Science.gov

Sample records for propulsion laboratory pasadena

  1. Establishing The Pasadena Seismological Laboratory: An Adventure in Scientific Collaboration

    NASA Astrophysics Data System (ADS)

    Hazen, M. H.

    2002-05-01

    The 1906 San Francisco earthquake jolted Berkeley geologist Harry O. Wood (1879-1958) into a lifetime of seismological research that included the establishment of a seismic monitoring network in southern California, the co-invention of a seismograph capable of measuring short-period earthquakes, and the implementation of a public-safety campaign. None of these initiatives would have been possible without the support of the Carnegie Institution, a Washington DC-based research organization that supported not only exceptional individuals (as founder Andrew Carnegie had stipulated), but also large-scale, collaborative investigations. Wood published his plan for a "western United States" earthquake research program in 1916, but it was not until he moved to Washington during World War I that he made contacts that transformed his dream into a reality. While working at the National Research Council, Wood shared his vision with astronomer George Ellery Hale, geologist Arthur L. Day and, finally, Carnegie president John C. Merriam. Merriam was a Californian, a geologist, and a strong proponent of collaborative science. In 1921, the Carnegie Advisory Committee on Seismology - the first organization "of this magnitude" in American research - was formed. Initially, the program operated from an office at the Mount Wilson Observatory, where Wood was in charge of the daily operations. Then, in 1926, a joint venture with the California Institute of Technology was launched. Located in the mountains west of Pasadena, the Seismological Laboratory coordinated a range of scientific efforts. By 1930, thirteen American cities had Wood-Anderson seismographs in place, quantities of data had been acquired, new fault zones had been identified, and Beno Gutenberg and Charles F. Richter had been attracted to the program. Over the years, the U.S. Coast and Geodetic Survey and other government agencies also contributed to the effort. In the mid-1930s, the Carnegie Institution transferred the

  2. NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  3. Advanced Propulsion Concepts at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.

    1997-01-01

    Current interest in advanced propulsion within NASA and research activities in advanced propulsion concepts at the Jet Propulsion Laboratory are reviewed. The concepts, which include high power plasma thrusters such as lithuim-fueled Lorentz-Force-Accelerators, MEMS-scale propulsion systems, in-situ propellant utilization techniques, fusion propulsion systems and methods of using antimatter, offer the potential for either significantly enhancing space transportation capability as compared with that of traditional chemical propulsion, or enabling ambitious new missions.

  4. The NASA Advanced Propulsion Concepts at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Leifer, S. D.; Frisbee, R. H.; Brophy, J. R.

    1997-01-01

    Research activities in advanced propulsion concepts at the Jet Propulsion Laboratory are reviewed. The concepts were selected for study because each offers the potential for either significantly enhancing space transportation capability or enabling bold, ambitious new missions.

  5. Jet Propulsion Laboratory: Annual Report 1999

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Jet Propulsion Laboratory, located in the foothills near Pasadena, California, is the nation's lead center for the robotic exploration of space. Intense activity in space missions was the hallmark of the Jet Propulsion Laboratory as a new generation of smaller, less expensive spacecraft were sent out from Earth. From late 1998 to mid-1999, JPL launched a craft testing a futuristic ion engine, an orbiter and lander bound for Mars, a mission to fly by a comet and return a sample of its dust to Earth, a small infrared telescope, and an Earth-circling satellite that uses radar to gauge winds over the oceans. This unprecedented schedule resulted in spectacular achievements, tempered by highly visible mission losses. Weighed together, the successes and failures dramatically underscored the difficulty and risk involved in the unique business of space science and exploration. Among the achievements, the ion-engine-powered Deep Space 1, comet-bound Stardust and Earth-orbiting SeaWinds were joined by such ongoing missions as Mars Global Surveyor, Galileo and Cassini in delivering on their promise and, in some cases, providing surprising new views of space and Earth. At the same time, mission teams were disappointed by the losses of an orbiter and lander at Mars, as well as a small infrared telescope. JPL worked closely with NASA to learn from these experiences and build successful future missions. The Laboratory also achieved a key goal by winning the International Organization of Standards' 'ISO 9001' certification - a standard shared by the world's best engineering organizations. As the year rolled to a close, clocks rolled over from 1999 to 2000. Operations teams at JPL and NASA watched with satisfaction as a major campaign of Year 2000 readiness paid off with no problems among the thousands of computer systems that support the Laboratory's missions. With that auspicious beginning, JPL was positioned to step into the 21st century and embark on even yet unimagined

  6. Stereo Pair, Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This stereoscopic image pair is a perspective view that shows the western part of the city of Pasadena, California, looking north toward the San Gabriel Mountains. Portions of the cities of Altadena and La Canada Flintridge are also shown. The cluster of large buildings left of center, at the base of the mountains, is the Jet Propulsion Laboratory. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Data shown in this image can be used to predict both how wildfires spread over the terrain and how mudflows are channeled down the canyons.

    The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation, U. S. Geological Survey digital aerial photography provided the image detail, and the Landsat Thematic Mapper provided the color. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data and the aerial photography. The image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration

  7. Artist's Concept of NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications.

  8. 3-D Perspective Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This perspective view shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains. Portions of the cities of Altadena and La Canada, Flintridge are also shown. The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data; Landsat data from November 11, 1986 provided the land surface color (not the sky) and U.S. Geological Survey digital aerial photography provides the image detail. The Rose Bowl, surrounded by a golf course, is the circular feature at the bottom center of the image. The Jet Propulsion Laboratory is the cluster of large buildings north of the Rose Bowl at the base of the mountains. A large landfill, Scholl Canyon, is the smooth area in the lower left corner of the scene. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires strip the mountains of vegetation, increasing the hazards from flooding and mudflows for several years afterwards. Data such as shown on this image can be used to predict both how wildfires will spread over the terrain and also how mudflows will be channeled down the canyons. The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency

  9. Publications of the Jet Propulsion Laboratory, 1984

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Jet Propulsion Laboratory (JPL) bibliography 39-26 describes and indexes by primary author the externally distributed technical reporting, released during calendar year 1984, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: (1) JPL Publications (82-, 83-, 84-series, etc.), in which the information is complete for a specific accomplishment; (2) articles from the quarterly Telecommunications and Data Acquisition (TDA) Program Report (42-series); and (3) articles published in the open literature.

  10. NDE Activity at Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    1993-01-01

    None, This is a viewgraph outline from an oral presentation. From Intro.: Our speaker will review the NDE technology under development at the Jet Propulsion Laboratory (JPL). Emphasis will be given to Ultrasonics and application of sensors to space technology. Further, the efforts of JPL in technology transfer to the industry in the area of NDE will be covered.

  11. Activities of the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Work accomplished by the Jet Propulsion Laboratory (JPL) under contract to NASA in 1985 is described. The work took place in the areas of flight projects, space science, geodynamics, materials science, advanced technology, defense and civil programs, telecommunications systems, and institutional activities.

  12. Publications of the Jet Propulsion Laboratory, 1981

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Over 500 externally distributed technical reports released during 1981 that resulted from scientific and engineering work performed, or managed by Jet Propulsion Laboratory are listed by primary author. Of the total number of entries, 311 are from the bimonthly Deep Space Network Progress Report, and its successor, the Telecommunications and Data Acquisition Progress Report.

  13. Mars Science Laboratory Cruise Propulsion Maneuvering Operations

    NASA Technical Reports Server (NTRS)

    Baker, Raymond S.; Mizukami, Masahi; Barber, Todd J.

    2013-01-01

    Mars Science Laboratory "Curiosity" is NASA's most recent mission to Mars, launched in November 2011, and landed in August 2012. It is a subcompact car-sized nuclear powered rover designed for a long duration mission, with an extensive suite of science instruments. Entry, descent and landing used a unique "skycrane" concept. This report describes the propulsive maneuvering operations during cruise from Earth to Mars, to control attitudes and to target the vehicle for entry. The propulsion subsystem, mission operations, and flight performance are discussed. All trajectory control maneuvers were well within accuracy requirements, and all turns and spin corrections were nominal.

  14. Publications of the Jet Propulsion Laboratory 1983

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Jet propulsion Laboratory (JPL) bibliography describes and indexes by primary author the externally distributed technical reporting, released during calendar year 1983, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included. JPL Publication (81-,82-,83-series, etc.), in which the information is complete for a specific accomplishment, articles published in the open literature, and articles from the quarterly telecommunications and Data Acquisition (TDA) Progress Report (42-series) are included. Each collection of articles in this class of publication presents a periodic survey of current accomplishments by the Deep Space Network as well as other developments in Earth-based radio technology.

  15. Publications of the Jet Propulsion Laboratory, 1978

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This bibliography cites 958 externally distributed technical papers released during calendar year 1978, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. The publications are indexed by author, subject, publication type and number. A descriptive entry appears under the name of each author of each publication; an abstract is included with the entry for the primary (first-listed) author.

  16. Publications of the Jet Propulsion Laboratory, 1988

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography describes and indexes by primary author the externally distributed technical reporting, released during calendar year 1988, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: JPL publications in which the information is complete for a specific accomplishment; articles from the quarterly Telecommunications and Data Acquisition (TDA) Progress Report; and articles published in the open literature.

  17. Publications of the Jet Propulsion Laboratory, 1986

    NASA Technical Reports Server (NTRS)

    1987-01-01

    JPL Bibliography 39-28 describes and indexes by primary author the externally distributed technical reporting, released during calender year 1986, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: (1) JPL Publications in which the information is complete for a specific accomplishment, (2) Articles from the quarterly Telecommunications and Data Acquisition (TDA) Progress Report, and (3) Articles published in the open literature.

  18. Publications of the Jet Propulsion Laboratory, 1985

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This bibliography describes and indexes by primary author the externally distributed technical reporting, released during calender year 1985, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: JPL publications in which the information is complete for a specific accomplisment; Articles from the quarterly Telecommunications and Data Acquisition (TDA) Progress Report; and article published in the open literature.

  19. Eagleworks Laboratories: Advanced Propulsion Physics Research

    NASA Technical Reports Server (NTRS)

    White, Harold; March, Paul; Williams, Nehemiah; ONeill, William

    2011-01-01

    NASA/JSC is implementing an advanced propulsion physics laboratory, informally known as "Eagleworks", to pursue propulsion technologies necessary to enable human exploration of the solar system over the next 50 years, and enabling interstellar spaceflight by the end of the century. This work directly supports the "Breakthrough Propulsion" objectives detailed in the NASA OCT TA02 In-space Propulsion Roadmap, and aligns with the #10 Top Technical Challenge identified in the report. Since the work being pursued by this laboratory is applied scientific research in the areas of the quantum vacuum, gravitation, nature of space-time, and other fundamental physical phenomenon, high fidelity testing facilities are needed. The lab will first implement a low-thrust torsion pendulum (<1 uN), and commission the facility with an existing Quantum Vacuum Plasma Thruster. To date, the QVPT line of research has produced data suggesting very high specific impulse coupled with high specific force. If the physics and engineering models can be explored and understood in the lab to allow scaling to power levels pertinent for human spaceflight, 400kW SEP human missions to Mars may become a possibility, and at power levels of 2MW, 1-year transit to Neptune may also be possible. Additionally, the lab is implementing a warp field interferometer that will be able to measure spacetime disturbances down to 150nm. Recent work published by White [1] [2] [3] suggests that it may be possible to engineer spacetime creating conditions similar to what drives the expansion of the cosmos. Although the expected magnitude of the effect would be tiny, it may be a "Chicago pile" moment for this area of physics.

  20. Publications of the Jet Propulsion Laboratory, 1979

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This bibliography includes 1004 technical reports, released during calendar year 1979, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: (1) JPL Publications; (2) articles published in the open literature; and (3) articles from the bimonthly Deep Space Network Progress Report. The publications are indexed by: (1) author, (2) subject, and (3) publication type and number. A descriptive entry appears under the name of each author of each publication; an abstract is included with the entry for the primary (first listed) author. Unless designated otherwise, all publications listed are unclassified.

  1. Publications of the Jet Propulsion Laboratory, 1992

    NASA Technical Reports Server (NTRS)

    1994-01-01

    JPL Bibliography 39-33 describes and indexes by primary author the externally distributed technical reporting, released during calendar year 1992, that resulted from scientific and engineering work performed or managed by the Jet Propulsion Laboratory. Three classes of publications are included: (1) JPL Publication (92-series) in which the information is complete for a specific accomplishment; (2) articles from the quarterly Telecommunications and Data Acquisition (TDA) Progress Report (42-series) (each collection of articles in this class of publication presents a periodic survey of current accomplishments by the Deep Space Network as well as other developments in Earth-based radio technology); and (3) articles published in the open literature.

  2. Publications of the Jet Propulsion Laboratory 1976

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The formalized technical reporting, released January through December 1975, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory is described and indexed. The following classes of publications are included: (1) technical reports; (2) technical memorandums; (3) articles from bi-monthly Deep Space Network (DSN) progress report; (4) special publications; and (5) articles published in the open literature. The publications are indexed by: (1) author, (2) subject, and (3) publication type and number. A descriptive entry appears under the name of each author of each publication; an abstract is included with the entry for the primary (first-listed) author. Unless designated otherwise, all publications listed are unclassified.

  3. Publications of the Jet Propulsion Laboratory, 1980

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This bibliography cites by primary author the externally distributed technical reporting, released during calendar year 1980, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: (1) JPL Publications (77-, 78-, 79-series, etc.), in which the information is complete for a specific accomplishment and can e tailored to wide or limited audiences and be presented in an established standard format or special format to meet unique requirements; (2) articles published in the open literature; and (3) articles from the bimonthly Deep Space Network (DSN) Progress Repot (42-series) and its successor, the Telecommunications and Data Acquisition (TDA) Progress Report (also 42-series).

  4. Publications of the Jet Propulsion Laboratory, 1980

    NASA Astrophysics Data System (ADS)

    1981-07-01

    This bibliography cites by primary author the externally distributed technical reporting, released during calendar year 1980, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: (1) JPL Publications (77-, 78-, 79-series, etc.), in which the information is complete for a specific accomplishment and can e tailored to wide or limited audiences and be presented in an established standard format or special format to meet unique requirements; (2) articles published in the open literature; and (3) articles from the bimonthly Deep Space Network (DSN) Progress Report (42-series) and its successor, the Telecommunications and Data Acquisition (TDA) Progress Report (also 42-series).

  5. Rotational spectroscopy at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Drouin, Brian J.

    2005-01-01

    Environmental monitoring, atmospheric remote sensing and astrophysical studies promoted by NASA require a strong basis of spectroscopic information. The rotational spectroscopy capabilities at NASAs Jet Propulsion Laboratory (JPL) are currently maintained for the measurement of key mission priorities that enable modeling and retrieval of geophysical data from the atmosphere as well as validation of the space-borne instruments in the Earth Observing System, particularly the Microwave Limb Sounder. Rotational spectra are measured using a variety of spectroscopic techniques including pulsed-beam Fourier transform microwave spectroscopy (at CalTech); millimeter wavelength Stark spectroscopy; millimeter, submillimeter and THz FM spectroscopy; laser sideband spectroscopy and Fourier Transform far-infrared spectroscopy. Remote measurements of atmospheric rotational spectra are made using two limb-sounder instruments in the submillimeter and THz. Recent advances in the direct synthesis of THz radiation that enable more efficient laboratory science will be presented. Software for comprehensive and systematic study of different molecular systems is maintained at JPL, the software is freely available via http://spec.jpl.nasa.gov and is used by our group to create and sustain the JPL spectral line catalog also available online.

  6. Jet Propulsion Laboratory: Annual Report 2000

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Year 2000 began with an intense period of self-examination for the Jet Propulsion Laboratory. Late in the previous year, two Mars-bound missions failed as they were arriving at the red planet, disappointing engineers, scientists and the public at large. After a probing series of internal and external reviews, a redesigned Mars program emerged that is intended to be more robust and more tightly coupled to the questions that scientists are attempting to answer. NASA expressed a significant vote of confidence in JPL by assigning an ambitious project to the Laboratory - to design, build and fly twin rovers to Mars in 2003. Among other missions and research programs, the news was more gratifying. Another Mars orbiter completed its first year of mapping operations, gathering more pictures than those collected over the entire missions of the two Viking orbiters. Stalwart spacecraft such as Galileo continued to deliver scientific discoveries, while a new generation of smaller solar system exploration missions got under way. In Earth sciences, a growing array of spaceborne instruments and satellites gave us new perspectives on the home planet, including an imaging radar mission on the Space Shuttle and two JPL instruments that began science operations after their launch on NASA's Terra orbiter in late 1999. In astronomy and physics, a JPL-built camera continued to perform flawlessly on NASA's Hubble Space Telescope, offering previously unglimpsed views of the deep universe.

  7. Supreme Court Hears Privacy Case Between NASA and Jet Propulsion Laboratory Scientists

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-10-01

    After NASA put into practice the 2004 Homeland Security Presidential Directive-12, known as HSPD-12, Dennis Byrnes talked to then-NASA administrator Michael Griffin. Byrnes recalls that Griffin told him in 2007 that if he didn’t like the agency's implementation of HSPD-12, he should go to court. That's exactly what Byrnes, an employee of the California Institute of Technology (Caltech) working as a senior engineer at NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., did. Concerned about prying and open-ended background investigations of federal contractors through NASA's implementation of HSPD-12, he, along with lead plaintiff Robert Nelson and 26 other Caltech employees working at JPL, sued NASA. Following several lower court decisions, including an injunction issued by a U.S. federal appeals court in response to a plaintiff motion, the case made it all the way to the U.S. Supreme Court, which heard oral arguments on 5 October.

  8. Monitoring space shuttle air quality using the Jet Propulsion Laboratory electronic nose

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret Amy; Zhou, Hanying; Buehler, Martin G.; Manatt, Kenneth S.; Mowrey, Victoria S.; Jackson, Shannon P.; Kisor, Adam K.; Shevade, Abhijit V.; Homer, Margie L.

    2004-01-01

    A miniature electronic nose (ENose) has been designed and built at the Jet Propulsion Laboratory (JPL), Pasadena, CA, and was designed to detect, identify, and quantify ten common contaminants and relative humidity changes. The sensing array includes 32 sensing films made from polymer carbon-black composites. Event identification and quantification were done using the Levenberg-Marquart nonlinear least squares method. After successful ground training, this ENose was used in a demonstration experiment aboard STS-95 (October-November, 1998), in which the ENose was operated continuously for six days and recorded the sensors' response to the air in the mid-deck. Air samples were collected daily and analyzed independently after the flight. Changes in shuttle-cabin humidity were detected and quantified by the JPL ENose; neither the ENose nor the air samples detected any of the contaminants on the target list. The device is microgravity insensitive.

  9. Pasadena, California Anaglyph with Aerial Photo Overlay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This anaglyph shows NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California. Red-blue glasses are required to see the 3-D effect. The surrounding residential areas of La Canada-Flintridge (to the left) and Altadena/Pasadena (to the right) are also shown. JPL is located at the base of the San Gabriel Mountains, an actively growing mountain range, seen towards the top of the image. The large canyon coming out of the mountains (top to bottom of image) is the Arroyo Seco, which is a major drainage channel for the mountains. Sand and gravel removal operations in the lower part of the arroyo (bottom of image) are removing debris brought down by flood and mudflow events. Old landslide scars (lobe-shaped features) are seen in the arroyo, evidence that living near steep canyon slopes in tectonically active areas can be hazardous. The data can also be utilized by recreational users such as hikers enjoying the natural beauty of these rugged mountains.

    This anaglyph was generated using topographic data from the Shuttle Radar Topography Mission to create two differing perspectives of a single image, one perspective for each eye. The detailed aerial image was provided by U. S. Geological Survey digital orthophotography. Each point in the image is shifted slightly, depending on its elevation. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna

  10. Perspective view, Landsat overlay Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image shows a perspective view of the area around Pasadena, California, just north of Los Angeles. The cluster of hills surrounded by freeways on the left is the Verdugo Hills, which lie between the San Gabriel Valley in the foreground and the San Fernando Valley in the upper left. The San Gabriel Mountains are seen across the top of the image, and parts of the high desert near the city of Palmdale are visible along the horizon on the right. Several urban features can be seen in the image. NASA's Jet Propulsion Laboratory (JPL) is the bright cluster of buildings just right of center; the flat tan area to the right of JPL at the foot of the mountains is a new housing development devoid of vegetation. Two freeways (the 210 and the 134) cross near the southeastern end of the Verdugo Hills near a white circular feature, the Rose Bowl. The commercial and residential areas of the city of Pasadena are the bright areas clustered around the freeway. These data will be used for a variety of applications including urban planning and natural hazard risk analysis.

    This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers

  11. Current progress on TPFI nulling architectures at Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Gappinger, Robert O.; Wallace, J. Kent; Bartos, Randall D.; Macdonald, Daniel R.; Brown, Kenneth A.

    2005-01-01

    Infrared interferometric nulling is a promising technology for exoplanet detection. Nulling research for the Terrestrial Planet Finder Interferometer has been exploring a variety of interferometer architectures at the Jet Propulsion Laboratory (JPL).

  12. Jet Propulsion Laboratory: Annual Report 2003

    NASA Technical Reports Server (NTRS)

    2004-01-01

    If you stepped outdoors on the final evening of 2003 and looked up into the night sky, many celestial events were taking place. A hundred million miles away from Earth, a dust storm swirled across the terracotta peaks and gullies of Mars, as two six-wheeled robots bore down on the planet. They were soon to join two orbital sentries already stationed there. A few hops across the inner solar system, another spacecraft was closing in on a ball of ice and rock spewing forth a hailstorm of dust grains, heated as it swung in toward the Sun. Closer in, two newly lofted space telescopes scanned the skies, their mirrors gathering photons that had crossed the empty vastness of space for billions of years, recording ancient events in unimaginably distant galaxies. And streaking overhead every few minutes directly above our home planet, a handful of satellites was recording the unfolding events of a tropical cyclone off the east coast of Africa and a blizzard that carpeted the northwestern United States. As 2003 drew to a close, the Jet Propulsion Laboratory was on the cusp of an extraordinarily busy period, a time when JPL will execute more fly-bys, landings, sample returns and other milestones than at any other time in its history. The exploration we undertake is important for its own sake. And it serves other purposes, none more important than inspiring the next generation of explorers. If the United States wishes to retain its status as a world leader, it must maintain the technological edge of its workforce. What we do here is the stuff of dreams that will inspire a new generation to continue the American legacy of exploration.

  13. Jet Propulsion Laboratory: Annual Report 2009

    NASA Technical Reports Server (NTRS)

    2010-01-01

    2009 was truly the year of astronomy at the Jet Propulsion Laboratory. While the world at large was celebrating the International Year of Astronomy, we were sending more telescopes into space than in any other year, ever. As these missions unfold, the astronomers are sure to change the way we see the universe. One of the newly lofted observatories is on a quest to find planets like our own Earth orbiting other stars. Another is a telescope that gathers infrared light to help discover objects ranging from near-Earth asteroids to galaxies in the deepest universe. We also contributed critical enabling technologies to yet two other telescopes sent into space by our partners in Europe. And astronauts returned to Earth with a JPL-built camera that had captured the Hubble Space Telescope's most memorable pictures over many years. And while it was an epic time for these missions, we were no less busy in our other research specialties. Earth's moon drew much attention from our scientists and engineers, with two JPL instruments riding on lunar orbiters; previously unseen views of shadowed craters were provided by radar imaging conducted with the giant dish antennas of the Deep Space Network, our worldwide communication portal to spacecraft around the solar system. At Mars, our rovers and orbiters were highly productive, as were missions targeting Saturn, comets and the asteroid belt. Here at our home planet, satellites and instruments continued to serve up important information on global climate change. But our main business is, of course, exploring. Many initiatives will keep us busy for years. In 2009, NASA gave approval to start planning a major flagship mission to Jupiter's moon Europa in search of conditions that could host life, working with our partners in Europe. In addition to our prospective Earth science projects, we have full slates of missions in Mars exploration, planetary exploration and space-based astronomy. This year's annual report continues our recent

  14. Jet Propulsion Laboratory: Annual Report 2007

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Many milestones are celebrated in the business of space exploration, but one of them that arrived this year has particular meaning for us. Half a century ago, on January 31, 1958, the Jet Propulsion Laboratory was responsible for creating America's first satellite, Explorer 1, and joined with the Army to launch it into orbit. That makes 2007 the 50th year we have been sending robotic craft from Earth to explore space. No other event before or since has had such a profound effect on JPL's basic identity, setting it on the path to become the world's leader in robotic solar system exploration. It is not lost on historians that Explorer 1, besides being America's first satellite, was also the first spacecraft from any country to deliver scientific results in its case, the discovery of the Van Allen Radiation Belts that surround Earth. Science, of course, has been the prime motivator for all the dozens of missions that we have lofted into space in the half-century since then. JPL has sent spacecraft to every planet in the solar system from Mercury to Neptune, some of them very sophisticated machines. But in one way or another, they all owe their heritage to the 31-pound bullet-shaped probe JPL shot into space in 1958. Although we have ranged far and wide across the solar system, we have a very strong contingent of satellites and instruments dedicated, like Explorer, to the environment of our home planet. JPL missions have been providing much of the data to establish the facts of global warming - most especially, the melting of ice sheets in Greenland and Antarctica. During the past year, JPL and our parent organization, the California Institute of Technology, have created a task force to focus the special capabilities of the Laboratory and campus on ways to better understand the physics of global change. While Earth is a chaotic and dynamic system capable of large natural variations, evidence is mounting that human activities are playing an increasingly important role

  15. Tree Topping Ceremony at NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications. This photo depicts construction workers taking part in a tree topping ceremony as the the final height of the laboratory is framed. The ceremony is an old German custom of paying homage to the trees that gave their lives in preparation of the building site.

  16. Jet Propulsion Laboratory: Annual Report 2002

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The year 2002 brought advances on many fronts in our space exploration ventures. A new orbiter settled in at Mars and delivered tantalizing science results suggesting a vast store of water ice under the planet's surface, a discovery that may have profound consequences for exploring Mars. A long-lived spacecraft made its final fly-bys of Jupiter's moons, while another started its final approach toward Saturn and yet another flew by an asteroid on its way to a comet. A new ocean satellite began science observations, joined in Earth orbit by a pair of spacecraft measuring our home planets gravity field, as well as JPL instruments on NASA and Japanese satellites. A major new infrared observatory and a pair of Mars rovers were readied for launch. All told, JPL is now communicating with 14 spacecraft cast like gems across the velvet expanses of the solar system. It is a far cry from the early 1960's, when JPL engineers made prodigious efforts to get the first planetary explorers off the ground and into space - an achievement of which we were especially mindful this year, as 2002 marked the 40th anniversary of the first successful planetary mission, Mariner 2, which barely reached our closest planetary neighbor, Venus. Added to this anniversary were celebrations surrounding the 25th anniversaries of the launches of Voyagers 1 and 2, two remarkable spacecraft that are still flying and are actively probing the outer realms of the solar system. These events of the past and present provide an occasion for reflection on the remarkable era of exploration that we at the Jet Propulsion Laboratory are privileged to be a part of. As 2002 neared its end, the Laboratory had yet another reason for celebration, as a new five-year management contract between NASA and the California Institute of Technology was signed that calls for a closer working relationship with NASA and other NASA centers as a member of the 'One NASA' team. There is a strong emphasis on cost control and management

  17. Jet Propulsion Laboratory: Annual Report 2004

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Once or twice in an age, a year comes along that the historians proclaim as an Annus Mirabilis - a year of wonders. For the Jet Propulsion Laboratory, 2004 was just that sort of time. From beginning to end, it was a nonstop experience of wondrous events in space. Imagine that two robot rovers embark on cross-country rambles across Mars, scrutinizing rocks for signs of past water on the now-arid world. A flagship spacecraft brakes into orbit at Saturn to begin longterm surveillance of the ringed world, preparing to drop a sophisticated probe to the surface of its haze-shrouded largest moon. Another craft makes the closest-ever pass by the nucleus of a comet, collecting sample particles as it goes. Two new space telescopes peer into the depths of the universe far beyond our solar system, viewing stars, nebulas and galaxies in invisible light beyond the spectrum our eyes can see. A pair of instruments is lofted on a NASA Earth-orbiting satellite to monitor air quality and the protective layer of ozone blanketing our home planet. A small probe brings samples of the solar wind to Earth for in-depth study. While JPL was absorbed with all of these ventures on other worlds, NASA and the White House unveiled an ambitious new plan of space exploration. The Vision for Space Exploration announced in January foresees a program of robotic and astronaut missions leading to a human return to the Moon by 2020, and eventual crewed expeditions to Mars. The vision also calls for more robotic missions to the moons of the outer planets; spaceborne observatories that will search for Earth-like planets around other stars and explore the formation and evolution of the universe; and continued study of our home planet. In order to accomplish all of this, NASA must perfect many as-yet-uninvented technologies and space transportation capabilities. JPL has a great deal to bring to this vision. Robotic exploration of Mars will lead the way for missions that will carry women and men to the red

  18. CAP - JET PROPULSION LABORATORY CONTAMINATION ANALYSIS PROGRAM

    NASA Technical Reports Server (NTRS)

    Millard, J. M.

    1994-01-01

    The Jet Propulsion Laboratory Contamination Analysis Program (CAP) is a generalized transient executive analysis computer code which solves realistic mass transport problems in the free molecular flow environment. These transport problems involve mass flux from surface source emission and re-emission, venting, and engine emission. CAP solution capability allows for one-bounce mass reflections if required. CAP was developed to solve thin-film contamination problems in the free molecular flow environment, the intent being to provide a powerful analytic tool for evaluating spacecraft contamination problems. The solution procedure uses an enclosure method based on a lumped-parameter multinodal approach with mass exchange between nodes. Transient solutions are computed by the finite difference Euler method. First-order rate theory is used to represent surface emission and reemission (user care must be taken to insure the problem is appropriate for such behavior), and all surface emission and reflections are assumed diffuse. CAP does not include the effects of post-deposition chemistry or interaction with the ambient atmosphere. CAP reads in a model represented by a multiple-block data stream. CAP allows the user to edit the input data stream and stack sequential editing operations (or cases) in order to make complex changes in behavior (surface temperatures, engine start-up and shut-down, etc.) in a single run if desired. The eight data blocks which make up the input data stream consist of problem control parameters, nodal data (area, temperature, mass, etc.), engine or vent distribution factors (based upon plume definitions), geometric configuration factors (diffuse surface emission), surface capture coefficient tables, source emission rate constant tables, reemission rate constant tables, and partial node to body collapse capability (for deposition rates only). The user must generate this data stream, since neither the problem-specific geometric relationships, the

  19. Publications of the Jet Propulsion Laboratory 1987

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A bibliography is presented which describes and indexes by author the externally distributed technical reporting, released during the calender year 1987, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Lab. Three classes of publications are included: (1) JPL publications in which the information is complete for a specific accomplishment; (2) Articles from the quarterly Telecommunications and Data Acquisition Progress Report; and (3) Articles published in the open literature.

  20. III-V Infrared Research at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Ting, D. Z.; Hill, C. J.; Soibel, A.; Liu, John; Liu, J. K.; Mumolo, J. M.; Keo, S. A.; Nguyen, J.; Bandara, S. V.; Tidrow, M. Z.

    2009-01-01

    Jet Propulsion Laboratory is actively developing the III-V based infrared detector and focal plane arrays (FPAs) for NASA, DoD, and commercial applications. Currently, we are working on multi-band Quantum Well Infrared Photodetectors (QWIPs), Superlattice detectors, and Quantum Dot Infrared Photodetector (QDIPs) technologies suitable for high pixel-pixel uniformity and high pixel operability large area imaging arrays. In this paper we report the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band QWIP focal plane array (FPA). In addition, we will present the latest advances in QDIPs and Superlattice infrared detectors at the Jet Propulsion Laboratory.

  1. Advances in adaptive structures at Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Wada, Ben K.; Garba, John A.

    1993-01-01

    Future proposed NASA missions with the need for large deployable or erectable precision structures will require solutions to many technical problems. The Jet Propulsion Laboratory (JPL) is developing new technologies in Adaptive Structures to meet these challenges. The technology requirements, approaches to meet the requirements using Adaptive Structures, and the recent JPL research results in Adaptive Structures are described.

  2. Jet Propulsion Laboratory's Space Explorations. Part 1; History of JPL

    NASA Technical Reports Server (NTRS)

    Chau, Savio

    2005-01-01

    This slide presentation briefly reviews the history of the Jet Propulsion Laboratory from its founding by Dr von Karman in 1936 for research in rocketry through the post-Sputnik shift to unmanned space exploration in 1957. The presentation also reviews the major JPL missions with views of the spacecraft.

  3. Laboratory and field studies in rotational spectroscopy at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Drouin, Brian J.

    2004-01-01

    Rotational spectroscopy of atmospheric molecules has long been a hallmark of laboratory and field studies at the Jet Propulsion Laboratory. in addition to maintenance of the millimeter and submillimeter spectral line catalog, the laboratory has actively purued the challenging laboratory tasks of quantitative linewidth measurements and transient species identification.

  4. Engines and innovation: Lewis Laboratory and American propulsion technology

    NASA Technical Reports Server (NTRS)

    Dawson, Virginia Parker

    1991-01-01

    This book is an institutional history of the NASA Lewis Research Center, located in Cleveland, Ohio, from 1940, when Congress authorized funding for a third laboratory for the National Advisory Committee for Aeronautics, through the 1980s. The history of the laboratory is discussed in relation to the development of American propulsion technology, with particular focus on the transition in the 1940s from the use of piston engines in airplanes to jet propulsion and that from air-breathing engines to rocket technology when the National Aeronautics and Space Administration was established in 1958. The personalities and research philosophies of the people who shaped the history of the laboratory are discussed, as is the relationship of Lewis Research Center to the Case Institute of Technology.

  5. Silicon-germanium technology program of the Jet Propulsion Laboratory.

    NASA Technical Reports Server (NTRS)

    De Winter, F.; Stapfer, G.

    1972-01-01

    The outer planetary exploration missions studied by the Jet Propulsion Laboratory require silicon-germanium radioisotope thermoelectric generators (RTGs) in which the factors of safety are as low as is compatible with the reliable satisfaction of the power needs. Work on silicon germanium sublimation performed at the Jet Propulsion Laboratory is presented. Analytical modeling work on the solid-diffusion process involved in the steady-state (free) sublimation of silicon germanium is described. Analytical predictions are made of the sublimation suppression which can be achieved by using a cover gas. A series of accelerated (high-temperature) tests which were performed on simulated hardware (using four SiGe couples) to study long-term sublimation and reaction mechanisms are also discussed.

  6. Starlight Nulling Technology at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Martin, Stefan

    2007-01-01

    The current interests in extra-solar planet detection and space-based and ground-based interferometry for astronomical observations has led to the development of a number of nulling instrument designs at the Jet Propulsion Laboratory (JPL) and elsewhere. This paper summarizes briefly JPL's efforts in nulling interferometry to date and consists of illustrations of some key nulling activities. Basic layouts of nulling testbeds are described and key applications discussed.

  7. Jet Propulsion Laboratory: Annual Report 2006

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Nothing is as gratifying in space exploration as when we are surprised by the unexpected. Much of our work progresses in an orderly way, from concept to plan to creation to finding. But now and then we are caught off-guard by something startlingly new, and it is these moments that make our hearts race and leave us with many of our most compelling memories. And 2006 was an exceptional year for the unforeseen. One of our orbiters shocked many with stark proof that liquid water, the seemingly long-gone force that reshaped so much of the scenery of Mars, still flows there today,at least in occasional bursts. Another spacecraft caught us by surprise with photos of Yellowstone-like geysers on one of Saturn's seemingly nondescript moons, Enceladus. A spaceborne observatory created to plumb the life histories of stars and galaxies showed off a completely unexpected talent when it revealed the day and night faces of a fire and ice planet far beyond our solar system 40 light-years away. A newly launched Earth observer revealed that the clouds that decorate our own planet are not what we thought them to be in many ways. Of course, not all of the high points of the year arrived on our doorstep in such unexpected ways. There was also great drama when missions came off exactly as planned, such as when Stardust's sample return capsule made a flawless landing in the Utah desert, bringing home samples of cometary and interstellar dust. Mars Reconnaissance Orbiter slipped into orbit around the red planet exactly as planned. Numerous other missions and technology programs likewise made great achievements during the year. In all, 17 spacecraft and six instruments were stationed across the solar system, studying our own world, other planets, comets and the deeper universe. All of these achievements were enabled by many teams and systems at the Laboratory. The Deep Space Network of communications complexes across three continents supported all of NASA's solar system missions, and

  8. Jet Propulsion Laboratory: Annual Report 2008

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Nothing is more exciting than when science mines the far end of our knowledge for the new and the unexpected. In 2008, the world was taken by surprise when JPL astronomers announced the discovery of organic compounds on a planet orbiting another star. We were equally excited to learn from the Spitzer Space Telescope that many, if not most, sun-like stars have rocky planets roughly similar to Earth. Together these are very intriguing clues in our quest to learn if there is life elsewhere in the universe, which certainly has to be one of the most profound mysteries of our age.There are times when, dealing with unknowns, we are reminded to be humble. Very impressive progress is being made by the team developing our next flagship mission, Mars Science Laboratory. Ther conclusion, however, is that it would not be safe to try to fly during the Mars launch window in 2009, and reset for the next opportunity in 2011. We are lucky to have valuable assets that support us as we venture into the unknown. One is the global Deep Space Network, which functions both as our communication gateway to our spacecraft across the solar system as well as a research tool itself in conducting radar astronomy. Our successes depend on our entire team, administrators and business specialists as much as technical people. There are those who help share our missions with the public, finding imaginative venues such as sending out dispatches on the Internet's Twitter.com during the Phoenix mission. We also benefit greatly from the intellectual infusion that comes from our unique identity as a division of the California Institute of Technology and a member of the NASA family.

  9. Anaglyph of Perspective View with Aerial Photo Overlay Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This anaglyph is a perspective view that shows the western part of the city of Pasadena, California, looking north toward the San Gabriel Mountains. Red-blue glasses are required to see the 3-D effect. Portions of the cities of Altadena and La Canada-Flintridge are also shown. The image was created from two datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data and U. S. Geological Survey digital aerial photography provided the image detail. The Jet Propulsion Laboratory is the cluster of large buildings left of center, at the base of the mountains. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires can strip the mountains of vegetation, increasing the hazards from flooding and mudflows. Data shown in this image can be used to predict both how wildfires spread over the terrain and how mudflows are channeled down the canyons.

    This anaglyph was generated using topographic data from the Shuttle Radar Topography Mission to create two differing perspectives of a single image, one perspective for each eye. Each point in the image is shifted slightly, depending on its elevation. When viewed through special glasses, the result is a view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C

  10. Pasadena, California Perspective View with Aerial Photo and Landsat Overlay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This perspective view shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains. Portions of the cities of Altadena and La Canada-Flintridge are also shown. The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data; Landsat data from November 11, 1986 provided the land surface color (not the sky) and U. S. Geological Survey digital aerial photography provides the image detail. The Rose Bowl, surrounded by a golf course, is the circular feature at the bottom center of the image. The Jet Propulsion Laboratory, is the cluster of large buildings north of the Rose Bowl at the base of the mountains. A large landfill, Scholl Canyon, is the smooth area in the lower left corner of the scene.

    This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires strip the mountains of vegetation, increasing the hazards from flooding and mudflows for several years afterwards. Data such as shown on this image can be used to predict both how wildfires will spread over the terrain and also how mudflows will be channeled down the canyons.

    For a full-resolution, annotated version of this image, please select Figure 1, below: [figure removed for brevity, see original site]

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation

  11. Publications of the Jet Propulsion Laboratory: 1990 and 1991

    NASA Technical Reports Server (NTRS)

    1993-01-01

    JPL Bibliography 39-32 describes and indexes by primary author the externally distributed technical reporting, released during calendar years 1990 and 1991, that resulted from scientific and engineering work performed or managed by the Jet Propulsion Laboratory (JPL). Three classes of publications are included: (1) JPL publications (90- and 91-series) in which the information is complete for a specific accomplishment; (2) articles from the quarterly Telecommunications and Data Acquisition (TDA) Progress Report (42-series); and (3) articles published in the open literature.

  12. Case Study: Formal Inspections at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Kelly, J. C.; Welz, L. W.

    1993-01-01

    The Jet Propulsion Laboratory (JPL) of the California Institute of Technology is a federally funded research and development center operating under contract to the National Aeronautics and Space Administration (NASA). JPL's charter emphasizes the exploration of the solar system including observations of Earth as well as other stellar systems and extra-solar-system bodies. Within JPL, the Software Product Assurance (SPA) Section helps to ensure the operational integrity of the software within the system. SPA evaluates the operational requirements, the acceptability and readiness of all software, hardware/software interfaces, and the integrity of the completed software before its final release into the operational environment.

  13. Laboratory Demonstrations for PDE and Metals Combustion at NASA MSFC's Advanced Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Report provides status reporting on activities under order no. H-30549 for the period December 1 through December 31, 1999. Details the activities of the contract in the coordination of planned conduct of experiments at the MSFC Advanced Propulsion Laboratory in pulse detonation MHD power production and metals combustion.

  14. Propulsion

    ERIC Educational Resources Information Center

    Air and Space, 1978

    1978-01-01

    An introductory discussion of aircraft propulsion is included along with diagrams and pictures of piston, turbojet, turboprop, turbofan, and jet engines. Also, a table on chemical propulsion is included. (MDR)

  15. NASA Lewis Propulsion Systems Laboratory Customer Guide Manual

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.

    1994-01-01

    This manual describes the Propulsion Systems Laboratory (PSL) at NASA Lewis Research Center. The PSL complex supports two large engine test cells (PSL-3 and PSL-4) that are capable of providing flight simulation to altitudes of 70,000 ft. Facility variables at the engine or test-article inlet, such as pressure, temperature, and Mach number (up to 3.0 for PSL-3 and up to 6.0 planned for PSL-4), are discussed. Support systems such as the heated and cooled combustion air systems; the altitude exhaust system; the hydraulic system; the nitrogen, oxygen, and hydrogen systems; hydrogen burners; rotating screen assemblies; the engine exhaust gas-sampling system; the infrared imaging system; and single- and multiple-axis thrust stands are addressed. Facility safety procedures are also stated.

  16. The Jet Propulsion Laboratory space exploration: Past, present and future

    NASA Technical Reports Server (NTRS)

    Bellan, Josette

    1993-01-01

    The most recent scientific results from space exploration carried out by the Jet Propulsion Laboratory (JPL) are discussed. To aid understanding of these results, a brief background of JPL's history is presented, followed by a description of the Deep Space Network, JPL's system of antennas which communicates with spacecraft. The results from the missions of Voyager 1 and Voyager 2 are described. The atmosphere, rings, satellites and magnetospheres of Jupiter, Saturn, Uranus and Neptune are discussed with particular emphasis on novelty of the discoveries and the challenges encountered in explaining them. A brief discussion of the impact of spray research upon space exploration follows. This is because most recently launched missions used liquid fueled rockets to escape Earth's gravity. A summary of future missions and the National Aeronautics and Space Administration's new policies is presented in the conclusion.

  17. The Jet Propulsion Laboratory Space Exploration: Past, Present and Future

    NASA Technical Reports Server (NTRS)

    Bellan, Josette

    1993-01-01

    The most recent scientific results from space exploration carried out by the Jet Propulsion Laboratory (JPL) are discussed. To aid understanding of these results, a brief background of JPL's history is presented, followed by a description of the Deep Space Network, JPL's system of antennas which communicates with spacecraft. The results from the missions of Voyager 1 and Voyager 2 are described. The atmosphere, rings, satellites and magnetospheres of Jupiter, Saturn, Uranus and Neptune are discussed with particular emphasis on novelty of the discoveries and the challenges encountered in explaining them. A brief discussion of the impact of spray research upon space exploration follows. This is because most recently launched missions used liquid fueled rockets to escape Earth's gravity. A summary of future missions and the National Aeronautics and Space Administration's new policies is presented in the conclusion.

  18. Mass spectrometry technology at the Jet Propulsion Laboratory (JPL)

    NASA Technical Reports Server (NTRS)

    Giffin, C. E.

    1985-01-01

    Recent developments in the field of mass spectrometry taking place at the Caltech Jet Propulsion Laboratory are highlighted. The pertinent research and development is aimed at producing an ultrahigh sensitivity mass spectrograph for both spaceflight and terrestrial applications. The unique aspect of the JPL developed technology is an integrating focal plane ion detector that obviates the need for spectral scanning since all ions over a wide mass range are monitored simultaneously. The ion detector utilizes electro-optical technology and is therefore referred to as an Electro-Optical Ion Detector (EOID). A technical description of the JPL MS/EOID, some of the current applications, and its potential benefits for internal contamination analysis are discussed.

  19. Fiber optic gyro development at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Goss, Willis C.

    1987-01-01

    A low-level, but continuing, fiber-gyro development activity has been carried on at the Jet Propulsion Laboratory since 1977. The activity was originated because of a recognition of the potential for low-cost high-performance gyros suitable for interplanetary spacecraft. An early decision was made to concentrate available resources on supporting the development of electrooptically active channel waveguide components which could be fabricated by mask diffusion processes. Titanium-indiffused lithium niobate waveguide components used at 0.83 micron wavelength were first tested and then abandoned because of instabilities caused by so-called optical damage. Components fabricated for use at 1.3-micron wavelength have proven to be stable. A gyro configuration concept based upon 1.3 micron channel waveguide components has evolved, and a baseline 1.3-micron all-fiber gyro has been assembled and tested.

  20. The Regional Geology of Conamara Chaos: Stratigraphic Relations and Implications for Future Exploration. D. A. Senske, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109.

    NASA Astrophysics Data System (ADS)

    Senske, D.

    2015-12-01

    Much of the previous geologic analysis of the Conamara Chaos region has focused on the history and reconstruction of the crustal blocks within the chaos itself. To better understand the geologic context of this relatively young outcrop of disrupted crust, its relation to regional geologic events, and the evolution of the entire area over time, we have performed comprehensive geologic mapping. Using image data centered at 10°N, 271°W with a resolution of 180 m/pixel and covering an area of approximately 90,000 km2, the interrelation between tectonic structures (arrays of bands, ridges, and fractures) and cryovolcanic units is established. Our analysis shows that in addition to the major outcrop of chaos (~75x100 km), there are approximately 80 additional smaller (10's of km across) areas of chaos or lenticulae. By identifying key cross cutting and superposition relations, it is possible to identify a set of distinct trends in the formation of tectonic features. The tectonic stratigraphy shows an alternating and cyclical pattern with one set of ~N20°W tectonic features subsequently superposed by ~N30°E bands and ridges. This sequence appears to repeat three times over the history of the region. The identification of a fracture that cross cuts older regional units but is preserved in some of the larger crustal blocks within Conamara indicates that the chaos postdates both the adjacent Astenus and Agave Lineae. The mapping shows little or no emplacement of cryovolcanic deposits in the earliest history of this region. Instead, volcanic processes appear to be a part of later geologic activity. Regional geologic mapping reveals tectonic patterns that are consistent with those mapped over a more limited area [Spaun et al., 2003]. The restriction of cryovolcanism to the latter part of the history, suggests a change in geologic setting and possibly crustal structure with time. Data to be collected by the Europa mission now in formulation will allow: (1) the mapped contact relations to be examined in greater detail, providing higher clarity of geologic relations; (2) the extension of regional-scale mapping to adjacent unimaged parts of Europa, through a global map at regional scale and; (3) insight into the structure of the crust (through radar sounding) to aid in better understanding cryovolcanic processes.

  1. Joint Langley Research Center/Jet Propulsion Laboratory CSI experiment

    NASA Technical Reports Server (NTRS)

    Neat, Gregory W.; O'Brien, John F.; Lurie, Boris J.; Garnica, Angel; Belvin, W. K.; Sulla, Jeff; Won, John

    1992-01-01

    This paper describes a joint Control Structure Interaction (CSI) experiment in which Jet Propulsion Laboratory (JPL) damping devices were incorporated into the Langley Research Center (LaRC) Phase 0 Testbed. The goals of the effort were twofold: (1) test the effectiveness of the JPL structural damping methods in a new structure and (2) assess the feasibility of combining JPL local control methods with the LaRC multiple input multiple output global control methods. Six dampers (2 piezoelectric active members, 4 viscous dampers), placed in three different regions of the structure, produced up to 26 dB attenuation in target modes. The combined control strategy in which the JPL damping methods contributed local control action and the LaRC control scheme provided global control action, produced and overall control scheme with increased stability margins and improved performance. This paper presents an overview of the technologies contributed from the two centers, the strategies used to combine them, and results demonstrating the success of the damping and cooperative control efforts.

  2. Compendium of Test Results of Recent Single Event Effect Tests Conducted by the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    McClure, Steven S.; Allen, Gregory R.; Irom, Farokh; Scheick, Leif Z.; Adell, Philippe C.; Miyahira, Tetsuo F.

    2010-01-01

    This paper reports heavy ion and proton-induced single event effect (SEE) results from recent tests for a variety of microelectronic devices. The compendium covers devices tested over the last two years by the Jet Propulsion Laboratory.

  3. Frame synchronization in Jet Propulsion Laboratory's Advanced Multi-Mission Operations System (AMMOS)

    NASA Technical Reports Server (NTRS)

    Wilson, E.

    2002-01-01

    The Jet Propulsion Laboratory's Advanced Multi-Mission Operations System system processes data received from deep-space spacecraft, where error rates can be high, bit rates are low, and data is unique precious.

  4. Progress in the Development of Segmented Thermoelectric Unicouples at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Caillat, T.; Fleurial, J-P.; Snyder, G.; Borshchevsky, A.

    2000-01-01

    A new verison of a segmented thermoelectric unicouple incorporating advanced thermoelectric materials with superior thermoelectric figures of merit has been recetly proposed and is currently under development at the Jet Propulsion Laboratory (JPL).

  5. A Strategy for an Enterprise-Wide Data Management Capability at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Fuhrman, D.

    2000-01-01

    The Jet Propulsion Laboratory (JPL) is a Federally Research and Development Center (FFRDC) operated by the California Institute of Technology that is engaged in the quest for knowledge about the solar system, the universe, and the Earth.

  6. GPS Data Analysis for Earth Orientation at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Zumberge, J.; Webb, F.; Lindqwister, U.; Lichten, S.; Jefferson, D.; Ibanez-Meier, R.; Heflin, M.; Freedman, A.; Blewitt, G.

    1994-01-01

    Beginning June 1992 and continuing indefinitely as part of our contribution to FLINN (Fiducial Laboratories for an International Natural Science Network), DOSE (NASA's Dynamics of the Solid Earth Program), and the IGS (International GPS Geodynamics Service), analysts at the Jet Propulsion Laboratory (JPL) have routinely been reducing data from a globally-distributed network of Rogue Global Positioning System (GPS) receivers.

  7. A laboratory facility for electric vehicle propulsion system testing

    NASA Technical Reports Server (NTRS)

    Sargent, N. B.

    1980-01-01

    The road load simulator facility located at the NASA Lewis Research Center enables a propulsion system or any of its components to be evaluated under a realistic vehicle inertia and road loads. The load is applied to the system under test according to the road load equation: F(net)=K1F1+K2F2V+K3 sq V+K4(dv/dt)+K5 sin theta. The coefficient of each term in the equation can be varied over a wide range with vehicle inertial representative of vehicles up to 7500 pounds simulated by means of flywheels. The required torque is applied by the flywheels, a hydroviscous absorber and clutch, and a drive motor integrated by a closed loop control system to produce a smooth, continuous load up to 150 horsepower.

  8. Precious bits: frame synchronization in Jet Propulsion Laboratory's Advanced Multi-Mission Operations System (AMMOS)

    NASA Technical Reports Server (NTRS)

    Wilson, E.

    2001-01-01

    The Jet Propulsion Laboratory's (JPL) Advanced Multi-Mission Operations System (AMMOS) system processes data received from deep-space spacecraft, where error rates are high, bit rates are low, and every bit is precious. Frame synchronization and data extraction as performed by AMMOS enhanced data acquisition and reliability for maximum data return and validity.

  9. FJ44 Turbofan Engine Test at NASA Glenn Research Center's Aero-Acoustic Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Lauer, Joel T.; McAllister, Joseph; Loew, Raymond A.; Sutliff, Daniel L.; Harley, Thomas C.

    2009-01-01

    A Williams International FJ44-3A 3000-lb thrust class turbofan engine was tested in the NASA Glenn Research Center s Aero-Acoustic Propulsion Laboratory. This report presents the test set-up and documents the test conditions. Farfield directivity, in-duct unsteady pressures, duct mode data, and phased-array data were taken and are reported separately.

  10. Dedicated Laboratory Setup for CO{sub 2} TEA Laser Propulsion Experiments at Rensselaer Polytechnic Institute

    SciTech Connect

    Salvador, Israel I.; Kenoyer, David; Myrabo, Leik N.; Notaro, Samuel

    2010-10-08

    Laser propulsion research progress has traditionally been hindered by the scarcity of photon sources with desirable characteristics, as well as integrated specialized flow facilities in a dedicated laboratory environment. For TEA CO{sub 2} lasers, the minimal requirements are time-average powers of >100 W), and pulse energies of >10 J pulses with short duration (e.g., 0.1 to 1 {mu}s); furthermore, for the advanced pulsejet engines of interest here, the laser system must simulate pulse repetition frequencies of 1-10 kilohertz or more, at least for two (carefully sequenced) pulses. A well-equipped laser propulsion laboratory should have an arsenal of sensor and diagnostics tools (such as load cells, thrust stands, moment balances, pressure and heat transfer gages), Tesla-level electromagnet and permanent magnets, flow simulation facilities, and high-speed visualization systems, in addition to other related equipment, such as optics and gas supply systems. In this paper we introduce a cutting-edge Laser Propulsion Laboratory created at Rensselaer Polytechnic Institute, one of the very few in the world to be uniquely set up for beamed energy propulsion (BEP) experiments. The present BEP research program is described, along with the envisioned research strategy that will exploit current and expanded facilities in the near future.

  11. Dedicated Laboratory Setup for CO2 TEA Laser Propulsion Experiments at Rensselaer Polytechnic Institute

    NASA Astrophysics Data System (ADS)

    Salvador, Israel I.; Kenoyer, David; Myrabo, Leik N.; Notaro, Samuel

    2010-10-01

    Laser propulsion research progress has traditionally been hindered by the scarcity of photon sources with desirable characteristics, as well as integrated specialized flow facilities in a dedicated laboratory environment. For TEA CO2 lasers, the minimal requirements are time-average powers of >100 W), and pulse energies of >10 J pulses with short duration (e.g., 0.1 to 1 μs); furthermore, for the advanced pulsejet engines of interest here, the laser system must simulate pulse repetition frequencies of 1-10 kilohertz or more, at least for two (carefully sequenced) pulses. A well-equipped laser propulsion laboratory should have an arsenal of sensor and diagnostics tools (such as load cells, thrust stands, moment balances, pressure and heat transfer gages), Tesla-level electromagnet and permanent magnets, flow simulation facilities, and high-speed visualization systems, in addition to other related equipment, such as optics and gas supply systems. In this paper we introduce a cutting-edge Laser Propulsion Laboratory created at Rensselaer Polytechnic Institute, one of the very few in the world to be uniquely set up for beamed energy propulsion (BEP) experiments. The present BEP research program is described, along with the envisioned research strategy that will exploit current and expanded facilities in the near future.

  12. Phoenix's Wet Chemistry Laboratory Units

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows four Wet Chemistry Laboratory units, part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument on board NASA's Phoenix Mars Lander. This image was taken before Phoenix's launch on August 4, 2007.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. Getting started on metrics - Jet Propulsion Laboratory productivity and quality

    NASA Technical Reports Server (NTRS)

    Bush, M. W.

    1990-01-01

    A review is presented to describe the effort and difficulties of reconstructing fifteen years of JPL software history. In 1987 the collection and analysis of project data were started with the objective of creating laboratory-wide measures of quality and productivity for software development. As a result of this two-year Software Product Assurance metrics study, a rough measurement foundation for software productivity and software quality, and an order-of-magnitude quantitative baseline for software systems and subsystems are now available.

  14. Architectures for mission control at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Davidson, Reger A.; Murphy, Susan C.

    1992-01-01

    JPL is currently converting to an innovative control center data system which is a distributed, open architecture for telemetry delivery and which is enabling advancement towards improved automation and operability, as well as new technology, in mission operations at JPL. The scope of mission control within mission operations is examined. The concepts of a mission control center and how operability can affect the design of a control center data system are discussed. Examples of JPL's mission control architecture, data system development, and prototype efforts at the JPL Operations Engineering Laboratory are provided. Strategies for the future of mission control architectures are outlined.

  15. Activities of the Jet Propulsion Laboratory, 1 January - 31 December 1983

    NASA Technical Reports Server (NTRS)

    1984-01-01

    There are many facets to the Jet Propulsion Laboratory, for JPL is an organization of multiple responsibilities and broad scope, of diverse talents and great enterprise. The Laboratory's philosophy, mission, and goals have been shaped by its ties to the California Institute of Technology (JPL's parent organization) and the National Aeronautics and Space Administration (JPL's principal sponsor). JPL's activities for NASA in planetary, Earth, and space sciences currently account for almost 75 percent of the Laboratory's overall effort. JPL Research activities in the following areas are discussed: (1) deep space exploration; (2) telecommunications systems; (3) Earth observations; (4) advanced technology; (5) defense programs; and (6) energy and technology applications.

  16. 78 FR 2983 - City of Pasadena, CA; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission City of Pasadena, CA; Notice of Filing Take notice that on December 19, 2012, City of Pasadena, California submitted its tariff filing per 35.28(e): Pasadena 2013 TRBAA Update to...

  17. 76 FR 1150 - City of Pasadena, CA; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission City of Pasadena, CA; Notice of Filing December 30, 2010. Take notice that on December 22, 2010, the City of Pasadena, California (Pasadena) filed its annual revisions to...

  18. Containerless processing technologies at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Trinh, E.; Rhim, W.-K.; Kerrisk, D.; Barmatz, M.; Elleman, D. D.

    1982-01-01

    Acoustic and electrostatic levitation (EL) techniques for maintaining sample-wall distance in order to ensure contamination-free conditions during microgravity materials science experiments on board the Shuttle are examined. A laboratory model for acoustic containerless (AC) processing is described, noting the use of three commercially available drivers for sample levitation. The arrangement of the speakers results in a point node to which a liquid drop sample migrates. Varying the field through manipulation of the dB levels and phase of the drivers' outputs permits control of sample position and movement. Rotation of a styrofoam ball at 2000 rpm has been achieved. Oscillations can also be induced. An advanced version of the AC system is analytically defined, with further studies mentioned for stable levitation modes using a cylindrical chamber and optimizing acoustic power transfer between hot and cold regions. A tetrahedral EL system has proven to work in a reduced gravity environment. El involves imparting an electrical charge to an object and then positioning and maintaining it through use of EM fields. The presence of human operators to perform the processing on the Shuttle is mentioned as offering real-time capability of altering the experimental conditions.

  19. The NASA Microelectronics Space Radiation Effects Program (MSREP) at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Coss, J.; Nichols, D.; Shaw, D.

    1991-01-01

    The primary objective of the Microelectronics Space Radiation Effects Program (MSREP) at the Jet Propulsion Laboratory (JPL) is to assist NASA in the selection of radiation hardened microelectronic parts for insertion in NASA space systems through radiation testing and research. Prior to presenting examples of the research and testing on Single Event Effects (SEE) and Total Ionizing Dose (TID) effects, the space radiation environment and radiation requirements for the CRAFT/Cassini program, a typical JPL space project, are discussed.

  20. Publications of the Jet Propulsion Laboratory, 1977. [NASA research and development

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This bibliography cites 900 externally distributed technical reports released during calendar year 1977, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Report topics cover 81 subject areas related in some way to the various NASA programs. The publications are indexed by: (1) author, (2) subject, and (3) publication type and number. A descriptive entry appears under the name of each author of each publication; an abstract is included with the entry for the primary (first-listed) author.

  1. Empirical and Face Validity of Software Maintenance Defect Models Used at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Taber, William; Port, Dan

    2014-01-01

    At the Mission Design and Navigation Software Group at the Jet Propulsion Laboratory we make use of finite exponential based defect models to aid in maintenance planning and management for our widely used critical systems. However a number of pragmatic issues arise when applying defect models for a post-release system in continuous use. These include: how to utilize information from problem reports rather than testing to drive defect discovery and removal effort, practical model calibration, and alignment of model assumptions with our environment.

  2. 78 FR 77447 - City of Pasadena, California; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission City of Pasadena, California; Notice of Filing Take notice that on December 11, 2013, City of Pasadena, California submitted its tariff filing per 35.28(e): 2014...

  3. 77 FR 1484 - Notice of Filing; City of Pasadena, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Notice of Filing; City of Pasadena, CA Take notice that on December 14, 2011, City of Pasadena, California submitted its tariff filing per 35.28(e): 2012 TRBAA Update Filing, to...

  4. 75 FR 2136 - City of Pasadena, CA; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission City of Pasadena, CA; Notice of Filing January 6, 2010. Take notice that on December 30, 2009, City of Pasadena, California filed its fifth annual revision to its Transmission...

  5. Advances in Engine Test Capabilities at the NASA Glenn Research Center's Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Pachlhofer, Peter M.; Panek, Joseph W.; Dicki, Dennis J.; Piendl, Barry R.; Lizanich, Paul J.; Klann, Gary A.

    2006-01-01

    The Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Glenn Research Center is one of the premier U.S. facilities for research on advanced aeropropulsion systems. The facility can simulate a wide range of altitude and Mach number conditions while supplying the aeropropulsion system with all the support services necessary to operate at those conditions. Test data are recorded on a combination of steady-state and highspeed data-acquisition systems. Recently a number of upgrades were made to the facility to meet demanding new requirements for the latest aeropropulsion concepts and to improve operational efficiency. Improvements were made to data-acquisition systems, facility and engine-control systems, test-condition simulation systems, video capture and display capabilities, and personnel training procedures. This paper discusses the facility s capabilities, recent upgrades, and planned future improvements.

  6. Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory: Altitude Investigation

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) conducted a full scale ice crystal icing turbofan engine test using an obsolete Allied Signal ALF502-R5 engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The test article used was the exact engine that experienced a loss of power event after the ingestion of ice crystals while operating at high altitude during a 1997 Honeywell flight test campaign investigating the turbofan engine ice crystal icing phenomena. The test plan included test points conducted at the known flight test campaign field event pressure altitude and at various pressure altitudes ranging from low to high throughout the engine operating envelope. The test article experienced a loss of power event at each of the altitudes tested. For each pressure altitude test point conducted the ambient static temperature was predicted using a NASA engine icing risk computer model for the given ambient static pressure while maintaining the engine speed.

  7. From Mars to man - Biomedical research at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Beckenbach, E. S.

    1984-01-01

    In the course of the unmanned exploration of the solar system, which the California Institute of Technology's Jet Propulsion Laboratory has managed for NASA, major advances in computerized image processing, materials research, and miniature electronics design have been accomplished. This presentation shows some of the imaging results from space exploration missions, as well as biomedical research tasks based in these technologies. Among other topics, the use of polymeric microspheres in cancer therapy is discussed. Also included are ceramic applications to prosthesis development, laser applications in the treatment of coronary artery disease, multispectral imaging as used in the diagnosis of thermal burn injury, and some examples of telemetry systems as they can be involved in biological systems.

  8. Experience with Data Science as an Intern with the Jet Propulsion Laboratory

    NASA Astrophysics Data System (ADS)

    Whittell, J.; Mattmann, C. A.; Whitehall, K. D.; Ramirez, P.; Goodale, C. E.; Boustani, M.; Hart, A. F.; Kim, J.; Waliser, D. E.; Joyce, M. J.

    2013-12-01

    The Regional Climate Model Evaluation System (RCMES, http://rcmes.jpl.nasa.gov) at NASA's Jet Propulsion Laboratory seeks to improve regional climate model output by comparing past model predictions with Earth-orbiting satellite data (Mattmann et al. 2013). RCMES ingests satellite and RCM data and processes these data into a common format; as needed, the software queries the RCMES database for these datasets, on which it runs a series of statistical metrics including model-satellite comparisons. The development of the RCMES software relies on collaboration between climatologists and computer scientists, as evinced by RCMES longstanding work with CORDEX (Kim et al. 2012). Over a total of 17 weeks in 2011, 2012, and 2013, I worked as an intern at NASA's Jet Propulsion Laboratory in a supportive capacity for RCMES. A high school student, I had no formal background in either Earth science or computer technology, but was immersed in both fields. In 2011, I researched three earth-science data management projects, producing a high-level explanation of these endeavors. The following year, I studied Python, contributing a command-line user interface to the RCMES project code. In 2013, I assisted with data acquisition, wrote a file header information plugin, and the visualization tool GrADS. The experience demonstrated the importance of an interdisciplinary approach to data processing: to streamline data ingestion and processing, scientists must understand, at least on a high-level, any programs they might utilize while to best serve the needs of earth scientists, software engineers must understand the science behind the data they handle.

  9. Publications of the Jet Propulsion Laboratory, January through December 1974. [deep space network, Apollo project, information theory, and space exploration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Formalized technical reporting is described and indexed, which resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. The five classes of publications included are technical reports, technical memorandums, articles from the bimonthly Deep Space Network Progress Report, special publications, and articles published in the open literature. The publications are indexed by author, subject, and publication type and number.

  10. Space Shuttle 750 psi Helium Regulator Application on Mars Science Laboratory Propulsion

    NASA Technical Reports Server (NTRS)

    Mizukami, Masashi; Yankura, George; Rust, Thomas; Anderson, John R.; Dien, Anthony; Garda, Hoshang; Bezer, Mary Ann; Johnson, David; Arndt, Scott

    2009-01-01

    The Mars Science Laboratory (MSL) is NASA's next major mission to Mars, to be launched in September 2009. It is a nuclear powered rover designed for a long duration mission, with an extensive suite of science instruments. The descent and landing uses a unique 'skycrane' concept, where a rocket-powered descent stage decelerates the vehicle, hovers over the ground, lowers the rover to the ground on a bridle, then flies a safe distance away for disposal. This descent stage uses a regulated hydrazine propulsion system. Performance requirements for the pressure regulator were very demanding, with a wide range of flow rates and tight regulated pressure band. These indicated that a piloted regulator would be needed, which are notoriously complex, and time available for development was short. Coincidentally, it was found that the helium regulator used in the Space Shuttle Orbiter main propulsion system came very close to meeting MSL requirements. However, the type was out of production, and fabricating new units would incur long lead times and technical risk. Therefore, the Space Shuttle program graciously furnished three units for use by MSL. Minor modifications were made, and the units were carefully tuned to MSL requirements. Some of the personnel involved had built and tested the original shuttle units. Delta qualification for MSL application was successfully conducted on one of the units. A pyrovalve slam start and shock test was conducted. Dynamic performance analyses for the new application were conducted, using sophisticated tools developed for Shuttle. Because the MSL regulator is a refurbished Shuttle flight regulator, it will be the only part of MSL which has physically already been in space.

  11. The Pasadena Recommendations: Five Years After AAS Endorsement

    NASA Astrophysics Data System (ADS)

    Knezek, Patricia; Frattare, L.; Ulvestad, J.

    2010-01-01

    It has been five years since the AAS Council unanimously endorsed the document, known as "Equity Now: The Pasadena Recommendations for Gender Equality in Astronomy," in January 2005. This document was the main product of the conference entitled "Women in Astronomy II: Ten Years After” (WIA II), held in June 2003 in Pasadena, CA. Participants of that 2003 meeting assessed the progress for women in science, offering insights into causes of the slower advancement of women, and discussed strategies to accelerate the achievement of equality. These insights and strategies were then incorporated into the "Pasadena Recommendations" by the CSWA. It was subsequently released to the entire AAS community for review and comments prior to its endorsement by the AAS. We will discuss the Recommendations and their impact since the endorsement by the AAS, including the process that is in place for organizations and departments to formally endorse the Pasadena Recommendations, thus making an organizational commitment to their implementation (see http://www.aas.org/cswa/pasadena_endorse.html).

  12. A Summer Research Program of NASA/Faculty Fellowships at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Albee, Arden

    2004-01-01

    The NASA Faculty Fellowship Program (NFFP) is designed to give college and university faculty members a rewarding personal as well as enriching professional experience. Fellowships are awarded to engineering and science faculty for work on collaborative research projects of mutual interest to the fellow and JPL host colleague. The Jet Propulsion Laboratory (JPL) and the California Institute of Technology (Caltech) have participated in the NASA Faculty Fellowship Program for the past 25 years. Administrative offices are maintained both at the Caltech Campus and at JPL; however, most of the activity takes place at JPL. The Campus handles all fiscal matters. The duration of the program is ten continuous weeks. Fellows are required to conduct their research on-site. To be eligible to participate in the program, fellows must be a U.S. citizen and hold a teaching or research appointment at a U.S. university or college. A travel allowance is paid to those fellows outside the 50-mile radius of JPL.

  13. Traversing Microphone Track Installed in NASA Lewis' Aero-Acoustic Propulsion Laboratory Dome

    NASA Technical Reports Server (NTRS)

    Bauman, Steven W.; Perusek, Gail P.

    1999-01-01

    The Aero-Acoustic Propulsion Laboratory is an acoustically treated, 65-ft-tall dome located at the NASA Lewis Research Center. Inside this laboratory is the Nozzle Acoustic Test Rig (NATR), which is used in support of Advanced Subsonics Technology (AST) and High Speed Research (HSR) to test engine exhaust nozzles for thrust and acoustic performance under simulated takeoff conditions. Acoustic measurements had been gathered by a far-field array of microphones located along the dome wall and 10-ft above the floor. Recently, it became desirable to collect acoustic data for engine certifications (as specified by the Federal Aviation Administration (FAA)) that would simulate the noise of an aircraft taking off as heard from an offset ground location. Since nozzles for the High-Speed Civil Transport have straight sides that cause their noise signature to vary radially, an additional plane of acoustic measurement was required. Desired was an arched array of 24 microphones, equally spaced from the nozzle and each other, in a 25 off-vertical plane. The various research requirements made this a challenging task. The microphones needed to be aimed at the nozzle accurately and held firmly in place during testing, but it was also essential that they be easily and routinely lowered to the floor for calibration and servicing. Once serviced, the microphones would have to be returned to their previous location near the ceiling. In addition, there could be no structure could between the microphones and the nozzle, and any structure near the microphones would have to be designed to minimize noise reflections. After many concepts were considered, a single arched truss structure was selected that would be permanently affixed to the dome ceiling and to one end of the dome floor.

  14. A Wet Chemistry Laboratory Cell

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This picture of NASA's Phoenix Mars Lander's Wet Chemistry Laboratory (WCL) cell is labeled with components responsible for mixing Martian soil with water from Earth, adding chemicals and measuring the solution chemistry. WCL is part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on board the Phoenix lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory (PSL): Altitude Investigation

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2015-01-01

    The National Aeronautics and Space Administration conducted a full scale ice crystal icing turbofan engine test in the NASA Glenn Research Centers Propulsion Systems Laboratory (PSL) Facility in February 2013. Honeywell Engines supplied the test article, an obsolete, unmodified Lycoming ALF502-R5 turbofan engine serial number LF01 that experienced an un-commanded loss of thrust event while operating at certain high altitude ice crystal icing conditions. These known conditions were duplicated in the PSL for this testing.

  16. Future of space propulsion

    SciTech Connect

    Weiss, R.R.; Mackay, D.S. )

    1992-03-01

    A development status-and-prospects evaluation is presented for the range of spacecraft propulsion alternatives under consideration by the USAF's Phillips Laboratory, encompassing technologies broadly characterizable as 'conventional' (solid, storable liquid, cryogenic) and 'nonconventional'. Nonconventional spacecraft propulsion system types include arcjets, magnetoplasmadynamic thrusters, solar thermal propulsion, and nuclear propulsion. The prospects for high energy density materials' application to more coventional propulsion concepts are noted.

  17. America's first long-range-missile and space exploration program: The ORDCIT project of the Jet Propulsion Laboratory, 1943 - 1946: A memoir

    NASA Technical Reports Server (NTRS)

    Malina, F. J.

    1977-01-01

    Research and achievements of the wartime Jet Propulsion Laboratory are outlined. Accomplishments included development of the solid-propellant Private A and private R rockets and the liquid-propellant nitric acid-aniline WAC Corporal rocket.

  18. Mid and thermal infrared remote sensing at the Jet Propulsion Laboratory

    NASA Astrophysics Data System (ADS)

    Johnson, William R.; Hook, Simon J.

    2016-05-01

    The mid and thermal infrared (MTIR) for the Earth surface is defined between 3 and 14µm. In the outer solar system, objects are colder and their Planck response shifts towards longer wavelengths. Hence for these objects (e.g. icy moons, polar caps, comets, Europa), the thermal IR definition usually stretches out to 50µm and beyond. Spectroscopy has been a key part of this scientific exploration because of its ability to remotely determine elemental and mineralogical composition. Many key gas species such as methane, ammonia, sulfur, etc. also have vibrational bands which show up in the thermal infrared spectrum above the background response. Over the past few decades, the Jet Propulsion Laboratory has been building up a portfolio of technology to capture the MTIR for various scientific applications. Three recent sensors are briefly reviewed: The airborne Hyperspectral thermal emission spectrometer (HyTES), the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) and Mars Climate Sounder (MCS)/DIVINER. Each of these sensors utilize a different technology to provide a remote sensing product based on MTIR science. For example, HyTES is a push-brooming hyperspectral imager which utilizes a large format quantum well infrared photodetector (QWIP). The goal is to transition this to a new complementary barrier infrared photodetector (CBIRD) with a similar long wave cut-off and increased sensitivity. ECOSTRESS is a push-whisk Mercury Cadmium Telluride (MCT) based high speed, multi-band, imager which will eventually observe and characterize plant/vegetation functionality and stress index from the International Space Station (ISS) across the contiguous United States (CONUS). MCS/DIVINER utilizes thermopile technology to capture the thermal emission from the polar caps and shadow regions of the moon. Each sensor utilizes specific JPL technology to capture unique science.

  19. Advanced Optical Diagnostics for Ice Crystal Cloud Measurements in the NASA Glenn Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.; Fagan, Amy; Van Zante, Judith F.; Kirkegaard, Jonathan P.; Rohler, David P.; Maniyedath, Arjun; Izen, Steven H.

    2013-01-01

    A light extinction tomography technique has been developed to monitor ice water clouds upstream of a direct connected engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center (GRC). The system consists of 60 laser diodes with sheet generating optics and 120 detectors mounted around a 36-inch diameter ring. The sources are pulsed sequentially while the detectors acquire line-of-sight extinction data for each laser pulse. Using computed tomography algorithms, the extinction data are analyzed to produce a plot of the relative water content in the measurement plane. To target the low-spatial-frequency nature of ice water clouds, unique tomography algorithms were developed using filtered back-projection methods and direct inversion methods that use Gaussian basis functions. With the availability of a priori knowledge of the mean droplet size and the total water content at some point in the measurement plane, the tomography system can provide near real-time in-situ quantitative full-field total water content data at a measurement plane approximately 5 feet upstream of the engine inlet. Results from ice crystal clouds in the PSL are presented. In addition to the optical tomography technique, laser sheet imaging has also been applied in the PSL to provide planar ice cloud uniformity and relative water content data during facility calibration before the tomography system was available and also as validation data for the tomography system. A comparison between the laser sheet system and light extinction tomography resulting data are also presented. Very good agreement of imaged intensity and water content is demonstrated for both techniques. Also, comparative studies between the two techniques show excellent agreement in calculation of bulk total water content averaged over the center of the pipe.

  20. PASADENA hyperpolarization of 13C biomolecules: equipment design and installation

    PubMed Central

    Hövener, Jan-Bernd; Chekmenev, Eduard Y.; Harris, Kent C.; Perman, William H.; Robertson, Larry W.; Bhattacharya, Pratip

    2009-01-01

    Object The PASADENA method has achieved hyperpolarization of 16–20% (exceeding 40,000-fold signal enhancement at 4.7 T), in liquid samples of biological molecules relevant to in vivo MRI and MRS. However, there exists no commercial apparatus to perform this experiment conveniently and reproducibly on the routine basis necessary for translation of PASADENA to questions of biomedical importance. The present paper describes equipment designed for rapid production of six to eight liquid samples per hour with high reproducibility of hyperpolarization. Materials and methods Drawing on an earlier, but unpublished, prototype, we provide diagrams of a delivery circuit, a laminar-flow reaction chamber within a low field NMR contained in a compact, movable housing. Assembly instructions are provided from which a computer driven, semiautomated PASADENA polarizer can be constructed. Results Together with an available parahydrogen generator, the polarizer, which can be operated by a single investigator, completes one cycle of hyperpolarization each 52 s. Evidence of efficacy is presented. In contrast to competing, commercially available devices for dynamic nuclear polarization which characteristically require 90 min per cycle, PASADENA provides a low-cost alternative for high throughput. Conclusions This equipment is suited to investigators who have an established small animal NMR and wish to explore the potential of heteronuclear (13C and 15N) MRI, MRS, which harnesses the enormous sensitivity gain offered by hyperpolarization. PMID:19067008

  1. Basic Skills Education: Pasadena City College's Teaching and Learning Center

    ERIC Educational Resources Information Center

    Mills, Kay

    2009-01-01

    This article features Pasadena City College's (PCC) Teaching and Learning Center (TLC), an eight-year-old holistic approach to guiding underprepared students through math, English, and other challenges of college. TLC aims to revolutionize the way faculty look at their students and teach them. The center's approach is one that is spreading through…

  2. Pasadena City College Profile in Productivity, 1987-1992.

    ERIC Educational Resources Information Center

    Pasadena City Coll., CA.

    Focusing on the 5-year period from 1987 through 1991, this report provides data on Pasadena City College (PCC) in California, reviewing efforts and achievements in improving institutional productivity. Following a brief opening section discussing productivity trends and issues in the American workforce and in higher education, discussions are…

  3. Mars Science Laboratory at Work, Artist's Concept

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's Mars Science Laboratory, a mobile robot for investigating Mars' past or present ability to sustain microbial life, is in development for a launch opportunity in 2009. This picture is an artist's concept portraying what the advanced rover would look like when examining a rock outcrop on Mars. The arm extending from the front of the rover is designed both to position some of the rover's instruments close to selected targets and also to collect samples for onboard analysis by other instruments.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington.

  4. Quality assurance of PASADENA hyperpolarization for 13C biomolecules

    PubMed Central

    Hövener, Jan-Bernd; Chekmenev, Eduard Y.; Harris, Kent C.; Perman, William H.; Tran, Thao T.; Bhattacharya, Pratip

    2009-01-01

    Object Define MR quality assurance procedures for maximal PASADENA hyperpolarization of a biological 13C molecular imaging reagent. Materials and methods An automated PASADENA polarizer and a parahydrogen generator were installed. 13C enriched hydroxyethyl acrylate, 1-13C, 2,3,3-d3 (HEA), was converted to hyperpolarized hydroxyethyl propionate, 1-13C, 2,3,3-d3 (HEP) and fumaric acid, 1-13C, 2,3-d2 (FUM) to hyperpolarized succinic acid, 1-13C, 2,3-d2 (SUC), by reaction with parahydrogen and norbornadiene rhodium catalyst. Incremental optimization of successive steps in PASADENA was implemented. MR spectra and in vivo images of hyperpolarized 13C imaging agents were acquired at 1.5 and 4.7 T. Results Application of quality assurance (QA) criteria resulted in incremental optimization of the individual steps in PASADENA implementation. Optimal hyperpolarization of HEP of P = 20% was achieved by calibration of the NMR unit of the polarizer (B0 field strength ± 0.002 mT). Mean hyperpolarization of SUC, P = [15.3 ± 1.9]% (N = 16) in D2O, and P = [12.8 ± 3.1]% (N = 12) in H2O, was achieved every 5–8 min (range 13–20%). An in vivo 13C succinate image of a rat was produced. Conclusion PASADENA spin hyperpolarization of SUC to 15.3% in average was demonstrated (37,400 fold signal enhancement at 4.7 T). The biological fate of 13C succinate, a normally occurring cellular intermediate, might be monitored with enhanced sensitivity. PMID:19067009

  5. Computing and information services at the Jet Propulsion Laboratory - A management approach to a diversity of needs

    NASA Technical Reports Server (NTRS)

    Felberg, F. H.

    1984-01-01

    The Jet Propulsion Laboratory, a research and development organization with about 5,000 employees, presents a complicated set of requirements for an institutional system of computing and informational services. The approach taken by JPL in meeting this challenge is one of controlled flexibility. A central communications network is provided, together with selected computing facilities for common use. At the same time, staff members are given considerable discretion in choosing the mini- and microcomputers that they believe will best serve their needs. Consultation services, computer education, and other support functions are also provided.

  6. Large-Scale Testing and High-Fidelity Simulation Capabilities at Sandia National Laboratories to Support Space Power and Propulsion

    SciTech Connect

    Dobranich, Dean; Blanchat, Thomas K.

    2008-01-21

    Sandia National Laboratories, as a Department of Energy, National Nuclear Security Agency, has major responsibility to ensure the safety and security needs of nuclear weapons. As such, with an experienced research staff, Sandia maintains a spectrum of modeling and simulation capabilities integrated with experimental and large-scale test capabilities. This expertise and these capabilities offer considerable resources for addressing issues of interest to the space power and propulsion communities. This paper presents Sandia's capability to perform thermal qualification (analysis, test, modeling and simulation) using a representative weapon system as an example demonstrating the potential to support NASA's Lunar Reactor System.

  7. Fabrication Assembly and Test of the Mars Science Laboratory Descent Stage Propulsion System

    NASA Technical Reports Server (NTRS)

    Parker, Morgan; Baker, Ray; Casillas, Art; Strommen, Dellon; Tanimoto, Rebekah

    2013-01-01

    The Descent Stage Propulsion System (DSPS) is the most challenging and complex propulsion system ever built at JPL. Performance requirements, such as the entry Reaction Control System (RCS) requirements, and the terminal descent requirements (3300 N maximum thrust and approximately 835,000 N-s total impulse in less than a minute), required a large amount of propellant and a large number of components for a spacecraft that had to fit in a 4.5 meter aeroshell. The size and shape of the aeroshell, along with the envelope of the stowed rover, limited the configuration options for the Descent Stage structure. The configuration and mass constraints of the Descent Stage structure, along with performance requirements, drove the configuration of the DSPS. This paper will examine some of the challenges encountered and solutions developed during the fabrication, assembly, and test of the DSPS.

  8. A Summer Research Program of NASA/Faculty Fellowships at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Albee, Arden

    2004-01-01

    The NASA Faculty Fellowship Program (NFFP) is designed to give college and university faculty members a rewarding personal as well as enriching professional experience. Fellowships are awarded to engineering and science faculty for work on collaborative research projects of mutual interest to the fellow and his or her JPL host colleague. The Jet Propulsion Laboratory (JPL) and the California Institute of Technology (Caltech) have participated in the NASA Faculty Fellowship Program for more than 25 years. Administrative offices are maintained both at the Caltech Campus and at JPL; however, most of the activity takes place at JPL. The Campus handles all fiscal matters. The duration of the program is ten continuous weeks. Fellows are required to conduct their research on-site. To be eligible to participate in the program, fellows must be a U.S. citizen and hold a teaching or research appointment at a U.S. university or college. The American Society of Engineering Education (ASEE) contracts with NASA and manages program recruitment. Over the past several years, we have made attempts to increase the diversity of the participants in the NFFP Program. A great deal of attention has been given to candidates from minority-serving institutions. There were approximately 100 applicants for the 34 positions in 2002. JPL was the first-choice location for more than half of them. Faculty from 16 minority-serving institutions participated as well as four women. The summer began with an orientation meeting that included introduction of key program personnel, and introduction of the fellows to each other. During this welcome, the fellows were briefed on their obligations to the program and to their JPL colleagues. They were also given a short historical perspective on JPL and its relationship to Caltech and NASA. All fellows received a package, which included information on administrative procedures, roster of fellows, seminar program, housing questionnaire, directions to JPL, maps of

  9. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Clevleand, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSLthe first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal icing

  10. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Cleveland, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSL--the first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal

  11. A Summer Research Program of NASA/Faculty Fellowships at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Albee, Arden

    2004-01-01

    The NASA Faculty Fellowship Program (NFFP) is designed to give college and university faculty members a rewarding personal as well as enriching professional experience. Fellowships are awarded to engineering and science faculty for work on collaborative research projects of mutual interest to the fellow and his or her JPL host colleague. The Jet Propulsion Laboratory (JPL) and the California Institute of Technology (Caltech) have participated in the NASA Faculty Fellowship Program for more than 25 years. Administrative offices are maintained both at the Caltech Campus and at JPL; however, most of the activity takes place at JPL. The Campus handles all fiscal matters. The duration of the program is ten continuous weeks. Fellows are required to conduct their research on-site. To be eligible to participate in the program, fellows must be a U.S. citizen and hold a teaching or research appointment at a U.S. university or college. The American Society of Engineering Education (ASEE) contracts with NASA and manages program recruitment. Over the past several years, we have made attempts to increase the diversity of the participants in the NFFP Program. A great deal of attention has been given to candidates from minority-serving institutions. There were approximately 100 applicants for the 34 positions in 2002. JPL was the first-choice location for more than half of them. Faculty from 16 minority-serving institutions participated as well as four women. The summer began with an orientation meeting that included introduction of key program personnel, and introduction of the fellows to each other. During this welcome, the fellows were briefed on their obligations to the program and to their JPL colleagues. They were also given a short historical perspective on JPL and its relationship to Caltech and NASA. All fellows received a package, which included information on administrative procedures, roster of fellows, seminar program, housing questionnaire, directions to JPL, maps of

  12. Perspective on One Decade of Laser Propulsion Research at Air Force Research Laboratory

    NASA Astrophysics Data System (ADS)

    Larson, C. William

    2008-04-01

    The Air Force Laser Propulsion Program spanned nearly 10-years and included about 35-weeks of experimental research with the Pulsed Laser Vulnerability Test System of the High Energy Laser Systems Test Facility at White Sands Missile Range, New Mexico, WSMR/HELSTF/PLVTS. PLVTS is a pulsed CO2 laser that produces up to 10 kW of power in ˜10 cm2 spot at wavelength of 10.6 microns. The laser is capable of a pulse repetition rate up to 25 Hz, with pulse durations of about 20 microseconds. During the program basic research was conducted on the production of propulsion thrust from laser energy through heating of air and ablation of various candidate rocket propellant fuels. Flight tests with an ablation fuel (Delrin) and air were accomplished with a model Laser Lightcraft vehicle that was optimized for propulsion by the PLVTS at its maximum power output, 10 kW at 25 Hz, 400 J/pulse. Altitudes exceeding 200-feet were achieved with ablation fuels. The most recent contributions to the technology included development of a mini-thruster standard for testing of chemically enhanced fuels and theoretical calculations on the performance of formulations containing ammonium nitrate and Delrin. Results of these calculations will also be reported here.

  13. Perspective on One Decade of Laser Propulsion Research at Air Force Research Laboratory

    SciTech Connect

    Larson, C. William

    2008-04-28

    The Air Force Laser Propulsion Program spanned nearly 10-years and included about 35-weeks of experimental research with the Pulsed Laser Vulnerability Test System of the High Energy Laser Systems Test Facility at White Sands Missile Range, New Mexico, WSMR/HELSTF/PLVTS. PLVTS is a pulsed CO2 laser that produces up to 10 kW of power in {approx}10 cm{sup 2} spot at wavelength of 10.6 microns. The laser is capable of a pulse repetition rate up to 25 Hz, with pulse durations of about 20 microseconds. During the program basic research was conducted on the production of propulsion thrust from laser energy through heating of air and ablation of various candidate rocket propellant fuels. Flight tests with an ablation fuel (Delrin) and air were accomplished with a model Laser Lightcraft vehicle that was optimized for propulsion by the PLVTS at its maximum power output, 10 kW at 25 Hz, 400 J/pulse. Altitudes exceeding 200-feet were achieved with ablation fuels. The most recent contributions to the technology included development of a mini-thruster standard for testing of chemically enhanced fuels and theoretical calculations on the performance of formulations containing ammonium nitrate and Delrin. Results of these calculations will also be reported here.

  14. System Software and Tools for High Performance Computing Environments: A report on the findings of the Pasadena Workshop, April 14--16, 1992

    SciTech Connect

    Sterling, T.; Messina, P.; Chen, M.

    1993-04-01

    The Pasadena Workshop on System Software and Tools for High Performance Computing Environments was held at the Jet Propulsion Laboratory from April 14 through April 16, 1992. The workshop was sponsored by a number of Federal agencies committed to the advancement of high performance computing (HPC) both as a means to advance their respective missions and as a national resource to enhance American productivity and competitiveness. Over a hundred experts in related fields from industry, academia, and government were invited to participate in this effort to assess the current status of software technology in support of HPC systems. The overall objectives of the workshop were to understand the requirements and current limitations of HPC software technology and to contribute to a basis for establishing new directions in research and development for software technology in HPC environments. This report includes reports written by the participants of the workshop`s seven working groups. Materials presented at the workshop are reproduced in appendices. Additional chapters summarize the findings and analyze their implications for future directions in HPC software technology development.

  15. A Conceptual Model of the Pasadena Housing System

    NASA Technical Reports Server (NTRS)

    Hirshberg, Alan S.; Barber, Thomas A.

    1971-01-01

    During the last 5 years, there have been several attempts at applying systems analysis to complex urban problems. This paper describes one such attempt by a multidisciplinary team of students, engineers, professors, and community representatives. The Project organization is discussed and the interaction of the different disciplines (the process) described. The two fundamental analysis questions posed by the Project were: "Why do houses deteriorate?" and "Why do people move?" The analysis of these questions led to the development of a conceptual system model of housing in Pasadena. The major elements of this model are described, and several conclusions drawn from it are presented.

  16. Experience with Formal Methods techniques at the Jet Propulsion Laboratory from a quality assurance perspective

    NASA Technical Reports Server (NTRS)

    Kelly, John C.; Covington, Rick

    1993-01-01

    Recent experience with Formal Methods (FM) in the Software Quality Assurance Section at the Jet Propulsion Lab is presented. An integrated Formal Method process is presented to show how related existing requirements analysis and FM techniques complement one another. Example application of FM techniques such as formal specifications and specification animators are presented. The authors suggest that the quality assurance organization is a natural home for the Formal Methods specialist, whose expertise can then be used to best advantage across a range of projects.

  17. Minority University System Engineering: A Small Satellite Design Experience Held at the Jet Propulsion Laboratory During the Summer of 1996

    NASA Technical Reports Server (NTRS)

    Ordaz, Miguel Angel

    1997-01-01

    The University of Texas at El Paso (UTEP) in conjunction with the Jet Propulsion Laboratory (JPL), North Carolina A&T and California State University of Los Angeles participated during the summer of 1996 in a prototype program known as Minority University Systems Engineering (MUSE). The program consisted of a ten week internship at JPL for students and professors of the three universities. The purpose of MUSE as set forth in the MUSE program review August 5, 1996 was for the participants to gain experience in the following areas: 1) Gain experience in a multi-disciplinary project; 2) Gain experience working in a culturally diverse atmosphere; 3) Provide field experience for students to reinforce book learning; and 4) Streamline the design process in two areas: make it more financially feasible; and make it faster.

  18. The Jet Propulsion Laboratory Electric and Hybrid Vehicle System Research and Development Project, 1977-1984: A Review

    NASA Technical Reports Server (NTRS)

    Kurtz, D.; Roan, V.

    1985-01-01

    The JPL Electric and Hybrid Vehicle System Research and Development Project was established in the spring of 1977. Originally administered by the Energy Research and Development Administration (ERDA) and later by the Electric and Hybrid Vehicle Division of the U.S. Department of Energy (DOE), the overall Program objective was to decrease this nation's dependence on foreign petroleum sources by developing the technologies and incentives necessary to bring electric and hybrid vehicles successfully into the marketplace. The ERDA/DOE Program structure was divided into two major elements: (1) technology research and system development and (2) field demonstration and market development. The Jet Propulsion Laboratory (JPL) has been one of several field centers supporting the former Program element. In that capacity, the specific historical areas of responsibility have been: (1) Vehicle system developments (2) System integration and test (3) Supporting subsystem development (4) System assessments (5) Simulation tool development.

  19. Maintenance of time and frequency in the Jet Propulsion Laboratory's Deep Space Network using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Clements, P. A.; Borutzki, S. E.; Kirk, A.

    1984-01-01

    The Deep Space Network (DSN), managed by the Jet Propulsion Laboratory for NASA, must maintain time and frequency within specified limits in order to accurately track the spacecraft engaged in deep space exploration. Various methods are used to coordinate the clocks among the three tracking complexes. These methods include Loran-C, TV Line 10, Very Long Baseline Interferometry (VLBI), and the Global Positioning System (GPS). Calculations are made to obtain frequency offsets and Allan variances. These data are analyzed and used to monitor the performance of the hydrogen masers that provide the reference frequencies for the DSN Frequency and Timing System (DFT). Areas of discussion are: (1) a brief history of the GPS timing receivers in the DSN, (2) a description of the data and information flow, (3) data on the performance of the DSN master clocks and GPS measurement system, and (4) a description of hydrogen maser frequency steering using these data.

  20. Propulsion materials

    SciTech Connect

    Wall, Edward J.; Sullivan, Rogelio A.; Gibbs, Jerry L.

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  1. Mars Science Laboratory at Sunset

    NASA Technical Reports Server (NTRS)

    2003-01-01

    December 2, 2003

    Sunset on Mars catches NASA's Mars Science Laboratory in the foreground in this artist's concept. The mission is under development for launch in 2009 and a precision landing on Mars in 2010.

    Once on the ground, the Mars Science Laboratory would analyze dozens of samples scooped up from the soil and cored from rocks as it explores with greater range than any previous Mars rover. It would investigate the past or present ability of Mars to support life. NASA is considering nuclear energy for powering the rover to give it a long operating lifespan.

    NASA's Jet Propulsion Laboratory, Pasadena, Calif., is managing development of the Mars Smart Laboratory for the NASA Office of Space Science, Washington, D.C.

  2. Mars Science Laboratory at Canyon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    December 2, 2003

    NASA's Mars Science Laboratory travels near a canyon on Mars in this artist's concept. The mission is under development for launch in 2009 and a precision landing on Mars in 2010.

    Once on the ground, the Mars Science Laboratory would analyze dozens of samples scooped up from the soil and cored from rocks as it explores with greater range than any previous Mars rover. It would investigate the past or present ability of Mars to support life. NASA is considering nuclear energy for powering the rover to give it a long operating lifespan.

    NASA's Jet Propulsion Laboratory, Pasadena, Calif., is managing development of the Mars Smart Laboratory for the NASA Office of Space Science, Washington, D.C.

  3. LABVIEW graphical user interface for precision multichannel alignment of Raman lidar at Jet Propulsion Laboratory, Table Mountain Facility.

    PubMed

    Aspey, R A; McDermid, I S; Leblanc, T; Howe, J W; Walsh, T D

    2008-09-01

    The Jet Propulsion Laboratory operates lidar systems at Table Mountain Facility (TMF), California (34.4 degrees N, 117.7 degrees W) and Mauna Loa Observatory, Hawaii (19.5 degrees N, 155.6 degrees W) under the framework of the Network for the Detection of Atmospheric Composition Change. To complement these systems a new Raman lidar has been developed at TMF with particular attention given to optimizing water vapor profile measurements up to the tropopause and lower stratosphere. The lidar has been designed for accuracies of 5% up to 12 km in the free troposphere and a detection capability of <5 ppmv. One important feature of the lidar is a precision alignment system using range resolved data from eight Licel transient recorders, allowing fully configurable alignment via a LABVIEW/C++ graphical user interface (GUI). This allows the lidar to be aligned on any channel while simultaneously displaying signals from other channels at configurable altitude/bin combinations. The general lidar instrumental setup and the details of the alignment control system, data acquisition, and GUI alignment software are described. Preliminary validation results using radiosonde and lidar intercomparisons are briefly presented. PMID:19044439

  4. F100 Engine Emissions Tested in NASA Lewis' Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Wey, Chowen C.

    1998-01-01

    Recent advances in atmospheric sciences have shown that the chemical composition of the entire atmosphere of the planet (gases and airborne particles) has been changed due to human activity and that these changes have changed the heat balance of the planet. National Research Council findings indicate that anthropogenic aerosols1 reduce the amount of solar radiation reaching the Earth's surface. Atmospheric global models suggest that sulfate aerosols change the energy balance of the Northern Hemisphere as much as anthropogenic greenhouse gases have. In response to these findings, NASA initiated the Atmospheric Effects of Aviation Project (AEAP) to advance the research needed to define present and future aircraft emissions and their effects on the Earth's atmosphere. Although the importance of aerosols and their precursors is now well recognized, the characterization of current subsonic engines for these emissions is far from complete. Furthermore, since the relationship of engine operating parameters to aerosol emissions is not known, extrapolation to untested and unbuilt engines necessarily remains highly uncertain. Tests in 1997-an engine test at the NASA Lewis Research Center and the corresponding flight measurement test at the NASA Langley Research Center-attempted to address both issues by measuring emissions when fuels containing different levels of sulfur were burned. Measurement systems from four research groups were involved in the Lewis engine test: A Lewis gas analyzer suite to measure the concentration of gaseous species 1. including NO, NOx, CO, CO2, O2, THC, and SO2 as well as the smoke number; 2. A University of Missouri-Rolla Mobile Aerosol Sampling System to measure aerosol and particulate properties including the total concentration, size distribution, volatility, and hydration property; 3. An Air Force Research Laboratory Chemical Ionization Mass Spectrometer to measure the concentration of SO2 and SO3/H2SO4; and 4. An Aerodyne Research Inc

  5. Mars Science Laboratory Spacecraft Assembled for Testing

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The major components of NASA's Mars Science Laboratory spacecraft cruise stage atop the aeroshell, which has the descent stage and rover inside were connected together in October 2008 for several weeks of system testing, including simulation of launch vibrations and deep-space environmental conditions.

    These components will be taken apart again, for further work on each of them, after the environmental testing. The Mars Science Laboratory spacecraft is being assembled and tested for launch in 2011.

    This image was taken inside the Spacecraft Assembly Facility at NASA's Jet Propulsion Laboratory, Pasadena, Calif., which manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology.

  6. Mars Science Laboratory Rover Taking Shape

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image taken in August 2008 in a clean room at NASA's Jet Propulsion Laboratory, Pasadena, Calif., shows NASA's next Mars rover, the Mars Science Laboratory, in the course of its assembly, before additions of its arm, mast, laboratory instruments and other equipment.

    The rover is about 9 feet wide and 10 feet long.

    Viewing progress on the assembly are, from left: NASA Associate Administrator for Science Ed Weiler, California Institute of Technology President Jean-Lou Chameau, JPL Director Charles Elachi, and JPL Associate Director for Flight Projects and Mission Success Tom Gavin.

    JPL, a division of Caltech, manages the Mars Science Laboratory project for the NASA Science Mission Directorate, Washington.

  7. The ANL electric vehicle battery R D program for DOE-EHP. [ANL (Argonne National Laboratory); EHP (Electric and Hybrid Propulsion Division)

    SciTech Connect

    Not Available

    1993-06-15

    The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid Propulsion Division (DOE-EHP). The goal of DOE-EHP is to advance promising electric-vehicle (EV) propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce air pollution and petroleum consumption due to the transportation sector of the economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, and project management on advanced battery technologies for DOE-EHP. This report summarizes the battery-related activities undertaken during the period of January 1, 1993 through March 31, 1993. In this report, the objective, background, technical progress, and status are described for each task. The work is organized into the following task areas: 1.0 Project Management; 2.0 Sodium/Metal Chloride R D; 3.0 Microreference Electrodes for Lithium/Polymer Batteries.

  8. Soil Fills Phoenix Laboratory Cell

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows four of the eight cells in the Thermal and Evolved-Gas Analyzer, or TEGA, on NASA's Phoenix Mars Lander. TEGA's ovens, located underneath the cells, heat soil samples so the released gases can be analyzed.

    Left to right, the cells are numbered 7, 6, 5 and 4. Phoenix's Robotic Arm delivered soil most recently to cell 6 on the 137th Martian day, or sol, of the mission (Oct. 13, 2008).

    Phoenix's Robotic Arm Camera took this image at 3:03 p.m. local solar time on Sol 138 (Oct. 14, 2008).

    Phoenix landed on Mars' northern plains on May 25, 2008.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  9. The Propulsion Center at MSFC

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold; Schmidt, George R. (Technical Monitor)

    2000-01-01

    The Propulsion Research Center at MSFC serves as a national resource for research of advanced, revolutionary propulsion technologies. Our mission is to move the nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft like access to earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space. Current efforts cover a wide range of exciting areas, including high-energy plasma thrusters, advanced fission and fusion engines, antimatter propulsion systems, beamed energy rockets and sails, and fundamental motive physics. Activities involve concept investigation, proof-of-concept demonstration, and breadboard validation of new propulsion systems. The Propulsion Research Center at MSFC provides an environment where NASA, national laboratories, universities, and industry researchers can pool their skills together to perform landmark propulsion achievements. We offer excellent educational opportunities to students and young researchers-fostering a wellspring of innovation that will revolutionize space transportation.

  10. Mars Science Laboratory Using Laser Instrument, Artist's Concept

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This artist's conception of NASA's Mars Science Laboratory portrays use of the rover's ChemCam instrument to identify the chemical composition of a rock sample on the surface of Mars.

    ChemCam is innovative for planetary exploration in using a technique referred to as laser breakdown spectroscopy to determine the chemical composition of samples from distances of up to about 8 meters (25 feet) away. ChemCam is led by a team at the Los Alamos National Laboratory and the Centre d'Etude Spatiale des Rayonnements in Toulouse, France.

    Mars Science Laboratory, a mobile robot for investigating Mars' past or present ability to sustain microbial life, is in development at NASA's Jet Propulsion Laboratory for a launch opportunity in 2009. The mission is managed by JPL, a division of the California Institute of Technology, Pasadena, Calif., for the NASA Science Mission Directorate, Washington.

  11. Delivery to the Wet Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This portion of a picture acquired by NASA's Phoenix Mars Lander's Robotic Arm Camera documents the delivery of soil to one of four Wet Chemistry Laboratory (WCL) cells on the 30th Martian day, or sol, of the mission. Approximately one cubic centimeter of this soil was then introduced into the cell and mixed with water for chemical analysis. WCL is part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on board the Phoenix lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. Ion Beam Propulsion Study

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  13. Education for a Global Society: Report of Seminar (Pasadena, California, January 20, 1979).

    ERIC Educational Resources Information Center

    Bush, Walker, Ed.; Stockemer, Anne

    A seminar is described which explored ways in which education could contribute to building the kind of global society that 1979's children might be able and willing to inherit. The year 1979 which was proclaimed "International Year of the Child" by the United Nations opened in Pasadena, California, with a week long International Cooperation…

  14. Organic Aerosol Composition and Sources in Pasadena, California during the 2010 CalNex Campaign

    EPA Science Inventory

    Organic aerosols (OA) in Pasadena are characterized using multiple measurements from the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign. Five OA components are identified using positive matrix factorization including hydrocarbon-like OA (HOA) ...

  15. [Notes on Busing and School Integration in White Plains, Pasadena, and Harrisburg.

    ERIC Educational Resources Information Center

    California Univ., Riverside. Western Regional School Desegregation Projects.

    This document includes five articles: (1) "Supt. Hornbeck blasts ten school busing myths, sells system to area realtors," by Tom Livingston and reprinted from the Pasadena "Star-News," Nov. 17, 1971. (2) "How can transportation be assigned so as to limit the burden of busing?", including an introduction by Kathleen Siggers and a reprint from a…

  16. Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1996-01-01

    system with a low initial development and infrastructure cost and a high operating cost. Note however that this has resulted in a 'Catch 22' standoff between the need for large initial investment that is amortized over many launches to reduce costs, and the limited number of launches possible at today's launch costs. Some examples of missions enabled (either in cost or capability) by advanced propulsion include long-life station-keeping or micro-spacecraft applications using electric propulsion or BMDO-derived micro-thrusters, low-cost orbit raising (LEO to GEO or Lunar orbit) using electric propulsion, robotic planetary missions using aerobraking or electric propulsion, piloted Mars missions using aerobraking and/or propellant production from Martian resources, very fast (100-day round-trip) piloted Mars missions using fission or fusion propulsion, and, finally, interstellar missions using fusion, antimatter, or beamed energy. The NASA Advanced Propulsion Technology program at the Jet Propulsion Laboratory (JPL) is aimed at assessing the feasibility of a range of near-term to far term advanced propulsion technologies that have the potential to reduce costs and/or enable future space activities. The program includes cooperative modeling and research activities between JPL and various universities and industry; and directly supported independent research at universities and industry. The cooperative program consists of mission studies, research and development of ion engine technology using C60 (Buckminsterfullerene) propellant, and research and development of lithium-propellant Lorentz-force accelerator (LFA) engine technology. The university/industry-supported research includes modeling and proof-of-concept experiments in advanced, high-lsp, long-life electric propulsion, and in fusion propulsion.

  17. Pasadena City Board of Education et al. v. Spangler et al. Supreme Court of the United States Syllabus.

    ERIC Educational Resources Information Center

    Supreme Court of the U. S., Washington, DC.

    In 1968, respondents (Pasadena, California high school students and their parents) brought a purported class action against various school officials seeking injunctive relief from allegedly unconstitutional segregation of the public schools in Pasadena. Ultimately, in 1970 the U.S. District Court ordered them to submit a plan for desegregating the…

  18. Electrolysis Propulsion for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    deGroot, Wim A.; Arrington, Lynn A.; McElroy, James F.; Mitlitsky, Fred; Weisberg, Andrew H.; Carter, Preston H., II; Myers, Blake; Reed, Brian D.

    1997-01-01

    Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined.

  19. Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign

    NASA Astrophysics Data System (ADS)

    Hayes, P. L.; Ortega, A. M.; Cubison, M. J.; Froyd, K. D.; Zhao, Y.; Cliff, S. S.; Hu, W. W.; Toohey, D. W.; Flynn, J. H.; Lefer, B. L.; Grossberg, N.; Alvarez, S.; Rappenglück, B.; Taylor, J. W.; Allan, J. D.; Holloway, J. S.; Gilman, J. B.; Kuster, W. C.; Gouw, J. A.; Massoli, P.; Zhang, X.; Liu, J.; Weber, R. J.; Corrigan, A. L.; Russell, L. M.; Isaacman, G.; Worton, D. R.; Kreisberg, N. M.; Goldstein, A. H.; Thalman, R.; Waxman, E. M.; Volkamer, R.; Lin, Y. H.; Surratt, J. D.; Kleindienst, T. E.; Offenberg, J. H.; Dusanter, S.; Griffith, S.; Stevens, P. S.; Brioude, J.; Angevine, W. M.; Jimenez, J. L.

    2013-08-01

    Organic aerosols (OA) in Pasadena are characterized using multiple measurements from the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign. Five OA components are identified using positive matrix factorization including hydrocarbon-like OA (HOA) and two types of oxygenated OA (OOA). The Pasadena OA elemental composition when plotted as H : C versus O : C follows a line less steep than that observed for Riverside, CA. The OOA components from both locations follow a common line, however, indicating similar secondary organic aerosol (SOA) oxidation chemistry at the two sites such as fragmentation reactions leading to acid formation. In addition to the similar evolution of elemental composition, the dependence of SOA concentration on photochemical age displays quantitatively the same trends across several North American urban sites. First, the OA/ΔCO values for Pasadena increase with photochemical age exhibiting a slope identical to or slightly higher than those for Mexico City and the northeastern United States. Second, the ratios of OOA to odd-oxygen (a photochemical oxidation marker) for Pasadena, Mexico City, and Riverside are similar, suggesting a proportional relationship between SOA and odd-oxygen formation rates. Weekly cycles of the OA components are examined as well. HOA exhibits lower concentrations on Sundays versus weekdays, and the decrease in HOA matches that predicted for primary vehicle emissions using fuel sales data, traffic counts, and vehicle emission ratios. OOA does not display a weekly cycle—after accounting for differences in photochemical aging —which suggests the dominance of gasoline emissions in SOA formation under the assumption that most urban SOA precursors are from motor vehicles.

  20. Focused technology: Nuclear propulsion

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.

    1993-01-01

    Five viewgraphs are presented that outline the objectives and elements of the Nuclear Propulsion Program, mission considerations, propulsion technologies, and the logic flow path for nuclear propulsion development.

  1. Gas and aerosol carbon in California: comparison of measurements and model predictions in Pasadena and Bakersfield

    NASA Astrophysics Data System (ADS)

    Baker, K. R.; Carlton, A. G.; Kleindienst, T. E.; Offenberg, J. H.; Beaver, M. R.; Gentner, D. R.; Goldstein, A. H.; Hayes, P. L.; Jimenez, J. L.; Gilman, J. B.; de Gouw, J. A.; Woody, M. C.; Pye, H. O. T.; Kelly, J. T.; Lewandowski, M.; Jaoui, M.; Stevens, P. S.; Brune, W. H.; Lin, Y.-H.; Rubitschun, C. L.; Surratt, J. D.

    2015-05-01

    Co-located measurements of fine particulate matter (PM2.5) organic carbon (OC), elemental carbon, radiocarbon (14C), speciated volatile organic compounds (VOCs), and OH radicals during the CalNex field campaign provide a unique opportunity to evaluate the Community Multiscale Air Quality (CMAQ) model's representation of organic species from VOCs to particles. Episode average daily 23 h average 14C analysis indicates PM2.5 carbon at Pasadena and Bakersfield during the CalNex field campaign was evenly split between contemporary and fossil origins. CMAQ predicts a higher contemporary carbon fraction than indicated by the 14C analysis at both locations. The model underestimates measured PM2.5 organic carbon at both sites with very little (7% in Pasadena) of the modeled mass represented by secondary production, which contrasts with the ambient-based SOC / OC fraction of 63% at Pasadena. Measurements and predictions of gas-phase anthropogenic species, such as toluene and xylenes, are generally within a factor of 2, but the corresponding SOC tracer (2,3-dihydroxy-4-oxo-pentanoic acid) is systematically underpredicted by more than a factor of 2. Monoterpene VOCs and SOCs are underestimated at both sites. Isoprene is underestimated at Pasadena and overpredicted at Bakersfield and isoprene SOC mass is underestimated at both sites. Systematic model underestimates in SOC mass coupled with reasonable skill (typically within a factor of 2) in predicting hydroxyl radical and VOC gas-phase precursors suggest error(s) in the parameterization of semivolatile gases to form SOC. Yield values (α) applied to semivolatile partitioning species were increased by a factor of 4 in CMAQ for a sensitivity simulation, taking into account recent findings of underestimated yields in chamber experiments due to gas wall losses. This sensitivity resulted in improved model performance for PM2.5 organic carbon at both field study locations and at routine monitor network sites in California. Modeled

  2. Electromagnetic Propulsion

    NASA Technical Reports Server (NTRS)

    Schafer, Charles

    2000-01-01

    The design and development of an Electromagnetic Propulsion is discussed. Specific Electromagnetic Propulsion Topics discussed include: (1) Technology for Pulse Inductive Thruster (PIT), to design, develop, and test of a multirepetition rate pulsed inductive thruster, Solid-State Switch Technology, and Pulse Driver Network and Architecture; (2) Flight Weight Magnet Survey, to determine/develop light weight high performance magnetic materials for potential application Advanced Space Flight Systems as these systems develop; and (3) Magnetic Flux Compression, to enable rapid/robust/reliable omni-planetary space transportation within realistic development and operational costs constraints.

  3. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT) have been developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters have been flown in space, though only PPTs have been used on operational satellites. The performance of operational PPTs is quite poor, providing only about 8 percent efficiency at about 1000 sec specific impulse. Laboratory PPTs yielding 34 percent efficiency at 5170 sec specific impulse have been demonstrated. Laboratory MPD thrusters have been demonstrated with up to 70 percent efficiency and 7000 sec specific impulse. Recent PIT performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 and 8000 sec.

  4. Space Shuttle Solid Rocket Booster Joins Propulsion Park Display

    NASA Video Gallery

    A crane lifts a space shuttle solid rocket booster into its final position in the “propulsion park” outside Building 4205, the Propulsion Research & Development Laboratory at the Marshall Cente...

  5. Propulsion controls

    NASA Technical Reports Server (NTRS)

    Harkney, R. D.

    1980-01-01

    Increased system requirements and functional integration with the aircraft have placed an increased demand on control system capability and reliability. To provide these at an affordable cost and weight and because of the rapid advances in electronic technology, hydromechanical systems are being phased out in favor of digital electronic systems. The transition is expected to be orderly from electronic trimming of hydromechanical controls to full authority digital electronic control. Future propulsion system controls will be highly reliable full authority digital electronic with selected component and circuit redundancy to provide the required safety and reliability. Redundancy may include a complete backup control of a different technology for single engine applications. The propulsion control will be required to communicate rapidly with the various flight and fire control avionics as part of an integrated control concept.

  6. Training a Data Scientist: A Multi-year, Multi-Project View from the Trenches of the Regional Climate Model Evaluation System at the Jet Propulsion Laboratory

    NASA Astrophysics Data System (ADS)

    Whittell, J.

    2013-12-01

    Society and technology growth has lead to an age of voluminous, heterogeneous data that requires timely analysis. There are many instruments, models and experiments that generate large amounts of data in various formats, resolutions and location. The answers to the questions posed are embedded in these big data that require the formidable task of data handling, manipulation, visualization and storage. To navigate this space persons with experience handling these data and also with some (high-level or deeper) knowledge of the science that these data represent are necessary. Persons with this unique set of skills are data scientists. Most data scientists possess a cross-disciplinary approach to their research/work, but few actually possess a true inter-disciplinary background and expertise that is demanded of the profession. This poster outlines a method in which a young person was introduced to data science from an inter-disciplinary perspective within the STEM disciplines. The Regional Climate Model Evaluation System (RCMES, http://rcmes.jpl.nasa.gov) at NASA's Jet Propulsion Laboratory seeks to improve regional climate model evaluation by comparing past model predictions with observation datasets including those originating from Earth-orbiting satellite data. The successful development of the RCMES software package relies on collaboration between climate scientists and computer scientists, as evidenced by the RCMES team's longstanding work with the International Coordinated Regional Downscaling Experiment (CORDEX), a large, multidisciplinary modeling group focused on regional downscaling. Over a total of 17 weeks during the summers of 2011, 2012, and 2013, a high school student, with no formal background in either the earth sciences or computer technology, was immersed (interned) with the RCMES team. This student successfully provided support on both disciplines of the project and developed their 'data scientist toolkit' through learning about the science involved

  7. User interactive electric propulsion software design

    NASA Technical Reports Server (NTRS)

    Aston, Martha B.; Aston, Graeme; Brophy, John R.

    1989-01-01

    As electric propulsion technology matures from laboratory development to flight application, mission planners and spacecraft designers are increasingly required to determine the benefits and integration issues of using this propulsion capability. A computer software tool for supporting these analyses is presented. This tool combines detailed analytical models describing electric propulsion engine performance and subsystem design, and a software structure that is highly user interactive and adaptable. The software design methodology used to develop this software tool is presented in this paper.

  8. Plasmas for space propulsion

    NASA Astrophysics Data System (ADS)

    Ahedo, Eduardo

    2011-12-01

    Plasma thrusters are challenging the monopoly of chemical thrusters in space propulsion. The specific energy that can be deposited into a plasma beam is orders of magnitude larger than the specific chemical energy of known fuels. Plasma thrusters constitute a vast family of devices ranging from already commercial thrusters to incipient laboratory prototypes. Figures of merit in plasma propulsion are discussed. Plasma processes and conditions differ widely from one thruster to another, with the pre-eminence of magnetized, weakly collisional plasmas. Energy is imparted to the plasma via either energetic electron injection, biased electrodes or electromagnetic irradiation. Plasma acceleration can be electrothermal, electrostatic or electromagnetic. Plasma-wall interaction affects energy deposition and erosion of thruster elements, and thus is central for thruster efficiency and lifetime. Magnetic confinement and magnetic nozzles are present in several devices. Oscillations and turbulent transport are intrinsic to the performances of some thrusters. Several thrusters are selected in order to discuss these relevant plasma phenomena.

  9. Space Nuclear Thermal Propulsion (SNTP) tests

    NASA Technical Reports Server (NTRS)

    Allen, George C.

    1993-01-01

    Viewgraphs on the space nuclear thermal propulsion (SNTP) program are presented. The objective of the research is to develop advanced nuclear thermal propulsion (NTP) technology based on the particle bed reactor concept. A strong philosophical commitment exists in the industry/national laboratory team to emphasize testing in development activities. Nuclear testing currently underway to support development of SNTP technology is addressed.

  10. Laser propulsion

    NASA Technical Reports Server (NTRS)

    Rom, F. E.; Putre, H. A.

    1972-01-01

    The use of an earth-based high-power laser beam to provide energy for earth-launched rocket vehicle is investigated. The laser beam energy is absorbed in an opaque propellant gas and is converted to high-specific-impulse thrust by expanding the heated propellant to space by means of a nozzle. This laser propulsion scheme can produce specific impulses of several thousand seconds. Payload to gross-weight fractions about an order of magnitude higher than those for conventional chemical earth-launched vehicles appear possible. There is a potential for a significant reduction in cost per payload mass in earth orbit.

  11. Propulsion Systems Panel deliberations

    NASA Technical Reports Server (NTRS)

    Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; Mcgaw, Mike; Munafo, Paul M.

    1993-01-01

    The Propulsion Systems Panel was established because of the specialized nature of many of the materials and structures technology issues related to propulsion systems. This panel was co-chaired by Carmelo Bianca, MSFC, and Bob Miner, LeRC. Because of the diverse range of missions anticipated for the Space Transportation program, three distinct propulsion system types were identified in the workshop planning process: liquid propulsion systems, solid propulsion systems and nuclear electric/nuclear thermal propulsion systems.

  12. Nuclear space propulsion critical technologies

    SciTech Connect

    Clark, J.S.; Borowski, S.K.; Doherty, M.P. )

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has actively pursued technology development for nuclear rocket propulsion systems for possible use on lunar outpost missions, for exploration missions to Mars, and for outer planet and other solar system exploration missions. A number of these technologies have been broadly identified by the ANS National Critical Technologies Panel, as well as the Department of Commerce as [open quotes]Critical Technologies.[close quotes] A Nuclear Propulsion Office was established at the Lewis Research Center in Cleveland, Ohio, to lead nuclear propulsion development for NASA and to establish appropriate interagency working relationships with the U.S. Department of Energy national laboratories for nuclear technology development and with the Department of Defense (DoD). The NASA intercenter and interagency teams and NASA contractors have initiated conceptual design activities and other trade studies that provide the focus for appropriate critical technology development for both nuclear thermal propulsion (NTP) systems and nuclear electric propulsion (NEP) systems. Critical technology issues have been identified and are discussed in this paper. For NTP systems, the heat generated in the nuclear reactor is used to simply heat a propellant such as hydrogen, and then the high-temperature propellant expands through a nozzle to produce thrust. Specific impulse for NTP systems should be on the order of 900 to 950 s-approximately double the best chemical propulsion systems.

  13. Electric vehicle propulsion alternatives

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  14. Propulsion and Power Technologies for the NASA Exploration Vision: A Research Perspective

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2004-01-01

    Future propulsion and power technologies for deep space missions are profiled in this viewgraph presentation. The presentation includes diagrams illustrating possible future travel times to other planets in the solar system. The propulsion technologies researched at Marshall Space Flight Center (MSFC) include: 1) Chemical Propulsion; 2) Nuclear Propulsion; 3) Electric and Plasma Propulsion; 4) Energetics. The presentation contains additional information about these technologies, as well as space reactors, reactor simulation, and the Propulsion Research Laboratory (PRL) at MSFC.

  15. Parachute Testing for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The team developing the landing system for NASA's Mars Science Laboratory tested the deployment of an early parachute design in mid-October 2007 inside the world's largest wind tunnel, at NASA Ames Research Center, Moffett Field, California.

    In this image, an engineer is dwarfed by the parachute, which holds more air than a 280-square-meter (3,000-square-foot) house and is designed to survive loads in excess of 36,000 kilograms (80,000 pounds).

    The parachute, built by Pioneer Aerospace, South Windsor, Connecticut, has 80 suspension lines, measures more than 50 meters (165 feet) in length, and opens to a diameter of nearly 17 meters (55 feet). It is the largest disk-gap-band parachute ever built and is shown here inflated in the test section with only about 3.8 meters (12.5 feet) of clearance to both the floor and ceiling.

    The wind tunnel, which is 24 meters (80 feet) tall and 37 meters (120 feet) wide and big enough to house a Boeing 737, is part of the National Full-Scale Aerodynamics Complex, operated by the U.S. Air Force, Arnold Engineering Development Center.

    NASA's Jet Propulsion Laboratory, Pasadena, California, is building and testing the Mars Science Laboratory spacecraft for launch in 2009. The mission will land a roving analytical laboratory on the surface of Mars in 2010. JPL is a division of the California Institute of Technology.

  16. Kite propulsion

    NASA Astrophysics Data System (ADS)

    Du Pontavice, Emmanuel; Clanet, Christophe; Quéré, David

    2014-11-01

    Kite propulsion is one way to harvest wind energy. The typical force is 1 kilo Newton per square meter, which means that with kites in the range 100 to 1000 square meters, one is able to propel ships from the trawler to the tanker. Several scientific issues arise when trying to design kites of these sizes. They first need to take off and land autonomously. This leads to the use of kites with an inflatable structure that can be compact when stored but very rigid and light once in the air. For that matter, we studied the behavior of large inflatable structures under static and dynamic load. Then, the kite needs to stay in the air. However, it appears that under certain conditions, kites without active control tend to engage into large oscillations and eventually crash. Through wind tunnel experiments, we try to understand this flight behavior to find the conditions of stability.

  17. Weekly and Seasonal Trends in the Diurnal Variation of CO2 Mixing Ratio in Pasadena, CA

    NASA Astrophysics Data System (ADS)

    Newman, S.; Stolper, E. M.

    2009-12-01

    Diurnal variations in CO2 mixing ratio ([CO2]) in urban areas reflect changing proportions of biogenic and anthropogenic sources and changes in meteorological conditions (e.g., London, England: Rigby et al., 2008, Atm. Env. 42, 8943-8953). We have monitored [CO2] in Pasadena, CA almost continuously since 2001 using an infrared gas analyzer. In a typical day there is a low [CO2] plateau at about ~10 AM-4 PM (all times given as Pacific Standard Time) and a high [CO2] plateau at ~9 PM-3 AM, as observed previously for both CO (e.g., Riverside, CA: Gentner et al., 2009, Env. Sci. Tech. 43, 4247-4252) and CO2 (e.g., Vancouver, British Columbia, Canada: Reid and Steyn, 1997, Atm. Env. 31, 3101-3114; Phoenix, AZ: Idso et al., 2002, Atm. Env. 36, 1655-1660; Salt Lake City, UT: Pataki et al., 2007, Oecolog. 152, 307-322; London, England: Rigby et al., 2008). The midday low and nighttime high in [CO2] are probably due to draw-down by photosynthesis during daylight hours and respiration at night, accompanied by diurnal changes in the mixed-layer depth resulting from formation and destruction of a nocturnal temperature inversion layer (e.g., Reid and Steyn, 1997). The amplitude of the diurnal variation in Pasadena ranges from ~20 ppm in June to ~70 ppm in December. We typically observe a maximum in [CO2] at ~5-9 AM on weekday mornings. This peak is smaller on weekends, generally being smallest on Sundays. This morning [CO2] peak coincides with increased traffic on surface streets in Los Angeles due to weekday morning rush hour (Chinkin et al., 2003, J. Air Waste Mgmt. Assoc. 53, 829-843) it has also been observed by Reid and Steyn (1997) and Idso, et al. (2002 ) in Vancouver, BC, Canada, and Phoenix, AZ, respectively. There is no corresponding peak that can be associated with afternoon rush hour, perhaps because the time period of the afternoon commute is ill-defined in Pasadena and/or increased emissions from this time of day contribute to the evening increase in [CO2] along

  18. Solar Thermal Propulsion Concept

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Harnessing the Sun's energy through Solar Thermal Propulsion will propel vehicles through space by significantly reducing weight, complexity, and cost while boosting performance over current conventional upper stages. Another solar powered system, solar electric propulsion, demonstrates ion propulsion is suitable for long duration missions. Pictured is an artist's concept of space flight using solar thermal propulsion.

  19. 78 FR 78349 - Cities of Anaheim, Azusa, Banning, Colton, Pasadena, Riverside, CA v. Trans Bay Cable LLC; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Cities of Anaheim, Azusa, Banning, Colton, Pasadena, Riverside, CA v. Trans Bay Cable LLC; Notice of Complaint Take notice that on December 17, 2013, pursuant to sections 206 and 306 of the Federal Power Act (FPA);...

  20. Electromagnetic propulsion for spacecraft

    NASA Astrophysics Data System (ADS)

    Myers, Roger M.

    1993-09-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT), were developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters were flown in space, though only PPT's were used on operational satellites. The performance of operational PPT's is quite poor, providing only approximately 8 percent efficiency at approximately 1000 s specific impulse. However, laboratory PPT's yielding 34 percent efficiency at 2000 s specific impulse were extensively tested, and peak performance levels of 53 percent efficiency at 5170 s specific impulse were demonstrated. MPD thrusters were flown as experiments on the Japanese MS-T4 spacecraft and the Space Shuttle and were qualified for a flight in 1994. The flight MPD thrusters were pulsed, with a peak performance of 22 percent efficiency at 2500 s specific impulse using ammonia propellant. Laboratory MPD thrusters were demonstrated with up to 70 percent efficiency and 700 s specific impulse using lithium propellant. While the PIT thruster has never been flown, recent performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 to 8000 s. The fundamental operating principles, performance measurements, and system level design for the three types of electromagnetic thrusters are reviewed, and available data on flight tests are discussed for the PPT and MPD thrusters.

  1. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT), were developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters were flown in space, though only PPT's were used on operational satellites. The performance of operational PPT's is quite poor, providing only approximately 8 percent efficiency at approximately 1000 s specific impulse. However, laboratory PPT's yielding 34 percent efficiency at 2000 s specific impulse were extensively tested, and peak performance levels of 53 percent efficiency at 5170 s specific impulse were demonstrated. MPD thrusters were flown as experiments on the Japanese MS-T4 spacecraft and the Space Shuttle and were qualified for a flight in 1994. The flight MPD thrusters were pulsed, with a peak performance of 22 percent efficiency at 2500 s specific impulse using ammonia propellant. Laboratory MPD thrusters were demonstrated with up to 70 percent efficiency and 700 s specific impulse using lithium propellant. While the PIT thruster has never been flown, recent performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 to 8000 s. The fundamental operating principles, performance measurements, and system level design for the three types of electromagnetic thrusters are reviewed, and available data on flight tests are discussed for the PPT and MPD thrusters.

  2. Main Propulsion Test Article (MPTA)

    NASA Technical Reports Server (NTRS)

    Snoddy, Cynthia

    2010-01-01

    Scope: The Main Propulsion Test Article integrated the main propulsion subsystem with the clustered Space Shuttle Main Engines, the External Tank and associated GSE. The test program consisted of cryogenic tanking tests and short- and long duration static firings including gimbaling and throttling. The test program was conducted on the S1-C test stand (Position B-2) at the National Space Technology Laboratories (NSTL)/Stennis Space Center. 3 tanking tests and 20 hot fire tests conducted between December 21 1 1977 and December 17, 1980 Configuration: The main propulsion test article consisted of the three space shuttle main engines, flightweight external tank, flightweight aft fuselage, interface section and a boilerplate mid/fwd fuselage truss structure.

  3. Propulsion System Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Tai, Jimmy C. M.; McClure, Erin K.; Mavris, Dimitri N.; Burg, Cecile

    2002-01-01

    The Aerospace Systems Design Laboratory at the School of Aerospace Engineering in Georgia Institute of Technology has developed a core competency that enables propulsion technology managers to make technology investment decisions substantiated by propulsion and airframe technology system studies. This method assists the designer/manager in selecting appropriate technology concepts while accounting for the presence of risk and uncertainty as well as interactions between disciplines. This capability is incorporated into a single design simulation system that is described in this paper. This propulsion system design environment is created with a commercially available software called iSIGHT, which is a generic computational framework, and with analysis programs for engine cycle, engine flowpath, mission, and economic analyses. iSIGHT is used to integrate these analysis tools within a single computer platform and facilitate information transfer amongst the various codes. The resulting modeling and simulation (M&S) environment in conjunction with the response surface method provides the designer/decision-maker an analytical means to examine the entire design space from either a subsystem and/or system perspective. The results of this paper will enable managers to analytically play what-if games to gain insight in to the benefits (and/or degradation) of changing engine cycle design parameters. Furthermore, the propulsion design space will be explored probabilistically to show the feasibility and viability of the propulsion system integrated with a vehicle.

  4. JTEC panel report on space and transatmospheric propulsion technology

    NASA Technical Reports Server (NTRS)

    Shelton, Duane

    1990-01-01

    An assessment of Japan's current capabilities in the areas of space and transatmospheric propulsion is presented. The report focuses primarily upon Japan's programs in liquid rocket propulsion and in propulsion for spaceplanes and related transatmospheric areas. It also includes brief reference to Japan's solid rocket programs, as well as to supersonic air-breathing propulsion efforts that are just getting underway. The results are based upon the findings of a panel of U.S. engineers made up of individuals from academia, government, and industry, and are derived from a review of a broad array of the open literature, combined with visits to the primary propulsion laboratories and development agencies in Japan.

  5. OTV Propulsion Issues

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The statistical technology needs of aero-assist maneuvering, propulsion, and usage of cryogenic fluids were presented. Industry panels discussed the servicing of reusable space based vehicles and propulsion-vehicle interation.

  6. Beamed energy propulsion

    NASA Technical Reports Server (NTRS)

    Shoji, James M.

    1992-01-01

    Beamed energy concepts offer an alternative for an advanced propulsion system. The use of a remote power source reduces the weight of the propulsion system in flight and this, combined with the high performance, provides significant payload gains. Within the context of this study's baseline scenario, two beamed energy propulsion concepts are potentially attractive: solar thermal propulsion and laser thermal propulsion. The conceived beamed energy propulsion devices generally provide low thrust (tens of pounds to hundreds of pounds); therefore, they are typically suggested for cargo transportation. For the baseline scenario, these propulsion system can provide propulsion between the following nodes: (1) low Earth orbit to geosynchronous Earth orbit; (2) low Earth orbit to low lunar orbit; (3) low lunar orbit to low Mars orbit--only solar thermal; and (4) lunar surface to low lunar orbit--only laser thermal.

  7. Propulsion of nanowire diodes.

    PubMed

    Calvo-Marzal, Percy; Sattayasamitsathit, Sirilak; Balasubramanian, Shankar; Windmiller, Joshua R; Dao, Cuong; Wang, Joseph

    2010-03-14

    The propulsion of semiconductor diode nanowires under external AC electric field is described. Such fuel-free electric field-induced nanowire propulsion offers considerable promise for diverse technological applications. PMID:20177595

  8. Hybrid rocket propulsion

    NASA Technical Reports Server (NTRS)

    Holzman, Allen L.

    1993-01-01

    Topics addressed are: (1) comparison of the theoretical impulses; (2) comparison of the density-specific impulses; (3) general propulsion system features comparison; (4) hybrid systems, booster applications; and (5) hybrid systems, upper stage propulsion applications.

  9. Electrodynamic Tether Propulsion System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This picture is an artist's concept of an orbiting vehicle using the Electrodynamic Tethers Propulsion System. Relatively short electrodynamic tethers can use solar power to push against a planetary magnetic field to achieve propulsion without the expenditure of propellant.

  10. Martian Soil Ready for Robotic Laboratory Analysis

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander scooped up this Martian soil on the mission's 11th Martian day, or sol, after landing (June 5, 2008) as the first soil sample for delivery to the laboratory on the lander deck.

    The material includes a light-toned clod possibly from crusted surface of the ground, similar in appearance to clods observed near a foot of the lander.

    This approximately true-color view of the contents of the scoop on the Robotic Arm comes from combining separate images taken by the Robotic Arm Camera on Sol 11, using illumination by red, green and blue light-emitting diodes on the camera.

    The scoop loaded with this sample was poised over an open sample-delivery door of Thermal and Evolved-Gas Analyzer at the end of Sol 11, ready to be dumped into the instrument on the next sol.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Space station propulsion

    NASA Technical Reports Server (NTRS)

    Jones, Robert E.; Morren, W. Earl; Sovey, James S.; Tacina, Robert R.

    1987-01-01

    Two propulsion systems have been selected for the space station: gaseous H/O rockets for high thrust applications and the multipropellant resistojets for low thrust needs. These two thruster systems integrate very well with the fluid systems on the space station, utilizing waste fluids as their source of propellant. The H/O rocket will be fueled by electrolyzed water and the resistojets will use waste gases collected from the environmental control system and the various laboratories. The results are presented of experimental efforts with H/O and resistojet thrusters to determine their performance and life capability, as well as results of studies to determine the availability of water and waste gases.

  12. NASA spacecraft propulsion activities

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Tyburski, Timothy E.; Sankovic, John M.; Jankovsky, Robert S.; Reed, Brian D.; Schneider, Steven J.; Hamley, John A.; Patterson, Michael J.; Sovey, James S.

    1997-01-01

    The NASA's activities in the development of spacecraft propulsion systems are reviewed, with emphasis on program directions and recent progress made in this domain. The recent trends towards the use of smaller spacecraft and launch vehicles call for new onboard propulsion systems. The NASA's efforts are conducted within the framework of the onboard propulsion program. The research and development work carried out in relation to the different propulsion system technologies are considered: electromagnetic systems; electrostatic systems; electrothermal systems; bipropellant systems; and monopropellant systems.

  13. Antiproton catalyzed microfission/fusion propulsion

    NASA Technical Reports Server (NTRS)

    Chiang, Pi-Ren; Lewis, Raymond A.; Smith, Gerald A.; Newton, Richard; Dailey, James; Werthman, W. Lance; Chakrabarti, Suman

    1994-01-01

    Inertial confinement fusion (ICF) utilizing an antiproton catalyzed hybrid fission/fusion target is discussed as a potential energy source for interplanetary propulsion. A proof-of-principle experiment underway at Phillips Laboratory, Kirtland AFB and antiproton trapping experiments at CERN, Geneva, Switzerland, are presented. The ICAN propulsion concept is described and results of performance analyses are reviewed. Future work to further define the ICAN concept is outlined.

  14. European auxiliary propulsion, 1972

    NASA Technical Reports Server (NTRS)

    Holcomb, L. B.

    1972-01-01

    The chemical and electric auxiliary propulsion technology of the United Kingdom, France, and West Germany is discussed in detail, and the propulsion technology achievements of Italy, India, Japan, and Russia are reviewed. A comparison is presented of Shell 405 catalyst and a European spontaneous hydrazine catalyst called CNESRO I. Finally, conclusions are drawn regarding future trends in European auxiliary propulsion technology development.

  15. Directions in propulsion control

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.

    1990-01-01

    Discussed here is research at NASA Lewis in the area of propulsion controls as driven by trends in advanced aircraft. The objective of the Lewis program is to develop the technology for advanced reliable propulsion control systems and to integrate the propulsion control with the flight control for optimal full-system control.

  16. Advanced Propulsion Physics Lab: Eagleworks Investigations

    NASA Technical Reports Server (NTRS)

    Scogin, Tyler

    2014-01-01

    Eagleworks Laboratory is an advanced propulsions physics laboratory with two primary investigations currently underway. The first is a Quantum Vacuum Plasma Thruster (QVPT or Q-thrusters), an advanced electric propulsion technology in the development and demonstration phase. The second investigation is in Warp Field Interferometry (WFI). This is an investigation of Dr. Harold "Sonny" White's theoretical physics models for warp field equations using optical experiments in the Electro Optical laboratory (EOL) at Johnson Space Center. These investigations are pursuing technology necessary to enable human exploration of the solar system and beyond.

  17. Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2003-01-01

    This paper presents viewgraphs on Solar Thermal Propulsion (STP). Some of the topics include: 1) Ways to use Solar Energy for Propulsion; 2) Solar (fusion) Energy; 3) Operation in Orbit; 4) Propulsion Concepts; 5) Critical Equations; 6) Power Efficiency; 7) Major STP Projects; 8) Types of STP Engines; 9) Solar Thermal Propulsion Direct Gain Assembly; 10) Specific Impulse; 11) Thrust; 12) Temperature Distribution; 13) Pressure Loss; 14) Transient Startup; 15) Axial Heat Input; 16) Direct Gain Engine Design; 17) Direct Gain Engine Fabrication; 18) Solar Thermal Propulsion Direct Gain Components; 19) Solar Thermal Test Facility; and 20) Checkout Results.

  18. Identification of propulsion systems

    NASA Technical Reports Server (NTRS)

    Merrill, Walter; Guo, Ten-Huei; Duyar, Ahmet

    1991-01-01

    This paper presents a tutorial on the use of model identification techniques for the identification of propulsion system models. These models are important for control design, simulation, parameter estimation, and fault detection. Propulsion system identification is defined in the context of the classical description of identification as a four step process that is unique because of special considerations of data and error sources. Propulsion system models are described along with the dependence of system operation on the environment. Propulsion system simulation approaches are discussed as well as approaches to propulsion system identification with examples for both air breathing and rocket systems.

  19. NASA electric propulsion technology

    NASA Technical Reports Server (NTRS)

    Berkopec, F. D.; Stone, J. R.; Aston, G.

    1985-01-01

    It is pointed out that the requirements for future electric propulsion cover an extremely large range of technical and programmatic characteristics. A NASA program is to provide options for the many potential mission applications, taking into account work on electrostatic, electromagnetic, and electrothermal propulsion systems. The present paper is concerned with developments regarding the three classes of electric propulsion. Studies concerning electrostatic propulsion are concerned with ion propulsion for primary propulsion for planetary and earth-orbit transfer vehicles, stationkeeping for geosynchronous spacecraft, and ion thruster systems. In connection with investigations related to electromagnetic propulsion, attention is given to electromagnetic launchers, the Hall current thruster, and magnetoplasmadynamic thrusters. In a discussion of electrothermal developments, space station resistojets are considered along with high performance resistojets, arcjets, and a laser thruster.

  20. Jet Propulsion Laboratory/NASA Lewis Research Center space qualified hybrid high temperature superconducting/semiconducting 7.4 GHz low-noise downconverter for NRL HTSSE-II program

    SciTech Connect

    Javadi, H.H.S.; Bowen, J.G.; Rascoe, D.L.; Romanofsky, R.R.; Bhasin, K.B.; Chorey, C.M.

    1996-07-01

    A deep space satellite downconverter receiver was proposed by Jet Propulsion Laboratory (JPL) and NASA Lewis Research Center (LeRC) for the Naval Research Laboratory`s (NRL) high temperature superconductivity space experiment, phase-II (HTSSE-II) program. Space qualified low-noise cryogenic downconverter receivers utilizing thin-film high temperature superconducting (HTS) passive circuitry and semiconductor active devices were developed and delivered to NRL. The downconverter consists of an HTS preselect filter, a cryogenic low-noise amplifier, a cryogenic mixer, and a cryogenic oscillator with an HTS resonator. HTS components were inserted as the front-end filter and the local oscillator resonator for their superior 77 K performance over the conventional components. The semiconducting low noise amplifier also benefited from cooling to 77 K. The mixer was designed specifically for cryogenic applications and provided low conversion loss and low power consumption. In addition to an engineering model, two space qualified units (qualification, flight) were built and delivered to NRL. Manufacturing, integration and test of the space qualified downconverters adhered to the requirements of JPL class-D space instruments and partially to MIL-STD-883D specifications. The qualification unit has {approximately}50 K system noise temperature which is a factor of three better than a conventional downconverter at room temperature.

  1. Space Propulsion Technology Program Overview

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1991-01-01

    The topics presented are covered in viewgraph form. Focused program elements are: (1) transportation systems, which include earth-to-orbit propulsion, commercial vehicle propulsion, auxiliary propulsion, advanced cryogenic engines, cryogenic fluid systems, nuclear thermal propulsion, and nuclear electric propulsion; (2) space platforms, which include spacecraft on-board propulsion, and station keeping propulsion; and (3) technology flight experiments, which include cryogenic orbital N2 experiment (CONE), SEPS flight experiment, and cryogenic orbital H2 experiment (COHE).

  2. NASA Propulsion Engineering Research Center, volume 1

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Over the past year, the Propulsion Engineering Research Center at The Pennsylvania State University continued its progress toward meeting the goals of NASA's University Space Engineering Research Centers (USERC) program. The USERC program was initiated in 1988 by the Office of Aeronautics and Space Technology to provide an invigorating force to drive technology advancements in the U.S. space industry. The Propulsion Center's role in this effort is to provide a fundamental basis from which the technology advances in propulsion can be derived. To fulfill this role, an integrated program was developed that focuses research efforts on key technical areas, provides students with a broad education in traditional propulsion-related science and engineering disciplines, and provides minority and other under-represented students with opportunities to take their first step toward professional careers in propulsion engineering. The program is made efficient by incorporating government propulsion laboratories and the U.S. propulsion industry into the program through extensive interactions and research involvement. The Center is comprised of faculty, professional staff, and graduate and undergraduate students working on a broad spectrum of research issues related to propulsion. The Center's research focus encompasses both current and advanced propulsion concepts for space transportation, with a research emphasis on liquid propellant rocket engines. The liquid rocket engine research includes programs in combustion and turbomachinery. Other space transportation modes that are being addressed include anti-matter, electric, nuclear, and solid propellant propulsion. Outside funding supports a significant fraction of Center research, with the major portion of the basic USERC grant being used for graduate student support and recruitment. The remainder of the USERC funds are used to support programs to increase minority student enrollment in engineering, to maintain Center

  3. NASA Propulsion Engineering Research Center, volume 1

    NASA Astrophysics Data System (ADS)

    1993-11-01

    Over the past year, the Propulsion Engineering Research Center at The Pennsylvania State University continued its progress toward meeting the goals of NASA's University Space Engineering Research Centers (USERC) program. The USERC program was initiated in 1988 by the Office of Aeronautics and Space Technology to provide an invigorating force to drive technology advancements in the U.S. space industry. The Propulsion Center's role in this effort is to provide a fundamental basis from which the technology advances in propulsion can be derived. To fulfill this role, an integrated program was developed that focuses research efforts on key technical areas, provides students with a broad education in traditional propulsion-related science and engineering disciplines, and provides minority and other under-represented students with opportunities to take their first step toward professional careers in propulsion engineering. The program is made efficient by incorporating government propulsion laboratories and the U.S. propulsion industry into the program through extensive interactions and research involvement. The Center is comprised of faculty, professional staff, and graduate and undergraduate students working on a broad spectrum of research issues related to propulsion. The Center's research focus encompasses both current and advanced propulsion concepts for space transportation, with a research emphasis on liquid propellant rocket engines. The liquid rocket engine research includes programs in combustion and turbomachinery. Other space transportation modes that are being addressed include anti-matter, electric, nuclear, and solid propellant propulsion. Outside funding supports a significant fraction of Center research, with the major portion of the basic USERC grant being used for graduate student support and recruitment. The remainder of the USERC funds are used to support programs to increase minority student enrollment in engineering, to maintain Center

  4. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Parker, J. Morgan

    2015-01-01

    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. The ion propulsion system must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system being co-developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS0 thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, the status of the NASA in-house thruster and power processing activity, and an update on flight hardware.

  5. Nuclear propulsion for orbital transfer

    SciTech Connect

    Beale, G.A.; Lawrence, T.J. )

    1989-06-01

    The state of the art in nuclear propulsion for orbital transfer is discussed. Cryogenic propulsion, electric propulsion, solar-thermal propulsion and direct nuclear propulsion are examined in this context. New technologies with exceptional promise are addressed, emphasizing the particle test bed nuclear engine.

  6. Expendable launch vehicle propulsion

    NASA Technical Reports Server (NTRS)

    Fuller, Paul N.

    1991-01-01

    The current status is reviewed of the U.S. Expendable Launch Vehicle (ELV) fleet, the international competition, and the propulsion technology of both domestic and foreign ELVs. The ELV propulsion technology areas where research, development, and demonstration are most needed are identified. These propulsion technology recommendations are based on the work performed by the Commercial Space Transportation Advisory Committee (COMSTAC), an industry panel established by the Dept. of Transportation.

  7. Advanced space propulsion concepts

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1993-01-01

    The NASA Lewis Research Center has been actively involved in the evaluation and development of advanced spacecraft propulsion. Recent program elements have included high energy density propellants, electrode less plasma thruster concepts, and low power laser propulsion technology. A robust advanced technology program is necessary to develop new, cost-effective methods of spacecraft propulsion, and to continue to push the boundaries of human knowledge and technology.

  8. Overview of electric propulsion

    NASA Astrophysics Data System (ADS)

    Daniłko, Dariusz

    2014-11-01

    Space Electric Rocket Test (SERT 1) was the first experiment in which electric propulsion device was sent into space. The present year marks the 50th anniversary of that particular mission that opened the door for the application of electric propulsion on board spacecrafts. We present an overview of existing electric propulsion technology along with the description of the most successful missions that followed the success of the SERT 1mission.

  9. Field resonance propulsion concept

    NASA Technical Reports Server (NTRS)

    Holt, A. C.

    1979-01-01

    A propulsion concept was developed based on a proposed resonance between coherent, pulsed electromagnetic wave forms, and gravitational wave forms (or space-time metrics). Using this concept a spacecraft propulsion system potentially capable of galactic and intergalactic travel without prohibitive travel times was designed. The propulsion system utilizes recent research associated with magnetic field line merging, hydromagnetic wave effects, free-electron lasers, laser generation of megagauss fields, and special structural and containment metals. The research required to determine potential, field resonance characteristics and to evaluate various aspects of the spacecraft propulsion design is described.

  10. Aeroshell for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from July 2008 shows the aeroshell for NASA's Mars Science Laboratory while it was being worked on by spacecraft technicians at Lockheed Martin Space Systems Company near Denver.

    This hardware was delivered in early fall of 2008 to NASA's Jet Propulsion Laboratory, Pasadena, Calif., where the Mars Science Laboratory spacecraft is being assembled and tested.

    The aeroshell encapsulates the mission's rover and descent stage during the journey from Earth to Mars and shields them from the intense heat of friction with that upper atmosphere during the initial portion of descent.

    The aeroshell has two main parts: the backshell, which is on top in this image and during the descent, and the heat shield, on the bottom. The heat shield in this image is an engineering unit for testing. The heat shield to be used in flight will be substituted later. The heat shield has a diameter of about 15 feet. For comparison, the heat shields for NASA's Mars Exploraton Rovers Spirit and Opportunity were 8.5 feet and the heat shields for the Apollo capsules that protected astronauts returning to Earth from the moon were just under 13 feet.

    In addition to protecting the Mars Science Laboratory rover, the backshell provides structural support for the descent stage's parachute and sky crane, a system that will lower the rover to a soft landing on the surface of Mars. The backshell for the Mars Science Laboratory is made of an aluminum honeycomb structure sandwiched between graphite-epoxy face sheets. It is covered with a thermal protection system composed of a cork/silicone super light ablator material that originated with the Viking landers of the 1970s. This ablator material has been used on the heat shields of all NASA Mars landers in the past, but this mission is the first Mars mission using it on the backshell.

    The heat shield for Mars Science Laboratory's flight will use tiles made of phenolic impregnated carbon ablator. The engineering unit in

  11. TECHNOLOGICAL INNOVATION AND GOOD TEACHING, MORE EFFECTIVE INSTRUCTION THROUGH TECHNOLOGY. PASADENA SCHOOLS IN ACTION.

    ERIC Educational Resources Information Center

    HORNBECK, RALPH W.

    LISTENING-VIEWING CENTERS ARE BEING USED IN SCHOOLS THROUGHOUT THE UNITED STATES. THEY ARE EFFECTIVE IN IMPROVING INSTRUCTION AND INCREASING TEACHER EFFICIENCY. LANGUAGE LABORATORIES MEET THE DEMAND FOR PERSON-TO-PERSON COMMUNICATIONS. THEY PERMIT ALL STUDENTS TO PARTICIPATE AT THE SAME TIME WITHOUT INTERFERENCE FROM OTHERS, THUS THEY INCREASE…

  12. Optimal propulsive efficiency of vortex enhanced propulsion

    NASA Astrophysics Data System (ADS)

    Whittlesey, Robert; Dabiri, John

    2013-11-01

    The formation of coherent vortex rings in the jet wake of a vehicle has been shown to increase the propulsive efficiency of self-propelled vehicles. However, the effect of varying vortex ring formation characteristics has not been explored for vehicles at Reynolds numbers comparable to autonomous or manned submersible vehicles. In this work, we considered a range of vortex ring formation characteristics and found a peak in the propulsive efficiency where the vortex rings generated are coincident with the onset of vortex ring pinch off. This peak corresponds to a 22% increase in the propulsive efficiency for the vortex-enhanced wake compared to a steady jet. We gratefully acknowledge the support of the Office of Naval Research Grants N000140810918 and N000141010137.

  13. NSTAR Ion Propulsion System Power Electronics

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) program, managed by the Jet Propulsion Laboratory (JPL), is currently developing a high performance, simplified ion propulsion system. This propulsion system, which is throttleable from 0.5- to 2.3-kW output power to the thruster, targets primary propulsion applications for planetary and Earth-space missions and has been baselined as the primary propulsion system for the first New Millennium spacecraft. The NASA Lewis Research Center is responsible for the design and delivery of a breadboard power processing unit (PPU) and an engineering model thruster (EMT) for this system and will manage the contract for the delivery of the flight hardware to JPL. The PPU requirements, which dictate a mass of less than 12 kg with an efficiency of 0.9 or greater at a 2.3-kW output, forced a departure from the state-of-the-art ion thruster PPU design. Several innovations--including dual-use topologies, simplified thruster control, and the use of ferrite magnetic materials--were necessary to meet these requirements.

  14. Electric Propulsion Apparatus

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor)

    2013-01-01

    An electric propulsion machine includes an ion thruster having an annular discharge chamber housing an anode having a large surface area. The ion thruster includes flat annular ion optics with a small span to gap ratio. Optionally, a second electric propulsion thruster may be disposed in a cylindrical space disposed within an interior of the annulus.

  15. Nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1991-01-01

    This document is presented in viewgraph form, and the topics covered include the following: (1) the direct fission-thermal propulsion process; (2) mission applications of direct fission-thermal propulsion; (3) nuclear engines for rocket vehicles; (4) manned mars landers; and (5) particle bed reactor design.

  16. Advanced Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Alexander, Leslie, Jr.

    2006-01-01

    Advanced Chemical Propulsion (ACP) provides near-term incremental improvements in propulsion system performance and/or cost. It is an evolutionary approach to technology development that produces useful products along the way to meet increasingly more demanding mission requirements while focusing on improving payload mass fraction to yield greater science capability. Current activities are focused on two areas: chemical propulsion component, subsystem, and manufacturing technologies that offer measurable system level benefits; and the evaluation of high-energy storable propellants with enhanced performance for in-space application. To prioritize candidate propulsion technology alternatives, a variety of propulsion/mission analyses and trades have been conducted for SMD missions to yield sufficient data for investment planning. They include: the Advanced Chemical Propulsion Assessment; an Advanced Chemical Propulsion System Model; a LOx-LH2 small pumps conceptual design; a space storables propellant study; a spacecraft cryogenic propulsion study; an advanced pressurization and mixture ratio control study; and a pump-fed vs. pressure-fed study.

  17. Laser Propulsion - Quo Vadis

    SciTech Connect

    Bohn, Willy L.

    2008-04-28

    First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient and specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community.

  18. Electric propulsion cost estimation

    NASA Technical Reports Server (NTRS)

    Palaszewski, B. A.

    1985-01-01

    A parametric cost model for mercury ion propulsion modules is presented. A detailed work breakdown structure is included. Cost estimating relationships were developed for the individual subsystems and the nonhardware items (systems engineering, software, etc.). Solar array and power processor unit (PPU) costs are the significant cost drivers. Simplification of both of these subsystems through applications of advanced technology (lightweight solar arrays and high-efficiency, self-radiating PPUs) can reduce costs. Comparison of the performance and cost of several chemical propulsion systems with the Hg ion module are also presented. For outer-planet missions, advanced solar electric propulsion (ASEP) trip times and O2/H2 propulsion trip times are comparable. A three-year trip time savings over the baselined NTO/MMH propulsion system is possible with ASEP.

  19. Laser space propulsion overview

    NASA Astrophysics Data System (ADS)

    Phipps, Claude; Luke, James; Helgeson, Wesley

    2007-05-01

    In this paper, we review the history of laser space propulsion from its earliest theoretical conceptions to modern practical applicatons. Applications begin with the "Lightcraft" flights of Myrabo and include practical thrusters for satellites now completing development as well as proposals for space debris removal and direct launch of payloads into orbit. We consider laser space propulsion in the most general sense, in which laser radiation is used to propel a vehicle in space. In this sense, the topic includes early proposals for pure photon propulsion, laser ablation propulsion, as well as propulsion using lasers to detonate a gas, expel a liquid, heat and expel a gas, or even to propagate power to a remote conventional electric thruster.

  20. The USAF Electronic Propulsion Research Program

    NASA Astrophysics Data System (ADS)

    Spores, Ronald A.; Birkan, Mitat

    2002-06-01

    All overview of current electric propulsion research and development efforts within the United States Air Force is presented. The Air Force supports electric propulsion primarily through the Air Force Office of Scientific Research (AFOSR), the Air Force Research Laboratory (AFRL) and the AFOSR european Office of Aerospace Research and Development (BOARD). Overall direction for the programs comes from Air Force Space Command (AFSPC), with AFRL mission analysis used to define specific technological advances needed to meet AFSPC mission priorities. AFOSR funds basic research in electric propulsion throughout the country in both academia and industry. The AFRL Propulsion Directorate conducts electric propulsion efforts in basic research, engineering development, and space flight experiments. BOARD supports research at foreign laboratories that feeds directly into AFOSR and AFRL research programs. Current research efforts fall into 3 main categories defined loosely by the thruster power level. All three agencies are conducting research at the low-power regime (P less than 200 W), in support of emerging USAF microsatellite missions. Efforts in the mid-power range (500 W to 5 kW) is being shifted from research and development to thruster/spacecraft integration issues. The high power regime (P greater than 30 kW) is realizing increased emphasis.

  1. An antiproton driver for ICF propulsion

    NASA Technical Reports Server (NTRS)

    Chiang, Pi-Ren; Lewis, R. A.; Smith, G. A.; Gazze, C.; Higman, K.; Newton, R.; Chiaverini, M.; Dailey, J.; Surratt, M.; Werthman, W. Lance

    1993-01-01

    Inertial confinement fusion (ICF) utilizing an anitprotoncatalyzed target is discussed as a possible source of propulsion for rapid interplanetary manned space missions. The relevant compression, ignition, and thrust mechanisms are presented. Progress on an experiment presently in progress at the Phillips Laboratory, Kirtland AFB, NM to demonstrate proof-of-principle is reviewed.

  2. Design and Development of the MSL Descent Stage Propulsion System

    NASA Technical Reports Server (NTRS)

    Weiss, Jeffrey M.; Guernsey, Carl S.

    2013-01-01

    On August 5, 2012, The Mars Science Laboratory mission successfully landed the largest interplanetary rover ever built, Curiosity, on the surface of Mars. The Entry, Descent, and Landing (EDL) phase of this mission was by far the most complex landing ever attempted on a planetary body. The Descent Stage Propulsion System played an integral and critical role during Curiosity's EDL. The Descent Stage Propulsion System was a one of a kind hydrazine propulsion system designed specifically for the EDL phase of the MSL mission. It was designed, built, and tested at the Jet Propulsion Laboratory (JPL). The purpose of this paper is to present an overview of the design and development of the MSL Descent Stage Propulsion System. Driving requirements, system design, component selection, operational sequence of the system at Mars, new developments, and key challenges will be discussed.

  3. MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION EXPERIMENT NO. 1. INL NEGATIVE NO. 6510. Unknown Photographer, 9/29/1959 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. Distributed Propulsion Vehicles

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Dae

    2010-01-01

    Since the introduction of large jet-powered transport aircraft, the majority of these vehicles have been designed by placing thrust-generating engines either under the wings or on the fuselage to minimize aerodynamic interactions on the vehicle operation. However, advances in computational and experimental tools along with new technologies in materials, structures, and aircraft controls, etc. are enabling a high degree of integration of the airframe and propulsion system in aircraft design. The National Aeronautics and Space Administration (NASA) has been investigating a number of revolutionary distributed propulsion vehicle concepts to increase aircraft performance. The concept of distributed propulsion is to fully integrate a propulsion system within an airframe such that the aircraft takes full synergistic benefits of coupling of airframe aerodynamics and the propulsion thrust stream by distributing thrust using many propulsors on the airframe. Some of the concepts are based on the use of distributed jet flaps, distributed small multiple engines, gas-driven multi-fans, mechanically driven multifans, cross-flow fans, and electric fans driven by turboelectric generators. This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA s Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft-related fuel burn, emissions, and noise by the year 2030 to 2035.

  5. High Speed Research: Propulsion Project Accomplishments

    NASA Technical Reports Server (NTRS)

    Shaw, Robert J.

    1998-01-01

    This past year has been one of great accomplishment for the propulsion element of NASA's High Speed Research (HSR) Program. The HSR Program is a NASA/industry partnership to develop the high-risk/high-payoff airframe and propulsion technologies applicable to a second-generation supersonic commercial transport, or High Speed Civil Transport (HSCT). The propulsion element, which also involves industry partners, is managed by the NASA Lewis Research Center. These technologies will contribute greatly to U.S. industry's ability to make an informed product launch decision for an HSCT vehicle. Specific NASA Lewis accomplishments in 1997 include: 1. Small-scale combustor sector tests conducted in Lewis' Engine Research Building contributed to the evolution of approaches to developing a combustor with ultralow NOx emissions. 2. Components were tested in Lewis' CE-9 facility (in Lewis' Engine Research Building) to assess the performance of candidate ceramic matrix composite (CMC) materials in this realistic combustion environment. Test results were promising, and acceptable levels of structural durability were demonstrated for the ceramic matrix composite material tested. Ceramic matrix composites continue to show great promise for use in HSCT combustor liners. 3. Engine emissions tests in Lewis' Propulsion Systems Laboratory provided insight into other classes of emissions (e.g., particulates and aerosols) which will be important to control in HSCT propulsion system designs. 4. Small-scale nozzle tests conducted in Lewis' Aero-Acoustic Propulsion Laboratory are contributing to the design of a low-noise, high-performance mixer/ejector nozzle configuration for HSCT engines. Over 18,000 hours of durability testing were completed in Lewis' materials laboratories to evaluate superalloy and g-titanium aluminide performance for HSCT nozzle applications. A two-dimensional supersonic inlet concept was tested in Lewis' 10- by 10-Foot Supersonic Wind Tunnel. The extensive database and

  6. Advanced Propulsion Research Interest in Materials for Propulsion

    NASA Technical Reports Server (NTRS)

    Cole, John

    2003-01-01

    This viewgraph presentation provides an overview of material science and technology in the area of propulsion energetics. The authors note that conventional propulsion systems are near peak performance and further refinements in manufacturing, engineering design and materials will only provide incremental increases in performance. Energetic propulsion technologies could potential solve the problems of energy storage density and energy-to-thrust conversion efficiency. Topics considered include: the limits of thermal propulsion systems, the need for energetic propulsion research, emerging energetic propulsion technologies, materials research needed for advanced propulsion, and potential research opportunities.

  7. Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.

  8. Space station propulsion technology

    NASA Technical Reports Server (NTRS)

    Norman, A. M.; Briley, G. L.; Evans, S. A.

    1987-01-01

    The objectives of this program are to provide a demonstration of hydrogen/oxygen propulsion technology readiness for the initial operational capability (IOC) space station application, specifically gaseous hydrogen/oxygen and warm hydrogen thruster concepts, and to establish a means for evolving from the IOC space station propulsion system (SSPS) to that required to support and interface with advanced station functions. These objectives were met by analytical studies and by furnishing a propulsion test bed to the Marshall Space Flight Center for testing.

  9. Ion propulsion cost effectivity

    NASA Technical Reports Server (NTRS)

    Zafran, S.; Biess, J. J.

    1978-01-01

    Ion propulsion modules employing 8-cm thrusters and 30-cm thrusters were studied for Multimission Modular Spacecraft (MMS) applications. Recurring and nonrecurring cost elements were generated for these modules. As a result, ion propulsion cost drivers were identified to be Shuttle charges, solar array, power processing, and thruster costs. Cost effective design approaches included short length module configurations, array power sharing, operation at reduced thruster input power, simplified power processing units, and power processor output switching. The MMS mission model employed indicated that nonrecurring costs have to be shared with other programs unless the mission model grows. Extended performance missions exhibited the greatest benefits when compared with monopropellant hydrazine propulsion.

  10. Solar Thermal Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Sercel, J. C.

    1986-01-01

    Paper analyzes potential of solar thermal rockets as means of propulsion for planetary spacecraft. Solar thermal rocket uses concentrated Sunlight to heat working fluid expelled through nozzle to produce thrust.

  11. Space propulsion technology overview

    NASA Technical Reports Server (NTRS)

    Pelouch, J. J., Jr.

    1979-01-01

    Chemical and electric propulsion technologies for operations beyond the shuttle's orbit with focus on future mission needs and economic effectiveness is discussed. The adequacy of the existing propulsion state-of-the-art, barriers to its utilization, benefit of technology advances, and the prognosis for advancement are the themes of the discussion. Low-thrust propulsion for large space systems is cited as a new technology with particularly high benefit. It is concluded that the shuttle's presence for at least two decades is a legitimate basis for new propulsion technology, but that this technology must be predicted on an awareness of mission requirements, economic factors, influences of other technologies, and real constraints on its utilization.

  12. Space propulsion technology overview

    NASA Technical Reports Server (NTRS)

    Pelouch, J. J., Jr.

    1979-01-01

    This paper discusses Shuttle-era, chemical and electric propulsion technologies for operations beyond the Shuttle's orbit with focus on future mission needs and economic effectiveness. The adequacy of the existing propulsion state-of-the-art, barriers to its utilization, benefit of technology advances, and the prognosis for advancement are the themes of the discussion. Low-thrust propulsion for large space systems is cited as a new technology with particularly high benefit. It is concluded that the Shuttle's presence for at least two decades is a legitimate basis for new propulsion technology, but that this technology must be predicated on an awareness of mission requirements, economic factors, influences of other technologies, and real constraints on its utilization.

  13. Solar Electric Propulsion (SEP)

    NASA Video Gallery

    Future Human Exploration requires high power solar electric propulsion vehicles to move cargo and humans beyond Low Earth Orbit, which requires large light weight arrays, high power processing, and...

  14. Propulsion technology discipline

    NASA Technical Reports Server (NTRS)

    Jones, Lee W.

    1990-01-01

    Viewgraphs on propulsion technology discipline for Space Station Freedom are presented. Topics covered include: water electrolysis O2/H2 system; hydrazine system advancements; common technology; fluids disposal; and storable bipropellant system.

  15. Nuclear Thermal Propulsion (NTP)

    NASA Video Gallery

    NASA's history with nuclear thermal propulsion (NTP) technology goes back to the earliest days of the Agency. The Manned Lunar Rover Vehicle and the Nuclear Engine for Rocket Vehicle Applications p...

  16. Propulsive Reaction Control System Model

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul; Phan, Linh H.; Serricchio, Frederick; San Martin, Alejandro M.

    2011-01-01

    This software models a propulsive reaction control system (RCS) for guidance, navigation, and control simulation purposes. The model includes the drive electronics, the electromechanical valve dynamics, the combustion dynamics, and thrust. This innovation follows the Mars Science Laboratory entry reaction control system design, and has been created to meet the Mars Science Laboratory (MSL) entry, descent, and landing simulation needs. It has been built to be plug-and-play on multiple MSL testbeds [analysis, Monte Carlo, flight software development, hardware-in-the-loop, and ATLO (assembly, test and launch operations) testbeds]. This RCS model is a C language program. It contains two main functions: the RCS electronics model function that models the RCS FPGA (field-programmable-gate-array) processing and commanding of the RCS valve, and the RCS dynamic model function that models the valve and combustion dynamics. In addition, this software provides support functions to initialize the model states, set parameters, access model telemetry, and access calculated thruster forces.

  17. Mission applications of electric propulsion

    NASA Technical Reports Server (NTRS)

    Atkins, K. L.

    1974-01-01

    This paper reviews the mission applications of electric propulsion. The energy requirements of candidate high-energy missions gaining in NASA priority are used to highlight the potential of electric propulsion. Mission-propulsion interfaces are examined to point out differences between chemical and electric applications. Brief comparisons between ballistic requirements and capabilities and those of electric propulsion show that electric propulsion is presently the most practical and perhaps the only technology which can accomplish missions with these energy requirements.

  18. Advanced propulsion on a shoestring

    SciTech Connect

    Lerner, E.J.

    1990-05-01

    Consideration is given to propulsion concepts under study by NASA Advanced Propulsion Research Program. These concepts include fusion, antimatter-matter annihilation, microwave electrothermal, and electron cyclotron resonance propulsion. Results from programs to develop fusion technologies are reviewed, including compact fusion devices and inertial confinement experiments. Problems concerning both antimatter and fusion propulsion concepts are examined and the economic issues related to propulsion research are discussed.

  19. The NASA-JPL advanced propulsion program

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1994-01-01

    The NASA Advanced Propulsion Concepts (APC) program at the Jet Propulsion Laboratory (JPL) consists of two main areas: The first involves cooperative modeling and research activities between JPL and various universities and industry; the second involves research at universities and industry that is directly supported by JPL. The cooperative research program consists of mission studies, research and development of ion engine technology using C-60 (Buckminsterfullerene) propellant, and research and development of lithium-propellant Lorentz-force accelerator (LFA) engine technology. The university/industry- supported research includes research (modeling and proof-of-concept experiments) in advanced, long-life electric propulsion, and in fusion propulsion. These propulsion concepts were selected primarily to cover a range of applications from near-term to far-term missions. For example, the long-lived pulsed-xenon thruster research that JPL is supporting at Princeton University addresses the near-term need for efficient, long-life attitude control and station-keeping propulsion for Earth-orbiting spacecraft. The C-60-propellant ion engine has the potential for good efficiency in a relatively low specific impulse (Isp) range (10,000 - 30,000 m/s) that is optimum for relatively fast (less than 100 day) cis-lunar (LEO/GEO/Lunar) missions employing near-term, high-specific mass electric propulsion vehicles. Research and modeling on the C-60-ion engine are currently being performed by JPL (engine demonstration), Caltech (C-60 properties), MIT (plume modeling), and USC (diagnostics). The Li-propellant LFA engine also has good efficiency in the modest Isp range (40,000 - 50,000 m/s) that is optimum for near-to-mid-term megawatt-class solar- and nuclear-electric propulsion vehicles used for Mars missions transporting cargo (in support of a piloted mission). Research and modeling on the Li-LFA engine are currently being performed by JPL (cathode development), Moscow Aviation

  20. Electric propulsion technology

    NASA Technical Reports Server (NTRS)

    Finke, R. C.

    1980-01-01

    The advanced electric propulsion program is directed towards lowering the specific impulse and increasing the thrust per unit of ion thruster systems. In addition, electrothermal and electromagnetic propulsion technologies are being developed to attempt to fill the gap between the conventional ion thruster and chemical rocket systems. Most of these new concepts are exagenous and are represented by rail accelerators, ablative Teflon thrusters, MPD arcs, Free Radicals, etc. Endogenous systems such as metallic hydrogen offer great promise and are also being pursued.

  1. Advanced propulsion concepts

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1991-01-01

    A variety of Advanced Propulsion Concepts (APC) is discussed. The focus is on those concepts that are sufficiently near-term that they could be developed for the Space Exploration Initiative. High-power (multi-megawatt) electric propulsion, solar sails, tethers, and extraterrestrial resource utilization concepts are discussed. A summary of these concepts and some general conclusions on their technology development needs are presented.

  2. Vehicle propulsion system

    SciTech Connect

    Ridgway, S.L.

    1981-11-17

    A hybrid vehicle propulsion system is disclosed which utilizes an internal combustion engine, an afterburner, and a steam engine in combination for improved efficiency and reduced emission of pollutants. The afterburner is provided to reduce the level of pollutants emitted and to increase the temperature of the exhaust gases from the internal combustion engine. The heat from the exhaust gases, together with the heat removed from the internal combustion cylinders, is then utilized in the steam engine to provide additional propulsion.

  3. Electric propulsion - Now

    NASA Technical Reports Server (NTRS)

    Gerpheide, J. H.

    1974-01-01

    The state of the art of electric propulsion technology is discussed with a review of the many difficult engineering problems which must be resolved before the incorporation of electric propulsion in space missions. Interferences with the spacecraft and its scientific instrumentation, conducted and radiated electromagnetic interferences during the switching and processing of large electrical loads, and mercury and other eroded materials deposition on the spacecraft are indicated among the engineering and design challenges to be overcome and resolved.

  4. Transonic airframe propulsion integration

    NASA Technical Reports Server (NTRS)

    Coltrin, Robert E.; Sanders, Bobby W.; Bencze, Daniel P.

    1992-01-01

    This chart shows the time line for HSR propulsion/airframe integration program. HSR Phase 1 efforts are underway in both propulsion and aerodynamics. The propulsion efforts focus on cycles, inlets combustors and nozzles that will be required to reduce nitrogen oxide (NOX) at cruise and noise at takeoff and landing to acceptable levels. The aerodynamic efforts concentrate on concepts that will reduce sonic booms and increase the lift/drag (L/D) ratio for the aircraft. The Phase 2 critical propulsion component technology program will focus on large scale demonstrators of the inlet, fan, combustor, and nozzle. The hardware developed here will feed into the propulsion system program which will demonstrate overall system technology readiness, particularly in the takeoff and supersonic cruise speed ranges. The Phase 2 aerodynamic performance and vehicle integration program will provide a validated data base for advanced airframe/control/integration concepts over the full HSR speed range. The results of this program will also feed into the propulsion system demonstration program, particularly in the critical transonic arena.

  5. Solar Thermal Propulsion Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This image, taken during the test, depicts the light being concentrated into the focal point inside the vacuum chamber. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  6. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schmidt, George R.; Santarius, John F.; Turchi, Peter J.; Siemon, Richard E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The need for fusion propulsion for interplanetary flights is discussed. For a propulsion system, there are three important system attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For efficient and affordable human exploration of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion obviously cannot meet the requirement in propellant exhaust velocity. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the fission energy to heat a low atomic weight propellant produces propellant velocity of the order of 10 kinds. Alternatively the fission energy can be converted into electricity that is used to accelerate particles to high exhaust velocity. However, the necessary power conversion and conditioning equipment greatly increases the mass of the propulsion system. Fundamental considerations in waste heat rejection and power conditioning in a fission electric propulsion system place a limit on its jet specific power to the order of about 0.2 kW/kg. If fusion can be developed for propulsion, it appears to have the best of all worlds - it can provide the largest absolute amount of energy, the propellant exhaust velocity (> 100 km/s), and the high specific jet power (> 10 kW/kg). An intermediate step towards fusion propulsion might be a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. There are similarities as well as differences between applying fusion to propulsion and to terrestrial electrical power generation. The similarities are the underlying plasma and fusion physics, the enabling component technologies, the computational and the diagnostics capabilities. These physics and

  7. GOSAT CO2 and CH4 validation activity with a portable FTS at Pasadena, Chino, and Railroad Valley

    NASA Astrophysics Data System (ADS)

    Shiomi, K.; Kuze, A.; Suto, H.; Kawakami, S.; Kataoka, F.; Hedelius, J.; Viatte, C.; Wennberg, P. O.; Wunch, D.; Roehl, C. M.; Leifer, I.; Tanaka, T.; Iraci, L. T.; Bruegge, C. J.; Schwandner, F. M.; Crisp, D.

    2015-12-01

    The column-average dry air mole fractions of carbon dioxide (XCO2) and methane (XCH4) were measured with a portable Fourier transform spectrometer (FTS), EM27/SUN, using direct sunlight at 1) Caltech, in Pasadena, a northern Los Angeles suburb, 2) Chino, a dairy region east of Los Angeles, and 3) Railroad Valley (RRV), a desert playa in Nevada. They were conducted during the GOSAT/OCO-2 joint campaign for vicarious calibration and validation (cal/val) and its preparatory experiments in June-July 2015. JAXA's GOSAT has been operating since 2009 to monitor the greenhouse gases XCO2 and XCH4 using surface-reflected sunlight from space. GOSAT carries a Fourier Transform Spectrometer (TANSO-FTS) and a Cloud and Aerosol Imager (TANSO-CAI). NASA's OCO-2 has been operating since 2014, carries a grating spectrometer to make precise XCO2 observations with a-few-kilometer resolution. Their polar orbits have 12:46 pm (GOSAT) and 1:30 pm (OCO-2) observing times. For cal/val, these sites were targeted with coincident , near simultaneous ground-based and vertical profiling measurements. These sites are different types of suburban, dairy, and desert areas. Before the campaign, measurements from the JAXA EM27/SUN were compared with those from the Total Carbon Column Observing Network (TCCON) and from the Caltech EM27/SUN at Pasadena. We compared the retrieved values and simultaneously observed diurnal enhancements by advection from the Los Angeles basin. Then, we observed a diurnal cycle at Chino dairy area, an area of concentrated husbandry, producing a CH4 point source. Finally, we conducted the cal/val campaign at RRV coincident with GOSAT and OCO-2 overpass observations. Over RRV, vertical profiles of CO2 and CH4 were measured using the Alpha Jet research aircraft as a part of the NASA Ames Alpha Jet Atmospheric eXperiment (AJAX) . We will compare experimental results from the cal/val campaign for XCO2 and XCH4 with a portable FTS.

  8. Gravitational Wave Propulsion

    NASA Astrophysics Data System (ADS)

    Fontana, Giorgio

    2005-02-01

    There is only one experimental proof that gravitational waves exist. With such a limitation, it may seem premature to suggest the possibility that gravitational waves can became a preferred space propulsion technique. The present understanding of the problem indicates that this is not the case. The emission of gravitational waves from astrophysical sources has been confirmed by observation, the respective detection at large distance from the source is difficult and actually we have no confirmation of a successful detection. Therefore the required preliminary discovery has been already made. This opinion is enforced by many different proposals for building the required powerful gravitational wave generators that have recently appeared in the literature and discussed at conferences. It is no longer reasonable to wait for additional confirmation of the existence of gravitational waves to start a program for building generators and testing their possible application to space travel. A vast literature shows that gravitational waves can be employed for space propulsion. Gravitational wave rockets have been proposed, non-linearity of Einstein equations allows the conversion of gravitational waves to a static gravitational field and ``artificial gravity assist'' may become a new way of travelling in space-time. Different approaches to gravitational wave propulsion are reviewed and compared. Gravitational wave propulsion is also compared to traditional rocket propulsion and an undeniable advantage can be demonstrated in terms of efficiency and performance. Testing the predictions will require gravitational wave generators with high power and wavelength short enough for producing high energy densities. Detectors designed for the specific application must be developed, taking into account that non-linearity effects are expected. The study and development of Gravitational wave propulsion is a very challenging endeavor, involving the most complex theories, sophisticated

  9. Laser space propulsion overview

    NASA Astrophysics Data System (ADS)

    Phipps, Claude; Luke, James; Helgeson, Wesley

    2007-03-01

    In this paper, we review the history of laser space propulsion from its earliest theoretical conceptions to modern practical applicatons. Applications begin with the "Lightcraft" flights of Myrabo and include practical thrusters for satellites now completing development as well as proposals for space debris removal and direct launch of payloads into orbit. We consider laser space propulsion in the most general sense, in which laser radiation is used to propel a vehicle in space. In this sense, the topic includes early proposals for pure photon propulsion, laser ablation propulsion, as well as propulsion using lasers to detonate a gas, expel a liquid, heat and expel a gas, or even to propagate power to a remote conventional electric thruster. We also discuss the most recent advances in LSP. For the first time, it is possible to consider space propulsion engines which exhibit thrust of one to several newtons while simultaneously delivering 3,000 seconds, or greater, specific impulse. No other engine concept can do both in a compact format. These willl use onboard, rather than remote, lasers. We will review the concept of chemically augmented electric propulsion, which can provide overall thrust efficiency greater than unity while maintaining very low mass to power ratio, high mean time to failure and broad operating range. The main advantage of LSP is exhaust velocity which can be instantaneously varied from 2km/s to 30km/s, simply by varying laser pulsewidth and focal spot size on target. The laser element will probably be a diode-pumped, fiber master-oscillator-power-amplifier (MOPA) system. Liquid fuels are necessary for volumetric efficiency and reliable performance at the multi-kW optical power levels required for multi-N thrust.

  10. A cermet fuel reactor for nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Kruger, Gordon

    1991-01-01

    Work on the cermet fuel reactor done in the 1960's by General Electric (GE) and the Argonne National Laboratory (ANL) that had as its goal the development of systems that could be used for nuclear rocket propulsion as well as closed cycle propulsion system designs for ship propulsion, space nuclear propulsion, and other propulsion systems is reviewed. It is concluded that the work done in the 1960's has demonstrated that we can have excellent thermal and mechanical performance with cermet fuel. Thousands of hours of testing were performed on the cermet fuel at both GE and AGL, including very rapid transients and some radiation performance history. We conclude that there are no feasibility issues with cermet fuel. What is needed is reactivation of existing technology and qualification testing of a specific fuel form. We believe this can be done with a minimum development risk.

  11. Ion propulsion for communications satellites

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.

    1984-01-01

    In a recent study of potential applications for electric propulsion, it was determined that ion propulsion can provide North-South stationkeeping (NSSK) for communication satellites in geosynchronous orbit with appreciably less mass than chemical propulsion. While this finding is not new, the margin of benefit over advanced chemical propulsion technology depends strongly on the ion propulsion system specifications. Full advantage must be taken of the under-utilized stored energy available from the communication satellite's batteries. This paper describes a methodology for evaluating the benefits obtained in using ion propulsion for NSSK, both in terms of the mass reduction and its economic value.

  12. Mechanisms of Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Fisch, Nathaniel J.

    2004-11-01

    The technology of electric propulsion evolved to overcome the high propellant weight associated with propulsion by chemical means. As opposed to ejecting propellant at velocities of kilometers per second, exhaust velocities of plasma at tens of kilometers per second and more could be accomplished through electrical means. Although higher exhaust velocities require higher on-board power, the reduced propellant requirements facilitate a large variety of space transportation missions, such as orbit-raising, station-keeping, or other propulsion missions requiring the conservation of propellant mass such as interplanetary flight. To produce thrust by the application of electric forces, plasma can be accelerated directly, or ions can be accelerated and then neutralized to form flowing neutral plasma. The different mechanisms of acceleration are embodied in such thrust devices as ion thrusters, Hall thrusters, magnetoplasmadynamic thrusters, or arcjets. In each method of electric propulsion, different technological limitations arise from basic plasma properties. This talk reviews the basic acceleration mechanisms at play in contemporary means of electric propulsion within the broader context of accelerating plasma by any means.

  13. Nuclear concepts/propulsion

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.

    1993-01-01

    Nuclear thermal and nuclear electric propulsion systems will enable and/or enhance important space exploration missions to the moon and Mars. Current efforts are addressing certain research areas, although NASA and DOE still have much work yet to do. Relative to chemical systems, nuclear thermal propulsion offers the potential of reduced vehicle weight, wider launch windows. and shorter transit times, even without aerobrakes. This would improve crew safety by reducing their exposure to cosmic radiation. Advanced materials and structures will be an important resource in responding to the challenges posed by safety and test facility requirements, environmental concerns, high temperature fuels and the high radiation, hot hydrogen environment within nuclear thermal propulsion systems. Nuclear electric propulsion (NEP) has its own distinct set of advantages relative to chemical systems. These include low resupply mass, the availability of large amounts of onboard electric power for other uses besides propulsion, improved launch windows, and the ability to share technology with surface power systems. Development efforts for NEP reactors will emphasize long life operation of compact designs. This will require designs that provide high fuel burnup and high temperature operation along with personnel and environmental safety.

  14. Efficiency of fish propulsion.

    PubMed

    Maertens, A P; Triantafyllou, M S; Yue, D K P

    2015-08-01

    The system efficiency of a self-propelled flexible body is ill-defined, hence we introduce the concept of quasi-propulsive efficiency, defined as the ratio of the power needed to tow a body in rigid-straight condition over the power it requires for self-propulsion, both measured for the same speed. Through examples we show that the quasi-propulsive efficiency is a rational non-dimensional metric of the propulsive fitness of fish and fish-like mechanisms, consistent with the goal to minimize fuel consumption under size and velocity constraints. We perform two-dimensional viscous simulations and apply the concept of quasi-propulsive efficiency to illustrate and discuss the efficiency of two-dimensional undulating foils employing first carangiform and then anguilliform kinematics. We show that low efficiency may be due to adverse body-propulsor hydrodynamic interactions, which cannot be accounted for by an increase in friction drag, as done previously, since at the Reynolds number Re = 5 000 considered in the simulations, pressure is a major contributor to both thrust and drag. PMID:26226349

  15. Nanosatellite Propulsion Development Program

    NASA Technical Reports Server (NTRS)

    Gagosian, J. S.; Rhee, M. S.; Zakrzwski, C. M.

    1999-01-01

    Earth-orbiting nanosatellite constellations are a unique and exciting means toward fulfilling part of the mission of the Goddard Space Flight Center (GSFC). These constellations, which may consist of several hundred 10-kg spacecraft, present unique challenges in the area of propulsion. Many mission concepts require significant delta-v and attitude control capability to reside in the nanosatellites. In response to requirements from mission feasibility studies, such as the Magnetospheric Constellation study, the GSFC has initiated industry and government partnerships to develop enabling propulsion technologies. The largest challenge has been to meet the power constraints of nanosatellites. These power issues, combined with the high thrust required by many of the missions studied, have led the GSFC to concentrate its efforts on chemical propulsion technology. Electric propulsion technologies capable of performing efficiently at very low power are also of interest to the GSFC as potential candidates for nanosatellite formation flying missions. This paper provides the status of specific industrial or government partnerships undertaken by the GSFC to develop nano/micro propulsion components. Three specific technologies are described in detail: 1) Nanosatellite Solid Rocket Motor Prototype 2) Ultra-Low-Power Cold Gas Thruster for Spin-Axis Precession 3) Micro-Machined Solid-Propellant Gas Generators.

  16. Laser Propulsion Standardization Issues

    SciTech Connect

    Scharring, Stefan; Eckel, Hans-Albert; Roeser, Hans-Peter; Sinko, John E.; Sasoh, Akihiro

    2010-10-08

    It is a relevant issue in the research on laser propulsion that experimental results are treated seriously and that meaningful scientific comparison is possible between groups using different equipment and measurement techniques. However, critical aspects of experimental measurements are sparsely addressed in the literature. In addition, few studies so far have the benefit of independent confirmation by other laser propulsion groups. In this paper, we recommend several approaches towards standardization of published laser propulsion experiments. Such standards are particularly important for the measurement of laser ablation pulse energy, laser spot area, imparted impulse or thrust, and mass removal during ablation. Related examples are presented from experiences of an actual scientific cooperation between NU and DLR. On the basis of a given standardization, researchers may better understand and contribute their findings more clearly in the future, and compare those findings confidently with those already published in the laser propulsion literature. Relevant ISO standards are analyzed, and revised formats are recommended for application to laser propulsion studies.

  17. Propulsion IVHM Technology Experiment

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy K.; Maul, William A.; Fulton, Christopher E.

    2006-01-01

    The Propulsion IVHM Technology Experiment (PITEX) successfully demonstrated real-time fault detection and isolation of a virtual reusable launch vehicle (RLV) main propulsion system (MPS). Specifically, the PITEX research project developed and applied a model-based diagnostic system for the MPS of the X-34 RLV, a space-launch technology demonstrator. The demonstration was simulation-based using detailed models of the propulsion subsystem to generate nominal and failure scenarios during captive carry, which is the most safety-critical portion of the X-34 flight. Since no system-level testing of the X-34 Main Propulsion System (MPS) was performed, these simulated data were used to verify and validate the software system. Advanced diagnostic and signal processing algorithms were developed and tested in real time on flight-like hardware. In an attempt to expose potential performance problems, the PITEX diagnostic system was subjected to numerous realistic effects in the simulated data including noise, sensor resolution, command/valve talkback information, and nominal build variations. In all cases, the PITEX system performed as required. The research demonstrated potential benefits of model-based diagnostics, defined performance metrics required to evaluate the diagnostic system, and studied the impact of real-world challenges encountered when monitoring propulsion subsystems.

  18. Extracting the building response using seismic interferometry: Theory and application to the Millikan Library in Pasadena, California

    USGS Publications Warehouse

    Snieder, R.; Safak, E.

    2006-01-01

    The motion of a building depends on the excitation, the coupling of the building to the ground, and the mechanical properties of the building. We separate the building response from the excitation and the ground coupling by deconvolving the motion recorded at different levels in the building and apply this to recordings of the motion in the Robert A. Millikan Library in Pasadena, California. This deconvolution allows for the separation of instrinsic attenuation and radiation damping. The waveforms obtained from deconvolution with the motion in the top floor show a superposition of one upgoing and one downgoing wave. The waveforms obtained by deconvolution with the motion in the basement can be formulated either as a sum of upgoing and downgoing waves, or as a sum over normal modes. Because these deconvolved waves for late time have a monochromatic character, they are most easily analyzed with normal-mode theory. For this building we estimate a shear velocity c = 322 m/sec and a quality factor Q = 20. These values explain both the propagating waves and the normal modes.

  19. Nuclear-electric propulsion - Manned Mars propulsion options

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; Brophy, John; King, David

    1989-01-01

    Nuclear-electric propulsion can significantly reduce the launch mass for manned Mars missions. By using high-specific-impulse (lsp) electric propulsion systems with advanced nuclear reactors, the total mass-to-orbit for a series of manned Mars flight is reduced. Propulsion technologies required for the manned Mars mission are described. Multi-megawatt Ion and Magneto-Plasma-Dynamic (MPD) propulsion thrusters, Power-Processing Units and nuclear power source are needed. Xenon (Xe)-Ion and MPD thruster performance are detailed. Mission analyses for several Mars mission options are addressed. Both MPD and Ion propulsion were investigated. A four-megawatt propulsion system power level was assumed. Mass comparisons for all-chemical oxygen/hydrogen propulsion missions and combined chemical and nuclear-electric propulsion Mars fleets are included. With fleets of small nuclear-electric vehicles, short trip times to Mars are also enabled.

  20. Advanced nuclear thermal propulsion concepts

    NASA Technical Reports Server (NTRS)

    Howe, Steven D.

    1993-01-01

    In 1989, a Presidential directive created the Space Exploration Initiative (SEI) which had a goal of placing mankind on Mars in the early 21st century. The SEI was effectively terminated in 1992 with the election of a new administration. Although the initiative did not exist long enough to allow substantial technology development, it did provide a venue, for the first time in 20 years, to comprehensively evaluate advanced propulsion concepts which could enable fast, manned transits to Mars. As part of the SEI based investigations, scientists from NASA, DoE National Laboratories, universities, and industry met regularly and proceeded to examine a variety of innovative ideas. Most of the effort was directed toward developing a solid-core, nuclear thermal rocket and examining a high-power nuclear electric propulsion system. In addition, however, an Innovative Concepts committee was formed and charged with evaluating concepts that offered a much higher performance but were less technologically mature. The committee considered several concepts and eventually recommended that further work be performed in the areas of gas core fission rockets, inertial confinement fusion systems, antimatter based rockets, and gas core fission electric systems. Following the committee's recommendations, some computational modeling work has been performed at Los Alamos in certain of these areas and critical issues have been identified.

  1. Feasibility of MHD submarine propulsion

    SciTech Connect

    Doss, E.D. ); Sikes, W.C. )

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

  2. Electric Propulsion Applications and Impacts

    NASA Technical Reports Server (NTRS)

    Curran, Frank M.; Wickenheiser, Timothy J.

    1996-01-01

    Most space missions require on-board propulsion systems and these systems are often dominant spacecraft mass drivers. Presently, on-board systems account for more than half the injected mass for commercial communications systems and even greater mass fractions for ambitious planetary missions. Anticipated trends toward the use of both smaller spacecraft and launch vehicles will likely increase pressure on the performance of on-board propulsion systems. The acceptance of arcjet thrusters for operational use on commercial communications satellites ushered in a new era in on-board propulsion and exponential growth of electric propulsion across a broad spectrum of missions is anticipated. NASA recognizes the benefits of advanced propulsion and NASA's Office of Space Access and Technology supports an aggressive On-Board Propulsion program, including a strong electric propulsion element, to assure the availability of high performance propulsion systems to meet the goals of the ambitious missions envisioned in the next two decades. The program scope ranges from fundamental research for future generation systems through specific insertion efforts aimed at near term technology transfer. The On-Board propulsion program is committed to carrying technologies to levels required for customer acceptance and emphasizes direct interactions with the user community and the development of commercial sources. This paper provides a discussion of anticipated missions, propulsion functions, and electric propulsion impacts followed by an overview of the electric propulsion element of the NASA On-Board Propulsion program.

  3. Space station propulsion technology

    NASA Technical Reports Server (NTRS)

    Briley, G. L.

    1986-01-01

    The progress on the Space Station Propulsion Technology Program is described. The objectives are to provide a demonstration of hydrogen/oxygen propulsion technology readiness for the Initial Operating Capability (IOC) space station application, specifically gaseous hydrogen/oxygen and warm hydrogen thruster concepts, and to establish a means for evolving from the IOC space station propulsion to that required to support and interface with advanced station functions. The evaluation of concepts was completed. The accumulator module of the test bed was completed and, with the microprocessor controller, delivered to NASA-MSFC. An oxygen/hydrogen thruster was modified for use with the test bed and successfully tested at mixture ratios from 4:1 to 8:1.

  4. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are

  5. Advanced Chemical Propulsion Study

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon; Byers, Dave; Alexander, Leslie A.; Krebsbach, Al

    2004-01-01

    A study was performed of advanced chemical propulsion technology application to space science (Code S) missions. The purpose was to begin the process of selecting chemical propulsion technology advancement activities that would provide greatest benefits to Code S missions. Several missions were selected from Code S planning data, and a range of advanced chemical propulsion options was analyzed to assess capabilities and benefits re these missions. Selected beneficial applications were found for higher-performing bipropellants, gelled propellants, and cryogenic propellants. Technology advancement recommendations included cryocoolers and small turbopump engines for cryogenic propellants; space storable propellants such as LOX-hydrazine; and advanced monopropellants. It was noted that fluorine-bearing oxidizers offer performance gains over more benign oxidizers. Potential benefits were observed for gelled propellants that could be allowed to freeze, then thawed for use.

  6. Advanced rocket propulsion

    NASA Technical Reports Server (NTRS)

    Obrien, Charles J.

    1993-01-01

    Existing NASA research contracts are supporting development of advanced reinforced polymer and metal matrix composites for use in liquid rocket engines of the future. Advanced rocket propulsion concepts, such as modular platelet engines, dual-fuel dual-expander engines, and variable mixture ratio engines, require advanced materials and structures to reduce overall vehicle weight as well as address specific propulsion system problems related to elevated operating temperatures, new engine components, and unique operating processes. High performance propulsion systems with improved manufacturability and maintainability are needed for single stage to orbit vehicles and other high performance mission applications. One way to satisfy these needs is to develop a small engine which can be clustered in modules to provide required levels of total thrust. This approach should reduce development schedule and cost requirements by lowering hardware lead times and permitting the use of existing test facilities. Modular engines should also reduce operational costs associated with maintenance and parts inventories.

  7. Free radical propulsion concept

    NASA Technical Reports Server (NTRS)

    Hawkins, C. E.; Nakanishi, S.

    1981-01-01

    A free radical propulsion concept utilizing the recombination energy of dissociated low molecular weight gases to produce thrust was examined. The concept offered promise of a propulsion system operating at a theoretical impulse, with hydrogen, as high as 2200 seconds at high thrust to power ratio, thus filling the gas existing between chemical and electrostatic propulsion capabilities. Microwave energy used to dissociate a continuously flowing gas was transferred to the propellant via three body recombination for conversion to propellant kinetic energy. Power absorption by the microwave plasma discharge was in excess of 90 percent over a broad range of pressures. Gas temperatures inferred from gas dynamic equations showed much higher temperatures from microwave heating than from electrothermal heating. Spectroscopic analysis appeared to corroborate the inferred temperatures of one of the gases tested.

  8. Nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Keaton, Paul W.; Tubb, David J.

    1986-01-01

    The feasibility is investigated of using nuclear electric propulsion (NEP) for slow freighter ships traveling from a 500 km low Earth orbit (LEO) to the Moon's orbit about the Earth, and on to Mars. NEP is also shown to be feasible for transporting people to Mars on long conjunction-class missions lasting about nine months one way, and on short sprint missions lasting four months one way. Generally, it was not attempted to optimize ion exhaust velocities, but rather suitable parameters to demonstrate NEP feasibility were chosen. Various combinations of missions are compared with chemical and nuclear thermal propulsion (NTR) systems. Typically, NEP and NTR can accomplish the same lifting task with similar mass in LEO. When compared to chemical propulsion, NEP was found to accomplish the same missions with 40% less mass in LEO. These findings are sufficiently encouraging as to merit further studies with optimum systems.

  9. Advanced rocket propulsion

    NASA Astrophysics Data System (ADS)

    Obrien, Charles J.

    1993-02-01

    Existing NASA research contracts are supporting development of advanced reinforced polymer and metal matrix composites for use in liquid rocket engines of the future. Advanced rocket propulsion concepts, such as modular platelet engines, dual-fuel dual-expander engines, and variable mixture ratio engines, require advanced materials and structures to reduce overall vehicle weight as well as address specific propulsion system problems related to elevated operating temperatures, new engine components, and unique operating processes. High performance propulsion systems with improved manufacturability and maintainability are needed for single stage to orbit vehicles and other high performance mission applications. One way to satisfy these needs is to develop a small engine which can be clustered in modules to provide required levels of total thrust. This approach should reduce development schedule and cost requirements by lowering hardware lead times and permitting the use of existing test facilities. Modular engines should also reduce operational costs associated with maintenance and parts inventories.

  10. Nuclear electric propulsion

    NASA Astrophysics Data System (ADS)

    Keaton, Paul W.; Tubb, David J.

    1986-05-01

    The feasibility is investigated of using nuclear electric propulsion (NEP) for slow freighter ships traveling from a 500 km low Earth orbit (LEO) to the Moon's orbit about the Earth, and on to Mars. NEP is also shown to be feasible for transporting people to Mars on long conjunction-class missions lasting about nine months one way, and on short sprint missions lasting four months one way. Generally, it was not attempted to optimize ion exhaust velocities, but rather suitable parameters to demonstrate NEP feasibility were chosen. Various combinations of missions are compared with chemical and nuclear thermal propulsion (NTR) systems. Typically, NEP and NTR can accomplish the same lifting task with similar mass in LEO. When compared to chemical propulsion, NEP was found to accomplish the same missions with 40% less mass in LEO. These findings are sufficiently encouraging as to merit further studies with optimum systems.