Science.gov

Sample records for proposed visible fel

  1. A proposed visible FEL Facility at Boeing

    SciTech Connect

    Dowell, D.H.; Adamski, J.L.; Hayward, T.D.

    1995-12-31

    A 1-kW average power, visible wavelength FEL is described, based on a 120-MeV, 0.1. A macropulse average current linac operating at a duty factor of 0. 6% and having average beam power of 70 kW. The accelerator will employ a demonstrated photoinjector, 18-MeV, 433-MHz linac as an injector, followed by a 1300-MHz longitudinal phase space {open_quotes} linearizer,{close_quotes} a magnetic buncher chicane, and seven 1300-MHz, pulsed traveling wave linac sections. The magnets used to transport the beam from the linac to the FEL centerline, the 5-m THUNDER wiggler, and the optical resonator will be reclaimed from previous FEL demonstration experiments. We expect to attain pulse lengths of 7 ps for 3.5 nC, with minimal distortion of the pulse profile and normalized rms emittance of 7.5 {+-} 2.5 {pi} mm-mr. FELEX projects a laser conversion efficiency of 4.3 %, yielding average output of 3 kW.

  2. Saturation Measurements of a Visible SASE FEL

    SciTech Connect

    Carr, Roger

    2002-08-14

    VISA (Visible to Infrared SASE Amplifier) is an FEL designed to obtain high gain at a radiation wavelength of 800 nm. Large gain is achieved by driving the FEL with the 71 MeV, high brightness beam of the Accelerator Test Facility (ATF) and using a novel, strong focusing, 4 m long undulator with a gap of 6 mm and a period of 1.8 cm. We report measurements of exponential gain, saturation, and spectra of the FEL radiation intensity.

  3. Saturation Measurements of a Visible SASE FEL

    NASA Astrophysics Data System (ADS)

    Tremaine, A.; Frigola, P.; Murokh, A.; Pellegrini, C.; Reiche, S.

    2002-08-01

    VISA (Visible to Infrared SASE Amplifier) is an FEL designed to obtain high gain at a radiation wavelength of 800 nm. Large gain is achieved by driving the FEL with the 71 MeV, high brightness beam of the Accelerator Test Facility (ATF) and using a novel, strong focusing, 4m long undulator with a gap of 6 mm and a period of 1.8 cm. We report measurements of exponential gain, saturation, and spectra of the FEL radiation intensity.

  4. Proposed UV FEL user facility at BNL

    NASA Astrophysics Data System (ADS)

    Ben-Zvi, I.; Di Mauro, L. F.; Krinsky, S.; White, M. G.; Yu, L. H.

    1991-07-01

    The NSLS at Brookhaven National Laboratory is proposing the construction of an UV FEL operating in the wavelength range from visible to 1000 Å. Nanocoulomb electron pulses will be generated at a laser photocathode rf gun at a repetition rate of 10 kHz. The 6 ps pulses will be accelerated to 250 MeV in a superconducting linac. The FEL consists of an exponential growth section followed by a tapered section. The amplifier input is a harmonic of a tunable visible laser generated either by nonlinear optical material or the nonlinearity of the FEL itself. The FEL output in 10 -4 bandwidth is 1 mJ per pulse, resulting in an average power of 10 W. The availability of radiation with these characteristics would open up new opportunities in photochemistry, biology and nonlinear optics, as discussed in a recent workshop held at BNL.

  5. Proposed uv-FEL user facility at BNL

    SciTech Connect

    Ben-Zvi, I.; Di Mauro, L.F.; Krinsky, S.; White, M.G.; Yu, L.H.; Batchelor, K.; Friedman, A.; Fisher, A.S.; Halama, H.; Ingold, G.; Johnson, E.D.; Kramer, S.; Rogers, J.T.; Solomon, L.; Wachtel, J.; Zhang, X.

    1991-01-01

    The NSLS at Brookhaven National Laboratory is proposing the construction of a UV-FEL operating in the wavelength range from visible to 750{Angstrom}. Nano-Coulomb electron pulses will be generated at a laser photo-cathode RF gun at a repetition rate of 10 KHz. The 6 ps pulses will be accelerated to 250 MeV in a superconducting linac. The FEL output will serve four stations with independent wavelength tuning, using two wigglers and two rotating mirror beam switches. Seed radiation for the FEL amplifiers will be provided by conventional tunable lasers, and the final frequency multiplication from the visible or near UV to the VUV will be carried out in the FEL itself. Each FEL will comprise of an initial wiggler resonant to the seed wavelength, a dispersion section, and a second wiggler resonant to the output wavelength. The facility will provide pump probe capability, FEL or FEL, and FEL on synchrotron light from an insersion device on the NSLS X-Ray ring. 15 refs., 2 figs., 3 tabs.

  6. Proposed UV-FEL user facility at BNL

    NASA Astrophysics Data System (ADS)

    Ben-Zvi, I.; Dimauro, L. F.; Krinsky, S.; White, M. G.; Yu, L. H.

    1990-11-01

    The NSLS at Brookhaven National Laboratory is proposing the construction of a UV-FEL operating in the wavelength range from visible to 1000 A. Nano-Coulomb electron pulses will be generated at a laser photo-cathode RF gun at a repetition rate of 10 KHz. The 6 ps pulses will be accelerated to 250 MeV in a superconducting linac. The FEL consists of an exponential growth section followed by a tapered section. The amplifier input is a harmonic of a tunable visible laser generated either by nonlinear optical material or the non-linearity of the FEL itself. The FEL output in 10(exp -4) bandwidth is 1 mJ per pulse, resulting in an average power of 10 watts. The availability of radiation with these characteristics would open up new opportunities in photochemistry, biology and non linear optics, as discussed in a recent workshop held at BNL.

  7. Proposed UV-FEL user facility at BNL

    SciTech Connect

    Ben-Zvi, I.; Di Mauro, L.F.; Krinsky, S.; White, M.G.; Yu, L.H.

    1990-01-01

    The NSLS at Brookhaven National Laboratory is proposing the construction of a UV-FEL operating in the wavelength range from visible to 1000{angstrom}. Nano-Coulomb electron pulses will be generated at a laser photo-cathode RF gun at a repetition rate of 10 KHz. The 6 ps pulses will be accelerated to 250 MeV in a superconducting linac. The FEL consists of an exponential growth section followed by a tapered section. The amplifier input is a harmonic of a tunable visible laser generated either by nonlinear optical material or the non-linearity of the FEL itself. The FEL output in 10{sup {minus}4} bandwidth is 1 mJ per pulse, resulting in an average power of 10 watts. The availability of radiation with these characteristics would open up new opportunities in photochemistry, biology and non linear optics, as discussed in a recent workshop held at BNL. 10 refs., 4 figs., 1 tab.

  8. Proposal for a IR waveguide SASE FEL at the PEGASUS injector

    NASA Astrophysics Data System (ADS)

    Reiche, S.; Rosenzweig, J.; Telfer, S.

    2001-12-01

    Free Electron Lasers up to the visible regime are dominated by diffraction effects, resulting in a radiation size much larger than the electron beam. Thus the effective field amplitude at the location of the electron beam, driving the FEL process, is reduced. By using a waveguide, the radiation field is confined within a smaller aperture and an enhancement of the FEL performance can be expected. The PEGASUS injector at UCLA will be capable to provide the brilliance needed for an IR SASE FEL. The experiment Power Enhanced Radiation Source Experiment Using Structures (PERSEUS) is proposed to study the physics of a waveguide SASE FEL in a quasi 1D environment, where diffraction effects are strongly reduced as it is the case only for future FELs operating in the VUV and X-ray regime. The expected FEL performance is given by this presentation.

  9. Beam quality and wavelength limitation in visible and UV FEL oscillations

    SciTech Connect

    Tomimasu, T.

    1995-12-31

    The FELI linac beam has succeeded in visible-FEL oscillation on the third harmonics at 0.64 {mu}m using a 3-m undulator and a 6.72-m optical cavity with two Au-coated mirrors in Feb. 28, 1995. The beam is a 68-MeV, 40-A electron beam with a normalized emittance of 26 {pi}mm{center_dot}mrad and a relative energy spread of 1%. In 1993, an ultraviolet (UV) FEL oscillation was already achieved on the third harmonics at 0.37{mu} m using a 46-MeV, 130-A electron beam with a normalized emittance of 3{pi}mm{center_dot}mrad and a relative energy spread of 0.24% from the APEX L-band linac with an rf photocathode electron gun. However, we are now trying to achieve an FEL oscillation in the UV range using the FELI linac with the thermionic gun because of long-life, easy-operation, and low-cost of the thermionic gun, as the FELI ring with 9.8-m long straight sections capable of storing a long lived 1-A beam is in the design stage. Recent experimental and theoretical results on relations between beam quality and short wavelength FEL oscillations have been also reviewed and wavelength limitations due to normalized emittance and relative energy spread are discussed.

  10. Performance of an undulator for visible and UV FELs at FELI

    SciTech Connect

    Miyauchi, Y.; Zako, A.; Koga, A.

    1995-12-31

    Two infrared free electron lasers (FELs) of the FELI project are now operating in the wavelength range of 1-20{mu}m. A 2.68-m undulator has been constructed for visible and UV FELs covering the wavelength of 1-0.2{mu}m for 100-165 MeV electron beams. It generates alternating, horizontal magnetic field, and wiggles electron beam on a vertical plane. The undulator length and period are 2.68m and 40mm, respectively. The gap of undulator magnets can be changed remotely by using servomotors with an accuracy of 1 {mu}m from the control room. The maximum K-value and related magnetic field strength are 1.9 and 0.5T, respectively, when its gap is set to the minimum value of 16mm. In order to minimize magnetic field reduction due to radiation damage, Sm-Co permanent magnet was adopted. Its structure and the results of magnetic field measurement will be reported.

  11. Design study of a 7 kW, visible wavelength FEL

    SciTech Connect

    Chen, S.C.; Danly, B.G.; Temkin, R.J.; Wurtele, J.; Yang, B.

    1990-01-01

    The MIT Lincoln Laboratory is investigating the possibility of building a free electron laser (FEL) operating at an average power of about 7 kW at wavelengths of 500--600 nm. Additional specifications for the FEL include a bandwidth of less than 0.1 cm{sup {minus}1} and a micropulse separation of less than 10 ns. The design study has investigated the basic design parameters of the FEL including an analysis of the electron accelerator, beam line, wiggler and optical cavity. A nonlinear model of the FEL has been used to calculate the FEL gain and efficiency. The required output power appears achievable from an FEL operating at more than 1% efficiency with a conventional RF accelerator. Details of the FEL design are presented in this report which represent the final report for the year from September 1, 1989 to August 31, 1990. 28 refs., 13 figs., 5 tabs.

  12. Experimental Characterization of Nonlinear Harmonic Radiation from a Visible SASE FEL at Saturation

    NASA Astrophysics Data System (ADS)

    Tremaine, A.; Wang, X. J.; Babzien, M.; Ben-Zvi, I.; Cornacchia, M.

    2002-08-01

    Nonlinear harmonic radiation was observed using the VISA SASE FEL at saturation. The gain lengths, spectra and energies of the three lowest SASE FEL modes were experimentally characterized. Both the measured harmonic gain lengths and center spectral wavelengths are shown to decrease with harmonic number, n, which is consistent with nonlinear harmonic theory. The measured energies for both second and third harmonics are about 1% of the fundamental; the strong second harmonic radiation (approximately 1 microJ) observed is unique for low energy SASE FELs. These experimental results demonstrate for the first time the feasibility of using nonlinear harmonic SASE FEL radiation to produce coherent, femtosecond X-rays.

  13. Experimental Characterization of Nonlinear Harmonic Radiation from a Visible SASE FEL at Saturation

    SciTech Connect

    Cornacchia, Massimo

    2002-08-19

    Nonlinear harmonic radiation was observed using the VISA SASE FEL at saturation. The gain lengths, spectra and energies of the three lowest SASE FEL modes were experimentally characterized. Both the measured harmonic gain lengths and center spectral wavelengths are shown to decrease with harmonic number, n, which is consistent with nonlinear harmonic theory. The measured energies for both second and third harmonics are about 1% of the fundamental; the strong second harmonic radiation ({approx} 1 {micro}J) observed is unique for low energy SASE FELs. These experimental results demonstrate for the first time the feasibility of using nonlinear harmonic SASE FEL radiation to produce coherent, femtosecond X-rays.

  14. PROPOSAL FOR A PRE-BUNCHED LASER WAKEFIELD ACCELERATION EXPERIMENT AT THE BNL DUV FEL FACILITY.

    SciTech Connect

    WANG,X.J.SHEEHY,B.WU,Z.GAI,W.TING,A.

    2003-05-12

    We propose a pre-bunched Laser Wakefield Acceleration (LWFA) experiment in a plasma channel at the BNL DUV-FEL Facility. BNL DUV-FEL facility is uniquely qualified to carry out the proposed experiment because of the high-brightness' electron beam and RF synchronized TW Ti:Sapphire laser system. The DUV-FEL is a 200 MeV linac facility equipped with a photocathode RF gun injector, a 100 fs Ti:Sapphire laser system and a magnetic bunch compressor. The proposed LWFA will inject a 150 MeV, 10 fs electron bunch into a centimeters long plasma channel. Simulation and preliminary experiment showed that, high-brightness 10 fs electron bunch with 20 pC charge could be produced using the technique of longitudinal emittance compensation. The initial experiment will be performed using the existing Ti:Sapphire laser system (50mJ, 100 fs) with 30 {micro}m spot and 4 cm channel, the maximum energy gain will be about 15 MeV. We propose to upgrade the existing SDL laser output to 500 mJ with a shorter pulse length (50 fs). For an electron beam spot size of 20 um, the expected energy gain is about 100 MeV for a 5 TW, 50 fs laser pulse.

  15. 77 FR 75660 - Agency Information Collection Activities; Proposed Collection; Comments Requested: FEL Out-of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... Collection; Comments Requested: FEL Out-of-Business Records ACTION: 30-day notice. The Department of Justice...: FEL Out of Business Records. (3) Form Number: None. Bureau of Alcohol, Tobacco, Firearms...

  16. 77 FR 63340 - Agency Information Collection Activities; Proposed Collection; Comments Requested: FEL Out-of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... Collection; Comments Requested: FEL Out-of-Business Records ACTION: 60-Day Notice. The Department of Justice... Information Collection: New collection. (2) Title of the Form/Collection: FEL Out-of-Business Records....

  17. On use of time-dependent microwave fields to increase an FEL oscillator efficiency

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1995-12-31

    Various schemes of a high efficiency FEL oscillator with time-dependent accelerating (or decelerating) microwave field in interaction region are proposed. All the, schemes are based on standard accelerating structure and undulator technology. Feasibility of the proposed schemes is confirmed by results of numerical simulations. Realistic examples of FEL oscillators of infrared and visible wavelength ranges with efficiency about 20 % are presented.

  18. 78 FR 68089 - Proposed Information Collection; Visibility Valuation Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... National Park Service Proposed Information Collection; Visibility Valuation Survey AGENCY: National Park... conduct a nationwide stated preference survey to estimate the value of visibility changes in national parks and wilderness areas. Survey development and pre-testing have already been conducted under...

  19. A proposed VUV oscillator-based FEL upgrade at Jefferson Lab

    SciTech Connect

    Benson, S. V.; Douglas, D. R.; Evtushenko, P.; Hannon, F. E.; Hernandez-Garcia, C.; Klopf, J. M.; Legg, R. A.; Neil, G. R.; Shinn, M. D.; Tennant, C. D.; Zhang, S.; Williams, G. P.

    2011-09-20

    Advances in superconducting linac technology offer the possibility of an upgrade of the Jefferson Lab Free Electron Laser (JLab FEL) facility to an oscillator-based VUV-FEL that would produce 6 x 10{sup 12} coherent 100 eV photons per pulse at multi-MHz repetition rates in the fundamental. At present JLab operates a pair of oscillator-based continuous-wave Free Electron Lasers (FELs) as a linac-based next generation light source in the IR and UV, with sub-picosecond pulses up to 75 MHz. Harmonics upwards of 10 eV are produced and the fully coherent nature of the source results in peak and average brightness values that are several orders of magnitude higher than storage rings. The accelerator uses an energy recovered linac design for efficiency of operation. New style superconducting linac cryomodules with higher gradient, combined with a new injector and beam transport system allow the development of the FEL to higher photon energies.

  20. Tapered undulators for SASE FELs

    NASA Astrophysics Data System (ADS)

    Fawley, William M.; Huang, Zhirong; Kim, Kwang-Je; Vinokurov, Nikolai A.

    2002-05-01

    We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission, where the radiation tends to have a relatively broad bandwidth and limited temporal coherence. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of tapered undulators for parameters corresponding to the Argonne low-energy undulator test line FEL and the proposed linac coherent light source.

  1. Tapered undulator for SASE FELs

    SciTech Connect

    Fawley, William M.; Huang, Zhirong; Kim, Kwang-Je; Vinokurov, Nikolai A.

    2001-09-14

    We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission (SASE), where the radiation tends to have a relatively broad bandwidth, limited temporal phase coherence, and large amplitude fluctuations. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of a tapered undulator for parameters corresponding to the existing Argonne low-energy undulator test line (LEUTL) FEL. We also study possible tapering options for proposed x-ray FELs such as the Linac Coherent Light Source (LCLS).

  2. Two FEL`s in one

    SciTech Connect

    Epp, V.; Nikitin, M.

    1995-12-31

    A new scheme for a FEL operation is proposed. The conventional principle of FEL operation is means that the electron bunch passes through the interaction area of FEL only in one direction. We suggest another possible layout which implies that the electron bunch makes a turn after leaving the wiggler and entries the wiggler at the same end. Actually the wiggler is a kind of a bridge between two storage rings. The electron bunches on the orbit are expected to be adjusted in the way that after one of them leaves the wiggler, another one enters in the opposite direction and in the proper phase with the wave pulse emitted by the previous bunch. So the electron bunch comes in interaction with the amplified electromagnetic wave in both directions i.e. twice per period. It is especially important for the short wavelength FELs, because each reflection from the mirror causes a significant losses of the wave magnitude. The proposed design gives one interaction per each reflection instead of one interaction per two reflections in the traditional scheme. Another way to realize the suggested principle of operating is to insert the wiggler in the electron-positron storage ring. But this layout can be less efficient because of low intensity of the positron beam. The comparison study of radiation from different types of described double wigglers is fulfilled. The synchronization problems are discussed in this paper.

  3. The VISA FEL undulator

    SciTech Connect

    Carr, R.; Cornacchia, M.; Emma, P.

    1998-08-01

    The Visible-Infrared SASE Amplifier (VISA) FEL is an experimental device designed to show Self Amplified Spontaneous Emission (SASE) to saturation in the visible light energy range. It will generate a resonant wavelength output from 800--600 nm, so that silicon detectors may be used to characterize the optical properties of the FEL radiation. VISA is the first SASE FEL designed to reach saturation, and its diagnostics will provide important checks of theory. This paper includes a description of the VISA undulator, the magnet measuring and shimming system, and the alignment strategy. VISA will have a 4 m pure permanent magnet undulator comprising four 99 cm segments, each with 55 periods of 18 mm length. The undulator has distributed focusing built into it, to reduce the average beta function of the 70--85 MeV electron beam to about 30 cm. There are four FODO cells per segment. The permanent magnet focusing lattice consists of blocks mounted on either side of the electron beam, in the undulator gap. The most important undulator error parameter for a free electron laser is the trajectory walkoff, or lack of overlap of the photon and electron beams. Using pulsed wire magnet measurements and magnet shimming, the authors expect to be able to control trajectory walkoff to less than {+-}50 {micro}m per field gain length.

  4. THE VISA FEL UNDULATOR

    SciTech Connect

    CARR,R.; CORNACCHIA,M.; EMMA,P.; NUHN,H.D.; FULAND,R.; JOHNSON,E.; RAKOWSKY,G.; LIDIA,S.; BERTOLINI,L.; LIBKIND,M.; FRIGOLA,P.; PELLEGRINI,C.; ROSENZWEIG,J.

    1998-08-16

    The Visible-Infrared SASE Amplifier (VISA) FEL is an experimental device designed to show Self Amplified Spontaneous Emission (SASE) to saturation in the visible light energy range. It will generate a resonant wavelength output from 800--600 nm, so that silicon detectors may be used to characterize the optical properties of the FEL radiation. VISA is the first SASE FEL designed to reach saturation, and its diagnostics will provide important checks of theory. This paper includes a description of the VISA undulator, the magnet measuring and shimming system, and the alignment strategy. VISA will have a 4 m pure permanent magnet undulator comprising four 99 cm segments, each with 55 periods of 18 mm length. The undulator has distributed focusing built into it, to reduce the average beta function of the 70--85 MeV electron beam to about 30 cm. There are four FODO cells per segment. The permanent magnet focusing lattice consists of blocks mounted on either side of the electron beam, in the undulator gap. The most important undulator error parameter for a free electron laser is the trajectory walkoff or lack of overlap of the photon and electron beams. Using pulsed wire magnet measurements and magnet shimming, the authors expect to be able to control trajectory walkoff to less than {+-}50 pm per field gain length.

  5. Measuring FEL Radiation Properties at VISA-FEL

    SciTech Connect

    Cornacchia, Massimo

    2002-08-21

    The VISA (Visible to Infrared SASE Amplifier) SASE free electron laser has been successfully operated at the Accelerator Test Facility (ATF) at BNL. High gain and saturation were observed at 840 nm. We describe here the diagnostic system, experimental procedures and data reduction algorithms, as the FEL performance was measured along the length of the undulator. We also discuss selected spectral radiation measurements.

  6. Time-resolved energy-dispersive diffraction from X-FEL spontaneous emission: a proposal for sub-picosecond pumps & probe structural investigations

    NASA Astrophysics Data System (ADS)

    Rossi Albertini, Valerio; Paci, Barbara; Perfetti, Paolo

    2004-11-01

    The forthcoming generation of X-ray machines, based on Free Electron Laser (X-FEL) technology, should provide ultra-short pulses that may be used to probe the real-time structural evolution of a system activated by an optical laser pump. Unfortunately, the sub-picosecond synchronization of the pump and probe pulses produced by two independent sources is, at present, one of the main obstacles that needs to be overcome. Here we propose a new approach for carrying out time-resolved diffraction studies of evolving systems, which aims to bypass the synchronization problem.

  7. Simulation studies of a XUV/soft X-ray harmonic-cascade FEL for the proposed LBNL recirculating linac*

    SciTech Connect

    Fawley, W.M.; Barletta, W.A.; Corlett, J.N.; Zholents, A.

    2003-06-02

    Presently there is significant interest at LBNL in designing and building a facility for ultrafast (i.e. femtosecond time scale) x-ray science based upon a superconducting, recirculating RF linac (see Corlett et al. for more details). In addition to producing synchrotron radiation pulses in the 1-15 keV energy range, we are also considering adding one or more free-electron laser (FEL) beamlines using a harmonic cascade approach to produce coherent XUV soft X-ray emission beginning with a strong input seed at {approx}200 nm wavelength obtained from a ''conventional'' laser. Each cascade is composed of a radiator together with a modulator section, separated by a magnetic chicane. The chicane temporally delays the electron beam pulse in order that a ''virgin'' pulse region (with undegraded energy spread) be brought into synchronism with the radiation pulse, which together then undergo FEL action in the modulator. We present various results obtained with the GINGER simulation code examining final output sensitivity to initial electron beam parameters. We also discuss the effects of spontaneous emission and shot noise upon this particular cascade approach which can limit the final output coherence.

  8. 76 FR 12367 - Proposed Information Collection; Visibility Valuation Survey Pilot Study

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ... National Park Service Proposed Information Collection; Visibility Valuation Survey Pilot Study AGENCY... visibility benefits are required because the studies conducted in the 1970s and 1980s do not reflect current... Control Number 1024-0255). The purpose of this IC is to conduct a pilot study to test the...

  9. Short wavelength FELS

    SciTech Connect

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs.

  10. Longitudinal stabilisation of bunched beams in a FEL storage ring

    NASA Astrophysics Data System (ADS)

    Migliorati, M.; Palumbo, L.; Dattoli, G.; Mezi, L.; Renieri, A.; Voykov, G. K.

    1997-02-01

    Experimental observations on FEL Storage Rings (Aco, Super-Aco, VEPP3, TERAS) have shown that in a storage ring with an operating FEL there is a mutual effect between the FEL operational mode and the beam longitudinal distribution. The main effects are the birth of a macro-temporal structure of the FEL radiation and a suppression of the synchrotron sidebands, evidence of beam stabilisation against the microwave instabilities. In this paper we discuss the main features of the beam dynamics analysed with a simulation code recently developed, which includes the FEL-beam interaction. Furtherly, we propose an heuristic model which enable to describe in a simple way the overall system.

  11. Lightning control system using high power microwave FEL

    SciTech Connect

    Shiho, M.; Watanbe, A.; Kawasaki, S.

    1995-12-31

    A research project for developing a thunder lightning control system using an induction linac based high power microwave free electron laser (FEL) started at JAERI The system will produce weakly ionized plasma rod in the atmosphere by high power microwaves and control a lightning path, away from , e. g., nuclear power stations and rocket launchers. It has been known that about MW/cm{sup 2} power density is enough for the atmospheric breakdown in the microwave region, and which means high power microwave FEL with GW level output power is feasible for atmospheric breakdown, and accordingly is feasible for thunder lightning control tool with making a conductive plasma channel in the atmosphere. From the microwave attenuation consideration in the atmosphere, FEL of 35GHz(0.13dB/km), 90GHz(0.35dB/km), 140GHz(1.7dB/km), and of 270 GHz(4.5dB/km) are the best candidates for the system. Comparing with other proposed lightning control system using visible or ultraviolet laser, the system using microwave has an advantage that microwave suffers smaller attenuation by rain or snow which always exist in the real atmospheric circumstances when lightning occurs.

  12. Photon Beam Diagnostics for VISA FEL

    SciTech Connect

    Murokh, A.; Pellegrini, C.; Rosenzweig, J.; Frigola, P.; Musumeci, P.; Tremaine, A.; Babzien, M.; Ben-Zvi, I.; Doyuran, A.; Johnson, E.; Skaritka, J.; Wang, X.J.; Van Bibber, K.; Hill, J.M.; LeSage, G.P.; Nguyen, D.; Cornacchia, M.

    1999-11-05

    The VISA (Visible to Infrared SASE Amplifier) project is designed to be a SASE-FEL driven to saturation in the sub-micron wavelength region. Its goal is to test various aspects of the existing theory of Self-Amplified Spontaneous Emission, as well as numerical codes. Measurements include: angular and spectral distribution of the FEL light at the exit and inside of the undulator; electron beam micro-bunching using CTR; single-shot time resolved measurements of the pulse profile, using auto-correlation technique and FROG algorithm. The diagnostics are designed to provide maximum information on the physics of the SASE-FEL process, to ensure a close comparison of the experimental results with theory and simulations.

  13. Technological Challenges to X-Ray FELs

    SciTech Connect

    Nuhn, Heinz-Dieter

    1999-09-16

    There is strong interest in the development of x-ray free electron lasers (x-ray FELs). The interest is driven by the scientific opportunities provided by intense, coherent x-rays. An x-ray FEL has all the characteristics of a fourth-generation source: brightness several orders of magnitude greater than presently achieved in third-generation sources, full transverse coherence, and sub-picosecond long pulses. The SLAC and DESY laboratories have presented detailed design studies for X-Ray FEL user facilities around the 0.1 nm wavelength-regime (LCLS at SLAC, TESLA X-Ray FEL at DESY). Both laboratories are engaged in proof-of-principle experiments are longer wavelengths (TTF FEL Phase I at 71 nm, VISA at 600-800 nm) with results expected in 1999. The technologies needed to achieve the proposed performances are those of bright electron sources, of acceleration systems capable of preserving the brightness of the source, and of undulators capable of meeting the magnetic and mechanical tolerances that are required for operation in the SASE mode. This paper discusses the technological challenges presented by the X-Ray FEL projects.

  14. Technological challenges to X-ray FELs

    NASA Astrophysics Data System (ADS)

    Nuhn, Heinz-Dieter

    2000-05-01

    There is strong interest in the development of X-ray Free Electron Lasers (X-ray FELs). The interest is driven by the scientific opportunities provided by intense, coherent X-rays. An X-ray FEL has all the characteristics of a fourth-generation source: brightness several orders of magnitude greater than presently achieved in third-generation sources, full transverse coherence, and sub-picosecond long pulses. The SLAC and DESY laboratories have presented detailed design studies for X-ray FEL user-facilities around the 0.1 nm wavelength regime (LCLS at SLAC, TESLA X-ray FEL at DESY). Both laboratories are engaged in proof-of-principle experiments at longer wavelengths (TTF FEL Phase I at 71 nm, VISA at 600-800 nm) with results expected in 1999. The technologies needed to achieve the proposed performances are those of bright electron sources, of acceleration systems capable of preserving the brightness of the source, and of undulators capable of meeting the magnetic and mechanical tolerances that are required for operation in the SASE mode. This paper discusses the technological challenges presented by the X-ray FEL projects.

  15. GINGER simulations of short-pulse effects in the LEUTL FEL

    SciTech Connect

    Huang, Z.; Fawley, W.M.

    2001-07-01

    While the long-pulse, coasting beam model is often used in analysis and simulation of self-amplified spontaneous emission (SASE) free-electron lasers (FELs), many current SASE demonstration experiments employ relatively short electron bunches whose pulse length is on the order of the radiation slippage length. In particular, the low-energy undulator test line (LEUTL) FEL at the Advanced Photon Source has recently lased and nominally saturated in both visible and near-ultraviolet wavelength regions with a sub-ps pulse length that is somewhat shorter than the total slippage length in the 22-m undulator system. In this paper we explore several characteristics of the short pulse regime for SASE FELs with the multidimensional, time-dependent simulation code GINGER, concentrating on making a direct comparison with the experimental results from LEUTL. Items of interest include the radiation gain length, pulse energy, saturation position, and spectral bandwidth. We address the importance of short-pulse effects when scaling the LEUTL results to proposed x-ray FELs and also briefly discuss the possible importance of coherent spontaneous emission at startup.

  16. Characterization of an 800 nm SASE FEL at Saturation

    SciTech Connect

    Nuhn, Heinz-Dieter

    2002-11-13

    VISA (Visible to Infrared SASE Amplifier) is an FEL (Free Electron Laser) designed to saturate at a radiation wavelength of 800 nm within a 4-m long, strong focusing undulator. Large gain is achieved by driving the FEL with the 72 MeV, high brightness beam of BNL's Accelerator Test Facility (ATF). We present measurements that demonstrate saturation in addition to the frequency spectrum of the FEL radiation. Energy, gain length and spectral characteristics are compared and shown to agree with simulation and theoretical predictions.

  17. The BESSY FEL project

    NASA Astrophysics Data System (ADS)

    Abo-Bakr, M.; Anders, W.; Bahrdt, J.; Bakker, R. J.; Eberhardt, W.; Faatz, B.; Follath, R.; Gaupp, A.; von Hartrott, M.; Jaeschke, E.; Krämer, D.; Kuske, P.; Martin, M.; Müller, R.; Prange, H.; Reiche, S.; Sandner, W.; Senf, F.; Will, I.; Wüstefeld, G.

    2002-05-01

    Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung (BESSY) plans to construct a linac-based single-pass FEL as an addition to its existing third generation storage-ring-based light-source. The project aims to obtain an FEL-based user-facility that covers the VUV and soft X-ray spectral range (20 eV⩽ℏ ω⩽1 keV). At present, the design stage is funded as a collaboration between BESSY, DESY, the Hahn-Meitner-Institute in Berlin, and the Max-Born-Institute in Berlin. This stage focuses on optimization of the FEL as a user light-source, both with respect to its capabilities and in its performance. Important issues are: stability, seeding options of the SASE FEL, wavelength-tunability, synchronization with external laser sources and, on a longer time-scale, the generation of ultra-short (<20 fs RMS) optical pulses.

  18. INTRA-UNDULATOR MEASUREMENTS AT VISA FEL.

    SciTech Connect

    MUROKH,A.; FRIGOLA,P.; ET AL; JOHNSON,E.; WANG,X.J.; YAKIMENKO,V.

    2000-08-13

    We describe a diagnostics system developed, to measure exponential gain properties and the electron beam dynamics inside the strong focusing 4-m long undulator for the VISA (Visible to Infrared SASE Amplifier) FEL. The technical challenges included working inside the small undulator gap, optimizing the electron beam diagnostics in the high background environment of the spontaneous undulator radiation, multiplexing and transporting the photon beam. Initial results are discussed.

  19. Intra-undulator measurements at VISA FEL

    SciTech Connect

    Murokh, A; Frigola, P; Pellegrini, C; Rosenzweig, J; Tremaine, A; Johnson, E; Wang, X J; Yakimenko, V; Klaisner, L; Nuhn, H D; Toor, A

    2000-08-10

    We describe a diagnostics system developed, to measure exponential gain properties and the electron beam dynamics inside the strong focusing 4-m long undulator for the VISA (Visible to Infrared SASE Amplifier) FEL. The technical challenges included working inside the small undulator gap, optimizing the electron beam diagnostics in the high background environment of the spontaneous undulator radiation, multiplexing and transporting the photon beam. Initial results are discussed.

  20. The visibility of IQHE at sharp edges: experimental proposals based on interactions and edge electrostatics

    NASA Astrophysics Data System (ADS)

    Erkarslan, U.; Oylumluoglu, G.; Grayson, M.; Siddiki, A.

    2012-02-01

    The influence of the incompressible strips on the integer quantized Hall effect (IQHE) is investigated, considering a cleaved-edge overgrown (CEO) sample as an experimentally realizable sharp edge system. We propose a set of experiments to clarify the distinction between the large-sample limit when bulk disorder defines the IQHE plateau width and the small-sample limit smaller than the disorder correlation length, when self-consistent edge electrostatics define the IQHE plateau width. The large-sample or bulk quantized Hall (QH) regime is described by the usual localization picture, whereas the small-sample or edge regime is discussed within the compressible/incompressible strips picture, known as the screening theory of QH edges. Utilizing the unusually sharp edge profiles of the CEO samples, a Hall bar design is proposed to manipulate the edge potential profile from smooth to extremely sharp. By making use of a side-gate perpendicular to the two-dimensional electron system, it is shown that the plateau widths can be changed or even eliminated altogether. Hence, the visibility of IQHE is strongly influenced when adjusting the edge potential profile and/or changing the dc current direction under high currents in the nonlinear transport regime. As a second investigation, we consider two different types of ohmic contacts, namely highly transmitting (ideal) and highly reflecting (non-ideal) contacts. We show that if the injection contacts are non-ideal, but still ohmic, it is possible to measure directly the non-quantized transport taking place at the bulk of the CEO samples. The results of the experiments we propose will clarify the influence of the edge potential profile and the quality of the contacts, under QH conditions.

  1. Small-signal gain in a gas-loaded FEL

    SciTech Connect

    Goloviznin, V.V.; Amersfoort, P.W. van

    1995-12-31

    At present, existing FEL facilities operate in the infrared and visible ranges of wavelengths. Generation of shorter waves (in the VUV and X-ray region) is of great scientific interest, but this would require a very expensive accelerator which could provide a high-current electron beam in the GeV-range of energies. A promising way to relax requirements on electron energy by introduction of a gas into the optical cavity was proposed nearly ten years ago. For small deviations from the vacuum wavelength, the idea was confirmed in experiments performed in Stanford; however, a detailed theory of such a device is still not developed. We present an analysis of the small-signal gain in a gas-loaded free-electron laser. Multiple scattering of electrons by the atoms of the gas inside the optical cavity is shown to lead to two additional effects, as compared to the case of a vacuum FEL: a loss of coherence between different parts of the electron trajectory and an enhancement of the phase {open_quotes}jitter{close_quotes}. Both effects become increasingly important at short wavelengths and significantly reduce the small-signal gain per pass. In 1D approximation analytical expressions are obtained and numerical calculations are made to estimate beam and undulator parameters necessary for lasing in the vacuum ultraviolet. Hydrogen-filled FELs are shown to have good prospects for this at today`s technological level. To operate in the range of wavelengths 125-140 nm, an electron beam should have an energy above 50 MeV and a good quality: a normalised emittance of the order of 5{pi} mm-mrad and an energy spread below 10{sup -3}. All these parameters are achieveable with modern linacs and photoinjectors.

  2. Optical tailoring of xFEL beams

    SciTech Connect

    West, Gavin; Coffee, R.

    2015-08-20

    There is an inherent exibility unique to free electron lasers (FELs) that lends well to experimental approaches normally too difficult for other light sources to accomplish. This includes the ability to optically shape the electron bunch prior to final its acceleration for the final FEL process. Optical pulse shaping of the electron bunch can enable both femtosecond and attosecond level FEL pulse control. Pulse shaping is currently implemented, not optically but mechanically, in LCLS-I with an adjustable foil slit that physically spoils the momentum phase of the electron bunch. This selectively suppresses the downstream FEL process ofspoiled electrons. Such a mechanical spoiling method fails for both the soft x-ray regime as well as the high repetition rates that are planned in LCLS-II. Our proposed optical spoiling method circumvents this limitation by making use of the existing ultrafast laser beam that is typically used for adjusting the energy spread for the initial electron bunch. Using Fourier domain shaping we can nearly arbitrarily shape the laser pulses to affect the electron bunch. This can selectively spoil electrons within each bunch. Here we demonstrate the viability of this approach with a programmable acousto-optic dispersive filter. This method is not only well suited for LCLS-II but also has several advantages over mechanical spoiling, including lack of radiation concerns, experiment specific FEL pulse shapes, and real-time adjustment for applications that require high duty-cycle variation such as lock-in amplification of small signals.

  3. Users program for storage-ring based FEL and synchrotron sources of the Duke FEL Laboratory

    SciTech Connect

    Straub, K.D.; Barnett, G.; Burnham, B.

    1995-12-31

    The storage ring at the Duke FEL Laboratory was first operated with a stored e-beam in November, 1994. It has now achieved operation energies in excess 1 GeV with more than 100 mA current at 280 MeV. The ring has several ports for FEL and synchrotron light source research. The circulating ring current can be synchronized with the seperate Mark III FEL operating in the 2-9.5 {mu}m IR region. This allows low optical jitter (10-20 ps) between the two sources and thus pump-probe operation. The ring has been configured to drive a number of light sources including the OK-4 FEL system capable of FEL operation between 400 and 65 nm, an inverse Compton scattering source using this undulator which will yield 4-200 MeV gammas, an undulator source at approximately 40 {angstrom} (not an FEL), a mm FEL with inverse compton scattering providing 1-100 keV x-rays and two synchrotron ports from the bend magnets for which the {lambda}{sub c} = 11-12 {angstrom} for 1 GeV. The broadly tunable FEL sources and their associated inverse compton scattering are extremely bright. The initial research proposals, submitted to the Laboratory emphasizes photoelectron spectroscopy, PEEM, high resolution vacuum UV of gases, solid spectroscopy and photochemistry in the UV, X-ray microprobe studies, X-ray microscopy, X-ray holography, X-ray crystallography, Mossbauer spectroscopy, nuclear spectroscopy, neutron production, photon activation therapy and broadband synchrotron as a probe of fast reaction in the IR and near IR.

  4. Undulators for short wavelength FEL amplifiers

    SciTech Connect

    Schlueter, R.

    1994-08-01

    Issues critical to the design of undulators for use in short wavelength FEL amplifiers, such as attainable on-axis field strength, device compactness, field quality, required magnetic gap, and strong focusing schemes, are discussed. The relative strength of various undulator technologies, including pure permanent magnet, hybrid, warm electromagnetic, pulsed, and superconducting electromagnetic devices in both helical and planar configurations are reviewed. Favored design options for proposed short wavelength FELs, such as the Linac Coherent Light Source at SLAC and the DUV Free-Electron Laser at BNL, are presented.

  5. Undulators for short wavelength FEL amplifiers

    SciTech Connect

    Schlueter, R.D.

    1994-12-01

    Issues critical to the design of undulators for use in short wavelength FEL amplifiers, such as attainable on-axis field strength, device compactness, field quality, required magnetic gap, and strong focusing schemes, are discussed. The relative strength of various undulator technologies, including pure permanent magnet, hybrid, warm electromagnetic, pulsed, and superconducting electromagnetic devices in both helical and planar configurations are reviewed. Favored design options for proposed short wavelength FELs, such as the Linac Coherent Light Source at SLAC and the DUV Free-Electron Laser at BNL, are presented.

  6. FEL phased array configurations

    NASA Astrophysics Data System (ADS)

    Shellan, Jeffrey B.

    1986-01-01

    The advantages and disadvantages of various phased array and shared aperture concepts for FEL configurations are discussed. Consideration is given to the characteristics of intra- and inter-micropulse phasing; intra-macropulse phasing; an internal coupled resonator configuration; and an injection locked oscillator array. The use of a master oscillator power amplifier (MOPA) configuration with multiple or single master oscillators for FELs is examined. The venetian blind, rotating plate, single grating, and grating rhomb shared aperture concepts are analyzed. It is noted that the shared aperture approach using a grating rhomb and the MOPA concept with a single master oscillator and a coupled resonator are useful for FEL phased array configurations; and the MOPA concept is most applicable.

  7. Results of the VISA SASE FEL Experiment at 840 nm

    SciTech Connect

    Murokh, A.

    2004-01-20

    VISA (Visible to Infrared SASE Amplifier) is a high-gain self-amplified spontaneous emission FEL, which achieved saturation at 840 nm within a single-pass 4-m undulator. A gain length shorter than 18 cm has been obtained, yielding the gain of 2 x 10{sup 8} at saturation. The FEL performance, including spectral, angular, and statistical properties of SASE radiation, has been characterized for different electron beam conditions. The results are compared to 3-D SASE FEL theory and start-to-end numerical simulations of the entire injector, transport, and FEL system. Detailed agreement between simulations and experimental results is obtained over the wide range of the electron beam parameters.

  8. Results of the VISA SASE FEL experiment at 840 nm

    NASA Astrophysics Data System (ADS)

    Murokh, A.; Agustsson, R.; Babzien, M.; Ben-Zvi, I.; Bertolini, L.; van Bibber, K.; Carr, R.; Cornacchia, M.; Frigola, P.; Hill, J.; Johnson, E.; Klaisner, L.; Le Sage, G.; Libkind, M.; Malone, R.; Nuhn, H.-D.; Pellegrini, C.; Reiche, S.; Rakowsky, G.; Rosenzweig, J.; Ruland, R.; Skaritka, J.; Toor, A.; Tremaine, A.; Wang, X.; Yakimenko, V.

    2003-07-01

    VISA (Visible to Infrared SASE Amplifier) is a high-gain self-amplified spontaneous emission FEL, which achieved saturation at 840 nm within a single-pass 4-m undulator. A gain length shorter than 18 cm has been obtained, yielding the gain of 2×10 8 at saturation. The FEL performance, including spectral, angular, and statistical properties of SASE radiation, has been characterized for different electron beam conditions. The results are compared to 3-D SASE FEL theory and start-to-end numerical simulations of the entire injector, transport, and FEL system. Detailed agreement between simulations and experimental results is obtained over the wide range of the electron beam parameters.

  9. Transverse effects in UV FELs

    SciTech Connect

    Small, D.W.; Wong, R.K.; Colson, W.B.

    1995-12-31

    In an ultraviolet Free Electron Laser (UV FEL), the electron beam size can be approximately the same as the optical mode size. The performance of a UV FEL is studied including the effect of emittance, betatron focusing, and external focusing of the electron beam on the transverse optical mode. The results are applied to the Industrial Laser Consortium`s UV FEL.

  10. Performance of the KHI FEL device at FEL-SUT

    NASA Astrophysics Data System (ADS)

    Yokoyama, M.; Oda, F.; Nomaru, K.; Koike, H.; Sobajima, M.; Miura, H.; Kawai, M.; Kuroda, H.

    2002-05-01

    FEL lasing with the saturated power in the wavelength of 4-16 μm was achieved by using the KHI (Kawasaki Heavy Industries, Ltd.) FEL device. The macro-pulse length of the electron beam was improved by using the LaB 6 cathode instead of the dispenser cathode as a cathode of the OCS RF-gun. The improvement yielded the saturated FEL power with the macro-pulse length of 0.5-1.5 μs. The FEL energy was 2-40 mJ. The measured FEL output powers were in agreement with the values which were taken into account Piovella's theory.

  11. Picosecond pump-probe using an FEL and a synchrotron source

    SciTech Connect

    Denbeaux, G.; Straub, K.D.; Madey, J.M.J.

    1995-12-31

    Two color pump-probe experiments using both the Duke Storage Ring as a synchrotron light source for visible light the Mark III FEL as a tunable, high peak power IR source are possible. The visible synchrotron source can be used as a probe of vibrational excitation from the FEL in an experiment using vibrationally-assisted fluorescence as an indicator of overlap of the IR and the visible pulses. An optical delay line in the FEL beam will allow adjustment of the arrival time of the IR pulse relative to the visible probe. The storage ring RF booster and the Mark III FEL RF sources will be both driven by the same master oscillator with a timing jitter between sources of less than 20 psec. Exploration of coupling between electronic excitation and lifetimes of vibrational excitation of fluorescent compounds in solution can be carried out with this configuration.

  12. Where do we stand with high gain FEL simulations?

    NASA Astrophysics Data System (ADS)

    Travish, Gil

    1997-06-01

    Computer technology improvements have allowed for more complete and detailed free electron laser simulations, yet the demands of the large number of new experiments and proposed projects has outpaced the capability and availability of present codes. This paper, based on a talk given at the conference of these proceedings, presents a brief assessment of Free Electron Laser (FEL) codes, their availability and features, as well as some opinions on what direction the FEL code community should take for the near future. The discussion of FEL codes is restricted here to ones for high gain amplifiers: no codes for oscillators, waveguides or exotic configurations are considered.

  13. FEL-accelerator related diagnostics

    SciTech Connect

    Kevin Jordan; David Douglas; Stephen V. Benson; Pavel Evtuschenko

    2007-08-02

    Free Electron Lasers (FEL) present a unique set of beam parameters to the diagnostics suite. The FEL requires characterization of the full six dimensional phase space of the electron beam at the wiggler and accurate alignment of the electron beam to the optical mode of the laser. In addition to the FEL requirements on the diagnostics suite, the Jefferson Lab FEL is operated as an Energy Recovered Linac (ERL) which imposes additional requirements on the diagnostics. The ERL aspect of the Jefferson Lab FEL requires that diagnostics operate over a unique dynamic range and operate with simultaneous transport of the accelerated and energy recovered beams. This talk will present how these challenges are addressed at the Jefferson Lab FEL.

  14. NATIONAL HIGH MAGENTIC FIELD LABORATORY FEL INJECTOR DESIGN CONSIDERATION

    SciTech Connect

    Pavel Evtushenko; Stephen Benson; David Douglas; George Neil

    2007-06-25

    A Numerical study of beam dynamics was performed for two injector systems for the proposed National High Magnetic Field Laboratory at the Florida State University (FSU) Free Electron Laser (FEL) facility. The first considered a system consisting of a thermionic DC gun, two buncher cavities operated at 260 MHz and 1.3 GHz and two TESLA type cavities, and is very similar to the injector of the ELBE Radiation Source. The second system we studied uses a DC photogun (a copy of JLab FEL electron gun), one buncher cavity operated at 1.3 GHz and two TESLA type cavities. The study is based on PARMELA simulations and takes into account operational experience of both the JLab FEL and the Radiation Source ELBE. The simulations predict the second system will have a much smaller longitudinal emittance. For this reason the DC photo gun based injector is preferred for the proposed FSU FEL facility.

  15. Saturation and pulsed FEL dynamics

    SciTech Connect

    Giannessi, L.; Mezi, L.

    1995-12-31

    The behavior of a FEL operating in the saturated pulsed regime, may be reproduced by the linear FEL integral equation, suitably modified to include saturation effects through a gain depression coefficient depending on the laser intensity. This simple method allows to evaluate several FEL parameters like gain, efficiency, band-width and optical pulse duration as functions of the optical cavity length, only with a numerical integration. The predictions have been compared with available experimental and numerical data, and the method has been applied to estimate the operating characteristics of some planned FEL experiments.

  16. FEL potential of eRHIC

    SciTech Connect

    Litvinenko, V.N.; Ben-Zvi, I.; Hao, Y.; Kao, C-C.; Kayran, D.; Murphy, J.B.; Ptitsyn, V.; Trbojevic, D.; Tsoupas, N.

    2010-08-23

    Brookhaven National Laboratory plans to build a 5-to-30 GeV energy-recovery linac (ERL) for its future electron-ion collider, eRHIC. In past few months, the Laboratory turned its attention to the potential of this unique machine for free electron lasers (FELS), which we initially assessed earlier. In this paper, we present our current vision of a possible FEL farm, and of narrow-band FEL-oscillators driven by this accelerator. eRHIC, the proposed electron-ion collider at BNL, takes advantage of the existing Relativistic Heavy Ion Collider (RHIC) complex. Plans call for adding a six-pass super-conducting (SRF) ERL to this complex to collide polarized- and unpolarized- electron beams with heavy ions (with energies up to 130 GeV per nucleon) and with polarized protons (with energies up to 325 GeV). RHIC, with a circumference of 3.834 km, has three-fold symmetry and six straight sections each {approx} 250 m long. Two of these straight sections will accommodate 703-MHz SRF linacs. The maximum energy of the electron beam in eRHIC will be reached in stages, from 5 GeV to 30 GeV, by increasing the lengths of its SRF linacs. We plan to install at the start the six-pass magnetic system with small gap magnets. The structure of the eRHIC's electron beam will be identical with that of its hadron beam, viz., 166 bunches will be filled, reserving about a one-microsecond gap for the abort kicker. With modest modifications, we can assure that eRHIC's ERL will become an excellent driver for continuous wave (CW) FELs (see Fig.1). The eRHIC's beam structure will support the operation of several such FELs in parasitic mode.

  17. INITIAL GAIN MEASUREMENTS OF A 800 NM SASE FEL, VISA.

    SciTech Connect

    FRIGOLA,P.; MUROKH,A.; ET AL; BABZIEN,M.; BEN-ZVI,I.; JOHNSON,E.; MALONE,R.

    2000-08-13

    The VISA (Visible to Infrared SASE Amplifier) FEL is designed to obtain high gain at a radiation wavelength of 800nm. The FEL uses the high brightness electron beam of the Accelerator Test Facility (ATF), with energy of 72MeV. VISA uses a novel, 4 m long, strong focusing undulator with a gap of 6mm and a period of 1.8cm. To obtain large gain the beam and undulator axis have to be aligned to better than 50{micro}m. Results from initial measurements on the alignment, gain, and spectrum will be presented and compared to theoretical calculations and simulations.

  18. Initial Gain Measurements of a 800nm SASE FEL, VISA

    SciTech Connect

    Carr, Roger

    2002-08-14

    The VISA (Visible to Infrared SASE Amplifier) FEL is designed to obtain high gain at a radiation wavelength of 800nm. The FEL uses the high brightness electron beam of the Accelerator Test Facility (ATF), with energy of 72MeV. VISA uses a novel, 4 m long, strong focusing undulator with a gap of 6mm and a period of 1.8cm. To obtain large gain the beam and undulator axis have to be aligned to better than 50{micro}m. Results from initial measurements on the alignment, gain, and spectrum will be presented and compared to theoretical calculations and simulations.

  19. Initial Gain Measurements of a 800nmm SASE FEL, VISA

    NASA Astrophysics Data System (ADS)

    Tremaine, A.; Frigola, P.; Murokh, A.; Musumeci, P.; Pellegrini, C.

    2002-08-01

    The VISA (Visible to Infrared SASE Amplifier) FEL is designed to obtain high gain at a radiation wavelength of 800nm. The FEL uses the high brightness electron beam of the Accelerator Test Facility (ATF), with energy of 72MeV. VISA uses a novel, 4 m long, strong focussing undulator with a gap of 6mm and a period of 1.8cm. To obtain large gain the beam and undulator axis have to be aligned to better than 50mm. Results from initial measurements on the alignment, gain, and spectrum will be presented and compared to theoretical calculations and simulations.

  20. Initial gain measurements of an 800 nm SASE FEL, VISA

    NASA Astrophysics Data System (ADS)

    Frigola, P.; Murokh, A.; Musumeci, P.; Pellegrini, C.; Reiche, S.; Rosenzweig, J.; Tremaine, A.; Babzien, M.; Ben-Zvi, I.; Johnson, E.; Malone, R.; Rakowsky, G.; Skaritka, J.; Wang, X. J.; Van Bibber, K. A.; Bertolini, L.; Hill, J. M.; Le Sage, G. P.; Libkind, M.; Toor, A.; Carr, R.; Cornacchia, M.; Klaisner, L.; Nuhn, H.-D.; Ruland, R.; Nguyen, D. C.

    2001-12-01

    The Visible to Infrared SASE Amplifier (VISA) FEL is designed to obtain high gain at a radiation wavelength of 800 nm. The FEL uses the high brightness electron beam of the Accelerator Test Facility (ATF), with energy of 72 MeV. VISA uses a novel, 4 m long, strong focusing undulator with a gap of 6 mm and a period of 1.8 cm. To obtain large gain the beam and undulator axis have to be aligned to better than 5 μm. Results from initial measurements on the alignment, gain, and spectrum will be presented and compared to theoretical calculations and simulations.

  1. X-ray FEL with a meV bandwidth

    NASA Astrophysics Data System (ADS)

    Saldin, E. L.; Schneidmiller, E. A.; Shvyd'ko, Yu. V.; Yurkov, M. V.

    2001-08-01

    A new design for a single pass X-ray Self-Amplified Spontaneous Emission (SASE) FEL was proposed in [1] and named two-stage SASE FEL. The scheme consists of two undulators and an X-ray monochromator located between them. For the Angström wavelength range the monochromator could be realized using Bragg reflections from crystals. Proposed scheme of monochromator is illustrated for the 14.4 keV X-ray SASE FEL being developed in the framework of the TESLA linear collider project. The spectral bandwidth of the radiation from the two-stage SASE FEL (20 meV) is defined by the finite duration of the electron pulse. The shot-to-shot fluctuations of energy spectral density are dramatically reduced in comparison with the 100% fluctuations in a SASE FEL. The peak and average brilliance are by three orders of magnitude higher than the values which could be reached by a conventional X-ray SASE FEL.

  2. X-ray FEL with a meV bandwidth

    NASA Astrophysics Data System (ADS)

    Saldin, E. L.; Schneidmiller, E. A.; Shvyd'ko, Yu. V.; Yurkov, M. V.

    2001-12-01

    A new design for a single pass X-ray Self-Amplified Spontaneous Emission (SASE) FEL was proposed by Feldhaus et al. (Opt. Commun. 140 (1997) 341) and named "two-stage SASE FEL". The scheme consists of two undulators and an X-ray monochromator located between them. For the Angström wavelength range the monochromator can be realized using Bragg reflections from crystals. We propose a scheme of monochromator with a bandwidth of 20 meV for the 14.4 keV X-ray SASE FEL being developed in the framework of the TESLA linear collider project. The spectral bandwidth of the radiation from the two-stage SASE FEL (20 meV) is determined by the finite duration of the electron pulse. The shot-to-shot fluctuations of energy spectral density are dramatically reduced in comparison with the 100% fluctuations in a SASE FEL. The peak and average brilliance are three orders of magnitude higher than the values which could be reached by a conventional X-ray SASE FEL.

  3. Towards short wavelengths FELs workshop

    SciTech Connect

    Ben-Zvi, I.; Winick, H.

    1993-12-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FELs offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FELs will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program.

  4. The Stanford Picosecond FEL Center

    SciTech Connect

    Schwettman, H.A.; Smith, T.I.; Swent, R.L.

    1995-12-31

    In the past two years, FELs have decisively passed the threshold of scientific productivity. There are now six FEL facilities in the United States and Europe, each delivering more than 2000 hours of FEL beam time per year. at the present time approximately 100 papers are published each in referred journals describing optics experiments performed with FELs. Despite the recent success there are important challenges the FEL facilities must address. At Stanford these challenges include: (1) Providing sufficient experimental time at reasonable cost: At Stanford we provide 2000 hours of experimental time per year at a cost of approximately $500 per hour: We are now studying options for markedly increasing experimental time and decreasing cost per hour. (2) Competing effectively with conventional lasers in the mid-IR: Despite the NRC report we do not intend to concede the mid-IR to conventional lasers. FELs are capable of providing optical beams of exceptional quality and stability, and they can also be remarkable flexible devices. Improvements in our superconducting linac driver and our optical beam conditioning systems will dramatically enhance our FEL experimental capabilities. (3) making the transition from first generation to second generation experiments: Important pump-probe and photon echo experiments have been performed at Stanford and others are feasible using present capabilities. None-the-less we are now investing substantial experimental time to improving signal-to-noise and developing other optical cababilities. (4) Extending operation to the far-infrared where the FEL is unique inits capabilities: {open_quotes}FIREFLY{close_quotes} will extend our FEL capabilities to 100 microns. We are now seeking funds for optical instrumentation. (5) Creating and maintaining a good environment for graduate students.

  5. Free-electron-laser (FEL)-induced desorption of ions from tooth dentine

    NASA Astrophysics Data System (ADS)

    Ogino, Seiji; Awazu, Kunio; Tomimasu, Takio

    1997-05-01

    Free electron laser (FEL) with the wide wavelength tunability has been developed and used for various applications. The FEL gives high efficiency for the photo- induced ablation when the laser is tuned to an absorption maximum of the target. This study investigates the FEL induced desorption of ions from tooth dentine to find new possibility for laser dentistry. The FEL was tuned to 9.4 (Mu) m, which is an absorption maximum of phosphoric acid ion known as major component of dentine. The FEL pulse length was several ps. The output average power was varied from 5 to 20mW by filters. A time-of-flight mass spectroscopy systems were developed for the purpose of analyzing the desorbed ions of varying masses. After the 9.4 micrometers FEL irradiation, the dentine surface was ablated, and visible light emission was observed. As a result, positive ions which correspond to Na+ and many phosphoric acid ions were measured. The positive ions, however were not observed when the FEL was not tuned to the absorption peak of the target. Therefore, this wavelength dependence points to resonant multiphoton vibrational excitation of molecules by the 9.4 micrometers FEL irradiation.

  6. Nonlinear harmonic generation in the STARS FEL

    NASA Astrophysics Data System (ADS)

    Abo-Bakr, M.; Goldammer, K.; Kamps, T.; Knobloch, J.; Kuske, B.; Leitner, T.; Meseck, A.

    2008-08-01

    BESSY proposes to build STARS, an FEL to demonstrate cascaded High Gain Harmonic Generation (HGHG). In two HGHG stages, a laser source of 700-900 nm is converted down to a wavelength of 40-70 nm. The STARS facility consists of a normal-conducting RF photoinjector, three superconducting TESLA-type acceleration modules, a magnetic bunch compressor and two stages of HGHG, each consisting of a modulator, dispersive chicane and a radiator. At the entrance of the undulator section, the beam energy is 325 MeV and the peak current is about 500 A. With these parameters, the STARS FEL reaches saturation with a peak power of 100-350 MW. A superradiant mode is also foreseen which boosts the radiation power to the GW-level. Due to nonlinear harmonic generation (NHG), free electron lasers also radiate coherently at higher harmonics of the FEL resonant frequency. STARS can hence extend its output range to even shorter wavelengths. This paper presents studies of the STARS harmonic content in the wavelength range of 6-20 nm. Seeding with high harmonic generation pulses at 32 nm is also discussed.

  7. FEL on slow cyclotron wave

    SciTech Connect

    Silivra, A.

    1995-12-31

    A physical mechanism of interaction of fast electromagnetic wave with slow cyclotron wave of relativistic electron beam in a FEL with helical wiggler field is described. It is shown that: (1) interaction is possible for both group of steady state electron trajectories (2) positive gain is achieved within certain interval of guide field strength (3) operation wavelength for group 1 trajectories ({Omega}{sub 0}/{gamma} < k{omega}{upsilon}{parallel}) is shorter than for the conventional FEL synchronism. A nonlinear analysis shows that efficiency of slow cyclotron FEL is restricted mainly by a breakdown of a single electron synchronism due to dependence of (modified) electron cyclotron frequency on an energy of electron. Nevertheless, as numerical simulation shows, typical efficiency of 15 % order is achieved in millimeter wavelength band for the midrelativistic ({gamma}= 3 {divided_by} 4) slow cyclotron wave FEL. Tapering of magnetic field results in a substantial increase of efficiency.

  8. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Operating the SDUV-FEL with the echo-enabled harmonic generation scheme

    NASA Astrophysics Data System (ADS)

    Chen, Jian-Hui; Deng, Hai-Xiao; Gu, Qiang; Li, Dong-Guo; Wang, Dong; Zhang, Meng; Zhao, Zhen-Tang

    2009-08-01

    Using the recently proposed echo-enabled harmonic generation (EEHG) free-electron laser (FEL) scheme, it is shown that operating the Shanghai deep ultraviolet FEL (SDUV-FEL) with single-stage to higher harmonics is very promising, with higher frequency up-conversion efficiency, higher harmonic selectivity and lower power requirement of the seed laser. The considerations on a proof-of-principle experiment and expected performance in SDUV-FEL are given.

  9. Broadband optical gain via interference in the free electron laser: principles and proposed realizations.

    PubMed

    Rostovtsev, Y V; Kurizki, G; Scully, M O

    2001-08-01

    We propose experimentally simplified schemes of an optically dispersive interface region between two coupled free electron lasers (FELs), aimed at achieving a much broader gain bandwidth than in a conventional FEL or a conventional optical klystron composed of two separated FELs. The proposed schemes can universally enhance the gain of FELs, regardless of their design, when operated in the short pulsed regime. PMID:11497719

  10. Echo-Enabled Harmonic Generation for Seeded FELs

    SciTech Connect

    Stupakov, G.; /SLAC

    2011-05-19

    In the x-ray wavelengths, the two leading FEL concepts are the self-amplified spontaneous emission (SASE) configuration and the high-gain harmonic generation (HGHG) scheme. While the radiation from a SASE FEL is coherent transversely, it typically has rather limited temporal coherence. Alternatively, the HGHG scheme allows generation of fully coherent radiation by up-converting the frequency of a high-power seed laser. However, due to the relatively low up-frequency conversion efficiency, multiple stages of HGHG FEL are needed in order to generate x-rays from a UV laser. The up-frequency conversion efficiency can be greatly improved with the recently proposed echo-enabled harmonic generation (EEHG) technique. In this work we will present the concept of EEHG, and address some practically important issues that affect the performance of the seeding. We show how the EEHG can be incorporated in the FEL scheme and what is the expected performance of the EEHG seeded FEL. We will then briefly describe the first proof-of-principle EEHG experiment carried out at the Next Linear Collider Test Accelerator (NLCTA) at SLAC. We will also discuss latest advances in the echo-scheme approach, and refer to subsequent modifications of the original concept.

  11. STARS A Two Stage High Gain Harmonic Generation FEL Demonstrator

    SciTech Connect

    M. Abo-Bakr; W. Anders; J. Bahrdt; P. Budz; K.B. Buerkmann-Gehrlein; O. Dressler; H.A. Duerr; V. Duerr; W. Eberhardt; S. Eisebitt; J. Feikes; R. Follath; A. Gaupp; R. Goergen; K. Goldammer; S.C. Hessler; K. Holldack; E. Jaeschke; Thorsten Kamps; S. Klauke; J. Knobloch; O. Kugeler; B.C. Kuske; P. Kuske; A. Meseck; R. Mitzner; R. Mueller; M. Neeb; A. Neumann; K. Ott; D. Pfluckhahn; T. Quast; M. Scheer; Th. Schroeter; M. Schuster; F. Senf; G. Wuestefeld; D. Kramer; Frank Marhauser

    2007-08-01

    BESSY is proposing a demonstration facility, called STARS, for a two-stage high-gain harmonic generation free electron laser (HGHG FEL). STARS is planned for lasing in the wavelength range 40 to 70 nm, requiring a beam energy of 325 MeV. The facility consists of a normal conducting gun, three superconducting TESLA-type acceleration modules modified for CW operation, a single stage bunch compressor and finally a two-stage HGHG cascaded FEL. This paper describes the faciliy layout and the rationale behind the operation parameters.

  12. Resonance hard radiation in a gas-loaded FEL

    SciTech Connect

    Gevorgian, L.A.

    1995-12-31

    The process of induced radiation under the condition when the relativistic beam oscillation frequency coincides with the plasma frequency of the FEL filling gas, is investigated. Such a resonance results in a giant enhancement of interaction between electrons and photons providing high gain in the hard FEL frequency region. Meanwhile the spectralwidth of the spontaneous radiation is broadened significantly. A method is proposed for maintaining the synchronism between the electron oscillation frequency and the medium plasma frequency, enabling to transform the electron energy into hard radiation with high efficiency.

  13. A Test of Superradiance in an FEL Experiment

    SciTech Connect

    Boyce, R

    2004-12-14

    We describe the design of an FEL Amplifier Test Experiment (FATE)1 to demonstrate the superradiant short bunch regime of a Free Electron Laser in the 1-3 {micro}m wavelength range starting from noise. The relevance to the LCLS X-ray FEL [1] proposal is discussed and numerical simulations are shown. It is numerically demonstrated for the first time with the 2-D code GINGER, that clean-up of noise in the superradiant regime occurs even at low power levels.

  14. A high-average-power FEL for industrial applications

    SciTech Connect

    Dylla, H.F.; Benson, S.; Bisognano, J.

    1995-12-31

    CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt UV (150-1000 nm) and IR (2-25 micron) FEL driven by a recirculating, energy-recovering 200 MeV superconducting radio-frequency (SRF) accelerator. FEL users{endash}CEBAF`s partners in the Laser Processing Consortium, including AT&T, DuPont, IBM, Northrop-Grumman, 3M, and Xerox{endash}plan to develop applications such as polymer surface processing, metals and ceramics micromachining, and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunability and pulse structure. 4 refs., 3 figs., 2 tabs.

  15. Electron beam effects in a UV FEL

    SciTech Connect

    Wong, R.K.; Blau, J.; Colson, W.B.

    1995-12-31

    At the Continuous Electron Beam Accelerator Facility (CEBAF), a free electron laser (FEL) is designed to produce ultraviolet (UV) light. A four-dimensional FEL simulation studies the effects of betatron oscillations, external focusing, and longitudinal pulse compression of the electron beam on the FEL performance.

  16. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS.

    SciTech Connect

    BEN-ZVI, ILAN, DAYRAN, D.; LITVINENKO, V.

    2005-08-21

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department.

  17. R&D Requirements, RF Gun Mode Studies, FEL-2 Steady-StateStudies, Preliminary FEL-1 Time-Dependent Studies, and Preliminary LayoutOption Investigation

    SciTech Connect

    Byrd, John; Corlett, John; Doolittle, Larry; Fawley, William; Lidia, Steven; Penn, Gregory; Ratti, Alex; Staples, John; Wilcox Russell; Wurtele, Jonathan; Zholents, Alexander

    2005-10-01

    This report constitutes the third deliverable of LBNLs contracted role in the FERMI {at} Elettra Technical Optimization study. It describes proposed R&D activities for the baseline design of the Technical Optimization Study, initial studies of the RF gun mode-coupling and potential effects on beam dynamics, steady-state studies of FEL-2 performance to 10 nm, preliminary studies of time-dependent FEL-1 performance using electron bunch distribution from the start-to-end studies, and a preliminary investigation of a configuration with FEL sinclined at a small angle from the line of the linac.

  18. Optimisation of An HHG-Seeded Harmonic Cascade FEL Design for the NLS Project

    SciTech Connect

    Dunning, David; Thompson, Neil; Bartolini, Riccardo; Geng, Huiping; Huang, Zhirong; McNeil, Brian; /Strathclyde U.

    2012-06-25

    Optimization studies of an HHG-seeded harmonic cascade FEL design for the UK's proposed New Light Source (NLS) facility are presented. Three separate FELs are planned to meet the requirements for continuous coverage of the photon energy range 50-1000 eV with variable polarization, 20 fs pulse widths and good temporal coherence. The design uses an HHG seed source tuneable from 50-100 eV to provide direct FEL seeding in this range, and one or two stage harmonic cascades to reach the higher photon energies. Studies have been carried out to optimize a harmonic cascade FEL operating at 1 keV; topics investigated include modulator configuration, seed power level and ef- fects of the HHG seed structure. FEL simulations using realistic electron beam distributions are presented and tolerance to increased emittance has been considered.

  19. Assessment of the visibility impairment caused by the emissions from the proposed power plant at Boron, California

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Doyle, J. R.; Johnson, C. D.; Holman, H. Y.; Wojcik, M. A.

    1980-01-01

    The current atmospheric conditions and visibility were modeled, and the effect of the power plant effluent was then added to determine its influence upon the prevailing visibility; the actual reduction in visibility being a function of meteorological conditions and observer-plume-target geometry. In the cases investigated, the perceptibility of a target was reduced by a minimum of 10 percent and a maximum of 100 percent. This significant visual impact would occur 40 days per year in the Edwards area with meteorological conditions such as to cause some visual impact 80 days per year.

  20. Technical report of biota, FEL Site 1, Lawrence Livermore National Laboratory: Final report

    SciTech Connect

    Taylor, D.W.; Davilla, W.; Orloff, S.

    1986-09-26

    Lawrence Livermore National Laboratory is considering an expansion of laser test facilities adjacent to its existing LLNL Site 300 test location. Construction of a free-electron laser, known as the FEL Project, is being considered on approximately 3900 hectates (10,500 acres) of land. We will refer to this proposed site as FEL Site 1. Knowledge of the flora and vegetation resources of the proposed FEL Site 1 is necessary in order to plan for construction, operation, and possible future expansion of the FEL facility. The purpose of botanical sections of this report is to quantitatively describe the variation of vegetation on FEL Site 1, and to relate the vegetation to potential environmental impacts associated with present operation and possible expansion of site facilities. The primary purpose of the wildlife studies was to determine the presence and status of any endangered, threatened, fully protected, or otherwise sensitive species on FEL Site 1 that might be affected by the proposed FEL project. We directed our studies mainly toward the federally endangered San Joaquin kit fox (Vulpes macrotis mutica), but also toward another 14 special status species that potentially occur on site, including the state threatened Alameda striped racer (Masticophis lateralis euryxanthus).

  1. X-band prebunched FEL amplifier

    SciTech Connect

    Saito, Kazuyoshi; Takayama, Ken; Ozaki, Toshiyuki

    1995-12-31

    Following the successful results of the ion-channel-guiding FEL experiments, we began a new experiment {open_quotes}prebunched FEL{close_quotes}. It is an FEL driven by prebunched beams, whose configuration is a normal FEL system with a prebuncher like the bunching section of a klystron. There are two purposes in this prebunched FEL system; (1) Demonstration of a compact/efficient FEL. Attaining the saturation power level with a short wiggler length (compact wiggler) and enhancing the power through the remaining wiggler length by wiggler tapering (high efficiency FEL). (2) Experimental simulation of multi-stage FELs in the FEL-TBA. Examination of FEL interactions with prebunched injection beams, especially, about the controllability of the output RF phase by changing the RF phase of the input seed power to the wiggler. Recent experimental results show: (1) The saturation power of 120MW has been attained at the wiggler length of 1.1m by 1.5MeV prebunched beams with a 45%-modulated 750A current. However, enhanced power has not been observed yet by wiggler tapering. (2) The current modulation of the injection beam (1.5MeV-500A) becoming higher than 30%, the adjustable range of the output RF phase was limitted less than 40 degrees by the input power of 60kW only. Detail explanations of design concept, theoretical and experimental results will be presented at the conference.

  2. A concept for Z-dependent microbunching measurements with coherent X-ray transition radiation in a sase FEL

    SciTech Connect

    Lumpkin, A.H.; Fawley, W.M.; Rule, D.W.

    2004-09-10

    We present an adaptation of the measurements performed in the visible-to-VUV regime of the z-dependent microbunching in a self-amplified spontaneous emission (SASE) free-electron laser (FEL). In these experiments a thin metal foil was used to block the more intense SASE radiation and to generate coherent optical transition radiation (COTR) as one source in a two-foil interferometer. However, for the proposed x-ray SASE FELs, the intense SASE emission is either too strongly transmitted at 1.5 Angstrom or the needed foil thickness for blocking scatters the electron beam too much. Since x-ray transition radiation (XTR) is emitted in an annulus with opening angle 1/g = 36 mrad for 14.09-GeV electrons, we propose using a thin foil or foil stack to generate the XTR and coherent XTR (CXTR) and an annular crystal to wavelength sort the radiation. The combined selectivity in angle and wavelength will favor the CXTR over SASE by about eight orders of magnitude. Time-dependent GINGER simulations support the z-dependent gain evaluation plan.

  3. DESIGN STUDY OF COMPACT MEGA-WATT CLASS FEL AMPLIFIER BASED ON THE VISA UNDULATOR.

    SciTech Connect

    WATANABE, T.; LIU, D.; MURPHY, J.B.; PINAYEV, I.; ROSE, J.; SHAFTAN, T.; SKARITKA, J.; TANABE, T.; TSANG, T.; WANG, X.J.; YU, L.H.

    2005-08-21

    The strong focusing VISA undulator is presented in this report. The proposed FEL will operate at the 1 {micro}m water window. Extensive simulations were performed to optimize an FEL amplifier based on the two-meter long VISA undulator which has a period of 1.8 cm and an undulator parameter K = 1.26. The betatron function inside the VISA undulator is about 30 cm. For an electron beam with a peak current {approx}1 kA and a normalized emittance of 5 mm-mrad, the FEL peak power can exceed 1 GW within the 2 m VISA undulator using a 5 kW peak power seed laser. Such a device can produce a megawatt of average power for a 700 MHz rep rate. The transverse distribution of the FEL radiation along the undulator, as well as after the undulator, is explored by numerical simulation. The FEL power density at 5 m downstream from the undulator is less than 100 kW/cm{sup 2} for this MW-class FEL. We will also discuss the feasibility of an experimental demonstration of the laser seeded FEL amplifier based on the 2-m VISA undulator at the NSLS Source Development Lab (SDL).

  4. Short wavelength FELs using the SLAC linac

    NASA Astrophysics Data System (ADS)

    Winick, H.; Bane, K.; Boyce, R.; Cobb, J.; Loew, G.; Morton, P.; Nuhn, H.-D.; Paterson, J.; Pianetta, P.; Raubenheimer, T.; Seeman, J.; Tatchyn, R.; Vylet, V.; Pellegrini, C.; Rosenzweig, J.; Travish, G.; Prosnitz, D.; Scharlemann, E. T.; Halbach, K.; Kim, K.-J.; Schlueter, R.; Xie, M.; Bonifacio, R.; De Salvo, L.; Pierini, P.

    1994-08-01

    order of magnitude by compressing the bunch to a lenght of about 0.2 ps (rms). Techniques for beam transport, acceleration, and compression without emittance dilution have been developed at SLAC as part of the linear-collider project (J. Seeman, Advances of Accelerator Physics and Technologies, ed. H. Schopper (World Scientific, Singapore, 1993 [9]). The undulator length required to saturate the laser varies from about 15 m for a 100 nm FEL to about 60 m at 3 nm. Initial experiments, at wavelengths down to about 50 nm are planned using the 25-m long Paladin undulator now located at LLNL. In a proposed future LCLS R&D facility the short wavelength light pulses are distributed to multiple end stations using grazing-incidence mirrors. About 10 14 photons per pulse can be produced at a 120 Hz rate, corresponding to average brightness levels of about 10 21 photons/s/mm 2/mrad 2 within 0.1% BW and peak brightness levels of about 10 31 photons/s/mm 2/mrad 2 within 0.1% BW. Peak power levels are several hundred megawatts to several gigawatts. Electron energies required range from about 500 MeV for the 100 nm FEL to about 7 GeV for 3 nm.

  5. Super ACO FEL oscillation at 300 nm

    NASA Astrophysics Data System (ADS)

    Nutarelli, D.; Garzella, D.; Renault, E.; Nahon, L.; Couprie, M. E.

    2000-05-01

    Some recent improvements, involving both the optical cavity mirrors and the positron beam dynamics in the storage ring, have allowed us to achieve a laser oscillation at 300 nm on the Super ACO Storage Ring FEL. The Super ACO storage ring is operated at 800 MeV which is the nominal energy for the usual synchrotron radiation users, and the highest energy for a storage ring FEL. The lasing at 300 nm could be kept during 2 h per injection, with a stored current ranging between 30 and 60 mA. The FEL characteristics are presented here. The longitudinal stability and the FEL optics behaviour are also discussed.

  6. Prospects for the FEL (Free Electron Laser)

    SciTech Connect

    Sessler, A.M.

    1989-04-01

    The future for FELs depends upon the very large number of applications which is envisioned for them. These grow out of the FEL extensive range of wavelengths, tunability, and high power capability. High power requires demonstration of optical guiding. Tunability has already been demonstrated. And the effort to extend the range of wavelengths is ever ongoing. The future will also bring more work on gas-loaded FELs, on electromagnetic wigglers, and on harmonic generation. We can, also, look forward to observation of various new effects, a few of which will be described. Finally, a list of various FEL projects around the world will be given. 12 refs., 5 figs., 8 tabs.

  7. Applications in biology with the super-ACO FEL and future prospects

    NASA Astrophysics Data System (ADS)

    Couprie, Marie-Emmanuelle; Renault, Eric; Garzella, David; Nutarelli, Daniele; de Ninno, G.; Merola, F.; Nahon, Laurent

    2002-04-01

    The first applications of a storage ring Free Electron Laser started in 1993 on the Super-ACO FEL with the study of the anisotropy decay of a coenzyme, NADH, allowing to understand the thermodynamical equilibrium of the different conformational states of the molecule and their hydrodynamical volume in solution. After this first one- color experiment using the time-resolved fluorescence technique, a transient absorption experiment was developed in which the system is excited with the UV FEL and is probed by Visible-UV absorption using synchrotron radiation. First results on the dynamical behavior were obtained for the acrinide molecule.

  8. High average power CW FELs (Free Electron Laser) for application to plasma heating: Designs and experiments

    SciTech Connect

    Booske, J.H.; Granatstein, V.L.; Radack, D.J.; Antonsen, T.M. Jr.; Bidwell, S.; Carmel, Y.; Destler, W.W.; Latham, P.E.; Levush, B.; Mayergoyz, I.D.; Zhang, Z.X. . Lab. for Plasma Research); Freund, H.P. )

    1989-01-01

    A short period wiggler (period {approximately} 1 cm), sheet beam FEL has been proposed as a low-cost source of high average power (1 MW) millimeter-wave radiation for plasma heating and space-based radar applications. Recent calculation and experiments have confirmed the feasibility of this concept in such critical areas as rf wall heating, intercepted beam ( body'') current, and high voltage (0.5 - 1 MV) sheet beam generation and propagation. Results of preliminary low-gain sheet beam FEL oscillator experiments using a field emission diode and pulse line accelerator have verified that lasing occurs at the predicted FEL frequency. Measured start oscillation currents also appear consistent with theoretical estimates. Finally, we consider the possibilities of using a short-period, superconducting planar wiggler for improved beam confinement, as well as access to the high gain, strong pump Compton regime with its potential for highly efficient FEL operation.

  9. Transverse Gradient Undulators and FEL operating with large energy spread

    NASA Astrophysics Data System (ADS)

    Ciocci, F.; Dattoli, G.; Sabia, E.

    2015-12-01

    Undulators exhibiting a gradient of the field in the transverse direction have been proposed to mitigate the effects of the gain dilution in Free Electron Laser devices operating with large energy spread. The actual use of the device depends on the realization of a field distribution with quasi-vanishing quadrupolar terms in the tapering directions. We analyze the effect of a Transverse Gradient Undulator on the FEL operation and critically review the possibility of an appropriate field implementation.

  10. Simulations of the LANL regenerative amplifier FEL

    SciTech Connect

    Kesselring, M.; Colson, W.B.; Wong, R.K.; Sheffield, R.L.

    1997-08-01

    The LANL regenerative amplifier FEL is designed to produce an average output power of 1 kW. Simulations study the transverse effects due to guiding by the intense electron beam and feedback. These simulations coupled with experimental measurements can be used to improve future high-power FEL designs.

  11. Method for reducing the radiation bandwidth of an x-ray FEL

    NASA Astrophysics Data System (ADS)

    Saldin, Evgeny L.; Schneidmiller, Evgeny A.; Yurkov, Mikhail V.; Feldhaus, Josef; Schneider, Jochen R.

    1997-05-01

    A new design for a single pass X-ray SASE FEL is proposed. The scheme consists of two undulators and an X-ray monochromator located between them. The first stage of the FEL amplifier operates in the SASE linear regime. After the exit of the first undulator, the electron bunch is guided through a non-isochronous bypass and the X-ray beam enters the monchromator. The mail function of the bypass is to suppress the modulation of the electron beam induced in the first undulator. This is possible because of the finite value of the natural energy spread in the bem. At the entrance to the second undulator, the radiation power from the monochromator dominates significantly over the shot noise and the residual electron bunching. As a result, the second stage of the FEL amplifier operates in the steady-state regime. The proposed scheme is illustrated for the example of the 6nm option SASE FEL at the TESLA TEst Facility under construction at DESY. The spectral bandwidth of such a two-stage SASE FEL (Δλ/λ~ 5 x 10-5) is close to the limit defined by the finite duration of the radiation pulse. The average spectral brilliance is equal to 7 x 1024 photons/(secxmrad2 x mm2 x 0.1 % bandw.) which is by two orders of magnitude higher than the value which could be reached by the conventional SASE FEL.

  12. Compact FEL`s based on slow wave wigglers

    SciTech Connect

    Riyopoulos, S.

    1995-12-31

    Slow waves excited in magnetron-type cavities are attractive canditates as wigglers for compact Free Electron Lasers. Because of group velocities much below the speed of light, slow waves offer an order of magnitude increase in FEL gain under given circulating power in the wiggler resonator, compared to fast wave wigglers of similar period. In addition, they offer the versatility of operation either at modest beam energy via upshifing of the fundamental wavelength, or at low beam energy benefiting from the submillimeter wiggler harmonics. Because the main electron undulation is in the transverse direction for all spatial harmonics, the radiated power is increased by a factor {gamma}{sup 2} relative to the Smith-Purcell approach that relies on axial electron undulation. Technical advantages offered by magnetron-type wiggles are: the generation of the wiggler microwaves and the FEL interaction take place inside the same cavity, avoiding the issue of high power coupling between cavities; the excitation of wiggler microwaves relies on distributed electron emission from the cavity wall and does not require separate beam injection.

  13. Recent developments in CrystFEL 1

    PubMed Central

    White, Thomas A.; Mariani, Valerio; Brehm, Wolfgang; Yefanov, Oleksandr; Barty, Anton; Beyerlein, Kenneth R.; Chervinskii, Fedor; Galli, Lorenzo; Gati, Cornelius; Nakane, Takanori; Tolstikova, Alexandra; Yamashita, Keitaro; Yoon, Chun Hong; Diederichs, Kay; Chapman, Henry N.

    2016-01-01

    CrystFEL is a suite of programs for processing data from ‘serial crystallography’ experiments, which are usually performed using X-ray free-electron lasers (FELs) but also increasingly with other X-ray sources. The CrystFEL software suite has been under development since 2009, just before the first hard FEL experiments were performed, and has been significantly updated and improved since then. This article describes the most important improvements which have been made to CrystFEL since the first release version. These changes include the addition of new programs to the suite, the ability to resolve ‘indexing ambiguities’ and several ways to improve the quality of the integrated data by more accurately modelling the underlying diffraction physics. PMID:27047311

  14. Integrated computer simulation on FIR FEL dynamics

    SciTech Connect

    Furukawa, H.; Kuruma, S.; Imasaki, K.

    1995-12-31

    An integrated computer simulation code has been developed to analyze the RF-Linac FEL dynamics. First, the simulation code on the electron beam acceleration and transport processes in RF-Linac: (LUNA) has been developed to analyze the characteristics of the electron beam in RF-Linac and to optimize the parameters of RF-Linac. Second, a space-time dependent 3D FEL simulation code (Shipout) has been developed. The RF-Linac FEL total simulations have been performed by using the electron beam data from LUNA in Shipout. The number of particles using in a RF-Linac FEL total simulation is approximately 1000. The CPU time for the simulation of 1 round trip is about 1.5 minutes. At ILT/ILE, Osaka, a 8.5MeV RF-Linac with a photo-cathode RF-gun is used for FEL oscillation experiments. By using 2 cm wiggler, the FEL oscillation in the wavelength approximately 46 {mu}m are investigated. By the simulations using LUNA with the parameters of an ILT/ILE experiment, the pulse shape and the energy spectra of the electron beam at the end of the linac are estimated. The pulse shape of the electron beam at the end of the linac has sharp rise-up and it slowly decays as a function of time. By the RF-linac FEL total simulations with the parameters of an ILT/ILE experiment, the dependencies of the start up of the FEL oscillations on the pulse shape of the electron beam at the end of the linac are estimated. The coherent spontaneous emission effects and the quick start up of FEL oscillations have been observed by the RF-Linac FEL total simulations.

  15. Energy stability in a high average power FEL

    SciTech Connect

    Mermings, L.; Bisognano, J.; Delayen, J.

    1995-12-31

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields or beam current are investigated. Energy changes can cause beam loss on apertures, or, when coupled to M, phase oscillations. Both effects change the beam induced voltage in the cavities and can lead to unstable variations of the accelerating field. Stability analysis for small perturbations from equilibrium is performed and threshold currents are determined. Furthermore, the analytical model is extended to include feedback. Comparison with simulation results derived from direct integration of the equations of motion is presented. Design strategies to increase the instability threshold are discussed and the UV Demo FEL, proposed for construction at CEBAF, and the INP Recuperatron at Novosibirsk are used as examples.

  16. Progress at the Jefferson Laboratory FEL

    SciTech Connect

    Tennant, Christopher

    2009-01-01

    As the only currently operating free electron laser (FEL) based on a CW superconducting energy recovering linac (ERL), the Jefferson Laboratory FEL Upgrade remains unique as an FEL driver. The present system represents the culmination of years of effort in the areas of SRF technology, ERL operation, lattice design, high power optics and DC photocathode gun technology. In 2001 the FEL Demo generated 2.1 kW of laser power. Following extensive upgrades, in 2006 the FEL Upgrade generated 14.3 kW of laser power breaking the previous world record. The FEL Upgrade remains a valuable testbed for studying a variety of collective effects, such as the beam breakup instability, longitudinal space charge and coherent synchrotron radiation. Additionally, there has been exploration of operation with lower injection energy and higher bunch charge. Recent progress and achievements in these areas will be presented, and two recent milestones â installation of a UV FEL and establishment of a DC gun test s

  17. Enhancing FEL Power with Phase Shifters

    SciTech Connect

    Ratner, Daniel; Chao, Alex; Huang, Zhirong; /SLAC

    2010-07-30

    Tapering the undulator parameter is a well-known method for maintaining the resonant condition past saturation, and increasing Free Electron Laser (FEL) efficiency. In this paper, we demonstrate that shifting the electron bunch phase relative to the radiation is equivalent to tapering the undulator parameter. Using discrete phase changes derived from optimized undulator tapers for the Linac Coherent Light Source (LCLS) x-ray FEL, we show that appropriate phase shifts between undulator sections can reproduce the power enhancement of undulator tapers. Phase shifters are relatively easy to implement and operate, and could be used to aid or replace undulator tapers in optimizing FEL performance.

  18. Fused rock from Köfels, Tyrol

    USGS Publications Warehouse

    Milton, Daniel J.

    1964-01-01

    The vesicular glass from Köfels, Tyrol, contains grains of quartz that have been partially melted but not dissolved in the matrix glass. This phenomenon has been observed in similar glasses formed by friction along a thrust fault and by meteorite impact, but not in volcanic glasses. The explosion of a small nuclear device buried behind a steep slope produced a geologic structure that is a good small-scale model of that at Köfels. Impact of a large meteorite would have an effect analogous to that of a subsurface nuclear explosion and is the probable cause of the Köfels feature.

  19. SASE FEL Polarization Control Using Crossed Undulator

    SciTech Connect

    Ding, Yuantao; Huang, Zhirong; /SLAC

    2008-09-30

    There is a growing interest in producing intense, coherent x-ray radiation with an adjustable and arbitrary polarization state. In this paper, we study the crossed undulator scheme for rapid polarization control in a self-amplified spontaneous emission (SASE) free electron laser (FEL). Because a SASE source is a temporally chaotic light, we perform a statistical analysis on the state of polarization using FEL theory and simulations. We show that by adding a small phase shifter and a short (about 1.3 times the FEL power gain length), 90{sup o} rotated planar undulator after the main SASE planar undulator, one can obtain circularly polarized light--with over 80% polarization--near the FEL saturation.

  20. Concepts for UV-FEL optics

    SciTech Connect

    Johnson, E.D.

    1993-11-01

    Brookhaven National Laboratory has developed a design for an ultra-violet free electron laser facility utilizing a seeded amplifier approach. Since the accelerator is a single pass device, resonator and outcoupler mirrors which are a difficult aspect of oscillator FEL designs are not required. The result is a source of high peak power VUV radiation with the mode structure, bandwidth and frequency stability of the input seed laser. The accelerator provides pulses of radiation at up to 10 kHz, so to maximize the utilization of the source, novel optical systems to share the radiation had to be developed. These include specialized alignment, beam transport, order sorting, and multiplexing optics. In addition, FEL on FEL pump-probe experiments are made possible by a variable optical delay of up to 10 ns operating in the wavelength range of 200 to 75 nm. Some aspects of the FEL design are also described to clarify the constraints and choices for the optical system.

  1. Predicted performance of a multi-section VUV FEL with the Amsterdam pulse stretcher and storage ring AmPS

    SciTech Connect

    Bazylev, V.A.; Pitatelev, M.I.; Tulupov, A.V.

    1995-12-31

    A design is proposed to realize a VUV FEL with the Amsterdam Pulse Stretcher and Storage Ring (AmPS). The FEL is based on 4 identical undulator sections and 3 dispersive sections. The total magnetic system has a length of 12 m. 3 D simulations with the actual electron beam parameters of AmPS have been done with a version of TDA code modified for multi-sectional FELs. The spectral range between 50 and 100 nm has been considered. The simulations show that an amplification as large as 1*E5 - 1*E7 can be achieved. The amplification can be enhanced by a further optimisation procedure.

  2. Towards attosecond X-ray pulses from the FEL

    SciTech Connect

    Zholents, Alexander A.; Fawley, William M.

    2004-07-01

    The ability to study ultrafast phenomena has been recently advanced by the demonstrated production and measurement of a single, 650-attosecond (10{sup 18} sec), VUV x-ray pulse[1] and, latter, a 250-attosecond pulse[2]. The next frontier is a production of the x-ray pulses with shorter wavelengths and in a broader spectral range. Several techniques for a generation of an isolated, attosecond duration, short-wavelength x-ray pulse based upon the ponderomotive laser acceleration [3], SASE and harmonic cascade FELs ([4] - [6]) had been already proposed. In this paper we briefly review a technique proposed in [5] and present some new results.

  3. Wavelength dependent delay in the onset of FEL tissue ablation

    SciTech Connect

    Tribble, J.A.; Edwards, G.S.; Lamb, J.A.

    1995-12-31

    We are investigating the wavelength dependence of the onset of laser tissue ablation in the IR Visible and UV ranges. Toward this end, we have made simultaneous measurements of the ejected material (using a HeNe probe beam tangential to the front surface) and the residual stress transient in the tissue (using traditional piezoelectric detection behind the thin samples). For the IR studies we have used the Vanderbilt FEL and for the UV and Vis range we have used a Q-switched ND:Yag with frequency doubling and quadrupling. To satisfy the conditions of the near field limit for the detection of the stress transient, the duration of the IR FEL macropulse must be as short as possible. We have obtained macropulses as short as 100 ns using Pockels Cell technology. The recording of the signals from both the photodiode monitoring the HeNe probe beam and the acoustic detector are synchronized with the arrival of the 100 ns macropulse. With subablative intensities, the resulting stress transient is bipolar with its positive peak separated from its negative peak by 100 ns in agreement with theory. Of particular interest is the comparison of ablative results using 3 {mu}m and 6.45 {mu}m pulses. Both the stress transient and the ejection of material suffer a greater delay (with respect to the arrival of the 100 ns pulse) when the FEL is tuned to 3 {mu}m as compared to 6.45 {mu}m. A comparison of IR Vis and UV data will be discussed in terms of microscopic mechanisms governing the laser ablation process.

  4. Temporal characteristics of a SASE FEL.

    SciTech Connect

    Li, Y,; Huang, Z.; Kim, K.-J.; Lewellen, J.; Milton, S. V.; Sajaev, V.

    2003-01-01

    We have performed a single-shot, time-resolved measurement of the output field of a SASE FEL using the frequency-resolved optical gating (FROG) technique. The measurement reveals the phase and the amplitude of the SASE output as functions of time and frequency, hence enables us to perform a full characterization of the SASE FEL output. We examined both the single-shot field evolution as well as the statistics over multiple shots on the phase and intensity evolution.

  5. Ther FERMI FEL project at TRIESTE

    SciTech Connect

    Walker, R.P.; Bulfone, D.; Cargnello, F.

    1995-12-31

    The goal of the FERMI project - Free Electron Radiation and Matching Instrumentation - is to construct a new user facility for FEL radiation beams covering a broad spectral range (2-250 {mu}m) to complement the high brightness VUV/Soft-Xray radiation available from the ELETTRA synchrotron radiation facility at Trieste. A unique feature of the project will be the possibility of carrying out {open_quote}pump-probe{close_quote} experiments using synchronized radiation beams from FERMI and ELETTRA on the same sample. The project was launched at a meeting with Italian FEL experts held in Trieste on the 18th November 1994, chaired by C. Rubbia, as a collaboration between Sincrotrone Trieste, ENEA (Frascati), INFN (Frascati) and the University of Naples (Department of Electronic Engineering). The facility will make use of an existing linac, that forms part of the ELETTRA injection system, and a hall into which the beam can be extracted. In addition, for the first phase of the project equipment will be used from the suspended INFN/ENEA {open_quote}SURF{close_quote} FEL experiment, including the undulator, beam transport magnets and optical cavity. In this first International FEL Conference report on the project, we summarize the main features of the project, concentrating in particular on the most recent activities, including: results of measurements of the linac beam in the FEL mode of operation, further studies of the electron beam transport system including possibilities for bunch length manipulations, and further numerical calculations of the FEL performance.

  6. Allergens as immunomodulatory proteins: the cat dander protein Fel d 1 enhances TLR activation by lipid ligands.

    PubMed

    Herre, Jurgen; Grönlund, Hans; Brooks, Heather; Hopkins, Lee; Waggoner, Lisa; Murton, Ben; Gangloff, Monique; Opaleye, Olaniyi; Chilvers, Edwin R; Fitzgerald, Kate; Gay, Nick; Monie, Tom; Bryant, Clare

    2013-08-15

    Allergic responses can be triggered by structurally diverse allergens. Most allergens are proteins, yet extensive research has not revealed how they initiate the allergic response and why the myriad of other inhaled proteins do not. Among these allergens, the cat secretoglobulin protein Fel d 1 is a major allergen and is responsible for severe allergic responses. In this study, we show that similar to the mite dust allergen Der p 2, Fel d 1 substantially enhances signaling through the innate receptors TLR4 and TLR2. In contrast to Der p 2, however, Fel d 1 does not act by mimicking the TLR4 coreceptor MD2 and is not able to bind stably to the TLR4/MD2 complex in vitro. Fel d 1 does, however, bind to the TLR4 agonist LPS, suggesting that a lipid transfer mechanism may be involved in the Fel d 1 enhancement of TLR signaling. We also show that the dog allergen Can f 6, a member of a distinct class of lipocalin allergens, has very similar properties to Fel d 1. We propose that Fel d 1 and Can f 6 belong to a group of allergen immunomodulatory proteins that enhance innate immune signaling and promote airway hypersensitivity reactions in diseases such as asthma. PMID:23878318

  7. Multi-stage FEL amplifier with diaphragm focusing line as direct energy driver for inertial confinement fusion

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N.

    1995-12-31

    An FEL based energy driver for Inertial Confinement Fusion (ICF) is proposed. The key element of the scheme is free electron laser system. Novel technical solutions, namely, using of multichannel, multi-stage FEL amplifier with diaphragm focusing line, reveal a possibility to construct the FEL system operating at radiation wavelength {lambda} = 0.5 {mu}m and providing flush energy E = 1 MJ and brightness 4 x 10{sup 22} W cm{sup -2} sr{sup -1} within steering pulse duration {tau} {approximately} 0.1-2 ns. Total energy efficiency of the proposed ICF energy driver is about of 11% and repetition rate is 40 Hz. It is shown that the FEL based ICF energy driver may be constructed at the present level of accelerator technique R& D.

  8. Polarization control in X-ray FELs by reverse undulator tapering

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2015-05-01

    Baseline design of a typical X-ray FEL undulator assumes a planar configuration which results in a linear polarization of the FEL radiation. However, many experiments at X-ray FEL user facilities would profit from using a circularly polarized radiation. As a cheap upgrade one can consider an installation of a short helical (or cross-planar) afterburner, but then one should have an efficient method to suppress powerful linearly polarized background from the main undulator. In this paper we propose a new method for such a suppression: an application of the reverse taper in the main undulator. We discover that in a certain range of the taper strength, the density modulation (bunching) at saturation is practically the same as in the case of non-tapered undulator while the power of linearly polarized radiation is suppressed by orders of magnitude. Then strongly modulated electron beam radiates at full power in the afterburner. Considering SASE3 undulator of the European XFEL as a practical example, we demonstrate that soft X-ray radiation pulses with peak power in excess of 100 GW and an ultimately high degree of circular polarization can be produced. The proposed method is rather universal, i.e. it can be used at SASE FELs and seeded (self-seeded) FELs, with any wavelength of interest, in a wide range of electron beam parameters, and with any repetition rate.

  9. Three-Dimensional Analysis of Frequency-Chirped FELs

    SciTech Connect

    Huang, Z.; Ding, Y.; Wu, J.; /SLAC

    2010-09-14

    Frequency-chirped free-electron lasers (FELs) are useful to generate a large photon bandwidth or a shorter x-ray pulse duration. In this paper, we present a three-dimensional analysis of a high-gain FEL driven by the energy-chirped electron beam. We show that the FEL eigenmode equation is the same for a frequency-chirped FEL as for an undulator-tapered FEL. We study the transverse effects of such FELs including mode properties and transverse coherence.

  10. Low energy beam transport in the NSLS UV-FEL

    SciTech Connect

    Zhang, X.; Gallardo, J.C.

    1993-06-01

    A design of the injection low energy transport line for the proposed NSLS UV-FEL is presented. The main concern is to control the beam transverse emittance dilution due to space charge, energy spread and non-linear forces introduced by magnetic elements. The design considerations to optimize the transport line are discussed including the deleterious effects of space charge and energy spread as modeled by the particle code PARMELA. The results from PARMELA are analyzed, and the concept of slice emittance is used to examine the causes of emittance growth.

  11. Low energy beam transport in the NSLS UV-FEL

    SciTech Connect

    Zhang, X.; Gallardo, J.C.

    1993-01-01

    A design of the injection low energy transport line for the proposed NSLS UV-FEL is presented. The main concern is to control the beam transverse emittance dilution due to space charge, energy spread and non-linear forces introduced by magnetic elements. The design considerations to optimize the transport line are discussed including the deleterious effects of space charge and energy spread as modeled by the particle code PARMELA. The results from PARMELA are analyzed, and the concept of slice emittance is used to examine the causes of emittance growth.

  12. X-ray FEL Simulation with the MPP version of the GINGER Code

    NASA Astrophysics Data System (ADS)

    Fawley, William

    2001-06-01

    GINGER is a polychromatic, 2D (r-z) PIC code originally developed in the 1980's to examine sideband growth in FEL amplifiers. In the last decade, GINGER simulations have examined various aspects of x-ray and XUV FEL's based upon initiation by self-amplified spontaneous emission (SASE). Recently, GINGER's source code has been substantially updated to exploit many modern features of the Fortran90 language and extended to exploit multiprocessor hardware with the result that the code now runs effectively on platforms ranging from single processor workstations in serial mode to MPP hardware at NERSC such as the Cray-T3E and IBM-SP in full parallel mode. This poster discusses some of the numerical algorithms and structural details of GINGER which permitted relatively painless porting to parallel architectures. Examples of some recent SASE FEL modeling with GINGER will be given including both existing experiments such as the LEUTL UV FEL at Argonne and proposed projects such as the LCLS x-ray FEL at SLAC.

  13. On a theory of an FEL amplifier with circular waveguide and guiding magnetic field

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1995-12-31

    We consider an FEL amplifier with an axisymmetric electron beam, circular waveguide, helical undulator and guiding magnetic field. The presented nonlinear theory of the FEL amplifier is based on Hamiltonian description of particle motion and radiation field representation with Green function method. The space charge fields, energy spread and diffraction effects are taken into consideration. Such an FEL amplifier configuration possesses some peculiarities when it operates in a regime with the negative longitudinal mass (i.e. when{mu}{sup -1}{proportional_to}dv{sub z}/dE < 0). It is shown that in the presence of strong space charge fields, the so-called {open_quotes}negative mass{close_quotes} instability may influence significantly on the FEL amplifier operation resulting in a significant increase in the FEL amplifier efficiency. It is proposed in the presented paper to use the effect of the {open_quotes}negative mass instability{close_quotes} to achieve an effective bunching of the CERN Linear Collider (LIC) driving beam.

  14. Design study of a longer wavelength FEL for FELIX

    SciTech Connect

    Lin, L.; Oepts, D.; Meer, A.F.G. van der

    1995-12-31

    We present a design study of FEL3, which will extend the FELIX spectral range towards a few hundred microns. A rectangular waveguide will be used to reduce diffraction losses. Calculations show that with a waveguide gap of 1 cm, only one sinusoidal mode along the guided direction can exist within the FEL gain bandwidth, thus excluding group velocity dispersion and lengthening of short radiation pulses. To incorporate FEL3 in the existing FELIX facility, two options are being considered: to combine FEL3 with FEL1 by insertion of a waveguide into FEL1, and to build a dedicated third beam line for FEL3 after the two linacs. Expected FEL performance: gain, spectrum, power, pulse shape, etc., will be presented based on numerical simulations.

  15. The Calcium Goes Meow: Effects of Ions and Glycosylation on Fel d 1, the Major Cat Allergen.

    PubMed

    Ligabue-Braun, Rodrigo; Sachett, Liana Guimarães; Pol-Fachin, Laércio; Verli, Hugo

    2015-01-01

    The major cat allergen, Fel d 1, is a structurally complex protein with two N-glycosylation sites that may be filled by different glycoforms. In addition, the protein contains three putative Ca2+ binding sites. Since the impact of these Fel d 1 structure modifications on the protein dynamics, physiology and pathology are not well established, the present work employed computational biology techniques to tackle these issues. While conformational effects brought upon by glycosylation were identified, potentially involved in cavity volume regulation, our results indicate that only the central Ca2+ ion remains coordinated to Fel d 1 in biological solutions, impairing its proposed role in modulating phospholipase A2 activity. As these results increase our understanding of Fel d 1 structural biology, they may offer new support for understanding its physiological role and impact into cat-promoted allergy. PMID:26134118

  16. Multidimensional simulation studies of the SELENE FEL oscillator/buncher followed by a radiator/amplifier output scheme

    SciTech Connect

    Hahn, S.J.; Fawley, W.M.

    1995-02-01

    We analyze and present numerical simulations of the so-called electron output scheme [G. I. Erg et al., 15th Int. FEL Conf., The Hague, The Netherlands, 1993, Book of Abstracts p. 50; Preprint Budker INP 93-75] applied to the SELENE proposal of using a high power FEL to illuminate satellite solar cells. In this scheme, a first stage FEL oscillator bunches the electron beam while a second stage ``radiator`` extracts high power radiation. Our analysis suggests only in the case where the radiator employs a long, tapered undulator will the electron output scheme produce a significant increase in extraction efficiency over what is obtainable from a simple, single-stage oscillator. 1- and 2-D numerical simulations of a 1.7{mu}m FEL employing the electron output scheme show reasonably large bunching fractions ({approximately} 0.3--0.4) at the output of the oscillator stage but only {le}2% extraction efficiency from the radiator stage.

  17. The Calcium Goes Meow: Effects of Ions and Glycosylation on Fel d 1, the Major Cat Allergen

    PubMed Central

    Pol-Fachin, Laércio; Verli, Hugo

    2015-01-01

    The major cat allergen, Fel d 1, is a structurally complex protein with two N-glycosylation sites that may be filled by different glycoforms. In addition, the protein contains three putative Ca2+ binding sites. Since the impact of these Fel d 1 structure modifications on the protein dynamics, physiology and pathology are not well established, the present work employed computational biology techniques to tackle these issues. While conformational effects brought upon by glycosylation were identified, potentially involved in cavity volume regulation, our results indicate that only the central Ca2+ ion remains coordinated to Fel d 1 in biological solutions, impairing its proposed role in modulating phospholipase A2 activity. As these results increase our understanding of Fel d 1 structural biology, they may offer new support for understanding its physiological role and impact into cat-promoted allergy. PMID:26134118

  18. An FEL design code running on Mathcad(trademark)

    NASA Astrophysics Data System (ADS)

    Nguyen, D. C.; Gierman, S. M.; Oshea, P. G.

    We present a simple computer code called FEL-CAD that runs on the Mathcad(trademark) software. FEL-CAD gives estimates of the expected performance of a low-gain Compton FEL oscillator driven by an rf linac. The code provides fast, albeit approximate, answers to basic FEL design questions. Scaling can be done by varying the wiggler, the linac, the electron beam and the optical resonator parameters.

  19. Physical design of FEL injector based on the performance-enhanced EC-ITC RF gun

    NASA Astrophysics Data System (ADS)

    Hu, Tong-Ning; Chen, Qu-Shan; Pei, Yuan-Ji; Li, Ji; Qin, Bin

    2014-01-01

    To meet the requirements of high performance THz-FEL (Free Electron Laser), a compact scheme of FEL injector was proposed. A thermionic cathode was chosen to emit electrons instead of a photo-cathode with its complex structure and high cost. The effective bunch charge was improved to ~200 pC by adopting an enhanced EC-ITC (External Cathode Independently Tunable Cells) RF gun to extract micro-bunches; back bombardment effects were almost eliminated as well. Constant gradient accelerator structures were designed to improve energy to ~14 MeV, while the focusing system was applied for emittance suppressing and bunch state maintenance. The physical design and beam dynamics of the key components for the FEL injector were analyzed. Furthermore, start-to-end simulations with multi-pulses were performed using homemade MATLAB and Parmela. The results show that continual high brightness electron bunches with a low energy spread and emittance could be obtained stably.

  20. Scaling formulae for FEL operating in linear and non linear regime

    SciTech Connect

    Dattoli, G.; Mezi, L.; Segreto, A.

    1995-12-31

    Scaling relations for the FEL gain, including the e-beam quality effects, have been usefully exploited to design FEL devices. We propose further extension of the above formulae including high gain, inhomogeneous broadening and saturation effects. A crucial role to get these relations is the use of approximant methods generalizing the Pade procedure. We derive gain equations containing the corrections due to energy spread, emittances and field intensity. It is shown that these equations can be exploited to {open_quotes}simulate{close_quotes} the FEL evolution with an almost negligible computational effort. Comments on the role of the saturation intensity and its dependence on the e-beam quality, high gain corrections etc. are also presented.

  1. First Lasing of the Regenerative Amplifier FEL

    SciTech Connect

    Nguyen, D.C.; Sheffield, R.L.; Fortang, C.M.; Goldstein, J.C.; Kinross-Wright, J.M.; Ebrahim, N.A.

    1998-08-17

    The Regenerative Amplifier Free-Electron Laser (RAFEL) is a high-gain RF-linac FEL capable of producing high optical power from a compact design. The combination of a high-gain and small optical feedback enables the FEL to reach saturation and produce a high optical power and high extraction efficiency without risk of optical damage to the mirrors. This paper summarizes the first lasing of the Regenerative Amplifier FEL and describes recent experimental results. The highest optical energy achieved thus far at 16.3 {micro}m is 1.7 J over an 9-{micro}s macropulse, corresponding to an average power during the macropulse of 190 kW. They deduce an energy of 1.7 mJ in each 16 ps micropulse, corresponding to a peak power of 110 MW.

  2. Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL

    NASA Astrophysics Data System (ADS)

    Feldhaus, J.; Saldin, E. L.; Schneider, J. R.; Schneidmiller, E. A.; Yurkov, M. V.

    1997-02-01

    A new design for a single pass X-ray SASE FEL is proposed. The scheme consists of two undulators and an X-ray monochromator located between them. The first stage of the FEL amplifier operates in the SASE linear regime. After the exit of the first undulator the electron bunch is guided through a non-isochronous bypass and the X-ray beam enters the monochromator. The main function of the bypass is to suppress the modulation of the electron beam induced in the first undulator. This is possible because of the finite value of the natural energy spread in the beam. At the entrance to the second undulator the radiation power from the monochromator dominates significantly over the shot noise and the residual electron bunching. As a result, the second stage of the FEL amplifier operates in the steady-state regime. The proposed scheme is illustrated for the example of the 6 nm option SASE FEL at the TESLA Test Facility under construction at DESY. The spectral bandwidth of such a two-stage SASE FEL ( {Δλ}/{λ} ⋍ 5 × 10 -5) is close to the limit defined by the finite duration of the radiation pulse. The average spectral brilliance is equal to 2 × 10 24 photons/(sec×mrad 2×mm 2×0.1% bandwidth) which is by two orders of magnitude higher than the value which could be reached by the conventional SASE FEL.

  3. The APS SASE FEL : modeling and code comparison.

    SciTech Connect

    Biedron, S. G.

    1999-04-20

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.

  4. Powerful electrostatic FEL: Regime of operation, recovery of the spent electron beam and high voltage generator

    SciTech Connect

    Boscolo, I.; Gong, J.

    1995-02-01

    FEL, driven by a Cockcroft-Walton electrostatic accelerator with the recovery of the spent electron beam, is proposed as powerful radiation source for plasma heating. The low gain and high gain regimes are compared in view of the recovery problem and the high gain regime is shown to be much more favourable. A new design of the onion Cockcroft-Walton is presented.

  5. Chirped pulse amplification at VISA-FEL

    NASA Astrophysics Data System (ADS)

    Agustsson, R.; Andonian, G.; Babzien, M.; Ben-Zvi, I.; Frigola, P.; Huang, J.; Murokh, A.; Palumbo, L.; Pellegrini, C.; Reiche, S.; Rosenzweig, J.; Travish, G.; Vicario, C.; Yakimenko, V.

    2004-08-01

    Chirped beam manipulations are of the great interest to the free electron laser (FEL) community as potential means of obtaining ultra short X-ray pulses. The experiment is under way at the accelerator test facility (ATF) at Brookhaven National Laboratory (BNL) to study the FEL process limits with the under-compressed chirped electron beam. High gain near-saturation SASE operation was achieved with the strongly chirped beam (˜2.8% head-to-tail). The measured beam dynamics and SASE properties are presented, as well as the design parameters for the next round of experiment utilizing the newly installed UCLA/ATF chicane compressor.

  6. A high-power compact regenerative amplifier FEL

    SciTech Connect

    Nguyen, D.C.; Sheffield, R.L.; Fortgang, C.M.; Kinross-Wright, J.M.; Ebrahim, N.A.; Goldstein, J.C.

    1997-08-01

    The Regenerative Amplifier FEL (RAFEL) is a new FEL approach aimed at achieving the highest optical power from a compact rf-linac FEL. The key idea is to feed back a small fraction (< 10%) of the optical power into a high-gain ({approximately}10{sup 5} in single pass) wiggler to enable the FEL to reach saturation in a few passes. This paper summarizes the design of a high-power compact regenerative amplifier FEL and describes the first experimental demonstration of the RAFEL concept.

  7. Some novel features of an FEL oscillator with tapered undulator

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1995-12-31

    A one-dimensional analysis of an FEL oscillator with a linear undulator tapering is presented. Some principally novel results have been obtained. The origin of these results is in principal difference between the FEL oscillator and an FEL amplifier. In the case of the FEL amplifier the frequency of the amplified wave and all the other parameters are defined by an experimenter. Contrary to this, the case of the FEL oscillator with tapered undulator is more complicated. The lasing frequency is defined by the maximum of the small-signal gain and depends on the tapering depth in some complex way.

  8. FELS FOUNDATION PROJECT FOR DEVELOPING YOUTH POTENTIAL.

    ERIC Educational Resources Information Center

    BAIR, ROBERT A.; AND OTHERS

    THE OPERATION OF THE FELS FOUNDATION PROJECT FOR DEVELOPING YOUTH POTENTIAL IN HANFORD, CALIFORNIA, IS DESCRIBED. OF GENERAL CONCERN WAS THE PREPARATION OF CULTURALLY DEPRIVED CHILDREN FOR SCHOOL EXPERIENCES AND FOR FUTURE EMPLOYMENT. A MAJOR GOAL WAS TO IMPROVE THE SELF-IMAGE OF THE CHILDREN AND TO ASSIST THE PARENTS AND CHILDREN IN PROVIDING…

  9. Evaluation of the FEL+ Program, Final Report.

    ERIC Educational Resources Information Center

    Evaluation and Training Inst., Los Angeles, CA.

    An external evaluation of the Family English Literacy, Plus (FEL+) program of the Sweetwater Union High School District (California) is presented. Program objectives included: (1) development and implementation of curriculum and activities integrating technology-assisted instruction into the existing literacy program; (2) increasing parent/child…

  10. FEL-based transient grating spectroscopy

    NASA Astrophysics Data System (ADS)

    Bencivenga, F.; Cucini, R.; Capotondi, F.; Battistoni, A.; Mincigrucci, R.; Giangrisostomi, E.; Gessini, A.; Manfredda, M.; Nikolov, I. P.; Pedersoli, E.; Principi, E.; Svetina, C.; Parisse, P.; Casolari, F.; Danailov, M. B.; Kiskinova, M.; Masciovecchio, C.

    2015-05-01

    In this manuscript we report on a compact experimental set-up ("mini-TIMER") conceived for transient grating (TG) experiments based on free electron laser (FEL) radiation. This set-up has been tested at the seeded FEL facility FERMI (Elettra, Trieste, Italy) and allowed us to observe the first FEL-stimulated TG signal. This experimental result is of the greatest relevance in the context of developing coherent non-linear optical methods into the extreme ultraviolet (EUV) and soft X-ray (SXR) range. Such a challenging task will be addressed in the next future at FERMI by using the present set-up and the forthcoming EIS-TIMER beamline, which is being installed at FERMI and will start the commissioning phase in the second semester 2015. The possibility to use TGs generated by FEL radiation at sub-optical wavelengths would allow developing EUV/SXR four-wave-mixing (FWM) applications, so far considered only theoretically and widely believed to be potentially able to provide major breakthroughs in several fields of science.

  11. A compact FEL upconverter of coherent radiation

    SciTech Connect

    Liu, Y.; Marshall, T.C.

    1995-12-31

    The objective is to generate a powerful millimeter-wave FEL signal in a single pass, using a coherent microwave source (24GHz) to prebunch the electron beam for a harmonically-related wave (72GHz). We use the Columbia FEL facility, operating the electron beam at 600kV, 100A; undulator period = 1.85cm and 250G (K = 0.25); electron beam diameter = 3mm inside a 8.5 mm ID drift tube; guiding field of 8800G. Under these conditions, both the microwave signal (5kW input) and the millimeter signal will show travelling-wave gain in the TE11 mode. We report initial experimental results for the millimeter wave spectrum and find an overall power gain of {approximately}20 for the 24GHz input wave. Also presented will be numerical solutions of the wave growth using the FEL equations with slippage. This device has the advantage of producing a high-power FEL output in a single-pass travelling-wave configuration, obtaining a millimeter wave which is phase-referenced to a coherent laboratory source.

  12. UCSB FEL user mode adaption project

    NASA Astrophysics Data System (ADS)

    Jaccarino, Vincent

    1992-04-01

    This research sponsored by the SDIO Biomedical and Materials Sciences FEL Program held the following objectives: Provide a facility in which in-house and outside user research in the materials and biological sciences can be carried out in the Far Infrared using-the unique properties of the UCSB electrostatic accelerator-driven FEL; Develop and implement new FEL concepts and FIR technology and encourage the transfer and application of this research; Train graduate students, post doctoral researchers and technical personnel in varied aspects of scientific user disciplines, FEL science and FIR technology in a cooperative, interdisciplinary environment. In summary, a free electron laser facility has been developed which is operational from 200 GHz, (6.6 cm exp -1), to 4.8 THz, (160 cm exp -1) tunable under computer control and able to deliver kilowatts of millimeter wave and far-infrared power. This facility has a well equipped user lab that has been used to perform ground breaking experiments in scientific areas as diverse as bio-physics. Nine graduate students and post doctoral researchers have been trained in the operation, use and application of these free-electron lasers.

  13. Partial covariance mapping techniques at FELs

    NASA Astrophysics Data System (ADS)

    Frasinski, Leszek

    2014-05-01

    The development of free-electron lasers (FELs) is driven by the desire to access the structure and chemical dynamics of biomolecules with atomic resolution. Short, intense FEL pulses have the potential to record x-ray diffraction images before the molecular structure is destroyed by radiation damage. However, even during the shortest, few-femtosecond pulses currently available, there are some significant changes induced by massive ionisation and onset of Coulomb explosion. To interpret the diffraction images it is vital to gain insight into the electronic and nuclear dynamics during multiple core and valence ionisations that compete with Auger cascades. This paper focuses on a technique that is capable to probe these processes. The covariance mapping technique is well suited to the high intensity and low repetition rate of FEL pulses. While the multitude of charges ejected at each pulse overwhelm conventional coincidence methods, an improved technique of partial covariance mapping can cope with hundreds of photoelectrons or photoions detected at each FEL shot. The technique, however, often reveals spurious, uninteresting correlations that spoil the maps. This work will discuss the strengths and limitations of various forms of covariance mapping techniques. Quantitative information extracted from the maps will be linked to theoretical modelling of ionisation and fragmentation paths. Special attention will be given to critical experimental parameters, such as counting rate, FEL intensity fluctuations, vacuum impurities or detector efficiency and nonlinearities. Methods of assessing and optimising signal-to-noise ratio will be described. Emphasis will be put on possible future developments such as multidimensional covariance mapping, compensation for various experimental instabilities and improvements in the detector response. This work has been supported the EPSRC, UK (grants EP/F021232/1 and EP/I032517/1).

  14. Options for the Cryogenic System for the BESSY-FEL

    NASA Astrophysics Data System (ADS)

    Kutzschbach, A.; Quack, H.; Haberstroh, Ch.; Knobloch, J.; Anders, W.; Pflueckhahn, D.

    2004-06-01

    The Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung (BESSY GmbH), in January 1999, started operation of BESSY II, a third-generation synchrotron light source delivering world-class, high-brilliance photon beams in the VUV to XUV spectral range. Based on this experience, BESSY has recently proposed the construction of a free-electron laser (FEL), covering a photon-energy range from 20 eV to 1 keV. To reduce the development time and cost, BESSY intends to use proven cavity and cryostat technology developed for the TESLA linear collider. However, the cryogenic load per cavity is approximately 15 to 20 times higher than that anticipated for the (pulsed) TESLA operation. This paper describes possible modifications of the cryostat design to accommodate these additional losses. Superconducting RF cavities are the basis of the FEL accelerator providing the driving electron beam with 2.25 GeV. The accelerator consists of five cold sections separated by warm sections reserved for bunch compression and beam extraction. The total refrigeration load will be covered by a single refrigerator. Several possible layouts of the cryogenic system are described and their advantages and disadvantages are discussed.

  15. On a theory of an FEL oscillator with multicomponent undulator

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1995-12-31

    Some novel results of a theory of an FEL oscillator with multicomponent undulator are presented. Two popular FEL oscillator configuration are under consideration: optical klystron and FEL oscillator with a prebuncher and tapered main undulator. Using similarity techniques, universal formulae and plots are obtained which allow one to calculate the FEL oscillator lasing conditions an output parameters at saturation. A one-dimensional analysis of an FEL oscillator with a linear undulator tapering is presented. Some principally novel results have been obtained. The origin of these results is in principal difference between the FEL oscillator and an FEL amplifier. In the case of the FEL amplifier the frequency of the amplified wave and all the other parameters are defined by an experimenter. Contrary to this, the case of the FEL oscillator with tapered undulator is more complicated. The lasing frequency is defined by the maximum of the small-signal gain and depends on the tapering depth in some complex way. In particular, at smooth increasing of the tapering depth, the lasing frequency may change by a leap and lasing occurs at another local maximum of the gain curve. This effect influences significantly on the FEL oscillator operation at saturation. As a result, generally accepted method of undulator tapering (for instance, by decreasing undulator field at fixed period) provides an efficiency increase only in a narrow range of the parameters of tapering. We show that in some cases, so called {open_quotes}negative tapering{close_quotes} (for instance, by increasing undulator field at fixed period) has a benefit against traditional tapering method. Ignoring of these basic features of the FEL oscillator with the tapered undulator have led many FEL research groups to nonoptimal design of the FEL experiments and incorrect interpretation of the obtained results.

  16. Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL

    NASA Astrophysics Data System (ADS)

    Feldhaus, J.; Saldin, E. L.; Schneider, J. R.; Schneidmiller, E. A.; Yurkov, M. V.

    1997-08-01

    A new design for a single pass X-ray Self-Amplified Spontaneous Emission (SASE) FEL is proposed. The scheme consists of two undulators and an X-ray monochromator located between them. The first stage of the FEL amplifier operates in the SASE linear regime. After the exit of the first undulator the electron bunch is guided through a non-isochronous bypass and the X-ray beam enters the monochromator. The main function of the bypass is to suppress the modulation of the electron beam induced in the first undulator. This is possible because of the finite value of the natural energy spread in the beam. At the entrance to the second undulator the radiation power from the monochromator dominates significantly over the shot noise and the residual electron bunching. As a result the second stage of the FEL amplifier operates in the steady-state regime when the input signal bandwidth is small with respect to that of the FEL amplifier. Integral losses of the radiation power in the monochromator are relatively small because grazing incidence optics can be used. The proposed scheme is illustrated for the example of the 6 nm option SASE FEL at the TESLA Test Facility under construction at DESY. As shown in this paper the spectral bandwidth of such a two-stage SASE FEL (Δλ/λ⋍ 5 × 10-5) is close to the limit defined by the finite duration of the radiation pulse. The average brilliance is equal to 7 × 1024photons/(s × mrad2 × mm2 × 0.1% bandw.) which is by two orders of magnitude higher than the value which could be reached by the conventional SASE FEL. The monochromatization of the radiation is performed at a low level of radiation power (about 500 times less than the saturation level) which allows one to use conventional X-ray optical elements (grazing incidence grating and mirrors) for the monochromator design.

  17. Bidirectional visibility

    NASA Astrophysics Data System (ADS)

    Rasmussen, William O.

    1994-01-01

    The percentage of the cross-sectional area of two objects (e.g., vehicles, hikers, or animals) that can be seen from each of their locations in a forested area is generally not the same. There is a directionality to the visibility between them. This is due to the relative positions and sizes of the vegetation and other view-blocking features between the objects. An analytical technique has been developed to help understand bidirectional visibility. Its use entails the construction of a visibility diagram containing the basic visibility information between observers in a given setting. An example is presented showing the use of the visibility diagram to determine visibility between two moving observers in a forested environment. The diagram is also used to determine the differences in the percentage each observer has of the other's visible cross-sectional area (bidirectional visibility). A discussion of the application of the technique in the planning or development of new facilities, as well as in forest and wildlife management, is provided.

  18. VISIBLE SPEECH.

    ERIC Educational Resources Information Center

    POTTER, RALPH K.; AND OTHERS

    A CORRECTED REPUBLICATION OF THE 1947 EDITION, THE BOOK DESCRIBES A FORM OF VISIBLE SPEECH OBTAINED BY THE RECORDING OF AN ANALYSIS OF SPEECH SOMEWHAT SIMILAR TO THE ANALYSIS PERFORMED BY THE EAR. ORIGINALLY INTENDED TO PRESENT AN EXPERIMENTAL TRAINING PROGRAM IN THE READING OF VISIBLE SPEECH AND EXPANDED TO INCLUDE MATERIAL OF INTEREST TO VARIOUS…

  19. Visibles Revisited

    ERIC Educational Resources Information Center

    Bridger, Mark; Zelevinsky, Andrei

    2005-01-01

    Within the set of points in the plane with integer coordinates, one point is said to be visible from another if no other point in the set lies between them. This study of visibility draws in topics from a wide variety of mathematical areas, including geometry, number theory, probability, and combinatorics.

  20. The SwissFEL Experimental Laser facility.

    PubMed

    Erny, Christian; Hauri, Christoph Peter

    2016-09-01

    The hard X-ray laser SwissFEL at the Paul Scherrer Institute is currently being commissioned and will soon become available for users. In the current article the laser facility is presented, an integral part of the user facility, as most time-resolved experiments will require a versatile optical laser infrastructure and precise information about the relative delay between the X-ray and optical pulse. The important key parameters are a high availability and long-term stability while providing advanced laser performance in the wavelength range from ultraviolet to terahertz. The concept of integrating a Ti:sapphire laser amplifier system with subsequent frequency conversion stages and drift compensation into the SwissFEL facility environment for successful 24 h/7 d user operation is described. PMID:27577769

  1. Beam Conditioning for FELs: Consequences and Methods

    SciTech Connect

    Wolski, Andrzej; Penn, Gregory; Sessler, Andrew; Wurtele, Jonathan

    2003-10-09

    The consequences of beam conditioning in four example cases (VISA, a Soft X-Ray FEL, LCLS and a ''Greenfield'' FEL) are examined. It is shown that in emittance limited cases, proper conditioning reduces sensitivity to the transverse emittance, and allows stronger focusing in the undulator. Simulations show higher saturation power, with gain lengths reduced up to a factor of two. The beam dynamics in a general conditioning system are studied, with ''matching conditions'' derived for achieving conditioning without growth in effective emittance. Various conditioners are considered, and expressions derived for the amount of conditioning provided in each case when the matching conditions are satisfied. We discuss the prospects for conditioners based on laser and plasma systems.

  2. Beam conditioning for FELs: Consequences and methods

    SciTech Connect

    Wolski, A.; Penn, G.; Sessler, A.; Wurtele, J.

    2004-06-29

    The consequences of beam conditioning in four example cases (VISA, a Soft X-Ray FEL, LCLS and a ''Greenfield'' FEL) are examined. It is shown that in emittance limited cases, proper conditioning reduces sensitivity to the transverse emittance and, furthermore, allows for stronger focusing in the undulator. Simulations show higher saturation power, with gain lengths reduced by a factor of two or more. The beam dynamics in a general conditioning system are studied, with ''matching conditions'' derived for achieving conditioning without growth in the effective emittance. Various conditioning lattices are considered, and expressions derived for the amount of conditioning provided in each case when the matching conditions are satisfied. These results show that there is no fundamental obstacle to producing beam conditioning, and that the problem can be reduced to one of proper lattice design. Nevertheless, beam conditioning will not be easy to implement in practice.

  3. A Design Study of a FIR/THz-FEL for High Magnetic Field Research

    SciTech Connect

    Tecimer, M; Brunel, L C; Tol, J van; Neil, G

    2006-09-01

    Presently a conceptual design work for a NIR-FIR FEL system at the NHMFL/FSU is being undertaken. The system is intended to combine high magnetic field research with an intense, tuneable photon source, spanning the spectral region ~2–1000 microns. Here, we present a design study involving the FIR/THz part of the NHMFL FEL design proposal. The suggested long-wavelength FEL encompasses in the first phase a thermionic injector (similar to that in use at the Forschungszentrum-Rossendorf ELBE facility) with a planned ~2 mA average current and a ~10 MeV superconducting rf linac module operating at 1.3 GHz. The broadband outcoupling over the envisaged FIR/THz spectral range (100–1100 microns) is accomplished by adopting a single (variable height slot) outcoupler in a waveguided cavity. Besides the performance predictions of the suggested long-wavelength FEL, techniques for the generation of high peak power, nanoseconds long THz pulses (for magnetic resonance applications) are also reported.

  4. Oscillator Seeding of a High Gain Harmonic Generation FEL in a Radiator-First Configuration

    SciTech Connect

    Gandhi, P.; Wurtele, J.; Penn, G.; Reinsch, M.

    2012-05-20

    A longitudinally coherent X-ray pulse from a high repetition rate free electron laser (FEL) is desired for a wide variety of experimental applications. However, generating such a pulse with a repetition rate greater than 1 MHz is a significant challenge. The desired high repetition rate sources, primarily high harmonic generation with intense lasers in gases or plasmas, do not exist now, and, for the multi-MHz bunch trains that superconducting accelerators can potentially produce, are likely not feasible with current technology. In this paper, we propose to place an oscillator downstream of a radiator. The oscillator generates radiation that is used as a seed for a high gain harmonic generation (HGHG) FEL which is upstream of the oscillator. For the first few pulses the oscillator builds up power and, until power is built up, the radiator has no HGHG seed. As power in the oscillator saturates, the HGHG is seeded and power is produced. The dynamics and stability of this radiator-first scheme is explored analytically and numerically. A single-pass map is derived using a semi-analytic model for FEL gain and saturation. Iteration of the map is shown to be in good agreement with simulations. A numerical example is presented for a soft X-ray FEL.

  5. Use of Multipass Recirculation and Energy Recovery In CW SRF X-FEL Driver Accelerators

    SciTech Connect

    Douglas, David; Akers, Walt; Benson, Stephen V.; Biallas, George; Blackburn, Keith; Boyce, James; Bullard, Donald; Coleman, James; Dickover, Cody; Ellingsworth, Forrest; Evtushenko, Pavel; Fisk, Sally; Gould, Christopher; Gubeli, Joseph; Hannon, Fay; Hardy, David; Hernandez-Garcia, Carlos; Jordan, Kevin; Klopf, John; Kortze, J.; Legg, Robert; Li, Rui; Marchlik, Matthew; Moore, Steven W.; Neil, George; Powers, Thomas; Sexton, Daniel; Shin, Ilkyoung; Shinn, Michelle D.; Tennant, Christopher; Terzic, Balsa; Walker, Richard; Williams, Gwyn P.; Wilson, G.; Zhang, Shukui

    2010-08-01

    We discuss the use of multipass recirculation and energy recovery in CW SRF drivers for short wavelength FELs. Benefits include cost management (through reduced system footprint, required RF and SRF hardware, and associated infrastructure - including high power beam dumps and cryogenic systems), ease in radiation control (low drive beam exhaust energy), ability to accelerate and deliver multiple beams of differing energy to multiple FELs, and opportunity for seamless integration of multistage bunch length compression into the longitudinal matching scenario. Issues include all those associated with ERLs compounded by the challenge of generating and preserving the CW electron drive beam brightness required by short wavelength FELs. We thus consider the impact of space charge, BBU and other environmental wakes and impedances, ISR and CSR, potential for microbunching, intra-beam and beam-residual gas scattering, ion effects, RF transients, and halo, as well as the effect of traditional design, fabrication, installation and operational errors (lattice aberrations, alignment, powering, field quality). Context for the discussion is provided by JLAMP, the proposed VUV/X-ray upgrade to the existing Jefferson Lab FEL.

  6. Numerical study of X-ray FELS including quantum fluctuation

    NASA Astrophysics Data System (ADS)

    Reiche, S.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1997-06-01

    One of the fundamental limitations towards achieving very short wavelength in a self amplified spontaneous emission free electron laser (SASE FEL) is connected with the energy diffusion in the electron beam due to quantum fluctuations of undulator radiation. Parameters of the LCLS and TESLA X-ray FEL projects are very close to this limit and there exists necessity in upgrading FEL simulation codes for optimization of SASE FEL for operation at a shortest possible wavelength. In this report we describe a one-dimensional FEL simulation code taking into account the effects of incoherent undulator radiation. Using similarity techniques we have calculated universal functions describing degradation of the FEL process due to quantum fluctuations of undulator radiation.

  7. Optical Klystron Enhancement to SASE X-ray FELs

    SciTech Connect

    Ding, Yuantao; Emma, Paul; Huang, Zhirong; Kumar, Vinit

    2006-04-07

    The optical klystron enhancement to self-amplified spontaneous emission (SASE) free electron lasers (FELs) is studied in theory and in simulations. In contrast to a seeded FEL, the optical klystron gain in a SASE FEL is not sensitive to any phase mismatch between the radiation and the microbunched electron beam. The FEL performance with the addition of four optical klystrons located at the undulator long breaks in the Linac Coherent Light Source (LCLS) shows significant improvement if the uncorrelated energy spread at the undulator entrance can be controlled to a very small level. In addition, FEL saturation at shorter x-ray wavelengths (around 1.0 A) within the LCLS undulator length becomes possible. We also discuss the application of the optical klystron in a compact x-ray FEL design that employs relatively low electron beam energy together with a shorter-period undulator.

  8. EXPERIMENTAL CHARACTERIZATION OF SEEDED FEL AMPLIFIER AT THE NSLS SDL.

    SciTech Connect

    WATANABE, T.; LIU, D.; MURPHY, J.B.; ROSE, J.; SHAFTAN, T.; TSANG, T.; WANG, X.J.; YU, L.H.

    2005-08-21

    Experimental characterization of a near-IR FEL amplifier at the NSLS SDL is presented in this report. SASE was observed from 0.8-1 {micro}m with 5 orders of magnitude gain. We have experimentally demonstrated saturation of a laser seeded FEL amplifier and control of the FEL output by the seed laser. Nonlinear harmonics have also been explored. The FEL pulse length for the first three harmonics was experimentally characterized and the increase of the FEL pulse length with harmonic number was observed for the first time. Computer simulation confirmed that the observed wide spectrum of the laser seeded FEL is due to the positive chirp of the seed laser.

  9. Duke storage rink UV/VUV FEL: Status and prospects

    SciTech Connect

    Litvinenko, V.N.; Burnham, B.; Madey, J.M.J.

    1995-12-31

    The 1 GeV Duke storage ring was successfully commissioned with parameters exceeding initial specification. The OK-4 FEL has arrived at the Duke FEL laboratory from the Novosibirsk Institute of Nuclear Physics. The OK-4 installation and commissioning is in progress. In this paper we describe the up-to-date status of the Duke storage ring and the OK-4 FEL. The projected performance of the OK-4 UV/VUV FEL is presented based on the electron beam parameters achieved. Initial plans to operate the OK-4 UV/VUV FEL at the Duke 1 GeV storage ring are outlined. Future plans and prospects of both the OK-4 FEL and the Duke storage ring are discussed.

  10. Simulation of a regenerative MW FEL amplifier

    SciTech Connect

    Nguyen, R.T.; Colson, W.B.; Wong, R.K.; Sheffield, R.L.

    1997-08-01

    Both oscillator and regenerative amplifier configurations are being studied to optimize the design of a MW class FEL. The regenerative amplifier uses a longer undulator and relies on higher extraction efficiency to achieve high average power, whereas the oscillator is a more compact overall design requiring the transport of the high energy electron beam around bends for energy recovery. Using parameters extrapolated from the 1 kW LANL regenerative amplifier, simulations study the feasibility of achieving 1 MW average power.

  11. Allergens as Immuno-Modulatory Proteins: the cat dander protein Fel d 1 enhances Toll-like receptor activation by lipid ligands

    PubMed Central

    Herre, Jurgen; Grönlund, Hans; Brooks, Heather; Hopkins, Lee; Waggoner, Lisa; Murton, Ben; Gangloff, Monique; Opaleye, Olaniyi; Chilvers, Edwin R.; Fitzgerald, Kate; Gay, Nick; Monie, Tom; Bryant, Clare

    2013-01-01

    Allergic responses can be triggered by structurally diverse allergens. Most allergens are proteins yet extensive research has not revealed how they initiate the allergic response and why the myriad of other inhaled proteins do not. Amongst these allergens, the cat secretoglobulin protein Fel d 1, is the major allergen and responsible for severe allergic responses. In this study we show that like the mite dust allergen Der p 2, Fel d 1 substantially enhances signalling through the innate receptors TLR4 and TLR2. In contrast to Der p 2 however, Fel d 1 does not act by mimicking the TLR4 co-receptor MD2 and is not able to bind stably to the TLR4/MD2 complex in vitro. Fel d 1 does however, bind to the TLR4 agonist lipopolysaccharide, suggesting that a lipid transfer mechanism may be involved in the Fel d 1 enhancement of TLR signalling. We also show that the dog allergen Can f 6, a member of a distinct class of lipocalin allergens, has very similar properties to Fel d 1. We propose that Fel d 1 and Can f 6 belong to a group of allergen immunomodulatory proteins (IMPs) that enhance innate immune signalling and promote airway hypersensitivity reactions in diseases such as asthma. PMID:23878318

  12. FEL for the polymer processing industries

    NASA Astrophysics Data System (ADS)

    Kelley, Michael J.

    1997-05-01

    Polymers are everywhere in modern life because of their unique combination of end-use functionalities, ease of processing, recycling potential and modest cost. The physical and economic scope of the infrastructure committed to present polymers makes the introduction of entirely new chemistry unlikely. Rather, the breadth of commercial offerings more likely to shrink in the face of the widening mandate for recycling, especially of packaging. Improved performance and new functionality must therefore come by routes such as surface modification. However they must come with little environmental impact and at painfully low cost. Processing with strongly absorbed light offers unique advantages. The journal and patent literatures disclose a number of examples of benefits that can be achieved, principally by use of excimer lasers or special UV lamps. Examples of commercialization are few, however, because of the unit cost and maximum scale of existing light sources. A FEL, however, offers unique advantages: tunability to the optimum wavelength, potential for scale up to high average power, and a path to attractively low unit cost of light. A business analysis of prospective applications defines the technical and economic requirements a FEL for polymer surface processing must meet. These are compared to FEL technology as it now stands and as it is envisioned.

  13. Future metrology needs for FEL reflective optics.

    SciTech Connect

    Assoufid, L.

    2000-09-21

    An International Workshop on Metrology for X-ray and Neutron Optics has been held March 16-17, 2000, at the Advanced Photon Source, Argonne National Laboratory, near Chicago, Illinois (USA). The workshop gathered engineers and scientists from both the U.S. and around the world to evaluate metrology instrumentation and methods used to characterize surface figure and finish for long grazing incidence optics used in beamlines at synchrotrons radiation sources. This two-day workshop was motivated by the rapid evolution in the performance of x-ray and neutron sources along with requirements in optics figure and finish. More specifically, the performance of future light sources, such as free-electron laser (FEL)-based x-ray sources, is being pushed to new limits in term of both brilliance and coherence. As a consequence, tolerances on surface figure and finish of the next generation of optics are expected to become tighter. The timing of the workshop provided an excellent opportunity to study the problem, evaluate the state of the art in metrology instrumentation, and stimulate innovation on future metrology instruments and techniques to be used to characterize these optics. This paper focuses on FEL optics and metrology needs. (A more comprehensive summary of the workshop can be found elsewhere.) The performance and limitations of current metrology instrumentation will be discussed and recommendations from the workshop on future metrology development to meet the FEL challenges will be detailed.

  14. Short wavelength FELs using the SLAC linac

    SciTech Connect

    Winick, H.; Bane, K.; Boyce, R.

    1993-08-01

    Recent technological developments have opened the possibility to construct a device which we call a Linac Coherent Light Source (LCLS); a fourth generation light source, with brightness, coherence, and peak power far exceeding other sources. Operating on the principle of the free electron laser (FEL), the LCLS would extend the range of FEL operation to much aborter wavelength than the 240 mn that has so far been reached. We report the results of studies of the use of the SLAC linac to drive an LCLS at wavelengths from about 3-100 nm initially and possibly even shorter wavelengths in the future. Lasing would be achieved in a single pass of a low emittance, high peak current, high energy electron beam through a long undulator. Most present FELs use an optical cavity to build up the intensity of the light to achieve lasing action in a low gain oscillator configuration. By eliminating the optical cavity, which is difficult to make at short wavelengths, laser action can be extended to shorter wavelengths by Self-Amplified-Spontaneous-Emission (SASE), or by harmonic generation from a longer wavelength seed laser. Short wavelength, single pass lasers have been extensively studied at several laboratories and at recent workshops.

  15. Staged energy cascades for the LUX FEL

    SciTech Connect

    Penn, G.

    2004-07-27

    Designs and simulation studies for harmonic cascades, consisting of multiple stages of harmonic generation in free electron lasers (FELs), are presented as part of the LUX R&D project to design ultrafast, high photon energy light sources for basic science. Beam energies of 1.1, 2.1, and 3.1 GeV, corresponding to each pass through a recirculating linac, have independent designs for the harmonic cascade. Simulations were performed using the GENESIS FEL code, to obtain predictions for the performance of these cascades over a wide range of photon energies in terms of the peak power and laser profile. The output laser beam consists of photon energies of up to 1 keV, with durations of the order of 200 fs or shorter. The contribution of shot noise to the laser output is minimal, however fluctuations in the laser and electron beam properties can lead to variations in the FEL output. The sensitivity of the cascade to electron beam properties and misalignments is studied, taking advantage of the fact that GENESIS is a fully 3-dimensional code.

  16. Harmonic cascade FEL designs for LUX

    SciTech Connect

    Penn, G.; Reinsch, M.; Wurtele, J.; Corlett, J.N.; Fawley, W.M.; Zholents, A.; Wan, W.

    2004-07-16

    LUX is a design concept for an ultrafast X-ray science facility, based on an electron beam accelerated to GeV energies in are circulating linac. Included in the design are short duration (200 fs or shorter FWHM) light sources using multiple stages of higher harmonic generation, seeded by a 200-250 nm laser of similar duration. This laser modulates the energy of a group of electrons within the electron bunch; this section of the electron bunch then produces radiation at a higher harmonic after entering a second, differently tuned undulator. Repeated stages in a cascade yield increasing photon energies up to 1 keV. Most of the undulators in the cascade operate in the low-gain FEL regime. Harmonic cascades have been designed for each pass of the recirculating linac up to a final electron beam energy of 3.1 GeV. For a given cascade, the photon energy can be selected over a wide range by varying the seed laser frequency and the field strength in the undulators. We present simulation results using the codes GENESIS and GINGER, as well as the results of analytical models which predict FEL performance. We discuss lattice considerations pertinent for harmonic cascade FELs, as well as sensitivity studies and requirements on the electron beam.

  17. FEL Trajectory Analysis for the VISA Experiment

    SciTech Connect

    Nuhn, Heinz-Dieter

    1998-10-06

    The Visual to Infrared SASE Amplifier (VISA) [1] FEL is designed to achieve saturation at radiation wavelengths between 800 and 600 nm with a 4-m pure permanent magnet undulator. The undulator comprises four 99-cm segments each of which has four FODO focusing cells superposed on the beam by means of permanent magnets in the gap alongside the beam. Each segment will also have two beam position monitors and two sets of x-y dipole correctors. The trajectory walk-off in each segment will be reduced to a value smaller than the rms beam radius by means of magnet sorting, precise fabrication, and post-fabrication shimming and trim magnets. However, this leaves possible inter-segment alignment errors. A trajectory analysis code has been used in combination with the FRED3D [2] FEL code to simulate the effect of the shimming procedure and segment alignment errors on the electron beam trajectory and to determine the sensitivity of the FEL gain process to trajectory errors. The paper describes the technique used to establish tolerances for the segment alignment.

  18. Computer modelling of statistical properties of SASE FEL radiation

    NASA Astrophysics Data System (ADS)

    Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1997-06-01

    The paper describes an approach to computer modelling of statistical properties of the radiation from self amplified spontaneous emission free electron laser (SASE FEL). The present approach allows one to calculate the following statistical properties of the SASE FEL radiation: time and spectral field correlation functions, distribution of the fluctuations of the instantaneous radiation power, distribution of the energy in the electron bunch, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and the radiation spectrum. All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at the TESLA Test Facility being under construction at DESY.

  19. Strong focusing influence on high gain FEL characteristics

    SciTech Connect

    Smirnov, A.; Varfolomeev, A.

    1995-12-31

    The use of intrinsic alternating focusing in a linac-driven FEL with planar undulator is considered numerically. The analysis is done on the basis of TDA code for soft X-ray FEL with FD lattice implementing focusing of quadrupole and periodic sextupole type. The influence of the focusing (type and phase advance) on FEL performance and the reasons of difference in FEL performance for focusing of two kinds are analyzed. A possibility of some kind of beam conditioning for intrinsic focusing is discussed.

  20. Start-Up of FEL Oscillator from Shot Noise

    SciTech Connect

    Kumar, V.; Krishnagopal, S.; Fawley, W.M.

    2007-01-25

    In free-electron laser (FEL) oscillators, as inself-amplified spontaneous emission (SASE) FELs, the buildup of cavitypower starts from shot noise resulting from the discreteness ofelectronic charge. It is important to do the start-up analysis for thebuild-up of cavity power in order to fix the macropulse width from theelectron accelerator such that the system reaches saturation. In thispaper, we use the time-dependent simulation code GINGER [1]toperformthis analysis. We present results of this analysis for theparameters of the Compact Ultrafast TErahertz FEL (CUTE-FEL) [2]beingbuilt atRRCAT.

  1. Status and initial commissioning of a high gain 800 nm SASE FEL

    NASA Astrophysics Data System (ADS)

    Tremaine, A.; Frigola, P.; Murokh, A.; Musumeci, P.; Pellegrini, C.; Rosenzweig, J.; Babzien, M.; Ben-Zvi, I.; Johnson, E.; Malone, R.; Rakowsky, G.; Skaritka, J.; Wang, X. J.; Yu, L. H.; Van Bibber, K. A.; Hill, J. M.; Le Sage, G. P.; Carr, R.; Cornacchia, M.; Nuhn, H.-D.; Ruland, R.; Nguyen, D. C.

    2000-05-01

    We describe the status and initial commissioning of the Visible to Infrared SASE Amplifier (VISA) experiment. VISA uses a strong focusing 4 m undulator, the Brookhaven National Laboratory ATF linac with an energy of 72 MeV, and a photoinjector electron source. The VISA fundamental radiation wavelength is near 800 nm and the power expected at saturation is near 60 MW. Power, angular and spectral measurements are planned for the VISA radiation and these results will be analyzed and compared with SASE FEL theory and computer simulation. In addition, the induced electron beam micro-bunching will be measured using coherent transition radiation.

  2. Electron beam transport for the LBL IR-FEL

    SciTech Connect

    Staples, J.; Edighoffer, J.; Kim, Kwang-Je

    1992-07-01

    The infrared flee-electron laser (IR-FEL) proposed by LBL as part of the Combustion Dynamics Research Laboratory (CDRL) consists of a multiple-pass accelerator with superconducting cavities supplying a 55 MeV 12 mA beam to an undulator within a 24-meter optical cavity. Future options include deceleration through the same cavities for energy recovery and reducing the power in the beam dump. The electron transport system from the injector through the cavities and undulator must satisfy conditions of high order achromaticity, isochronicity, unity first-order transport matrix around the recirculation loop, variable betatron match into the undulator, ease of operation and economical implementation. This paper presents a workable solution that satisfies these requirements.

  3. Los Alamos High-Brightness Accelerator FEL (HIBAF) facility

    SciTech Connect

    Cornelius, W.D.; Bender, S.; Meier, K.; Thode, L.E.; Watson, J.M.

    1989-01-01

    The 10-/mu/m Los Alamos free-electron laser (FEL) facility is being upgraded. The conventional electron gun and bunchers have been replaced with a much more compact 6-MeV photoinjector accelerator. By adding existing parts from previous experiments, the primary beam energy will be doubled to 40 MeV. With the existing 1-m wiggler (/lambda//sub w/ = 2.7 cm) and resonator, the facility can produce photons with wavelengths from 3 to 100 /mu/m when lasing on the fundamental mode and produce photons in the visible spectrum with short-period wigglers or harmonic operation. After installation of a 150/degree/ bend, a second wiggler will be added as an amplifier. The installation of laser transport tubes between the accelerator vault and an upstairs laboratory will provide experimenters with a radiation-free environment for experiments. Although the initial experimental program of the upgraded facility will be to test the single accelerator-master oscillator/power amplifier configuration, some portion of the operational time of the facility can be dedicated to user experiments. 13 refs., 5 figs., 6 tabs.

  4. THE SECOND STAGE OF FERMI@ELETTRA: A SEEDED FEL IN THE SOFT X-RAY SPECTRAL RANGE

    SciTech Connect

    Allaria, E.; DeNinno, G.; Fawley, W. M.

    2009-08-14

    The second stage of the FERMI FEL, named FEL-2, is based on the principle of high-gain harmonic generation and relies on a double-seeded cascade. Recent developments stimulated a revision of the original setup, which was designed to cover the spectral range between 40 and 10 nm. The numerical simulations we present here show that the nominal (expected) electron-beam performance allows extension of the FEL spectral range down to 4 nm. A significant amount of third harmonic power can be also expected. We also show that the proposed setup is flexible enough for exploiting future developments of new seed sources, e.g., high harmonic generation in gases.

  5. Analysis of the eigenvalue equation of the FEL amplifier with axisymmetric electron beam and diaphragm focusing line

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N.

    1995-12-31

    The paper presents analysis of the eigenvalue problem of the FEL amplifier with axisymmetric electron beam and diaphragm focusing line. An FEL model is discussed wherein diffraction effects, space charge fields and energy spread of electrons in the beam are taken into account. To take into account diffraction effects at the diaphragms we apply the rigorous impedance boundary conditions proposed by Veinstein. The rigorous solutions of the eigenvalue problem leave been found for the stepped and bounded parabolic electron beam profiles. Analytical expressions for eigenfunctions of active open waveguide and formulae of their expansion in eigenfunctions of passive open waveguide, are derived, too. Asymptotic behaviour of the obtained solutions is studied in details. The multilayer approximation method has been used to solve the eigenvalue problem for the beams with an arbitrary gradient profile of current density. This novel type of an FEL amplifier has perspective to be used for applications where high average and peak radiation power is required.

  6. Generation of a few femtoseconds pulses in seeded FELs using a seed laser with small transverse size

    NASA Astrophysics Data System (ADS)

    Li, Heting; Jia, Qika

    2016-09-01

    We propose a simple method to generate a few femtosecond pulses in seeded FELs. We use a longitudinal energy-chirped electron beam passing through a dogleg where transverse dispersion will generate a horizontal energy chirp, then in the modulator, a seed laser with narrow beam radius will only modulate the center portion of the electron beam and then short pulses at high harmonics will be generated in the radiator. Using a representative realistic set of parameters, we show that 30 nm XUV pulse based on the HGHG scheme and 9 nm soft x-ray pulse based on the EEHG scheme with duration of about 8 fs (FWHM) and peak power of GW level can be generated from a 180 nm UV seed laser with beam waist of 75 μm. This new scheme can provide an optional operation mode for the existing seeded FEL facilities to meet the requirement of short-pulse FEL.

  7. Where Would Economics Education Be without Rendigs Fels?

    ERIC Educational Resources Information Center

    Siegfried, John J.; And Others

    1994-01-01

    Discusses the career of Rendigs Fels from his first academic appointment in 1948 until the present. Concludes that Fels is one of a small number of respected economists who have made interest, involvement, and research in the teaching of economics an important and respectable part of the profession. (CFR)

  8. Facts of Environmental Life (FEL): A Projective Counseling Technique.

    ERIC Educational Resources Information Center

    Golden, James R.; Parker, Joseph P.

    This paper presents the Facts of Environmental Life (FEL), a counseling technique which incorporates the action sociogram and the Adlerian concept of purposeful behavior. The use of the FEL materials, i.e., a life space board, standing figures of varying sizes, and blocks and barricades representing emotional blocks, is illustrated. Instructions…

  9. Diagnostic technique applied for FEL electron bunches

    NASA Astrophysics Data System (ADS)

    Brovko, O.; Grebentsov, A.; Morozov, N.; Syresin, E.; Yurkov, M.

    2016-05-01

    Diagnostic technique applied for FEL ultrashort electron bunches is developed at JINR-DESY collaboration within the framework of the FLASH and XFEL projects. Photon diagnostics are based on calorimetric measurements and detection of undulator radiation. The infrared undulator constructed at JINR and installed at FLASH is used for longitudinal bunch shape measurements and for two-color lasing provided by the FIR and VUV undulators. The pump probe experiments with VUV and FIR undulators provide the bunch profile measurements with resolution of several femtosecond. The new three microchannel plates (MCP) detectors operated in X-ray range are under development now in JINR for SASE1-SASE 3 European XFEL.

  10. High harmonic generation in undulators for FEL

    NASA Astrophysics Data System (ADS)

    Zhukovsky, K.

    2016-02-01

    The analytical study of the undulator radiation (UR), accounting for major sources of the spectral line broadening is presented. Analytical expressions for the UR spectrum and intensity are obtained. They demonstrate possibilities of the compensation of the divergency by the constant magnetic component. Some examples of single and double frequency undulators are considered. Generation of harmonics is studied with account for homogeneous and inhomogeneous broadening in real devices. The obtained results with account for all broadening sources are applied for evaluation of free electron laser (FEL) performance and compared with those, obtained with the ideal undulator.

  11. Gain results for low voltage FEL

    SciTech Connect

    Shaw, A.; Stuart, R.A.; Al-Shamma`a, A.

    1995-12-31

    We have designed and constructed a low voltage (130 kV) FEL system capable of operating in the microwave frequency range for which the electron beam current is cw (rather than pulsed) in time at a level of {approximately} 12 mA. The gain of this system has been measured as a function of the electron beam accelerating voltage and current level, and the input microwave frequency (8-10 GHz). The results are compared with the predictions of a simple theoretical model.

  12. Feedback Requirements for SASE-FELs

    SciTech Connect

    Loos, Henrik; /SLAC

    2012-07-06

    The operation of a Self Amplified Spontaneous Emission (SASE) Free Electron Lasers (FEL) at soft and hard X-ray wavelengths driven by a high brightness electron beam imposes strong requirements on the stability of the accelerator and feedback systems are necessary to both guarantee saturation of the SASE process as well as a stable photon beam for user experiments. Diagnostics for the relevant transverse and longitudinal beam parameters are presented and various examples of feedback systems for bunches with low repetition rate as well as systems for intra bunch train feedbacks are discussed.

  13. Diagnostics for the CEBAF FEL Injector

    NASA Astrophysics Data System (ADS)

    Kehne, D.; Engwall, D.; Jordan, K.; Benson, S.; Bohn, C.; Cardman, L.; Douglas, D.; Happek, U.; Krafft, G. A.; Neil, G.; Sinclair, C.

    1996-04-01

    A test stand for the 10 MeV, 5 mA average current injector for the CEBAF FEL is currently under construction. The injector tests will progress through two phases. The first phase will be devoted to characterizing the gun transverse and longitudinal emittance performance as a function of bunch charge, beam size, and energy. The goal of the second phase is to achieve the nominal requirements of the 10 MeV injector, including bunch length, emittance, charge per bunch, and energy stability. This paper summarizes the diagnostics planned to be used in these experiments.

  14. Dielectric Wakefield Accelerator to drive the future FEL Light Source.

    SciTech Connect

    Jing, C.; Power, J.; Zholents, A. )

    2011-04-20

    X-ray free-electron lasers (FELs) are expensive instruments and a large part of the cost of the entire facility is driven by the accelerator. Using a high-energy gain dielectric wake-field accelerator (DWA) instead of the conventional accelerator may provide a significant cost saving and reduction of the facility size. In this article, we investigate using a collinear dielectric wakefield accelerator to provide a high repetition rate, high current, high energy beam to drive a future FEL x-ray light source. As an initial case study, a {approx}100 MV/m loaded gradient, 850 GHz quartz dielectric based 2-stage, wakefield accelerator is proposed to generate a main electron beam of 8 GeV, 50 pC/bunch, {approx}1.2 kA of peak current, 10 x 10 kHz (10 beamlines) in just 100 meters with the fill factor and beam loading considered. This scheme provides 10 parallel main beams with one 100 kHz drive beam. A drive-to-main beam efficiency {approx}38.5% can be achieved with an advanced transformer ratio enhancement technique. rf power dissipation in the structure is only 5 W/cm{sup 2} in the high repetition rate, high gradient operation mode, which is in the range of advanced water cooling capability. Details of study presented in the article include the overall layout, the transform ratio enhancement scheme used to increase the drive to main beam efficiency, main wakefield linac design, cooling of the structure, etc.

  15. Method for separating FEL output beams from long wavelength radiation

    DOEpatents

    Neil, George; Shinn, Michelle D.; Gubeli, Joseph

    2016-04-26

    A method for improving the output beam quality of a free electron laser (FEL) by reducing the amount of emission at wavelengths longer than the electron pulse length and reducing the amount of edge radiation. A mirror constructed of thermally conductive material and having an aperture therein is placed at an oblique angle with respect to the beam downstream of the bending magnet but before any sensitive use of the FEL beam. The aperture in the mirror is sized to deflect emission longer than the wavelength of the FEL output while having a minor impact on the FEL output beam. A properly sized aperture will enable the FEL radiation, which is coherent and generally at a much shorter wavelength than the bending radiations, to pass through the aperture mirror. The much higher divergence bending radiations will subsequently strike the aperture mirror and be reflected safely out of the way.

  16. Seeded FEL Microbunching Experiments at the UCLA Neptune Laboratory

    SciTech Connect

    Tochitsky, S. Ya.; Musumeci, P.; Rosenzweig, J. B.; Joshi, C.; Gottschalk, S. C.

    2010-11-04

    Seeded high-gain FELs, which can generate very powerful radiation pulses in a relatively compact undulator and simultaneously modulate the electron beam longitudinally at the seed wavelength, are important tools for advanced accelerator development. A single-pass 0.5-9 THz FEL amplifier-buncher driven by a regular photoinjector is being built at the UCLA Neptune Laboratory. FEL interactions at 340 {mu}m (1 THz) are considered for the first experiment, since time-resolved measurements of longitudinal current distribution of the bunched beam using the RF deflecting cavity are possible. A design of a 0.2-2.0 {mu}m FEL using the same undulators is presented. In this case the FEL is driven by a high-peak current beam from the laser-plasma accelerator tunable in the 100-300 MeV range.

  17. Discovering and annotating fish early life-stage (FELS) adverse outcome pathways: Putting the research strategy into practice

    EPA Science Inventory

    In May 2012, a HESI-sponsored expert workshop yielded a proposed research strategy for systematically discovering, characterizing, and annotating fish early life-stage (FELS) adverse outcome pathways (AOPs) as well as prioritizing AOP development in light of current restrictions ...

  18. Approachability & Visibility

    ERIC Educational Resources Information Center

    Ruder, Robert

    2006-01-01

    To be approachable and visible may be one of the greatest lessons a retired middle level principal ever learned. Being approachable is an expectation of the principalship. Keeping the office door shut or restricting or limiting talk time with students, teachers, or parents sends a strong message to those constituents: "I've got more important…

  19. Transverse-coherence properties of the FEL at the LCLS

    SciTech Connect

    Ding, Yuantao; Huang, Zhirong; Ocko, Samuel A.; /MIT, Cambridge, Dept. Phys.

    2010-09-02

    The recently commissioned Linac Coherent Light Source is an x-ray free-electron laser at the SLAC National Accelerator Laboratory, which is now operating at x-ray wavelengths of 20-1.2 Angstrom with peak brightness nearly ten orders of magnitude beyond conventional synchrotron sources. Understanding of coherence properties of the radiation from SASE FELs at LCLS is of great practical importance for some user experiments. We present the numerical analysis of the coherence properties at different wavelengths based on a fast algorithmusing ideal and start-end simulated FEL fields. The sucessful commissioning and operation of the linac coherent light source (LCLS) [1] has demonstrated that the x-ray free-electron laser (FEL) has come of age; these types of x-ray sources are poised to revolutionize the ultra-fast x-ray sciences. The LCLS and other hard x-ray FELs under construction are based on the principle of self-amplified spontaneous emission (SASE) [2, 3], where the amplification process starts from the shot noise in the electron beam. A large number of transverse radiation modes are also excited when the electron beam enters the undulator. The FEL collective instability in the electron beam causes the modulation of the electron density to increase exponentially, and after sufficient undulator distances, a single transverse mode starts to dominate. As a result, SASE FEL is almost fully coherent in the transverse dimension. Understanding of transverse coherence properties of the radiation from SASE FELs is of great practical importance. The longitudinal coherence properties of SASE FELs have been studied before [4]. Some studies on the transverse coherence can be found in previous papers, for example, in ref. [5, 6, 7, 8, 9]. In this paper, we first discuss a new numerical algorithm based on Markov chain Monte Carlo techniques to calculate the FEL transverse coherence. Then we focus on the numerical analysis of the LCLS FEL transverse coherence.

  20. FEL gain optimisation and spontaneous radiation

    SciTech Connect

    Bali, L.M.; Srivastava, A.; Pandya, T.P.

    1995-12-31

    Colson have evaluated FEL gains for small deviations from perfect electron beam injection, with radiation of the same polarisation as that of the wiggler fields. We find that for optimum gain the polarisation of the optical field should be the same as that of the spontaneous emission under these conditions. With a helical wiggler the axial oscillations resulting from small departures from perfect electron beam injection lead to injection dependent unequal amplitudes and phases of the spontaneous radiation in the two transverse directions. Viewed along the axis therefore the spontaneous emission is elliptically polarised. The azimuth of the ellipse varies with the difference of phase of the two transverse components of spontaneous emission but the eccentricity remains the same. With planar wigglers the spontaneous emission viewed in the axial direction is linearly polarised, again with an injection dependent azimuth. For optimum coherent gain of a radiation field its polarisation characteristics must be the same as those of the spontaneous radiation with both types of wiggler. Thus, with a helical wiggler and the data reported earlier, an increase of 10% in the FEL gain at the fundamental frequency and of 11% at the fifth harmonic has been calculated in the small gain per pass limit. Larger enhancements in gain may result from more favourable values of input parameters.

  1. The GALAXIE all-optical FEL project

    SciTech Connect

    Rosenzweig, J. B.; Arab, E.; Andonian, G.; Cahill, A.; Fitzmorris, K.; Fukusawa, A.; Hoang, P.; Jovanovic, I.; Marcus, G.; Marinelli, A.; Murokh, A.; Musumeci, P.; Naranjo, B.; O'Shea, B.; O'Shea, F.; Ovodenko, A.; Pogorelsky, I.; Putterman, S.; Roberts, K.; Shumail, M.; and others

    2012-12-21

    We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project's acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 {mu}m laser development, ultra-high brightness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.

  2. UV FEL Processing - A Unique Opportunity

    NASA Astrophysics Data System (ADS)

    Kelley, Michael J.

    1996-05-01

    The ability of UV light to transfrom materials was recognized in the early years of this century. Ever since, its use for processing has been re-investigated each time a new UV light source technology has become available. Especially exciting results in the surface modi- fication of metals and polymers, and in micromachining were found with the short, intense, single-wavelength pulses from excimer lasers. However, as with previous advances, the cost of excimer laser light and their maximum unit size limited their commercialization to high value applications, mostly in medicine and electronics manufacturing. An analysis of the demonstrated potential mass applications suggests that the horizon for commercialization appears to be at an energy cost below 0.5 cents/kJ of light and at a unit capacity above 10 kW. An analysis of light source technologies points to a free electron laser (FEL) based on a superconducting radiofrequency (SRF) accelerator as the only real prospect for reaching this goal. The FEL's picosecond pulse length and high peak power offer further advantages for micro- machining. Progress is being made toward a 1 kW technology demonstration.

  3. Design of RF chopper system for improving beam quality in FEL injector with thermionic gun

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Qin, B.; Tan, P.; Hu, T.; Pei, Y.; Zhang, F.

    2014-08-01

    For a linac-based Free Electron Laser (FEL), good beam quality largely contributes to the success of the final radiation. An imperfection confronted with the HUST THz-FEL facility is the long beam tail that emerges in the electron gun and exists through the whole beam line. This paper proposes to deploy a chopper system after the electron gun to truncate the beam tails before they enter into the linac. Physical dimensions of the chopper cavity are discussed in detail and we have developed and derived new analytical expressions applying to all frequencies for the optimal design. Also, technical issues of the cavity are considered. Beam dynamic simulation is performed to examine the truncation effect and the results show that more than 78% of the beam tail can be removed effectively, while preserving the emittance and energy spread in acceptable level.

  4. Performance Achievements and Challenges for FELs based on Energy Recovered Linacs

    SciTech Connect

    Geoffrey Krafft

    2006-08-27

    During the past decade several groups have assembled free electron lasers based on energy recovered linacs (ERLs). Such arrangements have been built to obtain high average power electron and photon beams, by using high repetition rate beam pulses driving FEL oscillators. In this paper the performance of many existing and several proposed facilities from around the world are reviewed. Going forward, many questions must be addressed to achieve still better performance including: higher average current injectors, better optimized accelerating cavities, higher energy acceptance and lower loss beam recirculation systems, and better optical cavity designs for dealing with the optical beam power circulating in the ERL FELs. This paper presents some of the current thinking on each of these issues.

  5. Design Studies for a High-Repetition-Rate FEL Facility at LBNL.

    SciTech Connect

    CORLETT, J.; BELKACEM, A.; BYRD, J. M.; FAWLEY, W.; KIRZ, J.; LIDIA, S.; MCCURDY, W.; PADMORE, H.; PENN, G.; POGORELOV, I.; QIANG, J.; ROBIN, D.; SANNIBALE, F.; SCHOENLEIN, R.; STAPLES, J.; STEIER, C.; VENTURINI, M.; WAN, W.; WILCOX, R.; ZHOLENTS, A.

    2007-10-04

    Lawrence Berkeley National Laboratory (LBNL) is working to address the needs of the primary scientific Grand Challenges now being considered by the U.S. Department of Energy, Office of Basic Energy Sciences: we are exploring scientific discovery opportunities, and new areas of science, to be unlocked with the use of advanced photon sources. A partnership of several divisions at LBNL is working to define the science and instruments needed in the future. To meet these needs, we propose a seeded, high-repetition-rate, free-electron laser (FEL) facility. Temporally and spatially coherent photon pulses, of controlled duration ranging from picosecond to sub-femtosecond, are within reach in the vacuum ultraviolet (VUV) to soft X-ray regime, and LBNL is developing critical accelerator physics and technologies toward this goal. We envision a facility with an array of FELs, each independently configurable and tunable, providing a range of photon-beam properties with high average and peak flux and brightness.

  6. 40 CFR 1037.645 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in-use FEL for certain in-use vehicles, subject to the provisions of this section. Note that § 1037... intended to address circumstances in which it is in the public interest to apply a higher in-use FEL based... different FELs, we may apply a higher FEL within the family than was applied to the vehicle's...

  7. 40 CFR 1036.625 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... us to apply a higher in-use FEL for certain in-use engines, subject to the provisions of this section... higher in-use FEL based on forfeiting an appropriate number of emission credits. (b) FELs. When applying... forfeit CO2 emission credits based on the difference between the in-use FEL and the otherwise...

  8. 40 CFR 1036.625 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... us to apply a higher in-use FEL for certain in-use engines, subject to the provisions of this section... higher in-use FEL based on forfeiting an appropriate number of emission credits. (b) FELs. When applying... forfeit CO2 emission credits based on the difference between the in-use FEL and the otherwise...

  9. 40 CFR 1037.645 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in-use FEL for certain in-use vehicles, subject to the provisions of this section. Note that § 1037... intended to address circumstances in which it is in the public interest to apply a higher in-use FEL based... different FELs, we may apply a higher FEL within the family than was applied to the vehicle's...

  10. 40 CFR 1037.645 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in-use FEL for certain in-use vehicles, subject to the provisions of this section. Note that § 1037... intended to address circumstances in which it is in the public interest to apply a higher in-use FEL based... different FELs, we may apply a higher FEL within the family than was applied to the vehicle's...

  11. 40 CFR 1036.625 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... us to apply a higher in-use FEL for certain in-use engines, subject to the provisions of this section... higher in-use FEL based on forfeiting an appropriate number of emission credits. (b) FELs. When applying... forfeit CO2 emission credits based on the difference between the in-use FEL and the otherwise...

  12. Optics-free x-ray FEL oscillator

    SciTech Connect

    Litvinenko, V.N.; Hao, Y.; Kayran, D.; Trbojevic, D.

    2011-03-28

    There is a need for an Optics-Free FEL Oscillators (OFFELO) to further the advantages of free-electron lasers and turning them in fully coherent light sources. While SASE (Self-Amplified Spontaneous Emission) FELs demonstrated the capability of providing very high gain and short pulses of radiation and scalability to the X-ray range, the spectra of SASE FELs remains rather wide ({approx}0.5%-1%) compared with typical short wavelengths FEL-oscillators (0.01%-0.0003% in OK-4 FEL). Absence of good optics in VUV and X-ray ranges makes traditional oscillator schemes with very high average and peak spectral brightness either very complex or, strictly speaking, impossible. In this paper, we discuss lattice of the X-ray optics-free FEL oscillator and present results of initial computer simulations of the feedback process and the evolution of FEL spectrum in X-ray OFFELO. We also discuss main limiting factors and feasibility of X-ray OFFELO.

  13. Spontaneous emission effects in optically pumped x-ray FEL

    SciTech Connect

    Smetanin, I.V.; Grigor`ev, S.V.

    1995-12-31

    An effect of spontaneous emission in both quantum and classical regimes of the optically pumped X-ray free electron laser (FEL) in investigated. The quantum properties of an FEL are determined by the ratio of the separation {h_bar} between the absorption and emission lines (i.e. the quanta emitted) and their effective width {Delta}{epsilon} {eta}={h_bar}/{Delta}{epsilon}. In the conventional classical regime {eta} {much_lt} 1 an electron emits and absorbes a great number of shortwavelength photons over the interaction region, the gain in FEL being the result of these competitive processes. In the quantum limit {eta} {much_gt} 1 the emission and absorption lines are completely separated and thus the FEL becomes a two-level quantum oscillator with a completely inverted active medium. Spontaneous emission causes the electron to leave the range of energies where resonant interaction with the laser field occurs, thus effectively reducing the number of particles that take part in generating the induced X-ray signal. This effect is found to be crucial for lasing in optically pumped X-ray FEL. The characteristic relaxation times are calculated for both classical and quantum FEL regimes. It is shown that spontaneous emission results in FEL electron beam threshold current, which is of rather high value. An optimal range of pumping laser intensities is determined.

  14. Optimization of high average power FEL beam for EUV lithography

    NASA Astrophysics Data System (ADS)

    Endo, Akira

    2015-05-01

    Extreme Ultraviolet Lithography (EUVL) is entering into high volume manufacturing (HVM) stage, with high average power (250W) EUV source from laser produced plasma at 13.5nm. Semiconductor industry road map indicates a scaling of the source technology more than 1kW average power by high repetition rate FEL. This paper discusses on the lowest risk approach to construct a prototype based on superconducting linac and normal conducting undulator, to demonstrate a high average power 13.5nm FEL equipped with optimized optical components and solid state lasers, to study FEL application in EUV lithography.

  15. CEBAF UV/IR FEL subsystem testing and validation program

    SciTech Connect

    G.R. Neil; S.V. Benson; H.F. Dylla; H. Liu

    1995-01-01

    A design has been established for IR and UV FELs within the Laser Processing Consortium's (LPC) program for development and application of high-average-power FELs for materials processing. Hardware prototyping and testing for the IR portion of the system are underway. The driver portion has been designed based on the superconducting radio-frequency (SRF) technology now seeing large-scale application in the commissioning of CEBAF, the Continuous Electron Beam Accelerator Facility, where LPC activities are centered. As of July 1994, measurements of beam performance confirm SRF's benefits in beam quality and stability, which are applicable to high-average-power FELs.

  16. High-power FEL design issues - a critical review

    SciTech Connect

    Litvinenko, V.N.; Madey, J.M.J.; O`Shea, P.G.

    1995-12-31

    The high-average power capability of FELs has been much advertised but little realized. In this paper we provide a critical analysis of the technological and economic issues associated with high-average power FEL operation from the UV to near IR. The project of IR FEL for the Siberian Center of photochemical researches is described. The distinguished features of this project are the use of the race-track microtron-recuperator and the {open_quotes}electron output of radiation{close_quotes}. The building for the machine is under reconstruction now. About half of hardware has been manufactured. The assembly of installation began.

  17. Stochastic Temporal Properties of the SASE FEL

    SciTech Connect

    Krinsky, S.

    2009-08-23

    We review the statistical description of the chaotic time evolution of the radiation from a self-amplified spontaneous-emission free-electron laser in the linear region before saturation. A high-gain, self-amplified spontaneous-emission (SASE) free-electron laser (FEL) [1, 2], based on modern beam technology, has the advantage of operating without a resonator and hence is capable of generating coherent radiation with wavelength down to the x-ray region. The LCLS at SLAC has recently achieved high gain and saturation at 1.5 {angstrom} [3]. A review of SASE theory can be found in ref. [4]. In this paper, we have considered the linear regime before saturation. In the nonlinear saturation regime, SASE is no longer a Gaussian process and analytic treatment is very difficult. A valuable numerical simulation analysis of the statistical behavior in the nonlinear regime can be found in ref. [10,11].

  18. The Jefferson lab FEL driver ERLs

    SciTech Connect

    Douglas, David R.; Tennant, Christopher D.

    2013-11-01

    Jefferson Lab has - for over a decade - been operating high power IR and UV FELs using CW energy recovering linacs based on DC photocathode electron sources and CEBAF SRF technology. These machines have unique combinations of beam quality, power, and operational flexibility, and thus offer significant opportunity for experiments that use low and medium energy (several tens - few hundreds of MeV) electron beams. We will describe the systems and detail their present and near-term (potential) performance. Recent internal-target analysis and validation testing will be discussed, and schemes for single- and two-pass fixed target operation described. An introduction to subsequent discussions of beam quality and upgrade paths to polarized operation/higher energy will be given.

  19. First Observations and Suppression of Multipass, Multibunch Beam Breakup in the Jefferson Laboratory FEL Upgrade

    SciTech Connect

    Christopher D. Tennant; David R. Douglas; Kevin C. Jordan; Nikolitsa Merminga; Eduard G. Pozdeyev; Kevin B. Beard; Todd I. Smith

    2005-01-01

    It is well known that the multipass, multibunch beam breakup (BBU) instability imposes a potentially severe limitation to the average current that can be accelerated in an energy recovery linac (ERL). Simulation results for Jefferson Lab's FEL Upgrade Driver are presented which predict the occurrence of BBU below the nominal operating current of the machine. In agreement with simulation, BBU was observed and preliminary measurements to identify the higher-order mode (HOM) causing the instability are shown. In addition, measurements performed to experimentally determine the threshold current are described. Using a newly developed two-dimensional BBU simulation code, we study the effect of optical suppression techniques, first proposed by Rand and Smith in 1980 [1], on the threshold current of the FEL. Specifically we consider the effect of (1) reflecting the betatron planes about 45 degrees and (2) rotating the betatron planes by 90 degrees. In two pass recirculators, a 90 degrees rotation significantly increases the threshold current of BBU. The successful installation of a five skew-quadrupole reflector in the backleg of the FEL has been shown to be effective at suppressing the instability and comments on preliminary operational experience will be given.

  20. Robust underwater visibility parameter.

    PubMed

    Zaneveld, J Ronald; Pegau, W

    2003-11-17

    We review theoretical models to show that contrast reduction at a specific wavelength in the horizontal direction depends directly on the beam attenuation coefficient at that wavelength. If a black target is used, the inherent contrast is always negative unity, so that the visibility of a black target in the horizontal direction depends on a single parameter only. That is not the case for any other target or viewing arrangement. We thus propose the horizontal visibility of a black target to be the standard for underwater visibility. We show that the appropriate attenuation coefficient can readily be measured with existing simple instrumentation. Diver visibility depends on the photopic beam attenuation coefficient, which is the attenuation of the natural light spectrum convolved with the spectral responsivity of the human eye (photopic response function). In practice, it is more common to measure the beam attenuation coefficient at one or more wavelength bands. We show that the relationship: visibility is equal to 4.8 divided by the photopic beam attenuation coefficient; originally derived by Davies-Colley [1], is accurate with an average error of less than 10% in a wide variety of coastal and inland waters and for a wide variety of viewing conditions. We also show that the beam attenuation coefficient measured at 532 nm, or attenuation measured by a WET Labs commercial 20 nm FWHM transmissometer with a peak at 528nm are adequate substitutes for the photopic beam attenuation coefficient, with minor adjustments. PMID:19471421

  1. Optical properties of infrared FELs from the FELI Facility II

    SciTech Connect

    Saeki, K.; Okuma, S.; Oshita, E.

    1995-12-31

    The FELI Facility II has succeeded in infrared FEL oscillation at 1.91 {mu} m using a 68-MeV, 40-A electron beam from the FELI S-band linac in February 27, 1995. The FELI Facility II is composed of a 3-m vertical type undulator ({lambda}u=3.8cm, N=78, Km a x=1.4, gap length {ge}20mm) and a 6.72-m optical cavity. It can cover the wavelength range of 1-5{mu}m. The FELs can be delivered from the optical cavity to the diagnostics room through a 40-m evacuated optical pipeline. Wavelength and cavity length dependences of optical properties such as peak power, average power, spectrum width, FEL macropulse, FEL transverse profile are reported.

  2. The performance of the Duke FEL storage ring

    SciTech Connect

    Wu, Y.; Burnham, B.; Litvinenko, V.N.

    1995-12-31

    The commissioning of the Duke FEL storage ring has been completed. During commissioning, we have conducted a series of performance measurements on the storage ring lattice and the electron beam parameters. In this paper, we will discuss the techniques used in the measurements, present measurement results, and compare the measured parameters with the design specifications. In addition, we will present the expected OK-4 FEL performance based on the measured beam parameters.

  3. Study of waveguide resonators for FEL operating at submillimeter wavelengths

    SciTech Connect

    Yakover, I.M.; Pinhasi, Y.; Gover, A.

    1995-12-31

    This paper presents theoretical results of waveguide resonator study for FEL operating at the submillimeter wavelength region. Because of increased ohmic losses it is harder to obtain high Q waveguide cavities at these wavelengths. The following unconventional multimode waveguides: metal-dielectric, corrugated and curved parallel plates, were considered. The type and structure of the operating modes were determined and their attenuation constant, effective mode area and wave impedance were calculated. On the basis of this analysis small-signal gain simulations were made. We have performed a parametric study of the various FEL oscillator cavity designs based on the parameters of the Israeli Tandem FEL experiment. It was found that an FEL utilizing unconventional waveguides has much better performance in comparison to an FEL based on conventional multimode rectangular and circular waveguides. In particular, promising design parameters for a sub-mm wavelength FEL utilizing a metal-dielectric waveguide were identified: gain of 45%/Amp and ohmic losses of 2% at frequency 300 GHz, and gain of 20%/Amp and ohmic losses 1% at frequency 675 GHz.

  4. Photon Source Capabilities of the Jefferson Lab FEL

    SciTech Connect

    Benson, S. V.; Douglas, D. R.; Evtushenko, P.; Hannon, F. E.; Hernandez-Garcia, C.; Klopf, J. M.; Legg, R. A.; Neil, G. R.; Shinn, M. D.; Tennant, C. D.; Zhang, S.; Williams, G. P.

    2013-03-22

    Jefferson Lab operates a superconducting energy recovered linac which is operated with CW RF and which powers oscillator-based IR and UV Free Electron Lasers (FELs) with diffraction limited sub-picosecond pulses with >10{sup 13} photons per pulse (1.0%BW) at pulse repetition frequencies up to 75 MHz. Useful harmonics extend into the vacuum ultraviolet (VUV). Based on FEL model calculations validated using this facility, we have designed both an oscillator-based VUV-FEL that would produce 6 10{sup12} coherent (0.5% BW) 100 eV photons per pulse at multi-MHz repetition rates in the fundamental, and a dual FEL configuration that would allow simultaneous lasing lasing at THz and UV wavelengths. The VUV-FEL would utilize a novel high gain, low Q cavity, while the THz source would be an FEL oscillator with a short wiggler providing diffraction limited pulses with pulse energy exceeding 50 microJoules. The THz source would use the exhaust beam from a UVFEL. Such multiphoton capabilities would provide unique opportunities for out of equilibrium dynamical studies at time-scales down to 50 fs. The fully coherent nature of all these sources results in peak and average brightness values that are many orders of magnitude higher than storage rings. We acknowledge support from the Commonwealth of Virginia. Jefferson Lab is supported by the U.S. DOE under Contract No. DE-AC05-84-ER40150.

  5. Description of FEL3D: A three dimensional simulation code for TOK and FEL

    SciTech Connect

    Dutt, S.; Friedman, A.; Gover, A.

    1988-10-20

    FEL3D is a three dimensional simulation code, written for the purpose of calculating the parameters of coherent radiation emitted by electrons in an undulator. The program was written predominantly for simulating the coherent super-radiant harmonic frequency emission of electrons which are being bunched by an external laser beam while propagating in an undulator magnet. This super-radiant emission is to be studied in the TOK (transverse optical klystron) experiment, which is under construction in the NSLS department at Brookhaven National Laboratory. The program can also calculate the stimulated emission radiometric properties of a free electron laser (FEL) taking into account three dimensional effects. While this application is presently limited to the small gain operation regime of FEL's, extension to the high gain regime is expected to be relatively easy. The code is based on a semi-analytical concept. Instead of a full numerical solution of the Maxwell-Lorentz equations, the trajectories of the electron in the wiggler field are calculated analytically, and the radiation fields are expanded in terms of free space eigen-modes. This approach permits efficient computation, with a computation time of about 0.1 sec/electron on the BNL IBM 3090. The code reflects the important three dimensional features of the electron beam, the modulating laser beam, and the emitted radiation field. The statistical approach is based on averaging over the electron initial conditions according to a given distribution function in phase space, rather than via Monte-Carlo simulation. The present version of the program is written for uniform periodic wiggler field, but extension to nonuniform fields is straightforward. 4 figs., 5 tabs.

  6. Gain narrowing of temporal and spectral widths in the UVSOR-FEL

    SciTech Connect

    Kimura, K.; Yamazaki, J.; Kinoshita, T.

    1995-12-31

    Storage ring free electron laser (SR-FEL) dynamics on the UVSOR-FEL in the visible region has been studied with measurements of the temporal and the spectral widths of the laser micropulse. The micro- and the macro-temporal structures were measured using a dual sweep streak camera. We have also investigated spectral evolution of the laser with a Fabry-Perot etalon. Only a slow sweep function of the streak camera has been used for a fringe pattern formed by the air gap etalon to derive time-dependent variations of the spectral shape. We have measured the time-averaged pulsewidths and linewidths as a function of the ring current. We observed that every macropulse contains internal substructures in both the temporal and the spectral distributions. The internal substructure, however, disappeared when the spectra of more than fifty macropulses were superimposed, and the envelope of the distribution became close to a Gaussian. We have found that the pulsewidth and the linewidth become narrower as the ring current decays. In the gain-switching mode, the micropulse duration and the linewidth at the maximum ring current were 80 ps(FWHM) and 0.3 nm(FWHM), respectively, and decreased down to 20 ps and 0.1 nm just above the threshold current. The temporal and the spectral widths seem to follow the gain behavior. Assuming that the pulsewidth and the linewidth depend on the laser gain, the bandwidth in weakly saturated situation such as SR-FEL is determined by the gain narrowing of the laser amplifier. Because the gain evolution is able to be deduced from the macropulse shape, we can obtain the relation between the bandwidth and an effective gain above the mirror loss. The temporal and the spectral evolutions of the UVSOR-FEL were well explained by the gain narrowing related to a gain integrated from the oscillation build-up to the gain saturation. Detail of the experiment and the analysis will be presented.

  7. An induction linac developed for FEL application

    NASA Astrophysics Data System (ADS)

    de Mascureau, J.; Anthouard, Ph.; Bardy, J.; Eyharts, Ph.; Eyl, P.; Launspach, J.; Thevenot, M.; Villate, D.

    1992-07-01

    An induction linac is being studied and built at CESTA for FEL application. At first we studied the induction technology and namely the high-voltage (HV) generators and the induction cells. A HV generator designed to feed the cells with calibrated pulses (150 kV, 50 ns, δV/V < 1%) has been built using a resonant charging system and magnetic switches. This generator is planned for kHz repetition-rate operation. A prototype induction cell has also been built and tested with a cable generator. An electron injector (1.5 MeV, 1.5kA) has been designed and is now under test: it uses ten induction cells and a thermionic dispenser cathode. Numerical codes have been developed and simulations have been compared with experimental results for HV generators, induction cells, and the injector. An induction accelerating module has been studied and we plan to have the accelerator working at 3 MeV in 1992.

  8. High quality hybrid wiggler for infrared FEL and coherent harmonic generation

    NASA Astrophysics Data System (ADS)

    Stolovy, G.; Wadensweiler, W.; Madey, J. M. J.; Benson, S.; Velghe, M.

    1986-05-01

    A compact hybrid undulator, the Stanford IRFEL, employing both SmCo permanent magnets and Vanadium Permendur steel poles, is shown to be a cost-effective structure for FELs requiring high peak magnetic fields. The hybrid IRFEL allows the on-axis magnetic fields to be adjusted with high precision, and the capability of remagnetizing individual magnets enables methodical gap-independent corrections. Experiments with the laser saturated demonstrated that the seventh harmonic of 3.1 microns in the blue was clearly visible, and a net gain at this wavelength of 28 percent, consistent with simulations assuming an ideal wiggler of 47 periods, is shown. The gap-dependent steering was measured to be + or - 0.5 mrad, and tuning is possible with only slight adjustments to the initial beam steering.

  9. Gain measurements on a waveguide FEL amplifier with pre-bunched electron beam

    SciTech Connect

    Dearden, G.; Mayhew, S.E.; Lucas, J.

    1995-12-31

    A theory proposed by Doria et al. suggests that a synchronous pre-bunched electron beam should amplify radiation with a power gain which is inversely proportional to the square root of the input power. We have measured the power gain experimentally for a waveguide FEL system using a low-voltage (55kV) pre-bunched electron beam produced by a waveguide cavity buncher. The gain has been observed as a function of the electron beam current and energy; the results are compared with theory.

  10. Design of broadly tuned FIR FEL based on a variable-period microwiggler

    SciTech Connect

    Qing-Xiang Liu |; Yong Xu

    1995-12-31

    A varible-period microwiggler is proposed and investigated. The fundamental period of the microwiggler is designed as {lambda}o=2mm, and the period of the microwiggler can be turned from {lambda}o to n{lambda}o (n=1,2,3,{hor_ellipsis}) The wiggler fields with the period 3{lambda}o, 4{lambda}o, and 5{lambda}o are measured and compared with the theoretical results. Finally, a broadly tuned FIR FEL is designed based on the performance of the variable-period microwiggler.

  11. A double FEL oscillator: A possible scheme for a photon-photon collider

    NASA Astrophysics Data System (ADS)

    Dattoli, G.; Torre, A.

    2013-08-01

    Exploration of the mutual scattering of photons in vacuum is considered as a fundamental test of the quantum electrodynamics theory. In this connection, we propose a "double" free-electron laser oscillator as a possible device for head-on photon-photon collisions. The device is conceived to comprise two undulator sections within the same cavity, where then two laser beams are produced by two counterpropagating electron beams. The latter are in turn exploited to produce gamma photons by backward Compton scattering of the intracavity FEL radiation itself. A preliminary analysis of the collision rate of the backscattered photons is presented specifically at the maximum of the relevant cross section.

  12. Electron Beam Diagnostics Of The JLAB UV FEL

    SciTech Connect

    Evtushenko, Pavel; Benson, Stephen; Biallas, George; Coleman, James; Dickover, Cody; Douglas, David; Marchlik, Matthew; Sexton, Daniel; Tennant, Christopher

    2011-03-01

    In this contribution we describe various systems and aspects of the electron beam diagnostics of the JLab UV FEL. The FEL is installed on a new bypass beam line at the existing 10 kW IR Upgrade FEL. Here, we describe a set of the following systems. A combination of OTR and phosphor viewers is used for measurements of the transverse beam profile, transverse emittance, and Twiss parameters. This system is also used for alignment of the optical cavity of the UV oscillator and to ensure the overlap between the electron beam and optical mode in the FEL wiggler. A system of beam position monitors equipped with log-amp based BPM electronics. Bunch length on the order of 120 fs RMS is measured with the help of a modified Martin-Puplett interferometer. The longitudinal transfer function measurement system is used to set up bunch compression in an optimal way, such that the LINAC RF curvature is compensated using only higher order magnetic elements of the beam transport. This set of diagnostic systems made a significant contribution in achieving first lasing of the FEL after only about 60 hours of beam operation.

  13. Infrared FEL photochemistry: Multiple-photon dissociation of freon gas

    NASA Astrophysics Data System (ADS)

    Newnam, B. E.; Early, J. W.; Lyman, J. L.

    Wavelength tunability, synchrotron sidebands, and picosecond pulse structure are inherent FEL characteristics that should be advantageous for photochemistry involving infrared multiple-photon photodissociation. Tuned to an absorption resonance, the FEL sideband structure will overlap the broad, excited-state spectral absorption and should lead to enhanced dissociation. The Los Alamos APEX FEL was operated with and without sidebands to test this hypothesis on CFCl3 (Freon 11), an inert chlorofluorocarbon widely used in refrigeration systems and one of the gases implicated as depleting the ozone in the Earth's stratospheric layer. The FEL wavelength was set at the C-Cl stretch absorption resonance at 11.8-microns, the oscillator cavity length was detuned first to minimize and then to maximize the spectral bandwidth, and the beam was focused through a pair of test cells (1.0 Torr Freon + 1.7 Torr air). Comparison of final and initial absorbance spectra indicated the CFCl3 photodissociation yield was 1.2% for the cell exposed with sideband spectra (3% FWHM) and 9-ns micropulse separation. Negligible effect was seen without sidebands, albeit at lower total beam fluence. Although the result of this single experiment is not large enough to be conclusive, it does provide a basis for optimizing the FEL temporal and spectral parameters to attain higher photodissociation yield in future tests.

  14. Temporal characterization of the Stanford Mid-IR FEL by frequency-resolved optical gating

    SciTech Connect

    Richman, B.A.; DeLong, K.W.; Trebino, R.

    1995-02-01

    We measure the time-dependent intensity and phase of laser pulses from the Stanford Mid-IR FEL. We present the first measurements of near-transform-limited, linearly chirped, and sideband modulated FEL pulses.

  15. Seeded quantum FEL at 478 keV

    SciTech Connect

    Guenther, M. M.; Jentschel, M.; Thirolf, P. G.; Seggebrock, T.; Habs, D.

    2012-07-09

    We present for the first time the concept of a seeded {gamma} quantum Free-Electron-Laser (QFEL) at 478 keV, which has very different properties compared to a classical. The basic concept is to produce a highly brilliant {gamma} beam via SASE. To produce highly intense and coherent {gamma} beam, we intend to use a seeded FEL scheme. Important for the production of such a {gamma} beam are novel refractive {gamma}-lenses for focusing and an efficient monochromator, allowing to generate a very intense and coherent seed beam. The energy of the {gamma} beam is 478 keV, corresponding to a wavelength in the sub-Angstrom regime (1/38 A). To realize a coherent {gamma} beam at 478 keV, it is necessary to use a quantum FEL design. At such high radiation energies a classical description of the {gamma}-FEL becomes wrong.

  16. Analysis of FEL optical systems with grazing incidence mirrors

    SciTech Connect

    Knapp, C.E.; Viswanathan, V.K.; Bender, S.C.; Appert, Q.D.; Lawrence, G.; Barnard, C.

    1986-01-01

    The use of grazing incidence optics in resonators alleviates the problem of damage to the optical elements and permits higher powers in cavities of reasonable dimensions for a free electron laser (FEL). The design and manufacture of a grazing incidence beam expander for the Los Alamos FEL mock-up has been completed. In this paper, we describe the analysis of a bare cavity, grazing incidence optical beam expander for an FEL system. Since the existing geometrical and physical optics codes were inadequate for such an analysis, the GLAD code was modified to include global coordinates, exact conic representation, raytracing, and exact aberration features to determine the alignment sensitivities of laser resonators. A resonator cavity has been manufactured and experimentally setup in the Optical Evaluation Laboratory at Los Alamos. Calculated performance is compared with the laboratory measurements obtained so far.

  17. Effect of free electron laser (FEL) irradiation on tooth dentine

    NASA Astrophysics Data System (ADS)

    Ogino, Seiji; Awazu, Kunio; Tomimasu, Takio

    1996-12-01

    Free electron laser (FEL) gives high efficiency for the photo-induced effects when the laser is tuned to the absorption maximum of target materials. The effect on dentine was investigated using the FEL tuned to 9.4 micrometers , which is an absorption maximum of phosphoric acid in infrared region. As a result, irradiated dentine surface which was amorphous had changed to the recrystalized structure by the spectroscopic analysis of IR absorption and x-ray diffraction. Furthermore, the atomic ratio of P/Ca had reduced from 0.65 to 0.60. These results indicated that 9.4micrometers -FEL irradiation caused the selective ablation of phosphoric acid ion and the reconstruction of disordered atoms.

  18. FERMI@Elettra FEL Design Technical Optimization Final Report

    SciTech Connect

    Fawley, William; Penn, Gregory; Allaria, Enrico; De Ninno,Giovanni; Graves, William

    2006-07-31

    This is the final report of the FEL Design Group for the Technical Optimization Study for the FERMI{at}ELETTRA project. The FERMI{at}ELETTRA project is based on the principle of harmonic upshifting of an initial ''seed'' signal in a single pass, FEL amplifier employing multiple undulators. There are a number of FEL physics principles which underlie this approach to obtaining short wavelength output: (1) the energy modulation of the electron beam via the resonant interaction with an external laser seed (2) the use of a chromatic dispersive section to then develop a strong density modulation with large harmonic overtones (3) the production of coherent radiation by the microbunched beam in a downstream radiator. Within the context of the FERMI project, we discuss each of these elements in turn.

  19. 40 CFR 1033.750 - Changing a locomotive's FEL at remanufacture.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Changing a locomotive's FEL at... Certification § 1033.750 Changing a locomotive's FEL at remanufacture. Locomotives are generally required to be certified to the previously applicable emission standard or FEL when remanufactured. This section...

  20. 40 CFR 1033.750 - Changing a locomotive's FEL at remanufacture.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Changing a locomotive's FEL at... Certification § 1033.750 Changing a locomotive's FEL at remanufacture. Locomotives are generally required to be certified to the previously applicable emission standard or FEL when remanufactured. This section...

  1. 40 CFR 1033.750 - Changing a locomotive's FEL at remanufacture.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Changing a locomotive's FEL at... Certification § 1033.750 Changing a locomotive's FEL at remanufacture. Locomotives are generally required to be certified to the previously applicable emission standard or FEL when remanufactured. This section...

  2. 40 CFR 1033.750 - Changing a locomotive's FEL at remanufacture.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Changing a locomotive's FEL at... Certification § 1033.750 Changing a locomotive's FEL at remanufacture. Locomotives are generally required to be certified to the previously applicable emission standard or FEL when remanufactured. This section...

  3. 40 CFR 1033.750 - Changing a locomotive's FEL at remanufacture.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Changing a locomotive's FEL at... Certification § 1033.750 Changing a locomotive's FEL at remanufacture. Locomotives are generally required to be certified to the previously applicable emission standard or FEL when remanufactured. This section...

  4. Free Electron Lasers - Proceedings of the Beijing Fel Seminar

    NASA Astrophysics Data System (ADS)

    Chen, Jiaer; Xie, Jialin; Du, Xiangwan; Zhao, Kui

    1989-03-01

    The Table of Contents for the full book PDF is as follows: * Preface to the Series * Preface * Seminar Opening Speech * Seminar Closing Address * SECTION 1. RF LINAC BASED FEL * Richard H. Pantell * Free-Electron Lasers * Gas-Loading the FEL * High-Efficiency, High-Power Free-Electron Lasers * A Tunable Submillimeter-to-Far-Infrared Coherent Radiation Source * Kwok-Chi Dominic Chan * Recent Results from the Los Alamos Free Electron Laser * Short-Range Wakefield Effects in RF-Based Free-Electron Laser * Long-Range Wakefield Effects in RF-Based Free-Electron Laser * High-Brightness Injectors For RF-Driven Free-Electron Lasers * Computer Codes for Wakefield Analysis in RF-Based Free-Electron Laser * George R. Neil * The TRW RF Accelerator FEL Program * Superconducting Linac FEL Technology * Design Considerations of RF Oscillators * Chun-Ching Shih * Development of Multicomponent Wiggler Free Electron Lasers * Free Electron Laser Resonator * SECTION 2. INDUCTION LINAC BASED FEL * Richard J. Briggs * Overview of FEL Development with Induction Linacs at LLNL * Overview of Linear Induction Accelerators * High Current Electron-Beam Transport in Induction Linacs * Thaddeus J. Orzechowski * An Introduction to the Physics of High-Gain Free-Electron Lasers * Harmonics and Optical Guiding in Free Electron Lasers * The Electron Laser Facility: A millimeter Wave Free-Electron Laser Amplifier * The Electron Laser Facility: Measurement of Modes, Harmonics, Parametric Dependence, and Phase Shift * Paladin: A 10.6 μm Free-Electron Laser Amplifier * Aspects of Linear Induction Accelerator Technology * List of Participants

  5. Undulators for the BESSY SASE-FEL Project

    SciTech Connect

    Bahrdt, J.; Frentrup, W.; Gaupp, A.; Kuske, B.; Meseck, A.; Scheer, M.

    2004-05-12

    BESSY plans to build a SASE-FEL facility for the energy range from 20 eV to 1000 eV. The energy range will be covered by three APPLE II type undulators with a magnetic length of about 60 m each. This paper summarizes the basic parameters of the FEL-undulators. The magnetic design will be presented. A modified APPLE II design will be discussed which provides higher fields at the expense of reduced horizontal access. GENESIS simulations give an estimate on the tolerances for the beam wander and for gap errors.

  6. Beam transport design for a recirculating-linac FEL driver

    SciTech Connect

    Neuffer, D.; Douglas, D.; Li, Z.; Cornacchia, M.; Garren, A.

    1996-07-01

    The beam transport system for the CEBAF Industrial FEL includes a two-pass transport of the beam with acceleration from injector to wiggler, followed by energy recovery transport from wiggler to dump. From that context, the authors discuss the general problem of multi-pass energy-recovery beam transport for FELs. Tunable, nearly-isochronous, large-momentum-acceptance transport systems are required. The entire transport must preserve beam quality, particularly in the acceleration transport to the wiggler, and have low losses throughout the entire system. Various possible designs are presented, and results of dynamic analyses are discussed.

  7. Quasi-isochronous storage ring for enhanced FEL performance

    SciTech Connect

    Ohgaki, H.; Robin, D.; Yamazaki, Y.

    1995-08-01

    A compact storage ring is designed to be used as a driver for an FEL. This ring can be operated very close to zero momentum compaction factor ({alpha}) to increase the electron density and thus the gain of the FEL. In order to control {alpha} with zero dispersion in the straight sections the authors use an inverted dipole located between the bending magnets and 4-families of quadrupoles. By using 3-families of sextupoles they can control the 2 transverse chromaticities and 2nd order momentum compaction. They find that the ring has sufficient dynamic aperture for good performance.

  8. A Parameter Optimization for a National SASE FEL Facility

    SciTech Connect

    Yavas, O.; Yigit, S.

    2007-04-23

    The parameter optimization for a national SASE FEL facility was studied. Turkish State Planing Organization (DPT) gave financial support as an inter-universities project to begin technical design studies and test facility of National Accelerator Complex starting from 2006. In addition to a particle factory, the complex will contain a linac based free electron laser, positron ring based synchrotron radiation facilities and a proton accelerator. In this paper, we have given some results of main parameters of SASE FEL facility based on 130 MeV linac, application potential in basic and applied research.

  9. The Mark III IR FEL: Improvements in performance and operation

    SciTech Connect

    Barnett, G.A.; Madey, J.M.J.; Straub, K.D.

    1995-12-31

    The Mark III IR FEL has been upgraded by the installation of a new thermionic microwave gun. The new gun yields a reduced emittance and allows operation at a higher repetition rate and an increased electron macropulse length. The RF system of the Mark III has also been phase-locked to the RF systemof the adjacent storage ring driver for the laboratory`s short-wavelength FEL sources, making possible two-color UV-IR pump probe experiments. In this paper, the design and performance of the new gun are presented and the implications of the improvements investigated.

  10. Progress in the injector for FEL at CIAE

    SciTech Connect

    Tianlu Yang; Wenzhen Zhou; Shinian Fu

    1995-12-31

    An intense current RF-linac for the far-infrared FEL is now under construction at CIAE. The normalized brightness of 3.4 x 10{sup 9} A/(m-rad) was obtained from the injector of the linac. An acceleration section with 9 cells will be connected with the injector to provide an electron beam for the 200 {mu}m FEL oscillator. In this paper, the late results from the injector beam test will be reported. The physical design and research progress in the acceleration section, beam transport, undulator as well as optical cavity will be introduced respectively.

  11. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    NASA Astrophysics Data System (ADS)

    Rizzo, G.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G.-F.; Fabris, L.; Forti, F.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 104 photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  12. Compensation of FEL gain reduction by emittance effects in a strong focusing lattice

    NASA Astrophysics Data System (ADS)

    Reiche, S.

    2000-05-01

    As the constraint of a small transverse emittance becomes more severe, the higher the electron beam energy in an FEL. To compensate for the transverse and thus the longitudinal velocity spread, a compensation scheme has been proposed previously by Derbenev and Sessler et al., for Free Electron Lasers by introducing a correlation between the energy and the average betatron amplitude of each electron. This compensation scheme is based on a constant absolute value of the transverse velocity, a feature of the natural focusing of undulators, and does not include strong focusing of a superimposed quadrupole lattice. This paper focuses on the electron motion in a strong focusing lattice with a variation in the axial velocity. The resulting reduction of the compensation efficiency is analyzed using simulations. It is seen that the compensation scheme is not much affected if the lattice cell length is shorter than the gain length. For the results presented in this paper, the parameters of the proposed TESLA X-ray FEL have been used.

  13. An Overview of the MaRIE X-FEL and Electron Radiography LINAC RF Systems

    SciTech Connect

    Bradley, Joseph Thomas III; Rees, Daniel Earl; Scheinker, Alexander; Sheffield, Richard L.

    2015-05-04

    The purpose of the Matter-Radiation Interactions in Extremes (MaRIE) facility at Los Alamos National Laboratory is to investigate the performance limits of materials in extreme environments. The MaRIE facility will utilize a 12 GeV linac to drive an X-ray Free-Electron Laser (FEL). Most of the same linac will also be used to perform electron radiography. The main linac is driven by two shorter linacs; one short linac optimized for X-FEL pulses and one for electron radiography. The RF systems have historically been the one of the largest single component costs of a linac. We will describe the details of the different types of RF systems required by each part of the linacs. Starting with the High Power RF system, we will present our methodology for the choice of RF system peak power and pulselength with respect to klystron parameters, modulator parameters, performance requirements and relative costs. We will also present an overview of the Low Level RF systems that are proposed for MaRIE and briefly describe their use with some proposed control schemes.

  14. FEL Beamline for Wide Tunable Range and Beam Sharing System at Kyoto University

    SciTech Connect

    Bakr, Mahmoud; Yoshida, K.; Higashimura, K.; Ueda, S.; Kinjo, R.; Sonobe, T.; Kii, T.; Masuda, K.; Ohgaki, H.; Zen, H.

    2010-02-03

    A mid-infrared free electron laser (MIR-FEL) facility (KU-FEL: Kyoto University Free Electron Laser) has been constructed for developing energy materials in Institute of Advanced Energy (IAE), Kyoto University. The tunable range of KU-FEL was estimated as 5-13.2 {mu}m by numerical calculation to design the MIR-FEL transport line for application purposes. Aiming to increase the number of FEL users with different desires we decided to develop an FEL beam sharing system that is useful for multi-utilization at different end-stations. The transport line and the beam sharing system has been designed and constructed to the user stations. Applications of the MIR-FEL in the renewable energy research at Kyoto University will start as well.

  15. Three-dimensional simulation of a hole-coupled FEL oscillator

    SciTech Connect

    Krishnagopal, S.; Xie, M.; Kim, K.J.; Sessler, A.

    1991-08-01

    The performance of a two-mirror resonator with holes for out-coupling has been examined in a previous study in which the FEL gain was neglected, but the geometrical effect of the wiggler aperture was included in the optical calculation. The phenomenon of mode degeneracy was found to occur, that has serious implications for the stability of performance when the FEL gain is included. We have developed a FEL oscillator code based on TDA'', a three-dimensional FEL amplifier code, to study the mode characteristics in the presence of an FEL. We find that the interaction of the radiation and the FEL has an important, and positive, impact on the mode-profile and related cavity performance parameters. In particular, mode degeneracy is not expected to be a serious problem for reasonable FEL oscillator designs. 8 refs., 4 figs., 1 tab.

  16. The physics of FEL in an infinite electron beam

    SciTech Connect

    Wang, G.; Litvinenko, V.N.; Webb, S.

    2010-10-07

    We solve linearized Vlasov-Maxwell FEL equations for a 3-D perturbation in the infinite electron beam with Lorentzian energy distributions using paraxial approximation. We present analytical solutions for various initial perturbations and discuss the effect of optical guiding in such system.

  17. Dispersion relations for 1D high-gain FELs

    SciTech Connect

    Webb, S.D.; Litvinenko, V.N.

    2010-08-23

    We present analytical results for the one-dimensional dispersion relation for high-gain FELs. Using kappa-n distributions, we obtain analytical relations between the dispersion relations for various order kappa distributions. Since an exact solution exists for the kappa-1 (Lorentzian) distribution, this provides some insight into the number of modes on the way to the Gaussian distribution.

  18. A new cucurbitacin from Picria fel-terrae.

    PubMed

    Zou, J-M; Wang, L-S; Ma, X-M; Guo, Y-J; Shi, R-B

    2006-06-01

    A new cucurbitacin, picfeltarraenone II (1) as well as four known cucurbitacins, picfeltarraegenin I (2), picfeltarraenin IA (3), picfeltarraenin IB (4), and picfeltarraenin IV (5), have been isolated and characterized from the whole plant of Picria fel-terrae. The purity of picfeltarraenin IA has been determined by TLC and HPLC. PMID:16864449

  19. Efficiency optimization in a FEL with fields` nonadiabatic tapering

    SciTech Connect

    Goncharov, I.A.; Belyavskiy, E.D.; Silivra, A.A.

    1995-12-31

    Amplification of an electromagnetic wave in free electron lasers with a reversed guide field and right-hand polarized wiggler field is investigated both analytically and numerically. An effect of electron bunch trapping by the high frequency electromagnetic field is used for efficiency optimization. On the basis of motion stability criteria a possibility of bunches trapping by FEL parameters nonadiabatic (experimentally realizable) tapering is shown. The stability analysis of electron motion is based on Lyapunov theory for autonomy systems. A particle simulation is carried out for FEL parameters close to the experimental ones (relativistic factor {gamma}=4.75, wiggler field strength B{sub w}= 2.8 kG, guide field strength B{sub o}= -1.4 kG, operation wavelength {lambda}=6.2 mm) for the case of wiggler field tapering. Theoretically predicted rule of wiggler field tapering corresponding to FEL efficiency of 55% is approximated by stepped functions. For the experimentally realizable tapering it is found that FEL efficiency can be over 40%.

  20. Numerical simulations of x-ray generation in miltisectional FELs

    SciTech Connect

    Pitatelev, M.M.

    1995-12-31

    The process of x-ray generation in milticomponent FELs with alternate undulator and dispersion sections is investigate. The coptuter simulation was fulfilled for the ultrarelativistic electron beams. It was shown that the use of much number of dispersion sections allows to increase the gain considerably and to use more short magnetic systems.

  1. Status of the project of Novosibirsk high power FEL

    SciTech Connect

    Pinayev, I.V.; Erg, G.I.; Gavrilov, N.G.

    1995-12-31

    The project of IR FEL for the Siberian Center of photochemical researches is described. The distinguished features of this project are the use of the race-track microtron-recuperator and the {open_quotes}electron output of radiation{close_quotes}. The building for the machine is under reconstruction now. About half of hardware has been manufactured. The assembly of installation began.

  2. TESLA FEL Gun simulations with PARMELA and MAFIA

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Schuett, Petra

    1997-02-01

    The most recent simulation results of the DESY TESLA FEL gun are presented. Two codes are used: PARMELA and MAFIA. Since the two use different schemes in particle simulations, we will address their differences and try to give an explanation for them.

  3. Optimization Studies of the FERMI at ELETTRA FEL Design

    SciTech Connect

    De Ninno, Giovanni; Fawley, William M.; Penn, Gregory E.; Graves,William

    2005-08-25

    The FERMI at ELETTRA project at Sincotrone Trieste involves two FEL's, each based upon the principle of seeded harmonic generation and using the existing ELETTRA injection linac at 1.2 GeV beam energy. Scheduled to be completed in 2008, FEL-1 will operate in 40-100 nm wavelength range and will involve one stage of harmonic up-conversion. The second undulator line, FEL-2, will begin operation two years later in the 10-40 nm wavelength range and use two harmonic stages operating as a cascade. The FEL design assumes continuous wavelength tunability over the full wavelength range, and polarization tunability of the output radiation including vertical or horizontal linear as well as helical polarization. The design considers focusing properties and segmentation of realizable undulators and available input seed lasers. We review the studies that have led to our current design. We present results of simulations using GENESIS and GINGER simulation codes including studies of various shot-to-shot fluctuations and undulator errors. Findings for the expected output radiation in terms of the power, transverse and longitudinal coherence are reported.

  4. Numerical study of the 3-D effect on FEL performance and its application to the APS LEUTL FEL

    SciTech Connect

    Chae, Y.C.

    1998-09-01

    A Low-Energy Undulator Test Line (LEUTL) is under construction at the Advanced Photon Source (APS). In LEUTL periodic focusing is provided by external quadrupoles. This results in an elliptical beam with its betatron oscillation envelope varying along the undulators. The free-electron laser (FEL) interaction with such a beam will exhibit truly 3-D effects. Thus the investigation of 3-D effects is important in optimizing the FEL performance. The programs GINGER and TDA3D, coupled with theoretically known facts, have been used for this purpose. Both programs are fully 3-D in moving the particle, but model the interaction between particles and axially symmetric electromagnetic waves. Even though TDA3D can include a few azimuthal modes in the interaction, it is still not a fully 3-D FEL code. However, they show that these 2-D programs can still be used for an elliptical beam whose aspect ratio is within certain limits. The author presents numerical results of FEL performance for the circular beam, the elliptical beam, and finally for the beam in the realistic LEUTL lattice.

  5. The PixFEL project: development of advanced X-ray pixel detectors for application at future FEL facilities

    NASA Astrophysics Data System (ADS)

    Rizzo, G.; Comotti, D.; Fabris, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.; Morsani, F.; Paladino, A.; Paoloni, E.; Dalla Betta, G.-F.; Pancheri, L.; Verzellesi, G.; Xu, H.; Mendicino, R.; Benkechkache, M. A.

    2015-02-01

    The PixFEL project aims to develop an advanced X-ray camera for imaging suited for the demanding requirements of next generation free electron laser (FEL) facilities. New technologies can be deployed to boost the performance of imaging detectors as well as future pixel devices for tracking. In the first phase of the PixFEL project, approved by the INFN, the focus will be on the development of the microelectronic building blocks, carried out with a 65 nm CMOS technology, implementing a low noise analog front-end channel with high dynamic range and compression features, a low power ADC and high density memory. At the same time PixFEL will investigate and implement some of the enabling technologies to assembly a seamless large area X-ray camera composed by a matrix of multilayer four-side buttable tiles. A pixel matrix with active edge will be developed to minimize the dead area of the sensor layer. Vertical interconnection of two CMOS tiers will be explored to build a four-side buttable readout chip with small pixel pitch and all the on-board required functionalities. The ambitious target requirements of the new pixel device are: single photon resolution, 1 to 104 photons @ 1 keV to 10 keV input dynamic range, 10-bit analog to digital conversion up to 5 MHz, 1 kevent in-pixel memory and 100 μm pixel pitch. The long term goal of PixFEL will be the development of a versatile X-ray camera to be operated either in burst mode (European XFEL), or in continuous mode to cope with the high frame rates foreseen for the upgrade phase of the LCLS-II at SLAC.

  6. Design of an XUV FEL Driven by the Laser-Plasma Accelerator at theLBNL LOASIS Facility

    SciTech Connect

    Schroeder, Carl B.; Fawley, W.M.; Esarey, Eric; Leemans, W.P.

    2006-09-01

    We present a design for a compact FEL source of ultrafast, high-peak flux, soft x-ray pulses employing a high-current, GeV-energy electron beam from the existing laser-plasma accelerator at the LBNL LOASIS laser facility. The proposed ultra-fast source would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science with pulse lengths of tens of fs. Owing both to the high current ({approx} 10 kA) and reasonable charge/pulse ({approx} 0.1-0.5 nC) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially 10{sup 13}--10{sup 14} photons/pulse. We examine devices based both on SASE and high-harmonic generated input seeds to give improved coherence and reduced undulator length, presenting both analytic scalings and numerical simulation results for expected FEL performance. A successful source would result in a new class of compact laser-driven FELs in which a conventional RF accelerator is replaced by a GeV-class laser-plasma accelerator whose active acceleration region is only a few cm in length.

  7. Output characteristics of SASE-driven short wavelength FEL`s

    SciTech Connect

    Fawley, W.M.

    1997-02-01

    This paper investigates various properties of the ``microspikes`` associated with self-amplified spontaneous emission (SASE) in a short wavelength free-electron laser (FEL). Using results from the 2-D numerical simulation code GINGER, we confirm theoretical predictions such as the convective group velocity in the exponential gain regime. In the saturated gain regime beyond the initial saturation, we find that the average radiation power continues to grow with an approximately linearly dependence upon undulator length. Moreover, the spectrum significantly broadens and shifts in wavelength to the redward direction, with{ital P(w)} approaching a constant, asymptotic value. This is in marked contrast to the exponential gain regime where the spectrum steadily narrows, {ital P(w)} grows, and the central wavelength remains constant with {ital z}. Via use of a spectrogram diagnostic {ital S(w,t)}, it appears that the radiation pattern in the saturated gain regime is composed of an ensemble of distinct ``sinews`` whose widths AA remain approximately constant but whose central wavelengths can ``chirp`` by varying a small extent with {ital t}.

  8. Field Encapsulation Library The FEL 2.2 User Guide

    NASA Technical Reports Server (NTRS)

    Moran, Patrick J.; Henze, Chris; Ellsworth, David

    1999-01-01

    This document describes version 2.2 of the Field Encapsulation Library (FEL), a library of mesh and field classes. FEL is a library for programmers - it is a "building block" enabling the rapid development of applications by a user. Since FEL is a library intended for code development, it is essential that enough technical detail be provided so that one can make full use of the code. Providing such detail requires some assumptions with respect to the reader's familiarity with the library implementation language, C++, particularly C++ with templates. We have done our best to make the explanations accessible to those who may not be completely C++ literate. Nevertheless, familiarity with the language will certainly help one's understanding of how and why things work the way they do. One consolation is that the level of understanding essential for using the library is significantly less than the level that one should have in order to modify or extend the library. One more remark on C++ templates: Templates have been a source of both joy and frustration for us. The frustration stems from the lack of mature or complete implementations that one has to work with. Template problems rear their ugly head particularly when porting. When porting C code, successfully compiling to a set of object files typically means that one is almost done. With templated C++ and the current state of the compilers and linkers, generating the object files is often only the beginning of the fun. On the other hand, templates are quite powerful. Used judiciously, templates enable more succinct designs and more efficient code. Templates also help with code maintenance. Designers can avoid creating objects that are the same in many respects, but not exactly the same. For example, FEL fields are templated by node type, thus the code for scalar fields and vector fields is shared. Furthermore, node type templating allows the library user to instantiate fields with data types not provided by the FEL

  9. Visibility in California

    SciTech Connect

    Trijonis, J.

    1982-02-01

    A comprehensive study is conducted of visibility in California using prevailing visibility measurements at 67 weather stations in conjunction with data on particulate concentrations and meteorology. The weather station visibility data, when handled with special techniques that account for the nature of visibility reporting practices, prove to be of very good quality for the purposes of most of the analyses that are attempted. It is found that the most important meteorological parameters with respect to visibility are relative humidity, temperature, and special weather events (especially fog). A detailed isopleth map of visibility within California, when compared with earlier work on nationwide visibility, reveals that California experiences far more severe and complex spatial gradients in visibility than those observed anywhere else in the U.S. Two major pockets of heavy man-made visibility impact in California are the Los Angeles basin and the San Joaquin Valley. The spatial, seasonal, and diurnal patterns of visibility are found to be readily explainable in terms of corresponding patterns in emissions, air quality, and meteorology. Regression analyses relating visibility to relative humidity and aerosol concentrations produce high levels of correlation and physically reasonable regression coefficients; these analyses indicate that secondary aerosols are major contributors to visibility reduction in California. An analysis of long-term visibility trends from 1949 to 1976 reveals several interesting features in historical visibility changes for California.

  10. Studies of Resistive Wall Heating at JLAB FEL

    SciTech Connect

    Li, Rui; Benson, Stephen V.

    2013-06-01

    When the JLAB FEL is under CW operation, it had been observed that temperature rises over the wiggler vacuum chamber, presumably as the result of the power deposition on the resistive wall of the wiggler chamber. Previous analyses have been done on the resistive wall impedance for various cases, such as DC, AC, and anomalous skin effects*. Here we report an investigation on the beam kinetic energy losses for each of these cases. This study includes the non-ultrarelativistic effect on resistive wall loss, for both round pipe and parallel plates. We will present the comparison of our results with the measured data obtained during CW operation of the JLAB FEL. Other possible factors contributing to the measured heating will also be discussed.