even if only one trifluoromethyl group was replaced with a methyl group. Electrochemical investigations by cyclic voltammetry revealed that all CF3 -containing compounds are harder to oxidize than the unsubstituted metallocenes. Moreover, log?P determination by RP-HPLC showed the fluorinated derivatives to have higher lipophilicity, with log?P values up to 4.6. At the same time, the generation of reactive oxygen species (ROS) in Jurkat cells by these compounds was investigated by flow cytometry. Strong ROS production was shown exclusively for the bis-CF3 derivative 1-(1-hydroxy-1-hexafluoromethylethyl)ferrocene (1) after 6 and 24 h. Also on the Jurkat cell line, only compound 1 strongly induces necrosis after 24 and 48 h, as shown by annexin V/propidium iodide staining. No induction of apoptosis was observed. We propose that compound 1 is more efficiently incorporated into cancer cells relative to all other derivatives, causing significant induction of oxidative stress within the cell, which ultimately leads to cell death. PMID:24838930

  16. Inactivation of Staphylococcus aureus and Escherichia coli by the synergistic action of high hydrostatic pressure and dissolved CO?.

    PubMed

    Wang, Li; Pan, Jian; Xie, Huiming; Yang, Yi; Lin, Chunming

    2010-11-15

    This study focused on the synergistic inactivation effects of combined treatment of HHP and dissolved CO? on microorganisms. The aim was to reduce the treatment pressure of the traditional HHP technology and make it more economically feasible. The combined treatment showed a strong bactericidal effect on Staphylococcus aureus and Escherichia coli in liquid culture, which usually have high levels of barotolerance under pressure alone. To identify the influence of CO?, a new setup to dissolve, retain and measure the concentration of CO? was constructed. The results demonstrated that an inactivation rate of more than 8 log units was obtained for E. coli both at 300 MPa with 1.2 NL/L CO? and at 250 MPa with 3.2 NL/L CO?, while only 2.2 and 1.8 log reductions were observed at 300 MPa and 250 MPa, respectively, for the HHP treatments alone. For S. aureus, the inactivation rate of more than 7 log units was found at 350 MPa with 3.8 NL/L CO?, while only a 0.9 log reduction was achieved at this pressure in the absence of CO?. The SEM photographs showed seriously deformed cells after the synergistic treatments. In contrast, the cells treated with individual HHP maintained a relatively smooth surface with invaginations. Propidium iodide staining and fluorescence observation was performed after pressure treatments. The results demonstrated that the combination of CO? with HHP also promoted pressure induced cell membrane permeabilization greatly. It was deduced that the enrichment of CO? on the cell surface and its penetration into the cells at high pressure accounted for the membrane damage and cell death. PMID:20884070

  17. Development of a single cell electroporation method using a scanning ion conductance microscope with a theta nanopipette

    NASA Astrophysics Data System (ADS)

    Sakurai, Satoshi; Yamazaki, Koji; Ushiki, Tatsuo; Iwata, Futoshi

    2015-08-01

    We developed a novel electroporation method using a scanning ion conductance microscope (SICM) with a theta capillary nanopipette probe that has two apertures at the edge of the pipette. One aperture of the pipette probe was used to control the pipette-surface distance and to apply pulse voltage for electroporation. The other was used to eject material over the cell by local electrophoresis. Using the nanopipette, propidium iodide was successfully introduced into a targeted single Hela cell without influencing the surrounding cells. Furthermore, by scanning the theta nanopipette probe using the SICM, the morphological behaviors of the electroporated cells could be observed.

  18. Spatial and Temporal Control of Cavitation Allows High In Vitro Transfection Efficiency in the Absence of Transfection Reagents or Contrast Agents

    PubMed Central

    Chettab, Kamel; Roux, Stéphanie; Mathé, Doriane; Cros-Perrial, Emeline; Lafond, Maxime; Lafon, Cyril; Dumontet, Charles; Mestas, Jean-Louis

    2015-01-01

    Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1) in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40–80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles. PMID:26274324

  19. Indirect radio-chemo-beta therapy: a targeted approach to increase biological efficiency of x-rays based on energy

    NASA Astrophysics Data System (ADS)

    Oktaria, Sianne; Corde, Stéphanie; Lerch, Michael L. F.; Konstantinov, Konstantin; Rosenfeld, Anatoly B.; Tehei, Moeava

    2015-10-01

    Despite the use of multimodal treatments incorporating surgery, chemotherapy and radiotherapy, local control of gliomas remains a major challenge. The potential of a new treatment approach called indirect radio-chemo-beta therapy using the synergy created by combining methotrexate (MTX) with bromodeoxyuridine (BrUdR) under optimum energy x-ray irradiation is assessed. 9L rat gliosarcoma cells pre-treated with 0.01 ?M MTX and/or 10 ?M BrUdR were irradiated in vitro with 50 kVp, 125 kVp, 250 kVp, 6 MV and 10 MV x-rays. The cytotoxicity was assessed using clonogenic survival as the radiobiological endpoint. The photon energy with maximum effect was determined using radiation sensitization enhancement factors at 10% clonogenic survival (SER10%). The cell cycle distribution was investigated using flow cytometric analysis with propidium iodide staining. Incorporation of BrUdR in the DNA was detected by the fluorescence of labelled anti-BrUdR antibodies. The radiation sensitization enhancement exhibits energy dependence with a maximum of 2.3 at 125 kVp for the combined drug treated cells. At this energy, the shape of the clonogenic survival curve of the pharmacological agents treated cells changes substantially. This change is interpreted as an increased lethality of the local radiation environment and is attributed to supplemented inhibition of DNA repair. Radiation induced chemo-beta therapy was demonstrated in vitro by the targeted activation of combined pharmacological agents with optimized energy tuning of x-ray beams on 9?L cells. Our results show that this is a highly effective form of chemo-radiation therapy.

  20. Oridonin nanosuspension was more effective than free oridonin on G2/M cell cycle arrest and apoptosis in the human pancreatic cancer PANC-1 cell line.

    PubMed

    Qi, Xiaoli; Zhang, Dianrui; Xu, Xia; Feng, Feifei; Ren, Guijie; Chu, Qianqian; Zhang, Qiang; Tian, Keli

    2012-01-01

    Oridonin, a diterpenoid isolated from Rabdosia rubescencs, has been reported to have antitumor effects. However, low solubility has limited its clinical applications. Preparation of drugs in the form of nanosuspensions is an extensively utilized protocol. In this study, we investigated the anticancer activity of oridonin and oridonin nanosuspension on human pancreatic carcinoma PANC-1 cells. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to investigate the effect of oridonin on cell growth. Propidium iodide and Hoechst 33342 staining were used to detect morphologic changes. The percentage of apoptosis and cell cycle progression was determined by flow cytometric method staining with propidium iodide. Annexin V-fluorescein isothiocyanate (FITC)/PI staining was used to evaluate cell apoptosis by flow cytometry. Caspase-3 activity was measured by spectrophotometry. The apoptotic and cell cycle protein expression were determined by Western blot analysis. Both oridonin and oridonin nanosuspension induced apoptosis and G(2)/M phase cell cycle arrest, and the latter had a more significant cytotoxic effect. The ratio of Bcl-2/Bax protein expression was decreased and caspase- 3 activity was stimulated. The expression of cyclin B1 and p-cdc2 (T161) was suppressed. Our results showed that oridonin nanosuspension was more effective than free oridonin on G(2)/M cell cycle arrest and apoptosis in the human pancreatic cancer PANC-1 cell line. PMID:22619528

  1. Cell death induced by application of time-varying magnetic fields on nanoparticle-loaded dendritic cells

    E-print Network

    Marcos-Campos, I; Torres, T E; Marquina, C; Tres, A; Ibarra, M R; Goya, G F

    2010-01-01

    Aim: To assess the capability of monocyte-derived dendritic cells (DCs) to take Fe3O4 magnetic nanoparticles (MNPs), keeping their viability. To provoke cell death on these MNPs-loaded DCs using an external alternating magnetic field (AMF). Material & methods: Peripheral blood mononuclear cells were isolated from normal blood and platelets removed by centrifugation. Immunoselected CD14+ cells were cultured for 5 days, and the resulting cell phenotype was determined against several markers using flow cytometry. Co-cultures of DCs and MNPs were done overnight. The amount of Fe3O4 nanoparticles incorporated by DCs was quantified by magnetization measurements. MNPs-loaded DCs were exposed to AMF for 30 min and then cell viability was measured using trypan blue and FACS (annexin-propidium iodide) protocols. Morphological changes were investigated using scanning electron microscopy. Results: No significant decrease in cell viability of MNP/loaded DCs was observed up to five days, as compared against control sam...

  2. The ER Stress-Mediated Mitochondrial Apoptotic Pathway and MAPKs Modulate Tachypacing-Induced Apoptosis in HL-1 Atrial Myocytes

    PubMed Central

    Shi, Jiaojiao; Jiang, Qi; Ding, Xiangwei; Xu, Wenhua; Wang, Dao W.; Chen, Minglong

    2015-01-01

    Background and Object Cell apoptosis is a contributing factor in the initiation, progression and relapse of atrial fibrillation (AF), a life-threatening illness accompanied with stroke and heart failure. However, the regulatory cascade of apoptosis is intricate and remains unidentified, especially in the setting of AF. The aim of this study was to explore the roles of endoplasmic reticulum (ER) stress, mitochondrial apoptotic pathway (MAP), mitogen-activated protein kinases (MAPKs), and their cross-talking in tachypacing-induced apoptosis. Methods and Results HL-1 cells were cultured in the presence of tachypacing for 24 h to simulate atrial tachycardia remodeling. Results showed that tachypacing reduced cell viability measured by the cell counting kit-8, dissipated mitochondrial membrane potential detected by JC-1 staining and resulted in approximately 50% apoptosis examined by Hoechst staining and annexin V/propidium iodide staining. In addition, the proteins involved in ER stress, MAP and MAPKs were universally up-regulated or activated via phosphorylation, as confirmed by western blotting; and reversely silencing of ER stress, caspase-3 (the ultimate executor of MAP) and MAPKs with specific inhibitors prior to pacing partially alleviated apoptosis. An inhibitor of ER stress was applied to further investigate the responses of mitochondria and MAPKs to ER stress, and results indicated that suppression of ER stress comprehensively but incompletely attenuated the activation of MAP and MAPKs aroused by tachypacing, with the exception of ERK1/2, one branch of MAPKs. Conclusions Our study suggested tachypacing-induced apoptosis is regulated by ER stress-mediated MAP and MAPKs. Thus, the above three components are all promising anti-apoptotic targets in AF patients and ER stress appears to play a dominant role due to its comprehensive effects. PMID:25689866

  3. Glycyrrhizin ameliorates metabolic syndrome-induced liver damage in experimental rat model.

    PubMed

    Sil, Rajarshi; Ray, Doel; Chakraborti, Abhay Sankar

    2015-11-01

    Glycyrrhizin, a major constituent of licorice (Glycyrrhiza glabra) root, has been reported to ameliorate insulin resistance, hyperglycemia, dyslipidemia, and obesity in rats with metabolic syndrome. Liver dysfunction is associated with this syndrome. The objective of this study is to investigate the effect of glycyrrhizin treatment on metabolic syndrome-induced liver damage. After induction of metabolic syndrome in rats by high fructose (60 %) diet for 6 weeks, the rats were treated with glycyrrhizin (50 mg/kg body weight, single intra-peritoneal injection). After 2 weeks of treatment, rats were sacrificed to collect blood samples and liver tissues. Compared to normal, elevated activities of serum alanine transaminase, alkaline phosphatase and aspartate transaminase, increased levels of liver advanced glycation end products, reactive oxygen species, lipid peroxidation, protein carbonyl, protein kinase C?, NADPH oxidase-2, and decreased glutathione cycle components established liver damage and oxidative stress in fructose-fed rats. Activation of nuclear factor ?B, mitogen-activated protein kinase pathways as well as signals from mitochondria were found to be involved in liver cell apoptosis. Increased levels of cyclooxygenase-2, tumor necrosis factor, and interleukin-12 proteins suggested hepatic inflammation. Metabolic syndrome caused hepatic DNA damage and poly-ADP ribose polymerase cleavage. Fluorescence-activated cell sorting using annexin V/propidium iodide staining confirmed the apoptotic hepatic cell death. Histology of liver tissue also supported the experimental findings. Treatment with glycyrrhizin reduced oxidative stress, hepatic inflammation, and apoptotic cell death in fructose-fed rats. The results suggest that glycyrrhizin possesses therapeutic potential against hepatocellular damage in metabolic syndrome. PMID:26400710

  4. The Calpain Inhibitor MDL28170 Induces the Expression of Apoptotic Markers in Leishmania amazonensis Promastigotes

    PubMed Central

    Marinho, Fernanda A.; Gonçalves, Keyla C. S.; Oliveira, Simone S. C.; Gonçalves, Diego S.; Matteoli, Filipe P.; Seabra, Sergio H.; Oliveira, Ana Carolina S.; Bellio, Maria; Oliveira, Selma S.; Souto-Padrón, Thaïs; d'Avila-Levy, Claudia M.; Santos, André L. S.; Branquinha, Marta H.

    2014-01-01

    Background Human cutaneous leishmaniasis is caused by distinct species, including Leishmania amazonensis. Treatment of cutaneous leishmaniasis is far from satisfactory due to increases in drug resistance and relapses, and toxicity of compounds to the host. As a consequence for this situation, the development of new leishmanicidal drugs and the search of new targets in the parasite biology are important goals. Methodology/Principal Findings In this study, we investigated the mechanism of death pathway induced by the calpain inhibitor MDL28170 on Leishmania amazonensis promastigote forms. The combined use of different techniques was applied to contemplate this goal. MDL28170 treatment with IC50 (15 µM) and two times the IC50 doses induced loss of parasite viability, as verified by resazurin assay, as well as depolarization of the mitochondrial membrane, which was quantified by JC-1 staining. Scanning and transmission electron microscopic images revealed drastic alterations on the parasite morphology, some of them resembling apoptotic-like death, including cell shrinking, surface membrane blebs and altered chromatin condensation pattern. The lipid rearrangement of the plasma membrane was detected by Annexin-V labeling. The inhibitor also induced a significant increase in the proportion of cells in the sub-G0/G1 phase, as quantified by propidium iodide staining, as well as genomic DNA fragmentation, detected by TUNEL assay. In cells treated with MDL28170 at two times the IC50 dose, it was also possible to observe an oligonucleossomal DNA fragmentation by agarose gel electrophoresis. Conclusions/Significance The data presented in the current study suggest that MDL28170 induces apoptotic marker expression in promastigotes of L. amazonensis. Altogether, the results described in the present work not only provide a rationale for further exploration of the mechanism of action of calpain inhibitors against trypanosomatids, but may also widen the investigation of the potential clinical utility of calpain inhibitors in the chemotherapy of leishmaniases. PMID:24498160

  5. Flow cytometric method for measuring chromatin fragmentation in fixed sperm from yellow perch (Perca flavescens)

    USGS Publications Warehouse

    Jenkins, Jill A.; Draugelis-Dale, Rassa O.; Pinkney, Alfred E.; Iwanowicz, Luke R.; Blazer, Vicki

    2015-01-01

    Declining harvests of yellow perch, Perca flavescens, in urbanized watersheds of Chesapeake Bay have prompted investigations of their reproductive fitness. The purpose of this study was to establish a flow cytometric technique for DNA analysis of fixed samples sent from the field to provide reliable gamete quality measurements. Similar to the sperm chromatin structure assay, measures were made on the susceptibility of nuclear DNA to acid-induced denaturation, but used fixed rather than live or thawed cells. Nuclei were best exposed to the acid treatment for 1 minute at 37 °C followed by the addition of cold (4 °C) propidium iodide staining solution before flow cytometry. The rationale for protocol development is presented graphically through cytograms. Field results collected in 2008 and 2009 revealed DNA fragmentation up to 14.5%. In 2008, DNA fragmentation from the more urbanized watersheds was significantly greater than from reference sites (P = 0.026) and in 2009, higher percentages of haploid testicular cells were noted from the less urbanized watersheds (P = 0.032) indicating better reproductive condition at sites with less urbanization. For both years, total and progressive live sperm motilities by computer-assisted sperm motion analysis ranged from 19.1% to 76.5%, being significantly higher at the less urbanized sites (P < 0.05). This flow cytometric method takes advantage of the propensity of fragmented DNA to be denatured under standard conditions, or 1 minute at 37 °C with 10% buffered formalin–fixed cells. The study of fixed sperm makes possible the restrospective investigation of germplasm fragmentation, spermatogenic ploidy patterns, and chromatin compaction levels from samples translocated over distance and time. The protocol provides an approach that can be modified for other species across taxa.

  6. The antimicrobial mechanism of action of epsilon-poly-l-lysine.

    PubMed

    Hyldgaard, Morten; Mygind, Tina; Vad, Brian S; Stenvang, Marcel; Otzen, Daniel E; Meyer, Rikke L

    2014-12-01

    Epsilon-poly-l-lysine (?-PL) is a natural antimicrobial cationic peptide which is generally regarded as safe (GRAS) as a food preservative. Although its antimicrobial activity is well documented, its mechanism of action is only vaguely described. The aim of this study was to clarify ?-PL's mechanism of action using Escherichia coli and Listeria innocua as model organisms. We examined ?-PL's effect on cell morphology and membrane integrity and used an array of E. coli deletion mutants to study how specific outer membrane components affected the action of ?-PL. We furthermore studied its interaction with lipid bilayers using membrane models. In vitro cell studies indicated that divalent cations and the heptose I and II phosphate groups in the lipopolysaccharide layer of E. coli are critical for ?-PL's binding efficiency. ?-PL removed the lipopolysaccharide layer and affected cell morphology of E. coli, while L. innocua underwent minor morphological changes. Propidium iodide staining showed that ?-PL permeabilized the cytoplasmic membrane in both species, indicating the membrane as the site of attack. We compared the interaction with neutral or negatively charged membrane systems and showed that the interaction with ?-PL relied on negative charges on the membrane. Suspended membrane vesicles were disrupted by ?-PL, and a detergent-like disruption of E. coli membrane was confirmed by atomic force microscopy imaging of supported lipid bilayers. We hypothesize that ?-PL destabilizes membranes in a carpet-like mechanism by interacting with negatively charged phospholipid head groups, which displace divalent cations and enforce a negative curvature folding on membranes that leads to formation of vesicles/micelles. PMID:25304506

  7. Flow cytometric quantification of radiation responses of murine peritoneal cells

    SciTech Connect

    Tokita, N.; Raju, M.R.

    1982-01-01

    Methods have been developed to distinguish subpopulations of murine peritoneal cells, and these were applied to the measurement of early changes in peritoneal cells after irradiation. The ratio of the two major subpopulations in the peritoneal fluid, lymphocytes and macrophages, was measured rapidly by means of cell volume distribution analysis as well as by hypotonic propidium iodide (PI) staining. After irradiation, dose and time dependent changes were noted in the cell volume distributions: a rapid loss of peritoneal lymphocytes, and an increase in the mean cell volume of macrophages. The hypotonic PI staining characteristics of the peritoneal cells showed two or three distinctive G/sub 1/ peaks. The ratio of the areas of these peaks was also found to be dependent of the radiation dose and the time after irradiation. These results demonstrate that these two parameters may be used to monitor changes induced by irradiation (biological dosimetry), and to sort different peritoneal subpopulations.

  8. Parallel single-cell analysis microfluidic platform.

    PubMed

    van den Brink, Floris T G; Gool, Elmar; Frimat, Jean-Philippe; Bomer, Johan; van den Berg, Albert; Le Gac, Séverine

    2011-11-01

    We report a PDMS microfluidic platform for parallel single-cell analysis (PaSCAl) as a powerful tool to decipher the heterogeneity found in cell populations. Cells are trapped individually in dedicated pockets, and thereafter, a number of invasive or non-invasive analysis schemes are performed. First, we report single-cell trapping in a fast (2-5? min) and reproducible manner with a single-cell capture yield of 85% using two cell lines (P3x63Ag8 and MCF-7), employing a protocol which is scalable and easily amenable to automation. Following this, a mixed population of P3x63Ag8 and MCF-7 cells is stained in situ using the nucleic acid probe (Hoechst) and a phycoerythrin-labeled monoclonal antibody directed at EpCAM present on the surface of the breast cancer cells MCF-7 and absent on the myeloma cells P3x63Ag8 to illustrate the potential of the device to analyze cell population heterogeneity. Next, cells are porated in situ using chemicals in a reversible (digitonin) or irreversible way (lithium dodecyl sulfate). This is visualized by the transportation of fluorescent dyes through the membrane (propidium iodide and calcein). Finally, an electrical protocol is developed for combined cell permeabilization and electroosmotic flow (EOF)-based extraction of the cell content. It is validated here using calcein-loaded cells and visualized through the progressive recovery of calcein in the side channels, indicating successful retrieval of individual cell content. PMID:22025223

  9. Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 non-small cell lung cancer cells

    PubMed Central

    Yong, Wai Kuan; Ho, Yen Fong; Malek, Sri Nurestri Abd

    2015-01-01

    Background: Xanthohumol, a major prenylated chalcone found in female hop plant, Humulus lupulus, was reported to have various chemopreventive and anti-cancer properties. However, its apoptotic effect on human alveolar adenocarcinoma cell line (A549) of non-small cell lung cancer (NSCLC) was unknown. Objective: This study aimed to investigate the effects of xanthohumol on apoptosis in A549 human NSCLC cells. Materials and Methods: A549 cell proliferation was determined by sulforhodamine B assay. Morphological changes of the cells were studied via phase contrast and fluorescent microscopy. Induction of apoptosis was assessed by Annexin-V fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining, DNA fragmentation (TUNEL) assay mitochondrial membrane potential assay, cell cycle analysis, and caspase activity studies. Results: Xanthohumol was found to decrease cell proliferation in A549 cells but had relatively low cytotoxicity on normal human lung fibroblast cell line (MRC-5). Typical cellular and nuclear apoptotic features were also observed in A549 cells treated with xanthohumol. Onset of apoptosis in A549 cells was further confirmed by externalization of phosphatidylserine, changes in mitochondrial membrane potential, and DNA fragmentation in the cells after treatment. Xanthohumol induced accumulation of cells in sub G1 and S phase based on cell cycle analysis and also increased the activities of caspase-3, -8, and -9. Conclusion: This work suggests that xanthohumol as an apoptosis inducer, may be a potent therapeutic compound for NSCLC. PMID:26664015

  10. Celastrol Potentiates Radiotherapy by Impairment of DNA Damage Processing in Human Prostate Cancer

    SciTech Connect

    Dai Yao; DeSano, Jeffrey T.; Meng Yang; J, Qing; Ljungman, Mats; Lawrence, Theodore S.; Xu Liang

    2009-07-15

    Purpose: Celastrol is an active ingredient of traditional herbal medicine and has recently been identified as a potent natural proteasome inhibitor. In the present study, we evaluated the radiosensitizing potential of celastrol in the human prostate cancer PC-3 model. Methods and Materials: Clonogenic assays were performed to determine the radiosensitizing effect of celastrol. Apoptosis was examined by flow cytometry using Annexin V and propidium iodide staining and by a caspase-3 activation assay. DNA damage processing was examined by immunofluorescent staining and Western blot for phosphorylated H2AX ({gamma}H2AX). The PC-3 xenograft model in the athymic nude mouse was used for the determination of the in vivo efficacy of celastrol combined with radiotherapy. The tumor samples were also analyzed for apoptosis and angiogenesis. Results: Celastrol sensitized PC-3 cells to ionizing radiation (IR) in a dose- and schedule-dependent manner, in which pretreatment with celastrol for 1 h followed by IR achieved maximal radiosensitization. Celastrol significantly prolonged the presence of IR-induced {gamma}H2AX and increased IR-induced apoptosis. Celastrol, combined with fractionated radiation, significantly inhibited PC-3 tumor growth in vivo without obvious systemic toxicity. The combination treatment increased {gamma}H2AX levels and apoptosis, induced cleavage of poly(adenosine diphosphate-ribose)polymerase and Mcl-1, and reduced angiogenesis in vivo compared with either treatment alone. Conclusion: Celastrol sensitized PC-3 cells to radiation both in vitro and in vivo by impairing DNA damage processing and augmenting apoptosis. Celastrol might represent a promising new adjuvant regimen for the treatment of hormone-refractory prostate cancer.

  11. Nutrient reserves may allow for genome size increase: evidence from comparison of geophytes and their sister non-geophytic relatives

    PubMed Central

    Veselý, Pavel; Bureš, Petr; Šmarda, Petr

    2013-01-01

    Background and Aims The genome size of an organism is determined by its capacity to tolerate genome expansion, given the species' life strategy and the limits of a particular environment, and the ability for retrotransposon suppression and/or removal. In some giant-genomed bulb geophytes, this tolerance is explained by their ability to pre-divide cells in the dormant stages or by the selective advantage of larger cells in the rapid growth of their fleshy body. In this study, a test shows that the tendency for genome size expansion is a more universal feature of geophytes, and is a subject in need of more general consideration. Methods Differences in monoploid genome sizes were compared using standardized phylogenetically independent contrasts in 47 sister pairs of geophytic and non-geophytic taxa sampled across all the angiosperms. The genome sizes of 96 species were adopted from the literature and 53 species were newly measured using flow cytometry with propidium iodide staining. Key Results The geophytes showed increased genome sizes compared with their non-geophytic relatives, regardless of the storage organ type and regardless of whether or not vernal geophytes, polyploids or annuals were included in the analyses. Conclusions The universal tendency of geophytes to possess a higher genome size suggests the presence of a universal mechanism allowing for genome expansion. It is assumed that this is primarily due to the nutrient and energetic independence of geophytes perhaps allowing continuous synthesis of DNA, which is known to proceed in the extreme cases of vernal geophytes even in dormant stages. This independence may also be assumed as a reason for allowing large genomes in some parasitic plants, as well as the nutrient limitation of small genomes of carnivorous plants. PMID:23960044

  12. Riccardin C derivatives cause cell leakage in Staphylococcus aureus.

    PubMed

    Morita, Daichi; Sawada, Hiromi; Ogawa, Wakano; Miyachi, Hiroyuki; Kuroda, Teruo

    2015-10-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a major problem in clinical settings, and because it is resistant to most antimicrobial agents, MRSA infections are difficult to treat. We previously reported that synthetic macrocyclic bis(bibenzyl) derivatives, which were originally discovered in liverworts, had anti-MRSA activity. However, the action mechanism responsible was unclear. In the present study, we elucidated the action mechanism of macrocyclic bis(bibenzyl) RC-112 and its partial structure, IDPO-9 (2-phenoxyphenol). Survival experiments demonstrated that RC-112 had a bactericidal effect on MRSA, whereas IDPO-9 had bacteriostatic effects. IDPO-9-resistant mutants exhibited cross-resistance to triclosan, but not to RC-112. The mutation was identified in the fabI, enoyl-acyl carrier protein reductase gene, a target of triclosan. We have not yet isolated the RC-112-resistant mutant. On the other hand, the addition of RC-112, unlike IDPO-9, caused the inflow of ethidium and propidium into S. aureus cells. RC-112-dependent ethidium outflow was observed in ethidium-loaded S. aureus cells. Transmission electron microscopy also revealed that S. aureus cells treated with RC-112 had intracellular lamellar mesosomal-like structures. Intracellular Na+ and K+ concentrations were significantly changed by the RC-112 treatment. These results indicated that RC-112 increased membrane permeability to ethidium, propidium, Na+, and K+, and also that the action mechanism of IDPO-9 was different from those of the other compounds. PMID:26003535

  13. Antibiofilm efficacy of silver nanoparticles against biofilm of extended spectrum ?-lactamase isolates of Escherichia coli and Klebsiella pneumoniae

    NASA Astrophysics Data System (ADS)

    Ansari, Mohammad Azam; Khan, Haris M.; Khan, Aijaz A.; Cameotra, Swaranjit Singh; Pal, Ruchita

    2014-10-01

    The ability of bacteria to develop antibiotic resistance and colonize abiotic surfaces by forming biofilms is a major cause of medical implant-associated infections and results in prolonged hospitalization periods and patient mortality. Different approaches have been used for preventing biofilm-related infections in health care settings. Many of these methods have their own demerits that include chemical-based complications; emergent antibiotic-resistant strains, and so on. Silver nanoparticles (AgNPs) are renowned for their influential antimicrobial activity. We demonstrate the biofilm formation by extended spectrum ?-lactamases-producing Escherichia coli and Klebsiella spp. by direct visualization applying tissue culture plate, tube, and Congo red agar methods. Double fluorescent staining for confocal laser scanning microscopy (CLSM) consisted of propidium iodide staining to detect bacterial cells and concanavalin A-fluorescein isothiocyanate staining to detect the exopolysaccharides matrix were used. Scanning electron microscopy observations clearly indicate that AgNPs reduced the surface coverage by E. coli and Klebsiella spp. thus prevent the biofilm formations. Double-staining technique using CLSM provides the visual evidence that AgNPs arrested the bacterial growth and prevent the exopolysaccharides formation. The AgNPs-coated surfaces effectively restricted biofilm formation of the tested bacteria. In our study, we could demonstrate the complete antibiofilm activity AgNPs at a concentration as low as 50 ?g/ml. Our findings suggested that AgNPs can be exploited towards the development of potential antibacterial coatings for various biomedical and environmental applications. These formulations can be used for the treatment of drug-resistant bacterial infections caused by biofilms, at much lower nanosilver loading with higher efficiency.

  14. Increased Susceptibility to Oxidative Death of Lymphocytes from Alzheimer Patients Correlates with Dementia Severity

    PubMed Central

    Ponce, Daniela P.; Salech, Felipe; SanMartin, Carol D.; Silva, Monica; Xiong, Chengjie; Roe, Catherine M.; Henriquez, Mauricio; Quest, Andrew F.; Behrens, Maria I.

    2015-01-01

    We previously reported on enhanced susceptibility to death of lymphocytes from Alzheimer’s disease (AD) patients when exposed to hydrogen peroxide (H2O2)-induced oxidative stress and an increased resistance to death in those of patients with a history of skin cancer. This is consistent with our hypothesis proposing that the cellular machinery controlling cell death is deregulated in opposite directions in Alzheimer’s disease (AD) and cancer, to explain the inverse association observed in epidemiological studies. Here we investigated whether the observed increased susceptibility correlates with the degree of dementia severity. Peripheral lymphocytes from 23 AD patients, classified using the Clinical Dementia Rating (CDR) into severe dementia (CDR 3, n=10) and mild-to-moderate dementia (CDR 1–2, n=13), and 15 healthy controls (HC) (CDR 0), were exposed to H2O2 for 20 hours. Lymphocyte death was determined by flow cytometry and propidium iodide staining. The greatest susceptibility to H2O2-induced death was observed for lymphocytes from severe dementia patients, whereas those with mild-to-moderate dementia exhibited intermediate values, compared to healthy controls. A significant increase in the apoptosis/necrosis ratio was found in AD patients. Poly (ADP-ribosyl) polymerase-1 (PARP-1) inhibition significantly protected from H2O2-induced death of lymphocytes, whereby a lower degree of protection was observed in severe AD patients. Moreover, inhibition of PARP-1 abolished the differences in apoptosis/necrosis ratios observed between the three groups of patients. These results support the notion that AD is a systemic disorder, whereby enhanced susceptibility to H2O2-induced death in peripheral lymphocytes correlates with dementia severity and enhanced death in AD patients is attributable to a PARP-dependent increase in the apoptosis/necrosis ratio. PMID:25274115

  15. Nanopore formation in neuroblastoma cells following ultrashort electric pulse exposure

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.; Payne, Jason A.; Wilmink, Gerald J.; Ibey, Bennett L.

    2011-03-01

    Ultrashort or nanosecond electrical pulses (USEP) cause repairable damage to the plasma membranes of cells through formation of nanopores. These nanopores are able to pass small ions such as sodium, calcium, and potassium, but remain impermeable to larger molecules like trypan blue and propidium iodide. What remains uncertain is whether generation of nanopores by ultrashort electrical pulses can inhibit action potentials in excitable cells. In this paper, we explored the sensitivity of excitable cells to USEP using Calcium Green AM 1 ester fluorescence to measure calcium uptake indicative of nanopore formation in the plasma membrane. We determined the threshold for nanopore formation in neuroblastoma cells for three pulse parameters (amplitude, pulse width, and pulse number). Measurement of such thresholds will guide future studies to determine if USEP can inhibit action potentials without causing irreversible membrane damage.

  16. Cell-type-specific response to shock waves of suspended or pelleted cells as analysed by flow cytometry or electrical cell volume determination.

    PubMed

    Endl, E; Steinbach, P; Schärfe, J; Fickweiler, S; Wörle, K; Hofstädter, F

    1996-01-01

    Shock-wave-induced cell damage of suspended or pelleted bladder cancer cells was analysed with the flow cytometric propidium iodide (PI)/fluorescein diacetate assay, and electrical volume determination using the CASY 1 analyser system and growth curves. The CASY system revealed a smaller fraction of suspended RT4 cells with impaired membrane integrity than the flow cytometric assay. No differences were found for pelleted RT4 cells and suspended J82 cells. The discrepancies of the two viability assays indicated a different response of the cell membrane to shock waves which was dependent on the exposure system and the cell type. Growth curves indicated delayed cell death for suspended RT4 cells and exclusively immediate cell death for pelleted RT4 cells and suspended J82 cells. PI positive suspended RT4 cells were morphologically intact while pelleted RT4 cells and suspended J82 cells were mainly disrupted. From these data it can be concluded that intracellular or membrane alterations seem to be correlated with the occurrence of cavitational effects while cell disruption can likewise occur by the direct impact of the shock wave. PMID:8795178

  17. Fourier Transform Infrared spectroscopy discloses different types of cell death in flow cytometrically sorted cells.

    PubMed

    Le Roux, K; Prinsloo, L C; Meyer, D

    2015-10-01

    Fourier Transform Infrared (FTIR) spectroscopy is a label free methodology showing promise in characterizing different types of cell death. Cervical adenocarcinoma (HeLa) and African monkey kidney (Vero) cells were treated with a necrosis inducer (methanol), novel apoptotic inducers (diphenylphosphino gold (I) complexes) and positive control, auranofin. Following treatment, cells stained with annexin-V and propidium iodide were sorted using a Fluorescence Activated Cell Sorter (FACS Aria) to obtain populations consisting of either viable, necrotic or apoptotic cells. Transmission Electron Microscopy confirmed successful sorting of all three populations. Four bands were identified which could discriminate between viable and necrotic cells namely 989 cm(-1), 2852 cm(-1), 2875 cm(-1) and 2923 cm(-1). In HeLa cells viable and induced apoptosis could be distinguished by 1294 cm(-1), while four bands were different in Vero cells namely; 1626 cm(-1), 1741 cm(-1), 2852 cm(-1) 2923 cm(-1). Principal Component Analysis showed separation between the different types of cell death and the loadings plots indicated an increase in an additional band at 1623 cm(-1) in dead cells. FTIR spectroscopy can be developed into an invaluable tool for the assessment of specific types of chemically induced cell death with notably different molecular signatures depending on whether the cells are cancerous and mechanism of cell death. PMID:26254093

  18. A cell-based screening assay for Natural Killer cell activity.

    PubMed

    Blom, W Marty; van Nielen, Wim G L; de Groene, Els M; Albers, Ruud

    2009-06-01

    Natural Killer (NK) cells are important in the first response against viruses and tumours. Compounds that modulate human NK cell activity offer interesting prophylactic and therapeutic options, however, a systematic screening tool is lacking. Development of suitable NK cell lines or receptor-based assays is hindered by the highly complicated regulation of the different NK cell subsets by multiple receptors. Here, we describe a cell-based flowcytometric activity assay adapted to identify NK cell modulating compounds. Fresh human peripheral blood mononuclear cells (PBMC) were incubated with NK-sensitive K562 target cells labelled with 5-(6)-carboxyfluorescein succinimidyl ester, followed by DNA-labelling with propidium iodide to identify dead cells. The assay demonstrated a good performance with an average Z'-factor of 0.6 and over 95% of the assays fulfilled the quality criteria, suggesting that it is possible to use a complex system with two different cell types to screen compounds. A large number of (natural) compounds and extracts were tested and normalized to the positive control, Interleukin-2. Promising and less promising compounds were distinguished. Effectiveness of compounds was based on the augmentation of NK cell activity as well as the number of responding subjects. To conclude the assay is robust, reliable and can be used for functional screening of natural compounds modulating NK cell activity. PMID:19293002

  19. Anticancer and apoptotic activities of oleanolic acid are mediated through cell cycle arrest and disruption of mitochondrial membrane potential in HepG2 human hepatocellular carcinoma cells

    PubMed Central

    ZHU, YUE-YONG; HUANG, HONG-YAN; WU, YIN-LIAN

    2015-01-01

    Hepatocellular carcinoma (HCC) is an aggressive form of cancer, with high rates of morbidity and mortality, a poor prognosis and limited therapeutic options. The objective of the present study was to demonstrate the anticancer activity of oleanolic acid in HepG2 human HCC cells. Cell viability was evaluated using an MTT assay, following administration of various doses of oleanolic acid. The effect of oleanolic acid on cell cycle phase distribution and mitochondrial membrane potential was evaluated using flow cytometry with propidium iodide and rhodamine-123 DNA-binding cationic fluorescent dyes. Fluorescence microscopy was employed to detect morphological changes in HepG2 cells following oleanolic acid treatment. The results revealed that oleanolic acid induced a dose-dependent, as well as time-dependent inhibition in the growth of HepG2 cancer cells. Following acridine orange and ethidium bromide staining, treatment with various doses (0, 5, 25 and 50 µM) of oleanolic acid induced typical morphological changes associated with apoptosis, including cell shrinkage, membrane blebbing, nuclear condensation and apoptotic body formation. Cell cycle analysis revealed that oleanolic acid induced cell cycle arrest in HepG2 cells at the sub-G1 (apoptotic) phase of the cell cycle, in a dose-dependent manner. Staining with Annexin V-fluorescein isothiocyanate and propidium iodide revealed that apoptosis occurred early in these cells. Oleanolic acid treatment also resulted in fragmentation of nuclear DNA in a dose-dependent manner, producing the typical features of DNA laddering on an agarose gel. The results also demonstrated that oleanolic acid treatment resulted in a potent loss of mitochondrial membrane potential, which also occurred in a dose-dependent manner. Therefore, oleanolic acid may be used as a therapeutic agent in the treatment of human HCC. PMID:26151733

  20. Cytotoxicity and apoptosis induction of weisiensin B isolated from Rabdosia weisiensis C.Y. Wu in human hepatoma cells.

    PubMed

    Ding, Lan; Zhang, Shi-Dong; Yang, Dong-Juan; Liu, Bo; Zhou, Qi-Yin; Yang, Hong

    2008-01-01

    Weisiensin B, a new ent-kaurane diterpenoid, was isolated from traditional Chinese herb Rabdosia weisiensis C.Y. Wu. In this study, cytotoxicity of weisiensin B was tested on four different tumor cell lines and the effect of growth inhibition and apoptosis in BEL-7402 cell line were investigated in vitro. The results indicated that weisiensin B had significant antiproliferation activity on the four cell lines. Further study on BEL-7402 cells involving Hoechst 33258 stain and DNA fragmentation assay revealed the characteristic apoptotic features of nuclear and DNA ladder formation. Flow cytometric (FCM) analysis with propidium iodide (PI) staining demonstrated that BEL-7402 cells treated with weisiensin B were arrested in G(2)/M phase. The results demonstrated that a significant fraction of weisiensin B-treated cells died by an apoptotic pathway in BEL-7402 cells. PMID:19031246

  1. Irinotecan induces cell cycle arrest, but not apoptosis or necrosis, in Caco-2 and CW2 colorectal cancer cell lines.

    PubMed

    Kaku, Yoshiko; Tsuchiya, Ayako; Kanno, Takeshi; Nishizaki, Tomoyuki

    2015-01-01

    Irinotecan, a topoisomerase I inhibitor, is clinically used as an anticancer drug. The present study investigated the anticancer effect of irinotecan on p53-negative Caco-2 and p53-positive CW2 human colorectal cancer cell lines. Cell viability for both Caco-2 and CW2 cells was little affected by treatment with irinotecan at concentrations ranging from 0.3 to 30 ?mol/l for 24-48 h. Irinotecan did not increase the number of TUNEL-positive cells and did not affect the population of propidium iodide (PI)-positive and annexin V-negative cells, corresponding to primary necrosis, or that of PI-positive and annexin-positive cells, corresponding to late apoptosis/secondary necrosis, in either of the two cell lines. In the cell cycle analysis, irinotecan significantly increased the proportions at the S and G2/M phases of cell cycling in parallel with a decreased population at the G1 phase in both cell lines. Irinotecan significantly inhibited tumor growth in mice inoculated with CW2 cells. Taken together, these results indicate that irinotecan induces cell cycle arrest, but not apoptosis or necrosis, both in Caco-2 and CW2 cells, leading to suppression of cell proliferation. PMID:25833236

  2. Apoptosis and cell cycle disturbances induced by coumarin and 7-hydroxycoumarin on human lung carcinoma cell lines.

    PubMed

    Lopez-Gonzalez, Jose Sullivan; Prado-Garcia, Heriberto; Aguilar-Cazares, Dolores; Molina-Guarneros, Juan A; Morales-Fuentes, Jorge; Mandoki, Juan Jose

    2004-03-01

    Coumarin and 7-hydroxycoumarin have anti-tumour actions in vitro and in vivo. There are no previous reports on the cytostatic and apoptotic actions of coumarin and 7-hydroxycoumarin in non-small cell lung carcinoma (NSCLC) cell lines. Here we report on: (1) the inhibition of cell proliferation, (2) the phase in which cell cycle arrest occurs, and (3) the induction of apoptosis. Inhibition of cell proliferation was determined by 3H-thymidine incorporation. The effects on cell cycle phases were determined at 100 microg/ml of coumarin or 7-hydroxycoumarin using propidium iodide and flow cytometry. Higher concentrations were used to study apoptosis, detected by: (1) morphological cell changes, (2) subG1 peak detection and (3) Annexin-V assay. Peripheral blood mononuclear cells (PBMC) stimulated with phytohemagglutinin were used as controls. The actions of these compounds depended on drug concentrations and on histological cell type. Coumarin and 7-hydroxycoumarin inhibited cell growth by inducing cell cycle arrest in the G1 phase in all the lung carcinoma cell lines. Apoptosis required large concentrations of the coumarin compounds and was observed in adenocarcinomas. Apoptosis was not associated with intra-nucleosomal DNA fragmentation. Apoptosis was not observed in squamous lung carcinoma cell lines, but an increase in G1 cell cycle arrest was detected. In PBMC, only large concentrations of the coumarin compounds elicited a cystostatic action. Coumarins in combination with other anti-neoplastic drugs might increase the effectiveness of NSCLC treatments. PMID:15165085

  3. Rapamycin and curcumin induce apoptosis in primary resting B chronic lymphocytic leukemia cells.

    PubMed

    Hayun, Rami; Okun, Eitan; Berrebi, Alain; Shvidel, Lev; Bassous, Lucette; Sredni, Benjamin; Nir, Uri

    2009-04-01

    B chronic lymphocytic leukemia (B-CLL) cells exist in patients as slowly accumulating resting as well as proliferating B cells. In this study, we examined whether Rapamycin and Curcumin, two naturally occurring compounds shown to have apoptotic effects, could selectively induce apoptosis in resting B-CLL cells. Mononuclear cells isolated from patients with B-CLL were treated with these agents and analysed by AnnexinV/propidium iodide binding, caspase activity, and changes in bcl-2/Bax ratio. Rapamycin and curcumin significantly induced apoptosis in resting B-CLL cells obtained from patients with CLL. Furthermore, rapamycin and curcumin increased caspase 9, 3 and 7 activity, decreased anti-apoptotic bcl-2 levels, and increased the pro-apoptotic protein Bax. These data suggest rapamycin and curcumin may be an effective treatment for B-CLL and are of high clinical significance considering the growing population of patients and lack of efficient treatment for this malignant disease. PMID:19373661

  4. Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions.

    PubMed Central

    McNeilly, C M; Banes, A J; Benjamin, M; Ralphs, J R

    1996-01-01

    Tendons respond to mechanical load by modifying their extracellular matrix. The cells therefore sense mechanical load and coordinate an appropriate response to it. We show that tendon cells have the potential to communicate with one another via cell processes and gap junctions and thus could use direct cell/cell communication to detect and/or coordinate their load responses. Unfixed cryosections of adult rat digital flexor tendons were stained with the fluorescent membrane dye DiI to demonstrate cell shape. Similar sections were immunolabelled with monoclonal antibodies to rat connexin 32 or connexin 43 to demonstrate gap junctions and counterstained with propidium iodide to show nuclei, or the membrane stain DiOC7 to show cell membranes. Sections were examined with a laser scanning confocal microscope and 3-dimensional reconstructions were prepared from optical section series to demonstrate cell shape and the position of connexin immunolabel. Cells had a complex interconnected morphology with gap junctions at points of contact with other cells. Cell bodies contained the nucleus and extended broad flat lateral cell processes that enclosed collagen bundles and interacted with similar processes from adjacent cells. They also had long thin longitudinal processes interacting with the cell process network further along the tendon. Connexin 43 occurred where cell processes met and between cell bodies, whereas connexin 32 was only found between cell bodies. The results indicate the presence of a 3-dimensional communicating network of cell processes within tendons. The intimate relationship between cell processes and collagen fibril bundles suggests that the cell process network could be involved in load sensing and coordination of response to load. The presence of 2 different types of connexins suggests that there could be at least 2 distinct communicating networks. Images Fig. 1 A-F Fig. 2 A-F Fig. 3 A,B PMID:8982835

  5. Conducting and permeable states of cell membrane submitted to high voltage pulses: mathematical and numerical studies validated by the experiments.

    PubMed

    Leguèbe, M; Silve, A; Mir, L M; Poignard, C

    2014-11-01

    The aim of this paper is to present a new model of in vitro cell electropermeabilization, which describes separately the conducting state and the permeable state of the membrane submitted to high voltage pulses. We first derive the model based on the experimental observations and we present the numerical methods to solve the non-linear partial differential equations. We then present numerical simulations that corroborate qualitatively the experimental data dealing with the uptake of propidium iodide (PI) after millipulses. This tends to justify the validity of our modeling. Forthcoming work will be to calibrate the parameters of the model for quantitative description of the uptake. PMID:25010659

  6. Freezing behavior of adherent neuron-like cells and morphological change and viability of post-thaw cells.

    PubMed

    Uemura, Makoto; Ishiguro, Hiroshi

    2015-04-01

    Freezing of nerve cells forming a neuronal network has largely been neglected, despite the fact that the cryopreservation of nerve cells benefits the study of cells in the areas of medicine and poison screening. Freezing of nerve cells is also attractive for studying cell morphology because of the characteristic long, thread-like neurites extending from the cell body. In the present study, freezing of neuron-like cells adhering to the substrate (differentiated PC12 cells), in physiological saline, was investigated in order to understand the fundamental freezing and thawing characteristics of nerve cells with neurites. The microscopic freezing behavior of cells under different cooling rates was observed. Next, the post-thaw morphological changes in the cells, including the cytoskeleton, were investigated and post-thaw cell viability was evaluated by dye exclusion using propidium iodide. Two categories of morphological changes, beading and shortening of the neurites, were found and quantified. Also, the morphological changes of neurites due to osmotic stress from sodium chloride were studied to gain a better understanding of causation. The results showed that morphological changes and cell death were promoted with a decrease in end temperature during freezing. PMID:25645578

  7. PACAP protects against TNF?-induced cell death in olfactory epithelium and olfactory placodal cell lines

    PubMed Central

    Kanekar, Shami; Gandham, Mahendra; Lucero, Mary T

    2010-01-01

    In mouse olfactory epithelium (OE), pituitary adenylate cyclase activating peptide (PACAP) protects against axotomy-induced apoptosis. We used mouse OE to determine whether PACAP protects neurons during exposure to the inflammatory cytokine TNF?. Live slices of neonatal mouse OE were treated with 40 ng/ml TNF? ± 40 nM PACAP for 6 hours and dying cells were live-labeled with 0.5% propidium iodide. TNF? significantly increased the percentage of dying cells while co-incubation with PACAP prevented cell death. PACAP also prevented TNF?-mediated cell death in the olfactory placodal (OP) cell lines, OP6 and OP27. Although OP cell lines express all three PACAP receptors (PAC1, VPAC1,VPAC2), PACAP’s protection of these cells from TNF? was mimicked by the specific PAC1 receptor agonist maxadilan and abolished by the PAC1 antagonist PACAP6–38. Treatment of OP cell lines with blockers or activators of the PLC and AC/MAPKK pathways revealed that PACAP-mediated protection from TNF? involved both pathways. PACAP may therefore function through PAC1 receptors to protect neurons from cell death during inflammatory cytokine release in vivo as would occur upon viral infection or allergic rhinitis-associated injury. PMID:20654718

  8. Effects of air transient spark discharge and helium plasma jet on water, bacteria, cells, and biomolecules.

    PubMed

    Hensel, Karol; Ku?erová, Katarína; Tarabová, Barbora; Janda, Mário; Machala, Zdenko; Sano, Kaori; Mihai, Cosmin Teodor; Ciorpac, Mitic?; Gorgan, Lucian Dragos; Jijie, Roxana; Pohoata, Valentin; Topala, Ionut

    2015-01-01

    Atmospheric pressure DC-driven self-pulsing transient spark (TS) discharge operated in air and pulse-driven dielectric barrier discharge plasma jet (PJ) operated in helium in contact with water solutions were used for inducing chemical effects in water solutions, and the treatment of bacteria (Escherichia coli), mammalian cells (Vero line normal cells, HeLa line cancerous cells), deoxyribonucleic acid (dsDNA), and protein (bovine serum albumin). Two different methods of water solution supply were used in the TS: water electrode system and water spray system. The effects of both TS systems and the PJ were compared, as well as a direct exposure of the solution to the discharge with an indirect exposure to the discharge activated gas flow. The chemical analysis of water solutions was performed by using colorimetric methods of UV-VIS absorption spectrophotometry. The bactericidal effects of the discharges on bacteria were evaluated by standard microbiological plate count method. Viability, apoptosis and cell cycle were assessed in normal and cancerous cells. Viability of cells was evaluated by trypan blue exclusion test, apoptosis by Annexin V-FITC/propidium iodide assay, and cell cycle progression by propidium iodide/RNase test. The effect of the discharges on deoxyribonucleic acid and protein were evaluated by fluorescence and UV absorption spectroscopy. The results of bacterial and mammalian cell viability, apoptosis, and cell cycle clearly show that cold plasma can inactivate bacteria and selectively target cancerous cells, which is very important for possible future development of new plasma therapeutic strategies in biomedicine. The authors found that all investigated bio-effects were stronger with the air TS discharge than with the He PJ, even in indirect exposure. PMID:25947389

  9. The antiproliferative effect of C2-ceramide on lung cancer cells through apoptosis by inhibiting Akt and NF?B

    PubMed Central

    2014-01-01

    The anticancer effects of ceramide have been reported in many types of cancers but less in lung cancer. In this study, we used C2-ceramide to further investigate its possible anticancer effects and mechanisms on non-small cell lung cancer (NSCLC) H1299 cells. The result of cell proliferation in terms of trypan blue assay showed high dose of C2-ceramide inhibited cell survival after 24 h treatment. The flow cytometry-based assays indicated the effect of apoptosis, chromatin condensation, and G1 arrest in terms of Annexin V/propidium iodide (PI), DAPI, and PI stainings, respectively. Moreover, the decreased protein level of p-Akt, p-NF?B, survivin and cyclin A2 were detected by Western blot assay. Taken together, these results indicated the antiproliferative effect of C2-ceramide is majorly responsible for cell apoptosis in lung cancer H1299 cells. PMID:24393431

  10. Comparative susceptibility of peripheral blood leucocytes and related cell lines to killing by T-cell perforin.

    PubMed Central

    Jones, J; Morgan, B P

    1994-01-01

    The comparative susceptibility of lymphocyte subsets, monocytes and polymorphonuclear leucocytes (PMN) to killing by murine perforin was measured using physical separation techniques, cell-surface phenotyping and scatter characteristics to isolate cell types, together with propidium iodide (PI) uptake as a measure of cell death. In the majority of individuals, PMN were more resistant to perforin than other peripheral blood cells including natural killer (NK) cells and CD8+ lymphocytes. Among the lymphocytes, CD4+ cells were the most susceptible subset, followed by CD19+, CD8+ and CD56+ lymphocytes respectively. The human promyelocytic leukaemia cell line, HL-60, and the human histiocytic lymphoma cell line, U937, were readily killed by perforin. When HL-60 were differentiated to either macrophage- or neutrophil-like end cells, and U937 differentiated to macrophage-like end cells, there was no difference between differentiated and undifferentiated cells in their relative susceptibility to perforin. The relative resistance of PMN to perforin may be important in protecting them from damage in in vivo situations where both NK cells and neutrophils are localized in the same inflammatory areas. PMID:7835917

  11. Amygdalin induces apoptosis in human cervical cancer cell line HeLa cells.

    PubMed

    Chen, Yu; Ma, Jinshu; Wang, Fang; Hu, Jie; Cui, Ai; Wei, Chengguo; Yang, Qing; Li, Fan

    2013-02-01

    Amygdalin, a naturally occurring substance, has been suggested to be efficacious as an anticancer substance. The effect of amygdalin on cervical cancer cells has never been studied. In this study, we found that the viability of human cervical cancer HeLa cell line was significantly inhibited by amygdalin. 4,6-Diamino-2-phenyl indole (DAPI) staining showed that amygdalin-treated HeLa cells developed typical apoptotic changes. The development of apoptosis in the amygdalin-treated HeLa cells were confirmed by double staining of amygdalin-treated HeLa cells with annexin V-FITC and propidium iodide (PI) along with increase in caspase-3 activity in these cells. Further studies indicated that antiapoptotic protein Bcl-2 was downregulated whereas proapoptotic Bax protein was upregulated in the amygdalin-treated HeLa cells implying involvement of the intrinsic pathway of apoptosis. In vivo, amygdalin administration inhibited the growth of HeLa cell xenografts through a mechanism of apoptosis. The results in the present study suggest that amygdalin may offer a new therapeutic option for patients with cervical cancer. PMID:23137229

  12. Sapodilla Plum (Achras sapota) Induces Apoptosis in Cancer Cell Lines and Inhibits Tumor Progression in Mice

    PubMed Central

    Srivastava, Mrinal; Hegde, Mahesh; Chiruvella, Kishore K.; Koroth, Jinsha; Bhattacharya, Souvari; Choudhary, Bibha; Raghavan, Sathees C.

    2014-01-01

    Intake of fruits rich in antioxidants in daily diet is suggested to be cancer preventive. Sapota is a tropical fruit grown and consumed extensively in several countries including India and Mexico. Here we show that methanolic extracts of Sapota fruit (MESF) induces cytotoxicity in a dose-dependent manner in cancer cell lines. Cell cycle analysis suggested activation of apoptosis, without arresting cell cycle progression. Annexin V-propidium iodide double-staining demonstrated that Sapota fruit extracts potentiate apoptosis rather than necrosis in cancer cells. Loss of mitochondrial membrane potential, upregulation of proapoptotic proteins, activation of MCL-1, PARP-1, and Caspase 9 suggest that MESF treatment leads to activation of mitochondrial pathway of apoptosis. More importantly, we show that MESF treatment leads to significant inhibition of tumor growth and a 3-fold increase in the life span of tumor bearing animals compared to untreated tumor mice. PMID:25142835

  13. Sapodilla plum (Achras sapota) induces apoptosis in cancer cell lines and inhibits tumor progression in mice.

    PubMed

    Srivastava, Mrinal; Hegde, Mahesh; Chiruvella, Kishore K; Koroth, Jinsha; Bhattacharya, Souvari; Choudhary, Bibha; Raghavan, Sathees C

    2014-01-01

    Intake of fruits rich in antioxidants in daily diet is suggested to be cancer preventive. Sapota is a tropical fruit grown and consumed extensively in several countries including India and Mexico. Here we show that methanolic extracts of Sapota fruit (MESF) induces cytotoxicity in a dose-dependent manner in cancer cell lines. Cell cycle analysis suggested activation of apoptosis, without arresting cell cycle progression. Annexin V-propidium iodide double-staining demonstrated that Sapota fruit extracts potentiate apoptosis rather than necrosis in cancer cells. Loss of mitochondrial membrane potential, upregulation of proapoptotic proteins, activation of MCL-1, PARP-1, and Caspase 9 suggest that MESF treatment leads to activation of mitochondrial pathway of apoptosis. More importantly, we show that MESF treatment leads to significant inhibition of tumor growth and a 3-fold increase in the life span of tumor bearing animals compared to untreated tumor mice. PMID:25142835

  14. Anticancer and apoptotic activities of oleanolic acid are mediated through cell cycle arrest and disruption of mitochondrial membrane potential in HepG2 human hepatocellular carcinoma cells.

    PubMed

    Zhu, Yue-Yong; Huang, Hong-Yan; Wu, Yin-Lian

    2015-10-01

    Hepatocellular carcinoma (HCC) is an aggressive form of cancer, with high rates of morbidity and mortality, a poor prognosis and limited therapeutic options. The objective of the present study was to demonstrate the anticancer activity of oleanolic acid in HepG2 human HCC cells. Cell viability was evaluated using an MTT assay, following administration of various doses of oleanolic acid. The effect of oleanolic acid on cell cycle phase distribution and mitochondrial membrane potential was evaluated using flow cytometry with propidium iodide and rhodamine?123 DNA?binding cationic fluorescent dyes. Fluorescence microscopy was employed to detect morphological changes in HepG2 cells following oleanolic acid treatment. The results revealed that oleanolic acid induced a dose?dependent, as well as time?dependent inhibition in the growth of HepG2 cancer cells. Following acridine orange and ethidium bromide staining, treatment with various doses (0, 5, 25 and 50 µM) of oleanolic acid induced typical morphological changes associated with apoptosis, including cell shrinkage, membrane blebbing, nuclear condensation and apoptotic body formation. Cell cycle analysis revealed that oleanolic acid induced cell cycle arrest in HepG2 cells at the sub?G1 (apoptotic) phase of the cell cycle, in a dose?dependent manner. Staining with Annexin V?fluorescein isothiocyanate and propidium iodide revealed that apoptosis occurred early in these cells. Oleanolic acid treatment also resulted in fragmentation of nuclear DNA in a dose?dependent manner, producing the typical features of DNA laddering on an agarose gel. The results also demonstrated that oleanolic acid treatment resulted in a potent loss of mitochondrial membrane potential, which also occurred in a dose?dependent manner. Therefore, oleanolic acid may be used as a therapeutic agent in the treatment of human HCC. PMID:26151733

  15. Overexpression of AQP3 Modifies the Cell Cycle and the Proliferation Rate of Mammalian Cells in Culture

    PubMed Central

    Galán-Cobo, Ana; Ramírez-Lorca, Reposo; Serna, Ana; Echevarría, Miriam

    2015-01-01

    Abnormal AQP3 overexpression in tumor cells of different origins has been reported and a role for this enhanced AQP3 expression in cell proliferation and tumor processess has been indicated. To further understand the role AQP3 plays in cell proliferation we explore the effect that stable over expression of AQP3 produces over the proliferation rate and cell cycle of mammalian cells. The cell cycle was analyzed by flow cytometry with propidium iodide (PI) and the cell proliferation rate measured through cell counting and BrdU staining. Cells with overexpression of AQP3 (AQP3-o) showed higher proliferation rate and larger percentage of cells in phases S and G2/M, than wild type cells (wt). Evaluation of the cell response against arresting the cell cycle with Nocodazole showed that AQP3-o exhibited a less modified cell cycle pattern and lower Annexin V specific staining than wt, consistently with a higher resistance to apoptosis of AQP3-overexpressing cells. The cell volume and complexity were also larger in AQP3-o compared to wt cells. After transcriptomic analysis, RT-qPCR was performed to highlight key molecules implicated in cell proliferation which expression may be altered by overexpression of AQP3 and the comparative analysis between both type of cells showed significant changes in the expression of Zeb2, Jun, JunB, NF-k?, Cxcl9, Cxcl10, TNF, and TNF receptors. We conclude that the role of AQP3 in cell proliferation seems to be connected to increments in the cell cycle turnover and changes in the expression levels of relevant genes for this process. Larger expression of AQP3 may confer to the cell a more tumor like phenotype and contributes to explain the presence of this protein in many different tumors. PMID:26367709

  16. Morphological changes of post-isolation of caprine pancreatic islet.

    PubMed

    Hani, Homayoun; Allaudin, Zeenathul Nazariah; Tengku Ibrahim, Tengku Azmi; Mohd-Lila, Mohd-Azmi; Sarsaifi, Kazhal; Camalxaman, Siti Nazrina; Othman, Abas Mazni

    2015-02-01

    Pancreatic islet transplantation is commonly used to treat diabetes. Cell isolation and purification methods can affect the structure and function of the isolated islet cells. Thus, the development of cell isolation techniques that preserve the structure and function of pancreatic islet cells is essential for enabling successful transplantation procedures. The impact of purification procedures on cell function can be assessed by performing ultrastructure and in vivo studies. Thus, the aim of this study was to evaluate the effect of caprine islets purification procedure on islet cell ultrastructure and functional integrity prior to and post-isolation/purification. The islets were isolated from caprine pancreas by using an optimized collagenase XI-S concentration, and the cells were subsequently purified using Euro-Ficoll density gradient. In vitro viability of islets was determined by fluorescein diacetate and propidium iodide staining. Static incubation was used to assess functionality and insulin production by islet cells in culture media when exposed to various levels of glucose. Pancreatic tissues were examined by using light microscopy, fluorescence microscopy, scanning, and transmission electron microscopy. In vivo viability and functionality of caprine islets were assessed by evaluating the transplanted islets in diabetic mice. Insulin assay of glucose-stimulated insulin secretion test showed that the insulin levels increased with increasing concentration of glucose. Thus, purified islets stimulated with high glucose concentration (25 mM) secreted higher levels of insulin (0.542?±?0.346 ?g/L) than the insulin levels (0.361?±?0.219, 0.303?±?0.234 ?g/L) secreted by exposure to low glucose concentrations (1.67 mM). Furthermore, insulin levels of recipient mice were significantly higher (p?cell integrity of peripheral region, the alterations did not significantly alter the functionality and viability of the purified islets. PMID:25303943

  17. A biocompatible microchip and methodology for efficiently trapping and positioning living cells into array based on negative dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoliang; Zhu, Rong

    2015-06-01

    We present a microchip and trapping methodology based on negative dielectrophoresis (nDEP), whereby living cells were manipulated and positioned into an array with high trapping efficiency while maintaining good viability. The main factors that ensured good viability of cells were investigated including temperature of medium, extra transmembrane potential on cells, and electrolysis effect in DEP-based trapping. Optimum DEP conditions for the microchip were determined by considering both biocompatibility and trapping efficiency. Experiments demonstrated that under a voltage of 3.6-4 Vpp and at a frequency of 100 kHz, HeLa cells could be trapped and positioned into an array in less than 10 s while maintaining good viability. The normal adherence morphology and fluorescence of the cells, dyed with propidium iodide and Calcein-AM, were observed and verified the biocompatibility of the microchip and trapping methodology.

  18. Dihydromyricetin induces cell apoptosis via a p53-related pathway in AGS human gastric cancer cells.

    PubMed

    Ji, F J; Tian, X F; Liu, X W; Fu, L B; Wu, Y Y; Fang, X D; Jin, H Y

    2015-01-01

    The aim of the present study was to determine the anti-proliferative and pro-apoptotic effects of dihydromyricetin (DHM) on the AGS human gastric cancer cells and their underlying mechanisms. The effects of DHM on AGS cells were evaluated by using 3-(4, 5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase, and Annexin V/propidium iodide (PI) double-staining assays. The underlying mechanisms were determined by using quanti-tative real-time polymerase chain reaction. The results demonstrated that DHM significantly (P < 0.05) inhibited AGS cell proliferation and induced cell cytotoxicity in a dose- and time-dependent manner. Ad-ditionally, Annexin V/PI double-staining assay showed that DHM pro-moted cell apoptosis in both, early and late stages. Furthermore, DHM also regulated the expression of apoptotic genes such as p53 and B-cell lymphoma-2 (bcl-2) in a dose- and time-dependent manner. In conclu-sion, this is the first report demonstrating the anticancer and pro-apop-tosis effects of DHM on AGS human gastric cancer cells. The results strongly suggest that DHM may be a potential therapeutic candidate for the treatment of gastric cancer. PMID:26634523

  19. Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle

    NASA Astrophysics Data System (ADS)

    Roa, Wilson; Zhang, Xiaojing; Guo, Linghong; Shaw, Andrew; Hu, Xiuying; Xiong, Yeping; Gulavita, Sunil; Patel, Samir; Sun, Xuejun; Chen, Jie; Moore, Ronald; Xing, James Z.

    2009-09-01

    Glucose-capped gold nanoparticles (Glu-GNPs) have been used to improve cellular targeting and radio-sensitization. In this study, we explored the mechanism of Glu-GNP enhanced radiation sensitivity in radiation-resistant human prostate cancer cells. Cell survival and proliferation were measured using MTT and clonogenic assay. Flow cytometry with staining by propidium iodide (PI) was performed to study the cell cycle changes induced by Glu-GNPs, and western blotting was used to determine the expression of p53 and cyclin proteins that correlated to cell cycle regulation. With 2 Gy of ortho-voltage irradiation, Glu-GNP showed a 1.5-2.0 fold enhancement in growth inhibition when compared to x-rays alone. Comparing the cell cycle change, Glu-GNPs induced acceleration in the G0/G1 phase and accumulation of cells in the G2/M phase at 29.8% versus 18.4% for controls at 24 h. G2/M arrest was accompanied by decreased expression of p53 and cyclin A, and increased expression of cyclin B1 and cyclin E. In conclusion, Glu-GNPs trigger activation of the CDK kinases leading to cell cycle acceleration in the G0/G1 phase and accumulation in the G2/M phase. This activation is accompanied by a striking sensitization to ionizing radiation, which may have clinical implications.

  20. The Anti-angiogenic Peptide Anginex Disrupts the Cell Membrane

    PubMed Central

    Pilch, Jan; Franzin, Carla M.; Knowles, Lynn M.; Ferrer, Fernando J.; Marassi, Francesca M.; Ruoslahti, Erkki

    2010-01-01

    Anginex is a synthetic beta-sheet peptide with anti-angiogenic and anti-tumor activity. When added to cultured endothelial cells at concentrations ranging from 2.5 ?M to 25 ?M, anginex induced cell death, which was reflected by a strong increase of subdiploid cells and fragments, loss of cellular ATP, and LDH release. Cytotoxicity remained the same whether cells were treated with anginex at 4 °C or at 37 °C. At low temperatures, fluorescein-conjugated anginex accumulated on the endothelial surface, but did not reach into the cytoplasm, indicating that the cell membrane is the primary target for the peptide. Within minutes of treatment, anginex caused endothelial cells to take up propidium iodide and undergo depolarization, both parameters characteristic for permeabilization of the cell membrane. This process was amplified when cells were activated with hydrogen peroxide. Red blood cell membranes were essentially unaffected by anginex. Anginex bound lipid bilayers with high affinity and with a clear preference for anionic over zwitterionic phospholipids. Structural studies by circular dichroism and solid-state nuclear magnetic resonance showed that anginex forms a beta-sheet and adopts a unique and highly ordered conformation upon binding to lipid membranes. This is consistent with lipid micellization or the formation of pore-forming beta-barrels. The data suggest that the cytotoxicity of anginex stems from its ability to target and disrupt the endothelial cell membrane, providing a possible explanation for the angiostatic activity of the peptide. PMID:16403516

  1. Effects of mistletoe (Viscum album L.) extracts Iscador on cell cycle and survival of tumor cells.

    PubMed

    Harmsma, Marjan; Ummelen, Monique; Dignef, Wendy; Tusenius, Karel Jan; Ramaekers, Frans C S

    2006-06-01

    The molecular and cellular mechanisms by which mistletoe (Viscum album L.) extracts exert cytotoxic and immunomodulatory anti-tumoral effects are largely unknown. In this study the hypothesis that Iscador preparations induce tumor regression by cell cycle inhibition and/or interference with apoptotic signaling pathways in cancer cells was investigated. Also a possible effect on angiogenesis, which is a prerequisite for tumor growth in vivo, is studied in endothelial cell cultures. Furthermore, it was examined which apoptotic signaling route(s) is (are) activated by Iscador by studying specific pro-apoptotic proteins in cultured cells. To characterize these properties, 9 human cancer cell lines of different origin, one epidermis derived cell line and 2 endothelial cell cultures were incubated with different concentrations of Iscador Quercus Spezial and Iscador Malus Spezial. Cell cycle kinetic parameters were measured by bromodeoxyuridine (BrdU) pulse labeling and tubulin staining. Apoptotic responses were detected by M30 Cyto-Death or Annexin V/propidium iodide assays. Characterization of the apoptotic pathway(s) was performed by staining cells for amongst others active caspase 3 and cytochrome C (mitochondrial pathway), as well as active caspase 8 (death receptor pathway). The sensitivity to Iscador treatment varies strongly between different cell lines and also ing those derived from small cell lung cancer, and adenocarcinoma of the lung and breast, as well as endothelial cell cultures, Iscador caused early cell cycle inhibition followed by apoptosis in a dose dependent manner. Amongst the low responders are cell lines derived from colorectal carcinoma. In general Iscador Malus exerted a stronger response than Iscador Quercus. Apoptosis was induced by activating the mitochondrial but not the death receptor dependent pathway, at least in case of Iscador Quercus. Iscador Malus also seemed to induce apoptosis via the death receptor route, which may explain the higher sensitivity of cancer and endothelial cells to this preparation. PMID:16927529

  2. Regulatory effects of deguelin on proliferation and cell cycle of Raji cells.

    PubMed

    Xiong, Jin-rong; Liu, Hong-li

    2013-08-01

    The underlying mechanism of deguelin regulating the cell cycle in human Burkitt's lymphoma cell line Raji cells in vitro, and the cytotoxicity of deguelin to Raji cells and human peripheral blood monocular cells (PBMCs) were investigated. The effects of deguelin on the growth of Raji cells were studied by 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium (MTT) assay. Apoptosis was detected through Hoechst 33258 staining. The effect of deguelin on the cell cycle of Raji cells was studied by a propidium iodide method. The expression levels of cyclin D1, P21 and pRb were examined by using Western blotting. The results showed that the proliferation of Raji cells was inhibited in the deguelin-treated group, with a 24-h IC(50) value of 21.61 nmol/L and a 36-h IC(50) value of 17.07 nmol/L. Proliferation in Raji cells was inhibited significantly by deguelin, while little change was observed in PBMCs. Deguelin induced G(2)/M arrest in Raji cells. The expression of cyclin D1, P21 and pRb was dramatically down-regulated by deguelin in a dose-dependent manner. It was concluded that deguelin could inhibit the proliferation of Raji cells by arresting the cells at G(2)/M phase and inducing the cell apoptosis. Moreover, deguelin selectively induced apoptosis of Raji cells with low toxicity to PBMCs. The antitumor effects of deguelin were related to the down-regulated expression of cyclin D1, P21 and pRb proteins. PMID:23904366

  3. Optical injection of mammalian cells using a microfluidic platform

    PubMed Central

    Marchington, Robert F.; Arita, Yoshihiko; Tsampoula, Xanthi; Gunn-Moore, Frank J.; Dholakia, Kishan

    2010-01-01

    The use of a focused laser beam to create a sub-micron hole in the plasma membrane of a cell (photoporation), for the selective introduction of membrane impermeable substances (optical injection) including nucleic acids (optical transfection), is a powerful technique most commonly applied to treat single cells. However, particularly for femtosecond photoporation, these studies have been limited to low throughput, small-scale studies, because they require sequential dosing of individual cells. Herein, we describe a microfluidic photoporation system for increased throughput and automated optical injection of cells. Hydrodynamic focusing is employed to direct a flow of single-file cells through a focused femtosecond laser beam for photoporation. Upon traversing the beam, a number of transient pores potentially open across the extracellular membrane, which allows the uptake of the surrounding fluid media into the cytoplasm, also containing the chosen injection agent. The process is entirely automated and a rate of 1 cell/sec could readily be obtained, enabling several thousand cells to be injected per hour using this system. The efficiency of optically injecting propidium iodide into HEK293 mammalian cells was found to be 42 ± 8%, or 28 ± 4% taking into account the requirement of post-injection viability, as tested using Calcein AM. This work now opens the way for combining photoporation with microfluidic analyses, sorting, purification or on-chip cell culture studies. PMID:21258487

  4. Bothropoides pauloensis venom effects on isolated perfused kidney and cultured renal tubular epithelial cells.

    PubMed

    Marinho, Aline D; Morais, Isabel C O; Lima, Dânya B; Jorge, Antônio R C; Jorge, Roberta J B; Menezes, Ramon R P P B; Mello, Clarissa P; Pereira, Gustavo J S; Silveira, João A M; Toyama, Marcos H; Orzáez, Mar; Martins, Alice M C; Monteiro, Helena S A

    2015-12-15

    Snake envenomation (Bothrops genus) is common in tropical countries and acute kidney injury is one of the complications observed in Bothrops snakebite with relevant morbidity and mortality. Here, we showed that Bothropoides pauloensis venom (BpV) decreased cell viability (IC50 of 7.5 ?g/mL). Flow cytometry with annexin V and propidium iodide showed that cell death occurred predominantly by apoptosis and late apoptosis, through caspases 3 and 7 activation, mitochondrial membrane potential collapse and ROS overproduction. BpV reduced perfusion pressure, renal vascular resistance, urinary flow, glomerular filtration rate, percentage of sodium, chloride or potassium tubular transportation. These findings demonstrated that BpV cytotoxicity on renal epithelial cells might be responsible for the nephrotoxicity observed in isolated kidney. PMID:26410111

  5. Islet Stellate Cells Isolated from Fibrotic Islet of Goto-Kakizaki Rats Affect Biological Behavior of Beta-Cell

    PubMed Central

    Li, Feng-Fei; Chen, Bi-Jun; Li, Wei; Li, Ling; Zha, Min; Zhou, S.; Bachem, M. G.; Sun, Zi-Lin

    2016-01-01

    We previously isolated islet stellate cells (ISCs) from healthy Wistar rat islets. In the present study, we isolated “already primed by diabetic environment” ISCs from islets of Goto-Kakizaki rats, determined the gene profile of these cells, and assessed the effects of these ISCs on beta-cell function and survival. We detected gene expression of ISCs by digital gene expression. INS-1 cell proliferation, apoptosis, and insulin production were measured after being treated with ISCs supernatant (SN). We observed the similar expression pattern of ISCs and PSCs, but 1067 differentially expressed genes. Insulin production in INS-1 cells cultured with ISC-SN was significantly reduced. The 5-ethynyl-2?-deoxyuridine-positive INS-1 cells treated with ISC-SN were decreased. Propidium iodide- (PI-) positive INS-1 cells were 2.6-fold higher than those in control groups. Caspase-3 activity was increased. In conclusion, ISCs presented in fibrotic islet of GK rats might be special PSCs, which impaired beta-cell function and proliferation and increased beta-cell apoptosis. PMID:26697502

  6. Islet Stellate Cells Isolated from Fibrotic Islet of Goto-Kakizaki Rats Affect Biological Behavior of Beta-Cell.

    PubMed

    Li, Feng-Fei; Chen, Bi-Jun; Li, Wei; Li, Ling; Zha, Min; Zhou, S; Bachem, M G; Sun, Zi-Lin

    2016-01-01

    We previously isolated islet stellate cells (ISCs) from healthy Wistar rat islets. In the present study, we isolated "already primed by diabetic environment" ISCs from islets of Goto-Kakizaki rats, determined the gene profile of these cells, and assessed the effects of these ISCs on beta-cell function and survival. We detected gene expression of ISCs by digital gene expression. INS-1 cell proliferation, apoptosis, and insulin production were measured after being treated with ISCs supernatant (SN). We observed the similar expression pattern of ISCs and PSCs, but 1067 differentially expressed genes. Insulin production in INS-1 cells cultured with ISC-SN was significantly reduced. The 5-ethynyl-2'-deoxyuridine-positive INS-1 cells treated with ISC-SN were decreased. Propidium iodide- (PI-) positive INS-1 cells were 2.6-fold higher than those in control groups. Caspase-3 activity was increased. In conclusion, ISCs presented in fibrotic islet of GK rats might be special PSCs, which impaired beta-cell function and proliferation and increased beta-cell apoptosis. PMID:26697502

  7. Sesquiterpene lactones from Ambrosia spp. are active against a murine lymphoma cell line by inducing apoptosis and cell cycle arrest.

    PubMed

    Martino, Renzo; Beer, María Florencia; Elso, Orlando; Donadel, Osvaldo; Sülsen, Valeria; Anesini, Claudia

    2015-10-01

    Sesquiterpene lactones (STLs) are natural terpenoid compounds. They have been recognized as antitumor agents. The purpose of this investigation was to explore the antiproliferative effects of psilostachyin, psilostachyin C, peruvin and cumanin on the murine lymphoma cell line BW5147. Cells were treated with the STLs at different concentrations. Tritiated thymidine uptake was employed to determine cell proliferation. MTT assay was used to analyze cell viability. Flow cytometry assay with annexin V-FITC and propidium iodide was employed to evaluate cell death. Reactive oxygen species (ROS), mitochondrial membrane potential and cell cycle analysis were also evaluated by flow cytometry. Antioxidant enzymes activities were determined spectrophotometrically by kinetic assays. Results showed that these STLs inhibited cell proliferation in a concentration-dependent manner by exerting cytotoxicity through apoptosis. Psilostachyin C was the most active and the less toxic compound. This STL induced apoptosis with an impairment in mitochondrial membrane potential. Psilostachyin C was able to induce ROS generation, related to a modulation of the antioxidant enzymes activity. In addition, it induced cell cycle arrest in S phase. In conclusion, psilostachyin C was found to be active against lymphoma cells exerting both cytostatic and cytotoxic effects. These findings may provide a novel approach for lymphoma treatment. PMID:26086122

  8. Hoechst fluorescence intensity can be used to separate viable bromodeoxyuridine-labeled cells from viable non-bromodeoxyuridine-labeled cells

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Pulvermacher, P. M.; Schultz, E.; Schell, K.

    2000-01-01

    BACKGROUND: 5-Bromo-2'-deoxyuridine (BrdU) is a powerful compound to study the mitotic activity of a cell. Most techniques that identify BrdU-labeled cells require conditions that kill the cells. However, the fluorescence intensity of the membrane-permeable Hoechst dyes is reduced by the incorporation of BrdU into DNA, allowing the separation of viable BrdU positive (BrdU+) cells from viable BrdU negative (BrdU-) cells. METHODS: Cultures of proliferating cells were supplemented with BrdU for 48 h and other cultures of proliferating cells were maintained without BrdU. Mixtures of viable BrdU+ and viable BrdU- cells from the two proliferating cultures were stained with Hoechst 33342. The viable BrdU+ and BrdU- cells were sorted into different fractions from a mixture of BrdU+ and BrdU- cells based on Hoechst fluorescence intensity and the ability to exclude the vital dye, propidium iodide. Subsequently, samples from the original mixture, the sorted BrdU+ cell population, and the sorted BrdU- cell population were immunostained using an anti-BrdU monoclonal antibody and evaluated using flow cytometry. RESULTS: Two mixtures consisting of approximately 55% and 69% BrdU+ cells were sorted into fractions consisting of greater than 93% BrdU+ cells and 92% BrdU- cells. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. CONCLUSIONS: Hoechst fluorescence intensity in combination with cell sorting is an effective tool to separate viable BrdU+ from viable BrdU- cells for further study. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. Copyright 2000 Wiley-Liss, Inc.

  9. Bacteroides fragilis induce necrosis on mice peritoneal macrophages: In vitro and in vivo assays

    SciTech Connect

    Vieira, J.M.B.D.; Laboratorio de Biologia de Anaerobios, IMPPG, UFRJ, Rio de Janeiro ; Seabra, S.H.; Vallim, D.C.; Americo, M.A.; Fracallanza, S.E.L.; Vommaro, R.C.; Domingues, R.M.C.P.

    2009-10-02

    Bacteroides fragilis is an anaerobic bacteria component of human intestinal microbiota and agent of infections. In the host B. fragilis interacts with macrophages, which produces toxic radicals like NO. The interaction of activated mice peritoneal macrophages with four strains of B. fragilis was evaluated on this study. Previously was shown that such strains could cause metabolic and morphologic alterations related to macrophage death. In this work propidium iodide staining showed the strains inducing macrophage necrosis in that the labeling was evident. Besides nitroblue tetrazolium test showed that B. fragilis stimulates macrophage to produce oxygen radicals. In vivo assays performed in BalbC mice have results similar to those for in vitro tests as well as scanning electron microscopy, which showed the same surface pore-like structures observed in vitro before. The results revealed that B. fragilis strains studied lead to macrophage death by a process similar to necrosis.

  10. Oridonin inhibits BxPC-3 cell growth through cell apoptosis.

    PubMed

    Xu, Bin; Shen, Wen; Liu, Xing; Zhang, Ting; Ren, Jun; Fan, Yongjun; Xu, Jian

    2015-03-01

    Oridonin, an ent-kaurene diterpenoid extracted from the traditional Chinese herb Rabdosia rubescens, has multiple biological and pharmaceutical functions and has been used clinically for many years. While the antitumor function of oridonin has been corroborated by numerous lines of evidence, its anticancer mechanism has not been well documented. In this study, the pancreatic cancer cell line BxPC-3 was used as a model to investigate a possible anticancer mechanism of oridonin through examining its effects on cell viability. The results showed that oridonin affected cell viability in a time- and dose-dependent manner. After exposure to different oridonin concentrations, growth rates and cell cycle arrest of BxPC-3 cells were significantly reduced compared with untreated cells, suggesting its effects on proliferation inhibition. Detailed signaling pathway analysis by western blot analysis revealed that low-dose oridonin treatment inhibited BxPC-3 cell proliferation by up-regulating p53 and down-regulating cyclin-dependent kinase 1 (CDK1), which led to cell cycle arrest in the G2/M phase. A high-dose oridonin not only arrested BxPC-3 cells in the G2/M phase but also induced cell accumulation in the S phase, presumably through ?H2AX up-regulation and DNA damage. In addition, our results showed that a cell subpopulation was stained with propidium iodide after oridonin treatment. Protein quantification showed that cleaved poly(ADP-ribose) polymerase (PARP) expression was increased after a high-dose oridonin treatment, especially after long-term exposure. Accompanied by the increased level of deactivated PARP in BxPC-3 cells, the apoptosis initiators caspase-3 and caspase-7 expressions were also significantly increased, suggesting that caspase-mediated apoptosis contributed to cell death. PMID:25651847

  11. Active Targeting to Osteosarcoma Cells and Apoptotic Cell Death Induction by the Novel Lectin Eucheuma serra Agglutinin Isolated from a Marine Red Alga

    PubMed Central

    Hayashi, Keita; Walde, Peter; Miyazaki, Tatsuhiko; Sakayama, Kenshi; Nakamura, Atsushi; Kameda, Kenji; Masuda, Seizo; Umakoshi, Hiroshi; Kato, Keiichi

    2012-01-01

    Previously, we demonstrated that the novel lectin Eucheuma serra agglutinin from a marine red alga (ESA) induces apoptotic cell death in carcinoma. We now find that ESA induces apoptosis also in the case of sarcoma cells. First, propidium iodide assays with OST cells and LM8 cells showed a decrease in cell viability after addition of ESA. With 50??g/ml ESA, the viabilities after 24 hours decreased to 54.7 ± 11.4% in the case of OST cells and to 41.7 ± 12.3% for LM8 cells. Second, using fluorescently labeled ESA and flow cytometric and fluorescence microscopic measurements, it could be shown that ESA does not bind to cells that were treated with glycosidases, indicating importance of the carbohydrate chains on the surface of the cells for efficient ESA-cell interactions. Third, Span 80 vesicles with surface-bound ESA as active targeting ligand were shown to display sarcoma cell binding activity, leading to apoptosis and complete OST cell death after 48 hours at 2??g/ml ESA. The findings indicate that Span 80 vesicles with surface-bound ESA are a potentially useful drug delivery system not only for the treatment of carcinoma but also for the treatment of osteosarcoma. PMID:23346404

  12. Annexin V assay-proven anti-apoptotic effect of ascorbic acid 2-glucoside after cold ischemia/reperfusion injury in rat liver transplantation.

    PubMed

    Liu, Jie; Yagi, Takahito; Sadamori, Hiroshi; Matsukawa, Hiroyoshi; Sun, Dong-Sheng; Mitsuoka, Naoshi; Yamamura, Masao; Matsuoka, Junji; Jin, Zaishun; Yamamoto, Itaru; Tanaka, Noriaki

    2003-10-01

    Controversy exists over whether the predominant cell death of hepatocytes is due to apoptosis or necrosis after ischemia/reperfusion injury. In this study we investigated the predominant cell death of hepatocytes after cold ischemia/reperfusion injury using the Annexin V-based assay, and evaluated the anti-apoptotic effect of ascorbic acid 2-glucoside (AA-2G) added to the University of Wisconsin solution (UW solution) in rat liver transplantation. The retrieved liver was preserved in 4 UW solution for 24 h, and then transplanted orthotopically to the syngeneic Wistar recipient. The animals were divided into 2 groups, a control group (n=10), in which liver grafts were preserved in UW solution (4), and an AA-2G group (n=10), in which liver grafts were preserved in UW solution (4) with AA-2G (100 ug/ml). The serum AST level 4 h after reperfusion in the control group was significantly suppressed in the AA-2G group, and the bile production of the liver graft in the AA-2G group was well recovered. The mean survival time in the AA-2G group was significantly improved compared with that in the control group. Annexin-V and Propidium iodide staining 4 h after reperfusion showed a significantly higher percentage of viable hepatocytes in the AA-2G group compared with the control group (93.4 +/- 2.0 vs. 80.3 +- 2.1%, P<0.05). In the control group, the main cell death of hepatocytes was apoptosis (early apoptosis: 10.0 +- 4.7%, late apoptosis: 6.4 +/- 1.7%). The addition of AA-2G to the UW solution significantly inhibited both early and late apoptotic cell death 4 h after reperfusion (early apoptosis: 0.98 +/- 0.88%, late apoptosis: 2.2 +/- 1.1%). The expression of caspase 9 in the immunostaining of the liver graft was suppressed in the AA-2G group compared with in the control group. Our study using the Annexin V-based assay provided evidence that the predominant cell death of hepatocytes was apoptosis after 24 h cold ischemia/reperfusion injury in rat liver transplantation. The addition of AA-2G to the UW solution attenuated 24 h cold ischemia/reperfusion injury by inhibiting the apoptosis of hepatocytes. PMID:14679398

  13. Lithium increases proliferation of hippocampal neural stem/progenitor cells and rescues irradiation-induced cell cycle arrest in vitro.

    PubMed

    Zanni, Giulia; Di Martino, Elena; Omelyanenko, Anna; Andäng, Michael; Delle, Ulla; Elmroth, Kecke; Blomgren, Klas

    2015-11-10

    Radiotherapy in children causes debilitating cognitive decline, partly linked to impaired neurogenesis. Irradiation targets primarily cancer cells but also endogenous neural stem/progenitor cells (NSPCs) leading to cell death or cell cycle arrest. Here we evaluated the effects of lithium on proliferation, cell cycle and DNA damage after irradiation of young NSPCs in vitro.NSPCs were treated with 1 or 3 mM LiCl and we investigated proliferation capacity (neurosphere volume and bromodeoxyuridine (BrdU) incorporation). Using flow cytometry, we analysed apoptosis (annexin V), cell cycle (propidium iodide) and DNA damage (?H2AX) after irradiation (3.5 Gy) of lithium-treated NSPCs.Lithium increased BrdU incorporation and, dose-dependently, the number of cells in replicative phase as well as neurosphere growth. Irradiation induced cell cycle arrest in G1 and G2/M phases. Treatment with 3 mM LiCl was sufficient to increase NSPCs in S phase, boost neurosphere growth and reduce DNA damage. Lithium did not affect the levels of apoptosis, suggesting that it does not rescue NSPCs committed to apoptosis due to accumulated DNA damage.Lithium is a very promising candidate for protection of the juvenile brain from radiotherapy and for its potential to thereby improve the quality of life for those children who survive their cancer. PMID:26397227

  14. Leptospermum flavescens Constituent-LF1 Causes Cell Death through the Induction of Cell Cycle Arrest and Apoptosis in Human Lung Carcinoma Cells

    PubMed Central

    Navanesan, Suerialoasan; Abdul Wahab, Norhanom; Manickam, Sugumaran; Sim, Kae Shin

    2015-01-01

    Leptospermum flavescens Sm. (Myrtaceae), locally known as ‘Senna makki’ is a smallish tree that is widespread and recorded to naturally occur in the montane regions above 900 m a.s.l from Burma to Australia. Although the species is recorded to be used traditionally to treat various ailments, there is limited data on biological and chemical investigations of L. flavescens. The aim of the present study was to investigate and understand the ability of L. flavescens in inducing cell death in lung cancer cells. The cytotoxic potentials of the extraction yields (methanol, hexane, ethyl acetate and water extracts as wells as a semi pure fraction, LF1) were evaluated against two human non-small cell lung carcinoma cell lines (A549 and NCI-H1299) using the MTT assay. LF1 showed the greatest cytotoxic effect against both cell lines with IC50 values of 7.12 ± 0.07 and 9.62 ± 0.50 ?g/ml respectively. LF1 treated cells showed a sub-G1 region in the cell cycle analysis and also caused the presence of apoptotic morphologies in cells stained with acridine orange and ethidium bromide. Treatment with LF1 manifested an apoptotic population in cells that were evaluated using the Annexin V/ propidium iodide assay. Increasing dosage of LF1 caused a rise in the presence of activated caspase-3 enzymes in treated cells. Blockage of cell cycle progression was also observed in LF1-treated cells. These findings suggest that LF1 induces apoptosis and cell cycle arrest in treated lung cancer cells. Further studies are being conducted to isolate and identify the active compound as well to better understand the mechanism involved in inducing cell death. PMID:26287817

  15. A Natural Triterpene Derivative from Euphorbia kansui Inhibits Cell Proliferation and Induces Apoptosis against Rat Intestinal Epithelioid Cell Line in Vitro

    PubMed Central

    Cheng, Fangfang; Yang, Yanjing; Zhang, Li; Cao, Yudan; Yao, Weifeng; Tang, Yuping; Ding, Anwei

    2015-01-01

    Kansenone is a triterpene from the root of the traditional Chinese medicine, Euphorbia kansui. However, kansenone exerts serious toxicity, but the exact mechanism was not clear. In this work, the effects of kansenone on cell proliferation, cell cycle, cell damage, and cell apoptosis were investigated. The suppression of cell proliferation was assessed via the colorimetric MTT assay, and cell morphology was visualized via inverted microscopy after IEC-6 cells were incubated with different concentrations of kansenone. Reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) content were detected for evaluating cell damage. RNase/propidium iodide (PI) labeling for evaluation of cell cycle distribution was performed by flow cytometry analysis. Annexin V-fluorescein isothiocyanate (FITC)/PI and Hoechst 33342/Annexin V-FITC/PI staining assay for cell apoptosis detection were performed using confocal laser scanning microscopy and high content screening. Moreover, apoptosis induction was further confirmed by transmission electron microscope (TEM) and JC-1 mitochondrial membrane potential, western blot and RT-PCR analysis. The results demonstrated that kansenone exerted high cytotoxicity, induced cell arrest at G0/G1 phase, and caused mitochondria damage. In addition, kansenone could up-regulate the apoptotic proteins Bax, AIF, Apaf-1, cytochrome c, caspase-3, caspase-9, caspase-8, FasR, FasL, NF-?B, and TNFR1 mRNA expression levels, and down-regulate the anti-apoptotic Bcl-2 family proteins, revealing that kansenone induces apoptosis through both the death receptor and mitochondrial pathways. PMID:26274958

  16. Cytopathic effects of Tritrichomonas foetus on bovine oviduct cells.

    PubMed

    Midlej, V; Vilela, R; Dias, A B; Benchimol, M

    2009-11-12

    Tritrichomonas foetus is an extracellular parasite of the reproductive tract in cattle. To investigate the cytopathic effects of T. foetus in deeper parts of the reproductive tract, a bovine primary oviduct epithelial cell system (BOECs) was developed. Reproductive tracts were obtained from cows and the effect of co-incubating T. foetus with BOECs was analyzed by scanning electron, transmission electron and fluorescence microscopy. Viability tests were performed using colorimetric methods, TUNEL (Terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling), fluorescein diacetate, propidium iodide, JC-1 and annexin-V. The results demonstrate that: (1) the in vitro oviduct epithelium is useful for interaction experiments with T. foetus; (2) T. foetus adheres to the BOECs as single separate cells, and later on the cells aggregate as large clusters; (3) the posterior region of the cell initiates the process of adhesion and forms filopodia and digitopodia; (4) T. foetus severely damages BOECs leaving imprints in the epithelial cells, wide intercellular spaces, and large lesions in the epithelium; and (5) T. foetus provokes bovine oviduct cell death by apoptosis and secondary necrosis. Our observations indicate the possibility that T. foetus can move through the reproductive tract to the oviduct and that infertility in cows can be mediated by an attack on the oviduct cells by T. foetus. PMID:19665307

  17. Effects of microwave exposure and Gemcitabine treatment on apoptotic activity in Burkitt's lymphoma (Raji) cells.

    PubMed

    Canseven, Ay?e G; Esmekaya, Meric Arda; Kayhan, Handan; Tuysuz, Mehmet Zahid; Seyhan, Nesrin

    2015-12-01

    We investigated the effects of 1.8?MHz Global System for Mobile Communications (GSM)-modulated microwave (MW) radiation on apoptotic level and cell viability of Burkitt's lymphoma (Raji) cells with or without Gemcitabine, which exhibits cell phase specificity, primarily killing cells undergoing DNA synthesis (S-phase). Raji cells were exposed to 1.8?GHz GSM-modulated MW radiation at a specific absorption rate (SAR) of 0.350?W/kg in a CO2 incubator. The duration of the exposure was 24?h. The amount of apoptotic cells was analyzed using Annexin V-FITC and propidium iodide (PI) staining with flow cytometer. The apoptotic activity of MW exposed Raji cells was increased significantly. In addition, cell viability of exposed samples was significantly decreased. Combined exposure of MW and Gemcitabine increased the amount of apoptotic cells than MW radiation alone. Moreover, viability of MW?+?Gemcitabine exposed cells was lower than that of cells exposed only to MW. These results demonstrated that MW radiation exposure and Gemcitabine treatment have a synergistic effect on apoptotic activity of Raji cells. PMID:24901461

  18. Phthalocyanine-mediated photodynamic therapy induces cell death and a G /G{sub 1} cell cycle arrest in cervical cancer cells

    SciTech Connect

    Haywood-Small, S.L. . E-mail: s.l.hankin@sheffield.ac.uk; Vernon, D.I.; Griffiths, J.; Schofield, J.; Brown, S.B.

    2006-01-13

    We have developed a series of novel photosensitizers which have potential for anticancer photodynamic therapy (PDT). Photosensitizers include zinc phthalocyanine tetra-sulphonic acid and a family of derivatives with amino acid substituents of varying alkyl chain length and degree of branching. Subcellular localization of these photosensitizers at the phototoxic IC{sub 5} concentration in human cervical carcinoma cells (SiHa Cells) was similar to that of the lysosomal dye Lucifer Yellow. Subsequent nuclear relocalization was observed following irradiation with 665 nm laser light. The PDT response was characterized using the Sulforhodamine B cytotoxicity assay. Flow cytometry was used for both DNA cell cycle and dual Annexin V-FITC/propidium iodide analysis. Phototoxicity of the derivatives was of the same order of magnitude as for tetrasulphonated phthalocyanine but with an overall trend of increased phototoxicity with increasing amino acid chain length. Our results demonstrate cell death, inhibition of cell growth, and G /G{sub 1} cell cycle arrest during the phthalocyanine PDT-mediated response.

  19. Changes in cell death of peripheral blood lymphocytes isolated from children with acute lymphoblastic leukemia upon stimulation with 7 Hz, 30 mT pulsed electromagnetic field.

    PubMed

    Kaszuba-Zwoi?ska, Jolanta; ?wikli?ska, Magdalena; Balwierz, Walentyna; Chorobik, Paulina; Nowak, Bernadeta; Wójcik-Piotrowicz, Karolina; Ziomber, Agata; Malina-Novak, Kinga; Zaraska, Wies?aw; Thor, Piotr J

    2015-03-01

    Pulsed electromagnetic field (PEMF) influenced the viability of proliferating in vitro peripheral blood mononuclear cells (PBMCs) isolated from Crohn's disease patients as well as acute myeloblastic leukemia (AML) patients by induction of cell death, but did not cause any vital changes in cells from healthy donors. Experiments with lymphoid U937 and monocytic MonoMac6 cell lines have shown a protective effect of PEMF on the death process in cells treated with death inducers. The aim of the current study was to investigate the influence of PEMF on native proliferating leukocytes originating from newly diagnosed acute lymphoblastic leukemia (ALL) patients. The effects of exposure to PEMF were studied in PBMCs from 20 children with ALL. PBMCs were stimulated with three doses of PEMF (7 Hz, 30 mT) for 4 h each with 24 h intervals. After the last stimulation, the cells were double stained with annexin V and propidium iodide dye to estimate viability by flow cytometric analysis. The results indicated an increase of annexin V positive as well as double stained annexin V and propidium iodide positive cells after exposure to threefold PEMF stimulation. A low-frequency pulsed electromagnetic field induces cell death in native proliferating cells isolated from ALL patients. The increased vulnerability of proliferating PBMCs to PEMF-induced interactions may be potentially applied in the therapy of ALL. The analysis of expression of apoptosis-related genes revealed changes in mRNA of some genes engaged in the intrinsic apoptotic pathway belonging to the Bcl-2 family and the pathway with apoptosis-inducing factor (AIF) abundance upon PEMF stimulation of PBMCs. PMID:26204398

  20. Overexpression of interleukin-18 protein reduces viability and induces apoptosis of tongue squamous cell carcinoma cells by activation of glycogen synthase kinase-3? signaling

    PubMed Central

    LIU, WEIWEI; HU, MIN; WANG, YUMEI; SUN, BAOZHEN; GUO, YU; XU, ZHIMIN; LI, JIA; HAN, BING

    2015-01-01

    The aim of this study was to investigate the effects of interleukin-18 (IL-18) expression on regulating the viability and apoptosis of tongue squamous cell carcinoma (TSCC) cells in vitro and examine the underlying molecular events. Human IL-18 cDNA was cloned into the vector pcDNA3.1 (+) and transfected into CRL-1623™ cells. Quantitative reverse transcription-PCR (RT-qPCR), western blot analysis, immunofluorescence, cell viability MTT assay, flow cytometric Annexin V/propidium iodide (PI), Giemsa staining, and caspase-3 activity assay were performed. The data showed that overexpression of IL-18 protein reduced TSCC cell viability by inducing apoptosis. Compared with cells transfected with the control vector, IL-18 expression activated caspase-3, -7, and -9 by inducing their cleavage and increased the expression of interferon (IFN)-? and cytochrome c mRNA, but reduced cyclin D1 and A1 expression in TSCC cells. IL-18 expression upregulated the expression and phosphorylation of glycogen synthase kinase (GSK)-3? protein in CRL1623 cells, whereas the selective GSK-3? inhibitor kenpaullone antagonized the effects of IL-18 protein on TSCC cells in vitro. The results indicated that IL-18 played an important role in the inhibition of TSCC cell growth and may be further investigated as a novel therapeutic target against TSCC. PMID:25591548

  1. Sensitization of breast cancer cells to doxorubicin via stable cell line generation and overexpression of DFF40.

    PubMed

    Bagheri, Fatemeh; Safarian, Shahrokh; Baghaban Eslaminejad, Mohamadreza; Sheibani, Nader

    2015-12-01

    There are a number of reports demonstrating a relationship between the alterations in DFF40 expression and development of some cancers. Here, increased DFF40 expression in T-47D cells in the presence of doxorubicin was envisaged for therapeutic usage. The T-47D cells were transfected with an eukaryotic expression vector encoding the DFF40 cDNA. Following incubation with doxorubicin, propidium iodide (PI) staining was used for cell cycle distribution analysis. The rates of apoptosis were determined by annexin V/PI staining. Apoptosis was also evaluated using the DNA laddering analysis. The viability of DFF40-transfected cells incubated with doxorubicin was significantly decreased compared with control cells. However, there were no substantial changes in the cell cycle distribution of pIRES2-DFF40 cells incubated with doxorubicin compared to control cells. The expression of DFF40, without doxorubicin incubation, had also no significant effect on the cell cycle distribution. There was no DNA laddering in cells transfected with the empty pIRES2 vector when incubated with doxorubicin. In contrast, DNA laddering was observed in DFF40 transfected cells in the presence of doxorubicin after 48 h. Also, the expression of DFF40 and DFF45 was increased in DFF40 transfected cells in the presence of doxorubicin enhancing cell death. Collectively our results indicated that co-treatment of DFF40-transfected cells with doxorubicin can enhance the killing of these tumor cells via apoptosis. Thus, modulation of DFF40 level may be a beneficial strategy for treatment of chemo-resistant cancers. PMID:26529233

  2. Circulating IgM Requires Plasma Membrane Disruption to Bind Apoptotic and Non-Apoptotic Nucleated Cells and Erythrocytes

    PubMed Central

    Hesketh, Emily E.; Dransfield, Ian; Kluth, David C.; Hughes, Jeremy

    2015-01-01

    Autoimmunity is associated with defective phagocytic clearance of apoptotic cells. IgM deficient mice exhibit an autoimmune phenotype consistent with a role for circulating IgM antibodies in apoptotic cell clearance. We have extensively characterised IgM binding to non-apoptotic and apoptotic mouse thymocytes and human Jurkat cells using flow cytometry, confocal imaging and electron microscopy. We demonstrate strong specific IgM binding to a subset of Annexin-V (AnnV)+PI (Propidium Iodide)+ apoptotic cells with disrupted cell membranes. Electron microscopy studies indicated that IgM+AnnV+PI+ apoptotic cells exhibited morphologically advanced apoptosis with marked plasma membrane disruption compared to IgM-AnnV+PI+ apoptotic cells, suggesting that access to intracellular epitopes is required for IgM to bind. Strong and comparable binding of IgM to permeabilised non-apoptotic and apoptotic cells suggests that IgM bound epitopes are 'apoptosis independent' such that IgM may bind any cell with profound disruption of cell plasma membrane integrity. In addition, permeabilised erythrocytes exhibited significant IgM binding thus supporting the importance of cell membrane epitopes. These data suggest that IgM may recognize and tag damaged nucleated cells or erythrocytes that exhibit significant cell membrane disruption. The role of IgM in vivo in conditions characterized by severe cell damage such as ischemic injury, sepsis and thrombotic microangiopathies merits further exploration. PMID:26121639

  3. Anti-cancer effects of deguelin on human leukemia K562 and K562/ADM cells In Vitro.

    PubMed

    Wu, Qiuling; Chen, Yan; Liu, Hongli; He, Jing

    2007-04-01

    In order to investigate the anti-cancer effects of deguelin and on K562 and K562/ADM cells in vitro and the underlying molecular mechanism and compare the cytotoxicity of deguelin on K562, K562/ADM cells and human peripheral blood mononuclear cells (PBMCs). The effects of deguelin on cell proliferation were assessed by MTT assay. Apoptosis were detected by Annexin V/PI double-labeled cytometry. The effects of deguelin on the cell cycle were studied by a propidium iodide method. Our study showed that deguelin inhibited the proliferation of K562 cell and K562/ADM cell in a time- and dose-dependent manner and had minimal effects on normal human peripheral blood mononuclear cells. The ratio of IC(50) value of deguelin of 24 h on K562/ADM cells to K562 cells was only 1.27, which was significantly lower than the ratio of IC(50) value of ADM (higher than 20). Deguelin could induce apoptosis of K562 cells and K562/ADM cells. K562 cells were arrested at G(2)/M phase while K562/ADM cells were arrested at G(0)/G(1) phase. Our results suggested that deguelin was a novel anti-leukemia agents with high efficacy and low toxicity and it is also a promising agent for reversing drug resistance. PMID:17497282

  4. Effect of Sterols Isolated from Myrtillocactus geometrizans on Growth Inhibition of Colon and Breast Cancer Cells

    PubMed Central

    Bolaños-Carrillo, Mario Augusto; Ventura-Gallegos, Jose Luis; Saldivar-Jiménez, Arturo David; Zentella-Dehesa, Alejandro; Martínez-Vázquez, Mariano

    2015-01-01

    Objective. To explore the effect of peniocerol and macdougallin on HCT-15 and MCF-7 cells proliferation, cell cycle, apoptosis, and PARP cleavage. Methods. HCT-15 and MCF-7 cells were treated with various concentrations of peniocerol and macdougallin (10–80??M) during 24 or 48?h. Crystal Violet Assay was used to evaluate the inhibition effect. Cell cycle regulation was examined by a propidium iodide method. Cell apoptosis was detected through both Annexin–V FLUOS/PI double-labeled cytometry assays and Western blot was applied to assess PARP cleavage. Results. Peniocerol and macdougallin induced growth inhibition and apoptosis in vitro in a time- and dose-dependent manner. Moreover, peniocerol and macdougallin induced arrest of cell cycle-dependent manner and increased the proportion of cells in G0/G1 phase. PARP cleavage in HCT-15 and MCF-7 cells was induced by treatment with peniocerol and macdougallin after 36 hours. Conclusions. Our results showed that the mechanism of cytotoxicity displayed by peniocerol and macdougallin is related to cell cycle arrest and apoptosis in both cell lines. This is a significant observation because it helps to understand the way some oxysterols isolated from Myrtillocactus geometrizans develop their biological activities against cancer cells. PMID:26113867

  5. Novel Cell Preservation Technique to Extend Bovine In Vitro White Blood Cell Viability

    PubMed Central

    Laurin, Emilie L.; McKenna, Shawn L. B.; Sanchez, Javier; Bach, Horacio; Rodriguez-Lecompte, Juan Carlos; Chaffer, Marcelo; Keefe, Greg P.

    2015-01-01

    Although cell-mediated immunity based diagnostics can be integral assays for early detection of various diseases of dairy cows, processing of blood samples for these tests is time-sensitive, often within 24 hours of collection, to maintain white blood cell viability. Therefore, to improve utility and practicality of such assays, the objective of this study was to assess the use of a novel white blood cell preservation technology in whole bovine blood. Blood samples from ten healthy cows were each divided into an unpreserved control sample and a test sample preserved with commercially-available cell transport medium. Samples were maintained at room temperature and stimulated with the mitogens pokeweed and concanavalinA, as well as with interleukin-12 p40. Stimulation was completed on days 1, 5, and 8 post-sampling. Viability of white blood cells was assessed through interferon gamma production determined with a commercial enzyme linked immunosorbent assay. In addition, mononuclear cell viability was assessed with propidium iodide flow cytometry. Greater interferon gamma production was observed on days 5 and 8 post-collection in preserved samples, with both pokeweed and concanavalinA stimulating positive interferon gamma production on day 5 post-collection. A greater proportion of the amount of interferon gamma produced on day 1 continued to be produced on days 5 and 8 post-collection with concanavalinA stimulation (with or without interleukin 12) as compared to pokeweed stimulation. Additionally, viable mononuclear cells were still present at eight days post-collection, with a higher mean proportion detected at days 5 and 8 in all stimulated preserved samples. This practical and simple method to extend in vitro white blood cell viability could benefit the efficient utilization of cell-based blood tests in ruminants. PMID:26447691

  6. Immunosuppressive activity of an aqueous Viola tricolor herbal extract

    PubMed Central

    Sauer, Barbara; Huber, Roman; Gruber, Christian W.; Gründemann, Carsten

    2014-01-01

    Ethnopharmacological relevance Heartsease (Viola tricolor L.), a member of the Violaceae family, has a long history as a medicinal plant and has been documented in the Pharmacopoeia of Europe. Due to its anti-inflammatory properties it is regarded as a traditional remedy against skin diseases, for example for the treatment of scabs, itching, ulcers, eczema or psoriasis, and it is also used in the treatment of inflammation of the lungs and chest such as bronchitis or asthma. Because T-cells play an important role in the pathological process of inflammatory diseases we investigated the effect of an aqueous Viola extract on lymphocyte functions and explored the ‘active’ principle of the extract using bioactivity-guided fractionation. Material and Methods An aqueous Viola extract was prepared by C18 solid-phase extraction. Effects on proliferation of activated lymphocytes (using the cell membrane permeable fluorescein dye CFSE), apoptosis and necrosis (using annexin V and propidium iodide staining), interleukin-2 (IL-2) receptor expression (using fluorochrome-conjugated antibodies) and IL-2 cytokine secretion (using an ELISA-based bead array system) were measured by flow cytometry. Influence on lymphocyte polyfunctionality was characterized by Viola extract-induced production of IFN-? and TNF-?, as well as its influence on lymphocyte degranulation activity. Fractionation and phytochemical analysis of the extract were performed by RP-HPLC and mass spectrometry. Results The aqueous Viola extract inhibited proliferation of activated lymphocytes by reducing IL-2 cytokine secretion without affecting IL-2 receptor expression. Similarly, effector functions were affected as indicated by the reduction of IFN-? and TNF-? production; degranulation capacity of activated lymphocytes remained unaffected. Bioassay-guided fractionation and phytochemical analysis of the extract led to identification of circular plant peptides, so called cyclotides, as bioactive components. Conclusion An aqueous Viola extract contains bioactive cyclotides, which inhibit proliferation of activated lymphocytes in an IL-2 dependent manner. The findings provide a rationale for use of herbal Viola preparations in the therapy of disorders related to an overactive immune system. However, further studies to evaluate its clinical potency and potential risks have to be performed. PMID:24216163

  7. Differential effects of Viscum album extract IscadorQu on cell cycle progression and apoptosis in cancer cells.

    PubMed

    Harmsma, Marjan; Grommé, Monique; Ummelen, Monique; Dignef, Wendy; Tusenius, Karel Jan; Ramaekers, Frans C S

    2004-12-01

    Extracts from European mistletoe or Viscum album L. have been reported to exert cytotoxic and immunomodulatory effects in vitro and in vivo. The mechanism of this anti-tumoral activity is however, largely unknown. In this study we tested the hypothesis that IscadorQu, an aqueous fermented extract from the European mistletoe grown on oaks, induces tumor regression by cell cycle inhibition and/or interference with apoptotic signaling pathways in cancer cells. Also a possible effect on angiogenesis, which is a prerequisite for tumor growth in vivo, is studied in endothelial cell cultures. Furthermore, we examined which apoptotic signaling route is activated by staining cells for specific pro-apoptotic proteins. To characterize these properties, 6 different human cancer cell lines, one epidermis derived cell line and 2 endothelial cell cultures were incubated with different concentrations of IscadorQu. Cell cycle kinetics parameters were measured by bromodeoxyuridine (BrdU) pulse labeling and tubulin staining. Apoptotic responses were detected by M30 CytoDeath or Annexin V/propidium iodide assays. Characterization of the apoptotic pathway was performed by staining cells for active caspase 3, active caspase 8, cytochrome C and chloromethyl-X-rosamine. The results of this study show that sensitivity to IscadorQu treatment varies strongly between different cell lines. In sensitive cell lines, including tumor and endothelial cell cultures, IscadorQu caused early cell cycle inhibition followed by apoptosis in a dose-dependent manner. Apoptosis was induced by activating the mitochondrial but not the death receptor-dependent pathway. PMID:15547686

  8. Luteolin exerts an anticancer effect on NCI-H460 human non-small cell lung cancer cells through the induction of Sirt1-mediated apoptosis

    PubMed Central

    MA, LIPING; PENG, HONGJUN; LI, KUNSHENG; ZHAO, RUNRUN; LI, LI; YU, YILONG; WANG, XIAOMING; HAN, ZHIFENG

    2015-01-01

    Luteolin is a falconoid compound, which exhibits anticancer properties, however, its contribution to Sirt1-mediated apoptosis in human non-small cell lung cancer remains to be elucidated. The present study confirmed that the anticancer effect of luteolin on NCI-H460 cells was through Sirt1-mediated apoptosis. The NCI-H460 cells were treated with different concentrations of luteolin, and a 3-(4,5-dimeth yl-2-thiazolyl)-2,5-diphnyl-2H-tetrazolium bromide assay, cell cycle analysis and annexin-V/fluorescein isothiocyanate and propidium double staining were performed to assess the apoptotic effect of luteolin. Wound healing and Transwell assays were performed to confirm the inhibition of NCI-H460 cell migration. The protein levels of Sirt1 were knocked down in the NCI-H460 cells using a lentivirus to further investigate the role of this protein, and the expression levels of the apoptotic associated proteins, Bad, Bcl-2, Bax, caspase-3 and Sirt1, were measured using western blotting. The results of the present study demonstrated that luteolin exerted an anticancer effect against NCI-H460 cells through Sirt1-mediated apoptosis and the inhibition of cell migration. PMID:26096576

  9. Diarachidonoylphosphoethanolamine induces necrosis/necroptosis of malignant pleural mesothelioma cells.

    PubMed

    Kaku, Yoshiko; Tsuchiya, Ayako; Kanno, Takeshi; Nakano, Takashi; Nishizaki, Tomoyuki

    2015-09-01

    The present study investigated 1,2-diarachidonoyl-sn-glycero-3-phosphoethanolamine (DAPE)-induced cell death in malignant pleural mesothelioma (MPM) cells. DAPE reduced cell viability in NCI-H28, NCI-H2052, NCI-H2452, and MSTO-211H MPM cell lines in a concentration (1-100?M)-dependent manner. In the flow cytometry using propidium iodide (PI) and annexin V (AV), DAPE significantly increased the population of PI-positive and AV-negative cells, corresponding to primary necrosis, and that of PI-positive and AV-positive cells, corresponding to late apoptosis/secondary necrosis, in NCI-H28 cells. DAPE-induced reduction of NCI-H28 cell viability was partially inhibited by necrostatin-1, an inhibitor of RIP1 kinase to induce necroptosis, or knocking-down RIP1. DAPE generated reactive oxygen species (ROS) followed by disruption of mitochondrial membrane potentials in NCI-H28 cells. DAPE-induced mitochondrial damage was attenuated by cyclosporin A, an inhibitor of cyclophilin D (CypD). DAPE did not affect expression and mitochondrial localization of p53 protein in NCI-H28 cells. DAPE significantly decreased intracellular ATP concentrations in NCI-H28 cells. Overall, the results of the present study indicate that DAPE induces necroptosis and necrosis of MPM cells; the former is mediated by RIP1 kinase and the latter is caused by generating ROS and opening CypD-dependent mitochondrial permeability transition pore, to reduce intracellular ATP concentrations. PMID:26004138

  10. Rhein Induces a Necrosis-Apoptosis Switch in Pancreatic Acinar Cells

    PubMed Central

    Zhao, Xianlin; Li, Juan; Zhu, Shifeng; Liu, Yiling; Zhao, Jianlei; Wan, Meihua; Tang, Wenfu

    2014-01-01

    Objectives. The Chinese herbal medicine Da-Cheng-Qi decoction can regulate a necrosis-apoptosis switch in injured pancreatic acinar cells. This study investigated the effects of rhein, a component of this medicine, on a necrosis-apoptosis switch in pancreatic rat AR42J cells. Methods. Cerulein-treated AR42J cells were used. After pretreatment with 479, 119.8, or 29.9??g/L rhein, cells were cocultured with rhein and cerulein (10?8?M) for 4, 8, or 16?h. Apoptosis and necrosis were examined using annexin V and propidium iodide costaining. Mitochondria-dependent apoptosis-associated proteins were examined using enzyme-linked immunosorbent assays and western blotting. Results. Few cells died in untreated samples. The number was significantly higher in 16-h-cerulein-treated samples and treatment with 479??g/L rhein most effectively increased the apoptotic-to-necrotic cell ratio (P < 0.05). In cerulein-treated cells, rhein increased the concentrations of p53, cytochrome C, and caspase-3, and increased the Bax/Bcl-2 ratio in a time- and dose-dependent manner, with the maximum effect in cells treated with 479??g/L rhein for 16?h (P < 0.05). Conclusions. Rhein induces the necrosis-apoptosis switch in injured pancreatic acinar cells in a time- and dose-dependent manner. Mitochondria-dependent apoptosis signaling pathways might play an important role in this effect. PMID:24959186

  11. The Effects of Fenugreek on Radiation Induced Toxicity for Human Blood T-Cells in Radiotherapy.

    PubMed

    Tavakoli, Mohamed Bagher; Kiani, Ali; Roayaei, Mahnaz

    2015-01-01

    Many cellular damages either in normal or cancerous tissues are the outcome of molecular events affected by ionizing radiation. T-cells are the most important among immune system agents and are used for biological radiation dose measurement in recommended standard methods. The herbs with immune modulating properties may be useful to reduce the risk of the damages and subsequently the diseases. The T-cells as the most important immune cells being targeted for biological dosimetry of radiation. This study proposes a flowcytometric-method based on fluorescein isothiocyanate- and propidium iodide (PI)-labeled annexin-V to assess apoptosis in blood T-cells after irradiation in both presence and absence of fenugreek extract. T-cells peripheral blood lymphocyte isolated from blood samples of healthy individuals with no irradiated job background. The media of cultured cells was irradiated 1-h after the fenugreek extract was added. The number of apoptotic cells was assessed by annexin-V protocol and multicolor flowcytometry. An obvious variation in apoptotic cells number was observed in presence of fenugreek extract (>80%). The results suggest that fenugreek extract can potentiate the radiation induced apoptosis or radiation toxicity in blood T-cells (P < 0.05). PMID:26284174

  12. Exercise increases pancreatic ?-cell viability in a model of type 1 diabetes through IL-6 signaling.

    PubMed

    Paula, Flavia M M; Leite, Nayara C; Vanzela, Emerielle C; Kurauti, Mirian A; Freitas-Dias, Ricardo; Carneiro, Everardo M; Boschero, Antonio C; Zoppi, Claudio C

    2015-05-01

    Type 1 diabetes (T1D) is provoked by an autoimmune assault against pancreatic ? cells. Exercise training enhances ?-cell mass in T1D. Here, we investigated how exercise signals ? cells in T1D condition. For this, we used several approaches. Wild-type and IL-6 knockout (KO) C57BL/6 mice were exercised. Afterward, islets from control and trained mice were exposed to inflammatory cytokines (IL-1? plus IFN-?). Islets from control mice and ?-cell lines (INS-1E and MIN6) were incubated with serum from control or trained mice or medium obtained from 5-aminoimidazole-4 carboxamide1-?-d-ribofuranoside (AICAR)-treated C2C12 skeletal muscle cells. Subsequently, islets and ? cells were exposed to IL-1? plus IFN-?. Proteins were assessed by immunoblotting, apoptosis was determined by DNA-binding dye propidium iodide fluorescence, and NO(•) was estimated by nitrite. Exercise reduced 25, 75, and 50% of the IL-1? plus IFN-?-induced iNOS, nitrite, and cleaved caspase-3 content, respectively, in pancreatic islets. Serum from trained mice and medium from AICAR-treated C2C12 cells reduced ?-cell death, induced by IL-1? plus IFN-? treatment, in 15 and 38%, respectively. This effect was lost in samples treated with IL-6 inhibitor or with serum from exercised IL-6 KO mice. In conclusion, muscle contraction signals ?-cell survival in T1D through IL-6. PMID:25609426

  13. Psoralen/UV inactivation of HIV-1-infected cells for use in cytologic and immunologic procedures

    SciTech Connect

    Watson, A.J.; Klaniecki, J.; Hanson, C.V. )

    1990-04-01

    A rapid procedure for the inactivation of HIV-1-infected cells using psoralen and ultraviolet (UV) light is described. Exposure of HIV-1-infected cells to 5 micrograms/ml psoralen followed by UV irradiation (320-380 nm) for 5 minutes yields cells that are noninfectious as assessed by extended infectivity assays. The psoralen/UV inactivation procedure described is effective with cells chronically or acutely infected with HIV-1 and is unaffected by cell densities up to 12 x 10(6)/ml. At 5 micrograms/ml psoralen does little damage to cellular permeability as shown by the ability of treated cells to exclude trypan blue and propidium iodide. Psoralen/UV treatment of HIV-1-infected cells does not cause a significant decrease in the reactivity of HIV-1 core and envelope antigens or cellular antigens to monoclonal antibodies. Experiments are presented demonstrating the use of these cells for flow cytometry studies and for cell surface labeling using the lactoperoxidase {sup 125}I iodination procedure.

  14. Cell-death assessment by fluorescent and nonfluorescent cytosolic and nuclear staining techniques.

    PubMed

    Atale, N; Gupta, S; Yadav, U C S; Rani, V

    2014-07-01

    Apoptosis, a genetically programmed cellular event leads to biochemical and morphological changes in cells. Alterations in DNA caused by several factors affect nucleus and ultimately the entire cell leading to compromised function of the organ and organism. DNA, a master regulator of the cellular events, is an important biomolecule with regards to cell growth, cell death, cell migration and cell differentiation. It is therefore imperative to develop the staining techniques that may lead to visualize the changes in nucleus where DNA is housed, to comprehend the cellular pathophysiology. Over the years a number of nuclear staining techniques such as propidium iodide, Hoechst-33342, 4', 6-diamidino-2-phenylindole (DAPI), Acridine orange-Ethidium bromide staining, among others have been developed to assess the changes in DNA. Some nonnuclear staining techniques such as Annexin-V staining, which although does not stain DNA, but helps to identify the events that result from DNA alteration and leads to initiation of apoptotic cell death. In this review, we have briefly discussed some of the most commonly used fluorescent and nonfluorescent staining techniques that identify apoptotic changes in cell, DNA and the nucleus. These techniques help in differentiating several cellular and nuclear phenotypes that result from DNA damage and have been identified as specific to necrosis or early and late apoptosis as well as scores of other nuclear deformities occurring inside the cells. PMID:24831993

  15. Cytotoxicity of Cyclodipeptides from Pseudomonas aeruginosa PAO1 Leads to Apoptosis in Human Cancer Cell Lines

    PubMed Central

    Vázquez-Rivera, Dolores; González, Omar; Guzmán-Rodríguez, Jaquelina; Díaz-Pérez, Alma L.; Ochoa-Zarzosa, Alejandra; López-Bucio, José; Meza-Carmen, Víctor; Campos-García, Jesús

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen of plants and animals, which produces virulence factors in order to infect or colonize its eukaryotic hosts. Cyclodipeptides (CDPs) produced by P. aeruginosa exhibit cytotoxic properties toward human tumor cells. In this study, we evaluated the effect of a CDP mix, comprised of cyclo(L-Pro-L-Tyr), cyclo(L-Pro-L-Val), and cyclo(L-Pro-L-Phe) that were isolated from P. aeruginosa, on two human cancer cell lines. Our results demonstrated that the CDP mix promoted cell death in cultures of the HeLa cervical adenocarcinoma and Caco-2 colorectal adenocarcinoma cell lines in a dose-dependent manner, with a 50% inhibitory concentration (IC50) of 0.53 and 0.66?mg/mL, for HeLa and Caco-2 cells, respectively. Flow cytometric analysis, using annexin V and propidium iodide as apoptosis and necrosis indicators, respectively, clearly showed that HeLa and Caco-2 cells exhibited apoptotic characteristics when treated with the CDP mix at a concentration <0.001?mg/mL. IC50 values for apoptotic cells in HeLa and Caco-2 cells were 6.5?×?10?5 and 1.8?×?10?4?mg/mL, respectively. Our results indicate that an apoptotic pathway is involved in the inhibition of cell proliferation caused by the P. aeruginosa CDP mix. PMID:25821788

  16. TRIM72 is required for effective repair of alveolar epithelial cell wounding

    PubMed Central

    Kim, Seong Chul; Kellett, Thomas; Wang, Shaohua; Nishi, Miyuki; Nagre, Nagaraja; Zhou, Beiyun; Flodby, Per; Shilo, Konstantin; Ghadiali, Samir N.; Takeshima, Hiroshi; Hubmayr, Rolf D.

    2014-01-01

    The molecular mechanisms for lung cell repair are largely unknown. Previous studies identified tripartite motif protein 72 (TRIM72) from striated muscle and linked its function to tissue repair. In this study, we characterized TRIM72 expression in lung tissues and investigated the role of TRIM72 in repair of alveolar epithelial cells. In vivo injury of lung cells was introduced by high tidal volume ventilation, and repair-defective cells were labeled with postinjury administration of propidium iodide. Primary alveolar epithelial cells were isolated and membrane wounding and repair were labeled separately. Our results show that absence of TRIM72 increases susceptibility to deformation-induced lung injury whereas TRIM72 overexpression is protective. In vitro cell wounding assay revealed that TRIM72 protects alveolar epithelial cells through promoting repair rather than increasing resistance to injury. The repair function of TRIM72 in lung cells is further linked to caveolin 1. These data suggest an essential role for TRIM72 in repair of alveolar epithelial cells under plasma membrane stress failure. PMID:25106429

  17. The Effects of Fenugreek on Radiation Induced Toxicity for Human Blood T-Cells in Radiotherapy

    PubMed Central

    Tavakoli, Mohamed Bagher; Kiani, Ali; Roayaei, Mahnaz

    2015-01-01

    Many cellular damages either in normal or cancerous tissues are the outcome of molecular events affected by ionizing radiation. T-cells are the most important among immune system agents and are used for biological radiation dose measurement in recommended standard methods. The herbs with immune modulating properties may be useful to reduce the risk of the damages and subsequently the diseases. The T-cells as the most important immune cells being targeted for biological dosimetry of radiation. This study proposes a flowcytometric-method based on fluorescein isothiocyanate- and propidium iodide (PI)-labeled annexin-V to assess apoptosis in blood T-cells after irradiation in both presence and absence of fenugreek extract. T-cells peripheral blood lymphocyte isolated from blood samples of healthy individuals with no irradiated job background. The media of cultured cells was irradiated 1-h after the fenugreek extract was added. The number of apoptotic cells was assessed by annexin-V protocol and multicolor flowcytometry. An obvious variation in apoptotic cells number was observed in presence of fenugreek extract (>80%). The results suggest that fenugreek extract can potentiate the radiation induced apoptosis or radiation toxicity in blood T-cells (P < 0.05). PMID:26284174

  18. Microscopic elucidation of abundant endophytic bacteria colonizing the cell wall–plasma membrane peri-space in the shoot-tip tissue of banana

    PubMed Central

    Thomas, Pious; Reddy, Krishna M.

    2013-01-01

    This study was aimed at generating microscopic evidence of intra-tissue colonization in banana in support of the previous findings on widespread association of endophytic bacteria with the shoot tips of field-grown plants and micropropagated cultures, and to understand the extent of tissue colonization. Leaf-sheath tissue sections (?50–100 µm) from aseptically gathered shoot tips of cv. Grand Naine were treated with Live/Dead bacterial viability kit components SYTO 9 (S9) and propidium iodide (PI) followed by epifluorescence or confocal laser scanning microscopy (CLSM). The S9, which targets live bacteria, showed abundant green-fluorescing particles along the host cell periphery in CLSM, apparently in between the plasma membrane and the cell wall. These included non-motile and occasional actively motile single bacterial cells seen in different x–y planes and z-stacks over several cell layers, with the fluorescence signal similar to that of pure cultures of banana endophytes. Propidium iodide, which stains dead bacteria, did not detect any, but post-ethanol treatment, both PI and 4?,6-diamidino-2-phenylindole detected abundant bacteria. Propidium iodide showed clear nuclear staining, as did S9 to some extent, and the fluorophores appeared to detect bacteria at the exclusion of DNA-containing plant organelles as gathered from bright-field and phase-contrast microscopy. The S9–PI staining did not work satisfactorily with formalin- or paraformaldehyde-fixed tissue. The extensive bacterial colonization in fresh tissue was further confirmed with the suckers of different cultivars, and was supported by transmission electron microscopy. This study thus provides clear microscopic evidence of the extensive endophytic bacterial inhabitation in the confined cell wall–plasma membrane peri-space in shoot tissue of banana with the organisms sharing an integral association with the host. The abundant tissue colonization suggests a possible involvement of endophytes in the biology of the host besides recognizing cell wall–plasma membrane peri-space as a major niche for plant-associated bacteria.

  19. Are Early Somatic Embryos of the Norway Spruce (Picea abies (L.) Karst.) Organised?

    PubMed Central

    Petrek, Jiri; Zitka, Ondrej; Adam, Vojtech; Bartusek, Karel; Anjum, Naser A.; Pereira, Eduarda; Havel, Ladislav; Kizek, Rene

    2015-01-01

    Background Somatic embryogenesis in conifer species has great potential for the forestry industry. Hence, a number of methods have been developed for their efficient and rapid propagation through somatic embryogenesis. Although information is available regarding the previous process-mediated generation of embryogenic cells to form somatic embryos, there is a dearth of information in the literature on the detailed structure of these clusters. Methodology/Principal Findings The main aim of this study was to provide a more detailed structure of the embryogenic tissue clusters obtained through the in vitro propagation of the Norway spruce (Picea abies (L.) Karst.). We primarily focused on the growth of early somatic embryos (ESEs). The data on ESE growth suggested that there may be clear distinctions between their inner and outer regions. Therefore, we selected ESEs collected on the 56th day after sub-cultivation to dissect the homogeneity of the ESE clusters. Two colourimetric assays (acetocarmine and fluorescein diacetate/propidium iodide staining) and one metabolic assay based on the use of 2,3,5-triphenyltetrazolium chloride uncovered large differences in the metabolic activity inside the cluster. Next, we performed nuclear magnetic resonance measurements. The ESE cluster seemed to be compactly aggregated during the first four weeks of cultivation; thereafter, the difference between the 1H nuclei concentration in the inner and outer clusters was more evident. There were clear differences in the visual appearance of embryos from the outer and inner regions. Finally, a cluster was divided into six parts (three each from the inner and the outer regions of the embryo) to determine their growth and viability. The innermost embryos (centripetally towards the cluster centre) could grow after sub-cultivation but exhibited the slowest rate and required the longest time to reach the common growth rate. To confirm our hypothesis on the organisation of the ESE cluster, we investigated the effect of cluster orientation on the cultivation medium and the influence of the change of the cluster’s three-dimensional orientation on its development. Maintaining the same position when transferring ESEs into new cultivation medium seemed to be necessary because changes in the orientation significantly affected ESE growth. Conclusions and Significance This work illustrated the possible inner organisation of ESEs. The outer layer of ESEs is formed by individual somatic embryos with high metabolic activity (and with high demands for nutrients, oxygen and water), while an embryonal group is directed outside of the ESE cluster. Somatic embryos with depressed metabolic activity were localised in the inner regions, where these embryonic tissues probably have a very important transport function. PMID:26624287

  20. Formation of 5-aminolevulinic-acid (ALA) induced protoporphyrin IX (PPIX) and photodynamic effectiveness in human urothelial cell lines

    NASA Astrophysics Data System (ADS)

    Seidl, Juergen; Krieg, Rene C.; Rauch, Joachim; Waidelich, Raphaela M.; Stepp, Herbert G.; Knuechel, Ruth

    2001-01-01

    Background: To optimize differential effectiveness of aminulevulinic acid (ALA)-induced protoporphyrin IX (PPIX)- mediated photodynamic therapy (PDT) on normal and tumor urothelial cells, aspects of PPIX formation and parameters responsible for treatment efficiency were examined in vitro. Material and Methods: Plateau phase cells of a bladder cancer and a normal urothelial cell line were incubated using various incubation conditions and analyzed with respect to their PPIX content and cellular sensitizer distribution. PDT was performed using incoherent light from a Xenon coldlight projector. Photo toxicity was investigated using flow cytometric analysis of propidium iodide exclusion and analysis of cell size and number. Results: Following 3h incubation intervals, both cell lines showed similar PPIX localization with an amount of sensitizer three times higher in RT4 tumor cells. 1h incubation times resulted in the same ratio of PPIX amount but lead to different cellular PPIX distribution. After 3h incubation, PDT resulted in complete tumor cell kill accomplished by a marked fraction of damaged normal urothelial cells. TR4 cell kill with significantly reduced damage of UROtsa cells could be achieved using 1h incubation times. Discussion: Besides sensitizer amount, cellular localization is crucial for PDT effectiveness. Differential effectiveness of tumor and normal cells can be enhanced utilizing the finding of different PPIX distribution after short incubation times.

  1. Natural Killer Cells Induce Eosinophil Activation and Apoptosis

    PubMed Central

    Awad, Ali; Yassine, Hanane; Barrier, Mathieu; Vorng, Han; Marquillies, Philippe; Tsicopoulos, Anne; Duez, Catherine

    2014-01-01

    Eosinophils are potent inflammatory cells with numerous immune functions, including antigen presentation and exacerbation of inflammatory responses through their capacity to release a range of largely preformed cytokines and lipid mediators. Thus, timely regulation of eosinophil activation and apoptosis is crucial to develop beneficial immune response and to avoid tissue damage and induce resolution of inflammation. Natural Killer (NK) cells have been reported to influence innate and adaptive immune responses by multiple mechanisms including cytotoxicity against other immune cells. In this study, we analyzed the effect of the interaction between NK cells and eosinophils. Co-culture experiments revealed that human NK cells could trigger autologous eosinophil activation, as shown by up-regulation of CD69 and down-regulation of CD62L, as well as degranulation, evidenced by increased CD63 surface expression, secretion of eosinophil cationic protein (ECP) and eosinophil derived neurotoxin (EDN). Moreover, NK cells significantly and dose dependently increased eosinophil apoptosis as shown by annexin V and propidium iodide (PI) staining. Direct contact was necessary for eosinophil degranulation and apoptosis. Increased expression of phosphorylated extracellular signal-regulated kinase (ERK) in cocultured eosinophils and inhibition of eosinophil CD63 expression by pharmacologic inhibitors suggest that MAPK and PI3K pathways are involved in NK cell-induced eosinophil degranulation. Finally, we showed that NK cells increased reactive oxygen species (ROS) expression by eosinophils in co-culture and that mitochondrial inhibitors (rotenone and antimycin) partially diminished NK cell-induced eosinophil apoptosis, suggesting the implication of mitochondrial ROS in NK cell-induced eosinophil apoptosis. Pan-caspase inhibitor (ZVAD-FMK) only slightly decreased eosinophil apoptosis in coculture. Altogether, our results suggest that NK cells regulate eosinophil functions by inducing their activation and their apoptosis. PMID:24727794

  2. Lipid biomarkers of glioma cell growth arrest and cell death detected by 1 H magic angle spinning MRS.

    PubMed

    Mirbahai, Ladan; Wilson, Martin; Shaw, Christopher S; McConville, Carmel; Malcomson, Roger D G; Kauppinen, Risto A; Peet, Andrew C

    2012-11-01

    Biomarkers of early response to treatment have the potential to improve cancer therapy by allowing treatment to be tailored to the individual. Alterations in lipids detected by in vivo MRS have been suggested as noninvasive biomarkers of cell stress and early indicators of cell death. An improved understanding of the relationship between MRS lipids and cell stress in vitro would aid in the translation of this technique into clinical use. Rat BT4C glioma cells were treated with 50 µ m cis-dichlorodiammineplatinum II (cisplatin), a commonly used chemotherapeutic agent, and harvested at several time points up to 72 h. High-resolution magic angle spinning (1) H MRS of cells was then performed on a 600-MHz NMR spectrometer. The metabolites were quantified using a time domain fitting method, TARQUIN. Increases were detected in saturated and polyunsaturated fatty acid resonances early during the exposure to cisplatin. The fatty acid CH(2) /CH(3) ratio was unaltered by treatment after allowing for contributions of macromolecules. Polyunsaturated fatty acids increased on treatment, with the group -CH=CH-CH(2) -CH=CH- accounting for all the unsaturated fatty acid signals. Transmission electron microscopy, in addition to Nile red and 4',6-diamino-2-phenylindole co-staining, revealed that the lipid increase was associated with cytoplasmic neutral lipid droplets. Small numbers of apoptotic and necrotic cells were detected by trypan blue, annexin V-fluorescein isothiocyanate-labelled flow cytometry and DNA laddering after up to 48 h of cisplatin exposure. Propidium iodide flow cytometry revealed that cells accumulated in the G1 stage of the cell growth cycle. In conclusion, an increase in the size of the lipid droplets is detected in morphologically viable cells during cisplatin exposure. (1) H MRS can detect lipid alterations during cell cycle arrest and progression of cell death, and has the potential to provide a noninvasive biomarker of treatment efficacy in vivo. PMID:22407940

  3. Polysaccharide of Boschniakia rossica induces apoptosis on laryngeal carcinoma Hep2 cells.

    PubMed

    Wang, Zhenghui; Lu, Chuangxin; Wu, Caiqin; Xu, Min; Kou, Xiaohui; Kong, Demin; Jing, Gangli

    2014-02-15

    The aim of this study was to explore the anti-tumor potential of a polysaccharide isolated from Boschniakia rossica (BRP) in Hep2 human larynx squamous carcinoma cells. High performance size-exclusion chromatography analysis showed that BRP was a homogeneous polysaccharide and had a molecular weight of 22 kDa. Total carbohydrate content in BRP was determined to be 96.9%, without the presence of protein and nucleic acid. BRP suppressed the proliferation of Hep2 cells in a time- and dose-dependent manner. Cell cycle analysis revealed that exposure to BRP (200 ?g/ml) caused a G0/G1 cell cycle arrest in Hep2 cells. Moreover, treatment with BRP at 100-400 ?g/ml for 24h induced a significant apoptosis Hep2 cells compared to untreated control cells, as determined by flow cytometry with annexin-V/propidium iodide double staining. Additionally, BRP treatment promoted the cleavage of pro-caspase-3, pro-caspase-8, and pro-caspase-9, coupled with increased expression of death receptor DR5 and Bax and reduced expression of Bcl-2. Taken together, our data demonstrate that BRP shows potent anti-tumor activity in human larynx squamous carcinoma, largely through induction of G0/G1 cell cycle arrest and apoptosis. Activation of both mitochondria-mediated and death receptor-mediated apoptosis pathways is involved in the cytotoxicity of BRP. PMID:24334128

  4. The furano norclerodane diterpenoid disobulbin-D induces apoptosis in normal human liver L-02 cells.

    PubMed

    Ma, Min; Jiang, Zhenzhou; Ruan, Jinlan; Tan, Xinqi; Liu, Jin; Wang, Cuifen; Zha, Xiao Ming; Zhang, Luyong

    2012-09-01

    Disobulbin-D (DBD), a hepatotoxic furano norclerodane diterpenoid, was isolated by bio-guided fractionation from the rhizome of Dioscorea bulbifera L. In working toward elucidating the cellular and molecular mechanisms of DBD toxicity, we treated normal human liver cell line L-02 cells with DBD in vitro and evaluated its toxicity in terms of cell viability, morphologic changes, induction of apoptosis/necrosis, and caspase 3 activity. The viability of L-02 cells was inhibited by DBD in a concentration and time-dependent manner. Apoptosis was supported by the Annexin V and propidium iodide assay, Hoechst 33258 staining, and the occurrence of a sub-G(1) peak. DBD can cause an increase in caspase 3 activity, and pretreatment with Ac-DEVD-CHO blocked cell death and attenuated the apoptosis, showing that DBD-induced L-02 cell apoptosis is caspase 3-dependent. These results suggest that the effects of DBD on the growth of normal human liver L-02 cells may be due to its induction of cell apoptosis, which may also explain the toxicity observed in the plants containing furano clerodane diterpenoids. PMID:21211949

  5. Synergistic antiangiogenic activity of tetrandrine combined with Endostar on the human umbilical vein endothelial cell model.

    PubMed

    Qian, Xiaoping; Yan, Bo; Zhou, Xuefei; Xie, Li; Wei, Jia; Li, Rutian; Yu, Lixia; Liu, Baorui

    2013-06-01

    Endostar was approved for the treatment of cancer as an antiangiogenic agent with limited therapeutic effects used alone in cancer treatment. Tetrandrine (TET) has a variety of nontumor-related effects and anticancer effects, including antiangiogenic effects. This study was designed to explore the interaction of Endostar and TET. Antiproliferative effects of TET combined with Endostar on human umbilical vein endothelial cells (HUVECs) and the human colon cancer cell line LoVo were evaluated by the 3-(4,5-dimethylthiazol-2-y)-2,5-diphenylterazolium bromide (MTT) assays. The effects on HUVEC migration and tube formation of TET plus Endostar were observed by the transwell test and tube formation assay. Refer to the mechanisms of the cell proliferation inhibition effect caused by the two drugs: apoptosis assay and cell cycle analysis of HUVECs were analyzed by Annexin V-fluorescein isothiocyanate (FITC) and propidium iodide (PI) staining, followed by flow cytometry. The combination of TET and Endostar had a synergistic effect on the antiproliferation of HUVECs and LoVo cells. Further, all these antiangiogenic effects such as inhibition of cell migration, suppression of tube formation, induction of cell apoptosis, and cell cycle arrest were enhanced when HUVECs were treated with TET combined with Endostar. Thus, we identified that there was a synergistic antiangiogenic effect in vitro when combining TET with Endostar. PMID:23682584

  6. Involvement of SRC-3 in deguelin-induced apoptosis in Jurkat cells.

    PubMed

    Li, Rui; Chen, Yan; Shu, Wen-xiu; Chen, Zi; Ke, Wen-juan

    2009-06-01

    The aim of the study was to investigate the anticancer effects and the molecular mechanisms of deguelin on Jurkat cells. Cell viability was assessed by MTT assay. Terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL) assay and transmission electron microscopy were used to detect cell apoptosis. A propidium iodide method was used to study cell cycle distribution. RT-PCR and Western blotting were employed to assess the expression levels of steroid receptor coactivator-3 (SRC-3), nuclear factor-kappaB (NF-kappaB) and some apoptosis related genes, including Bcl-2 and Bcl-xL. Deguelin was able to inhibit cell proliferation by a cell-cycle arrest in the G(1)/G(0) phase and induce apoptosis in Jurkat cells in vitro, with a 24-h IC(50) value of 43.73 +/- 0.35 nmol/L. The antileukemia effect of deguelin might be correlated well with the downregulation of the expression of SRC-3 and its related transcription factor NF-kappaB, which thus influenced the expression of apoptosis related genes Bcl-2 and Bcl-xL. Deguelin presented potent effects on growth arrest and apoptosis induction in Jurkat cells in vitro via the interruption of SRC-3. PMID:19365708

  7. Inhibitory effects of capsaicin on hepatic stellate cells and liver fibrosis.

    PubMed

    Yu, Fu-Xiang; Teng, Yin-Yan; Zhu, Qian-Dong; Zhang, Qi-Yu; Tang, Yin-He

    2014-10-01

    Hepatic stellate cells (HSCs) play an important role in the process of liver fibrosis. In this study, we investigated the inhibitory effects of capsaicin on HSCs and liver fibrosis. Cultured HSCs were incubated with various concentrations of capsaicin. Cell proliferation was examined using a cell counting kit. Production of hydrogen peroxide was determined using a 2',7'-dichlorofluorescin diacetate (DCFH-DA) assay. The mRNA and protein expression of target genes was analyzed by reverse transcription PCR and Western blot analysis, respectively. Cell apoptosis was evaluated by annexin V-FITC and propidium iodide (PI) costaining followed by flow cytometric analysis. A CCl4 rat liver fibrosis model was used to assess in vivo effects of capsaicin by histological examination and measurement of liver fibrosis markers, including hydroxyproline content, serum type III collagen, and hyaluronic acid (HA) levels. Our results show that capsaicin dose-dependently inhibited cell proliferation, suppressed cell activation, and decreased hydrogen peroxide production in cultured HSCs. Capsaicin reduced the mRNA levels of tissue inhibitors of metalloproteinase 1 (TIMP-1) and transforming growth factor-?1 (TGF-?1) in HSCs. Moreover, capsaicin-induced cell apoptosis was associated with increased expression of Bax, cytochrome c (cyt c), and caspase-3, but reduced levels of Bcl-2. The animal studies further revealed that capsaicin efficiently reduced the extent of liver fibrosis, inhibited HSC proliferation, and promoted cell apoptosis. Our findings suggest that capsaicin might inhibit fibrogenesis by inhibiting the activities of HSCs. PMID:25289759

  8. Effect of stent coating alone on in vitro vascular smooth muscle cell proliferation and apoptosis.

    PubMed

    Curcio, Antonio; Torella, Daniele; Cuda, Giovanni; Coppola, Carmela; Faniello, Maria Concetta; Achille, Francesco; Russo, Viviana G; Chiariello, Massimo; Indolfi, Ciro

    2004-03-01

    Synthetic polymers, like methacrylate (MA) compounds, have been clinically introduced as inert coatings to locally deliver drugs that inhibit restenosis after stent. The aim of the present study was to evaluate the effects of MA coating alone on vascular smooth muscle cell (VSMC) growth in vitro. Stainless steel stents were coated with MA at the following doses: 0.3, 1.5, and 3 ml. Uncoated/bare metal stents were used as controls. VSMCs were cultured in dishes, and a MA-coated stent or an uncoated bare metal stent was gently added to each well. VSMC proliferation was assessed by bromodeoxyuridine (BrdU) incorporation. Apoptosis was analyzed by three distinct approaches: 1) annexin V/propidium iodide fluorescence detection; 2) DNA laddering; and 3) caspase-3 activation and PARP cleavage. MA-coated stents induced a significant decrease of BrdU incorporation compared with uncoated stents at both the low and high concentrations. In VSMCs incubated with MA-coated stents, annexin V/propidium iodide fluorescence detection showed a significant increase in apoptotic cells, which was corroborated by the typical DNA laddering. Apoptosis of VSMCs after incubation with MA-coated stents was characterized by caspase-3 activation and PARP cleavage. The MA-coated stent induced VSMC growth arrest by inducing apoptosis in a dose-dependent manner. Thus MA is not an inert platform for eluting drugs because it is biologically active per se. This effect should be taken in account when evaluating an association of this coating with antiproliferative agents for in-stent restenosis prevention. PMID:14592937

  9. Induction of marked apoptosis in mammalian cancer cell lines by antisense DNA treatment to abolish expression of DENN (differentially expressed in normal and neoplastic cells).

    PubMed

    Lim, K M; Chow, Vincent T K

    2002-11-01

    We previously reported the isolation of the novel human DENN gene, which is differentially expressed in normal and neoplastic cells. DENN is identical to MADD (mitogen-activated protein kinase-activating death domain), which interacts with tumor necrosis factor receptor 1 through their death domains. DENN is also homologous to Rab3 GEP, a rat Rab3 GDP/GTP exchange protein. Real-time reverse transcription-polymerase chain reaction analysis showed that DENN expression in cancer cell lines was 26-50 times that in normal cells. The Jurkat human leukemia, PLC/PRF/5 human hepatoma, and NS-1 mouse myeloma cell lines as well as the MRC-5 human fetal lung and Vero monkey kidney cell lines were treated successfully with four separate DENN-targeted antisense oligodeoxynucleotides (ODNs) to abrogate DENN expression. Quantitative assessment of cell viability and apoptosis by flow cytometry via fluorescein diacetate and propidium iodide membrane-integrity tests, terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphosphate-biotin nick end-labeling, and annexin V assays showed that antisense silencing of DENN resulted in markedly more pronounced cell death in cancer cells compared with nonmalignant cells. Antisense-treated cell lines exhibited extensive loss of DNA content, forming distinct sub-G(1) peaks, while cell proliferation diminished significantly. Ultrastructural features of programmed cell death in cells subjected to antisense ODNs were authenticated by electron microscopy. In contrast, transfection of cell lines with a plasmid construct to achieve DENN overexpression augmented cellular proliferation and could reverse the apoptotic effect of antisense and staurosporine treatment. Our findings suggest that DENN is intimately involved in anti-apoptotic and cell-survival processes. PMID:12410563

  10. High-throughput optical injection of mammalian cells using a non-diffracting beam in a microfluidic platform

    NASA Astrophysics Data System (ADS)

    Rendall, Helen A.; Marchington, Robert F.; Praveen, Bavishna B.; Bergmann, Gerald; Arita, Yoshihiko; Heisterkamp, Alexander; Gunn-Moore, Frank J.; Dholakia, Kishan

    2013-03-01

    Femtosecond photoporation is an optical, non-invasive method of injecting membrane impermeable substances contained within the surrounding medium into cells. The technique typically addresses individual cells in a static monolayer. While this gives excellent selectivity, it can be time consuming or impractical to treat larger samples. We build on previous work using a microfluidic platform, which allows for a suspension of cells to be dosed with femtosecond light as they flow through a microfluidic channel. A reusuable quartz chip is designed with an 's'-bend with facilitates the delivery of a 'non-diffracting' femtosecond Bessel beam along the centre of the channel. By implementing off-chip hydrodynamic focusing, cells are confined to the central region of the channel and pass along the Bessel beam core where they are photoporated. This new parallel approach allows for higher flow rates to be used compared to the previous, orthogonal, design whilst maintaining the necessary dwell time in the Bessel beam core. Optical injection of the cell membrane impermeable stain propidium iodide has been successful with two cell lines. These have yielded viable injection efficiencies of 31.0+/-9.5% Chinese hamster ovary cells (CHO-K1) and 20.4+/-4.2% human promyelocytic cells (HL60) with a cell throughput of up to 10 cells/second. This marks an order of magnitude increase compared to the previous microfluidic design.

  11. Multidrug-resistant hela cells overexpressing MRP1 exhibit sensitivity to cell killing by hyperthermia: Interactions with etoposide

    SciTech Connect

    Souslova, Tatiana; Averill-Bates, Diana A. . E-mail: averill.diana@uqam.ca

    2004-12-01

    Purpose: Multidrug resistance (MDR) remains one of the primary obstacles in cancer chemotherapy and often involves overexpression of drug efflux transporters such as P-glycoprotein and multidrug resistance protein 1 (MRP1). Regional hyperthermia is undergoing clinical investigation in combination with chemotherapy or radiotherapy. This study evaluates whether hyperthermia can reverse MDR mediated by MRP1 in human cervical adenocarcinoma (HeLa) cells. Methods and materials: Cytotoxicity of hyperthermia and/or etoposide was evaluated using sulforhodamine-B in HeLa cells overexpressing MRP1 and their drug-sensitive counterparts. Glutathione, glutathione peroxidase (GPx), and glutathione S-transferase (GST) were quantified by spectrophotometry. GST isoenzymes were quantified by immunodetection. Caspase activation was evaluated by fluorometry and chromatin condensation by fluorescence microscopy using Hoechst 33258. Necrosis was determined using propidium iodide. Results: The major finding is that HeLa and HeLaMRP cells are both sensitive to cytotoxicity of hyperthermia (41-45 deg C). Hyperthermia induced activation of caspase 3 and chromatin condensation. Although total levels of cell killing were similar, there was a switch from apoptotic to necrotic cell death in MDR cells. This could be explained by decreased glutathione and GPx in MDR cells. MDR cells also contained very low levels of GST and were resistant to etoposide-induced apoptosis. Hyperthermia caused a modest increase in etoposide-induced apoptosis in HeLa and HeLaMRP cells, which required appropriate heat-drug scheduling. Conclusions: Hyperthermia could be useful in eliminating MDR cells that overexpress MRP1.

  12. Zedoary oil (Ezhu You) inhibits proliferation of AGS cells

    PubMed Central

    2013-01-01

    Background Zedoary (Curcumae Rhizoma, Ezhu), a Chinese medicinal herb, has been reported to show anticancer activity. This study aims to investigate the effect of zedoary oil (Ezhu You) on the proliferation of AGS cells which is one gastric cancer cell line. Methods The main ingredients of the herb were detected by GC-MS for herbal quality control. Cell viability was measured by MTT assay and cell proliferation was investigated by immunocytochemical staining for proliferating cell nuclear antigen (PCNA) protein. In addition, the cell cycle distributions were detected by flow cytometry with propidium iodine (PI) staining and the apoptosis rates were evaluated by flow cytometry with annexin V/PI double-staining. The morphological changes associated with apoptosis were observed by Hoechst 33342/PI double-staining. Protein expression was determined by western blot analysis. Results The main ingredients of the herb, including curzerene (26.45%), eucalyptol (12.04%), curcumol (9.04%), pyridine (7.97%), germacrone (7.89%), ?-elemene (7.36%), ?-elemene (4.11%) and 28 other ingredients, including curdione, were consistent with the chemical profiles of zedoary. Zedoary oil significantly decreased the cell viability of AGS cells (P?cells (P?cells. At low concentrations (?60 ?g/mL), zedoary oil was less inhibitory toward normal gastric epithelial cells than gastric cancer cell lines. In AGS cells, zedoary oil inhibited cell proliferation in a dose- and time-dependent manner, with decreased PCNA protein expression in the zedoary oil-treated cells, and arrested the cell cycle at S, G2/M and G0/G1 stages after treatment for 6–48 h. At concentrations of 30, 60 and 90 ?g/mL, which resulted in significant inhibition of proliferation and cell cycle arrest, zedoary oil induced cell apoptosis. In addition, Hoechst 33342/PI double-staining confirmed the morphological characteristics of cell apoptosis at 24 h. Zedoary oil upregulated the ratio of Bax/Bcl-2 protein expression (P?cell proliferation through cell cycle arrest and cell apoptosis promotion, which were related to Bax/Bcl-2 protein expression. PMID:23805830

  13. The interaction of the carbon nanoparticles with human cell plasma membrane

    NASA Astrophysics Data System (ADS)

    Overchuk, M.; Prylutska, S.; Bilyy, Rostyslav; Prylutsky, Yu.; Ritter, U.

    2013-09-01

    The study of carbon nanostructures is a highly topical branch of bionanotechnology because of their potential application in biomedicine. Carbon nanotubes (CNTs) are known for their ability to kill tumor cells causing hyperthermia shock and can be used in photothermal therapy respectively. Also chemically modified CNTs can be used for drug delivery. The needle-like shape of CNTs allows them to penetrate into the cell plasma membrane without killing the cell. C60 fullerenes are regarded as valuable nanocarriers for different hydrophobic molecules as well as potential antiviral agents or photosensitizers. In our previous studies we have demonstrated that all types of carbon nanoparticles cause externalization of phosphatidylserine (PS) from the inner to the outer layer of the cell membrane in the small local patches (points of contact), leaving the other parts of plasma membrane PS-negative. In the current work there were studied the interactions of pristine C60 fullerenes and different types of CNTs with human blood cells (erythrocytes and Jurkat T-cells). We have shown, that carbon nanoparticles do not have any hemolytic effects, if judged by the dynamics of acidic hemolysis, although they are capable of permeabilizating the cells and facilitating the internalization of propidium iodide into the nuclei.

  14. Cytostatic and apoptosis-inducing activity of boswellic acids toward malignant cell lines in vitro.

    PubMed

    Hostanska, Katarina; Daum, Gerhard; Saller, Reinhard

    2002-01-01

    Boswellic acids from frankincense were indentified as the active compounds which inhibit leukotriene biosynthesis, 5-lipoxygenase and exert antiproliferative activity toward a variety of malignant cells. Because of the relevance for the clinical application, we tested the ethanolic extract of Boswellia serrata gum resin containing a defined amount of boswellic acids for its cytotoxic, cytostatic and apoptotic activity on five leukemia (HL-60, K 562, U937, MOLT-4, THP-1) and two brain tumor (LN-18, LN-229) cell lines by WST-1 assay and flow cytometry. The Boswellia serrata extract induced dose-dependent antiproliferative effects on all human malignant cells tested with GI50 values (extract concentration producing 50% cell growth inhibition) between 57.0 and 124.1 micrograms/ml. In three haematological cell lines (K562, U937, MOLT-4) the effect of total extract expressed in GI50 was 2.8-, 3.3- and 2.3-times more potent (p < 0.05) than pure 3-O-acetyl-11-keto-beta-boswellic acid (AKBA). Morphological changes after 24-27 hours and the detection of apoptotic cells by AnnexinV-binding and/or by the detection of propidium iodide-labelled DNA with flow cytometry, confirmed the apoptotic cell death. The results of this study suggest the effectiveness of Boswellia serrata extract with defined content of boswellic acids. PMID:12530009

  15. Nitric oxide involvement in pancreatic beta cell apoptosis by glibenclamide.

    PubMed

    Ansar, Malek Moien; Ansari, Mohammad

    2006-02-01

    Glibenclamide as a second-generation compound of sulfonylurea has widely been used in the treatment of type 2 diabetes patients. It has been shown that it induces apoptosis in beta cells, which is partially mediated by Ca(2+) influx. Here, we investigated the role of nitric oxide (NO) and nitric oxide synthase (NOS) isoforms on glibenclamide-induced apoptosis in rat insulinoma cells. Our results showed that glibenclamide induces NO generation (measured as nitrite) that is accompanied with decrease of cell viability in a defined concentration of glibenclamide. The effects of glibenclamide on cell viability were partially inhibited after treatment with N(G)-nitro-L-arginine methyl ester (L-NAME), inhibitor more selective for constitutive nitric oxide synthase, and in the presence of D600--a blocker of voltage-gated L-type Ca(2+) channels inhibited Ca(2+) influx into beta cells, whereas aminoguanidine (AG), a preferential inhibitor of inducible NOS, was significantly less effective. Analysis of DNA fragmentation by electrophoresis and staining with Hoechest 33342 and propidium iodide showed that L-NAME, but not AG, prevented DNA fragmentation and decreased the number of cells with condensed and fragmented nuclei. It revealed that the effects of glibenclamide on apoptosis were partially inhibited by treatment with L-NAME. In conclusion, we have shown that NO production in glibenclamide treated cells may be involved in the induction of apoptotic cell death in pure beta cell line and it may be due to Ca(2+) dependent activation of constitutive NOS isoforms. PMID:16256381

  16. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells.

    PubMed

    Yedjou, Clement G; Tchounwou, Hervey M; Tchounwou, Paul B

    2015-01-01

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO?)?] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO?)? for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05) increase of necrotic cell death in Pb(NO?)?-treated cells, indicative of membrane rupture by Pb(NO?)? compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO?)? exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO?)? exposure caused cell cycle arrest at the G?/G? checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO?)? inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G?/G? checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO?)? exposure and its associated adverse health effects. PMID:26703663

  17. Human Peripheral Blood Mononuclear Cells Cultured in Normal and Hyperglycemic Media in Simulated Microgravity Using NASA Bioreactors

    NASA Technical Reports Server (NTRS)

    Lawless, DeSales

    2003-01-01

    We sought answers to several questions this summer at NASA Johnson Space Center. Initial studies involved the in vitro culture of human peripheral blood mononuclear in cells in different conditioned culture media. Several human cancer clones were similarly studied to determine responses to aberrant glycosylation by the argon laser. The cells were grown at unit gravity in flasks and in simulated microgravity using NASA bioreactors. The cells in each instance were analyzed by flow cytometry. Cell cycle analysis was acquired by staining nuclear DNA with propidium iodide. Responses to the laser stimulation was measured by observing autofluorescence emitted in the green and red spectra after stimulation. Extent of glycosylation correlated with the intensity of the laser stimulated auto-fluorescence. Our particular study was to detect and monitor aberrant glycosylation and its role in etiopathogenesis. Comparisons were made between cells known to be neoplastic and normal cell controls using the same Laser Induced Autofluorescence technique. Studies were begun after extensive literature searches on using the antigen presenting potential of dendritic cells to induce proliferation of antigen specific cytotoxic T-cells. The Sendai virus served as the antigen. Our goal is to generate sufficient numbers of such cells in the simulated microgravity environment for use in autologous transplants of virally infected individuals including those positive for hepatitis and HIV.

  18. Antiproliferative effect of Toona sinensis leaf extract on non-small-cell lung cancer.

    PubMed

    Yang, Chih-Jen; Huang, Yu-Jung; Wang, Cheng-Yuan; Wang, Pei-Hui; Hsu, Hseng-Kuang; Tsai, May-Jywan; Chen, Yu-Chu; Bharath Kumar, V; Huang, Ming-Shyan; Weng, Ching-Feng

    2010-06-01

    Toona sinensis (TS), which is also known as Cedrela sinensis, belongs to Meliaceae family, the compounds identified from this TS leaves possess a wide range of biologic functions, such as hypoglycemic effects, anti-LDL glycative activity, antioxidant activities, and inhibition of sudden acute respiratory syndrome (SARS) coronavirus replication. However, their effect against cancer cells is not well explored. In this study, to understand the cytotoxic effect and molecular mechanism stimulated by TSL-1 (TS leaf extract fraction) we employed three different non-small-cell lung cancer (NSCLC) cell lines: H441 cells (lung adenocarcinoma), H661 cells (lung large cell carcinoma) and H520 cells (lung squamous cell carcinoma). IC50 value was varied between these three cell lines, the least IC(50) value was observed in TSL-1-treated H661cells. Exposure of NSCLC cells to TSL-1 caused cell-cycle arrest in subG1 phase and caused apoptosis. Moreover, TSL-1 treatment decreased the cell-cycle regulators; cyclin D1 and CDK4 proteins by up regulating p27 expression in a dose-dependent manner. Thus, the TSL-1-induced apoptosis was further confirmed by cell morphology, subG1 peak accumulation, poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) cleavage, propidium iodide (PI)-Annexin-V double staining, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. The decreased Bcl2 protein level was concurrent with an increased Bax protein level in all 3 cell lines. Additionally, the tumoricidal effect of TSL-1 was measured using a xenograft model, after 5 weeks of TSL-1 treatment by various regimen caused regression of tumor. Taken together both these in vitro and in vivo studies revealed that TSL-1 is a potent inhibitor against NSCLC growth and our provoking result suggest that TSL-1 can be a better nutriceutical as a singlet or along with doublet agents (taxane, vinorelbine, and gemcitabine) for treating NSCLC. PMID:20478545

  19. Organically Modified Silica Nanoparticles Interaction with Macrophage Cells: Assessment of Cell Viability on the Basis of Physicochemical Properties.

    PubMed

    Kumar, Dhiraj; Mutreja, Isha; Keshvan, Prashant C; Bhat, Madhusudan; Dinda, Amit K; Mitra, Susmita

    2015-11-01

    Silica nanoparticles have drawn a lot of attention for nanomedicine application, and this is attributed to their biocompatibility and ease of surface functionalization. However, successful utilization of these inorganic systems for biomedical application depends on their physicochemical properties. This study, therefore, discusses in vitro toxicity of organically modified silica nanoparticles on the basis of size, shape, and surface properties of silica nanoparticles. Spherical- and oval-shaped nanoparticles having hydroxyl and amine groups were synthesized in Tween 80 micelles using different organosilanes. Nanoparticles of similar size and morphology were considered for comparative assessment. "As-prepared" nanoparticles were characterized in terms of size, shape, and surface properties using ZetaSizer, transmission electron microscopy, and Fourier transform infrared to establish the above parameters. In vitro analysis in terms of nanoparticle-based toxicity was performed on J-774 (macrophage) cell line using propidium iodide-4',6-diamidino-2-phenylindol and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Fluorescent dye-entrapped nanoparticles were used to visualize the uptake of the nanoparticles by macrophage cells. Results from cell studies suggested low levels of toxicity for different nanoparticle formulations studied, therefore are suitable for nanocarrier application for poorly soluble molecules. On the contrary, the nanoparticles of similar size and shape, having amine groups and low net negative charge, do not exhibit any in vitro cytotoxicity. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3943-3951, 2015. PMID:26295279

  20. Curcumin Enhanced Busulfan-Induced Apoptosis through Downregulating the Expression of Survivin in Leukemia Stem-Like KG1a Cells

    PubMed Central

    Weng, Guangyang; Zeng, Yingjian; Huang, Jingya; Fan, Jiaxin; Guo, Kunyuan

    2015-01-01

    Leukemia relapse and nonrecurrence mortality (NRM) due to leukemia stem cells (LSCs) represent major problems following hematopoietic stem cell transplantation (HSCT). To eliminate LSCs, the sensitivity of LSCs to chemotherapeutic agents used in conditioning regimens should be enhanced. Curcumin (CUR) has received considerable attention as a result of its anticancer activity in leukemia and solid tumors. In this study, we investigated the cytotoxic effects and underlying mechanisms in leukemia stem-like KG1a cells exposed to busulfan (BUS) and CUR, either alone or in combination. KG1a cells exhibiting BUS-resistance demonstrated by MTT and annexin V/propidium iodide (PI) assays, compared with HL-60 cells. CUR induced cell growth inhibition and apoptosis in KG1a cells. Apoptosis of KG1a cells was significantly enhanced by treatment with CUR+BUS, compared with either agent alone. CUR synergistically enhanced the cytotoxic effect of BUS. Seven apoptosis-related proteins were modulated in CUR- and CUR+BUS-treated cells analyzed by proteins array analysis. Importantly, the antiapoptosis protein survivin was significantly downregulated, especially in combination group. Suppression of survivin with specific inhibitor YM155 significantly increased the susceptibility of KG1a cells to BUS. These results demonstrated that CUR could increase the sensitivity of leukemia stem-like KG1a cells to BUS by downregulating the expression of survivin. PMID:26557682

  1. Antiproliferative and Apoptosis Inducing Effects of Non-Polar Fractions from Lawsonia inermis L. in Cervical (HeLa) Cancer Cells.

    PubMed

    Kumar, Manish; Kaur, Paramjeet; Kumar, Subodh; Kaur, Satwinderjeet

    2015-04-01

    Two non-polar fractions viz. hexane (Hex-LI) and chloroform fraction (CHCl3-LI) of Lawsonia inermis were studied for their antiproliferative potential in various cancer cell lines viz. HeLa, MCF-7, A549 and C6 glioma cells. Both the fractions showed more than 60 % of growth inhibition in all the tested cell lines at highest tested concentration. In clonogenic assay, different concentrations of Hex-LI and CHCl3-LI decreased the number and size of colonies as compared to control in HeLa cells. The apoptotic effects as nuclear condensation, fragmentation were visualized with Hoechst-33342 staining of HeLa cells using confocal microscope. Both fractions induced apoptotic cell death in human cervical carcinoma (HeLa) cells as evident from flow cytometric analysis carried out using Annexin V-FITC and propidium iodide dyes. CHCl3-LI treated cells significantly induced apoptosis (25.43 %) in comparison to control. Results from Neutral Comet assay demonstrated that both fractions induced double stranded breaks (DSB's) in HeLa cells. Our data indicated that Hex-LI and CHCl3-LI treated cells showed significant increase of 32.2 and 18.56 % reactive oxygen species (ROS) levels in DCFH-DA assay respectively. Further, experimental studies to decipher exact pathway via which these fractions induce cell death are in progress. PMID:25931778

  2. Identification of a novel synergistic induction of cell death by Smac mimetic and HDAC inhibitors in acute myeloid leukemia cells.

    PubMed

    Steinwascher, Sofie; Nugues, Anne-Lucie; Schoeneberger, Hannah; Fulda, Simone

    2015-09-28

    Inhibitor of Apoptosis (IAP) proteins are expressed at high levels in acute myeloid leukemia (AML) and contribute to resistance to programmed cell death. Here, we report that inhibition of IAP proteins by the small-molecule Smac mimetic BV6 acts together with histone deacetylase (HDAC) inhibitors (HDACIs) such as MS275 or SAHA to trigger cell death in AML cell lines in a synergistic manner, as underscored by calculation of combination index (CI). Also, BV6 and HDACIs cooperate to trigger DNA fragmentation, a marker of apoptotic cell death, and to suppress long-term clonogenic survival of AML cells. In contrast, equimolar concentrations of BV6 and MS275 or SAHA do not synergize to elicit cell death in normal peripheral blood lymphocytes (PBLs), emphasizing some tumor cell selectivity of this combination treatment. Addition of the tumor necrosis factor (TNF)?-blocking antibody Enbrel significantly reduces BV6/MS275-induced cell death in the majority of AML cell lines, indicating that autocrine/paracrine TNF? signaling contributes to cell death. Remarkably, the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) fails to rescue MV4-11, Molm13 and OCI-AML3 cells and even enhances BV6/MS275-mediated cell death, whereas zVAD.fmk reduces BV6/MS275-induced cell death in NB4 cells. Annexin-V/propidium iodide (PI) double staining reveals that BV6/MS275 cotreatment predominately increases the percentage of double-positive cells. Of note, the Receptor-Interacting Protein (RIP)1 inhibitor necrostatin-1 (Nec-1) or the Mixed Lineage Kinase Domain-Like protein (MLKL) inhibitor necrosulfonamide (NSA) significantly reduce BV6/MS275-induced cell death in the presence of zVAD.fmk, suggesting that BV6/MS275 cotreatment triggers necroptosis when caspases are inhibited. Thus, BV6 acts in concert with HDACIs to induce cell death in AML cells and can bypass apoptosis resistance, at least in several AML cell lines, by engaging necroptosis as an alternative route of regulated cell death. The identification of a novel synergism of BV6 and HDACIs has important implications for the development of new treatment strategies for AML. PMID:26028172

  3. Inhibitory effects of sea buckthorn procyanidins on fatty acid synthase and MDA-MB-231 cells.

    PubMed

    Wang, Yi; Nie, Fangyuan; Ouyang, Jian; Wang, Xiaoyan; Ma, Xiaofeng

    2014-10-01

    Fatty acid synthase (FAS) is overexpressed in many human cancers including breast cancer and is considered to be a promising target for therapy. Sea buckthorn has long been used to treat a variety of maladies. Here, we investigated the inhibitory effect of sea buckthorn procyanidins (SBPs) isolated from the seeds of sea buckthorn on FAS and FAS overexpressed human breast cancer MDA-MB-231 cells. The FAS activity and FAS inhibition were measured by a spectrophotometer at 340 nm of nicotinamide adenine dinucleotide phosphate (NADPH) absorption. We found that SBP potently inhibited the activity of FAS with a half-inhibitory concentration (IC50) value of 0.087 ?g/ml. 3-4,5-Dimethylthiazol-2-yl-2,3-diphenyl tetrazolium bromide (MTT) assay was used to test the cell viability. SBP reduced MDA-MB-231 cell viability with an IC50 value of 37.5 ?g/ml. Hoechst 33258/propidium iodide dual staining and flow cytometric analysis showed that SBP induced MDA-MB-231 cell apoptosis. SBP inhibited intracellular FAS activity with a dose-dependent manner. In addition, sodium palmitate could rescue the cell apoptosis induced by SBP. These results showed that SBP was a promising FAS inhibitor which could induce the apoptosis of MDA-MB-231 cells via inhibiting FAS. These findings suggested that SBP might be useful for preventing or treating breast cancer. PMID:24957042

  4. Gemcitabine combined with gum mastic causes potent growth inhibition and apoptosis of pancreatic cancer cells

    PubMed Central

    Huang, Xin-yu; Wang, Hong-cheng; Yuan, Zhou; Li, Ang; He, Mei-lan; Ai, Kai-xing; Zheng, Qi; Qin, Huan-long

    2010-01-01

    Aim: To investigate the antiproliferative and apoptotic effects of gemcitabine combined with gum mastic and the underlying mechanisms in human pancreatic cancer cell lines. Methods: Cell proliferation and apoptosis were examined using the methyl thiazolyl tetrazolium (MTT) assay and propidium iodine staining, respectively. The expression of Bcl-2, Bax, NF-?B p65 subunit, and I?B? protein was measured using Western blotting. Results: Gemcitabine 0.01?100 ?g/mL inhibited cell proliferation and induced apoptosis in both pancreatic cancer BxPC-3 and COLO 357 cells. Gum mastic 40 ?g/mL significantly potentiated the antiproliferative and apoptotic effects of gemcitabine 10 ?g/mL after 72-h treatment. When cells were treated with gemcitabine in combination with gum mastic, the I?B? level was increased, whereas NF-?B activation was blocked; the expression of Bax protein was substantially increased, but Bcl-2 protein was down-regulated. Conclusion: Gemcitabine combined with gum mastic causes potent apoptosis in pancreatic cancer cells. The combination may be an effective therapeutic strategy for pancreatic cancer. PMID:20523344

  5. Control by osmotic pressure of voltage-induced permeabilization and gene transfer in mammalian cells.

    PubMed Central

    Golzio, M; Mora, M P; Raynaud, C; Delteil, C; Teissié, J; Rols, M P

    1998-01-01

    Cells can be transiently permeabilized by a membrane potential difference increase induced by the application of high electric pulses. This was shown to be under the control of the pulsing buffer osmotic pressure, when short pulses were applied. In this paper, the effects of buffer osmotic pressure during electric treatment and during the following 10 min were investigated in Chinese hamster ovary cells subjected to long (ms) square wave pulses, a condition needed to mediate gene transfer. No effect on cell permeabilization for a small molecule such as propidium iodide was observed. The use of a hypoosmolar buffer during pulsation allows more efficient loading of cells with beta-galactosidase, a tetrameric protein, but no effect of the postpulse buffer osmolarity was observed. The resulting expression of plasmid coding for beta-galactosidase was strongly controlled by buffer osmolarity during as well as after the pulse. The results, tentatively explained in terms of the effect of osmotic pressure on cell swelling, membrane organization, and interaction between molecules and membrane, support the existence of key steps in plasmid-membrane interaction in the mechanism of cell electrically mediated gene transfer. PMID:9635756

  6. Apoptosis induced by sonodynamic therapy in human osteosarcoma cells in vitro.

    PubMed

    Liu, Xing; Li, Wei; Geng, Shuo; Meng, Qing-Gang; Bi, Zheng-Gang

    2015-07-01

    The aim of the present study was to investigate the potential effect of hematoporphyrin monomethyl ether-sonodynamic therapy (HMME-SDT) on MG-63 osteosarcoma cells. The HMME concentration was kept constant at 20 µg/ml and the MG-63 osteosarcoma cell line was exposed to ultrasound with an intensity of 1.0 W/cm2 for 30 sec. Cell cytotoxicity was quantified using an MTT assay 6 h after HMME-SDT. The intracellular localization of HMME was imaged using inverted confocal laser scanning microscopy. Apoptosis was investigated using flow cytometry with Annexin V-fluorescein isothiocyanate and propidium iodine staining. The cytotoxicity of HMME-mediated sonodynamic action on MG-63 cells was significantly higher than that of other treatments, including ultrasound alone, HMME alone and sham treatment. Flow cytometry demonstrated that HMME?SDT action markedly enhanced the apoptotic rate of MG-63 cells. The mechanisms of apoptosis were analyzed by measuring the protein expression of poly ADP-ribose polymerase (PARP), cleaved PARP, procaspase-3, cleaved caspase-3 and cleaved caspase-9. The data demonstrated that HMME-SDT action markedly induced the apoptosis of MG-63 cells. PMID:25778820

  7. Bipolar nanosecond electric pulses are less efficient at electropermeabilization and killing cells than monopolar pulses

    PubMed Central

    Ibey, Bennett L.; Ullery, Jody; Pakhomova, Olga N.; Roth, Caleb C.; Semenov, Iurri; Beier, Hope T.; Tarango, Melissa; Xiao, Shu; Schoenbach, Karl; Pakhomov, Andrei G.

    2014-01-01

    Multiple studies have shown that bipolar (BP) electric pulses in the microsecond range are more effective at permeabilizing cells while maintaining similar cell survival rates as compared to monopolar (MP) pulse equivalents. In this paper, we investigated whether the same advantage existed for BP nanosecond-pulsed electric fields (nsPEF) as compared to MP nsPEF. To study permeabilization effectiveness, MP or BP pulses were delivered to single Chinese hamster ovary (CHO) cells and the response of three dyes, Calcium Green-1, Propidium Iodide (PI), and FM1-43, was measured by confocal microscopy. Results show that BP pulses were less effective at increasing intracellular calcium concentration or PI uptake and cause less membrane reorganization (FM1-43) than MP pulses. Twenty-four hour survival was measured in three cell lines (Jurkat, U937, CHO) and over ten times more BP pulses were required to induce death as compared to MP pulses of similar magnitude and duration. Flow cytometry analysis of CHO cells after exposure (15 minutes) revealed that to achieve positive FITC-Annexin V and PI expression, ten times more BP pulses were required than MP pulses. Overall, unlike longer pulse exposures, BP nsPEF exposures proved far less effective at both membrane permeabilization and cell killing than MP nsPEF. PMID:24332942

  8. ?-Cadinene inhibits the growth of ovarian cancer cells via caspase-dependent apoptosis and cell cycle arrest

    PubMed Central

    Hui, Li-Mei; Zhao, Guo-Dong; Zhao, Jian-Jun

    2015-01-01

    Ovarian cancer is one of the most common causes of mortality among all cancers in females and is the primary cause of mortality from gynecological malignancies. The objective of the current research work was to evaluate a naturally occurring sesquiterpene-?-Cadinene for its antiproliferative and apoptotic effects on human ovary cancer (OVCAR-3) cells. We also demonstrated the effect of ?-Cadinene on cell cycle phase distribution, intracellular damage and caspase activation. Sulforhodamine B (SRB) assay was used to evaluate the antiproliferative effect of ?-cadinene on OVCAR-3 cells. Cellular morphology after ?-cadinene treatment was demonstrated by inverted phase contrast microscopy, fluorescence microscopy and transmission electron microscopy. Flow cytometry was used to analyze the effect of ?-cadinene on cell cycle phase distribution and apoptosis using propidium iodide and Annexin V-fluorescein isothiocyanate (FITC)/PI kit. The results revealed that ?-cadinene induced dose-dependent as well as time-dependent growth inhibitory effects on OVACR-3 cell line. ?-cadinene also induced cell shrinkage, chromatin condensation and nuclear membrane rupture which are characteristic of apoptosis. Treatment with different doses of ?-cadinene also led to cell cycle arrest in sub-G1 phase which showed dose-dependence. Western blotting assay revealed that ?-cadinene led to activation of caspases in OVCAR-3 cancer cells. PARP cleavage was noticed at 50 µM dose of ?-cadinene with the advent of the cleaved 85-kDa fragment after exposure to ?-cadinene. At 100 µM, only the cleaved form of PARP was detectable. Pro-caspase-8 expression remained unaltered until 10 µM dose of ?-cadinene. However, at 50 and 100 µM dose, pro-caspase-8 expression was no longer detectable. There was a significant increase in the caspase-9 expression levels after 50 and 100 µM ?-cadinene treatments. PMID:26261482

  9. Paclitaxel induces apoptosis and reduces proliferation by targeting epidermal growth factor receptor signaling pathway in oral cavity squamous cell carcinoma

    PubMed Central

    HU, JING; ZHANG, NA; WANG, RONGLIN; HUANG, FEI; LI, GUANG

    2015-01-01

    Oral cavity cancer is common worldwide. Furthermore, the epidermal growth factor receptor (EGFR) signaling pathway is considered to be constitutively activated in oral cancers. Paclitaxel is widely accepted as an antitumor drug as it effectively inhibits the cell cycle. This study predominantly explores the possible molecule mechanism of paclitaxel on oral cancer treatment. Cell viability was first detected using an MTT assay. Cell apoptosis was examined by Hoechst staining and flow cytometry using an annexin-V and propidium iodide kit. Specific EGFR signaling pathways were further explored through western blot analysis. Abnormal protein expression levels were determined via immunofluoresence. Additionally, the protein levels of matrix metalloproteinase (MMP)-2 and 9 were determined using ELISA. Paclitaxel significantly inhibited oral cancer cell viability in a time- and dose-dependent manner. Paclitaxel also enhanced oral cancer cell apoptosis via increased Bim and Bid protein expression. Furthermore, paclitaxel was observed to inhibit oral cancer cell proliferation through increased MMP-2 and MMP-9 protein levels. Paclitaxel inhibited the growth of the oral cancer cell line, tea8113 malignant proliferation and enhanced tea8113 cell apoptosis through inhibiting the EGFR signaling pathway.

  10. The histone deacetylase inhibitor SAHA acts in synergism with fenretinide and doxorubicin to control growth of rhabdoid tumor cells

    PubMed Central

    2013-01-01

    Background Rhabdoid tumors are highly aggressive malignancies affecting infants and very young children. In many instances these tumors are resistant to conventional type chemotherapy necessitating alternative approaches. Methods Proliferation assays (MTT), apoptosis (propidium iodide/annexin V) and cell cycle analysis (DAPI), RNA expression microarrays and western blots were used to identify synergism of the HDAC (histone deacetylase) inhibitor SAHA with fenretinide, tamoxifen and doxorubicin in rhabdoidtumor cell lines. Results HDAC1 and HDAC2 are overexpressed in primary rhabdoid tumors and rhabdoid tumor cell lines. Targeting HDACs in rhabdoid tumors induces cell cycle arrest and apoptosis. On the other hand HDAC inhibition induces deregulated gene programs (MYCC-, RB program and the stem cell program) in rhabdoid tumors. These programs are in general associated with cell cycle progression. Targeting these activated pro-proliferative genes by combined approaches of HDAC-inhibitors plus fenretinide, which inhibits cyclinD1, exhibit strong synergistic effects on induction of apoptosis. Furthermore, HDAC inhibition sensitizes rhabdoid tumor cell lines to cell death induced by chemotherapy. Conclusion Our data demonstrate that HDAC inhibitor treatment in combination with fenretinide or conventional chemotherapy is a promising tool for the treatment of chemoresistant rhabdoid tumors. PMID:23764045

  11. 1-Nitropyrene (1-NP) induces apoptosis and apparently a non-apoptotic programmed cell death (paraptosis) in Hepa1c1c7 cells

    SciTech Connect

    Asare, Nana Landvik, Nina E.; Lagadic-Gossmann, Dominique; Rissel, Mary; Tekpli, Xavier; Ask, Kjetil; Lag, Marit; Holme, Jorn A.

    2008-07-15

    Mechanistic studies of nitro-PAHs (polycyclic aromatic hydrocarbons) of interest might help elucidate which chemical characteristics are most important in eliciting toxic effects. 1-Nitropyrene (1-NP) is the predominant nitrated PAH emitted in diesel exhaust. 1-NP-exposed Hepa1c1c7 cells exhibited marked changes in cellular morphology, decreased proliferation and different forms of cell death. A dramatic increase in cytoplasmic vacuolization was observed already after 6 h of exposure and the cells started to round up at 12 h. The rate of cell proliferation was markedly reduced at 24 h and apoptotic as well as propidium iodide (PI)-positive cells appeared. Electron microscopic examination revealed that the vacuolization was partly due to mitochondria swelling. The caspase inhibitor Z-VAD-FMK inhibited only the apoptotic cell death and Nec-1 (an inhibitor of necroptosis) exhibited no inhibitory effects on either cell death or vacuolization. In contrast, cycloheximide markedly reduced both the number of apoptotic and PI-positive cells as well as the cytoplasmic vacuolization, suggesting that 1-NP induced paraptotic cell death. All the MAPKs; ERK1/2, p38 and JNK, appear to be involved in the death process since marked activation was observed upon 1-NP exposure, and their inhibitors partly reduced the induced cell death. The ERK1/2 inhibitor PD 98057 completely blocked the induced vacuolization, whereas the other MAPKs inhibitors only had minor effects on this process. These findings suggest that 1-NP may cause apoptosis and paraptosis. In contrast, the corresponding amine (1-aminopyrene) elicited only minor apoptotic and necrotic cell death, and cells with characteristics typical of paraptosis were absent.

  12. Antibacterial Compounds of Canadian Honeys Target Bacterial Cell Wall Inducing Phenotype Changes, Growth Inhibition and Cell Lysis That Resemble Action of ?-Lactam Antibiotics

    PubMed Central

    Brudzynski, Katrina; Sjaarda, Calvin

    2014-01-01

    Honeys show a desirable broad spectrum activity against Gram-positive and negative bacteria making antibacterial activity an intrinsic property of honey and a desirable source for new drug development. The cellular targets and underlying mechanism of action of honey antibacterial compounds remain largely unknown. To facilitate the target discovery, we employed a method of phenotypic profiling by directly comparing morphological changes in Escherichia coli induced by honeys to that of ampicillin, the cell wall-active ?-lactam of known mechanism of action. Firstly, we demonstrated the purity of tested honeys from potential ?-lactam contaminations using quantitative LC-ESI-MS. Exposure of log-phase E. coli to honey or ampicillin resulted in time- and concentration-dependent changes in bacterial cell shape with the appearance of filamentous phenotypes at sub-inhibitory concentrations and spheroplasts at the MBC. Cell wall destruction by both agents, clearly visible on microscopic micrographs, was accompanied by increased permeability of the lipopolysaccharide outer membrane as indicated by fluorescence-activated cell sorting (FACS). More than 90% E. coli exposed to honey or ampicillin became permeable to propidium iodide. Consistently with the FACS results, both honey-treated and ampicillin-treated E. coli cells released lipopolysaccharide endotoxins at comparable levels, which were significantly higher than controls (p<0.0001). E. coli cells transformed with the ampicillin-resistance gene (?–lactamase) remained sensitive to honey, displayed the same level of cytotoxicity, cell shape changes and endotoxin release as ampicillin-sensitive cells. As expected, ?–lactamase protected the host cell from antibacterial action of ampicillin. Thus, both honey and ampicillin induced similar structural changes to the cell wall and LPS and that this ability underlies antibacterial activities of both agents. Since the cell wall is critical for cell growth and survival, honey active compounds would be highly applicable for therapeutic purposes while differences in the mode of action between honey and ampicillin may provide clinical advantage in eradicating ?-lactam-resistant pathogens. PMID:25191847

  13. Inter-laboratory comparison of the in vivo comet assay including three image analysis systems.

    PubMed

    Plappert-Helbig, Ulla; Guérard, Melanie

    2015-12-01

    To compare the extent of potential inter-laboratory variability and the influence of different comet image analysis systems, in vivo comet experiments were conducted using the genotoxicants ethyl methanesulfonate and methyl methanesulfonate. Tissue samples from the same animals were processed and analyzed-including independent slide evaluation by image analysis-in two laboratories with extensive experience in performing the comet assay. The analysis revealed low inter-laboratory experimental variability. Neither the use of different image analysis systems, nor the staining procedure of DNA (propidium iodide vs. SYBR® Gold), considerably impacted the results or sensitivity of the assay. In addition, relatively high stability of the staining intensity of propidium iodide-stained slides was found in slides that were refrigerated for over 3 months. In conclusion, following a thoroughly defined protocol and standardized routine procedures ensures that the comet assay is robust and generates comparable results between different laboratories. Environ. Mol. Mutagen. 56:788-793, 2015. © 2015 Wiley Periodicals, Inc. PMID:26248301

  14. Cucurbitacin-I inhibits Aurora kinase A, Aurora kinase B and survivin, induces defects in cell cycle progression and promotes ABT-737-induced cell death in a caspase-independent manner in malignant human glioma cells.

    PubMed

    Premkumar, Daniel R; Jane, Esther P; Pollack, Ian F

    2015-01-01

    Because STAT signaling is commonly activated in malignant gliomas as a result of constitutive EGFR activation, strategies for inhibiting the EGFR/JAK/STAT cascade are of significant interest. We, therefore, treated a panel of established glioma cell lines, including EGFR overexpressors, and primary cultures derived from patients diagnosed with glioblastoma with the JAK/STAT inhibitor cucurbitacin-I. Treatment with cucurbitacin-I depleted p-STAT3, p-STAT5, p-JAK1 and p-JAK2 levels, inhibited cell proliferation, and induced G2/M accumulation, DNA endoreduplication, and multipolar mitotic spindles. Longer exposure to cucurbitacin-I significantly reduced the number of viable cells and this decrease in viability was associated with cell death, as confirmed by an increase in the subG1 fraction. Our data also demonstrated that cucurbitacin-I strikingly downregulated Aurora kinase A, Aurora kinase B and survivin. We then searched for agents that exhibited a synergistic effect on cell death in combination with cucurbitacin-I. We found that cotreatment with cucurbitacin-I significantly increased Bcl(-)2/Bcl(-)xL family member antagonist ABT-737-induced cell death regardless of EGFR/PTEN/p53 status of malignant human glioma cell lines. Although >50% of the cucurbitacin-I plus ABT-737 treated cells were annexin V and propidium iodide positive, PARP cleavage or caspase activation was not observed. Pretreatment of z-VAD-fmk, a pan caspase inhibitor did not inhibit cell death, suggesting a caspase-independent mechanism of cell death. Genetic inhibition of Aurora kinase A or Aurora kinase B or survivin by RNA interference also sensitized glioma cells to ABT-737, suggesting a link between STAT activation and Aurora kinases in malignant gliomas. PMID:25482928

  15. Cucurbitacin-I inhibits Aurora kinase A, Aurora kinase B and survivin, induces defects in cell cycle progression and promotes ABT-737-induced cell death in a caspase-independent manner in malignant human glioma cells

    PubMed Central

    Premkumar, Daniel R; Jane, Esther P; Pollack, Ian F

    2015-01-01

    Because STAT signaling is commonly activated in malignant gliomas as a result of constitutive EGFR activation, strategies for inhibiting the EGFR/JAK/STAT cascade are of significant interest. We, therefore, treated a panel of established glioma cell lines, including EGFR overexpressors, and primary cultures derived from patients diagnosed with glioblastoma with the JAK/STAT inhibitor cucurbitacin-I. Treatment with cucurbitacin-I depleted p-STAT3, p-STAT5, p-JAK1 and p-JAK2 levels, inhibited cell proliferation, and induced G2/M accumulation, DNA endoreduplication, and multipolar mitotic spindles. Longer exposure to cucurbitacin-I significantly reduced the number of viable cells and this decrease in viability was associated with cell death, as confirmed by an increase in the subG1 fraction. Our data also demonstrated that cucurbitacin-I strikingly downregulated Aurora kinase A, Aurora kinase B and survivin. We then searched for agents that exhibited a synergistic effect on cell death in combination with cucurbitacin-I. We found that cotreatment with cucurbitacin-I significantly increased Bcl-2/Bcl-xL family member antagonist ABT-737-induced cell death regardless of EGFR/PTEN/p53 status of malignant human glioma cell lines. Although >50% of the cucurbitacin-I plus ABT-737 treated cells were annexin V and propidium iodide positive, PARP cleavage or caspase activation was not observed. Pretreatment of z-VAD-fmk, a pan caspase inhibitor did not inhibit cell death, suggesting a caspase-independent mechanism of cell death. Genetic inhibition of Aurora kinase A or Aurora kinase B or survivin by RNA interference also sensitized glioma cells to ABT-737, suggesting a link between STAT activation and Aurora kinases in malignant gliomas. PMID:25482928

  16. Multivariate analysis of apoptotic markers versus cell cycle phase in living human cancer cells by microfluidic cytometry

    NASA Astrophysics Data System (ADS)

    Akagi, Jin; Skommer, Joanna; Matuszek, Anna; Takeda, Kazuo; Fujimura, Yuu; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh; Mitchell, Arnan; Errington, Rachel; Smith, Paul J.; Darzynkiewicz, Zbigniew; Wlodkowic, Donald

    2013-03-01

    Measurement of apoptotic markers in tumors can be directly correlated with the cell cycle phase using flow cytometry (FCM). The conventional DNA content analysis requires cell permeabilization to stain nuclei with fluorescent probes such as propidium iodide or use of a costly UV-excitation line for Hoechst 33342 probe. The access to FCM is also still limited to centralized core facilities due to its inherent high costs and complex operation. This work describes development and proof-of-concept validation of a portable and user-friendly microfluidic flow cytometer (?FCM) that can perform multivariate real time analysis on live cells using sampling volumes as small as 10 microliters. The ?FCM system employs disposable microfluidic cartridges fabricated using injection molding in poly(methylmethacrylate) transparent thermoplastic. Furthermore, the dedicated and miniaturized electronic hardware interface enables up to six parameter detection using a combination of spatially separated solid-state 473 (10 mW) and 640 nm (20 mW) lasers and x-y stage for rapid laser alignment adjustment. We provide new evidence that a simple 2D flow focusing on a chip is sufficient to measure cellular DNA content in live tumor cells using a far-red DNA probe DRAQ5. The feasibility of using the ?FCM system for a dose-response profiling of investigational anti-cancer agents on human hematopoietic cancer cells is also demonstrated. The data show that ?FCM can provide a viable novel alternative to conventional FCM for multiparameter detection of caspase activation and dissipation of mitochondrial inner membrane potential (??m) in relation to DNA content (cell cycle phase) in live tumor cells.

  17. Enhanced detection of fluorescence quenching in labeled cells

    DOEpatents

    Crissman, Harry A. (Los Alamos, NM); Steinkamp, John A. (Los Alamos, NM)

    1992-01-01

    A method is provided for quantifying BrdU labeled DNA in cells. The BrdU is incorporated into the DNA and the DNA is stained with a first fluorochrome having a fluorescence which is quenchable by BrdU. The first fluorochrome is preferably a thymidine base halogen analogue, such as a Hoechst fluorochrome. The DNA is then stained with a second fluorochrome having a fluorescence that is substantially uneffected by BrdU. The second fluorochrome may be selected from the group consisting of mithramycin, chromomycin A3, olivomycin, propidium iodide and ethidium bromine. The fluorescence from the first and second fluorochromes is then measured to obtain first and second output signals, respectively. The first output signal is substracted from the second output signal to obtain a difference signal which is functionally related to the quantity of BrdU incorporated into DNA. The technique is particularly useful for quantifying the synthesis of DNA during the S-phase of the cell cycle.

  18. Enhanced detection of fluorescence quenching in labeled cells

    DOEpatents

    Crissman, H.A.; Steinkamp, J.A.

    1987-11-30

    A method is provided for quantifying BrdU labeled DNA in cells. The BrdU is substituted onto the DNA and the DNA is stained with a first fluorochrome having a fluorescence which is quenchable by BrdU. The first fluorochrome is preferably a thymidine base halogen analogue, such as a Hoechst fluorochrome. The DNA is then stained with a second fluorochrome having a fluorescence which is substantially uneffected by BrdU. The second fluorochrome may be selected from the group consisting of mithramycin, chromomycin A3, olivomycin, propidium iodide and ethidium bromine. The fluorescence from the first and second fluorochromes is then measured to obtain first and second output signals, respectively. The first output signal is subtracted from the second output signal to obtain a difference signal which is functionally related to the quantity of BrdU incorporated into DNA. The technique is particularly useful for quantifying the synthesis of DNA during the S-phase of the cell cycle. 2 figs.

  19. The apoptosis induced by HMME-based photodynamic therapy in rabbit vascular smooth muscle cells

    NASA Astrophysics Data System (ADS)

    Yin, Huijuan; Li, Xiaoyuan; Lin, Hong; Liu, Jianzhong; Yu, Hongkui

    2007-02-01

    Objective To study the effects of HMME-based photodynamic therapy on proliferation and apoptosis of rabbit vascular smooth muscle cells(VSMCs). Method The cytotoxic effect of HMME-PDT on rabbit vascular smooth muscle cells was studied by means of Trypan Blue assay, HMME at 10?g/ml concentration and the light dose at 2.4~4.8 J/cm2 were selected in the studies. The morphological character 24h post-PDT was investigated by HE Staining. Annexin V and propidium iodide (PI) binding assays were performed to analyze the characteristics of cell death after HMME-PDT. Furthermore, The intracellular distributions of the HMME were measured by the confocal laser scanning microscope. Result It was showed the photocytotoxity to VSMC cells was dose related by Trypan Blue assay. Histology observing suggests HMME-PDT could induce cell death through apoptosis or necrosis, and the apoptosic rate was up to 50.5% by AnnexinV /PI assay. Moreover, the fluorescence images of HMME intracellular localization demonstrated that the HMME diffused into the mitochondria. Conclusion HMME-PDT could significantly inhibite VSMC proliferation and induce apoptosis.

  20. Direct visualization at the single-cell level of electrically mediated gene delivery

    PubMed Central

    Golzio, Muriel; Teissié, Justin; Rols, Marie-Pierre

    2002-01-01

    Electropermeabilization is one of the nonviral methods successfully used to transfer genes into living cells in vitro and in vivo. Although this approach shows promise in the field of gene therapy, very little is known about the basic processes supporting DNA transfer. The present investigation studies this process at the single-cell level by using digitized fluorescence microscopy. Permeabilization is a prerequisite for gene transfer. Its assay by propidium-iodide (PI) penetration shows that it occurs at the sides of the cell membrane facing the two electrodes, whereas fluorescently labeled plasmids only interact with the electropermeabilized side of the cell facing the cathode. The plasmid interaction with the electropermeabilized part of the cell surface results in the formation of localized aggregates. These membrane-associated spots are formed only when pulses with a longer duration than a critical value are applied. These complexes are formed within 1 s after the pulses and cannot be destroyed by pulses of reversed polarities. They remain at the membrane level up to 10 min after pulsing. Although freely accessible to DNA dye (TOTO-1) 1 min after the pulses, they are fully protected when the addition takes place 10 min after. They diffuse in the cytoplasm 30 min after pulses and are present around the nucleus 24 h later. PMID:11818537

  1. Comet assay, cloning assay, and light and electron microscopy on one preselected cell

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Oehring, H.; Halbhuber, Karl-Juergen; Fiedler, Ursula; Bauer, Eckhard; Greulich, Karl O.

    1997-12-01

    In order to perform long-term studies up to one week on a preselected single cell after micromanipulation (e.g. UVA and NIR microbeam exposure) in comparison with non-treated neighbor cells (control cells) we applied a variety of single cell diagnostic techniques and developed a special comet assay for single preselected cells. For that purpose adherent cells were grown in low concentrations and maintained in special sterile centimeter-sized glass cell chambers. After preselection, a single cell was marked by means of diamond-produced circles on the outer cell chamber window. During exposure to microbeams, NADH-attributed autofluorescence of the chosen cell was detected by fluorescence imaging and spectroscopy. In addition, cell morphology was video-monitored (formation of pseudopodia, membrane blebbing,...). Maintaining the microchamber in the incubator, the irradiated cell was examined 24 h later for cell division (clone formation) and modifications in autofluorescence and morphology (including daughter cells). In the case that no division occurred the vitality of the light-exposed cell and of the control cells were probed by intranuclear propidium iodide accumulation. After fixation, either electron microscopy or single cell gel electrophoresis (comet assay) was performed. To monitor comet formation indicating photoinduced DNA damage in the preselected single cell in comparison with the non-exposed neighbor cells the chamber was filled with low-melting gel and lysis solution and exposed to an electric field. In contrast to the conventional comet assay, where only randomly chosen cells of a suspension are investigated, the novel optimized electrophoresis technique should enhance the possibilities of DNA damage detection to a true single (preselected) cell level. The single cell techniques applied to UVA microexposed Chinese hamster ovary cells (364 nm, 1 mW, 3.5 W/cm2) revealed significant cell damage for J/cm2 fluences such as modifications of intracellular redox state, impaired cell division, formation of giant cells and cell shrinking, swelling of mitochondria and loss of cristae as well as DNA damage.

  2. Comet assay, cloning assay, and light and electron microscopy on one preselected cell

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Oehring, Hartmut; Halbhuber, Karl-Juergen; Fiedler, Ursula; Bauer, Eckhard; Greulich, Karl-Otto

    1998-01-01

    In order to perform long-term studies up to one week on a preselected single cell after micromanipulation (e.g. UVA and NIR microbeam exposure) in comparison with non-treated neighbor cells (control cells) we applied a variety of single cell diagnostic techniques and developed a special comet assay for single preselected cells. For that purpose adherent cells were grown in low concentrations and maintained in special sterile centimeter-sized glass cell chambers. After preselection, a single cell was marked by means of diamond-produced circles on the outer cell chamber window. During exposure to microbeams, NADH-attributed autofluorescence of the chosen cell was detected by fluorescence imaging and spectroscopy. In addition, cell morphology was video-monitored (formation of pseudopodia, membrane blebbing,...). Maintaining the microchamber in the incubator, the irradiated cell was examined 24 h later for cell division (clone formation) and modifications in autofluorescence and morphology (including daughter cells). In the case that no division occurred the vitality of the light-exposed cell and of the control cells were probed by intranuclear propidium iodide accumulation. After fixation, either electron microscopy or single cell gel electrophoresis (comet assay) was performed. To monitor comet formation indicating photoinduced DNA damage in the preselected single cell in comparison with the non-exposed neighbor cells the chamber was filled with low-melting gel and lysis solution and exposed to an electric field. In contrast to the conventional comet assay, where only randomly chosen cells of a suspension are investigated, the novel optimized electrophoresis technique should enhance the possibilities of DNA damage detection to a true single (preselected) cell level. The single cell techniques applied to UVA microexposed Chinese hamster ovary cells (364 nm, 1 mW, 3.5 W/cm2) revealed significant cell damage for J/cm2 fluences such as modifications of intracellular redox state, impaired cell division, formation of giant cells and cell shrinking, swelling of mitochondria and loss of cristae as well as DNA damage.

  3. Garcinia dulcis Fruit Extract Induced Cytotoxicity and Apoptosis in HepG2 Liver Cancer Cell Line

    PubMed Central

    Abu Bakar, Mohd Fadzelly; Ahmad, Nor Ezani; Suleiman, Monica; Rahmat, Asmah; Isha, Azizul

    2015-01-01

    Garcinia dulcis or locally known in Malaysia as “mundu” belongs to the family of Clusiaceae. The study was conducted to investigate the anticancer potential of different parts of G. dulcis fruit extracts and their possible mechanism of action in HepG2 liver cancer cell line. MTT assay showed that the peel, flesh, and seed extracts of G. dulcis induced cytotoxicity in HepG2 cell line with IC50 values of 46.33 ± 4.51, 38.33 ± 3.51, and 7.5 ± 2.52?µg/mL, respectively. The flesh extract of G. dulcis induced cell cycle arrest at sub-G1 (apoptosis) phase in a time-dependent manner. Staining with Annexin V-FITC and propidium iodide showed that 41.2% of the cell population underwent apoptosis after 72 hours of exposure of the HepG2 cell line to G. dulcis flesh extract. Caspase-3 has been shown to be activated which finally leads to the death of HepG2 cell (apoptosis). GC-MS analysis showed that the highest percentage of compound identified in the extract of G. dulcis flesh was hydroxymethylfurfural and 3-methyl-2,5-furandione, together with xanthones and flavonoids (based on literature), could synergistically contribute to the observed effects. This finding suggested that the flesh extract of G. dulcis has its own potential as cancer chemotherapeutic agent against liver cancer cell. PMID:26557713

  4. Sequential gemcitabine and tamoxifen treatment enhances apoptosis and blocks transformation in bladder cancer cells.

    PubMed

    Takeuchi, Hisashi; Mmeje, Chinedu O; Jinesh, Goodwin G; Taoka, Rikiya; Kamat, Ashish M

    2015-11-01

    Bladder cancer is a common malignancy for which regional or metastatic disease is identified at diagnosis. The aim of this study was to determine whether tamoxifen (Tam), an estrogen receptor (ER) antagonist, can sensitize bladder cancer cell lines to gemcitabine (Gem) chemotherapy. ER? and ER? protein levels were determined in each cell line using western blot analysis. The TCC-Sup, 5637, and RT4 bladder cancer cells were exposed to various concentrations and regimens of Tam or Gem alone or in combination. Cell viability and apoptosis were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and propidium iodide followed by flow cytometry. Apoptosis was then evaluated by western blot analysis. Treated TCC-Sup cells were subjected to soft agar colony formation assay to determine the cellular transformation. Western blot analysis results revealed ER expression in the three cell lines. TCC-Sup and 5637 cells treated with a combination of Tam and Gem had lower cell viabilities than those treated with Tam or Gem alone for 72 h in TCC-Sup and 5637. Compared with the other treatments, sequential Gem followed by Tam (Gem?Tam) treatment caused the largest increase in DNA fragmentation at 72 h in TCC-Sup cells. Western blot analysis results revealed that this sequential Gem?Tam treatment increased poly(ADP-ribose) polymerase cleavage in TCC-Sup cells. Sequential Gem?Tam inhibited the cell transformation in TCC-Sup cells. In conclusion, sequential Gem?Tam enhanced the cytotoxicity of Gem in vitro. This regimen be useful to enhance the efficacy of Gem in bladder cancer. However, future in vivo studies are required to verify the results. PMID:26323344

  5. HUHS1015 induces necroptosis and caspase-independent apoptosis of MKN28 human gastric cancer cells in association with AMID accumulation in the nucleus.

    PubMed

    Kaku, Yoshiko; Tsuchiya, Ayako; Kanno, Takeshi; Nishizaki, Tomoyuki

    2015-01-01

    The newly synthesized naftopidil analogue HUHS1015 reduced viability of MKN28 and MKN45 human gastric cancer cells in a concentration (0.3-100 ?M)-dependent manner, with the potential greater than that for naftopidil. In the cell cycle analysis, HUHS1015 significantly increased the proportion at the subG1 phase of cell cycling in MKN28 cells. In the flow cytometry using propidium iodide (PI) and annexin V, HUHS1015 significantly increased the populations of PI-positive/annexin V-negative and PI-positive/annexin V-positive MKN28 cells, corresponding to primary necrosis and late apoptosis/secondary necrosis, respectively. HUHS1015-induced MKN28 cell death was attenuated by the necroptosis inhibitor Nec-1. In the enzymatic caspase assay, caspase-3, -4, -8, and -9 were not sufficiently activated by HUHS1015. HUHS1015 increased nuclear localization of apoptosis-inducing factor-homologous mitochondrion-associated inducer of death (AMID), without affecting expression of the AMID mRNA and protein in MKN28 cells. HUHS1015 caused nuclear fragmentation and condensation in MKN28 cells treated with HUHS1015. Taken together, these results of the present study indicate that HUHS1015 induces both necroptosis and caspase-independent apoptosis of MKN28 cells, possibly the latter effect being due to AMID accumulation in the nucleus. PMID:25244912

  6. Analysis of the antitumor activity of gemcitabine and carboplatin against ovarian clear-cell carcinoma using the DNA damage marker ?H2AX

    PubMed Central

    Takatori, Eriko; Shoji, Tadahiro; Sawai, Takashi; Kurose, Akira; Sugiyama, Toru

    2013-01-01

    Background Differences in the incidence and type of DNA damage induced by antitumor agents for ovarian clear-cell carcinoma (CCC) were determined in two CCC cell lines, using ?H2AX. Materials and methods The antitumor activity of gemcitabine (GEM) and carboplatin (CBDCA) were examined using cultured cell lines of CCC (OVISE and RMG-I). Each cell line was treated with GEM and CBDCA, the cells were collected, fixed, and then reacted with anti-?H2AX antibody. ?H2AX and nuclear DNA were then simultaneously detected by flow cytometry using fluorescein isothiocyanate and propidium iodide, respectively, to determine the amounts of ?H2AX formed in each cell-cycle phase. Results After administration of GEM, both cell lines showed DNA damage and cell-cycle arrest in the S and G2/M phases, and increased apoptosis. Similarly, with CBDCA, OVISE showed S- and G2/M-phase arrest, while RMG-I showed G2/M-phase arrest. Conclusion The mechanism of action of GEM and CBDCA in CCC cell lines was elucidated using ?H2AX as a DNA damage marker. Our findings suggested that concomitant use of GEM plus CBDCA may be effective in the treatment of CCC. PMID:23898228

  7. Photodynamic damage of glial cells in crayfish ventral nerve cord

    NASA Astrophysics Data System (ADS)

    Kolosov, M. S.; Duz, E.; Uzdensky, A. B.

    2010-10-01

    Photodynamic therapy (PDT) is a promising method for treatment of brain tumors, the most of which are of glial origin. In the present work we studied PDT-mediated injury of glial cells in nerve tissue, specifically, in abdominal connectives in the crayfish ventral nerve cord. The preparation was photosensitized with alumophthalocyanine Photosens and irradiated 30 min with the diode laser (670 nm, 0.1 or 0.15 W/cm2). After following incubation in the darkness during 1- 10 hours it was fluorochromed with Hoechst 33342 and propidium iodide to reveal nuclei of living, necrotic and apoptotic cells. The chain-like location of the glial nuclei allowed visualization of those enveloping giant axons and blood vessels. The level of glial necrosis in control preparations was about 2-5 %. Apoptosis was not observed in control preparations. PDT significantly increased necrosis of glial cells to 52 or 67 % just after irradiation with 0.1 or 0.15 W/cm2, respectively. Apoptosis of glial cells was observed only at 10 hours after light exposure. Upper layers of the glial envelope of the connectives were injured stronger comparing to deep ones: the level of glial necrosis decreased from 100 to 30 % upon moving from the connective surface to the plane of the giant axon inside the connective. Survival of glial cells was also high in the vicinity of blood vessels. One can suggest that giant axons and blood vessels protect neighboring glial cells from photodynamic damage. The mechanism of such protective action remains to be elucidated.

  8. Photodynamic damage of glial cells in crayfish ventral nerve cord

    NASA Astrophysics Data System (ADS)

    Kolosov, M. S.; Duz, E.; Uzdensky, A. B.

    2011-03-01

    Photodynamic therapy (PDT) is a promising method for treatment of brain tumors, the most of which are of glial origin. In the present work we studied PDT-mediated injury of glial cells in nerve tissue, specifically, in abdominal connectives in the crayfish ventral nerve cord. The preparation was photosensitized with alumophthalocyanine Photosens and irradiated 30 min with the diode laser (670 nm, 0.1 or 0.15 W/cm2). After following incubation in the darkness during 1- 10 hours it was fluorochromed with Hoechst 33342 and propidium iodide to reveal nuclei of living, necrotic and apoptotic cells. The chain-like location of the glial nuclei allowed visualization of those enveloping giant axons and blood vessels. The level of glial necrosis in control preparations was about 2-5 %. Apoptosis was not observed in control preparations. PDT significantly increased necrosis of glial cells to 52 or 67 % just after irradiation with 0.1 or 0.15 W/cm2, respectively. Apoptosis of glial cells was observed only at 10 hours after light exposure. Upper layers of the glial envelope of the connectives were injured stronger comparing to deep ones: the level of glial necrosis decreased from 100 to 30 % upon moving from the connective surface to the plane of the giant axon inside the connective. Survival of glial cells was also high in the vicinity of blood vessels. One can suggest that giant axons and blood vessels protect neighboring glial cells from photodynamic damage. The mechanism of such protective action remains to be elucidated.

  9. p-Cresol Affects Reactive Oxygen Species Generation, Cell Cycle Arrest, Cytotoxicity and Inflammation/Atherosclerosis-Related Modulators Production in Endothelial Cells and Mononuclear Cells

    PubMed Central

    Chan, Chiu-Po; Yeung, Sin-Yuet; Hsien, Hsiang-Chi; Lin, Bor-Ru; Yeh, Chien-Yang; Tseng, Wan-Yu; Tseng, Shui-Kuan; Jeng, Jiiang-Huei

    2014-01-01

    Aims Cresols are present in antiseptics, coal tar, some resins, pesticides, and industrial solvents. Cresol intoxication leads to hepatic injury due to coagulopathy as well as disturbance of hepatic circulation in fatal cases. Patients with uremia suffer from cardiovascular complications, such as atherosclerosis, thrombosis, hemolysis, and bleeding, which may be partly due to p-cresol toxicity and its effects on vascular endothelial and mononuclear cells. Given the role of reactive oxygen species (ROS) and inflammation in vascular thrombosis, the objective of this study was to evaluate the effect of p-cresol on endothelial and mononuclear cells. Methods EA.hy926 (EAHY) endothelial cells and U937 cells were exposed to different concentrations of p-cresol. Cytotoxicity was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5 -diphenyltetrazolium bromide (MTT) assay and trypan blue dye exclusion technique, respectively. Cell cycle distribution was analyzed by propidium iodide flow cytometry. Endothelial cell migration was studied by wound closure assay. ROS level was measured by 2?,7?-dichlorofluorescein diacetate (DCF) fluorescence flow cytometry. Prostaglandin F2? (PGF2?), plasminogen activator inhibitor-1 (PAI-1), soluble urokinase plasminogen activator receptor (suPAR), and uPA production were determined by Enzyme-linked immunosorbant assay (ELISA). Results Exposure to 100–500 µM p-cresol decreased EAHY cell number by 30–61%. P-cresol also decreased the viability of U937 mononuclear cells. The inhibition of EAHY and U937 cell growth by p-cresol was related to induction of S-phase cell cycle arrest. Closure of endothelial wounds was inhibited by p-cresol (>100 µM). P-cresol (>50 µM) also stimulated ROS production in U937 cells and EAHY cells but to a lesser extent. Moreover, p-cresol markedly stimulated PAI-1 and suPAR, but not PGF2?, and uPA production in EAHY cells. Conclusions p-Cresol may contribute to atherosclerosis and thrombosis in patients with uremia and cresol intoxication possibly due to induction of ROS, endothelial/mononuclear cell damage and production of inflammation/atherosclerosis-related molecules. PMID:25517907

  10. Enhancement of Raman Light Scattering in Dye-Labeled Rat Glioma Cells by Langmuir-Blodgett CNT-Bundles Arranged on Metal-Containing Conducting Polymer Film

    E-print Network

    Egorov, A S; Grushevskaya, H V; Krot, V I; Krylova, N G; Lipnevich, I V; Orekhovskaya, T I; Shulitsky, B G

    2015-01-01

    We have fabricated layered nanocomposite consisting of a nanoporous anodic alumina sublayer (AOA), an ultrathin metal-containing polymer Langmuir-Blodgett (LB) film coating AOA, and multi-walled carbon nanotube (MCNT) - bundles which are arranged on the LB-film. MCNTs were preliminarily chemically modified by carboxyl groups and functionalized by stearic acid. We have experimentally observed an enhancement of Raman light scattering on surface plasmons in the LB-monolayers. This enhancement is due to charge and energy transfer. We demonstrate that propidium iodide (PI) fluorescence is quenched by the MCNT-bundles. A method of two-dimensional system imaging based on the MCNT-enhanced Raman spectroscopy has been proposed. This method has been applied to visualize focal adhesion sites on membranes of living PI-labeled rat glioma cells.

  11. Evidence for necrosis, but not apoptosis, in human hepatoma cells with knockdown of mitochondrial aquaporin-8.

    PubMed

    Marchissio, Maria J; Francés, Daniel E A; Carnovale, Cristina E; Marinelli, Raúl A

    2014-05-01

    We previously found that mitochondrial aquaporin-8 (mtAQP8) channels facilitate mitochondrial H2O2 release in human hepatoma HepG2 cells and that their knockdown causes oxidant-induced mitochondrial dysfunction and loss of viability. Here, we studied whether apoptosis or necrosis is involved as the mode of cell death. We confirmed that siRNA-induced mtAQP8 knockdown significantly decreased HepG2 viability by MTT assay, LDH leakage, and trypan blue exclusion test. Analysis of mitochondrial proapoptotic Bax-to-antiapoptotic BclXL ratio, mitochondrial cytochrome c release and caspase-3 activation showed no alterations in mtAQP8-knockdown cells. This indicates a primary mechanism of cell death other than the intrinsic mitochondrial apoptotic pathway. Thus, nuclear staining with DAPI did not reveal any increase of apoptotic features, i.e. chromatin condensation or nuclear fragmentation. Flow cytometry studies after double cell staining with annexin V and propidium iodide confirmed lack of apoptosis and suggested necrosis as the primary mechanism of death in mtAQP8-knockdown HepG2 cells. Necrosis was further supported by the increased nuclear delocalization and extracellular release of the High Mobility Group Box 1 protein. The knockdown of mtAQP8 in another human hepatoma-derived cell line, i.e. HuH-7 cells, also induced necrotic but not apoptotic death. Our data suggest that mtAQP8 knockdown induces necrotic cell death in human neoplastic hepatic cells, a finding that might be relevant to therapeutic strategies against hepatoma cells. PMID:24415197

  12. Apoptosis Induction of Salvia chorassanica Root Extract on Human Cervical Cancer Cell Line.

    PubMed

    Parsaee, Heydar; Asili, Javad; Mousavi, Seyed Hadi; Soofi, Hojjat; Emami, Seyed Ahmad; Tayarani-Najaran, Zahra

    2013-01-01

    Salvia chorassanica Bunge is one of the Iranian endemic species of Salvia. There is not any reported literature on S. chorassanica. This study was designed to examine the in-vitro anti-proliferative and proapoptotic effects of the methanol extract of S. chorassanica and its fractions on HeLa cell line. Cells were cultured in EX-CELL®, an animal free medium specially designed for HeLa cell line and incubated with different concentrations of plant extracts. Cell viability was quantified by MTS assay. Apoptotic cells were determined using propidium iodide (PI) staining of DNA fragmentation by flow cytometry (sub-G1 peak). Activity of caspase -3, -8 and -9 was measured by the caspase colorimetric kit assay. S. chorassanica inhibited the growth of malignant cells and the CH2Cl2 fraction was determined as the most cytotoxic fraction in comparison with other fractions. The calculated IC50 values for methanol extract, n-hexane, CH2Cl2 and EtOAc fractions were 8.841, 5.45, 2.38, and 58.03 ?g/mL, respectively. S. chorassanica induced a sub-G1 peak in the flow cytometry histogram of treated cells compared to control cells indicating that the cytotoxic mechanism is characterized by apoptosis induction. The activity of caspase-3 and 8 proteins in treated HeLa cells was significantly higher than that of the control while caspase-9 activity did not change significantly. Based on the result obtained from our study, the apoptosis pathway involved in S. chorassanica-induced cell death may be through the extrinsic pathway and it can be a novel promising candidate in the treatment of cancer. PMID:24250574

  13. Glycans coated silver nanoparticles induces autophagy and necrosis in HeLa cells

    NASA Astrophysics Data System (ADS)

    Panzarini, Elisa; Mariano, Stefania; Dini, Luciana

    2015-06-01

    This study reports the induction of autophagy by two concentrations (2×103 or 2×104 NPs/cell) of 30 nm sized ?-D-Glucose- and ?-D-Glucose/Sucrose-coated silver NanoParticles (AgNPs-G and AgNPs-GS respectively) in HeLa cells treated for 6, 12, 24 and 48 hrs. Cell viability was assessed by Neutral Red (NR) test and morphological evaluation. In addition ROS generation (NBT test) and induction of apoptosis/necrosis (Annexin V/Propidium Iodide-Annexin V/PI staining) and autophagy (Monodansylcadaverine-MDC staining) were evaluated. Cytotoxicity, ROS generation and morphology changes depend on NPs type and amount, and incubation time. As a general result, AgNPs-G are more toxic than AgNPs-GS. Moreover, the lowest AgNPs-GS concentration is ineffective on cell viability and ROS generation. Only 10% and 25% of viable HeLa cells were found at the end of incubation time in the presence of higher amount of AgNPs - G and AgNPs-GS respectively and in parallel ROS generation is induced. To elucidate the type of cell death, Annexin V/PI and MDC staining was performed. Interestingly, irrespective of coating type and NPs amount the percentage of apoptotic cells (Annexin V+/PI-) is similar to viable HeLa cells. At contrary, we observed a NPs amount dependent autophagy and necrosis induction. In fact, the lower amount of NPs induces autophagy (MDC+/PI- cells) whereas the higher one induces necrosis (Annexin V+/PI+ cells). Our findings suggest that AgNPs-induced cytotoxicity depends on AgNPs amount and type and provide preliminary evidence of induction of autophagy in HeLa cells cultured in the presence of AgNPs.

  14. Single-Cell Tracking Reveals Antibiotic-Induced Changes in Mycobacterial Energy Metabolism

    PubMed Central

    Özdemir, Emre; McKinney, John D.

    2015-01-01

    ABSTRACT ATP is a key molecule of cell physiology, but despite its importance, there are currently no methods for monitoring single-cell ATP fluctuations in live bacteria. This is a major obstacle in studies of bacterial energy metabolism, because there is a growing awareness that bacteria respond to stressors such as antibiotics in a highly individualistic manner. Here, we present a method for long-term single-cell tracking of ATP levels in Mycobacterium smegmatis based on a combination of microfluidics, time-lapse microscopy, and Förster resonance energy transfer (FRET)-based ATP biosensors. Upon treating cells with antibiotics, we observed that individual cells undergo an abrupt and irreversible switch from high to low intracellular ATP levels. The kinetics and extent of ATP switching clearly discriminate between an inhibitor of ATP synthesis and other classes of antibiotics. Cells that resume growth after 24 h of antibiotic treatment maintain high ATP levels throughout the exposure period. In contrast, antibiotic-treated cells that switch from ATP-high to ATP-low states never resume growth after antibiotic washout. Surprisingly, only a subset of these nongrowing ATP-low cells stains with propidium iodide (PI), a widely used live/dead cell marker. These experiments also reveal a cryptic subset of cells that do not resume growth after antibiotic washout despite remaining ATP high and PI negative. We conclude that ATP tracking is a more dynamic, sensitive, reliable, and discriminating marker of cell viability than staining with PI. This method could be used in studies to evaluate antimicrobial effectiveness and mechanism of action, as well as for high-throughput screening. PMID:25691591

  15. Continuous production of n-butanol by Clostridium pasteurianum DSM 525 using suspended and surface-immobilized cells.

    PubMed

    Gallazzi, Alessandro; Branska, Barbora; Marinelli, Flavia; Patakova, Petra

    2015-12-20

    For n-butanol production by Clostridium pasteurianum DSM 525, a modified reinforced Clostridium medium was used, where glucose was alternated with glycerol and two kinds of continuous fermentation were tested using suspended and surface immobilized cells on corn stover pieces. A steady state, with butanol productivity of 4.2g/Lh, was reached during the packed-bed continuous fermentation at a dilution rate of 0.44h(-1). The average n-butanol concentration, yield and the ratio of n-butanol/liquid by-products were 10.4g/L, 33 % and 2.5, respectively. Unexpectedly, during continuous fermentation with suspended cells, at a dilution rate of 0.01h(-1), steady-state was not achieved and regular oscillations occurred in all measured variables, i.e. concentrations of glycerol, products and the number of cells stained with the fluorescent dyes carboxy fluorescein diacetate and propidium iodide. A possible explanation for oscillatory/steady-state behavior of suspended/surface-attached cells, respectively, may be specific butanol toxicity (toxicity per cell), which was higher/lower in respective cases, and which might be caused by lower/higher cell numbers respectively in both systems. PMID:26471284

  16. Production of savinase and population viability of Bacillus clausii during high-cell-density fed-batch cultivations.

    PubMed

    Christiansen, Torben; Michaelsen, Søren; Wümpelmann, Mogens; Nielsen, Jens

    2003-08-01

    The growth and product formation of a Savinase-producing Bacillus clausii were investigated in high-cell-density fed-batch cultivations with both linear and exponential feed profiles. The highest specific productivity of Savinase was observed shortly after the end of the initial batch phase for all feed profiles applied and, in addition, there was a time-dependent decrease in specific productivity. The specific glucose uptake rate increased with time for constant specific growth rate indicating that the maintenance requirements increased with time, possibly due to a decreasing K(+) concentration. The physiological state of the cells was monitored during the cultivations using a flow cytometry assay based on the permeability of the cell membrane to propidium iodide. In the latter parts of the fed-batch cultures with a linear feed profile, a large portion of the cell population was found to have a permeable membrane, indicating a large percentage of dead cells. By assuming that only cells with a nonpermeable membrane contributed to growth and product formation, the physiological properties of this subpopulation were calculated. PMID:12783490

  17. L-carvone induces p53, caspase 3 mediated apoptosis and inhibits the migration of breast cancer cell lines.

    PubMed

    Patel, Pinaki B; Thakkar, Vasudev R

    2014-01-01

    A wide variety of natural compounds exists that possesses significant cytotoxic as well as chemopreventive activity through induction of apoptosis in cancer cells. The antiproliferative and apoptotic effect of L-carvone, an active component of spearmint (Mentha spicata) was studied on breast cancer (MCF 7 and MDA MB 231) and normal (MCF 10A) cell lines, and insight into its mechanism of action was attained. L-carvone inhibited proliferation of MCF 7 (IC50 1.2 mM) and MDA MB 231 cells (IC50 1.0 mM) and inhibited the migration of breast cancer cell lines. L-carvone induced apoptosis as observed by nuclei fragmentation and the presence of apoptotic bodies in DAPI, AnnexinV/propidium iodide, and TUNEL assays. L-carvone exposure arrested MCF 7 cells in S phase of the cell cycle. DNA damage caused by L-carvone was apparent from the increased tail moment in COMET assay, which could be induced by an increase in ROS that was measured using a fluorescence probe. Glutathione levels were also increased. The increased level of p53, Bad, cleaved caspase 3, and cleaved PARP explained p53 and caspase-mediated apoptosis. PMID:24611509

  18. Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the comet assay

    SciTech Connect

    Olive, P.L.; Banath, J.P.; Durand, R.E. )

    1990-04-01

    A method for measuring DNA damage to individual cells, based on the technique of microelectrophoresis, was described by Ostling and Johanson in 1984. Cells embedded in agarose are lysed, subjected briefly to an electric field, stained with a fluorescent DNA-binding stain, and viewed using a fluorescence microscope. Broken DNA migrates farther in the electric field, and the cell then resembles a comet with a brightly fluorescent head and a tail region which increases as damage increases. We have used video image analysis to define appropriate features of the comet as a measure of DNA damage, and have quantified damage and repair by ionizing radiation. The assay was optimized for lysing solution, lysing time, electrophoresis time, and propidium iodide concentration using Chinese hamster V79 cells. To assess heterogeneity of response of normal versus malignant cells, damage to both tumor cells and normal cells within mouse SCC-VII tumors was assessed. Tumor cells were separated from macrophages using a cell-sorting method based on differential binding of FITC-conjugated goat anti-mouse IgG. The tail moment, the product of the amount of DNA in the tail and the mean distance of migration in the tail, was the most informative feature of the comet image. Tumor and normal cells showed significant heterogeneity in damage produced by ionizing radiation, although the average amount of damage increased linearly with dose (0-15 Gy) and suggested similar net radiosensitivities for the two cell types. Similarly, DNA repair rate was not significantly different for tumor and normal cells, and most of the cells had repaired the damage by 30 min following exposure to 15 Gy. The heterogeneity in response did not appear to be a result of differences in response through the cell cycle.

  19. Toxicity of silver nanoparticles in mouse embryonic stem cells and chemical based reprogramming of somatic cells to sphere cells

    NASA Astrophysics Data System (ADS)

    Rajanahalli Krishnamurthy, Pavan

    Abstract 1: Silver nanoparticles (Ag Np's) have an interesting surface chemistry and unique plasmonic properties. They are used in a wide variety of applications ranging from consumer products like socks, medical dressing, computer chips and it is also shown to have antimicrobial, anti bacterial activity and wound healing. Ag Np toxicity studies have been limited to date which needs to be critically addressed due to its wide applications. Mouse embryonic stem (MES) cells represent a unique cell population with the ability to undergo both self renewal and differentiation. They exhibit very stringent and tightly regulated mechanisms to circumvent DNA damage and stress response. We used 10 nm coated (polysaccharide) and uncoated Ag Np's to test its toxic effects on MES cells. MES cells and embryoid bodies (EB's) were treated with two concentrations of Ag Np's: 5 microg/ml and 50 ug/ml and exposed for 24, 48 and 72 hours. Increased cell death, ROS production and loss of mitochondrial membrane potential and alkaline phosphatase (AP) occur in a time and a concentration dependant manner. Due to increased cell death, there is a progressive increase in Annexin V (apoptosis) and Propidium Iodide (PI) staining (necrosis). Oct4 and Nanog undergo ubiquitination and dephosphorylation post-translational modifications in MES cells thereby altering gene expression of pluripotency factors and differentiation of EB's into all the three embryonic germ layers with specific growth factors were also inhibited after Ag Np exposure. Flow cytometry analysis revealed Ag Np's treated cells had altered cell cycle phases correlating with altered self renewal capacity. Our results suggest that Ag Np's effect MES cell self renewal, pluripotency and differentiation and serves as a perfect model system for studying toxicity induced by engineered Ag Np's. Abstract 2: The reprogramming of fibroblasts to pluripotent stem cells and the direct conversion of fibroblasts to functional neurons has been successfully manipulated by ectopic expression of defined factors. We demonstrate that mouse fibroblasts can be converted into sphere cells by detaching fibroblast cells by proteases and then using AlbuMAX I-containing culture medium without genetic alteration. AlbuMAX I is a lipid-rich albumin. Albumin-associated lipids arachidonic acid (AA) and pluronic F-68 were responsible for this effect. The converted colonies were positive for both alkaline phosphatase and stage specific embryonic antigen-1 (SSEA-1) staining. Global gene expression analysis indicated that the sphere cells were in an intermediate state compared with MES cells and MEF cells. The sphere cells were able to differentiate into tissues representing all three embryonic germ layers following retinoic acid treatment, and also differentiated into smooth muscle cells following treatment with vascular endothelial growth factor (VEGF). The study presented a potential novel approach to transdifferentiate mouse fibroblast cells into other cell lineages mediated by AlbuMAX I-containing culture medium.

  20. Hirsutenone in Alnus extract inhibits akt activity and suppresses prostate cancer cell proliferation.

    PubMed

    Kang, Soouk; Kim, Jong-Eun; Li, Yan; Jung, Sung Keun; Song, Nu Ry; Thimmegowda, N R; Kim, Bo Yeon; Lee, Hyong Joo; Bode, Ann M; Dong, Zigang; Lee, Ki Won

    2015-11-01

    Although specific compounds found in some East Asian traditional medicines have been shown to exhibit bioactive properties, their molecular mechanisms of action remain elusive. The bark of the Alnus species has been used for the treatment of various pathological conditions including hemorrhage, alcoholism, fever, diarrhea, skin diseases, inflammation, and cancer in East Asia for centuries. In this study, we show that hirsutenone, a bioactive compound in Alnus japonica, exhibits anti-cancer effects against prostate cancer through a direct physical inhibition of Akt1/2. Hirsutenone suppressed anchorage-dependent and independent cell growth of PC3 and LNCaP human prostate cancer cells. Annexin V and Propidium iodide (PI) staining results demonstrated that hirsutenone strongly induces apoptotic cell death in both PC3 and LNCaP cells. Furthermore, treatment of hirsutenone attenuated phosphorylation of mammalian target of rapamycin (mTOR), a downstream substrate of Akt, without affecting Akt phosphorylation. Kinase and pull-down assay results clearly show that hirsutenone inhibits Akt1 and 2 by direct binding in an adenosine triphosphate (ATP)-noncompetitive manner in vitro and ex vivo. Our results show that hirsutenone suppresses human prostate cancer by targeting Akt1 and 2 as a key component to explain for anti-cancer activity of Alnus species. © 2014 Wiley Periodicals, Inc. PMID:25213146

  1. Neuroprotective effects of bovine colostrum on intracerebral hemorrhage-induced apoptotic neuronal cell death in rats.

    PubMed

    Kim, Sung Eun; Ko, Il Gyu; Shin, Mal Soon; Kim, Chang Ju; Ko, Young Gwan; Cho, Hanjin

    2012-08-01

    Brain cell death after intracerebral hemorrhage may be mediated in part by an apoptotic mechanism. Colostrum is the first milk produced by mammals for their young. It plays an important role in protection and development by providing various antibodies, growth factors and nutrients, and has been used for various diseases in many countries. In the present study, we investigated the anti-apoptotic effects of bovine colostrum using organotypic hippocampal slice cultures and an intracerebral hemorrhage animal model. We performed densitometric measurements of propidium iodide uptake, a step-down avoidance task, Nissl staining, and caspase-3 immunohistochemistry. The present results revealed that colostrum treatment significantly suppressed N-methyl-D-aspartic acid-induced neuronal cell death in the rat hippocampus. Moreover, colostrum treatment improved short-term memory by suppressing hemorrhage-induced apoptotic neuronal cell death and decreasing the volume of the lesion induced by intracerebral hemorrhage in the rat hippocampus. These results suggest that colostrum may have a beneficial role in recovering brain function following hemorrhagic stroke by suppressing apoptotic cell death. PMID:25624793

  2. Neuroprotective effects of bovine colostrum on intracerebral hemorrhage-induced apoptotic neuronal cell death in rats?

    PubMed Central

    Kim, Sung Eun; Ko, Il Gyu; Shin, Mal Soon; Kim, Chang Ju; Ko, Young Gwan; Cho, Hanjin

    2012-01-01

    Brain cell death after intracerebral hemorrhage may be mediated in part by an apoptotic mechanism. Colostrum is the first milk produced by mammals for their young. It plays an important role in protection and development by providing various antibodies, growth factors and nutrients, and has been used for various diseases in many countries. In the present study, we investigated the anti-apoptotic effects of bovine colostrum using organotypic hippocampal slice cultures and an intracerebral hemorrhage animal model. We performed densitometric measurements of propidium iodide uptake, a step-down avoidance task, Nissl staining, and caspase-3 immunohistochemistry. The present results revealed that colostrum treatment significantly suppressed N-methyl-D-aspartic acid-induced neuronal cell death in the rat hippocampus. Moreover, colostrum treatment improved short-term memory by suppressing hemorrhage-induced apoptotic neuronal cell death and decreasing the volume of the lesion induced by intracerebral hemorrhage in the rat hippocampus. These results suggest that colostrum may have a beneficial role in recovering brain function following hemorrhagic stroke by suppressing apoptotic cell death. PMID:25624793

  3. In vitro anticancer activity of stachydrine isolated from Capparis decidua on prostate cancer cell lines.

    PubMed

    Rathee, Permender; Rathee, Dharmender; Rathee, Deepti; Rathee, Sushila

    2012-01-01

    In this article we report our work on the isolation, characterisation and evaluation of in vitro anticancer activity of stachydrine on solid tumour cells. The in vitro activity was assessed by MTT assay and propidium iodide (PI) staining. Further, an attempt was also made to check the effect of stachydrine on the invasion and metastasis of cancer cells by inhibiting the expression of chemokine receptors (CXCR3 and CXCR4). The influence of stachydrine on the gene expression of CXCR3 and CXCR4 at mRNA and protein levels was examined. Studies revealed a dose dependent decrease in expression of mRNA, and protein levels were observed in stachydrine-treated human prostate cancer cells (PC-3 and LNcaP) as detected by reverse transcriptase-polymerase chain reaction (RT-PCR). The data therefore provides direct evidence for the role of stachydrine as a potent anti-metastatic agent, which can markedly inhibit the malignancy and invasive capacity of malignant cancer cells. PMID:21988653

  4. Combination of 12-O-tetradecanoylphorbol-13-acetate with diethyldithiocarbamate markedly inhibits pancreatic cancer cell growth in 3D culture and in immunodeficient mice

    PubMed Central

    HUANG, HUARONG; CAO, KAJIA; MALIK, SAQUIB; ZHANG, QIUYAN; LI, DONGLI; CHANG, RICHARD; WANG, HUAQIAN; LIN, WEIPING; VAN DOREN, JEREMIAH; ZHANG, KUN; DU, ZHIYUN; ZHENG, XI

    2015-01-01

    The aim of the present study was to determine the effects of 12-O-tetradecanoylphorbol-13-acetate (TPA) and diethyldithiocarbamate (DDTC) alone or in combination on human pancreatic cancer cells cultured in vitro and grown as xenograft tumors in nude mice. Pancreatic cancer cells were treated with either DDTC or TPA alone, or in combination and the number of viable cells was then determined by trypan blue ecxlusion assay and the number of apoptotic cells was determined by morphological assessment by staining the cells with propidium idiode and examining them under a fluorescence microscope. Treatment with DDTC or TPA alone inhibited the growth and promoted the apoptosis of pancreatic cancer cells in a concentration-dependent manner. These effects were more prominent following treatment with TPA in combination with DDTC than following treatment with either agent alone in PANC-1 cells in monolayer cultures and in 3 dimensional (3D) cultures. The potent effects of the combination treatment on PANC-1 cells were associated with the inhibition of nuclear factor-?B (NF-?B) activation and the decreased expression of Bcl-2 induced by DDTC, as shown by NF-?B-dependent reporter gene expression assay and western blot analysis. Furthermore, treatment of nude mice with DDTC + TPA strongly inhibited the growth of PANC-1 xenograft tumors. The results of the present study indicate that the administration of TPA and DDTC in combination may be an effective strategy for inhibiting the growth of pancreatic cancer. PMID:25847449

  5. Cell cycle regulatory factors in juxta-tumoral renal parenchyma.

    PubMed

    Petru?c?, Daniela Nicoleta; Petrescu, Amelia; Vrabie, Camelia; Niculescu, L; Jinga, V; Diaconu, Carmen; Bra?oveanu, Lorelei

    2005-01-01

    The aim of this study was to evaluate regulatory cell cycle factors in juxta-tumoral renal parenchyma in order to obtain information regarding early primary changes occurred in normal renal cells. Specimens of juxta-tumoral renal parenchyma were harvested from the tumoral kidney in 10 patients with no history of treatment before surgery. The expression of p53, Bcl-2, Rb and PCNA was studied by immunohistochemical methods in paraffin-embedded tissues. The apoptotic status was evaluated by flow-cytometry analysis following propidium iodide incorporation. The p53 protein expression was recognized in most of the cases (80%) with different intensities. High intensity apoptotic process detected in juxta-tumoral parenchyma seemed to be p53 dependent and well correlated with the low Bcl-2 expression. 70% of cases were Rb positive. In this type of tissue Rb has only an anti-proliferative and anti-tumoral role. PCNA was present in half of the cases being low expressed due to the tissue regenerating mechanism. Our data suggest that the high intensity of programmed cell death in this type of tissue is supported by the status of cell regulatory factors that control this process. Previous studies have demonstrated that healthy renal tissue has neither apoptosis nor mitotic activity. Juxta-tumoral renal tissue is also displaying normal morphology and DNA content (diploidy) but the microenvironmental status induced by the tumor presence prompts cells to choose death rather than malignant transformation. Further studies are necessary to emphasize if these results have a clinical relevance for the outcome of therapeutical approaches in renal carcinomas. PMID:16286997

  6. Nickel nanowires induced and reactive oxygen species mediated apoptosis in human pancreatic adenocarcinoma cells

    PubMed Central

    Hossain, Md. Zakir; Kleve, Maurice G

    2011-01-01

    Background The ability to evade apoptosis is one of the key properties of cancer. The apoptogenic effect of nickel nanowires (Ni NWs) on cancer cell lines has never been adequately addressed. Due to the unique physicochemical characteristics of Ni NWs, we envision the development of a novel anticancer therapeutics specifically for pancreatic cancer. Thus, we investigated whether Ni NWs induce ROS-mediated apoptosis in human pancreatic adenocarcinoma (Panc-1) cells. Methods In this study Ni NWs were fabricated using the electrodeposition method. Synthesized Ni NWs were physically characterized by energy dispersive X-ray analysis, UV-Vis spectroscopy of NanoDrop 2000 (UV-Vis), magnetization study, scanning electron microscopy, and transmission electron microscopy. Assessment of morphological apoptotic characteristics by phase contrast microscopy (PCM), Ni-NWs-induced apoptosis staining with ethidium bromide (EB) and acridine orange (AO) followed by fluorescence microscopy (FM) was performed. For molecular biological and biochemical characterization, Panc-1 cell culture and cytotoxic effect of Ni NWs were determined by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Quantitative apoptosis was analyzed by flow cytometry staining with propidium iodide through cell cycle arrest and generation of ROS using 2?, 7?-dichlorofluorescein diacetate fluorescence intensity. In all experiments, Panc-1 cancer cells without any treatment were used as the negative controls. Results The intracellular uptake of Ni NWs through endocytosis by Panc-1 cells was observed by PCM. EB and AO staining of FM and MTT assay qualitatively and quantitatively confirmed the extent of apoptosis. Flow cytometric cell cycle arrest and ROS generation indicated Ni NWs as inducers of apoptotic cell death. Conclusion We investigated the role of Ni NWs as inducers of ROS-mediated apoptosis in Panc-1 cells. These results suggested that Ni NWs could be an effective apoptotic agent for Panc-1 cells and have good potential for further research into a clinical treatment selective for pancreatic cancer. PMID:21845039

  7. Inhalational Anesthetics Induce Cell Damage by Disruption of Intracellular Calcium Homeostasis with Different Potencies

    PubMed Central

    Yang, Hui; Liang, Ge; Hawkins, Brian; Madesh, Muniswamy; Pierwola, Andrew; Wei, Huafeng

    2008-01-01

    Background We hypothesized that inhalational anesthetics induced cell damage by causing abnormal calcium release from the endoplasmic reticulum via excessive activation of inositol 1,4,5-trisphosphate (IP3) receptors, with isoflurane greater potency than sevoflurane or desflurane. Methods We treated DT40 chicken B lymphocytes with total IP3 receptor knock-out or their corresponding wild type control cells with equipotent exposure of isoflurane, sevoflurane and desflurane. We then determined the degree of cell damage by counting the percentage of annexin V or propidium iodide positively stained cells or measuring caspase-3 activity. We also studied the changes of calcium concentrations in the endoplasmic reticulum, cytosol and mitochondria evoked by equipotent concentrations of isoflurane, sevoflurane and desflurane in both types of DT40 cells. Results Prolonged use of 2 minimal alveolar concentration sevoflurane or desflurane (24 hr) induced significant cell damage only in DT40 Wild type but not IP3 receptor total knock-out cells, but with significantly less potency than isoflurane. In accordance, all three inhalational anesthetics induced significant decrease of calcium concentrations in the endoplasmic reticulum, accompanied with a subsequent significant increase in the cytosol and mitochondrial calcium concentrations only in DT40 wild type but not in IP3 receptor total knock-out cells. Isoflurane treatment showed significantly greater potency of effect than sevoflurane or desflurane. Conclusion Inhalational anesthetics may induce cell damage by causing abnormal calcium release from the endoplasmic reticulum via excessive activation of IP3 receptors. Isoflurane has greater potency than sevoflurane or desflurane to cause calcium release from the endoplasmic reticulum and to induce cell damage. PMID:18648233

  8. Liriodenine, an aporphine alkaloid from Enicosanthellum pulchrum, inhibits proliferation of human ovarian cancer cells through induction of apoptosis via the mitochondrial signaling pathway and blocking cell cycle progression

    PubMed Central

    Nordin, Noraziah; Majid, Nazia Abdul; Hashim, Najihah Mohd; Rahman, Mashitoh Abd; Hassan, Zalila; Ali, Hapipah Mohd

    2015-01-01

    Enicosanthellum pulchrum is a tropical plant from Malaysia and belongs to the Annonaceae family. This plant is rich in isoquinoline alkaloids. In the present study, liriodenine, an isoquinoline alkaloid, was examined as a potential anticancer agent, particularly in ovarian cancer. Liriodenine was isolated by preparative high-performance liquid chromatography. Cell viability was performed to determine the cytotoxicity, whilst the detection of morphological changes was carried out by acridine orange/propidium iodide assay. Initial and late apoptosis was examined by Annexin V-fluorescein isothiocyanate and DNA laddering assays, respectively. The involvement of pathways was detected via caspase-3, caspase-8, and caspase-9 analyses. Confirmation of pathways was further performed in mitochondria using a cytotoxicity 3 assay. Apoptosis was confirmed at the protein level, including Bax, Bcl-2, and survivin, while interruption of the cell cycle was used for final validation of apoptosis. The result showed that liriodenine inhibits proliferation of CAOV-3 cells at 37.3 ?M after 24 hours of exposure. Changes in cell morphology were detected by the presence of cell membrane blebbing, chromatin condensation, and formation of apoptotic bodies. Early apoptosis was observed by Annexin V-fluorescein isothiocyanate bound to the cell membrane as early as 24 hours. Liriodenine activated the intrinsic pathway by induction of caspase-3 and caspase-9. Involvement of the intrinsic pathway in the mitochondria could be seen, with a significant increase in mitochondrial permeability and cytochrome c release, whereas the mitochondrial membrane potential was decreased. DNA fragmentation occurred at 72 hours upon exposure to liriodenine. The presence of DNA fragmentation indicates the CAOV-3 cells undergo late apoptosis or final stage of apoptosis. Confirmation of apoptosis at the protein level showed overexpression of Bax and suppression of Bcl-2 and survivin. Liriodenine inhibits progression of the CAOV-3 cell cycle in S phase. These findings indicate that liriodenine could be considered as a promising anticancer agent. PMID:25792804

  9. Induction of apoptosis of endothelial cells by Viscum album: a role for anti-tumoral properties of mistletoe lectins.

    PubMed Central

    Van Huyen, Jean-Paul Duong; Bayry, Jagadeesh; Delignat, Sandrine; Gaston, Anh Thu; Michel, Odile; Bruneval, Patrick; Kazatchkine, Michel D.; Nicoletti, Antonino; Kaveri, Srini V.

    2002-01-01

    BACKGROUND: Viscum album (VA) preparations consist of aqueous extracts of different types of lectins of VA. Mistletoe lectins have both cytotoxic and immunomodulatory properties that support their study for the development for cancer therapy. However, the mechanisms of the anti- tumoral properties in vivo of mistletoe lectins are not fully understood. Because endothelial cells (EC) play a pivotal role in tumor angiogenesis, we tested the hypothesis that VA extracts induce endothelial cell death and apoptosis. MATERIALS AND METHODS: We investigated the effect of various VA preparations on both human venous endothelial cell (HUVEC) and immortalized human venous endothelial cell line (IVEC) using morphologic assessment of EC, FACScan analysis after propidium iodine and annexin V labeling, and detection of cleavage of poly(A)DP-ribose polymerase (PARP). RESULTS: All tested VA preparations, except Iscador P, were cytotoxic in IVEC. Apoptosis, assessed by morphologic examination, annexin V labeling, and Western blot analysis for PARP cleavage, was involved in HUVEC cell death induced by VA preparations derived from plants that grow on oak trees (VA Qu FrF). CONCLUSIONS: Results from the present study suggest that VA extract-induced endothelial apoptosis may explain the tumor regression associated with the therapeutic use of VA preparations and support further investigations to develop novel anti-angiogenic compounds based on mistletoe compounds. PMID:12477970

  10. BEAS S6 (BEAS) human bronchial epithelial cells produce inflammatory mediators following ozone(O sub 3 ) exposure

    SciTech Connect

    McKinnon, K.; Joyce, M.; Noah, T.; Devlin, R.; Koren, H. Environmental Protection Agency, Research Triangle Park, NC )

    1991-03-11

    Ozone induces an inflammatory response in humans. The purpose of this study was to assess the role of epithelial cells in this response. The authors exposed the bronchial epithelial cell line BEAS cultured on collagen-impregnated filters to air or varying concentrations of O{sub 3}. Fluid obtained from either apical or basolateral compartments was analyzed for various inflammatory mediators and other products released in response to O{sub 3} exposure. O{sub 3} had dose-dependent cytotoxic effects as determined by the release of LDH or {sup 51}Cr and by uptake of trypan blue or propidium iodide. PGE{sub 2}, leukotrienes C{sub 4}, B{sub 4}, and E{sub 4}, fibronectin, PAF, and IL 6 were produced in dose-dependent responses following exposure of BEAS cells to 0.1 to 1.0 ppm O{sub 3}. The data demonstrate that the BEAS cell line produces inflammatory substances in response to O{sub 3} and thus functions as a useful model to study pollutant/airway cell interactions.

  11. Parasporin-2 from a New Bacillus thuringiensis 4R2 Strain Induces Caspases Activation and Apoptosis in Human Cancer Cells

    PubMed Central

    Asselin, Eric; Parent, Sophie; Côté, Jean-Charles; Sirois, Marc

    2015-01-01

    In previous studies, parasporin-2Aa1, originally isolated from Bacillus thuringiensis strain A1547, was shown to be cytotoxic against specific human cancer cells but the mechanisms of action were not studied. In the present study, we found that proteinase K activated parasporin-2Aa1 protein isolated from a novel B. thuringiensis strain, 4R2, was specifically cytotoxic to endometrial, colon, liver, cervix, breast and prostate cancer. It showed no toxicity against normal cells. Upon treatment with proteinase K-activated parasporin-2Aa1, morphological changes were observed and western blot analysis revealed the cleavage of poly (ADP-Ribose) polymerase, caspase-3 and caspase-9 in cancer cell lines exclusively, indicative of programmed cell death, apoptosis. Flow cytometry analyses,using propidium iodide and annexin V, as well as a caspases 3/7 assay confirmed apoptosis induction. Further analyses were performed to study survival pathways, including AKT, XIAP, ERK1/2 and PAR-4, a known inducer of apoptosis. These results indicate that parasporin-2Aa1 is a selective cytotoxic protein that induces apoptosis in various human cancer cell lines from diverse tissues. PMID:26263002

  12. Short-term urinary flow impairment deregulates PAX2 and PCNA expression and cell survival in fetal sheep kidneys.

    PubMed Central

    Attar, R.; Quinn, F.; Winyard, P. J.; Mouriquand, P. D.; Foxall, P.; Hanson, M. A.; Woolf, A. S.

    1998-01-01

    Renal malformations account for most children with chronic renal failure and are often associated with urinary tract anatomical obstruction. We examined cellular and molecular events after experimental urinary flow impairment in fetal sheep. Ovine gestation lasts 144 to 150 days with the metanephros appearing at 27 to 30 days. We generated complete unilateral ureteric anatomical obstruction at 90 days when a few layers of glomeruli had formed. After 10 days, we recorded ureteric and pelvic dilatation with renal parenchymal weight greater than contralateral organs or those from unoperated fetuses. The nephrogenic cortex was replaced by disorganized cells separated by edema and prominent vascular spaces. Cortical histology was dominated by cysts associated with malformed glomerular tufts. Cystic epithelia expressed PAX2, a growth-stimulating transcription factor down-regulated during normal maturation, and proliferating cell nuclear antigen, a surrogate marker of cycling cells. Detection of apoptosis using propidium iodide and in situ end labeling showed a significant increase of the point prevalence of death in the obstructed cortex. Hence, PAX2 and proliferating cell nuclear antigen expression as well as death were deregulated, as we previously reported in human kidney malformations. Medullary collecting ducts and loops of Henle were also disrupted, correlating with impaired urinary dilution and sodium reabsorption. Therefore, complex aberrations of morphogenesis, gene expression, cell turnover, and urine composition occur relatively early after experimental impairment of fetal urinary flow. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 PMID:9588891

  13. Britannin, a sesquiterpene lactone, inhibits proliferation and induces apoptosis through the mitochondrial signaling pathway in human breast cancer cells.

    PubMed

    Hamzeloo-Moghadam, Maryam; Aghaei, Mahmoud; Fallahian, Faranak; Jafari, Seyyed Mehdi; Dolati, Masoumeh; Abdolmohammadi, Mohammad Hossein; Hajiahmadi, Sima; Esmaeili, Somayeh

    2015-02-01

    Induction of apoptosis in cancer cells can be a promising treatment method in cancer therapy. Naturally derived products had drawn growing attention as agent in cancer therapy. The main target of anticancer drugs may be distinct, but eventually, they lead to identical cell death pathway, which is apoptosis. Here, we indicated that britannin, a sesquiterpene lactone isolated from Asteraceae family, has antiproliferative activity on the MCF-7 and MDA-MB-468 human breast cancer cells. Annexin V/propidium iodide (PI) staining, Hoechst 33258 staining, and caspase-3/9 activity assay confirmed that britannin is able to induce apoptosis in MCF-7 and MDA-MB-468 cells. The Western blot analysis showed that the expression of Bcl-2 was noticeably decreased in response to britannin treatment, while the expression of Bax protein was increased, which were positively correlated with elevated expression of p53. Moreover, britannin also increased reactive oxygen species (ROS) generation which in turn triggered the loss of mitochondrial transmembrane potential (??m) and the subsequent release of cytochrome c from mitochondria into cytosol. Taken together, these results suggest that britannin inhibits growth of MCF-7 and MDA-MB-468 breast cancer cells through the activation of the mitochondrial apoptotic pathway and may potentially serve as an agent for breast cancer therapy. PMID:25342596

  14. The induction of reactive oxygen species and loss of mitochondrial Omi/HtrA2 is associated with S-nitrosoglutathione-induced apoptosis in human endothelial cells

    SciTech Connect

    Liu Qibing; Liu Lulu; Lu Yingmei; Tao Rongrong; Huang Jiyun; Shioda, Norifumi; Moriguchi, Shigeki; Fukunaga, Kohji; Han Feng; Lou Yijia

    2010-05-01

    The pathophysiological relevance of S-nitrosoglutathione (GSNO)-induced endothelial cell injury remains unclear. The main objective of this study was to elucidate the molecular mechanisms of GSNO-induced oxidative stress in endothelial cells. Morphological evaluation through DAPI staining and propidium iodide (PI) flow cytometry was used to detect apoptosis. In cultured EA.hy926 endothelial cells, exposure to GSNO led to a time- and dose-dependent apoptotic cascade. When intracellular reactive oxygen species (ROS) production was measured in GSNO-treated cells with the fluorescent probes 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate, we observed elevated ROS levels and a concomitant loss in mitochondrial membrane potential, indicating that GSNO-induced death signaling is mediated through a ROS-mitochondrial pathway. Importantly, we found that peroxynitrite formation and Omi/HtrA2 release from mitochondria were involved in this phenomenon, whereas changes of death-receptor dependent signaling were not detected in the same context. The inhibition of NADPH oxidase activation and Omi/HtrA2 by a pharmacological approach provided significant protection against caspase-3 activation and GSNO-induced cell death, confirming that GSNO triggers the death cascade in endothelial cells in a mitochondria-dependent manner. Taken together, our results indicate that ROS overproduction and loss of mitochondrial Omi/HtrA2 play a pivotal role in reactive nitrogen species-induced cell death, and the modulation of these pathways can be of significant therapeutic benefit.

  15. A micro-Raman spectroscopic investigation of leukemic U-937 cells treated with Crotalaria agatiflora Schweinf and the isolated compound madurensine

    NASA Astrophysics Data System (ADS)

    le Roux, Karlien; Prinsloo, Linda C.; Hussein, Ahmed A.; Lall, Namrita

    In South Africa traditional medicine plays an important role in primary health care and therefore it is very important that the medicinal use of plants is scientifically tested for toxicity and effectiveness. It was established that the ethanolic extract of the leaves of Crotalaria agatiflora, as well as the isolated compound madurensine, is moderately toxic against leukemic U-937 cells. Light microscopic investigations indicated that symptoms of cell death are induced during treatments, but flow cytometry analysis of treated cells, using annexin-V and propidium iodide, showed that apoptosis and necrosis are insignificantly induced. The Raman results suggested that protein extraction and DNA melting occur in the cells during treatment with the ethanolic extracts (IC50 value 73.9 ?g/mL), drastically changing the molecular content of the cells. In contrast, treatment with madurensine (IC50 value 136.5 ?g/mL), an isolated pyrrolizidine alkaloid from the ethanolic extract of the leaves, did not have the same effect. The results are also compared to that of cells treated with actinomycin D, a compound known to induce apoptosis. The investigation showed that micro-Raman spectroscopy has great promise to be used for initial screening of samples to determine the effects of different treatments on cancerous cell lines together with conventional methods. The results highlight the fact that for many natural products used for medicinal purposes, the therapeutic effect of the crude plant extract tends to be significantly more effective than the particular action of its individual constituents.

  16. The Marine Metabolite SZ-685C Induces Apoptosis in Primary Human Nonfunctioning Pituitary Adenoma Cells by Inhibition of the Akt Pathway in Vitro

    PubMed Central

    Wang, Xin; Tan, Ting; Mao, Zhi-Gang; Lei, Ni; Wang, Zong-Ming; Hu, Bin; Chen, Zhi-Yong; She, Zhi-Gang; Zhu, Yong-Hong; Wang, Hai-Jun

    2015-01-01

    Nonfunctioning pituitary adenoma (NFPA) is one of the most common types of pituitary adenoma. The marine anthraquinone derivative SZ-685C has been isolated from the secondary metabolites of the mangrove endophytic fungus Halorosellinia sp. (No. 1403) which is found in the South China Sea. Recent research has shown that SZ-685C possesses anticancer and tumor suppressive effects. The tetrazolium-based colorimetric assay (MTT assay) to investigate the different effect of the marine compound SZ-685C on the proliferation of primary human NFPA cells, rat normal pituitary cells (RPCs) and rat prolactinoma MMQ cell lines. Hoechst 33342 dye/propidium iodide (PI) double staining and fluorescein isothiocyanate-conjugated Annexin V/PI (Annexin V-FITC/PI) apoptosis assays detected an enhanced rate of apoptosis in cells treated with SZ-685C. Enhanced expression levels of caspase 3 and phosphate and tensin homolog (PTEN) were determined by Western blotting. Notably, the protein expression levels of Akt were decreased when the primary human NFPA cells were treated with SZ-685C. Here, we show that SZ-685C induces apoptosis of human NFPA cells through inhibition of the Akt pathway in vitro. The understanding of apoptosis has provided the basis for novel targeted therapies that can induce death in cancer cells or sensitize them to established cytotoxic agents and radiation therapy. PMID:25806467

  17. The marine metabolite SZ-685C induces apoptosis in primary human nonfunctioning pituitary adenoma cells by inhibition of the Akt pathway in vitro.

    PubMed

    Wang, Xin; Tan, Ting; Mao, Zhi-Gang; Lei, Ni; Wang, Zong-Ming; Hu, Bin; Chen, Zhi-Yong; She, Zhi-Gang; Zhu, Yong-Hong; Wang, Hai-Jun

    2015-03-01

    Nonfunctioning pituitary adenoma (NFPA) is one of the most common types of pituitary adenoma. The marine anthraquinone derivative SZ-685C has been isolated from the secondary metabolites of the mangrove endophytic fungus Halorosellinia sp. (No. 1403) which is found in the South China Sea. Recent research has shown that SZ-685C possesses anticancer and tumor suppressive effects. The tetrazolium-based colorimetric assay (MTT assay) to investigate the different effect of the marine compound SZ-685C on the proliferation of primary human NFPA cells, rat normal pituitary cells (RPCs) and rat prolactinoma MMQ cell lines. Hoechst 33342 dye/propidium iodide (PI) double staining and fluorescein isothiocyanate-conjugated Annexin V/PI (Annexin V-FITC/PI) apoptosis assays detected an enhanced rate of apoptosis in cells treated with SZ-685C. Enhanced expression levels of caspase 3 and phosphate and tensin homolog (PTEN) were determined by Western blotting. Notably, the protein expression levels of Akt were decreased when the primary human NFPA cells were treated with SZ-685C. Here, we show that SZ-685C induces apoptosis of human NFPA cells through inhibition of the Akt pathway in vitro. The understanding of apoptosis has provided the basis for novel targeted therapies that can induce death in cancer cells or sensitize them to established cytotoxic agents and radiation therapy. PMID:25806467

  18. Vitamin D Binding Protein-Macrophage Activating Factor Directly Inhibits Proliferation, Migration, and uPAR Expression of Prostate Cancer Cells

    PubMed Central

    Bielenberg, Diane R.; Dridi, Sami; Wu, Jason; Jiang, Weihua; Huang, Bin; Pirie-Shepherd, Steven; Fannon, Michael

    2010-01-01

    Background Vitamin D binding protein-macrophage activating factor (DBP-maf) is a potent inhibitor of tumor growth. Its activity, however, has been attributed to indirect mechanisms such as boosting the immune response by activating macrophages and inhibiting the blood vessel growth necessary for the growth of tumors. Methods and Findings In this study we show for the first time that DBP-maf exhibits a direct and potent effect on prostate tumor cells in the absence of macrophages. DBP-maf demonstrated inhibitory activity in proliferation studies of both LNCaP and PC3 prostate cancer cell lines as well as metastatic clones of these cells. Flow cytometry studies with annexin V and propidium iodide showed that this inhibitory activity is not due to apoptosis or cell death. DBP-maf also had the ability to inhibit migration of prostate cancer cells in vitro. Finally, DBP-maf was shown to cause a reduction in urokinase plasminogen activator receptor (uPAR) expression in prostate tumor cells. There is evidence that activation of this receptor correlates with tumor metastasis. Conclusions These studies show strong inhibitory activity of DBP-maf on prostate tumor cells independent of its macrophage activation. PMID:20976141

  19. Artemisinin induces caspase-8/9-mediated and Bax/Bak-independent apoptosis in human lung adenocarcinoma (ASTC-a-1) cells.

    PubMed

    Xiao, Feng-Lian; Gao, Wei-Jie; Liu, Cheng-Yi; Wang, Xiao-Ping; Chen, Tong-Sheng

    2011-01-01

    Artemisinin (ARTE), an antimalarial phytochemical component from the sweet wormwood plant, has been shown a potential anticancer activity by inducing cell apoptosis. The aim of this report is to explore the mechanism of ARTE-induced human lung adenocarcinoma (ASTC-a-1) cell apoptosis. Cell counting kit (CCK-8) assay showed that ARTE induced cytotoxcity in a dose- and time-dependent manner. Confocal microscopy fluorescence imaging of cells stained with Hoechst 33258 and flow cytometry (FCM) analysis of cells stained with Annexin V-FITC/propidium iodide (PI) showed that ARTE induced reactive oxygen species (ROS)-dependent apoptosis. Confocal fluorescence resonance energy transfer (FRET) imaging of single living cells expressing SCAT3, SCAT9 or CFP-Bid-YFP and fluorometic substrate assay showed that ARTE induced the activation of caspase-3, -8 and -9. Moreover, inhibition of caspase-8 or -9 completely blocked ARTE-induced apoptosis which was only partially attenuated by caspase-3 inhibitor. Interestingly, silencing Bax and Bak by RNA interference (RNAi) did not attenuate ARTE-induced apoptosis. Collectively, ARTE induces caspase-dependent but Bax/Bak-independent apoptosis in ASTC-a-1 cells. PMID:25214386

  20. Synthesis and Biological Evaluation of Curcumin Derivatives with Water-Soluble Groups as Potential Antitumor Agents: An in Vitro Investigation Using Tumor Cell Lines.

    PubMed

    Ding, Luyang; Ma, Shuli; Lou, Hongxiang; Sun, Longru; Ji, Mei

    2015-01-01

    Three series of curcumin derivatives including phosphorylated, etherified, and esterified products of curcumin were synthesized, and their anti-tumor activities were assessed against human breast cancer MCF-7, hepatocellular carcinoma Hep-G2, and human cervical carcinoma HeLa cells. Compared with curcumin, compounds 3, 8, and 9 exhibited stronger antitumor cell line growth activities against HeLa cells. Compound 12 also showed higher antitumor cell line growth activities on MCF-7 cells than curcumin. Among them, 4-((1E,6E)-7-(4-Hydroxy-3-methoxyphenyl)-3,5-dioxohepta-1,6-dienyl)-2-methoxyphenyl dihydrogen phosphate(3) showed the strongest activity with an half maximal inhibitory concentration (IC50) of 6.78 µM against HeLa cells compared with curcumin with an IC50 of 17.67 µM. Stabilities of representatives of the three series were tested in rabbit plasma in vitro, and compounds 3 and 4 slowly released curcumin in plasma. The effect of compound 3 on HeLa cell apoptosis was determined by examining morphological changes by DAPI (4',6-diamidino-2-phenylindole) staining as well as Annexin V-FITC/ Propidium Iodide (PI) double staining and flow cytometry. The results showed that 3 induced cellular apoptosis in a dose-dependent manner. Together our findings show that 3 merits further investigation as a new potential antitumor drug candidate. PMID:26633344

  1. Spine venom of crown-of-thorns starfish (Acanthaster planci) induces antiproliferation and apoptosis of human melanoma cells (A375.S2).

    PubMed

    Lee, Chi-Chiu; Hsieh, Hernyi Justin; Hsieh, Cheng-Hong; Hwang, Deng-Fwu

    2014-12-01

    The crown-of-thorns starfish (Acanthaster planci) is a venomous starfish. In this study, the extraction of A. planci spine venom (ASV) was performed by phosphate saline buffer, followed by assaying the cytotoxicity on human normal and tumor cells. It was found that human melanoma cells (A375.S2) were the most sensitive to the ASV solution. The cells, after incubation with ASV, significantly appeared to decrease cell viability and increase lactate dehydrogenase (LDH) release with a dose-dependent relationship. The extract of spine promoted loss of mitochondrial membrane potential (??m) and induced inter-nucleosomal DNA fragmentation in human melanoma cells. The cells exhibited apoptosis by using propidium iodide (PI) staining of DNA fragmentation; it was then determined by flow cytometry (sub-G1 peak). The molecular cytotoxicity of ASV was tested through evaluation of the apoptosis/necrosis ratio by double staining with annexin V and PI assay. The A. planci spine venom showed significant antiproliferation. The human melanoma cells revealed apoptosis at low dose (1.25 ?g/ml), and necrosis occurred at high dose (5 ?g/ml). PMID:25159188

  2. Natural Mineral Particles Are Cytotoxic to Rainbow Trout Gill Epithelial Cells In Vitro

    PubMed Central

    de Capitani, Christian; Burkhardt-Holm, Patricia; Pietsch, Constanze

    2014-01-01

    Worldwide increases in fluvial fine sediment are a threat to aquatic animal health. Fluvial fine sediment is always a mixture of particles whose mineralogical composition differs depending on the sediment source and catchment area geology. Nonetheless, whether particle impact in aquatic organisms differs between mineral species remains to be investigated. This study applied an in vitro approach to evaluate cytotoxicity and uptake of four common fluvial mineral particles (quartz, feldspar, mica, and kaolin; concentrations: 10, 50, 250 mg L?1) in the rainbow trout epithelial gill cell line RTgill-W1. Cells were exposed for 24, 48, 72, and 96 h. Cytotoxicity assays for cell membrane integrity (propidium iodide assay), oxidative stress (H2DCF-DA assay), and metabolic activity (MTT assay) were applied. These assays were complemented with cell counts and transmission electron microscopy. Regardless of mineral species, particles ?2 µm in diameter were taken up by the cells, suggesting that particles of all mineral species came into contact and interacted with the cells. Not all particles, however, caused strong cytotoxicity: Among all assays the tectosilicates quartz and feldspar caused sporadic maximum changes of 0.8–1.2-fold compared to controls. In contrast, cytotoxicity of the clay particles was distinctly stronger and even differed between the two particle types: mica induced concentration-dependent increases in free radicals, with consistent 1.6–1.8-fold-changes at the 250 mg L?1 concentration, and a dilated endoplasmic reticulum. Kaolin caused concentration-dependent increases in cell membrane damage, with consistent 1.3–1.6-fold increases at the 250 mg L?1 concentration. All effects occurred in the presence or absence of 10% fetal bovine serum. Cell numbers per se were marginally affected. Results indicate that (i.) natural mineral particles can be cytotoxic to gill epithelial cells, (ii.) their cytotoxic potential differs between mineral species, with clay particles being more cytotoxic, and (iii.) some clays might induce effects comparable to engineered nanoparticles. PMID:24991818

  3. Induction of apoptosis in human myeloid leukemia cells by remote exposure of resistive barrier cold plasma.

    PubMed

    Thiyagarajan, Magesh; Anderson, Heather; Gonzales, Xavier F

    2014-03-01

    Cold atmospheric plasma (CAP), an ambient temperature ionized gas, is gaining extensive interest as a promising addition to anti-tumor therapy primarily due to the ability to generate and control delivery of electrons, ions, excited molecules, UV photons, and reactive species such as reactive oxygen species (ROS) and reactive nitrogen species (RNS) to a specific site. The heterogeneous composition of CAP offers the opportunity to mediate several signaling pathways that regulate tumor cells. Consequently, the array of CAP generated products has limited the identification of the mechanisms of action on tumor cells. The aim of this work is to assess the cell death response of human myeloid leukemia cells by remote exposure to CAP generated RNS by utilizing a novel resistive barrier discharge system that primarily produces RNS. The effect of variable treatments of CAP generated RNS was tested in THP-1 cell (human monocytic leukemia cell line), a model for hematological malignancy. The number of viable cells was evaluated with erythrosine-B staining, while apoptosis and necrosis was assessed by endonuclease cleavage observed by agarose gel electrophoresis and detection of cells with the exclusionary dye propidium iodide and fluorescently labeled annexin-V by flow cytometry and fluorescent microscopy. Our observations indicate that treatment dosage levels of 45 s of exposure to CAP emitted RNS-induced apoptotic cell death and for higher dosage conditions of ?50 s of exposure to CAP induced necrosis. Overall the results suggest that CAP emitted RNS play a significant role in the anti-tumor potential of CAP. PMID:24022746

  4. Prostate-Specific Natural Health Products (Dietary Supplements) Radiosensitize Normal Prostate Cells

    SciTech Connect

    Hasan, Yasmin; Schoenherr, Diane; Martinez, Alvaro A.; Wilson, George D.; Marples, Brian

    2010-03-01

    Purpose: Prostate-specific health products (dietary supplements) are taken by cancer patients to alleviate the symptoms linked with poor prostate health. However, the effect of these agents on evidence-based radiotherapy practice is poorly understood. The present study aimed to determine whether dietary supplements radiosensitized normal prostate or prostate cancer cell lines. Methods and Materials: Three well-known prostate-specific dietary supplements were purchased from commercial sources available to patients (Trinovin, Provelex, and Prostate Rx). The cells used in the study included normal prostate lines (RWPE-1 and PWR-1E), prostate tumor lines (PC3, DU145, and LNCaP), and a normal nonprostate line (HaCaT). Supplement toxicity was assessed using cell proliferation assays [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and cellular radiosensitivity using conventional clonogenic assays (0.5-4Gy). Cell cycle kinetics were assessed using the bromodeoxyuridine/propidium iodide pulse-labeling technique, apoptosis by scoring caspase-3 activation, and DNA repair by assessing gammaH2AX. Results: The cell growth and radiosensitivity of the malignant PC3, DU145, and LNcaP cells were not affected by any of the dietary prostate supplements (Provelex [2mug/mL], Trinovin [10mug/mL], and Prostate Rx [50 mug/mL]). However, both Trinovin (10mug/mL) and Prostate Rx (6mug/mL) inhibited the growth rate of the normal prostate cell lines. Prostate Rx increased cellular radiosensitivity of RWPE-1 cells through the inhibition of DNA repair. Conclusion: The use of prostate-specific dietary supplements should be discouraged during radiotherapy owing to the preferential radiosensitization of normal prostate cells.

  5. Natural mineral particles are cytotoxic to rainbow trout gill epithelial cells in vitro.

    PubMed

    Michel, Christian; Herzog, Simon; de Capitani, Christian; Burkhardt-Holm, Patricia; Pietsch, Constanze

    2014-01-01

    Worldwide increases in fluvial fine sediment are a threat to aquatic animal health. Fluvial fine sediment is always a mixture of particles whose mineralogical composition differs depending on the sediment source and catchment area geology. Nonetheless, whether particle impact in aquatic organisms differs between mineral species remains to be investigated. This study applied an in vitro approach to evaluate cytotoxicity and uptake of four common fluvial mineral particles (quartz, feldspar, mica, and kaolin; concentrations: 10, 50, 250 mg L(-1)) in the rainbow trout epithelial gill cell line RTgill-W1. Cells were exposed for 24, 48, 72, and 96 h. Cytotoxicity assays for cell membrane integrity (propidium iodide assay), oxidative stress (H2DCF-DA assay), and metabolic activity (MTT assay) were applied. These assays were complemented with cell counts and transmission electron microscopy. Regardless of mineral species, particles ? 2 µm in diameter were taken up by the cells, suggesting that particles of all mineral species came into contact and interacted with the cells. Not all particles, however, caused strong cytotoxicity: Among all assays the tectosilicates quartz and feldspar caused sporadic maximum changes of 0.8-1.2-fold compared to controls. In contrast, cytotoxicity of the clay particles was distinctly stronger and even differed between the two particle types: mica induced concentration-dependent increases in free radicals, with consistent 1.6-1.8-fold-changes at the 250 mg L(-1) concentration, and a dilated endoplasmic reticulum. Kaolin caused concentration-dependent increases in cell membrane damage, with consistent 1.3-1.6-fold increases at the 250 mg L(-1) concentration. All effects occurred in the presence or absence of 10% fetal bovine serum. Cell numbers per se were marginally affected. Results indicate that (i.) natural mineral particles can be cytotoxic to gill epithelial cells, (ii.) their cytotoxic potential differs between mineral species, with clay particles being more cytotoxic, and (iii.) some clays might induce effects comparable to engineered nanoparticles. PMID:24991818

  6. Involvement of autophagy inhibition in Brucea javanica oil emulsion-induced colon cancer cell death

    PubMed Central

    YAN, ZHENG; ZHANG, BEI; HUANG, YUANYUAN; QIU, HUIJUAN; CHEN, PING; GUO, GUI-FANG

    2015-01-01

    Brucea javanica oil emulsion (BJOE), the petroleum ether extract of B. javanica emulsified by phospholipid, is widely used in China as an anticancer agent. The extracts from B. javanica induce cancer cell death by various mechanisms; however, it is not known whether these mechanisms involve autophagy, which is an important process in cancer development and treatment. Thus, the current study aimed to investigate whether BJOE modulates autophagy in HCT116 human colon cancer cells and whether modulation of autophagy is an anticancer mechanism of BJOE. Immunoblotting was employed to analyze the protein expression levels of microtubule-associated protein light-chain 3 (LC3), a specific protein marker of autophagy, in HCT116 cancer cells following exposure to BJOE. The apoptosis rate of the HCT116 cancer cells was detected by performing an Annexin V-fluorescein isothiocyanate/propidium iodide assay. According to the effect of BJOE administration on autophagy in the HCT116 cancer cells (induction or suppression), a functionally opposite agent (autophagy suppressor or inducer) was applied to counteract this effect, and the apoptosis rate of the cancer cells was detected again. The role of autophagy (pro-survival or pro-death) was demonstrated by comparing the rates of apoptotic cancer cells prior to and following the counteraction. The results revealed that BJOE suppressed the protein expression levels of LC3, including the LC3-I and LC3-II forms, and induced apoptosis in the HCT116 cancer cells with a high level of basal LC3. The apoptosis-inducing activity of BJOE was significantly attenuated when autophagy was induced by the administration of trehalose, an autophagy inducer. The data indicates that autophagy inhibition is involved in BJOE-induced cancer cell death, and that this inhibition may be a potential anticancer mechanism of BJOE. PMID:25663926

  7. Development of interspecies testicular germ-cell transplantation in flatfish.

    PubMed

    Pacchiarini, Tiziana; Sarasquete, Carmen; Cabrita, Elsa

    2014-06-01

    Interspecific testicular germ cell (TGC) transplantation was investigated in two commercial flatfish species. Testes from donor species (Senegalese sole) were evaluated using classical histological techniques (haematoxylin-eosin staining and haematoxylin-light green-orange G-acid fuchsine staining), in situ hybridisation and immunohistochemical analysis. Both Ssvasa1-2 mRNAs and SsVasa protein allowed the characterisation of TGCs, confirming the usefulness of the vasa gene in the detection of Senegalese sole TGCs. Xenogenic transplants were carried out using TGCs from one-year-old Senegalese sole into turbot larvae. Propidium iodide-SYBR-14 and 4',6'-diamidino-2-phenylindole (DAPI) staining showed that 87.98% of the extracted testicular cells were viable for microinjection and that 15.63% of the total recovered cells were spermatogonia. The vasa gene was characterised in turbot recipients using cDNA cloning. Smvasa mRNA was confirmed as a germ cell-specific molecular marker in this species. Smvasa expression analysis during turbot ontogeny was carried out before Senegalese sole TGC transplants into turbot larvae. Turbot larvae at 18 days after hatching (DAH) proved to be susceptible to manipulation procedures. High survival rates (83.75±15.90-100%) were obtained for turbot larvae at 27, 34 and 42 DAH. These data highlight the huge potential of this species for transplantation studies. Quantitative PCR was employed to detect Senegalese sole vasa mRNAs (Ssvasa1-2) in the recipient turbot larvae. The Ssvasa mRNAs showed a significant increase in relative expression in 42-DAH microinjected larvae three weeks after treatment, showing the proliferation of Senegalese sole spermatogonia in transplanted turbot larvae. PMID:23735683

  8. Effect of BMAP-28 on human thyroid cancer TT cells is mediated by inducing apoptosis

    PubMed Central

    ZHANG, DAQI; WAN, LANLAN; ZHANG, JINNAN; LIU, CHANG; SUN, HUI

    2015-01-01

    Thyroid cancer is the most common malignant endocrine tumor, with significant morbidity and mortality. Bovine myeloid antimicrobial peptide 28 (BMAP-28) is a cathelicidin that is found in bovine neutrophils. In the present study, the effect and relative mechanism of BMAP-28 on the human thyroid cancer TT cell line in vitro and in vivo were investigated. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry and a TT-xenograft mouse model were used in this study. The data obtained indicated that BMAP-28 significantly inhibited the proliferation of the TT cells in vitro. In addition, the Annexin V-fluorescein isothiocyanate/propidium iodide assay detected that BMAP-28 induced apoptotic effects in the TT cells. Moreover, the expression of activated caspase-3 and -9 was upregulated at the transcriptional and translational levels. Simultaneously, the expression of matrix metalloproteinase (MMP)3 and MMP9 was downregulated following BMAP-28 treatment. Finally, BMAP-28 significantly prevented the tumor growth in the TT-xenograft mouse model. These results indicated that BMAP-28 could be a potential agent for the treatment of thyroid cancer.

  9. Use of immunofluorescence to visualize cell-specific gene expression during sporulation in Bacillus subtilis.

    PubMed Central

    Harry, E J; Pogliano, K; Losick, R

    1995-01-01

    We have adapted immunofluorescence microscopy for use in Bacillus subtilis and have employed this procedure for visualizing cell-specific gene expression at early to intermediate stages of sporulation. Sporangia were doubly stained with propidium iodide to visualize the forespore and mother cell nucleoids and with fluorescein-conjugated antibodies to visualize the location of beta-galactosidase produced under the control of the sporulation RNA polymerase sigma factors sigma E and sigma F. In confirmation and extension of earlier reports, we found that expression of a lacZ fusion under the control of sigma E was confined to the mother cell compartment of sporangia at the septation (II) and engulfment (III) stages of morphogenesis. Conversely, sigma F-directed gene expression was confined to the forespore compartment of sporangia at postseptation stages of development. Little indication was found for sigma E- or sigma F-directed gene expression prior to septation or in both compartments of postseptation sporangia. Gene expression under the control of the forespore sigma factor sigma G also exhibited a high level of compartmentalization. A high proportion of sporangia exhibited fluorescence in our immunostaining protocol, which should be suitable for the subcellular localization of sporulation proteins for which specific antibodies are available. PMID:7768847

  10. Hinokitiol Negatively Regulates Immune Responses through Cell Cycle Arrest in Concanavalin A-Activated Lymphocytes

    PubMed Central

    Chung, Chi-Li; Leung, Kam-Wing; Lu, Wan-Jung; Yen, Ting-Lin; He, Chia-Fu; Sheu, Joen-Rong; Lin, Kuan-Hung; Lien, Li-Ming

    2015-01-01

    Autoimmune diseases are a group of chronic inflammatory diseases that arise from inappropriate inflammatory responses. Hinokitiol, isolated from the wood of Chamaecyparis taiwanensis, engages in multiple biological activities. Although hinokitiol has been reported to inhibit inflammation, its immunological regulation in lymphocytes remains incomplete. Thus, we determined the effects of hinokitiol on concanavalin A- (ConA-) stimulated T lymphocytes from the spleens of mice. In the present study, the MTT assay revealed that hinokitiol (1–5??M) alone did not affect cell viability of lymphocytes, but at the concentration of 5 ?M it could reduce ConA-stimulated T lymphocyte proliferation. Moreover, propidium iodide (PI) staining revealed that hinokitiol arrested cell cycle of T lymphocytes at the G0/G1 phase. Hinokitiol also reduced interferon gamma (IFN-?) secretion from ConA-activated T lymphocytes, as detected by an ELISA assay. In addition, hinokitiol also downregulated cyclin D3, E2F1, and Cdk4 expression and upregulated p21 expression. These results revealed that hinokitiol may regulate immune responses. In conclusion, we for the first time demonstrated that hinokitiol upregulates p21 expression and attenuates IFN-? secretion in ConA-stimulated T lymphocytes, thereby arresting cell cycle at the G0/G1 phase. In addition, our findings also indicated that hinokitiol may provide benefits to treating patients with autoimmune diseases. PMID:26379747

  11. Preferentially Cytotoxic Constituents of Andrographis paniculata and their Preferential Cytotoxicity against Human Pancreatic Cancer Cell Lines.

    PubMed

    Lee, Sullim; Morita, Hiroyuki; Tezuka, Yasuhiro

    2015-07-01

    In the course of our search for anticancer agents based on a novel anti-austerity strategy, we found that the 70% EtOH extract of the crude drug Andrographis Herba (aerial parts of Andrographis paniculata), used in Japanese Kampo medicines, killed PANC-1 human pancreatic cancer cells preferentially in nutrient-deprived medium (NDM). Phytochemical investigation of the 70% EtOH extract led to the isolation of 21 known compounds consisting of six labdane-type diterpenes (11, 15, 17-19, 21), six flavones (5, 7, 10, 12, 14, 20), three flavanones (2, 6, 16), two sterols (3, 8), a fatty acid (1), a phthalate (4), a triterpene (9), and a monoterpene (13). Among them, 14-deoxy-11,12-didehydroandrographolide (17) displayed the most potent preferential cytotoxicity against PANC-1 and PSN-1 cells with PC50 values of 10.0 ?M and 9.27 ?M, respectively. Microscopical observation, double staining with ethidium bromide (EB) and acridine orange (AO), and flow cytometry with propidium iodide/annexin V double staining indicated that 14-deoxy-11,12-didehydroandrographolide (17) triggered apoptosis-like cell death in NDM with an amino acids and/or serum-sensitive mode. PMID:26410998

  12. Potential mechanism of apoptosis induced by ultrasound in human hepatocarcinoma cells via comparative proteomic analysis.

    PubMed

    Feng, Yi; Wan, Mingxi

    2015-08-17

    To analyze the potential molecular mechanism of ultrasound induced apoptosis in cancer cells, comparative proteomic methods were introduced in the study. After ultrasound exposure at the intensity of 1.2 W/cm2, the human SMMC-7721 hepatocarcinoma cells were stained by trypan blue to detect the morphologic changes, and then the flow cytometry was used to examine the percentage of early apoptosis via double staining of FITC-labelled Annexin V and Propidium iodide. The proteins were separated by two-dimensional (2D) SDS polyacrylamide gel electrophoresis (PAGE). Among them, the differently expressed proteins were identified by MALDI-TOF mass spectrometry to reveal the key proteins response to ultrasound exposure. It's proved early apoptosis of cells were induced by focused ultrasound. After ultrasound exposure, the expressing characteristics of several proteins changed, in which some proteins in HSP family are associated with apoptosis initiation. It is suggested that the focused ultrasound could be applied in the assistant cancer therapy. Moreover, it is proved the comparative proteomic methods could supply information about the protein expression to analyze the metabolic processes related to bio-effects of biomedical ultrasound. PMID:26405987

  13. Plasma membrane nanoporation as a possible mechanism behind infrared excitation of cells

    NASA Astrophysics Data System (ADS)

    Beier, Hope T.; Tolstykh, Gleb P.; Musick, Joshua D.; Thomas, Robert J.; Ibey, Bennett L.

    2014-12-01

    Objective. Short infrared (IR) laser pulses have been used to stimulate action potentials in neurons both in vivo and in vitro. However, the mechanism(s) underlying this phenomenon has remained elusive. In vitro studies have found that pulsed IR exposure generates a nearly instant change in capacitance in the plasma membrane, characterized by inward rectification, a common feature in pore-forming exposures, such as electrical pulses and acoustic shock waves. Based on this similarity, we hypothesize that the mechanism of IR stimulation is the formation of short-lived nanopores in the plasma membrane. These transient, small-diameter pores allow the influx of extracellular ions that lead to action potential generation, possibly through activation of secondary messenger pathways or depolarization of the cell membrane resulting in activation of voltage-gated ion channels. Approach. A variety of fluorescent markers are used to observe the cell response to IR stimulation to monitor for effects indicative of nanoporation in other modalities. Main results. We observe rapid, transient rises in intracellular Ca2+, influx of YO-PRO-1 and propidium iodide into the cell signifying membrane permeabilization, cellular blebbing and swelling, and activation of the intracellular phosphoinositides lipid signaling pathway. Significance. This conclusion better explains the experimental observations and limitations of IR-induced neurological stimulation and represents a distinct theoretical shift in the understanding of the mechanism of IR-induced stimulation.

  14. Crude ethyl acetate extract of marine microalga, Chaetoceros calcitrans, induces Apoptosis in MDA-MB-231 breast cancer cells

    PubMed Central

    Goh, Su Hua; Alitheen, Noorjahan Banu Mohamed; Yusoff, Fatimah Md; Yap, Swee Keong; Loh, Su Peng

    2014-01-01

    Background: Marine brown diatom Chaetoceros calcitrans and green microalga Nannochloropsis oculata are beneficial materials for various applications in the food, nutraceutical, pharmaceutical and cosmeceutical industries. Objective: This study investigated cytotoxicity of different crude solvent extracts from C. calcitrans and N. oculata against various cancer cell lines. Materials and Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was carried out to screen the cytotoxic effects of hexane (Hex), dichloromethane (DCM), ethyl acetate, and methanol extract from C. calcitrans and N. oculata toward various cancer cell lines. Flow cytometry cell cycle was used to determine the cell cycle arrest while the mode of cell death was investigated through acridine orange/propidium iodide (AOPI) staining, Annexin V-Fluorescein Isothiocyanate (FITC) and Terminal deoxynucleotidyl transferase-mediated d-UTP Nick End Labeling (TUNEL) assays. Expression profile of apoptotic and proliferative-related genes was then determined using the multiplex gene expression profiler (GeXP). Results: Crude ethyl acetate (CEA) extract of C. calcitrans inhibited growth of MDA-MB-231 cells, with IC50 of 60 ?g/mL after 72 h of treatment. Further studies were conducted to determine the mode of cell death at various concentrations of this extract: 30, 60 and 120 ?g/mL. The mode of cell death was mainly apoptosis as shown through apoptosis determination test. The expression data from GeXP showed that caspase-4 was upregulated while B-cell leukemia/lymphoma 2(Bcl-2) was down regulated. Thus, caspase-4 induction endoplasmic reticulum death pathway is believed to be one of the mechanisms underlying the induction of apoptosis while Bcl-2 induced S and G2/M cell cycle phase arrest in MDA-MB-231 cells. Conclusion: CEA extract of C. calcitrans showed the highest cytotoxicity on MDA-MB-231 via apoptosis. PMID:24696543

  15. Polymyxin B Induces Apoptosis in Kidney Proximal Tubular Cells

    PubMed Central

    Azad, Mohammad A. K.; Finnin, Ben A.; Poudyal, Anima; Davis, Kathryn; Li, Jinhua; Hill, Prue A.; Nation, Roger L.

    2013-01-01

    The nephrotoxicity of polymyxins is a major dose-limiting factor for treatment of infections caused by multidrug-resistant Gram-negative pathogens. The mechanism(s) of polymyxin-induced nephrotoxicity is not clear. This study aimed to investigate polymyxin B-induced apoptosis in kidney proximal tubular cells. Polymyxin B-induced apoptosis in NRK-52E cells was examined by caspase activation, DNA breakage, and translocation of membrane phosphatidylserine using Red-VAD-FMK [Val-Ala-Asp(O-Me) fluoromethyl ketone] staining, a terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay, and double staining with annexin V-propidium iodide (PI). The concentration dependence (50% effective concentration [EC50]) and time course for polymyxin B-induced apoptosis were measured in NRK-52E and HK-2 cells by fluorescence-activated cell sorting (FACS) with annexin V and PI. Polymyxin B-induced apoptosis in NRK-52E cells was confirmed by positive labeling from Red-VAD-FMK staining, TUNEL assay, and annexin V-PI double staining. The EC50 (95% confidence interval [CI]) of polymyxin B for the NRK-52E cells was 1.05 (0.91 to 1.22) mM and was 0.35 (0.29 to 0.42) mM for HK-2 cells. At lower concentrations of polymyxin B, minimal apoptosis was observed, followed by a sharp rise in the apoptotic index at higher concentrations in both cell lines. After treatment of NRK-52E cells with 2.0 mM polymyxin B, the percentage of apoptotic cells (mean ± standard deviation [SD]) was 10.9% ± 4.69% at 6 h and reached plateau (>80%) at 24 h, whereas treatment with 0.5 mM polymyxin B for 24 h led to 93.6% ± 5.57% of HK-2 cells in apoptosis. Understanding the mechanism of polymyxin B-induced apoptosis will provide important information for discovering less nephrotoxic polymyxin-like lipopeptides. PMID:23796937

  16. Fluorescence Microscopy Methods for Determining the Viability of Bacteria in Association with Mammalian Cells

    PubMed Central

    Johnson, M. Brittany; Criss, Alison K.

    2013-01-01

    Central to the field of bacterial pathogenesis is the ability to define if and how microbes survive after exposure to eukaryotic cells. Current protocols to address these questions include colony count assays, gentamicin protection assays, and electron microscopy. Colony count and gentamicin protection assays only assess the viability of the entire bacterial population and are unable to determine individual bacterial viability. Electron microscopy can be used to determine the viability of individual bacteria and provide information regarding their localization in host cells. However, bacteria often display a range of electron densities, making assessment of viability difficult. This article outlines protocols for the use of fluorescent dyes that reveal the viability of individual bacteria inside and associated with host cells. These assays were developed originally to assess survival of Neisseria gonorrhoeae in primary human neutrophils, but should be applicable to any bacterium-host cell interaction. These protocols combine membrane-permeable fluorescent dyes (SYTO9 and 4',6-diamidino-2-phenylindole [DAPI]), which stain all bacteria, with membrane-impermeable fluorescent dyes (propidium iodide and SYTOX Green), which are only accessible to nonviable bacteria. Prior to eukaryotic cell permeabilization, an antibody or fluorescent reagent is added to identify extracellular bacteria. Thus these assays discriminate the viability of bacteria adherent to and inside eukaryotic cells. A protocol is also provided for using the viability dyes in combination with fluorescent antibodies to eukaryotic cell markers, in order to determine the subcellular localization of individual bacteria. The bacterial viability dyes discussed in this article are a sensitive complement and/or alternative to traditional microbiology techniques to evaluate the viability of individual bacteria and provide information regarding where bacteria survive in host cells. PMID:24056524

  17. Rapid assessment of drug response in cancer cells using microwell array and molecular imaging

    PubMed Central

    Wang, Min S.; Luo, Zhen; Nitin, Nitin

    2015-01-01

    Selection of personalized chemotherapy regimen for individual patients has significant potential to improve chemotherapy efficacy and to reduce the deleterious effects of ineffective chemotherapy drugs. In this study, a rapid and high-throughput in vitro drug response assay was developed using a combination of microwell array and molecular imaging. The microwell array provided high-throughput analysis of drug response, which was quantified based on the reduction in intracellular uptake (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose) (2-NBDG). Using this synergistic approach, the drug response measurement was completed within 4 h, and only a couple thousand cells were needed for quantification. The broader application of this microwell molecular imaging approach was demonstrated by evaluating the drug response of two cancer cell lines, cervical (HeLa) and bladder (5637) cancer cells, to two distinct classes of chemotherapy drugs (cisplatin and paclitaxel). This approach did not require an extended cell culturing period, and the quantification of cellular drug response was 4–16 times faster compared with other cell-microarray drug response studies. Moreover, this molecular imaging approach had comparable sensitivity to traditional cell viability assays, i.e., the MTT assay and propidium iodide labeling of cellular nuclei;and similar throughput results as flow cytometry using only 1,000–2,000 cells. Given the simplicity and robustness of this microwell molecular imaging approach, it is anticipated that the assay can be adapted to quantify drug responses in a wide range of cancer cells and drugs and translated to clinical settings for a rapid in vitro drug response using clinically isolated samples. PMID:24760393

  18. Eurycomanone induce apoptosis in HepG2 cells via up-regulation of p53

    PubMed Central

    Zakaria, Yusmazura; Rahmat, Asmah; Pihie, Azimahtol Hawariah Lope; Abdullah, Noor Rain; Houghton, Peter J

    2009-01-01

    Background Eurycomanone is a cytotoxic compound found in Eurycoma longifolia Jack. Previous studies had noted the cytotoxic effect against various cancer cell lines. The aim of this study is to investigate the cytotoxicity against human hepato carcinoma cell in vitro and the mode of action. The cytotoxicity of eurycomanone was evaluated using MTT assay and the mode of cell death was detected by Hoechst 33258 nuclear staining and flow cytometry with Annexin-V/propidium iodide double staining. The protein expression Bax, Bcl-2, p53 and cytochrome C were studied by flow cytometry using a spesific antibody conjugated fluorescent dye to confirm the up-regulation of p53 and Bax in cancer cells. Results The findings suggested that eurycomanone was cytotoxic on cancerous liver cell, HepG2 and less toxic on normal cells Chang's liver and WLR-68. Furthermore, various methods proved that apoptosis was the mode of death in eurycomanone-treated HepG2 cells. The characteristics of apoptosis including chromatin condensation, DNA fragmentation and apoptotic bodies were found following eurycomanone treatment. This study also found that apoptotic process triggered by eurycomanone involved the up-regulation of p53 tumor suppressor protein. The up-regulation of p53 was followed by the increasing of pro-apoptotic Bax and decreasing of anti-apoptotic Bcl-2. The increased of cytochrome C levels in cytosol also results in induction of apoptosis. Conclusion The data suggest that eurycomanone was cytotoxic on HepG2 cells by inducing apoptosis through the up-regulation of p53 and Bax, and down-regulation of Bcl-2. PMID:19508737

  19. Antioxidant activity of vasoactive intestinal peptide in HK2 human renal cells.

    PubMed

    Vacas, Eva; Bajo, Ana M; Schally, Andrew V; Sánchez-Chapado, Manuel; Prieto, Juan C; Carmena, María J

    2012-12-01

    Oxidative stress is a major mediator of tissue and cell injuries. The injury in chronic nephrotic syndrome, acute renal failure, myeloma kidney injury and other kidney diseases is initiated by oxidative stress. We have previously demonstrated that vasoactive intestinal peptide (VIP) acts as an antiproliferative agent in renal cancer cells. This study was designed to evaluate the renoprotective activity of VIP against H(2)O(2)-induced oxidative damage in a proximal tubule kidney cell line (human, non-tumor, HK2 cells) in order to investigate the potential usefulness of this peptide in the treatment of oxidative-stress related kidney diseases. HK2 cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Propidium iodide was used to identify cells undergoing apoptosis. Western blotting was performed with anti-Bcl-2, anti-Bax and anti-formyl peptide receptor (low-affinity variant FPRL-1) monoclonal antibodies whereas 2,7-dichlorofluorescein diacetate was used for measurement of levels of intracellular reactive oxygen species (ROS). HK2 cells were injured with H(2)O(2) in order to induce apoptosis: the effect was time- and dose-dependent. VIP increased the levels of the antiapoptotic protein Bcl-2 and decreased those of the proapoptotic protein Bax. VIP decreased the intracellular ROS levels reached by H(2)O(2)-induced oxidative stress. VIP effect on ROS levels involved FPLR-1 but not VPAC(1,2) receptors as evidenced by the use of the respective antagonists WRW4 and JV-1-53. Thus, VIP protects HK2 cells from apoptosis by increasing Bcl-2 levels and this effect is initiated through FPLR1 receptor. In conclusion, VIP might exert a renoprotective effect by the suppression of oxidative stress. PMID:23000305

  20. Molecular mechanism of apoptosis induction in skin cancer cells by the centipedegrass extract

    PubMed Central

    2013-01-01

    Background Centipedegrass extract (CGE) is mainly composed of maysin and its derivatives, which are recognized internationally as natural compounds. Compared to other flavonoids, maysin has a unique structure in that mannose is bound to the flavonoid backbone. CGE exhibits some biological properties in that it can function as an anti-oxidant, anti-inflammatory, anti-adipogenic, and insecticidal. Whether CGE has other biological functions, such as anti-cancer activity, is unknown. Methods B16F1 (mouse) and SKMEL-5 (human) cells were treated with CGE, and their subsequent survival was determined using MTT assay. We performed a cell cycle analysis using propidium iodide (PI), and detected apoptosis using double staining with annexin V-FITC/PI. In addition, we examined mitochondrial membrane potentials using flow cytometry, as well as signaling mechanisms with an immunoblotting analysis. Results CGE inhibited skin cancer cell growth by arresting the cell cycle in the G2/M phase, and increased both early and late apoptotic cell populations without affecting normal cells. Furthermore, we observed mitochondrial transmembrane depolarization, increased cytochrome-c release, caspase-3 and caspase-7 activation, and increased poly ADP-ribose polymerase degradation. CGE also downregulated activation of p-AKT, p-glycogen synthase kinase-3? (GSK-3?), and p-BAD in a time-dependent manner. LY294002 inhibition of phosphoinositide 3-kinase (PI3K) significantly sensitized skin cancer cells, which led to an increase in CGE-induced apoptosis. Conclusions CGE controlled skin cancer cell growth by inhibiting the PI3K/AKT/GSK-3? signaling pathway and activating the effector caspases. This study is the first to demonstrate anti-cancer properties for CGE, and that CGE may be an effective therapeutic agent for treating skin cancer. PMID:24325618

  1. Oridonin induces the apoptosis of metastatic hepatocellular carcinoma cells via a mitochondrial pathway

    PubMed Central

    ZHU, MIN; HONG, DUN; BAO, YANFANG; WANG, CHEN; PAN, WEIBO

    2013-01-01

    The selective induction of apoptosis is a promising strategy for cancer therapy. The antitumor effects of oridonin have been reported in several types of malignant tumors. However, the effects of oridonin on MHCC97-H cells, a highly metastatic human hepatocellular carcinoma cell line, have not been reported. The present study aimed to determine the effect of oridonin on the apoptosis of MHCC97-H cells and to identify the underlying molecular mechanisms that are involved. Compared with the untreated control cells, oridonin significantly decreased (P<0.05) cell proliferation in a concentration- and time-dependent manner. Oridonin at concentrations of 12.5, 25, 50 and 100 ?M resulted in increased apoptotic Annexin V-positive and propidium iodide-negative cells by 9.5, 15.6, 22.2 and 31.7%, respectively, compared with the control groups (P<0.05). The mitochondrial membrane potential was significantly decreased by 6.0, 12.9, 18.9 and 27.1% in the MHCC97-H cells that were treated with oridonin at concentrations of 12.5, 25, 50 and 100 ?M, respectively, for 24 h compared with the control groups (P<0.05). Oridonin increased the activity of caspase-3 and the expression of cleaved caspase-9 and cytochrome c in the cytoplasm and decreased the Bcl-2:Bax ratio in a concentration-dependent manner. The data indicate that oridonin inhibited the proliferation of the MHCC97-H cells by inducing apoptosis via a mitochondrial pathway. This mitochondrial pathway of apoptosis involved a reduction in the mitochondrial membrane potential and the subsequent release of cytochrome c and activation of caspase-3 and -9. PMID:24179549

  2. Anti-cancer effects of 2-oxoquinoline derivatives on the HCT116 and LoVo human colon cancer cell lines.

    PubMed

    Fang, Feng-Qi; Guo, Hui-Shu; Zhang, Jie; Ban, Li-Ying; Liu, Ji-Wei; Yu, Pei-Yao

    2015-12-01

    The present study demonstrated the anti-tumor effects of the quinoline derivative [5-(3-chloro-oxo-4-phenyl-cyclobutyl)-quinoli-8-yl-oxy] acetic acid hydrazide (CQAH) against colorectal carcinoma. Substantial apoptotic effects of CQAH on HCT116 and LoVo human colon cancer cell lines were observed. Apoptosis was identified based on cell morphological characteristics, including cell shrinkage and chromatin condensation as well as Annexin V/propidium iodide double staining followed by flow cytometric analysis and detection of apoptosis-associated proteins by western blot analysis. CQAH induced caspase-3 and PARP cleavage, reduced the expression of the anti-apoptotic proteins myeloid cell leukemia-1 and B-cell lymphoma (Bcl) extra large protein and elevated the expression of the pro-apoptotic protein Bcl-2 homologous antagonist killer. In addition, pharmacological inhibition of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase or p38, significantly reduced CQAH-mediated cell death as well as cleavage of caspase-3 and PARP. Co-treatment of CQAH with the commercial chemotherapeutics 5-fluorouracil and camptothecin-11 significantly improved their efficacies. Comparison of the apoptotic effects of CQAH with those of two illustrated structure-activity associations for this compound type, indicating that substitution at position-4 of the azetidine phenyl ring is pivotal for inducing apoptosis. In conclusion, the results of the present study indicated CQAH and its analogues are potent candidate drugs for the treatment of colon carcinoma. PMID:26498992

  3. Comparison of DiOC(6)(3) uptake and annexin V labeling for quantification of apoptosis in leukemia cells and non-malignant T lymphocytes from children.

    PubMed

    Ozgen, U; Sava?an, S; Buck, S; Ravindranath, Y

    2000-02-15

    Early during apoptosis, there is a reduction in mitochondrial transmembrane potential (MTP) and externalization of phosphatidylserine (PS) in cell membrane prior to eventual cell death. Flow cytometric detection techniques targeting these changes, reduction of DiOC(6)(3) uptake upon the collapse of MTP and annexin V binding to PS have been successfully used to detect apoptotic cells. These methods have given comparable results when cell lines were used. We compared the two different techniques, DiOC(6)(3) uptake and Annexin V-propidium iodide co-labeling in the quantification of cytarabine, vincristine and daunorubicin induced apoptosis on three leukemia cell lines (HL-60, CEM, U937), and bone marrow blasts from 26 children with acute myeloid leukemia, 14 with T cell acute lymphoblastic leukemia. Anti-Fas-induced apoptosis in culture-grown peripheral blood T lymphocytes on 18 samples from 9 children with non-malignant conditions were also studied by these techniques. Our results showed that there is a correlation (P < 0. 05) between the apoptosis rates measured by these two techniques for drug-induced apoptosis in myeloid and lymphoid blasts, and for anti-Fas mAb-induced apoptosis in T lymphocytes. This data suggests that reduction of the MTP and PS externalization may be common to many apoptotic pathways and techniques targeting either of these changes may be used in quantification of apoptosis in different clinical samples. PMID:10679746

  4. In vitro Characterization of the Rapid Cytotoxicity of Anticancer Peptide HPRP-A2 through Membrane Destruction and Intracellular Mechanism against Gastric Cancer Cell Lines

    PubMed Central

    Zhao, Jing; Hao, Xueyu; Liu, Dong; Huang, Yibing; Chen, Yuxin

    2015-01-01

    In this study, HPRP-A2, a synthetic 15-mer cationic peptides with all D-amino acids, effectively inhibited the survival of gastric cell lines in a dose-dependent manner. Gastric tumor cells killing by HPRP-A2 involves a rapid collapse of the membrane integrity and intracellular pathways. Propidium iodide (PI) and lactate dehydrogenase (LDH) assays demonstrated that one-hour treatment with HPRP-A2 led to membrane permeability changes of BGC-823 cells in a dose-dependent manner. Moreover, HPRP-A2 induced apoptosis in BGC-823 cells involves a marked increase in generation of reactive oxygen species (ROS),caspase-3, -8 and -9 activation, a reduction of mitochondrial membrane potential (MMP), and cell cycle arrest in G1 phase. In addition to its inherent cytotoxicity, HPRP-A2 synergized strongly with doxorubicin (DOX) to enhance the efficacy of killing gastric tumor cells in vitro. We believe that HPRP-A2 with all D-amino acids could be a potent candidate of anticancer therapeutics, especially in combination therapy. PMID:26422386

  5. CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53

    PubMed Central

    Shafagh, Maryam; Rahmani, Fatemeh; Delirezh, Norouz

    2015-01-01

    Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity was evaluated using cell viability, oxidative stress and apoptosis detection. In addition, the expression levels of P53, Caspase 3, Bcl-2, and Bax genes in K562 cells were studied by reverse transcription polymerase chain reaction (RT-PCR) analysis. Results: CuO NPs exerted distinct effects on cell viability via selective killing of cancer cells in a dose-dependent manner while not impacting normal cells in MTT assay. The dose-dependent cytotoxicity of CuO NPs against K562 cells was shown through reactive oxygen species (ROS) generation. The CuO NPs induced apoptosis was confirmed through acridine orange and propidium iodide double staining. Tumor suppressor gene P53 was up regulated due to CuO NPs exposure, and increase in Bax/Bcl-2 ratio suggested mitochondria-mediated pathway is involved in CuO NPs induced apoptosis. We also observed that Caspase 3 gene expression remained unchanged up to 24 hr exposure. Conclusion: These molecular alterations provide an insight into CuO NPs-caused inhibition of growth, generation of ROS, and apoptotic death of K562 cells.

  6. Recombinant ING4 suppresses the migration of SW579 thyroid cancer cells via epithelial to mesenchymal transition

    PubMed Central

    WANG, CHUAN-JIANG; YANG, DONG; LUO, YING-WEI

    2015-01-01

    Thyroid cancer is a common endocrine malignancy that has rapidly increased in global incidence. Inhibitor of growth 4 (ING4) has been identified in various types of carcinoma; however, to the best of our knowledge, no previous studies have investigated the effects of ING4 on thyroid cancer. In the present study, SW579 thyroid cancer cells were treated with recombinant ING4 protein, and the results confirmed that recombinant ING4 protein was able to reduce the rate of proliferation, increase the rate of apoptosis and inhibit the mobility of SW579 cells. These results were obtained using a colony formation, fluoroscein isothiocyanate/propidium iodide double staining and Transwell assays, respectively. Furthermore, in the western blot analysis assays, ING4 was demonstrated to inhibit the Wnt/? catenin signaling pathway and epithelial to mesenchymal transition (EMT). Therefore, the present study demonstrated the antitumor activities of recombinant ING4 and identified ING4 could inhibit EMT in thyroid cancer cell. However, additional studies are required to confirm these results in other cell types.

  7. Multiple nanosecond electric pulses increase the number but not the size of long-lived nanopores in the cell membrane.

    PubMed

    Pakhomov, Andrei G; Gianulis, Elena; Vernier, P Thomas; Semenov, Iurii; Xiao, Shu; Pakhomova, Olga N

    2015-04-01

    Exposure to intense, nanosecond-duration electric pulses (nsEP) opens small but long-lived pores in the plasma membrane. We quantified the cell uptake of two membrane integrity marker dyes, YO-PRO-1 (YP) and propidium (Pr) in order to test whether the pore size is affected by the number of nsEP. The fluorescence of the dyes was calibrated against their concentrations by confocal imaging of stained homogenates of the cells. The calibrations revealed a two-phase dependence of Pr emission on the concentration (with a slower rise at<4?M) and a linear dependence for YP. CHO cells were exposed to nsEP trains (1 to 100 pulses, 60ns, 13.2kV/cm, 10Hz) with Pr and YP in the medium, and the uptake of the dyes was monitored by time-lapse imaging for 3min. Even a single nsEP triggered a modest but detectable entry of both dyes, which increased linearly when more pulses were applied. The influx of Pr per pulse was constant and independent of the pulse number. The influx of YP per pulse was highest with 1- and 2-pulse exposures, decreasing to about twice the Pr level for trains from 5 to 100 pulses. The constant YP/Pr influx ratio for trains of 5 to 100 pulses suggests that increasing the number of pulses permeabilizes cells to a greater extent by increasing the pore number and not the pore diameter. PMID:25585279

  8. N-Acetyl-Serotonin Protects HepG2 Cells from Oxidative Stress Injury Induced by Hydrogen Peroxide

    PubMed Central

    Jiang, Jiying; Yu, Shuna; Jiang, Zhengchen; Liang, Cuihong; Yu, Wenbo; Li, Jin; Du, Xiaodong; Wang, Hailiang; Gao, Xianghong; Wang, Xin

    2014-01-01

    Oxidative stress plays an important role in the pathogenesis of liver diseases. N-Acetyl-serotonin (NAS) has been reported to protect against oxidative damage, though the mechanisms by which NAS protects hepatocytes from oxidative stress remain unknown. To determine whether pretreatment with NAS could reduce hydrogen peroxide- (H2O2-) induced oxidative stress in HepG2 cells by inhibiting the mitochondrial apoptosis pathway, we investigated the H2O2-induced oxidative damage to HepG2 cells with or without NAS using MTT, Hoechst 33342, rhodamine 123, Terminal dUTP Nick End Labeling Assay (TUNEL), dihydrodichlorofluorescein (H2DCF), Annexin V and propidium iodide (PI) double staining, immunocytochemistry, and western blot. H2O2 produced dramatic injuries in HepG2 cells, represented by classical morphological changes of apoptosis, increased levels of malondialdehyde (MDA) and intracellular reactive oxygen species (ROS), decreased activity of superoxide dismutase (SOD), and increased activities of caspase-9 and caspase-3, release of cytochrome c (Cyt-C) and apoptosis-inducing factor (AIF) from mitochondria, and loss of membrane potential (??m). NAS significantly inhibited H2O2-induced changes, indicating that it protected against H2O2-induced oxidative damage by reducing MDA levels and increasing SOD activity and that it protected the HepG2 cells from apoptosis through regulating the mitochondrial apoptosis pathway, involving inhibition of mitochondrial hyperpolarization, release of mitochondrial apoptogenic factors, and caspase activity. PMID:25013541

  9. UV irradiation/cold shock-mediated apoptosis is switched to bubbling cell death at low temperatures

    PubMed Central

    Lin, Hsin-Ping; Huang, Shenq-Shyang; Sheu, Hamm-Ming; Hsu, Li-Jin; Chang, Nan-Shan

    2015-01-01

    When COS7 fibroblasts and other cells were exposed to UVC irradiation and cold shock at 4°C for 5 min, rapid upregulation and nuclear accumulation of NOS2, p53, WWOX, and TRAF2 occurred in 10–30 min. By time-lapse microscopy, an enlarging gas bubble containing nitric oxide (NO) was formed in the nucleus in each cell that finally popped out to cause “bubbling death”. Bubbling occurred effectively at 4 and 22°C, whereas DNA fragmentation was markedly blocked at 4°C. When temperature was increased to 37°C, bubbling was retarded and DNA fragmentation occurred in 1 hr, suggesting that bubbling death is switched to apoptosis with increasing temperatures. Bubbling occurred prior to nuclear uptake of propidium iodide and DAPI stains. Arginine analog N?-LAME inhibited NO synthase NOS2 and significantly suppressed the bubbling death. Unlike apoptosis, there were no caspase activation and flip-over of membrane phosphatidylserine (PS) during bubbling death. Bubbling death was significantly retarded in Wwox knockout MEF cells, as well as in cells overexpressing TRAF2 and dominant-negative p53. Together, UV/cold shock induces bubbling death at 4°C and the event is switched to apoptosis at 37°C. Presumably, proapoptotic WWOX and p53 block the protective TRAF2 to execute the bubbling death. PMID:25779665

  10. Acid?induced cell injury and death in lung epithelial cells is associated with the activation of mitogen?activated protein kinases.

    PubMed

    Chen, Qiuhua; Huang, Yingzi; Yang, Yi; Qiu, Haibo

    2013-08-01

    Gastric hydrochloric acid (HCl) has been regarded as a causative factor of acute lung injury (ALI). The activation of mitogen?activated protein kinases (MAPKs) has been suggested to be a mechanism involved in the pathogenesis of ALI in vivo. However, the effects of HCl on MAPK activation in lung epithelial cells remain to be fully elucidated. Further investigation into the role of MAPK activation in acid?induced cell injury and death is also needed. In the present study, BEAS?2B cells were treated with HCl (pH 4.0 medium) for 5, 15 and 30 min, and the acidified medium was then removed. Cell viability and death were detected by MTT assay and trypan blue exclusion staining, respectively. The activation of MAPKs [c?Jun N?terminal kinase (JNK), p38 MAPK and extracellular signal?regulated kinase (ERK) 1/2] was analyzed by western blot analysis. Cytotoxicity was assessed by lactate dehydrogenase (LDH) release, and IL?8 levels in culture supernatants were measured by enzyme?linked immunosorbent assay (ELISA). Cell apoptosis was detected as changes in the levels of capase?3, Bad and fas by western blot analysis and the number of apoptotic cells by using Annexin V/propidium iodide (PI) staining. Following pre?treatment with the JNK inhibitor II (10 µmol/l), the p38 inhibitor SB202190 (10 µmol/l) or the ERK inhibitor U0126 (10 µmol/l) for 30 min, BEAS?2B cells were exposed to HCl for 30 min. Cell viability, cytotoxicity, IL?8 levels and apoptosis were detected 4 h following acid stimulation. The viability of BEAS?2B cells was inhibited and cell death was increased in the presence of HCl. HCl stimulation induced activation of MAPKs in a time?dependent manner. HCl exposure increased the levels of IL?8 and the release of LDH, and induced apoptosis in BEAS?2B cells. JNK and p38 inhibitors increased cell viability and decreased cytotoxicity and cell apoptosis, while ERK inhibitor had no effect on cell viability, cytotoxicity or apoptosis. These results indicate that acid exposure induced epithelial cell injury and death. The activation of JNK and p38 is involved in HCl?induced epithelial lung cell injury and death. PMID:23784034

  11. The sensitivity of human mesenchymal stem cells to vibration and cold storage conditions representative of cold transportation.

    PubMed

    Nikolaev, N I; Liu, Y; Hussein, H; Williams, D J

    2012-10-01

    In the current study, the mechanical and hypothermic damage induced by vibration and cold storage on human mesenchymal stem cells (hMSCs) stored at 2-8°C was quantified by measuring the total cell number and cell viability after exposure to vibration at 50 Hz (peak acceleration 140 m s(-2) and peak displacement 1.4 mm), 25 Hz (peak acceleration 140 m s(-2), peak displacement 5.7 mm), 10 Hz (peak acceleration 20 m s(-2), peak displacement 5.1 mm) and cold storage for several durations. To quantify the viability of the cells, in addition to the trypan blue exclusion method, the combination of annexin V-FITC and propidium iodide was applied to understand the mode of cell death. Cell granularity and a panel of cell surface markers for stemness, including CD29, CD44, CD105 and CD166, were also evaluated for each condition. It was found that hMSCs were sensitive to vibration at 25 Hz, with moderate effects at 50 Hz and no effects at 10 Hz. Vibration at 25 Hz also increased CD29 and CD44 expression. The study further showed that cold storage alone caused a decrease in cell viability, especially after 48 h, and also increased CD29 and CD44 and attenuated CD105 expressions. Cell death would most likely be the consequence of membrane rupture, owing to necrosis induced by cold storage. The sensitivity of cells to different vibrations within the mechanical system is due to a combined effect of displacement and acceleration, and hMSCs with a longer cold storage duration were more susceptible to vibration damage, indicating a coupling between the effects of vibration and cold storage. PMID:22628214

  12. Thermal and nonthermal effects of discontinuous microwave exposure (2.45 gigahertz) on the cell membrane of Escherichia coli.

    PubMed

    Rougier, Carole; Prorot, Audrey; Chazal, Philippe; Leveque, Philippe; Leprat, Patrick

    2014-08-01

    The aim of this study was to investigate the effects on the cell membranes of Escherichia coli of 2.45-GHz microwave (MW) treatment under various conditions with an average temperature of the cell suspension maintained at 37°C in order to examine the possible thermal versus nonthermal effects of short-duration MW exposure. To this purpose, microwave irradiation of bacteria was performed under carefully defined and controlled parameters, resulting in a discontinuous MW exposure in order to maintain the average temperature of the bacterial cell suspensions at 37°C. Escherichia coli cells were exposed to 200- to 2,000-W discontinuous microwave (DW) treatments for different periods of time. For each experiment, conventional heating (CH) in a water bath at 37°C was performed as a control. The effects of DW exposure on cell membranes was investigated using flow cytometry (FCM), after propidium iodide (PI) staining of cells, in addition to the assessment of intracellular protein release in bacterial suspensions. No effect was detected when bacteria were exposed to conventional heating or 200 W, whereas cell membrane integrity was slightly altered when cell suspensions were subjected to powers ranging from 400 to 2,000 W. Thermal characterization suggested that the temperature reached by the microwave-exposed samples for the contact time studied was not high enough to explain the measured modifications of cell membrane integrity. Because the results indicated that the cell response is power dependent, the hypothesis of a specific electromagnetic threshold effect, probably related to the temperature increase, can be advanced. PMID:24907330

  13. Thermal and Nonthermal Effects of Discontinuous Microwave Exposure (2.45 Gigahertz) on the Cell Membrane of Escherichia coli

    PubMed Central

    Rougier, Carole; Chazal, Philippe; Leveque, Philippe; Leprat, Patrick

    2014-01-01

    The aim of this study was to investigate the effects on the cell membranes of Escherichia coli of 2.45-GHz microwave (MW) treatment under various conditions with an average temperature of the cell suspension maintained at 37°C in order to examine the possible thermal versus nonthermal effects of short-duration MW exposure. To this purpose, microwave irradiation of bacteria was performed under carefully defined and controlled parameters, resulting in a discontinuous MW exposure in order to maintain the average temperature of the bacterial cell suspensions at 37°C. Escherichia coli cells were exposed to 200- to 2,000-W discontinuous microwave (DW) treatments for different periods of time. For each experiment, conventional heating (CH) in a water bath at 37°C was performed as a control. The effects of DW exposure on cell membranes was investigated using flow cytometry (FCM), after propidium iodide (PI) staining of cells, in addition to the assessment of intracellular protein release in bacterial suspensions. No effect was detected when bacteria were exposed to conventional heating or 200 W, whereas cell membrane integrity was slightly altered when cell suspensions were subjected to powers ranging from 400 to 2,000 W. Thermal characterization suggested that the temperature reached by the microwave-exposed samples for the contact time studied was not high enough to explain the measured modifications of cell membrane integrity. Because the results indicated that the cell response is power dependent, the hypothesis of a specific electromagnetic threshold effect, probably related to the temperature increase, can be advanced. PMID:24907330

  14. Polyphenol-rich extract of Salvia chinensis exhibits anticancer activity in different cancer cell lines, and induces cell cycle arrest at the G0/G1-phase, apoptosis and loss of mitochondrial membrane potential in pancreatic cancer cells.

    PubMed

    Zhao, Quan; Huo, Xue-Chen; Sun, Fu-Dong; Dong, Rui-Qian

    2015-10-01

    Pancreatic cancer (PC) is one of the most aggressive types of human malignancy, which has an overall 5-year survival rate of <2%. PC is the fourth most common cause of cancer?associated mortality in the western world. At present, there is almost no effective treatment available for the treatment of PC. The aim of the present study was to evaluate the anticancer potential of a polyphenol enriched extract obtained from Salvia chinensis, a Chinese medicinal plant. An MTT assay was used to evaluate the cell viability of five cancer cell lines and one normal cell line. In addition, the effects of the extract on apoptotic induction, cell cycle phase distribution, DNA damage and loss of mitochondrial membrane potential (??m) were evaluated in MiapaCa?2 human PC cells. The effects of the extract on cell cycle phase distribution and ??m were assessed by flow cytometry, using propidium iodide and rhodamine?123 DNA?binding fluorescent dyes, respectively. Fluorescence microscopy, using 4',6?diamidino?2?phenylindole as a staining agent, was performed in order to detect the morphological changes of the MiapaCa?2 cancer cells and the presence of apoptotic bodies following treatment with the extract. The results of the present study demonstrated that the polyphenol?rich extract from S. chinensis induced potent cytotoxicity in the MCF?7 human breast cancer cells, A549 human lung cancer cells, HCT?116 and COLO 205 human colon cancer cells, and MiapaCa?2 human PC cells. The Colo 205 and MCF?7 cancer cell lines were the most susceptible to treatment with the extract, which exhibited increased rate of growth inhibition. Fluorescence microscopy revealed characteristic morphological features of apoptosis and detected the appearance of apoptotic bodies following treatment with the extract in the PC cells. Flow cytometric analysis demonstrated that the extract induced G0/G1 cell cycle arrest in a dose?dependent manner. In addition, treatment with the extract induced a significant and concentration-dependent reduction in the ??m of the PC cells. PMID:26165362

  15. Polyphenol-rich extract of Salvia chinensis exhibits anticancer activity in different cancer cell lines, and induces cell cycle arrest at the G0/G1-phase, apoptosis and loss of mitochondrial membrane potential in pancreatic cancer cells

    PubMed Central

    ZHAO, QUAN; HUO, XUE-CHEN; SUN, FU-DONG; DONG, RUI-QIAN

    2015-01-01

    Pancreatic cancer (PC) is one of the most aggressive types of human malignancy, which has an overall 5-year survival rate of <2%. PC is the fourth most common cause of cancer-associated mortality in the western world. At present, there is almost no effective treatment available for the treatment of PC. The aim of the present study was to evaluate the anticancer potential of a polyphenol enriched extract obtained from Salvia chinensis, a Chinese medicinal plant. An MTT assay was used to evaluate the cell viability of five cancer cell lines and one normal cell line. In addition, the effects of the extract on apoptotic induction, cell cycle phase distribution, DNA damage and loss of mitochondrial membrane potential (??m) were evaluated in MiapaCa-2 human PC cells. The effects of the extract on cell cycle phase distribution and ??m were assessed by flow cytometry, using propidium iodide and rhodamine-123 DNA-binding fluorescent dyes, respectively. Fluorescence microscopy, using 4?,6-diamidino-2-phenylindole as a staining agent, was performed in order to detect the morphological changes of the MiapaCa-2 cancer cells and the presence of apoptotic bodies following treatment with the extract. The results of the present study demonstrated that the polyphenol-rich extract from S. chinensis induced potent cytotoxicity in the MCF-7 human breast cancer cells, A549 human lung cancer cells, HCT-116 and COLO 205 human colon cancer cells, and MiapaCa-2 human PC cells. The COLO 205 and MCF-7 cancer cell lines were the most susceptible to treatment with the extract, which exhibited increased rate of growth inhibition. Fluorescence microscopy revealed characteristic morphological features of apoptosis and detected the appearance of apoptotic bodies following treatment with the extract in the PC cells. Flow cytometric analysis demonstrated that the extract induced G0/G1 cell cycle arrest in a dose-dependent manner. In addition, treatment with the extract induced a significant and concentration-dependent reduction in the ??m of the PC cells. PMID:26165362

  16. Are platinum agents, paclitaxel and irinotecan effective for clear cell carcinoma of the ovary? DNA damage detected with ?H2AX induced by anticancer agents

    PubMed Central

    2012-01-01

    Objectives Differences in the incidences and types of DNA damage induced by antitumor agents for clear cell carcinoma (CCC) were determined in 2 ovarian CCC cell lines using ?H2AX. Material and methods The antitumor activity of anticancer agents, CDDP, CBDCA, PTX and SN-38, was examined using ovarian clear cell carcinoma cultured cell lines (OVISE and RMG-I). After culture, each cell line was treated with each anticancer agent, the cells were collected, fixed, and then reacted with the anti-?H2AX antibody. ?H2AX and nuclear DNA were then simultaneously detected by flow cytometry using FITC and propidium iodide, respectively, to determine ?H2AX in each cell cycle phase. Results After administration of CDDP, DNA damage was frequent in S-phase cells, while cell-cycle arrest occurred in the G1 and G2/M phases and ?H2AX did not increase in CDDP-resistant cells. Sensitivities to CDDP and CBDCA differed between the two cell lines. The antitumor effect of PTX is induced by G2/M arrest, and combination treatment with CBDCA, inducing DNA damage in G2/M-phase cells, might be effective. Conclusions This is the first study in Japan to evaluate the antitumor activity of anticancer agents by focusing on the relationship between the cell cycle and DNA damage using ?H2AX as an indicator. The immunocytochemical method used in this study detects ?H2AX, which indicates DNA damage even at very low concentrations and with high sensitivity. Therefore, a promising method of easily and rapidly identifying agents potentially effective against CCC. PMID:22691365

  17. Autophagy modulates endoplasmic reticulum stress-induced cell death in podocytes: a protective role.

    PubMed

    Cheng, Yu-Chi; Chang, Jer-Ming; Chen, Chien-An; Chen, Hung-Chun

    2015-04-01

    Endoplasmic reticulum stress occurs in a variety of patho-physiological mechanisms and there has been great interest in managing this pathway for the treatment of clinical diseases. Autophagy is closely interconnected with endoplasmic reticulum stress to counteract the possible injurious effects related with the impairment of protein folding. Studies have shown that glomerular podocytes exhibit high rate of autophagy to maintain as terminally differentiated cells. In this study, podocytes were exposed to tunicamycin and thapsigargin to induce endoplasmic reticulum stress. Thapsigargin/tunicamycin treatment induced a significant increase in endoplasmic reticulum stress and of cell death, represented by higher GADD153 and GRP78 expression and propidium iodide flow cytometry, respectively. However, thapsigargin/tunicamycin stimulation also enhanced autophagy development, demonstrated by monodansylcadaverine assay and LC3 conversion. To evaluate the regulatory effects of autophagy on endoplasmic reticulum stress-induced cell death, rapamycin (Rap) or 3-methyladenine (3-MA) was added to enhance or inhibit autophagosome formation. Endoplasmic reticulum stress-induced cell death was decreased at 6?h, but was not reduced at 24?h after Rap+TG or Rap+TM treatment. In contrast, endoplasmic reticulum stress-induced cell death increased at 6 and 24?h after 3-MA+TG or 3-MA+TM treatment. Our study demonstrated that thapsigargin/tunicamycin treatment induced endoplasmic reticulum stress which resulted in podocytes death. Autophagy, which counteracted the induced endoplasmic reticulum stress, was simultaneously enhanced. The salvational role of autophagy was supported by adding Rap/3-MA to mechanistically regulate the expression of autophagy and autophagosome formation. In summary, autophagy helps the podocytes from cell death and may contribute to sustain the longevity as a highly differentiated cell lineage. PMID:25322957

  18. Synergistic apoptosis-inducing effect of aspirin and isosorbide mononitrate on human colon cancer cells.

    PubMed

    Wang, Xiaodong; Diao, Yuwen; Liu, Yu; Gao, Ningning; Gao, Dong; Wan, Yanyan; Zhong, Jingjing; Jin, Guangyi

    2015-09-01

    Aspirin and isosorbide mononitrate (ISMN) are two commonly used drugs, which are clinically applied for the treatment of inflammatory and cardiovascular diseases, respectively. Recently, aspirin has attracted interest due to its potential application for the treatment of cancer, particularly colon cancer. NO-aspirin, an aspirin derivative containing a covalently bound NO-donating moiety, has been proven to be an effective anti?tumor agent with apoptosis-inducing ability. In the present study, ISMN was used as an NO donor and its synergic effect with aspirin was assessed in human colon cancer cells. In vitro, an MTT assay demonstrated that ISMN had a synergistic effect on the growth inhibitory effects of aspirin on HCT116 and SW620 colon cancer cells, while the growth of EA.hy926 normal endothelial cells was unaffected. This synergistic anti?tumor effect was further validated in vivo using nude mouse HCT116 cell xenograft model. Observation of nuclear morphology, Annexin V-fluorescein isothiocyanate/propidium iodide double staining and a caspase-3 activity assay suggested that the combination of the two drugs induced apoptosis in HCT116 cells. Furthermore, the molecular mechanisms of the apoptotic effect of the drugs was assessed using an NO release assay, reverse transcription quantitative polymerase chain reaction analysis, western blot analysis and a luciferase reporter assay. It was certified that the increase in the amount of NO release, the decrease in the luciferase promoter activity and the expression of cyclin D1 and c-myc in HCT116 cells were affected by aspirin and ISMN in a synergistic manner. In conclusion, the present study was the first, to the best of our knowledge, to report on the synergistic apoptosis-inducing effects of aspirin and ISMN in human colon cancer cells, which were mediated via Wnt and NO signaling pathways. The results of the present study will facilitate the development of future therapeutic strategies. PMID:26094902

  19. Endothelin receptor B antagonists decrease glioma cell viability independently of their cognate receptor

    PubMed Central

    Montgomery, Jennifer P; Patterson, Paul H

    2008-01-01

    Background Endothelin receptor antagonists inhibit the progression of many cancers, but research into their influence on glioma has been limited. Methods We treated glioma cell lines, LN-229 and SW1088, and melanoma cell lines, A375 and WM35, with two endothelin receptor type B (ETRB)-specific antagonists, A-192621 and BQ788, and quantified viable cells by the capacity of their intracellular esterases to convert non-fluorescent calcein AM into green-fluorescent calcein. We assessed cell proliferation by labeling cells with carboxyfluorescein diacetate succinimidyl ester and quantifying the fluorescence by FACS analysis. We also examined the cell cycle status using BrdU/propidium iodide double staining and FACS analysis. We evaluated changes in gene expression by microarray analysis following treatment with A-192621 in glioma cells. We examined the role of ETRB by reducing its expression level using small interfering RNA (siRNA). Results We report that two ETRB-specific antagonists, A-192621 and BQ788, reduce the number of viable cells in two glioma cell lines in a dose- and time-dependent manner. We describe similar results for two melanoma cell lines. The more potent of the two antagonists, A-192621, decreases the mean number of cell divisions at least in part by inducing a G2/M arrest and apoptosis. Microarray analysis of the effects of A-192621 treatment reveals up-regulation of several DNA damage-inducible genes. These results were confirmed by real-time RT-PCR. Importantly, reducing expression of ETRB with siRNAs does not abrogate the effects of either A-192621 or BQ788 in glioma or melanoma cells. Furthermore, BQ123, an endothelin receptor type A (ETRA)-specific antagonist, has no effect on cell viability in any of these cell lines, indicating that the ETRB-independent effects on cell viability exhibited by A-192621 and BQ788 are not a result of ETRA inhibition. Conclusion While ETRB antagonists reduce the viability of glioma cells in vitro, it appears unlikely that this effect is mediated by ETRB inhibition or cross-reaction with ETRA. Instead, we present evidence that A-192621 affects glioma and melanoma viability by activating stress/DNA damage response pathways, which leads to cell cycle arrest and apoptosis. This is the first evidence linking ETRB antagonist treatment to enhanced expression of DNA damage-inducible genes. PMID:19040731

  20. Cell-Free Propagation of Coxiella burnetii Does Not Affect Its Relative Virulence

    PubMed Central

    Kuley, Runa; Smith, Hilde E.; Frangoulidis, Dimitrios; Smits, Mari A.; Jan Roest, Hendrik I.; Bossers, Alex

    2015-01-01

    Q fever is caused by the obligate intracellular bacterium Coxiella burnetii. In vitro growth of the bacterium is usually limited to viable eukaryotic host cells imposing experimental constraints for molecular studies, such as the identification and characterisation of major virulence factors. Studies of pathogenicity may benefit from the recent development of an extracellular growth medium for C. burnetii. However, it is crucial to investigate the consistency of the virulence phenotype of strains propagated by the two fundamentally different culturing systems. In the present study, we assessed the viability of C. burnetii and the lipopolysaccaride (LPS) encoding region of the bacteria in both culture systems as indirect but key parameters to the infection potential of C. burnetii. Propidium monoazide (PMA) treatment-based real-time PCR was used for enumeration of viable C. burnetii which were validated by fluorescent infectious focus forming unit counting assays. Furthermore, RNA isolated from C. burnetiipropagated in both the culture systems was examined for LPS-related gene expression. All thus far known LPS-related genes were found to be expressed in early passages in both culturing systems indicating the presence of predominantly the phase I form of C. burnetii. Finally, we used immune-competent mice to provide direct evidence, that the relative virulence of different C. burnetii strains is essentially the same for both axenic and cell-based methods of propagation. PMID:25793981

  1. Cytotoxic and apoptotic activities of the plancitoxin I from the venom of crown-of-thorns starfish (Acanthaster planci) on A375.S2 cells.

    PubMed

    Lee, Chi-Chiu; Hsieh, Hernyi Justin; Hwang, Deng-Fwu

    2015-04-01

    This study reports on a cytotoxic toxin derived from the venom of the crown-of-thorns starfish Acanthaster planci (CAV). The protein toxin was isolated through both ion-exchange and gel-filtration chromatography, and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrum analyzes. The CAV was identified as plancitoxin I protein. The mechanistic role of the CAV toxin was explored in human malignant melanoma A375.S2 cell death. The results indicated that after incubation with CAV toxin, cells significantly decreased in A375.S2 cell viability and increased in the lactate dehydrogenase (LDH) level in a dose-dependent manner. The assays indicated that CAV toxin promoted reactive oxygen species (ROS) production, induced nitric oxide (NO) formation, lost mitochondrial membrane potential (??m) and induced inter-nucleosomal DNA fragmentation in A375.S2 cells. The molecular cytotoxicity of the CAV toxin was tested through evaluation of the apoptosis/necrosis ratio by double staining with annexin V-FITC and a propidium iodide (PI) assay. The results suggested that CAV toxin induced a cytotoxic effect in A375.S2 cells via the apoptotic procedure, and may be associated with the regulation of the p38 pathways. PMID:25047904

  2. Stem Cells

    MedlinePLUS

    Stem cells are cells with the potential to develop into many different types of cells in the body. They serve as a repair ... body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  3. Realgar quantum dots induce apoptosis and necrosis in HepG2 cells through endoplasmic reticulum stress

    PubMed Central

    QIN, YU; WANG, HUAN; LIU, ZHENG-YUN; LIU, JIE; WU, JIN-ZHU

    2015-01-01

    Realgar (As4S4) has been used in traditional Chinese medicines for treatment of malignancies. However, the poor water solubility of realgar limits its clinical application. To overcome this problem, realgar quantum dots (RQDs; 5.48±1.09 nm) were prepared by a photoluminescence method. The mean particle size was characterized by high-resolution transmission electron microscopy and scanning electron microscopy. Our recent studies revealed that the RQDs were effective against tumor growth in tumor-bearing mice without producing apparent toxicity. The present study investigated their anticancer effects and mechanisms in human hepatocellular carcinoma (HepG2) cells. The HepG2 cells and human normal liver (L02) cells were used to determine the cytotoxicity of RQDs. The portion of apoptotic and dead cells were measured by flow cytometry with Annexin V-fluorescein isothiocyanate/propidium iodide double staining. Apoptosis-related proteins and genes were examined by western blot analysis and reverse transcription-quantitative polymerase chain reaction, and the mitochondrial membrane potential was assayed by confocal microscope with JC-1 as a probe. RQDs exhibited cytotoxicity in a concentration-dependent manner and HepG2 cells were more sensitive compared with normal L02 cells. At 15 µg/ml, 20% of the cells were apoptotic, while 60% of the cells were necrotic at 30 µg/ml. The anti-apoptosis protein Bcl-2 was dose-dependently decreased, while pro-apoptotic protein Bax was increased. There was a loss of mitochondrial membrane potential and expression of the stress genes C/EBP-homologous protein 10 and glucose-regulated protein 78 was increased by RQDs. RQDs were effective in the inhibition of HepG2 cell proliferation and this effect was due to induction of apoptosis and necrosis through endoplasmic reticulum stress. PMID:26405541

  4. Synthesis of an anthraquinone derivative (DHAQC) and its effect on induction of G2/M arrest and apoptosis in breast cancer MCF-7 cell line

    PubMed Central

    Yeap, SweeKeong; Akhtar, Muhammad Nadeem; Lim, Kian Lam; Abu, Nadiah; Ho, Wan Yong; Zareen, Seema; Roohani, Kiarash; Ky, Huynh; Tan, Sheau Wei; Lajis, Nordin; Alitheen, Noorjahan Banu

    2015-01-01

    Anthraquinones are an important class of naturally occurring biologically active compounds. In this study, anthraquinone derivative 1,3-dihydroxy-9,10-anthraquinone-2- carboxylic acid (DHAQC) (2) was synthesized with 32% yield through the Friedel–Crafts condensation reaction. The mechanisms of cytotoxicity of DHAQC (2) in human breast cancer MCF-7 cells were further investigated. Results from the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that DHAQC (2) exhibited potential cytotoxicity and selectivity in the MCF-7 cell line, comparable with the naturally occurring anthraquinone damnacanthal. DHAQC (2) showed a slightly higher IC50 (inhibitory concentration with 50% cell viability) value in the MCF-7 cell line compared to damnacanthal, but it is more selective in terms of the ratio of IC50 on MCF-7 cells and normal MCF-10A cells. (selective index for DHAQC (2) was 2.3 and 1.7 for damnacanthal). The flow cytometry cell cycle analysis on the MCF-7 cell line treated with the IC50 dose of DHAQC (2) for 48 hours showed that DHAQC (2) arrested MCF-7 cell line at the G2/M phase in association with an inhibited expression of PLK1 genes. Western blot analysis also indicated that the DHAQC (2) increased BAX, p53, and cytochrome c levels in MCF-7 cells, which subsequently activated apoptosis as observed in annexin V/propidium iodide and cell cycle analyses. These results indicate that DHAQC (2) is a synthetic, cytotoxic, and selective anthraquinone, which is less toxic than the natural product damnacanthal, and which demonstrates potential in the induction of apoptosis in the breast cancer MCF-7 cell line. PMID:25733816

  5. Antimicrobial peptides (AMPs) produced by Saccharomyces cerevisiae induce alterations in the intracellular pH, membrane permeability and culturability of Hanseniaspora guilliermondii cells.

    PubMed

    Branco, Patrícia; Viana, Tiago; Albergaria, Helena; Arneborg, Nils

    2015-07-16

    Saccharomyces cerevisiae produces antimicrobial peptides (AMPs) during alcoholic fermentation that are active against several wine-related yeasts (e.g. Hanseniaspora guilliermondii) and bacteria (e.g. Oenococcus oeni). In the present study, the physiological changes induced by those AMPs on sensitive H. guilliermondii cells were evaluated in terms of intracellular pH (pHi), membrane permeability and culturability. Membrane permeability was evaluated by staining cells with propidium iodide (PI), pHi was determined by a fluorescence ratio imaging microscopy (FRIM) technique and culturability by a classical plating method. Results showed that the average pHi of H. guilliermondii cells dropped from 6.5 (healthy cells) to 5.4 (damaged cells) after 20 min of exposure to inhibitory concentrations of AMPs, and after 24 h 77.0% of the cells completely lost their pH gradient (?pH=pHi-pHext). After 24h of exposure to AMPs, PI-stained (dead) cells increased from 0% to 77.7% and the number of viable cells fell from 1×10(5) to 10 CFU/ml. This means that virtually all cells (99.99%) became unculturable but that a sub-population of 22.3% of the cells remained viable (as determined by PI staining). Besides, pHi results showed that after 24h, 23% of the AMP-treated cells were sub-lethally injured (with 0cells, disturbing the pHi homeostasis and inducing a loss of culturability. PMID:25897995

  6. Propidium Monoazide-based Method for Identifying Phylogenetic Association of Necromass Near Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Ramírez, Gustavo; Edwards, Katrina

    2014-05-01

    Black Smoker hydrothermal systems are geologically driven systems located near subduction zones and spreading centers associated with plate margins. The high temperature and low pH of fluids that are often associated with basalt-hosted hydrothermal systems select for unique microbial communities primarily comprised of prokaryotes capable of S and Fe cycling. High temperature fluids, where temperatures exceed 300° C, are likely to have a lethal effect on transient deep water planktonic communities and, over long temporal scales, may influence the molecular composition of pelleted necromass aggregates near the chimney system. We have developed a method for discriminative sequencing permitting intra vs. extracellular 16S rDNA sequencing to reveal community differences between biologically-relevant and necromass-associated DNA. This method has only recently been applied to marine environments and, here, we propose its use as relevant tool for studying the molecular ecology of high temperature hydrothermal systems, as physical drivers of massive transient community die offs and associated detrital 16S rDNA community shifts. Ultimately, we aim to understand the fraction of 16S rDNA communities that do not represent living taxa, or the information-containing fraction of total necromass pool, to better frame ecological hypotheses regarding environmental biogeochemical cycling in hydrothermal system environments.

  7. Cryptosporidium Propidium Monoazide-PCR, a Molecular Biology-Based Technique for Genotyping Viable Cryptosporidium Oocysts

    EPA Science Inventory

    Cryptosporidium is an important waterborne protozoan parasite that can cause severe diarrhea and death in the immunocompromised. Current methods to monitor for Cryptosporidium oocysts in water are microscopy-based USEPA Methods 1622 and 1623. These methods assess total levels o...

  8. Media effects on Nitrosomonas Europaea Monochloramine Disinfection Kinetics using Propidium Monoazide Quantitative Real-time PCR

    EPA Science Inventory

    Monochloramine use as a secondary disinfectant in the United States is predicted to increase to 57% of all surface and 7% of all ground water systems. With monochloramine addition, there is a risk of nitrification in the distribution system by ammonia-oxidizing bacteria (AOB). Ba...

  9. Media Effects on Nitrosomonas Europaea Monochloramine Disinfection Kinetics Using Propidium Monoazide Quantitative Real-time PCR

    EPA Science Inventory

    Monochloramine use as a secondary disinfectant in the United States is predicted to increase to 57% of all surface and 7% of all ground water systems. With monochloramine addition, there is a risk of nitrification in the distribution system by ammonia-oxidizing bacteria (AOB). Ni...

  10. Media Effects on Nitrosomonas Europaea Monochloramine Disinfection Kinetics Using Propidium Monoazide Quantitative Real-time PCR

    EPA Science Inventory

    Monochloramine use as a secondary disinfectant in the United States is predicted to increase to 57% of all surface and 7% of all ground water systems. With monochloramine addition, there is a risk of nitrification in the distribution system by ammonia-oxidizing bacteria (AOB). Ba...

  11. Comparative study between the photodynamic ability of gold and silver nanoparticles in mediating cell death in breast and lung cancer cell lines.

    PubMed

    El-Hussein, Ahmed; Mfouo-Tynga, Ivan; Abdel-Harith, Mohamed; Abrahamse, Heidi

    2015-12-01

    Cancer is one of the dreadest diseases once diagnosed and has severe impacts on health, social and economic global aspects. Nanomedicine is considered an emerging approach for early cancer diagnosis and treatment. The multifunctional effects of silver and gold nanoparticles (Ag and Au NPs) have rendered them to be potent candidates for biomedical applications. The current work presents a comparative study between Au NPs and Ag NPs as possible potent photosensitizers (PS) in photodynamic therapy (PDT). Transmission electron microscopy (TEM) was used to identify and characterize the shape, size, and cellular localization of Au NPs; the absorption properties of Au NPs were determined using ultraviolet-visible spectroscopy (UV-Vis) and zeta potential was used to identify surface charge. Inverted light microscopy (LM), Trypan blue exclusion assay, adenosine triphosphate luminescence (ATP), and lactate dehydrogenase membrane integrity assays (LDH) were used for investigating the photodynamic ability of these nanostructures on breast (MCF-7) and lung (A549) cancer cell lines. Flow cytometry using Annexin V and propidium iodide (PI) dyes was used to determine the cell death pathway induced. The average size of the synthesized Au NPs was 50nm, having an absorption peak at 540nm with -7.85mV surface net charge. MCF-7 and A549 cells were able to absorb the Au NPs. The latter, when irradiated with laser light in the phototherapeutic window, promoted cytotoxicity and a significant reduction in cell viability and proliferation were observed. The photodynamic activity that was observed in both cancer cell lines was found to be less eminent than that observed in case of the Ag NPs when compared to Au NPs. The present study is the first that compares the photodynamic ability of two different nanoparticles, silver and gold, as photosensitizers without any further functionalization. This study extends the possibilities of using such nanostructures in PDT within the therapeutic window wavelength, yet through the conjugation of Au NPs with other photosensitizers to synergize its effect. PMID:26398813

  12. Necroptosis, a novel type of programmed cell death, contributes to early neural cells damage after spinal cord injury in adult mice.

    PubMed

    Liu, Ming; Wu, Wei; Li, Hua; Li, Song; Huang, Li-Tian; Yang, Yi-Qing; Sun, Qing; Wang, Chun-Xi; Yu, Zhuang; Hang, Chun-Hua

    2015-11-01

    Background Necroptosis is an emerging programmed necrosis other than traditional necrosis and apoptosis. Until recently, there have not been studies that have investigated a relationship between necroptosis and pathogenesis of cell death after spinal cord injury (SCI). Objective To investigate whether necroptosis takes part in the early pathophysiological processes of traumatic SCI in mice. Methods Female ICR mice were randomized equally into three groups: the sham, the vehicle-treated + SCI group, and the Nec-1-treated + SCI group. To induce SCI, the mice were subjected to a laminectomy at T9 and compression with a vascular clip. After mice were sacrificed 24 hours post-SCI, propidium iodide (PI)-positive cells were detected using in vivo PI labeling. Morphological analyses were performed by hematoxylin and eosin staining and Nissl staining. The samples were evaluated for apoptosis by the in situ TUNEL assay. The expression of caspase-3 was assessed by western blot. Locomotor behavior of hindlimb was evaluated by BMS (Basso mouse scale) score at 1, 3, 5, 7, and 14 days post-injury. Results Compared with dimethyl sulfoxide -treated mice, necrostatin-1-treated mice showed decreased PI-positive cells (P < 0.05), alleviated tissue damage, more surviving neuron at 24 hours after SCI (P < 0.05), and improved functional recovery from days 7 to 14 (P < 0.05). Necrostatin-1 did not reduce the expression of caspase-3 and the number of TUNEL-positive cells at 24 hours after SCI (P > 0.05). Conclusions Necroptosis contributes to necroptotic cell death and influences functional outcome after SCI in adult mice. The inhibition of necroptosis by necrostatin-1 may have therapeutic potential for patients with SCI. PMID:24970278

  13. Differences in receptor binding affinity of several phytocannabinoids do not explain their effects on neural cell cultures.

    PubMed

    Rosenthaler, Sarah; Pöhn, Birgit; Kolmanz, Caroline; Huu, Chi Nguyen; Krewenka, Christopher; Huber, Alexandra; Kranner, Barbara; Rausch, Wolf-Dieter; Moldzio, Rudolf

    2014-01-01

    Phytocannabinoids are potential candidates for neurodegenerative disease treatment. Nonetheless, the exact mode of action of major phytocannabinoids has to be elucidated, but both, receptor and non-receptor mediated effects are discussed. Focusing on the often presumed structure-affinity-relationship, Ki values of phytocannabinoids cannabidiol (CBD), cannabidivarin (CBDV), cannabichromene (CBC), cannabigerol (CBG), cannabinol (CBN), THC acid (THCA) and THC to human CB1 and CB2 receptors were detected by using competitive inhibition between radioligand [(3)H]CP-55,940 and the phytocannabinoids. The resulting Ki values to CB1 range from 23.5 ?M (THCA) to 14,711 ?M (CBDV), whereas Ki values to CB2 range from 8.5 ?M (THCA) to 574.2 ?M (CBDV). To study the relationship between binding affinity and effects on neurons, we investigated possible CB1 related cytotoxic properties in murine mesencephalic primary cell cultures and N18TG2 neuroblastoma cell line. Most of the phytocannabinoids did not affect the number of dopaminergic neurons in primary cultures, whereas propidium iodide and resazurin formation assays revealed cytotoxic properties of CBN, CBDV and CBG. However, THC showed positive effects on N18TG2 cell viability at a concentration of 10 ?M, whereas CBC and THCA also displayed slightly positive activities. These findings are neither linked to structural characteristics nor to the receptor binding affinity therewith pointing to another mechanism than a receptor mediated one. PMID:25311884

  14. Thymoquinone Inhibits Murine Leukemia WEHI-3 Cells In Vivo and In Vitro

    PubMed Central

    Ali Salim, Landa Zeenelabdin; Othman, Rozana; Abdulla, Mahmood Ameen; Al-Jashamy, Karim; Mohd Ali, Hapipah; Hassandarvish, Pouya; Dehghan, Firouzeh; Ibrahim, Mohamed Yousif; Omer, Fatima Abd Elmutaal Ahmed; Mohan, Syam

    2014-01-01

    Background Thymoquinone is an active ingredient isolated from Nigella sativa (Black Seed). This study aimed to evaluate the in vitro and in vivo anti-leukemic effects of thymoquinone on WEHI-3 cells. Methodology/Principal Findings The cytotoxic effect of thymoquinone was assessed using an MTT assay, while the inhibitory effect of thymoquinone on murine WEHI-3 cell growth was due to the induction of apoptosis, as evidenced by chromatin condensation dye, Hoechst 33342 and acridine orange/propidium iodide fluorescent staining. In addition, Annexin V staining for early apoptosis was performed using flowcytometric analysis. Apoptosis was found to be associated with the cell cycle arrest at the S phase. Expression of Bax, Bcl2 and HSP 70 proteins were observed by western blotting. The effects of thymoquinone on BALB/c mice injected with WEHI-3 cells were indicated by the decrease in the body, spleen and liver weights of the animal, as compared to the control. Conclusion Thymoquinone promoted natural killer cell activities. This compound showed high toxicity against WEHI-3 cell line which was confirmed by an increase of the early apoptosis, followed by up-regulation of the anti-apoptotic protein, Bcl2, and down-regulation of the apoptotic protein, Bax. On the other hand, high reduction of the spleen and liver weight, and significant histopathology study of spleen and liver confirmed that thymoquinone inhibited WEHI-3 growth in the BALB/c mice. Results from this study highlight the potential of thymoquinone to be developed as an anti-leukemic agent. PMID:25531768

  15. Protective effects of SS31 on t-BHP induced oxidative damage in 661W cells

    PubMed Central

    MA, WEI; ZHU, XIAOBO; DING, XIAOYAN; LI, TAO; HU, YIJUN; HU, XUTING; YUAN, LIN; LEI, LEI; HU, ANDINA; LUO, YAN; TANG, SHIBO

    2015-01-01

    The present study aimed to investigate the ability of SS31, a novel mitochondria-targeted peptide to protect against t-BHP-induced mitochondrial dysfunction and apoptosis in 661W cell lines. The 661W cells were treated with various concentrations of SS-31 and an MTT assay was used to determine cell viability. The expression of nitrotyrosine and 8-hydroxydeoxyguanosine (8-OHdG) was detected using immunofluorescent staining. Apoptosis were assessed using Hoechst staining and an annexin V/propidium iodide flow cytometer. Reactive oxygen species (ROS) were detected using MitoSOX™ with confocal microscopy. Changes in mitochondrial membrane potential were analyzed using flow cytometry. In addition, the release of cytochrome c was analyzed using confocal microscopy. The viability of the cells improved following treatment with SS31 between 100 nM and 1 µM, compared with untreated control group. Compared with the t-BHP treatment group (20.0±3.8%), the number of annexin V-positive cells decreased dose-dependently to 13.6±2.6, 9.8±0.5 and 7.4±2.0% in the SS-31 treated group at concentrations of 10 nM, 100 nM and 1 µM, respectively. Treatment with SS-31 significantly prevented the t-BHP-induced expression of nitrotyrosine and 8-OHdG, decreased the quantity of mitochondrial ROS, increased mitochondrial potential, and prevented the release of cytochrome c from mitochondria into the cytoplasm. Therefore, the SS31 mitochondria-targeted peptide protected the 661W cells from the sustained oxidative stress induced by t-BHP. PMID:26165373

  16. FTY720 (Fingolimod) sensitizes hepatocellular carcinoma cells to sorafenib-mediated cytotoxicity

    PubMed Central

    Ahmed, Dilruba; de Verdier, Petra J; Ryk, Charlotta; Lunqe, Oscar; Stål, Per; Flygare, Jenny

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. The multityrosine kinase inhibitor sorafenib is used in the therapy of advanced disease. However, the effects of sorafenib are limited, and combination treatments aiming at improved survival are encouraged. The sphingosine analog FTY720 (Fingolimod), which is approved for treatment of multiple sclerosis, has shown tumor suppressive effects in cell lines and animal models of HCC. In the present study, we combined sorafenib with FTY720 in order to sensitize the HCC cell lines Huh7 and HepG2 to sorafenib treatment. Using the XTT assay we show that noncytotoxic doses of FTY720 synergistically enhanced the decrease in viability caused by treatment of both cell lines with increasing doses of sorafenib. Further studies in Huh7 revealed that combined treatment with FTY720 and sorafenib resulted in G1 arrest and enhanced cell death measured using flow cytometry analysis of cells labeled with propidium iodide (PI)/Annexin-V and PI and 4?,6-diamidino-2-phenylindole-staining of nuclei. In addition, signs of both caspase-dependent and – independent apoptosis were observed, as cotreatment with FTY720 and sorafenib caused cytochrome c release and poly-ADP ribose polymerase-cleavage as well as translocation of Apoptosis-inducing factor into the cytosol. We also detected features of autophagy blockage, as the protein levels of LC3-II and p62 were affected by combined treatment with FTY720 and sorafenib. Together, our results suggest that FTY720 sensitizes HCC cells to cytotoxic effects induced by treatment with sorafenib alone. These findings warrant further investigations of combined treatment with sorafenib and FTY720 in vivo in order to develop more effective treatment of HCC. PMID:26516583

  17. Effects of maslinic acid on the proliferation and apoptosis of A549 lung cancer cells

    PubMed Central

    BAI, XUE; ZHANG, YI; JIANG, HONGFANG; YANG, PENG; LI, HUI; ZHANG, YUE; HE, PING

    2016-01-01

    Maslinic acid (MA) is a pentacyclic triterpene acid that is present in numerous dietary plants. Although certain studies have demonstrated that MA has anti-cancer properties in different cell types, the effect of MA on lung cancer cell proliferation and apoptosis and the potential underlying mechanisms remain to be elucidated. In the present study, A549 lung cancer cells were treated with different doses of MA and it was found that MA significantly inhibited A549 cell growth in a dose-dependent manner. In addition, Annexin V/propidium iodide flow cytometric analysis demonstrated that MA induced apoptosis of A549 cells. The present study also confirmed that MA induced apoptosis by observing morphological alterations. In addition, the effect of MA treatment on the levels of apoptosis-associated proteins was examined. The results demonstrated that MA treatment suppressed the expression of caspase-3, -8 and -9, and increased the expression of cleaved caspase-3, -8 and -9 in a dose-dependent manner. The level of inhibitors of apoptosis (IAPs) and Smac, which are possible upstream factors of caspase proteins, were also examined. It was found that MA treatment increased the protein expression of Smac and decreased the protein levels of c-IAP1, c-IAP2, X-linked inhibitor of apoptosis protein (XIAP) and Survivin in a dose-dependent manner. These results suggested that MA inhibited proliferation and induced apoptosis of A549 cells through regulation of caspase cleavage as well as Smac, c-IAP1, c-IAP2, XIAP and Survivin. PMID:26572558

  18. Tumor necrosis factor inhibitors block apoptosis of human epithelial cells of the salivary glands.

    PubMed

    Sisto, Margherita; D'Amore, Massimo; Caprio, Simone; Mitolo, Vincenzo; Scagliusi, Pasquale; Lisi, Sabrina

    2009-08-01

    Inhibition of tumor necrosis factor-alpha (TNF-alpha) in organ-specific autoimmune disease is proving efficacious for a large number of patients. A wide array of biological agents has been designed to inhibit TNF-alpha, such as adalimumab (fully humanized) and etanercept (soluble TNF-alpha receptor fusion constructs p75 subunit). Recently, we suggested that anti-Ro and anti-La autoantibodies (Abs) isolated from patients with Sjögren's syndrome, an autoimmune rheumatic disease, are able to trigger cell death through extrinsic apoptotic mechanisms in human salivary gland epithelial cells (SGEC). We analyzed if primary human SGEC cultures, established from biopsy of labial minor salivary glands, are able to produce TNF-alpha, an inductor of the extrinsic apoptotic pathway, when treated with anti-Ro autoantibodies. A comparative study was performed to test the efficacy of adalimumab and etanercept to block TNF-alpha-mediated apoptosis. ELISA assay and RT-PCR were employed to visualize TNF-alpha production, and apoptosis was evaluated by DNA ladder and flow cytometry. We found that cell treatment with anti-Ro autoantibodies determines TNF-alpha production that reaches a maximum at 16 h and is decreased (P < 0.05) at 24 and 48 h. Adalimumab seems to be more efficacious than etanercept in blocking TNF-alpha-mediated apoptosis. The YOPRO-1 (+) and propidium iodide (-) method revealed 60% of apoptotic cells after 24 h of incubation with anti-Ro compared with 15% of apoptotic cells treated with anti-Ro plus adalimumab and 25% of apoptotic cells treated with anti-Ro plus etanercept. The antiapoptotic effect of adalimumab and etanercept was supported by inhibition of DNA laddering induced by anti-Ro Abs. These data validate the therapeutic efficacy of the anti-TNF reagents in the treatment of autoimmune disorders. PMID:19723083

  19. Wear Particles Derived from Metal Hip Implants Induce the Generation of Multinucleated Giant Cells in a 3-Dimensional Peripheral Tissue-Equivalent Model

    PubMed Central

    Dutta, Debargh K.; Potnis, Pushya A.; Rhodes, Kelly; Wood, Steven C.

    2015-01-01

    Multinucleate giant cells (MGCs) are formed by the fusion of 5 to 15 monocytes or macrophages. MGCs can be generated by hip implants at the site where the metal surface of the device is in close contact with tissue. MGCs play a critical role in the inflammatory processes associated with adverse events such as aseptic loosening of the prosthetic joints and bone degeneration process called osteolysis. Upon interaction with metal wear particles, endothelial cells upregulate pro-inflammatory cytokines and other factors that enhance a localized immune response. However, the role of endothelial cells in the generation of MGCs has not been completely investigated. We developed a three-dimensional peripheral tissue-equivalent model (PTE) consisting of collagen gel, supporting a monolayer of endothelial cells and human peripheral blood mononuclear cells (PBMCs) on top, which mimics peripheral tissue under normal physiological conditions. The cultures were incubated for 14 days with Cobalt chromium alloy (CoCr ASTM F75, 1–5 micron) wear particles. PBMC were allowed to transit the endothelium and harvested cells were analyzed for MGC generation via flow cytometry. An increase in forward scatter (cell size) and in the propidium iodide (PI) uptake (DNA intercalating dye) was used to identify MGCs. Our results show that endothelial cells induce the generation of MGCs to a level 4 fold higher in 3-dimentional PTE system as compared to traditional 2-dimensional culture plates. Further characterization of MGCs showed upregulated expression of tartrate resistant alkaline phosphatase (TRAP) and dendritic cell specific transmembrane protein, (DC-STAMP), which are markers of bone degrading cells called osteoclasts. In sum, we have established a robust and relevant model to examine MGC and osteoclast formation in a tissue like environment using flow cytometry and RT-PCR. With endothelial cells help, we observed a consistent generation of metal wear particle- induced MGCs, which heralds metal on metal hip failures. PMID:25894745

  20. Wear particles derived from metal hip implants induce the generation of multinucleated giant cells in a 3-dimensional peripheral tissue-equivalent model.

    PubMed

    Dutta, Debargh K; Potnis, Pushya A; Rhodes, Kelly; Wood, Steven C

    2015-01-01

    Multinucleate giant cells (MGCs) are formed by the fusion of 5 to 15 monocytes or macrophages. MGCs can be generated by hip implants at the site where the metal surface of the device is in close contact with tissue. MGCs play a critical role in the inflammatory processes associated with adverse events such as aseptic loosening of the prosthetic joints and bone degeneration process called osteolysis. Upon interaction with metal wear particles, endothelial cells upregulate pro-inflammatory cytokines and other factors that enhance a localized immune response. However, the role of endothelial cells in the generation of MGCs has not been completely investigated. We developed a three-dimensional peripheral tissue-equivalent model (PTE) consisting of collagen gel, supporting a monolayer of endothelial cells and human peripheral blood mononuclear cells (PBMCs) on top, which mimics peripheral tissue under normal physiological conditions. The cultures were incubated for 14 days with Cobalt chromium alloy (CoCr ASTM F75, 1-5 micron) wear particles. PBMC were allowed to transit the endothelium and harvested cells were analyzed for MGC generation via flow cytometry. An increase in forward scatter (cell size) and in the propidium iodide (PI) uptake (DNA intercalating dye) was used to identify MGCs. Our results show that endothelial cells induce the generation of MGCs to a level 4 fold higher in 3-dimentional PTE system as compared to traditional 2-dimensional culture plates. Further characterization of MGCs showed upregulated expression of tartrate resistant alkaline phosphatase (TRAP) and dendritic cell specific transmembrane protein, (DC-STAMP), which are markers of bone degrading cells called osteoclasts. In sum, we have established a robust and relevant model to examine MGC and osteoclast formation in a tissue like environment using flow cytometry and RT-PCR. With endothelial cells help, we observed a consistent generation of metal wear particle- induced MGCs, which heralds metal on metal hip failures. PMID:25894745

  1. Reduction of apoptosis by proanthocyanidin-induced autophagy in the human gastric cancer cell line MGC-803.

    PubMed

    Nie, Chao; Zhou, Jie; Qin, Xiaokang; Shi, Xianming; Zeng, Qingqi; Liu, Jia; Yan, Shihai; Zhang, Lei

    2016-02-01

    Proanthocyanidins are flavonoids that are widely present in the skin and seeds of various plants, with the highest content in grape seeds. Many experiments have shown that proanthocyanidins have antitumor activity both in vivo and in vitro. Autophagy and apoptosis of tumor cells induced by drugs are two of the major causes of tumor cell death. However, reports on the effect of autophagy induced by drugs in tumor cells are not consistent and suggest that autophagy can have synergistic or antagonistic effects with apoptosis. This research was aimed at investigating whether proanthocyanidins induced autophagy and apoptosis in human gastric cancer cell line MGC-803 cells and to identify the mechanism of proanthocyanidins action to further determine the effect of proanthocyanidins-induced autophagy on apoptosis. MTT assay was used to examine the proanthocyanidin cytotoxicity against human gastric cancer cell line MGC-803. Transmission electron microscopy and monodansylcadaverine (MDC) staining were used to detect autophagy. Annexin V APC/7-AAD double staining and Hoechst 33342/propidium iodide (PI) double staining were used to explore apoptosis. Western blotting was used to determine expression of proteins related to autophagy and apoptosis. Real-time quantitative PCR technology was used to determine the mRNA level of Beclin1 and BCL-2. The results showed that proanthocyanidins exhibit a significant inhibitory effect on the human gastric cancer cell line MGC-803 proliferation in vitro and simultaneously activate autophagy and apoptosis to promote cell death. Furthermore, when proanthocyanidin-induced autophagy is inhibited, apoptosis increases significantly, proanthocyanidins can be used together with autophagy inhibitors to enhance cytotoxicity. PMID:26572257

  2. Highly efficient synthetic iron-dependent nucleases activate both intrinsic and extrinsic apoptotic death pathways in leukemia cancer cells.

    PubMed

    Horn, Adolfo; Fernandes, Christiane; Parrilha, Gabrieli L; Kanashiro, Milton M; Borges, Franz V; de Melo, Edésio J T; Schenk, Gerhard; Terenzi, Hernán; Pich, Claus T

    2013-11-01

    The nuclease activity and the cytotoxicity toward human leukemia cancer cells of iron complexes, [Fe(HPClNOL)Cl2]NO3 (1), [Cl(HPClNOL)Fe(?-O)Fe(HPClNOL)Cl]Cl2·2H2O (2), and [(SO4)(HPClNOL)Fe(?-O)Fe(HPClNOL)(SO4)]·6H2O (3) (HPClNOL=1-(bis-pyridin-2-ylmethyl-amino)-3-chloropropan-2-ol), were investigated. Each complex was able to promote plasmid DNA cleavage and change the supercoiled form of the plasmid to circular and linear ones. Kinetic data revealed that (1), (2) and (3) increase the rate of DNA hydrolysis about 278, 192 and 339 million-fold, respectively. The activity of the complexes was inhibited by distamycin, indicating that they interact with the minor groove of the DNA. The cytotoxic activity of the complexes toward U937, HL-60, Jukart and THP-1 leukemia cancer cells was studied employing 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), fluorescence and electronic transmission microscopies, flow cytometry and a cytochrome C release assay. Compound (2) has the highest activity toward cancer cells and is the least toxic for normal ones (i.e. peripheral blood mononuclear cells (PBMCs)). In contrast, compound (1) is the least active toward cancer cells but displays the highest toxicity toward normal cells. Transmission electronic microscopy indicates that cell death shows features typical of apoptotic cells, which was confirmed using the annexin V-FITC/PI (fluorescein isothiocyanate/propidium iodide) assay. Furthermore, our data demonstrate that at an early stage during the treatment with complex (2) mitochondria lose their transmembrane potential, resulting in cytochrome C release. A quantification of caspases 3, 9 (intrinsic apoptosis pathway) and caspase 8 (extrinsic apoptosis pathway) indicated that both the intrinsic (via mitochondria) and extrinsic (via death receptors) pathways are involved in the apoptotic stimuli. PMID:23933562

  3. Long non-coding RNA-GAS5 acts as a tumor suppressor in bladder transitional cell carcinoma via regulation of chemokine (C-C motif) ligand 1 expression

    PubMed Central

    CAO, QIFENG; WANG, NING; QI, JUAN; GU, ZHENGQIN; SHEN, HAIBO

    2016-01-01

    Long non-coding RNAs (lncRNAs) have important roles in diverse biological processes, including transcriptional regulation, cell growth and tumorigenesis. The present study aimed to investigate whether lncRNA-growth arrest-specific (GAS)5 regulated bladder cancer progression via regulation of chemokine (C-C) ligand (CCL)1 expression. The viability of BLX bladder cancer cells was detected using a Cell Counting kit-8 assay, and cell apoptosis was assessed by annexin V-propidium iodide double-staining. The expression levels of specific genes and proteins were analyzed by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. In addition, cells were transfected with small interfering (si)RNAs or recombinant GAS5 in order to silence or overexpress GAS5, respectively. The results of the present study demonstrated that knockdown of GAS5 expression promoted bladder cancer cell proliferation, whereas overexpression of GAS5 suppressed cell proliferation. Furthermore, knockdown of GAS5 resulted in an increased percentage of cells in S and G2 phase, and a decreased percentage of cells in G1 phase. In addition, the present study performed a hierarchical cluster analysis of differentially expressed lncRNAs in bladder cancer cells and detected that CCL1 overexpression resulted in an upregulation of GAS5, which may improve the ability of cells to regulate a stress response in vitro. Furthermore, knockdown of GAS5 expression increased the mRNA and protein expression of CCL1 in bladder cancer cells. Gain-of-function and loss-of-function studies demonstrated that GAS5 was able to inhibit bladder cancer cell proliferation, at least in part, by suppressing the expression of CCL1. The results of the present study demonstrated that GAS5 was able to suppress bladder cancer cell proliferation, at least partially, by suppressing the expression of CCL1. The results of the present study may provide a basis for developing novel effective treatment strategies against bladder cancer. PMID:26548923

  4. Long non?coding RNA?GAS5 acts as a tumor suppressor in bladder transitional cell carcinoma via regulation of chemokine (C?C motif) ligand 1 expression.

    PubMed

    Cao, Qifeng; Wang, Ning; Qi, Juan; Gu, Zhengqin; Shen, Haibo

    2016-01-01

    Long non?coding RNAs (lncRNAs) have important roles in diverse biological processes, including transcriptional regulation, cell growth and tumorigenesis. The present study aimed to investigate whether lncRNA?growth arrest?specific (GAS)5 regulated bladder cancer progression via regulation of chemokine (C?C) ligand (CCL)1 expression. The viability of BLX bladder cancer cells was detected using a Cell Counting kit?8 assay, and cell apoptosis was assessed by annexin V?propidium iodide double?staining. The expression levels of specific genes and proteins were analyzed by reverse transcription?quantitative polymerase chain reaction and western blotting, respectively. In addition, cells were transfected with small interfering (si)RNAs or recombinant GAS5 in order to silence or overexpress GAS5, respectively. The results of the present study demonstrated that knockdown of GAS5 expression promoted bladder cancer cell proliferation, whereas overexpression of GAS5 suppressed cell proliferation. Furthermore, knockdown of GAS5 resulted in an increased percentage of cells in S and G2 phase, and a decreased percentage of cells in G1 phase. In addition, the present study performed a hierarchical cluster analysis of differentially expressed lncRNAs in bladder cancer cells and detected that CCL1 overexpression resulted in an upregulation of GAS5, which may improve the ability of cells to regulate a stress response in vitro. Furthermore, knockdown of GAS5 expression increased the mRNA and protein expression of CCL1 in bladder cancer cells. Gain?of?function and loss?of?function studies demonstrated that GAS5 was able to inhibit bladder cancer cell proliferation, at least in part, by suppressing the expression of CCL1. The results of the present study demonstrated that GAS5 was able to suppress bladder cancer cell proliferation, at least partially, by suppressing the expression of CCL1. The results of the present study may provide a basis for developing novel effective treatment strategies against bladder cancer. PMID:26548923

  5. BioPhotonics workstation: A versatile setup for simultaneous optical manipulation, heat stress, and intracellular pH measurements of a live yeast cell

    NASA Astrophysics Data System (ADS)

    Aabo, Thomas; Banás, Andrew Raphael; Glückstad, Jesper; Siegumfeldt, Henrik; Arneborg, Nils

    2011-08-01

    In this study we have modified the BioPhotonics workstation (BWS), which allows for using long working distance objective for optical trapping, to include traditional epi-fluorescence microscopy, using the trapping objectives. We have also added temperature regulation of sample stage, allowing for fast temperature variations while trapping. Using this modified BWS setup, we investigated the internal pH (pHi) response and membrane integrity of an optically trapped Saccharomyces cerevisiae cell at 5 mW subject to increasing temperatures. The pHi of the cell is obtained from the emission of 5-(and-6)-carboxyfluorescein diacetate, succinimidyl ester, at 435 and 485 nm wavelengths, while the permeability is indicated by the fluorescence of propidium iodide. We present images mapping the pHi and permeability of the cell at different temperatures and with enough spatial resolution to localize these attributes within the cell. The combined capability of optical trapping, fluorescence microscopy and temperature regulation offers a versatile tool for biological research.

  6. Rapid preparation of rodent testicular cell suspensions and spermatogenic stages purification by flow cytometry using a novel blue-laser-excitable vital dye

    PubMed Central

    Rodríguez-Casuriaga, Rosana; Santiñaque, Federico F.; Folle, Gustavo A.; Souza, Elisa; López-Carro, Beatriz; Geisinger, Adriana

    2014-01-01

    Availability of purified or highly enriched fractions representing the various spermatogenic stages is a usual requirement to study mammalian spermatogenesis at the molecular level. Fast preparation of high quality testicular cell suspensions is crucial when flow cytometry (FCM) is chosen to accomplish the stage/s purification. Formerly, we reported a method to rapidly obtain good quality rodent testicular cell suspensions for FCM analysis and sorting. Using that method we could distinguish and purify early meiocytes (leptotene/zygotene stages, L/Z) from more advanced ones (pachytene, P) in guinea pig, which presents an unusually high content of early stages. Here we present an upgrade of that method with improvements that enabled the obtainment of high-purity meiotic substages also from mouse testis, namely:•Shortening of the mechanical disaggregation time to optimize the integrity of the suspension.•Elimination of the 25 ?m-filtration step to ensure the presence of large P cells.•Inclusion of a non-cytotoxic, DNA-specific, 488 nm-excitable vital fluorochrome (Vybrant DyeCycle Green [VDG], Invitrogen) instead of Hoechst 33342 (requires UV laser, which can damage nucleic acids) or propidium iodide (usually related to dead/damaged cells). As far as we know, this is the first report on the use of this fluorochrome for the discrimination and purification of meiotic prophase I substages. PMID:26150958

  7. Rapid preparation of rodent testicular cell suspensions and spermatogenic stages purification by flow cytometry using a novel blue-laser-excitable vital dye.

    PubMed

    Rodríguez-Casuriaga, Rosana; Santiñaque, Federico F; Folle, Gustavo A; Souza, Elisa; López-Carro, Beatriz; Geisinger, Adriana

    2014-01-01

    Availability of purified or highly enriched fractions representing the various spermatogenic stages is a usual requirement to study mammalian spermatogenesis at the molecular level. Fast preparation of high quality testicular cell suspensions is crucial when flow cytometry (FCM) is chosen to accomplish the stage/s purification. Formerly, we reported a method to rapidly obtain good quality rodent testicular cell suspensions for FCM analysis and sorting. Using that method we could distinguish and purify early meiocytes (leptotene/zygotene stages, L/Z) from more advanced ones (pachytene, P) in guinea pig, which presents an unusually high content of early stages. Here we present an upgrade of that method with improvements that enabled the obtainment of high-purity meiotic substages also from mouse testis, namely:•Shortening of the mechanical disaggregation time to optimize the integrity of the suspension.•Elimination of the 25 ?m-filtration step to ensure the presence of large P cells.•Inclusion of a non-cytotoxic, DNA-specific, 488 nm-excitable vital fluorochrome (Vybrant DyeCycle Green [VDG], Invitrogen) instead of Hoechst 33342 (requires UV laser, which can damage nucleic acids) or propidium iodide (usually related to dead/damaged cells). As far as we know, this is the first report on the use of this fluorochrome for the discrimination and purification of meiotic prophase I substages. PMID:26150958

  8. Plancitoxin I from the venom of crown-of-thorns starfish (Acanthaster planci) induces oxidative and endoplasmic reticulum stress associated cytotoxicity in A375.S2 cells.

    PubMed

    Lee, Chi-Chiu; Hsieh, Hernyi Justin; Hsieh, Cheng-Hong; Hwang, Deng-Fwu

    2015-08-01

    The crown-of-thorns starfish Acanthaster planci is a venomous starfish whose venom provokes strong cytotoxicity. In the present study, the purified cytotoxic toxin of A. planci venom (CAV) was identified as plancitoxin I protein by mass spectrum analyses. This study aims to investigate the molecular mechanism underlying the cytotoxicity function of plancitoxin I by focusing on the oxidative stress, mitochondrial dysfunction and endoplasmic reticulum (ER) stress pathway in human melanoma A375.S2 cells. The results indicated that after being treated with CAV toxin, A375.S2 cells significantly decreased viability in a dose-dependent manner. The CAV was found to reduce the cellular antioxidant enzymes such as SOD and CAT, and there was a significant decrease in total thiol level and mtDNA integrity, and it enhanced the lipid peroxidation. In addition, CAV increased cytosolic Ca(2+) concentration, and enhanced the expression of the ER molecular chaperones GRP78 and CHOP in a dose-dependent manner. CAV significantly elevated the activity of caspase-3, -8 and -9, and reduced the ratio of Bcl-2/Bax. The cells exhibited apoptosis were determined by using propidium iodide (PI) staining of DNA fragmentation (sub-G1 peak). In summary, the results demonstrated that plancitoxin I inhibits the proliferation of A375.S2 cells through induction of oxidative stress, mitochondrial dysfunction and ER stress associated apoptosis. PMID:25952364

  9. Optical Trapping Techniques Applied to the Study of Cell Membranes

    NASA Astrophysics Data System (ADS)

    Morss, Andrew J.

    Optical tweezers allow for manipulating micron-sized objects using pN level optical forces. In this work, we use an optical trapping setup to aid in three separate experiments, all related to the physics of the cellular membrane. In the first experiment, in conjunction with Brian Henslee, we use optical tweezers to allow for precise positioning and control of cells in suspension to evaluate the cell size dependence of electroporation. Theory predicts that all cells porate at a transmembrane potential VTMof roughly 1 V. The Schwann equation predicts that the transmembrane potential depends linearly on the cell radius r, thus predicting that cells should porate at threshold electric fields that go as 1/r. The threshold field required to induce poration is determined by applying a low voltage pulse to the cell and then applying additional pulses of greater and greater magnitude, checking for poration at each step using propidium iodide dye. We find that, contrary to expectations, cells do not porate at a constant value of the transmembrane potential but at a constant value of the electric field which we find to be 692 V/cm for K562 cells. Delivering precise dosages of nanoparticles into cells is of importance for assessing toxicity of nanoparticles or for genetic research. In the second experiment, we conduct nano-electroporation—a novel method of applying precise doses of transfection agents to cells—by using optical tweezers in conjunction with a confocal microscope to manipulate cells into contact with 100 nm wide nanochannels. This work was done in collaboration with Pouyan Boukany of Dr. Lee's group. The small cross sectional area of these nano channels means that the electric field within them is extremely large, 60 MV/m, which allows them to electrophoretically drive transfection agents into the cell. We find that nano electroporation results in excellent dose control (to within 10% in our experiments) compared to bulk electroporation. We also find that, unlike bulk electroporation, nano-electroporation directly injects nanoparticles, such as quantum dots, to the cell interior, bypassing the cell membrane without the need for endocytosis. The aging of RBC's can render them rigid, an issue for the survivability of transfusion patients. This rigidity can be assessed by examining the fluctuations in the cell membrane. In the third experiment, we use back focal plane detection—an interferometric detection scheme using an optical tweezers setup—to measure the membrane fluctuations of RBC's and K562 cells. Membrane fluctuations have long been observed in RBC's and a well developed theory exists linking them to the cells internal viscosity ?, the membrane bending modulus k and the surface tension of the membrane ?. We use back focal plane detection to measure the effect of ascorbic acid treatment on RBC aging and find no improvement in cell flexibility. K562 cells differ from RBC's in that they possess an actin cortex which the membrane attaches to. We demonstrate that K562 cells exhibit as much as an order of magnitude more variation in their fluctuations than RBC's do.

  10. Radiosensitization Effect of STI-571 on Pancreatic Cancer Cells In Vitro

    SciTech Connect

    Chung, Hye Won; Wen, Jing; Lim, Jong-Baeck; Bang, Seung Min; Park, Seung Woo; Song, Si Young

    2009-11-01

    Purpose: To examine STI-571-induced radiosensitivity in human pancreatic cancer cells in vitro. Methods and Materials: Three human pancreatic cancer cell lines (Bxpc-3, Capan-1, and MiaPaCa-2) exhibiting different expression levels of c-Kit and platelet-derived growth factor receptor beta (PDGFRbeta) and showing different K-ras mutation types were used. For evaluation of the antitumor activity of STI-571 in combination with radiation, clonogenic survival assays, Western blot analysis, and the annexin V/propidium iodide assay with microscopic evaluation by 4',6-diamidino-2-phenylindole were conducted. Results: Dramatic phosphorylated (p)-c-Kit and p-PDGFRbeta attenuation, a modest dose- and time-dependent growth inhibition, and significant radiosensitization were observed after STI-571 treatment in view of apoptosis, although the levels of growth inhibition and increased radiosensitization were different according to cell lines. The grades of radiosensitivity corresponded to the attenuation levels of p-c-Kit and p-PDGFRbeta by STI-571, particularly to those of p-c-Kit, and the radiosensitivity was partially affected by K-ras mutation in pancreatic cancer cells. Among downstream pathways associated with c-Kit or PDGFRbeta, p-PLCgamma was more closely related to radiosensitivity compared with p-Akt1 or p-extracellular signal-regulated kinase 1. Conclusion: STI-571 enhances radiation response in pancreatic cancer cells. This effect is affected by the attenuation levels of p-c-Kit or p-PDGFRbeta, and K-ras mutation status. Among them, p-c-Kit plays more important roles in the radiosensitivity in pancreatic cancer compared with p-PDGFRbeta or K-ras mutation status.

  11. Toxicity evaluation of engineered nanoparticles for medical applications using pulmonary epithelial cells.

    PubMed

    Guadagnini, Rina; Moreau, Kevin; Hussain, Salik; Marano, Francelyne; Boland, Sonja

    2015-05-01

    There are a multitude of nanoparticles (NPs) which have shown great potentials for medical applications. A few of them are already used for lung therapeutic and diagnostic purposes. However, there are few toxicological studies which determine possible adverse pulmonary responses. It is thus important to propose in vitro screening strategies to evaluate the pulmonary toxicity of NPs used in nanomedicine. Our goal was to determine the cellular effects of several biomedical NPs with different physico-chemical characteristics (chemical nature, size and coating) to establish suitable tests and useful benchmark NPs. The effects of poly(lactic-co-glycolic acid) (PLGA), silica, iron oxide and titanium dioxide NPs were studied using human bronchial (16HBE) and alveolar epithelial cells (A549). We evaluated cytotoxicity, reactive oxygen species (ROS) production and pro-inflammatory response in both cell lines. We demonstrated that PLGA NPs are good candidates for negative control NPs and SiO2 NPs were revealed to be the best benchmark NPs. Coating of Fe3O4 with sodium oleate, a known biocompatible compound, led to an unexpected increase in cytotoxicity. Moreover, 16HBE cells are more sensitive than A549 cells and propidium iodide uptake is a more sensitive cytotoxicity test than WST-1. The measurement of oxidative stress does not systematically allow us to predict cellular responses and different other cellular endpoints should also be addressed. We conclude that a battery of assays and cell lines are necessary to accurately evaluate the pulmonary effects of NPs and that PLGA and SiO2 NPs are suitable candidates respectively for negative and positive controls. PMID:24286383

  12. The Antimicrobial Domains of Wheat Puroindolines Are Cell-Penetrating Peptides with Possible Intracellular Mechanisms of Action

    PubMed Central

    Alfred, Rebecca L.; Palombo, Enzo A.; Panozzo, Joseph F.; Bhave, Mrinal

    2013-01-01

    The puroindoline proteins (PINA and PINB) of wheat display lipid-binding properties which affect the grain texture, a critical parameter for wheat quality. Interestingly, the same proteins also display antibacterial and antifungal properties, attributed mainly to their Tryptophan-rich domain (TRD). Synthetic peptides based on this domain also display selectivity towards bacterial and fungal cells and do not cause haemolysis of mammalian cells. However, the mechanisms of these activities are unclear, thus limiting our understanding of the in vivo roles of PINs and development of novel applications. This study investigated the mechanisms of antimicrobial activities of synthetic peptides based on the TRD of the PINA and PINB proteins. Calcein dye leakage tests and transmission electron microscopy showed that the peptides PuroA, Pina-M and Pina-W?F selectively permeabilised the large unilamellar vesicles (LUVs) made with negatively charged phospholipids mimicking bacterial membranes, but were ineffective against LUVs made with zwitterionic phospholipids mimicking eukaryotic membranes. Propidium iodide fluorescence tests of yeast (Saccharomyces cerevisiae) cells showed the peptides were able to cause loss of membrane integrity, PuroA and Pina-M being more efficient. Scanning electron micrographs of PINA-based peptide treated yeast cells showed the formation of pits or pores in cell membranes and release of cellular contents. Gel retardation assays indicated the peptides were able to bind to DNA in vitro, and the induction of filamental growth of E. coli cells indicated in vivo inhibition of DNA synthesis. Together, the results strongly suggest that the PIN-based peptides exert their antimicrobial effects by pore formation in the cell membrane, likely by a carpet-like mechanism, followed by intracellular mechanisms of activity. PMID:24098387

  13. The antimicrobial domains of wheat puroindolines are cell-penetrating peptides with possible intracellular mechanisms of action.

    PubMed

    Alfred, Rebecca L; Palombo, Enzo A; Panozzo, Joseph F; Bhave, Mrinal

    2013-01-01

    The puroindoline proteins (PINA and PINB) of wheat display lipid-binding properties which affect the grain texture, a critical parameter for wheat quality. Interestingly, the same proteins also display antibacterial and antifungal properties, attributed mainly to their Tryptophan-rich domain (TRD). Synthetic peptides based on this domain also display selectivity towards bacterial and fungal cells and do not cause haemolysis of mammalian cells. However, the mechanisms of these activities are unclear, thus limiting our understanding of the in vivo roles of PINs and development of novel applications. This study investigated the mechanisms of antimicrobial activities of synthetic peptides based on the TRD of the PINA and PINB proteins. Calcein dye leakage tests and transmission electron microscopy showed that the peptides PuroA, Pina-M and Pina-W?F selectively permeabilised the large unilamellar vesicles (LUVs) made with negatively charged phospholipids mimicking bacterial membranes, but were ineffective against LUVs made with zwitterionic phospholipids mimicking eukaryotic membranes. Propidium iodide fluorescence tests of yeast (Saccharomyces cerevisiae) cells showed the peptides were able to cause loss of membrane integrity, PuroA and Pina-M being more efficient. Scanning electron micrographs of PINA-based peptide treated yeast cells showed the formation of pits or pores in cell membranes and release of cellular contents. Gel retardation assays indicated the peptides were able to bind to DNA in vitro, and the induction of filamental growth of E. coli cells indicated in vivo inhibition of DNA synthesis. Together, the results strongly suggest that the PIN-based peptides exert their antimicrobial effects by pore formation in the cell membrane, likely by a carpet-like mechanism, followed by intracellular mechanisms of activity. PMID:24098387

  14. Evolution of phagocytic function in monocytes and neutrophils blood cells of healthy calves.

    PubMed

    Batista, Camila F; Blagitz, Maiara G; Bertagnon, Heloisa G; Gomes, Renata C; Santos, Kamila R; Della Libera, Alice M M P

    2015-12-01

    The immune system of newborn calves is immature and must mature gradually. Understanding how this immunity is established may define different profiles. Twelve healthy calves were monitored during 8 time periods to assess the innate immune system during the first 90d. Blood samples were collected, and the blood phagocytes, identified by the expression of CD14 and CH138 surface molecules, were evaluated for phagocytic functionality (Staphylococcus aureus and Escherichia coli stained with propidium iodide) and the intracellular production of reactive oxygen species (2,7'-dichlorofluorescein diacetate oxidation). Functional changes in the CD14+ and CH138+ cells occurred at 40d of age, with sporadic increases in phagocytosis intensity and reactive oxygen species production, and decreased phagocytosis occurred at 60d of age. Therefore, fewer phagocytes were active from 40d of age, although those that were active performed their roles with greater efficacy. That change presumably occurred because the calf phagocytes began to support the immune response without the influence of passive immunity. The animals failed to reach the stability needed to complete the maturation of the innate immune response by 90d of age. These data are applicable for healthy calves only. PMID:26476941

  15. Prostaglandin E1 protects bone marrow-derived mesenchymal stem cells against serum deprivation-induced apoptosis

    PubMed Central

    ZENG, KUAN; DENG, BAO PING; JIANG, HUI-QI; WANG, MENG; HUA, PING; ZHANG, HONG-WU; DENG, YU-BIN; YANG, YAN-QI

    2015-01-01

    Mesenchymal stem cells (MSCs) have become a recent focus of experimental and clinical research regarding myocardial regeneration. However, the therapeutic potential of these cells is limited by poor survival. Prostaglandin E1 (PGE1) is known to have anti-inflammatory and anti-apoptotic effects on the myocardium. The aim of the present study was to determine whether PGE1 could protect MSCs against serum deprivation (SD)-induced apoptosis. An SD model was used to induce apoptosis in MSCs in vitro. Apoptotic morphological changes were detected by Hoechst 33258 fluorescent nuclear staining; and Annexin V-fluorescein isothiocyanate/propidium iodide (PI) double staining and flow cytometry was used to quantify the rate of apoptosis. Western blot analysis was used to detect the expression levels of the apoptosis-associated proteins Bcl-2, Bax and caspase-3. The results of the present study demonstrated that SD induced apoptosis of MSCs, and that treatment with PGE1 attenuated the morphological changes characteristic of apoptosis. Annexin V/PI staining showed that the rate of apoptosis gradually increased with the duration of ischemia. Furthermore, treatment with PGE1 significantly reduced SD-induced apoptosis, decreased the protein expression levels of Bax and caspase-3, and increased the expression levels of Bcl-2. These data suggest that PGE1 is able to influence the survival of MSCs under certain conditions. These results may aid in improving the therapeutic efficacy of MSC transplantation used to treat chronic ischemic heart disease. PMID:26252504

  16. Evaluation of two new fluorochromes, TOTO and YOYO, for DNA content analysis in cells and chromosomes by flow cytometry

    SciTech Connect

    Hirons, G.T.; Crissman, H.A. )

    1993-01-01

    The fluorochromes TOTO and YOYO were evaluated for their effectiveness in staining for DNA content analysis by flow cytometry (FCM). The dyes are dimers of thiazole orange (TO) and yellow oxazole (YO), respectively (Molecular Probes, Eugene, OR), and both have a very high quantum efficiency. Spectrofluorometric analysis showed that TOTO and YOYO had little fluorescence until bound to DNA or RNA. YOYO, the brighter of the two dyes, had an emission peak at [approximately]510 nm and TOTO at [approximately]530 nm. Analysis by flow cytometry indicated that cells stained with either dye at a concentration of [approximately]4.0 [mu]M could be preferentially excited at either 457 or 488 nm. Unfixed nuclei and fixed cells both treated with RNase, stained with either TOTO or YOYO, and analyzed by FCM yielded coefficients of variation (CV) comparable to CVs obtained for the same samples stained with mithramycin (MI) when excited at 457 nm and propidium iodide (PI) when excited at 488 nm. Both TOTO and YOYO are also being evaluated for their effectiveness in staining Chinese hamster embryo chromosomes; these results are being compared with results obtained with PI stained chromosomes.

  17. Development of a novel flow cytometric approach to evaluate fish sperm chromatin using fixed samples

    USGS Publications Warehouse

    Jenkins, Jill A.

    2013-01-01

    The integrity of the paternal DNA is essential for the accurate transmission of genetic information, yet fertilization is not inhibited by chromatin breakage. Some methods are available for the sensitive detection of DNA damage and can be applied in studies of environmental toxicology, carcinogenesis, aging, and assisted reproduction techniques in both clinical and experimental settings. Because semen samples obtained from remote locations undergo chromatin damage prior to laboratory assessment, the present study was undertaken to evaluate treatments for effective chromatin staining in the development of a DNA fragmentation assay using fixed milt from yellow perch (Perca flavescens). Similar to the sperm chromatin structure assay (SCSA), susceptibility of nuclear DNA to acid-induced denaturation was measured by flow cytometry (FCM). Use of 10% buffered formalin for milt fixation allowed easier peak discrimination than 4% paraformaldehyde. The effects of time and temperature of incubation in 0.08 N HCl were evaluated in order to determine the ideal conditions for promoting DNA decondensation and making strand breaks more available for staining and detection by FCM. The best results were obtained with incubation at 37°C for 1 minute, followed by cold propidium iodide staining for 30 minutes.

  18. Trans-Resveratrol Induces Apoptosis through ROS-Triggered Mitochondria-Dependent Pathways in A549 Human Lung Adenocarcinoma Epithelial Cells.

    PubMed

    Lucas, Ina Katharina; Kolodziej, Herbert

    2015-08-01

    Resveratrol has been shown to be a potential chemopreventive and anticancer agent, inducing apoptosis in a variety of cancer cells. The present study was performed to evaluate the effect of resveratrol on A549 human lung adenocarcinoma epithelial cells. 3-(4,5-Dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide evaluation demonstrated that the exposure of cells to increasing concentrations of resveratrol (0-175?µM) for 24?h resulted in a decrease in cell viability (IC50 85.5?µM). Annexin V/propidium iodide double stain verified apoptosis in A549 cells, while negligible cell cytotoxity (??0.5?%) was observed in all untreated incubations. Using colorimetric assay kits, induction of caspase-3, but not of caspase-8, activity was detected in response to resveratrol (>?130?µM). Confirmatory evidence of this finding was provided by Western blotting, indicating expression of cleaved caspase-3 levels in a concentration-dependent manner with a minimum resveratrol concentration of 65?µM required for activation of this protease, while that of caspase-8 remained unaffected. The apoptotic process was associated with reactive oxygen species production in a concentration-dependent manner, evidenced by microscopic examination and fluorescence-activated cell sorting analysis using the 2',7'-dichlorofluorescein diacetate assay. In the presence of the mitochondrial electron transport chain inhibitor rotenone, reactive oxygen species production and the concomitant apoptotic cell population were significantly reduced. This finding suggested that the resveratrol-induced apoptosis was mediated via a mitochondrial pathway alignment in human A549 cells. Although effective levels were observed at high concentrations, the outcome may well differ under in vivo conditions. Finally, experiments reaffirmed the chemical instability of trans-resveratrol, suggesting the need for protection of the solutions from extended exposure to light. PMID:26085046

  19. Corynebacterium diphtheriae 67-72p hemagglutinin, characterized as the protein DIP0733, contributes to invasion and induction of apoptosis in HEp-2 cells.

    PubMed

    Sabbadini, Priscila Soares; Assis, Maria Cristina; Trost, Eva; Gomes, Débora Leandro Rama; Moreira, Lilian Oliveira; Dos Santos, Cíntia Silva; Pereira, Gabriela Andrade; Nagao, Prescilla Emy; Azevedo, Vasco Ariston de Carvalho; Hirata Júnior, Raphael; Dos Santos, André Luis Souza; Tauch, Andreas; Mattos-Guaraldi, Ana Luíza

    2012-03-01

    Although Corynebacterium diphtheriae has been classically described as an exclusively extracellular pathogen, there is growing evidence that it may be internalized by epithelial cells. The aim of the present report was to investigate the nature and involvement of the surface-exposed non-fimbrial 67-72 kDa proteins (67-72p), previously characterized as adhesin/hemagglutinin, in C. diphtheriae internalization by HEp-2 cells. Transmission electron microscopy and bacterial internalization inhibition assays indicated the role of 67-72p as invasin for strains of varied sources. Cytoskeletal changes with accumulation of polymerized actin in HEp-2 cells beneath adherent 67-72p-adsorbed microspheres were observed by the Fluorescent actin staining test. Trypan blue staining method and Methylthiazole tetrazolium reduction assay showed a significant decrease in viability of HEp-2 cells treated with 67-72p. Morphological changes in HEp-2 cells observed after treatment with 67-72p included vacuolization, nuclear fragmentation and the formation of apoptotic bodies. Flow cytometry revealed an apoptotic volume decrease in HEp-2 cells treated with 67-72p. Moreover, a double-staining assay using Propidium Iodide/Annexin V gave information about the numbers of vital vs. early apoptotic cells and late apoptotic or secondary necrotic cells. The comparative analysis of MALDI-TOF MS experiments with the probes provided for 67-72p CDC-E8392 with an in silico proteome deduced from the complete genome sequence of C. diphtheriae identified with significant scores 67-72p as the protein DIP0733. In conclusion, DIP0733 (67-72p) may be directly implicated in bacterial invasion and apoptosis of epithelial cells in the early stages of diphtheria and C. diphtheriae invasive infection. PMID:22239957

  20. Combination simvastatin and metformin induces G1-phase cell cycle arrest and Ripk1- and Ripk3-dependent necrosis in C4-2B osseous metastatic castration-resistant prostate cancer cells

    PubMed Central

    Babcook, M A; Sramkoski, R M; Fujioka, H; Daneshgari, F; Almasan, A; Shukla, S; Nanavaty, R R; Gupta, S

    2014-01-01

    Castration-resistant prostate cancer (CRPC) cells acquire resistance to chemotherapy and apoptosis, in part, due to enhanced aerobic glycolysis and biomass production, known as the Warburg effect. We previously demonstrated that combination simvastatin (SIM) and metformin (MET) ameliorates critical Warburg effect-related metabolic aberrations of C4-2B cells, synergistically and significantly decreases CRPC cell viability and metastatic properties, with minimal effect on normal prostate epithelial cells, and inhibits primary prostate tumor growth, metastasis, and biochemical failure in an orthotopic model of metastatic CRPC, more effectively than docetaxel chemotherapy. Several modes of cell death activated by individual treatment of SIM or MET have been reported; however, the cell death process induced by combination SIM and MET treatment in metastatic CRPC cells remains unknown. This must be determined prior to advancing combination SIM and MET to clinical trial for metastatic CRPC. Treatment of C4-2B cells with combination 4??M SIM and 2?mM MET (SIM+MET) led to significant G1-phase cell cycle arrest and decrease in the percentage of DNA-replicating cells in the S-phase by 24?h; arrest was sustained throughout the 96-h treatment. SIM+MET treatment led to enhanced autophagic flux in C4-2B cells by 72–96?h, ascertained by increased LC3B-II (further enhanced with lysosomal inhibitor chloroquine) and reduced Sequestosome-1 protein expression, significantly increased percentage of acidic vesicular organelle-positive cells, and increased autophagic structure accumulation assessed by transmission electron microscopy. Chloroquine, however, could not rescue CRPC cell viability, eliminating autophagic cell death; rather, autophagy was upregulated by C4-2B cells in attempt to withstand chemotherapy. Instead, SIM+MET treatment led to Ripk1- and Ripk3-dependent necrosis by 48–96?h, determined by propidium iodide-Annexin V flow cytometry, increase in Ripk1 and Ripk3 protein expression, necrosome formation, HMGB-1 extracellular release, and necrotic induction and viability rescue with necrostatin-1 and Ripk3-targeting siRNA. The necrosis-inducing capacity of SIM+MET may make these drugs a highly-effective treatment for apoptosis- and chemotherapy-resistant metastatic CRPC cells. PMID:25412314

  1. Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells

    PubMed Central

    Gannon, Christopher J; Patra, Chitta Ranjan; Bhattacharya, Resham; Mukherjee, Priyabrata; Curley, Steven A

    2008-01-01

    Background Novel approaches to treat human cancer that are effective with minimal toxicity profiles are needed. We evaluated gold nanoparticles (GNPs) in human hepatocellular and pancreatic cancer cells to determine: 1) absence of intrinsic cytotoxicity of the GNPs and 2) external radiofrequency (RF) field-induced heating of intracellular GNPs to produce thermal destruction of malignant cells. GNPs (5 nm diameter) were added to 2 human cancer cell lines (Panc-1, Hep3B). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and propidium iodide-fluorescence associated cell sorting (PI-FACS) assessed cell proliferation and GNP-related cytotoxicity. Other GNP-treated cells were exposed to a 13.56 MHz RF field for 1, 2, or 5 minutes, and then incubated for 24 hours. PI-FACS measured RF-induced cytotoxicity. Results GNPs had no impact on cellular proliferation by MTT assay. PI-FACS confirmed that GNPs alone produced no cytotoxicity. A GNP dose-dependent RF-induced cytotoxicity was observed. For Hep3B cells treated with a 67 ?M/L dose of GNPs, cytotoxicity at 1, 2 and 5 minutes of RF was 99.0%, 98.5%, and 99.8%. For Panc-1 cells treated at the 67 ?M/L dose, cytotoxicity at 1, 2, and 5 minutes of RF was 98.5%, 98.7%, and 96.5%. Lower doses of GNPs were associated with significantly lower rates of RF-induced thermal cytotoxicity for each cell line (P < 0.01). Cells not treated with GNPs but treated with RF for identical time-points had less cytotoxicity (Hep3B: 17.6%, 21%, and 75%; Panc-1: 15.3%, 26.4%, and 39.8%, all P < 0.01). Conclusion We demonstrate that GNPs 1) have no intrinsic cytotoxicity or anti-proliferative effects in two human cancer cell lines in vitro and 2) GNPs release heat in a focused external RF field. This RF-induced heat release is lethal to cancer cells bearing intracellular GNPs in vitro. PMID:18234109

  2. Amiodarone induces apoptosis of human and rat alveolar epithelial cells in vitro.

    PubMed

    Bargout, R; Jankov, A; Dincer, E; Wang, R; Komodromos, T; Ibarra-Sunga, O; Filippatos, G; Uhal, B D

    2000-05-01

    The antiarrhythmic amiodarone (AM) and its metabolite desethylamiodarone (Des) are known to cause AM-induced pulmonary toxicity, but the mechanisms underlying this disorder remain unclear. We hypothesized that AM might cause AM-induced pulmonary toxicity in part through the induction of apoptosis or necrosis in alveolar epithelial cells (AECs). Two models of type II pneumocytes, the human AEC-derived A549 cell line and primary AECs isolated from adult Wistar rats, were incubated with AM or Des for 20 h. Apoptotic cells were determined by morphological assessment of nuclear fragmentation with propidium iodide on ethanol-fixed cells. Necrotic cells were quantitated by loss of dye exclusion. Both AM and Des caused dose-dependent necrosis starting at 2.5 and 0.1 microg/ml, respectively, in primary rat AECs and at 10 and 5 microg/ml in subconfluent A549 cells (P < 0.05 and P < 0.01, respectively). AM and Des also induced dose-dependent apoptosis beginning at 2.5 microg/ml in the primary AECs (P < 0.05 for both compounds) and at 10 and 5 microg/ml, respectively, in the A549 cell line (P < 0.01). The two compounds also caused significant net cell loss (up to 80% over 20 h of incubation) by either cell type at drug concentrations near or below the therapeutic serum concentration for AM. The cell loss was not due to detachment but was blocked by the broad-spectrum caspase inhibitor Z-Val-Ala-Asp-fluoromethylketone. Furthermore, the angiotensin-converting enzyme inhibitor captopril (500 ng/ml) and the angiotensin-receptor antagonist saralasin (50 microg/ml) significantly inhibited both the induction of apoptosis and net cell loss in response to AM. These results are consistent with recent work from this laboratory demonstrating potent inhibition of apoptosis in human AECs by captopril (Uhal BD, Gidea C, Bargout R, Bifero A, Ibarra-Sunga O, Papp M, Flynn K, and Filippatos G. Am J Physiol Lung Cell Mol Physiol 275: L1013-L1017, 1998). They also suggested that the accumulation of AM and/or its primary metabolite Des in lung tissue may induce cytotoxicity of AECs that might be inhibitable by angiotensin-converting enzyme inhibitors or other antagonists of the renin-angiotensin system. PMID:10781436

  3. Changes in protein expression of U937 and Jurkat cells exposed to nanosecond pulsed electric fields

    NASA Astrophysics Data System (ADS)

    Moen, Erick K.; Roth, Caleb C.; Cerna, Caesar; Estalck, Larry; Wilmink, Gerald; Ibey, Bennett L.

    2013-02-01

    Application of nanosecond pulsed electric fields (nsPEF) to various biological cell lines has been to shown to cause many diverse effects, including poration of the plasma membrane, depolarization of the mitochondrial membrane, blebbing, apoptosis, and intracellular calcium bursts. The underlying mechanism(s) responsible for these diverse responses are poorly understood. Of specific interest in this paper are the long-term effects of nsPEF on cellular processes, including the regulation of genes and production of proteins. Previous studies have reported transient activation of select signaling pathways involving mitogen-activated protein kinases (MAPKs), protein phosphorylation and downstream gene expression following nsPEF application. We hypothesize that nsPEF represents a unique stimulus that could be used to externally modulate cellular processes. To validate our hypothesis, we performed a series of cuvette-based exposures at 10 and 600ns pulse widths using a custom Blumlien line pulser system. We measured acute changes in the plasma membrane structure using flow cytometry by tracking phosphatidylserine externalization via FITC-Annexin V labeling and poration via propidium iodide uptake. We then compared these results to viability of the cells at 24 hours post exposure using MTT assay and changes in the MAPK family of proteins at 8 hours post-exposure using Luminex assay. By comparing exposures at 10 and 600ns duration, we found that most MAPK family-protein expression increased in Jurkat and U937 cell lines following exposure and compared well with drops in viability and changes in plasma membrane asymmetry. What proved interesting is that some MAPK family proteins (e.g. p53, STAT1), were expressed in one cell line, but not the other. This difference may point to an underlying mechanism for observed difference in cellular sensitivity to nsPEFinduced stresses.

  4. Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells

    PubMed Central

    Crosera, Matteo; Prodi, Andrea; Mauro, Marcella; Pelin, Marco; Florio, Chiara; Bellomo, Francesca; Adami, Gianpiero; Apostoli, Pietro; De Palma, Giuseppe; Bovenzi, Massimo; Campanini, Marco; Larese Filon, Francesca

    2015-01-01

    Titanium dioxide nanoparticles (TiO2NPs) suspensions (concentration 1.0 g/L) in synthetic sweat solution were applied on Franz cells for 24 h using intact and needle-abraded human skin. Titanium content into skin and receiving phases was determined. Cytotoxicity (MTT, AlamarBlue® and propidium iodide, PI, uptake assays) was evaluated on HaCat keratinocytes after 24 h, 48 h, and seven days of exposure. After 24 h of exposure, no titanium was detectable in receiving solutions for both intact and damaged skin. Titanium was found in the epidermal layer after 24 h of exposure (0.47 ± 0.33 ?g/cm2) while in the dermal layer, the concentration was below the limit of detection. Damaged skin, in its whole, has shown a similar concentration (0.53 ± 0.26 ?g/cm2). Cytotoxicity studies on HaCaT cells demonstrated that TiO2NPs induced cytotoxic effects only at very high concentrations, reducing cell viability after seven days of exposure with EC50s of 8.8 × 10?4 M (MTT assay), 3.8 × 10?5 M (AlamarBlue® assay), and 7.6 × 10?4 M (PI uptake, index of a necrotic cell death). Our study demonstrated that TiO2NPs cannot permeate intact and damaged skin and can be found only in the stratum corneum and epidermis. Moreover, the low cytotoxic effect observed on human HaCaT keratinocytes suggests that these nano-compounds have a potential toxic effect at the skin level only after long-term exposure. PMID:26262634

  5. Growth inhibition and apoptosis induction of Scutellaria luteo-coerulea Bornm. & Sint. on leukemia cancer cell lines K562 and HL-60

    PubMed Central

    Motaez, Mahsa; Emami, Seyed Ahmad; Tayarani-Najaran, Zahra

    2015-01-01

    Objective: Scutellaria (Lamiaceae) has been implicated for medicinal purposes both in modern and traditional medicine. Some species of the genus Scutellaria has extensively been studied for anticancer activity. Scutellaria luteo-coerulea (S. luteo-coerulea) is one of the Iranian species of the genus Scutellaria. Materials and Methods: In the present study, cytotoxic and apoptogenic properties of CH2Cl2, EtOAc, n-BuOH, and H2O fractions of S. luteo-coerulea were investigated on K562. Moreover, HL-60. DNA fragmentation in apoptotic cells were determined by propidium iodide (PI) staining (sub-G1 peak). Results: Scutellaria luteo-coerulea inhibited the growth of malignant cells in a dose-dependent manner. Among solvent fractions of S. luteo-coerulea, the CH2Cl2 fraction was found to be the most cytotoxic one among others. Sub-G1 peak in flow cytometry histogram of treated cells suggested the induction of apoptosis in S. luteo-coerulea. Conclusion: Scutellaria luteo-coerulea could be a novel candidate for further analytical elucidation in respect to fine major components responsible for the cytotoxic effect of the plant also clinical evaluations.

  6. Chromatin status of apoptosis genes correlates with sensitivity to chemo-, immune- and radiation therapy in colorectal cancer cell lines.

    PubMed

    Benard, Anne; Janssen, Connie M; van den Elsen, Peter J; van Eggermond, Marja C J A; Hoon, Dave S B; van de Velde, Cornelis J H; Kuppen, Peter J K

    2014-12-01

    The apoptosis pathway of programmed cell death is frequently deregulated in cancer. An intact apoptosis pathway is required for proper response to anti-cancer treatment. We investigated the chromatin status of key apoptosis genes in the apoptosis pathway in colorectal cancer cell lines in relation to apoptosis induced by chemo-, immune- or radiation therapy. Using chromatin immunoprecipitation (ChIP), we measured the presence of transcription-activating histone modifications H3Ac and H3K4me3 and silencing modifications H3K9me3 and H3K27me3 at the gene promoter regions of key apoptosis genes Bax, Bcl2, Caspase-9, Fas (CD95) and p53. Cell lines DLD1, SW620, Colo320, Caco2, Lovo and HT29 were treated with cisplatin, anti-Fas or radiation. The apoptotic response was measured by flow cytometry using propidium iodide and annexin V-FITC. The chromatin status of the apoptosis genes reflected the activation status of the intrinsic (Bax, Bcl2, Caspase-9 and p53) and extrinsic (Fas) pathways. An active intrinsic apoptotic pathway corresponded to sensitivity to cisplatin and radiation treatment of cell lines DLD1, SW620 and Colo320. An active Fas promoter corresponded to an active extrinsic apoptotic pathway in cell line DLD1. mRNA expression data correlated with the chromatin status of the apoptosis genes as measured by ChIP. In conclusion, the results presented in this study indicate that the balance between activating and silencing histone modifications, reflecting the chromatin status of apoptosis genes, can be used to predict the response of tumor cells to different anti-cancer therapies and could provide a novel target to sensitize tumors to obtain adequate treatment responses. PMID:25292014

  7. Effects of phenol on barrier function of a human intestinal epithelial cell line correlate with altered tight junction protein localization

    SciTech Connect

    McCall, Ingrid C.; Betanzos, Abigail; Weber, Dominique A.; Nava, Porfirio; Miller, Gary W.; Parkos, Charles A.

    2009-11-15

    Phenol contamination of soil and water has raised concerns among people living near phenol-producing factories and hazardous waste sites containing the chemical. Phenol, particularly in high concentrations, is an irritating and corrosive substance, making mucosal membranes targets of toxicity in humans. However, few data on the effects of phenol after oral exposure exist. We used an in vitro model employing human intestinal epithelial cells (SK-CO15) cultured on permeable supports to examine effects of phenol on epithelial barrier function. We hypothesized that phenol disrupts epithelial barrier by altering tight junction (TJ) protein expression. The dose-response effect of phenol on epithelial barrier function was determined using transepithelial electrical resistance (TER) and FITC-dextran permeability measurements. We studied phenol-induced changes in cell morphology and expression of several tight junction proteins by immunofluorescence and Western blot analysis. Effects on cell viability were assessed by MTT, Trypan blue, propidium iodide and TUNEL staining. Exposure to phenol resulted in decreased TER and increased paracellular flux of FITC-dextran in a dose-dependent manner. Delocalization of claudin-1 and ZO-1 from TJs to cytosol correlated with the observed increase in permeability after phenol treatment. Additionally, the decrease in TER correlated with changes in the distribution of a membrane raft marker, suggesting phenol-mediated effects on membrane fluidity. Such observations were independent of effects of phenol on cell viability as enhanced permeability occurred at doses of phenol that did not cause cell death. Overall, these findings suggest that phenol may affect transiently the lipid bilayer of the cell membrane, thus destabilizing TJ-containing microdomains.

  8. Evaluation of cytotoxicity and genotoxicity of insecticide carbaryl to flounder gill cells and its teratogenicity to zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Pandey, Manish Raj; Guo, Huarong

    2015-04-01

    In this study, we determined the cytotoxicity and genotoxicity of carbamate insecticide carbaryl to flounder gill (FG) cells and its teratogenicity to zebrafish embryos. The cytotoxicity of carbaryl to FG cells was determined with methods including MTT and neutral red uptaking (NRU), lactate dehydrogenase (LDH) releasing and Hoechst 33342 and propidium idodide (PI) double staining. Moderate cytotoxicity in a concentration-dependent manner was observed. The 24 h-IC50 value of 53.48 ± 1.21, 59.13 ± 1.19 and 46.21 ± 1.24 mg L-1 carbaryl was obtained through MTT, NRU and LDH assays, respectively. Double fluorescence staining demonstrated that carbaryl induced the death of FG cells mainly through necrosis. There was no significant genotoxicity found in the FG cells exposed to the highest testing concentration of carbaryl (20 mg L-1, P > 0.05) as was demonstrated by Comet assay. Zebrafish embryos exposed to carbaryl at concentrations ?10 mg L-1 displayed moderate toxic effects on the survival, spontaneous movement, hatching, heart rates of the embryos and their development, which were evidenced by yolk and pericardial sac edemas, body length reduction and tail flexure in time- and concentration-dependent manners at specific stages. The 24 h-, 48 h- and 96 h-LC50 values of carbaryl to zebrafish embryos were 41.80 ± 1.10, 17.80 ± 1.04 and 14.46 ± 1.05 mg L-1, respectively. These results suggested that carbaryl is moderately toxic to FG cells cultured in vitro and zebrafish embryos, and the FG cells were similar to zebrafish embryos in their sensitivity to carbaryl as 24 h-IC50 and LC50 indicated.

  9. Alpinetin activates the ? receptor instead of the ? and ? receptor pathways to protect against rat myocardial cell apoptosis

    PubMed Central

    SUO, CHUANTAO; SUN, LIBO; YANG, SHUANG

    2014-01-01

    Alpinetin is a natural flavonoid that protects cells against fatal injury in ischemia-reperfusion. ? receptor activation protects myocardial cells from trauma; however, the mechanism is unknown. The aim of this study was to explore the function of alpinetin in ? receptor-mediated myocardial apoptosis. The myocardial cells of newly born rats were cultivated and myocardial apoptosis was induced by serum deprivation. The MTT method was used to evaluate cell viability and Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining was used to analyze apoptosis. The expression levels of opioid receptor mRNA and protein were tested using reverse transcription-polymerase reaction (RT-PCR) and western blot assays. In addition, an opioid receptor antagonist, as well as protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) inhibitors, were used to determine the inferred signaling pathway. The results showed that that alpinetin reduced the myocardial apoptosis induced by serum deprivation in a concentration-dependent manner. However, the protection conferred to the myocardial cells by alpinetin was blocked by the ? opioid receptor antagonist naltrindole, as well as by PKC and ERK inhibitors (GF109203X and U0126, respectively). In addition, it was shown that alpinetin was able to maintain the stability of the mitochondrial membrane potential, lower the level of intracytoplasmic cytochrome c and reduce Bax displacement from the cytoplasm to the mitochondria. It was concluded that alpinetin was able to activate ? receptors to induce the endogenous protection of myocardial cells via the PKC/ERK signaling pathway. PMID:24348774

  10. Cell Stem Cell Stem Cell States, Fates,

    E-print Network

    Peterson, Carsten

    science from elucidating the causes of cancer to the use of stem cells in regenerative medicine. WhileCell Stem Cell Review Stem Cell States, Fates, and the Rules of Attraction Tariq Enver,1 Martin and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033

  11. Cell Proliferation and Death Derek Davies, Cancer Research UK

    E-print Network

    · Propidium Iodide · Ethidium Bromide · Hoechst dyes · Cyanine dyes eg TO-PRO-3, SYTO/SYTOX dyes · Acridine Orange · Pyronin Y · Styryl Dyes eg LDS-751 · Mithramycin, Chromomycin · 7 Aminoactinomycin D (7AAD) · Diamino-2-phenylindole (DAPI) · DRAQ5, DRAQ7 #12;We can use DNA dyes in two ways: · As viability dyes

  12. Photobiomodulation with 670 nm light increased phagocytosis in human retinal pigment epithelial cells

    PubMed Central

    Fuma, Shinichiro; Murase, Hiromi; Kuse, Yoshiki; Tsuruma, Kazuhiro; Shimazawa, Masamitsu

    2015-01-01

    Purpose Photobiomodulation is the treatment with light in the far-red to near-infrared region of the spectrum and has been reported to have beneficial effects in various animal models of disease, including an age-related macular degeneration (AMD) mouse model. Previous reports have suggested that phagocytosis is reduced by age-related increased oxidative stress in AMD. Therefore, we investigated whether photobiomodulation improves phagocytosis caused by oxidative stress in the human retinal pigment epithelial (ARPE-19) cell line. Methods ARPE-19 cells and human primary retinal pigment epithelium (hRPE) cells were incubated and irradiated with near-infrared light (670 nm LED light, 2,500 lx, twice a day, 250 s/per time) for 4 d. Next, hydrogen peroxide (H2O2) and photoreceptor outer segments (POS) labeled using a pH-sensitive fluorescent dye were added to the cell culture, and phagocytosis was evaluated by measuring the fluorescence intensity. Furthermore, cell death was observed by double staining with Hoechst33342 and propidium iodide after photobiomodulation. CM-H2DCFDA, JC-1 dye, and CCK-8 were added to the cell culture to investigate the reactive oxygen species (ROS) production, mitochondrial membrane potential, and cell viability, respectively. We also investigated the expression of phagocytosis-related proteins, such as focal adhesion kinase (FAK) and Mer tyrosine kinase (MerTK). Results Oxidative stress inhibited phagocytosis, and photobiomodulation increased the oxidative stress-induced hypoactivity of phagocytosis in ARPE-19 cells and hRPE cells. Furthermore, H2O2 and photobiomodulation did