Note: This page contains sample records for the topic propidium iodide-stained cells from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Propidium iodide staining: a new application in fluorescence microscopy for analysis of cytoarchitecture in adult and developing rodent brain.  

PubMed

Immunohistochemical visualization of antigens in specimen has evolved to an indispensable technique in biomedical research for investigations of cell morphology and pathology both in bright field and fluorescence microscopy. While there are couple of staining methods that reveal entire cytoarchitecture in bright field microscopy such as Nissl or hemalaun-eosin, there are still limitations in visualizations of cytoarchitecture in fluorescence microscopy. The present study reports a simple staining method that provides the required illustration of cell allocations and cellular composition in fluorescence microscopy in adult and in developing rodent central nervous system using the fluorophore propidium iodide (PI, 5?g/mL). PI is a well-accepted marker for degenerating cells when applied prior to fixation (pre-fixation PI staining). Here, PI was added to the sections after the fixation (post-fixation PI staining). This revised labeling procedure led to similar cytoarchitectural staining patterns in fluorescence microscopy as observed with hemalaun in bright field microscopy. This finding was proven in organotypic hippocampal slice cultures (OHSC) and brain sections obtained from different postnatal developmental stages. Excitotoxically lesioned OHSC subjected to pre-fixation PI staining merely showed brightly labeled condensed nuclei of degenerating neurons. In contrast, post-fixation PI staining additionally revealed extensive labeling of neuronal cell bodies and glial cells within the OHSC, thus allowing visualization of stratification of neuronal layers and cell morphology. Furthermore, post-fixation PI staining was combined with NeuN, calbindin, calretinin, glial fibrillary acidic protein or Griffonia simplicifolia isolectin B4 (IB(4)) in post natal (p1 and p9) and adult rats. In early post-natal brain sections almost all mentioned cellular markers led to an incomplete staining of the native cell organization and resulted in an inaccurate estimation of cell morphology when compared to adult brains. In contrast, post-fixation PI staining allowed investigation of the whole cytoarchitecture independent of the developmental stage. Taken together, post-fixation PI staining provides a detailed insight in the morphology of both developing and adult brain tissues in fluorescence microscopy. PMID:22579654

Hezel, Marcus; Ebrahimi, Fahim; Koch, Marco; Dehghani, Faramarz

2012-10-01

2

NEW METHOD TO DETERMINE 'GIARDIA' CYST VIABILITY: CORRELATION OF FLUORESCEIN DIACETATE AND PROPIDIUM IODIDE STAINING WITH ANIMAL INFECTIVITY  

EPA Science Inventory

The viability of Giardia muris cysts was studied using the fluorogenic dyes, fluorescein diacetate (FDA) and propidium iodide (PI). Using the mouse model for giardiasis, FDA or PI stained cysts were inoculated into neonatal mice. Feces were examined at days 3, 5, 8, and 11 post-i...

3

Sodium chloride affects propidium monoazide action to distinguish viable cells.  

PubMed

Propidium monoazide (PMA) is a DNA-intercalating agent used to selectively detect DNA from viable cells by polymerase chain reaction (PCR). Here, we report that high concentrations (>5%) of sodium chloride (NaCl) prevents PMA from inhibiting DNA amplification from dead cells. Moreover, Halobacterium salinarum was unable to maintain cell integrity in solutions containing less than 15% NaCl, indicating that extreme halophilic microorganisms may not resist the concentration range in which PMA fully acts. We conclude that NaCl, but not pH, directly affects the efficiency of PMA treatment, limiting its use for cell viability assessment of halophiles and in hypersaline samples. PMID:22728959

Barth, Valdir C; Cattani, Fernanda; Ferreira, Carlos A S; de Oliveira, Sílvia D

2012-09-15

4

Effect of ProRoot MTA on Pulp Cell Apoptosis and Proliferation In Vitro  

Microsoft Academic Search

ProRoot Mineral Trioxide Aggregate (MTA) has been indicated as a pulp capping material. The purpose of this study was to evaluate the effect of tooth-colored (white) MTA on pulp cell apoptosis and cell cycle. Mouse odontoblast-like cells (MDPC-23) and undiffer- entiated pulp cells (OD-21) were exposed to 0 to 100 mg MTA for 24 h. Propidium iodide staining followed by

Sasan Moghaddame-Jafari; Maria G. Mantellini; Tatiana M. Botero; Neville J. McDonald; Jacques E. Nor

2005-01-01

5

Flow cytometric lifetime-based cell viability assay using propidium iodide  

NASA Astrophysics Data System (ADS)

Assays which discriminate and enumerate dying or dead cells are important in various types of cellular studies. In many instances, there is a need to identify dead cells that interfere with fluorescent probes which are used to measure functional and physiological properties in viable cells. For example, dead cells can introduce analytical errors arising from (1) nonspecific uptake of fluorescent probes, leading to erroneous percentages of positive labeled cells, (2) increased autofluorescence, and (3) altered antigen expression. The ability to detect dead cells is also of importance in determining the effectiveness of cytotoxic agents. Propidium iodide (PPI) exclusion, which is analogous to the non- fluorescent trypan blue dye test for viability, is used extensively in flow cytometry assays. However, the use of PI can potentially limit the application of additional fluorescent probes due to spectral overlap of the probe with PI. In this report we present phase-resolved fluorescence studies on rat and murine thymus cells labeled with phycoerythrin-antiThy 1.1 and phycoerythrin/Texas Red-antiThy 1.2 immunofluorescence markers, respectively, and PI. Overlapping emission spectra are resolved based on differences in fluorescence lifetimes of the probes and PI. These studies demonstrate a new lifetime-based viability method for use in analysis of immunofluorescent probes and for assaying the dynamics of cell killing.

Steinkamp, John A.; Lehnert, Bruce E.; Lehnert, Nancy M.

1999-05-01

6

Quantification of viable Legionella pneumophila cells using propidium monoazide combined with quantitative PCR.  

PubMed

One of the greatest challenges of implementing fast molecular detection methods as part of Legionella surveillance systems is to limit detection to live cells. In this work, a protocol for sample treatment with propidium monoazide (PMA) in combination with quantitative PCR (qPCR) has been optimized and validated for L. pneumophila as an alternative of the currently used time-consuming culture method. Results from PMA-qPCR were compared with culture isolation and traditional qPCR. Under the conditions used, sample treatment with 50 ?M PMA followed by 5 min of light exposure were assumed optimal resulting in an average reduction of 4.45 log units of the qPCR signal from heat-killed cells. When applied to environmental samples (including water from cooling water towers, hospitals, spas, hot water systems in hotels, and tap water), different degrees of correlations between the three methods were obtained which might be explained by different matrix properties, but also varying degrees of non-culturable cells. It was furthermore shown that PMA displayed substantially lower cytotoxicity with Legionella than the alternative dye ethidium monoazide (EMA) when exposing live cells to the dye followed by plate counting. This result confirmed the findings with other species that PMA is less membrane-permeant and more selective for the intact cells. In conclusion, PMA-qPCR is a promising technique for limiting detection to intact cells and makes Legionella surveillance data substantially more relevant in comparison with qPCR alone. For future research it would be desirable to increase the method's capacity to exclude signals from dead cells in difficult matrices or samples containing high numbers of dead cells. PMID:21329735

Yáñez, M Adela; Nocker, Andreas; Soria-Soria, Elena; Múrtula, Raquel; Martínez, Lorena; Catalán, Vicente

2011-05-01

7

Immunophenotyping of Mya arenaria neoplastic hemocytes using propidium iodide and a specific monoclonal antibody by flow cytometry.  

PubMed

Disseminated neoplasia (DN) is a disorder referred to as hemic neoplasia (HN) in the soft-shell clam Mya arenaria. Traditionally, diagnosis is performed by hematocytology or histology. The intensity of the disease is generally given as the percentage of transformed neoplastic cells out of total number of hemocytes. Flow cytometry techniques have found a field of application in diagnosis of HN with analysis of ploidy. Hemocytes of the soft-shell clams with HN display tetraploid DNA content, as shown by propidium iodide staining. This feature makes difficult HN diagnosis in the soft-shell clam, especially for early stages of the condition, since the percentage of normal circulating cells undergoing mitosis, which also are tetraploid, remains unknown in molluscs. Use of specific monoclonal antibodies in a flow cytometry assay was foreseen as a way to overcome the difficulty. The purpose of this study was to develop a double staining protocol using propidium iodide for hemocyte cycle analysis and the MAb 1E10 for staining of HN cells. Our results showed a correlation between tetraploid and MAb 1E10-stained hemocytes in a single clam with moderate HN. This protocol offers some potential for further investigation of this cell disorder. However, a validation step will be necessary to confirm our preliminary results. PMID:18534614

Delaporte, Maryse; McKenna, Patricia; Siah, Ahmed; Berthe, Franck C J

2008-09-01

8

Enumeration of Viable Listeria monocytogenes Cells by Real-Time PCR with Propidium Monoazide and Ethidium Monoazide in the Presence of Dead Cells? †  

PubMed Central

Propidium monoazide (PMA) and ethidium monoazide were used for enumeration of viable Listeria monocytogenes cells in the presence of dead cells. PMA had no antimicrobial effect on L. monocytogenes. Viable cell counts were linearly related to real-time PCR threshold cycle values for PMA-treated cells from planktonic and biofilm sources over a 4-log range.

Pan, Y.; Breidt, F.

2007-01-01

9

AICAR inhibits proliferation and induced S-phase arrest, and promotes apoptosis in CaSki cells  

Microsoft Academic Search

Aim:The aim of the present study was to determine the effect of 5-aminoimidazole-4-carboxamide-ribonucleoside (AICAR) on proliferation, cell cycle, and apoptosis in the human epithelial cervical cancer cell line CaSki cells.Methods:Cell count and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay were used to determine cell proliferation and viability. Hoechst 33258 staining was conducted to distinguish the apoptotic cells. Cell cycle and Annexin-V\\/propidium iodide staining were

Tong-ju Guan; Feng-jin Qin; Jian-hai Du; Li Geng; You-yi Zhang; Min Li

2007-01-01

10

Visualization of cell death in mice with focal cerebral ischemia using fluorescent annexin A5, propidium iodide, and TUNEL staining.  

PubMed

To monitor stroke-induced brain damage and assess neuroprotective therapies, specific imaging of cell death after cerebral ischemia in a noninvasive manner is highly desirable. Annexin A5 has been suggested as a marker for imaging cell death under various disease conditions including stroke. In this study, C57BL6/N mice received middle cerebral artery occlusion (MCAO) and were injected intravenously with either active or inactive Cy5.5-annexin A5 48 hours after reperfusion. Some mice also received propidium iodide (PI), a cell integrity marker. Only in mice receiving active Cy5.5-annexin A5 were fluorescence intensities significantly higher over the hemisphere ipsilateral to MCAO than on the contralateral side. This was detected noninvasively and ex vivo 4 and 8 hours after injection. The majority of cells positive for fluorescent annexin A5 were also positive for PI and fragmented DNA as detected by terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling (TUNEL) staining. This study demonstrates the high specificity of annexin A5 for visualization of cell death in a mouse model of stroke. To our knowledge, this is the first study to compare the distribution of injected active and inactive annexin A5, PI, and TUNEL staining. It provides important information on the experimental and potential clinical applications of annexin A5-based imaging agents in stroke. PMID:21245871

Bahmani, Peyman; Schellenberger, Eyk; Klohs, Jan; Steinbrink, Jens; Cordell, Ryan; Zille, Marietta; Müller, Jochen; Harhausen, Denise; Hofstra, Leo; Reutelingsperger, Chris; Farr, Tracy Deanne; Dirnagl, Ulrich; Wunder, Andreas

2011-05-01

11

Kinetic Analysis of Nanoparticulate Polyelectrolyte Complex Interactions with Endothelial Cells  

PubMed Central

A non-toxic, nanoparticulate polyelectrolyte complex (PEC) drug delivery system was formulated to maintain suitable physicochemical properties at physiological pH. Toxicity, binding, and internalization were evaluated in relevant microvascular endothelial cells. PEC were non-toxic, as indicated by cell proliferation studies and propidium iodide staining. Inhibitor studies revealed that PEC were bound, in part, via heparan sulfate proteoglycans and internalized through macropinocytosis. A novel, flow cytometric, Scatchard protocol was established and showed that PEC, in the absence of surface modification, bind cells non-specifically with positive cooperativity, as seen by graphical transformations.

Hartig, Sean M.; Greene, Rachel; Carlesso, Gianluca; Higginbotham, James N.; Khan, Wasif N.; Prokop, Ales; Davidson, Jeffrey M.

2007-01-01

12

Venom present in sea anemone (Heteractis magnifica) induces apoptosis in non-small-cell lung cancer A549 cells through activation of mitochondria-mediated pathway.  

PubMed

Lung cancer is a major cause of cancer deaths throughout the world and the complexity of apoptosis resistance in lung cancer is apparent. Venom from Heteractis magnifica caused dose-dependent decreases in survival of the human non-small-cell lung cancer cell line, as determined by the MTT and Crystal Violet assays. The H. magnifica venom induced cell cycle arrest and induced apoptosis of A549 cells, as confirmed by annexin V/propidium iodide staining. The venom-induced apoptosis in A549 cells was characterized by cleavage of caspase-3 and a reduction in the mitochondrial membrane potential. Interestingly, crude extracts from H. magnifica had less effect on the survival of non-cancer cell lines. In the non-cancer cells, the mechanism via which cell death occurred was through necrosis not apoptosis. These findings are important for future work using H. magnifica venom for pharmaceutical development to treat human lung cancer. PMID:24190482

Ramezanpour, Mahnaz; da Silva, Karen Burke; Sanderson, Barbara J S

2014-03-01

13

3-Bromo-1-hydroxy-9,10-anthraquinone (BHAQ) inhibits growth and migration of the human breast cancer cell lines MCF-7 and MDA-MB231.  

PubMed

Breast cancer is becoming more prominent in women today. As of now, there are no effective treatments in treating metastatic breast cancer. We have tested the cytotoxic and anti-migration effects of BHAQ, a synthesized anthraquinone, on two breast cancer cell lines, MCF-7 and MDA-MB231. Anthraquinones are an interesting class of molecules that display a wide spectrum of biological applications, including anticancer properties. Cellular inhibition was tested through a MTT assay, double acridine orange/propidium iodide staining and FACS cell cycle analysis. Inhibition of migration was tested by the wound healing method, and migration through a Boyden chamber. BHAQ was cytotoxic towards both cell lines in a dose dependent and possibly cell-dependent manner. Additionally, BHAQ also inhibited the migration of the highly metastatic MDA-MB231 cell line. PMID:23985955

Abu, Nadiah; Akhtar, M Nadeem; Ho, Wan Yong; Yeap, Swee Keong; Alitheen, Noorjahan Banu

2013-01-01

14

Neutrophil Adhesion to Vascular Prosthetic Surfaces Triggers Nonapoptotic Cell Death  

PubMed Central

Objective To test the hypothesis that neutrophil adhesion to expanded polytetrafluoroethylene (ePTFE) and Dacron triggers cell death. Summary Background Data Vascular prosthetic infections are intransigent clinical dilemmas associated with excessive rates of death and complications. Impaired neutrophil function has been implicated in the infection of implanted cardiovascular devices. ePTFE and Dacron are potent neutrophil stimuli able to elicit activation responses such as reactive oxygen species production independent of exogenous/soluble agonists. Reactive oxygen species that are released into the medium when neutrophils are challenged by soluble agonists are known to cause self-destruction. The authors therefore sought to examine whether neutrophil adhesion to prosthetic graft materials decreases neutrophil viability by means of reactive oxygen species production. Methods Neutrophils were adhered to surfaces for up to 6 hours. Cell viability was monitored with propidium iodide staining and lactate dehydrogenase release. Results Within 6 hours of adhesion to ePTFE and Dacron, respectively, 59% ± 11% and 44% ± 5% (n = 7) of the neutrophils were stained by propidium iodide. Indistinguishable results were obtained with plasma-coated ePTFE and Dacron. In contrast, less than 2% of the neutrophils adherent to fibrinogen-, immunoglobin-, or fetal bovine serum-coated polystyrene surfaces for 6 hours were positive for propidium iodide. The increase in membrane permeability to propidium iodide was accompanied by a two- to threefold increase in lactate dehydrogenase release. Pretreatment of neutrophils with N-acetyl-L-cysteine, cytochalasin D, or cyclosporin A significantly reduced the number of propidium iodide-positive ePTFE and Dacron adherent neutrophils. Conclusions Neutrophil adhesion to ePTFE and Dacron triggers a rapid nonapoptotic cell death. The effect of ePTFE and Dacron on neutrophil viability appears to be caused by reactive oxygen species production. The premature death of graft-adherent neutrophils provides a novel explanation of the defect in neutrophil bacterial killing associated with vascular prosthetic grafts.

Nadzam, Geoffrey S.; De La Cruz, Carolyn; Greco, Ralph S.; Haimovich, Beatrice

2000-01-01

15

Flow cytometric fluorescence pulse width analysis of etoposide-induced nuclear enlargement in HCT116 cells.  

PubMed

Fluorescence pulse width can provide size information on the fluorescence-emitting particle, such as the nuclei of propidium iodide-stained cells. To analyze nuclear size in the present study, rather than perform the simple doublet discrimination approach usually employed in flow cytometric DNA content analyses, we assessed the pulse width of the propidium iodide fluorescence signal. The anti-cancer drug etoposide is reportedly cytostatic, can induce a strong G2/M arrest, and results in nuclear enlargement. Based on these characteristics, we used etoposide-treated HCT116 cells as our experimental model system. The fluorescence pulse widths (FL2-W) of etoposide-treated (10 microM, 48 h) cells were distributed at higher positions than those of vehicle control, so the peak FL2-W value of etoposide-treated cells appeared at 400 while those of vehicle control cells appeared at 200 and 270. These results were consistent with our microscopic observations. This etoposide-induced increase in FL2-W was more apparent in G2/M phase than other cell cycle phases, suggesting that etoposide-induced nuclear enlargement preferentially occurred in G2/M phase cells rather than in G0/G1 or S phase cells. PMID:20429026

Kang, Kyungsu; Lee, Saet Byoul; Yoo, Ji-Hye; Nho, Chu Won

2010-08-01

16

Betulinic Acid Inhibits Growth of Cultured Vascular Smooth Muscle Cells In Vitro by Inducing G1 Arrest and Apoptosis  

PubMed Central

Betulinic acid is a widely available plant-derived triterpene which is reported to possess selective cytotoxic activity against cancer cells of neuroectodermal origin and leukemia. However, the potential of betulinic acid as an antiproliferative and cytotoxic agent on vascular smooth muscle (VSMC) is still unclear. This study was carried out to demonstrate the antiproliferative and cytotoxic effect of betulinic acid on VSMCs using 3-[4,5-dimethylthizol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry cell cycle assay, BrdU proliferation assay, acridine orange/propidium iodide staining, and comet assay. Result from MTT and BrdU assays indicated that betulinic acid was able to inhibit the growth and proliferation of VSMCs in a dose-dependent manner with IC50 of 3.8??g/mL significantly (P < 0.05). Nevertheless, betulinic acid exhibited G1 cell cycle arrest in flow cytometry cell cycle profiling and low level of DNA damage against VSMC in acridine orange/propidium iodide and comet assay after 24?h of treatment. In conclusion, betulinic acid induced G1 cell cycle arrest and dose-dependent DNA damage on VSMC.

Vadivelu, Raja Kumar; Yeap, Swee Keong; Ali, Abdul Manaf; Hamid, Muhajir; Alitheen, Noorjahan Banu

2012-01-01

17

Betulinic Acid inhibits growth of cultured vascular smooth muscle cells in vitro by inducing g(1) arrest and apoptosis.  

PubMed

Betulinic acid is a widely available plant-derived triterpene which is reported to possess selective cytotoxic activity against cancer cells of neuroectodermal origin and leukemia. However, the potential of betulinic acid as an antiproliferative and cytotoxic agent on vascular smooth muscle (VSMC) is still unclear. This study was carried out to demonstrate the antiproliferative and cytotoxic effect of betulinic acid on VSMCs using 3-[4,5-dimethylthizol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry cell cycle assay, BrdU proliferation assay, acridine orange/propidium iodide staining, and comet assay. Result from MTT and BrdU assays indicated that betulinic acid was able to inhibit the growth and proliferation of VSMCs in a dose-dependent manner with IC(50) of 3.8??g/mL significantly (P < 0.05). Nevertheless, betulinic acid exhibited G(1) cell cycle arrest in flow cytometry cell cycle profiling and low level of DNA damage against VSMC in acridine orange/propidium iodide and comet assay after 24?h of treatment. In conclusion, betulinic acid induced G(1) cell cycle arrest and dose-dependent DNA damage on VSMC. PMID:23056140

Vadivelu, Raja Kumar; Yeap, Swee Keong; Ali, Abdul Manaf; Hamid, Muhajir; Alitheen, Noorjahan Banu

2012-01-01

18

Events associated with apoptotic effect of p-Coumaric acid in HCT-15 colon cancer cells  

PubMed Central

AIM: To investigate the events associated with the apoptotic effect of p-Coumaric acid, one of the phenolic components of honey, in human colorectal carcinoma (HCT-15) cells. METHODS: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tertazolium-bromide assay was performed to determine the antiproliferative effect of p-Coumaric acid against colon cancer cells. Colony forming assay was conducted to quantify the colony inhibition in HCT 15 and HT 29 colon cancer cells after p-Coumaric acid treatment. Propidium Iodide staining of the HCT 15 cells using flow cytometry was done to study the changes in the cell cycle of treated cells. Identification of apoptosis was done using scanning electron microscope and photomicrograph evaluation of HCT 15 cells after exposing to p-Coumaric acid. Levels of reactive oxygen species (ROS) of HCT 15 cells exposed to p-Coumaric acid was evaluated using 2’, 7’-dichlorfluorescein-diacetate. Mitochondrial membrane potential of HCT-15 was assessed using rhodamine-123 with the help of flow cytometry. Lipid layer breaks associated with p-Coumaric acid treatment was quantified using the dye merocyanine 540. Apoptosis was confirmed and quantified using flow cytometric analysis of HCT 15 cells subjected to p-Coumaric acid treatment after staining with YO-PRO-1. RESULTS: Antiproliferative test showed p-Coumaric acid has an inhibitory effect on HCT 15 and HT 29 cells with an IC50 (concentration for 50% inhibition) value of 1400 and 1600 ?mol/L respectively. Colony forming assay revealed the time-dependent inhibition of HCT 15 and HT 29 cells subjected to p-Coumaric acid treatment. Propidium iodide staining of treated HCT 15 cells showed increasing accumulation of apoptotic cells (37.45 ± 1.98 vs 1.07 ± 1.01) at sub-G1 phase of the cell cycle after p-Coumaric acid treatment. HCT-15 cells observed with photomicrograph and scanning electron microscope showed the signs of apoptosis like blebbing and shrinkage after p-Coumaric acid exposure. Evaluation of the lipid layer showed increasing lipid layer breaks was associated with the growth inhibition of p-Coumaric acid. A fall in mitochondrial membrane potential and increasing ROS generation was observed in the p-Coumaric acid treated cells. Further apoptosis evaluated by YO-PRO-1 staining also showed the time-dependent increase of apoptotic cells after treatment. CONCLUSION: These results depicted that p-Coumaric acid inhibited the growth of colon cancer cells by inducing apoptosis through ROS-mitochondrial pathway.

Jaganathan, Saravana Kumar; Supriyanto, Eko; Mandal, Mahitosh

2013-01-01

19

Pleiotropic effects of cadmium in mesangial cells  

SciTech Connect

The mesangial cell of the renal glomerulus is exposed to circulating toxic substances and is a target involved in the glomerular component of chronic occupational and environmental exposure to cadmium. We review evidence for the involvement of cadmium in mesangial cell pathology, including effects on cell signaling, oncogene expression, and cell death. Previously we have shown that cadmium can inhibit apoptosis initiated through both the extrinsic (death ligand receptor) and intrinsic (mitochondrial) pathways, whereas exposure of mesangial cells to 10 {mu}M CdCl{sub 2} for 6 h initiates caspase-independent cell death through both apoptotic and apoptotic-like (annexin V positive, propidium iodide staining) mechanisms. Apoptotic death is dependent upon activation of Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMK-II). In the present study we show that low level exposure of mesangial cells to Cd{sup 2+} (0.5 {mu}M) initiates cell survival signals including PI3 kinase/Akt signaling, also dependent on CaMK-II, that are eventually overcome resulting in caspase-dependent cell death. These studies underscore the roles of cell signaling in various modes of cell death, and in particular the central role of CaMK-II in cadmium toxicology of the mesangial cell.

Xiao Weiqun; Liu Ying [University of Toronto, Laboratory Medicine and Pathobiology, 1 King's College Circle , Toronto, Ont., M5S 1A8 (Canada); Templeton, Douglas M. [University of Toronto, Laboratory Medicine and Pathobiology, 1 King's College Circle , Toronto, Ont., M5S 1A8 (Canada)], E-mail: doug.templeton@utoronto.ca

2009-08-01

20

HPC viability measurement: trypan blue versus acridine orange and propidium iodide  

Microsoft Academic Search

BACKGROUND: A reliable, validated method for rapidly determining HPC viability is essential for clinical cell en- gineering. STUDY DESIGN AND METHODS: A fluorometric cell viability assay using acridine orange and propidium io- dide (AO\\/PI) was compared to the current standard, trypan blue (TB) exclusion. Viable cells stained with AO\\/ PI fluoresce green under darkfield fluorescence micros- copy, while nonviable cells

K. Mascotti; J. McCullough; S. R. Burger

2000-01-01

21

Interferon-?1 induces G1 phase cell cycle arrest and apoptosis in gastric carcinoma cells in vitro.  

PubMed

The aim of the present study was to examine the potential antitumor action of IFN-?1 in human gastric carcinoma cell lines and the possible interaction between IFN-?1 and human gastric carcinoma cells. Gastric carcinoma HGC-27 and SGC-7901 cells were treated with IFN-?1 (0, 10, 100, 1000 ng/ml) for 48 h. Cytotoxicity was examined using an MTT method. Cell cycle distribution was examined using propidium iodide staining. Apoptosis was examined using the Annexin V-FITC/PI apoptosis kit. By using flow cytometry and JC-1 probe, the mitochondrial membrane potential of cells following treatment with IFN-?1 was also examined. Expression levels of representative apoptosis?related proteins were evaluated by western blot analysis. IFN-?1 inhibited the proliferation of gastric carcinoma cells in a concentration?dependent manner. IFN-?1 increased the accumulation of cells in the sub-G0 phase and arrested the cells in the G1 phase. Exposure to IFN??1 decreased the mitochondrial membrane potential and increased apoptosis. Moreover, IFN??1 exposure upregulated the expression of p21, p27 and Bax, downregulated the expression of Bcl?2, increased the release of cytochrome c and apoptosis-inducing factor (AIF) and activated caspase-3 and caspase-9. In conclusion, IFN-?1 inhibits the proliferation of gastric carcinoma cells by arresting the cells in the G1 phase and by inducing mitochondrial?mediated apoptosis. PMID:24840622

Gao, Zhitao; Zhu, Moli; Wu, Yaping; Gao, Pan; Qin, Zhihai; Wang, Hui

2014-07-01

22

The Effects of Brazilian Green Propolis against Excessive Light-Induced Cell Damage in Retina and Fibroblast Cells.  

PubMed

Background. We investigated the effects of Brazilian green propolis and its constituents against white light- or UVA-induced cell damage in mouse retinal cone-cell line 661W or human skin-derived fibroblast cells (NB1-RGB). Methods. Cell damage was induced by 3,000lx white light for 24?h or 4/10?J/cm(2) UVA exposure. Cell viability was assessed by Hoechst33342 and propidium iodide staining or by tetrazolium salt (WST-8) cell viability assay. The radical scavenging activity of propolis induced by UVA irradiation in NB1-RGB cells was measured using a reactive-oxygen-species- (ROS-) sensitive probe CM-H2DCFDA. Moreover, the effects of propolis on the UVA-induced activation of p38 and extracellular signal-regulated kinase (ERK) were examined by immunoblotting. Results. Treatment with propolis and two dicaffeoylquinic acids significantly inhibited the decrease in cell viability induced by white light in 661W. Propolis and its constituents inhibited the decrease in cell viability induced by UVA in NB1-RGB. Moreover, propolis suppressed the intracellular ROS production by UVA irradiation. Propolis also inhibited the levels of phosphorylated-p38 and ERK by UVA irradiation. Conclusion. Brazilian green propolis may become a major therapeutic candidate for the treatment of AMD and skin damage induced by UV irradiation. PMID:24416064

Murase, Hiromi; Shimazawa, Masamitsu; Kakino, Mamoru; Ichihara, Kenji; Tsuruma, Kazuhiro; Hara, Hideaki

2013-01-01

23

The Effects of Brazilian Green Propolis against Excessive Light-Induced Cell Damage in Retina and Fibroblast Cells  

PubMed Central

Background. We investigated the effects of Brazilian green propolis and its constituents against white light- or UVA-induced cell damage in mouse retinal cone-cell line 661W or human skin-derived fibroblast cells (NB1-RGB). Methods. Cell damage was induced by 3,000lx white light for 24?h or 4/10?J/cm2 UVA exposure. Cell viability was assessed by Hoechst33342 and propidium iodide staining or by tetrazolium salt (WST-8) cell viability assay. The radical scavenging activity of propolis induced by UVA irradiation in NB1-RGB cells was measured using a reactive-oxygen-species- (ROS-) sensitive probe CM-H2DCFDA. Moreover, the effects of propolis on the UVA-induced activation of p38 and extracellular signal-regulated kinase (ERK) were examined by immunoblotting. Results. Treatment with propolis and two dicaffeoylquinic acids significantly inhibited the decrease in cell viability induced by white light in 661W. Propolis and its constituents inhibited the decrease in cell viability induced by UVA in NB1-RGB. Moreover, propolis suppressed the intracellular ROS production by UVA irradiation. Propolis also inhibited the levels of phosphorylated-p38 and ERK by UVA irradiation. Conclusion. Brazilian green propolis may become a major therapeutic candidate for the treatment of AMD and skin damage induced by UV irradiation.

Murase, Hiromi; Shimazawa, Masamitsu; Kakino, Mamoru; Ichihara, Kenji; Tsuruma, Kazuhiro; Hara, Hideaki

2013-01-01

24

Therapeutic and Radiosensitizing Effects of Armillaridin on Human Esophageal Cancer Cells  

PubMed Central

Background. Armillaridin (AM) is isolated from Armillaria mellea. We examined the anticancer activity and radiosensitizing effect on human esophageal cancer cells. Methods. Human squamous cell carcinoma (CE81T/VGH and TE-2) and adenocarcinoma (BE-3 and SKGT-4) cell lines were cultured. The MTT assay was used for cell viability. The cell cycle was analyzed using propidium iodide staining. Mitochondrial transmembrane potential was measured by DiOC6(3) staining. The colony formation assay was performed for estimation of the radiation surviving fraction. Human CE81T/VGH xenografts were established for evaluation of therapeutic activity in vivo. Results. AM inhibited the viability of four human esophageal cancer cell lines with an estimated concentration of 50% inhibition (IC50) which was 3.4–6.9??M. AM induced a hypoploid cell population and morphological alterations typical of apoptosis in cells. This apoptosis induction was accompanied by a reduction of mitochondrial transmembrane potential. AM accumulated cell cycle at G2/M phase and enhanced the radiosensitivity in CE81T/VGH cells. In vivo, AM inhibited the growth of CE81T/VGH xenografts without significant impact on body weight and white blood cell counts. Conclusion. Armillaridin could inhibit growth and enhance radiosensitivity of human esophageal cancer cells. There might be potential to integrate AM with radiotherapy for esophageal cancer treatment.

Chi, Chih-Wen; Chen, Chien-Chih; Chen, Yu-Jen

2013-01-01

25

The cytotoxic activities of 7-isopentenyloxycoumarin on 5637 cells via induction of apoptosis and cell cycle arrest in G2/M stage  

PubMed Central

Background Bladder cancer is the second common malignancy of genitourinary tract, and transitional cell carcinomas (TCCs) account for 90% of all bladder cancers. Due to acquired resistance of TCC cells to a wide range of chemotherapeutic agents, there is always a need for search on new compounds for treatment of these cancers. Coumarins represent a group of natural compounds, which some of them have exerted valuable anti-tumor activities. The current study was designed to evaluate anti-tumor properties and mechanism of action of 7-isopentenyloxycoumarin, a prenyloxycoumarin, on 5637 cells (a TCC cell line). Results MTT results revealed that the cytotoxic effects of 7-isopentenyloxycoumarin on 5637 cancerous cells were more prominent in comparison to HDF-1 normal cells. This coumarin increased the amount of chromatin condensation and DNA damage in 5637 cells by 58 and 33%, respectively. The results also indicated that it can induce apoptosis most probably via activation of caspase-3 in these cells. Moreover, propidium iodide staining revealed that 7-isopentenyloxycoumarin induced cell cycle arrest at G2/M stage, after 24 h of treatment. Conclusion Our results indicated that 7-isopentenyloxycoumarin had selective toxic effects on this bladder cancer cell line and promoted its effects by apoptosis induction and cell cycle arrest. This coumarin can be considered for further studies to reveal its exact mechanism of action and also its anti-cancer effects in vivo.

2014-01-01

26

A new fibrin sealant as a three-dimensional scaffold candidate for mesenchymal stem cells  

PubMed Central

Introduction The optimization of an organic scaffold for specific types of applications and cells is vital to successful tissue engineering. In this study, we investigated the effects of a new fibrin sealant derived from snake venom as a scaffold for mesenchymal stem cells, to demonstrate the ability of cells to affect and detect the biological microenvironment. Methods The characterization of CD34, CD44 and CD90 expression on mesenchymal stem cells was performed by flow cytometry. In vitro growth and cell viability were evaluated by light and electron microscopy. Differentiation into osteogenic, adipogenic and chondrogenic lineages was induced. Results The fibrin sealant did not affect cell adhesion, proliferation or differentiation and allowed the adherence and growth of mesenchymal stem cells on its surface. Hoechst 33342 and propidium iodide staining demonstrated the viability of mesenchymal stem cells in contact with the fibrin sealant and the ability of the biomaterial to maintain cell survival. Conclusions The new fibrin sealant is a three-dimensional scaffolding candidate that is capable of maintaining cell survival without interfering with differentiation, and might also be useful in drug delivery. Fibrin sealant has a low production cost, does not transmit infectious diseases from human blood and has properties of a suitable scaffold for stem cells because it permits the preparation of differentiated scaffolds that are suitable for every need.

2014-01-01

27

Insulin increases H2O2-induced pancreatic beta cell death.  

PubMed

Insulin resistance results, in part, from impaired insulin signaling in insulin target tissues. Consequently, increased levels of insulin are necessary to control plasma glucose levels. The effects of elevated insulin levels on pancreatic beta (?) cell function, however, are unclear. In this study, we investigated the possibility that insulin may influence survival of pancreatic ? cells. Studies were conducted on RINm, RINm5F and Min-6 pancreatic ?-cells. Cell death was induced by treatment with H(2)O(2), and was estimated by measurements of LDH levels, viability assay (Cell-Titer Blue), propidium iodide staining and FACS analysis, and mitochondrial membrane potential (JC-1). In addition, levels of cleaved caspase-3 and caspase activity were determined. Treatment with H(2)O(2) increased cell death; this effect was increased by simultaneous treatment of cells with insulin. Insulin treatment alone caused a slight increase in cell death. Inhibition of caspase-3 reduced the effect of insulin to increase H(2)O(2)-induced cell death. Insulin increased ROS production by pancreatic ? cells and increased the effect of H(2)O(2). These effects were increased by inhibition of IR signaling, indicative of an effect independent of the IR cascade. We conclude that elevated levels of insulin may act to exacerbate cell death induced by H(2)O(2) and, perhaps, other inducers of apoptosis. PMID:20544287

Sampson, S R; Bucris, E; Horovitz-Fried, M; Parnas, A; Kahana, S; Abitbol, G; Chetboun, M; Rosenzweig, T; Brodie, C; Frankel, S

2010-10-01

28

Metformin inhibits histone H2B monoubiquitination and downstream gene transcription in human breast cancer cells  

PubMed Central

Metformin, one of the most widely prescribed antihyperglycemic drugs, has recently received increasing attention for its potential effects with regard to cancer prevention and treatment. However, the mechanisms behind the suppression of cancer cell growth by metformin remain far from completely understood. The aim of the present study was to investigate whether metformin could regulate histone modification and its downstream gene transcription, and its potential function in inhibiting breast cancer cell proliferation. A T47D cell proliferation curve was determined by cell counting following metformin treatment with differing doses or time courses. The cell cycle was analyzed by flow cytometry with propidium iodide staining. Histone H2B monoubiquitination was evaluated by western blotting subsequent to histone extraction. The histone H2B monoubiquitination downstream gene expression level was determined by quantitative PCR. The results showed that metformin changed the cell-cycle check-point and inhibited breast cancer cell proliferation in a dose-dependent manner. AMPK was activated and histone H2B monoubiquitination and downstream gene transcription were inhibited following metformin treatment in the T47D cells. The effect of metformin on T47D cell proliferation was dependent on AMPK activity. It was concluded that metformin can suppress breast cancer cell growth by the activation of AMPK and the inhibition of histone H2B monoubiquitination and downstream gene transcription. This study reveals a novel potential mechanism of cancer cell growth suppression by metformin.

DU, YU; ZHENG, HAIYAN; WANG, JIANG; REN, YE; LI, MI; GONG, CHEN; XU, FEI; YANG, CAIHONG

2014-01-01

29

Infarct Size Measurement by Triphenyltetrazolium Chloride Staining Versus In Vivo Injection of Propidium Iodide  

Microsoft Academic Search

Infarct size delineation by triphenyltetrazolium chloride (TTC) staining is dependent on sufficient reperfusion. We therefore evaluated the possibility of using propidium iodide (PI), a reagent conventionally used in flow cytometry to fluorescently stain dead cells, for infarct size analysis after short periods of reperfusion. Forty-five rabbits were subjected to either 15 min, 2 h or 4.5 h of coronary artery

WD Ito; S Schaarschmidt; R Klask; S Hansen; HJ Schäfer; D Mathey; S Bhakdi

1997-01-01

30

Ginsenoside compound K induces apoptosis in nasopharyngeal carcinoma cells via activation of apoptosis-inducing factor  

PubMed Central

Background Nasopharyngeal carcinoma (NPC) has a high incidence rate in Southern China. Although there are conventional therapies, the side effects and toxicities are not always tolerable for patients. Recently, the tumoricidal effect of ginsenosides on different cancer cells has been studied. This study aims to investigate the anti-cancer effect of ginsenosides on NPC cells and their underlying mechanism. Methods The cytotoxicity of ginsenosides on NPC cell line HK-1 was measured by MTT assay. Apoptosis was detected by propidium iodide staining followed by flow cytometry. A xenograft tumor model was established by injecting nude mice with HK-1 cells. The activation of caspases and apoptosis-inducing factor (AIF) were evaluated by Western blot analysis. Nuclear translocation of AIF was also studied by immunofluorescence staining. Mitochondrial membrane potential was measured by JC-1 dye using flow cytometry. Results Four ginsenosides, 20 (S)-Rh2, compound K (CK), panaxadiol (PD) and protopanaxadiol (PPD), induced apoptotic cell death in HK-1 cells in a concentration-dependent manner. CK inhibited HK-1 xenograft tumor growth most extensively and depleted mitochondrial membrane potential depolarization and induced translocation of AIF from cytoplasm to nucleus in HK-1 cells. In addition, depletion of AIF by siRNA abolished CK-induced HK-1 cell death. Conclusion Ginsenoside CK-induced apoptosis of HK-1 cells was mediated by the mitochondrial pathway and could significantly inhibit tumor growth in vivo.

2014-01-01

31

Structural basis for autoantibody recognition of phosphatidylserine-?2 glycoprotein I and apoptotic cells  

PubMed Central

Apoptotic cells contain nuclear autoantigens that may initiate a systemic autoimmune response. To explore the mechanism of antibody binding to apoptotic cells, 3H9, a murine autoantibody with dual specificity for phospholipids and DNA, was used. H chain mutants of 3H9 were constructed, expressed as single-chain Fv (scFv) in Escherichia coli, and assessed for binding to phosphatidylserine, an antigen expressed on apoptotic cells. Both 3H9 and its germline revertant bound to dioleoyl phosphatidylserine in ELISA, and binding was enhanced by ?2 glycoprotein I (?2GPI), a plasma protein that selectively binds to apoptotic cells. Higher relative affinity for DOPS-?2GPI was achieved by the introduction of Arg residues into the 3H9 H chain variable region at positions previously shown to mediate DNA binding. Specificity of the two structurally most diverse scFv for apoptotic cells was shown by flow cytometry, and two populations of scFv-bound cells were identified by differences in propidium iodide staining. The results suggest that, in autoimmunity, B cells with Ig receptors for apoptotic cells and DNA are positively selected, and that the antibodies they produce have the potential to affect the clearance and processing of apoptotic cells.

Cocca, Brian A.; Seal, Samarendra N.; D'Agnillo, Paolo; Mueller, Yvonne M.; Katsikis, Peter D.; Rauch, Joyce; Weigert, Martin; Radic, Marko Z.

2001-01-01

32

Resveratrol enhances radiosensitivity of human non-small cell lung cancer NCI-H838 cells accompanied by inhibition of nuclear factor-kappa B activation.  

PubMed

Resveratrol, a polyphenol in red wine, possesses many pharmacological activities including cardioprotection, chemoprevention, anti-tumor effects, and nuclear factor-kappa B (NF-kappaB) inactivation. The present study was designed to evaluate the effects and possible mechanism of resveratrol in enhancing radiosensitivity of lung cancer cells. Human non-small cell lung cancer NCI-H838 cells were irradiated with or without resveratrol pretreatment. The surviving fraction and sensitizer enhancement ratio (SER) were estimated by using a colony formation assay and linear-quadratic model. The cell-cycle distribution was evaluated by using propidium iodide staining and flow cytometry. An ELISA-based assay with immobilized oligonucleotide was performed to assess the DNA binding activity of NF-kappaB. Resveratrol had no direct growth-inhibitory effect on NCI-H838 cells treated for 24 hours with doses up to 25 microM. Pretreatment with resveratrol significantly enhanced cell killing by radiation, with an SER up to 2.2. Radiation activated NF-kappaB, an effect reversed by resveratrol pretreatment. Resveratrol resulted in a decrease of cells in the G0/G1 phase and an increase in the S phase. Our results demonstrate that resveratrol enhances the radiosensitivity of NCI-H838 cells accompanied by NF-kappaB inhibition and S-phase arrest. PMID:16394628

Liao, Hui-Fen; Kuo, Cheng-Deng; Yang, Yuh-Cheng; Lin, Chin-Ping; Tai, Hung-Chi; Chen, Yu-Yawn; Chen, Yu-Jen

2005-12-01

33

Baicalin induced dendritic cell apoptosis in vitro.  

PubMed

This study was aimed to investigate the effects of baicalin (BA), a major flavonoid constituent found in the herb Baikal skullcap, on dendritic cells (DCs). DCs were generated by culturing murine bone marrow (BM) cells for 6 days with granulocyte-macrophage colony-stimulating factor and interleukin (IL)-4, and lipopolysaccharide (LPS) was added on day 5 to stimulate DCs maturation. The expression levels of DC maturity markers (CD80/CD86) were assessed by flow cytometry using direct immunofluorescence method. IL-12 levels in the culture supernatants were assayed by ELISA. Apoptosis of DCs was analyzed by flow cytometry after annexin V/propidium iodide staining. The mitochondrial membrane potential (??(m)) changes were measured by using the J-aggregate forming lipophilic cation 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Exposure of DCs to BA (2-50??M) during BM cell differentiation showed no effects on the up-regulation of CD80/CD86 expression on DCs in response to LPS stimulation, but reduced DCs recovery by inducing apoptosis, and significantly inhibited the release of IL-12 to culture supernatants. BA-induced DC apoptosis in a time- and dose-dependent way, and immature DCs were more sensitive for BA-induced apoptosis than mature DC. BA also induced ??(m) changes in DCs. These results demonstrate that BA induces selective apoptosis in immature DCs possibly through mitochondria-mediated pathway. PMID:21687510

Zhang, Huahua; Jiao, Qingqing; Gong, Qianfeng; Zhang, Yan; Zhang, Weidong; Hu, Zhenlin

2011-01-01

34

Apoptotic effect of eugenol in human colon cancer cell lines.  

PubMed

Eugenol, a natural compound available in honey and various plants extracts including cloves and Magnoliae flos, is exploited for various medicinal applications. Since most of the drugs used in the cancer are apoptotic inducers, the apoptotic effect and anticancer mechanism of eugenol were investigated against colon cancer cells. Antiproliferative effect was estimated using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay]. Earlier events like MMP (mitochondrial membrane potential), thiol depletion and lipid layer break were measured by using flow cytometry. Apoptosis was evaluated using PI (propidium iodide) staining, TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling) assay and DNA fragmentation assay. MTT assay signified the antiproliferative nature of eugenol against the tested colon cancer cells. PI staining indicated increasing accumulation of cells at sub-G1-phase. Eugenol treatment resulted in reduction of intracellular non-protein thiols and increase in the earlier lipid layer break. Further events like dissipation of MMP and generation of ROS (reactive oxygen species) were accompanied in the eugenol-induced apoptosis. Augmented ROS generation resulted in the DNA fragmentation of treated cells as shown by DNA fragmentation and TUNEL assay. Further activation of PARP (polyadenosine diphosphate-ribose polymerase), p53 and caspase-3 were observed in Western blot analyses. Our results demonstrated molecular mechanism of eugenol-induced apoptosis in human colon cancer cells. This research will further enhance eugenol as a potential chemopreventive agent against colon cancer. PMID:21044050

Jaganathan, Saravana Kumar; Mazumdar, Abhijit; Mondhe, Dilip; Mandal, Mahitosh

2011-06-01

35

The Acetone Extract of Sclerocarya birrea (Anacardiaceae) Possesses Antiproliferative and Apoptotic Potential against Human Breast Cancer Cell Lines (MCF-7)  

PubMed Central

Interesting antimicrobial data from the stem bark of Sclerocarya birrea, which support its use in traditional medicine for the treatment of many diseases, have been delineated. The current study was aimed to further study some pharmacological and toxicological properties of the plant to scientifically justify its use. Anticancer activity of water and acetone extracts of S. birrea was evaluated on three different cell lines, HT-29, HeLa, and MCF-7 using the cell titre blue viability assay in 96-well plates. Apoptosis was evaluated using the acridine orange and propidium iodide staining method, while morphological structure of treated cells was examined using SEM. The acetone extract exhibited remarkable antiproliferative activities on MCF-7 cell lines at dose- and time-dependent manners (24?h and 48?h of incubation). The extract also exerted apoptotic programmed cell death in MCF-7 cells with significant effect on the DNA. Morphological examination also displayed apoptotic characteristics in the treated cells, including clumping, condensation, and culminating to budding of the cells to produce membrane-bound fragmentation, as well as formation of apoptotic bodies. The acetone extract of S. birrea possesses antiproliferative and apoptotic potential against MCF-7-treated cells and could be further exploited as a potential lead in anticancer therapy.

Tanih, Nicoline Fri; Ndip, Roland Ndip

2013-01-01

36

Thrombin Induces Tumor Cell Cycle Activation and Spontaneous Growth by Down-regulation of p27Kip1, in Association with the Up-regulation of Skp2 and MiR-222  

PubMed Central

The effect of thrombin on tumor cell cycle activation and spontaneous growth was examined in synchronized serum-starved tumor cell lines and a model of spontaneous prostate cancer development in TRAMP mice. BrdUrd incorporation and propidium iodide staining of prostate LNCaP cells arrested in G0 and treated with thrombin or serum revealed a 48- and 29-fold increase in S phase cells, respectively, at 8 hours. Similar results were obtained with TRAMP cells and a glioblastoma cell line, T98G. Cell cycle kinases and inhibitors in synchronized tumor cells revealed high levels of p27Kip1 and low levels of Skp2 and cyclins D1 and A. Addition of thrombin, TFLLRN, or serum down-regulated p27Kip1 with concomitant induction of Skp2, Cyclin D1, and Cyclin A with similar kinetics. LNCaP p27Kip1-transfected cells or Skp2 knockdown cells were refractory to thrombin-induced cell cycle activation. MicroRNA 222, an inhibitor of p27Kip1, was robustly up-regulated by thrombin. The in vitro observations were tested in vivo with transgenic TRAMP mice. Repetitive thrombin injection enhanced prostate tumor volume 6- to 8-fold (P < 0.04). Repetitive hirudin, a specific potent antithrombin, decreased tumor volume 13- to 24-fold (P < 0.04). Thus, thrombin stimulates tumor cell growth in vivo by down-regulation of p27Kip1.

Hu, Liang; Ibrahim, Sherif; Liu, Cynthia; Skaar, Jeffrey; Pagano, Michele; Karpatkin, Simon

2009-01-01

37

Celastrol induces apoptosis in non-small-cell lung cancer A549 cells through activation of mitochondria- and Fas/FasL-mediated pathways.  

PubMed

Celastrol is a natural compound extracted from the traditional Chinese medicinal herb, Tripterygium wilfordii Hook. It has attracted interests for its potential anti-inflammatory and antitumor effects. However, the molecular mechanisms of celastrol-induced apoptosis in cancer cells remain unclear. In this study, we investigated the effects of celastrol on the human non-small-cell lung cancer (NSCLC) cell line A549 in vitro. Celastrol caused a dose- and time-dependent growth inhibition of A549 cells with an IC(50) of 2.12 ?M at 48 h treatment. Celastrol induced A549 cells apoptosis as confirmed by annexin V/propidium iodide staining and DNA fragmentation. Celastrol-induced apoptosis was characterized by cleavage of caspase-9, caspase-8, caspase-3, and PARP protein, increased Fas and FasL expression, and a reduction in the mitochondrial membrane potential. Furthermore, celastrol induced the release of cytochrome c. Celastrol also up-regulated the expression of pro-apoptotic Bax, down-regulated anti-apoptotic Bcl-2, and inhibited Akt phosphorylation. These results demonstrate that celastrol can induce apoptosis of human NSCLC A549 cells through activation of both mitochondria- and FasL-mediated pathways. PMID:21466843

Mou, Haibo; Zheng, Yi; Zhao, Peng; Bao, Hanying; Fang, Weijia; Xu, Nong

2011-08-01

38

Role of LM23 in cell proliferation and apoptosis and its expression during the testis development  

PubMed Central

LM23, a gene expressed specifically in the testis in a stage-specific manner, has a diverse range of functions that are important in both the life and death of spermatogenic cells. The aim of this study was to further investigate the expression of LM23 in the developing rat testis and the biological function of LM23 in proliferation and antiapoptosis in vitro. Semiquantitative reverse transcription (RT)-PCR and real-time PCR were used to examine the expression of LM23 in testis at different developmental stages. The results suggested that LM23 mRNA levels in the testis increased progressively after birth. The role of LM23 in proliferation was analyzed with cell counting kit-8 (CCK8), colony-forming efficiency (CFE) and flow cytometry assays. The results indicated that ectopic expression of LM23 in 293T cells significantly promoted cell proliferation by increasing cell numbers in S phase. Several methods were used, including CCK8, annexin V and propidium iodide staining and western blotting, to determine the role of LM23 in apoptosis. The results showed that LM23 played a protective role in H2O2-induced apoptosis of 293T cells, mediated at least in part through the Akt/PI3K signal pathway. Taken together, these results provide new insights into the role of LM23 in the development of the testes and spermatogenesis.

Liu, Qing; Song, Ya-Juan; Meng, Li-Jun; Hu, Fen; Gou, Li-Xia; Jia, Chang-Hong; Tang, Hong-Mei; Wang, Wei-Jie; Li, Mi; Zhang, Xiu-Jun; Jia, Meng-Chun

2013-01-01

39

Cytotoxic Activities of Physalis minima L. Chloroform Extract on Human Lung Adenocarcinoma NCI-H23 Cell Lines by Induction of Apoptosis  

PubMed Central

Physalis minima L. is reputed for having anticancer property. In this study, the chloroform extract of this plant exhibited remarkable cytotoxic activities on NCI-H23 (human lung adenocarcinoma) cell line at dose- and time-dependent manners (after 24, 48 and 72?h of incubation). Analysis of cell-death mechanism demonstrated that the extract exerted apoptotic programed cell death in NCI-H23 cells with typical DNA fragmentation, which is a biochemical hallmark of apoptosis. Morphological observation using transmission electron microscope (TEM) also displayed apoptotic characteristics in the treated cells, including clumping and margination of chromatins, followed by convolution of the nuclear and budding of the cells to produce membrane-bound apoptotic bodies. Different stages of apoptotic programed cell death as well as phosphatidylserine externalization were confirmed using annexin V and propidium iodide staining. Furthermore, acute exposure to the extract produced a significant regulation of c-myc, caspase-3 and p53?mRNA expression in this cell line. Due to its apoptotic effect on NCI-H23 cells, it is strongly suggested that the extract could be further developed as an anticancer drug.

Leong, Ooi Kheng; Muhammad, Tengku Sifzizul Tengku; Sulaiman, Shaida Fariza

2011-01-01

40

Anti-tumor studies with extracts of Calotropis procera (Ait.) R.Br. root employing Hep2 cells and their possible mechanism of action.  

PubMed

Anti-tumor potential of root extracts of Calotropis procera: methanolic extract (CM), hexane extract (CH), aqueous extract (CW) and ethylacetate extract (CE) and its possible mechanism against Hep2 cancer cells has been investigated. Cellular proliferation activities were assayed by tetrazolium bromide (MTT) colorimetry. Morphological changes of cancer cells were observed under inverted microscope and cell cycle parameters were determined by flow cytometry following propidium iodide staining. Treatment with the extracts at various doses of 1, 5, 10 and 25 microg/ml revealed that CM, CH and CE possessed cytotoxicity, whereas CW did not have cytotoxic effect. CE (10 microg/ml) showed strongest cytotoxic effect (96.3%) on Hep2 at 48 hr following treatment, whereas CM and CH showed cytotoxicity of 72.7 and 60.5%, respectively. Extract-treated cells exhibited typical morphological changes of apoptosis. Results of flow cytometric analysis clearly demonstrated that root extracts initiated apoptosis of Hep2 cells through cell cycle arrest at S phase, thus preventing cells from entering G2/M phase. Results of the study indicate that the root extracts of C. procera inhibit the proliferation of Hep2 cells via apoptotic and cell cycle disruption based mechanisms. PMID:19579799

Mathur, Rajani; Gupta, Suresh K; Mathur, Sandeep R; Velpandian, Thirumurthy

2009-05-01

41

Monascus-fermented red mold rice exhibits cytotoxic effect and induces apoptosis on human breast cancer cells.  

PubMed

Red mold rice (RMR) is a traditional food and folk medicine to Asian people and has recently become a popular health supplement. RMR has been shown to have some anticancer activities, although the mechanism for inducing cell death of human breast cancer cells is still not fully understood. In this study, bioactive extracts of RMR fermented by Monascus purpureus NTU 803 were analyzed for effects on apoptosis induction in human breast cancer cells. The RMR ethanol extract and ethyl acetate extract contain monacolin K, total phenols, and flavonoids, the three components that have been reported to have anticancer activity. Red mold rice extracts (RMRE) exhibited selective cytotoxic effect on MCF-7 cells. RMRE treatment induced apoptosis and cell cycle arrest at G2/M phase. Apoptosis was confirmed by annexin V-fluorescein isothiocyanate (FITC)/propidium iodide staining, the observation of characteristic chromatin condensation, nuclear DNA fragmentation, and poly(ADP-ribose) polymerase cleavage. Furthermore, the RMRE-induced apoptosis in MCF-7 cells may occur through a mitochondria-dependent pathway while triggering an appropriate balance of bax/bcl-2 and activation of caspase-9 and caspase-3 in a time-dependent manner. To conclude, RMRE exhibits direct cytotoxic and proapoptotic effects on MCF-7 cells and could be considered as a potential functional food for breast cancer prevention. PMID:22814414

Lee, Chu-I; Lee, Chun-Lin; Hwang, Jyi-Faa; Lee, Yi-Hsin; Wang, Jyh-Jye

2013-02-01

42

Cabergoline protects SH-SY5Y neuronal cells in an in vitro model of ischemia.  

PubMed

Dopamine receptor agonists are protective in different models of neurodegeneration by both receptor-dependent and -independent mechanisms. We used SH-SY5Y cells, differentiated into neuron-like type, to evaluate if cabergoline, a dopamine D2 receptor agonist endowed with anti-oxidant activity, protects the cells against ischemia (oxygen-glucose deprivation model). Cabergoline protected the cells from ischemia-induced cell death in a concentration-dependent manner (EC(50)=1.2 microM), as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release, and fluorescein diacetate-propidium iodide staining. This effect, observed even when the drug was added after oxygen-glucose deprivation, was not mediated by either dopamine D2 receptor activation or anti-apoptotic Bcl-2 protein over-expression (Western blotting analysis), but was linked to a reduction in cellular free radical loading (2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining) and membrane lipid peroxidation (thiobarbituric acid-reacting test). In conclusion, cabergoline protects in vitro neurons against ischemia-induced cell death, suggesting its possible use in the therapy of other neurodegenerative diseases in addition to Parkinson's disease. PMID:15087238

Miglio, Gianluca; Varsaldi, Federica; Francioli, Elisabetta; Battaglia, Angelo; Canonico, Pier Luigi; Lombardi, Grazia

2004-04-12

43

The Mechanism of NPC-14686-Induced [Ca²?]i Rises and Non-Ca²?-Triggered Cell Death in MG63 Human Osteosarcoma Cells.  

PubMed

NPC-14686 has been shown to have anti-inflammatory effect in previous studies, but the mechanisms are unclear. The effect of NPC-14686 on cytosolic Ca²? concentrations ([Ca²?]i) and viability in MG63 human osteosarcoma cells was explored. The Ca²?-sensitive fluorescent dye fura-2 was applied to measure [Ca²?]i. NPC-14686 at concentrations of 100-500 ?M induced a [Ca²?]i rise in a concentrationdependent manner. The response was reduced by 80% by removing Ca²?. NPC-14686 induced Mn²? influx leading to quenching of fura-2 fluorescence. NPC-14686-evoked Ca²? entry was suppressed by nifedipine, econazole, SK&F96365, and protein kinase C inhibitor. Inhibition of phospholipase C with U73122 abolished NPC-14686-induced [Ca²?]i rise. At 20-50 ?M, NPC-14686 decreased cell viability, which was not reversed by chelating cytosolic Ca²? with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/acetoxy methyl (BAPTA/AM). Annexin V/propidium iodide staining data suggest that NPC-14686 (30-50 ?M) induced apoptosis in a concentration-dependent manner. NPC-14686 also increased levels of reactive oxygen species. Together, in human osteosarcoma cells, NPC-14686 induced a [Ca²?]i rise by inducing phospholipase C-dependent Ca²? release from the endoplasmic reticulum and Ca²? entry via protein kinase C-sensitive store-operated Ca²? channels. NPC-14686 induced cell death that might involve apoptosis via mitochondrial pathways. PMID:24826784

Chien, Jau-Min; Chou, Chiang-Ting; Liang, Wei-Zhe; Kuo, Daih-Huang; Kuo, Chun-Chi; Ho, Chin-Man; Shieh, Pochuen; Jan, Chung-Ren

2014-06-30

44

Multiple mechanisms mediate the taurine-induced proliferation of neural stem/progenitor cells from the subventricular zone of the adult mouse.  

PubMed

Taurine was previously reported to increase the proliferation of neural precursor cells (NPCs) from subventricular zone of the mouse brain. The results of a study that aimed to understand the mechanisms of this effect are presented here. Because taurine was not found in NPC nuclei, direct interactions with nuclear elements seem unlikely. A gene expression profile analysis indicated that genes that are regulated by taurine have roles in i) proliferation, including the Shh and Wnt pathways; ii) cellular adhesion; iii) cell survival; and iv) mitochondrial functioning. Cell cycle analysis of propidium iodide and CFSE-labeled cells using flow cytometry revealed an increase in the number of cells in the S-phase and a decrease in those in the G0/G1 phase in taurine-treated cultures. No changes in the length of the cell cycle were observed. Quantification of the viable, apoptotic, and necrotic cells in cultures using flow cytometry and calcein-AM, annexin-V, and propidium iodide staining showed reductions in the number of apoptotic and necrotic cells (18% to 11% and 13% to 10%, respectively) and increases in the number of viable cells (61% to 69%) in the taurine-treated cultures. Examination of the relative mitochondrial potential values by flow cytometry and rhodamine123 or JC-1 staining showed a 44% increase in the number of cells with higher mitochondrial potential and a 38% increase in the mitochondrial membrane potential in taurine cultures compared with those of controls. Taken together, the results suggest that taurine provides more favorable conditions for cell proliferation by improving mitochondrial functioning. PMID:24681519

Ramos-Mandujano, Gerardo; Hernández-Benítez, Reyna; Pasantes-Morales, Herminia

2014-05-01

45

Rituximab synergizes with hydroxyurea or vincristine in the killing of Ramos Burkitt's lymphoma B cell line.  

PubMed

Rituximab is an effective immunotherapy for CD20-positive B-cell non-Hodgkin's lymphoma. However, some patients show resistance, particularly those suffering from more aggressive lymphoma types, such as Burkitt's lymphoma. Hence, Rituximab is commonly combined with several chemotherapeutic drugs. With a view to reduce the number of such drugs, we examined the effect of combining Rituximab individually with hydroxyurea, vincristine, or etoposide on the killing of Ramos Burkitt lymphoma cell line type I. Cell death was examined by using Annexin-V/propidium iodide staining. Combining Rituximab with hydroxyurea or vincristine resulted in a synergistic effect, whereas combining it with etoposide resulted in a subadditive effect. In single treatments, the percentage of cell death ranged from 23% (Rituximab) to 36% (hydroxyurea). Combining Rituximab with hydroxyurea or vincristine resulted in a synergistic effect (83% and 74% killing, respectively). In contrast, only a subadditive effect was noticed with etoposide (36%). We conclude that the synergistic effect of Rituximab with hydroxyurea or vincristine is worthy of further study, and that further in vitro screening of chemotherapeutics might identify chemo-immunotherapeutic combinations that are effective in vivo but less toxic than currently used regimens. PMID:24256491

Deyab, Mohamed; Elbanani, Abdulrhman; Tabal, Salah; Geriani, Hajer; Lamami, Yosra; Bredan, Amin; Abulayha, Abdulmunem

2014-03-01

46

Raman micro-spectroscopic analysis of cultured HCT116 colon cancer cells in the presence of roscovitine  

NASA Astrophysics Data System (ADS)

Raman micro-spectroscopic analysis of cultured HCT116 colon cancer cells in the presence of roscovitine, [seliciclib, 2-(1-ethyl-2-hydroxy-ethylamino)-6-benzylamino-9-isopropylpurine], a promising drug candidate in cancer therapy, has been performed for the first time. The aim of this study was to investigate modulations in colon cancer cells induced by roscovitine. Raman spectra of the cultured HCT116 colon cancer cells treated with roscovitine at different concentrations (0, 5, 10, 25 and 50 ?M) were recorded in the range 400-1850 cm -1. It was shown that the second derivative profile of the experimental spectrum gives valuable information about the wavenumbers and band widths of the vibrational modes of cell components, and it eliminates the appearance of false peaks arising from incorrect baseline corrections. In samples containing roscovitine, significant spectral changes were observed in the intensities of characteristic protein and DNA bands, which indicate roscovitine-induced apoptosis. Roscovitine-induced apoptosis was also assessed by flow cytometry analysis, and analysis of propidium iodide staining. We observed some modifications in amide I and III bands, which arise from alterations in the secondary structure of cell proteins caused by the presence of roscovitine.

Akyuz, S.; Ozel, A. E.; Balci, K.; Akyuz, T.; Coker, A.; Arisan, E. D.; Palavan-Unsal, N.; Ozalpan, A.

2011-05-01

47

Cytoprotection by the NO-donor SNAP against ischemia/reoxygenation injury in mouse embryonic stem cell-derived cardiomyocytes.  

PubMed

Embryonic stem cell (ESC)-derived cardiomyocytes are a promising cell source for the screening for potential cytoprotective molecules against ischemia/reperfusion injury, however, little is known on their behavior in hypoxia/reoxygenation conditions. Here we tested the cytoprotective effect of the NO-donor SNAP and its downstream cellular pathway. Mouse ESC-derived cardiomyocytes were subjected to 150-min simulated ischemia (SI) followed by 120-min reoxygenation or corresponding non-ischemic conditions. The following treatments were applied during SI or normoxia: the NO-donor S-Nitroso-N-acetyl-D,L-penicillamine (SNAP), the protein kinase G (PKG) inhibitor, the KATP channel blocker glibenclamide, the particulate guanylate cyclase activator brain type natriuretic peptide (BNP), and a non-specific NO synthase inhibitor (N-Nitro-L-arginine, L-NNA) alone or in different combinations. Viability of cells was assayed by propidium iodide staining. SNAP attenuated SI-induced cell death in a concentration-dependent manner, and this protection was attenuated by inhibition of either PKG or KATP channels. However, SI-induced cell death was not affected by BNP or by L-NNA. We conclude that SNAP protects mESC-derived cardiomyocytes against SI/R injury and that soluble guanylate-cyclase, PKG, and KATP channels play a role in the downstream pathway of SNAP-induced cytoprotection. The present mESC-derived cardiomyocyte based screening platform is a useful tool for discovery of cytoprotective molecules. PMID:24078218

Görbe, A; Varga, Z V; Pálóczi, J; Rungarunlert, S; Klincumhom, N; Pirity, M K; Madonna, R; Eschenhagen, T; Dinnyés, A; Csont, T; Ferdinandy, P

2014-03-01

48

Ajulemic acid, a nonpsychoactive cannabinoid acid, suppresses osteoclastogenesis in mononuclear precursor cells and induces apoptosis in mature osteoclast-like cells.  

PubMed

Oral administration of ajulemic acid (AjA), a cannabinoid acid devoid of psychoactivity, prevents joint tissue injury in rats with adjuvant induced arthritis. Because activation of osteoclasts is central to the pathogenesis of bone erosion in patients with rheumatoid arthritis (RA), we investigated the influence of AjA on osteoclast differentiation and survival. Osteoclast cultures were established by stimulation of RAW264.7 cells and primary mouse bone marrow cultures with receptor activator of NF-kappaB ligand (RANKL). Simultaneous addition of AjA (15 and 30 microM) and RANKL to both culture systems significantly suppressed development of multinucleated osteoclasts (osteoclastogenesis) in a dose dependent manner, as determined by quantification of multinuclear, tartrate-resistant acid phosphatase (TRAP)-positive cells. AjA impaired growth of RAW264.7 monocytes and prevented further osteoclast formation in cultures in which osteoclastogenesis had already begun. Reduction by AjA of both monocyte growth and osteoclast formation was associated with apoptosis, assayed by annexin V and propidium iodide staining, and caspase activity. The anti-osteoclastogenic effects of AjA did not require the continuous presence of AjA in the cell cultures. Based on these findings, we propose that AjA or other nonpsychoactive synthetic analogs of Cannabis constituents may be useful therapy for diseases such as RA and osteoporosis in which bone resorption is a central feature. PMID:17786950

George, Kerri L; Saltman, Laura H; Stein, Gary S; Lian, Jane B; Zurier, Robert B

2008-03-01

49

Toxicity and antibacterial assessment of chitosancoated silver nanoparticles on human pathogens and macrophage cells  

PubMed Central

Background Pathogenic bacteria are able to develop various strategies to counteract the bactericidal action of antibiotics. Silver nanoparticles (AgNPs) have emerged as a potential alternative to conventional antibiotics because of their potent antimicrobial properties. The purpose of this study was to synthesize chitosan-stabilized AgNPs (CS-AgNPs) and test for their cytotoxic, genotoxic, macrophage cell uptake, antibacterial, and antibiofilm activities. Methods AgNPs were synthesized using chitosan as both a stabilizing and a reducing agent. Antibacterial activity was determined by colony-forming unit assay and scanning electron microscopy. Genotoxic and cytotoxic activity were determined by DNA fragmentation, comet, and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays. Cellular uptake and intracellular antibacterial activity were tested on macrophages. Results CS-AgNPs exhibited potent antibacterial activity against different human pathogens and also impeded bacterial biofilm formation. Scanning electron microscopy analysis indicated that CS-AgNPs kill bacteria by disrupting the cell membrane. CS-AgNPs showed no significant cytotoxic or DNA damage effect on macrophages at the bactericidal dose. Propidium iodide staining indicated active endocytosis of CS-AgNPs resulting in reduced intracellular bacterial survival in macrophages. Conclusion The present study concludes that at a specific dose, chitosan-based AgNPs kill bacteria without harming the host cells, thus representing a potential template for the design of antibacterial agents to decrease bacterial colonization and to overcome the problem of drug resistance.

Jena, Prajna; Mohanty, Soumitra; Mallick, Rojee; Jacob, Biju; Sonawane, Avinash

2012-01-01

50

DNA alteration and programmed cell death during ageing of sunflower seed  

PubMed Central

Sunflower (Helianthus annuus L.) seed viability is affected by moisture content (MC) during ageing and is related to accumulation of hydrogen peroxide and changes in energy metabolism. The aim of the present work was to investigate the effect of ageing on DNA alteration events by RAPD (random amplification of polymorphic DNA) analysis and to determine whether loss of seed viability might correspond to a controlled programmed cell death (PCD). Ageing of sunflower seeds was carried out at 35?°C for 7?d at different MCs. The higher the MC, the lower was the seed viability. RAPD analysis showed that DNA alterations occurred during ageing especially in seeds containing a high MC. In addition, PCD, as revealed by DNA fragmentation and TUNEL (terminal deoxynucleotide transferase-mediated dUTP nick-end labelling) assay, was detected in aged seeds at MCs which resulted in ?50% seed viability. At the cellular level, TUNEL assay and propidium iodide staining showed that cell death concerns all the cells of the embryonic axis. The quantification of the adenylate pool highlights mitochondrial dysfunction in aged seeds containing a high MC. The involvement of oxidative burst, mitochondria dysfunction, and PCD in seed loss of viability is proposed.

El-Maarouf-Bouteau, Hayat; Mazuy, Claire; Corbineau, Francoise; Bailly, Christophe

2011-01-01

51

Dual DNA Staining Assessment of Bovine Sperm Viability Using SYBR-14 and Propidium Iodide  

Microsoft Academic Search

A new membrane-permeant DNA stain, SYBR-1 4, was used in combination with propidium iodide (P1)to estimate the pro- portion of living sperm in bovine semen. The SYBR-14 stained living sperm while P1 only stained degenerate cells that had lost their membrane integrity. Staining with SYBR-1 4 resulted in the nuclei of living sperm fluorescing bright green. Aliquots containing nearly all

D. L. GARNER; L. A. JOHNSON; S. T. YUE; B. L. ROTH

52

Rapid assessment of islet viability with acridine orange and propidium iodide  

Microsoft Academic Search

Summary  A simple, rapid method for estimating the viability of isolated islets of Langerhans with fluorescent dyes is described. Low\\u000a concentrations of acridine orange and propidium iodide (AO\\/PI) were used to visualize living and dead islet cells simultaneously.\\u000a AO\\/PI-stained islets can be divided into three distinct groups. Group A islets fluoresce green, contain insulin, and have\\u000a normal ultrastructure; group C islets

Harvey L. Bank

1988-01-01

53

Quinones and halogenated monoterpenes of algal origin show anti-proliferative effects against breast cancer cells in vitro.  

PubMed

Red and brown algae have been shown to produce a variety of compounds with chemotherapeutic potential. A recent report described the isolation of a range of novel polyhalogenated monoterpene compounds from the red algae Plocamium corallorhiza and Plocamium cornutum collected off the coast of South Africa, together with the previously described tetraprenylquinone, sargaquinoic acid (SQA), from the brown algae Sargassum heterophyllum. In our study, the algal compounds were screened for anti-proliferative activity against metastatic MDA-MB-231 breast cancer cells revealing that a number of compounds displayed anti-cancer activity with IC(50) values in the micromolar range. A subset of the compounds was tested for differential toxicity in the MCF-7/MCF12A system and five of these, including sargaquinoic acid, were found to be at least three times more toxic to the breast cancer than the non-malignant cell line. SQA was further analysed in terms of its mechanism of cytotoxicity in MDA-MB-231 cells. The ability to initiate apoptosis was distinguished from the induction of an inflammatory necrotic response via flow cytometry with propidium iodide and Hoescht staining, confocal microscopy with Annexin V and propidium iodide staining as well as the PARP cleavage assay. We report that SQA induced apoptosis while a polyhalogenated monoterpene RU015 induced necrosis in metastatic breast cancer cells in vitro. Furthermore, we demonstrated that apoptosis induction by SQA occurs via caspase-3, -6, -8, -9 and -13 and was associated with down-regulation of Bcl-2. In addition, cell cycle analyses revealed that the compound causes G(1) arrest in MDA-MB-231 cells. PMID:22249429

de la Mare, Jo-Anne; Lawson, Jessica C; Chiwakata, Maynard T; Beukes, Denzil R; Edkins, Adrienne L; Blatch, Gregory L

2012-12-01

54

Toxicity of surface-modified PLGA nanoparticles toward lung alveolar epithelial cells.  

PubMed

In vitro cytotoxicity and inflammatory response following exposure to nanoparticles (NPs) made of poly(lactide-co-glycolide) (PLGA) have been investigated on A549 human lung epithelial cells. Three different PLGA NPs (230 nm) were obtained using different stabilizers (polyvinyl alcohol, chitosan, or Pluronic(®) F68) to form respectively neutral, positively or negatively charged NPs. Polystyrene NPs were used as polymeric but non-biodegradable NPs, and titanium dioxide (anatase and rutile) as inorganic NPs, for comparison. Cytotoxicity was evaluated through mitochondrial activity as well as membrane integrity (lactate dehydrogenase release, trypan blue exclusion, propidium iodide staining). The cytotoxicity of PLGA-based and polystyrene NPs was lower or equivalent to the one observed after exposure to titanium dioxide NPs. The inflammatory response, evaluated through the release of the IL-6, IL-8, MCP-1, TNF-? cytokines, was low for all NPs. However, some differences were observed, especially for negative PLGA NPs that led to a higher inflammatory response, which can be correlated to a higher uptake of these NPs. Taken together, these results show that both coating of PLGA NPs and the nature of the core play a key role in cell response. PMID:23747506

Grabowski, Nadège; Hillaireau, Hervé; Vergnaud, Juliette; Santiago, Letícia Aragão; Kerdine-Romer, Saadia; Pallardy, Marc; Tsapis, Nicolas; Fattal, Elias

2013-10-01

55

Canine coronavirus induces apoptosis in cultured cells.  

PubMed

Canine coronavirus (CCoV) is widespread in dogs in several countries and causes mild enteric illness evolving to severe enteritis in young pups. In in vitro cultures canine coronaviruses generally induce extensive cell death, however nature of the events leading to cell death remains largely unknown. We analysed the induction of cytopathic effect by CCoV in a canine fibrosarcoma cell line (A-72) in order to characterize the apoptotic effect in homologous cell system. Following CCoV infection A-72 cell line, which is permissive to CCoV, showed reduced growth rate, as detected by MTT assay, a standard colorimetric assay for measuring cellular proliferation, and underwent to apoptotic death. Starting from 24h after CCoV infection, cells morphology appeared dramatically changed, with cells rounding and detachment from culture surface. Morphologic and biochemical features of apoptosis, such as blebbing of the plasma membrane, translocation of phosphatidilserine to cell surface and annexin V positive staining, nuclear fragmentation, apoptotic bodies formation and DNA laddering, were detected in CCoV-infected cells. Propidium iodide staining of infected culture indicated the appearance of hypodiploid DNA peak corresponding to apoptotic cell population. Commonly to other animal coronavirus infection caspase-3 is likely to contribute to the execution phase of apoptosis induced by CCoV in A-72 cells since we found activation of enzymatic activity as well as procaspase-3 activating cleavage. Apoptotic death of infected cells is detrimental as it causes cell and tissue destruction as well as inflammatory responses. Therefore in the case of CCoV associated gastroenteritis, apoptosis of epithelial mucosa cells may be responsible for pathology induced by CCoV infection. PMID:17254720

Ruggieri, A; Di Trani, L; Gatto, I; Franco, M; Vignolo, E; Bedini, B; Elia, G; Buonavoglia, C

2007-03-31

56

Novel Photosensitizers Trigger Rapid Death of Malignant Human Cells and Rodent Tumor Transplants via Lipid Photodamage and Membrane Permeabilization  

PubMed Central

Background Apoptotic cascades may frequently be impaired in tumor cells; therefore, the approaches to circumvent these obstacles emerge as important therapeutic modalities. Methodology/Principal Findings Our novel derivatives of chlorin e6, that is, its amide (compound 2) and boronated amide (compound 5) evoked no dark toxicity and demonstrated a significantly higher photosensitizing efficacy than chlorin e6 against transplanted aggressive tumors such as B16 melanoma and M-1 sarcoma. Compound 5 showed superior therapeutic potency. Illumination with red light of mammalian tumor cells loaded with 0.1 µM of 5 caused rapid (within the initial minutes) necrosis as determined by propidium iodide staining. The laser confocal microscopy-assisted analysis of cell death revealed the following order of events: prior to illumination, 5 accumulated in Golgi cysternae, endoplasmic reticulum and in some (but not all) lysosomes. In response to light, the reactive oxygen species burst was concomitant with the drop of mitochondrial transmembrane electric potential, the dramatic changes of mitochondrial shape and the loss of integrity of mitochondria and lysosomes. Within 3–4 min post illumination, the plasma membrane became permeable for propidium iodide. Compounds 2 and 5 were one order of magnitude more potent than chlorin e6 in photodamage of artificial liposomes monitored in a dye release assay. The latter effect depended on the content of non-saturated lipids; in liposomes consisting of saturated lipids no photodamage was detectable. The increased therapeutic efficacy of 5 compared with 2 was attributed to a striking difference in the ability of these photosensitizers to permeate through hydrophobic membrane interior as evidenced by measurements of voltage jump-induced relaxation of transmembrane current on planar lipid bilayers. Conclusions/Significance The multimembrane photodestruction and cell necrosis induced by photoactivation of 2 and 5 are directly associated with membrane permeabilization caused by lipid photodamage.

Moisenovich, Mikhail M.; Ol'shevskaya, Valentina A.; Rokitskaya, Tatyana I.; Ramonova, Alla A.; Nikitina, Roza G.; Tatarskiy, Victor V.; Kaplan, Mikhail A.; Kalinin, Valery N.; Kotova, Elena A.; Uvarov, Oleg V.; Agapov, Igor I.; Antonenko, Yuri N.; Shtil, Alexander A.

2010-01-01

57

Korean Red Ginseng water extract inhibits COX-2 expression by suppressing p38 in acrolein-treated human endothelial cells  

PubMed Central

Cigarette smoke is considered a major risk factor for vascular diseases. There are many toxic compounds in cigarette smoke, including acrolein and other ?,?-unsaturated aldehydes, which are regarded as mediators of inflammation and vascular dysfunction. Furthermore, recent studies have revealed that acrolein, an ?,?-unsaturated aldehyde in cigarette smoke, induces inflammatory mediator expression, which is known to be related to vascular diseases. In this study, we investigated whether Korean Red Ginseng (KRG) water extract suppressed acrolein-induced cyclooxygenase (COX)-2 expression in human umbilical vein endothelial cells (HUVECs). Acrolein-induced COX-2 expression was accompanied by increased levels of phosphorylated p38 in HUVECs and KRG inhibited COX-2 expression in HUVECs. These results suggest that KRG suppresses acrolein-induced COX-2 expression via inhibition of the p38 mitogen-activated protein kinase signaling pathway. In addition, KRG exhibited an inhibitory effect on acrolein-induced apoptosis, as demonstrated by annexin V–propidium iodide staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. Consistent with these results, KRG may exert a vasculoprotective effect through inhibition of COX-2 expression in acrolein-stimulated human endothelial cells.

Lee, Seung Eun; Park, Yong Seek

2013-01-01

58

Korean Red Ginseng water extract inhibits COX-2 expression by suppressing p38 in acrolein-treated human endothelial cells.  

PubMed

Cigarette smoke is considered a major risk factor for vascular diseases. There are many toxic compounds in cigarette smoke, including acrolein and other ?,?-unsaturated aldehydes, which are regarded as mediators of inflammation and vascular dysfunction. Furthermore, recent studies have revealed that acrolein, an ?,?-unsaturated aldehyde in cigarette smoke, induces inflammatory mediator expression, which is known to be related to vascular diseases. In this study, we investigated whether Korean Red Ginseng (KRG) water extract suppressed acrolein-induced cyclooxygenase (COX)-2 expression in human umbilical vein endothelial cells (HUVECs). Acrolein-induced COX-2 expression was accompanied by increased levels of phosphorylated p38 in HUVECs and KRG inhibited COX-2 expression in HUVECs. These results suggest that KRG suppresses acrolein-induced COX-2 expression via inhibition of the p38 mitogen-activated protein kinase signaling pathway. In addition, KRG exhibited an inhibitory effect on acrolein-induced apoptosis, as demonstrated by annexin V-propidium iodide staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. Consistent with these results, KRG may exert a vasculoprotective effect through inhibition of COX-2 expression in acrolein-stimulated human endothelial cells. PMID:24558308

Lee, Seung Eun; Park, Yong Seek

2014-01-01

59

PMA and Ionomycin Induce Glioblastoma Cell Death: Activation-Induced Cell-Death-Like Phenomena Occur in Glioma Cells  

PubMed Central

Phorbol myristate acetate (PMA) and ionomycin (Io) can induce T cell activation and proliferation. Furthermore, they stimulate activation-induced cell death (AICD) in mature lymphocytes via Fas/Fas ligand (FasL) up-regulation. In this study, we explored the influence of PMA/Io treatment on glioblastoma cells, and found that AICD-like phenomena may also occur in glioma. Using the MTT assay and cell counting, we demonstrated that treatment of PMA/Io significantly inhibited the proliferation of glioma cell lines, U87 and U251. TUNEL assays and transmission electron microscopy revealed that PMA/Io markedly induced U87 and U251 cell apoptosis. Propidium iodide staining and flow cytometry showed that treatment with PMA/Io resulted in an arrestment of cell cycle and an increase in cell death. Using real-time PCR and western blot, we found that PMA/Io up-regulated the expression of Fas and FasL at both mRNA and protein level, which confirmed that PMA/Io induced glioma cell death. Specific knockdown of NFAT1 expression by small hairpin RNA greatly reduced the PMA/Io induced cell death and apoptosis by inhibition of FasL expression. Microarray analysis showed that the expression of NFAT1 significantly correlated with the expression of Fas. The coexistence of Fas with NFAT1 in vivo provides the background for AICD-like phenomena to occur in glioma. These findings demonstrate that PMA/Io can induce glioblastoma cell death through the NFAT1-Fas/FasL pathway. Glioma-related AICD-like phenomena may provide a novel avenue for glioma treatment.

Han, Sheng; Tie, Xinxin; Meng, Lingxuan; Wang, Yunjie; Wu, Anhua

2013-01-01

60

Arecoline induced cell cycle arrest, apoptosis, and cytotoxicity to human endothelial cells.  

PubMed

Betel quid (BQ) chewing is a common oral habit in South Asia and Taiwan. BQ consumption may increase the risk of oral squamous cell carcinoma (OSCC), oral submucous fibrosis (OSF), and periodontitis as well as systemic diseases (atherosclerosis, hypertension, etc.). However, little is known about the toxic effect of BQ components on endothelial cells that play important roles for angiogenesis, carcinogenesis, tissue fibrosis, and cardiovascular diseases. EAhy 926 (EAHY) endothelial cells were exposed to arecoline, a major BQ alkaloid, for various time periods. Cytotoxicity was estimated by 3-(4, 5- dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay. The cell cycle distribution of EAHY cells residing in sub-G0/G1, G0/G1, S-, and G2/M phases was analyzed by propidium iodide staining of cellular DNA content and flow cytometry. Some EAHY cells retracted, became round-shaped in appearance, and even detached from the culture plate after exposure to higher concentrations of arecoline (> 0.4 mM). At concentrations of 0.4 and 0.8 mM, arecoline induced significant cytotoxicity to EAHY cells. At similar concentrations, arecoline induced G2/M cell cycle arrest and increased sub-G0/G1 population, a hallmark of apoptosis. Interestingly, prolonged exposure to arecoline (0.1 mM) for 12 and 21 days significantly suppressed the proliferation of EAHY cells, whereas EAHY cells showed adaptation and survived when exposed to 0.05 mM arecoline. These results suggest that BQ components may contribute to the pathogenesis of OSF and BQ chewing-related cardiovascular diseases via toxicity to oral or systemic endothelial cells, leading to impairment of vascular function. During BQ chewing, endothelial damage may be induced by areca nut components and associate with the pathogenesis of OSF, periodontitis, and cardiovascular diseases. PMID:21847594

Tseng, Shuei-Kuen; Chang, Mei-Chi; Su, Cheng-Yao; Chi, Lin-Yang; Chang, Jenny Zwei-Ching; Tseng, Wan-Yu; Yeung, Sin-Yuet; Hsu, Ming-Lun; Jeng, Jiiang-Huei

2012-08-01

61

Endothelial cell apoptosis in brown adipose tissue of rats induced by hyperinsulinaemia: the possible role of TNF-?  

PubMed Central

The aim of the present study was to investigate whether hyperinsulinaemia, which frequently precedes insulin resistance syndrome (obesity, diabetes), induces apoptosis of endothelial cells (ECs) in brown adipose tissue (BAT) and causes BAT atrophy and also, to investigate the possible mechanisms underlying ECs death. In order to induce hyperinsuli-naemia, adult male rats of Wistar strain were treated with high dose of insulin (4 U/kg, intraperitonely) for one or three days. Examinations at ultrastructural level showed apoptotic changes of ECs, allowing us to point out that changes mainly but not exclusively, occur in nuclei. Besides different stages of condensation and alterations of the chromatin, nuclear fragmentation was also observed. Higher number of ECs apoptotic nuclei in the BAT of hyperinsulinaemic rats was also confirmed by propidium iodide staining. Immunohistochemical localization of tumor necrosis factor-alpha (TNF-?) revealed increased expression in ECs of BAT of hyperinsulinaemic animals, indicating its possible role in insulin-induced apoptotic changes. These results suggest that BAT atrophy in hyperinsulinaemia is a result of endothelial and adipocyte apoptosis combined, rather than any of functional components alone.

Markelic, M.; Velickovic, K.; Golic, I.; Otasevic, V.; Stancic, A.; Jankovic, A.; Vucetic, M.; Buzadzic, B.; Korac, B.; Korac, A.

2011-01-01

62

Anti-tumor activity of safranal against neuroblastoma cells  

PubMed Central

Objective: Safranal (2,6,6-trimethyl-1,3-cyclohexadiene-1-carboxaldehyde, C10H14O) is an active ingredient in the saffron, which is used in traditional medicine, and also, the biological activity of saffron in anti-cancer is in development. It has been reported to have anti-oxidant effects, but its anti-tumor effects remain uncertain. The aim of this study was to evaluate effects of safranal on anti-tumor on neuroblastoma cells. Materials and Methods: Neuroblastoma cells were cultured and exposed to safranal (0, 10, 15, 20, 50 ?g/ml). Cell proliferation was examined using the 3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Apoptotic cells, cell cycle distribution, and sub-G1 fraction were analyzed using flow cytometric analysis after propidium iodide staining. Results: Safranal inhibited the growth of malignant cells in a dose-and time-dependent manner. The IC (50) values against the neuroblastoma cell line were determined as 11.1 and 23.3 ?g/ml after 24 and 48 h, respectively. Safranal induced a sub-G1 peak in the flow cytometry histogram of treated cells compared to control cells indicating that apoptotic cell death is involved in safranal toxicity. Conclusions: Our pre-clinical study demonstrated a neuroblastoma cell line to be highly sensitive to safranal-mediated growth inhibition and apoptotic cell death. Although the molecular mechanisms of safranal action are not yet clearly understood, it appears to have potential as a therapeutic agent.

Samarghandian, Saeed; Shoshtari, Mohammad Ebrahim; Sargolzaei, Javad; Hossinimoghadam, Hosna; Farahzad, Jabbari Azad

2014-01-01

63

Sonoporation-Induced Apoptosis and Cell Cycle Arrest: Initial Findings  

NASA Astrophysics Data System (ADS)

Sonoporation is known to be able to temporarily permeabilize cells, but during this process it may have traumatic impact on cell viability. In this work, we found that sonoporation may induce apoptosis and G2/M-phase cell cycle arrest in some cells hours after ultrasonic exposure in vitro. Methods: Suspensions of HL-60 leukemia cells were prepared (106 cells/ml), and a 1% v/v microbubble solution was added to induce sonoporation during ultrasound exposure. They were then placed 7 cm away from a 2.54 cm-diameter, 1 MHz unfocused ultrasound probe, and these samples were insonated for 1 min with ultrasound pulses (10% duty cycle, 1 kHz pulse repetition frequency). In this study, two levels of peak negative ultrasound pressure were used: 0.3 MPa and 0.5 MPa. After exposure, the cell suspensions were further incubated. They were harvested after 4 h, 8 h, 12 h and 24 h to analyze the cell-cycle distribution (sub-G1, G0/G1, S, G2/M) at these time points using propidium iodide staining and flow cytometry. Results: Some sonoporation-treated cells had undergone apoptosis by 4h, and the largest number of apoptotic cells (sub-G1 phase) was observed after 12h (0.3 MPa group: 25.0% 0.5 MPa group: 27.2%). Also, after experiencing sonoporation, some viable cells were stopped in the G2/M phase without undergoing cytokinesis, and the maximum G2/M population rise was seen after 12h (0.3 MPa group: +12.2% 0.5 MPa group: +14.7%). This was accompanied by decreases in the populations of G0/G1-phase and S-phase.

Zhong, Wenjing; Sit, Wai Hung; Wan, Jennifer M. F.; Yu, Alfred C. H.

2011-09-01

64

Thymoquinone Induces Cell Death in Human Squamous Carcinoma Cells via Caspase Activation-Dependent Apoptosis and LC3-II Activation-Dependent Autophagy  

PubMed Central

Background Thymoquinone (TQ), an active component of Nigella sativa or black cumin, elicits cytotoxic effects on various cancer cell lines. However, the anti-cancer effects of TQ on head and neck squamous cell carcinoma (HNSCC) remain unclear. Methodology/Principal Findings In this study, TQ elicited a strong cytotoxic effect on SASVO3, a highly malignant HNSCC cell line. The mechanisms of this cytotoxic effect were concentration dependent. TQ also induced apoptotic cell death in SASVO3 cells as indicated by an increase in Bax expression and caspase-9 activation. Apoptosis was possibly caspase-9 dependent because the exposure of cells to a caspase-9 inhibitor partially prevented cell death. The exposed cells also showed increased levels of autophagic vacuoles and LC3-II proteins, which are specific autophagy markers. Cell viability assay results further revealed that bafilomycin-A1, an autophagy inhibitor, enhanced TQ cytotoxicity; by comparison, Annexin V and propidium-iodide staining assay results showed that this inhibitor did not promote apoptosis. TQ treatment also increased the accumulation of autophagosomes. Using a lentivirus-shRNA system for LC3 silencing, we found that cell viability was eradicated in autophagy-defective cells. An in vivo BALB/c nude mouse xenograft model further showed that TQ administered by oral gavage reduced tumor growth via induced autophagy and apoptosis. Conclusions These findings indicated that TQ induced cell death in oral cancer cells via two distinct anti-neoplastic activities that can induce apoptosis and autophagy. Therefore, TQ is a promising candidate in phytochemical-based, mechanistic, and pathway-targeted cancer prevention strategies.

Yu, Cheng-Chia; Lai, Yi-Yeh; Chen, Pei-Ni

2014-01-01

65

Gadolinium inhibits prostate cancer PC3 cell migration and suppresses osteoclast differentiation in vitro.  

PubMed

This study examined whether Gd (gadolinium) could suppress prostate cancer cell migration and prostate cancer cell-induced osteoclast differentiation. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] and colony forming assay showed that GdCl3 treatment inhibited both cell viability and colony forming ability in PC3 cells more significantly than that in DU145 cells. Annexin/PI (propidium iodide) staining showed an increase in apoptotic death of PC3 cells in the presence of GdCl3. Wound healing and adhesion assay indicated that GdCl3 suppressed PC3 cell migration. Western-blot analysis demonstrated that GdCl3 treatment inhibited phosphorylation of ERK (extracellular-signal-regulated kinase) and p38 MAPK (mitogen-activated protein kinase). Pretreatment with PTx (pertussis toxin), a Gi protein inhibitor, conferred resistance to GdCl3-induced colony formation, ERK and p38 phosphorylation in PC3 cells. Moreover, GdCl3 inhibited PC3 cell-induced osteoclast differentiation. RT-PCR (reverse transcription-PCR) indicated that GdCl3 decreased the expression of RANKL (receptor activator of nuclear factor-?B ligand) in PC3 cells, whereas it increased the expression of OPG (osteoprotegerin) in PC3 and DU145 cells. In conclusion, the present study indicated that GdCl3 inhibited PC3 cell migration mediated by the inactivation of both ERK and p38 MAPK pathways via PTx-sensitive G proteins, and also suppressed PC3 cell-induced osteoclast differentiation via regulating the mRNA expression of OPG and RANKL. PMID:21605080

Wang, Peng; Zou, Xiao-Min; Huang, Jian; Zhang, Tian-Lan; Wang, Kui

2011-11-01

66

Airway smooth muscle proliferation and survival is not modulated by mast cells  

PubMed Central

Background Airway smooth muscle (ASM) hyperplasia and mast cell localization within the ASM bundle are important features of asthma. The cause of this increased ASM mass is uncertain and whether it is a consequence of ASM–mast cell interactions is unknown. Objective We sought to investigate ASM proliferation and survival in asthma and the effects of co-culture with mast cells. Methods Primary ASM cultures were derived from 11 subjects with asthma and 12 non-asthmatic controls. ASM cells were cultured for up to 10 days in the presence or absence of serum either alone or in co-culture with the human mast cell line-1, unstimulated human lung mast cells (HLMC) or IgE/anti-IgE-activated HLMC. Proliferation was assessed by cell counts, CFSE assay and thymidine incorporation. Apoptosis and necrosis were analysed by Annexin V/propidium iodide staining using flow cytometry and by assessment of nuclear morphology using immunofluorescence. Mast cell activation was confirmed by the measurement of histamine release. Results Using a number of techniques, we found that ASM proliferation and survival was not significantly different between cells derived from subjects with or without asthma. Co-culture with mast cells did not affect the rate of proliferation or survival of ASM cells. Conclusion Our findings do not support a role for increased airway smooth proliferation and survival as the major mechanism driving ASM hyperplasia in asthma. Cite this as: D. Kaur, F. Hollins, R. Saunders, L. Woodman, A. Sutcliffe, G. Cruse, P. Bradding and C. Brightling, Clinical & Experimental Allergy, 2010 (40) 279– 288.

Kaur, D; Hollins, F; Saunders, R; Woodman, L; Sutcliffe, A; Cruse, G; Bradding, P; Brightling, C

2010-01-01

67

Delayed Human Immunodeficiency Virus Type 1-Induced Apoptosis in Cells Expressing Truncated Forms of CD4  

PubMed Central

It has been reported previously that cells expressing a truncated form of CD4 which lacks the cytoplasmic tail of the molecule (truncation at position 402) were not sensitive to human immunodeficiency virus type 1 (HIV-1)-induced apoptosis in an acute-phase model of infection (J. Corbeil, M. Tremblay, and D. D. Richman, J. Exp. Med. 183:39–48, 1996). The role played by the cytoplasmic domain of CD4 in HIV-1-induced apoptosis was reexamined here with clones of A2.01 cells expressing different forms of CD4 and the DNA intercalant YOPRO-1 assay. Six days after virus exposure, we found evidence of apoptosis in A2.01 cells expressing the wild-type CD4 (A2.01/CD4), whereas enhanced apoptosis remained absent in cultures of A2.01/CD4.401 and A2.01/CD4.403 cells (A2.01 cells which express CD4.401 and CD4.403 molecules with truncations at positions 401 and 403, respectively). However, cell death by apoptosis measured with YOPRO-1 was found in cultures of A2.01/CD4.401 and A2.01/CD4.403 cells 15 days after virus exposure. This result was confirmed with a terminal dUTP nick end-labeling assay and propidium iodide staining. The long lag time postinfection required for apoptosis to be observed in cultures of infected cells expressing truncated forms of CD4 was due to the delayed viral replication in these cells, as shown by monitoring of the viral reverse transcriptase activity and HIV-1 p24gag antigen expression. These results emphasize the relationship between virus replication and cell death by apoptosis.

Guillerm, Claire; Coudronniere, Nolwenn; Robert-Hebmann, Veronique; Devaux, Christian

1998-01-01

68

Isoflurane Decreases Self-Renewal Capacity of Rat Cultured Neural Stem Cells  

PubMed Central

Background Isoflurane produces neural and behavioral deficits in in-vitro and in-vivo models. This study tested the hypothesis that neural stem cells are adversely affected by isoflurane such that it inhibits proliferation and kills these cells. Methods Sprague Dawley rat embryonic neural stem cells were plated onto 96 well plates and treated with 0.7%, 1.4% or 2.8% isoflurane in 21% oxygen for 6 hours and fixed either at the end of treatment or 6 or 24 hours later. Control plates received 21% oxygen under identical conditions. Cell proliferation was assessed immunocytochemically using 5-ethynyl-2’-deoxyuridine incorporation and death by propidium iodide staining, lactate dehydrogenase release, and nuclear expression of cleaved caspase 3. Data were analyzed at each concentration using an ANOVA; P < 0.05 was considered significant. Results Isoflurane did not kill neural stem cells by any measure at any time. Isoflurane 1.4% and 2.8% reduced cell proliferation based upon 5-ethynyl-2’-deoxyuridine incorporation whereas 0.7 % had no effect. At 24 h after treatment, the net effect was a 20–30% decrease in the number of cells in culture. Conclusions Isoflurane does not kill neural stem cells in vitro. However, at concentrations at and above the minimum alveolar concentrations required for general anesthesia (1.4 and 2.8%), isoflurane inhibits proliferation of these cells but has no such effect at a sub-minimum alveolar concentrations (0.7%). These data imply that dosages of isoflurane at and above minimum alveolar concentrations may reduce the pool of neural stem cells in vivo but that lower dosages may be devoid of such adverse effects.

Culley, Deborah J.; Boyd, Justin D.; Palanisamy, Arvind; Xie, Zhongcong; Kojima, Koji; Vacanti, Charles A.; Tanzi, Rudolph E.; Crosby, Gregory

2012-01-01

69

Infrasound sensitizes human glioblastoma cells to cisplatin-induced apoptosis.  

PubMed

The development of nontoxic agents that can selectively enhance the cytotoxicity of chemotherapy is an important aim in oncology. This study evaluates the ability of infrasound exposure to sensitize glioblastoma cells to cisplatin-induced apoptosis. The infrasound was delivered using a device designed to replicate the unique infrasound emissions measured during external Qigong treatments. Human glioblastoma cell lines harboring wild-type p53 (U87) or mutant p53 (U251, SF210, and SF188) were treated in culture with cisplatin, infrasound emissions, or the combination of the 2 agents. Induction of apoptosis was quantified after 24 hours by flow cytometry following annexin V/propidium iodide staining. Infrasound emissions alone, delivered at moderate levels (~10 mPa) with dynamic frequency content (7-13 Hz), did not induce apoptosis, yet combining infrasound with cisplatin augmented the induction of apoptosis by cisplatin in all the 4 cell lines (P < .05). Increased cellular uptake of the fluorophore calcein associated with infrasound exposure was quantified by fluorescence microscopy as well as flow cytometry, demonstrating increased cell membrane permeability. The 4 cell lines differed in the degree to which infrasound exposure increased calcein uptake, and these differences were predictive of the extent to which infrasound enhanced cisplatin-induced apoptosis. When exposed to specific frequencies, membrane permeabilization also appeared to be differentially responsive for each cell line, suggesting the potential for selective targeting of tissue types using isolated infrasonic frequencies. Additionally, the pressure amplitudes used in this study were several orders of magnitude less than those used in similar studies involving ultrasound and shock waves. The results of this study provide support for using infrasound to enhance the chemotherapeutic effects of cisplatin in a clinical setting. PMID:23165942

Rachlin, Kenneth; Moore, Dan H; Yount, Garret

2013-11-01

70

Cytotoxicity of anti-CD64-ricin a chain immunotoxin against human acute myeloid leukemia cells in vitro and in SCID mice.  

PubMed

Blast cells from patients with acute myeloid leukemia (AML) commonly express CD64, the high-affinity receptor for immunoglobulin G (FcgammaRI). An immunotoxin (MDX-44) was constructed by coupling humanized anti-CD64 monoclonal antibody (mAb) H22 via a bivalent linker to deglycosylated ricin A-chain (RA). Human leukemia cell lines were incubated with MDX-44 or H22/free RA. The effect of MDX-44 on the proliferation of leukemia cells was assessed by [(3)H]thymidine incorporation. In the presence of interferon-gamma (IFN-gamma), MDX-44 significantly inhibited the proliferation of CD64(+) HL-60, NB4, and U937 cells in 72-h cultures in a dose-dependent manner. The mechanism of action appeared to be the induction of apoptosis, as measured by propidium iodide staining and flow cytometry analysis. However, CD64(-) KG-1a and Daudi cells were not affected by MDX-44/IFN-gamma. Incubating HL-60 cells with MDX-44/IFN-gamma resulted in a 99% decrease in colony-forming units, whereas colony-forming cells in normal bone marrow were not significantly suppressed by such treatment. Cells from 60% of AML patients (6/10) were inhibited by MDX-44/IFN-gamma, and the inhibition was correlated with CD64 expression on these cells (r = 0.65). In a human AML model in NOD/SCID mice, MDX-44/IFN-gamma inhibited 95-98% of peritoneal exudate AML cell proliferation and 85-90% of solid leukemia masses. The effect of MDX-44 on AML cells was dependent on activation of cells by IFN-gamma. MDX-44/IFN-gamma may have value in the therapy of AML cells expressing cell-surface CD64. PMID:11276363

Zhong, R K; van de Winkel, J G; Thepen, T; Schultz, L D; Ball, E D

2001-02-01

71

Ursolic acid promotes cancer cell death by inducing Atg5-dependent autophagy.  

PubMed

Ursolic acid (UA) has been reported to possess anticancer activities. Although some of the anticancer activities of UA have been explained by its apoptosis-inducing properties, the mechanisms underlying its anticancer actions are largely unknown. We have found that UA-activated autophagy induced cytotoxicity and reduced tumor growth of cervical cancer cells TC-1 in a concentration-dependent manner. UA did not induce apoptosis of TC-1 cells in vitro as determined by annexin V/propidium iodide staining, DNA fragmentation, and Western blot analysis of the apoptosis-related proteins. We found that UA increased punctate staining of light chain 3 (LC3), which is an autophagy marker. LC3II, the processed form of LC3I which is formed during the formation of double membranes, was induced by UA treatment. These results were further confirmed by transmission electron microscopy. Wortmannin, an inhibitor of autophagy, and a small interfering RNA (siRNA) for autophagy-related genes (Atg5) reduced LC3II and simultaneously increased the survival of TC-1 cells treated with UA. We also found that LC3II was significantly reduced and that survival was increased in Atg5-/- mouse embryonic fibroblast (MEF) cells compared to Atg5+/+ MEF cells under UA treatment. However, silencing BECN1 by siRNA affected neither the expression of LC3II nor the survival of TC-1 cells under UA treatment. These results suggest that autophagy is a major mechanism by which UA kills TC-1 cells. It is Atg5 rather than BECN1 that plays a crucial role in UA-induced autophagic cell death in TC-1 cells. The activation of autophagy by UA may become a potential cancer therapeutic strategy complementing the apoptosis-based therapies. Furthermore, regulation of Atg5 may improve the efficacy of UA in cancer treatment. PMID:23737395

Leng, Shuilong; Hao, Yanli; Du, Daobing; Xie, Shanyan; Hong, Lepeng; Gu, Haigang; Zhu, Xiao; Zhang, Jinfang; Fan, Daping; Kung, Hsiang-fu

2013-12-15

72

NF-Kappa B Modulation Is Involved in Celastrol Induced Human Multiple Myeloma Cell Apoptosis  

PubMed Central

Celastrol is an active compound extracted from the root bark of the traditional Chinese medicine Tripterygium wilfordii Hook F. To investigate the effect of celastrol on human multiple myeloma cell cycle arrest and apoptosis and explore its molecular mechanism of action. The activity of celastrol on LP-1 cell proliferation was detected by WST-8 assay. The celastrol-induced cell cycle arrest was analyzed by flow cytometry after propidium iodide staining. Nuclear translocation of the nuclear factor kappa B (NF-?B) was observed by fluorescence microscope. Celastrol inhibited cell proliferation of LP-1 myeloma cell in a dose-dependent manner with IC50 values of 0.8817 µM, which was mediated through G1 cell cycle arrest and p27 induction. Celastrol induced apoptosis in LP-1 and RPMI 8226 myeloma cells in a time and dose dependent manner, and it involved Caspase-3 activation and NF-?B pathway. Celastrol down-modulated antiapoptotic proteins including Bcl-2 and survivin expression. The expression of NF-?B and IKKa were decreased after celastrol treatment. Celastrol effectively blocked the nuclear translocation of the p65 subunit and induced human multiple myeloma cell cycle arrest and apoptosis by p27 upregulation and NF-kB modulation. It has been demonstrated that the effect of celastrol on NF-kB was HO-1-independent by using zinc protoporphyrin-9 (ZnPPIX), a selective heme oxygenase inhibitor. From the results, it could be inferred that celastrol may be used as a NF-kB inhibitor to inhibit myeloma cell proliferation.

Ni, Haiwen; Zhao, Wanzhou; Kong, Xiangtu; Li, Haitao; Ouyang, Jian

2014-01-01

73

Efficient intracellular delivery of molecules with high cell viability using nanosecond-pulsed laser-activated carbon nanoparticles.  

PubMed

Conventional physical and chemical methods that efficiently deliver molecules into cells are often associated with low cell viability. In this study, we evaluated the cellular effects of carbon nanoparticles believed to emit photoacoustic waves due to nanosecond-pulse laser activation to test the hypothesis that this method could achieve efficient intracellular delivery while maintaining high cell viability. Suspensions of DU145 human prostate carcinoma cells, carbon black (CB) nanoparticles, and calcein were exposed to 5-9 ns long laser pulses of near-infrared (1064 nm wavelength) light and then analyzed by flow cytometry for intracellular uptake of calcein and cell viability by propidium iodide staining. We found that intracellular uptake increased and in some cases saturated at high levels with only small losses in cell viability as a result of increasing laser fluence, laser exposure time, and as a unifying parameter, the total laser energy. Changing interpulse spacing between 0.1 and 10 s intervals showed no significant change in bioeffects, suggesting that the effects of each pulse were independent when spaced by at least 0.1 s intervals. Pretreatment of CB nanoparticles to intense laser exposure followed by mixing with cells also had no significant effect on uptake or viability. Similar uptake and viability were seen when CB nanoparticles were substituted with India ink, when DU145 cells were substituted with H9c2 rat cardiomyoblast cells, and when calcein was substituted with FITC-dextran. The best laser exposure conditions tested led to 88% of cells with intracellular uptake and close to 100% viability, indicating that nanosecond-pulse laser-activated carbon nanoparticles can achieve efficient intracellular delivery while maintaining high cell viability. PMID:24547946

Sengupta, Aritra; Kelly, Sean C; Dwivedi, Nishant; Thadhani, Naresh; Prausnitz, Mark R

2014-03-25

74

Pathological Cyclic Strain-Induced Apoptosis in Human Periodontal Ligament Cells through the RhoGDI?/Caspase-3/PARP Pathway  

PubMed Central

Aim Human periodontal ligament (PDL) cells incur changes in morphology and express proteins in response to cyclic strain. However, it is not clear whether cyclic strain, especially excessive cyclic strain, induces PDL cell apoptosis and if so, what mechanism(s) are responsible. The aim of the present study was to elucidate the molecular mechanisms by which pathological levels of cyclic strain induce human PDL cell apoptosis. Materials and Methods Human PDL cells were obtained from healthy premolar tissue. After three to five passages in culture, the cells were subjected to 20% cyclic strain at a frequency of 0.1 Hz for 6 or 24 h using an FX-5000T system. Morphological changes of the cells were assessed by inverted phase-contrast microscopy, and apoptosis was detected by fluorescein isothiocyanate (FITC)-conjugated annexin V and propidium iodide staining followed by flow cytometry. Protein expression was evaluated by Western blot analysis. Results The number of apoptotic human PDL cells increased in a time-dependent manner in response to pathological cyclic strain. The stretched cells were oriented parallel to each another with their long axes perpendicular to the strain force vector. Cleaved caspase-3 and poly-ADP-ribose polymerase (PARP) protein levels increased in response to pathological cyclic strain over time, while Rho GDP dissociation inhibitor alpha (RhoGDI?) decreased. Furthermore, knock-down of RhoGDI? by targeted siRNA transfection increased stretch-induced apoptosis and upregulated cleaved caspase-3 and PARP protein levels. Inhibition of caspase-3 prevented stretch-induced apoptosis, but did not change RhoGDI? protein levels. Conclusion The overall results suggest that pathological-level cyclic strain not only influenced morphology but also induced apoptosis in human PDL cells through the RhoGDI?/caspase-3/PARP pathway. Our findings provide novel insight into the mechanism of apoptosis induced by pathological cyclic strain in human PDL cells.

Wang, Tingle; Song, Meng; Chen, Wantao

2013-01-01

75

Upregulation of mesencephalic astrocyte-derived neurotrophic factor in glial cells is associated with ischemia-induced glial activation  

PubMed Central

Background Mesencephalic astrocyte-derived neurotrophic factor (MANF), a 20 kDa secreted protein, was originally derived from a rat mesencephalic type-1 astrocyte cell line. MANF belongs to a novel evolutionally conserved family of neurotrophic factors along with conserved dopamine neurotrophic factor. In recent years, ever-increasing evidence has shown that both of them play a remarkable protective role against various injuries to neurons in vivo or in vitro. However, the characteristics of MANF expression in the different types of glial cells, especially in astrocytes, remain unclear. Methods The model of focal cerebral ischemia was induced by rat middle cerebral artery occlusion. Double-labeled immunofluorescent staining was used to identify the types of neural cells expressing MANF. Primarily cultured glial cells were used to detect the response of glial cells to endoplasmic reticulum stress stimulation. Propidium iodide staining was used to determine dead cells. Reverse transcription PCR and western blotting were used to detect the levels of mRNA and proteins. Results We found that MANF was predominantly expressed in neurons in both normal and ischemic cortex. Despite its name, MANF was poorly expressed in glial cells, including astrocytes, in normal brain tissue. However, the expression of MANF was upregulated in the glial cells under focal cerebral ischemia, including the astrocytes. This expression was also induced by several endoplasmic reticulum stress inducers and nutrient deprivation in cultured primary glial cells. The most interesting phenomenon observed in this study was the pattern of MANF expression in the microglia. The expression of MANF was closely associated with the morphology and state of microglia, accompanied by the upregulation of BIP/Grp78. Conclusions These results indicate that MANF expression was upregulated in the activated glial cells, which may contribute to the mechanism of ischemia-induced neural injury.

2012-01-01

76

Inhibitory effect of schisandrin B on free fatty acid-induced steatosis in L-02 cells  

PubMed Central

AIM: To investigate the effects of schisandrin B (Sch B) on free fatty acid (FFA)-induced steatosis in L-02 cells. METHODS: Cellular steatosis was induced by incubating L-02 cells with a FFA mixture (oleate and palmitate at the ratio of 2:1) for 24 h. Cytotoxicity and apoptosis were evaluated by 3-(4, 5-dmethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay and Annexin V/propidium iodide staining, respectively. Cellular total lipid was determined using a photocolorimetric method after Nile red staining, and triglyceride content was measured using an enzymatic kit. To study the effects of Sch B on steatosis, L-02 cells were treated with Sch B (1-100 ?mol/L) in the absence or presence of 1 mmol/L FFA for 24 h, and cellular total lipid and triglyceride levels were measured. To explore the mechanisms of action of Sch B in the steatotic L-02 cells, mRNA levels of several regulators of hepatic lipid metabolism including adipose differentiation related protein (ADRP), sterol regulatory element binding protein 1 (SREBP-1), peroxisome proliferator-activated receptor (PPAR)-? and PPAR-? were measured by quantitative real-time polymerase chain reaction (PCR), and protein levels of ADRP and SREBP-1 were measured by immunoblotting. RESULTS: Treatment with 1 mmol/L FFA for 24 h induced intracellular lipid accumulation in L-02 cells comparable to that in human steatotic livers without causing apparent apoptosis and cytotoxicity. Sch B mitigated cellular total lipid and triglyceride accumulations in the steatotic L-02 cells in a dose-dependent manner. Quantitative real-time PCR and Western blot analyses revealed that treatment of L-02 cells with 100 ?mol/L Sch B reverted the FFA-stimulated up-regulation of ADRP and SREBP-1. CONCLUSION: Sch B inhibits FFA-induced steatosis in L-02 cells by, at least in part, reversing the up-regulation of ADRP and SREBP-1.

Chu, Jian-Hong; Wang, Hui; Ye, Yan; Chan, Ping-Kei; Pan, Si-Yuan; Fong, Wang-Fun; Yu, Zhi-Ling

2011-01-01

77

Ent-11?-Hydroxy-15-oxo-kaur-16-en-19-oic-acid Inhibits Growth of Human Lung Cancer A549 Cells by Arresting Cell Cycle and Triggering Apoptosis  

PubMed Central

Objective To examine the apoptotic effect of ent-11?-hydroxy-15-oxo-kaur-16-en-19-oic-acid (5F), a compound isolated from Pteris semipinnata L (PsL), in human lung cancer A549 cells. Methods A549 cells were treated with 5F (0–80 ?g/ml) for different time periods. Cytotoxicity was examined using a MTT method. Cell cycle was examined using propidium iodide staining. Apoptosis was examined using Hoechst 33258 staining, enzyme-linked immunosorbent assay (ELISA) and caspase-3 activity analysis. Expression of representative apoptosis-related proteins was evaluated by Western blot analysis. Reactive oxygen species (ROS) level was measured using standard protocols. Potential interaction of 5F with cisplatin was also examined. Results 5F inhibited the proliferation of A549 cells in a concentration- and time-dependent manner. 5F increased the accumulation of cells in sub-G1 phase and arrested the cells in the G2 phase. Exposure to 5F induced morphological changes and DNA fragmentation that are characteristic of apoptosis. The expression of p21 was increased. 5F exposure also increased Bax expression, release of cytochrome c and apoptosis inducing factor (AIF), and activation of caspase-3. 5F significantly sensitized the cells to cisplatin toxicity. Interestingly, treatment with 5F did not increase ROS, but reduced ROS production induced by cisplatin. Conclusion 5F could inhibit the proliferation of A549 cells by arresting the cells in G2 phase and by inducing mitochondrial-mediated apoptosis.

Li, Li; Chen, George G; Lu, Ying-nian; Liu, Yi; Wu, Ke-feng; Gong, Xian-ling; Gou, Zhan-ping; Li, Ming-yue

2012-01-01

78

Tanacetum polycephalum (L.) Schultz-Bip. Induces Mitochondrial-Mediated Apoptosis and Inhibits Migration and Invasion in MCF7 Cells.  

PubMed

Tanacetum polycephalum (L.) Schultz-Bip (Mokhaleseh) has been traditionally used in the treatment of headaches, migraines, hyperlipidemia and diabetes. The present study aimed to evaluate its anticancer properties and possible mechanism of action using MCF7 as an in vitro model. T. polycephalum leaves were extracted using hexane, chloroform and methanol solvents and the cytotoxicity was evaluated using the MTT assay. Detection of the early apoptotic cells was investigated using acridine orange/propidium iodide staining. An Annexin-V-FITC assay was carried out to observe the phosphatidylserine externalization as a marker for apoptotic cells. High content screening was applied to analyze the cell membrane permeability, nuclear condensation, mitochondrial membrane potential (MMP) and cytochrome c release. Apoptosis was confirmed by using caspase-8, caspase-9 and DNA laddering assays. In addition, Bax/Bcl-2 expressions and cell cycle arrest also have been investigated. MTT assay revealed significant cytotoxicity of T. Polycephalum hexane extract (TPHE) on MCF7 cells with the IC50 value of 6.42 ± 0.35 µg/mL. Significant increase in chromatin condensation was also observed via fluorescence analysis. Treatment of MCF7 cells with TPHE encouraged apoptosis through reduction of MMP by down-regulation of Bcl-2 and up-regulation of Bax, triggering the cytochrome c leakage from mitochondria to the cytosol. The treated MCF7 cells significantly arrested at G1 phase. The chromatographic analysis elicited that the major active compound in this extract is 8?-hydroxy-4?,15-dihydrozaluzanin C. Taken together, the results presented in this study demonstrated that the hexane extract of T. Polycephalum inhibits the proliferation of MCF7 cells, resulting in the cell cycle arrest and apoptosis, which was explained to be through the mitochondrial pathway. PMID:24995928

Karimian, Hamed; Mohan, Syam; Moghadamtousi, Soheil Zorofchian; Fadaeinasab, Mehran; Razavi, Mahboubeh; Arya, Aditya; Kamalidehghan, Behnam; Ali, Hapipah Mohd; Noordin, Mohamad Ibrahim

2014-01-01

79

Nanosponge-encapsulated camptothecin exerts anti-tumor activity in human prostate cancer cells.  

PubMed

Camptothecin (CPT) is a potent DNA Topoisomerase I inhibitor with anti-tumor activity in hematological and solid tumors. However, it did not reach clinical use because of its poor solubility and high degrability. ?-Cyclodextrin nanosponge (CN) have been demonstrated to be able to increase the solubility of lipophilic compounds and to protect them from degradation. In the present study, we evaluated whether ?-Cyclodextrin nanosponge carriers can overcome CPT chemical disadvantages and improve the in vitro anti-tumor efficacy in the androgen refractory models of prostate cancer DU145 and PC-3 and the androgen sensitive model LNCaP. Camptothecin-loaded ?-Cyclodextrin nanosponge (CN-CPT) showed sizes of about 400 nm, spherical shape and a drug loading of 38%. HPLC analysis, performed on the cell pellet after treatment with CN-CPT revealed that CPT concentration increased over time indicating a prolonged release of the drug. Moreover, CN-CPT inhibited Topoisomerase I activity, and induced DNA damage, and cell cycle arrest more effectively than CPT, indicating that the CN-CPT formulation does not affect activity of the drug. Moreover, Annexin V/Propidium Iodide staining showed an induction of cell death at low concentrations that were not effective for CTP. LNCaP cells were less sensitive to CPT than PC-3 and DU145 cells, but CN-CPT still exerted higher anti-proliferative activity and DNA damage ability than CPT. The experiments performed in LNCaP cells demonstrated that CN-CPT treatment inhibited expression of the androgen receptor at doses where CPT was ineffective. Our results demonstrated the higher anti-tumor effectiveness of CN-CPT compare to CPT in prostate cancer cells, supporting the relevance of future studies for the use of the ?-Cyclodextrin nanosponge to deliver anticancer drugs in vivo. PMID:22917641

Minelli, Rosalba; Cavalli, Roberta; Ellis, Leigh; Pettazzoni, Piergiorgio; Trotta, Francesco; Ciamporcero, Eric; Barrera, Giuseppina; Fantozzi, Roberto; Dianzani, Chiara; Pili, Roberto

2012-11-20

80

Bradykinin Preconditioning Improves Therapeutic Potential of Human Endothelial Progenitor Cells in Infarcted Myocardium  

PubMed Central

Objectives Stem cell preconditioning (PC) is a powerful approach in reducing cell death after transplantation. We hypothesized that PC human endothelial progenitor cells (hEPCs) with bradykinin (BK) enhance cell survival, inhibit apoptosis and repair the infarcted myocardium. Methods The hEPCs were preconditioned with or without BK. The hEPCs apoptosis induced by hypoxia along with serum deprivation was determined by annexin V-fluorescein isothiocyanate/ propidium iodide staining. Cleaved caspase-3, Akt and eNOS expressions were determined by Western blots. Caspase-3 activity and vascular endothelial growth factor (VEGF) levels were assessed in hEPCs. For in vivo studies, the survival and cardiomyocytes apoptosis of transplanted hEPCs were assessed using 1,1?-dioctadecyl-3,3,3?,3?-tetramethylindodi- carbocyanine,4-chlorobenzenesul-fonate salt labeled hEPCs and TUNEL staining. Infarct size and cardiac function were measured at 10 days after transplantation, and the survival of transplanted hEPCs were visualized using near-infrared optical imaging. Results In vitro data showed a marked suppression in cell apoptosis following BK PC. The PC reduced caspase-3 activation, increased the Akt, eNOS phosphorylation and VEGF levels. In vivo data in preconditioned group showed a robust cell anti-apoptosis, reduction in infarct size, and significant improvement in cardiac function. The effects of BK PC were abrogated by the B2 receptor antagonist HOE140, the Akt and eNOS antagonists LY294002 and L-NAME, respectively. Conclusions The activation of B2 receptor-dependent PI3K/Akt/eNOS pathway by BK PC promotes VEGF secretion, hEPC survival and inhibits apoptosis, thereby improving cardiac function in vivo. The BK PC hEPC transplantation for stem cell-based therapies is a novel approach that has potential for clinical used.

Li, Yefei; Yan, Fengdi; Huang, Jie; Ma, Genshan

2013-01-01

81

Acetyl-11-keto-beta-boswellic acid induces apoptosis in HL-60 and CCRF-CEM cells and inhibits topoisomerase I.  

PubMed

Antiproliferative action of different pentacyclic triterpenes has repeatedly been reported, and some lipoxygenase inhibitors have been shown to induce cell death in various cell systems. Acetyl-11-keto-beta-boswellic acid (AKBA) is a pentacyclic triterpene that inhibits 5-lipoxygenase in a selective, enzymedirected, nonredox, and noncompetitive manner. To investigate a possible effect of AKBA on leukemic cell growth, proliferation of HL-60 and CCRF-CEM cells was assayed in the presence of AKBA and a structural analog without effect on 5-lipoxygenase, amyrin. Cell counts and [3H]thymidine incorporation were significantly reduced in a dose-dependent manner in the presence of AKBA (IC50 = 30 microM) but not amyrin. An additive effect of AKBA with the crosslinking of the CD95 receptor was also observed. Flow cytometric analysis of propidium iodide-stained cells indicated that the cells underwent apoptosis. This was confirmed by flow cytometric detection of sub-G1 peaks in AKBA-treated cells and by DNA laddering. However, because HL-60 and CCRF-CEM do not express 5-lipoxygenase mRNA constitutively, a mechanism distinct from inhibition of 5-lipoxygenase must account for the effect of AKBA. In a DNA relaxation assay with phiX174RF DNA, AKBA inhibited topoisomerase I from calf thymus at concentrations of >/=10 microM. A semiquantitative cDNA polymerase chain reaction approach was used to estimate the relative level of expression of topoisomerases in both cell lines. The data suggest that induction of apoptosis in HL-60 and CCRF-CEM by AKBA may be due to inhibition of topoisomerase I in these cells. PMID:9918566

Hoernlein, R F; Orlikowsky, T; Zehrer, C; Niethammer, D; Sailer, E R; Simmet, T; Dannecker, G E; Ammon, H P

1999-02-01

82

Diallyl trisulfide induces apoptosis in human breast cancer cells through ROS-mediated activation of JNK and AP-1.  

PubMed

Multiple lines of evidence support an inverse association between consumption of garlic and the risk of cancer. Chemopreventive effects of garlic have been attributed to its oil-soluble sulfur ingredients, such as diallyl sulfide (DAS), diallyl disulfide (DADS), and diallyl trisulfide (DATS), but their underlying molecular mechanisms remain largely unresolved. In the present study, we found that DATS showed the most potent anti-proliferative effects in human breast cancer MCF-7 cells. MCF-7 cells treated with DATS underwent apoptotic death as revealed by a progressive increase in the proportion of the sub-G0/G1 cell population and a typical pattern of annexin V/propidium iodide staining. DATS induced phosphorylation of the antiapoptotic Bcl-2 and proteolytic cleavage of poly(ADP-ribose)polymerase (PARP) in MCF-7 cells. DATS treatment activated c-Jun N-terminal kinase (JNK). DATS-induced apoptosis was blunted in MCF-7 cells treated with a specific JNK inhibitor SP600125 or transiently transfected with dominant negative JNK. DATS treatment resulted in accumulation of reactive oxygen species (ROS). DATS-induced apoptosis as well as activation of JNK was abrogated by N-acetyl-l-cysteine (NAC). Furthermore, DATS induced phosphorylation and expression of c-Jun, which were attenuated by NAC. MCF-7 cells treated with DATS also exhibited increased DNA binding activity of AP-1, which was blocked by NAC and the JNK inhibitor. Proteolytic cleavage of PARP induced by DATS was abrogated in the cells transfected with c-jun siRNA. Oral administration of 5?mol/kg DATS to female Balb/c mice inhibited the growth of human MCF-7 cell tumor xenografts. These results suggest that DATS-induced apoptosis is mediated through ROS generation and subsequent activation of JNK and AP-1. PMID:22981381

Na, Hye-Kyung; Kim, Eun-Hee; Choi, Min-Ah; Park, Jong-Min; Kim, Do-Hee; Surh, Young-Joon

2012-11-15

83

Modulation of Na(+)-K(+)-ATPase cell surface abundance through structural determinants on the ?1-subunit.  

PubMed

Through their ion-pumping and non-ion-pumping functions, Na(+)-K(+)-ATPase protein complexes at the plasma membrane are critical to intracellular homeostasis and to the physiological and pharmacological actions of cardiotonic steroids. Alteration of the abundance of Na(+)-K(+)-ATPase units at the cell surface is one of the mechanisms for Na(+)-K(+)-ATPase regulation in health and diseases that has been closely examined over the past few decades. We here summarize these findings, with emphasis on studies that explicitly tested the involvement of defined regions or residues on the Na(+)-K(+)-ATPase ?1 polypeptide. We also report new findings on the effect of manipulating Na(+)-K(+)-ATPase membrane abundance by targeting one of these defined regions: a dileucine motif of the form [D/E]XXXL[L/I]. In this study, opossum kidney cells stably expressing rat ?1 Na(+)-K(+)-ATPase or a mutant where the motif was disrupted (?1-L499V) were exposed to 30 min of substrate/coverslip-induced-ischemia followed by reperfusion (I-R). Biotinylation studies suggested that I-R itself acted as an inducer of Na(+)-K(+)-ATPase internalization and that surface expression of the mutant was higher than the native Na(+)-K(+)-ATPase before and after ischemia. Annexin V/propidium iodide staining and lactate dehydrogenase release suggested that I-R injury was reduced in ?1-L499V-expressing cells compared with ?1-expressing cells. Hence, modulation of Na(+)-K(+)-ATPase cell surface abundance through structural determinants on the ?-subunit is an important mechanism of regulation of cellular Na(+)-K(+)-ATPase in various physiological and pathophysiological conditions, with a significant impact on cell survival in face of an ischemic stress. PMID:21048163

Pierre, Sandrine V; Belliard, Aude; Sottejeau, Yoann

2011-01-01

84

? 1-antitrypsin enhances insulin secretion and prevents cytokine-mediated apoptosis in pancreatic ?-cells.  

PubMed

?1-antitrypsin (AAT) is a serine protease inhibitor, which recently has been shown to prevent type 1 diabetes (T1D) development, to prolong islet allograft survival and to inhibit ?-cell apoptosis in vivo. It has also been reported that T1D patients have significantly lower plasma concentrations of AAT suggesting the potential role of AAT in the pathogenesis of T1D. We have investigated whether plasma-purified AAT can affect ?-cell function in vitro. INS-1E cells or primary rat pancreatic islets were used to study the effect of AAT on insulin secretion after glucose, glucagon-like peptide-1 (GLP-1) and forskolin stimulation and on cytokine-mediated apoptosis. The secreted insulin and total cyclic AMP (cAMP) were determined using radioimmunoassay and apoptosis was evaluated by propidium iodide staining followed by FACS analysis. We found that AAT increases insulin secretion in a glucose-dependent manner, potentiates the effect of GLP-1 and forskolin and neutralizes the inhibitory effect of clonidine on insulin secretion. The effect of AAT on insulin secretion was accompanied by an increase in cAMP levels. In addition, AAT protected INS-1E cells from cytokine-induced apoptosis. Our findings show that AAT stimulates insulin secretion and protects ?-cells against cytokine-induced apoptosis, and these effects of AAT seem to be mediated through the cAMP pathway. In view of these novel findings we suggest that AAT may represent a novel anti-inflammatory compound to protect ?-cells under the immunological attack in T1D but also therapeutic strategy to potentiate insulin secretion in type 2 diabetes (T2D). PMID:21099312

Kalis, Martins; Kumar, Rajesh; Janciauskiene, Sabina; Salehi, Albert; Cilio, Corrado M

2010-01-01

85

Protective Effect of Heme Oxygenase-1 on High Glucose-Induced Pancreatic ?-Cell Injury  

PubMed Central

Background Glucose toxicity that is caused by chronic exposure to a high glucose concentration leads to islet dysfunction and induces apoptosis in pancreatic ?-cells. Heme oxygenase-1 (HO-1) has been identified as an anti-apoptotic and cytoprotective gene. The purpose of this study is to investigate whether HO-1 up-regulation when using metalloprotophyrin (cobalt protoporphyrin, CoPP) could protect pancreatic ?-cells from high glucose-induced apoptosis. Methods Reverse transcription-polymerase chain reaction was performed to analyze the CoPP-induced mRNA expression of HO-1. Cell viability of INS-1 cells cultured in the presence of CoPP was examined by acridine orange/propidium iodide staining. The generation of intracellular reactive oxygen species (ROS) was measured using flow cytometry. Glucose stimulated insulin secretion (GSIS) was determined following incubation with CoPP in different glucose concentrations. Results CoPP increased HO-1 mRNA expression in both a dose- and time-dependent manner. Overexpression of HO-1 inhibited caspase-3, and the number of dead cells in the presence of CoPP was significantly decreased when exposed to high glucose conditions (HG). CoPP also decreased the generation of intracellular ROS by 50% during 72 hours of culture with HG. However, decreased GSIS was not recovered even in the presence of CoPP. Conclusion Our data suggest that CoPP-induced HO-1 up-regulation results in protection from high glucose-induced apoptosis in INS-1 cells; however, glucose stimulated insulin secretion is not restored.

Lee, Eun-Mi; Lee, Young-Eun; Lee, Esder; Ryu, Gyeong Ryul; Ko, Seung-Hyun; Moon, Sung-Dae; Song, Ki-Ho

2011-01-01

86

Reversal of P-glycoprotein-mediated multidrug resistance in human hepatoma cells by hedyotiscone A, a compound isolated from Hedyotis corymbosa.  

PubMed

Multidrug resistance is a major problem in hepatocellular carcinoma. Hedyotiscone A, a compound isolated from Chinese herbal medicine Hedyotis corymbosa (HC, family Rubiaceae), was used as the chemical marker to distinguish between HC and an anticancer herb Hedyotis diffusa (HD) in our previous study. The present study aimed to investigate whether HA exhibited antiproliferative activities in multidrug-resistant hepatocellular carcinoma cells R-HepG2 and the parental cells HepG2 using MTT assay and [(3)H]-thymidine incorporation assay. Our results showed that HA could significantly inhibit cell proliferation in R-HepG2 and HepG2 (IC(50)?=?43.7 and 56.3 µg/mL, respectively), but not in normal human liver cells WRL-68 (IC(50) > 100 µg/mL) cells, suggesting its selective cytotoxic effects. Besides, HA induced apoptosis in R-HepG2 cells, as confirmed by annexin-V & propidium iodide staining, and DNA fragmentation assay. The caspase cascade was activated as shown by a significant increase of cleaved caspases-3, -7 and -9 in HA-treated R-HepG2 cells. The activities and protein expression of P-glycoprotein as well as mRNA expression of MDR1 were also decreased in HA-treated R-HepG2 cells. Our study demonstrated for the first time the antiproliferative activities of hedyotiscone A in multidrug-resistant R-HepG2 cells. The findings revealed the potential of this compound in treating multidrug-resistant tumor. PMID:22352391

Yue, Grace Gar-Lee; Kin-Ming Lee, Julia; Cheng, Ling; Chung-Lap Chan, Ben; Jiang, Lei; Fung, Kwok-Pui; Leung, Ping-Chung; Bik-San Lau, Clara

2012-06-01

87

Effects of Thymol on Ca²? Homeostasis and Apoptosis in MDCK Renal Tubular Cells.  

PubMed

Thymol is a natural essential oil present in many plants and has many different effects in various cell types. However, the effect of thymol on the physiology of MDCK renal tubular cells is unknown. The action of the phytochemical thymol on cytosolic Ca²? concentrations ([Ca²?]i) and apoptosis in Madin-Darby canine kidney (MDCK) renal tubular cells was explored. Fura-2, a Ca²?-sensitive fluorescent dye, was used to assess [Ca²?]i. Thymol at concentrations of 200-500 ?M caused a [Ca²?]i rise in a concentration-dependent manner. Removal of extracellular Ca²? partially reduced the effects of thymol. Thymol-induced Ca²? entry was inhibited by nifedipine, econazole, SK&F96365 and protein kinase C modulators. In a Ca²?-free medium, treatment with the endoplasmic reticulum Ca²? pump inhibitor thapsigargin inhibited thymol-induced [Ca²?]i increases. Treatment with thymol also inhibited thapsigargin-induced [Ca²?]i rise. Thymol killed cells at concentrations of 300-500 ?M in a concentrationdependent fashion. Chelating cytosolic Ca²? with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/AM (BAPTA/AM) did not prevent thymol cytotoxicity. Thymol (400 and 500 ?M) induced apoptosis detected by using Annexin V/propidium iodide staining. At 400 or 500 ?M, thymol increased levels of reactive oxygen species. Together, in MDCK cells, thymol induced a [Ca²?]i rise by inducing Ca²? release from the endoplasmic reticulum and Ca²? entry via protein kinase C-sensitive store-operated Ca²? channels. Our data suggest that thymol-induced apoptosis might involve reactive oxygen species (ROS) production. PMID:24694198

Chang, Hong-Tai; Chou, Chiang-Ting; Liang, Wei-Zhe; Lu, Ti; Kuo, Daih-Huang; Shieh, Pochuen; Ho, Chin-Man; Jan, Chung-Ren

2014-04-30

88

FoxP3 provides competitive fitness to CD4?CD25? T cells in leprosy patients via transcriptional regulation.  

PubMed

Leprosy is a chronic infectious disease caused by Mycobacterium leprae. FoxP3 have been shown to have important implications in various diseases. The present study describes the mechanism of action of FoxP3 in CD4?CD25? T cells derived from leprosy patients. Increased molecular interactions of FoxP3 with histone deacetylases 7/9 in the nucleus of CD4?CD25? T cells derived from borderline lepromatous leprosy/lepromatous leprosy (BL/LL) patients were found to be responsible for FoxP3-driven immune suppression activities during the progression of leprosy. Further, downregulation of CTLA-4 and CD25 genes in siFoxP3-treated PBMCs derived from BL/LL patients elucidated the transcription-activating nature of FoxP3. This observation was supported by direct binding of FoxP3 to the promoter region of the CTLA-4 and CD25 genes, and FoxP3's molecular interaction with histone acetyl transferases. The study also revealed that the increased expression of miR155 in CD4?CD25? cells from BL/LL governs the competitive fitness of these cells. Again, reduced Annexin V & propidium iodide staining and Nur77 expression, and concomitantly increased Ki-67 positivity suggested that CD4?CD25? cells derived from BL/LL patients are more competitively fit than those from borderline tuberculoid leprosy/tuberculoid leprosy and healthy controls. Taken together, the study shows the orchestration of FoxP3 leading to competitive fitness of Treg cells in leprosy. PMID:24214631

Kumar, Sudhir; Naqvi, Raza Ali; Ali, Riyasat; Rani, Richa; Khanna, Neena; Rao, D N

2014-02-01

89

Pulmonary endothelial cell activation during experimental acute kidney injury.  

PubMed

Acute kidney injury (AKI) leads to increased lung microvascular permeability, leukocyte infiltration, and upregulation of soluble inflammatory proteins in rodents. Most work investigating connections between AKI and pulmonary dysfunction, however, has focused on characterizing whole lung tissue changes associated with AKI. Studies at the cellular level are essential to understanding the molecular basis of lung changes during AKI. Given that the pulmonary microvascular barrier is functionally abnormal during AKI, we hypothesized that AKI induces a specific proinflammatory and proapoptotic lung endothelial cell (EC) response. Four and 24 h after kidney ischemia/reperfusion injury or bilateral nephrectomy, murine pulmonary ECs were isolated via tissue digestion followed by magnetic bead sorting. Purified lung ECs were analyzed for changes in mRNA expression using real-time SuperArray polymerase chain reaction analysis of genes related to EC function. In parallel experiments, confluent rat pulmonary microvascular ECs were treated with AKI or control serum to evaluate functional cellular alterations. Immunocytochemistry and FACS analysis of Annexin V/propidium iodide staining were used to evaluate cytoskeletal changes and promotion of apoptosis. Isolated murine pulmonary ECs exhibited significant changes in the expression of gene products related to inflammation, vascular reactivity, and programmed cell death. Further experiments using an in vitro rat pulmonary microvascular EC system revealed that AKI serum induced functional cellular changes related to apoptosis, including structural actin alterations and phosphatidylserine translocation. Analysis and segregation of both upregulated and downregulated genes into functional roles suggest that these transcriptional events likely participate in the transition to an activated proinflammatory and proapoptotic EC phenotype during AKI. Further mechanistic analysis of EC-specific events in the lung during AKI might reveal potential novel therapeutic targets for the deleterious kidney-lung crosstalk in the critically ill patient. PMID:21368714

Feltes, Carolyn M; Hassoun, Heitham T; Lie, Mihaela L; Cheadle, Chris; Rabb, Hamid

2011-08-01

90

Autophagy limits the cytotoxic effects of the AKT inhibitor AZ7328 in human bladder cancer cells  

PubMed Central

Background: Mutations that activate the PI3K/AKT/mTOR pathway are relatively common in urothelial (bladder) cancers, but how these pathway mutations affect AKT dependency is not known. We characterized the relationship between AKT pathway mutational status and sensitivity to the effects of the selective AKT kinase inhibitor AZ7328 using a panel of 12 well-characterized human bladder cancer cell lines. Methods: Sequenome DNA sequencing was performed to identify mutations in a panel of 12 urothelial cancer cell lines. Drug-induced proliferative inhibition and apoptosis were quantified using MTT assays and propidium iodide staining with FACS analyses. Protein activation via phosphorylation was measured by immunoblotting. Autophagy was measured by LC3 immunofluorescence and immunoblotting. Results: AZ7328 inhibited proliferation and AKT substrate phosphorylation in a concentration-dependent manner but had minimal effects on apoptosis. Proliferative inhibition correlated loosely with the presence of activating PIK3CA mutations and was strengthened in combination with the mTOR inhibitor rapamycin. AZ7328 induced autophagy in some of the lines, and in the cells exposed to a combination of AZ7328 and chemical autophagy inhibitors apoptosis was induced. Conclusions: The cytostatic effects of AZ7328 correlate with PIK3CA mutations and are greatly enhanced by dual pathway inhibition using an mTOR inhibitor. Furthermore, AZ7328 can interact with autophagy inhibitors to induce apoptosis in some cell lines. Overall, our results support the further evaluation of combinations of PI3K/AKT/mTOR pathway and autophagy inhibitors in pre-clinical in vivo models and ultimately in patients with PIK3CA mutant bladder cancers.

Dickstein, Rian J.; Nitti, Giovanni; Dinney, Colin P.; Davies, Barry R.; Kamat, Ashish M.; McConkey, David J.

2012-01-01

91

Detecting inactivated endospores in fluorescence microscopy using propidium monoazide  

NASA Astrophysics Data System (ADS)

The differentiation between living and dead bacterial endospores is crucial in many research areas of microbiology. The identification of inactivated, non-pathogenic Bacillus anthracis spores is one reason why improvement of decontamination protocols is so desirable. Another field interested in spore viability is planetary protection, a sub-discipline of astrobiology that estimates the bioburden of spacecraft prior to launch in order to avoid interplanetary cross-contamination. We developed a dedicated, rapid and cost-effective method for identifying bacterial endospores that have been inactivated and consequently show a compromised spore wall. This novel protocol is culture-independent and is based on fluorescence microscopy and propidium monoazide (PMA) as a fluorescent marker, which is suggested to bind to DNA of spores with compromised spore coat, cortex and membranes based on our results. Inactivated preparations (treated with wet heat, irradiation, ultracentrifugation) showed a significant increase in spores that were PMA stained in their core; moreover, Bacillus atrophaeus, Bacillus safensis and Geobacillus stearothermophilus seemed to be best suited for this technique, as the spore cores of all these endospores could be positively stained after inactivation. Lastly, we describe an additional counter-staining protocol and provide an example of the application of the coupled staining methods for planetary protection purposes. The introduction of this novel protocol is expected to provide an initial insight into the various possible future applications of PMA as a non-viability marker for spores in, for example, B. anthracis-related studies, food microbiology and astrobiology.

Probst, Alexander; Mahnert, Alexander; Weber, Christina; Haberer, Klaus; Moissl-Eichinger, Christine

2012-04-01

92

Effect of diallyl disulfide on Ca2+ movement and viability in PC3 human prostate cancer cells.  

PubMed

The effect of diallyl disulfide (DADS) on cytosolic Ca(2+) concentrations ([Ca(2+)](i)) and viability in PC3 human prostate cancer cells is unclear. This study explored whether DADS changed [Ca(2+)](i) in PC3 cells by using fura-2. DADS at 50-1000 ?M increased [Ca(2+)](i) in a concentration-dependent manner. The signal was reduced by removing Ca(2+). DADS-induced Ca(2+) influx was not inhibited by nifedipine, econazole, SK&F96365, and protein kinase C modulators; but was inhibited by aristolochic acid. In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitors thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) nearly abolished DADS-induced [Ca(2+)](i) rise. Incubation with DADS inhibited thapsigargin or BHQ-induced [Ca(2+)](i) rise. Inhibition of phospholipase C with U73122 did not alter DADS-induced [Ca(2+)](i) rise. At 500-1000 ?M, DADS killed cells in a concentration-dependent manner. The cytotoxic effect of DADS was partly reversed by prechelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Propidium iodide staining suggests that DADS (500 ?M) induced apoptosis in a Ca(2+)-independent manner. Annexin V/PI staining further shows that 10 ?M and 500 ?M DADS both evoked apoptosis. DADS also increased reactive oxygen species (ROS) production. Collectively, in PC3 cells, DADS induced [Ca(2+)](i) rise probably by causing phospholipase C-independent Ca(2+) release from the endoplasmic reticulum and Ca(2+) influx via phospholipase A(2)-sensitive channels. DADS induced Ca(2+)-dependent cell death, ROS production, and Ca(2+)-independent apoptosis. PMID:21232596

Chen, Wei-Chuan; Hsu, Shu-Shong; Chou, Chiang-Ting; Kuo, Chun-Chi; Huang, Jong-Khing; Fang, Yi-Chien; Chang, Hong-Tai; Tsai, Jeng-Yu; Liao, Wei-Chuan; Wang, Being-Whey; Shieh, Pochuen; Kuo, Daih-Huang; Jan, Chung-Ren

2011-04-01

93

A plasmacytoid dendritic cell (CD123+/CD11c-) based assay system to predict contact allergenicity of chemicals.  

PubMed

A predictive allergenicity test system for assessing the contact allergenicity of chemicals is needed by the cosmetic and pharmaceutical industry to monitor product safety in the marketplace. Development of such non-animal alternative assay systems for skin sensitization and hazard identification has been pursued by policy makers and regulatory agencies. We investigated whether phenotypic and functional changes to a subset of dendritic cells (DC), plasmacytoid DC (pDC), could be used to identify contact allergens. To achieve this goal, normal human DC were generated from CD34+ progenitor cells and cryopreserved. Frozen DC were thawed and the pDC fraction (CD123+/CD11c-) was harvested using FACS sorting. The pDC were cultured, expanded, and exposed to chemical allergens (N=26) or non-allergens (N=22). Concentrations of each chemical that resulted in >50% viability was determined using FACS analysis of propidium iodide stained cells using pDC from 2 to 5 donors. Expression of the surface marker, CD86, which has been implicated in dendritic cell maturation, was used as a marker of allergenicity. CD86 expression increased (> or =1.5-fold) for 25 of 26 allergens (sensitivity=96%) but did not increase for 19 of 22 non-allergens (specificity=86%). In a direct comparison to historical data for the regulatory approved, mouse local lymph node assay (LLNA) for 23 allergens and 22 non-allergens, the pDC method had sensitivity and specificity of 96% and 86%, respectively, while the sensitivity and specificity of the LLNA assay was 83% and 82%, respectively. In conclusion, CD86 expression in pDC appears to be a sensitive and specific indicator to identify contact allergenicity. Such an assay method utilizing normal human cells will be useful for high throughput screening of chemicals for allergenicity. PMID:19665512

Ayehunie, Seyoum; Snell, Maureen; Child, Matthew; Klausner, Mitchell

2009-10-01

94

Anticancer Activity of Certain Herbs and Spices on the Cervical Epithelial Carcinoma (HeLa) Cell Line.  

PubMed

Acetone extracts of selected plant species were evaluated for their in vitro cytotoxicity against a noncancerous African green monkey kidney (Vero) cell line and an adenocarcinoma cervical cancer (HeLa) cell line. The plants studied were Origanum vulgare L. (Oregano), Rosmarinus officinalis L. (Upright and ground cove rosemary), Lavandula spica L. (Lavender), Laurus nobilis L. (Bay leaf), Thymus vulgaris L. (Thyme), Lavandula x intermedia L. (Margaret Roberts Lavender), Petroselinum crispum Mill. (Curly leaved parsley), Foeniculum vulgare Mill. (Fennel), and Capsicum annuum L. (Paprika). Antioxidant activity was determined using a quantitative DPPH (1,1-diphenyl-2-picryl hydrazyl) assay. The rosemary species exhibited effective radical scavenging capacity with 50% inhibitory concentration (IC(50)) of 3.48 ± 0.218??g/mL and 10.84 ± 0.125??g/mL and vitamin C equivalents of 0.351?g and 1.09?g for McConnell's Blue and Tuscan Blue, respectively. Cytotoxicity was measured using XTT (Sodium 3'-[1-(phenyl amino-carbonyl)-3,4-tetrazolium]-bis-[4-methoxy-6-nitro] benzene sulfonic acid hydrate) colorimetric assay. Only L. nobilis and O. vulgare exhibited pronounced effects on the HeLa cell line. Dose-dependent studies revealed IC(50) of 34.46 ± 0.48??g/mL and 126.3 ± 1.00??g/mL on the HeLa cells and on the Vero cells 124.1??g/mL ± 18.26 and 163.8??g/mL ± 2.95 for L. nobilis and O. vulgare, respectively. Light (eosin and haematoxylin staining) and confocal microscopy (Hoechst 33342, acridine orange, and propidium iodide staining) were used to evaluate the cytotoxic mechanism of action for L. nobilis and O. vulgare. PMID:22649474

Berrington, Danielle; Lall, Namrita

2012-01-01

95

The D1 dopamine receptor agonist, SKF83959, attenuates hydrogen peroxide-induced injury in RGC-5 cells involving the extracellular signal-regulated kinase/p38 pathways  

PubMed Central

Purpose Oxidative stress is widely implicated in the death of retinal ganglion cells associated with various optic neuropathies. Agonists of the dopamine D1 receptor have recently been found to be potentially neuroprotective against oxidative stress–induced injury. The goal of this study was to investigate whether SKF83959, a next-generation high-affinity D1 receptor agonist, could protect retinal ganglion cell 5 (RGC-5) cells from H2O2-induced damage and the molecular mechanism involved. Methods We examined expression of the D1 receptor in RGC-5 cells with reverse-transcription–PCR and immunoblotting and assessed neuroprotection using propidium iodide staining and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In addition, we monitored the activation and involvement of members of mitogen-activated protein kinase family, extracellular signal-regulated kinase (ERK), p38 and c-Jun NH2-terminal kinase, with western blot and specific inhibitors. Results We found that the D1 receptor was expressed in RGC-5 cells, but the sequence analysis suggested this cell line is from mouse and not rat origin. SKF83959 exhibited a remarkable neuroprotective effect on H2O2-damaged RGC-5 cells, which was blocked by the specific D1 receptor antagonist, SCH23390. ERK and p38 were activated by SKF83959, and pretreatment with their inhibitors U0126 and SB203580, respectively, significantly blunted the SKF83959-induced cytoprotection. However, the specific c-Jun NH2-terminal kinase inhibitor, SP600125, had no effect on the SKF83959-induced protection. Conclusions We conclude that SKF83959 attenuates hydrogen peroxide–induced injury in RGC-5 cells via a mechanism involving activation of the ERK and p38 pathways and the D1 receptor is a potential molecular target for developing neuroprotective drugs.

Li, Guang-Yu; Li, Ting; Fan, Bin; Zheng, Yong-Chen

2012-01-01

96

Postexposure application of Fas receptor small-interfering RNA to suppress sulfur mustard-induced apoptosis in human airway epithelial cells: implication for a therapeutic approach.  

PubMed

Sulfur mustard (SM) is a vesicant chemical warfare and terrorism agent. Besides skin and eye injury, respiratory damage has been mainly responsible for morbidity and mortality after SM exposure. Previously, it was shown that suppressing the death receptor (DR) response by the dominant-negative Fas-associated death domain protein prior to SM exposure blocked apoptosis and microvesication in skin. Here, we studied whether antagonizing the Fas receptor (FasR) pathway by small-interfering RNA (siRNA) applied after SM exposure would prevent apoptosis and, thus, airway injury. Normal human bronchial/tracheal epithelial (NHBE) cells were used as an in vitro model with FasR siRNA, FasR agonistic antibody CH11, and FasR antagonistic antibody ZB4 as investigative tools. In NHBE cells, both SM (300 µM) and CH11 (100 ng/ml) induced caspase-3 activation, which was inhibited by FasR siRNA and ZB4, indicating that SM-induced apoptosis was via the Fas response. FasR siRNA inhibited SM-induced caspase-3 activation when added to NHBE cultures up to 8 hours after SM. Results using annexin V/propidium iodide-stained cells showed that both apoptosis and necrosis were involved in cell death due to SM; FasR siRNA decreased both apoptotic and necrotic cell populations. Bronchoalveolar lavage fluid (BALF) of rats exposed to SM (1 mg/kg, 50 minutes) revealed a significant (P < 0.05) increase in soluble Fas ligand and active caspase-3 in BALF cells. These findings suggest an intervention of Fas-mediated apoptosis as a postexposure therapeutic strategy with a therapeutic window for SM inhalation injury and possibly other respiratory diseases involving the Fas response. PMID:23129783

Keyser, Brian M; Andres, Devon K; Nealley, Eric; Holmes, Wesley W; Benton, Betty; Paradiso, Danielle; Appell, Ashley; Carpin, Chris; Anderson, Dana R; Smith, William J; Ray, Radharaman

2013-01-01

97

Crystal Structure of Crataeva tapia Bark Protein (CrataBL) and Its Effect in Human Prostate Cancer Cell Lines  

PubMed Central

A protein isolated from the bark of Crataeva tapia (CrataBL) is both a Kunitz-type plant protease inhibitor and a lectin. We have determined the amino acid sequence and three-dimensional structure of CrataBL, as well as characterized its selected biochemical and biological properties. We found two different isoforms of CrataBL isolated from the original source, differing in positions 31 (Pro/Leu); 92 (Ser/Leu); 93 (Ile/Thr); 95 (Arg/Gly) and 97 (Leu/Ser). CrataBL showed relatively weak inhibitory activity against trypsin (Kiapp?=?43 µM) and was more potent against Factor Xa (Kiapp?=?8.6 µM), but was not active against a number of other proteases. We have confirmed that CrataBL contains two glycosylation sites and forms a dimer at high concentration. The high-resolution crystal structures of two different crystal forms of isoform II verified the ?-trefoil fold of CrataBL and have shown the presence of dimers consisting of two almost identical molecules making extensive contacts (?645 Å2). The structure differs from those of the most closely related proteins by the lack of the N-terminal ?-hairpin. In experiments aimed at investigating the biological properties of CrataBL, we have shown that addition of 40 µM of the protein for 48 h caused maximum growth inhibition in MTT assay (47% of DU145 cells and 43% of PC3 cells). The apoptosis of DU145 and PC3 cell lines was confirmed by flow cytometry using Annexin V/FITC and propidium iodide staining. Treatment with CrataBL resulted in the release of mitochondrial cytochrome c and in the activation of caspase-3 in DU145 and PC3 cells.

Ferreira, Joana Gasperazzo; Silva, Mariana Cristina Cabral; Silva-Lucca, Rosemeire Aparecida; Mentele, Reinhard; Paredes-Gamero, Edgar Julian; Bertolin, Thiago Carlos; dos Santos Correia, Maria Tereza; Paiva, Patricia Maria Guedes; Gustchina, Alla; Wlodawer, Alexander; Oliva, Maria Luiza Vilela

2013-01-01

98

Differential role of thiopurine methyltransferase in the cytotoxic effects of 6-mercaptopurine and 6-thioguanine on human leukemia cells.  

PubMed

The thiopurine antimetabolites, 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) are inactive pro-drugs that require intracellular metabolism for activation to cytotoxic metabolites. Thiopurine methyltransferase (TPMT) is one of the most important enzymes in this process metabolizing both 6-MP and 6-TG to different methylated metabolites including methylthioinosine monophosphate (meTIMP) and methylthioguanosine monophosphate (meTGMP), respectively, with different suggested pharmacological and cytotoxic properties. While meTIMP is a potent inhibitor of de novo purine synthesis (DNPS) and significantly contributes to the cytotoxic effects of 6-MP, meTGMP, does not add much to the effects of 6-TG, and the cytotoxicity of 6-TG seems to be more dependent on incorporation of thioguanine nucleotides (TGNs) into DNA rather than inhibition of DNPS. In order to investigate the role of TPMT in metabolism and thus, cytotoxic effects of 6-MP and 6-TG, we knocked down the expression of the gene encoding the TPMT enzyme using specifically designed small interference RNA (siRNA) in human MOLT4 leukemia cells. The knock-down was confirmed at RNA, protein, and enzyme function levels. Apoptosis was determined using annexin V and propidium iodide staining and FACS analysis. The results showed a 34% increase in sensitivity of MOLT4 cells to 1?M 6-TG after treatment with TPMT-targeting siRNA, as compared to cells transfected with non-targeting siRNA, while the sensitivity of the cells toward 6-MP was not affected significantly by down-regulation of the TPMT gene. This differential contribution of the enzyme TPMT to the cytotoxicity of the two thiopurines is probably due to its role in formation of the meTIMP, the cytotoxic methylated metabolite of 6-MP, while in case of 6-TG methylation by TPMT substantially deactivates the drug. PMID:23811272

Karim, Hazhar; Ghalali, Aram; Lafolie, Pierre; Vitols, Sigurd; Fotoohi, Alan K

2013-07-26

99

Neutrophil cell death, activation and bacterial infection in cystic fibrosis  

PubMed Central

Background: Cystic fibrosis (CF) is characterised by chronic endobronchial bacterial infection and neutrophil mediated inflammation. Neutrophil apoptosis is essential for the resolution of inflammation. This study assessed the relationship between levels of neutrophil apoptosis and sputum microbiology in matched clinically stable patients with CF. Methods: Sputum was induced from 34 patients (nine with no Gram negative infection, 10 colonised with Pseudomonas aeruginosa, 10 with Burkholderia cenocepacia, and five with other infections). Apoptotic neutrophils measured by flow cytometric Annexin V/propidium iodide staining and morphology were similar in all groups. Results: Patients infected with P aeruginosa or B cenocepacia had a significantly lower percentage of viable neutrophils in the sputum than those with no Gram negative infection (Kruskal-Wallis p = 0.01, median (interquartile range (IQR)) 14.2% (9.4–21.6), 15.8% (12.3–19.5), and 48.4% (23.0–66.4); p = 0.003 and p = 0.002, respectively). They also had significantly higher levels of secondary necrotic granulocytes in sputum than patients with no Gram negative infection (Kruskal-Wallis p<0.0001, median (IQR) 55.5% (48.4–64.5), 50.4% (44.6–61.9), and 24.8% (14.4–30.5); p<0.0001 and p<0.0001, respectively). Neutrophils (x106/g sputum) in P aeruginosa infected patients (Kruskal-Wallis p = 0.05, median (IQR) 6.3 (3.5–12.7)) and B cenocepacia infected patients (5.7 (1.5–14.5)) were significantly higher than in the group with no Gram negative infection (0.5 (0.5–4.3), p = 0.03 and 0.04, respectively). Conclusion: These results suggest that cell death and clearance may be altered in patients with CF colonised with P aeruginosa and B cenocepacia compared with those with no Gram negative infection.

Watt, A; Courtney, J; Moore, J; Ennis, M; Elborn, J

2005-01-01

100

Paris saponin I induces apoptosis via increasing the Bax/Bcl?2 ratio and caspase?3 expression in gefitinib?resistant non?small cell lung cancer in vitro and in vivo.  

PubMed

Polyphyllins, a major component of Rhizoma paridis, have been extensively used in non?small cell lung cancer (NSCLC). The aim of the present study was to evaluate the effects of Paris saponin I (PSI) on a panel of gefitinib?resistant NSCLC cell lines and its inhibition of tumor growth in a nude mouse model. The MTT assay was used to assess growth inhibition. The cell cycle was analyzed using flow cytometry and apoptosis was assessed using Annexin V/propidium iodide staining. The morphology of the apoptotic cells was determined by transmission electron microscopy. The protein expression levels of B?cell lymphoma 2 (Bcl?2), Bcl?2?associated X protein (Bax) and caspase?3 were detected using western blot analysis. In addition, the glucose metabolism in tumor?bearing mice was evaluated using 18F?fludeoxyglucose (FDG) micro?positron emission tomography imaging. The PSI?induced growth inhibition rate was observed to significantly increase in a time? and dose?dependent manner. Furthermore, PSI induced significant G2/M?phase arrest and apoptosis. The expression levels of Bcl?2 decreased, while those of Bax and caspase?3 increased following PSI treatment. 18F?FDG?uptake in the PSI treatment groups was significantly decreased compared with that in the control group in vivo. In conclusion, PSI is a potent antitumor agent that acts by inhibiting the proliferation of gefitinib?resistant cells, and has potential as a candidate for a natural drug for gefitinib?resistant therapy. PSI?induced apoptosis, which occurred via multiple pathways, including G2/M?phase arrest and upregulation of the Bax/Bcl?2 ratio and caspase?3 expression, ultimately led to cell death and tumor inhibition. PMID:24718383

Jiang, Hao; Zhao, Peng-Jun; Su, Dan; Feng, Jianguo; Ma, Sheng-Lin

2014-06-01

101

Apoptosis in MCF-7 breast cancer cells induced by S-alkenylmercaptocysteine (CySSR) species derived from Allium tissues in combination with sodium selenite.  

PubMed

S-Allylmercaptocysteine (CySSA) from garlic is known to exhibit anti-cancer effects. Apoptosis induction by CySSA was contrasted with S-1-propenylmercaptocysteine (CySSPe) (the major onion analog) in the presence of Na2SeO3 (Se) in breast cancer cells MCF-7. The dose of CySSA or CySSPe alone required to reduce viable cells by 50% was >400?M, and this was reduced to 62?M and 91?M for CySSA+Se and CySSPe+Se, respectively, at molar ratios of 39:1. Synergism of the mixtures was confirmed by isobologram analysis and the treatments evoked enhanced thiol efflux from MCF-7 cells. Apoptosis was confirmed by Annexin-V and propidium iodide staining. Cell cycle arrest occurred at the G2/M and sub-G1 interphases. Both CySSR+Se mixtures reduced the levels of Akt. CySSPe+Se elevated GSK-3 protein levels, whereas CySSA+Se did not. CySSR+Se mixtures enhanced phospho-c-Jun levels, with CySSA+Se more potent than CySSPe+Se. Corresponding increases in phospho-p53, Bax and Bad levels were observed, indicating apoptosis occurred via the mitochondrial pathway. Lack of caspases 6/7 activation implicated a caspase-independent pathway for apoptosis. Reduction of imported CySSR and export of thiols by MCF-7 cells facilitates the reduction of selenite to yield H2Se, a cytotoxic agent. This appears to be the first report of an anti-cancer effect of CySSPe. PMID:24614136

Zhang, Wei; Xiao, Hang; Parkin, Kirk L

2014-06-01

102

Platelet-rich plasma and fibrin glue-coated bioactive ceramics enhance growth and differentiation of goat bone marrow-derived stem cells.  

PubMed

New biotechnologies such as tissue engineering require functionally active cells within supportive matrices where the physical and chemical stimulus provided by the matrix is indispensable to determine the cellular behavior. This study has investigated the influence of platelet-rich plasma (PRP) and fibrin glue (FG) on the functional activity of goat bone marrow-derived mesenchymal stem cells (gBMSCs) that differentiated into the osteogenic lineage. To achieve this goal, PRP and FG were separately coated on bioactive ceramics like hydroxyapatite (HA) and silica-coated HA (HASi), on which gBMSCs were seeded and induced to differentiate into the osteogenic lineage for 28 days. The cells were then analyzed for viability (lactate dehydrogenase assay: acridine orange and ethidium bromide staining), morphology (scanning electron microscopy), proliferation (picogreen assay), cell cycle assay (propidium iodide staining), and differentiation (alkaline phosphatase [ALP] activity and real-time PCR analysis of ALP, osteocalcin, and osteopontin gene). It has been observed that PRP and FG have appreciably favored the viability, spreading, and proliferation of osteogenic-induced gBMSCs. The osteopontin and osteocalcin expression was significantly enhanced on PRP- and FG-coated HA and HASi, but PRP had effect on neither ALP expression nor ALP activity. The results of this study have depicted that FG-coated ceramics were better than PRP-coated and bare matrices. Among all, the excellent performance was shown by FG coated HASi, which may be attributed to the communal action of the stimulus emanated by Si in HASi and the temporary extracellular matrix provided by FG over HASi. Thus, we can conclude that PRP or FG in combination with bioactive ceramics could possibly enhance the functional activity of cells to a greater extent, promoting the hybrid composite as a promising candidate for bone tissue engineering applications. PMID:19072085

Nair, Manitha B; Varma, H K; John, Annie

2009-07-01

103

The small molecule curcumin analog FLLL32 induces apoptosis in melanoma cells via STAT3 inhibition and retains the cellular response to cytokines with anti-tumor activity  

PubMed Central

Background We characterized the biologic effects of a novel small molecule STAT3 pathway inhibitor that is derived from the natural product curcumin. We hypothesized this lead compound would specifically inhibit the STAT3 signaling pathway to induce apoptosis in melanoma cells. Results FLLL32 specifically reduced STAT3 phosphorylation at Tyr705 (pSTAT3) and induced apoptosis at micromolar amounts in human melanoma cell lines and primary melanoma cultures as determined by annexin V/propidium iodide staining and immunoblot analysis. FLLL32 treatment reduced expression of STAT3-target genes, induced caspase-dependent apoptosis, and reduced mitochondrial membrane potential. FLLL32 displayed specificity for STAT3 over other homologous STAT proteins. In contrast to other STAT3 pathway inhibitors (WP1066, JSI-124, Stattic), FLLL32 did not abrogate IFN-?-induced pSTAT1 or downstream STAT1-mediated gene expression as determined by Real Time PCR. In addition, FLLL32 did not adversely affect the function or viability of immune cells from normal donors. In peripheral blood mononuclear cells (PBMCs), FLLL32 inhibited IL-6-induced pSTAT3 but did not reduce signaling in response to immunostimulatory cytokines (IFN-?, IL 2). Treatment of PBMCs or natural killer (NK) cells with FLLL32 also did not decrease viability or granzyme b and IFN-? production when cultured with K562 targets as compared to vehicle (DMSO). Conclusions These data suggest that FLLL32 represents a lead compound that could serve as a platform for further optimization to develop improved STAT3 specific inhibitors for melanoma therapy.

2010-01-01

104

Defective mucosal T cell death is sustainably reverted by infliximab in a caspase dependent pathway in Crohn's disease  

PubMed Central

Background and aims: To verify whether targeting defective mucosal T cell death underlies the sustained therapeutic benefit of infliximab in Crohn’s disease, we explored its in vivo proapoptotic effect after 10 weeks of treatment, and its in vitro killing activity on lamina propria T cells (LPT) and peripheral blood T cells (PBT), both isolated from Crohn’s disease patients. Methods: Endoscopic intestinal biopsies were collected from 10 Crohn’s disease patients (six steroid refractory and four fistulising) before and after three consecutive infusions of infliximab, administered at week 0, 2, and 6 in a single intravenous dose (5 mg/kg), and from 10 subjects who proved to have functional diarrhoea. Apoptosis was determined in vivo by TUNEL assay, and in vitro by fluorescein isothiocyanate-annexin V/propidium iodide staining on LPT and PBT from Crohn’s disease patients cultured with infliximab. The effect of the broad caspase inhibitor Z-VAD-FMK and the neutralising anti-Fas antibody ZB4 was tested in vitro on LPT and PBT treated with infliximab. Caspase-3 activity was determined by immunoblotting. Results: In Crohn’s disease patients, infliximab treatment induced a sustained LPT apoptosis, still evident four weeks after the last infusion. In vitro infliximab induced death of LPT from Crohn’s disease patients occurred via apoptosis rather than necrosis. LPT showed a higher susceptibility to infliximab induced apoptosis than PBT in Crohn’s disease patients. The signalling pathway underlying the restoration of infliximab induced LPT apoptosis occurred via the caspase pathway but not Fas-Fas ligand interaction in Crohn’s disease. Conclusions: These findings demonstrate that apoptosis is the major mechanism by which infliximab exerts its killing activity on LPT in Crohn’s disease. The sustained LPT proapoptotic action of infliximab, which extends far beyond its circulating half life, may be responsible for the sustained remission induced in Crohn’s disease patients by infliximab retreatment.

Di Sabatino, A; Ciccocioppo, R; Cinque, B; Millimaggi, D; Morera, R; Ricevuti, L; Cifone, M G; Corazza, G R

2004-01-01

105

Effects of nanosecond pulsed electrical fields (nsPEFs) on the cell cycle of CHO and Jurkat cells  

NASA Astrophysics Data System (ADS)

Exposure to nano-second pulsed electrical fields (nsPEFs) can cause poration of external and internal cell membranes, DNA damage, and disassociation of cytoskeletal components, all of which are capable of disrupting a cell's ability to replicate. Variations between cell lines in membrane and cytoskeletal structure as well as in survival of nsPEF exposure should correspond to unique line-dependent cell cycle effects. Additionally, phase of cell cycle during exposure may be linked to differential sensitivities to nsPEFs across cell lines, as DNA structure, membrane elasticity, and cytoskeletal structure change dramatically during the cell cycle. Populations of Jurkat and Chinese Hamster Ovary (CHO) cells were examined post-exposure (10 ns pulse trains at 150kV/cm) by analysis of DNA content via propidium iodide staining and flow cytometric analysis at various time points (1, 6, and 12h post-exposure) to determine population distribution in cell cycle phases. Additionally, CHO and Jurkat cells were synchronized in G1/S and G2/M phases, pulsed, and analyzed to evaluate role of cell cycle phase in survival of nsPEFs. CHO populations recovered similarly to sham populations postnsPEF exposure and did not exhibit a phase-specific change in response. Jurkat cells exhibited considerable apoptosis/necrosis in response to nsPEF exposure and were unable to recover and proliferate in a manner similar to sham exposed cells. Additionally, Jurkat cells appear to be more sensitive to nsPEFs in G2/M phases than in G1/S phases. Recovery of CHO populations suggests that nsPEFs do not inhibit proliferation in CHO cells; however, inhibition of Jurkat cells post-nsPEF exposure coupled with preferential cell death in G2/M phases suggest that cell cycle phase during exposure may be an important factor in determining nsPEF toxicity in certain cell lines. Interestingly, CHO cells have a more robust and rigid cytoskeleton than Jurkat cells which is thought to contribute to their ability to survive nsPEFs. The ability of the CHO cytoskeleton to recover and complete mitosis after nsPEF-induced damage in G2/M phase may be integral to the cell line's higher tolerance of nsPEF exposure.

Mahlke, Megan A.; Navara, Christopher; Ibey, Bennett L.

2014-03-01

106

Inhibition of microRNA miR-92a induces apoptosis and inhibits cell proliferation in human acute promyelocytic leukemia through modulation of p63 expression.  

PubMed

MicroRNAs (miRNAs) are endogenous non-coding RNAs, 19-25 nucleotides in length involved in post-transcriptional regulation of gene expression of great majority of the human protein coding genes. Different aspects of cellular activities like cell growth, proliferation, and differentiation are regulated by miRNAs through their interaction with particular RNA species. In many tumors up or down-regulation of different miRNAs has been reported. Human miR-17-92 gene cluster is located on 13q31.3, rooming several miRNAs including miR-17-5p, miR-17-3p, miR-18, miR-19a, miR-20a and miR-92a. Amplification or overexpression of this cluster has been reported in acute myeloid leukemia, acute lymphoblastic leukemia and several other cancer types. Here, we performed inhibition of miR-92a in an acute promyelocytic leukemia (APL) cell line (HL-60) using locked nucleic acid (LNA) antagomir. In different time points after LNA-anti-miR92a transfection, MTT assay and annexin/propidium iodide staining were performed. These assessments indicate that miR-92a inhibition can extensively decrease the viability of these cells which is mainly due to induction of apoptosis. Western blot analysis of p63 protein also revealed that miR-92a inhibition resulted in p63 expression, hence activation of cellular pathways which are normally controlled by p63 protein are retrieved. These findings could open up a path to the miRNAs based therapeutic approach for treatment of APL. PMID:24481878

Sharifi, Mohammadreza; Salehi, Rasoul; Gheisari, Yousof; Kazemi, Mohammad

2014-05-01

107

Propidium monoazide does not fully inhibit the detection of dead Campylobacter on broiler chicken carcasses by qPCR.  

PubMed

A real time quantitative PCR combined with propidium monoazide (PMA) treatment of samples was implemented to quantify live C. jejuni, C. coli and C. lari on broiler chicken carcasses at selected processing steps in the slaughterhouse. The samples were enumerated by culture for comparison. The Campylobacter counts determined with the PMA-qPCR and the culture method were not concordant. We conclude that the qPCR combined with PMA treatment of the samples did not fully reduce the signal from dead cells. PMID:23811205

Pacholewicz, Ewa; Swart, Arno; Lipman, Len J A; Wagenaar, Jaap A; Havelaar, Arie H; Duim, Birgitta

2013-10-01

108

Propidium iodide competes with Ca(2+) to label pectin in pollen tubes and Arabidopsis root hairs.  

PubMed

We have used propidium iodide (PI) to investigate the dynamic properties of the primary cell wall at the apex of Arabidopsis (Arabidopsis thaliana) root hairs and pollen tubes and in lily (Lilium formosanum) pollen tubes. Our results show that in root hairs, as in pollen tubes, oscillatory peaks in PI fluorescence precede growth rate oscillations. Pectin forms the primary component of the cell wall at the tip of both root hairs and pollen tubes. Given the electronic structure of PI, we investigated whether PI binds to pectins in a manner analogous to Ca(2+) binding. We first show that Ca(2+) is able to abrogate PI growth inhibition in a dose-dependent manner. PI fluorescence itself also relies directly on the amount of Ca(2+) in the growth solution. Exogenous pectin methyl esterase treatment of pollen tubes, which demethoxylates pectins, freeing more Ca(2+)-binding sites, leads to a dramatic increase in PI fluorescence. Treatment with pectinase leads to a corresponding decrease in fluorescence. These results are consistent with the hypothesis that PI binds to demethoxylated pectins. Unlike other pectin stains, PI at low yet useful concentration is vital and specifically does not alter the tip-focused Ca(2+) gradient or growth oscillations. These data suggest that pectin secretion at the apex of tip-growing plant cells plays a critical role in regulating growth, and PI represents an excellent tool for examining the role of pectin and of Ca(2+) in tip growth. PMID:21768649

Rounds, Caleb M; Lubeck, Eric; Hepler, Peter K; Winship, Lawrence J

2011-09-01

109

Alpha-santalol, a chemopreventive agent against skin cancer, causes G2/M cell cycle arrest in both p53-mutated human epidermoid carcinoma A431 cells and p53 wild-type human melanoma UACC-62 cells  

PubMed Central

Background ?-Santalol, an active component of sandalwood oil, has shown chemopreventive effects on skin cancer in different murine models. However, effects of ?-santalol on cell cycle have not been studied. Thus, the objective of this study was to investigate effects of ?-santalol on cell cycle progression in both p53 mutated human epidermoid carcinoma A431 cells and p53 wild-type human melanoma UACC-62 cells to elucidate the mechanism(s) of action. Methods MTT assay was used to determine cell viability in A431 cells and UACC-62; fluorescence-activated cell sorting (FACS) analysis of propidium iodide staining was used for determining cell cycle distribution in A431 cells and UACC-62 cells; immunoblotting was used for determining the expression of various proteins and protein complexes involved in the cell cycle progression; siRNA were used to knockdown of p21 or p53 in A431 and UACC-62 cells and immunofluorescence microscopy was used to investigate microtubules in UACC-62 cells. Results ?-Santalol at 50-100 ?M decreased cell viability from 24 h treatment and ?-santalol at 50 ?M-75 ?M induced G2/M phase cell cycle arrest from 6 h treatment in both A431 and UACC-62 cells. ?-Santalol altered expressions of cell cycle proteins such as cyclin A, cyclin B1, Cdc2, Cdc25c, p-Cdc25c and Cdk2. All of these proteins are critical for G2/M transition. ?-Santalol treatment up-regulated the expression of p21 and suppressed expressions of mutated p53 in A431 cells; whereas, ?-santalol treatment increased expressions of wild-type p53 in UACC-62 cells. Knockdown of p21 in A431 cells, knockdown of p21 and p53 in UACC-62 cells did not affect cell cycle arrest caused by ?-santalol. Furthermore, ?-santalol caused depolymerization of microtubules similar to vinblastine in UACC-62 cells. Conclusions This study for the first time identifies effects of ?-santalol in G2/M phase arrest and describes detailed mechanisms of G2/M phase arrest by this agent, which might be contributing to its overall cancer preventive efficacy in various mouse skin cancer models.

2010-01-01

110

Heterogeneities in inflammatory and cytotoxic responses of RAW 264.7 macrophage cell line to urban air coarse, fine, and ultrafine particles from six European sampling campaigns  

SciTech Connect

We investigated the cytotoxic and inflammatory activities of size-segregated particulate samples (particulate matter, PM) from contrasting air pollution situations in Europe. Coarse (PM10-2.5), fine (PM2.5-0.2), and ultrafine (PM0.2) particulate samples were collected with a modified Harvard high-volume cascade impactor (HVCI). Mouse RAW 264.7 macrophages were exposed to the samples for 24 h. Selected inflammatory mediators, nitric oxide (NO) and cytokines (tumor necrosis factor alpha (TNF alpha), interleukin 6 (IL-6), macrophage inflammatory protein-2 (MIP-2)), were measured together with cytotoxicity (MTT test), and analysis of apoptosis and cell cycle (propidium iodide staining). The PM10-2.5 samples had a much higher inflammatory activity than the PM2.5-0.2 and PM0.2 samples, but the PM2.5-0.2 samples showed the largest differences in inflammatory activity, and the PM0.2 samples in cytotoxicity, between the sampling campaigns. The PM2.5-0.2 samples from traffic environments in springtime Barcelona and summertime Athens had the highest inflammatory activities, which may be related to the high photochemical activity in the atmosphere during the sampling campaigns. The PM0.2 sample from wintertime Prague with proven impacts from local coal and biomass combustion had very high cytotoxic and apoptotic activities and caused a distinct cell cycle arrest. Thus, particulate size, sources, and atmospheric transformation processes affect the toxicity profile of urban air particulate matter. These factors may explain some of the heterogeneity observed in particulate exposure-response relationships of human health effects in epidemiological studies.

Jalava, P.I.; Salonen, R.O.; Pennanen, A.S.; Sillanpaa, M.; Halinen, A.I.; Happo, M.S.; Hillamo, R.; Brunekreef, B.; Katsouyanni, K.; Sunyer, J.; Hirvonen, M.R. [National Public Health Institute, Kuopio (Finland). Dept. for Environmental Health

2007-03-15

111

Selenium suppresses oxidative-stress-enhanced vascular smooth muscle cell calcification by inhibiting the activation of the PI3K/AKT and ERK signaling pathways and endoplasmic reticulum stress.  

PubMed

Vascular calcification is a prominent feature of many diseases, including atherosclerosis, and it has emerged as a powerful predictor of cardiovascular morbidity and mortality. A number of studies have examined the association between selenium and risk of cardiovascular diseases, but little is known about the role of selenium in vascular calcification. To determine the role of selenium in regulating vascular calcification, we assessed the effect of sodium selenite on oxidative-stress-enhanced vascular smooth muscle cell (VSMC) calcification and the underlying mechanism. Oxidative stress induced by xanthine/xanthine oxidase increased apoptosis, as determined by Hoechst 33342 staining and annexin V/propidium iodide staining, and it enhanced osteoblastic differentiation and calcification of VSMCs, on the basis of alkaline phosphatase activity, the expression of Runx2 and type I collagen, and calcium deposition. These effects of oxidative stress were significantly inhibited by selenite. The following processes may explain the inhibitory effects of selenite: (1) selenite significantly suppressed oxidative stress, as evidenced by the decrease of the oxidative status of the cell and lipid peroxidation levels, as well as by the increase of the total protein thiol content and the activity of the antioxidant selenoenzyme glutathione peroxidase; (2) selenite significantly attenuated oxidative-stress-induced activation of the phosphatidylinositol 3-kinase/AKT and extracellular-signal-regulated kinase signaling pathways, resulting in decreased osteoblastic differentiation of VSMCs; (3) selenite significantly inhibited oxidative-stress-activated endoplasmic reticulum stress, thereby leading to decreased apoptosis. Our results suggest a potential role of selenium in the prevention of vascular calcification, which may provide more mechanistic insights into the relationship between selenium and cardiovascular diseases. PMID:24390545

Liu, Hongmei; Li, Xiaoming; Qin, Fei; Huang, Kaixun

2014-03-01

112

Real time PCR quantification of viable Mycobacterium tuberculosis from sputum samples treated with propidium monoazide.  

PubMed

Diagnostic methods of TB, nowadays, are prone to delay in diagnosis, increased false negative results and are not sensitive to many forms of paucibacillary disease. The aims of this study were to implement a quantitative nucleic acid-based diagnostic test for paucibacillary tuberculosis, enabling the identification and quantification of viable Mycobacterium tuberculosis bacilli by quantitative Real-Time PCR (qRT-PCR). The intergenic region of the single-copy inhA-mabA gene was chosen as the target region for design of primers and probes conjugated with fluorophores. The construction of synthetic DNA flanking the target region served as standards for absolute quantification of nucleic acids. Using the intercaling dye, propidium monoazide, we were able to discriminate between viable and dead cells of M. tuberculosis. The diagnosis method showed a broad sensitivity (96.1%) when only compared to samples of smear-positive sputum and ROC analyses shows that our approach performed well and yielded a specificity of 84.6% and a sensitivity of 84.6% when compared to M. tuberculosis colony-forming units counting. PMID:24863654

de Assunção, Thiago Milech; Batista, Eraldo L; Deves, Candida; Villela, Anne Drumond; Pagnussatti, Vany Elisa; de Oliveira Dias, Ana Christina; Kritski, Afrânio; Rodrigues-Junior, Valnês; Basso, Luiz Augusto; Santos, Diógenes Santiago

2014-07-01

113

Pulsed electromagnetic field affects intrinsic and endoplasmatic reticulum apoptosis induction pathways in MonoMac6 cell line culture.  

PubMed

Current studies were aimed to elucidate influence of pulsed electromagnetic field stimulation on cell viability and apoptosis induction pathways. For the experimental model we have chosen monocytic cell line MonoMac6 and several apoptosis inducers with different mechanism of death induction like puromycin, colchicine, cyclophosphamide, minocycline and hydrogen peroxide. MonoMac6 cell line was grown at density 1x10(5) cells/well in 96-well culture plates. To induce cell death cell cultures were treated with different apoptosis inducers like puromycin, colchicine, cyclophosphamide, minocycline, hydrogen peroxide and at the same time with pulsed electromagnetic field 50 Hz, 45±5 mT (PEMF) for 4 hour per each stimulation, three times, in 24 hours intervals. Afterwards, cells were harvested for flow cytometry analysis of cell viability measured by annexin V-APC labeled and propidium iodide staining. Expression of apoptosis related genes was evaluated by semi quantitative reverse transcription (RT)-PCR assay. NuPAGE Novex Western blot analysis was carried out for apoptosis inducing factor (AIF) abundance in cytosolic and nuclear extracts of MonoMac6 cells. Puromycin, colchicine and minocycline activated cells and simultaneously treated with PEMF have shown out diminished percentage of annexinV positive (AnV+) cells comparing to controls without PEMF stimulation. MonaMac6 cells puromycin/colchicyne and PEMF treated were to a higher extent double stained (AnV+,PI+), which means increased late apoptotic as well as necrotic (PI+) cells, than non-stimulated controls. On the other hand, minocycline activated cells prior to PEMF treatment showed diminished amount of apoptotic and necrotic (annexin V, annexin V and propidium iodide, propidium iodide positive staining) cells. The opposite effect of PEMF on the percentage of annexin V positively stained cells has been achieved after treatment of MonoMac6 culture with cyclophoshamide and hydrogen peroxide. PEMF enhanced early phase of apoptosis induced by both apoptosis inducing agents. The analysis of expression of the apoptosis related genes in MonoMac6 cultures treated with puromycin and exposed to PEMF performed in reverse transcription of polymerase chain reaction (PCR) assay has shown changes in mRNA of genes engaged in intrinsic apoptotic pathway and pathway with AIF abundance. The most influenced was expression of gene belonging to pro-apoptotic family of Bcl-2 and AIF agent. Examination of immunoblots developed with anti-AIF antibody showed that cytosol content of AIF protein was diminished after puromycin and PEMF treatment of MonoMac6 cells. The obtained results indicate that PEMF affects induction of apoptosis in MonoMac6 cells stimulated to death with inducing agents to a different extent. Main finding of the current results is that, PEMF stimulation of MonoMac6 cells simultaneously treated with puromycin caused changes in the Bcl-family genes expression as well as in caspase independent pathway of apoptosis inducing factor (AIF). PMID:23211308

Kaszuba-Zwoinska, J; Chorobik, P; Juszczak, K; Zaraska, W; Thor, P J

2012-10-01

114

Development of an Innovative 3D Cell Culture System to Study Tumour - Stroma Interactions in Non-Small Cell Lung Cancer Cells  

PubMed Central

Introduction We describe a novel 3D co-culture model using non-small cell lung cancer (NSCLC) cell lines in combination with lung fibroblasts. This model allows the investigation of tumour-stroma interactions and addresses the importance of having a more in vivo like cell culture model. Methods Automation-compatible multi-well hanging drop microtiter plates were used for the production of 3D mono- and co-cultures. In these hanging drops the two NSCLC cell lines A549 and Colo699 were cultivated either alone or co-cultured with lung fibroblasts. The viability of tumour spheroids was confirmed after five and ten days by using Annexin V/Propidium Iodide staining for flow-cytometry. Tumour fibroblast spheroid formation was characterized by scanning electron microscope (SEM), semi-thin sections, fluorescence microscope and immunohistochemistry (IHC). In addition to conventional histology, protein expression of E-Cadherin, vimentin, Ki67, fibronectin, cytokeratin 7 and ?-smooth muscle actin (?-SMA) was investigated by IHC. Results Lower viability was observed in A549 monocultures compared to co-cultures, whereas Colo699 monocultures showed better viability compared to co-cultures. Ki67 expression varied significantly between mono- and co-cultures in both tumour cell lines. An increase of vimentin and decreased E-Cadherin expression could be detected during the course of the cultivation suggesting a transition to a more mesenchymal phenotype. Furthermore, the fibroblast cell line showed an expression of ?-SMA only in co-culture with the cancer cell line A549, thereby indicating a mesenchymal to mesenchymal shift to an even more myofibroblast phenotype. Conclusion We demonstrate that our method is a promising tool for the generation of tumour spheroid co-cultures. Furthermore, these spheroids allow the investigation of tumour-stroma interactions and a better reflection of in vivo conditions of cancer cells in their microenvironment. Our method holds potential to contribute to the development of anti-cancer agents and support the search for biomarkers.

Amann, Arno; Zwierzina, Marit; Gamerith, Gabriele; Bitsche, Mario; Huber, Julia M.; Vogel, Georg F.; Blumer, Michael; Koeck, Stefan; Pechriggl, Elisabeth J.; Kelm, Jens M.; Hilbe, Wolfgang; Zwierzina, Heinz

2014-01-01

115

Assessment of mitochondrial functions and cell viability in renal cells overexpressing protein kinase C isozymes.  

PubMed

The protein kinase C (PKC) family of isozymes is involved in numerous physiological and pathological processes. Our recent data demonstrate that PKC regulates mitochondrial function and cellular energy status. Numerous reports demonstrated that the activation of PKC-a and PKC-? improves mitochondrial function in the ischemic heart and mediates cardioprotection. In contrast, we have demonstrated that PKC-? and PKC-? are involved in nephrotoxicant-induced mitochondrial dysfunction and cell death in kidney cells. Therefore, the goal of this study was to develop an in vitro model of renal cells maintaining active mitochondrial functions in which PKC isozymes could be selectively activated or inhibited to determine their role in regulation of oxidative phosphorylation and cell survival. Primary cultures of renal proximal tubular cells (RPTC) were cultured in improved conditions resulting in mitochondrial respiration and activity of mitochondrial enzymes similar to those in RPTC in vivo. Because traditional transfection techniques (Lipofectamine, electroporation) are inefficient in primary cultures and have adverse effects on mitochondrial function, PKC-? mutant cDNAs were delivered to RPTC through adenoviral vectors. This approach results in transfection of over 90% cultured RPTC. Here, we present methods for assessing the role of PKC-? in: 1. regulation of mitochondrial morphology and functions associated with ATP synthesis, and 2. survival of RPTC in primary culture. PKC-? is activated by overexpressing the constitutively active PKC-? mutant. PKC-? is inhibited by overexpressing the inactive mutant of PKC-?. Mitochondrial function is assessed by examining respiration, integrity of the respiratory chain, activities of respiratory complexes and F0F1-ATPase, ATP production rate, and ATP content. Respiration is assessed in digitonin-permeabilized RPTC as state 3 (maximum respiration in the presence of excess substrates and ADP) and uncoupled respirations. Integrity of the respiratory chain is assessed by measuring activities of all four complexes of the respiratory chain in isolated mitochondria. Capacity of oxidative phosphorylation is evaluated by measuring the mitochondrial membrane potential, ATP production rate, and activity of F0F1-ATPase. Energy status of RPTC is assessed by determining the intracellular ATP content. Mitochondrial morphology in live cells is visualized using MitoTracker Red 580, a fluorescent dye that specifically accumulates in mitochondria, and live monolayers are examined under a fluorescent microscope. RPTC viability is assessed using annexin V/propidium iodide staining followed by flow cytometry to determine apoptosis and oncosis. These methods allow for a selective activation/inhibition of individual PKC isozymes to assess their role in cellular functions in a variety of physiological and pathological conditions that can be reproduced in in vitro. PMID:23328793

Nowak, Gra?yna; Bakajsova, Diana

2013-01-01

116

PCR-based method using propidium monoazide to distinguish viable from nonviable Bacillus subtilis spores.  

PubMed

This paper describes a molecular-based method which is able to discriminate between viable and inactivated Bacillus subtilis spores by utilizing the DNA-intercalating dye propidium monoazide. The approach should be valuable in our attempt to employ molecular methods to streamline the evaluation of process validation using bacterial endospores. PMID:19270144

Rawsthorne, H; Dock, C N; Jaykus, L A

2009-05-01

117

Relationship between different stages of the corpus luteum and the expression of the peroxisome proliferator-activated receptor gamma protein in bovine large lutein cells.  

PubMed

Lutein cells produce progestins that support pregnancy. Steroidogenesis requires coordination of the anabolic and catabolic pathways of lipid metabolism. Peroxisome proliferator-activated receptors (PPAR) are transcription factors that are central in the regulation of lipid metabolism. Hence, they may play a role in regulation of the development and regression of the corpus luteum. The present study investigated the expression of PPAR-gamma, n during different stages of the corpus luteum. Lutein cells were isolated mechanically from non-pregnant and pregnant heifers on days 5, 12 and 20 of the oestrous cycle (n = 3 for each day). PPAR-gamma in single cells was analysed by flow cytometry. PPAR-gamma 1 and PPAR-gamma 2 isoforms were distinguished by immunoblotting. The cell cycle of the lutein cells was measured by the flow cytometric quantification of DNA in single cells, using propidium iodide staining after ethanol fixation and RNAse treatment, and by the detection of the proliferating cell nuclear antigen (PCNA). The response of the cells to PPAR-gamma agonist 15-deoxy-delta 12,14 prostaglandin J2 (15dPGJ2, 200 and 490 nmol l-1) with and without changing the cell cycle by the anti-apoptogenic drug aurintricarboxylic acid (ATA, 10 mumol l-1) was used as an in vitro model to study the relationship between the cell cycle and PPAR-gamma. The concentration of PPAR-gamma per cell from non-pregnant heifers was significantly higher on day 5 (3.40 +/- 0.30 fmol) compared with that on day 12 (1.34 +/- 0.18 fmol, P < 0.05) and day 20 (0.55 +/- 0.2 fmol, P < 0.05). In pregnant heifers, the concentration of PPAR-gamma was significantly (P < 0.01) higher than in non-pregnant heifers. A decrease in the PPAR-gamma 1 isoform relative to PPAR-gamma 2 was observed in cells on day 12 of the oestrous cycle compared with day 5. The cell cycle (S phase portion in cells on days 5, 12 and 20: 16 +/- 4%, 6 +/- 4% and 4 +/- 3%, respectively) and the portion of cells with PCNA correlated with the amount of PPAR-gamma in non-pregnant heifers. ATA promoted the S phase in cells of non-pregnant heifers (day 12) and the endogenous agonist of PPAR-gamma, 15dPGJ2, inhibited the response to ATA in a dose-dependent manner, indicating that PPAR-gamma plays a role in the arrest of the cell cycle in lutein cells to maintain their differentiated state. PMID:10793637

Viergutz, T; Loehrke, B; Poehland, R; Becker, F; Kanitz, W

2000-01-01

118

Visible light may directly induce nuclear DNA damage triggering the death pathway in RGC-5 cells  

PubMed Central

Purpose Visible light has been previously demonstrated to induce retinal ganglion cell (RGC)-5 cell death through the mitochondrial pathway. The present study was designed to determine whether visible light might also directly trigger the death pathway by damaging nuclear DNA. Methods RGC-5 cells were exposed to various intensities and durations of visible light exposure. Cell viability and death were monitored with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and propidium iodide staining. Nuclear DNA damage caused by light was determined with the plasmid assay, genome DNA assay, and in situ terminal deoxynucleotidyl transferase dUTP nick end labeling. The subsequent activation of nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) was measured with western blot, and PARP-1’s role in the death pathway was assessed by using specific inhibitors. Poly (ADP-ribose) glycohydrolase and apoptosis-inducing factor (AIF) inhibitors were used to show their influence on light-induced cell death. Calcium influx was examined with the fura-2 assay and calcium channel blocker. Results We found that visible light induced RGC-5 cell death in a time- and intensity-dependent manner. After the light intensity was increased to 2,600 lx, activation of the death pathway in RGC-5 cells was clearly observed by detecting double-strand DNA breaks and nuclear DNA damage in vitro. Nuclear enzyme PARP-1 was promptly activated after exposure to 2,600 lx of light for 2 days, and specific inhibitors of PARP-1 had significant neuroprotective effects. The poly(ADP-ribose) glycohydrolase inhibitor tannic acid and AIF inhibitor N-phenylmaleimide partially protected RGC-5 cells from light injury. A massive calcium influx was detected after 2 days of light exposure, and a calcium channel blocker partially protected cells against light injury. Conclusions These results suggest that visible light exposure may directly cause nuclear DNA damage, which consequently activates PARP-1. In addition, RGC-5 cells damaged by 2,600 lx of light exposure can be used as an appropriate cell death model for screening neuroprotective drugs, since this treatment induced remarkable cell death within 2 days. Moreover, these results show that 2,600 lx of light exposure provides a more apparent activation of the death pathway than 1,000 lx of light exposure, which was used in a previous study.

Fan, Bin; Ma, Tong-Hui

2011-01-01

119

Genistein induces G2/M cell cycle arrest and apoptosis via ATM/p53-dependent pathway in human colon cancer cells.  

PubMed

Soybean isoflavones have been used as a potential preventive agent in anticancer research for many years. Genistein is one of the most active flavonoids in soybeans. Accumulating evidence suggests that genistein alters a variety of biological processes in estrogen-related malignancies, such as breast and prostate cancers. However, the molecular mechanism of genistein in the prevention of human colon cancer remains unclear. Here we attempted to elucidate the anticarcinogenic mechanism of genistein in human colon cancer cells. First we evaluated the growth inhibitory effect of genistein and two other isoflavones, daidzein and biochanin A, on HCT-116 and SW-480 human colon cancer cells. In addition, flow cyto-metry was performed to observe the morphological changes in HCT-116/SW-480 cells undergoing apoptosis or cell cycle arrest, which had been visualized using Annexin V-FITC and/or propidium iodide staining. Real-time PCR and western blot analyses were also employed to study the changes in expression of several important genes associated with cell cycle regulation. Our data showed that genistein, daidzein and biochanin A exhibited growth inhibitory effects on HCT-116/SW-480 colon cancer cells and promoted apoptosis. Genistein showed a significantly greater effect than the other two compounds, in a time- and dose-dependent manner. In addition, genistein caused cell cycle arrest in the G2/M phase, which was accompanied by activation of ATM/p53, p21waf1/cip1 and GADD45? as well as downregulation of cdc2 and cdc25A demonstrated by q-PCR and immunoblotting assay. Interestingly, genistein induced G2/M cell cycle arrest in a p53-dependent manner. These findings exemplify that isoflavones, especially genistein, could promote colon cancer cell growth inhibition and facilitate apoptosis and cell cycle arrest in the G2/M phase. The ATM/p53-p21 cross-regulatory network may play a crucial role in mediating the anticarcinogenic activities of genistein in colon cancer. PMID:23686257

Zhang, Zhiyu; Wang, Chong-Zhi; Du, Guang-Jian; Qi, Lian-Wen; Calway, Tyler; He, Tong-Chuan; Du, Wei; Yuan, Chun-Su

2013-07-01

120

Pro-apoptotic effects of tectorigenin on human hepatocellular carcinoma HepG2 cells  

PubMed Central

AIM: To investigate the effects of tectorigenin on human hepatocellular carcinoma (HCC) HepG2 cells. METHODS: Tectorigenin, one of the main components of rhizome of Iris tectorum, was prepared by simple methods, such as extraction, filtration, concentration, precipitation and recrystallization. HepG2 cells were incubated with tectorigenin at different concentrations, and their viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis was detected by morphological observation of nuclear change, agarose gel electrophoresis of DNA ladder, and flow cytometry with Hoechst 33342, Annexin V-EGFP and propidium iodide staining. Generation of reactive oxygen species was quantified using DCFH-DA. Intracellular Ca2+ was monitored by Fura 2-AM. Mitochondrial membrane potential was monitored using Rhodamine 123. Release of cytochrome c from mitochondria to cytosol was detected by Western blotting. Activities of caspase-3, -8 and -9 were investigated by Caspase Activity Assay Kit. RESULTS: The viability of HepG2 cells treated by tectorigenin decreased in a concentration- and time-dependent manner. The concentration that reduced the number of viable HepG2 cells by 50% (IC50) after 12, 24 and 48 h of incubation was 35.72 mg/L, 21.19 mg/L and 11.06 mg/L, respectively. However, treatment with tectorigenin at 20 mg/L resulted in a very slight cytotoxicity to L02 cells after incubation for 12, 24 or 48 h. Tectorigenin at a concentration of 20 mg/L greatly inhibited the viability of HepG2 cells and induced the condensation of chromatin and fragmentation of nuclei. Tectorigenin induced apoptosis of HepG2 cells in a time- and dose-dependent manner. Compared with the viability rate, induction of apoptosis was the main mechanism of the anti-proliferation effect of tectorigenin in HepG2 cells. Furthermore, tectorigenin-induced apoptosis of HepG2 cells was associated with the generation of reactive oxygen species, increased intracellular [Ca2+]i, loss of mitochondrial membrane potential, translocation of cytochrome c, and activation of caspase-9 and -3. CONCLUSION: Tectorigenin induces apoptosis of HepG2 cells mainly via mitochondrial-mediated pathway, and produces a slight cytotoxicity to L02 cells.

Jiang, Chun-Ping; Ding, Hui; Shi, Da-Hua; Wang, Yu-Rong; Li, Er-Guang; Wu, Jun-Hua

2012-01-01

121

Induction of Apoptosis in Human Cancer Cells by Candidaspongiolide, a Novel Sponge Polyketide  

PubMed Central

Background Candidaspongiolide (CAN), a novel polyketide from a marine sponge, is the active component of a mixture that was found to be potently cytotoxic in the National Cancer Institute’s 60-cell-line screen. Methods Effects of CAN on U251 glioma and HCT116 colorectal cancer cells and on normal fibroblasts were assessed using radiolabeling studies to measure protein synthesis, clonogenic assays to measure cell survival, flow cytometry of annexin V– and propidium iodide–stained cells to measure apoptosis, and western blots in the presence or absence of specific inhibitors to assess accumulation and phosphorylation of potential downstream target proteins. Results CAN inhibited protein synthesis and potently induced apoptosis in both U251 and HCT116 cells, the latter in part by a caspase 12–dependent pathway. For example, 25%–30% of U251 or HCT116 cells became apoptotic after 24 hours of treatment with 100 nM CAN. CAN also rapidly induced sustained phosphorylation of eukaryotic translation initiation factor-2 (eIF2)-? at Ser51 and of the translation elongation factor eEF2 at Thr56, which could contribute to its dose-dependent inhibition of protein synthesis. Stable expression of dominant-negative eIF2? was sufficient to prevent CAN-induced eIF2? phosphorylation and induction of apoptosis but insufficient to prevent inhibition of protein synthesis. CAN induction of eIF2? phosphorylation did not occur by a classic endoplasmic reticulum stress pathway. However, an inhibitor of and small-interfering RNAs to the double-stranded RNA–dependent protein kinase PKR prevented CAN-mediated eIF2? phosphorylation and apoptosis, respectively. Although CAN inhibited protein synthesis in both cancer cells and normal human fibroblasts, it induced eIF2? phosphorylation and apoptosis only in cancer cells. Conclusions CAN triggers PKR/eIF2?/caspase 12–dependent apoptosis and inhibits protein synthesis in cancer cells but only inhibits protein synthesis in normal cells.

Trisciuoglio, Daniela; Uranchimeg, Badarch; Cardellina, John H.; Meragelman, Tamara L.; Matsunaga, Shigeki; Fusetani, Nobuhiru; Del Bufalo, Donatella; Shoemaker, Robert H.

2008-01-01

122

Quantifying fungal viability in air and water samples using quantitative PCR after treatment with propidium monoazide (PMA)  

SciTech Connect

A method is described to discriminate between live and dead cells of the infectious fungi Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus, Mucor racemosus, Rhizopus stolonifer and Paecilomyces variotii. To test the method, conidial suspensions were heat inactivated at 85 °C or held at 5 °C (controls) for 1 h. Polycarbonate filters (25 mm diameter, 0.8 ?m pore size) were placed on "welled" slides (14 mm diameter) and the filters treated with either PBS or PMA. Propidium monoazide (PMA), which enters dead cells but not live cells, was incubated with cell suspensions, exposed to blue wavelength light-emitting diodes (LED) to inactivate remaining PMA and secure intercalation of PMAwith DNA of dead cells. Treated cells were extracted and the live and dead cells evaluated with quantitative PCR (QPCR). After heat treatment and DNA modification with PMA, all fungal species tested showed an approximate 100- to 1000-fold difference in cell viability estimated by QPCR analysis which was consistent with estimates of viability based on culturing.

Vesper, Stephen; McKinstry, Craig A.; Hartmann, Chris; Neace, Michelle; Yoder, Stephanie; Vesper, Alex

2007-11-28

123

Effects of combined treatment with rapamycin and cotylenin A, a novel differentiation-inducing agent, on human breast carcinoma MCF-7 cells and xenografts  

PubMed Central

Introduction Rapamycin, an inhibitor of the serine/threonine kinase target of rapamycin, induces G1 arrest and/or apoptosis. Although rapamycin and its analogues are attractive candidates for cancer therapy, their sensitivities with respect to growth inhibition differ markedly among various cancer cells. Using human breast carcinoma cell line MCF-7 as an experimental model system, we examined the growth-inhibitory effects of combinations of various agents and rapamycin to find the agent that most potently enhances the growth-inhibitory effect of rapamycin. Method We evaluated the growth-inhibitory effect of rapamycin plus various agents, including cotylenin A (a novel inducer of differentiation of myeloid leukaemia cells) to MCF-7 cells, using either MTT assay or trypan blue dye exclusion test. The cell cycle was analyzed using propidium iodide-stained nuclei. Expressions of several genes in MCF-7 cells with rapamycin plus cotylenin A were studied using cDNA microarray analysis and RT-PCR. The in vitro results of MCF-7 cells treated with rapamycin plus cotylenin A were further confirmed in vivo in a mouse xenograft model. Results We found that the sensitivity of rapamycin to MCF-7 cells was markedly affected by cotylenin A. This treatment induced growth arrest of the cells at the G1 phase, rather than apoptosis, and induced senescence-associated ?-galactosidase activity. We examined the gene expression profiles associated with exposure to rapamycin and cotylenin A using cDNA microarrays. We found that expressions of cyclin G2, transforming growth factor-?-induced 68 kDa protein, BCL2-interacting killer, and growth factor receptor-bound 7 were markedly induced in MCF-7 cells treated with rapamycin plus cotylenin A. Furthermore, combined treatment with rapamycin and cotylenin A significantly inhibited the growth of MCF-7 cells as xenografts, without apparent adverse effects. Conclusion Rapamycin and cotylenin A cooperatively induced growth arrest in breast carcinoma MCF-7 cells in vitro, and treatment with rapamycin and cotylenin A combined more strongly inhibited the growth of MCF-7 cells as xenografts in vivo than treatment with rapamycin or cotylenin A alone, suggesting that this combination may have therapeutic value in treating breast cancer. We also identified several genes that were markedly modulated in MCF-7 cells treated with rapamycin plus cotylenin A.

Kasukabe, Takashi; Okabe-Kado, Junko; Kato, Nobuo; Sassa, Takeshi; Honma, Yoshio

2005-01-01

124

Cannabinoid receptor 1 blockade protects human retinal pigment epithelial cells from oxidative injury  

PubMed Central

Background Because oxidative stress is assumed to be a key mechanism in the pathological process of age-related macular degeneration (AMD), increasing numbers of studies have focused on discovering new pathways and treatments for reducing oxidative damage. Our work investigates the potential role of the cannabinoid receptor 1 (CB1) in oxidative stress of primary human retinal pigment epithelial (RPE) cells, a cellular model of AMD. Methods Primary human RPE cells were cultured and exposed to hydrogen peroxide for 24 h to induce oxidative damage. The expression of and changes in the CB1 receptor were determined with western blot assay and confocal imaging. The CB1 receptor in the RPE cells was inhibited with small interfering RNA (siRNA) or rimonabant (SR141716). Cell viability, apoptosis, and reactive oxygen species production were measured by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and sulforhodamine B assay, annexin V and propidium iodide staining, and the dichlorofluorescein fluorescence assay, respectively. Intracellular superoxide dismutase activity was assayed with a commercially available assay kit. Phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) protein expression and activation of signaling molecules were assessed with western blot analysis. Results We showed that human RPE cells express the CB1 receptor. In addition, oxidative stress upregulates the expression of the CB1 receptor. Deleting the CB1 receptor or treating with the CB1 receptor antagonist rimonabant (SR141716) rescued RPE cells from hydrogen peroxide–induced oxidative damage. Rimonabant pretreatment effectively reduced the apoptosis of RPE cells, inhibited the generation of intracellular reactive oxygen species and elevated the activity of superoxide dismutase. In addition, rimonabant significantly strengthened the oxidative stress-induced activation of the PI3K/Akt signaling pathway. Conclusions The results demonstrate the expression and regulation of CB1 receptors in human RPE cells. Inhibiting the CB1 receptor may be an effective therapeutic strategy for AMD by downregulating oxidative stress signaling and facilitating PI3K/Akt activation.

Wei, Yan; Wang, Xu; Zhao, Feng; Zhao, Pei-quan

2013-01-01

125

Cytotoxic effects of commercial wheatgrass and fiber towards human acute promyelocytic leukemia cells (HL60).  

PubMed

Cytotoxicity, the possible selective activity upon HL60 as well as the anti-proliferation effect of local health supplement wheatgrass and mixture of fibers were investigated in vitro using various cancerous cell line and normal blood cell culture. The IC(50) of wheatgrass-treated HL60 (17.5 ± 1.1, 12.5 ± 0.3, and 16 ± 0.5 microgram/ml for 24, 48 and 72 h, respectively) and fibers-treated HL60 (86.0 ± 5.5, 35.0 ± 2.5, and 52.5 ± 4.5 microgram/ml for 24, 48 and 72 h, respectively) showed that both extracts possessed optimum effect after 48 hours of treatment. No significant cytotoxic effect was observed on other type of cells. For trypan blue dye exclusion method, wheatgrass reduced the number of viable cells by 13.5% (±1.5), 47.1% (±3.6), and 64.9% (±2.7) after 24, 48 and 72 h exposure, respectively. Mixture of fibers reduced the number of viable cells by 36.4% (±2.3), 57.1% (±3.1), and 89.0% (±3.4) after 24, 48 and 72 h exposure, respectively, indicated that necrosis is also an alternative to the apoptotic mechanism of cell death. Annexin-V/propidium iodide staining revealed that both extracts induced apoptosis where early apoptosis had been detected concurrently with the reduction of percentage of cell viability. Cell cycle analysis revealed that in HL60, the percentage of apoptosis increased with time (wheatgrass: 16.0% ± 2.4, 45.3% ± 3.4 and 39.6% ± 4.1; mixture of fibers: 14.6% ± 1.8, 45.4% ± 2.3 and 45.9% ± 1.2) after exposure for 24, 48 and 72 h, respectively at the concentration of 100 microgram/ml and showed optimum effect at 48 hours. Thus, these health products can be a potential alternative supplement for leukaemia patients. PMID:21715255

Alitheen, Noorjahan Banu; Oon, Chuah Li; Keong, Yeap Swee; Chuan, Tan Kee; Li, Ho Ket; Yong, Ho Wan

2011-07-01

126

Transcriptional regulation of kinases downstream of the T cell receptor: another immunomodulatory mechanism of glucocorticoids  

PubMed Central

Background Glucocorticoids affect peripheral immune responses, including modulation of T-cell activation, differentiation, and apoptosis. The quantity and quality of T-cell receptor (TCR)-triggered intracellular signals modulate T-cell function. Thus, glucocorticoids may affect T cells by interfering with the TCR signaling cascade. The purpose of the study was to search for glucocorticoid-modulated kinases downstream of the TCR. Methods Gene modulation in lymphoid cells either treated with glucocorticoids or from glucocorticoid-treated mice was studied using a RNase protection assay, real-time PCR, and western blotting. The sensitivity of genetically modified thymocytes to glucocorticoid-induced apoptosis was studied by performing hypotonic propidium iodide staining and flow cytometry. The Student’s t-test was employed for statistical evaluation. Results We found that transcription of Itk, a non-receptor tyrosine kinase of the Tec family, was up-regulated in a mouse T-cell hybridoma by the synthetic glucocorticoid dexamethasone. In contrast, dexamethasone down-regulated the expression of Txk, a Tec kinase that functions redundantly with Itk, and Lck, the Src kinase immediately downstream of the TCR. We investigated the expression of Itk, Txk, and Lck in thymocytes and mature lymphocytes following in vitro and in vivo dexamethasone treatment at different time points and doses. Kinase expression was differentially modulated and followed distinct kinetics. Itk was up-regulated in all cell types and conditions tested. Txk was strongly up-regulated in mature lymphocytes but only weakly up-regulated or non-modulated in thymocytes in vitro or in vivo, respectively. Conversely, Lck was down-regulated in thymocytes, but not modulated or up-regulated in mature lymphocytes in the different experimental conditions. This complex behaviour correlates with the presence of both positive and negative glucocorticoid responsive elements (GRE and nGRE, respectively) in the Itk, Txk and Lck genes. To investigate the function associated with Itk up-regulation, dexamethasone-induced apoptosis of thymocytes from Itk-deficient mice was evaluated. Our results demonstrated that Itk deficiency causes increased sensitivity to dexamethasone but not to other pro-apoptotic stimuli. Conclusions Modulation of Itk, Txk, and Lck in thymocytes and mature lymphocytes is another mechanism by which glucocorticoids modulate T-cell activation and differentiation. Itk up-regulation plays a protective role in dexamethasone-treated thymocytes.

2014-01-01

127

The indole-3-carbinol cyclic tetrameric derivative CTet inhibits cell proliferation via overexpression of p21/CDKN1A in both estrogen receptor-positive and triple-negative breast cancer cell lines  

PubMed Central

Introduction Indole-3-carbinol (I3C), an autolysis product of glucosinolates present in cruciferous vegetables, and its dimeric derivative (3,3'-DIM) have been indicated as promising agents in preventing the development and progression of breast cancer. We have recently shown that I3C cyclic tetrameric derivative CTet formulated in ?-cyclodextrin (?-CD) efficiently inhibited cellular proliferation in breast cancer cell lines. This study aims to analyze the mechanisms involved in the in vitro inhibition of cell proliferation and to evaluate the in vivo antitumor activity of CTet in a xenograft study. Methods Estrogen receptor-positive MCF-7 and triple-negative MDA-MB-231 breast cancer cell lines were exposed to CTet to evaluate cell cycle perturbation (propidium iodide staining and cytofluorimetric acquisition), induction of autophagic morphological features (co-localization of LC3b autophagosome marker and LAMP2a lysosome marker by immunofluorescence) and changes in protein expression (immunoblot and microarray-based gene expression analyses). To test the in vivo efficacy of CTet, female athymic nude mice inoculated with MCF-7 cells were i.p. treated with 5 mg/kg/day of CTet for five days/week for two weeks and the tumor mass was externally monitored. Results CTet induced accumulation in G2/M phase without evidence of apoptotic response induction in both cell lines tested. In triple-negative MDA-MB-231 the autophagic lysosomal activity was significantly up-regulated after exposure to 4 ?M of CTet for 8 hours, while the highest CTet concentration was necessary to observe autophagic features in MCF-7 cells. The inhibition of Akt activity and p53-independent p21/CDKN1A and GADD45A overexpression were identified as the main molecular events responsible for CTet activity in MCF-7 and p53-mutant MDA-MB-231 cells. In vivo, CTet administration was able to significantly inhibit the growth of MCF-7 xenotransplanted into nude mice, without adverse effect on body weight or on haematological parameters. Conclusions Our data support CTet formulated with ?-CD as a promising and injectable anticancer agent for both hormone-responsive and triple-negative breast tumors.

2011-01-01

128

Positron emission tomographic monitoring of dual phosphatidylinositol-3-kinase and mTOR inhibition in anaplastic large cell lymphoma  

PubMed Central

Background Dual phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibition offers an attractive therapeutic strategy in anaplastic large cell lymphoma depending on oncogenic nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) signaling. We tested the efficacy of a novel dual PI3K/mTOR inhibitor, NVP-BGT226 (BGT226), in two anaplastic large cell lymphoma cell lines in vitro and in vivo and performed an early response evaluation with positron emission tomography (PET) imaging using the standard tracer, 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and the thymidine analog, 3?-deoxy-3?-[18F] fluorothymidine (FLT). Methods The biological effects of BGT226 were determined in vitro in the NPM-ALK positive cell lines SU-DHL-1 and Karpas299 by 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, propidium iodide staining, and biochemical analysis of PI3K and mTOR downstream signaling. FDG-PET and FLT-PET were performed in immunodeficient mice bearing either SU-DHL-1 or Karpas299 xenografts at baseline and 7 days after initiation of treatment with BGT226. Lymphomas were removed for immunohistochemical analysis of proliferation and apoptosis to correlate PET findings with in vivo treatment effects. Results SU-DHL-1 cells showed sensitivity to BGT226 in vitro, with cell cycle arrest in G0/G1 phase and an IC50 in the low nanomolar range, in contrast with Karpas299 cells, which were mainly resistant to BGT226. In vivo, both FDG-PET and FLT-PET discriminated sensitive from resistant lymphoma, as indicated by a significant reduction of tumor-to-background ratios on day 7 in treated SU-DHL-1 lymphoma-bearing animals compared with the control group, but not in animals with Karpas299 xenografts. Imaging results correlated with a marked decrease in the proliferation marker Ki67, and a slight increase in the apoptotic marker, cleaved caspase 3, as revealed by immunostaining of explanted lymphoma tissue. Conclusion Dual PI3K/mTOR inhibition using BGT226 is effective in ALK-positive anaplastic large cell lymphoma and can be monitored with both FDG-PET and FLT-PET early on in the course of therapy.

Graf, Nicolas; Li, Zhoulei; Herrmann, Ken; Weh, Daniel; Aichler, Michaela; Slawska, Jolanta; Walch, Axel; Peschel, Christian; Schwaiger, Markus; Buck, Andreas K; Dechow, Tobias; Keller, Ulrich

2014-01-01

129

The cathelicidin-BF Lys16 mutant Cbf-K16 selectively inhibits non-small cell lung cancer proliferation in vitro.  

PubMed

The 30-amino acid antimicrobial peptide Cbf-K16 is a cathelicidin-BF (BF-30) Lys16 mutant derived from the snake venom of Bungarus fasciatus. Our previous study found that BF-30 selectively inhibited the proliferation of the metastatic melanoma cell line B16F10 in vitro and in vivo, but had a negligible effect on human lung cells. In the present study, it was demonstrated for the first time that Cbf-K16 selectively inhibits the proliferation of lung carcinoma cells in vitro, with low toxicity to normal cells. The half-maximal inhibitory concentrations (IC50) of Cbf-K16 against H460 human non-small cell lung carcinoma cells and mouse Lewis lung cancer cells were only 16.5 and 10.5 µM, respectively, which were much less compared to that of BF-30 (45 and 40.3 µM). Data using a transmission electron microscope (TEM) assay showed that, at 20 and 40 µM, Cbf-K16 induced the rupture of the cytoplasmic membrane, which was consistent with data obtained from lactate dehydrogenase (LDH) release assays. The LDH release increased from 17.8 to 52.9% as the duration and dosage of Cbf-K16 increased. Annexin V-?uorescein and propidium iodide staining assays indicated that there were no obvious apoptotic effects at the different dosages and times tested. In H460 cells, the rate of genomic DNA binding increased from 51.9 to 86.8% as the concentration of Cbf-K16 increased from 5 to 10 µM. These data indicate that Cbf-K16 selectively inhibits the proliferation of lung carcinoma cells via cytoplasmic membrane permeabilization and DNA binding, rather than apoptosis. Although Cbf-K16 displayed significant cytotoxic activity (40 µM) against tumor cells, in splenocytes no significant inhibitory effect was observed and hemolysis was only 5.6%. These results suggest that Cbf-K16 is a low-toxicity anti-lung cancer drug candidate. PMID:23982315

Tian, Yuwei; Wang, Hui; Li, Bing; Ke, Mengyun; Wang, Jing; Dou, Jie; Zhou, Changlin

2013-11-01

130

Flow cytometric estimation of nuclear DNA amount in diploid bananas ( Musa acuminata and M. balbisiana )  

Microsoft Academic Search

Cell nuclei were isolated from leaf tissues of wild banana (Musa balbisiana, M. acuminata ssp.banksii andM. acuminata ssp.errans) and of the two vegetative clones of diploid cultivar “Pisang Mas”. Relative fluorescence intensity was measured on propidium\\u000a iodide-stained nuclei by flow cytometry. Nuclei isolated fromGlycine max with known nuclear genome size were used as internal standard to determine nuclear DNA content

J. Doležel; M. Doleželová; F. J. Novák

1994-01-01

131

Concurrent use of flow cytometry and fluorescence in-situ hybridization techniques for detecting faulty meiosis in a human sperm sample  

Microsoft Academic Search

5To whom correspondence should be addressed Routine semen analysis in an infertile patient revealed severe teratospermia associated with malformation of head and tail in 100% of the sperm cells. Flow cytometry and fluorescence in-situ hybridization (FISH) were shown to supplement routine semen analysis by providing information on the sperm chromatin. Using flow cytometry, propidium iodide-stained spermatozoa from the same sperm

R. Weissenberg; A. Aviram; R. Golan; L. M. Lewin; J. Levron; I. Madgar; J. Dor; G. Barkai; B. Goldman

1998-01-01

132

Propidium Iodide Competes with Ca2+ to Label Pectin in Pollen Tubes and Arabidopsis Root Hairs1[W][OA  

PubMed Central

We have used propidium iodide (PI) to investigate the dynamic properties of the primary cell wall at the apex of Arabidopsis (Arabidopsis thaliana) root hairs and pollen tubes and in lily (Lilium formosanum) pollen tubes. Our results show that in root hairs, as in pollen tubes, oscillatory peaks in PI fluorescence precede growth rate oscillations. Pectin forms the primary component of the cell wall at the tip of both root hairs and pollen tubes. Given the electronic structure of PI, we investigated whether PI binds to pectins in a manner analogous to Ca2+ binding. We first show that Ca2+ is able to abrogate PI growth inhibition in a dose-dependent manner. PI fluorescence itself also relies directly on the amount of Ca2+ in the growth solution. Exogenous pectin methyl esterase treatment of pollen tubes, which demethoxylates pectins, freeing more Ca2+-binding sites, leads to a dramatic increase in PI fluorescence. Treatment with pectinase leads to a corresponding decrease in fluorescence. These results are consistent with the hypothesis that PI binds to demethoxylated pectins. Unlike other pectin stains, PI at low yet useful concentration is vital and specifically does not alter the tip-focused Ca2+ gradient or growth oscillations. These data suggest that pectin secretion at the apex of tip-growing plant cells plays a critical role in regulating growth, and PI represents an excellent tool for examining the role of pectin and of Ca2+ in tip growth.

Rounds, Caleb M.; Lubeck, Eric; Hepler, Peter K.; Winship, Lawrence J.

2011-01-01

133

Comparison and characterization of microbial communities in sulfide-rich wastewater with and without propidium monoazide treatment.  

PubMed

A 16S rRNA gene-based culture-independent approach was used to study the bacterial and archaeal communities in a sulfide-rich wastewater. Propidium Monoazide (PMA) treatment was applied to limit the analysis to the fraction of viable cells in environment. A total of 104 and 68 clones respective from bacterial clone library and archaeal library were picked and analyzed by restriction fragment length polymorphism (RFLP). 35 RFLP patterns from bacterial clone library and 10 RFLP patterns from archaeal clone library were unique and the respective clones were selected for sequencing. BLAST analysis and RFLP analysis showed that the bacterial clone library mainly consisted of Gammaproteobacteria (73%), Anaerolineae (6%), Bacilli (5%), Deltaproteobacteria (7%), Clostridia (4%), Bacteroidetes (1%), and Chlorobia (1%); Methanomicrobia (99%) and Thermococci (1%) were the only two lineages of the archaeal domains. This study gave a first insight into the overall microbial structure in a cloth printing and dyeing wastewater treatment plant with high concentration of sulfide and increased knowledge on the applicability of the PMA treatment in combination with PCR-based molecular techniques to analyze only viable cells in microbial ecology. PMID:20680282

Lin, Wei-Tie; Luo, Jian-Fei; Guo, Yong

2011-02-01

134

Cisplatin Enhances Protein Kinase R-Like Endoplasmic Reticulum Kinase- and CD95-Dependent Melanoma Differentiation-Associated Gene-7/Interleukin-24-Induced Killing in Ovarian Carcinoma CellsS?  

PubMed Central

Melanoma differentiation associated gene-7/interleukin 24 (mda-7/IL-24) is a unique interleukin (IL)-10 family cytokine displaying selective apoptosis-inducing activity in transformed cells without harming normal cells. The present studies focused on defining the mechanism(s) by which recombinant adenoviral delivery of MDA-7/IL-24 inhibits cell survival of human ovarian carcinoma cells. Expression of MDA-7/IL-24 induced phosphorylation of protein kinase R-like endoplasmic reticulum kinase (PERK) and eukaryotic initiation factor2? (eIF2?). In a PERK-dependent fashion, MDA-7/IL-24 reduced ERK1/2 and AKT phosphorylation and activated c-Jun NH2-terminal kinase (JNK) 1/2 and p38 mitogen-activated protein kinase (MAPK). MDA-7/IL-24 reduced MCL-1 and BCL-XL and increased BAX levels via PERK signaling; cell-killing was mediated via the intrinsic pathway, and cell killing was primarily necrotic as judged using Annexin V/propidium iodide staining. Inhibition of p38 MAPK and JNK1/2 abolished MDA-7/IL-24 toxicity and blocked BAX and BAK activation, whereas activation of mitogen-activated extracellular-regulated kinase (MEK) 1/2 or AKT suppressed enhanced killing and JNK1/2 activation. MEK1/2 signaling increased expression of the MDA-7/IL-24 and PERK chaperone BiP/78-kDa glucose regulated protein (GRP78), and overexpression of BiP/GRP78 suppressed MDA-7/IL-24 toxicity. MDA-7/IL-24-induced LC3-green fluorescent protein vesicularization and processing of LC3; and knockdown of ATG5 suppressed MDA-7/IL-24-mediated toxicity. MDA-7/IL-24 and cisplatin interacted in a greater than additive fashion to kill tumor cells that was dependent on a further elevation of JNK1/2 activity and recruitment of the extrinsic CD95 pathway. MDA-7/IL-24 toxicity was enhanced in a weak additive fashion by paclitaxel; paclitaxel enhanced MDA-7/IL-24 + cisplatin lethality in a greater than additive fashion via BAX. Collectively, our data demonstrate that MDA-7/IL-24 induces an endoplasmic reticulum stress response that activates multiple proapoptotic pathways, culminating in decreased ovarian tumor cell survival.

Yacoub, Adly; Liu, Renyan; Park, Margaret A.; Hamed, Hossein A.; Dash, Rupesh; Schramm, Danielle N.; Sarkar, Devanand; Dimitriev, Igor P.; Bell, Jessica K.; Grant, Steven; Farrell, Nicholas P.; Curiel, David T.; Fisher, Paul B.

2010-01-01

135

Evaluation of Propidium Monoazide Real-Time PCR for Early Detection of Viable Mycobacterium tuberculosis in Clinical Respiratory Specimens  

PubMed Central

Background Conventional acid-fast bacilli (AFB) staining cannot differentiate viable from dead cells. Propidium monoazide (PMA) is a photoreactive DNA-binding dye that inhibits PCR amplification by DNA modification. We evaluated whether PMA real-time PCR is suitable for the early detection of viable Mycobacterium tuberculosis (MTB) in clinical respiratory specimens. Methods A total of 15 diluted suspensions from 5 clinical MTB isolates were quadruplicated and subjected to PMA treatment and/or heat inactivation. Eighty-three AFB-positive sputum samples were also tested to compare the ?CT values (CT value in PMA-treated sputum samples-CT value in non-PMA-treated sputum samples) between culture-positive and culture-negative specimens. Real-time PCR was performed using Anyplex MTB/NTM Real-Time Detection (Seegene, Korea), and the CT value changes after PMA treatment were compared between culture-positive and culture-negative groups. Results In MTB suspensions, the increase in the CT value after PMA treatment was significant in dead cells (P=0.0001) but not in live cells (P=0.1070). In 14 culture-negative sputum samples, the median ?CT value was 5.3 (95% confidence interval [CI], 4.1-8.2; P<0.0001), whereas that in 69 culture-positive sputum samples was 1.1 (95% CI, 0.7-2.0). In the ROC curve analysis, the cutoff ?CT value for maximum sensitivity (89.9%) and specificity (85.7%) for differentiating dead from live cells was 3.4. Conclusions PMA real-time PCR is a useful approach for differentiating dead from live bacilli in AFB smear-positive sputum samples.

Kim, Young Jin; Lee, Sun Min; Park, Byung Kyu; Kim, Sung Soo; Yi, Jongyoun; Kim, Hyung Hoi; Lee, Eun Yup

2014-01-01

136

Optimal Percoll concentration facilitates flow cytometric analysis for annexin V/propidium iodine-stained ischemic brain tissues.  

PubMed

We sought to determine the optimal Percoll concentration for ischemic rat brain prepared for flow cytometric (FC) measurements. Animals were subjected to the right middle cerebral artery (MCA) occlusion, and were euthanized at 3, 12, 24, and 72 h after reperfusion onset. The brains were processed by different concentrations (unisolated, 20, 25, 30, or 40%) of Percoll and stained with annexin V/propidium iodine (PI). Ischemic brain damage was evaluated by FC analysis and image analysis for histologic sections. The relative susceptibility of different phenotypes of cells to necrotic and apoptotic damage were evaluated by the FC analyses for the immunohistochemistry, PI, and the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL)-processed brain tissues. Our results showed that FC analysis effectively detected the extent and maturation of apoptotic/necrotic brain damage, and the results were consistent with those determined from histologic brain sections. Neuron was more vulnerable to apoptosis than glia, whereas both cellular phenotypes were compatible in susceptibility for necrotic cell death. Percoll at a low concentration (20%) could effectively remove tissue debris without affecting membranous integrity of the injured neurons. Conversely, high percentages of Percoll (30-40%) substantially increased membranous damage for the injured cells. These results supported the application of FC to determine the extent and progression in time, as well as relative phenotypes of apoptotic/necrotic cell deaths following ischemic damage. We highlighted the use of Percoll at low percentages to facilitate the removal of tissue debris and to improve membrane integrity preservation for the injured neurons. PMID:22311734

Juan, Wei-Sheng; Lin, Hsiao-Wen; Chen, Ying-Hsin; Chen, Hung-Yi; Hung, Yu-Chang; Tai, Shih-Huang; Huang, Sheng-Yang; Chen, Tsung-Ying; Lee, E-Jian

2012-05-01

137

Parthenolide generates reactive oxygen species and autophagy in MDA-MB231 cells. A soluble parthenolide analogue inhibits tumour growth and metastasis in a xenograft model of breast cancer  

PubMed Central

Triple-negative breast cancers (TNBCs) are clinically aggressive forms associated with a poor prognosis. We evaluated the cytotoxic effect exerted on triple-negative MDA-MB231 breast cancer cells both by parthenolide and its soluble analogue dimethylamino parthenolide (DMAPT) and explored the underlying molecular mechanism. The drugs induced a dose- and time-dependent decrement in cell viability, which was not prevented by the caspase inhibitor z-VAD-fmk. In particular in the first hours of treatment (1–3?h), parthenolide and DMAPT strongly stimulated reactive oxygen species (ROS) generation. The drugs induced production of superoxide anion by activating NADPH oxidase. ROS generation caused depletion of thiol groups and glutathione, activation of c-Jun N-terminal kinase (JNK) and downregulation of nuclear factor kB (NF-kB). During this first phase, parthenolide and DMAPT also stimulated autophagic process, as suggested by the enhanced expression of beclin-1, the conversion of microtubule-associated protein light chain 3-I (LC3-I) to LC3-II and the increase in the number of cells positive to monodansylcadaverine. Finally, the drugs increased RIP-1 expression. This effect was accompanied by a decrement of pro-caspase 8, while its cleaved form was not detected and the expression of c-FLIPS markedly increased. Prolonging the treatment (5–20?h) ROS generation favoured dissipation of mitochondrial membrane potential and the appearance of necrotic events, as suggested by the increased number of cells positive to propidium iodide staining. The administration of DMAPT in nude mice bearing xenografts of MDA-MB231 cells resulted in a significant inhibition of tumour growth, an increment of animal survival and a marked reduction of the lung area invaded by metastasis. Immunohistochemistry data revealed that treatment with DMAPT reduced the levels of NF-kB, metalloproteinase-2 and -9 and vascular endothelial growth factor, while induced upregulation of phosphorylated JNK. Taken together, our data suggest a possible use of parthenolide for the treatment of TNBCs.

D'Anneo, A; Carlisi, D; Lauricella, M; Puleio, R; Martinez, R; Di Bella, S; Di Marco, P; Emanuele, S; Di Fiore, R; Guercio, A; Vento, R; Tesoriere, G

2013-01-01

138

Quantification of viable Giardia cysts and Cryptosporidium oocysts in wastewater using propidium monoazide quantitative real-time PCR.  

PubMed

Real-time PCR (qPCR) is a rapid tool to quantify pathogens in the aquatic environment; however, it quantifies all pathogens, including both viable and nonviable. Propidium monoazide (PMA) is a membrane-impairment dye that penetrates only membrane-damaged cells. Once inside the cell, PMA is covalently cross-linked to DNA through light photoactivation, and PCR amplification is strongly inhibited. The goal of this study was to evaluate PMA-qPCR assays for rapid quantification of viable and heat-treated Giardia cysts and Cryptosporidium oocysts in wastewater. We observed a reduction in detection of heat-treated Giardia duodenalis cysts of 83.2, 89.9, 98.2, or 97 % with PMA-qPCR assays amplifying a 75 base-pair (bp) ?-giardin target, 77-bp triosephosphate isomerase (tpi), 133-bp glutamate dehydrogenase (GDH), and 143-bp ?-giardin gene target, respectively. Thus, the exclusion of dead cysts was more effective when qPCR assays that produced larger amplicons were used. The PMA treatment of Cryptosporidium oocysts plus/minus heat treatment abolished the fluorescent signal for dead oocysts with a PMA-qPCR assay amplifying a Cryptosporidium parvum (150-bp) oocyst wall protein (COWP) gene. The PMA-qPCR 143-bp ?-giardin assay for Giardia and the PMA-qPCR 150-bp COWP assay for Cryptosporidium accurately quantified live oo(cysts), and failed to detect dead oo(cysts), when phosphate-buffered saline and tertiary effluent wastewater were spiked with concentrations of 10(3) or 10(2) dead oo(cysts), respectively. Therefore, these assays are suitable for the detection of viable parasites that are typically present in tertiary wastewater effluents at concentrations of <10(3) oo(cysts)/l and can provide rapid risk assessments of environmental water. PMID:24781028

Alonso, José L; Amorós, Inmaculada; Guy, Rebecca A

2014-07-01

139

Anthocyanin Inhibits Propidium Iodide DNA Fluorescence in Euphorbia pulcherrima: Implications for Genome Size Variation and Flow Cytometry  

Microsoft Academic Search

† Background Measuring genome size by flow cytometry assumes direct proportionality between nuclear DNA staining and DNA amount. By 1997 it was recognized that secondary metabolites may affect DNA staining, thereby causing inaccuracy. Here experiments are reported with poinsettia (Euphorbia pulcherrima) with green leaves and red bracts rich in phenolics. † Methods DNA content was estimated as fluorescence of propidium

MICHAEL D. B ENNETT; H. J AMES P RICE; J. S PENCER J OHNSTON

2008-01-01

140

Monochloramine disinfection kinetics of Nitrosomonas europaea by propidium monoazide quantitative PCR and Live/Dead BacLight Methods  

EPA Science Inventory

Monochloramine disinfection kinetics were determined for the pure culture ammonia-oxidizing bacterium Nitrosomonas europaea (ATCC 19718) by two culture independent methods: (1) LIVE/DEAD® BacLight? (LD) and (2) propidium monoazide quantitative PCR (PMA-qPCR). Both methods were f...

141

The DNA intercalators ethidium bromide and propidium iodide also bind to core histones  

PubMed Central

Eukaryotic DNA is compacted in the form of chromatin, in a complex with histones and other non-histone proteins. The intimate association of DNA and histones in chromatin raises the possibility that DNA-interactive small molecules may bind to chromatin-associated proteins such as histones. Employing biophysical and biochemical techniques we have characterized the interaction of a classical intercalator, ethidium bromide (EB) and its structural analogue propidium iodide (PI) with hierarchical genomic components: long chromatin, chromatosome, core octamer and chromosomal DNA. Our studies show that EB and PI affect both chromatin structure and function, inducing chromatin compaction and disruption of the integrity of the chromatosome. Calorimetric studies and fluorescence measurements of the ligands demonstrated and characterized the association of these ligands with core histones and the intact octamer in absence of DNA. The ligands affect acetylation of histone H3 at lysine 9 and acetylation of histone H4 at lysine 5 and lysine 8 ex vivo. PI alters the post-translational modifications to a greater extent than EB. This is the first report showing the dual binding (chromosomal DNA and core histones) property of a classical intercalator, EB, and its longer analogue, PI, in the context of chromatin.

Banerjee, Amrita; Majumder, Parijat; Sanyal, Sulagna; Singh, Jasdeep; Jana, Kuladip; Das, Chandrima; Dasgupta, Dipak

2014-01-01

142

Effects of Caffeine and Chlorogenic Acid on Propidium Iodide Accessibility to DNA: Consequences on Genome Size Evaluation in Coffee Tree  

Microsoft Academic Search

Estimates of genome size using flow cytometry can be biased by the presence of cytosolic compounds, leading to pseudo-intraspecific variation in genome size. Two important compounds present in coffee trees—caffeine and chlorogenic acid—modify accessibility of the dye propidium iodide to Petunia DNA, a species used as internal standard in our genome size evaluation. These compounds could be responsible for intraspecific

M. N OIROT; P. B ARRE; J. L OUARN; S. H AMON

2003-01-01

143

Application of propidium monoazide quantitative PCR for selective detection of live Escherichia coli O157:H7 in vegetables after inactivation by essential oils.  

PubMed

The use of propidium monoazide (PMA) is enjoying increased popularity among researchers in different fields of microbiology. Its use in combination with real-time PCR (qPCR) represents one of the most successful approaches to detect viable cells. PMA-qPCR has successfully been used to evaluate the efficacy of various disinfection technologies in different microorganisms. Initially, in this study the effect of four essential oils (EOs), cumin, clove, oregano and cinnamon, was evaluated on suspensions of the enterohemorrhagic Escherichia coli O157:H7 by PMA-qPCR, LIVE/DEAD BacLight flow cytometry analysis (LIVE/DEAD-FCM), and plate count. E. coli O157:H7 cells treated with EOs at killing concentrations were permeable to PMA which was confirmed by LIVE/DEAD-FCM. However, the PMA-qPCR assay allows specific quantification among the autochthonous microbiota of food products. Therefore, the PMA-qPCR assay was used to evaluate its applicability in artificially contaminated iceberg lettuce and soya sprouts. Amplification signal was negative for the spiking tests performed with any of the EO-killed E. coli cells. It demonstrates that the PMA-qPCR assay is a suitable technique for monitoring E. coli O157:H7 inactivation by essential oils in fresh-cut vegetables. PMID:23072696

Elizaquível, Patricia; Sánchez, Gloria; Aznar, Rosa

2012-10-01

144

Monitoring the prevalence of viable and dead cariogenic bacteria in oral specimens and in vitro biofilms by qPCR combined with propidium monoazide  

PubMed Central

Background Streptococcus mutans and Streptococcus sobrinus are associated with the development of dental caries in humans. However, previous diagnostic systems are unsuitable for monitoring viable cell numbers in oral specimens. Assessing the relationship between the numbers of viable and dead bacterial cells and oral status is important for understanding oral infectious diseases. Propidium monoazide (PMA) has been reported to penetrate dead cells following membrane damage and to cross-link DNA, thereby inhibiting DNA amplification. In the present study, we established an assay for selective analysis of two viable human cariogenic pathogens, S. mutans and S. sobrinus, using PMA combined with real-time PCR (PMA-qPCR). Results We designed species-specific primer sets for S. mutans and S. sobrinus, generated standard curves for measuring cell numbers, and evaluated the dynamic range of the assay. To determine the effectiveness of the assay, PMA was added to viable and autoclave-killed cell mixtures. PMA treatment effectively prevented DNA amplification from dead cells. No amplification of DNA from dead cells was observed in these organisms. In addition, we applied this assay to analyze viable cell numbers in oral specimens. A significant correlation was found between the number of viable S. mutans cells in saliva and that in plaque among caries-free patients, whereas no correlation was observed between saliva and carious dentin. The total and viable cell numbers in caries-positive saliva were significantly higher than those in caries-free saliva. Finally, we analyzed the usefulness of this assay for in vitro oral biofilm analysis. We applied PMA-qPCR for monitoring viable S. mutans cell numbers in vitro in planktonic cells and oral biofilm treated with hydrogen peroxide (H2O2). In planktonic cells, the number of viable cells decreased significantly with increasing H2O2 concentration, whereas only a small decrease was observed in biofilm cell numbers. Conclusions PMA-qPCR is potentially useful for quantifying viable cariogenic pathogens in oral specimens and is applicable to oral biofilm experiments. This assay will help to elucidate the relationship between the number of viable cells in oral specimens and the oral status.

2013-01-01

145

Rapid Quantification of Viable Campylobacter Bacteria on Chicken Carcasses, Using Real-Time PCR and Propidium Monoazide Treatment, as a Tool for Quantitative Risk Assessment? †  

PubMed Central

A number of intervention strategies against Campylobacter-contaminated poultry focus on postslaughter reduction of the number of cells, emphasizing the need for rapid and reliable quantitative detection of only viable Campylobacter bacteria. We present a new and rapid quantitative approach to the enumeration of food-borne Campylobacter bacteria that combines real-time quantitative PCR (Q-PCR) with simple propidium monoazide (PMA) sample treatment. In less than 3 h, this method generates a signal from only viable and viable but nonculturable (VBNC) Campylobacter bacteria with an intact membrane. The method's performance was evaluated by assessing the contributions to variability by individual chicken carcass rinse matrices, species of Campylobacter, and differences in efficiency of DNA extraction with differing cell inputs. The method was compared with culture-based enumeration on 50 naturally infected chickens. The cell contents correlated with cycle threshold (CT) values (R2 = 0.993), with a quantification range of 1 × 102 to 1 × 107 CFU/ml. The correlation between the Campylobacter counts obtained by PMA-PCR and culture on naturally contaminated chickens was high (R2 = 0.844). The amplification efficiency of the Q-PCR method was not affected by the chicken rinse matrix or by the species of Campylobacter. No Q-PCR signals were obtained from artificially inoculated chicken rinse when PMA sample treatment was applied. In conclusion, this study presents a rapid tool for producing reliable quantitative data on viable Campylobacter bacteria in chicken carcass rinse. The proposed method does not detect DNA from dead Campylobacter bacteria but recognizes the infectious potential of the VBNC state and is thereby able to assess the effect of control strategies and provide trustworthy data for risk assessment.

Josefsen, M. H.; Lofstrom, C.; Hansen, T. B.; Christensen, L. S.; Olsen, J. E.; Hoorfar, J.

2010-01-01

146

Advantageous Direct Quantification of Viable Closely Related Probiotics in Petit-Suisse Cheeses under In Vitro Gastrointestinal Conditions by Propidium Monoazide - qPCR  

PubMed Central

Species-specific Quantitative Real Time PCR (qPCR) alone and combined with the use of propidium monoazide (PMA) were used along with the plate count method to evaluate the survival of the probiotic strains Lactobacillus acidophilus La-5 and Bifidobacterium animalis subsp. lactis Bb-12, and the bacteriocinogenic and potentially probiotic strain Lactobacillus sakei subsp. sakei 2a in synbiotic (F1) and probiotic (F2) petit-suisse cheeses exposed throughout shelf-life to in vitro simulated gastrointestinal tract conditions. The three strains studied showed a reduction in their viability after the 6 h assay. Bb-12 displayed the highest survival capacity, above 72.6 and 74.6% of the initial populations, respectively, by plate count and PMA-qPCR, maintaining population levels in the range or above 6 log CFU/g. The prebiotic mix of inulin and FOS did not offer any additional protection for the strains against the simulated gastrointestinal environment. The microorganisms' populations were comparable among the three methods at the initial time of the assay, confirming the presence of mainly viable and culturable cells. However, with the intensification of the stress induced throughout the various stages of the in vitro test, the differences among the methods increased. The qPCR was not a reliable enumeration method for the quantification of intact bacterial populations, mixed with large numbers of injured and dead bacteria, as confirmed by the scanning electron microscopy results. Furthermore, bacteria plate counts were much lower (P<0.05) than with the PMA-qPCR method, suggesting the accumulation of stressed or dead microorganisms unable to form colonies. The use of PMA overcame the qPCR inability to differentiate between dead and alive cells. The combination of PMA and species-specific qPCR in this study allowed a quick and unequivocal way of enumeration of viable closely related species incorporated into probiotic and synbiotic petit-suisse cheeses and under stress conditions.

Villarreal, Martha Lissete Morales; Padilha, Marina; Vieira, Antonio Diogo Silva; Franco, Bernadette Dora Gombossy de Melo; Martinez, Rafael Chacon Ruiz; Saad, Susana Marta Isay

2013-01-01

147

Alzheimer's disease presenilin-1 exon 9 deletion and L250S mutations sensitize SH-SY5Y neuroblastoma cells to hyperosmotic stress-induced apoptosis.  

PubMed

Mutations in the presenilin-1 (PS1) and presenilin-2 (PS2) genes account for the majority of early-onset familial Alzheimer's disease cases. Recent studies suggest that presenilin gene mutations predispose cells to apoptosis by mechanisms involving altered calcium homeostasis and oxidative damage. In the present study, we determined whether PS1 mutations also sensitize cells to hyperosmotic stress-induced apoptosis. For this, we established SH-SY5Y neuroblastoma cell lines stably transfected with wild-type PS1 or either the PS1 exon 9 deletion (deltaE9) or PS1 L250S mutants. Cultured cells were exposed to an overnight (17 h) serum deprivation, followed by a 30 min treatment with either 20 mM glucose, 10 nM insulin-like growth factor-1 or 20 mM glucose + 10 nM insulin-like growth factor-1. Cells were then cultured for a further 3, 6 or 24 h and stained for apoptotic condensed nuclei using propidium iodide. Confirmation that cells were undergoing an active apoptotic process was achieved by labelling of DNA strand breaks using the terminal dUTP nick end labelling (TUNEL) technique. We also determined cell viability using 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. Propidium iodide staining revealed that all cell lines and controls showed an increased number of apoptotic cells appearing with condensed nuclei at 24 h compared with 6 h and 3 h. High glucose-induced hyperosmotic stress resulted in significantly more apoptotic cells in the PS1 deltaE9 and PS1 L250S mutation cell lines at 24 h, compared with the wild-type PS1 lines (P < 0.001, ANOVA for both comparisons). Mean values (+/-S.D.) for the percentage number of apoptotic cells at 24 h following high glucose treatment were 16.1 +/- 3.5%, 26.7 +/- 5.5% and 31.0 +/- 5.7% for the wild-type PS1, PS1 deltaE9 and PS1 L250S lines, respectively. The pro-apoptotic effects of high glucose treatment were reversed by 10 nM insulin-like growth factor-1, although to a lesser extent in the mutation cell lines (5.8 +/- 2.4%, 15.2 +/- 7.3% and 13.2 +/- 2.0% for the wild-type PS1, PS1 deltaE9 (P < 0.01 for comparison with wild-type PS1) and PS1 L250S (P < 0.01 for comparison with wild-type PS1) transfected lines, respectively. TUNEL labelling of cells at 24 h following treatment gave essentially the same results pattern as obtained using propidium iodide. The percentage number of apoptotic cells with DNA strand breaks (means +/- S.D.) following high glucose treatment was 15.4 +/- 2.6% for the wild-type PS1, 26.8 +/- 3.2% for the PS1 deltaE9 (P < 0.001 for comparison with wild-type PS1) and 29.7 +/- 6.1% for the PS1 L250S transfected lines (P < 0.001 for comparison with wild-type PS1). The PS1 deltaE9 and PS1 L250S transfected lines also showed a higher number of apoptotic cells with DNA strand breaks at 24 h following high glucose plus insulin-like growth factor-1 treatment (11.4 +/- 2.0% and 14.3 +/- 2.8%, respectively), compared with values for the wild-type PS1 lines (8.5 +/- 2.4%). These differences were significant (P < 0.01) for the comparison of wild-type PS1 and PS1 L250S, but not PS1 deltaE9 lines. The mutation-related increases in number of apoptotic cells at 24 h following high glucose treatment were not accompanied by significant differences in cell viability at this time-point. Our results indicate that PS1 mutations predispose to hyperosmotic stress-induced apoptosis and that the anti-apoptotic effects of insulin-like growth factor-1 are compromised by these mutations. Perturbations of insulin-like growth factor-1 signalling may be involved in PS1 mutation-related apoptotic neuronal cell death in Alzheimer's disease. PMID:10658639

Tanii, H; Ankarcrona, M; Flood, F; Nilsberth, C; Mehta, N D; Perez-Tur, J; Winblad, B; Benedikz, E; Cowburn, R F

2000-01-01

148

Anthocyanin Inhibits Propidium Iodide DNA Fluorescence in Euphorbia pulcherrima: Implications for Genome Size Variation and Flow Cytometry  

PubMed Central

Background Measuring genome size by flow cytometry assumes direct proportionality between nuclear DNA staining and DNA amount. By 1997 it was recognized that secondary metabolites may affect DNA staining, thereby causing inaccuracy. Here experiments are reported with poinsettia (Euphorbia pulcherrima) with green leaves and red bracts rich in phenolics. Methods DNA content was estimated as fluorescence of propidium iodide (PI)-stained nuclei of poinsettia and/or pea (Pisum sativum) using flow cytometry. Tissue was chopped, or two tissues co-chopped, in Galbraith buffer alone or with six concentrations of cyanidin-3-rutinoside (a cyanidin-3-rhamnoglucoside contributing to red coloration in poinsettia). Key Results There were large differences in PI staining (35–70 %) between 2C nuclei from green leaf and red bract tissue in poinsettia. These largely disappeared when pea leaflets were co-chopped with poinsettia tissue as an internal standard. However, smaller (2·8–6·9 %) differences remained, and red bracts gave significantly lower 1C genome size estimates (1·69–1·76 pg) than green leaves (1·81 pg). Chopping pea or poinsettia tissue in buffer with 0–200 µm cyanidin-3-rutinoside showed that the effects of natural inhibitors in red bracts of poinsettia on PI staining were largely reproduced in a dose-dependent way by this anthocyanin. Conclusions Given their near-ubiquitous distribution, many suspected roles and known affects on DNA staining, anthocyanins are a potent, potential cause of significant error variation in genome size estimations for many plant tissues and taxa. This has important implications of wide practical and theoretical significance. When choosing genome size calibration standards it seems prudent to select materials producing little or no anthocyanin. Reviewing the literature identifies clear examples in which claims of intraspecific variation in genome size are probably artefacts caused by natural variation in anthocyanin levels or correlated with environmental factors known to induce variation in pigmentation.

Bennett, Michael D.; Price, H. James; Johnston, J. Spencer

2008-01-01

149

Apoptotic and necrotic influence of dental resin polymerization initiators in human gingival fibroblast cultures.  

PubMed

The aim of this study was to examine the apoptotic and necrotic influence of four dental resin polymerization initiators--namely benzoyl peroxide (BPO), camphorquinone (CQ), dimethylaminoethyl methacrylate (DMAEMA), and dimethyl-para-toluidine (DMPT)--on human gingival fibroblast (HGF) cells. To this end, the growth inhibition of HGF cells with 1 mM BPO, CQ, and DMAEMA, and 500 microM DMPT was evaluated using Cell Counting Kit-8. Then, cell cycle analysis by flow cytometry was used to assess propidium iodide-stained cells (distribution of cells in G0/G1, S, G2/M phases). All four dental resin polymerization initiators induced G0/G1 cell cycle arrest. As for the patterns of cell death (necrosis and/or apoptosis), they were analyzed using Annexin V-FITC/PI staining with flow cytometry. All four dental resin polymerization initiators most likely induced necrosis. PMID:18203492

Masuki, Kouhei; Nomura, Yuji; Bhawal, Ujjal Kumar; Sawajiri, Masahiko; Hirata, Isao; Nahara, Yukinori; Okazaki, Masayuki

2007-11-01

150

Survey for neoplasia in Macoma balthica from the Gulf of Gdansk by flow cytometry.  

PubMed

Using flow cytometry, 234 Macoma balthica were examined during a survey to determine frequency of neoplasia in the Gulf of Gdansk (Poland). Clams were collected in 4 locations and DNA content in gill tissue cells was determined by flow cytometry using propidium iodide staining. Cell permeabilization was induced by osmotic shock. Prevalence of neoplasia ranged from 9.6 to 26.7% depending on location. DNA content in aneuploid cells was higher than in normal dividing cells. The fluorescence value for aneuploid cells corresponded to tetraploid/pentaploid cells. Three stages of neoplasia were defined, based on the percentage of aneuploid cells determined by flow cytometry. Histopathological and cytogenetic analyses were also carried out on the same clams for comparative study. Proportions of normal and affected clams detected using flow cytometry were similar to those identified using both methods. In the present study, no clear relationship was demonstrated between prevalence of neoplasia and pollutant detection in the different sampling sites. PMID:16175967

Smolarz, K; Renault, T; Soletchnik, P; Wolowicz, M

2005-08-01

151

Quantifying Fungal Viability in Air and Water Samples using Quantitative PCR after Treatment with Propidium Monoazide (PMA)  

EPA Science Inventory

A method is described to discriminate between live and dead cells of the infectious fungi Aspergillus fumigatus, A. flavus, A. terreus, Mucor racemosus, Rhizopus stolonifer and Paecilomyces variotii. To test the method, conidial suspensions were heat inactivated at 85oC or held ...

152

Use of propidium monoazide for the enumeration of viable Brettanomyces bruxellensis in wine and beer by quantitative PCR.  

PubMed

Brettanomyces bruxellensis is a current problem in winemaking all over the world, and the question if B. bruxellensis has a positive or negative impact on wine is one of the most controversial discussions in the world. The presence of live B. bruxellensis cells represents the risk of growth and an increase in cell numbers, which is related to the potential production of volatile phenols. In this work, the optimisation of a PMA-quantitative PCR (qPCR) method to enumerate only viable cells was carried out using the standard strain B. bruxellensis DSMZ 70726. The obtained detection limits were 0.83 log CFU/mL in red wine, 0.63 log CFU/mL in white wine and 0.23 log CFU/mL in beer. Moreover, the quantification was also performed by Reverse Transcription quantitative PCR (RT-qPCR), and the results showed a higher detection limit for all of the trials. PMID:24929737

Vendrame, Marco; Manzano, Marisa; Comi, Giuseppe; Bertrand, Julien; Iacumin, Lucilla

2014-09-01

153

Determination of the Effects of Medium Composition on the Monochloramine Disinfection Kinetics of Nitrosomonas europaea by the Propidium Monoazide Quantitative PCR and Live/Dead BacLight Methods  

EPA Science Inventory

Various media compositions (phosphate 1-50 mM; ionic strength 2.8-150 meq/L) significantly affected Nitrosomonas europaea monochloramine disinfection kinetics determined by Live/Dead BacLight (LD) and propidium monoazide quantitative PCR (PMA-qPCR) methods (lag coefficient 37-490...

154

Comparison of propidium monoazide-quantitative PCR and reverse transcription quantitative PCR for viability detection of fresh Cryptosporidium oocysts following disinfection and after long-term storage in water samples  

EPA Science Inventory

Purified oocysts of Cryptosporidium parvum were used to evaluate applicability of two quantitative PCR (qPCR) viability detection methods in raw surface water and disinfection treated water. Propidium monoazide-qPCR targeting hsp70 gene was compared to reverse transcription (RT)-...

155

Simplified method for DNA and protein staining of human hematopoietic cell samples. [Cell flow systems  

SciTech Connect

A rapid reproducible method yielding high resolution analysis of DNA and protein in human hematopoietic cell samples has been developed by modification of the propidium iodide and fluorescein isothiocyanate procedure. Cell staining involves sequential addition of each reagent (RNase, fluorescein isothiocyanate and propidium iodide) to ethanol-fixed cells and requires no centrifugation steps. Stained cells are analyzed in the reagent solutions. Analysis of bone marrow samples from multiple myeloma patients showed mixed normal and aneuploid populations with a major portion of the aneuploid cells having a significantly higher protein content. This approach permitted differential cell cycle analysis of normal and the aneuploid populations.

Crissman, H.A. (Los Alamos National Lab., NM); Egmond, J.V.; Holdrinet, R.S.; Pennings, A.; Haanen, C.

1981-01-01

156

Lenticular mitoprotection. Part A: Monitoring mitochondrial depolarization with JC-1 and artifactual fluorescence by the glycogen synthase kinase-3? inhibitor, SB216763  

PubMed Central

Purpose Dissipation of the electrochemical gradient across the inner mitochondrial membrane results in mitochondrial membrane permeability transition (mMPT), a potential early marker for the onset of apoptosis. In this study, we demonstrate a role for glycogen synthase kinase-3? (GSK-3?) in regulating mMPT. Using direct inhibition of GSK-3? with the GSK-3? inhibitor SB216763, mitochondria may be prevented from depolarizing (hereafter referred to as mitoprotection). Cells treated with SB216763 showed an artifact of fluorescence similar to the green emission spectrum of the JC-1 dye. We demonstrate the novel use of spectral deconvolution to negate the interfering contributing fluorescence by SB216763, thus allowing an unfettered analysis of the JC-1 dye to determine the mitochondrial membrane potential. Methods Secondary cultures of virally transfected human lens epithelial cells (HLE-B3) were exposed to acute hypoxic conditions (approximately 1% O2) followed by exposure to atmospheric oxygen (approximately 21% O2). The fluorescent dye JC-1 was used to monitor the extent of mitochondrial depolarization upon exposure of inhibitor treatment relative to the control cells (mock inhibition) in atmospheric oxygen. Annexin V-fluorescein isothiocyanate/propidium iodide staining was implemented to determine cell viability. Results Treatment of HLE-B3 cells with SB216763 (12 µM), when challenged by oxidative stress, suppressed mitochondrial depolarization relative to control cells as demonstrated with JC-1 fluorescent dye analysis. Neither the control nor the SB216763-treated HLE-B3 cells tested positive with annexin V-fluorescein isothiocyanate/propidium iodide staining under the conditions of the experiment. Conclusions Inhibition of GSK-3? activity by SB216763 blocked mMPT relative to the slow but consistent depolarization observed with the control cells. We conclude that inhibition of GSK-3? activity by the GSK-3? inhibitor SB216763 provides positive protection against mitochondrial depolarization.

Brooks, Morgan M.; Neelam, Sudha; Fudala, Rafal; Gryczynski, Ignacy

2013-01-01

157

Cryptosporidium parvum studies with dairy products  

Microsoft Academic Search

Cryptosporidium parvum is a protozoan parasite capable of causing massive waterborne outbreaks. This study was conducted to model the transfer of C. parvum oocysts from contaminated water via food contact surfaces into yogurt and ice-cream, as well as to examine oocyst survival. Propidium iodide staining, combined with a direct immunofluorescence assay, was used for oocyst viability determination. Oocysts were recovered

Ming Qi Deng; Dean O Cliver

1999-01-01

158

Induction of apoptosis by quercetin: involvement of heat shock protein.  

PubMed

Quercetin, a widely distributed bioflavonoid, inhibits the growth of tumor cells. The present study was designed to investigate the possible involvement of apoptosis and heat shock protein in the antitumor activity of quercetin. Treatment with quercetin of K562, Molt-4, Raji, and MCAS tumor cell lines resulted in morphological changes, including propidium iodide-stained condensed nuclei (intact or fragmented), condensation of nuclear chromatin, and nuclear fragmentation. Agarose gel electrophoresis of quercetin-treated tumor cells demonstrated a typical ladder-like pattern of DNA fragments. In addition, the hypodiploid DNA peak of propidium iodide-stained nuclei was revealed by flow cytometry. Quercetin induced apoptosis in cells at G1 and S in a dose- and time-dependent manner. The apoptosis-inducing activity of quercetin was enhanced by cycloheximide and actinomycin D. A nuclease inhibitor, aurintricarboxylic acid, inhibited quercetin-induced apoptosis, whereas deprivation of intracellular calcium by EGTA had no effect. 12-O-Tetradecanoylphorbol-13-acetate and H-7 did not affect the induction of apoptosis by quercetin. The synthesis of HSP70 was inhibited by quercetin when determined by immunocytochemistry, Western blot analysis, and Northern blot analysis. Quercetin-treated tumor cells were not induced to show aggregation of HSP70 in the nuclei and nucleolus in response to heat shock, resulting in apoptosis. By contrast, when tumor cells were first exposed to heat shock, no apoptosis was induced by quercetin. In addition, pretreatment of tumor cells with HSP70 antisense oligomer that specifically inhibited the synthesis of HSP70 enhanced the subsequent induction of apoptosis by quercetin. These results suggest that quercetin displays antitumor activity by triggering apoptosis and that HSP70 may affect quercetin-induced apoptosis. PMID:8069862

Wei, Y Q; Zhao, X; Kariya, Y; Fukata, H; Teshigawara, K; Uchida, A

1994-09-15

159

Discrimination of viable from non-viable gram-negative bacterial pathogens in airborne particles using propidium monoazide-assisted qPCR.  

PubMed

The presence of bacterial pathogens in airborne particulate matter (PM) has been of considerable concern from the public health standpoint. Conventional culture-based methods are tedious, time consuming and are unable to quantify stressed viable but non-culturable (VBNC) populations of these pathogens. This study reports the optimization, validation and application of a new and rapid quantitative method for enumeration of four live potential Gram-negative bacterial pathogens (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Aeromonas hydrophila) in PM of biomass burning origin. This method makes use of an intercalating dye (propidium monoazide, PMA) in conjunction with real-time PCR (qPCR) analysis following DNA extraction from PM samples for distinguishing viable from non-viable potential bacterial pathogens. This method was not affected by the complex matrix of the environmental samples, nor by any PCR inhibition effects. The number of viable pathogens ranged from 0 to 8×10(4) gene copies/m(3) in PM. With the exception of A. hydrophilia, all the three pathogens were found to be present in PM. The correlation between the counts obtained using the PMA-qPCR (modified qPCR) and those from the culture-based method was very high with R(2)~1.0 and p value<0.0001. PMID:23428754

Kaushik, Rajni; Balasubramanian, Rajasekhar

2013-04-01

160

The type of ATG matters — Natural killer cells are influenced differentially by Thymoglobulin, Lymphoglobulin and ATG-Fresenius  

Microsoft Academic Search

Although ATG is frequently used in hematopoietic stem cell transplantation and solid organ transplantation, little is known on its effects on NK cells, which mediate important functions in post-transplantation immunology. We incubated peripheral blood lymphocytes of healthy donors with Thymoglobulin, Lymphoglobulin or ATG-Fresenius. Cell death and apoptosis of NK cells and T cells were determined by flow cytometry using propidium

Olaf Penack; Lars Fischer; Chiara Gentilini; Axel Nogai; Arne Muessig; Kathrin Rieger; Susanne Ganepola; Eckhard Thiel; Lutz Uharek

2007-01-01

161

Effect of dexamethasone on development of in vitro-produced bovine embryos.  

PubMed

Studies in somatic cells have shown that glucocorticoids such as dexamethasone (DEX) may trigger or prevent apoptosis depending on the cell type in culture. Because the dysregulation of apoptosis may lower in vitro embryo production efficiency, we sought to investigate the effects of supplementing IVC medium with DEX (0.1 ?g/mL) on embryo morphology, development kinetics, and apoptosis rates of in vitro-produced bovine preimplantation embryos. Embryo morphology was graded on Day 7, and development rates were assessed on Days 4 and 7 of IVC. Apoptosis was evaluated via annexin/propidium iodide staining under fluorescence microscopy where a cell labeled with annexin, propidium iodide, or both would be considered apoptotic. An embryo was counted in the apoptosis rates, if it displayed at least one such labeled cell. Although DEX supplementation did not reduce apoptosis rates, it had a positive impact on developmental kinetics and cell number both on Days 4 and 7 of embryo culture. Presumably, such effect resulted from increased cell proliferation rather than a direct inhibition of apoptosis. Further studies may evaluate the mechanisms by which glucocorticoids may affect embryo development, as DEX supplementation could become a tool to improve in vitro embryo yield in mammalian species. PMID:24656431

Santana, Priscila P B; Carvalho, Carla M F; da Costa, Nathália N; Silva, Thiago V G; Ramos, Priscilla C A; Cordeiro, Marcela S; Santos, Simone S D; Khayat, André S; Ohashi, Otávio M; Miranda, Moysés S

2014-07-01

162

Morphological analysis of rat ureteric terminal arterioles in situ.  

PubMed

Confocal imaging of Fluo-4, Propidium iodide, and di-8-Anepps loaded ureter were used to study the morphology of terminal arterioles with an inner diameter <50 ?m in intact rat ureter. Optical sectioning showed that the muscle coat of the terminal arterioles consisted of a monolayer of highly curved smooth muscle cells which run circumferentially around the endothelium. This technique allowed not only to measure the inner diameter of the terminal arterioles but also to define the orientation and number of revolutions an individual smooth muscle cell made around the endothelium. We measured thickness, width, length, and morphological profile of the myocytes and endothelial cells. Propidium iodide staining showed nuclei of individual cells by continuous imaging at high resolution in serial optical sections. Conventional haematoxylin-eosin, Masson's tri-chrome staining, and transmission electron microscopy were also used in this study to compare the measurements obtained from live confocal imaging with histological standard methods. Parameters obtained from live imaging were significantly different. This technique of live staining allowed measuring the cellular and nuclear dimensions of the terminal arterioles in their natural environment which are important in studying the effects of vascular disease or aging on vascular structure. PMID:23450700

Mumtaz, Sadaf

2013-06-01

163

Dose-Dependent Thresholds of 10-ns Electric Pulse Induced Plasma Membrane Disruption and Cytotoxicity in Multiple Cell Lines.  

National Technical Information Service (NTIS)

In this study, we determined the LD(50) (50% lethal dose) for cell death, and the ED(50) (50% of cell population staining positive) for propidium (Pr) ion uptake, and phosphatidylserine (PS) externalization for several commonly-studied cell lines (HeLa, J...

A. G. Pakhomov B. L. Ibey C. C. Roth G. J. Wilmink J. A. Bernhard

2010-01-01

164

Dose-Dependent Thresholds of 10-ns Electric Pulse Induced Plasma Membrane Disruption and Cytotoxicity in Multiple Cell Lines.  

National Technical Information Service (NTIS)

In this study, we determined the LD50 (50% lethal dose) for cell death, and the ED50 (50% of cell population staining positive) for propidium (Pr) iodide uptake, and phosphatidylserine (PS) externalization for several commonly studied cell lines (HeLa, Ju...

A. G. Pakhomov B. L. Ibey C. C. Roth G. J. Wilmink J. A. Bernhard

2011-01-01

165

Induction of apoptosis by diallyl disulfide through activation of caspase-3 in human leukemia HL60 cells 1 1 Abbreviations: Ac-DEVD-CHO, N-acetyl-Asp-Glu-Val-Asp-CHO (aldehyde); Ac-DEVD-AFC, N-acetyl-Asp-Glu-Val-Asp-AFC (7-amino-4-trifluoromethyl-coumaine); Ac-YVAD-CHO, N-acetyl-Tyr-Val-Ala-Asp-CHO (aldehyde); CAD, caspase-activated deoxyribonuclease; CM-H 2DCFDA, 5-(and -6)-chloromethyl-2?,7?-dichlorodihydrofluorescein diacetate; DADS, diallyl disulfide; FACS, fluorescence-activated cell sorter; FITC, fluorescein isothiocyanate; ICAD, inhibitor of caspase-activated deoxyribonuclease; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NAC, N-acetylcysteine; PARP, poly(ADP-ribose) polymerase; PI, propidium iodide; and ROI, reactive oxygen intermediate  

Microsoft Academic Search

Diallyl disulfide (DADS), a component of garlic (Allium sativum), has been known to exert potent chemopreventative activity against colon, lung, and skin cancers. However, its molecular mechanism of action is still obscure. The present study demonstrated that DADS induces apoptosis of human leukemia HL-60 cells in a concentration- and time-dependent manner with an ic50 for cell viability of less than

Kang-Beom Kwon; Su-Jin Yoo; Do-Gon Ryu; Jeong-Yeh Yang; Hye-Won Rho; Jong-Suk Kim; Jin-Woo Park; Hyung-Rho Kim; Byung-Hyun Park

2002-01-01

166

Genome size and «C-heterochromatic-DNA» in man and the african apes  

Microsoft Academic Search

The genome sizes and the amounts of DNA after C-banding pretreatments (C-heterochromatic DNA) were measured by quantitative cytochemical methods in man and the African apes,Gorilla gorilla andPan troglodytes. As evaluated by flow cytometry on propidium-iodide-stained lymphocytes, gorilla and chimpanzee have genome sizes larger\\u000a than man. On the basis of the different resistance of metaphase chromosome DNA to the C-banding procedure,

C. Pellicciari; E. Ronchetti; D. Formenti; R. Stanyon; M. G. Manfredi Romanini

1990-01-01

167

Selective transfection with osmotically active sorbitol modified PEI nanoparticles for enhanced anti-cancer gene therapy.  

PubMed

Polysorbitol-mediated transporter (PSMT) has been previously shown to achieve high transfection efficiency with minimal cytotoxicity. Polysorbitol backbone possesses osmotic properties and leads to enhanced cellular uptake. The PSMT/pDNA nanoparticles were prepared and the particle size, surface charge of the nanoparticles was determined for the study. PSMT delivers genes into cells by the caveolae mediated endocytic pathway. Caveolae expression is usually altered in transformed cancer cells. Transfection through the caveolae may help PSMT to selectively transfect cancer cells rather than normal cells. Transfection of the luciferase gene by PSMT was tested in various cell types including cancer cell lines, primary cells, and immortalized cells. Luciferase transgene expression mediated by PSMT was remarkably increased in HeLa cells compared to expression using the control carrier Lipofectamine. Moreover, the toxicity of PSMT was comparable to the control carrier (Lipofectamine) in the same cells. Selective transfection of cancer cells using PSMT was further confirmed by co-culture of cancer and normal cells, which showed that transgene expression was pre-dominantly achieved in cancer cells. A functional p53 gene was also delivered into HeLa cells using PSMT and the selective transgene expression of p53 protein in cancer cells was analyzed through western blotting and confocal microscopy. HeLa cells transfected with PSMT/p53 plasmid nanoparticles showed cellular damage and apoptosis, which was confirmed through propidium iodide staining. PMID:24880989

Nguyen, Kim Cuc Thi; Muthiah, Muthunarayanan; Islam, Mohammad Ariful; Kalash, R Santhosh; Cho, Chong-Su; Park, Hansoo; Lee, Il-Kwon; Kim, Hyeoung-Joon; Park, In-Kyu; Cho, Kyung A

2014-07-01

168

Electric field mediated loading of macromolecules in intact yeast cells is critically controlled at the wall level  

Microsoft Academic Search

The mechanism of electric field mediated macromolecule transfer inside an intact yeast cell was investigated by observing, under a microscope, the fluorescence associated to cells after pulsation in a buffer containing two different hydrophilic fluorescent dyes. In the case of a small probe such as propidium iodide, a long lived permeabilized state was induced by the field as classically observed

V. Ganeva; B. Galutzov; J. Teissié

1995-01-01

169

Long-term, repeated dose in vitro neurotoxicity of the glutamate receptor antagonist L-AP3, demonstrated in rat hippocampal slice cultures by using continuous propidium iodide incubation.  

PubMed

Most in vitro models are only used to assess short-term effects of test compounds. However, as demonstrated here, hippocampal slice cultures can be used for long-term studies. The test compound used was the metabotropic glutamate receptor antagonist, L(+)-2-amino-3-phosphonopropionic acid (L-AP3), which is known to be toxic in vivo after subchronic, but not acute, administration. Degenerative effects were monitored by measuring the cellular uptake of propidium iodide (PI; continuously present in the medium) and lactate dehydrogenase (LDH) leakage, and by using a panel of histological stains. Hippocampal slices, derived from 2-3 day old rats and grown for 3 weeks, were subsequently exposed for the next 3 weeks to 0, 10 or 100microM L-AP3, with PI (2microM) in the culture medium. Exposure to 100microM L-AP3 induced severe toxicity after 4-6 days, shown by massive PI uptake, LDH leakage, changes in MAP2 and GFAP immunostaining, and in Nissl and Timm staining. In contrast, 10microM L-AP3 did not induce detectable neuronal degeneration. Treatment with the NMDA receptor antagonist, MK-801, or the AMPA/KA receptor antagonist NBQX, together with 100microM L-AP3, reduced neurodegeneration down to close to control values. It is concluded that continuous incubation of hippocampal slice cultures with PI is technically feasible for use in studies of inducible neuronal degeneration over time. PMID:17559310

Kristensen, Bjarne W; Blaabjerg, Morten; Noraberg, Jens; Zimmer, Jens

2007-05-01

170

Influence of the mycotoxins ?- and ?-zearalenol and deoxynivalenol on the cell cycle of cultured porcine endometrial cells  

Microsoft Academic Search

The present study investigated the effects of the mycotoxins ?-zearalenol (?-ZOL) and ?-zearalenol (?-ZOL) at concentrations of 7.5, 15, and 30?M, and deoxynivalenol (DON) at concentrations of 0.94, 1.88, and 3.76?M on cell cycle distribution (propidium iodide, PI staining) in combination with the proliferating cell nuclear antigen (PCNA) by flow cytometry. The viability of porcine uterine cells was not impaired

U. Tiemann; T. Viergutz; L. Jonas; F. Schneider

2003-01-01

171

Adiponectin exerts antiproliferative effect on human placenta via modulation of the JNK/c-Jun pathway  

PubMed Central

To determine the effects of adiponectin on human placenta during gestational diabetes mellitus (GDM) and on high glucose (HG)-induced BeWo cell proliferation. We examined the expression levels of adiponectin in control and GDM placenta using quantitative real-time PCR, Western blot, and immunohistochemistry (IHC). Cell proliferation and viability were assessed using a colorimetric assay (cell counting kit-8), PCNA immunocytochemical staining, and Western blot analysis of cyclin D1. Transfection of siRNA against c-jun was performed using Lipofectamine 2000. Cell cycle analysis was performed using propidium iodide staining and flow cytometry. Results show a decreased expression of adiponectin and an increased degree of trophoblast cell proliferation in GDM placenta compared to the normal placenta. Similarly, HG can promote BeWo cell proliferation that is associated with adiponectin down-regulation. This proliferation could be depressed by addition of exogenous adiponectin, i.e. adiponectin exerts antiproliferative effects on HG-induced trophoblast cells. Adiponectin suppresses the HG-induced BeWo cell proliferation by inhibiting the activation of JNK/c-jun. In conclusion, adiponectin inhibits HG-induced proliferation of BeWo cells through down-regulation of JNK/c-jun phosphorylation.

Chen, Haitian; Chen, Hanqing; Wu, Yanxin; Liu, Bin; Li, Zhuyu; Wang, Zilian

2014-01-01

172

Interleukin-29 binds to melanoma cells inducing Jak-STAT signal transduction and apoptosis.  

PubMed

Interleukin-29 (IL-29) is a member of the type III IFN family that has been shown to have antiviral activity and to inhibit cell growth. Melanoma cell lines were tested for expression of the IL-29 receptor (IL-29R) and their response to IL-29. Expression of IL-28R1 and IL-10R2, components of IL-29R, was evaluated using reverse transcription-PCR. A combination of immunoblot analysis and flow cytometry was used to evaluate IL-29-induced signal transduction. U133 Plus 2.0 Arrays and real-time PCR were used to evaluate gene expression. Apoptosis was measured using Annexin V/propridium iodide staining. In situ PCR for IL-29R was done on paraffin-embedded melanoma tumors. Both IL-28R1 and IL-10R2 were expressed on the A375, 1106 MEL, Hs294T, 18105 MEL, MEL 39, SK MEL 5, and F01 cell lines. Incubation of melanoma cell lines with IL-29 (10-1,000 ng/mL) led to phosphorylation of signal transducer and activator of transcription 1 (STAT1) and STAT2. Microarray analysis and quantitative reverse transcription-PCR showed a marked increase in transcripts of IFN-regulated genes after treatment with IL-29. In the F01 cell line, bortezomib-induced and temozolomide-induced apoptosis was synergistically enhanced following the addition of IL-29. In situ PCR revealed that IL-10R2 and IL-28R1 were present in six of eight primary human melanoma tumors but not in benign nevi specimens. In conclusion, IL-29 receptors are expressed on the surface of human melanoma cell lines and patient samples, and treatment of these cell lines with IL-29 leads to signaling via the Jak-STAT pathway, the transcription of a unique set of genes, and apoptosis. PMID:20103601

Guenterberg, Kristan D; Grignol, Valerie P; Raig, Ene T; Zimmerer, Jason M; Chan, Anthony N; Blaskovits, Farriss M; Young, Gregory S; Nuovo, Gerard J; Mundy, Bethany L; Lesinski, Gregory B; Carson, William E

2010-02-01

173

C-Phycocyanin protects cerebellar granule cells from low potassium\\/serum deprivation-induced apoptosis  

Microsoft Academic Search

We tested the potential cytoprotective role of C-phycocyanin in rat cerebellar granule cell cultures. Cell death was induced by potassium and serum (K\\/S) withdrawal. Cell viability was studied using the neutral red assay and laser scanning cytometry with propidium iodide as fluorochrome. C-phycocyanin (1-3 mg\\/ml) showed a neuroprotective effect against 24 h of K\\/S deprivation in cerebellar granule cells. After

Víctor Rimbau; Antoni Camins; David Pubill; Francesc X. Sureda; Cheyla Romay; Ricardo González; Andrés Jiménez; Elena Escubedo; Jordi Camarasa; Mercè Pallàs

2001-01-01

174

Permeabilization of lymphocytes with polyethylene glycol 1000. Discrimination of permeabilized cells by flow cytometry  

SciTech Connect

The toxicity of polyethylene glycol 1000 (PEG) used similarly as in cell hybridization experiments, has been studied by flow cytometry, measuring the light scattering and fluorescence distributions of PEG-treated human lymphocytes stained with propidium iodide, fluorescein diacetate and acridine orange (AO). The sensitivity of these tests to detect permeabilized, or potentially dead cells, was equal. In addition, PEG proved to interfere with AO staining most likely through the inhibition of its binding to nucleic acids. The decrease of AO fluorescence in cells killed by PEG was unexpected since intercalation of propidium iodide was the same as in alcohol fixed cells. Permeabilization of cells by PEG appears to be an all-or-none phenomenon, accompanied by entrance of PEG into the cells. The findings are described in the context of a review of the currently used flow cytometric techniques to discriminate viable and lethally affected cells; also, the problems of interpretation are discussed.

Szabo, G. Jr.; Kiss, A.; Tron, L.

1982-07-01

175

Luciferase-based protein-denaturation assay for quantification of radiofrequency field-induced targeted hyperthermia: developing an intracellular thermometer  

PubMed Central

Background Several studies have reported targeted hyperthermia at the cellular level using remote activation of nanoparticles by radiofrequency waves. To date, methods to quantify intracellular thermal dose have not been reported. In this report we study the relationship between radio wave exposure and luciferase denaturation with and without intracellular nanoparticles. The findings are used to devise a strategy to quantify targeted thermal dose in a primary human liver cancer cell line. Methods Water-bath or non-invasive external RF generator (600W, 13.56 MHz) was used for hyperthermia exposures. Luciferase activity was measured using a bioluminescence assay and viability was assessed using Annexin V-FITC and Propidium iodide staining. Heat shock proteins were analyzed using western-blot analysis Results Duration-dependent luciferase denaturation was observed in SNU449 cells exposed to RF field that preceded measurable loss in viability. Loss of luciferase activity was higher in cetuximab-conjugated gold nanoparticle (C225-AuNP) treated cells. Using a standard curve from water-bath experiments, the intracellular thermal dose was calculated. Cells treated with C225-AuNP accumulated 6.07 times higher intracellular thermal dose than the untreated controls over initial 4 minutes of RF exposure. Conclusions Cancer cells when exposed to an external RF field exhibit dose-dependent protein denaturation. Luciferase denaturation assay can be used to quantify thermal dose delivered after RF exposures to cancer cells with and without nanoparticles.

Raoof, Mustafa; Zhu, Cihui; Kaluarachchi, Warna D.; Curley, Steven A.

2013-01-01

176

Antioxidant, hepatoprotective and cytotoxic effects of icetexanes isolated from stem-bark of Premna tomentosa.  

PubMed

The study investigates the antioxidant, hepatoprotective and antiproliferative effects of novel icetexane diterpenoids (ice 1-4) isolated from hexane extract of stem bark of Premna tomentosa. A549, HT-29, MCF-7, MDA-MB-231, A431 cells were used to assess the antiproliferative activity by MTT assay. Cell death induced by apoptosis was determined by morphological assessment studies using acridine orange/ethidium bromide staining (dual staining), mitochondrial potential measurement by JC-1 staining, and cell cycle analysis by propidium iodide staining method by Muse cell analyser. Anti oxidant activity was investigated by in vitro assays such as DPPH, nitric oxide and superoxide scavenging activities. Hepatoprotective activity was determined in vitro with HepG2 cells and in vivo by tBHP induced hepatic damage mice model. Based on the in vitro cytotoxic assays and morphological assessment studies using fluorescence microscopic study (acridine orange and ethidium bromide double staining) and mitochondrial potential measurements, it was found that ice 2 and 3 possess good antiproliferative effect via mitochondrial mediated apoptosis in human lung and breast cancer cells. Results of in vitro antioxidant studies demonstrated that ice-4 has showed good antioxidant activity. The restoration of serum levels of SGOT, SGPT and ALKP, liver GSH status and reduction or inhibition of lipid peroxidation in liver of tBHP intoxicated mice after administration of ice-4 at dose of 250mg/kg indicated its potential use for hepatoprotective activity. PMID:24183951

V G M, Naidu; Atmakur, Hymavathi; Katragadda, Suresh Babu; Devabakthuni, Bhavana; Kota, Anudeep; S, Chenna Keshava Reddy; Kuncha, Madhusudana; M V P S, Vishnu Vardhan; Kulkarni, Prasad; Janaswamy, Madhusudana Rao; Sistla, Ramakrishna

2014-03-15

177

Effects of Polycyclic Aromatic Hydrocarbon-Containing Oil Mixtures on Generation of Reactive Oxygen Species and Cell Viability in MCF7 Breast Cancer Cells  

Microsoft Academic Search

Clarified slurry oil (CSO), and two crude oil samples, Belridge heavy crude oil (BHCO) and Lost Hills light crude oil (LHLCO), were examined for their ability to generate reactive oxygen species (ROS) in MCF-7 cells. Intracellular ROS and cell viability were determined in a flow cytometer using dihydroxyrhodamine 123 and propidium iodide, respectively. In experiments with short-term exposure, single-cell suspensions

Bayram Yilmaz; John Ssempebwa; Carl R. Mackerer; Kathleen F. Arcaro; David O. Carpenter

2007-01-01

178

UVA Irradiation of Dysplastic Keratinocytes: Oxidative Damage versus Antioxidant Defense  

PubMed Central

UVA affects epidermal cell physiology in a complex manner, but the harmful effects have been studied mainly in terms of DNA damage, mutagenesis and carcinogenesis. We investigated UVA effects on membrane integrity and antioxidant defense of dysplastic keratinocytes after one and two hours of irradiation, both immediately after exposure, and 24 h post-irradiation. To determine the UVA oxidative stress on cell membrane, lipid peroxidation was correlated with changes in fatty acid levels. Membrane permeability and integrity were assessed by propidium iodide staining and lactate dehydrogenase release. The effects on keratinocyte antioxidant protection were investigated in terms of catalase activity and expression. Lipid peroxidation increased in an exposure time-dependent manner. UVA exposure decreased the level of polyunsaturated fatty acids, which gradually returned to its initial value. Lactate dehydrogenase release showed a dramatic loss in membrane integrity after 2 h minimum of exposure. The cell ability to restore membrane permeability was noted at 24 h post-irradiation (for one hour exposure). Catalase activity decreased in an exposure time-dependent manner. UVA-irradiated dysplastic keratinocytes developed mechanisms leading to cell protection and survival, following a non-lethal exposure. The surviving cells gained an increased resistance to apoptosis, suggesting that their pre-malignant status harbors an abnormal ability to control their fate.

Nechifor, Marina T.; Niculite, Cristina M.; Urs, Andreea O.; Regalia, Teodor; Mocanu, Mihaela; Popescu, Alexandra; Manda, Gina; Dinu, Diana; Leabu, Mircea

2012-01-01

179

Rapid test for distinguishing membrane-active antibacterial agents.  

PubMed

In the search for antibacterial agents with a novel mode-of-action (MOA) many targeted cellular and cell-free assays are developed and used to screen chemical and natural product libraries. Frequently, hits identified by the primary screens include compounds with nonspecific activities that can affect the integrity and function of bacterial membrane. For a rapid dereplication of membrane-active compounds, a simple method was established using a commercially available Live/Dead(R) Bacterial Viability Kit. This method utilized two fluorescent nucleic acid stains, SYTO9 (stains all cells green) and propidium iodide (stains cells with damaged membrane red) for the drug-treated bacterial cells. The cells were then either examined visually by fluorescence microscopy or their fluorescence emissions were recorded using a multi-label plate reader set to measure emissions at two different wavelengths. The ratio of green versus red was compared to a standard curve indicating the percentage of live versus dead bacteria. Nine known antibiotics and 14 lead compounds from various antibacterial screens were tested with results consistent with their MOA. PMID:16631264

Prakash Singh, Maya

2006-10-01

180

Follicular atresia during Dacus oleae oogenesis.  

PubMed

Programmed cell death, constitutes a common fundamental incident that occurs during oogenesis in a variety of different animals. It plays a significant role in the maturation process of the female gamete and also in the removal of abnormal and superfluous cells at certain checkpoints of development. In the present study, we demonstrate the existence of follicular atresia during mid-oogenesis in the olive fruit fly Dacus oleae (Tephritidae). The number of atretic follicles increases following the age of the fly, suggesting for the presence of an age-susceptible process. The atretic follicles contain nurse cells that exhibit chromatin condensation, DNA fragmentation and actin cytoskeleton alterations, as revealed by propidium iodide staining, TUNEL labeling and phalloidin-FITC staining. Conventional light and electron microscopy disclose that the nurse cell remnants are phagocytosed by the adjacent follicle cells. The follicular epithelium also eliminates the oocyte through phagocytosis, resulting to an egg chamber with no compartmentalized organization. The data presented herein are very similar compared to previous reported results in other Diptera species, strongly suggesting the occurrence of a phylogenetically conserved mechanism of follicular atresia. All these observations also support the notion that mid-oogenesis in D. oleae may be the critical regulation point at which superfluous and defective egg chambers are selectively eliminated before they reach maturity. PMID:16368106

Nezis, Ioannis P; Stravopodis, Dimitrios J; Margaritis, Lukas H; Papassideri, Issidora S

2006-03-01

181

Artesunate possesses anti-leukemia properties that can be enhanced by arsenic trioxide.  

PubMed

Artesunate (ART), an effective and safe anti-malaria drug, also exhibits anticancer activity. We studied the effects of ART on proliferation and apoptosis of human K562 and U937 leukemia cell lines. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay demonstrated that ART inhibits cell growth in a dose- and time-dependent manner. Based on the findings obtained from light, fluorescence and transmission electron microscopy and propidium iodide staining, the effect of ART was shown to be mediated through apoptosis. In parallel, ART treatment increased Fas expression, while it decreased the c-Fos level in K562 cells. Furthermore, co-treatment with arsenic trioxide (ATO) significantly facilitated ART-induced K562 cell apoptosis. These findings demonstrated that ART had an antitumor activity against K562 and U937 leukemia cells, largely due to inhibition of proliferation and induction of apoptosis via the intrinsic pathway; and this tumoricidal function could be enhanced by ATO. PMID:23906016

Li, Ying; Feng, Lili; Li, Ying; Jiang, Wen; Shan, Ningning; Wang, Xin

2014-06-01

182

Comparison of assessment of pigeon sperm viability by contrast-phase microscope (eosin-nigrosin staining) and flow cytometry (SYBR-14/propidium iodide (PI) staining) [evaluation of pigeon sperm viability].  

PubMed

The aim of these experiments was to compare the conventional, microscopic method of evaluating pigeon sperm viability to sperm assessed by flow cytometry. Semen was collected twice a week from two groups of pigeons. In every group were 20 males (Group I: meat-type breed; Group II: fancy pigeon breed). Semen was collected using the lumbosacral and cloacal region massage method. Ejaculates collected from each group were pooled and diluted to 10 × 10(6) sperm/ml in BPSE solution. Samples were divided into three equal parts and estimated after collection as well as after in vitro storage for 3, 6 and 24 h. The first part was using for semen motility evaluation. The proportion of motile spermatozoa (MOT) and progressive movement (PMOT) of fresh and stored semen were evaluated using the CASA-system. The second part was examined subjectively by microscope (eosin-nigrosin (EN), eosin-nigrosin staining), the third one was assessed using dual fluorescence SYBR-14/propidium iodide (PI) and flow cytometry (FC). There were not any significant differences in sperm viability and motility between the groups at 0, 3, 6, and 24 h post collection. The percentage of viable spermatozoa in fresh semen determined by EN and FC was not different in Groups I and II (I - 88.71 ± 5.42 and 84.01 ± 3.19, respectively; II-90.87 ± 6.01 and 87.38 ± 5.57, respectively). Significantly lower percentages of viable spermatozoa were detected by FC compared to the EN method in both groups after 6 h (P ? 0.05) as well as 24 h (P ? 0.01) of storage. Moreover, the dual fluorescent SYBR-14/PI staining allowed for the identification a third population of double stained, moribund spermatozoa. High positive correlations in percentage of live spermatozoa were noted between EN and FC methods in both groups of birds. Evaluation of sperm viability by FC is a rapid, accurate, sensitive, and objective method for the assessment of pigeon sperm viability in fresh as well as stored semen. PMID:22056017

Klimowicz-Bodys, M D; Batkowski, F; Ochrem, A S; Savi?, M A

2012-02-01

183

Submicrosecond, intense pulsed electric field applications to cells show specificity of effects  

Microsoft Academic Search

Application of sub-microsecond duration (60–300 ns), intense (15–60 kV\\/cm) pulsed electric fields (sm\\/i-PEF) to six types of human cells was examined for its effects on individual cell surface membrane permeability and membrane potential. With short (60 ns) pulses, increasing percentages of Jurkat cells showed propidium iodide (PI) uptake at progressively shorter post-pulse times as the pulse train increased from 1

Pamela S. Hair; Karl H. Schoenbach; E. Stephen Buescher

2003-01-01

184

A vector-based short hairpin RNA targeting Aurora A inhibits breast cancer growth.  

PubMed

Aurora A plays an essential role in centrosome maturation, separation and in the formation of the mitotic bipolar spindle. Overexpression or amplication of Aurora A gene has been detected in many cancer cell lines and various tumor tissues, including breast cancer, suggesting that Aurora A might be drug target for breast cancer treatment. In the current study, short hairpin RNA targeting Aurora A was cloned into pGenesil-2 plasmid vector and then transfected into MDA-MB-435S and ZR-75-30 human breast cancer cells using cationic liposome. Reduced expression of Aurora A was detected by RT-PCR and Western blot. The effect of pGenesil-2-shAURKA plasmid on tumor growth in MDA-MB-435S xenogenic implantation model was studied. pGenesil-2-shAURKA plasmid inhibited tumor growth significantly by systemantic administration. To further study the underlying mechanisms, cell apoptosis and proliferation were investigated by flow cytometric analysis, propidium iodide staining, TUNEL and Ki-67 immunostaining respectively. Increased apoptosis and reduced cell proliferation were detected in vitro and in vivo studies. In summary, our results suggested that specific knockdown of Aurora A expression by vector based shRNA may be a potential therapy for human breast cancer. PMID:20372785

Wan, Yang; Huang, Anliang; Yang, Yang; Xie, Gang; Chen, Xiang; Hu, Jia; Chen, Xiancheng; Yang, Li; Li, Jiong; Chen, Lijuan; Jiang, Yu; Zhao, Xia; Wei, Yuquan; Deng, Hongxin

2010-05-01

185

Cytotoxicity of All-Trans-Retinal Increases Upon Photodegradation†  

PubMed Central

All-trans-retinal (AtRal) can accumulate in the retina as a result of excessive exposure to light. The purpose of this study was to compare cytotoxicity of AtRal and photodegraded AtRal (dAtRal) on cultured human retinal pigment epithelial cells in dark and upon exposure to visible light. AtRal was degraded by exposure to visible light. Cytotoxicity was monitored by imaging of cell morphology, propidium iodide staining of cells with permeable plasma membrane and measurements of reductive activity of cells. Generation of singlet oxygen photosensitized by AtRal and dAtRal was monitored by time-resolved measurements of characteristic singlet oxygen phosphorescence. Photodegradation of AtRal resulted in a decrease in absorption of visible light and accumulation of the degradation products with absorption maximum at ~330 nm. Toxicity of dAtRal was concentration-dependent and was greater during irradiation with visible light than in dark. DAtRal was more cytotoxic than AtRal both in dark and during exposure to visible light. Photochemical properties of dAtRal indicate that it may be responsible for the maximum in the action spectra of retinal photodamage recorded in animals. In conclusion, photodegradation products of AtRal may impose a significant threat to the retina and therefore their roles in retinal pathology need to be explored.

Rozanowska, Malgorzata; Handzel, Kinga; Boulton, Michael E.; Rozanowski, Bartosz

2013-01-01

186

? Phage Nanobioparticle Expressing Apoptin Efficiently Suppress Human Breast Carcinoma Tumor Growth In Vivo  

PubMed Central

Using phages is a novel field of cancer therapy and phage nanobioparticles (NBPs) such as ? phage could be modified to deliver and express genetic cassettes into eukaryotic cells safely in contrast with animal viruses. Apoptin, a protein from chicken anemia virus (CAV) has the ability to specifically induce apoptosis only in carcinoma cells. We presented a safe method of breast tumor therapy via the apoptin expressing ? NBPs. Here, we constructed a ? ZAP-CMV-apoptin recombinant NBP and investigated the effectiveness of its apoptotic activity on BT-474, MDA-MB-361, SKBR-3, UACC-812 and ZR-75 cell lines that over-expressing her-2 marker. Apoptosis was evaluated via annexin-V fluorescent iso-thiocyanate/propidium iodide staining, flow-cytometric method and TUNEL assay. Transfection with NBPs carrying ? ZAP-CMV-apoptin significantly inhibited growth of all the breast carcinoma cell lines in vitro. Also nude mice model implanted BT-474 human breast tumor was successfully responded to the systemic and local injection of untargeted recombinant ? NBPs. The results presented here reveal important features of recombinant ? nanobioparticles to serve as safe delivery and expression platform for human cancer therapy.

Shoae-Hassani, Alireza; Keyhanvar, Peyman; Seifalian, Alexander Marcus; Mortazavi-Tabatabaei, Seyed Abdolreza; Ghaderi, Narmin; Issazadeh, Khosro; Amirmozafari, Nour; Verdi, Javad

2013-01-01

187

Aneugenic potential of the anticancer drugs melphalan and chlorambucil. The involvement of apoptosis and chromosome segregation regulating proteins.  

PubMed

Previous findings showed that the anticancer drugs p-N,N-bis(2-chloroethyl) amino-l-phenylalanine (melphalan, MEL) and p-N,N-bis(2-chloroethyl)aminophenylbutyric acid (chlorambucil, CAB) belonging to the nitrogen mustard group, in addition to their clastogenic activity, also exert aneugenic potential, nondisjunction and chromosome delay. Their aneugenic potential is mainly mediated through centrosome defects. To further investigate their aneugenicity we (a) studied whether apoptosis is a mechanism responsible for the elimination of damaged cells generated by MEL and CAB and (b) investigated if proteins that regulate chromosome segregation are involved in the modulation of their aneugenic potential. Apoptosis was studied by Annexin-V/Propidium Iodide staining and fluorescence microscopy. The involvement of apoptosis on the exclusion of cells with genetic damage and centrosome disturbances was analyzed by DAPI staining and immunofluorescence of ?- and ?-tubulin in the presence of pan-caspase inhibitor. The expressions of Aurora-A, Aurora-B, survivin and ?-tubulin were studied by western blot. We found that (a) apoptosis is not the mechanism of choice for selectively eliminating cells with supernumerary centrosomes, and (b) the proteins Aurora-A, Aurora-B and survivin are involved in the modulation of MEL and CAB aneugenicity. These findings are important for the understanding of the mechanism responsible for the aneugenic activity of the anticancer drugs melphalan and chlorambucil. PMID:22025197

Efthimiou, Maria; Stephanou, Georgia; Demopoulos, Nikos A; Nikolaropoulos, Sotiris S

2013-07-01

188

A Study of Aberrant Glycosylation in Simulated Microgravity Using Laser Induced AutoFluorescence and Flow Cytometry  

NASA Technical Reports Server (NTRS)

A number of pathologies and cellular dysfunctions including neoplasms have been correlated with autofluorescence. The complications of aging and diabetes have been associated with the accumulation of non-enzymatic glycosylations of tissue macromolecules. These products are known as the Advanced Glycosylated End Products (AGEs). A physical property associated with AGEs is the emission of 570 mn or 630 nm light energy (autofluorescence) following the absorption of 448 mm energy associated with the argon laser. This investigation sought to assess the induction of argon-laser induced autofluorescence in a variety of in vitro culture systems. Different fluorescence intensities distinguished tumor lines from normal cell populations. Laser-stimulated autofluorescence discriminated primary cultures of lymphocytes grown in the presence of excess glucose as opposed to normal glucose concentrations. The effects of deglycosylating agents upon laser-induced autofluorescence were also assessed. The studies included studies of cell cycle analysis using Propidium Iodide stained DNA of cells grown in simulated microgravity using NASA Bioreactor Vessels in media of normal and elevated glucose concentrations.

Lawless, B. DeSales

1999-01-01

189

The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract  

NASA Astrophysics Data System (ADS)

Biosynthesis of silver nanoparticles (Ag Nps) was carried out using methanol leaves extract of L. reticulata. Ag Nps were characterized based on the observations of UV-visible spectroscopy, transmission electron microscopy, and X-ray diffraction (XRD) analysis. These Ag Nps were tested for antimicrobial activity by agar well diffusion method against different pathogenic microorganisms and antioxidant activity was performed using DPPH assay. Further, the in vitro cytotoxic effects of Ag Nps were screened against HCT15 cancer cell line and viability of tumor cells was confirmed using MTT ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole)) assay. The nuclear condensation was studied using the propidium iodide-staining method. The color change from green to dark brown and the absorbance peak at about 420 nm indicated the formation of nanoparticles. XRD pattern showed characteristic peaks indexed to the crystalline planes (111), (200) and (220) of face-centered cubic silver. The nanoparticles were of spherical shape with varying sizes ranging from 50 to 70 nm. Biosynthesized Ag Nps showed potent antibacterial activity and effective radical scavenging activity. MTT assay revealed a dose-dependent decrease in cell viability. Microscopic observations showed distinct cellular morphological changes indicating unhealthy cells, whereas the control appeared normal. Increase in the number of propidium iodide positive cells were observed in maximum concentration. Methanolic leaf extract of L. reticulata acts as an excellent capping agent for the formation of silver nanoparticles and demonstrates immense biological activities. Hence, these Ag NPs can be used as antibacterial, antioxidant as well as cytotoxic agent in treating many medical complications.

Kumara Swamy, M.; Sudipta, K. M.; Jayanta, K.; Balasubramanya, S.

2014-02-01

190

A Peptide That Binds Specifically to the ?-Amyloid of Alzheimer's Disease: Selection and Assessment of Anti-?-Amyloid Neurotoxic Effects  

PubMed Central

The accumulation of the amyloid-? peptide (A?) into amyloid plaques, an essential event in Alzheimer's disease (AD) pathogenesis, has caused researchers to seek compounds that physiologically bind A? and modulate its aggregation and neurotoxicity. In order to develop new A?-specific peptides for AD, a randomized 12-mer peptide library with A?1-10 as the target was used to identify peptides in the present study. After three rounds of selection, specific phages were screened, and their binding affinities to A?1-10 were found to be highly specific. Finally, a special peptide was synthesized according to the sequences of the selected phages. In addition, the effects of the special peptide on A? aggregation and A?-mediated neurotoxicity in vitro and in vivo were assessed. The results show that the special peptide not only inhibited the aggregation of A? into plaques, but it also alleviated A?-induced PC12 cell viability and apoptosis at appropriate concentrations as assessed by the cell counting kit-8 assay and propidium iodide staining. Moreover, the special peptide exhibited a protective effect against A?-induced learning and memory deficits in rats, as determined by the Morris water maze task. In conclusion, we selected a peptide that specifically binds A?1-10 and can modulate A? aggregation and A?-induced neuronal damage. This opens up possibilities for the development of a novel therapeutic approach for the treatment of AD.

Wang, Fang; Zhou, Xian-Ling; Yang, Qi-Gang; Xu, Wen-Hua; Wang, Fei; Chen, Yong-Ping; Chen, Gui-Hai

2011-01-01

191

Low level leucocyte counting: a critical variable in the validation of leucodepleted blood transfusion components as highlighted by an external quality assessment study.  

PubMed

Leucocyte counts of < 5 x 106 per blood transfusion product are currently recommended in the UK in order to reduce transfusion-related infections and febrile reactions. Routine leucocyte depletion, however, requires the development of reliable internal and external quality assurance (EQA) programmes. We report preliminary findings from the UK NEQAS for Low-Level Leucocyte Counting from 18 UK Transfusion Centres over a four month period. Data analysis showed that the IMAGN 2000 had the lowest CVs (range 7.5-36%, mean 16.7) for samples with counts of 5-30 cells/microl when compared to the flow cytometric (range 13.8-88%, mean 29.5) and Nageotte methods (range 20.6-117%, mean 61.8). In addition, laboratories using commercial nuclear stains (LeucoCOUNTTM) had consistently lower CVs than those using 'in-house' propidium iodide staining methods. Important differences in flow cytometric gating strategies were also identified. This study highlights the current variability in low level leucocyte counting, especially within the critical range of 5-30 cells/microl (equating to < 5 x 106/l). The acceptance of consensus protocols, including gating strategies and nuclear staining techniques, is required to reduce the observed interlaboratory variation. Finally, we demonstrate that stabilized blood preparations can be successfully used to provide a national/international low-level leucocyte EQA scheme. PMID:11422230

Barnett, D; Goodfellow, K; Ginnever, J; Granger, V; Whitby, L; Reilly, J T

2001-02-01

192

Light Quality and Osmoregulation in Vicia Guard Cells 1  

PubMed Central

Osmoregulation in opening stomata of epidermal peels from Vicia faba L. leaves was investigated under a variety of experimental conditions. The K+ content of stomatal guard cells and the starch content of guard cell chloroplasts were examined with cobaltinitrite and iodine-potassium iodide stains, respectively; stomatal apertures were measured microscopically. Red light (50 micromoles per square meter per second) irradiation caused a net increase of 3.1 micrometers in aperture and a decrease of ?0.4 megapascals in guard cell osmotic potential over a 5 hour incubation, but histochemical observations showed no increase in guard cell K+ content or starch degradation in guard cell chloroplasts. At 10 micromoles per square meter per second, blue light caused a net 6.8 micrometer increase in aperture over 5 hours and there was a substantial decrease in starch content of chloroplasts but no increase in guard cell K+ content. At 25 micromoles per square meter per second of blue light, apertures increased faster (net gain of 5.7 micrometers after 1 hour) and starch content decreased. About 80% of guard cells had a higher K+ content after 1 hour of incubation but that fraction decreased to 10% after 5 hours. In the absence of KCl in the incubation medium, stomata opened slowly in response to 25 micomoles per square meter per second of blue light, without any K+ gain or starch loss. In dual beam experiments, stomata irradiated with 50 micomoles per square meter per second of red light for 3 hours opened without detectable starch loss or K+ gain; addition of 25 micomoles per square meter per second of blue light caused a further net gain of 4.4 micometers in aperture accompanied by substantial K+ uptake and starch loss. Comparison of K+ content in guard cells of opened stomata in epidermal peels with those induced to open in leaf discs showed a substantially higher K+ content in the intact tissue than in isolated peels. These results are not consistent with K+ (and its counterions) as the universal osmoticum in guard cells of open stomata under all conditions; rather, the data point to sugars arising from photosynthesis and from starch degradation as additional osmotica. Biochemical confirmation of these findings would indicate that osmoregulation during stomatal opening is the result of three key metabolic processes: ion transport, photosynthesis, and sugar metabolism. Images Fig. 2

Tallman, Gary; Zeiger, Eduardo

1988-01-01

193

Sources of variation in flow cytometric analysis of aquatic species sperm: The effect of cryoprotectants on flow cytometry scatter plots and subsequent population gating  

PubMed Central

The use of fluorescent staining and flow cytometry to assess sperm quality in aquatic species has increased over the past decade, but comparisons among studies are difficult or impossible due to variation in application, analysis, and reporting of protocols and data.The goal of the present study was to determine the effect of exposure to two cryoprotectants commonly used for cryopreservation of sperm from aquatic species on the accuracy of flow cytometric assessment of sperm quality.Membrane integrity of zebrafish (Danio rerio) sperm exposed to 10% and 20%methanol and dimethyl sulfoxide (DMSO)in 300 mOsm kg?1 Hanks’ balanced salt solution (HBSS) or calcium-free HBSSwas determined using SYBR 14/propidium iodide staining. Both cryoprotectants significantly affected forward-scatter and side-scatter characteristics of sperm samples, resulting in significant changes in the number of total and gated events, and in the number and percentage of intact cells. These results indicate that it cannot be assumed that the approach to flow cytometric analysis of fresh sperm will be applicable to cryoprotectant-treated or cryopreserved sperm. In total, we document examples of five potentially interacting factors that produce errors of 5 to 50% each, resulting in underestimates and overestimates of total and intact sperm (actual numbers and percentages) in the presence of the two most commonly used cryoprotectants at the concentrations used most often for cryopreservation of sperm from aquatic species. This study provides methods to reduce or eliminate these errors and recommendations necessary for standardization and reporting.

Daly, Jonathan; Tiersch, Terrence R.

2012-01-01

194

Tackling Obstacles for Gene Therapy Targeting Neurons: Disrupting Perineural Nets with Hyaluronidase Improves Transduction  

PubMed Central

Gene therapy has been proposed for many diseases in the nervous system. In most cases for successful treatment, therapeutic vectors must be able to transduce mature neurons. However, both in vivo, and in vitro, where preliminary characterisation of viral particles takes place, transduction of neurons is typically inefficient. One possible explanation is that the extracellular matrix (ECM), forming dense perineural nets (PNNs) around neurons, physically blocks access to the cell surface. We asked whether co-administration of lentiviral vectors with an enzyme that disrupts the ECM could improve transduction efficiency. Using hyaluronidase, an enzyme which degrades hyaluronic acid, a high molecular weight molecule of the ECM with mainly a scaffolding function, we show that in vitro in mixed primary cortical cultures, and also in vivo in rat cortex, hyaluronidase co-administration increased the percentage of transduced mature, NeuN-positive neurons. Moreover, hyaluronidase was effective at doses that showed no toxicity in vitro based on propidium iodide staining of treated cultures. Our data suggest that limited efficacy of neuronal transduction is partly due to PNNs surrounding neurons, and further that co-applying hyaluronidase may benefit applications where efficient transduction of neurons in vitro or in vivo is required.

Wanisch, Klaus; Kovac, Stjepana; Schorge, Stephanie

2013-01-01

195

Neuroprotection from tissue inhibitor of metalloproteinase-1 and its nanoparticles.  

PubMed

Matrix metalloproteinases (MMPs) are family of zinc dependent endopeptidases, which cleave extracellular matrix proteins, and play an important role in tissue remodelling in physiological and pathological processes. There is enhanced expression of MMPs, in particular MMP-9, during numerous pathological conditions, including epilepsy and ischemic stroke. Therefore, inhibition of MMP-9 is considered as a potential therapeutic target. Tissue Inhibitor of Matrix Metalloproteinase-1 (TIMP-1) is a 28kDa endogenous inhibitor of MMP-9. In this study we examined recombinant mouse TIMP-1 for its in-vitro neuroprotective effects, against Kainic Acid (KA) induced excitotoxicity in organotypic hippocampal slice culture (OHC) model. We also studied, sustained release effects of TIMP-1 in OHC by using poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs). TIMP-1 and TIMP-1 PLGA NPs were added to the slice cultures at different time points, i.e., 30min before treatment with KA and 6h after KA treatment. Propidium iodide staining was used to reveal cell toxicity in the cultures. In addition, neurotoxicity was assessed using standard lactate dehydrogenase (LDH) release assay. Gelatinolytic activity in conditioned cultured medium of OHC was accessed by a fluorescent substrate assay. Briefly, our result show that TIMP-1 provided significant level of neuroprotection, especially when given before 30min of KA and released from the NPs. Since gelatinolytic activity assay showed a decrease in MMP-9 activity, it can be suggested that this neuroprotection might be mediated by the gelatinase inhibition. PMID:22892277

Chaturvedi, Mayank; Figiel, Izabela; Sreedhar, Bojja; Kaczmarek, Leszek

2012-12-01

196

In vitro immunomodulatory effects of extracts from three plants of the Labiatae family and isolation of the active compound(s).  

PubMed

Plants may have the ability to modulate immune responses. In the present study, the effects of three plants belonging to Labiatae family, each traditionally used for the treatments of infections and inflammatory diseases, as well as the role of thymol (as one the major components of these plants), were investigated for their potential to affect the activation of lymphocytes. Four organic extracts of Thymus vulgaris and two other plants (i.e., T. daenensis and Zataria multiflora) were prepared. The effect of the extracts on mitogen (PHA)-stimulated peripheral blood lymphocytes was determined using a cell proliferation assay. The hexane extracts obtained from the three plants showed the strongest inhibitory effects on PHA-induced proliferation. Use of preparative thin layer and gas chromatographies in conjunction with the proliferation assay confirmed that thymol was the major component responsible for the observed effects from the three plants. Thymol inhibited inducible lymphocyte proliferation in a concentration-dependent manner, with reductions ranging from 62.8% at 50 µg/ml to 89.8% at 200 µg/ml (> 0.1 µg/ml (p < 0.01). Flow cytometric analysis using propidium iodide staining showed that the inhibitory effect of thymol at 200 µg/ml was due to a cytotoxic activity. In conclusion, the three Labiatae plants studied here each showed immunosuppressive effects against lymphocytes and it was most likely that thymol was the compound in these plants responsible for this effect. PMID:21711089

Amirghofran, Zahra; Hashemzadeh, Reihaneh; Javidnia, Katayoun; Golmoghaddam, Hossein; Esmaeilbeig, Ahmadreza

2011-01-01

197

Effects of Bevacizumab on Apoptosis, Na+-K+Adenosine Triphosphatase and Zonula Occludens 1 Expression on Cultured Corneal Endothelial Cells  

Microsoft Academic Search

Background: This laboratory study was undertaken to investigate the influence of bevacizumab on apoptosis, Na+-K+-adenosine triphosphatase (Na+-K+-ATPase) and zonula occludens 1 (ZO-1) expression on cultured human corneal endothelial cells (HCECs). Methods: Annexin V binding combined with propidium iodide (PI) costaining was used to distinguish viable, early and late apoptotic cells. Immunolocalization of ZO-1 and Na+-K+-ATPase was performed to analyze intercellular

Efdal Yoeruek; Olcay Tatar; Martin S. Spitzer; Oguzhan Saygili; Tilo Biedermann; Karl U. Bartz-Schmidt; Sebastian Thaler; Peter Szurman

2010-01-01

198

Influence of organochlorine pesticides on transmembrane potential, oxidative activity, and ATP-induced calcium release in cultured bovine oviductal cells  

Microsoft Academic Search

The present study investigated the effects of the pesticides DDT, MXC, and ?HCH on transmembrane potential, oxidative activity, cytotoxicity and ATP-induced intracellular Ca2+ release in cultured bovine oviductal cells. Transmembrane potential, oxidative activity, and cytotoxicity were assessed using the fluorescent dyes bis-oxonol, dihydrorhodamine 123, and propidium iodide (PI), respectively, and measured spectrofluorometrically in a microplate reader. The cultured cells were

Ute Tiemann; Ralf Pöhland; Ulrich Küchenmeister; Torsten Viergutz

1998-01-01

199

Simplified method for DNA and protein staining of human hematopoietic cell samples  

SciTech Connect

A rapid reproducible method yielding high resolution analysis of DNA and protein in human hematopoietic cell samples was developed by modification of the propidium iodide (PI) and fluorescein isothiocyanate (FITC) procedure. Cell staining involved sequential addition of each reagent (RNase, FITC, and PI) to ethanol-fixed cells and requires no centrifiguation steps. Stained cells are analyzed in the reagent solutions. Analysis of bone marrow samples from multiple myeloma patients revealed mixed 2C DNA and aneuploid populations with the aneuploid cells having a significantly higher protein content. This approach permitted differential cell cycle kinetic analysis of the 2C DNA and the aneuploid population.

Crissman, H.A.; Egmond, J.V.; Holdrinet, R.S.; Pennings, A.; Haanen, C.

1980-01-01

200

Assessment of sperm chromatin condensation and ploidy status using flow cytometry correlates to fertilization, embryo quality and pregnancy following in vitro fertilization  

Microsoft Academic Search

Purpose  Sperm flow cytometry (SFC) was used to evaluate the association of sperm chromatin condensation and ploidy with fertilization,\\u000a embryo development, pregnancy and abortion rates following IVF.\\u000a \\u000a \\u000a \\u000a \\u000a Methods  Conventional semen analysis was performed in one hundred fifty men, as well as SFC analysis, after acridine orange and propidium\\u000a iodide staining, for the evaluation of sperm maturity and ploidy respectively. Conventional IVF was

Leandros A. Lazaros; Georgios A. Vartholomatos; Elissavet G. Hatzi; Apostolos I. Kaponis; Georgios V. Makrydimas; Sophia N. Kalantaridou; Nikolaos V. Sofikitis; Theodoros Ioannis Stefos; Konstantinos A. Zikopoulos; Ioannis A. Georgiou

201

Heterogeneity in Pseudomonas aeruginosa Biofilms Includes Expression of Ribosome Hibernation Factors in the Antibiotic-Tolerant Subpopulation and Hypoxia-Induced Stress Response in the Metabolically Active Population  

PubMed Central

Bacteria growing in biofilms are physiologically heterogeneous, due in part to their adaptation to local environmental conditions. Here, we characterized the local transcriptome responses of Pseudomonas aeruginosa growing in biofilms by using a microarray analysis of isolated biofilm subpopulations. The results demonstrated that cells at the top of the biofilms had high mRNA abundances for genes involved in general metabolic functions, while mRNA levels for these housekeeping genes were low in cells at the bottom of the biofilms. Selective green fluorescent protein (GFP) labeling showed that cells at the top of the biofilm were actively dividing. However, the dividing cells had high mRNA levels for genes regulated by the hypoxia-induced regulator Anr. Slow-growing cells deep in the biofilms had little expression of Anr-regulated genes and may have experienced long-term anoxia. Transcripts for ribosomal proteins were associated primarily with the metabolically active cell fraction, while ribosomal RNAs were abundant throughout the biofilms, indicating that ribosomes are stably maintained even in slowly growing cells. Consistent with these results was the identification of mRNAs for ribosome hibernation factors (the rmf and PA4463 genes) at the bottom of the biofilms. The dormant biofilm cells of a P. aeruginosa ?rmf strain had decreased membrane integrity, as shown by propidium iodide staining. Using selective GFP labeling and cell sorting, we show that the dividing cells are more susceptible to killing by tobramycin and ciprofloxacin. The results demonstrate that in thick P. aeruginosa biofilms, cells are physiologically distinct spatially, with cells deep in the biofilm in a viable but antibiotic-tolerant slow-growth state.

Williamson, Kerry S.; Richards, Lee A.; Perez-Osorio, Ailyn C.; Pitts, Betsey; McInnerney, Kathleen; Stewart, Philip S.

2012-01-01

202

Evaluation of absorption enhancement for a potent cyclopeptidic ? ?? 3-antagonist in a human intestinal cell line (Caco-2)  

Microsoft Academic Search

Different absorption enhancing principles for a potent cyclopeptidic ???3-antagonist (EMD 121974) were investigated in monolayers of a human intestinal cell line (Caco-2). Transepithelial transport was quantitated by reversed-phase high-performance liquid chromatography. Cytotoxic effects were characterized by determination of transepithelial electrical resistances (TEERs), propidium iodide (PI)-influx, FITC-phalloidin staining and the release of cytosolic lactate dehydrogenase (LDH). Medium chain fatty acids (MCFAs,

Walter Kamm; Alfred Jonczyk; Tobias Jung; Gerd Luckenbach; Peter Raddatz; Thomas Kissel

2000-01-01

203

PAC, a novel curcumin analogue, has anti-breast cancer properties with higher efficiency on ER-negative cells  

Microsoft Academic Search

We have investigated here the anti-breast cancer properties of two novel curcumin analogues, EAC and PAC. Apoptosis was assessed\\u000a by the annexin V\\/propidium iodide (PI) assay on different breast cancer and normal cells. Immunoblotting analysis determined\\u000a the effects of these agents on different apoptotic and oncogenic proteins. Furthermore, flow cytometry and Elispot were utilised\\u000a to investigate the effects on the

Ensaf M. Al-Hujaily; Ameera Gaafar Mohamed; Ibtehaj Al-Sharif; Khairia M. Youssef; Pulicat S. Manogaran; Basem Al-Otaibi; Amal Al-Haza’a; Ibrahim Al-Jammaz; Khaled Al-Hussein; Abdelilah Aboussekhra

2011-01-01

204

Steroidal glycosides with antiproliferative activities from Digitalis trojana.  

PubMed

The phytochemical investigation of Digitalis trojana led to the isolation of two cardiac glycosides (1, 2), one pregnane glycoside (3), three furostanol type saponins (4-6), along with three cleroindicins (7-9), four phenylethanoid glycosides (10-13), two flavonoids (14, 15) and two phenolic acid derivatives (16, 17). The structure elucidation of the isolates was carried out by NMR experiments as well as ESI-MS. The cytotoxic activity of compounds 1-13 against a small panel of cancer cell lines, namely MCF-7, T98G, HT-29, PC-3, A375 and SH-SY5Y, was investigated. Compounds 1-6 showed antiproliferative activity against human breast MCF-7 and colon HT-29 cancer cell lines with IC50 values ranging from 8.3 to 50??M. In order to understand the mechanism involved in the cell death, the active compounds were tested as pro-apoptotic agents using propidium iodide staining by flow cytometry method. No significant increase was observed in the apoptosis of the MCF-7 and HT-29 cancer cells. Moreover, the effects of the active compounds on cell proliferation were assessed on the same cancer cell lines by cell cycle analysis of DNA content using flow cytometry. No significative changes were observed in the cell cycle of MCF-7, while significant changes in G2 /M cell cycle phase of HT-29 cells were observed after treatment with digitalin (1), cariensoside (3) and 22-O-methylparvispinoside B (6) at 10??M. PMID:23722601

Kirmizibekmez, Hasan; Masullo, Milena; Festa, Michela; Capasso, Anna; Piacente, Sonia

2014-04-01

205

Dehydroeburicoic acid induces calcium- and calpain-dependent necrosis in human U87MG glioblastomas.  

PubMed

Dehydroeburicoic acid (DeEA) is a triterpene purified from medicinal fungi such as Antrodia camphorate, the crude extract of which is known to exert cytotoxic effects against several types of cancer cells. We aim to test the hypothesis that DeEA possesses significant cytotoxic effects against glioblastomas, one of the most frequent and malignant brain tumors in adults. 3-(4,5-Dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase release assays indicated that DeEA inhibited the proliferation of the human glioblastoma cell U87MG. In addition, Annexin V and propidium iodide staining showed that DeEA treatment led to a rapid increase of glioblastomas in the necrotic/late apoptotic fraction, whereas cell cycle analysis revealed that DeEA failed to significantly enhance the population of U87MG cells in the hypodiploid (sub-G1) fraction. Using electron microscopy, we found that DeEA induced significant cell enlargements, massive cytoplasmic vacuolization, and loss of mitochondrial membrane integrity. DeEA treatment triggered an intracellular Ca(2+) increase, and DeEA-induced cell death was significantly attenuated by BAPTA-AM but not ethylenediaminetetraacetic acid or ethylene glycol tetraacetic acid. DeEA instigated a reduction of both mitochondrial transmembrane potential and intracellular ATP level. Moreover, DeEA induced proteolysis of alpha-spectrin by calpain, and DeEA cytotoxicity in U87MG cells was caspase-independent but was effectively blocked by calpain inhibitor. Interestingly, DeEA also caused autophagic response that was prevented by calpain inhibitor. Taken together, these results suggest that in human glioblastomas, DeEA induces necrotic cell death that involves Ca(2+) overload, mitochondrial dysfunction, and calpain activation. PMID:19848398

Deng, Jhu-Yun; Chen, Sian-Jin; Jow, Guey-Mei; Hsueh, Chao-Wen; Jeng, Chung-Jiuan

2009-11-01

206

Discovery of molecular pathways mediating 1,25-dihydroxyvitamin D3 protection against cytokine-induced inflammation and damage of human and male mouse islets of Langerhans.  

PubMed

Protection against insulitis and diabetes by active vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), in nonobese diabetic mice has until now mainly been attributed to its immunomodulatory effects, but also protective effects of this hormone on inflammation-induced ?-cell death have been reported. The aim of this study was to clarify the molecular mechanisms by which 1,25(OH)2D3 contributes to ?-cell protection against cytokine-induced ?-cell dysfunction and death. Human and mouse islets were exposed to IL-1? and interferon-? in the presence or absence of 1,25(OH)2D3. Effects on insulin secretion and ?-cell survival were analyzed by glucose-stimulated insulin release and electron microscopy or Hoechst/propidium iodide staining, respectively. Gene expression profiles were assessed by Affymetrix microarrays. Nuclear factor-?B activity was tested, whereas effects on secreted chemokines/cytokines were confirmed by ELISA and migration studies. Cytokine exposure caused a significant increase in ?-cell apoptosis, which was almost completely prevented by 1,25(OH)2D3. In addition, 1,25(OH)2D3 restored insulin secretion from cytokine-exposed islets. Microarray analysis of murine islets revealed that the expression of approximately 4000 genes was affected by cytokines after 6 and 24 hours (n = 4; >1.3-fold; P < .02), of which nearly 250 genes were modified by 1,25(OH)2D3. These genes belong to functional groups involved in immune response, chemotaxis, cell death, and pancreatic ?-cell function/phenotype. In conclusion, these findings demonstrate a direct protective effect of 1,25(OH)2D3 against inflammation-induced ?-cell dysfunction and death in human and murine islets, with, in particular, alterations in chemokine production by the islets. These effects may contribute to the beneficial effects of 1,25(OH)2D3 against the induction of autoimmune diabetes. PMID:24424042

Wolden-Kirk, H; Rondas, D; Bugliani, M; Korf, H; Van Lommel, L; Brusgaard, K; Christesen, H T; Schuit, F; Proost, P; Masini, M; Marchetti, P; Eizirik, D L; Overbergh, L; Mathieu, C

2014-03-01

207

An RNA Aptamer Provides a Novel Approach for the Induction of Apoptosis by Targeting the HPV16 E7 Oncoprotein  

PubMed Central

Background Human papillomavirus 16 (HPV16) is a high-risk DNA tumour virus, which is a major causative agent of cervical cancer. Cellular transformation is associated with deregulated expression of the E6 and E7 oncogenes. E7 has been shown to bind a number of cellular proteins, including the cell cycle control protein pRb. In this study, RNA aptamers (small, single-stranded oligonucleotides selected for high-affinity binding) to HPV16 E7 were employed as molecular tools to further investigate these protein-protein interactions. Methodology/Principal Findings This study is focused on one aptamer (termed A2). Transfection of this molecule into HPV16-transformed cells resulted in inhibition of cell proliferation (shown using real-time cell electronic sensing and MTT assays) due to the induction of apoptosis (as demonstrated by Annexin V/propidium iodide staining). GST-pull down and bead binding assays were used to demonstrate that the binding of A2 required N-terminal residues of E7 known to be involved in interaction with the cell cycle control protein, pRb. Using a similar approach, A2 was shown to disrupt the interaction between E7 and pRb in vitro. Furthermore, transfection of HPV16-transformed cells with A2 appeared to result in the loss of E7 and rise in pRb levels, as observed by immunoblotting. Conclusions/Significance This paper includes the first characterisation of the effects of an E7 RNA aptamer in a cell line derived from a cervical carcinoma. Transfection of cells with A2 was correlated with the loss of E7 and the induction of apoptosis. Aptamers specific for a number of cellular and viral proteins have been documented previously; one aptamer (Macugen) is approved for clinical use and several others are in clinical trials. In addition to its role as a molecular tool, A2 could have further applications in the future.

Nicol, Clare; Cesur, Ozlem; Forrest, Sophie; Belyaeva, Tamara A.; Bunka, David H. J.; Blair, G. Eric; Stonehouse, Nicola J.

2013-01-01

208

Kinetics of plasma membrane and mitochondrial alterations in cells undergoing apoptosis  

SciTech Connect

Programmed cell death or apoptosis is characterized by typical morphological alterations. By transmission electron microscopy, apoptotic cells are identified by condensation of the chromatin in tight apposition to the nuclear envelope, alteration of the nuclear envelope and fragmentation of the nucleus, whereas integrity of the plasma membrane and organelles is preserved. Conversely cells undergoing necrosis display and early desintegration of cytoplasmic membrane and swelling of mitochondria. In this study we assessed by flow cytometry the sequential alterations of forward angle light scatter, 90{degrees} light scatter, and fluorescence associated with fluorescein diacetate, rhodamine 123, and propidium iodide in two human B cell lines undergoing apoptosis induced by the topoisomerase II inhibitor VP-16. The kinetics of these modifications were compared to those of cells undergoing necrosis induced by the topoisomerase II inhibitor VP-16. The kinetics of these modifications were compared to those of cells undergoing necrosis induced by sodium azide. At the same time intervals, cells were examined by transmission electron microscopy and by UV microscopy after staining with Hoechst 33342. We report that sequential changes in light scatters and fluorescein diacetate are similar in cells undergoing apoptosis or necrosis, whereas apoptosis is characterized by a slightly delayed decrease of mitochondrial activity as assessed by rhodamine 123 staining. Surprisingly, a part of cells undergoing apoptosis displayed an early uptake of propidium iodide followed by a condensation and then a fragmentation of their nuclei. It is concluded that uptake of propidium iodide is a very early marker of cell death which does not discriminate between necrosis and apoptosis. Along with biochemical criteria, nuclear morphology revealed by staining with Hoechst 33342 would seem to be of the most simple and most discriminative assay of apoptosis. 33 refs., 5 figs., 1 tab.

Lizard, G.; Fournel, S.; Genestier, L.; Dhedin, N. [Hospital Edouard Herriot, Lyon (France)] [and others

1995-11-01

209

Flow cytometric viability assessment of lactic acid bacteria starter cultures produced by fluidized bed drying.  

PubMed

For starter culture production, fluidized bed drying is an efficient and cost-effective alternative to the most frequently used freeze drying method. However, fluidized bed drying also poses damaging or lethal stress to bacteria. Therefore, investigation of impact of process variables and conditions on viability of starter cultures produced by fluidized bed drying is of major interest. Viability of bacteria is most frequently assessed by plate counting. While reproductive growth of cells can be characterized by the number of colony-forming units, it cannot provide the number of viable-but-nonculturable cells. However, in starter cultures, these cells still contribute to the fermentation during food production. In this study, flow cytometry was applied to assess viability of Lactobacillus plantarum starter cultures by membrane integrity analysis using SYBR®Green I and propidium iodide staining. The enumeration method established allowed for rapid, precise and sensitive determination of viable cell concentration, and was used to investigate effects of fluidized bed drying and storage on viability of L. plantarum. Drying caused substantial membrane damage on cells, most likely due to dehydration and oxidative stress. Nevertheless, high bacterial survival rates were obtained, and granulates contained in the average 2.7?×?10(9) viable cells/g. Furthermore, increased temperatures reduced viability of bacteria during storage. Differences in results of flow cytometry and plate counting suggested an occurrence of viable-but-nonculturable cells during storage. Overall, flow cytometric viability assessment is highly feasible for rapid routine in-process control in production of L. plantarum starter cultures, produced by fluidized bed drying. PMID:24584512

Bensch, Gerald; Rüger, Marc; Wassermann, Magdalena; Weinholz, Susann; Reichl, Udo; Cordes, Christiana

2014-06-01

210

Polyplexes of polyethylenimine and per-N-methylated polyethylenimine-cytotoxicity and transfection efficiency.  

PubMed

For non-viral gene delivery, the carriers for DNA transfer into cells must be vastly improved. The branched cationic polymer polyethylenimine has been described as an efficient gene carrier. However, polyethylenimine was demonstrated to mediate substantial cytotoxicity. Therefore, this study is aimed at investigating per-N-methylated polyethylenimine, which is thought to have a much lower cytotoxicity due to its lower charge density. Results from a gel retardation assay and laser light scattering indicated that per-N-methylated polyethylenimine condenses DNA into small and compact nanoparticles with a mean diameter <150 nm. Furthermore, polyplexes of polyethylenimine and per-N-methylated polyethylenimine with DNA had a positive zeta potential and the polymers protected DNA from nuclease-mediated digestion. The transfection efficiency of polyethylenimine and per-N-methylated polyethylenimine was tested in CHO-K1 cells. Using green fluorescent protein as reporter gene and flow cytometry analysis, we demonstrated that per-N-methylated polyethylenimine has a lower cytotoxicity, but also a significantly lower transfection efficiency. Using propidium iodide staining, we could additionally distinguish between viable and dead cells. At NP > or = 12, per-N-methylated polyethylenimine showed a much higher cell viability and the ratio of viable and transfected cells to dead and transfected cells was about 1.5 to 1.7 fold higher than for polyethylenimine. The results of cell viability from flow cytometry analysis were confirmed by the MTS assay. Using luciferase reporter gene for transfection experiments, the gene expression of per-N-methylated polyethylenimine was lower at NP 6, 12 and 18 as compared to polyethylenimine, but at NP 24 it yielded similar levels. PMID:15503437

Breunig, Miriam; Lungwitz, Uta; Klar, Juergen; Kurtz, Armin; Blunk, Torsten; Goepferich, Achim

2004-05-01

211

Completion of meiosis is not always required for acrosome formation in HSP70-2 null mice.  

PubMed

Hsp70-2 is a unique member of the mouse 70-kDa heat shock protein family that is synthesized during meiosis in spermatogenic cells. Germ cells in male mice homozygous for a targeted mutation in the Hsp70-2 gene (Hsp70-2(-/-)) arrest in development and undergo apoptosis at the end of the pachytene spermatocyte stage of meiotic prophase. However, cells with a putative acrosome were present occasionally in histological sections of the testes of juvenile and adult Hsp70-2(-/-) mice. This study verified that acrosomes were present and investigated the relationship between acrosome formation and the process of meiosis. Histochemistry with the periodic acid-Schiff procedure and immunostaining with monoclonal antibody MN7 verified that acrosomes were present in Hsp70-2(-/-) mice, and electron microscopy showed that some of these cells had condensing nuclei characteristic of step 8-9 spermatids. The frequency of acrosome-containing cells in Hsp70-2(-/-) mice was less than 0.01% of that in wild-type mice. Propidium iodide staining and cytophotometry indicated that the average DNA content of nuclei in MN7-positive cells in Hsp70-2(-/-) mice was usually about twice, or occasionally the same as, that of nuclei in round spermatids of wild-type mice. Meiotic metaphase I and II chromosome spreads were observed in spermatogenic cells from Hsp70-2(-/-) mice but at a much lower frequency than in wild-type mice. These results indicate that not all pachytene spermatocytes in Hsp70-2(-/-) mice arrest in meiosis, but they may divide once or sometimes twice and begin acrosome formation and nuclear condensation. This demonstrates that some aspects of spermatid development can occur without the completion of meiosis in mice, as has been reported recently for Drosophila. PMID:10456862

Mori, C; Allen, J W; Dix, D J; Nakamura, N; Fujioka, M; Toshimori, K; Eddy, E M

1999-09-01

212

Polysaccharopeptides derived from Coriolus versicolor potentiate the S-phase specific cytotoxicity of Camptothecin (CPT) on human leukemia HL60 cells  

Microsoft Academic Search

BACKGROUND: Polysaccharopeptide (PSP) from Coriolus versicolor (Yunzhi) is used as a supplementary cancer treatment in Asia. The present study aims to investigate whether PSP pre-treatment can increase the response of the human leukemia HL-60 cells to apoptosis induction by Camptothecin (CPT). METHODS: We used bivariate bromodeoxyuridine\\/propidium iodide (BrdUrd\\/PI) flow cytometry analysis to measure the relative movement (RM) of the BrdUrd

Jennifer Man-Fan Wan; Wai-Hung Sit; Xiaotong Yang; Pingping Jiang; Leo Lap-Yan Wong

2010-01-01

213

Apoptosis induction in human leukemic promyelocytic HL-60 and monocytic U937 cell lines by goniothalamin.  

PubMed

Goniothalamin is an active compound extracted from Goniothalamus griffithii, a local plant found in northern Thailand. Goniothalamin inhibits cancer cell growth but is also toxic to normal cells. The aims of this study were to identify the cytotoxic effect of goniothalamin and the mechanism of cell death in human HL-60 and U937 cells. Cytotoxicity was determined by MTT assay and cell cycle profiles were demonstrated by staining with propidium iodide (PI) and flow cytometry. Apoptosis was confirmed by staining with annexin V-FITC/propidium iodide (PI) and flow cytometry. Reduction of mitochondrial transmembrane potential was determined by staining with dihexyloxacarbocyanine iodide and flow cytometry and expression of Smac, caspase-8 and -9 was demonstrated by Western blotting. Goniothalamin inhibited growth of HL-60 and U937 cell lines. An increase of SubG1 phase was found in their cell cycle profiles, indicating apoptosis as the mode of cell death. Apoptosis was confirmed by the flip-flop of phosphatidylserine using annexin V-FITC/PI assay in HL60 and U937 cells in a dose response manner. Furthermore, reduction of mitochondrial transmembrane potential was found in both cell types while expression of caspase-8, -9 and Smac/Diablo was increased in HL-60 cells. Taken together, our results indicate that goniothalamin-treated human leukemic cells undergo apoptosis via intrinsic and extrinsic pathways. PMID:23803048

Petsophonsakul, Ploingarm; Pompimon, Wilart; Banjerdpongchai, Ratana

2013-01-01

214

Structure-activity relationship of trifluoromethyl-containing metallocenes: electrochemistry, lipophilicity, cytotoxicity, and ROS production.  

PubMed

We report the synthesis of trifluoromethylated metallocenes (M=Fe, Ru) and related metal-free compounds for comparison of their biological properties with the aim to establish structure-activity relationships toward the anti-proliferative activity of this compound class. All new compounds were comprehensively characterized by NMR spectroscopy ((1) H, (13) C, (19) F), mass spectrometry, IR spectroscopy, and elemental analysis. A single-crystal X-ray structure was obtained on the Ru derivative, 1-(1-hydroxy-1-hexafluoromethylethyl)ruthenocene (3). The cytotoxicity of all compounds was tested on MCF-7, HT-29, and PT-45 cells, and IC50 values as low as 12 ?M were observed. Both the metallocene moiety and the hydroxy function are crucial for cytotoxicity. In addition, the activity decreased sharply even if only one trifluoromethyl group was replaced with a methyl group. Electrochemical investigations by cyclic voltammetry revealed that all CF3 -containing compounds are harder to oxidize than the unsubstituted metallocenes. Moreover, log?P determination by RP-HPLC showed the fluorinated derivatives to have higher lipophilicity, with log?P values up to 4.6. At the same time, the generation of reactive oxygen species (ROS) in Jurkat cells by these compounds was investigated by flow cytometry. Strong ROS production was shown exclusively for the bis-CF3 derivative 1-(1-hydroxy-1-hexafluoromethylethyl)ferrocene (1) after 6 and 24 h. Also on the Jurkat cell line, only compound 1 strongly induces necrosis after 24 and 48 h, as shown by annexin V/propidium iodide staining. No induction of apoptosis was observed. We propose that compound 1 is more efficiently incorporated into cancer cells relative to all other derivatives, causing significant induction of oxidative stress within the cell, which ultimately leads to cell death. PMID:24838930

Maschke, Marcus; Alborzinia, Hamed; Lieb, Max; Wölfl, Stefan; Metzler-Nolte, Nils

2014-06-01

215

Simultaneous maximization of cell permeabilization and viability in single cell electroporation using an electrolyte-filled capillary  

PubMed Central

A549 cells were briefly exposed to Thioglo ?1 which converts thiols to fluorescent adducts. The fluorescent cells were exposed to short (50 ? 300 ms) electric field pulses (500 V across a 15 cm capillary) created at the tip of an electrolyte - filled capillary. Fluorescence microscopy revealed varying degrees of cell permeabilization depending on conditions. Longer pulses and shorter cell - capillary tip distance led to a greater decrease in a cell's fluorescence. Live/dead (calcein AM and propidium iodide) testing revealed that a certain fraction of cells died. Longer pulses and shorter cell – capillary tip distances were more deadly. An optimum condition exists at a cell – capillary tip distance of 3.5 ?m ? 4.5 ?m and a pulse duration of 120 ms - 150 ms. At these conditions > 90 % of the cells are permeabilized and 80 ? 90% survive.

Agarwal, Aparna; Zudans, Imants; Orwar, Owe; Weber, Stephen G.

2008-01-01

216

Mechanism of cytotoxicity of human large granular lymphocytes: relationship of the cytotoxic lymphocyte protein to the ninth component (C9) of human complement.  

PubMed Central

A Mr 70,000 protein was isolated from cytotoxic human large granular lymphocytes and shown to have cytotoxic activity. The protein was demonstrated to be immunochemically related to the ninth component (C9) of complement and was therefore designated C9-related protein (C9RP). This finding suggests that C9RP and C9 share homology in primary structure and have a common evolutionary ancestry. C9RP was isolated, by affinity chromatography employing anti-human C9-Sepharose, from either purified cytoplasmic granules or whole-cell lysates of cultured human large granular lymphocytes. The cells were isolated from healthy blood donors and maintained in interleukin-2-dependent cultures. The immunochemical crossreactivity of C9 with C9RP was 3-4%, using a murine anti-C9RP antiserum. Certain murine monoclonal antibodies to C9RP and to C9 inhibited killing of K562 cells by human large granular lymphocytes. Killed target cells, identified by propidium iodide staining and isolated by fluorescence-activated cell-sorting, exhibited clusters of circular membrane lesions that resembled poly(C9) in appearance. Polymerization of isolated C9RP in the presence of Ca2+ resulted in the formation of two different circular structures, one having an inner diameter of approximately equal to 60 A, and the other, of 125 A. Polymerized C9RP could be incorporated into liposomes and, as such, gave rise to channels of two different sizes. The smaller channel had a functional diameter of 50-90 A, and the bigger channel, a diameter greater than 102 A. Images

Zalman, L S; Brothers, M A; Chiu, F J; Muller-Eberhard, H J

1986-01-01

217

Mitochondrial Hyperpolarization and ATP Depletion in Patients With Systemic Lupus Erythematosus  

PubMed Central

Objective Peripheral blood lymphocytes (PBLs) from systemic lupus erythematosus (SLE) patients exhibit increased spontaneous and diminished activation-induced apoptosis. We tested the hypothesis that key biochemical checkpoints, the mitochondrial transmembrane potential (??m) and production of reactive oxygen intermediates (ROIs), mediate the imbalance of apoptosis in SLE. Methods We assessed the ??m with potentiometric dyes, measured ROI production with oxidation-sensitive fluorochromes, and monitored cell death by annexin V and propidium iodide staining of lymphocytes, using flow cytometry. Intracellular glutathione levels were measured by high-performance liquid chromatography, while ATP and ADP levels were assessed by the luciferin–luciferase assay. Results Both ??m and ROI production were elevated in the 25 SLE patients compared with the 25 healthy subjects and the 10 rheumatoid arthritis patients. Intracellular glutathione contents were diminished, suggesting increased utilization of reducing equivalents in SLE. H2O2, a precursor of ROIs, increased ??m and caused apoptosis in normal PBLs. In contrast, H2O2-induced apoptosis and ??m elevation were diminished, particularly in T cells, and the rate of necrotic cell death was increased in patients with SLE. The intracellular ATP content and the ATP:ADP ratio were reduced and correlated with the ??m elevation in lupus. CD3:CD28 costimulation led to transient elevation of the ??m, followed by ATP depletion, and sensitization of normal PBLs to H2O2-induced necrosis. Depletion of ATP by oligomycin, an inhibitor of F0F1–ATPase, had similar effects. Conclusion T cell activation and apoptosis are mediated by ??m elevation and increased ROI production. Mitochondrial hyperpolarization and the resultant ATP depletion sensitize T cells for necrosis, which may significantly contribute to inflammation in patients with SLE.

Gergely, Peter; Grossman, Craig; Niland, Brian; Puskas, Ferenc; Neupane, Hom; Allam, Fatme; Banki, Katalin; Phillips, Paul E.; Perl, Andras

2014-01-01

218

Strong Anticancer Potential of Nano-triterpenoid from Phytolacca decandra against A549 Adenocarcinoma via a Ca(2+)-dependent Mitochondrial Apoptotic Pathway.  

PubMed

We isolated a triterpenoid from an ethanolic extract of Phytolacca decandra and nanoencapsulated it with biodegradable nontoxic polymers of poly(lactide-co-glycolide) to examine if the nanoform of this hitherto unexplored betulinic-acid derivative (NdBA) could produce a stronger anticancer effect by rendering better drug bioavailability and targeted delivery than the nonencapsulated betulinic-acid derivative (dBA). The nanoparticles were characterized with the help of physicochemical and morphological studies involving dynamic light scattering and atomic force microscopy. A549 cancer cells were exposed to NdBA and dBA at the IC50 doses of 50 ?g/mL and 100 ?g/mL, respectively. Mitochondrial dysfunction-mediated apoptosis was determined by examining the changes in the intracellular calcium content, the reactive oxygen species accumulation, the cytochrome c release, the upregulation of Bcl-2-associated-X protein (Bax) and caspase 3, the downregulation of B cell lymphoma 2, and the mitochondrial membrane potential (??m) depolarization. Apoptosis was also verified by acridine orange staining observed under fluorescence microscopy and annexin V-fluorescein isothiocyanate/propidium iodide staining through flow cytometric studies. The levels of intracellular adenosine triphosphate/adenosine diphosphate ratio decreased, and the ATPase activity increased more strikingly in A549 cells exposed to NdBA than in A549 cells exposed to dBA. Overall results showed that both drugs directly target the mitochondrial oxidative phosphorylation system, with NdBA having a stronger effect, indicating NdBA to be a better candidate for the development of an anticancer drug for use against lung adenocarcinomas. PMID:24929458

Das, Jayeeta; Das, Sreemanti; Paul, Avijit; Samadder, Asmita; Khuda-Bukhsh, Anisur Rahman

2014-06-01

219

Time course and mechanism of hippocampal neuronal death in an in vitro model of status epilepticus: Role of NMDA receptor activation and NMDA dependent calcium entry  

PubMed Central

The hippocampus is especially vulnerable to seizure-induced damage and excitotoxic neuronal injury. This study examined the time course of neuronal death in relationship to seizure duration and the pharmacological mechanisms underlying seizure-induced cell death using low magnesium (Mg2+) induced continuous high frequency epileptiform discharges (in vitro status epilepticus) in hippocampal neuronal cultures. Neuronal death was assessed using cell morphology and Fluorescein diacetate-Propidium iodide staining. Effects of low Mg2+ and various receptor antagonists on spike frequency were assessed using patch clamp electrophysiology. We observed a linear and time-dependent increase in neuronal death with increasing durations of status epilepticus. This cell death was dependent upon extracellular calcium that entered primarily through the N-methyl-D-aspartate (NMDA) glutamate receptor channel subtype. Neuronal death was significantly decreased by co-incubation with the NMDA receptor antagonists and was also inhibited by reduction of extracellular calcium (Ca2+) during status epilepticus. In contrast, neuronal death from in vitro status epilepticus was not significantly prevented by inhibition of other glutamate receptor subtypes or voltage-gated Ca2+ channels. Interestingly this NMDA-Ca2+ dependent neuronal death was much more gradual in onset compared to cell death from excitotoxic glutamate exposure. The results provide evidence that in vitro status epilepticus results in increased activation of the NMDA-Ca2+ transduction pathway leading to neuronal death in a time dependent fashion. The results also indicate that there is a significant window of opportunity during the initial time of continuous seizure activity to be able to intervene, protect neurons and decrease the high morbidity and mortality associated with status epilepticus.

Deshpande, Laxmikant S.; Lou, Jeffrey K.; Mian, Ali; Blair, Robert E.; Sombati, Sompong; Attkisson, Elisa; DeLorenzo, Robert J.

2008-01-01

220

Oridonin nanosuspension was more effective than free oridonin on G2/M cell cycle arrest and apoptosis in the human pancreatic cancer PANC-1 cell line.  

PubMed

Oridonin, a diterpenoid isolated from Rabdosia rubescencs, has been reported to have antitumor effects. However, low solubility has limited its clinical applications. Preparation of drugs in the form of nanosuspensions is an extensively utilized protocol. In this study, we investigated the anticancer activity of oridonin and oridonin nanosuspension on human pancreatic carcinoma PANC-1 cells. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to investigate the effect of oridonin on cell growth. Propidium iodide and Hoechst 33342 staining were used to detect morphologic changes. The percentage of apoptosis and cell cycle progression was determined by flow cytometric method staining with propidium iodide. Annexin V-fluorescein isothiocyanate (FITC)/PI staining was used to evaluate cell apoptosis by flow cytometry. Caspase-3 activity was measured by spectrophotometry. The apoptotic and cell cycle protein expression were determined by Western blot analysis. Both oridonin and oridonin nanosuspension induced apoptosis and G(2)/M phase cell cycle arrest, and the latter had a more significant cytotoxic effect. The ratio of Bcl-2/Bax protein expression was decreased and caspase- 3 activity was stimulated. The expression of cyclin B1 and p-cdc2 (T161) was suppressed. Our results showed that oridonin nanosuspension was more effective than free oridonin on G(2)/M cell cycle arrest and apoptosis in the human pancreatic cancer PANC-1 cell line. PMID:22619528

Qi, Xiaoli; Zhang, Dianrui; Xu, Xia; Feng, Feifei; Ren, Guijie; Chu, Qianqian; Zhang, Qiang; Tian, Keli

2012-01-01

221

Synergistic Antitumor Activities of Docetaxel and Octreotide Associated with Apoptotic-Upregulation in Castration-Resistant Prostate Cancer  

PubMed Central

Androgen deprivation therapy has become the fist-line treatment of metastatic prostate cancer; however, progression to castrate resistance disease occurs in the majority of patients. Thus, there is an urgent need for improvements in therapy for castration-resistant prostate cancer. The aims of the present study were to determine the efficacy somatostatin analogue octreotide (OCT) combined with a low dose of docetaxel (DTX) using castration resistant prostate cancer cells and to investigate the involved molecular mechanisms in vitro. The anti-proliferative and synergism potential effects were determined by MTT assay. Induction of apoptosis was analyzed employing annexing V and propidium iodide staining and flow cytometry. VEGFA, CASP9, CASP3 and ABCB1 gene expression was evaluated by RT-PCR and Q-RT-PCR analysis. OCT in combination with DTX treatments on DU145 cell migration was also evaluated. Investigation revealed that combined administration of DTX and OCT had significant, synergistically greater cytotoxicity than DTX or OCT treatment alone. The combination of the two drugs caused a more marked increase in apoptosis and resulted in greater suppression of invasive potential than either individual agent. There was obvious increase in caspase 3 expression in the OCT alone and two-drug combined treatment groups, however, VEGFA expression was markedly suppressed in them. These results support the conclusion that somatostatin analogues combined with docetaxel may enhance the chemotherapy efficacies through multiple mechanisms in castration-resistant PCa cell line. This work provides a preclinical rationale for the therapeutic strategies to improve the treatment in castrate resistance disease.

Zhu, Sha; Oremo, Judith Apondi; Li, Sanqiang; Zhen, Minghui; Tang, Yue; Du, Ying

2014-01-01

222

C-phycocyanin ameliorates doxorubicin-induced oxidative stress and apoptosis in adult rat cardiomyocytes.  

PubMed

Doxorubicin (DOX), a potent antineoplastic agent, poses limitations for its therapeutic use due to the associated risk of developing cardiomyopathy and congestive heart failure. The cardiotoxicity of doxorubicin is associated with oxidative stress and apoptosis. We have recently shown that Spirulina, a blue-green alga with potent antioxidant properties, offered significant protection against doxorubicin-induced cardiotoxicity in mice. The aim of the present study was to establish the possible protective role of C-phycocyanin, one of the active ingredients of Spirulina, against doxorubicin-induced oxidative stress and apoptosis. The study was carried out using cardiomyocytes isolated from adult rat hearts. Doxorubicin significantly enhanced the formation of reactive oxygen species (ROS) in cells as measured by the 2',7'-dichlorodihydrofluorescein diacetate and dihydroethidium fluorescence. The doxorubicin-induced reactive oxygen species formation was significantly attenuated in cells pretreated with C-phycocyanin. It was further observed that the doxorubicin-induced DNA fragmentation and apoptosis, as assayed by TUNEL assay and flow cytometry coupled with BrdU-FITC/propidium iodide staining, were markedly attenuated by C-phycocyanin. C-phycocyanin also significantly attenuated the doxorubicin-induced increase in the expression of Bax protein, release of cytochrome c, and increase in the activity of caspase-3 in cells. In summary, C-phycocyanin ameliorated doxorubicin-induced oxidative stress and apoptosis in cardiomyocytes. This study further supports the crucial role of the antioxidant nature of C-phycocyanin in its cardioprotection against doxorubicin-induced oxidative stress and apoptosis. PMID:16424780

Khan, Mahmood; Varadharaj, Saradhadevi; Shobha, Jagdish C; Naidu, Madireddi U; Parinandi, Narasimham L; Kutala, Vijay Kumar; Kuppusamy, Periannan

2006-01-01

223

Osmotic tolerance and intracellular ion concentrations of bovine sperm are affected by cryopreservation.  

PubMed

In this study, the effects of cryopreservation on osmoregulation and ion homeostasis in bovine sperm were studied. We determined: (1) the osmotic tolerance limits and cell volume response upon exposure to anisotonic conditions, (2) the intracellular pH and potassium concentration, and (3) expression and localization of proteins encoding for potassium and chloride ion channels. A flow cytometric approach was used for simultaneous assessment of cell volume and viability of propidium iodide stained sperm in anisotonic media. Osmotic tolerance was found to be decreased after cryopreservation, especially in the 120 to 60 mOsm/kg osmotic range. The critical osmolality at which half of the sperm population survived increased from 55 to 89 mOsm/kg. The osmotic cell volume response for viable sperm was similar before and after cryopreservation, with an osmotic inactive volume of about 70%. The intracellular pH, determined by recording changes in carboxyfluorescein fluorescence of sperm in media with different pH before and after addition of digitonin, decreased from 6.28 in diluted sperm to 6.16 after cryopreservation. The intracellular potassium concentration, determined using the potassium ionophore nigericin and incubation in media with various potassium concentrations, increased from 154 mM to 183 mM before and after cryopreservation, respectively. The levels of the chloride and potassium ion channel proteins chloride channel 3 protein (CLC-3) and two pore domain potassium channel 2 protein (TASK-2), as detected using Western blot analysis, were not affected by cryopreservation. Immunolocalization studies showed that CLC-3 is present in the acrosome and midpiece as well as in the upper and lower tail. In conclusion, cryopreserved sperm exhibit reduced tolerance to hypotonic stress, a decreased intracellular pH, and increased intracellular potassium level. PMID:22819283

Blässe, A-K; Oldenhof, H; Ekhlasi-Hundrieser, M; Wolkers, W F; Sieme, H; Bollwein, H

2012-10-01

224

Berbamine induces apoptosis in human hepatoma cell line SMMC7721 by loss in mitochondrial transmembrane potential and caspase activation  

Microsoft Academic Search

Objective  To investigate the effect of berbamine on human hepatoma cell line SMMC7721.\\u000a \\u000a \\u000a \\u000a Methods  The effects of 24 h and 48 h incubation with different concentrations (0?64 g\\/ml) of the berbamine on SMMC7721 cells were\\u000a evaluated using 3-4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT) assay. Hoechst 33258 staining was conducted\\u000a to distinguish the apoptotic cell, and the appearance of sub-G1 stage was determined by PI (propidium

Guan-yu Wang; Jia-wei Zhang; Qing-hua Lü; Rong-zhen Xu; Qing-hua Dong

2007-01-01

225

Immune effects of resuscitation with HBOC-201, a hemoglobin-based oxygen carrier, in swine with moderately severe hemorrhagic shock from controlled hemorrhage.  

PubMed

HBOC-201, a hemoglobin-based oxygen carrier, improved physiologic parameters and survival in hemorrhagic shock (HS) animal models. However, resuscitation from HS and the properties of different fluids influence immune responses. The aim of this study was to determine if HBOC-201 significantly alters immune function in traumatic HS. Anesthetized pigs underwent soft tissue injury, controlled hemorrhage of 40% of blood volume, and resuscitation with HBOC-201 or Hextend, or no resuscitation. Sequential whole-blood samples were collected for analyses of leukocyte differential (hematology analyzer), T-lymphocyte subsets (CD3, CD4, and CD8) (FACS), lymphocyte adhesion marker CD49d (alpha4-integrin) expression (FACS), plasma cytokines-tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and IL-10-(ELISA), and lymphocyte apoptosis (annexin-V/propidium iodide staining) (FACS). Statistical analyses were performed by the mixed procedure. Total WBC counts decreased posthemorrhage in both resuscitation groups. Lymphocyte percentages decreased and PMN percentages increased around 4 h posthemorrhage in all groups. CD3 cells decreased in all groups, but CD4 and CD8 cells decreased only in the resuscitation groups. TNF-alpha levels were not detectable in any groups. IL-6 levels were similar across treatment groups (P > 0.05); however, IL-10 levels were higher in the HBOC group, as early as 1 h posthemorrhage (P = 0.04). Increases in lymphocytic CD49d expression levels and apoptosis occurred only in nonresuscitation and Hextend groups, respectively (P < or = 0.01). In comparison with Hextend, HBOC-201 had no significant adverse or beneficial effects on immune function in this model of moderately severe HS in swine, suggesting that it may be safe as a resuscitation fluid in HS patients. PMID:16369186

Dong, Feng; Hall, Carrie H; Golech, Suzanne A; Philbin, Nora B; Rice, Jennifer P; Gurney, Jennifer; Arnaud, Francoise G; Hammett, Michael; Ma, Xia; Flournoy, W Shannon; Hong, Jiang; Kaplan, Lewis J; Pearce, L Bruce; McGwin, Gerald; Ahlers, Stephen; McCarron, Richard; Freilich, Daniel

2006-01-01

226

Inhibitory effects of resveratrol and pterostilbene on human colon cancer cells: a side by side comparison  

PubMed Central

We systematically compared effects of resveratrol and pterostilbene (two structurally related stilbene compounds) on three human colon cancer cells. Cell viability tests indicated that IC50s of pterostilbene were 2~5-fold lower than those of resveratrol in all three cancer cells. Pterostilbene was also more potent in inhibiting colony formation of all three cancer cells. Annexin V/ Propidium Iodide (Propidium Iodide (PI) ) co-staining assay and western blotting analysis showed pterostilbene had stronger apoptosis-inducing effects, which was evidenced by the higher percentage of annexin V positive cells and higher levels of cleaved caspae-3 and Poly(ADP-ribose) polymerase (PARP) proteins in cancer cells treated with pterostilbene than resveratrol. High performance liquid chromatography (HPLC) High performance liquid chromatography (HPLC) analysis demonstrated that intracellular levels of pterostilbene were 2~4-fold higher than those of resveratrol after treatments with individual compounds at the same concentration. Overall, our results demonstrated that pterostilbene had more potent inhibitory effects on colon cancer cells than resveratrol, which may be associated with the superior bioavailability of pterostilbene to resveratrol.

Nutakul, Wasamon; Sobers, Hana Shatara; Qiu, Peiju; Dong, Ping; Decker, Eric Andrew; McClements, David Julian; Xiao, Hang

2011-01-01

227

In vitro and in vivo evaluation of various carbonyl compounds against cyanide toxicity with particular reference to alpha-ketoglutaric acid.  

PubMed

Cyanide is a rapidly acting neurotoxin that necessitates immediate, vigorous therapy. The commonly used treatment regimen for cyanide includes the intravenous administration of sodium nitrite (SN) and sodium thiosulphate (STS). Due to many limitations of these antidotes, a search for more effective, safer molecules continues. Cyanide is known to react with carbonyl compounds to form the cyanohydrin complex. The present study addresses the efficacy of several carbonyl compounds and their metabolites or nutrients with alpha-ketoglutaric acid (A-KG), citric acid, succinic acid, maleic acid, malic acid, fumaric and oxaloacetic acid, glucose, sucrose, fructose, mannitol, sorbitol, dihydroxyacetone, and glyoxal (5 or 10 mM; -10 min) against toxicity of potassium cyanide (KCN; 10 mM) in rat thymocytes in vitro. Six hours after KCN, cell viability measured by MTT assay and crystal violet dye exclusion revealed maximum cytoprotection by A-KG, followed by oxaloacetic acid. A-KG also resolved the leakage of intracellular lactate dehydrogenase, loss in nuclear integrity (propidium iodide staining), and altered mitochondrial membrane potential (rhodamine 123 assay) as a result of cyanide toxicity. Protection Index (ratio of LD(50) of KCN in protected and unprotected animals; PI) of all the compounds (oral; 1.0 g/kg; -10 min) determined in male mice, revealed that maximum protection was afforded by A-KG (7.6 PI), followed by oxaloacetic acid (6.4 PI). Comparative evaluation of various salts of A-KG alone or with STS (intraperitoneal; 1.0 g/kg; -15 min) showed that maximum protection was conferred by disodium anhydrous salt of A-KG, which also significantly prevented the inhibition of brain cytochrome oxidase caused by 0.75 LD(50) KCN. This study indicates the potential of A-KG as alternative cyanide antidote. PMID:18161514

Bhattacharya, Rahul; Tulsawani, Rajkumar

2008-01-01

228

IL-17-mediated Bcl-2 expression regulates survival of fibroblast-like synoviocytes in rheumatoid arthritis through STAT3 activation  

PubMed Central

Introduction Fibroblast-like synoviocytes (FLSs) are a major cell population of the pannus that invades adjacent cartilage and bone in rheumatoid arthritis (RA). The study was undertaken to determine the effect of interleukin-17 (IL-17) on the survival and/or proliferation of FLSs from RA patients and to investigate whether signal tranducer and activator of transcription 3 (STAT3) is implicated in this process. Methods Bcl-2 and Bax expression in FLSs was determined using the real-time PCR and western blot analysis. The expression of Bcl-2 and phosphoSTAT3 in synovial tissues was investigated by confocal microscope. Apoptosis of FLSs was detected by Annexin V/propidium iodide staining and/or phase contrast microscopy. The proliferation of FLSs was determined by CCK-8 ELISA assay. Results The pro-apoptotic Bax is decreased and anti-apoptotic Bcl-2 is increased in FLSs from RA patients compared with those from patients with osteoarthritis (OA). IL-17 upregulated the expression of Bcl-2 in FLSs from RA patients, but not in FLSs from OA patients. STAT3 was found to mediate IL-17-induced Bcl-2 upregulation in FLSs from RA patients. Additionally, IL-17 promoted the survival and proliferation of FLSs from RA patients. Most importantly, treatment with STAT3 inhibitor reversed the protective effect of IL-17 on FLSs apoptosis induced by sodium nitroprusside (SNP). Conclusions Our data demonstrate that STAT3 is critical in IL-17-induced survival of FLS from RA patients. Therefore, therapeutic strategies that target the IL-17/STAT3 pathway might be strong candidates for RA treatment modalities.

2013-01-01

229

Inhibitory effect of polyunsaturated fatty acids on apoptosis induced by Streptococcus pneumoniae in alveolar macrophages  

PubMed Central

Background & objectives: Apoptosis is considered as a major defense mechanism of the body. Multiple pathogens induce macrophage apoptosis as a mode of immune evasion. In earlier studies, n-3 polyunsaturated fatty acids (PUFA) have been reported to be protective against neuronal apoptosis and neuronal degeneration, seen after spinal cord injury. In this study, we tried to evaluate the role of n-3 polyunsaturated fatty acids on the process of macrophage phagocytic activity and apoptosis in mice. Methods: Mice were divided into three groups (n=60); Group I was fed on sea cod oil; Group II on flaxseed oil supplementation for 9 wk along with standard laboratory chow diet. Group III was fed on standard diet and served as control. After supplementation, phagocytic and apoptotic (morphological staining: acridine orange plus ethidium bromide; H-33342 plus propidium iodide staining and DNA ladder formation) activities of mouse alveolar macrophages were assessed. Results: Alveolar macrophages (obtained from sea cod oil and flaxseed oil fed group mice) showed significant increase in bacterial uptake as well as intracellular killing (P< 0.05) of Streptococcus pneumoniae. Significant decrease (P<0.05) in apoptotic cells was observed among alveolar macrophages from sea cod and flaxseed oil fed mice whereas maximum apoptosis was observed in control alveolar macrophages on interaction with bacteria in vitro which was confirmed by DNA laddering. Interpretation & conclusions: These findings suggest that dietary supplementation with n-3 polyunsaturated fatty acids to mice led to enhanced phagocytic capability of their alveolar macrophages as well as provided protection against apoptosis upon challenge with S. pneumoniae.

Saini, Archana; Harjai, Kusum; Chhibber, Sanjay

2013-01-01

230

Antibiofilm efficacy of silver nanoparticles against biofilm of extended spectrum ?-lactamase isolates of Escherichia coli and Klebsiella pneumoniae  

NASA Astrophysics Data System (ADS)

The ability of bacteria to develop antibiotic resistance and colonize abiotic surfaces by forming biofilms is a major cause of medical implant-associated infections and results in prolonged hospitalization periods and patient mortality. Different approaches have been used for preventing biofilm-related infections in health care settings. Many of these methods have their own demerits that include chemical-based complications; emergent antibiotic-resistant strains, and so on. Silver nanoparticles (AgNPs) are renowned for their influential antimicrobial activity. We demonstrate the biofilm formation by extended spectrum ?-lactamases-producing Escherichia coli and Klebsiella spp. by direct visualization applying tissue culture plate, tube, and Congo red agar methods. Double fluorescent staining for confocal laser scanning microscopy (CLSM) consisted of propidium iodide staining to detect bacterial cells and concanavalin A-fluorescein isothiocyanate staining to detect the exopolysaccharides matrix were used. Scanning electron microscopy observations clearly indicate that AgNPs reduced the surface coverage by E. coli and Klebsiella spp. thus prevent the biofilm formations. Double-staining technique using CLSM provides the visual evidence that AgNPs arrested the bacterial growth and prevent the exopolysaccharides formation. The AgNPs-coated surfaces effectively restricted biofilm formation of the tested bacteria. In our study, we could demonstrate the complete antibiofilm activity AgNPs at a concentration as low as 50 ?g/ml. Our findings suggested that AgNPs can be exploited towards the development of potential antibacterial coatings for various biomedical and environmental applications. These formulations can be used for the treatment of drug-resistant bacterial infections caused by biofilms, at much lower nanosilver loading with higher efficiency.

Ansari, Mohammad Azam; Khan, Haris M.; Khan, Aijaz A.; Cameotra, Swaranjit Singh; Pal, Ruchita

2013-09-01

231

VEGF Ameliorates Cognitive Impairment in In Vivo and In Vitro Ischemia via Improving Neuronal Viability and Function.  

PubMed

Vascular endothelial growth factor (VEGF) has recently been proved to be a potential therapeutic drug in ischemic disorders depending on the dose, route and time of administration, especially in focal cerebral ischemia. Whether VEGF could exert protection in a long-term total cerebral ischemic model is still uncertain, and the cellular mechanism has not been clarified so far. In order to answer the above issue, an experiment was performed in non-invasively giving exogenous VEGF to a total cerebral ischemic model rats and examining their spatial cognitive function by performing Morris water maze and long-term potential test. Moreover, we performed in vitro experiment to explore the cellular mechanism of VEGF protection effect. In an in vitro ischemia model oxygen-glucose deprivation (OGD), whole-cell patch-clamp recording was employed to examine neuronal function. Additionally, hematoxylin-eosin and propidium iodide staining were applied in vivo and in vitro in the neuropathological and viability study, separately. Our results showed that intranasal administration of VEGF could improve the cognitive function, synaptic plasticity and damaged hippocampal neurons in a global cerebral ischemia model. In addition, VEGF could retain the membrane potential, neuronal excitability and spontaneous excitatory postsynaptic currents in the early stage of ischemia, which further demonstrated that there was an acute effect of VEGF in OGD-induced pyramidal neurons. Simultaneously, it was also found that the death of CA1 pyramidal neuronal was significantly reduced by VEGF, but there was no similar effect in VEGF coexists with SU5416 group. These results indicated that VEGF could ameliorate cognitive impairment and synaptic plasticity via improving neuronal viability and function through acting on VEGFR-2. PMID:24338641

Yang, Jiajia; Yao, Yang; Chen, Ting; Zhang, Tao

2014-06-01

232

Micromanipulation and physiological monitoring of cells using two-photon excited fluorescence in cw laser tweezers  

NASA Astrophysics Data System (ADS)

We report the observation of two-photon fluorescence excitation and cell confinement, simultaneously, in a continuous-wave (cw) single-beam gradient force optical trap, and demonstrate its use as an in-situ probe to study the physiological state of an optically confined cell sample. At the wavelength of 1064 nm, a single focused gaussian laser beam is used to simultaneously confine, and excite visible fluorescence from, a human sperm cell that has been tagged with propidium iodide, a exogenous fluorescent dye that functions as a viability assay of cellular physiological state. The intensity at the dye peak emission wavelength of 620 nm exhibits a near-square-law dependence on incident trapping beam photon laser power, a behavior consistent with a two-photon absorption process. In addition, for a sperm cell held stationary in the optical tweezers for a period of several minutes at a constant trapping power, red fluorescence emission was observed to increase the time, indicating that the cell has gradually transitioned between a live and dead state. Two-photon excited fluorescence was also observed in chinese hamster ovary cells that were confined by cw laser tweezers and stained with either propidium iodide or Snarf, a pH-sensitive dye probe. These results suggest that, for samples suitably tagged with fluorescent probes and vital stains, optical tweezers can be used to generate their own in-situ diagnostic optical probes of cellular viability or induced photodamage, via two-photon processes.

Sonek, Gregory J.; Liu, Yagang; Berns, Michael W.; Tromberg, Bruce J.

1996-05-01

233

Induction of apoptosis in human endothelial cells by nanodiamond particles.  

PubMed

Carbon nanoparticles are a promising material which finds application in different fields in industry and medicine. For medical applications, biocompatibility of nanoparticles is of critical importance because a lot of medical implants are coated by carbon coating. Our previous results showed that nanoparticles may induce increased production of ROS by the cells so we decided to checked if nanopowders can induce apoptosis. Apoptosis was quantified by double-staining with acridine orange and ethidium bromide. For comparison, we identified apoptotic cells with annexin V-FITC/propidium iodide. Our data demonstrate that treatment of the cells with diamond nanopowders may induce apoptosis and necrosis and this effect is dependent on the time of treatment and concentration of the nanopowders. The highest level of apoptotic cells was observed after incubation with Ultrananocrystalline Detonation Diamond (UDD) suggesting that the size is the main determinant of nanoparticle cytotoxicity. PMID:22905588

Solarska, K; Gajewska, A; Bartosz, G; Mitura, K

2012-06-01

234

Manumycin induces apoptosis in prostate cancer cells  

PubMed Central

Background Manumycin exhibits an antitumor effect in a variety of cancer cell lines, including prostate cancer cell lines (DU145 and PC-3). Our previous studies demonstrated that manumycin induced the apoptosis of anaplastic thyroid cancer cells and leukemia cells via the intrinsic apoptosis pathway. In the current study, we further evaluated the effect of manumycin in two prostate cancer cell lines (LNCaP and 22Rv1), and here we elucidate some of the underlying mechanisms. Materials and methods The cell viability of prostate cancer cells was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay after treatment with manumycin for 48 hours. Apoptosis was detected by flow cytometry using annexin V and propidium iodide. The expressions of B-cell lymphoma (Bcl)-2 family members and the activations of caspase-9 and caspase-3 were detected by Western blotting. Results Manumycin treatment resulted in significant decreases in the viabilities of the two prostate cancer cell lines in a dose-dependent manner through apoptosis, and this apoptosis involved caspase-9 activation. A specific inhibitor of caspase-9 protected cells from caspase-3 activation, apoptosis, and cytotoxicity induced by manumycin. We also found that manumycin downregulated Bcl-2 expression and upregulated Bax expression. Conclusion Our data suggest that manumycin induces apoptosis in prostate cancer cells through regulation of the Bcl-2 family involving caspase-9 activation. These results suggest that manumycin may be beneficial for the treatment of prostate cancer.

Li, Jing-Gao; She, Miao-Rong; Lu, Ci-Yong; Wei, Shan-Shan; Xia, Ping-Fang; Lu, Ze-Sheng; Peng, Qi

2014-01-01

235

Time between onset of apoptosis and release of nucleosomes from apoptotic cells: putative implications for systemic lupus erythematosus  

PubMed Central

Objective: To investigate the kinetics of nucleosome leakage from apoptotic cells in an in vitro system and extrapolate the results to autoimmune disease, in particular systemic lupus erythematosus. Methods: A sensitive nucleosome enzyme linked immunosorbent assay (ELISA) was developed, using a monoclonal antibody (mAb) against histone 3 and an mAb against nucleosomes. Nucleosome release during apoptotic cell death was studied in Jurkat cells. AnnexinV binding (early apoptosis) and propidium iodide positivity (late apoptosis) of the cells were compared with nucleosome release at different times after apoptosis induction. Results: Nucleosomes appeared in culture supernatant of Jurkat cells 24 to 48 hours after apoptosis induction, when the cells had been late apoptotic for more than 12 hours. Conclusion: Nucleosomes are released from late apoptotic Jurkat cells, with a 12 hour delay from the appearance of AnnexinV binding cells. This result suggests that in vivo scavenger mechanisms have 12 hours to remove apoptotic material from the circulation.

van Nieuwenhuijze, A E M; van Lopik, T; Smeenk, R; Aarden, L

2003-01-01

236

Bax is not involved in the resveratrol-induced apoptosis in human lung adenocarcinoma cells  

NASA Astrophysics Data System (ADS)

Resveratrol (RV) is a natural plant polyphenol widely present in foods such as grapes, wine, and peanuts. Previous studies indicate that RV has an ability to inhibit various stages of carcinogenesis and eliminate preneoplastic cells in vitro and in vivo. However, little is known about the molecular mechanism of RV-induced apoptosis in human lung adenocarcinoma (ASTC-a-1) cell. In this report, we analyzed whether Bax translocation from cytoplasm to mitochondria during RV-induced apoptosis in single living cell using onfocal microscopey. Cells were transfected with GFP-Bax plasmid. Cell counting kit (CCK-8) assay was used to assess the inhibition of RV on the cells viability. Apoptotic activity of RV was detected by Hoechst 33258 and propidium iodide (PI) staining. Our results showed that RV induced a dose-dependent apoptosis in which Bax did not translocate to mitochondrias.

Zhang, Wei-Wei; Wang, Zhi-Ping; Chen, Tong-Sheng

2010-02-01

237

Cells  

NSDL National Science Digital Library

Today you have the opportunity to explore the cell in a 3D fashion and learn more about its organelles. The following three links will help you understand the structure of the cell and organelles more clearly and help you understand their functions as well. Enjoy! Cells Alive Inside a Cell Virtual Cell When you have completed viewing the websites, please draw a picture of a animal cell or plant cell with its labeled parts. ...

Aird, Mrs.

2006-11-15

238

L-Methionine inhibits growth of human pancreatic cancer cells.  

PubMed

We have previously shown that L-methionine inhibits proliferation of breast, prostate, and colon cancer cells. This study extends these findings to BXPC-3 (mutated p53) and HPAC (wild-type p53) pancreatic cancer cells and explores the reversibility of these effects. Cells were exposed to L-methionine (5 mg/ml) for 7 days or for 3 days, followed by 4 days of culture without L-methionine (recovery). Cell proliferation, apoptosis, and cell cycle effects were assessed by flow cytometry after staining for Ki-67 or annexin V/propidium iodide. Cell proliferation was reduced by 31-35% after 7 days of methionine exposure; the effect persisted in BXPC-3 and HPAC cells after 4 days of recovery. Methionine increased apoptosis by 40-75% in HPAC cells, but not in BXPC-3 cells. Continuous exposure to methionine caused accumulation of BXPC-3 cells in the S phase and HPAC cells in both the G0/G1 and S phases; however, after 4 days of recovery, these effects disappeared. In conclusion, L-methionine inhibits proliferation and interferes with the cell cycle of BXPC-3 and HPAC pancreatic cancer cells; the effects on apoptosis remarkably persisted after methionine withdrawal. Apoptosis was induced only in BXPC-3 cells. Some of the differences in the effects of methionine between cell lines may be related to disparate p53 status. These findings warrant further studies on the potential therapeutic benefit of L-methionine against pancreatic cancer. PMID:24126240

Benavides, Maximo A; Bosland, Maarten C; da Silva, Cássio P; Gomes Sares, Claudia T; de Oliveira, Alana M Cerqueira; Kemp, Rafael; dos Reis, Rodolfo B; Martins, Vilma R; Sampaio, Suely V; Bland, Kirby I; Grizzle, William E; dos Santos, José S

2014-02-01

239

Gap junctional communication promotes apoptosis in a connexin-type-dependent manner  

PubMed Central

Gap junctions (GJs) have been described to modulate cell death and survival. It still remains unclear whether this effect requires functional GJ channels or depends on channel-independent effects of connexins (Cx), the constituents of GJs. Therefore, we analysed the apoptotic response to streptonigrin (SN, intrinsic apoptotic pathway) or to ?-Fas (extrinsic apoptotic pathway) in HeLa cells expressing Cx43 as compared with empty vector-transfected (CTL) cells. Apoptosis assessed by annexin V-fluorescein isothiocyanate/propidium iodide staining was significantly higher in HeLa-Cx43 compared with HeLa-CTL cells. Moreover, the cleavage of caspase-7 or Parp occurred earlier in HeLa-Cx43 than in HeLa-CTL cells. Comparative analysis of the effect of two further (endothelial) Cx (Cx37 and Cx40) on apoptosis revealed that apoptosis was highest in HeLa-Cx43 and lowest in HeLa-Cx37 cells, and correlated with the GJ permeability (assessed by spreading of a GJ-permeable dye and locally induced Ca2+ signals). Pharmacologic inhibition of GJ formation in HeLa-Cx43 cells reduced apoptosis significantly. The role of GJ communication was further analysed by the expression of truncated Cx43 proteins with and without channel-forming capacity. Activation of caspases was higher in cells expressing the channel-building part (HeLa-Cx43NT-GFP) than in cells expressing the channel-incompetent C-terminal part of Cx43 (HeLa-Cx43CT-GFP) only. A hemichannel-dependent release and, hence, paracrine effect of proapoptotic signals could be excluded since the addition of a peptide (Pep)-blocking Cx43-dependent hemichannels (but not GJs) did not reduce apoptosis in HeLa-Cx43 cells. Treatment with SN resulted in a significant higher increase of the intracellular free Ca2+ concentration in HeLa-Cx43 and HeLa-Cx43NT-GFP cells compared with HeLa-CTL or HeLa-Cx43CT-GFP cells, suggesting that Ca2+ or a Ca2+-releasing agent could play a signalling role. Blocking of inositol triphosphate receptors reduced the SN-induced Ca2+ increase as well as the increase in apoptosis. Our observations suggest that Cx43 and Cx40 but not Cx37 promote apoptosis via gap junctional transfer of pro-apoptotic signals between cells.

Kameritsch, P; Khandoga, N; Pohl, U; Pogoda, K

2013-01-01

240

Gap junctional communication promotes apoptosis in a connexin-type-dependent manner.  

PubMed

Gap junctions (GJs) have been described to modulate cell death and survival. It still remains unclear whether this effect requires functional GJ channels or depends on channel-independent effects of connexins (Cx), the constituents of GJs. Therefore, we analysed the apoptotic response to streptonigrin (SN, intrinsic apoptotic pathway) or to ?-Fas (extrinsic apoptotic pathway) in HeLa cells expressing Cx43 as compared with empty vector-transfected (CTL) cells. Apoptosis assessed by annexin V-fluorescein isothiocyanate/propidium iodide staining was significantly higher in HeLa-Cx43 compared with HeLa-CTL cells. Moreover, the cleavage of caspase-7 or Parp occurred earlier in HeLa-Cx43 than in HeLa-CTL cells. Comparative analysis of the effect of two further (endothelial) Cx (Cx37 and Cx40) on apoptosis revealed that apoptosis was highest in HeLa-Cx43 and lowest in HeLa-Cx37 cells, and correlated with the GJ permeability (assessed by spreading of a GJ-permeable dye and locally induced Ca(2+) signals). Pharmacologic inhibition of GJ formation in HeLa-Cx43 cells reduced apoptosis significantly. The role of GJ communication was further analysed by the expression of truncated Cx43 proteins with and without channel-forming capacity. Activation of caspases was higher in cells expressing the channel-building part (HeLa-Cx43NT-GFP) than in cells expressing the channel-incompetent C-terminal part of Cx43 (HeLa-Cx43CT-GFP) only. A hemichannel-dependent release and, hence, paracrine effect of proapoptotic signals could be excluded since the addition of a peptide (Pep)-blocking Cx43-dependent hemichannels (but not GJs) did not reduce apoptosis in HeLa-Cx43 cells. Treatment with SN resulted in a significant higher increase of the intracellular free Ca(2+) concentration in HeLa-Cx43 and HeLa-Cx43NT-GFP cells compared with HeLa-CTL or HeLa-Cx43CT-GFP cells, suggesting that Ca(2+) or a Ca(2+)-releasing agent could play a signalling role. Blocking of inositol triphosphate receptors reduced the SN-induced Ca(2+) increase as well as the increase in apoptosis. Our observations suggest that Cx43 and Cx40 but not Cx37 promote apoptosis via gap junctional transfer of pro-apoptotic signals between cells. PMID:23579271

Kameritsch, P; Khandoga, N; Pohl, U; Pogoda, K

2013-01-01

241

Use of flow cytometry to monitor cell damage and predict fermentation activity of dried yeasts.  

PubMed

Viable dried yeast is used as an inoculum for many fermentations in the baking and wine industries. The fermentative activity of yeast in bread dough or grape must is a critical parameter of process efficiency. Here, it is shown that fluorescent stains and flow cytometry can be used in concert to predict the abilities of populations of dried bakers' and wine yeasts to ferment after rehydration. Fluorescent dyes that stain cells only if they have damaged membrane potential (oxonol) or have increased membrane permeability (propidium iodide) were used to analyse, by flow cytometry, populations of rehydrated yeasts. A strong relationship (r2 = 0.99) was found between the percentages of populations staining with the oxonol and the degree of cell membrane damage as measured by the more traditional method of leakage of intracellular compounds. There were also were good negative relationships (r2 > or = 0.83) between fermentation by rehydrated bakers' or wine dry yeasts and percentage of populations staining with either oxonol or propidium iodide. Fluorescent staining with flow cytometry confirmed that factors such as vigour of dried yeast mixing in water, soaking before stirring, rehydration in water or fermentation medium and temperature of rehydration have profound effects on subsequent yeast vitality. These experiments indicate the potential of flow cytometry as a rapid means of predicting the fermentation performance of dried bakers' and wine yeasts. PMID:10971752

Attfield, P V; Kletsas, S; Veal, D A; van Rooijen, R; Bell, P J

2000-08-01

242

Coordination of Intercellular Ca2+ Signaling in Endothelial Cell Tubes of Mouse Resistance Arteries  

PubMed Central

Objective To test the hypothesis that Ca2+ responses to G-protein coupled receptor (GPCR) activation are coordinated between neighboring endothelial cells of resistance arteries. Methods Endothelial cell tubes were freshly isolated from superior epigastric arteries of C57BL/6 mice. Intercellular coupling was tested using microinjection of propidium iodide. Following loading with fluo-4 dye, intracellular Ca2+ responses to ACh were imaged with confocal microscopy. Results Cell-to-cell transfer of propidium iodide confirmed functional gap junction channels. 1 ?M ACh evoked Ca2+ responses [9.8±0.8/min, (F/F0)=3.11±0.2] which pseudo-linescan analysis revealed to be composed of Ca2+ waves and spatially-restricted Ca2+ release events. 100 nM ACh induced Ca2+ responses of lower frequency (4.5±0.7/min) and amplitude (F/F0=1.95±0.11) composed primarily of spatially-restricted events. The interval between Ca2+ waves in Adjacent cells (0.79±0.12 s) was shorter (P<0.05) than between Nonadjacent cells (1.56±0.25 s). Spatially-restricted Ca2+ release events had similar frequencies and latencies between Adjacent and Nonadjacent cells. Inhibiting intracellular Ca2+ release with 2-APB, Xestospongin C or thapsigargin eliminated Ca2+ responses. Conclusions With moderate GPCR stimulation, localized Ca2+ release events predominate among cells. Greater GPCR stimulation evokes coordinated intercellular Ca2+ waves via the endoplasmic reticulum. Calcium signaling during GPCR activation is complex among cells, varying with stimulus intensity and proximity to actively signaling cells.

Socha, Matthew J.; Domeier, Timothy L.; Behringer, Erik J.; Segal, Steven S.

2012-01-01

243

The antiproliferative effect of C2-ceramide on lung cancer cells through apoptosis by inhibiting Akt and NF?B  

PubMed Central

The anticancer effects of ceramide have been reported in many types of cancers but less in lung cancer. In this study, we used C2-ceramide to further investigate its possible anticancer effects and mechanisms on non-small cell lung cancer (NSCLC) H1299 cells. The result of cell proliferation in terms of trypan blue assay showed high dose of C2-ceramide inhibited cell survival after 24 h treatment. The flow cytometry-based assays indicated the effect of apoptosis, chromatin condensation, and G1 arrest in terms of Annexin V/propidium iodide (PI), DAPI, and PI stainings, respectively. Moreover, the decreased protein level of p-Akt, p-NF?B, survivin and cyclin A2 were detected by Western blot assay. Taken together, these results indicated the antiproliferative effect of C2-ceramide is majorly responsible for cell apoptosis in lung cancer H1299 cells.

2014-01-01

244

Amygdalin induces apoptosis in human cervical cancer cell line HeLa cells.  

PubMed

Amygdalin, a naturally occurring substance, has been suggested to be efficacious as an anticancer substance. The effect of amygdalin on cervical cancer cells has never been studied. In this study, we found that the viability of human cervical cancer HeLa cell line was significantly inhibited by amygdalin. 4,6-Diamino-2-phenyl indole (DAPI) staining showed that amygdalin-treated HeLa cells developed typical apoptotic changes. The development of apoptosis in the amygdalin-treated HeLa cells were confirmed by double staining of amygdalin-treated HeLa cells with annexin V-FITC and propidium iodide (PI) along with increase in caspase-3 activity in these cells. Further studies indicated that antiapoptotic protein Bcl-2 was downregulated whereas proapoptotic Bax protein was upregulated in the amygdalin-treated HeLa cells implying involvement of the intrinsic pathway of apoptosis. In vivo, amygdalin administration inhibited the growth of HeLa cell xenografts through a mechanism of apoptosis. The results in the present study suggest that amygdalin may offer a new therapeutic option for patients with cervical cancer. PMID:23137229

Chen, Yu; Ma, Jinshu; Wang, Fang; Hu, Jie; Cui, Ai; Wei, Chengguo; Yang, Qing; Li, Fan

2013-02-01

245

Construction and analysis of DNA sequence libraries from flow-sorted chromosomes: practical and theoretical considerations.  

PubMed Central

We describe the construction and analysis of recombinant DNA libraries representative of chromosomes 1 and 2 of Chinese hamster (Cricetulus griseus). Propidium-iodide stained chromosomes were purified by flow cytometric analysis and sorting, and EcoRI digests of purified DNA were cloned into the bacteriophage vector Charon 4A. These libraries contain DNA complementary to 63% and 69% of nick-translated DNA derived from flow-purified chromosomes 1 and 2, respectively. However, sequences complementary to only 24% and 35% of a total Chinese hamster genomic DNA tracer were hybridized in parallel renaturation experiments. The chromosome 2 library contained DNA sequences encoding dihydrofolate reductase (dhfr), a gene previously mapped to Chinese hamster chromosome 2. No sequences complementary to dhfr were found in the library constructed from chromosome 1 DNA. These analyses are discussed with regard to the current limitations and future strategies for the construction of chromosome-specific DNA sequence libraries of high purity and completeness.

Griffith, J K; Cram, L S; Crawford, B D; Jackson, P J; Schilling, J; Schimke, R T; Walters, R A; Wilder, M E; Jett, J H

1984-01-01

246

Inhibition of autophagy potentiates atorvastatin-induced apoptotic cell death in human bladder cancer cells in vitro.  

PubMed

Statins are cholesterol reduction agents that exhibit anti-cancer activity in several human cancers. Because autophagy is a crucial survival mechanism for cancer cells under stress conditions, cooperative inhibition of autophagy acts synergistically with other anti-cancer drugs. Thus, this study investigates whether combined treatment of atorvastatin and autophagy inhibitors results in enhancing the cytotoxic effects of atorvastatin, upon human bladder cancer cells, T24 and J82, in vitro. To measure cell viability, we performed the EZ-Cytox cell viability assay. We examined apoptosis by flow cytometry using annexin-V/propidium iodide (PI and western blot using procaspase-3 and poly (ADP-ribose) polymerase (PARP) antibodies. To examine autophagy activation, we evaluated the co-localization of LC3 and LysoTracker by immunocytochemistry, as well as the expression of LC3 and p62/sequestosome-1 (SQSTM1) by western blot. In addition, we assessed the survival and proliferation of T24 and J82 cells by a clonogenic assay. We found that atorvastatin reduced the cell viability of T24 and J82 cells via apoptotic cell death and induced autophagy activation, shown by the co-localization of LC3 and LysoTracker. Moreover, pharmacologic inhibition of autophagy significantly enhanced atorvastatin-induced apoptosis in T24 and J82 cells. In sum, inhibition of autophagy potentiates atorvastatin-induced apoptotic cell death in human bladder cancer cells in vitro, providing a potential therapeutic approach to treat bladder cancer. PMID:24815071

Kang, Minyong; Jeong, Chang Wook; Ku, Ja Hyeon; Kwak, Choel; Kim, Hyeon Hoe

2014-01-01

247

Inhibition of Autophagy Potentiates Atorvastatin-Induced Apoptotic Cell Death in Human Bladder Cancer Cells in Vitro  

PubMed Central

Statins are cholesterol reduction agents that exhibit anti-cancer activity in several human cancers. Because autophagy is a crucial survival mechanism for cancer cells under stress conditions, cooperative inhibition of autophagy acts synergistically with other anti-cancer drugs. Thus, this study investigates whether combined treatment of atorvastatin and autophagy inhibitors results in enhancing the cytotoxic effects of atorvastatin, upon human bladder cancer cells, T24 and J82, in vitro. To measure cell viability, we performed the EZ-Cytox cell viability assay. We examined apoptosis by flow cytometry using annexin-V/propidium iodide (PI and western blot using procaspase-3 and poly (ADP-ribose) polymerase (PARP) antibodies. To examine autophagy activation, we evaluated the co-localization of LC3 and LysoTracker by immunocytochemistry, as well as the expression of LC3 and p62/sequestosome-1 (SQSTM1) by western blot. In addition, we assessed the survival and proliferation of T24 and J82 cells by a clonogenic assay. We found that atorvastatin reduced the cell viability of T24 and J82 cells via apoptotic cell death and induced autophagy activation, shown by the co-localization of LC3 and LysoTracker. Moreover, pharmacologic inhibition of autophagy significantly enhanced atorvastatin-induced apoptosis in T24 and J82 cells. In sum, inhibition of autophagy potentiates atorvastatin-induced apoptotic cell death in human bladder cancer cells in vitro, providing a potential therapeutic approach to treat bladder cancer.

Kang, Minyong; Jeong, Chang Wook; Ku, Ja Hyeon; Kwak, Cheol; Kim, Hyeon Hoe

2014-01-01

248

Platycodon grandiflorum induces apoptosis in SKOV3 human ovarian cancer cells through mitochondrial-dependent pathway.  

PubMed

Platycodon grandiflorum (Jacq.) A. DC., a Chinese food and medicine, has been used as expectorant traditionally. The present study aimed to investigate the effect of Platycodon grandiflorum extract (PGE) on SKOV3 ovarian cancer cells. 3-(4,5- dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay was used to monitor cell numbers, Annexin-V/propidium iodide (PI) staining, RT-PCR and Western blot were used to examine cell apoptosis, caspases activation. Bcl-2 and Bax expressions and mitochondrial cytochrome c release. Our result showed that PGE-induced apoptosis was associated with activation of caspase-3, -8 and -9, down-regulation of Bcl-2, up-regulation of Bax and release of mitochondrial cytochrome c to cytosol. The data indicate that PGE may have anti-tumor effect mainly via caspase-3 and caspase-9 dependent apoptotic pathway. PMID:20387232

Hu, Qin; Pan, Ruile; Wang, Liwei; Peng, Bo; Tang, Jingtian; Liu, Xinmin

2010-01-01

249

Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle  

NASA Astrophysics Data System (ADS)

Glucose-capped gold nanoparticles (Glu-GNPs) have been used to improve cellular targeting and radio-sensitization. In this study, we explored the mechanism of Glu-GNP enhanced radiation sensitivity in radiation-resistant human prostate cancer cells. Cell survival and proliferation were measured using MTT and clonogenic assay. Flow cytometry with staining by propidium iodide (PI) was performed to study the cell cycle changes induced by Glu-GNPs, and western blotting was used to determine the expression of p53 and cyclin proteins that correlated to cell cycle regulation. With 2 Gy of ortho-voltage irradiation, Glu-GNP showed a 1.5-2.0 fold enhancement in growth inhibition when compared to x-rays alone. Comparing the cell cycle change, Glu-GNPs induced acceleration in the G0/G1 phase and accumulation of cells in the G2/M phase at 29.8% versus 18.4% for controls at 24 h. G2/M arrest was accompanied by decreased expression of p53 and cyclin A, and increased expression of cyclin B1 and cyclin E. In conclusion, Glu-GNPs trigger activation of the CDK kinases leading to cell cycle acceleration in the G0/G1 phase and accumulation in the G2/M phase. This activation is accompanied by a striking sensitization to ionizing radiation, which may have clinical implications.

Roa, Wilson; Zhang, Xiaojing; Guo, Linghong; Shaw, Andrew; Hu, Xiuying; Xiong, Yeping; Gulavita, Sunil; Patel, Samir; Sun, Xuejun; Chen, Jie; Moore, Ronald; Xing, James Z.

2009-09-01

250

Induction of cell death by graphene in Arabidopsis thaliana (Columbia ecotype) T87 cell suspensions.  

PubMed

The toxicity of graphene on suspensions of Arabidopsis thaliana (Columbia ecotype) T87 cells was investigated by examining the morphology, mitochondrial dysfunction, reactive oxygen species generation (ROS), and translocation of graphene as the toxicological endpoints. The cells were grown in Jouanneau and Péaud-Lenoel (JPL) media and exposed to graphene at concentrations 0-80 mg/L. Morphological changes were observed by scanning electron microscope and the adverse effects such as fragmented nuclei, membrane damage, mitochondrial dysfunction was observed with fluorescence microscopy by staining with Hoechst 33342/propidium iodide and succinate dehydrogenase (mitochondrial bioenergetic enzyme). Analysis of intracellular ROS by 2',7'-dichlorofluorescein diacetate demonstrated that graphene induced a 3.3-fold increase in ROS, suggesting that ROS are key mediators in the cell death signaling pathway. Transmission electron microscopy verified the translocation of graphene into cells and an endocytosis-like structure was observed which suggested graphene entering into the cells by endocytosis. In conclusion, our results show that graphene induced cell death in T87 cells through mitochondrial damage mediated by ROS. PMID:23892171

Begum, Parvin; Fugetsu, Bunshi

2013-09-15

251

Real-time detection of viable microorganisms by intracellular phototautomerism  

PubMed Central

Background To date, the detection of live microorganisms present in the environment or involved in infections is carried out by enumeration of colony forming units on agar plates, which is time consuming, laborious and limited to readily cultivable microorganisms. Although cultivation-independent methods are available, they involve multiple incubation steps and do mostly not discriminate between dead or live microorganisms. We present a novel generic method that is able to specifically monitor living microorganisms in a real-time manner. Results The developed method includes exposure of cells to a weak acid probe at low pH. The neutral probe rapidly permeates the membrane and enters the cytosol. In dead cells no signal is obtained, as the cytosolic pH reflects that of the acidic extracellular environment. In live cells with a neutral internal pH, the probe dissociates into a fluorescent phototautomeric anion. After reaching peak fluorescence, the population of live cells decays. This decay can be followed real-time as cell death coincides with intracellular acidification and return of the probe to its uncharged non-fluorescent state. The rise and decay of the fluorescence signal depends on the probe structure and appears discriminative for bacteria, fungi, and spores. We identified 13 unique probes, which can be applied in the real-time viability method described here. Under the experimental conditions used in a microplate reader, the reported method shows a detection limit of 106 bacteria ml-1, while the frequently used LIVE/DEAD BacLight™ Syto9 and propidium iodide stains show detection down to 106 and 107 bacteria ml-1, respectively. Conclusions We present a novel fluorescence-based method for viability assessment, which is applicable to all bacteria and eukaryotic cell types tested so far. The RTV method will have a significant impact in many areas of applied microbiology including research on biocidal activity, improvement of preservation strategies and membrane permeation and stability. The assay allows for high-throughput applications and has great potential for rapid monitoring of microbial content in air, liquids or on surfaces.

2010-01-01

252

Interactions with DCAF1 and DDB1 in the CRL4 E3 ubiquitin ligase are required for Vpr-mediated G2 arrest  

PubMed Central

Background HIV-1 Vpr-mediated G2 cell cycle arrest is dependent on the interaction of Vpr with an E3 ubiquitin ligase that contains damage-specific DNA binding protein 1 (DDB1), Cullin 4A (Cul4A), DDB1 and Cul4-associated factor 1 (DCAF1), and Rbx1. Vpr is thought to associate directly with DCAF1 in the E3 ubiquitin ligase complex although the exact interaction pattern of the proteins in the complex is not completely defined. The Vpr of SIVagm induces G2 arrest of cognate African Green Monkey (AGM) cells but not human cells. The molecular mechanism by which SIVagm Vpr exhibits its species-specific function remained unknown. Methods Physical interaction of proteins in the E3 ubiquitin ligase complex was assessed by co-immunoprecipitation followed by western blotting. In addition, co-localization of the proteins in cells was investigated by confocal microscopy. The cell cycle was analyzed by propidium iodide staining and flow cytometry. DNA damage response elicited by Vpr was evaluated by detecting phosphorylation of H2AX, a marker for DNA damage response. Results We show that RNAi knock-down of DCAF1 prevented the co-immunoprecipitation of DDB1 with HIV-1 Vpr while DDB1 knock-down did not influence the binding of Vpr to DCAF1. HIV-1 Vpr mutants with a L64P or a R90K mutation maintained the ability to associate with DCAF1 but did not appear to be in a complex with DDB1. SIVagm Vpr associated with AGM DCAF1 and DDB1 while, in human cells, it binds to human DCAF1 but hardly binds to human DDB1, resulting in the reduced activation of H2AX. Conclusions The identification of Vpr mutants which associate with DCAF1 but only poorly with DDB1 suggests that DCAF1 is necessary but the simple binding of Vpr to DCAF1 is not sufficient for the Vpr association with DDB1-containing E3 ligase complex. Vpr may interact both with DCAF1 and DDB1 in the E3 ligase complex. Alternatively, the interaction of Vpr and DCAF1 may induce a conformational change in DCAF1 or Vpr that promotes the interaction with DDB1. The ability of SIVagm Vpr to associate with DDB1, but not DCAF1, can explain the species-specificity of SIVagm Vpr-mediated G2 arrest.

2014-01-01

253

Detection of irradiated quail meat by using DNA comet assay and evaluation of comets by image analysis  

NASA Astrophysics Data System (ADS)

A simple technique of microgel electrophoresis of single cells (DNA comet assay) was used to detect DNA comets in irradiated quail meat samples. Obtained DNA comets were evaluated by both photomicrographic and image analysis. Quail meat samples were exposed to radiation doses of 0.52, 1.05, 1.45, 2.00, 2.92 and 4.00 kGy in gamma cell (gammacell 60Co, dose rate 1.31 kGy/h) covering the permissible limits for enzymatic decay and stored at 2 °C. The cells isolated from muscle (chest, thorax) in cold PBS were analyzed using the DNA comet assay on 1, 2, 3, 4, 7, 8 and 11 day post irradiation. The cells were lysed between 2, 5 and 9 min in 2.5% SDS and electrophorosis was carried out at a voltage of 2 V/cm for 2 min. After propidium iodide staining, the slides were evaluated through a fluorescent microscope. In all irradiated samples, fragmented DNA stretched towards the anode and damaged cells appeared as a comet. All measurement data were analyzed using BS 200 ProP with software image analysis (BS 200 ProP, BAB Imaging System, Ankara, Turkey). The density of DNA in the tails increased with increasing radiation dose. However, in non-irradiated samples, the large molecules of DNA remained relatively intact and there was only minor or no migration of DNA; the cells were round or had very short tails only. The values of tail DNA%, tail length and tail moment were significantly different and identical between 0.9 and 4.0 kGy dose exposure, and also among storage times on day 1, 4 and 8. In conclusion, the DNA Comet Assay EN 13784 standard method may be used not only for screening method for detection of irradiated quail meat depending on storage time and condition but also for the quantification of applied dose if it is combined with image analysis. Image analysis may provide a powerful tool for the evaluation of head and tail of comet intensity related with applied doses.

Erel, Yakup; Yazici, Nizamettin; Özvatan, Sumer; Ercin, Demet; Cetinkaya, Nurcan

2009-09-01

254

The Anti-angiogenic Peptide Anginex Disrupts the Cell Membrane  

PubMed Central

Anginex is a synthetic beta-sheet peptide with anti-angiogenic and anti-tumor activity. When added to cultured endothelial cells at concentrations ranging from 2.5 ?M to 25 ?M, anginex induced cell death, which was reflected by a strong increase of subdiploid cells and fragments, loss of cellular ATP, and LDH release. Cytotoxicity remained the same whether cells were treated with anginex at 4 °C or at 37 °C. At low temperatures, fluorescein-conjugated anginex accumulated on the endothelial surface, but did not reach into the cytoplasm, indicating that the cell membrane is the primary target for the peptide. Within minutes of treatment, anginex caused endothelial cells to take up propidium iodide and undergo depolarization, both parameters characteristic for permeabilization of the cell membrane. This process was amplified when cells were activated with hydrogen peroxide. Red blood cell membranes were essentially unaffected by anginex. Anginex bound lipid bilayers with high affinity and with a clear preference for anionic over zwitterionic phospholipids. Structural studies by circular dichroism and solid-state nuclear magnetic resonance showed that anginex forms a beta-sheet and adopts a unique and highly ordered conformation upon binding to lipid membranes. This is consistent with lipid micellization or the formation of pore-forming beta-barrels. The data suggest that the cytotoxicity of anginex stems from its ability to target and disrupt the endothelial cell membrane, providing a possible explanation for the angiostatic activity of the peptide.

Pilch, Jan; Franzin, Carla M.; Knowles, Lynn M.; Ferrer, Fernando J.; Marassi, Francesca M.; Ruoslahti, Erkki

2010-01-01

255

New perspectives for prostate cancer treatment: in vitro inhibition of LNCaP and PC3 cell proliferation by amnion-derived mesenchymal stromal cells conditioned media.  

PubMed

Abstract Aim: To determine whether normal human amnion-derived mesenchymal stromal cells (hAMSCs) secrete trophic mediators able to inhibit human prostate cancer cell lines growth. Methods: Human prostate cancer and normal cell lines were used. Mesenchymal stromal cells (MSC) were isolated through mechanical and enzymatic digestion from amniotic membranes and were evaluated for specific mesenchymal stromal cells antigens. Cell proliferation was examined by MTT assay. Staining with propidium iodide (PI) followed by flow cytometry was used to detect cell cycle phase. Results: hAMSC showed proper mesenchymal stem cells phenotype. We found that hAMSC conditioned media (CM) inhibited prostate cancer cells proliferation. Indeed, we demonstrated that hAMSC CM treatment increased percentage of G1 cancer cells and decreased percentage of cancer cells in S and G2M phases, suggesting that the hAMSC factors slow progression of prostate cancer cells through cell cycle inhibition. Conclusions: Our study provide evidences that hAMSC microenvironment secretes soluble factors able to inhibit prostate cancer cells growth. This may represent a novel strategy to control proliferation of prostate cancer through modulation of the host microenvironment. PMID:24597941

Rolfo, Alessandro; Giuffrida, Domenica; Giuffrida, Maria C; Todros, Tullia; Calogero, Aldo E

2014-06-01

256

Effects of dna-dependent protein kinase inhibition by NU7026 on dna repair and cell survival in irradiated gastric cancer cell line N87  

PubMed Central

Repair of radiation-induced dna double-strand breaks is a key mechanism in cancer cell radio-resistance. The synthesized compound NU7026 specifically inhibits dna-dependent protein kinase (dna-pk) within the non-homologous end-joining repair mechanism. Earlier studies demonstrated increased radiosensitivity in dna-pk deficient cells compared with wild-type cells. In chronic leukemia cells, NU7026 appears to enhance the cytotoxic effect of chlorambucil. The radio-modifying effects of NU7026 on cell survival, cell cycle, apoptosis, and dna double-strand break repair have yet to be studied in gastric cancer cells. Methods The gastric cancer cell line N87 was treated with 0 Gy or 4 Gy in the presence of NU7026 at a dose range of 0–20 ?mol/L. Clonogenic assays were used to assess cell survival after treatment. Cell-cycle distribution was analyzed using propidium iodide with fluorescence-activated cell sorting. Apoptosis was detected using annexin-V and propidium iodide with fluorescence-activated cell sorting. The ?H2AX assay was used to measure dna double-strand breaks. Results Statistically significant increases in G2/M arrest were observed in N87 cells treated with radiation and NU7026 compared with those treated with radiation alone (p = 0.0004). Combined treatment also led to an increase in apoptosis (p = 0.01). At 24 hours, the ?H2AX analysis revealed more dna double-strand breaks in N87 cells treated with radiation and NU7026 than in those treated with radiation alone (p = 0.04). Clonogenic assays demonstrated declining cell survival as both the radiation and the NU7026 dose increased. The dose enhancement factor at 0.1 survival fraction was 1.28 when N87 cells were treated with 4 Gy radiation and 5 ?mol/L NU7026. Conclusions In gastric cancer cells, NU7026 appears to enhance the cytotoxic effect of irradiation as assessed by clonogenic assays. This increased cytotoxicity might be the result of an increase in dna double-strand breaks resulting in G2/M cell arrest and possibly higher levels of apoptosis.

Niazi, M.T.; Mok, G.; Heravi, M.; Lee, L.; Vuong, T.; Aloyz, R.; Panasci, L.; Muanza, T.

2014-01-01

257

Pseudolaric Acid B Induced Cell Cycle Arrest, Autophagy and Senescence in Murine Fibrosarcoma L929 Cell  

PubMed Central

Objective: PAB induced various cancer cell apoptosis, cell cycle arrest and senescence. But in cell line murine fibrosarcoma L929, PAB did not induce apoptosis, but autophagy, therefore it was thought by us as a good model to research the relationship of cell cycle arrest, autophagy and senescence bypass apoptosis. Methods: Inhibitory ratio was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis. Phase contrast microscopy visualized cell morphology. Hoechst 33258 staining for nuclear change, propidium iodode (PI) staining for cell cycle, monodansylcadaverine (MDC) staining for autophagy, and rodanmine 123 staining for mitochondrial membrane potential (MMP) were measured by fluorescence microscopy or flowcytometry. Apoptosis was determined by DNA ladder test. Protein kinase C (PKC) activity was detected by PKC assay kit. SA-?-galactosidase assay was used to detect senescence. Protein expression was examined by western blot. Results: PAB inhibited L929 cell growth in time-and dose-dependent manner. At 12 h, 80 ?mol/L PAB induced obvious mitotic arrest; at 24 h, PAB began to induce autophagy; at 36 h, cell-treated with PAB slip into G1 cell cycle; and 3 d PAB induced senescence. In time sequence PAB induced firstly cell cycle arrest, then autophagy, then slippage into G1 phase, lastly senescence. Senescent cells had high level of autophagy, inhibiting autophagy led to apoptosis, and no senescence. PAB activated PKC activity to induce cell cycle arrest, autophagy and senescence, inhibiting PKC activity suppressed cell cycle arrest, autophagy and senescence. Conclusion: PAB induced cell cycle arrest, autophagy and senescence in murine fibrosarcoma L929 cell through PKC.

hua Yu, Jing; yu Liu, Chun; bin Zheng, Gui; Zhang, Li Ying; hui Yan, Ming; yan Zhang, Wen; ying Meng, Xian; fang Yu, Xiao

2013-01-01

258

Active Targeting to Osteosarcoma Cells and Apoptotic Cell Death Induction by the Novel Lectin Eucheuma serra Agglutinin Isolated from a Marine Red Alga.  

PubMed

Previously, we demonstrated that the novel lectin Eucheuma serra agglutinin from a marine red alga (ESA) induces apoptotic cell death in carcinoma. We now find that ESA induces apoptosis also in the case of sarcoma cells. First, propidium iodide assays with OST cells and LM8 cells showed a decrease in cell viability after addition of ESA. With 50??g/ml ESA, the viabilities after 24 hours decreased to 54.7 ± 11.4% in the case of OST cells and to 41.7 ± 12.3% for LM8 cells. Second, using fluorescently labeled ESA and flow cytometric and fluorescence microscopic measurements, it could be shown that ESA does not bind to cells that were treated with glycosidases, indicating importance of the carbohydrate chains on the surface of the cells for efficient ESA-cell interactions. Third, Span 80 vesicles with surface-bound ESA as active targeting ligand were shown to display sarcoma cell binding activity, leading to apoptosis and complete OST cell death after 48 hours at 2??g/ml ESA. The findings indicate that Span 80 vesicles with surface-bound ESA are a potentially useful drug delivery system not only for the treatment of carcinoma but also for the treatment of osteosarcoma. PMID:23346404

Hayashi, Keita; Walde, Peter; Miyazaki, Tatsuhiko; Sakayama, Kenshi; Nakamura, Atsushi; Kameda, Kenji; Masuda, Seizo; Umakoshi, Hiroshi; Kato, Keiichi

2012-01-01

259

Conserved cysteine-rich domain of paramyxovirus simian virus 5 V protein plays an important role in blocking apoptosis.  

PubMed

The paramyxovirus family includes many well-known human and animal pathogens as well as emerging viruses such as Hendra virus and Nipah virus. The V protein of simian virus 5 (SV5), a prototype of the paramyxoviruses, contains a cysteine-rich C-terminal domain which is conserved among all paramyxovirus V proteins. The V protein can block both interferon (IFN) signaling by causing degradation of STAT1 and IFN production by blocking IRF-3 nuclear import. Previously, it was reported that recombinant SV5 lacking the C terminus of the V protein (rSV5VDeltaC) induces a severe cytopathic effect (CPE) in tissue culture whereas wild-type (wt) SV5 infection does not induce CPE. In this study, the nature of the CPE and the mechanism of the induction of CPE were investigated. Through the use of DNA fragmentation, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling, and propidium iodide staining assays, it was shown that rSV5VDeltaC induced apoptosis. Expression of wt V protein prevented apoptosis induced by rSV5VDeltaC, suggesting that the V protein has an antiapoptotic function. Interestingly, rSV5VDeltaC induced apoptosis in U3A cells (a STAT1-deficient cell line) and in the presence of neutralizing antibody against IFN, suggesting that the induction of apoptosis by rSV5VDeltaC was independent of IFN and IFN-signaling pathways. Apoptosis induced by rSV5VDeltaC was blocked by a general caspase inhibitor, Z-VAD-FMK, but not by specific inhibitors against caspases 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 13, suggesting that rSV5VDeltaC-induced apoptosis can occur in a caspase 12-dependent manner. Endoplasmic reticulum stress can lead to activation of caspase 12; compared to the results seen with mock and wt SV5 infection, rSV5VDeltaC infection induced ER stress, as demonstrated by increased expression levels of known ER stress indicators GRP 78, GRP 94, and GADD153. These data suggest that rSV5VDeltaC can trigger cell death by inducing ER stress. PMID:15113888

Sun, Minghao; Rothermel, Terri A; Shuman, Laurie; Aligo, Jason A; Xu, Shibo; Lin, Yuan; Lamb, Robert A; He, Biao

2004-05-01

260

Hoechst fluorescence intensity can be used to separate viable bromodeoxyuridine-labeled cells from viable non-bromodeoxyuridine-labeled cells  

NASA Technical Reports Server (NTRS)

BACKGROUND: 5-Bromo-2'-deoxyuridine (BrdU) is a powerful compound to study the mitotic activity of a cell. Most techniques that identify BrdU-labeled cells require conditions that kill the cells. However, the fluorescence intensity of the membrane-permeable Hoechst dyes is reduced by the incorporation of BrdU into DNA, allowing the separation of viable BrdU positive (BrdU+) cells from viable BrdU negative (BrdU-) cells. METHODS: Cultures of proliferating cells were supplemented with BrdU for 48 h and other cultures of proliferating cells were maintained without BrdU. Mixtures of viable BrdU+ and viable BrdU- cells from the two proliferating cultures were stained with Hoechst 33342. The viable BrdU+ and BrdU- cells were sorted into different fractions from a mixture of BrdU+ and BrdU- cells based on Hoechst fluorescence intensity and the ability to exclude the vital dye, propidium iodide. Subsequently, samples from the original mixture, the sorted BrdU+ cell population, and the sorted BrdU- cell population were immunostained using an anti-BrdU monoclonal antibody and evaluated using flow cytometry. RESULTS: Two mixtures consisting of approximately 55% and 69% BrdU+ cells were sorted into fractions consisting of greater than 93% BrdU+ cells and 92% BrdU- cells. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. CONCLUSIONS: Hoechst fluorescence intensity in combination with cell sorting is an effective tool to separate viable BrdU+ from viable BrdU- cells for further study. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. Copyright 2000 Wiley-Liss, Inc.

Mozdziak, P. E.; Pulvermacher, P. M.; Schultz, E.; Schell, K.

2000-01-01

261

Effects of oridonin nanosuspension on cell proliferation and apoptosis of human prostatic carcinoma PC-3 cell line  

PubMed Central

This study aims to investigate the inhibitory effects of oridonin nanosuspension on human prostatic carcinoma PC-3 cell line in vitro. The PC-3 cells were incubated with increasing concentrations of oridonin solution and nanosuspensions for 12 hours, 24 hours, and 36 hours. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay was performed to measure cellular viability and investigate the effect of oridonin on cell growth of PC-3. Annexin V-FITC/PI staining method was used to determine the effect of oridonin by fluorescence microscope and flow cytometry, respectively. Nanosuspension on early apoptosis of PC-3 cells was also evaluated. Oridonin significantly inhibited the growth of PC-3 cells after 12 hours, 24 hours, and 36 hours of treatment in a dose-dependent manner (P < 0.05). Compared with the same concentration of oridonin solution, oridonin nanosuspension enhanced the inhibition ratio of proliferation. The observation of propidium iodide fluorescence staining confirmed the MTT assay results. The cell proportion of PC-3 at the G2/M phase in the nanosuspension treatment group was upregulated compared with that of the control and oridonin solution groups. Both oridonin solution and nanosuspension promoted the early apoptosis of PC-3 cells. Furthermore, while improving the ratio of early apoptosis, oridonin nanosuspensions also enhanced growth suppression, and induced apoptosis of PC-3 cells. This shows great potential in the treatment of androgen-independent carcinoma of prostate by oridonin nanosuspensions.

Zhang, Zhen; Zhang, Xiumei; Xue, Wei; YangYang, Yuna; Xu, Derong; Zhao, Yunxue; Lou, Haiyan

2010-01-01

262

Sublethal heat shock induces premature senescence rather than apoptosis in human mesenchymal stem cells.  

PubMed

Stem cells in adult organism are responsible for cell turnover and tissue regeneration. The study of stem cell stress response contributes to our knowledge on the mechanisms of damaged tissue repair. Previously, we demonstrated that sublethal heat shock (HS) induced apoptosis in human embryonic stem cells. This study aimed to investigate HS response of human adult stem cells. Human mesenchymal stem cells (MSCs) cultivated in vitro were challenged with sublethal HS. It was found that sublethal HS did not affect the cell viability assessed by annexin V/propidium staining. However, MSCs subjected to severe HS exhibited features of stress-induced premature senescence (SIPS): irreversible cell cycle arrest, altered morphology, increased expression of senescence-associated ?-galactosidase (SA-?-gal) activity, and induction of cyclin-dependent kinase inhibitor p21 protein. High level of Hsp70 accumulation induced by sublethal HS did not return to the basal level, at least, after 72 h of the cell recovery when most cells exhibited SIPS hallmarks. MSCs survived sublethal HS, and resumed proliferation sustained the properties of parental MSCs: diploid karyotype, replicative senescence, expression of the cell surface markers, and capacity for multilineage differentiation. Our results showed for the first time that in human MSCs, sublethal HS induced premature senescence rather than apoptosis or necrosis. MSC progeny that survived sublethal HS manifested stem cell properties of the parental cells: limited replicative life span and multilineage capacity. PMID:24078383

Alekseenko, Larisa L; Zemelko, Victoria I; Domnina, Alisa P; Lyublinskaya, Olga G; Zenin, Valery V; Pugovkina, Nataly A; Kozhukharova, Irina V; Borodkina, Alexandra V; Grinchuk, Tatiana M; Fridlyanskaya, Irina I; Nikolsky, Nikolay N

2014-05-01

263

Cryopreservation of Mycobacterium tuberculosis Complex Cells  

PubMed Central

Successful long-term preservation of Mycobacterium tuberculosis cells is important for sample transport, research, biobanking, and the development of new drugs, vaccines, biomarkers, and diagnostics. In this report, Mycobacterium bovis bacillus Calmette-Guérin and M. tuberculosis H37Ra were used as models of M. tuberculosis complex strains to study cryopreservation of M. tuberculosis complex cells in diverse sample matrices at different cooling rates. Cells were cryopreserved in diverse sample matrices, namely, phosphate-buffered saline (PBS), Middlebrook 7H9 medium with or without added glycerol, and human sputum. The efficacy of cryopreservation was quantified by microbiological culture and microscopy with BacLight LIVE/DEAD staining. In all sample matrices examined, the microbiological culture results showed that the cooling rate was the most critical factor influencing cell viability. Slow cooling (a few degrees Celsius per minute) resulted in much higher M. tuberculosis complex recovery rates than rapid cooling (direct immersion in liquid nitrogen) (P < 0.05). Among the three defined cryopreservation media (PBS, 7H9, and 7H9 plus glycerol), there was no significant differential effect on viability (P = 0.06 to 0.87). Preincubation of thawed M. tuberculosis complex cells in 7H9 broth for 20 h before culture on solid Middlebrook 7H10 plates did not help the recovery of the cells from cryoinjury (P = 0.14 to 0.71). The BacLight LIVE/DEAD staining kit, based on Syto 9 and propidium iodide (PI), was also applied to assess cell envelope integrity after cryopreservation. Using the kit, similar percentages of “live” cells with intact envelopes were observed for samples cryopreserved under different conditions, which was inconsistent with the microbiological culture results. This implies that suboptimal cryopreservation might not cause severe damage to the cell wall and/or membrane but instead cause intracellular injury, which leads to the loss of cell viability.

Shu, Zhiquan; Weigel, Kris M.; Soelberg, Scott D.; Lakey, Annie; Cangelosi, Gerard A.; Lee, Kyong-Hoon

2012-01-01

264

Radiosensitization of human melanoma cells by ribozyme-mediated inhibition of survivin expression.  

PubMed

Survivin is a structurally unique member of the inhibitors of apoptosis protein family and is involved in the control of cell division and inhibition of apoptosis. The notion that survivin is overexpressed in most human tumors but absent in normal adult tissues with only a few exceptions has led to the proposal of survivin as a promising therapeutic target for novel anticancer therapies. In this context, we generated a hammerhead ribozyme targeting the 3' end of the CUA110 triplet in the survivin mRNA. Two human melanoma cell lines (JR8 and M14) overexpressing survivin were stably transfected with the pRc/CMV vector carrying the ribozyme sequence. Two polyclonal cell populations proven to endogenously express ribozyme and characterized by a markedly lower survivin protein level (-60% and -50%, respectively) than JR8 and M14 parental cells were selected for the study. Ribozyme-expressing cells showed a significantly (p<0.01) increased sensitivity to gamma-irradiation (as detected by clonogenic cell survival) compared to JR8 and M14 cells. Moreover, in the JR8 cell line, the extent of radiation-induced apoptosis (in terms of percentage of apoptotic nuclei in cells stained with propidium iodide and level of caspase-3 catalytic activity) was markedly greater in ribozyme-expressing cells than in parental cells. These results demonstrate for the first time that attenuation of survivin expression renders human melanoma cells more susceptible to gamma-irradiation. PMID:12648230

Pennati, Marzia; Binda, Mara; Colella, Gennaro; Folini, Marco; Citti, Lorenzo; Villa, Raffaella; Daidone, Maria Grazia; Zaffaroni, Nadia

2003-04-01

265

Mitochondria toxin-induced acute cochlear cell death indicates cellular activity-correlated energy consumption.  

PubMed

The different cell types within the cochlea may have a specific contribution to the pathological changes during metabolism failure, which may provide clues for developing novel strategies for inner ear therapy. In order to evaluate activity-correlated cell death during metabolism failure in the cochlea, 3-nitropropionic acid was used to irreversibly inhibit the respiratory chain. Dose-response of the cochlear cells to 3-nitropropionic acid was analyzed in vitro. 3-Nitropropionic acid was administered onto the round window of guinea pigs. Cell death was identified by terminal transferase labeling the free 3'OH breaks in the DNA strands in vivo and propidium iodide nuclear permeation in vitro. As a result, 23.6 and 96.3 % cell death were induced by 10 and 100 mM 3-nitropropionic acid, respectively, in vitro. In the guinea pigs, 500 mM 3-nitropropionic acid induced vestibular dysfunction and severe to profound hearing losses. The cells that are the most sensitive to 3-nitropropionic acid treatment include the stria marginal and intermediate cells, epithelial cells of the Reissner's membrane, and spiral ligament fibrocytes (types II and V). Moderate sensitive cells were satellite fibrocytes of the spiral limbic central zone, osteocytes of the cochlear shell, hair cells, and spiral ganglion cells. Reduction of neurofilament in the soma and periphery processes of spiral ganglion cells occurred after the exposure. These results may be relevant to the mechanisms of injury in sudden onset sensorineural hearing loss and hazardous substance exposure-induced hearing loss. PMID:23179932

Zou, Jing; Zhang, Ya; Zhang, Weikai; Poe, Dennis; Zhai, Suoqiang; Yang, Shiming; Pyykkö, Ilmari

2013-09-01

266

Electric discharge plasmas influence attachment of cultured CHO K1 cells.  

PubMed

Non-thermal plasmas can be generated by electric discharges in gases. These plasmas are reactive media, capable of superficial treatment of various materials. A novel non-thermal atmospheric plasma source (plasma needle) has been developed and tested. Plasma appears at the end of a metal pin as a submillimetre glow. We investigate the possibility of applying the plasma needle directly to living tissues; the final goal is controlled cell treatment in microsurgery. To resolve plasma effects on cells, we study cultured Chinese hamster ovarian cells (CHO-K1) as a model system. When these are exposed to the plasma, instantaneous detachment of cells from the surface and loss of cell-cell interaction is observed. This occurs in the power range 0.1-0.2 W. Cell viability is assessed using propidium iodide (PI) and cell tracker green (CTG) fluorescent staining utilizing confocal laser scanning microscopy (CLSM). Detached cells remain alive. Use of higher doses (plasma power >0.2 W) results in cell necrosis. In all cases, plasma-influenced cells are strictly localized in submillimetre areas, while no reaction in surrounding cells is observed. Due to its extreme precision, plasma treatment may be applicable in refined tissue modification. PMID:15197760

Kieft, I E; Broers, J L V; Caubet-Hilloutou, V; Slaaf, D W; Ramaekers, F C S; Stoffels, E

2004-07-01

267

Pro-apoptotic Bax is the major and Bak an auxiliary effector in cytokine deprivation-induced mast cell apoptosis  

PubMed Central

The process of apoptosis in immune cells like mast cells is essential to regain homeostasis after an inflammatory response. The intrinsic pathway of apoptosis is ultimately controlled by the pro-apoptotic Bcl-2 family members Bax and Bak, which upon activation oligomerize to cause increased permeabilization of the mitochondria outer membrane leading to cell death. We examined the role of Bax and Bak in cytokine deprivation-induced apoptosis in mast cells using connective tissue-like mast cells and mucosal-like mast cells derived from bax?/?, bak?/? and bax?/?bak?/? mice. Although both Bax and Bak were expressed at readily detectable protein levels, we found a major role for Bax in mediating mast cell apoptosis induced by cytokine deprivation. We analyzed cell viability by propidium iodide exclusion and flow cytometry after deprivation of vital cytokines for each mast cell population. Upon cytokine withdrawal, bak?/? mast cells died at a similar rate as wild type, whereas bax?/? and bax?/?bak?/? mast cells were partially or completely resistant to apoptosis, respectively. The total resistance seen in bax?/?bak?/? mast cells is comparable with mast cells deficient of both pro-apoptotic Bim and Puma or mast cells overexpressing anti-apoptotic Bcl-2. These results show that Bax has a predominant and Bak a minor role in cytokine deprivation-induced apoptosis in both connective tissue-like and mucosal-like mast cells.

Karlberg, M; Ekoff, M; Labi, V; Strasser, A; Huang, D; Nilsson, G

2010-01-01

268

Induction of apoptosis and cell cycle arrest in human HCC MHCC97H cells with Chrysanthemum indicum extract  

PubMed Central

AIM: To investigate the effects of Chrysanthemum indicum extract (CIE) on inhibition of proliferation and on apoptosis, and the underlying mechanisms, in a human hepatocellular carcinoma (HCC) MHCC97H cell line. METHODS: Viable rat hepatocytes and human endothelial ECV304 cells were examined by trypan blue exclusion and MTT assay, respectively, as normal controls. The proliferation of MHCC97H cells was determined by MTT assay. The cellular morphology of MHCC97H cells was observed by phase contrast microscopy. Flow cytometry was performed to analyze cell apoptosis with annexin V/propidium iodide (PI), mitochondrial membrane potential with rhodamine 123 and cell cycle with PI in MHCC97H cells. Apoptotic proteins such as cytochrome C, caspase-9, caspase-3 and cell cycle proteins, including P21 and CDK4, were measured by Western blotting. RESULTS: CIE inhibited proliferation of MHCC97H cells in a time- and dose-dependent manner without cytotoxicity in rat hepatocytes and human endothelial cells. CIE induced apoptosis of MHCC97H cells in a concentration-dependent manner, as determined by flow cytometry. The apoptosis was accompanied by a decrease in mitochondrial membrane potential, release of cytochrome C and activation of caspase-9 and caspase-3. CIE arrested the cell cycle in the S phase by increasing P21 and decreasing CDK4 protein expression. CONCLUSION: CIE exerted a significant apoptotic effect through a mitochondrial pathway and arrested the cell cycle by regulation of cell cycle-related proteins in MHCC97H cells without an effect on normal cells. The cancer-specific selectivity shown in this study suggests that the plant extract could be a promising novel treatment for human cancer.

Li, Zong-Fang; Wang, Zhi-Dong; Ji, Yuan-Yuan; Zhang, Shu; Huang, Chen; Li, Jun; Xia, Xian-Ming

2009-01-01

269

Umbelliprenin is cytotoxic against QU-DB large cell lung cancer cell line but anti-proliferative against A549 adenocarcinoma cells  

PubMed Central

Background Umbelliprenin is a natural compound, belonging to the class of sesquiterpene coumarins. Recently, umbelliprenin has attracted the researchers' attention for its antitumor activities against skin tumors. Its effect on lung cancer is largely unknown. The aim of our study was to investigate the effects of this natural compound, which is expected to have low adverse effects, on lung cancer. Methods The QU-DB large cell and A549 adenocarcinoma lung cancer cell lines were treated with umbelliprenin. IC50 values were estimated using methyl thiazolely diphenyl-tetrazolium bromide (MTT) assay, in which a decrease in MTT reduction can occur as a result of cell death or cell proliferation inhibition. To quantify the rate of cell death at IC50 values, flow cytometry using Annexin V-FITC (for apoptotic cells), and propidium iodide (for necrotic cells) dyes were employed. Results Data from three independent MTT experiments in triplicate revealed that IC50 values for QU-DB and A549 were 47 ± 5.3 ?M and 52 ± 1.97 ?M, respectively. Annexin V/PI staining demonstrated that umbelliprenin treatment at IC50 induced 50% cell death in QU-DB cells, but produced no significant death in A549 cells until increasing the umbelliprenin concentration to IC80. The pattern of cell death was predominantly apoptosis in both cell lines. When peripheral blood mononuclear cells were treated with 50 ?M and less concentrations of umbelliprenin, no suppressive effect was observed. Conclusions We found cytotoxic/anti-proliferative effects of umbelliprenin against two different types of lung cancer cell lines.

2012-01-01

270

Cell death mechanisms vary with photodynamic therapy dose and photosensitizer  

NASA Astrophysics Data System (ADS)

Mouse lymphoma L5178Y-R cells respond to photodynamic therapy (PDT) by undergoing rapid apoptosis, which is induced by PDT-activated signal transduction initiating in the damaged cellular membranes. To relate the level of PDT damage and photosensitizer to the mechanism of cell death, apoptosis has been detected by agarose gel electrophoresis of fragmented DNA and quantified by flow cytometry of cells after staining with Hoechst33342 and propidium iodide, a technique which can distinguish between live, apoptotic, and necrotic cells. When the silicon phthalocyanine Pc 4 or Pc 12 served as photosensitizer, lethal doses (as defined by clonogenic assay) of PDT induced apoptosis in essentially all cells, whereas supralethal doses prevented the characteristic degradation of DNA into oligonucleosomal fragments. In contrast with aluminum phthalocyanine (AlPc) cells died by apoptosis after all doses studied. It appears that high PDT doses with Pc 4 or Pc 12 damage enzymes needed to carry out the program of apoptosis; the absence of this effect with AlPc suggests either a different intracellular location or different photocytotoxic mechanism for the two photosensitizers.

He, Jin; Oleinick, Nancy L.

1994-10-01

271

Cell death mechanisms vary with photodynamic therapy dose and photosensitizer  

NASA Astrophysics Data System (ADS)

Mouse lymphoma L5178Y-R cells respond to photodynamic therapy (PDT) by undergoing rapid apoptosis, which is induced by PDT-activated signal transduction initiating in the damaged cellular membranes. To relate the level of PDT damage and photosensitizer to the mechanism of cell death, apoptosis has been detected by agarose gel electrophoresis of fragmented DNA and quantified by flow cytometry of cells after staining with Hoechst33342 and propidium iodide, a technique which can distinguish between live, apoptotic, and necrotic cells. When the silicon phthalocyanine Pc 4 or Pc 12 served as photosensitizer, lethal doses (as defined by clonogenic assay) of PDT induced apoptosis in essentially all cells, whereas supralethal doses prevented the characteristic degradation of DNA into oligonucleosomal fragments. In contrast with aluminum phthalocyanine (AlPc) cells died by apoptosis after all doses studied. It appears that high PDT doses with Pc 4 or Pc 12 damage enzymes needed to carry out the program of apoptosis; the absence of this effect with AlPc suggests either a different intracellular location or different photocytotoxic mechanism for the two photosensitizers.

He, Jin; Oleinick, Nancy L.

1995-03-01

272

Disruption of the actin cortex contributes to susceptibility of mammalian cells to nanosecond pulsed electric fields.  

PubMed

Nanosecond pulsed electric fields (nsPEFs) perturb membranes of cultured mammalian cells in a dose-dependent manner with different types of cells exhibiting characteristic survivability. Adherent cells appear more robust than non-adherent cells during whole-cell exposure. We hypothesize that cellular elasticity based upon the actin cytoskeleton is a contributing parameter, and the alteration of a cell's actin cortex will significantly affect viability upon nsPEF exposure. Chinese hamster ovary (CHO) cells that are (a) untreated, (b) treated with latrunculin A to inhibit actin polymerization, or (c) exposed to nsPEFs have been probed using atomic force microscopy (AFM) force-indentations. Exposure to 50 or 100 pulses of 10?ns duration and 150?kV/cm in a single dosage approximately lowers average CHO cell elastic modulus by half, whereas latrunculin lowers it more than 75%. Latrunculin pre-treatment disrupts the actin cortex enough that it negates cumulative damage by equally fractionated (i.e., two rounds of 50 pulses each, separated by 10?min) dosages of nsPEFs as seen in untreated and dimethyl sulfoxide (DMSO)-treated cells with propidium uptake, phosphatidylserine externalization, and 24?h viability according to MTT and CellTiter Glo assays. These results suggest a correlation among cell stiffness, cytoskeletal integrity, and susceptibility to recurrent exposures to nsPEFs, which emphasizes a mechanobiological underpinning of nsPEF bioeffects. PMID:24619788

Thompson, Gary L; Roth, Caleb; Tolstykh, Gleb; Kuipers, Marjorie; Ibey, Bennett L

2014-05-01

273

Redirection of Human Cancer Cells upon the Interaction with the Regenerating Mouse Mammary Gland Microenvironment.  

PubMed

Tumorigenesis is often described as a result of accumulated mutations that lead to growth advantage and clonal expansion of mutated cells. There is evidence in the literature that cancer cells are influenced by the microenvironment. Our previous studies demonstrated that the mouse mammary gland is capable of redirecting mouse cells of non-mammary origins as well as Mouse Mammary Tumor Virus (MMTV)-neu transformed cells toward normal mammary epithelial cell fate during gland regeneration. Interestingly, the malignant phenotype of MMTV-neu transformed cells was suppressed during serial transplantation experiments. Here, we discuss our studies that demonstrated the potential of the regenerating mouse mammary gland to redirect cancer cells of different species into a functional tumor-free mammary epithelial cell progeny. Immunochemistry for human specific CD133, mitochondria, cytokeratins as well as milk proteins and FISH for human specific probe identified human epithelial cell progeny in ducts, lobules, and secretory acini. Fluorescent In Situ Hybridization (FISH) for human centromeric DNA and FACS analysis of propidium iodine staining excluded the possibility of mouse-human cell fusion. To our knowledge this is the first evidence that human cancer cells of embryonic or somatic origins respond to developmental signals generated by the mouse mammary gland microenvironment during gland regeneration in vivo. PMID:24709643

Rosenfield, Sonia M; Smith, Gilbert H

2013-01-01

274

Changes in cellular response to the damage induced in PC-3 prostate cancer cells by proton microbeam irradiation.  

PubMed

The aim of this research was to find out whether the passage number effect may influence on the PC-3 cells (the human prostate cancer line derived from bone metastases) response to proton radiation. 2 MeV horizontally focused proton microbeam was used as a radiation source. The cells were treated with a counted number of H(+) ions (50-8000) corresponding to doses of 1.3-209 Gy/cell. For comparison, cell death was also induced by UVC radiation. All cells were stained with Hoechst 33342 and propidium iodide and visualized under a fluorescence microscope. Necrosis was observed at: a) 8000 protons per cell (corresponding to ?209 Gy/cell) after 2-4 passages, b) 3200 protons per cell (corresponding to ?84 Gy/cell) for cells after 11-14 passages and c) only 800 protons per cell (corresponding to ?2 Gy/cell ) after 47-50 passages. Apoptosis was efficiently induced, by protons, only in cells after 50 passages. The results showed that the laboratory conditions affected cellular response of PC-3 cell line to the proton irradiation. The cellular response to the radiation treatment strongly depends on number of passages. PMID:22447826

Lipiec, Ewelina W; Wieche?, Anna; Duli?ska-Litewka, Joanna; Kubica, Ma?gorzata; Lekki, Janusz; Stachura, Zbigniew; Wiltowska-Zuber, Joanna; Kwiatek, Wojciech M

2012-03-01

275

Blockade of adenosine A2A receptors prevents interleukin-1?-induced exacerbation of neuronal toxicity through a p38 mitogen-activated protein kinase pathway  

PubMed Central

Background and purpose Blockade of adenosine A2A receptors (A2AR) affords robust neuroprotection in a number of brain conditions, although the mechanisms are still unknown. A likely candidate mechanism for this neuroprotection is the control of neuroinflammation, which contributes to the amplification of neurodegeneration, mainly through the abnormal release of pro-inflammatory cytokines such as interleukin(IL)-1?. We investigated whether A2AR controls the signaling of IL-1? and its deleterious effects in cultured hippocampal neurons. Methods Hippocampal neuronal cultures were treated with IL-1? and/or glutamate in the presence or absence of the selective A2AR antagonist, SCH58261 (50 nmol/l). The effect of SCH58261 on the IL-1?-induced phosphorylation of the mitogen-activated protein kinases (MAPKs) c-Jun N-terminal kinase (JNK) and p38 was evaluated by western blotting and immunocytochemistry. The effect of SCH58261 on glutamate-induced neurodegeneration in the presence or absence of IL-1? was evaluated by nucleic acid and by propidium iodide staining, and by lactate dehydrogenase assay. Finally, the effect of A2AR blockade on glutamate-induced intracellular calcium, in the presence or absence of IL-1?, was studied using single-cell calcium imaging. Results IL-1? (10 to 100 ng/ml) enhanced both JNK and p38 phosphorylation, and these effects were prevented by the IL-1 type 1 receptor antagonist IL-1Ra (5 ?g/ml), in accordance with the neuronal localization of IL-1 type 1 receptors, including pre-synaptically and post-synaptically. At 100 ng/ml, IL-1? failed to affect neuronal viability but exacerbated the neurotoxicity induced by treatment with 100 ?mol/l glutamate for 25 minutes (evaluated after 24 hours). It is likely that this resulted from the ability of IL-1? to enhance glutamate-induced calcium entry and late calcium deregulation, both of which were unaffected by IL-1? alone. The selective A2AR antagonist, SCH58261 (50 nmol/l), prevented both the IL-1?-induced phosphorylation of JNK and p38, as well as the IL-1?-induced deregulation of calcium and the consequent enhanced neurotoxicity, whereas it had no effect on glutamate actions. Conclusions These results prompt the hypothesis that the neuroprotection afforded by A2AR blockade might result from this particular ability of A2AR to control IL-1?-induced exacerbation of excitotoxic neuronal damage, through the control of MAPK activation and late calcium deregulation.

2012-01-01

276

Sperm macrocephaly syndrome in a patient without AURKC mutations and with a history of recurrent miscarriage.  

PubMed

This paper reports a case of recurrent miscarriage in a patient affected by a variant phenotype of sperm macrocephaly syndrome (SMS). SMS is usually related to specific sperm characteristics (large head, multiple tail) and homozygous mutations in the aurora kinase C gene (AURKC). However, the present case observed large-headed spermatozoa with no flagellar abnormalities and no mutations detectable by AURKC sequencing. Furthermore, the patient had repeatedly conceived by intracytoplasmic sperm injection, but pregnancy always aborted. This study performed morphological analysis (Papanicolau staining), annexin V/propidium iodide staining, sperm chromatin structure assay (SCSA), fluorescence in-situ hybridization (FISH) and transmission electron microscopy. This study observed large-headed, mono-tailed, mono-centriolar spermatozoa characterized by abnormal chromatin and swollen mitochondria. SCSA revealed a high ratio of late apoptotic cells with fairly intact amount of DNA. The FISH analysis showed 100% disomy rate. As far as is known, this is the first study to include gene sequencing, TEM, cytogenetic analysis and sperm DNA fragmentation in a case of SMS and also to report recurrent miscarriage related to this specific condition. SMS may be associated with important abnormalities of the sperm subcellular structure and with disomy even in the absence of mutations in the AURKC coding sequence. Sperm macrocephaly syndrome (SMS) is a rare condition that affects spermatozoa and is related to infertility. It is characterized by a specific phenotype of large-headed, multi-tailed spermatozoa with an abnormal chromosomal status. A very few pregnancies have been obtained so far in SMS patients by means of IVF procedures. We present a case of SMS that differs from the classical syndrome as we observed large-headed spermatozoa without tail abnormalities. The affected patient had achieved three pregnancies following IVF, but all aborted. We carried out a detailed examination of the patient's spermatozoa - morphological, cytogenetic, DNA fragmentation and ultrastructural analysis - and we observed that his spermatozoa are characterized by a large head whose texture appears apoptotic, a single tail and a midpiece whose mitochondria appear swollen. The DNA content within the spermatozoa was altered, as well as the chromosomal status, suggesting that some error must have occurred during spermatogenesis. Interestingly, the genetic sequencing of the specific gene usually related to SMS syndrome (AURKC) revealed no mutations in our patient, suggesting that other genes may be involved in determining this syndrome. As far as is known, this is the first study in which spermatozoa of a SMS patient have been observed using morphological analysis, ultrastructural analysis, cytogenetic analysis and sperm DNA fragmentation analysis together. Moreover, it is believed that this is first report of recurrent miscarriage due to this specific syndrome. PMID:23273756

Molinari, Emanuela; Mirabelli, Marzia; Raimondo, Stefania; Brussino, Alessandro; Gennarelli, Gianluca; Bongioanni, Francesca; Revelli, Alberto

2013-02-01

277

Olive Oil Polyphenols Differentially Inhibit Smooth Muscle Cell Proliferation through a G1/S Cell Cycle Block Regulated by ERK1/2.  

PubMed

We hypothesized that polyphenols contained in olive oil play a role in reducing the risk of atherosclerosis. The aim of this study was to determine if the polyphenols in olive oil, oleuropein (Ole), hydroxytyrosol (HT), and tyrosol (Tyr) could inhibit smooth muscle cell (SMC) proliferation through its influence on cell cycle regulation. Bovine vascular SMC were cultured in the presence of Ole, HT, or Tyr at concentration of 1, 10, or 100 ?mol/L. On days 1, 3, and 5, numbers of cells were counted. Cell cycle analysis was performed by flow cytometry on day 1 after SMC were stained with propidium iodide. Cell populations grown in the presence of Ole or HT at 100 ?mol/L concentration were significantly inhibited after 5 days of exposure. Tyr had a similar tendency but it did not attain significance. Cell cycle analysis revealed that 66% of cells were in G1 phase in Ole group, compared with 48% in control group. To examine the cell cycle block between G1 and S phases, we performed Western blotting and found that ERK1/2 activation was inhibited by Ole or HT. We conclude that olive oil polyphenols could inhibit SMC proliferation through a cell cycle block between G1 and S phases which may be regulated by ERK1/2. These results demonstrate a mechanism by which olive oil consumption may be atheroprotective by inhibiting SMC proliferation. PMID:23730132

Abe, Rei; Beckett, Joel; Abe, Ryuzo; Nixon, Alexander; Rochier, Adrienne; Yamashita, Norio; Sumpio, Bauer

2012-06-01

278

Vitamin C suppresses cell death in MCF-7 human breast cancer cells induced by tamoxifen.  

PubMed

Vitamin C is generally thought to enhance immunity and is widely taken as a supplement especially during cancer treatment. Tamoxifen (TAM) has both cytostatic and cytotoxic properties for breast cancer. TAM engaged mitochondrial oestrogen receptor beta in MCF-7 cells and induces apoptosis by activation of pro-caspase-8 followed by downstream events, including an increase in reactive oxygen species and the release of pro-apoptotic factors from the mitochondria. In addition to that, TAM binds with high affinity to the microsomal anti-oestrogen-binding site and inhibits cholesterol esterification at therapeutic doses. This study aimed to investigate the role of vitamin C in TAM-mediated apoptosis. Cells were loaded with vitamin C by exposure to dehydroascorbic acid, thereby circumventing in vitro artefacts associated with the poor transport and pro-oxidant effects of ascorbic acid. Pre-treatment with vitamin C caused a dose-dependent attenuation of cytotoxicity, as measured by acridine-orange/propidium iodide (AO/PI) and Annexin V assay after treatment with TAM. Vitamin C dose-dependently protected cancer cells against lipid peroxidation caused by TAM treatment. By real-time PCR analysis, an impressive increase in FasL and tumour necrosis factor-? (TNF-?) mRNA was detected after TAM treatment. In addition, a decrease in mitochondrial transmembrane potential was observed. These results support the hypothesis that vitamin C supplementation during cancer treatment may detrimentally affect therapeutic response. PMID:24266867

Subramani, Tamilselvan; Yeap, Swee Keong; Ho, Wan Yang; Ho, Chai Ling; Omar, Abdul Rahman; Aziz, Suraini Abdul; Rahman, Nik Mohd Afizan Nik Abd; Alitheen, Noorjahan Banu

2014-02-01

279

Induction of T-cell apoptosis by human herpesvirus 6.  

PubMed Central

The mechanisms of cell death in CD4+ T cells mediated by human herpesvirus 6 (HHV-6) were investigated. The frequency of cell death in the human CD4+ T-cell line JJHAN, which had been inoculated with HHV-6 variant A or B, appeared to be augmented by tumor necrosis factor alpha (TNF-alpha). Agarose gel electrophoresis of DNA from HHV-6-inoculated cells showed DNA fragmentation in multiples of the oligonucleosome length unit. The degree of DNA fragmentation increased when HHV-6-inoculated cells were cultured in the presence of TNF-alpha. Flow cytometry and Scatchard analysis of TNF receptors revealed an increase in the number of the p55 form of TNF receptors on JJHAN cells after HHV-6 inoculation. It also appeared that treatment with anti-Fas monoclonal antibody (MAb) induced marked apoptosis in HHV-6-inoculated cells. Transmission electron microscopy showed characteristics of apoptosis, such as chromatin condensation and fragmentation of nuclei, but virus particles were hardly detected in apoptotic cells. Two-color flow cytometric analysis using anti-HHV-6 MAb and propidium iodide revealed that DNA fragmentation was present predominantly in uninfected cells but not in productively HHV-6-infected cells. In addition, JJHAN cells incubated with UV light-irradiated and ultracentrifuged culture supernatant of HHV-6-infected cells appeared to undergo apoptosis. The present study demonstrated that both HHV-6 variants A and B induce apoptosis in CD4+ T cells by indirect mechanisms, as reported recently in human immunodeficiency virus type 1 infection.

Inoue, Y; Yasukawa, M; Fujita, S

1997-01-01

280

Induction of apoptosis in endothelial cells treated with cholesterol oxides.  

PubMed Central

Cholesterol oxides have a wide range of cytotoxic effects on vascular cells. Therefore, 7-ketocholesterol, 7 beta-hydroxycholesterol, 19-hydroxycholesterol, cholesterol 5 alpha, 6 alpha-epoxide, and 25-hydroxycholesterol, identified in various foodstuffs and human tissues, were chosen to compare and characterize the mode of cell death they induce, apoptosis or necrosis, on bovine aortic endothelial cells. The toxic potency differed from one compound to another, and 7 beta-hydroxycholesterol and 7-ketocholesterol exhibited the most potent effects. Cytotoxicity was accompanied by a decreased number of adherent cells, an increased number of non-adherent cells, and an enhanced permeability to propidium iodide. By electron and fluorescence microscopy performed after staining with Hoechst 33342, apoptotic cells with fragmented and condensed nuclei were identified mainly among non-adherent cells. By flow cytometry, cells with a lower DNA content than cells in the G0/G1 phase were apparent, giving a characteristic sub-G1 peak. Quantification of apoptosis evaluated either by the proportion of apoptotic cells identified by fluorescence microscopy after staining with Hoechst 33342 or by the percentage of cells present in the sub-G1 peak indicated that the ability of cholesterol oxides in inducing apoptosis was in the following order: 7 beta-hydroxycholesterol > 7-ketocholesterol > 19-hydroxycholesterol > cholesterol 5 alpha, 6 alpha-epoxide > 25-hydroxycholesterol. By using electrophoresis on agarose gel, typical internucleosomal DNA fragmentations were detected; they were no longer observed when bovine aortic endothelial cells were simultaneously incubated with 0.5 mmol/L zinc chloride, known to inhibit Ca2+/Mg2+-dependent endonucleases. None of the cholesterol-oxide-induced apoptotic features described above were noted with cholesterol. It is concluded that cholesterol oxides constitute a new class of cholesterol derivatives that can induce cell death by apoptosis in cultured endothelial cells. Images Figure 3 Figure 4 Figure 7

Lizard, G.; Deckert, V.; Dubrez, L.; Moisant, M.; Gambert, P.; Lagrost, L.

1996-01-01

281

Induction of T-cell apoptosis by human herpesvirus 6.  

PubMed

The mechanisms of cell death in CD4+ T cells mediated by human herpesvirus 6 (HHV-6) were investigated. The frequency of cell death in the human CD4+ T-cell line JJHAN, which had been inoculated with HHV-6 variant A or B, appeared to be augmented by tumor necrosis factor alpha (TNF-alpha). Agarose gel electrophoresis of DNA from HHV-6-inoculated cells showed DNA fragmentation in multiples of the oligonucleosome length unit. The degree of DNA fragmentation increased when HHV-6-inoculated cells were cultured in the presence of TNF-alpha. Flow cytometry and Scatchard analysis of TNF receptors revealed an increase in the number of the p55 form of TNF receptors on JJHAN cells after HHV-6 inoculation. It also appeared that treatment with anti-Fas monoclonal antibody (MAb) induced marked apoptosis in HHV-6-inoculated cells. Transmission electron microscopy showed characteristics of apoptosis, such as chromatin condensation and fragmentation of nuclei, but virus particles were hardly detected in apoptotic cells. Two-color flow cytometric analysis using anti-HHV-6 MAb and propidium iodide revealed that DNA fragmentation was present predominantly in uninfected cells but not in productively HHV-6-infected cells. In addition, JJHAN cells incubated with UV light-irradiated and ultracentrifuged culture supernatant of HHV-6-infected cells appeared to undergo apoptosis. The present study demonstrated that both HHV-6 variants A and B induce apoptosis in CD4+ T cells by indirect mechanisms, as reported recently in human immunodeficiency virus type 1 infection. PMID:9094650

Inoue, Y; Yasukawa, M; Fujita, S

1997-05-01

282

Mesenchymal Stem Cells as a Feeder Layer Can Prevent Apoptosis of Expanded Hematopoietic Stem Cells Derived from Cord Blood  

PubMed Central

Umbilical cord blood (UCB) has been used for transplantation in the treatment of hematologic disorders as a source of hematopoietic stem cells (HSCs). Because of insufficient number of cord blood CD34+ cells, the expansion of these cells seems to be important for clinical application. Mesenchymal stromal cells (MSCs), playing an important role in HSCs maintenance, were used as feeder layer. Apoptosis and cell cycle distribution of expanded cells were analyzed in MSCs co-culture and cytokine conditions and results were compared. Three culture conditions of cord blood HSCs were prepared ex-vivo for 14 days: cytokines (SCF, TPO and Flt3L) with MSCs feeder layer, cytokines without MSCs feeder layer and co-culture with MSCs without cytokines. Expansion was followed by measuring the total nucleated cells (TNCs), CD34+? cells and colony-forming unit (CFU) output. Flow cytometry analysis of stained cells by annexin V and propidium iodide was performed for detection of apoptosis rate and cell cycle distribution in expanded cells. Maximum cord blood CD34+ cells expansion was observed in day 10. The mean fold change of TNCs and CD34+ cells at day 10 in the co-culture system with cytokines was significantly higher than the cytokine culture without MSCs feeder layer and co-culture system without cytokines (n=6, p=0.023). The highest apoptosis rate and the least number of cells in Go/G1 phase were observed in cytokine culture without feeder layer (p=0.041). The expansion of cord blood HSCs on MSCs as a feeder layer resulted in higher proliferation and reduction in apoptosis rate.

Mehrasa, Roya; Vaziri, Hamidreza; Oodi, Arezoo; Khorshidfar, Mona; Nikogoftar, Mahin; Golpour, Monireh; Amirizadeh, Naser

2014-01-01

283

Brazilian marine sponge Polymastia janeirensis induces apoptotic cell death in human U138MG glioma cell line, but not in a normal cell culture.  

PubMed

Marine sponges have been prominently featured in the area of cancer research. Here, we examined the anti-proliferative effects of crude extracts (aqueous and organic) of the Brazilian marine sponge Polymastia janeirensis in the U138MG human glioma cell line. Moreover, we examined the effects of extracts on selective cytotoxicity in the glioma cells in comparison with a normal cell culture. Exposure of glioma cells to treatments (24 h) resulted in cell number decrease at all doses tested, with both aqueous and organic extracts (IC(50) <20 and <30 microg/ml, respectively). Parallel to this result, sponge extracts reduced glioma cell viability (IC(50) <15 microg/ml for both extracts). However, higher doses (50 and 100 microg/ml) induced a stronger cytotoxic effect when compared to the lower dose tested (10 microg/ml), inhibiting more than 80% of cellular growth and viability. Propidium iodide uptake and flow cytometry analysis further showed that sponge extracts caused necrosis in the glioma cell line at higher doses, while a high percentage of apoptotic glioma cells were observed at 10 microg/ml. Moreover, apoptosis was prevented by the pan-caspase inhibitor Z-VAD, suggesting that marine sponge extracts, at lower doses, induce caspase-dependent apoptosis in U138MG glioma cells. Surprisingly the extracts herein tested were more effective than temozolomide, a potent inductor of apoptosis used for the treatment of malignant gliomas. Furthermore, our results suggested a selectivity cytotoxic effect on glioma cell line in comparison with a normal cell culture, since the effect on viability found in glioma cells was not observed in astrocyte cultures with the lower dose (10 microg/ml). Thus, this marine sponge may be considered a good candidate for development of new cancer medicines with antitumor activity against gliomas. PMID:18454276

da Frota, Mario Luiz Conte; Braganhol, Elizandra; Canedo, Andrés Delgado; Klamt, Fabio; Apel, Miriam Anders; Mothes, Beatriz; Lerner, Cléa; Battastini, Ana Maria Oliveira; Henriques, Amélia Teresinha; Moreira, José Cláudio Fonseca

2009-02-01

284

Hydropropidine: A novel, cell-impermeant fluorogenic probe for detecting extracellular superoxide  

PubMed Central

Here we report the synthesis and characterization of a membrane-impermeant fluorogenic probe, hydropropidine (HPr+), the reduction product of propidium iodide, for detecting extracellular superoxide (O2·?). HPr+ is a positively-charged water-soluble analog of hydroethidine (HE), a fluorogenic probe commonly used for monitoring intracellular O2·?. We hypothesized that the presence of a highly localized positive charge on the nitrogen atom would impede cellular uptake of HPr+ and allow for exclusive detection of extracellular O2·?. Our results indicate that O2·? reacts with HPr+ (k = 1.2 × 104 M?1s?1) to form exclusively 2-hydroxypropidium (2-OH-Pr++) in cell-free and cell-based systems. This reaction is analogous to the reaction between HE and O2·? (Zhao H et al. Free Radic Biol Med 34:1359-68, 2003). During the course of this investigation, we also reassessed the rate constants for the reactions of O2·? with HE and its mitochondria targeted analog (Mito-HE or Mito-SOX Red®) and addressed the discrepancies between the present values and those reported previously by us. Our results indicate that the rate constant between O2·? and HPr+ is slightly higher than that of HE and O2·? and is closer to that of Mito-HE and O2·?. Similar to HE, HPr+ undergoes oxidation in the presence of various oxidants (peroxynitrite – derived radicals, Fenton’s reagent, and ferricytochrome c) forming the corresponding propidium dication (Pr++) and the dimeric products (e.g., Pr++-Pr++). In contrast to HE, there was very little intracellular uptake of HPr+. We conclude that HPr+ is a useful probe for detecting O2·? and other one-electron oxidizing species in an extracellular milieu.

Michalski, Radoslaw; Zielonka, Jacek; Hardy, Micael; Joseph, Joy; Kalyanaraman, Balaraman

2013-01-01

285

Effect of Nickel Chloride on Cell Proliferation  

PubMed Central

Objective: Metal alloys used in dentistry and in other biomedical fields may release nickel ions in the oral environment. The release of nickel might influence the normal biological and physiological processes, including tissue wound healing, cell growth and proliferation. The aim of this study was to evaluate in vitro the effects of nickel ions on cell cycle, viability and proliferation. Materials and Methods: Human osteosarcoma cells (U2OS) and human keratinocytes (HaCat) were exposed to different nickel chloride (NiCl2) concentrations (0 - 5mM) for various periods exposure. The viability of cultured cells was estimated by flow cytometry using Annexin V-FITC and Propidium Iodide (PI). Cell proliferation was evaluated by using carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) and flow cytometry. Finally, the effects of NiCl2 on cell cycle were assessed and quantified by flow cytometry. Statistical analysis was performed by means of ANOVA followed by Tukey’s test. Results: NiCl2 induced a dose and time dependent decrease in cell viability. After 24h, 1mM NiCl2 caused a similar and significant reduction of viability in U2OS and HaCat cells, while higher NiCl2 concentrations and longer exposure times showed a reduced cytotoxic effect in HaCat as compared to U2OS cells. Exposure to NiCl2 caused a dose- and time-dependent inhibition of cell proliferation in both cell lines tested, with a prominent effect on U2OS cells. Furthermore, both cell lines exposed to NiCl2 exhibited significant changes in cell cycle distribution after 24h exposure 2mM NiCl2, as compared to untreated cells (p<0.05). Conclusion: Our results indicate that release of nickel ions may affect cell proliferation. The inhibition of cell growth by NiCl2 is mediated by both cell cycle arrest and by induction of cell death.

D'Anto, Vincenzo; Valletta, Rosa; Amato, Massimo; Schweikl, Helmut; Simeone, Michele; Paduano, Sergio; Rengo, Sandro; Spagnuolo, Gianrico

2012-01-01

286

Effect of tissue factor knockdown on the growth, invasion, chemoresistance and apoptosis of human gastric cancer cells  

PubMed Central

This study aimed to explore the role of tissue factor (TF) and evaluate its antitumor effects in the biological processes of gastric cancer cells using the application of RNA interference technology to silence TF in the SGC7901 gastric cancer cell line. Specific small interfering RNA (siRNA) designed for targeting human TF was transfected into SGC7901 cells. The expression levels of TF in the cells were detected by reverse transcription-polymerase chain reaction. Cell proliferation and chemosensitivity were measured by Cell Counting Kit-8. The metastatic potential of the SGC7901 cells was determined by Transwell experiments and wound-healing assays. Cell apoptosis was assessed by Annexin V-fluorescein isothiocyanate/propidium iodide double-staining method. The expression levels of TF mRNA were significantly reduced by the TF-siRNA in the SGC7901 cells, resulting in the suppression of cell proliferation, chemoresistance and invasion, and subsequently the induction of cell apoptosis. TF knockdown with siRNA inhibits the growth, invasion and chemoresistance and enhances the apoptosis of SGC7901 cells, providing a potential approach for gene therapy against human gastric cancer.

YU, YONG-JIANG; HOU, XU-DONG; LI, YU-MIN

2014-01-01

287

Influence of the mycotoxins alpha- and beta-zearalenol and deoxynivalenol on the cell cycle of cultured porcine endometrial cells.  

PubMed

The present study investigated the effects of the mycotoxins alpha-zearalenol (alpha-ZOL) and beta-zearalenol (beta-ZOL) at concentrations of 7.5, 15, and 30 microM, and deoxynivalenol (DON) at concentrations of 0.94, 1.88, and 3.76 microM on cell cycle distribution (propidium iodide, PI staining) in combination with the proliferating cell nuclear antigen (PCNA) by flow cytometry. The viability of porcine uterine cells was not impaired at 30 microM alpha-ZOL, whereas beta-ZOL at this concentration and 3.76 microM DON significantly decreased cell number. Some cells showed ultrastructural features of cell death indicated by swollen mitochondria, disrupted cell membranes, and many vacuoles. After 24 and 48h of exposure to alpha-ZOL (7.5, 15, or 30 microM), the cell cycle distribution was still comparable to the control groups. An anti-proliferative effect of beta-ZOL and DON was detected by a significant reduction in the S-phase together with arrest of cells in the G(0)/G(1)-phase. The results show that beta-ZOL (7.5, 15, or 30 microM) and DON (0.94, 1.88, or 3.76 microM) control the progression of cells through the cycle by decreasing S-phase and arresting cells in the G(0)/G(1)-phase of the cell cycle. A significant decrease in the expression of the proliferation marker PCNA amounts indicates that beta-ZOL and DON disengaged cells from active cycling. We confirm that alpha-ZOL possesses a relative binding affinity to porcine uterine cytoplasmic estrogen receptor. PMID:12642154

Tiemann, U; Viergutz, T; Jonas, L; Schneider, F

2003-01-01

288

Terminating polyelectrolyte in multilayer films influences growth and morphology of adhering cells.  

PubMed

Polyelectrolyte films of anionic poly(sodium 4-styrenesulphonate) (PSS) and cationic poly (allylamine hydrochloride) (PAH) were constructed using layer-by-layer assembly. The authors examined the cytocompatibility of these films for future use in nanobiotechnology applications. Cell lines HEK-293 and 3T3-L1 were cultured on these films and the initial attachment, adhesion, proliferation and cytotoxicity of the cells were measured using a propidium iodide assay. The morphology and spread of the cells were measured by phase-contrast microscopy. The actin cytoskeleton was observed using fluorescent microscopy. Neither the PAH-terminated nor the PSS-terminated polyelectrolyte films were cytotoxic. The PAH-terminated polyelectrolyte films improved the initial attachment and subsequent adhesion of the cells, in addition to enhancing the production of extracellular matrix and the modelling of the actin filaments. The PSS-terminated film enhanced the proliferation of the cells compared to the PAH-terminated film. That was despite the cell cycle, the spreading or the cytotoxicity of both cell types being similar for either the PSS-terminated surfaces or the PAH-terminated surfaces. Cell behaviour can be modulated by the final surface charge of the polyelectrolyte film and the results are useful in guiding the choice of substrates and/or coatings for potential biomedical applications (e.g. implants) as well as cell biology research. PMID:20726674

Ting, J H Y; Haas, M R; Valenzuela, S M; Martin, D K

2010-09-01

289

Rhein Induces a Necrosis-Apoptosis Switch in Pancreatic Acinar Cells  

PubMed Central

Objectives. The Chinese herbal medicine Da-Cheng-Qi decoction can regulate a necrosis-apoptosis switch in injured pancreatic acinar cells. This study investigated the effects of rhein, a component of this medicine, on a necrosis-apoptosis switch in pancreatic rat AR42J cells. Methods. Cerulein-treated AR42J cells were used. After pretreatment with 479, 119.8, or 29.9??g/L rhein, cells were cocultured with rhein and cerulein (10?8?M) for 4, 8, or 16?h. Apoptosis and necrosis were examined using annexin V and propidium iodide costaining. Mitochondria-dependent apoptosis-associated proteins were examined using enzyme-linked immunosorbent assays and western blotting. Results. Few cells died in untreated samples. The number was significantly higher in 16-h-cerulein-treated samples and treatment with 479??g/L rhein most effectively increased the apoptotic-to-necrotic cell ratio (P < 0.05). In cerulein-treated cells, rhein increased the concentrations of p53, cytochrome C, and caspase-3, and increased the Bax/Bcl-2 ratio in a time- and dose-dependent manner, with the maximum effect in cells treated with 479??g/L rhein for 16?h (P < 0.05). Conclusions. Rhein induces the necrosis-apoptosis switch in injured pancreatic acinar cells in a time- and dose-dependent manner. Mitochondria-dependent apoptosis signaling pathways might play an important role in this effect.

Zhao, Xianlin; Li, Juan; Zhu, Shifeng; Liu, Yiling; Zhao, Jianlei; Wan, Meihua; Tang, Wenfu

2014-01-01

290

Radiosensitization of human breast cancer cells to ultraviolet light by 5-fluorouracil  

PubMed Central

Ultraviolet light B (UVB) phototherapy is widely used to treat dermatological diseases and therefore may be a potential optional strategy in the treatment of a skin lesion infiltrated by a malignant tumor. Currently, little is known regarding the effect of UVB phototherapy on human breast cancer cells. The present study aimed to investigate the effect of UVB phototherapy, as well as the potential effect of 5-fluorouracil (5-FU), the first-line anticancer drug for breast cancer, on radiosensitizing MCF-7 human breast cancer cells, in an attempt to develop new therapeutic strategies for the treatment of locoregional recurrence of breast cancer. MCF-7 cells were incubated in the presence of 5-FU for 48 h, and UVB irradiation at 750 mJ/cm2 was administered in the midterm of 5-FU treatment. The viability of MCF-7 cells was analyzed by the trypan blue staining method. Apoptosis was quantified by flow cytometry and Hoechst 33258 staining. The cell cycle was evaluated by flow cytometry after the staining of cells with propidium iodide. The combination treatment of 5-FU and UVB resulted in a strong potentiation of the inhibitory effect of MCF-7 cell growth, dependent on the intra-S phase cell cycle arrest and induction of apoptosis, when compared to treatment with 5-FU or UVB alone. In conclusion, 5-FU sensitized human breast cancer cells to UVB phototherapy, and this combination therapy is an effective and promising strategy for the treatment of breast cancer, particularly for locoregional recurrence.

SASAKI, KAZUHITO; TSUNO, NELSON H.; SUNAMI, EIJI; KAWAI, KAZUSHIGE; SHUNO, YASUTAKA; HONGO, KUMIKO; HIYOSHI, MASAYA; KANEKO, MANABU; MURONO, KOJI; TADA, NORIKO; NIREI, TAKAKO; KITAYAMA, JOJI; TAKAHASHI, KOKI; NAGAWA, HIROKAZU

2011-01-01

291

Rhein induces a necrosis-apoptosis switch in pancreatic acinar cells.  

PubMed

Objectives. The Chinese herbal medicine Da-Cheng-Qi decoction can regulate a necrosis-apoptosis switch in injured pancreatic acinar cells. This study investigated the effects of rhein, a component of this medicine, on a necrosis-apoptosis switch in pancreatic rat AR42J cells. Methods. Cerulein-treated AR42J cells were used. After pretreatment with 479, 119.8, or 29.9? ? g/L rhein, cells were cocultured with rhein and cerulein (10(-8)?M) for 4, 8, or 16?h. Apoptosis and necrosis were examined using annexin V and propidium iodide costaining. Mitochondria-dependent apoptosis-associated proteins were examined using enzyme-linked immunosorbent assays and western blotting. Results. Few cells died in untreated samples. The number was significantly higher in 16-h-cerulein-treated samples and treatment with 479? ? g/L rhein most effectively increased the apoptotic-to-necrotic cell ratio (P < 0.05). In cerulein-treated cells, rhein increased the concentrations of p53, cytochrome C, and caspase-3, and increased the Bax/Bcl-2 ratio in a time- and dose-dependent manner, with the maximum effect in cells treated with 479? ? g/L rhein for 16?h (P < 0.05). Conclusions. Rhein induces the necrosis-apoptosis switch in injured pancreatic acinar cells in a time- and dose-dependent manner. Mitochondria-dependent apoptosis signaling pathways might play an important role in this effect. PMID:24959186

Zhao, Xianlin; Li, Juan; Zhu, Shifeng; Liu, Yiling; Zhao, Jianlei; Wan, Meihua; Tang, Wenfu

2014-01-01

292

The effect of centrifugation condition on mature adipocytes and adipose stem cell viability.  

PubMed

Different researchers have recommended different lipoaspirate centrifugation speeds and times, probably due to the limits in fat cell viability assays. We assessed fat cell viability using a fluorescein diacetate and propidium iodide (FDA-PI) stain and 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay after harvesting syringe liposuction and spun with different centrifugation speeds to determine the optimal conditions. Lipoaspirates, harvested from 13 donors, were transferred into a centrifuge tube and spun at 1000, 3000, and 4000 rpm for 3 minutes. Mature adipocytes and adipose stem cells were isolated and tested with a direct counting of FDA-PI-stained cells under fluorescence microscope and XTT assay. We incubated adipocytes and adipose stem cells for 1 day and 3 days, and we compared both of them with fresh samples to evaluate the influence of culturing condition on fat cell viability. Centrifugation speeds from 1000 rpm to 4000 rpm for 3 minutes showed no change in the percentage of adipocytes and adipose stem cell viability not only in the fresh samples but also in the cultured samples (1 day and 3 days). Centrifugation speeds under 4000 rpm do not change the percentage of fat cell viability. To differentiate viable cells from dying or dead mature adipocytes and oil accurately, combinations of viability tests are essential. PMID:23636113

Son, Daegu; Choi, Taehyun; Yeo, Hyeonjung; Kim, Junhyung; Han, Kihwan

2014-05-01

293

Phase contrast microscopy of living cells within the whole lens: spatial correlations and morphological dynamics  

PubMed Central

Purpose Images from cultured lens cells do not convey enough spatial information, and imaging of fixed lens specimens cannot reveal dynamic changes in the cells. As such, a real-time, convenient approach for monitoring label-free imaging of dynamic processes of living cells within the whole lens is urgently needed. Methods Female Wistar rat lenses were kept in organ culture. Insulin-like growth factor-I was added to the culture medium to induce cell mitosis. A novel method of ultraviolet (UV) irradiation was used to induce cell apoptosis and fiber damage. The cellular morphological dynamics within the whole lens were monitored by inverted phase contrast microscopy. Apoptosis was assessed using a commercial kit with Hoechst 33342/YO-PRO®-1/propidium iodide (PI). Results The intrinsic transparency and low-light scattering property of the rat lens permitted direct imaging of the lens epithelial cells (LECs) and the superficial fiber cells. We visualized the processes of mitosis and apoptosis of the LECs, and we obtained dynamic images of posterior fiber cells following UVA irradiation. Conclusions This method opens a new window for observing lens cells in their physiologic location, and it can be readily applied in studies on lens physiology and pathology.

Kong, Zhiying; Zhu, Xiangjia; Zhang, Shenghai; Wu, Jihong

2012-01-01

294

Psoralen/UV inactivation of HIV-1-infected cells for use in cytologic and immunologic procedures  

SciTech Connect

A rapid procedure for the inactivation of HIV-1-infected cells using psoralen and ultraviolet (UV) light is described. Exposure of HIV-1-infected cells to 5 micrograms/ml psoralen followed by UV irradiation (320-380 nm) for 5 minutes yields cells that are noninfectious as assessed by extended infectivity assays. The psoralen/UV inactivation procedure described is effective with cells chronically or acutely infected with HIV-1 and is unaffected by cell densities up to 12 x 10(6)/ml. At 5 micrograms/ml psoralen does little damage to cellular permeability as shown by the ability of treated cells to exclude trypan blue and propidium iodide. Psoralen/UV treatment of HIV-1-infected cells does not cause a significant decrease in the reactivity of HIV-1 core and envelope antigens or cellular antigens to monoclonal antibodies. Experiments are presented demonstrating the use of these cells for flow cytometry studies and for cell surface labeling using the lactoperoxidase {sup 125}I iodination procedure.

Watson, A.J.; Klaniecki, J.; Hanson, C.V. (Oncogen Corporation, Seattle, WA (USA))

1990-04-01

295

Quantitation of satellite cell proliferation in vivo using image analysis.  

PubMed

A nonisotopic, double fluorescence technique was developed to study myogenic satellite cell proliferation in posthatch turkey skeletal muscle. Labeled satellite cell nuclei were identified on enzymatically isolated myofiber segments using a mouse monoclonal antibody (anti-BrdU) followed by fluorescein-5-isothiocyanate (FITC) conjugated goat anti-mouse IgG secondary antibody. Myofiber nuclei (myonuclei+satellite cell nuclei) were counterstained with propidium iodide (PI). The myofiber segment length, myofiber segment diameter, and the number of PI and FITC labeled nuclei contained in each segment was determined using a Nikon fluorescence microscope, a SIT video camera and Image-1 software. Data collected by three different operators of the image analysis system revealed 5.0 +/- 1.4 satellite cell nuclei per 1000 myofiber nuclei and 5284 +/- 462 microns3 of cytoplasm surrounding each myofiber nucleus in the pectoralis thoracicus of 9-week-old tom turkeys. BrdU immunohistochemistry coupled with the new approach of PI staining of whole myofiber mounts is an effective combination to allow the use of an efficient semi-automated image analysis protocol. PMID:7819418

Mozdziak, P E; Fassel, T; Gregory, R; Schultz, E; Greaser, M L; Cassens, R G

1994-09-01

296

Nucleic acid dyes for detection of apoptosis in live cells.  

PubMed

Apoptotic thymocytes were found to be much dimmer than normal thymocytes when stained with several nucleic acid dyes. These dyes provide a quick and simple assay for apoptosis which works for live cells and does not require a UV laser. The collection of dyes giving this staining pattern includes reagents suitable for use in either the FL1, FL2, or FL3 channel of a standard FACScan. Cells identified by these reagents were identical to apoptotic thymocytes defined by several widely used criteria: (i) rapid uptake of Hoechst 33342 but exclusion of propidium iodide, (ii) merocyanin 540 bright, and (iii) sub-G1 DNA content when permeabilized in a buffer that elutes fragmented DNA. In addition, L3T4/Thy-1 dim thymocytes were included in the dyc dim population. The standard Hoechst 33342 and merocyanin 540 assays were not able to separate the normal and apoptotic populations in HL-60 cells treated with camptothecin. However, the dyes SYTO-16 and LDS-751 both gave adequate differentiation of apoptotic from nonapoptotic cells in this model system. Some of these dyes also emit very little in other fluorescence channels of the flow cytometer and can be used in multicolor assays on cytometers equipped with only a single argon-ion laser. PMID:8582249

Frey, T

1995-11-01

297

Mast cell/IL-4 control of Francisella tularensis replication and host cell death is associated with increased ATP production and phagosomal acidification.  

PubMed

Mast cells are now recognized as effective modulators of innate immunity. We recently reported that mast cells and secreted interleukin-4 (IL-4) effectively control intramacrophage replication of Francisella tularensis Live Vaccine Strain (LVS), and that mice deficient in mast cells or IL-4 receptor (IL-4R(-/-)) exhibit greater susceptibility to pulmonary challenge. In this study, we further evaluated the mechanism(s) by which mast cells/IL-4 control intramacrophage bacterial replication and host cell death, and found that IL-4R(-/-) mice exhibited significantly greater induction of active caspase-3 within lung macrophages than wild-type animals following intranasal challenge with either LVS or the human virulent type A strain SCHU S4. Treatment of LVS-infected bone-marrow-derived macrophages with a pancaspase inhibitor (zVAD) did not alter bacterial replication, but minimized active caspase-3 and other markers (Annexin V and propidium iodide) of cell death, whereas treatment with both rIL-4 and zVAD resulted in concomitant reduction of both parameters, suggesting that inhibition of bacterial replication by IL-4 was independent of caspase activation. Interestingly, IL-4-treated infected macrophages exhibited significantly increased ATP production and phagolysosomal acidification, as well as enhanced mannose receptor upregulation and increased internalization with acidification, which correlated with observations in mast cell-macrophage co-cultures, with resultant decreases in F. tularensis replication. PMID:20861832

Rodriguez, A R; Yu, J-J; Murthy, A K; Guentzel, M N; Klose, K E; Forsthuber, T G; Chambers, J P; Berton, M T; Arulanandam, B P

2011-03-01

298

Effect of Escherichia coli STb toxin on NIH-3T3 cells.  

PubMed

Previous studies have shown that STb causes microscopic histological alterations in animal intestinal models. Disrupted intestinal epithelium at the villous tips could be the result of an altered physiological cell state induced by the toxin. As a cellular model we used NIH-3T3 cells, a mouse fibroblast cell line, previously shown to be capable of internalizing the STb toxin. Using various probes specific for the cellular physiological state or cell organelles, we investigated STb activity using flow cytometry and confocal microscopy. In NIH-3T3 cells, labelled with propidium iodide and carboxyfluorescein diacetate, STb permeabilized the plasma membrane but the cellular esterases remained active. Confocal microscopy showed that fluorescein isothiocyanate (FITC)-labelled STb toxin molecules were internalized and were found scattered in the cytoplasm. Moreover, important clusters of FITC-STb were observed inside the cells after 6 h and these clusters matched with mitochondria labelling. After cell treatment with STb, using a fluorescent mitochondrial potential sensor, we observed mitochondria hyperpolarization, as an early event of intoxication. This phenomenon increased linearly with the dose of STb. The cell population treated with STb showed histological alterations such as membrane budding, granular cytoplasm and enlarged nucleus. Altogether, these results provide new information, at the cellular level, on the effect of the STb toxin. PMID:19222570

Gonçalves, Carina; Dubreuil, J Daniel

2009-04-01

299

Effect of Ketamine on Apoptosis by Energy Deprivation in Astroglioma Cells using Flow Cytometry System  

PubMed Central

Apoptosis is a programmed, physiologic mode of cell death that plays an important role in tissue homeostasis. As for the central nervous system, ischemic insults can induce pathophysiologic cascade of apoptosis in neurophils. Impairment of astroctye functions during brain ischemia can critically influence neuron survival by neuronglia interactions. We aimed to elucidate the protective effect of ketamine on apoptosis by energy deprivation in astrocytes. Ischemic insults was induced with iodoacetate/carbonylcyanide m-chlorophenylhydrazone (IAA/CCCP) 1.5 mM/20 µM or 150 µM/2 µM for 1 hr in the HTB-15 and CRL-1690 astrocytoma cells. Then these cells were reperfused with normal media or ketamine (0.1 mM) containing media for 1 hr or 24 hr. FITC-annexin-V staining and propidium iodide binding were determined by using flow cytometry. Cell size and granularity were measured by forward and side light scattering properties of flow cytometry system, respectively. An addition of ketamine during reperfusion increased the proportion of viable cells. Ketamine alleviated cell shrinkage and increased granularity during the early period, and ameliorated cell swelling during the late reperfusion period. Ketamine may have a valuable effect on amelioration of early and late apoptosis in the astrocytoma cells, even though the exact mechanism remains to be verified.

Choi, Soo Joo; Lim, Seung Woon; Gwak, Mi Sook

2005-01-01

300

Cysteine: A Novel Neural Inducer for Rat Bone Marrow Mesenchymal Stem Cells  

PubMed Central

Objective Mesenchymal stem cells (MSCs) can differentiate into various cell types. Since cysteine has structural similarities to neuronal inducers ?-mercaptoethanol and glutathione, we examined its effect on neural induction of rat bone marrow MSCs. Materials and Methods In this experimental study, cells were treated in a medium containing 1mM cysteine for 24 hours prior to treatment with neuron inducing medium containing 10 mM cysteine for 1, 2 and 3 hours. Cell viability and morphology were assessed by 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT) assay and, Hoechst, propidium iodide and acridine orange staining respectively. Expression of nestin and ?-Tubulin III genes, as neural cell-specific markers, was studied reverse transcription polymerase chain reaction (RT-PCR). The data was statistically analyzed using One-Way ANOVA and Tukey’s test and p<0.05 was considered significant. Results After 3 hours of treatment, neuron like morphology with a considerable expression of nestin and ?-Tubulin III genes was apparent. The mean cell viability was not significantly different at 1, 2 and 3 hours following induction, compared with the control cells. Conclusion Cysteine can induce neural features in rat bone marrow MSCs without reducing cell viability. Therefore, it can be considered as a safer alternative to toxic neural inducer agents such as ?-mercaptoethanol.

Soleimani Mehranjani, Malek; Chian, Milad Falahat

2014-01-01

301

Plumbagin induces the apoptosis of human tongue carcinoma cells through the mitochondria-mediated pathway  

PubMed Central

Background Plumbagin, a quinonoid constituent isolated from the root of Plumbago zeylanica L., has been proven to possess anti-tumor activity both in vitro and in vivo. However, its anti-tumor properties for human tongue carcinoma have not been reported. This study aimed to investigate the inhibitory effect and the underlying mechanism of plumbagin on the growth of human tongue carcinoma cells. Material/Methods Cell proliferation ability was detected by EdU incorporation assay and colony formation assay. Cell-cycle distribution was determined by flow cytometric analysis using propidium iodide (PI) staining. Cellular apoptosis was then evaluated by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Western blotting was applied to assay the expression of Bax and Bcl-2. Results Plumbagin inhibited the growth and proliferation of Tca8113 cells in vitro in a concentration- and time-dependent manner. The cell cycles of plumbagin-treated Tca8113 cells were arrested at the G2/M phase. Cells treated with plumbagin presented the characteristic morphological changes of apoptosis. The ratio of Bax/Bcl-2 was raised by plumbagin in a concentration-dependent manner. Conclusions These results indicate that plumbagin induces the apoptosis of Tca8113 cells through mitochondria-mediated pathway.

Qiu, Jia-xuan; He, Yuan-qiao; Wang, Yong; Xu, Ru-liang; Qin, You; Shen, Xiang; Zhou, Shu-Feng; Mao, Zong-fu

2013-01-01

302

High-throughput optical injection of mammalian cells using a Bessel light beam.  

PubMed

Femtosecond photoporation is an optical method for the injection of membrane impermeable substances into cells. Typically this is a low-throughput method where each cell is individually targeted. Here, we present a novel microfluidic platform with passive optical injection improving previously reported throughputs by one order of magnitude. In this new geometry, two-dimensional hydrodynamic focusing is achieved using a three-dimensional nozzle which confines mammalian cells to the central region of the microfluidic channel. A reusable quartz chip is designed so that a propagation invariant, 'non-diffracting' Bessel beam can be directed along the centre of the channel, parallel to but counter-propagating with the flow of cells in contrast to previous orthogonal geometries. This allows for higher flow speeds to be used whilst maintaining the necessary dwell time for cells in the core of the Bessel beam. Using this method, we have achieved viable injection of HL60 cells with propidium iodide with an efficiency of 20.4 ± 4.2% and CHO-K1 cells (31.0 ± 9.5%) at a rate of up to 10 cells s(-1). PMID:23007197

Rendall, Helen A; Marchington, Robert F; Praveen, Bavishna B; Bergmann, Gerald; Arita, Yoshihiko; Heisterkamp, Alexander; Gunn-Moore, Frank J; Dholakia, Kishan

2012-11-21

303

Palytoxin causes nonoxidative necrotic damage to PC12 cells in culture.  

PubMed

Palytoxin (PTX) is a potent marine toxin that causies serious damage to various tissues and organs. It has been reported to affect the transport of cations across the plasma membranes, which is commonly recognized as being the principal mechanism of its highly toxic action on mammals, including humans. However, although some marine toxins have been shown to cause toxic effects on the nervous system by interfering with the transmission of nerve impulses, the effect of PTX on neuronal cells has not yet been fully elucidated. Therefore, the toxic action of PTX on PC12 cells was examined as an in vitro model experiment to elucidate the neurotoxic properties of this toxin, and PTX was shown to reduce the viability of PC12 cells in a concentration-dependent manner. The cytotoxic action of PTX was not significantly altered by the presence of the antioxidant N-acetylcysteine and reduced-form glutathione in the cultures. Fluorescence staining of the cells and the electrophoretic analysis of genomic DNA showed that PTX failed to cause chromatin condensation and DNA fragmentation within the cells. On the other hand, the exposure to PTX caused positive staining of the cytoplasmic space of the cells with propidium iodide and the release of lactate dehydrogenase into the culture medium. Based on these observations, PTX is considered to cause cell death as a consequence of disrupting the plasma membranes, thus causing nonoxidative necrotic damage to PC12 cells. PMID:21913210

Sagara, Takefumi; Nishibori, Naoyoshi; Itoh, Mari; Morita, Kyoji; Her, Song

2013-02-01

304

Tetrahydroxystilbene glucoside protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity.  

PubMed

1-methyl-4-phenylpyridinium (MPP+), an inhibitor of mitochondrial complex I, has been widely used as a neurotoxin for inducing a cell model of Parkinson's disease. This study aimed to evaluate the effects of 2,3,5,4'-tetrahydroxystilbene-2-O-?-D-glucoside (TSG), an active component extracted from Polygonum multiflorum, on MPP+-induced cytotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells. The results from the MTT and lactate dehydrogenase (LDH) assays showed that incubating cells with 500 ?M MPP+ for 24 h decreased cell viability and increased LDH leakage, whereas preincubating cells with 3.125 to 50 ?M TSG for 24 h protected the cells against MPP+-induced cell damage. Using 2',7'-dichlorofluorescin diacetate (DCFH-DA) and rhodamine 123, respectively, we found that TSG inhibited both the elevation of intracellular reactive oxygen species and the disruption of mitochondrial membrane potential induced by MPP+. In addition, TSG suppressed both the upregulation of the ratio of Bax to Bcl-2 and the activation of caspase-3 induced by MPP+, and TSG inhibited apoptosis as detected by flow cytometric analysis using Annexin-V and propidium (PI) label. These results suggest that TSG may protect neurons against MPP+-induced cell death through improving mitochondrial function, decreasing oxidative stress and inhibiting apoptosis, and this may provide a potentially new strategy for preventing and treating neurodegenerative disorders such as Parkinson's disease. PMID:21497157

Sun, Fang-ling; Zhang, Lan; Zhang, Ru-yi; Li, Lin

2011-06-25

305

Single Walled Carbon Nanotubes Exhibit Dual-Phase Regulation to Exposed Arabidopsis Mesophyll Cells  

NASA Astrophysics Data System (ADS)

Herein we are the first to report that single-walled carbon nanotubes (SWCNTs) exhibit dual-phase regulation to Arabidopsis mesophyll cells exposed to different concentration of SWCNTs. The mesophyll protoplasts were prepared by enzyme digestion, and incubated with 15, 25, 50, 100 ?g/ml SWCNTs for 48 h, and then were observed by optical microscopy and transmission electron microscopy, the reactive oxygen species (ROS) generation was measured. Partial protoplasts were stained with propidium iodide and 4'-6- diamidino-2-phenylindole, partial protoplasts were incubated with fluorescein isothiocyanate-labeled SWCNTs, and observed by fluorescence microscopy. Results showed that SWCNTs could traverse both the plant cell wall and cell membrane, with less than or equal to 50 ?g/ml in the culture medium, SWCNTs stimulated plant cells to grow out trichome clusters on their surface, with more than 50 ?g/ml SWCNTs in the culture medium, SWCNTs exhibited obvious toxic effects to the protoplasts such as increasing generation of ROS, inducing changes of protoplast morphology, changing green leaves into yellow, and inducing protoplast cells' necrosis and apoptosis. In conclusion, single walled carbon nanotubes can get through Arabidopsis mesophyll cell wall and membrane, and exhibit dose-dependent dual-phase regulation to Arabidopsis mesophyll protoplasts such as low dose stimulating cell growth, and high dose inducing cells' ROS generation, necrosis or apoptosis.

Yuan, Hengguang; Hu, Shanglian; Huang, Peng; Song, Hua; Wang, Kan; Ruan, Jing; He, Rong; Cui, Daxiang

2011-12-01

306

Single Walled Carbon Nanotubes Exhibit Dual-Phase Regulation to Exposed Arabidopsis Mesophyll Cells  

NASA Astrophysics Data System (ADS)

Herein we are the first to report that single-walled carbon nanotubes (SWCNTs) exhibit dual-phase regulation to Arabidopsis mesophyll cells exposed to different concentration of SWCNTs. The mesophyll protoplasts were prepared by enzyme digestion, and incubated with 15, 25, 50, 100 ?g/ml SWCNTs for 48 h, and then were observed by optical microscopy and transmission electron microscopy, the reactive oxygen species (ROS) generation was measured. Partial protoplasts were stained with propidium iodide and 4'-6- diamidino-2-phenylindole, partial protoplasts were incubated with fluorescein isothiocyanate-labeled SWCNTs, and observed by fluorescence microscopy. Results showed that SWCNTs could traverse both the plant cell wall and cell membrane, with less than or equal to 50 ?g/ml in the culture medium, SWCNTs stimulated plant cells to grow out trichome clusters on their surface, with more than 50 ?g/ml SWCNTs in the culture medium, SWCNTs exhibited obvious toxic effects to the protoplasts such as increasing generation of ROS, inducing changes of protoplast morphology, changing green leaves into yellow, and inducing protoplast cells' necrosis and apoptosis. In conclusion, single walled carbon nanotubes can get through Arabidopsis mesophyll cell wall and membrane, and exhibit dose-dependent dual-phase regulation to Arabidopsis mesophyll protoplasts such as low dose stimulating cell growth, and high dose inducing cells' ROS generation, necrosis or apoptosis.

Yuan, Hengguang; Hu, Shanglian; Huang, Peng; Song, Hua; Wang, Kan; Ruan, Jing; He, Rong; Cui, Daxiang

2010-12-01

307

Effects of a novel cyclic RGD peptidomimetic on cell proliferation, migration and angiogenic activity in human endothelial cells  

PubMed Central

Background Cyclic RGD peptidomimetics containing a bifunctional diketopiperazine scaffold are a novel class of high-affinity ligands for the integrins ?V?3 and ?V?5. Since integrins are a promising target for the modulation of normal and pathological angiogenesis, the present study aimed at characterizing the ability of the RGD peptidomimetic cyclo[DKP-RGD] 1 proliferation, migration and network formation in human umbilical vein endothelial cells (HUVEC). Methods Cell viability was assessed by flow cytometry and annexin V (ANX)/propidium iodide (PI) staining. Cell proliferation was evaluated by the ELISA measurement of bromodeoxyuridine (BrdU) incorporation. Network formation by HUVEC cultured in Matrigel-coated plates was evaluated by optical microscopy and image analysis. Integrin subunit mRNA expression was assessed by real time-PCR and Akt phosphorylation by western blot analysis. Results Cyclo[DKP-RGD] 1 does not affect cell viability and proliferation either in resting conditions or in the presence of the pro-angiogenic growth factors VEGF, EGF, FGF, and IGF-I. Addition of cyclo[DKP-RGD] 1 however significantly decreased network formation induced by pro-angiogenic growth factors or by IL-8. Cyclo[DKP-RGD] 1 did not affect mRNA levels of ?V, ?3 or ?5 integrin subunits, however it significantly reduced the phosphorylation of Akt. Conclusions Cyclo[DKP-RGD] 1 can be a potential modulator of angiogenesis induced by different growth factors, possibly devoid of the adverse effects of cytotoxic RGD peptidomimetic analogues.

2014-01-01

308

Natural Killer Cells Induce Eosinophil Activation and Apoptosis  

PubMed Central

Eosinophils are potent inflammatory cells with numerous immune functions, including antigen presentation and exacerbation of inflammatory responses through their capacity to release a range of largely preformed cytokines and lipid mediators. Thus, timely regulation of eosinophil activation and apoptosis is crucial to develop beneficial immune response and to avoid tissue damage and induce resolution of inflammation. Natural Killer (NK) cells have been reported to influence innate and adaptive immune responses by multiple mechanisms including cytotoxicity against other immune cells. In this study, we analyzed the effect of the interaction between NK cells and eosinophils. Co-culture experiments revealed that human NK cells could trigger autologous eosinophil activation, as shown by up-regulation of CD69 and down-regulation of CD62L, as well as degranulation, evidenced by increased CD63 surface expression, secretion of eosinophil cationic protein (ECP) and eosinophil derived neurotoxin (EDN). Moreover, NK cells significantly and dose dependently increased eosinophil apoptosis as shown by annexin V and propidium iodide (PI) staining. Direct contact was necessary for eosinophil degranulation and apoptosis. Increased expression of phosphorylated extracellular signal-regulated kinase (ERK) in cocultured eosinophils and inhibition of eosinophil CD63 expression by pharmacologic inhibitors suggest that MAPK and PI3K pathways are involved in NK cell-induced eosinophil degranulation. Finally, we showed that NK cells increased reactive oxygen species (ROS) expression by eosinophils in co-culture and that mitochondrial inhibitors (rotenone and antimycin) partially diminished NK cell-induced eosinophil apoptosis, suggesting the implication of mitochondrial ROS in NK cell-induced eosinophil apoptosis. Pan-caspase inhibitor (ZVAD-FMK) only slightly decreased eosinophil apoptosis in coculture. Altogether, our results suggest that NK cells regulate eosinophil functions by inducing their activation and their apoptosis.

Awad, Ali; Yassine, Hanane; Barrier, Mathieu; Vorng, Han; Marquillies, Philippe; Tsicopoulos, Anne; Duez, Catherine

2014-01-01

309

Basic apoptotic and necrotic cell death in human liver carcinoma (HepG2 ) cells induced by synthetic azamacrocycle.  

PubMed

Treatment of diseases with synthetic materials has been an aspiration of mankind since the dawn of human development. In this research, three complex compounds of azamacrocycle (TD1, TD2, and TD3) were synthesized, and experiments were conducted to determine whether their toxicity to human liver carcinoma (HepG2 ) cells is associated with apoptotic and/or necrotic cell death. Cell survival was determined by MTT assay. Apoptosis and necrosis were measured by annexin V FITC/PI assay using the flow cytometry and by propidium iodide (PI) assay using the cellometer vision. HepG2 cells were treated with different concentrations of azamacrocycles for 48 h. Results from MTT assay indicated that all the three azamacrocycles significantly (p < 0.05) reduce cell viability in a dose-dependent manner, showing 48 h-LD50 values of about 37.97, 33.60, and 19.29 ?M, for TD3, TD1 and TD2, respectively. Among the three compounds tested, TD2 showed the most pronounced cytotoxic activity against HepG2 cells, being about twofold more potent than TD3. The order of toxicity was TD2 > TD1 > TD3. Because TD2 exerted the most cytotoxic activity against HepG2 cells, it was used in the subsequent apoptosis and necrosis-related experiments. The flow cytometry assessment showed a strong dose-response relationship with regard to TD2 exposure and annexin V/PI positive cells. PI assay data indicated that TD2 exposure increased the proportion of fluorescence positive cells. Overall, our results indicate that azamacrocycle toxicity to HepG2 cells is associated with apoptotic and necrotic cell death resulting from phosphatidylserine externalization and loss of membrane integrity. © 2012 Wiley Periodicals, Inc. Environ Toxicol 29: 605-611, 2014. PMID:22644747

Yedjou, Clement G; Saeed, Musabbir A; Hossain, Md Alamgir; Dorsey, Waneene; Yu, Hongtao; Tchounwou, Paul B

2014-06-01

310

Proteasome inhibition induces apoptosis in primary human natural killer cells and suppresses NKp46-mediated cytotoxicity  

PubMed Central

Background Bortezomib is a selective and potent inhibitor of the proteasome and has prominent effects in vitro and in vivo against tumors. Very recently, cytotoxic effects of bortezomib on immune-competent cells such as T cells and dendritic cells were also revealed. The aim of the study was to investigate the effects of this agent on natural killer cell survival and function. Design and Methods We investigated cytotoxic properties of bortezomib on natural killer cell apoptosis and function. Primary resting natural killer cells were purified from peripheral blood mononuclear cells of healthy donors by negative selection. The apoptotic cells were quantified by dual labeling of recombinant annexin V and propidium iodide. Mitochondrial membrane potential and expression of natural killer cell activating receptors were also quantified by flow cytometry. Natural killer cell cytotoxicity against murine and human tumor cells was tested by chromium 51 release assay. Results Our results demonstrate that bortezomib induces apoptosis in resting natural killer cells in a dose- and time-dependent manner. Glutathione, a reactive oxygen species scavenger, prevented the loss of mitochondrial membrane potential and conferred protection against bortezomib-induced apoptosis in resting natural killer cells, indicating a role for oxidative stress. Additionally, bortezomib significantly decreased expression of the natural killer activating receptor NKp46 in non-apoptotic resting natural killer cells in a dose-dependent manner, and as a result the redirected cytotoxicity mediated via NKp46 activation was diminished. Bay 11-7082, a pharmacological inhibitor of NF-?B activation, also reduced NKp46 expression and suppressed redirected cytotoxicity. Conclusions Bortezomib induces apoptosis in primary resting natural killer cells in a dose- and time-dependent manner, and reduces NKp46 receptor expression as well as natural killer cell cytotoxicity mediated by the NKp46 activation pathway, suggesting that bortezomib may disrupt natural killer cell-mediated immunity through at least two different mechanisms: induction of natural killer cell apoptosis, and suppression of NKp46 receptor-mediated cytotoxicity.

Wang, Xiangling; Ottosson, Astrid; Ji, Chunyan; Feng, Xiaoli; Nordenskjold, Magnus; Henter, Jan-Inge; Fadeel, Bengt; Zheng, Chengyun

2009-01-01

311

Human RPE cell apoptosis induced by activated monocytes is mediated by caspase-3 activation.  

PubMed Central

PURPOSE: To determine the effects of activated monocytes on the induction of human retinal pigment epithelial (HRPE) cell reactive oxygen metabolite (ROM) production and apoptosis. METHODS: HRPE cells were co-cultured with interferon-gamma (IFN-gamma)-stimulated human monocytes. HRPE apoptosis was detected by propidium iodide, proliferating cell nuclear antigen (PCNA) and TdT-mediated dUTP nick end labeling (TUNEL) staining, caspase-3 activation, and Western blot analysis. HRPE cell ROMs were imaged using the fluorescent marker dihydrotetramethylrosamine (H2TMRos). RESULTS: IFN-gamma-activated monocytes in direct contact with HRPE cells elicited significant increases in TUNEL-positive (P < .0001) and decreases in PCNA-positive (P < .0001) HRPE cells. The activated monocytes also induced HRPE cell caspase-3 activation, which was inhibited by inhibitor Z-DEVD-fmk. Co-incubations, in which monocytes were either prevented from direct contact with HRPE cells or separated from HRPE cells after 30 minutes of direct contact, did not induce significant HRPE cell apoptosis. Anti-CD18 and anti-ICAM-1 antibodies significantly reduced activated monocyte-induced TUNEL-positive HRPE cells, by 48% (P = .0051) and 38% (P = .046), respectively, and caspase-3 activity by 56% (P < .0001) and 45% (P < .0001), respectively. Overlay of monocytes induced HRPE cell ROM that was inhibited by anti-CD18 and anti-ICAM-1 antibodies, but not by superoxide dismutase (SOD) or nitric oxide (NO) inhibitors. Accordingly, neither SOD nor NO inhibitors had significant effects on HRPE cell apoptosis or caspase-3 activation. CONCLUSIONS: We demonstrated that IFN-gamma-activated monocytes may induce ROM in HRPE cells through cell-to-cell contact, in part via CD18 and ICAM-1, and promote HRPE cell apoptosis via caspase-3 activation. These mechanisms may compromise HRPE cell function and survival in retinal diseases in which mononuclear phagocyte infiltration at the HRPE interface is observed.

Eliner, Susan G; Yoshida, Ayako; Bian, Zong-Mei; Kindezelskii, Andrei L; Petty, Howard R; Elner, Victor M

2003-01-01

312

Increased insulin-like growth factor 1 activity can rescue KLE endometrial-like cells from apoptosis.  

PubMed Central

BACKGROUND: The peritoneal fluid (PF) of women with endometriosis contains protease(s) activity able to hydrolyze insulin-like growth factor-binding protein 3 (IGFBP-3), increasing the bioavailability of insulin-like growth factor-1 (IGF-1) locally. Therefore, we characterized the effects of IGF-1 on KLE endometrial-like cells in vitro. MATERIALS AND METHODS: The mitogenic effect of IGF-1 was assessed by the analysis of the DNA content and cell count. Apoptosis was triggered experimentally by the 48 hr exposure of KLE cells to 100 nM of adriamycin in the presence and absence of IGF-1 (50 ng/ml). Adriamycin apoptosis of KLE cells was determined by the number of dead KLE cells using trypan blue exclusion and by the DNA fragmentation on simple agarose gel and flow cytometry of propidium iodide and HOECHST 33342-stained KLE cells using an EPICS 753 pulse cytometer. RESULTS: IGF-1 stimulated the growth of KLE cells in a dose-dependent manner (optimal dose of 50 ng/ml) and protected KLE cells from adriamycin (100 nM)-induced apoptosis. CONCLUSIONS: These data suggest that IGF-1 is a survival factor for KLE cells. Conceivably, increased IGF-1 activity in the PF can optimize both the survival and ectopic growth of endometrial cells in the peritoneal cavity.

Koutsilieris, M.; Mastrogamvrakis, G.; Lembessis, P.; Sourla, A.; Miligos, S.; Michalas, S.

2001-01-01

313

Tualang honey induces apoptosis and disrupts the mitochondrial membrane potential of human breast and cervical cancer cell lines.  

PubMed

Honey is reported to contain various compounds such as phenols, vitamins and antioxidants. The present study investigates the anticancer potential of Tualang honey (Agromas) (TH) in human breast (MCF-7 and MDA-MB-231) and cervical (HeLa) cancer cell lines; as well as in the normal breast epithelial cell line, MCF-10A. The cells were treated with increasing doses of TH (1-10%) for up to 72 h. Increase in lactate dehydrogenase (LDH) leakage from the cell membranes indicates that TH is cytotoxic to all three cancer cells with effective concentrations (EC(50)) of 2.4-2.8%. TH is however, not cytotoxic to the MCF-10A cells. Reactivity with annexin V fluorescence antibody and propidium iodide as analysed by flow cytometry and fluorescence microscopy shows that apoptosis occurred in these cancer cells. TH also reduced the mitochondrial membrane potential (??(m)) in the cancer cell lines after 24h of treatment. The activation of caspase-3/7 and -9 was observed in all TH-treated cancer cells indicating the involvement of mitochondrial apoptotic pathway. This study shows that TH has significant anticancer activity against human breast and cervical cancer cell lines. PMID:21167897

Fauzi, Agustine Nengsih; Norazmi, Mohd Nor; Yaacob, Nik Soriani

2011-04-01

314

Casticin induces growth suppression and cell cycle arrest through activation of FOXO3a in hepatocellular carcinoma.  

PubMed

Casticin, a polymethoxyflavone, has been reported to exert anticancer activities. The objectives of this study were to examine the molecular mechanisms by which casticin induces the growth inhibition and cell cycle arrest in human hepatocellular carcinoma (HCC) cells. The HCC cell lines Hep G2 and PLC/PRF/5 were cultured in vitro. The growth inhibitory effects of casticin were evaluated using clonogenic assays. The distribution of phases in the cell cycle was analyzed using flow cytometry (FCM) analysis with propidium iodide (PI) staining. Multiple molecular techniques, such as western blotting and gene transfection, were used to explore the molecular mechanisms of action. Our data demonstrated that casticin significantly inhibited cell viability and colony formation in HCC cells. Furthermore, it induced cell cycle arrest in the G2/M phase. Casticin inhibited phosphorylation of the FOXO3a protein and decreased the expression of FoxM1 and its downstream genes, such as cyclin-dependent kinase (CDK1), cdc25B and cyclin B and increased the expression of p27KIP1. Silencing of FOXO3a expression by small interfering RNA (siRNA) transfection clearly attenuated the inhibitory effects of casticin on FOXM1 expression and cell growth. Our findings provided clear evidence that casticin induces growth suppression and cell cycle arrest through inhibition of FOXO3a phosphorylation causing inactivation of FOXM1 in HCC cells. PMID:23064420

He, Lihua; Yang, Xiaohong; Cao, Xiaocheng; Liu, Fei; Quan, Meifang; Cao, Jianguo

2013-01-01

315

High-throughput optical injection of mammalian cells using a non-diffracting beam in a microfluidic platform  

NASA Astrophysics Data System (ADS)

Femtosecond photoporation is an optical, non-invasive method of injecting membrane impermeable substances contained within the surrounding medium into cells. The technique typically addresses individual cells in a static monolayer. While this gives excellent selectivity, it can be time consuming or impractical to treat larger samples. We build on previous work using a microfluidic platform, which allows for a suspension of cells to be dosed with femtosecond light as they flow through a microfluidic channel. A reusuable quartz chip is designed with an 's'-bend with facilitates the delivery of a 'non-diffracting' femtosecond Bessel beam along the centre of the channel. By implementing off-chip hydrodynamic focusing, cells are confined to the central region of the channel and pass along the Bessel beam core where they are photoporated. This new parallel approach allows for higher flow rates to be used compared to the previous, orthogonal, design whilst maintaining the necessary dwell time in the Bessel beam core. Optical injection of the cell membrane impermeable stain propidium iodide has been successful with two cell lines. These have yielded viable injection efficiencies of 31.0+/-9.5% Chinese hamster ovary cells (CHO-K1) and 20.4+/-4.2% human promyelocytic cells (HL60) with a cell throughput of up to 10 cells/second. This marks an order of magnitude increase compared to the previous microfluidic design.

Rendall, Helen A.; Marchington, Robert F.; Praveen, Bavishna B.; Bergmann, Gerald; Arita, Yoshihiko; Heisterkamp, Alexander; Gunn-Moore, Frank J.; Dholakia, Kishan

2013-03-01

316

Synergistic increase in cell lethality by dieldrin and H2O2 in rat thymocytes: effect of dieldrin on the cells exposed to oxidative stress.  

PubMed

Dieldrin, one of persistent pesticides, is highly resistant to biotic and abiotic degradation. It is accumulated in organisms. Recent studies suggest that dieldrin exerts a potent cytotoxic action on cells exposed to oxidative stress. In this study, the effect of dieldrin on rat thymocytes exposed to hydrogen peroxide (H2O2)-induced oxidative stress was examined. Dieldrin at 5?M and H2O2 at 300?M slightly increased cell lethality from a control value of 5.4±0.5% (mean±standard deviation of four experiments) to 7.8±1.3% and 9.0±0.3%, respectively. Simultaneous application of dieldrin and H2O2 significantly increased cell lethality to 46.2±1.8%. The synergistic increase in cell lethality was dependent on dieldrin concentration (0.3-5?M) but not on H2O2 concentration (30-300?M). Dieldrin accelerated H2O2-induced cell death, which was estimated with the help of annexin V-FITC and propidium iodide. Presence of either dieldrin or H2O2 decreased the cellular content of nonprotein thiol and increased intracellular Zn(2+) concentration. The combination of dieldrin and H2O2 further pronounced these effects. TPEN, a chelator of intracellular Zn(2+), significantly attenuated the synergistic increase in cell lethality induced by dieldrin and H2O2. It is, therefore, suggested that dieldrin augments the cytotoxicity of H2O2 in a Zn(2+)-dependent manner. PMID:23726008

Chimeddorj, Tsolmon; Suzuki, Tomoko; Murakane, Kazuhiro; Inai, Miyuki; Satoh, Masaya; Oyama, Yasuo

2013-09-01

317

Magnetic nanoparticles sensitize MCF-7 breast cancer cells to doxorubicin-induced apoptosis  

PubMed Central

Background Resistance of breast cancer cells to the available chemotherapeutics is a major obstacle to successful treatment. Recent studies have shown that magnetic nanoparticles might have significant application in different medical fields including cancer treatment. The goal of this study is to verify the ability of magnetic nanoparticles to sensitize cancer cells to the clinically available chemotherapy. Methods The role of iron oxide nanoparticles, static magnetic field, or a combination in the enhancement of the apoptotic potential of doxorubicin against the resistant breast cancer cells, MCF-7 was evaluated using the MTT assay and the propidium iodide method. Results In the present study, results revealed that pre-incubation of MCF-7 cells with iron oxide nanoparticles before the addition of doxorubicin did not enhance doxorubicin-induced growth inhibition. Pre-incubation of MCF-7 cells with iron oxide nanoparticles followed by a static magnetic field exposure significantly (P?cell death. Conclusions These results might point to the importance of combining magnetic nanoparticles with a static magnetic field in treatment of doxorubicin-refractory breast cancer cells.

2012-01-01

318

Histones and basic polypeptides activate Ca2+/cation influx in various cell types.  

PubMed Central

Histone H2A (1-10 microg/ml) added to Ehrlich ascite cell suspensions promoted: (i) Ca2+ influx, but no apparent intracellular Ca2+ mobilization; (ii) plasma-membrane depolarization and Na+ influx in Ca2+-free medium, which were recovered by Ca2+ readmission; (iii) influx of other cations such as Ba2+, Mn2+, choline+ and N-methyl-d-glucamine+, but not of propidium+, ethidium bromide and Trypan Blue. H2A-induced Ca2+ influx and cell depolarization were: (i) blocked by La3+ and Gd3+, but not by various inhibitors of receptor-activated Ca2+-influx pathways/channels; (ii) mimicked by various basic polypeptides, with Mr>4000; (iii) prevented or reversed by polyanions such as polyglutamate or heparin; (iv) present in other cell types, such as Jurkat, PC12 and Friend erythroleukaemia cells, but virtually absent from rat hepatocytes and thymocytes. We conclude that cationic proteins/polypeptides, by interacting in a cell-specific manner with the cell surface, can activate in those cells putative non-selective Ca2+ channels and membrane depolarization.

Gamberucci, A; Fulceri, R; Marcolongo, P; Pralong, W F; Benedetti, A

1998-01-01

319

The interaction of the carbon nanoparticles with human cell plasma membrane  

NASA Astrophysics Data System (ADS)

The study of carbon nanostructures is a highly topical branch of bionanotechnology because of their potential application in biomedicine. Carbon nanotubes (CNTs) are known for their ability to kill tumor cells causing hyperthermia shock and can be used in photothermal therapy respectively. Also chemically modified CNTs can be used for drug delivery. The needle-like shape of CNTs allows them to penetrate into the cell plasma membrane without killing the cell. C60 fullerenes are regarded as valuable nanocarriers for different hydrophobic molecules as well as potential antiviral agents or photosensitizers. In our previous studies we have demonstrated that all types of carbon nanoparticles cause externalization of phosphatidylserine (PS) from the inner to the outer layer of the cell membrane in the small local patches (points of contact), leaving the other parts of plasma membrane PS-negative. In the current work there were studied the interactions of pristine C60 fullerenes and different types of CNTs with human blood cells (erythrocytes and Jurkat T-cells). We have shown, that carbon nanoparticles do not have any hemolytic effects, if judged by the dynamics of acidic hemolysis, although they are capable of permeabilizating the cells and facilitating the internalization of propidium iodide into the nuclei.

Overchuk, M.; Prylutska, S.; Bilyy, Rostyslav; Prylutsky, Yu.; Ritter, U.

2013-09-01

320

Cytostatic and apoptosis-inducing activity of boswellic acids toward malignant cell lines in vitro.  

PubMed

Boswellic acids from frankincense were indentified as the active compounds which inhibit leukotriene biosynthesis, 5-lipoxygenase and exert antiproliferative activity toward a variety of malignant cells. Because of the relevance for the clinical application, we tested the ethanolic extract of Boswellia serrata gum resin containing a defined amount of boswellic acids for its cytotoxic, cytostatic and apoptotic activity on five leukemia (HL-60, K 562, U937, MOLT-4, THP-1) and two brain tumor (LN-18, LN-229) cell lines by WST-1 assay and flow cytometry. The Boswellia serrata extract induced dose-dependent antiproliferative effects on all human malignant cells tested with GI50 values (extract concentration producing 50% cell growth inhibition) between 57.0 and 124.1 micrograms/ml. In three haematological cell lines (K562, U937, MOLT-4) the effect of total extract expressed in GI50 was 2.8-, 3.3- and 2.3-times more potent (p < 0.05) than pure 3-O-acetyl-11-keto-beta-boswellic acid (AKBA). Morphological changes after 24-27 hours and the detection of apoptotic cells by AnnexinV-binding and/or by the detection of propidium iodide-labelled DNA with flow cytometry, confirmed the apoptotic cell death. The results of this study suggest the effectiveness of Boswellia serrata extract with defined content of boswellic acids. PMID:12530009

Hostanska, Katarina; Daum, Gerhard; Saller, Reinhard

2002-01-01

321

Gliotoxin Isolated from Marine Fungus Aspergillus sp. Induces Apoptosis of Human Cervical Cancer and Chondrosarcoma Cells  

PubMed Central

Gliotoxin, a secondary metabolite produced by marine fungus Aspergillus sp., possesses various biological activities including anticancer activity. However, the mechanism underlying gliotoxin-induced cytotoxicity on human cervical cancer (Hela) and human chondrosarcoma (SW1353) cells remains unclear. In this study, we focused on the effect of gliotoxin induction on apoptosis, the activating expressions of caspase family enzymes in the cells. Apoptotic cell levels were measured through DAPI and Annexin V/Propidium Iodide (PI) double staining analysis. The apoptotic protein expression of Bcl-2 and caspase family was detected by Western blot in Hela and SW1353 cells. Our results showed that gliotoxin treatment inhibited cell proliferation and induced significant morphological changes. Gliotoxin induced apoptosis was further confirmed by DNA fragmentation, chromatin condensation and disrupted mitochondrial membrane potential. Gliotoxin-induced activation of caspase-3, caspase-8 and caspase-9, down-regulation of Bcl-2, up-regulation of Bax and cytochromec (cyt c) release showed evidence for the gliotoxin activity on apoptosis. These findings suggest that gliotoxin isolated from marine fungus Aspergillus sp. induced apoptosis in Hela and SW1353 cells via the mitochondrial pathway followed by downstream events leading to apoptotic mode of cell death.

Nguyen, Van-Tinh; Lee, Jung Suck; Qian, Zhong-Ji; Li, Yong-Xin; Kim, Kil-Nam; Heo, Soo-Jin; Jeon, You-Jin; Park, Won Sun; Choi, Il-Whan; Je, Jae-Young; Jung, Won-Kyo

2013-01-01

322

Caffeine increases the antitumor effect of Cisplatin in human hepatocellular carcinoma cells.  

PubMed

Caffeine is thought to increase the antitumor effect of cisplatin or DNA-damaging agents because it is known that caffeine inhibits DNA repair. Caffeine-assisted chemotherapy has been used in the treatment of osteosarcomas. In addition, there are several reports about combination chemotherapy with caffeine for certain malignancies other than osteosarcomas. However, there are no reports that show the utility of combination chemotherapy with caffeine for hepatocellular carcinoma (HCC). We examined the combined effects of caffeine and cisplatin in human HCC cell lines, and screened for a more effective administration method of caffeine in vitro. Human HCC cell lines (HepG2, HLF, HuH-7, and Li-7) were exposed to caffeine (0-0.5 mM) and cisplatin (0-1.2 ?g/mL) for 72 h, either alone or in combination. Cell numbers were measured by WST-8 assay, and cell apoptosis was determined by annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) binding assay. As a result, caffeine increased the antitumor effect of cisplatin on cell proliferation and cell apoptosis in the HCC cell lines. Moreover, this effect was dependent on the amount of exposure to caffeine. These results suggest that caffeine-assisted chemotherapy is useful for HCC treatment. PMID:22382328

Kawano, Yohei; Nagata, Masashi; Kohno, Takafumi; Ichimiya, Akihiro; Iwakiri, Tomomi; Okumura, Manabu; Arimori, Kazuhiko

2012-01-01

323

Identification of resting cells by dual-parameter flow cytometry of statin expression and DNA content.  

PubMed

Statin, a 57-kDa nuclear protein, has been recognized as a unique marker of quiescent (G0) cells; specific monoclonal antibodies (MoAb) against statin have been produced and used to label resting cells in tissue sections and in cultured cells. We present an improved method for the identification of G0 cells by dual-parameter flow cytometry of statin expression and DNA content. The appropriate technical conditions were set up by using resting and cycling human fibroblasts as a model cell system. Several fixatives proved to be suitable for the immunocytochemical detection of statin; among them, 70% ethanol was selected because this fixation procedure is suitable for DNA staining with intercalating dyes and is routinely used for the immunolabeling of proliferation markers (such as proliferating cell nuclear antigen [PCNA] and Ki-67) and of bromodeoxyuridine (BrdUrd) incorporation. Following cell permeabilization with detergent, exposure to the antistatin antibody (S-44), and indirect fluorescein isothiocyanate immunolabeling, cells were counterstained for DNA with propidium iodide and analyzed by dual-parameter flow cytometry. In cells from several animal sources (rat thymocytes and C6 glioma cells, mouse 3T3 cells, and human MCF-7 cells), under different experimental conditions, the expression of statin was found to correlate inversely with that of PCNA and Ki-67, and with the BrdUrd labeling index. In dual-parameter flow scattergrams, G0 (statin positive) cells can be discriminated from the potentially cycling (statin negative) G1 cells, i.e., within a cell fraction having the same DNA content. This approach can be envisaged as a powerful tool both for monitoring changes in the resting cell fraction and for investigating the process of G0-G1 transition in unperturbed and drug-treated cell populations. PMID:8608730

Pellicciari, C; Mangiarotti, R; Bottone, M G; Danova, M; Wang, E

1995-12-01

324

Identification of resting cells by dual-parameter flow cytometry of statin expression and DNA content  

SciTech Connect

Statin, a 57-kDa nuclear protein, has been recognized as a unique marker of quiescent (G{sub 0}) cells; specific monoclonal antibodies (MoAb) against statin have been produced and used to label resting cells in tissue sections and in cultured cells. We present an improved method for the identification of G{sub 0} cells by dual-parameter flow cytometry of statin expression and DNA content. The appropriate technical conditions were set up by using resting and cycling human fibroblasts as a model cell system. Several fixatives proved to be suitable for the immunocytochemical detection of statin; among them, 70% ethanol was selected because this fixation procedure is suitable for DNA staining with intercalating dyes and is routinely used for the immunolabeling of proliferation markers (such as proliferating cell nuclear antigen [PCNA] and Ki-67) and of bromodeoxyuridine (BrdUrd) incorporation. Following cell permeabilization with detergent, exposure to the antistatin antibody (S-44), and indirect fluorescein isothiocyanate immunolabeling, cells were counterstained for DNA with propidium iodide and analyzed by dual-parameter flow cytometry. In cells from several animal sources (rat thymocytes and C6 glioma cells, mouse 3T3 cells, and human MCF-7 cells), under different experimental conditions, the expression of statin was found to correlate inversely with that of PCNA and Ki-67, and with the BrdUrd labeling index. In dual-parameter flow scattergrams, G{sub 0} (statin positive) cells can be discriminated from the potentially cycling (statin negative) G{sub 1} cells, i.e., within a cell fraction having the same DNA content. This approach can be envisaged as a powerful tool both for monitoring changes in the resting cell fraction and for investigating the process of G{sub 0}-G{sub 1} transition in unperturbed and drug-treated cell populations. 48 refs., 5 figs., 1 tab.

Pellicciari, C.; Mangiarotti, R.; Bottone, M.G.; Danova, M. [Univ. of Pavia (Italy); Wang, E. [Jewish General Hospital, Montreal, Quebec (Canada)

1995-12-01

325

CD4+-T-cell counts, spontaneous apoptosis, and Fas expression in peripheral blood mononuclear cells obtained from human immunodeficiency virus type 1-infected subjects.  

PubMed Central

We examined the relationships among CD4+-T-cell counts, spontaneous apoptosis, and Fas expression among peripheral blood mononuclear cells obtained from human immunodeficiency virus type 1 (HIV-1)-infected patients. After 2 days of incubation, propidium iodide DNA staining and flow cytometry revealed that peripheral blood mononuclear cells from subjects with the lowest CD4+-cell numbers (0 to 99/microl; n = 20) showed the highest frequency of apoptosis: 22.4% +/- 2.7% (mean +/- standard error) versus 13.8% +/- 1.2% and 12.7% +/- 1.4% among peripheral blood mononuclear cells obtained from patients with 100 to 499 CD4+ cells/microl (n = 19) and >500 CD4+ cells/microl (n = 17), respectively. Each of these means differed significantly from the mean frequency of apoptosis (6.3% +/- 0.7%) of peripheral blood mononuclear cells obtained from HIV-1-seronegative controls (P < 0.001, Student's t test). After incubation, the percentage of peripheral blood mononuclear cells expressing Fas antigen was increased for the HIV-1-infected subjects, and this was most evident for patients with more advanced disease. Among patients with fewer than 100 CD4+ cells/microl, 64.4% +/- 5.4% of peripheral blood mononuclear cells were Fas+, as opposed to 25.8% +/- 3.0% and 14.5% +/- 1.7% Fas+ cells among patients with more than 100 CD4+ cells/microl and healthy controls, respectively (P < 0.05 for each group comparison). Interestingly, in all populations, most apoptotic cells did not express Fas. Thus, apoptosis and Fas expression are increased in incubated peripheral blood mononuclear cells obtained from HIV-1-infected patients and these phenomena are enhanced as disease progresses.

Patki, A H; Georges, D L; Lederman, M M

1997-01-01

326

Media Effects on Nitrosomonas Europaea Monochloramine Disinfection Kinetics Using Propidium Monoazide Quantitative Real-time PCR  

EPA Science Inventory

Monochloramine use as a secondary disinfectant in the United States is predicted to increase to 57% of all surface and 7% of all ground water systems. With monochloramine addition, there is a risk of nitrification in the distribution system by ammonia-oxidizing bacteria (AOB). Ni...

327

Media Effects on Nitrosomonas Europaea Monochloramine Disinfection Kinetics Using Propidium Monoazide Quantitative Real-time PCR  

EPA Science Inventory

Monochloramine use as a secondary disinfectant in the United States is predicted to increase to 57% of all surface and 7% of all ground water systems. With monochloramine addition, there is a risk of nitrification in the distribution system by ammonia-oxidizing bacteria (AOB). Ba...

328

Media effects on Nitrosomonas Europaea Monochloramine Disinfection Kinetics using Propidium Monoazide Quantitative Real-time PCR  

EPA Science Inventory

Monochloramine use as a secondary disinfectant in the United States is predicted to increase to 57% of all surface and 7% of all ground water systems. With monochloramine addition, there is a risk of nitrification in the distribution system by ammonia-oxidizing bacteria (AOB). Ba...

329

Propidium Monoazide-based Method for Identifying Phylogenetic Association of Necromass Near Hydrothermal Systems  

NASA Astrophysics Data System (ADS)

Black Smoker hydrothermal systems are geologically driven systems located near subduction zones and spreading centers associated with plate margins. The high temperature and low pH of fluids that are often associated with basalt-hosted hydrothermal systems select for unique microbial communities primarily comprised of prokaryotes capable of S and Fe cycling. High temperature fluids, where temperatures exceed 300° C, are likely to have a lethal effect on transient deep water planktonic communities and, over long temporal scales, may influence the molecular composition of pelleted necromass aggregates near the chimney system. We have developed a method for discriminative sequencing permitting intra vs. extracellular 16S rDNA sequencing to reveal community differences between biologically-relevant and necromass-associated DNA. This method has only recently been applied to marine environments and, here, we propose its use as relevant tool for studying the molecular ecology of high temperature hydrothermal systems, as physical drivers of massive transient community die offs and associated detrital 16S rDNA community shifts. Ultimately, we aim to understand the fraction of 16S rDNA communities that do not represent living taxa, or the information-containing fraction of total necromass pool, to better frame ecological hypotheses regarding environmental biogeochemical cycling in hydrothermal system environments.

Ramírez, Gustavo; Edwards, Katrina

2014-05-01

330

PCR-Based Method Using Propidium Monoazide To Distinguish Viable from Nonviable Bacillus subtilis Spores  

Microsoft Academic Search

There is a continued need for the development and appli- cation of rapid methods for the detection and enumeration of bacterial endospores, especially as investigators seek to evalu- ate the efficacy of emerging food-processing technologies. For such thermal-process validation studies, surrogates of Clostrid- ium botulinum, including Bacillus subtilis and Clostridium sporogenes, are commonly used. Currently, standard plating methods remain the

H. Rawsthorne; C. N. Dock; L. A. Jaykus

2009-01-01

331

Cryptosporidium Propidium Monoazide-PCR, a Molecular Biology-Based Technique for Genotyping Viable Cryptosporidium Oocysts  

EPA Science Inventory

Cryptosporidium is an important waterborne protozoan parasite that can cause severe diarrhea and death in the immunocompromised. Current methods to monitor for Cryptosporidium oocysts in water are microscopy-based USEPA Methods 1622 and 1623. These methods assess total levels o...

332

Acetonic Extract of Buxus sempervirens Induces Cell Cycle Arrest, Apoptosis and Autophagy in Breast Cancer Cells  

PubMed Central

Plants are an invaluable source of potential new anti-cancer drugs. Here, we investigated the cytotoxic activity of the acetonic extract of Buxus sempervirens on five breast cancer cell lines, MCF7, MCF10CA1a and T47D, three aggressive triple positive breast cancer cell lines, and BT-20 and MDA-MB-435, which are triple negative breast cancer cell lines. As a control, MCF10A, a spontaneously immortalized but non-tumoral cell line has been used. The acetonic extract of Buxus sempervirens showed cytotoxic activity towards all the five studied breast cancer cell lines with an IC50 ranging from 7.74 µg/ml to 12.5 µg/ml. Most importantly, the plant extract was less toxic towards MCF10A with an IC50 of 19.24 µg/ml. Fluorescence-activated cell sorting (FACS) analysis showed that the plant extract induced cell death and cell cycle arrest in G0/G1 phase in MCF7, T47D, MCF10CA1a and BT-20 cell lines, concomitant to cyclin D1 downregulation. Application of MCF7 and MCF10CA1a respective IC50 did not show such effects on the control cell line MCF10A. Propidium iodide/Annexin V double staining revealed a pre-apoptotic cell population with extract-treated MCF10CA1a, T47D and BT-20 cells. Transmission electron microscopy analyses indicated the occurrence of autophagy in MCF7 and MCF10CA1a cell lines. Immunofluorescence and Western blot assays confirmed the processing of microtubule-associated protein LC3 in the treated cancer cells. Moreover, we have demonstrated the upregulation of Beclin-1 in these cell lines and downregulation of Survivin and p21. Also, Caspase-3 detection in treated BT-20 and T47D confirmed the occurrence of apoptosis in these cells. Our findings indicate that Buxus sempervirens extract exhibit promising anti-cancer activity by triggering both autophagic cell death and apoptosis, suggesting that this plant may contain potential anti-cancer agents for single or combinatory cancer therapy against breast cancer.

Ait-Mohamed, Ouardia; Battisti, Valentine; Joliot, Veronique; Fritsch, Lauriane; Pontis, Julien; Medjkane, Souhila; Redeuilh, Catherine; Lamouri, Aazdine; Fahy, Christine; Rholam, Mohamed; Atmani, Djebbar; Ait-Si-Ali, Slimane

2011-01-01

333

Effects of incubation temperature and time after thawing on viability assessment of peripheral hematopoietic progenitor cells cryopreserved for transplantation.  

PubMed

Three widely used viability assessments were compared: (1) membrane integrity of nucleated cells using trypan blue (TB) exclusion and a fluorometric membrane integrity assay (SYTO 13 and propidium iodide), (2) enumeration of viable CD34+ cells, and (3) clonogenic assay (granulocyte-macrophage colony-forming units, CFU-GM). Post thaw peripheral hematopoietic progenitor cells (HPC) were incubated at 0, 22, and 37 degrees C for 20-min intervals before assessment. The recovery of viable nucleated cells assessed by TB and SYTO/PI decreased significantly with time at incubation temperatures of 22 and 37 degrees C (P<0.05), and correlated with the concentration of mononuclear cells (MNC) (r=0.936, P<0.05). The decrease in recovery of viable nucleated cells was slower when thawed cells were incubated at 0 degrees C compared with 22 degrees C or 37 degrees C. The recovery, measured by absolute viable CD34+ or CFU-GM, was not affected by 2 h post thaw incubation (P>0.05) at 0, 22, and 37 degrees C (P>0.05). There were no significant differences in the measured recovery of viable CD34+ cells and CFU-GM at all incubation times (P>0.05) and temperatures (P>0.05). Both CFU-GM and absolute CD34+ cells can be used as post thaw viability assays for HPC cryopreserved for transplantation. PMID:14595390

Yang, H; Acker, J P; Cabuhat, M; McGann, L E

2003-11-01

334

Matrine reduces proliferation of human lung cancer cells by inducing apoptosis and changing miRNA expression profiles.  

PubMed

Matrine, a main active component extracted from dry roots of Sophora flavecens , has been reported to exert antitumor effects on A549 human non-small lung cancer cells, but its mechanisms of action remain unclear. To determine effects of matrine on proliferation of A549 cells and assess possible mechanisms, MTT assays were employed to detect cytotoxicity, along with o flow cytometric analysis of DNA content of nuclei of cells following staining with propidium iodide to analyze cell cycle distribution. Western blotting was performed to determined expression levels of Bax, Bcl-2, VEGF and HDAC1, while a microarray was used to assessed changes of miRNA profiles. In the MTT assay, matrine suppressed growth of human lung cancer cell A549 in a dose- and time- dependent manner at doses of 0.25-2.5 mg/ml for 24h, 48h or 72h. Matrine induced cell cycle arrest in G0/G1 phase and decreased the G2/M phase, while down-regulating the expression of Bcl2 protein, leading to a reduction in the Bcl-2/Bax ratio. In addition, matrine down regulated the expression level of VEGF and HDAC1 of A549 cells. Microarray analysis demonstrated that matrine altered the expression level of miRNAs compared with untreated control A549 cells. In conclusion, matrine could inhibit proliferation of A549 cells, providing useful information for understanding anticancer mechanisms. PMID:24716952

Liu, Yong-Qi; Li, Yi; Qin, Jie; Wang, Qian; She, Ya-Li; Luo, Ya-Li; He, Jian-Xin; Li, Jing-Ya; Xie, Xiao-Dong

2014-01-01

335

Viability analysis and apoptosis induction of breast cancer cells in a microfluidic device: effect of cytostatic drugs  

PubMed Central

Breast cancer is the leading cause of cancer deaths among non-smoking women worldwide. At the moment the treatment regime is such that patients receive different chemotherapeutic and/or hormonal treatments dependent on the hormone receptor status, the menopausal status and age. However, in vitro sensitivity testing of tumor biopsies could rationalize and improve the choice of chemo- and hormone therapy. Lab-on-a-Chip devices, using microfluidic techniques, make detailed cellular analysis possible using fewer cells, enabling working with a patients’ own cells and performing chemo- and hormone sensitivity testing in an ex vivo setting. This article describes the development of two microfluidic devices made in poly(dimethylsiloxane) (PDMS) to validate the cell culture properties and analyze the chemosensitivity of MCF-7 cells (estrogen receptor positive human breast cancer cells) in response to the drug staurosporine (SSP). In both cases, cell viability was assessed using the life-stain Calcein-AM (CAAM) and the death dye propidium iodide (PI). MCF-7 cells could be statically cultured for up to 7 days in the microfluidic chip. A 30 min flow with SSP and a subsequent 24 h static incubation in the incubator induced apoptosis in MCF-7 cells, as shown by a disappearance of the aggregate-like morphology, a decrease in CAAM staining and an increase in PI staining. This work provides valuable leads to develop a microfluidic chip to test the chemosensitivity of tumor cells in response to therapeutics and in this way improve cancer treatment towards personalized medicine.

Komen, Job; Franke, Henk R.; Andersson, Helene; Vermes, Istvan; van den Berg, Albert

2008-01-01

336

Satellite cell mitotic activity in posthatch turkey skeletal muscle growth.  

PubMed

The relationship between satellite cell mitotic activity and skeletal myofiber growth was examined in Pectoralis thoracicus and Biceps femoris muscles of Large White tom turkeys (Nicholas strain) at 3, 6, 9, 18, and 26 wk of age. Mitotically active satellite cells were labeled with 5-bromo-2'-deoxyuridine (BrdU). Labeled satellite cells were identified on enzymatically isolated myofiber segments using mouse anti-BrdU followed by fluorescein-5-isothiocyanate (FITC) conjugated goat anti-mouse IgG secondary antibodies. Myofiber nuclei (satellite cell nuclei + myonuclei) were counterstained with propidium iodide (PI). Myofiber segment diameter, myofiber segment length, and number of FITC- and PI-labeled nuclei were determined for each segment. At each age interval there was an increase in myofiber diameter, suggesting that the myofibers were growing during the entire experimental period. There was an age-related (P < .001) decrease in satellite cell mitotic activity and an age-related increase (P < .001) in the cytoplasmic volume to nucleus ratio (CNR) from 3 to 26 wk of age. An early phase of myofiber growth, between 3 and 6 wk of age, was characterized by a high level of satellite cell mitotic activity and increased CNR