Science.gov

Sample records for prostate cancer imaging

  1. Prostate cancer (image)

    MedlinePlus

    Treatment of prostate cancer varies depending on the stage of the cancer (i.e., spread) and may include surgical removal, radiation, chemotherapy, hormonal manipulation or a combination of these treatments.

  2. Molecular Imaging of Prostate Cancer.

    PubMed

    Wibmer, Andreas G; Burger, Irene A; Sala, Evis; Hricak, Hedvig; Weber, Wolfgang A; Vargas, Hebert Alberto

    2016-01-01

    Prostate cancer is the most common noncutaneous malignancy among men in the Western world. The natural history and clinical course of prostate cancer are markedly diverse, ranging from small indolent intraprostatic lesions to highly aggressive disseminated disease. An understanding of this biologic heterogeneity is considered a necessary requisite in the quest for the adoption of precise and personalized management strategies. Molecular imaging offers the potential for noninvasive assessment of the biologic interactions underpinning prostate carcinogenesis. Currently, numerous molecular imaging probes are in clinical use or undergoing preclinical or clinical evaluation. These probes can be divided into those that image increased cell metabolism, those that target prostate cancer-specific membrane proteins and receptor molecules, and those that bind to the bone matrix adjacent to metastases to bone. The increased metabolism and vascular changes in prostate cancer cells can be evaluated with radiolabeled analogs of choline, acetate, glucose, amino acids, and nucleotides. The androgen receptor, prostate-specific membrane antigen, and gastrin-releasing peptide receptor (ie, bombesin) are overexpressed in prostate cancer and can be targeted by specific radiolabeled imaging probes. Because metastatic prostate cancer cells induce osteoblastic signaling pathways of adjacent bone tissue, bone-seeking radiotracers are sensitive tools for the detection of metastases to bone. Knowledge about the underlying biologic processes responsible for the phenotypes associated with the different stages of prostate cancer allows an appropriate choice of methods and helps avoid pitfalls. PMID:26587888

  3. Molecular Imaging of Prostate Cancer

    PubMed Central

    Fox, Josef J.; Schöder, Heiko; Larson, Steven M.

    2015-01-01

    Purpose of review Prostate cancer is a complex and biologically heterogeneous disease that is not adequately assessed with conventional imaging alone. Molecular imaging with positron emission tomography (PET) is poised to fill this unmet need through noninvasive probing of the multiple molecular and cellular processes that are active in prostate cancer patients. Recent findings Several PET tracers are active in early and late stage prostate cancer in humans. F18-FDG, C11/F18-choline and F18-sodium fluoride (NaF) have been studied most extensively. There is a growing body of literature supporting to the utility of choline in early stage prostate cancer. FDG and NaF are more valuable in advanced disease, especially for assessing bone metastases, the prevalent form of metastases in this patient population. F18-Fluoro-dihydrotestosterone is active in castrate disease and is emerging as a valuable pharmacodynamic marker in the development of novel AR-targeted therapies. Anti-PSMA PET tracers are in the early stages of clinical development. Summary Multiple PET tracers are currently available to aid in the detection and management of prostate cancer across the clinical spectrum of the disease. Prospective, rigorously controlled, clinical imaging trials are needed to establish the optimal role of PET in prostate cancer. PMID:22617062

  4. Prostate Cancer MR Imaging

    NASA Astrophysics Data System (ADS)

    Fütterer, Jurgen J.

    With a total of 192,280 new cases predicted for 2009, prostate cancer (PC) now accounts for 25% of all new male cancers diagnosed in the United States [1]. Furthermore, in their lifetime, one in six men will be clinically diagnosed with having PC, although many more men are found to have histological evidence of PC at autopsy [2,3,4]. Presently, approximately 1 in 10 men will die of PC [5,6]. The ever-aging population and wider spread use of the blood prostate-specific antigen (PSA) test [7,8], as well as the tendency to apply lower cut-off levels for this test [9], will further increase the diagnosis of this disease [10].

  5. Molecular Imaging of Prostate Cancer: PET Radiotracers

    PubMed Central

    Jadvar, Hossein

    2012-01-01

    OBJECTIVE Recent advances in the fundamental understanding of the complex biology of prostate cancer have provided an increasing number of potential targets for imaging and treatment. The imaging evaluation of prostate cancer needs to be tailored to the various phases of this remarkably heterogeneous disease. CONCLUSION In this article, I review the current state of affairs on a range of PET radiotracers for potential use in the imaging evaluation of men with prostate cancer. PMID:22826388

  6. Bone imaging in prostate cancer.

    PubMed

    Dotan, Zohar A

    2008-08-01

    Bone metastases of solid tumors are common, and about 80% of them occur in patients with breast, lung or prostate cancer. Bone metastases can be suspected clinically and by laboratory tests; however, a final diagnosis relies on radiographic evidence. Bone metastases of prostate cancer usually have osteoblastic characteristics, manifested by pathological bone resorption and formation. Conventional bone scans (e.g. with (99m)Tc-labeled methylene diphosphonate) are preferred to plain-film radiography for surveillance of the entire skeleton. Radiologic diagnosis of bone metastases, particularly in patients with low burden of disease, is difficult because noncancerous bone lesions that mimic cancer are common. Conventional bone scans are limited by their low sensitivity and high false-negative rate (up to 40%) compared with advanced bone-imaging modalities such as PET, PET-CT and MRI, which might assist or replace conventional scanning methods. The correct diagnosis of bone involvement in prostate cancer is crucial to assess the effects of therapy on the primary tumor, the patient's prognosis, and the efficacy of bone-specific treatments that can reduce future bone-associated morbidity. In addition, predictive tools such as nomograms enable the identification of patients at risk of bone involvement during the course of their disease. Such tools may limit treatment costs by avoidance of unnecessary tests and might reduce both short-term and long-term complication rates. PMID:18682719

  7. Functional Imaging for Prostate Cancer: Therapeutic Implications

    PubMed Central

    Aparici, Carina Mari; Seo, Youngho

    2012-01-01

    Functional radionuclide imaging modalities, now commonly combined with anatomical imaging modalities CT or MRI (SPECT/CT, PET/CT, and PET/MRI) are promising tools for the management of prostate cancer particularly for therapeutic implications. Sensitive detection capability of prostate cancer using these imaging modalities is one issue; however, the treatment of prostate cancer using the information that can be obtained from functional radionuclide imaging techniques is another challenging area. There are not many SPECT or PET radiotracers that can cover the full spectrum of the management of prostate cancer from initial detection, to staging, prognosis predictor, and all the way to treatment response assessment. However, when used appropriately, the information from functional radionuclide imaging improves, and sometimes significantly changes, the whole course of the cancer management. The limitations of using SPECT and PET radiotracers with regards to therapeutic implications are not so much different from their limitations solely for the task of detecting prostate cancer; however, the specific imaging target and how this target is reliably imaged by SPECT and PET can potentially make significant impact in the treatment of prostate cancer. Finally, while the localized prostate cancer is considered manageable, there is still significant need for improvement in noninvasive imaging of metastatic prostate cancer, in treatment guidance, and in response assessment from functional imaging including radionuclide-based techniques. In this review article, we present the rationale of using functional radionuclide imaging and the therapeutic implications for each of radionuclide imaging agent that have been studied in human subjects. PMID:22840598

  8. Magnetic resonance imaging of prostate cancer.

    PubMed

    Guneyli, Serkan; Erdem, Cemile Zuhal; Erdem, Lutfi Oktay

    2016-01-01

    Prostate cancer is one of the causes of cancer-related deaths. Multiparametric magnetic resonance imaging (MRI) provides the best soft tissue resolution and plays an important role in the management of prostate cancer patients. It is the recommended imaging modality for patients with prostate cancer, and it is clinically indicated for diagnosis, staging, tumor localization, detection of tumor aggressiveness, follow-up, and MRI-guided interventions. Multiparametric MRI includes T1- and high-resolution T2-weighted imaging, diffusion-weighted imaging, and dynamic contrast-enhanced MRI. We evaluated MR images of patients with prostate cancer who underwent multiparametric endorectal MRI on a 3.0-T scanner and presented demonstrative images. PMID:27317204

  9. Multiparametric magnetic resonance imaging of prostate cancer.

    PubMed

    Hedgire, Sandeep S; Oei, Tamara N; McDermott, Shaunagh; Cao, Kai; Patel M, Zena; Harisinghani, Mukesh G

    2012-07-01

    In India, prostate cancer has an incidence rate of 3.9 per 100,000 men and is responsible for 9% of cancer-related mortality. It is the only malignancy that is diagnosed with an apparently blind technique, i.e., transrectal sextant biopsy. With increasing numbers of high-Tesla magnetic resonance imaging (MRI) equipment being installed in India, the radiologist needs to be cognizant about endorectal MRI and multiparametric imaging for prostate cancer. In this review article, we aim to highlight the utility of multiparamteric MRI in prostate cancer. It plays a crucial role, mainly in initial staging, restaging, and post-treatment follow-up. PMID:23599562

  10. Metabolomic Imaging for Human Prostate Cancer Detection

    PubMed Central

    Wu, Chin-Lee; Jordan, Kate W.; Ratai, Eva M.; Sheng, Jinhua; Adkins, Christen B.; DeFeo, Elita M; Jenkins, Bruce G.; Ying, Leslie; McDougal, W. Scott; Cheng, Leo L.

    2010-01-01

    As current radiological approaches cannot accurately localize prostate cancer in vivo, biopsies are conducted at random within prostates for at-risk patients, leading to high false-negative rates. Metabolomic imaging can map cancer-specific biomolecular profile values onto anatomical structures to direct biopsy. In this preliminary study, we evaluated five prostatectomy-removed whole prostates from biopsy-proven cancer patients on a 7 Tesla human, whole-body magnetic resonance scanner. Localized, multi-cross-sectional, multi-voxel magnetic resonance spectra were used to construct a malignancy index based on prostate cancer metabolomic profiles obtained from previous, intact tissue analyses by a 14 Tesla spectrometer. This calculated Malignancy Index shows linear correlation with lesion size (p<0.013) and demonstrates a 93–97% overall accuracy for detecting the presence of prostate cancer lesions. PMID:20371475

  11. Prostate cancer

    SciTech Connect

    Murphy, G.P.; Kuss, R., Khoury, S.; Chatelain, C.; Denis, L.

    1987-01-01

    This book contains over 70 selections. Some of the titles are: Place of the Computed Tomography in the Staging of Prostatic Cancer; Magnetic Resonance Imaging (MRI) in Staging of the Prostatic Cancer; Magnetic Resonance Imaging of the Prostate; Long-Term Results in Radiotherapy of Prostatic Cancer; Interstitial Irradiation Using I-125 Seeds; and Treatment of Cancer of the Prostate by Use of Physiotherapy: Long-Term Results.

  12. Translational Molecular Imaging of Prostate Cancer

    PubMed Central

    Kiess, Ana P.; Cho, Steve Y.; Pomper, Martin G.

    2013-01-01

    Prostate cancer is a heterogeneous disease, and its management is now evolving to become more personalized and to incorporate new targeted therapies. With these new changes comes a demand for molecular imaging techniques that can not only detect disease but also assess biology and treatment response. This review article summarizes current molecular imaging approaches in prostate cancer (e.g. 99mTc bone scintigraphy and 18F-fluorodeoxyglucose positron emission tomography) and highlights emerging clinical and preclinical imaging agents, with an emphasis on mechanism and clinical application. Emerging agents at various stages of clinical translation include radiolabeled analogs of lipid, amino acid, and nucleoside metabolism, as well as agents more specifically targeting prostate cancer biomarkers including androgen receptor, prostate-specific membrane antigen and others. We also highlight new techniques and targeted contrast agents for magnetic resonance imaging and spectroscopy. For all these imaging techniques, a growing and important unmet need is for well-designed prospective clinical trials to establish clear indications with clinical benefit in prostate cancer. PMID:24159427

  13. State-of-the-art imaging of prostate cancer.

    PubMed

    Marko, Jamie; Gould, C Frank; Bonavia, Grant H; Wolfman, Darcy J

    2016-03-01

    Prostate cancer is the most common cancer in men. Modern medical imaging is intimately involved in the diagnosis and management of prostate cancer. Ultrasound is primarily used to guide prostate biopsy to establish the diagnosis of prostate carcinoma. Prostate magnetic resonance imaging uses a multiparametric approach, including anatomic and functional imaging sequences. Multiparametric magnetic resonance imaging can be used for detection and localization of prostate cancer and to evaluate for disease recurrence. Computed tomography and scintigraphic imaging are primarily used to detect regional lymph node spread and distant metastases. Recent advancements in ultrasound, multiparametric magnetic resonance imaging, and scintigraphic imaging have the potential to change the way prostate cancer is diagnosed and managed. This article addresses the major imaging modalities involved in the evaluation of prostate cancer and updates the reader on the state of the art for each modality. PMID:26087969

  14. Challenges in Clinical Prostate Cancer: Role of Imaging

    PubMed Central

    Kelloff, Gary J.; Choyke, Peter; Coffey, Donald S.

    2010-01-01

    Objective This article reviews a recent 2-day workshop on prostate cancer and imaging technology that was conducted by the Cancer Imaging Program of the National Cancer Institute. The workshop dealt with research trends and avenues for improving imaging and applications across the clinical spectrum of the disease. Conclusion After a summary of prostate cancer incidence and mortality, four main clinical challenges in prostate cancer treatment and management—diagnostic accuracy; risk stratification, initial staging, active surveillance, and focal therapy; prostate-specific antigen relapse after radiation therapy or radical prostatectomy; and assessing response to therapy in advanced disease—were discussed by the 55-member panel. The overarching issue in prostate cancer is distinguishing lethal from nonlethal disease. New technologies and fresh uses for established procedures make imaging effective in both assessing and treating prostate cancer. PMID:19457806

  15. Laser Illumination Modality of Photoacoustic Imaging Technique for Prostate Cancer

    NASA Astrophysics Data System (ADS)

    Peng, Dong-qing; Peng, Yuan-yuan; Guo, Jian; Li, Hui

    2016-02-01

    Photoacoustic imaging (PAI) has recently emerged as a promising imaging technique for prostate cancer. But there was still a lot of challenge in the PAI for prostate cancer detection, such as laser illumination modality. Knowledge of absorbed light distribution in prostate tissue was essential since the distribution characteristic of absorbed light energy would influence the imaging depth and range of PAI. In order to make a comparison of different laser illumination modality of photoacoustic imaging technique for prostate cancer, optical model of human prostate was established and combined with Monte Carlo simulation method to calculate the light absorption distribution in the prostate tissue. Characteristic of light absorption distribution of transurethral and trans-rectal illumination case, and of tumor at different location was compared with each other.The relevant conclusions would be significant for optimizing the light illumination in a PAI system for prostate cancer detection.

  16. Multiparametric magnetic resonance imaging: Current role in prostate cancer management.

    PubMed

    Ueno, Yoshiko; Tamada, Tsutomu; Bist, Vipul; Reinhold, Caroline; Miyake, Hideaki; Tanaka, Utaru; Kitajima, Kazuhiro; Sugimura, Kazuro; Takahashi, Satoru

    2016-07-01

    Digital rectal examination, serum prostate-specific antigen screening and transrectal ultrasound-guided biopsy are conventionally used as screening, diagnostic and surveillance tools for prostate cancer. However, they have limited sensitivity and specificity. In recent years, the role of multiparametric magnetic resonance imaging has steadily grown, and is now part of the standard clinical management in many institutions. In multiparametric magnetic resonance imaging, the morphological assessment of T2-weighted imaging is correlated with diffusion-weighted imaging, dynamic contrast-enhanced imaging perfusion and/or magnetic resonance spectroscopic imaging. Multiparametric magnetic resonance imaging is currently regarded as the most sensitive and specific imaging technique for the evaluation of prostate cancer, including detection, staging, localization and aggressiveness evaluation. This article presents an overview of multiparametric magnetic resonance imaging, and discusses the current role of multiparametric magnetic resonance imaging in the different fields of prostate cancer management. PMID:27184019

  17. Prostate Cancer

    MedlinePlus

    ... version of this page please turn Javascript on. Prostate Cancer What is Prostate Cancer? How Tumors Form The body is made up ... the Escape (Esc) button on your keyboard.) How Prostate Cancer Occurs Prostate cancer occurs when a tumor forms ...

  18. Segmentation of prostate cancer tissue microarray images

    NASA Astrophysics Data System (ADS)

    Cline, Harvey E.; Can, Ali; Padfield, Dirk

    2006-02-01

    Prostate cancer is diagnosed by histopathology interpretation of hematoxylin and eosin (H and E)-stained tissue sections. Gland and nuclei distributions vary with the disease grade. The morphological features vary with the advance of cancer where the epithelial regions grow into the stroma. An efficient pathology slide image analysis method involved using a tissue microarray with known disease stages. Digital 24-bit RGB images were acquired for each tissue element on the slide with both 10X and 40X objectives. Initial segmentation at low magnification was accomplished using prior spectral characteristics from a training tissue set composed of four tissue clusters; namely, glands, epithelia, stroma and nuclei. The segmentation method was automated by using the training RGB values as an initial guess and iterating the averaging process 10 times to find the four cluster centers. Labels were assigned to the nearest cluster center in red-blue spectral feature space. An automatic threshold algorithm separated the glands from the tissue. A visual pseudo color representation of 60 segmented tissue microarray image was generated where white, pink, red, blue colors represent glands, epithelia, stroma and nuclei, respectively. The higher magnification images provided refined nuclei morphology. The nuclei were detected with a RGB color space principle component analysis that resulted in a grey scale image. The shape metrics such as compactness, elongation, minimum and maximum diameters were calculated based on the eigenvalues of the best-fitting ellipses to the nuclei.

  19. AEG-1 promoter-mediated imaging of prostate cancer.

    PubMed

    Bhatnagar, Akrita; Wang, Yuchuan; Mease, Ronnie C; Gabrielson, Matthew; Sysa, Polina; Minn, Il; Green, Gilbert; Simmons, Brian; Gabrielson, Kathleen; Sarkar, Siddik; Fisher, Paul B; Pomper, Martin G

    2014-10-15

    We describe a new imaging method for detecting prostate cancer, whether localized or disseminated and metastatic to soft tissues and bone. The method relies on the use of imaging reporter genes under the control of the promoter of AEG-1 (MTDH), which is selectively active only in malignant cells. Through a systemic, nanoparticle-based delivery of the imaging construct, lesions can be identified through bioluminescence imaging and single-photon emission computed tomography in the PC3-ML murine model of prostate cancer at high sensitivity. This approach is applicable for the detection of prostate cancer metastases, including bone lesions for which there is no current reliable agent for noninvasive clinical imaging. Furthermore, the approach compares favorably with accepted and emerging clinical standards, including PET with [(18)F]fluorodeoxyglucose and [(18)F]sodium fluoride. Our results offer a preclinical proof of concept that rationalizes clinical evaluation in patients with advanced prostate cancer. PMID:25145668

  20. Magnetic resonance imaging for prostate cancer radiotherapy.

    PubMed

    Dinh, Cuong V; Steenbergen, Peter; Ghobadi, Ghazaleh; Heijmink, Stijn W T J P; Pos, Floris J; Haustermans, Karin; van der Heide, Uulke A

    2016-03-01

    For radiotherapy of prostate cancer, MRI is used increasingly for delineation of the prostate gland. For focal treatment of low-risk prostate cancer or focal dose escalation for intermediate and high-risk cancer, delineation of the tumor is also required. While multi-parametric MRI is well established for detection of tumors and for staging of the disease, delineation of the tumor inside the prostate is not common practice. Guidelines, such as the PI-RADS classification, exist for tumor detection and staging, but no such guidelines are available for tumor delineation. Indeed, interobserver studies show substantial variation in tumor contours. Computer-aided tumor detection and delineation may help improve the robustness of the interpretation of multi-parametric MRI data. Comparing the performance of an earlier developed model for tumor segmentation with expert delineations, we found a significant correlation between tumor probability in a voxel and the number of experts identifying this voxel as tumor. This suggests that the model agrees with 'the wisdom of the crowd', and thus could serve as a reference for individual physicians in their decision making. With multi-parametric MRI it becomes feasible to revisit the GTV-CTV concept in radiotherapy of prostate cancer. While detection of index lesions is quite reliable, contouring variability and the low sensitivity to small lesions suggest that the remainder of the prostate should be treated as CTV. Clinical trials that investigate the options for dose differentiation, for example with dose escalation to the visible tumor or dose reduction to the CTV, are therefore warranted. PMID:26858164

  1. Multimodal and three-dimensional imaging of prostate cancer.

    PubMed

    Lee, Zhenghong; Sodee, D Bruce; Resnick, Martin; Maclennan, Gregory T

    2005-09-01

    Accurate characterization of prostate cancer is crucial for treatment planning and patient management. Non-invasive SPECT imaging using a radiolabeled monoclonal antibody, 111In-labeled capromab pendetide, offers advantage over existing means for prostate cancer diagnosis and staging. However, there are difficulties associated with the interpretation of these SPECT images. In this study, we developed a 3D surface-volume hybrid rendering method that utilizes multi-modality image data to facilitate diagnosis of prostate cancer. SPECT and CT or MRI (or both) images were aligned either manually or automatically. 3D hybrid rendering was implemented to blend prostate tumor distribution from SPECT in pelvis with anatomic structures from CT/MRI. Feature extraction technique was also implemented within the hybrid rendering for tumor uptake enhancement. Autoradiographic imaging and histological evaluation were performed to correlate with the in-vivo SPECT images. Warping registration of histological sections was carried out to compensate the deformation of histology slices during fixation to help the alignment between histology and in-vivo images. Overall, the rendered volumetric evaluation of prostate cancer has the potential to greatly increase the confidence in the reading of radiolabeled monoclonal antibody scans, especially in patients where there is a high suspicion of prostate tumor metastasis. PMID:15893911

  2. Current role of multiparametric magnetic resonance imaging for prostate cancer

    PubMed Central

    Chevallier, Olivier; Moulin, Morgan; Favelier, Sylvain; Genson, Pierre-Yves; Pottecher, Pierre; Crehange, Gilles; Cochet, Alexandre; Cormier, Luc

    2015-01-01

    Multiparametric magnetic resonance imaging (mp-MRI) has shown promising results in diagnosis, localization, risk stratification and staging of clinically significant prostate cancer, and targeting or guiding prostate biopsy. mp-MRI consists of T2-weighted imaging (T2WI) combined with several functional sequences including diffusion-weighted imaging (DWI), perfusion or dynamic contrast-enhanced imaging (DCEI) and spectroscopic imaging. Recently, mp-MRI has been used to assess prostate cancer aggressiveness and to identify anteriorly located tumors before and during active surveillance. Moreover, recent studies have reported that mp-MRI is a reliable imaging modality for detecting local recurrence after radical prostatectomy or external beam radiation therapy. Because assessment on mp-MRI can be subjective, use of the newly developed standardized reporting Prostate Imaging and Reporting Archiving Data System (PI-RADS) scoring system and education of specialist radiologists are essential for accurate interpretation. This review focuses on the current place of mp-MRI in prostate cancer and its evolving role in the management of prostate cancer. PMID:26682144

  3. Multiparametric Magnetic Resonance Imaging of Recurrent Prostate Cancer

    PubMed Central

    Oppenheimer, Daniel Corey; Weinberg, Eric P; Hollenberg, Gary M; Meyers, Steven P

    2016-01-01

    Multiparametric magnetic resonance (MR) imaging of the prostate combines both morphological and functional MR techniques by utilizing small field of view T1-weighted, T2-weighted, diffusion-weighted imaging, dynamic contrast-enhanced imaging, and MR spectroscopy to accurately detect, localize, and stage primary and recurrent prostate cancer. Localizing the site of recurrence in patients with rising prostate-specific antigen following treatment affects decision making regarding treatment and can be accomplished with multiparametric prostate MR. Several different treatment options are available for prostate cancer including radical prostatectomy, external beam radiation therapy, brachytherapy, androgen deprivation therapy, or a number of focal therapy techniques. The findings of recurrent prostate cancer can be different depending on the treatment the patient has received, and the radiologist must be able to recognize the variety of imaging findings seen with this common disease. This review article will detail the findings of recurrent prostate cancer on multiparametric MR and describe common posttreatment changes which may create challenges to accurate interpretation. PMID:27195184

  4. Optoacoustic imaging of an animal model of prostate cancer

    NASA Astrophysics Data System (ADS)

    Patterson, Michelle P.; Arsenault, Michel; Riley, Chris; Kolios, Michael; Whelan, William M.

    2010-02-01

    Prostate cancer is currently the most common cancer among Canadian men. Due to an increase in public awareness and screening, prostate cancer is being detected at earlier stages and in much younger men. This is raising the need for better treatment monitoring approaches. Optoacoustic imaging is a new technique that involves exposing tissues to pulsed light and detecting the acoustic waves generated by the tissue. Optoacoustic images of a tumour bearing mouse and an agematched control were acquired for a 775 nm illumination using a reverse-mode imaging system. A murine model of prostate cancer, TRAMP (transgenetic adenocarcinoma of mouse prostate), was investigated. The results show an increase in optoacoustic signal generated by the tumour compared to that generated by the surrounding tissues with a contrast ratio of 3.5. The dimensions of the tumour in the optoacoustic image agreed with the true tumour dimensions to within 0.5 mm. In this study we show that there are detectable changes in optoacoustic signal strength that arise from the presence of a tumour in the prostate, which demonstrates the potential of optoacoustic imaging for the monitoring of prostate cancer therapy.

  5. Prostate cancer

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000380.htm Prostate cancer To use the sharing features on this page, please enable JavaScript. Prostate cancer is cancer that starts in the prostate gland. ...

  6. ProxiScan?: A Novel Camera for Imaging Prostate Cancer

    ScienceCinema

    Ralph James

    2010-01-08

    ProxiScan is a compact gamma camera suited for high-resolution imaging of prostate cancer. Developed by Brookhaven National Laboratory and Hybridyne Imaging Technologies, Inc., ProxiScan won a 2009 R&D 100 Award, sponsored by R&D Magazine to recognize t

  7. ProxiScan™: A Novel Camera for Imaging Prostate Cancer

    SciTech Connect

    Ralph James

    2009-10-27

    ProxiScan is a compact gamma camera suited for high-resolution imaging of prostate cancer. Developed by Brookhaven National Laboratory and Hybridyne Imaging Technologies, Inc., ProxiScan won a 2009 R&D 100 Award, sponsored by R&D Magazine to recognize t

  8. Imaging Active Urokinase Plasminogen Activator in Prostate Cancer

    PubMed Central

    LeBeau, Aaron M.; Sevillano, Natalia; Markham, Kate; Winter, Michael B.; Murphy, Stephanie T.; Hostetter, Daniel R.; West, James; Lowman, Henry; Craik, Charles S.; VanBrocklin, Henry F.

    2015-01-01

    The increased proteolytic activity of membrane-bound and secreted proteases on the surface of cancer cells and in the transformed stroma is a common characteristic of aggressive metastatic prostate cancer. We describe here the development of an active site-specific probe for detecting a secreted peritumoral protease expressed by cancer cells and the surrounding tumor microenvironment. Using a human fragment antigen binding phage display library, we identified a human antibody termed U33 that selectively inhibited the active form of the protease urokinase plasminogen activator (uPA, PLAU). In the full-length immunoglobulin form, U33 IgG labeled with near-infrared fluorophores or radionuclides allowed us to non-invasively detect active uPA in prostate cancer xenograft models using optical and single-photon emission computed tomography (SPECT) imaging modalities. U33 IgG labeled with 111In had a remarkable tumor uptake of 43.2% injected dose per gram (%ID/g) 72hr post tail vein injection of the radiolabeled probe in subcutaneous xenografts. Additionally, U33 was able to image active uPA in small soft-tissue and osseous metastatic lesions using a cardiac dissemination prostate cancer model that recapitulated metastatic human cancer. The favorable imaging properties were the direct result of U33 IgG internalization through an uPA receptor mediated mechanism where U33 mimicked the function of the endogenous inhibitor of uPA to gain entry into the cancer cell. Overall, our imaging probe targets a prostate cancer-associated protease, through a unique mechanism, allowing for the non-invasive preclinical imaging of prostate cancer lesions. PMID:25672980

  9. Hyperspectral imaging and quantitative analysis for prostate cancer detection

    NASA Astrophysics Data System (ADS)

    Akbari, Hamed; Halig, Luma V.; Schuster, David M.; Osunkoya, Adeboye; Master, Viraj; Nieh, Peter T.; Chen, Georgia Z.; Fei, Baowei

    2012-07-01

    Hyperspectral imaging (HSI) is an emerging modality for various medical applications. Its spectroscopic data might be able to be used to noninvasively detect cancer. Quantitative analysis is often necessary in order to differentiate healthy from diseased tissue. We propose the use of an advanced image processing and classification method in order to analyze hyperspectral image data for prostate cancer detection. The spectral signatures were extracted and evaluated in both cancerous and normal tissue. Least squares support vector machines were developed and evaluated for classifying hyperspectral data in order to enhance the detection of cancer tissue. This method was used to detect prostate cancer in tumor-bearing mice and on pathology slides. Spatially resolved images were created to highlight the differences of the reflectance properties of cancer versus those of normal tissue. Preliminary results with 11 mice showed that the sensitivity and specificity of the hyperspectral image classification method are 92.8% to 2.0% and 96.9% to 1.3%, respectively. Therefore, this imaging method may be able to help physicians to dissect malignant regions with a safe margin and to evaluate the tumor bed after resection. This pilot study may lead to advances in the optical diagnosis of prostate cancer using HSI technology.

  10. Hyperspectral imaging and quantitative analysis for prostate cancer detection

    PubMed Central

    Akbari, Hamed; Halig, Luma V.; Schuster, David M.; Osunkoya, Adeboye; Master, Viraj; Nieh, Peter T.; Chen, Georgia Z.

    2012-01-01

    Abstract. Hyperspectral imaging (HSI) is an emerging modality for various medical applications. Its spectroscopic data might be able to be used to noninvasively detect cancer. Quantitative analysis is often necessary in order to differentiate healthy from diseased tissue. We propose the use of an advanced image processing and classification method in order to analyze hyperspectral image data for prostate cancer detection. The spectral signatures were extracted and evaluated in both cancerous and normal tissue. Least squares support vector machines were developed and evaluated for classifying hyperspectral data in order to enhance the detection of cancer tissue. This method was used to detect prostate cancer in tumor-bearing mice and on pathology slides. Spatially resolved images were created to highlight the differences of the reflectance properties of cancer versus those of normal tissue. Preliminary results with 11 mice showed that the sensitivity and specificity of the hyperspectral image classification method are 92.8% to 2.0% and 96.9% to 1.3%, respectively. Therefore, this imaging method may be able to help physicians to dissect malignant regions with a safe margin and to evaluate the tumor bed after resection. This pilot study may lead to advances in the optical diagnosis of prostate cancer using HSI technology. PMID:22894488

  11. Hyperspectral imaging and quantitative analysis for prostate cancer detection.

    PubMed

    Akbari, Hamed; Halig, Luma V; Schuster, David M; Osunkoya, Adeboye; Master, Viraj; Nieh, Peter T; Chen, Georgia Z; Fei, Baowei

    2012-07-01

    Hyperspectral imaging (HSI) is an emerging modality for various medical applications. Its spectroscopic data might be able to be used to noninvasively detect cancer. Quantitative analysis is often necessary in order to differentiate healthy from diseased tissue. We propose the use of an advanced image processing and classification method in order to analyze hyperspectral image data for prostate cancer detection. The spectral signatures were extracted and evaluated in both cancerous and normal tissue. Least squares support vector machines were developed and evaluated for classifying hyperspectral data in order to enhance the detection of cancer tissue. This method was used to detect prostate cancer in tumor-bearing mice and on pathology slides. Spatially resolved images were created to highlight the differences of the reflectance properties of cancer versus those of normal tissue. Preliminary results with 11 mice showed that the sensitivity and specificity of the hyperspectral image classification method are 92.8% to 2.0% and 96.9% to 1.3%, respectively. Therefore, this imaging method may be able to help physicians to dissect malignant regions with a safe margin and to evaluate the tumor bed after resection. This pilot study may lead to advances in the optical diagnosis of prostate cancer using HSI technology. PMID:22894488

  12. Image-guided focal therapy for prostate cancer.

    PubMed

    Sankineni, Sandeep; Wood, Bradford J; Rais-Bahrami, Soroush; Walton Diaz, Annerleim; Hoang, Anthony N; Pinto, Peter A; Choyke, Peter L; Türkbey, Barış

    2014-11-01

    The adoption of routine prostate specific antigen screening has led to the discovery of many small and low-grade prostate cancers which have a low probability of causing mortality. These cancers, however, are often treated with radical therapies resulting in long-term side effects. There has been increasing interest in minimally invasive focal therapies to treat these tumors. While imaging modalities have improved rapidly over the past decade, similar advances in image-guided therapy are now starting to emerge--potentially achieving equivalent oncologic efficacy while avoiding the side effects of conventional radical surgery. The purpose of this article is to review the existing literature regarding the basis of various focal therapy techniques such as cryotherapy, microwave, laser, and high intensity focused ultrasound, and to discuss the results of recent clinical trials that demonstrate early outcomes in patients with prostate cancer. PMID:25205025

  13. Image-guided focal therapy for prostate cancer

    PubMed Central

    Sankineni, Sandeep; Wood, Bradford J.; Rais-Bahrami, Soroush; Diaz, Annerleim Walton; Hoang, Anthony N.; Pinto, Peter A.; Choyke, Peter L.; Türkbey, Barış

    2014-01-01

    The adoption of routine prostate specific antigen screening has led to the discovery of many small and low-grade prostate cancers which have a low probability of causing mortality. These cancers, however, are often treated with radical therapies resulting in long-term side effects. There has been increasing interest in minimally invasive focal therapies to treat these tumors. While imaging modalities have improved rapidly over the past decade, similar advances in image-guided therapy are now starting to emerge—potentially achieving equivalent oncologic efficacy while avoiding the side effects of conventional radical surgery. The purpose of this article is to review the existing literature regarding the basis of various focal therapy techniques such as cryotherapy, microwave, laser, and high intensity focused ultrasound, and to discuss the results of recent clinical trials that demonstrate early outcomes in patients with prostate cancer. PMID:25205025

  14. Prostate Cancer

    MedlinePlus

    ... a man's bladder that produces fluid for semen. Prostate cancer is common among older men. It is rare ... men younger than 40. Risk factors for developing prostate cancer include being over 65 years of age, family ...

  15. Prostate Cancer

    MedlinePlus

    ... man's bladder that produces fluid for semen. Prostate cancer is common among older men. It is rare ... younger than 40. Risk factors for developing prostate cancer include being over 65 years of age, family ...

  16. Imaging Cellular Proliferation in Prostate Cancer with Positron Emission Tomography

    PubMed Central

    Jadvar, Hossein

    2015-01-01

    Prostate cancer remains a major public health problem worldwide. Imaging plays an important role in the assessment of disease at all its clinical phases, including staging, restaging after definitive therapy, evaluation of therapy response, and prognostication. Positron emission tomography with a number of biologically targeted radiotracers has been demonstrated to have potential diagnostic and prognostic utility in the various clinical phases of this prevalent disease. Given the remarkable biological heterogeneity of prostate cancer, one major unmet clinical need that remains is the non-invasive imaging-based characterization of prostate tumors. Accurate tumor characterization allows for image-targeted biopsy and focal therapy as well as facilitates objective assessment of therapy effect. PET in conjunction with radiotracers that track the thymidine salvage pathway of DNA synthesis may be helpful to fulfill this necessity. We review briefly the preclinical and pilot clinical experience with the two major cellular proliferation radiotracers, [18F]-3’-deoxy-3’-fluorothymidine and [18F]-2’-fluoro-5-methyl-1-beta-D-arabinofuranosyluracil in prostate cancer. PMID:27408885

  17. Gold nanocages for imaging and therapy of prostate cancer cells

    NASA Astrophysics Data System (ADS)

    Sironi, Laura; Avvakumova, Svetlana; Galbiati, Elisabetta; Locarno, Silvia A.; Macchi, Chiara; D'Alfonso, Laura; Ruscica, Massimiliano; Magni, Paolo; Collini, Maddalena; Romeo, Sergio; Chirico, Giuseppe; Prosperi, Davide

    2016-04-01

    Gold nanocages (AuNCs) have been shown to be a useful tool both for imaging and hyperthermia therapy of cancer, thanks to their outstanding optical properties, low toxicity and facile functionalization with targeting molecules, including peptides and antibodies. In particular, hyperthermia is a minimally invasive therapy which takes advantage of the peculiar properties of gold nanoparticles to efficiently convert the absorbed light into heat. Here, we use AuNCs for the selective targeting and imaging of prostate cancer cells. Moreover, we report the hyperthermic effect characterization of the AuNCs both in solution and internalized in cells. Prostate cancer cells were irradiated at different exposure times, with a pulsed near infrared laser, and the cellular viability was evaluated by confocal microscopy.

  18. Boundary delineation in transrectal ultrasound image for prostate cancer.

    PubMed

    Zhang, Ying; Sankar, Ravi; Qian, Wei

    2007-11-01

    This paper presents a new advanced automatic edge delineation model for the detection and diagnosis of prostate cancer on transrectal ultrasound (TRUS) images. The proposed model is to improve prostate boundary detection system by modifying a set of preprocessing algorithms including tree-structured nonlinear filter (TSF), directional wavelet transforms (DWT) and tree-structured wavelet transform (TSWT). The model consists of a preprocessing module and a segmentation module. The preprocessing module is implemented for noise suppression, image smoothing and boundary enhancement. The active contours model is used in the segmentation module for prostate boundary detection in two-dimensional (2D) TRUS images. Experimental results show that the addition of the preprocessing module improves the accuracy and sensitivity of the segmentation module, compared to the implementation of the segmentation module alone. It is believed that the proposed automatic boundary detection module for the TRUS images is a promising approach, which provides an efficient and robust detection and diagnosis strategy and acts as "second opinion" for the physician's interpretation of prostate cancer. PMID:17466966

  19. What is Prostate Cancer?

    MedlinePlus

    ... Topic Key statistics for prostate cancer What is prostate cancer? Cancer starts when cells in the body begin ... through the center of the prostate. Types of prostate cancer Almost all prostate cancers are adenocarcinomas . These cancers ...

  20. Thermoacoustic imaging of prostate cancer: comparison to histology

    NASA Astrophysics Data System (ADS)

    Patch, S. K.; Griep, S. K.; Jacobsohn, K.; See, W. A.; Hull, D.

    2014-03-01

    Ex vivo imaging of fresh prostate specimens was performed to test the hypothesis that the thermoacoustic (TA) contrast mechanism generated with very high frequency electromagnetic (EM) irradiation is sensitive to prostate cancer. Ex vivo imaging was performed immediately after radical prostatectomy, performed as part of normal care. Irradiation pulsewidth was 700 ns and duty cycle was extremely low. Typical specific absorption rate (SAR) throughout the prostate was 70-90 kW/kg during pulsing, but time-averaged SAR was below 2 W/kg. TA pressure pulses generated by rapid heating due to EM energy deposition were detected using single element transducers. 15g/L glycine powder mixed into DI water served as acoustic couplant, which was chilled to prevent autolysis. Spatial encoding was performed by scanning in tomographic "step-and-shoot" mode, with 3 mm translation between slices and 1.8-degree rotation between tomographic views. Histology slides for 3 cases scanned with 2.25 MHz transducers were marked for comparison to TA reconstructions. These three cases showed little, moderate, and severe involvement in the histology levels surrounding the verumontanum. TA signal strength decreased with percent cancerous involvement. When VHF is used for tissue heating, the TA contrast mechanism is driven by ionic content and we observed suppressed TA signal from diseased prostate tissue in the peripheral zone. For the 45 regions of interest analyzed, a reconstruction value of 0.4 mV provides 100% sensitivity but only 29% specificity.

  1. Prostate cancer.

    PubMed

    Castillejos-Molina, Ricardo Alonso; Gabilondo-Navarro, Fernando Bernardo

    2016-04-01

    Prostate cancer is the most frequent tumor found in men worldwide and in Mexico in particular. Age and family history are the main risk factors. The diagnosis is made by prostate biopsy in patients with abnormalities detected in their prostate-specific antigen (PSA) levels or digital rectal exam (DRE). This article reviews screening and diagnostic methods as well as treatment options for patients diagnosed with prostate cancer. PMID:27557386

  2. Prostate cancer localization by novel magnetic resonance dispersion imaging.

    PubMed

    Mischi, M; Saidov, T; Kompatsiari, K; Engelbrecht, M R W; Breeuwer, M; Wijkstra, H

    2013-01-01

    Diagnosis and focal treatment of prostate cancer, the most prevalent form of cancer in men, is hampered by the limits of current clinical imaging. Angiogenesis imaging is a promising option for detection and localization of prostate cancer. It can be imaged by dynamic contrast-enhanced (DCE) MRI, assessing microvascular permeability as an indicator for angiogenesis. However, information on microvascular architecture changes associated with angiogenesis is not available. This paper presents a new model enabling the combined assessment of microvascular permeability and architecture. After the intravenous injection of a gadolinium-chelate bolus, time-concentration curves (TCCs) are measured by DCE-MRI at each voxel. According to the convective dispersion equation, the microvascular architecture is reflected in the dispersion coefficient. A solution of this equation is therefore proposed to represent the intravascular blood plasma compartment in the Tofts model. Fitting the resulting model to TCCs measured at each voxel leads to the simultaneous generation of a dispersion and a permeability map. Measurement of an arterial input function is no longer required. Preliminary validation was performed by spatial comparison with the histological results in seven patients referred for radical prostatectomy. Cancer localization by the obtained dispersion maps provided an area under the receiver operating characteristic curve equal to 0.91. None of the standard DCE-MRI parametric maps could outperform this result, motivating towards an extended validation of the method, also aimed at investigating other forms of cancer with pronounced angiogenic development. PMID:24110260

  3. Multiparametric Magnetic Resonance Imaging of Recurrent Prostate Cancer.

    PubMed

    Mertan, Francesca V; Greer, Matthew D; Borofsky, Sam; Kabakus, Ismail M; Merino, Maria J; Wood, Bradford J; Pinto, Peter A; Choyke, Peter L; Turkbey, Baris

    2016-06-01

    There is growing consensus that multiparametric magnetic resonance imaging (mpMRI) is an effective modality in the detection of locally recurrent prostate cancer after prostatectomy and radiation therapy. The emergence of magnetic resonance (MR)-guided focal therapies, such as cryoablation, high-intensity focused ultrasound, and laser ablation, have made the use of mpMRI even more important, as the normal anatomy is inevitably altered and the detection of recurrence is made more difficult. The aim of this article is to review the utility of mpMRI in detecting recurrent prostate cancer in patients following radical prostatectomy, radiation therapy, and focal therapy and to discuss expected post-treatment mpMRI findings, the varied appearance of recurrent tumors, and their mimics. PMID:27187164

  4. A Review of Imaging Methods for Prostate Cancer Detection

    PubMed Central

    Sarkar, Saradwata; Das, Sudipta

    2016-01-01

    Imaging is playing an increasingly important role in the detection of prostate cancer (PCa). This review summarizes the key imaging modalities—multiparametric ultrasound (US), multiparametric magnetic resonance imaging (MRI), MRI–US fusion imaging, and positron emission tomography (PET) imaging—used in the diagnosis and localization of PCa. Emphasis is laid on the biological and functional characteristics of tumors that rationalize the use of a specific imaging technique. Changes to anatomical architecture of tissue can be detected by anatomical grayscale US and T2-weighted MRI. Tumors are known to progress through angiogenesis—a fact exploited by Doppler and contrast-enhanced US and dynamic contrast-enhanced MRI. The increased cellular density of tumors is targeted by elastography and diffusion-weighted MRI. PET imaging employs several different radionuclides to target the metabolic and cellular activities during tumor growth. Results from studies using these various imaging techniques are discussed and compared. PMID:26966397

  5. Recent Advances in Metabolic Profiling And Imaging of Prostate Cancer

    PubMed Central

    Thapar, Roopa; Titus, Mark A

    2015-01-01

    Cancer is a metabolic disease. Cancer cells, being highly proliferative, show significant alterations in metabolic pathways such as glycolysis, respiration, the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, lipid metabolism, and amino acid metabolism. Metabolites like peptides, nucleotides, products of glycolysis, the TCA cycle, fatty acids, and steroids can be an important read out of disease when characterized in biological samples such as tissues and body fluids like urine, serum, etc. The cancer metabolome has been studied since the 1960s by analytical techniques such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Current research is focused on the identification and validation of biomarkers in the cancer metabolome that can stratify high-risk patients and distinguish between benign and advanced metastatic forms of the disease. In this review, we discuss the current state of prostate cancer metabolomics, the biomarkers that show promise in distinguishing indolent from aggressive forms of the disease, the strengths and limitations of the analytical techniques being employed, and future applications of metabolomics in diagnostic imaging and personalized medicine of prostate cancer. PMID:25632377

  6. Multidimensional MR spectroscopic imaging of prostate cancer in vivo.

    PubMed

    Thomas, M Albert; Nagarajan, Rajakumar; Huda, Amir; Margolis, Daniel; Sarma, Manoj K; Sheng, Ke; Reiter, Robert E; Raman, Steven S

    2014-01-01

    Prostate cancer (PCa) is the second most common type of cancer among men in the United States. A major limitation in the management of PCa is an inability to distinguish, early on, cancers that will progress and become life threatening. One-dimensional (1D) proton ((1)H) MRS of the prostate provides metabolic information such as levels of choline (Ch), creatine (Cr), citrate (Cit), and spermine (Spm) that can be used to detect and diagnose PCa. Ex vivo high-resolution magic angle spinning (HR-MAS) of PCa specimens has revealed detection of more metabolites such as myo-inositol (mI), glutamate (Glu), and glutamine (Gln). Due to the J-modulation and signal overlap, it is difficult to quantitate Spm and other resonances in the prostate clearly by single- and multivoxel-based 1D MR spectroscopy. This limitation can be minimized by adding at least one more spectral dimension by which resonances can be spread apart, thereby increasing the spectral dispersion. However, recording of multivoxel-based two-dimensional (2D) MRS such as J-resolved spectroscopy (JPRESS) and correlated spectroscopy (L-COSY) combined with 2D or three-dimensional (3D) magnetic resonance spectroscopic imaging (MRSI) using conventional phase-encoding can be prohibitively long to be included in a clinical protocol. To reduce the long acquisition time required for spatial encoding, the echo-planar spectroscopic imaging (EPSI) technique has been combined with correlated spectroscopy to give four-dimensional (4D) echo-planar correlated spectroscopic imaging (EP-COSI) as well as J-resolved spectroscopic imaging (EP-JRESI) and the multi-echo (ME) variants. Further acceleration can be achieved using non-uniform undersampling (NUS) and reconstruction using compressed sensing (CS). Earlier versions of 2D MRS, theory of 2D MRS, spectral apodization filters, newer developments and the potential role of multidimensional MRS in PCa detection and management will be reviewed here. PMID:23904127

  7. Reproducibility of an imaging based prostate cancer prognostic assay

    NASA Astrophysics Data System (ADS)

    Khan, Faisal M.; Powell, Douglas; Bayer-Zubek, Valentina; Soares, Rui; Mott, Allison; Fernandez, Gerardo; Mesa-Tejada, Ricardo; Donovan, Michael J.

    2011-03-01

    The Prostate Px prognostic assay offered by Aureon Biosciences is designed to predict progression post primary treatment for prostate cancer patients based on their diagnostic biopsy specimen. The assay is driven by the automated image analysis of biological specimens. Three different histological sections are analyzed for morphometric as well as immunofluorescence protein expression properties within areas of tumor digitally masked by expert pathologists. The assay was developed on a multi-institution cohort of up to 9 images from each of 1027 patients. The variation in histological sections, staining, pathologist tumor masking and the region of image acquisition all have the potential to significantly impact imaging features and consequently the reproducibility of the assay's results for the same patient. This study analyzed the reproducibility of the assay in 50 patients who were re-processed within 3 months in a blinded fashion as de-novo patients. The key assay results reported were in agreement in 94% of the cases. The two independent endpoints of risk classification reproduced results in 90% and 92% of the predictions. This work presents one of the first assessments of the reproducibility of a commercial assay's results given the inherent variations in images and quantitative imaging characteristics in a commercial setting.

  8. Imaging Axl expression in pancreatic and prostate cancer xenografts

    SciTech Connect

    Nimmagadda, Sridhar; Pullambhatla, Mrudula; Lisok, Ala; Hu, Chaoxin; Maitra, Anirban; Pomper, Martin G

    2014-01-10

    Highlights: •Axl is overexpressed in a variety of cancers. •Axl overexpression confers invasive phenotype. •Axl imaging would be useful for therapeutic guidance and monitoring. •Axl expression imaging is demonstrated in pancreatic and prostate cancer xenografts. •Graded levels of Axl expression imaging is feasible. -- Abstract: The receptor tyrosine kinase Axl is overexpressed in and leads to patient morbidity and mortality in a variety of cancers. Axl–Gas6 interactions are critical for tumor growth, angiogenesis and metastasis. The goal of this study was to investigate the feasibility of imaging graded levels of Axl expression in tumors using a radiolabeled antibody. We radiolabeled anti-human Axl (Axl mAb) and control IgG1 antibodies with {sup 125}I with high specific radioactivity and radiochemical purity, resulting in an immunoreactive fraction suitable for in vivo studies. Radiolabeled antibodies were investigated in severe combined immunodeficient mice harboring subcutaneous CFPAC (Axl{sup high}) and Panc1 (Axl{sup low}) pancreatic cancer xenografts by ex vivo biodistribution and imaging. Based on these results, the specificity of [{sup 125}I]Axl mAb was also validated in mice harboring orthotopic Panc1 or CFPAC tumors and in mice harboring subcutaneous 22Rv1 (Axl{sup low}) or DU145 (Axl{sup high}) prostate tumors by ex vivo biodistribution and imaging studies at 72 h post-injection of the antibody. Both imaging and biodistribution studies demonstrated specific and persistent accumulation of [{sup 125}I]Axl mAb in Axl{sup high} (CFPAC and DU145) expression tumors compared to the Axl{sup low} (Panc1 and 22Rv1) expression tumors. Axl expression in these tumors was further confirmed by immunohistochemical studies. No difference in the uptake of radioactivity was observed between the control [{sup 125}I]IgG1 antibody in the Axl{sup high} and Axl{sup low} expression tumors. These data demonstrate the feasibility of imaging Axl expression in pancreatic

  9. Prostate cancer.

    PubMed

    Attard, Gerhardt; Parker, Chris; Eeles, Ros A; Schröder, Fritz; Tomlins, Scott A; Tannock, Ian; Drake, Charles G; de Bono, Johann S

    2016-01-01

    Much progress has been made in research for prostate cancer in the past decade. There is now greater understanding for the genetic basis of familial prostate cancer with identification of rare but high-risk mutations (eg, BRCA2, HOXB13) and low-risk but common alleles (77 identified so far by genome-wide association studies) that could lead to targeted screening of patients at risk. This is especially important because screening for prostate cancer based on prostate-specific antigen remains controversial due to the high rate of overdiagnosis and unnecessary prostate biopsies, despite evidence that it reduces mortality. Classification of prostate cancer into distinct molecular subtypes, including mutually exclusive ETS-gene-fusion-positive and SPINK1-overexpressing, CHD1-loss cancers, could allow stratification of patients for different management strategies. Presently, men with localised disease can have very different prognoses and treatment options, ranging from observation alone through to radical surgery, with few good-quality randomised trials to inform on the best approach for an individual patient. The survival of patients with metastatic prostate cancer progressing on androgen-deprivation therapy (castration-resistant prostate cancer) has improved substantially. In addition to docetaxel, which has been used for more than a decade, in the past 4 years five new drugs have shown efficacy with improvements in overall survival leading to licensing for the treatment of metastatic castration-resistant prostate cancer. Because of this rapid change in the therapeutic landscape, no robust data exist to inform on the selection of patients for a specific treatment for castration-resistant prostate cancer or the best sequence of administration. Moreover, the high cost of the newer drugs limits their widespread use in several countries. Data from continuing clinical and translational research are urgently needed to improve, and, crucially, to personalise management. PMID

  10. Testicular Doses in Image-Guided Radiotherapy of Prostate Cancer

    SciTech Connect

    Deng Jun; Chen Zhe; Yu, James B.; Roberts, Kenneth B.; Peschel, Richard E.; Nath, Ravinder

    2012-01-01

    Purpose: To investigate testicular doses contributed by kilovoltage cone-beam computed tomography (kVCBCT) during image-guided radiotherapy (IGRT) of prostate cancer. Methods and Materials: An EGS4 Monte Carlo code was used to calculate three-dimensional dose distributions from kVCBCT on 3 prostate cancer patients. Absorbed doses to various organs were compared between intensity-modulated radiotherapy (IMRT) treatments and kVCBCT scans. The impact of CBCT scanning mode, kilovoltage peak energy (kVp), and CBCT field span on dose deposition to testes and other organs was investigated. Results: In comparison with one 10-MV IMRT treatment, a 125-kV half-fan CBCT scan delivered 3.4, 3.8, 4.1, and 5.7 cGy to the prostate, rectum, bladder, and femoral heads, respectively, accounting for 1.7%, 3.2%, 3.2%, and 8.4% of megavoltage photon dose contributions. However, the testes received 2.9 cGy from the same CBCT scan, a threefold increase as compared with 0.7 cGy received during IMRT. With the same kVp, full-fan mode deposited much less dose to organs than half-fan mode, ranging from 9% less for prostate to 69% less for testes, except for rectum, where full-fan mode delivered 34% more dose. As photon beam energy increased from 60 to 125 kV, kVCBCT-contributed doses increased exponentially for all organs, irrespective of scanning mode. Reducing CBCT field span from 30 to 10 cm in the superior-inferior direction cut testicular doses from 5.7 to 0.2 cGy in half-fan mode and from 1.5 to 0.1 cGy in full-fan mode. Conclusions: Compared with IMRT, kVCBCT-contributed doses to the prostate, rectum, bladder, and femoral heads are clinically insignificant, whereas dose to the testes is threefold more. Full-fan CBCT usually deposits much less dose to organs (except for rectum) than half-fan mode in prostate patients. Kilovoltage CBCT-contributed doses increase exponentially with photon beam energy. Reducing CBCT field significantly cuts doses to testes and other organs.

  11. Developing imaging strategies for castration resistant prostate cancer

    PubMed Central

    Fox, Josef J.; Morris, Michael J.; Larson, Steven M.; Schöder, Heiko; Scher, Howard I.

    2012-01-01

    Recent advances in the understanding of castrate-resistant prostate cancer (CRPC) have lead to a growing number of experimental therapies, many of which are directed against the androgen-receptor (AR) signaling axis. These advances generate the need for reliable molecular imaging biomarkers to non-invasively determine efficacy, and to better guide treatment selection of these promising AR-targeted drugs. Methods We draw on our own experience, supplemented by review of the current literature, to discuss the systematic development of imaging biomarkers for use in the context of CRPC, with a focus on bone scintigraphy, F-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET) and PET imaging of the AR signaling axis. Results The roadmap to biomarker development mandates rigorous standardization and analytic validation of an assay before it can be qualified successfully for use in an appropriate clinical context. The Prostate Cancer Working Group 2 (PCWG2) criteria for “radiographic” progression by bone scintigraphy serve as a paradigm of this process. Implemented by the Prostate Cancer Clinical Trials Consortium (PCCTC), these consensus criteria may ultimately enable the co-development of more potent and versatile molecular imaging biomarkers. Purported to be superior to single-photon bone scanning, the added value of Na18F-PET for imaging of bone metastases is still uncertain. FDG-PET already plays an integral role in the management of many diseases, but requires further evaluation before being qualified in the context of CRPC. PET tracers that probe the AR signaling axis, such as 18F-FDHT and 89Zr-591, are now under development as pharmacodynamic markers, and as markers of efficacy, in tandem with FDG-PET. Semi-automated analysis programs for facilitating PET interpretation may serve as a valuable tool to help navigate the biomarker roadmap. Conclusions Molecular imaging strategies, particularly those that probe the AR signaling axis, have the potential

  12. Multispectral Photoacoustic Imaging of Prostate Cancer: Preliminary Ex-vivo Results

    PubMed Central

    Dogra, Vikram S.; Chinni, Bhargava K.; Valluru, Keerthi S.; Joseph, Jean V.; Ghazi, Ahmed; Yao, Jorge L.; Evans, Katie; Messing, Edward M.; Rao, Navalgund A.

    2013-01-01

    Objective: The objective of this study is to validate if ex-vivo multispectral photoacoustic (PA) imaging can differentiate between malignant prostate tissue, benign prostatic hyperplasia (BPH), and normal human prostate tissue. Materials and Methods: Institutional Review Board's approval was obtained for this study. A total of 30 patients undergoing prostatectomy for biopsy-confirmed prostate cancer were included in this study with informed consent. Multispectral PA imaging was performed on surgically excised prostate tissue and chromophore images that represent optical absorption of deoxyhemoglobin (dHb), oxyhemoglobin (HbO2), lipid, and water were reconstructed. After the imaging procedure is completed, malignant prostate, BPH and normal prostate regions were marked by the genitourinary pathologist on histopathology slides and digital images of marked histopathology slides were obtained. The histopathology images were co-registered with chromophore images. Region of interest (ROI) corresponding to malignant prostate, BPH and normal prostate were defined on the chromophore images. Pixel values within each ROI were then averaged to determine mean intensities of dHb, HbO2, lipid, and water. Results: Our preliminary results show that there is statistically significant difference in mean intensity of dHb (P < 0.0001) and lipid (P = 0.0251) between malignant prostate and normal prostate tissue. There was difference in mean intensity of dHb (P < 0.0001) between malignant prostate and BPH. Sensitivity, specificity, positive predictive value, and negative predictive value of our imaging system were found to be 81.3%, 96.2%, 92.9% and 89.3% respectively. Conclusion: Our preliminary results of ex-vivo human prostate study suggest that multispectral PA imaging can differentiate between malignant prostate, BPH and normal prostate tissue. PMID:24228210

  13. Imaging and Markers as Novel Diagnostic Tools in Detecting Insignificant Prostate Cancer: A Critical Overview

    PubMed Central

    Nosov, Alexander; Novikov, Roman; Petrov, Sergey

    2014-01-01

    Recent therapeutic advances for managing low-risk prostate cancer include the active surveillance and focal treatment. However, locating a tumor and detecting its volume by adequate sampling is still problematic. Development of predictive biomarkers guiding individual therapeutic choices remains an ongoing challenge. At the same time, prostate cancer magnetic resonance imaging is gaining increasing importance for prostate diagnostics. The high morphological resolution of T2-weighted imaging and functional MRI methods may increase the specificity and sensitivity of diagnostics. Also, recent studies founded an ability of novel biomarkers to identify clinically insignificant prostate cancer, risk of progression, and association with poor differentiation and, therefore, with clinical significance. Probably, the above mentioned methods would improve tumor characterization in terms of its volume, aggressiveness, and focality. In this review, we attempted to evaluate the applications of novel imaging techniques and biomarkers in assessing the significance of the prostate cancer. PMID:27351008

  14. Improving Prediction of Prostate Cancer Recurrence using Chemical Imaging

    NASA Astrophysics Data System (ADS)

    Kwak, Jin Tae; Kajdacsy-Balla, André; Macias, Virgilia; Walsh, Michael; Sinha, Saurabh; Bhargava, Rohit

    2015-03-01

    Precise Outcome prediction is crucial to providing optimal cancer care across the spectrum of solid cancers. Clinically-useful tools to predict risk of adverse events (metastases, recurrence), however, remain deficient. Here, we report an approach to predict the risk of prostate cancer recurrence, at the time of initial diagnosis, using a combination of emerging chemical imaging, a diagnostic protocol that focuses simultaneously on the tumor and its microenvironment, and data analysis of frequent patterns in molecular expression. Fourier transform infrared (FT-IR) spectroscopic imaging was employed to record the structure and molecular content from tumors prostatectomy. We analyzed data from a patient cohort that is mid-grade dominant - which is the largest cohort of patients in the modern era and in whom prognostic methods are largely ineffective. Our approach outperforms the two widely used tools, Kattan nomogram and CAPRA-S score in a head-to-head comparison for predicting risk of recurrence. Importantly, the approach provides a histologic basis to the prediction that identifies chemical and morphologic features in the tumor microenvironment that is independent of conventional clinical information, opening the door to similar advances in other solid tumors.

  15. Improving PET spatial resolution and detectability for prostate cancer imaging

    NASA Astrophysics Data System (ADS)

    Bal, H.; Guerin, L.; Casey, M. E.; Conti, M.; Eriksson, L.; Michel, C.; Fanti, S.; Pettinato, C.; Adler, S.; Choyke, P.

    2014-08-01

    Prostate cancer, one of the most common forms of cancer among men, can benefit from recent improvements in positron emission tomography (PET) technology. In particular, better spatial resolution, lower noise and higher detectability of small lesions could be greatly beneficial for early diagnosis and could provide a strong support for guiding biopsy and surgery. In this article, the impact of improved PET instrumentation with superior spatial resolution and high sensitivity are discussed, together with the latest development in PET technology: resolution recovery and time-of-flight reconstruction. Using simulated cancer lesions, inserted in clinical PET images obtained with conventional protocols, we show that visual identification of the lesions and detectability via numerical observers can already be improved using state of the art PET reconstruction methods. This was achieved using both resolution recovery and time-of-flight reconstruction, and a high resolution image with 2 mm pixel size. Channelized Hotelling numerical observers showed an increase in the area under the LROC curve from 0.52 to 0.58. In addition, a relationship between the simulated input activity and the area under the LROC curve showed that the minimum detectable activity was reduced by more than 23%.

  16. Peptide-conjugated nanoparticles for targeted imaging and therapy of prostate cancer.

    PubMed

    Yeh, Chen-Yun; Hsiao, Jong-Kai; Wang, Yi-Ping; Lan, Chun-Hsin; Wu, Han-Chung

    2016-08-01

    While there has been extensive development of anti-cancer drugs for treatment of prostate cancer, the therapeutic efficacy of such drugs remains inadequate in many cases. Here, we performed in vitro biopanning of the PC3 human prostate carcinoma cell line to select prostate cancer-specific peptides by phage display. We successfully identified specific peptides targeting prostate cancer cells, and their specificity was confirmed by cellular ELISA and flow cytometry. Moreover, we found that the phage clones also recognize other prostate cancer cell lines and surgical specimens from prostate cancer patients. The tumor targeting ability of these phages was validated in a xenograft model, in which high accumulation of targeting phage was observed. To investigate whether selected peptides are able to target tumors and enhance drug delivery into cancer cells, we synthesized peptide-PEGylated lipids and post-inserted them into preformed liposomal doxorubicin and vinorelbine. The results of our cellular uptake and MTT assays indicate that peptide-conjugated liposomes exhibit enhanced drug intracellular delivery and cytotoxicity. The conjugation of targeting peptide to imaging agents, such as quantum dots (QDs) and superparamagnetic iron oxide nanoparticles (SPIONs), results in more precise delivery of these agents to tumor sites. Furthermore, administration of liposomal doxorubicin and vinorelbine conjugated with targeting peptides was found to markedly increase the inhibition of human prostate tumor growth in mouse xenograft and orthotopic models. These results indicate that targeting peptide, SP204, has significant potential for targeted therapy and molecular imaging in prostate cancer. PMID:27209258

  17. Prostate cancer risk stratification with magnetic resonance imaging.

    PubMed

    Felker, Ely R; Margolis, Daniel J; Nassiri, Nima; Marks, Leonard S

    2016-07-01

    In recent years, multiparametric magnetic resonance imaging (mpMRI) has shown promise for prostate cancer (PCa) risk stratification. mpMRI, often followed by targeted biopsy, can be used to confirm low-grade disease before enrollment in active surveillance. In patients with intermediate or high-risk PCa, mpMRI can be used to inform surgical management. mpMRI has sensitivity of 44% to 87% for detection of clinically significant PCa and negative predictive value of 63% to 98% for exclusion of significant disease. In addition to tumor identification, mpMRI has also been shown to contribute significant incremental value to currently used clinical nomograms for predicting extraprostatic extension. In combination with conventional clinical criteria, accuracy of mpMRI for prediction of extraprostatic extension ranges from 92% to 94%, significantly higher than that achieved with clinical criteria alone. Supplemental sequences, such as diffusion-weighted imaging and dynamic contrast-enhanced imaging, allow quantitative evaluation of cancer-suspicious regions. Apparent diffusion coefficient appears to be an independent predictor of PCa aggressiveness. Addition of apparent diffusion coefficient to Epstein criteria may improve sensitivity for detection of significant PCa by as much as 16%. Limitations of mpMRI include variability in reporting, underestimation of PCa volume and failure to detect clinically significant disease in a small but significant number of cases. PMID:27040381

  18. MR Molecular Imaging of Prostate Cancer with a Peptide Targeted Contrast Agent in a Mouse Orthotopic Prostate Cancer Model

    PubMed Central

    Tan, Mingqian; Burden-Gulley, Susan M.; Li, Wen; Wu, Xueming; Lindner, Daniel; Brady-Kalnay, Susann M.; Gulani, Vikas; Lu, Zheng-Rong

    2014-01-01

    Purpose To study the effectiveness of a peptide targeted nanoglobular Gd-DOTA complexes for MR molecular imaging of prostate cancer in a mouse orthotopic PC-3 prostate cancer model. Methods A CLT1 (CGLIIQKNEC) peptide targeted generation 2 nanoglobular Gd-DOTA monoamide conjugate [CLT1-G2-(Gd-DOTA)] was used for imaging fibrin-fibronectin complexes in prostate tumor using a non-specific peptide KAREC modified conjugate, KAREC-G2-(Gd-DOTA) as a control. Cy5 conjugates of CLT1 and KAREC were synthesized for binding studies. Orthotopic PC-3 prostate tumors were established in the prostate of athymic male nude mice. MRI study was performed on a Bruker 7T animal scanner. Results CLT1 peptide showed specific binding in the prostate tumor with no binding in normal tissues. The control peptide had little binding in both normal and tumor tissues. CLT1-G2-(Gd-DOTA) resulted in stronger contrast enhancement in the tumor tissue than the KAREC-G2-(Gd-DOTA). CLT1-G2-(Gd-DOTA) generated approximately 100% increase in contrast-to-noise ratio (CNR) in the tumor as compared to precontrast CNR at 1 minute post-injection, while the control agent KAREC-G2-(Gd-DOTA) only resulted in 8% CNR increase. Conclusion CLT1-G2-(Gd-DOTA) is a promising molecular MRI contrast agent for fibrin-fibronectin complexes in the tumor stroma. It has a potential for the diagnosis and assessing prognosis of malignant tumors with MRI. PMID:22139536

  19. Image-guided diagnosis of prostate cancer can increase detection of tumors

    Cancer.gov

    In the largest prospective study to date of image-guided technology for identifying suspicious regions of the prostate to biopsy, researchers compared the ability of this technology to detect high-risk prostate cancer with that of the current standard of

  20. Protease-Activated Pore-Forming Peptides for the Treatment and Imaging of Prostate Cancer

    PubMed Central

    LeBeau, Aaron M.; Denmeade, Samuel R.

    2015-01-01

    A common hallmark of cancers with highly aggressive phenotypes is increased proteolysis in the tumor and the surrounding microenvironment. Prostate cancer has a number of proteases uniquely associated with it that may play various important roles in disease progression. In this report, we utilize the peritumoral proteolytic activity of prostate cancer to activate engineered peptide constructs for the treatment and noninvasive imaging of prostate cancer. Using a modular "propeptide" approach, a cationic diastereomeric pore-forming peptide domain was linked to an inactivating acidic peptide domain. The inactivating acidic peptide domain was engineered to be a cleavable substrate for the secreted serine protease prostate-specific antigen (PSA) or the transmembrane metalloprotease prostate-specific membrane antigen (PSMA). The propeptides were then evaluated in a direct comparison study. Both the PSA and PSMA activated propeptides were found to be cytotoxic to prostate cancer cells in vitro. In vivo, however, treatment of LNCaP and CWR22Rv1 xenografts with the PSMA propeptide resulted in a pronounced cytostatic effect when compared with xenografts treated with the PSA propeptide or the cationic diastereomeric peptide alone. The PSMA activated propeptide also proved to be an effective optical imaging probe in vivo when labeled with a near-infrared fluorophore. These data suggest that protease-activated pore-forming peptides could potentially be used for both imaging and treating prostate cancer. PMID:25537662

  1. Prostate cancer - resources

    MedlinePlus

    Resources - prostate cancer ... The following organizations are good resources for information on prostate cancer : American Cancer Society -- www.cancer.org/cancer/prostatecancer/index National Cancer Institute -- www.cancer.gov/cancertopics/ ...

  2. Clinical Perspective of Prostate Cancer.

    PubMed

    Patil, Nilesh; Gaitonde, Krishnanath

    2016-06-01

    Prostate cancer is the most common noncutaneous cancer affecting men today. It largely affects men in the fifth and sixth decade of life. Screening for prostate cancer, though controversial, is still the only way to detect early prostate cancer. Multiple newer options such as blood tests and genetic markers are being used in the clinical domain today to improve cancer detection and avoid unnecessary biopsies. To date, biopsy of the prostate remains the only modality to stratify the grade of cancer. Significant improvements in the imaging technology have improved localizing and detecting the disease. Treatment of prostate cancer is stratified on the basis of the grade and volume of the disease. There are multiple treatment options involved in the management of prostate cancer. Treatment of localized prostate cancer still continues to have very high cure rates and long-term cancer-specific survival rates. PMID:27187167

  3. PET Imaging in Prostate Cancer: Focus on Prostate-Specific Membrane Antigen

    PubMed Central

    Mease, Ronnie C.; Foss, Catherine A.; Pomper, Martin G.

    2014-01-01

    Prostate cancer (PCa) is the second leading cause of cancer-related death in American men. Positron emission tomography/computed tomography (PET/CT) with emerging radiopharmaceuticals promises accurate staging of primary disease, restaging of recurrent disease, detection of metastatic lesions and, ultimately, for predicting the aggressiveness of disease. Prostate-specific membrane antigen (PSMA) is a well-characterized imaging biomarker of PCa. Because PSMA levels are directly related to androgen independence, metastasis and progression, PSMA could prove an important target for the development of new radiopharmaceuticals for PET. Preclinical data for new PSMA-based radiotracers are discussed and include new 89Zr- and 64Cu-labeled anti-PSMA antibodies and antibody fragments, 64Cu-labeled aptamers, and 11C-, 18F-, 68Ga-, 64Cu-, and 86Y-labeled low molecular weight inhibitors of PSMA. Several of these agents, namely 68Ga-HBED-CC conjugate 15, 18F-DCFBC 8, and BAY1075553 are particularly promising, each having detected sites of PCa in initial clinical studies. These early clinical results suggest that PET/CT using PSMA-targeted agents, especially with compounds of low molecular weight, will make valuable contributions to the management of PCa. PMID:23590171

  4. MOLECULAR IMAGING OF PROSTATE CANCER: translating molecular biology approaches into the clinical realm

    PubMed Central

    Vargas, Hebert Alberto; Grimm, Jan; Donati, Olivio F.; Sala, Evis; Hricak, Hedvig

    2016-01-01

    The epidemiology of prostate cancer has dramatically changed since the introduction of prostate-specific antigen (PSA) screening in the 1980’s. Most prostate cancers today are detected at early stages of the disease and are considered “indolent”, however some patients’ prostate cancers demonstrate a more aggressive behavior which leads to rapid progression and death. Increasing understanding of the biology underlying the heterogeneity that characterizes this disease has lead to a continuously evolving role of imaging in the management of prostate cancer. Functional and metabolic imaging techniques are gaining importance as the impact on the therapeutic paradigm has shifted from structural tumor detection alone to distinguishing patients with indolent tumors that can be managed conservatively (e.g., by active surveillance) from patients with more aggressive tumors that may require definitive treatment with surgery or radiation. In this review, we discuss advanced imaging techniques that allow direct visualization of molecular interactions relevant to prostate cancer and their potential for translation to the clinical setting in the near future. The potential use of imaging to follow molecular events during drug therapy as well as the use of imaging agents for therapeutic purposes will also be discussed. PMID:25693661

  5. Incidental Bladder Cancer Detected on Multiparametric Magnetic Resonance Imaging of the Prostate Gland

    PubMed Central

    Sardari, Al; Thomas, John V.; Nix, Jeffrey W.; Pietryga, Jason A.; Sanyal, Rupan; Gordetsky, Jennifer B.; Rais-Bahrami, Soroush

    2015-01-01

    The increased use of axial imaging in various fields of medicine has led to an increased frequency of incidental findings, specifically incidental cancer lesions. Hence, as the use of multiparametric magnetic resonance imaging (MP-MRI) for prostate cancer detection, staging, and management becomes more widespread, the potential for additional incidental findings in the pelvis increases. Herein, we report the case of a man on active surveillance for low-grade, early-staged prostate cancer who underwent MP-MRI and was incidentally found to have a high-grade bladder cancer lesion. PMID:26783492

  6. Prostate Cancer Prevention

    MedlinePlus

    ... finasteride who did have prostate cancer had more aggressive tumors . The number of deaths from prostate cancer ... men that did not. The number of less aggressive prostate cancers was lower, but the number of ...

  7. 6 Common Cancers - Prostate Cancer

    MedlinePlus

    ... Home Current Issue Past Issues 6 Common Cancers - Prostate Cancer Past Issues / Spring 2007 Table of Contents For ... for early screening. Photo: AP Photo/Danny Moloshok Prostate Cancer The prostate gland is a walnut-sized structure ...

  8. 6 Common Cancers - Prostate Cancer

    MedlinePlus

    ... Bar Home Current Issue Past Issues 6 Common Cancers - Prostate Cancer Past Issues / Spring 2007 Table of Contents For ... early screening. Photo: AP Photo/Danny Moloshok Prostate Cancer The prostate gland is a walnut-sized structure ...

  9. Development of Targeted Near-Infrared Imaging Agents for Prostate Cancer

    PubMed Central

    Wang, Xinning; Huang, Steve S.; Heston, Warren D.W.; Guo, Hong; Wang, Bing-Cheng; Basilion, James P.

    2015-01-01

    Prostate cancer is the most common noncutaneous malignancy affecting men in North America. Radical prostatectomy remains a definitive treatment for prostate cancer. However, prostate surgeries are still performed “blindly” with the extent of tumor infiltration past the margins of the surgery only being determined postoperatively. An imaging modality that can be used during surgery is needed to help define the tumor margins. With its abundant expression in prostate cancer, prostate-specific membrane antigen (PSMA) is an ideal target for detection of prostate cancer. The purpose of this study was to develop PSMA-targeted near-infrared (NIR) optical imaging probes for intraoperative visualization of prostate cancer. We synthesized a high-affinity PSMA ligand (PSMA-1) with low molecular weight and further labeled it with commercially available NIR dyes IRDy800 and Cy5.5. PSMA-1 and PSMA-1–NIR conjugates had binding affinities better than the parent ligand Cys-CO-Glu. Selective binding was measured for each of the probes in both in vitro and in vivo studies using competitive binding and uptake studies. Interestingly, the results indicated that the pharmacokinetics of the probes was dependent of the fluorophore conjugated to the PSMA-1 ligand and varied widely. These data suggest that PSMA-targeted probes have the potential to be further developed as contrast agents for clinical intraoperative fluorescence-guided surgery. PMID:25239933

  10. Analysis of the spatial distribution of prostate cancer obtained from histopathological images

    NASA Astrophysics Data System (ADS)

    Diaz, Kristians; Castaneda, Benjamin; Montero, Maria Luisa; Yao, Jorge; Joseph, Jean; Rubens, Deborah; Parker, Kevin J.

    2013-03-01

    Understanding the spatial distribution of prostate cancer and how it changes according to prostate specific antigen (PSA) values, Gleason score, and other clinical parameters may help comprehend the disease and increase the overall success rate of biopsies. This work aims to build 3D spatial distributions of prostate cancer and examine the extent and location of cancer as a function of independent clinical parameters. The border of the gland and cancerous regions from wholemount histopathological images are used to reconstruct 3D models showing the localization of tumor. This process utilizes color segmentation and interpolation based on mathematical morphological distance. 58 glands are deformed into one prostate atlas using a combination of rigid, affine, and b-spline deformable registration techniques. Spatial distribution is developed by counting the number of occurrences in a given position in 3D space from each registered prostate cancer. Finally a difference between proportions is used to compare different spatial distributions. Results show that prostate cancer has a significant difference (SD) in the right zone of the prostate between populations with PSA greater and less than 5ng/ml. Age does not have any impact in the spatial distribution of the disease. Positive and negative capsule-penetrated cases show a SD in the right posterior zone. There is SD in almost all the glands between cases with tumors larger and smaller than 10% of the whole prostate. A larger database is needed to improve the statistical validity of the test. Finally, information from whole-mount histopathological images may provide better insight into prostate cancer.

  11. Preoperative prostate biopsy and multiparametric magnetic resonance imaging: reliability in detecting prostate cancer

    PubMed Central

    Porpiglia, Francesco; Russo, Filippo; Manfredi, Matteo; Mele, Fabrizio; Fiori, Cristian; Regge, Daniele

    2015-01-01

    Purpose The aim of the study was to analyse and compare the ability of multiparametric magnetic resonance imaging (mp–MRI) and prostate biopsy (PB) to correctly identify tumor foci in patients undergoing radical prostatectomy (RP) for prostate cancer (PCa). Materials and Methods 157 patients with clinically localised PCa with a PSA <10 ng/mL and a negative DRE diagnosed on the first (12 samples, Group A) or second (18 samples, Group B) PB were enrolled at our institution. All patients underwent mp-MRI with T2-weighted images, diffusion-weighted imaging, dynamic contrast enhanced-MRI prior to RP. A map of comparison describing each positive biopsy sample was created for each patient, with each tumor focus shown on the MRI and each lesion present on the definitive histological examination in order to compare tumor detection and location. The sensitivity of mp-MRI and PB for diagnosis was compared using Student’s t-test. The ability of the two exams to detect the prevalence of Gleason pattern 4 in the identified lesions was compared using a chi-square test. Results Overall sensitivity of PB and mp-MRI to identify tumor lesion was 59.4% and 78.9%, respectively (p<0.0001). PB missed 144/355 lesions, 59 of which (16.6%) were significant. mp-MRI missed 75/355 lesions, 12 of which (3.4%) were significant. No lesions with a GS≥8 were missed. Sensitivity of PB and mp-MRI to detect the prevalence of Gleason pattern 4 was 88.2% and 97.4%, respectively. Conclusions mp-MRI seems to identify more tumor lesions than PB and to provide more information concerning tumor characteristics. PMID:25928518

  12. Prediction of Prostate Cancer Recurrence Using Quantitative Phase Imaging

    NASA Astrophysics Data System (ADS)

    Sridharan, Shamira; Macias, Virgilia; Tangella, Krishnarao; Kajdacsy-Balla, André; Popescu, Gabriel

    2015-05-01

    The risk of biochemical recurrence of prostate cancer among individuals who undergo radical prostatectomy for treatment is around 25%. Current clinical methods often fail at successfully predicting recurrence among patients at intermediate risk for recurrence. We used a label-free method, spatial light interference microscopy, to perform localized measurements of light scattering in prostatectomy tissue microarrays. We show, for the first time to our knowledge, that anisotropy of light scattering in the stroma immediately adjoining cancerous glands can be used to identify patients at higher risk for recurrence. The data show that lower value of anisotropy corresponds to a higher risk for recurrence, meaning that the stroma adjoining the glands of recurrent patients is more fractionated than in non-recurrent patients. Our method outperformed the widely accepted clinical tool CAPRA-S in the cases we interrogated irrespective of Gleason grade, prostate-specific antigen (PSA) levels and pathological tumor-node-metastasis (pTNM) stage. These results suggest that QPI shows promise in assisting pathologists to improve prediction of prostate cancer recurrence.

  13. Evaluation of the Prostate Imaging Reporting and Data System for Magnetic Resonance Imaging Diagnosis of Prostate Cancer in Patients with Prostate-specific Antigen <20 ng/ml

    PubMed Central

    Wang, Xuan; Wang, Jian-Ye; Li, Chun-Mei; Zhang, Ya-Qun; Wang, Jian-Long; Wan, Ben; Zhang, Wei; Chen, Min; Li, Sa-Ying; Wan, Gang; Liu, Ming

    2016-01-01

    Background: The European Society of Urogenital Radiology has built the Prostate Imaging Reporting and Data System (PI-RADS) for standardizing the diagnosis of prostate cancer (PCa). This study evaluated the PI-RADS diagnosis method in patients with prostate-specific antigen (PSA) <20 ng/ml. Methods: A total of 133 patients with PSA <20 ng/ml were prospectively recruited. T2-weighted (T2WI) and diffusion-weighted (DWI) magnetic resonance images of the prostate were acquired before a 12-core transrectal prostate biopsy. Each patient's peripheral zone was divided into six regions on the images; each region corresponded to two of the 12 biopsy cores. T2WI, DWI, and T2WI + DWI scores were computed according to PI-RADS. The diagnostic accuracy of the PI-RADS score was evaluated using histopathology of prostate biopsies as the reference standard. Results: PCa was histologically diagnosed in 169 (21.2%) regions. Increased PI-RADS score correlated positively with increased cancer detection rate. The cancer detection rate for scores 1 to 5 was 2.8%, 15.0%, 34.6%, 52.6%, and 88.9%, respectively, using T2WI and 12.0%, 20.2%, 48.0%, 85.7%, and 93.3%, respectively, using DWI. For T2WI + DWI, the cancer detection rate was 1.5% (score 2), 13.5% (scores 3–4), 41.3% (scores 5–6), 75.9% (scores 7–8), and 92.3% (scores 9–10). The area under the curve for cancer detection was 0.700 (T2WI), 0.735 (DWI) and 0.749 (T2WI + DWI). The sensitivity and specificity were 53.8% and 89.2%, respectively, when using scores 5–6 as the cutoff value for T2WI + DWI. Conclusions: The PI-RADS score correlates with the PCa detection rate in patients with PSA <20 ng/ml. The summed score of T2WI + DWI has the highest accuracy in detection of PCa. However, the sensitivity should be further improved. PMID:27270538

  14. 3-D statistical cancer atlas-based targeting of prostate biopsy using ultrasound image guidance

    NASA Astrophysics Data System (ADS)

    Narayanan, Ramkrishnan; Shen, Dinggang; Davatzikos, Christos A.; Crawford, E. David; Barqawi, Albaha; Werahera, Priya; Kumar, Dinesh; Suri, Jasjit S.

    2008-03-01

    Prostate cancer is a multifocal disease and lesions are not distributed uniformly within the gland. Several biopsy protocols concerning spatially specific targeting have been reported urology literature. Recently a statistical cancer atlas of the prostate was constructed providing voxelwise probabilities of cancers in the prostate. Additionally an optimized set of biopsy sites was computed with 94 - 96% detection accuracy was reported using only 6-7 needles. Here we discuss the warping of this atlas to prostate segmented side-fire ultrasound images of the patient. A shape model was used to speed up registration. The model was trained from over 38 expert segmented subjects off-line. This training yielded as few as 15-20 degrees of freedom that were optimized to warp the atlas surface to the patient's ultrasound image followed by elastic interpolation of the 3-D atlas. As a result the atlas is completely mapped to the patient's prostate anatomy along with optimal predetermined needle locations for biopsy. These do not preclude the use of additional biopsies if desired. A color overlay of the atlas is also displayed on the ultrasound image showing high cancer zones within the prostate. Finally current biopsy locations are saved in the atlas space and may be used to update the atlas based on the pathology report. In addition to the optimal atlas plan, previous biopsy locations and alternate plans can also be stored in the atlas space and warped to the patient with no additional time overhead.

  15. Localized Prostate Cancer

    MedlinePlus

    ... a decision aid for men with clinically localized prostate cancer (available at http://effectivehealthcare.ahrq.gov/prostate_da) ... A Decision Aid for Men With Clinically Localized Prostate Cancer Page 1 of 24 Introduction Men with clinically ...

  16. Prostate-specific membrane antigen as a target for cancer imaging and therapy

    PubMed Central

    KIESS, A. P.; BANERJEE, S. R.; MEASE, R. C.; ROWE, S. P.; RAO, A.; FOSS, C. A.; CHEN, Y.; YANG, X.; CHO, S. Y.; NIMMAGADDA, S.; POMPER, M. G.

    2016-01-01

    The prostate-specific membrane antigen (PSMA) is a molecular target whose use has resulted in some of the most productive work toward imaging and treating prostate cancer over the past two decades. A wide variety of imaging agents extending from intact antibodies to low-molecular-weight compounds permeate the literature. In parallel there is a rapidly expanding pool of antibody-drug conjugates, radiopharmaceutical therapeutics, small-molecule drug conjugates, theranostics and nanomedicines targeting PSMA. Such productivity is motivated by the abundant expression of PSMA on the surface of prostate cancer cells and within the neovasculature of other solid tumors, with limited expression in most normal tissues. Animating the field is a variety of small-molecule scaffolds upon which the radionuclides, drugs, MR-detectable species and nanoparticles can be placed with relative ease. Among those, the urea-based agents have been most extensively leveraged, with expanding clinical use for detection and more recently for radiopharmaceutical therapy of prostate cancer, with surprisingly little toxicity. PSMA imaging of other cancers is also appearing in the clinical literature, and may overtake FDG for certain indications. Targeting PSMA may provide a viable alternative or first-line approach to managing prostate and other cancers. PMID:26213140

  17. The utility of monoclonal antibodies in the imaging of prostate cancer.

    PubMed

    Yao, Daniel; Trabulsi, Edouard J; Kostakoglu, Lale; Vallabhajosula, Shankar; Joyce, Maureen A; Nanus, David M; Milowsky, Matthew; Liu, He; Goldsmith, Stanley J

    2002-08-01

    Monoclonal antibodies (mAbs) to prostate-specific antigens, such as PSMA, have great potential as diagnostic and therapeutic tools in the management of advanced prostate cancer. PSMA is a very attractive target for mAb-based imaging. It is expressed by virtually all prostate cancers and its expression is further increased in poorly differentiated, metastatic, and hormone-refractory carcinomas. The ProstaScint scan (Cytogen, Princeton, NJ), based on the mAb 7E11-C5.3, is currently approved for the imaging of prostate cancer in soft tissue but is not approved for imaging bone metastases. It appears superior to conventional imaging studies for soft-tissue disease but has limitations attributed to its intracellular binding site on PSMA. Overcoming this limitation, new mAbs to the extracellular domain of PSMA have been developed. The radioisotopes, (111)Indium, (90)Yttrium, and (177)Lutetium have been conjugated to one such mAb, J591. Radioimmunoscintigraphy with this immunoconjugate has demonstrated excellent tumor targeting of prostate cancer sites not only in soft tissue but also in bone. PMID:12215974

  18. Metabolomic Imaging of Prostate Cancer with Magnetic Resonance Spectroscopy and Mass Spectrometry

    PubMed Central

    Spur, Eva-Margarete; Decelle, Emily A.; Cheng, Leo L.

    2013-01-01

    Metabolomic imaging of prostate cancer (PCa) aims to improve in vivo imaging capability so that PCa tumors can be localized non-invasively to guide biopsy and evaluated for aggressiveness prior to prostatectomy, as well as to assess and monitor PCa growth for newly biopsy-diagnosed, asymptomatic PCa patients. Metabolomics studies global variations of metabolites with which malignancy conditions can be evaluated by profiling the entire measurable metabolome, instead of focusing only on certain metabolites or isolated metabolic pathways. At present, the study of PCa metabolomics is mainly accomplished utilizing magnetic resonance spectroscopy (MRS) and mass spectrometry (MS). With MRS imaging, the anatomic image, obtained from magnetic resonance imaging, is mapped with values of disease condition-specific metabolomic profiles calculated from MRS of each location. For example, imaging of removed whole prostates demonstrated the ability of metabolomic profiles to differentiate cancerous foci from histologically benign regions. Additionally, MS metabolomic imaging of prostate biopsies uncovered metabolomic expression patterns that could discriminate between PCa and benign tissue. Metabolomic imaging offers the potential to identify cancer lesions to guide prostate biopsy and evaluate PCa aggressiveness non-invasively in vivo, or ex vivo to increase the power of pathology analysis. Potentially, this imaging ability could be possible not only with PCa, but applied to different tissues and organs to evaluate other human malignancies or metabolic diseases. PMID:23549758

  19. Prostate cancer with a pseudocapsule at MR imaging: a marker of high grade and stage disease?

    PubMed

    Bonde, Apurva A; Korngold, Elena K; Foster, Bryan R; Westphalen, Antonio C; Pettersson, David R; Troxell, Megan L; Simko, Jeffry P; Coakley, Fergus V

    2016-01-01

    Clinicopathological correlates of prostate cancer associated with a pseudocapsule at T2-weighted magnetic resonance (MR) imaging are presented in a retrospective series of 15 patients. Of 15 tumors, 14 involved the peripheral zone. Extracapsular extension was seen in 14 cases. Tumor Gleason score was 8 or above in 12 of 15 cases, and ductal type adenocarcinoma was identified in 4 cases. Step section histopathological correlation (n=5) demonstrated that the pseudocapsule corresponded with dense compressive or reactive peritumoral fibrosis. A pseudocapsule around prostate cancer at T2-weighted MR imaging is a rare finding that appears to be associated with high grade and stage disease. PMID:27133669

  20. Automatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysis

    NASA Astrophysics Data System (ADS)

    Vos, P. C.; Barentsz, J. O.; Karssemeijer, N.; Huisman, H. J.

    2012-03-01

    In this paper, a fully automatic computer-aided detection (CAD) method is proposed for the detection of prostate cancer. The CAD method consists of multiple sequential steps in order to detect locations that are suspicious for prostate cancer. In the initial stage, a voxel classification is performed using a Hessian-based blob detection algorithm at multiple scales on an apparent diffusion coefficient map. Next, a parametric multi-object segmentation method is applied and the resulting segmentation is used as a mask to restrict the candidate detection to the prostate. The remaining candidates are characterized by performing histogram analysis on multiparametric MR images. The resulting feature set is summarized into a malignancy likelihood by a supervised classifier in a two-stage classification approach. The detection performance for prostate cancer was tested on a screening population of 200 consecutive patients and evaluated using the free response operating characteristic methodology. The results show that the CAD method obtained sensitivities of 0.41, 0.65 and 0.74 at false positive (FP) levels of 1, 3 and 5 per patient, respectively. In conclusion, this study showed that it is feasible to automatically detect prostate cancer at a FP rate lower than systematic biopsy. The CAD method may assist the radiologist to detect prostate cancer locations and could potentially guide biopsy towards the most aggressive part of the tumour.

  1. Radioimmunoscintigraphy of prostate cancer

    SciTech Connect

    Babaian, R.J.; Lamki, L.M. )

    1989-10-01

    The development of hybridoma technology has increased research efforts and clinical applications in the area of radioimmunodetection. Despite the many investigative antibodies directed against prostatic tissue or prostate cancer cell lines, only two have been tested in clinical trials. A 111In-labeled antibody directed against prostate-specific antigen, the best available serum tumor marker for prostate cancer, has shown poor sensitivity in limited clinical radioimmunoimaging trials. Monoclonal antibodies against prostatic acid phosphatase have shown better imaging results, particularly at higher antibody doses (greater than or equal to 40 mg). The limitations of this antibody include the poor results in detecting soft tissue lesions, including the primary lesion; the development of human antimouse antibodies in 50% of the patients at doses greater than or equal to 40 mg; the expense of the antibody; and the fact that better results are currently attainable by other less expensive imaging modalities. If and when a more suitable antibody or fragment is developed, the prospect of improved staging and new treatments using immunologic conjugates carrying therapeutic agents may become realities. Until such time, prostatic cancer will be staged with other currently available imaging modalities and conventional therapies with their limitations will remain state of the art. 56 references.

  2. [Prostate cancer].

    PubMed

    Morote, Joan; Maldonado, Xavier; Morales-Bárrera, Rafael

    2016-02-01

    The Vall d'Hebron multidisciplinary prostate cancer (PC) team reviews recent advances in the management of this neoplasm. Screening studies with long follow-up show a reduction in mortality, whereas active surveillance is emerging as a therapeutic approach of non-aggressive cancers. New markers increase the specificity of PSA and also allow targeting suspected aggressive cancers. Multiparametric magnetic resonance (mMRI) has emerged as the most effective method in the selection of patients for biopsy and also for local tumor staging. The paradigm of random prostatic biopsy is changing through the fusion techniques that allow guiding ultrasonography-driven biopsy of suspicious areas detected in mMRI. Radical prostatectomy (RP) and radiotherapy (RT) are curative treatments of localized PC and both have experienced significant technological improvements. RP is highly effective and the incorporation of robotic surgery is reducing morbidity. Modern RT allows the possibility of high tumor dose with minimal adjacent dose reducing its toxicity. Androgen deprivation therapy with LHRH analogues remains the treatment of choice for advanced PC, but should be limited to this indication. The loss of bone mass and adverse metabolic effects increases the frequency of fractures and cardiovascular morbimortality. After castration resistance in metastatic disease, new hormone-based drugs have demonstrated efficacy even after chemotherapy resistance. PMID:25727526

  3. Role of serial multiparametric magnetic resonance imaging in prostate cancer active surveillance

    PubMed Central

    Vos, Larissa J; Janoski, Michele; Wachowicz, Keith; Yahya, Atiyah; Boychak, Oleksandr; Amanie, John; Pervez, Nadeem; Parliament, Matthew B; Pituskin, Edith; Fallone, B Gino; Usmani, Nawaid

    2016-01-01

    AIM: To examine whether addition of 3T multiparametric magnetic resonance imaging (mpMRI) to an active surveillance protocol could detect aggressive or progressive prostate cancer. METHODS: Twenty-three patients with low risk disease were enrolled on this active surveillance study, all of which had Gleason score 6 or less disease. All patients had clinical assessments, including digital rectal examination and prostate specific antigen (PSA) testing, every 6 mo with annual 3T mpMRI scans with gadolinium contrast and minimum sextant prostate biopsies. The MRI images were anonymized of patient identifiers and clinical information and each scan underwent radiological review without the other results known. Descriptive statistics for demographics and follow-up as well as the sensitivity and specificity of mpMRI to identify prostate cancer and progressive disease were calculated. RESULTS: During follow-up (median 24.8 mo) 11 of 23 patients with low-risk prostate cancer had disease progression and were taken off study to receive definitive treatment. Disease progression was identified through upstaging of Gleason score on subsequent biopsies for all 11 patients with only 2 patients also having a PSA doubling time of less than 2 years. All 23 patients had biopsy confirmed prostate cancer but only 10 had a positive index of suspicion on mpMRI scans at baseline (43.5% sensitivity). Aggressive disease prediction from baseline mpMRI scans had satisfactory specificity (81.8%) but low sensitivity (58.3%). Twenty-two patients had serial mpMRI scans and evidence of disease progression was seen for 3 patients all of whom had upstaging of Gleason score on biopsy (30% specificity and 100% sensitivity). CONCLUSION: Addition of mpMRI imaging in active surveillance decision making may help in identifying aggressive disease amongst men with indolent prostate cancer earlier than traditional methods. PMID:27158428

  4. Prostate cancer diagnosis using quantitative phase imaging and machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Nguyen, Tan H.; Sridharan, Shamira; Macias, Virgilia; Balla, Andre K.; Do, Minh N.; Popescu, Gabriel

    2015-03-01

    We report, for the first time, the use of Quantitative Phase Imaging (QPI) images to perform automatic prostate cancer diagnosis. A machine learning algorithm is implemented to learn textural behaviors of prostate samples imaged under QPI and produce labeled maps of different regions for testing biopsies (e.g. gland, stroma, lumen etc.). From these maps, morphological and textural features are calculated to predict outcomes of the testing samples. Current performance is reported on a dataset of more than 300 cores of various diagnosis results.

  5. Magnetic resonance spectroscopic imaging for improved treatment planning of prostate cancer

    NASA Astrophysics Data System (ADS)

    Venugopal, Niranjan

    Prostate cancer is the most common malignancy afflicting Canadian men in 2011. Physicians use digital rectal exams (DRE), blood tests for prostate specific antigen (PSA) and transrectal ultrasound (TRUS)-guided biopsies for the initial diagnosis of prostate cancer. None of these tests detail the spatial extent of prostate cancer - information critical for using new therapies that can target cancerous prostate. With an MRI technique called proton magnetic resonance spectroscopic imaging (1H-MRSI), biochemical analysis of the entire prostate can be done without the need for biopsy, providing detailed information beyond the non-specific changes in hardness felt by an experienced urologist in a DRE, the presence of PSA in blood, or the "blind-guidance" of TRUS-guided biopsy. A hindrance to acquiring high quality 1H-MRSI data comes from signal originating from fatty tissue surrounding prostate that tends to mask or distort signal from within the prostate, thus reducing the overall clinical usefulness of 1H-MRSI data. This thesis has three major areas of focus: 1) The development of an optimized 1H-MRSI technique, called conformal voxel magnetic resonance spectroscopy (CV-MRS), to deal the with removal of unwanted lipid contaminating artifacts at short and long echo times. 2) An in vivo human study to test the CV-MRS technique, including healthy volunteers and cancer patients scheduled for radical prostatectomy or radiation therapy. 3) A study to determine the efficacy of using the 1H-MRSI data for optimized radiation treatment planning using modern delivery techniques like intensity modulated radiation treatment. Data collected from the study using the optimized CV-MRS method show significantly reduced lipid contamination resulting in high quality spectra throughout the prostate. Combining the CV-MRS technique with spectral-spatial excitation further reduced lipid contamination and opened up the possibility of detecting metabolites with short T2 relaxation times

  6. Image-guided adaptive radiotherapy for prostate and head-and-neck cancers

    NASA Astrophysics Data System (ADS)

    O'Daniel, Jennifer C.

    In the current practice of radiation therapy, daily patient alignments have been based on external skin marks or on bone. However, internal organ variation (both motion and volumetric changes) between treatment fractions can displace the treatment target, causing target underdosage and normal tissue overdosage. In order to deliver the radiation treatment as planned, more accurate knowledge of the daily internal anatomy was needed. Additionally, treatments needed to adapt to these variations by either shifting the patient to account for the daily target position or by altering the treatment plan. In this dissertation, the question of whether inter-fractional variations in internal patient anatomy combined with external set-up uncertainties produced measurable differences between planned and delivered doses for prostate and head-and-neck cancer patients was investigated. Image-guided adaptive treatment strategies to improve tumor coverage and/or reduce normal tissue dose were examined. Treatment deliveries utilizing various alignment procedures for ten prostate cancer patients and eleven head-and-neck cancer patients, each of whom received multiple CT scans over the course of treatment, were simulated. The largest prostate dose losses between planning and delivery were correlated with anterior/posterior and superior/inferior prostate displacement. Daily bone alignment sufficiently maintained target coverage for 70% of patients, ultrasound for 90%, and CT for 100%. A no-action-level correction protocol, which corrected the daily bone alignment for the systematic internal displacement of the prostate based on a pre-determined number of CT image sets, successfully improved the prostate and seminal vesicle dosimetric coverage. Three CT image sets were sufficient to accurately correct the bone alignment scheme for the prostate internal systematic shifts. For head-and-neck cancer patient treatment, setup uncertainties and internal organ variations did not greatly affect

  7. Positron emission tomography in imaging evaluation of staging, restaging, treatment response, and prognosis in prostate cancer.

    PubMed

    Jadvar, Hossein

    2016-05-01

    Prostate cancer is a prevalent public health problem worldwide. While imaging has played a major role in this disease, there still remain many challenges and opportunities. Positron emission tomography with various physiologically based radiotracers is fundamentally suited to interrogate this biologically and clinically heterogeneous disease along the course of its natural history. In this article, I review briefly the published evidence for the use of positron emission tomography with 18F-fluorodeoxyglucose, 11C-acetate, and 18F- or 11C-choline in the imaging evaluation of prostate cancer. Although the focus of the article will be on these radiotracers given the accumulated experience with them, but I will also comment on the outlook for the use of other emerging PET radiotracers such as those targeted to the prostate-specific membrane antigen and the amino acid metabolism pathway. It is anticipated that PET will play major role in the evaluation of prostate cancer in the current evidence-based medicine environment. There will also be exciting novel prospects for the use of therapeutic-diagnostic (theransotic) pairs in the management of patients with prostate cancer. PMID:27193789

  8. Serial Magnetic Resonance Imaging in Active Surveillance of Prostate Cancer: Incremental Value

    PubMed Central

    Felker, Ely R.; Wu, Jason; Natarajan, Shyam; Margolis, Daniel J.; Raman, Steven S.; Huang, Jiaoti; Dorey, Fred; Marks, Leonard S.

    2016-01-01

    Purpose We assessed whether changes in serial multiparametric magnetic resonance imaging can help predict the pathological progression of prostate cancer in men on active surveillance. Materials and Methods A retrospective cohort study was conducted of 49 consecutive men with Gleason 6 prostate cancer who underwent multi-parametric magnetic resonance imaging at baseline and again more than 6 months later, each followed by a targeted prostate biopsy, between January 2011 and May 2015. We evaluated whether progression on multiparametric magnetic resonance imaging (an increase in index lesion suspicion score, increase in index lesion volume or decrease in index lesion apparent diffusion coefficient) could predict pathological progression (Gleason 3 + 4 or greater on subsequent biopsy, in systematic or targeted cores). Diagnostic performance of multiparametric magnetic resonance imaging was determined with and without clinical data using a binary logistic regression model. Results The mean interval between baseline and followup multiparametric magnetic resonance imaging was 28.3 months (range 11 to 43). Pathological progression occurred in 19 patients (39%). The sensitivity, specificity, positive predictive value and negative predictive value of multiparametric magnetic resonance imaging was 37%, 90%, 69% and 70%, respectively. Area under the receiver operating characteristic curve was 0.63. A logistic regression model using clinical information (maximum cancer core length greater than 3 mm on baseline biopsy or a prostate specific antigen density greater than 0.15 ng/ml2 at followup biopsy) had an AUC of 0.87 for predicting pathological progression. The addition of serial multiparametric magnetic resonance imaging data significantly improved the AUC to 0.91 (p = 0.044). Conclusions Serial multiparametric magnetic resonance imaging adds incremental value to prostate specific antigen density and baseline cancer core length for predicting Gleason 6 upgrading in men on

  9. Compact CdZnTe-based gamma camera for prostate cancer imaging

    NASA Astrophysics Data System (ADS)

    Cui, Yonggang; Lall, Terry; Tsui, Benjamin; Yu, Jianhua; Mahler, George; Bolotnikov, Aleksey; Vaska, Paul; De Geronimo, Gianluigi; O'Connor, Paul; Meinken, George; Joyal, John; Barrett, John; Camarda, Giuseppe; Hossain, Anwar; Kim, Ki Hyun; Yang, Ge; Pomper, Marty; Cho, Steve; Weisman, Ken; Seo, Youngho; Babich, John; LaFrance, Norman; James, Ralph B.

    2011-06-01

    In this paper, we discuss the design of a compact gamma camera for high-resolution prostate cancer imaging using Cadmium Zinc Telluride (CdZnTe or CZT) radiation detectors. Prostate cancer is a common disease in men. Nowadays, a blood test measuring the level of prostate specific antigen (PSA) is widely used for screening for the disease in males over 50, followed by (ultrasound) imaging-guided biopsy. However, PSA tests have a high falsepositive rate and ultrasound-guided biopsy has a high likelihood of missing small cancerous tissues. Commercial methods of nuclear medical imaging, e.g. PET and SPECT, can functionally image the organs, and potentially find cancer tissues at early stages, but their applications in diagnosing prostate cancer has been limited by the smallness of the prostate gland and the long working distance between the organ and the detectors comprising these imaging systems. CZT is a semiconductor material with wide band-gap and relatively high electron mobility, and thus can operate at room temperature without additional cooling. CZT detectors are photon-electron direct-conversion devices, thus offering high energy-resolution in detecting gamma rays, enabling energy-resolved imaging, and reducing the background of Compton-scattering events. In addition, CZT material has high stopping power for gamma rays; for medical imaging, a few-mm-thick CZT material provides adequate detection efficiency for many SPECT radiotracers. Because of these advantages, CZT detectors are becoming popular for several SPECT medical-imaging applications. Most recently, we designed a compact gamma camera using CZT detectors coupled to an application-specific-integratedcircuit (ASIC). This camera functions as a trans-rectal probe to image the prostate gland from a distance of only 1-5 cm, thus offering higher detection efficiency and higher spatial resolution. Hence, it potentially can detect prostate cancers at their early stages. The performance tests of this camera

  10. COMPACT CdZnTe-BASED GAMMA CAMERA FOR PROSTATE CANCER IMAGING

    SciTech Connect

    CUI, Y.; LALL, T.; TSUI, B.; YU, J.; MAHLER, G.; BOLOTNIKOV, A.; VASKA, P.; DeGERONIMO, G.; O'CONNOR, P.; MEINKEN, G.; JOYAL, J.; BARRETT, J.; CAMARDA, G.; HOSSAIN, A.; KIM, K.H.; YANG, G.; POMPER, M.; CHO, S.; WEISMAN, K.; SEO, Y.; BABICH, J.; LaFRANCE, N.; AND JAMES, R.B.

    2011-10-23

    In this paper, we discuss the design of a compact gamma camera for high-resolution prostate cancer imaging using Cadmium Zinc Telluride (CdZnTe or CZT) radiation detectors. Prostate cancer is a common disease in men. Nowadays, a blood test measuring the level of prostate specific antigen (PSA) is widely used for screening for the disease in males over 50, followed by (ultrasound) imaging-guided biopsy. However, PSA tests have a high false-positive rate and ultrasound-guided biopsy has a high likelihood of missing small cancerous tissues. Commercial methods of nuclear medical imaging, e.g. PET and SPECT, can functionally image the organs, and potentially find cancer tissues at early stages, but their applications in diagnosing prostate cancer has been limited by the smallness of the prostate gland and the long working distance between the organ and the detectors comprising these imaging systems. CZT is a semiconductor material with wide band-gap and relatively high electron mobility, and thus can operate at room temperature without additional cooling. CZT detectors are photon-electron direct-conversion devices, thus offering high energy-resolution in detecting gamma rays, enabling energy-resolved imaging, and reducing the background of Compton-scattering events. In addition, CZT material has high stopping power for gamma rays; for medical imaging, a few-mm-thick CZT material provides adequate detection efficiency for many SPECT radiotracers. Because of these advantages, CZT detectors are becoming popular for several SPECT medical-imaging applications. Most recently, we designed a compact gamma camera using CZT detectors coupled to an application-specific-integrated-circuit (ASIC). This camera functions as a trans-rectal probe to image the prostate gland from a distance of only 1-5 cm, thus offering higher detection efficiency and higher spatial resolution. Hence, it potentially can detect prostate cancers at their early stages. The performance tests of this camera

  11. Updates in advanced diffusion-weighted magnetic resonance imaging techniques in the evaluation of prostate cancer

    PubMed Central

    Vargas, Hebert Alberto; Lawrence, Edward Malnor; Mazaheri, Yousef; Sala, Evis

    2015-01-01

    Diffusion-weighted magnetic resonance imaging (DW-MRI) is considered part of the standard imaging protocol for the evaluation of patients with prostate cancer. It has been proven valuable as a functional tool for qualitative and quantitative analysis of prostate cancer beyond anatomical MRI sequences such as T2-weighted imaging. This review discusses ongoing controversies in DW-MRI acquisition, including the optimal number of b-values to be used for prostate DWI, and summarizes the current literature on the use of advanced DW-MRI techniques. These include intravoxel incoherent motion imaging, which better accounts for the non-mono-exponential behavior of the apparent diffusion coefficient as a function of b-value and the influence of perfusion at low b-values. Another technique is diffusion kurtosis imaging (DKI). Metrics from DKI reflect excess kurtosis of tissues, representing its deviation from Gaussian diffusion behavior. Preliminary results suggest that DKI findings may have more value than findings from conventional DW-MRI for the assessment of prostate cancer. PMID:26339460

  12. Usefulness of Diffusion-Weighted Imaging in the Localization of Prostate Cancer

    SciTech Connect

    Kajihara, Hiroo; Hayashida, Yoshiko; Murakami, Ryuji Katahira, Kazuhiro; Nishimura, Ryuichi; Hamada, Yasuyuki; Kitani, Kousuke; Kitaoka, Mitsuhiko; Suzuki, Yasuko; Kitajima, Mika; Hirai, Toshinori; Morishita, Shoji; Awai, Kazuo; Yamashita, Yasuyuki

    2009-06-01

    Purpose: Advances in high-precision radiation therapy techniques for patients with prostate cancer permit selective escalation of the radiation dose delivered to the dominant intraprostatic lesion and improve the therapeutic ratio. We evaluated the value of diffusion-weighted imaging (DWI) for dominant intraprostatic lesion assessment. Methods and Materials: The study population consisted of 23 patients with early prostate cancer. Before undergoing total prostatectomy, they were evaluated by means of magnetic resonance imaging, including DWI. T2-weighted imaging (T2WI) with and without DWI were retrospectively assessed by six independent observers. Imaging findings were compared with pathologic results from whole prostate specimens on a lesion-by-lesion basis. Results: Pathologic study identified 43 lesions in 23 patients. On magnetic resonance imaging, the six observers correctly identified 11-22 of 43 lesions (sensitivity, 26-51%) on T2WI alone and 20-31 (sensitivity, 47-72%) on T2WI plus DWI. Positive predictive values were 42-73% on T2WI alone and 58-80% on T2WI plus DWI. For all observers, detection was higher on combined T2WI and DWI than on T2WI alone. Conclusion: Because the addition of DWI to T2WI improves the detectability of prostate cancer, DWI may offer a promising new approach for radiation therapy planning.

  13. Multiparametric Magnetic Resonance Imaging in the Diagnosis of Prostate Cancer: A Systematic Review.

    PubMed

    Haider, M A; Yao, X; Loblaw, A; Finelli, A

    2016-09-01

    A systematic review was conducted to investigate the use of multiparametric magnetic resonance imaging (MPMRI) followed by targeted biopsy in the diagnosis of clinically significant prostate cancer (CSPC) and to compare it with transrectal ultrasound-guided (TRUS-guided) systematic biopsy in patients with an elevated risk of prostate cancer who are either biopsy-naive or who have a previous negative TRUS-guided biopsy. MEDLINE, PubMed and EMBASE (1997 to April 2014), the Cochrane Library and six relevant conferences were searched to find eligible studies. Search terms indicative of 'prostate cancer' and 'magnetic resonance imaging' with their alternatives were used. Twelve systematic reviews, 52 full texts and 28 abstracts met the preplanned study selection criteria; data from 15 articles were extracted. In patients with an elevated risk of prostate cancer who were biopsy-naive, MPMRI followed by targeted biopsy could detect 2-13% of CSPC patients whom TRUS-guided systematic biopsy missed; TRUS-guided systematic biopsy could detect 0-7% of CSPC patients whom MPMRI followed by targeted biopsy missed. In patients with an elevated risk of prostate cancer who had a previous negative TRUS-guided biopsy, MPMRI followed by targeted biopsy detected more CSPC patients than repeated TRUS-guided systematic biopsy in all four studies, with a total of 516 patients, but only one study reached a statistically significant difference. In patients with an elevated risk of prostate cancer who are biopsy-naive, there is insufficient evidence for MPMRI followed by targeted biopsy to be considered the standard of care. In patients who had a prior negative TRUS-guided systematic biopsy and show a growing risk of having CSPC, MPMRI followed by targeted biopsy may be helpful to detect more CSPC cases as opposed to a repeat TRUS-guided systematic biopsy. PMID:27256655

  14. Integrated multimodal imaging of dynamic bone-tumor alterations associated with metastatic prostate cancer.

    PubMed

    Brisset, Jean-Christophe; Hoff, Benjamin A; Chenevert, Thomas L; Jacobson, Jon A; Boes, Jennifer L; Galbán, Stefanie; Rehemtulla, Alnawaz; Johnson, Timothy D; Pienta, Kenneth J; Galbán, Craig J; Meyer, Charles R; Schakel, Timothy; Nicolay, Klaas; Alva, Ajjai S; Hussain, Maha; Ross, Brian D

    2015-01-01

    Bone metastasis occurs for men with advanced prostate cancer which promotes osseous growth and destruction driven by alterations in osteoblast and osteoclast homeostasis. Patients can experience pain, spontaneous fractures and morbidity eroding overall quality of life. The complex and dynamic cellular interactions within the bone microenvironment limit current treatment options thus prostate to bone metastases remains incurable. This study uses voxel-based analysis of diffusion-weighted MRI and CT scans to simultaneously evaluate temporal changes in normal bone homeostasis along with prostate bone metatastsis to deliver an improved understanding of the spatiotemporal local microenvironment. Dynamic tumor-stromal interactions were assessed during treatment in mouse models along with a pilot prospective clinical trial with metastatic hormone sensitive and castration resistant prostate cancer patients with bone metastases. Longitudinal changes in tumor and bone imaging metrics during delivery of therapy were quantified. Studies revealed that voxel-based parametric response maps (PRM) of DW-MRI and CT scans could be used to quantify and spatially visualize dynamic changes during prostate tumor growth and in response to treatment thereby distinguishing patients with stable disease from those with progressive disease (p<0.05). These studies suggest that PRM imaging biomarkers are useful for detection of the impact of prostate tumor-stromal responses to therapies thus demonstrating the potential of multi-modal PRM image-based biomarkers as a novel means for assessing dynamic alterations associated with metastatic prostate cancer. These results establish an integrated and clinically translatable approach which can be readily implemented for improving the clinical management of patients with metastatic bone disease. PMID:25859981

  15. Integrated Multimodal Imaging of Dynamic Bone-Tumor Alterations Associated with Metastatic Prostate Cancer

    PubMed Central

    Chenevert, Thomas L.; Jacobson, Jon A.; Boes, Jennifer L.; Galbán, Stefanie; Rehemtulla, Alnawaz; Johnson, Timothy D.; Pienta, Kenneth J.; Galbán, Craig J.; Meyer, Charles R.; Schakel, Timothy; Nicolay, Klaas; Alva, Ajjai S.; Hussain, Maha; Ross, Brian D.

    2015-01-01

    Bone metastasis occurs for men with advanced prostate cancer which promotes osseous growth and destruction driven by alterations in osteoblast and osteoclast homeostasis. Patients can experience pain, spontaneous fractures and morbidity eroding overall quality of life. The complex and dynamic cellular interactions within the bone microenvironment limit current treatment options thus prostate to bone metastases remains incurable. This study uses voxel-based analysis of diffusion-weighted MRI and CT scans to simultaneously evaluate temporal changes in normal bone homeostasis along with prostate bone metatastsis to deliver an improved understanding of the spatiotemporal local microenvironment. Dynamic tumor-stromal interactions were assessed during treatment in mouse models along with a pilot prospective clinical trial with metastatic hormone sensitive and castration resistant prostate cancer patients with bone metastases. Longitudinal changes in tumor and bone imaging metrics during delivery of therapy were quantified. Studies revealed that voxel-based parametric response maps (PRM) of DW-MRI and CT scans could be used to quantify and spatially visualize dynamic changes during prostate tumor growth and in response to treatment thereby distinguishing patients with stable disease from those with progressive disease (p<0.05). These studies suggest that PRM imaging biomarkers are useful for detection of the impact of prostate tumor-stromal responses to therapies thus demonstrating the potential of multi-modal PRM image-based biomarkers as a novel means for assessing dynamic alterations associated with metastatic prostate cancer. These results establish an integrated and clinically translatable approach which can be readily implemented for improving the clinical management of patients with metastatic bone disease. Trial Registration ClinicalTrials.gov NCT02064283 PMID:25859981

  16. Comparison of transrectal photoacoustic, Doppler, and magnetic resonance imaging for prostate cancer detection

    NASA Astrophysics Data System (ADS)

    Ishihara, Miya; Horiguchi, Akio; Shinmoto, Hiroshi; Tsuda, Hitoshi; Irisawa, Kaku; Wada, Takatsugu; Asano, Tomohiko

    2016-03-01

    Transrectal ultrasonography (TRUS) is the most popular imaging modality for diagnosing and treating prostate cancer. TRUS-guided prostate biopsy is mandatory for the histological diagnosis of patients with elevated serum prostatespecific antigen (PSA), but its diagnostic accuracy is not satisfactory due to TRUS's low resolution. As a result, a considerable number of patients are required to undergo an unnecessary repeated biopsy. Photoacoustic imaging (PAI) can be used to provide microvascular network imaging using hemoglobin as an intrinsic, optical absorption molecule. We developed an original TRUS-type PAI probe consisting of a micro-convex array transducer with an optical illumination system to provide superimposed PAI and ultrasound images. TRUS-type PAI has the advantage of having much higher resolution and greater contrast than does Doppler TRUS. The purpose of this study was to demonstrate the clinical feasibility of the transrectal PAI system. We performed a clinical trial to compare the image of the cancerous area obtained by transrectal PAI with that obtained by TRUS Doppler during prostate biopsy. The obtained prostate biopsy cores were stained with anti-CD34 antibodies to provide a microvascular distribution map. We also confirmed its consistency with PAI and pre-biopsy MRI findings. Our study demonstrated that transrectal identification of tumor angiogenesis under superimposed photoacoustic and ultrasound images was easier than that under TRUS alone. We recognized a consistent relationship between PAI and MRI findings in most cases. However, there were no correspondences in some cases.

  17. Biomarkers in Prostate Cancer Epidemiology

    PubMed Central

    Verma, Mukesh; Patel, Payal; Verma, Mudit

    2011-01-01

    Understanding the etiology of a disease such as prostate cancer may help in identifying populations at high risk, timely intervention of the disease, and proper treatment. Biomarkers, along with exposure history and clinical data, are useful tools to achieve these goals. Individual risk and population incidence of prostate cancer result from the intervention of genetic susceptibility and exposure. Biochemical, epigenetic, genetic, and imaging biomarkers are used to identify people at high risk for developing prostate cancer. In cancer epidemiology, epigenetic biomarkers offer advantages over other types of biomarkers because they are expressed against a person's genetic background and environmental exposure, and because abnormal events occur early in cancer development, which includes several epigenetic alterations in cancer cells. This article describes different biomarkers that have potential use in studying the epidemiology of prostate cancer. We also discuss the characteristics of an ideal biomarker for prostate cancer, and technologies utilized for biomarker assays. Among epigenetic biomarkers, most reports indicate GSTP1 hypermethylation as the diagnostic marker for prostate cancer; however, NKX2-5, CLSTN1, SPOCK2, SLC16A12, DPYS, and NSE1 also have been reported to be regulated by methylation mechanisms in prostate cancer. Current challenges in utilization of biomarkers in prostate cancer diagnosis and epidemiologic studies and potential solutions also are discussed. PMID:24213111

  18. Multimodal imaging guided preclinical trials of vascular targeting in prostate cancer

    PubMed Central

    Kalmuk, James; Folaron, Margaret; Buchinger, Julian; Pili, Roberto; Seshadri, Mukund

    2015-01-01

    The high mortality rate associated with castration-resistant prostate cancer (CRPC) underscores the need for improving therapeutic options for this patient population. The purpose of this study was to examine the potential of vascular targeting in prostate cancer. Experimental studies were carried out in subcutaneous and orthotopic Myc-CaP prostate tumors implanted into male FVB mice to examine the efficacy of a novel microtubule targeted vascular disrupting agent (VDA), EPC2407 (Crolibulin™). A non-invasive multimodality imaging approach based on magnetic resonance imaging (MRI), bioluminescence imaging (BLI), and ultrasound (US) was utilized to guide preclinical trial design and monitor tumor response to therapy. Imaging results were correlated with histopathologic assessment, tumor growth and survival analysis. Contrast-enhanced MRI revealed potent antivascular activity of EPC2407 against subcutaneous and orthotopic Myc-CaP tumors. Longitudinal BLI of Myc-CaP tumors expressing luciferase under the androgen response element (Myc-CaP/ARE-luc) revealed changes in AR signaling and reduction in intratumoral delivery of luciferin substrate following castration suggestive of reduced blood flow. This reduction in blood flow was validated by US and MRI. Combination treatment resulted in sustained vascular suppression, inhibition of tumor regrowth and conferred a survival benefit in both models. These results demonstrate the therapeutic potential of vascular targeting in combination with androgen deprivation against prostate cancer. PMID:26203773

  19. Time-resolved spectroscopy and near infrared imaging enhanced by receptor-targeted contrast agents for prostate cancer detection

    NASA Astrophysics Data System (ADS)

    Pu, Y.; Wang, W. B.; Tang, G. C.; Achilefu, S.; Alfano, R. R.

    2011-03-01

    Time-resolved spectroscopy and near infrared imaging enhanced by receptor-targeted contrast agents for prostate cancer detection will be presented. Two contrast agents, Cybesin and Cytate, were investigated using time-resolved spectroscopy in aqueous solution and cancerous and normal prostate tissues. The time evolution of the fluorescent dipole in solution was studied using a system of first-order linear differential equations containing two main parameters: the decay rate of emission and the rate of one orthogonal emission component transferring to another. An analytical polarization model was developed and used to extract rotational times and fluorescence anisotropies of the contrast agents in prostate tissues. The differences of rotational times and polarization anisotropies were observed for Cybesin (Cytate) in cancerous and normal prostate tissue, which reflect preferred bond of contrast agents and cancerous tissue cells. The conjugation of Cybesin (Cytate) to prostate cancerous cells offers high contrast between normal and cancerous tissues.

  20. Comparison study of distinguishing cancerous and normal prostate epithelial cells by confocal and polarization diffraction imaging

    NASA Astrophysics Data System (ADS)

    Jiang, Wenhuan; Lu, Jun Qing; Yang, Li V.; Sa, Yu; Feng, Yuanming; Ding, Junhua; Hu, Xin-Hua

    2016-07-01

    Accurate classification of malignant cells from benign ones can significantly enhance cancer diagnosis and prognosis by detection of circulating tumor cells (CTCs). We have investigated two approaches of quantitative morphology and polarization diffraction imaging on two prostate cell types to evaluate their feasibility as single-cell assay methods toward CTC detection after cell enrichment. The two cell types have been measured by a confocal imaging method to obtain their three-dimensional morphology parameters and by a polarization diffraction imaging flow cytometry (p-DIFC) method to obtain image texture parameters. The support vector machine algorithm was applied to examine the accuracy of cell classification with the morphology and diffraction image parameters. Despite larger mean values of cell and nuclear sizes of the cancerous prostate cells than the normal ones, it has been shown that the morphologic parameters cannot serve as effective classifiers. In contrast, accurate classification of the two prostate cell types can be achieved with high classification accuracies on measured data acquired separately in three measurements. These results provide strong evidence that the p-DIFC method has the potential to yield morphology-related "fingerprints" for accurate and label-free classification of the two prostate cell types.

  1. Diffusion-weighted imaging with apparent diffusion coefficient mapping and spectroscopy in prostate cancer.

    PubMed

    Jacobs, Michael A; Ouwerkerk, Ronald; Petrowski, Kyle; Macura, Katarzyna J

    2008-12-01

    Prostate cancer is a major health problem, and the exploration of noninvasive imaging methods that have the potential to improve specificity while maintaining high sensitivity is still critically needed. Tissue changes induced by tumor growth can be visualized by magnetic resonance imaging (MRI) methods. Current MRI methods include conventional T2-weighted imaging, diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping and magnetic resonance spectroscopy (MRS). Techniques such as DWI/ADC provide functional information about the behavior of water molecules in tissue; MRS can provide biochemical information about the presence or absence of certain metabolites, such as choline, creatine, and citrate. Finally, vascular parameters can be investigated using dynamic contrast-enhanced MRI. Moreover, with whole-body MRI and DWI, metastatic disease can be evaluated in 1 session and may provide a way to monitor treatment. Therefore, when combining these various methods, a multiparametric data set can be built to assist in the detection, localization, assessment of prostate cancer aggressiveness, and tumor staging. Such a comprehensive approach offers more power to evaluate prostate disease than any single measure alone. In this article, we focus on the role of DWI/ADC and MRS in the detection and characterization using both in vivo and ex vivo imaging of prostate pathology. PMID:19512848

  2. Comparison study of distinguishing cancerous and normal prostate epithelial cells by confocal and polarization diffraction imaging.

    PubMed

    Jiang, Wenhuan; Lu, Jun Qing; Yang, Li V; Sa, Yu; Feng, Yuanming; Ding, Junhua; Hu, Xin-Hua

    2016-07-01

    Accurate classification of malignant cells from benign ones can significantly enhance cancer diagnosis and prognosis by detection of circulating tumor cells (CTCs). We have investigated two approaches of quantitative morphology and polarization diffraction imaging on two prostate cell types to evaluate their feasibility as single-cell assay methods toward CTC detection after cell enrichment. The two cell types have been measured by a confocal imaging method to obtain their three-dimensional morphology parameters and by a polarization diffraction imaging flow cytometry (p-DIFC) method to obtain image texture parameters. The support vector machine algorithm was applied to examine the accuracy of cell classification with the morphology and diffraction image parameters. Despite larger mean values of cell and nuclear sizes of the cancerous prostate cells than the normal ones, it has been shown that the morphologic parameters cannot serve as effective classifiers. In contrast, accurate classification of the two prostate cell types can be achieved with high classification accuracies on measured data acquired separately in three measurements. These results provide strong evidence that the p-DIFC method has the potential to yield morphology-related “fingerprints” for accurate and label-free classification of the two prostate cell types. PMID:26616011

  3. Prostate Cancer Foundation

    MedlinePlus

    ... PCF Spotlight Prostate Cancer Foundation and Major League Baseball Step Up To The Plate To Raise Awareness ... Foundation News Prostate Cancer Foundation and Major League Baseball Step Up To The Plate To Raise Awareness ...

  4. Prostate Cancer Screening

    MedlinePlus

    ... treat. There is no standard screening test for prostate cancer. Researchers are studying different tests to find those ... PSA level may be high if you have prostate cancer. It can also be high if you have ...

  5. Screening for Prostate Cancer

    MedlinePlus

    ... of Internal Medicine Summaries for Patients Screening for Prostate Cancer: A Guidance Statement From the Clinical Guidelines Committee ... Physicians The full report is titled “Screening for Prostate Cancer: A Guidance Statement From the Clinical Guidelines Committee ...

  6. Prostate cancer screenings

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000846.htm Prostate cancer screenings To use the sharing features on this ... present it is not clear if screening for prostate cancer is helpful for most men. For this reason, ...

  7. Adjacent slice prostate cancer prediction to inform MALDI imaging biomarker analysis

    NASA Astrophysics Data System (ADS)

    Chuang, Shao-Hui; Sun, Xiaoyan; Cazares, Lisa; Nyalwidhe, Julius; Troyer, Dean; Semmes, O. John; Li, Jiang; McKenzie, Frederic D.

    2010-03-01

    Prostate cancer is the second most common type of cancer among men in US [1]. Traditionally, prostate cancer diagnosis is made by the analysis of prostate-specific antigen (PSA) levels and histopathological images of biopsy samples under microscopes. Proteomic biomarkers can improve upon these methods. MALDI molecular spectra imaging is used to visualize protein/peptide concentrations across biopsy samples to search for biomarker candidates. Unfortunately, traditional processing methods require histopathological examination on one slice of a biopsy sample while the adjacent slice is subjected to the tissue destroying desorption and ionization processes of MALDI. The highest confidence tumor regions gained from the histopathological analysis are then mapped to the MALDI spectra data to estimate the regions for biomarker identification from the MALDI imaging. This paper describes a process to provide a significantly better estimate of the cancer tumor to be mapped onto the MALDI imaging spectra coordinates using the high confidence region to predict the true area of the tumor on the adjacent MALDI imaged slice.

  8. Development of a combined ultrasound and electrical impedance imaging system for prostate cancer detection

    NASA Astrophysics Data System (ADS)

    Wan, Yuqing

    Approximately 240,890 men were diagnosed with prostate cancer and 33,720 men were expected to die from it in the year of 2011 in the United States. Unfortunately, the current clinical diagnostic methods (e.g. prostate-specific antigen (PSA), digital rectal examination, ultrasound guided biopsy) used for detecting and staging prostate cancer are limited. It has been shown that cancerous prostate tissue has significantly different electrical properties when compared to benign tissues. Based on these electrical property findings, a transrectal electrical impedance tomography (TREIT) system is proposed as a novel prostate imaging modality. An ultrasound probe is incorporated with TREIT to achieve anatomic information of the prostate and guide electrical property reconstruction. Without the guidance of the ultrasound, the TREIT system can easily discern high contrast inclusions of 1 cm in diameter at distances centered at two times the radius of the TREIT probe away from the probe surface. Furthermore, we have demonstrated that our system is able to detect low contrast inclusions. With the guidance of the ultrasound, our system is capable of detecting a plastic inclusion embedded in a gelatin phantom, indicating the potential to detect cancer. In addition, the results of preliminary in vivo clinical trials using the imaging system are also presented in the thesis. After collecting data for a total 66 patients, we demonstrated that the in vivo conductivity of cancerous tissue is significantly greater than that of benign tissue (p=0.0015 at 400 Hz) and the conductivity of BPH tissue is significantly lower than that of normal tissue (p=0.0009 at 400 Hz). Additionally at 25.6 kHz, the dual-modal imaging system is able to differentiate cancerous tissue from benign tissue with sensitivity of 0.6012 and specificity of 0.5498, normal tissue from BPH tissue with sensitivity of 0.6085 and specificity of 0.5813 and differentiate cancerous tissue from BPH tissue with sensitivity of

  9. Time-gated optical imaging to detect positive prostate cancer margins

    NASA Astrophysics Data System (ADS)

    Lin, Zi-Jing; Alexandrakis, George; Patel, Nimit; Shen, Jinhui; Tang, Liping; Liu, Hanli

    2009-02-01

    Laparoscopic radical prostatectomy (LRP) has revolutionized the surgical treatment of prostate cancer. This procedure permits complete removal of the prostate and seminal vesicles while minimizing pain and recovery time. However, the laparoscopic approach greatly limits the surgeon's tactile sensation during the procedure. This is particularly true with robot-assisted LRP where no tactile feedback is available forcing the surgeon to rely solely on visual cues. The surgeon and pathologist perform intraoperative frozen section pathologic analysis of a few select tissue fragments, but this is time consuming and costly. Concrete conclusions based on such samples are unreliable as they do not reflect the entire surgical margin status. In this case a conservative approach might dictate removal of more marginal material than necessary, thereby compromising the important nerve-sparing aspects of the procedure. In this study, we demonstrate the feasibility of using multi-modal time-gated optical imaging, i.e. time-resolved light reflectance and auto-fluorescence life-time imaging performed by an ICCD (Intensified Charge-Coupled Device) imaging system to enable clinicians to detect positive tumor margins with high sensitivity and specificity over the prostate. Results from animal experiments present the potential of identifying differences in optical signals between prostate cancer and control tissues. Results also show that the use of classification algorithms can identify cancerous regions with high sensitivity and specificity.

  10. Development of a c-scan photoacoutsic imaging probe for prostate cancer detection

    NASA Astrophysics Data System (ADS)

    Valluru, Keerthi S.; Chinni, Bhargava K.; Rao, Navalgund A.; Bhatt, Shweta; Dogra, Vikram S.

    2011-03-01

    Prostate cancer is the second leading cause of death in American men after lung cancer. The current screening procedures include Digital Rectal Exam (DRE) and Prostate Specific Antigen (PSA) test, along with Transrectal Ultrasound (TRUS). All suffer from low sensitivity and specificity in detecting prostate cancer in early stages. There is a desperate need for a new imaging modality. We are developing a prototype transrectal photoacoustic imaging probe to detect prostate malignancies in vivo that promises high sensitivity and specificity. To generate photoacoustic (PA) signals, the probe utilizes a high energy 1064 nm laser that delivers light pulses onto the prostate at 10Hz with 10ns duration through a fiber optic cable. The designed system will generate focused C-scan planar images using acoustic lens technology. A 5 MHz custom fabricated ultrasound sensor array located in the image plane acquires the focused PA signals, eliminating the need for any synthetic aperture focusing. The lens and sensor array design was optimized towards this objective. For fast acquisition times, a custom built 16 channel simultaneous backend electronics PCB has been developed. It consists of a low-noise variable gain amplifier and a 16 channel ADC. Due to the unavailability of 2d ultrasound arrays, in the current implementation several B-scan (depth-resolved) data is first acquired by scanning a 1d array, which is then processed to reconstruct either 3d volumetric images or several C-scan planar images. Experimental results on excised tissue using a in-vitro prototype of this technology are presented to demonstrate the system capability in terms of resolution and sensitivity.

  11. Prostate Cancer Research Trial Helps John Spencer Treat His Cancer

    MedlinePlus

    ... please turn Javascript on. Feature: Prostate Cancer Prostate Cancer Research Trial Helps John Spencer Treat His Cancer Past ... Prostate Cancer" Articles Progress Against Prostate Cancer / Prostate Cancer Research Trial Helps John Spencer Treat His Cancer / Prostate ...

  12. Time-Resolved Spectroscopy and Near Infrared Imaging for Prostate Cancer Detection: Receptor-targeted and Native Biomarker

    NASA Astrophysics Data System (ADS)

    Pu, Yang

    Optical spectroscopy and imaging using near-infrared (NIR) light provides powerful tools for non-invasive detection of cancer in tissue. Optical techniques are capable of quantitative reconstructions maps of tissue absorption and scattering properties, thus can map in vivo the differences in the content of certain marker chromophores and/or fluorophores in normal and cancerous tissues (for example: water, tryptophan, collagen and NADH contents). Potential clinical applications of optical spectroscopy and imaging include functional tumor detection and photothermal therapeutics. Optical spectroscopy and imaging apply contrasts from intrinsic tissue chromophores such as water, collagen and NADH, and extrinsic optical contrast agents such as Indocyanine Green (ICG) to distinguish disease tissue from the normal one. Fluorescence spectroscopy and imaging also gives high sensitivity and specificity for biomedical diagnosis. Recent developments on specific-targeting fluorophores such as small receptor-targeted dye-peptide conjugate contrast agent offer high contrast between normal and cancerous tissues hence provide promising future for early tumour detection. This thesis focus on a study to distinguish the cancerous prostate tissue from the normal prostate tissues with enhancement of specific receptor-targeted prostate cancer contrast agents using optical spectroscopy and imaging techniques. The scattering and absorption coefficients, and anisotropy factor of cancerous and normal prostate tissues were investigated first as the basis for the biomedical diagnostic and optical imaging. Understanding the receptors over-expressed prostate cancer cells and molecular target mechanism of ligand, two small ICG-derivative dye-peptides, namely Cypate-Bombesin Peptide Analogue Conjugate (Cybesin) and Cypate-Octreotate Peptide Conjugate (Cytate), were applied to study their clinical potential for human prostate cancer detection. In this work, the steady-state and time

  13. Role of Intra- or Periprostatic Calcifications in Image-Guided Radiotherapy for Prostate Cancer

    SciTech Connect

    Hanna, Samir Abdallah; Neves-Junior, Wellington Furtado Pimenta; Marta, Gustavo Nader; Haddad, Cecilia Maria Kalil; Fernandes da Silva, Joao Luis

    2012-03-01

    Purpose: Image-guided radiotherapy (IGRT) allows more precise localization of the prostate, thus minimizing errors resulting from organ motion and set-up during treatment of prostate cancer. Using megavoltage cone-beam computed tomography (MVCBCT), references such as bones, the prostate itself or implanted fiducial markers can be used as surrogates to correct patient positioning immediately before each treatment fraction. However, the use of fiducials requires an invasive procedure and may increase costs. We aimed to assess whether intra- or periprostatic calcifications (IPC) could be used as natural fiducials. Methods and Materials: Data on patients treated with IGRT for prostate cancer with clearly visible IPC and implanted fiducials in both planning CT and MVCBCT images were reviewed. IPC were classified as central when inside the prostate and peripheral when within the planning target volume. Daily deviations in lateral, longitudinal, and vertical directions from baseline positioning using fiducials and using IPC were compared. Results: A total of 287 MVCBCT images were obtained and analyzed from 10 patients. The mean {+-} standard deviation daily deviation (mm) in the lateral, longitudinal, and vertical coordinates were 0.55 {+-} 3.11, 0.58 {+-} 3.45, and -0.54 {+-} 4.03, respectively, for fiducials, and 0.72 {+-} 3.22, 0.63 {+-} 3.58, and -0.69 {+-} 4.26, for IPC. The p values for comparisons (fiducials vs. IPC) were 0.003, 0.653, and 0.078 for lateral, longitudinal, and vertical coordinates, respectively. When cases with central IPC were analyzed (n = 7), no significant difference was found in such comparisons. Central IPC and fiducials exhibited a similar pattern of displacement during treatment, with equal values for daily displacements in the three directions for more than 90% of measurements. Conclusions: Our data suggest that centrally located IPC may be used as natural fiducials for treatment positioning during IGRT for prostate cancer, with potential

  14. MR-CT registration using a Ni-Ti prostate stent in image-guided radiotherapy of prostate cancer

    SciTech Connect

    Korsager, Anne Sofie; Ostergaard, Lasse Riis; Carl, Jesper

    2013-06-15

    Purpose: In image-guided radiotherapy of prostate cancer defining the clinical target volume often relies on magnetic resonance (MR). The task of transferring the clinical target volume from MR to standard planning computed tomography (CT) is not trivial due to prostate mobility. In this paper, an automatic local registration approach is proposed based on a newly developed removable Ni-Ti prostate stent.Methods: The registration uses the voxel similarity measure mutual information in a two-step approach where the pelvic bones are used to establish an initial registration for the local registration.Results: In a phantom study, the accuracy was measured to 0.97 mm and visual inspection showed accurate registration of all 30 data sets. The consistency of the registration was examined where translation and rotation displacements yield a rotation error of 0.41 Degree-Sign {+-} 0.45 Degree-Sign and a translation error of 1.67 {+-} 2.24 mm.Conclusions: This study demonstrated the feasibility for an automatic local MR-CT registration using the prostate stent.

  15. Imaging-guided preclinical trials of vascular targeting in prostate cancer

    NASA Astrophysics Data System (ADS)

    Kalmuk, James

    Purpose: Prostate cancer is the most common non-cutaneous malignancy in American men and is characterized by dependence on androgens (Testosterone/Dihydrotestosterone) for growth and survival. Although reduction of serum testosterone levels by surgical or chemical castration transiently inhibits neoplastic growth, tumor adaptation to castrate levels of androgens results in the generation of castration-resistant prostate cancer (CRPC). Progression to CRPC following androgen deprivation therapy (ADT) has been associated with changes in vascular morphology and increased angiogenesis. Based on this knowledge, we hypothesized that targeting tumor vasculature in combination with ADT would result in enhanced therapeutic efficacy against prostate cancer. Methods: To test this hypothesis, we examined the therapeutic activity of a tumor-vascular disrupting agent (tumor-VDA), EPC2407 (Crolibulin(TM)), alone and in combination with ADT in a murine model of prostate cancer (Myc-CaP). A non-invasive multimodality imaging approach based on magnetic resonance imaging (MRI), bioluminescence imaging (BLI), and ultrasound (US) was utilized to characterize tumor response to therapy and to guide preclinical trial design. Imaging results were correlated with histopathologic (H&E) and immunohistochemical (CD31) assessment as well as tumor growth inhibition and survival analyses. Results: Our imaging techniques were able to capture an acute reduction (within 24 hours) in tumor perfusion following castration and VDA monotherapy. BLI revealed onset of recurrent disease 5-7 days post castration prior to visible tumor regrowth suggestive of vascular recovery. Administration of VDA beginning 1 week post castration for 3 weeks resulted in sustained vascular suppression, inhibition of tumor regrowth, and conferred a more pronounced survival benefit compared to either monotherapy. Conclusion: The high mortality rate associated with CRPC underscores the need for investigating novel treatment

  16. Target Definition in Salvage Radiotherapy for Recurrent Prostate Cancer: The Role of Advanced Molecular Imaging

    PubMed Central

    Amzalag, Gaël; Rager, Olivier; Tabouret-Viaud, Claire; Wissmeyer, Michael; Sfakianaki, Electra; de Perrot, Thomas; Ratib, Osman; Miralbell, Raymond; Giovacchini, Giampiero; Garibotto, Valentina; Zilli, Thomas

    2016-01-01

    Salvage radiotherapy (SRT) represents the main treatment option for relapsing prostate cancer in patients after radical prostatectomy. Several open questions remain unanswered in terms of target volumes definition and delivered doses for SRT: the effective dose necessary to achieve biochemical control in the SRT setting may be different if the tumor recurrence is micro- or macroscopic. At the same time, irradiation of only the prostatic bed or of the whole pelvis will depend on the localization of the recurrence, local or locoregional. In the “theragnostic imaging” era, molecular imaging using positron emission tomography (PET) constitutes a useful tool for clinicians to define the site of the recurrence, the extent of disease, and individualize salvage treatments. The best option currently available in clinical routine is the combination of radiolabeled choline PET imaging and multiparametric magnetic resonance imaging (MRI), associating the nodal and distant metastases identification based on PET with the local assessment by MRI. A new generation of targeted tracers, namely, prostate-specific membrane antigen, show promising results, with a contrast superior to choline imaging and a higher detection rate even for low prostate-specific antigen levels; validation studies are ongoing. Finally, imaging targeting bone remodeling, using whole-body SPECT–CT, is a relevant complement to molecular/metabolic PET imaging when bone involvement is suspected. PMID:27065024

  17. Salvage image-guided intensity modulated or stereotactic body reirradiation of local recurrence of prostate cancer

    PubMed Central

    Jereczek-Fossa, B A; Fodor, C; Bazzani, F; Maucieri, A; Ronchi, S; Ferrario, S; Colangione, S P; Gerardi, M A; Caputo, M; Cecconi, A; Gherardi, F; Vavassori, A; Comi, S; Cambria, R; Garibaldi, C; Cattani, F; De Cobelli, O; Orecchia, R

    2015-01-01

    Objective: To retrospectively evaluate external beam reirradiation (re-EBRT) delivered to the prostate/prostatic bed for local recurrence, after radical or adjuvant/salvage radiotherapy (RT). Methods: 32 patients received re-EBRT between February 2008 and October 2013. All patients had clinical/radiological local relapse in the prostate or prostatic bed and no distant metastasis. re-EBRT was delivered with selective RT technologies [stereotactic RT including CyberKnifeTM (Accuray, Sunnyvale, CA); image-guidance and intensity-modulated RT etc.]. Toxicity was evaluated using the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer criteria. Biochemical control was assessed according to the Phoenix definition (NADIR + 2 ng ml−1). Results: Acute urinary toxicity: G0, 24 patients; G1, 6 patients; G2, 2 patients. Acute rectal toxicity: G0, 28 patients; G1, 2 patients; and G2, 1 patient. Late urinary toxicity (evaluated in 30 cases): G0, 23 patients; G1, 6 patients; G2, 1 patient. Late renal toxicity: G0, 25 patients; G1, 5 patients. A mean follow-up of 21.3 months after re-EBRT showed that 13 patients were free of cancer, 3 were alive with biochemical relapse and 12 patients were alive with clinically evident disease. Four patients had died: two of disease progression and two of other causes. Conclusion: re-EBRT using modern technology is a feasible approach for local prostate cancer recurrence offering 2-year tumour control in about half of the patients. Toxicity of re-EBRT is low. Future studies are needed to identify the patients who would benefit most from this treatment. Advances in knowledge: Our series, based on experience in one hospital alone, shows that re-EBRT for local relapse of prostate cancer is feasible and offers a 2-year cure in about half of the patients. PMID:26055506

  18. PSMA Ligands for Radionuclide Imaging and Therapy of Prostate Cancer: Clinical Status.

    PubMed

    Lütje, Susanne; Heskamp, Sandra; Cornelissen, Alexander S; Poeppel, Thorsten D; van den Broek, Sebastiaan A M W; Rosenbaum-Krumme, Sandra; Bockisch, Andreas; Gotthardt, Martin; Rijpkema, Mark; Boerman, Otto C

    2015-01-01

    Prostate cancer (PCa) is the most common malignancy in men worldwide, leading to substantial morbidity and mortality. At present, imaging of PCa has become increasingly important for staging, restaging, and treatment selection. Until recently, choline-based positron emission tomography/computed tomography (PET/CT) represented the state-of-the-art radionuclide imaging technique for these purposes. However, its application is limited to patients with high PSA levels and Gleason scores. Prostate-specific membrane antigen (PSMA) is a promising new target for specific imaging of PCa, because it is upregulated in the majority of PCa. Moreover, PSMA can serve as a target for therapeutic applications. Currently, several small-molecule PSMA ligands with excellent in vivo tumor targeting characteristics are being investigated for their potential in theranostic applications in PCa. Here, a review of the recent developments in PSMA-based diagnostic imaging and therapy in patients with PCa with radiolabeled PSMA ligands is provided. PMID:26681984

  19. PSMA Ligands for Radionuclide Imaging and Therapy of Prostate Cancer: Clinical Status

    PubMed Central

    Lütje, Susanne; Heskamp, Sandra; Cornelissen, Alexander S.; Poeppel, Thorsten D.; van den Broek, Sebastiaan A. M. W.; Rosenbaum-Krumme, Sandra; Bockisch, Andreas; Gotthardt, Martin; Rijpkema, Mark; Boerman, Otto C.

    2015-01-01

    Prostate cancer (PCa) is the most common malignancy in men worldwide, leading to substantial morbidity and mortality. At present, imaging of PCa has become increasingly important for staging, restaging, and treatment selection. Until recently, choline-based positron emission tomography/computed tomography (PET/CT) represented the state-of-the-art radionuclide imaging technique for these purposes. However, its application is limited to patients with high PSA levels and Gleason scores. Prostate-specific membrane antigen (PSMA) is a promising new target for specific imaging of PCa, because it is upregulated in the majority of PCa. Moreover, PSMA can serve as a target for therapeutic applications. Currently, several small-molecule PSMA ligands with excellent in vivo tumor targeting characteristics are being investigated for their potential in theranostic applications in PCa. Here, a review of the recent developments in PSMA-based diagnostic imaging and therapy in patients with PCa with radiolabeled PSMA ligands is provided. PMID:26681984

  20. Detection of Prostate Cancer: Quantitative Multiparametric MR Imaging Models Developed Using Registered Correlative Histopathology.

    PubMed

    Metzger, Gregory J; Kalavagunta, Chaitanya; Spilseth, Benjamin; Bolan, Patrick J; Li, Xiufeng; Hutter, Diane; Nam, Jung W; Johnson, Andrew D; Henriksen, Jonathan C; Moench, Laura; Konety, Badrinath; Warlick, Christopher A; Schmechel, Stephen C; Koopmeiners, Joseph S

    2016-06-01

    Purpose To develop multiparametric magnetic resonance (MR) imaging models to generate a quantitative, user-independent, voxel-wise composite biomarker score (CBS) for detection of prostate cancer by using coregistered correlative histopathologic results, and to compare performance of CBS-based detection with that of single quantitative MR imaging parameters. Materials and Methods Institutional review board approval and informed consent were obtained. Patients with a diagnosis of prostate cancer underwent multiparametric MR imaging before surgery for treatment. All MR imaging voxels in the prostate were classified as cancer or noncancer on the basis of coregistered histopathologic data. Predictive models were developed by using more than one quantitative MR imaging parameter to generate CBS maps. Model development and evaluation of quantitative MR imaging parameters and CBS were performed separately for the peripheral zone and the whole gland. Model accuracy was evaluated by using the area under the receiver operating characteristic curve (AUC), and confidence intervals were calculated with the bootstrap procedure. The improvement in classification accuracy was evaluated by comparing the AUC for the multiparametric model and the single best-performing quantitative MR imaging parameter at the individual level and in aggregate. Results Quantitative T2, apparent diffusion coefficient (ADC), volume transfer constant (K(trans)), reflux rate constant (kep), and area under the gadolinium concentration curve at 90 seconds (AUGC90) were significantly different between cancer and noncancer voxels (P < .001), with ADC showing the best accuracy (peripheral zone AUC, 0.82; whole gland AUC, 0.74). Four-parameter models demonstrated the best performance in both the peripheral zone (AUC, 0.85; P = .010 vs ADC alone) and whole gland (AUC, 0.77; P = .043 vs ADC alone). Individual-level analysis showed statistically significant improvement in AUC in 82% (23 of 28) and 71% (24 of 34

  1. Prostate cancer detection from model-free T1-weighted time series and diffusion imaging

    NASA Astrophysics Data System (ADS)

    Haq, Nandinee F.; Kozlowski, Piotr; Jones, Edward C.; Chang, Silvia D.; Goldenberg, S. Larry; Moradi, Mehdi

    2015-03-01

    The combination of Dynamic Contrast Enhanced (DCE) images with diffusion MRI has shown great potential in prostate cancer detection. The parameterization of DCE images to generate cancer markers is traditionally performed based on pharmacokinetic modeling. However, pharmacokinetic models make simplistic assumptions about the tissue perfusion process, require the knowledge of contrast agent concentration in a major artery, and the modeling process is sensitive to noise and fitting instabilities. We address this issue by extracting features directly from the DCE T1-weighted time course without modeling. In this work, we employed a set of data-driven features generated by mapping the DCE T1 time course to its principal component space, along with diffusion MRI features to detect prostate cancer. The optimal set of DCE features is extracted with sparse regularized regression through a Least Absolute Shrinkage and Selection Operator (LASSO) model. We show that when our proposed features are used within the multiparametric MRI protocol to replace the pharmacokinetic parameters, the area under ROC curve is 0.91 for peripheral zone classification and 0.87 for whole gland classification. We were able to correctly classify 32 out of 35 peripheral tumor areas identified in the data when the proposed features were used with support vector machine classification. The proposed feature set was used to generate cancer likelihood maps for the prostate gland.

  2. Significance of Image Guidance to Clinical Outcomes for Localized Prostate Cancer

    PubMed Central

    Zhong, Qiuzi; Gao, Hong; Li, Gaofeng; Xiu, Xia; Wu, Qinhong; Li, Ming; Xu, Yonggang

    2014-01-01

    Purpose. To compare toxicity profiles and biochemical tumor control outcomes between patients treated with image-guided intensity-modulated radiotherapy (IG-IMRT) and non-IGRT intensity-modulated radiotherapy (IMRT) for clinically localized prostate cancer. Materials and Methods. Between 2009 and 2012, 65 patients with localized prostate cancer were treated with IG-IMRT. This group of patients was retrospectively compared with a similar cohort of 62 patients who were treated between 2004 and 2009 with IMRT to the same dose without image guidance. Results. The median follow-up time was 4.8 years. The rectal volume receiving ≥40 and ≥70 Gy was significantly lower in the IG-IMRT group. Grade 2 and higher acute and late GI and GU toxicity rates were lower in IG-IMRT group, but there was no statistical difference. No significant improvement in biochemical control at 5 years was observed in two groups. In a Cox regression analysis identifying predictors for PSA relapse-free survival, only preradiotherapy PSA was significantly associated with biochemical control; IG-IMRT was not a statistically significant indicator. Conclusions. The use of image guidance in the radiation of prostate cancer at our institute did not show significant reduction in the rates of GI and GU toxicity and did not improve the biochemical control compared with IMRT. PMID:25110701

  3. Cryotherapy for prostate cancer

    MedlinePlus

    Cryotherapy uses very cold temperatures to freeze and kill prostate cancer cells. The goal of cryosurgery is ... Possible short-term side effects of cryotherapy for prostate ... of the penis or scrotum Problems controlling your bladder (more ...

  4. Screening for prostate cancer

    NASA Technical Reports Server (NTRS)

    Weirich, Stephen A.

    1993-01-01

    Despite recent advances in both the survival and cure rates for many forms of cancer, unfortunately the same has not been true for prostate cancer. In fact, the age-adjusted death rate from prostate cancer has not significantly improved since 1949, and prostate cancer remains the most common cancer in American men, causing the second highest cancer mortality rate. Topics discussed include the following: serum testosterone levels; diagnosis; mortality statistics; prostate-sppecific antigen (PSA) tests; and the Occupational Medicine Services policy at LeRC.

  5. Evaluation of Image-Guidance Strategies in the Treatment of Localized Prostate Cancer

    SciTech Connect

    Kupelian, Patrick A. Lee, Choonik; Langen, Katja M.; Zeidan, Omar A.; Manon, Rafael R.; Willoughby, Twyla R.; Meeks, Sanford L.

    2008-03-15

    Purpose: To compare different image-guidance strategies in the alignment of prostate cancer patients. Using data from patients treated using daily image guidance, the remaining setup errors for several different strategies were retrospectively calculated. Methods and Materials: The alignment data from 74 patients treated with helical tomotherapy were analyzed, resulting in a data set of 2,252 fractions during which a megavoltage computed tomography image was used for image guidance with intraprostatic metallic fiducials. Given the daily positional adjustments, a variety of protocols, differing in imaging frequency and method, were retrospectively studied. The residual setup errors were determined for each protocol. Results: As expected, the systematic errors were effectively reduced with imaging. However, the random errors were unaffected. Even when image guidance was performed every other day with a running mean of the previous displacements, residual setup errors >5 mm occurred in 24% of all fractions. This frequency increased to about 40% if setup errors >3 mm were scored. Conclusion: Setup errors increased with decreasing frequency of image guidance. However, residual errors were still significant at the 5-mm level, even with imaging was performed every other day. This suggests that localizations must be performed daily in the set up of prostate cancer patients during a course of external beam radiotherapy.

  6. Evaluation of an Automated Analysis Tool for Prostate Cancer Prediction Using Multiparametric Magnetic Resonance Imaging

    PubMed Central

    Roethke, Matthias C.; Kuru, Timur H.; Mueller-Wolf, Maya B.; Agterhuis, Erik; Edler, Christopher; Hohenfellner, Markus; Schlemmer, Heinz-Peter; Hadaschik, Boris A.

    2016-01-01

    Objective To evaluate the diagnostic performance of an automated analysis tool for the assessment of prostate cancer based on multiparametric magnetic resonance imaging (mpMRI) of the prostate. Methods A fully automated analysis tool was used for a retrospective analysis of mpMRI sets (T2-weighted, T1-weighted dynamic contrast-enhanced, and diffusion-weighted sequences). The software provided a malignancy prediction value for each image pixel, defined as Malignancy Attention Index (MAI) that can be depicted as a colour map overlay on the original images. The malignancy maps were compared to histopathology derived from a combination of MRI-targeted and systematic transperineal MRI/TRUS-fusion biopsies. Results In total, mpMRI data of 45 patients were evaluated. With a sensitivity of 85.7% (with 95% CI of 65.4–95.0), a specificity of 87.5% (with 95% CI of 69.0–95.7) and a diagnostic accuracy of 86.7% (with 95% CI of 73.8–93.8) for detection of prostate cancer, the automated analysis results corresponded well with the reported diagnostic accuracies by human readers based on the PI-RADS system in the current literature. Conclusion The study revealed comparable diagnostic accuracies for the detection of prostate cancer of a user-independent MAI-based automated analysis tool and PI-RADS-scoring-based human reader analysis of mpMRI. Thus, the analysis tool could serve as a detection support system for less experienced readers. The results of the study also suggest the potential of MAI-based analysis for advanced lesion assessments, such as cancer extent and staging prediction. PMID:27454770

  7. Ultrasonic Nanobubbles Carrying Anti-PSMA Nanobody: Construction and Application in Prostate Cancer-Targeted Imaging.

    PubMed

    Fan, Xiaozhou; Wang, Luofu; Guo, Yanli; Tu, Zhui; Li, Lang; Tong, Haipeng; Xu, Yang; Li, Rui; Fang, Kejing

    2015-01-01

    To facilitate prostate cancer imaging using targeted molecules, we constructed ultrasonic nanobubbles coupled with specific anti-PSMA (prostate specific membrane antigen) nanobodies, and evaluated their in vitro binding capacity and in vivo imaging efficacy. The "targeted" nanobubbles, which were constructed via a biotin-streptavidin system, had an average diameter of 487.60 ± 33.55 nm and carried the anti-PSMA nanobody as demonstrated by immunofluorescence. Microscopy revealed targeted binding of nanobubbles in vitro to PSMA-positive cells. Additionally, ultrasonography indicators of nanobubble imaging (including arrival time, peak time, peak intensity and enhanced duration) were evaluated for the ultrasound imaging in three kinds of animal xenografts (LNCaP, C4-2 and MKN45), and showed that these four indicators of targeted nanobubbles exhibited significant differences from blank nanobubbles. Therefore, this study not only presents a novel approach to target prostate cancer ultrasonography, but also provides the basis and methods for constructing small-sized and high-efficient targeted ultrasound nanobubbles. PMID:26111008

  8. Ultrasonic Nanobubbles Carrying Anti-PSMA Nanobody: Construction and Application in Prostate Cancer-Targeted Imaging

    PubMed Central

    Guo, Yanli; Tu, Zhui; Li, Lang; Tong, Haipeng; Xu, Yang; Li, Rui; Fang, Kejing

    2015-01-01

    To facilitate prostate cancer imaging using targeted molecules, we constructed ultrasonic nanobubbles coupled with specific anti-PSMA (prostate specific membrane antigen) nanobodies, and evaluated their in vitro binding capacity and in vivo imaging efficacy. The “targeted” nanobubbles, which were constructed via a biotin-streptavidin system, had an average diameter of 487.60 ± 33.55 nm and carried the anti-PSMA nanobody as demonstrated by immunofluorescence. Microscopy revealed targeted binding of nanobubbles in vitro to PSMA-positive cells. Additionally, ultrasonography indicators of nanobubble imaging (including arrival time, peak time, peak intensity and enhanced duration) were evaluated for the ultrasound imaging in three kinds of animal xenografts (LNCaP, C4-2 and MKN45), and showed that these four indicators of targeted nanobubbles exhibited significant differences from blank nanobubbles. Therefore, this study not only presents a novel approach to target prostate cancer ultrasonography, but also provides the basis and methods for constructing small-sized and high-efficient targeted ultrasound nanobubbles. PMID:26111008

  9. A Comparison of daily megavoltage CT and ultrasound image guided radiation therapy for prostate cancer

    SciTech Connect

    Peng Cheng; Kainz, Kristofer; Lawton, Colleen; Li, X. Allen

    2008-12-15

    In order to quantify the differences between ultrasound-imaging and megavoltage-CT (MVCT) daily prostate localization in prostate-cancer radiotherapy and their dosimetric impacts, daily shifts were analyzed for a total of 140 prostate cancer patients; 106 positioned using ultrasound-based imaging [B-mode Acquisition and Targeting (BAT)], and 34 using the MVCT from a TomoTherapy Hi-Art unit. The shifts indicated by the two systems were compared statistically along the right/left (R/L), superior/inferior (S/I), and anterior/posterior (A/P) directions. The systematic and random variations among the daily alignments were calculated. Margins to account for these shifts were estimated. The mean shifts and standard deviations along the R/L, S/I, and A/P directions were -0.11{+-}3.80, 0.67{+-}4.67, and 2.71{+-}6.31 mm for BAT localizations and -0.98{+-}5.13, 0.27{+-}3.35, and 1.00{+-}4.22 mm for MVCT localizations, respectively. The systematic and random variations in daily shifts based on MVCT were generally smaller than those based on BAT, especially along the A/P direction. A t-test showed this difference to be statistically significant. The planning target volume margins in the A/P direction estimated to account for daily variations were 8.81 and 14.66 mm based on MVCT and BAT data, respectively. There was no statistically significant difference in the daily prostate movement pattern between the first few fractions and the remaining fractions. Dosimetric comparison of MVCT and BAT prostate alignments was performed for seven fractions from a patient. The degradation from the plan caused by the MVCT alignment is trivial, while that by BAT is substantial. The MVCT technique results in smaller variations in daily shifts than ultrasound imaging, indicating that MVCT is more reliable and precise for prostate localization. Ultrasound-based localization may overestimate the daily prostate motion, particularly in the A/P direction, negatively impacting prostate dose coverage

  10. Evaluation of Online/Offline Image Guidance/Adaptation Approaches for Prostate Cancer Radiation Therapy

    SciTech Connect

    Qin, An; Sun, Ying; Liang, Jian; Yan, Di

    2015-04-01

    Purpose: To evaluate online/offline image-guided/adaptive treatment techniques for prostate cancer radiation therapy with daily cone-beam CT (CBCT) imaging. Methods and Materials: Three treatment techniques were evaluated retrospectively using daily pre- and posttreatment CBCT images on 22 prostate cancer patients. Prostate, seminal vesicles (SV), rectal wall, and bladder were delineated on all CBCT images. For each patient, a pretreatment intensity modulated radiation therapy plan with clinical target volume (CTV) = prostate + SV and planning target volume (PTV) = CTV + 3 mm was created. The 3 treatment techniques were as follows: (1) Daily Correction: The pretreatment intensity modulated radiation therapy plan was delivered after online CBCT imaging, and position correction; (2) Online Planning: Daily online inverse plans with 3-mm CTV-to-PTV margin were created using online CBCT images, and delivered; and (3) Hybrid Adaption: Daily Correction plus an offline adaptive inverse planning performed after the first week of treatment. The adaptive plan was delivered for all remaining 15 fractions. Treatment dose for each technique was constructed using the daily posttreatment CBCT images via deformable image registration. Evaluation was performed using treatment dose distribution in target and critical organs. Results: Treatment equivalent uniform dose (EUD) for the CTV was within [85.6%, 100.8%] of the pretreatment planned target EUD for Daily Correction; [98.7%, 103.0%] for Online Planning; and [99.2%, 103.4%] for Hybrid Adaptation. Eighteen percent of the 22 patients in Daily Correction had a target dose deficiency >5%. For rectal wall, the mean ± SD of the normalized EUD was 102.6% ± 2.7% for Daily Correction, 99.9% ± 2.5% for Online Planning, and 100.6% ± 2.1% for Hybrid Adaptation. The mean ± SD of the normalized bladder EUD was 108.7% ± 8.2% for Daily Correction, 92.7% ± 8.6% for Online Planning, and 89.4% ± 10.8% for Hybrid

  11. Inverse Relationship Between Biochemical Outcome and Acute Toxicity After Image-Guided Radiotherapy for Prostate Cancer

    SciTech Connect

    Vesprini, Danny; Catton, Charles; Jacks, Lindsay; Lockwood, Gina; Rosewall, Tara; Bayley, Andrew; Chung, Peter; Gospodarowicz, Mary; Menard, Cynthia; Milosevic, Michael; Nichol, Alan; Skala, Marketa; Warde, Padraig; Bristow, Robert G.

    2012-06-01

    Purpose: Prostate cancer patients exhibit variability in normal tissue reactions and biochemical failure. With the use of image-guided radiotherapy (IGRT), there is a greater likelihood that the differences in normal tissue and tumor response are due to biological rather than physical factors. We tested the hypothesis that prospectively scored acute toxicity is associated with biochemical failure-free rate (BFFR) in prostate cancer patients treated with IGRT. Methods and Materials: We retrospectively analyzed BFFR in 362 patients with localized prostate cancer treated with IGRT. We compared BFFR with prospectively collected Radiation Therapy Oncology Group (RTOG) maximum acute gastrointestinal (GI) and genitourinary (GU) toxicity scores. Median follow-up for all patients was 58.3 months after total radiotherapy doses of 75.6-79.8 Gy. Results: Patients reporting RTOG acute GU or GI toxicity scores of {>=}2 were considered 'sensitive' (n = 141, 39%) and patients reporting scores <2 were considered 'nonsensitive' (n = 221, 61%). When calculating biochemical failure (BF) using the American Society for Therapeutic Radiology and Oncology definition at 5 years, 76% (CI 70-82%) of the 'nonsensitive' patients were failure free, compared with only 53% (CI 43-62%) of the 'sensitive' patients (log-rank test, p < 0.0001). This difference was also observed using the Phoenix definition; 'nonsensitive' 5-year BFFR was 81% (CI 74-86%) vs. 'sensitive' BFFR was 68% (CI 58-76%; log-rank test p = 0.0012). The difference in BF between cohorts remained significant when controlled for radiation dose (75.6 vs. 79.8 Gy), prognostic stratification (T category, prostate-specific antigen, and Gleason score), and prostate volume. Conclusions: This study unexpectedly shows that prostate cancer patients who develop {>=}Grade 2 RTOG acute toxicity during radiotherapy are less likely to remain BFF at 5 years. These results deserve further study and, if validated in other large IGRT cohorts

  12. Real Time Metastatic Route Tracking of Orthotopic PC-3-GFP Human Prostate Cancer Using Intravital Imaging.

    PubMed

    Zhang, Yong; Wang, Xiaoen; Hoffman, Robert M; Seki, Naohiko

    2016-04-01

    The cellular basis of metastasis is poorly understood. An important step to understanding this process is to be able to visualize the routes by which cancer cells migrate from the primary tumor to various distant sites to eventually form metastasis. Our laboratory previously developed single-cell in vivo imaging using fluorescent proteins to label cancer cells. In the present study, using PC-3 human prostate cancer cells labeled with green fluorescent protein (GFP) and orthotopic tumor transplantation, we have imaged in live mice various highly diverse routes by which PC-3 cells metastasize superiorly and inferiorly to distant sites, including in the portal area, stomach area, and urogenital system. Imaging began at day 9, at which time distant metastasis had already occurred, and increased at each imaging point at days 10, 13, 14, and 16. Metastatic cells were observed migrating superiorly and inferiorly from the primary tumor as well as in lymphatic channels and trafficking in various organ systems demonstrating that PC-3 has multiple metastatic routes similar to hormone-independent advanced-stage prostate cancer in the clinic. PMID:26515240

  13. Hormone therapy for prostate cancer

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000908.htm Hormone therapy for prostate cancer To use the sharing ... helps slow the growth of prostate cancer. Male Hormones and Prostate Cancer Androgens are male sex hormones. ...

  14. Vaccine Treatment for Prostate Cancer

    MedlinePlus

    ... Preventing and treating prostate cancer spread to bones Vaccine treatment for prostate cancer Sipuleucel-T (Provenge) is ... less advanced prostate cancer. Possible side effects of vaccine treatment Side effects from the vaccine tend to ...

  15. PET imaging of prostate-specific membrane antigen in prostate cancer: current state of the art and future challenges

    PubMed Central

    Rowe, SP; Gorin, MA; Allaf, ME; Pienta, KJ; Tran, PT; Pomper, MG; Ross, AE; Cho, SY

    2016-01-01

    BACKGROUND Prostate-specific membrane antigen (PSMA) is a cell surface enzyme that is highly expressed in prostate cancer (PCa) and is currently being extensively explored as a promising target for molecular imaging in a variety of clinical contexts. Novel antibody and small-molecule PSMA radiotracers labeled with a variety of radionuclides for positron emission tomography (PET) imaging applications have been developed and explored in recent studies. METHODS A great deal of progress has been made in defining the clinical utility of this class of PET agents through predominantly small and retrospective clinical studies. The most compelling data to date has been in the setting of biochemically recurrent PCa, where PSMA-targeted radiotracers have been found to be superior to conventional imaging and other molecular imaging agents for the detection of locally recurrent and metastatic PCa. RESULTS Early data, however, suggest that initial lymph node staging before definitive therapy in high-risk primary PCa patients may be limited, although intraoperative guidance may still hold promise. Other examples of potential promising applications for PSMA PET imaging include non-invasive characterization of primary PCa, staging and treatment planning for PSMA-targeted radiotherapeutics, and guidance of focal therapy for oligometastatic disease. CONCLUSIONS However, all of these indications and applications for PCa PSMA PET imaging are still lacking and require large, prospective, systematic clinical trials for validation. Such validation trials are needed and hopefully will be forthcoming as the fields of molecular imaging, urology, radiation oncology and medical oncology continue to define and refine the utility of PSMA-targeted PET imaging to improve the management of PCa patients. PMID:27136743

  16. Prostate cancer staging

    MedlinePlus

    ... effects of treatment The chance that treatment can cure your cancer or help you in other ways With stage ... III prostate cancer, the main goal is to cure the cancer by treating it and keeping it from coming ...

  17. COMPUTER-AIDED GLEASON GRADING OF PROSTATE CANCER HISTOPATHOLOGICAL IMAGES USING TEXTON FORESTS

    PubMed Central

    Khurd, Parmeshwar; Bahlmann, Claus; Maday, Peter; Kamen, Ali; Gibbs-Strauss, Summer; Genega, Elizabeth M.; Frangioni, John V.

    2010-01-01

    The Gleason score is the single most important prognostic indicator for prostate cancer candidates and plays a significant role in treatment planning. Histopathological imaging of prostate tissue samples provides the gold standard for obtaining the Gleason score, but the manual assignment of Gleason grades is a labor-intensive and error-prone process. We have developed a texture classification system for automatic and reproducible Gleason grading. Our system characterizes the texture in images belonging to a tumor grade by clustering extracted filter responses at each pixel into textons (basic texture elements). We have used random forests to cluster the filter responses into textons followed by the spatial pyramid match kernel in conjunction with an SVM classifier. We have demonstrated the efficacy of our system in distinguishing between Gleason grades 3 and 4. PMID:21221421

  18. COMPUTER-AIDED GLEASON GRADING OF PROSTATE CANCER HISTOPATHOLOGICAL IMAGES USING TEXTON FORESTS.

    PubMed

    Khurd, Parmeshwar; Bahlmann, Claus; Maday, Peter; Kamen, Ali; Gibbs-Strauss, Summer; Genega, Elizabeth M; Frangioni, John V

    2010-04-17

    The Gleason score is the single most important prognostic indicator for prostate cancer candidates and plays a significant role in treatment planning. Histopathological imaging of prostate tissue samples provides the gold standard for obtaining the Gleason score, but the manual assignment of Gleason grades is a labor-intensive and error-prone process. We have developed a texture classification system for automatic and reproducible Gleason grading. Our system characterizes the texture in images belonging to a tumor grade by clustering extracted filter responses at each pixel into textons (basic texture elements). We have used random forests to cluster the filter responses into textons followed by the spatial pyramid match kernel in conjunction with an SVM classifier. We have demonstrated the efficacy of our system in distinguishing between Gleason grades 3 and 4. PMID:21221421

  19. Hormone therapy for prostate cancer

    MedlinePlus

    Androgen deprivation therapy; ADT; Androgen suppression therapy; Combined androgen blockade ... Androgens cause prostate cancer cells to grow. Hormone therapy for prostate cancer lowers the effect level of ...

  20. Single fraction multimodal image guided focal salvage high-dose-rate brachytherapy for recurrent prostate cancer

    PubMed Central

    Rischke, Hans-Christian; Meyer, Philipp Tobias; Knobe, Sven; Volgeova-Neher, Natalja; Kollefrath, Michael; Jilg, Cordula Annette; Grosu, Anca Ligia; Baltas, Dimos; Kroenig, Malte

    2016-01-01

    Purpose We present a novel method for treatment of locally recurrent prostate cancer (PCa) following radiation therapy: focal, multimodal image guided high-dose-rate (HDR) brachytherapy. Material and methods We treated two patients with recurrent PCa after primary (#1) or adjuvant (#2) external beam radiation therapy. Multiparametric magnetic resonance imaging (mpMRI), choline, positron emission tomography combined with computed tomography (PET/CT), or prostate-specific membrane antigen (PSMA)-PET combined with CT identified a single intraprostatic lesion. Positron emission tomography or magnetic resonance imaging – transrectal ultrasound (MRI-TRUS) fusion guided transperineal biopsy confirmed PCa within each target lesion. We defined a PET and mpMRI based gross tumor volume (GTV). A 5 mm isotropic margin was applied additionally to each lesion to generate a planning target volume (PTV), which accounts for technical fusion inaccuracies. A D90 of 18 Gy was intended in one fraction to each PTV using ultrasound guided HDR brachytherapy. Results Six month follow-up showed adequate prostate specific antygen (PSA) decline in both patients (ΔPSA 83% in patient 1 and ΔPSA 59.3% in patient 2). Follow-up 3-tesla MRI revealed regressive disease in both patients and PSMA-PET/CT showed no evidence of active disease in patient #1. No acute or late toxicities occurred. Conclusions Single fraction, focal, multimodal image guided salvage HDR brachytherapy for recurrent prostate cancer is a feasible therapy for selected patients with single lesions. This approach has to be evaluated in larger clinical trials. PMID:27504134

  1. A hybrid strategy of offline adaptive planning and online image guidance for prostate cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Lei, Yu; Wu, Qiuwen

    2010-04-01

    Offline adaptive radiotherapy (ART) has been used to effectively correct and compensate for prostate motion and reduce the required margin. The efficacy depends on the characteristics of the patient setup error and interfraction motion through the whole treatment; specifically, systematic errors are corrected and random errors are compensated for through the margins. In online image-guided radiation therapy (IGRT) of prostate cancer, the translational setup error and inter-fractional prostate motion are corrected through pre-treatment imaging and couch correction at each fraction. However, the rotation and deformation of the target are not corrected and only accounted for with margins in treatment planning. The purpose of this study was to investigate whether the offline ART strategy is necessary for an online IGRT protocol and to evaluate the benefit of the hybrid strategy. First, to investigate the rationale of the hybrid strategy, 592 cone-beam-computed tomography (CBCT) images taken before and after each fraction for an online IGRT protocol from 16 patients were analyzed. Specifically, the characteristics of prostate rotation were analyzed. It was found that there exist systematic inter-fractional prostate rotations, and they are patient specific. These rotations, if not corrected, are persistent through the treatment fraction, and rotations detected in early fractions are representative of those in later fractions. These findings suggest that the offline adaptive replanning strategy is beneficial to the online IGRT protocol with further margin reductions. Second, to quantitatively evaluate the benefit of the hybrid strategy, 412 repeated helical CT scans from 25 patients during the course of treatment were included in the replanning study. Both low-risk patients (LRP, clinical target volume, CTV = prostate) and intermediate-risk patients (IRP, CTV = prostate + seminal vesicles) were included in the simulation. The contours of prostate and seminal vesicles were

  2. Prostate cancer screenings

    MedlinePlus

    Prostate-specific antigen (PSA) test is a blood test that checks the level of PSA in your blood. In some cases, a high level of PSA could mean you have prostate cancer. But other conditions can also cause a high level, such as infection in the prostate or ...

  3. Magnetic resonance imaging for localization of prostate cancer in the setting of biochemical recurrence.

    PubMed

    Panebianco, Valeria; Barchetti, Flavio; Grompone, Marcello Domenico; Colarieti, Anna; Salvo, Vincenzo; Cardone, Gianpiero; Catalano, Carlo

    2016-07-01

    The clinical suspicion of local recurrence of prostate cancer after radical treatment is based on the onset of biochemical failure. The use of multiparametric magnetic resonance imaging (MRI) for prostate cancer has increased over recent years, mainly for detection, staging, and active surveillance. However, suspicion of recurrence in the set of biochemical failure is becoming a significant reason for clinicians to request multiparametric MRI. Radiologists should be able to recognize the normal posttreatment MRI findings. Fibrosis and atrophic remnant seminal vesicles (SV) after radical prostatectomy are often found and must be differentiated from local relapse. Moreover, brachytherapy, external beam radiotherapy, and focal therapies tend to diffusely decrease the signal intensity of the peripheral zone on T2-weighted images due to the loss of water content, consequently mimicking tumor and hemorrhage. The combination of T2-weighted images and functional studies like diffusion-weighted imaging and dynamic contrast-enhanced imaging improves the identification of local relapse. Tumor recurrence tends to restrict on diffusion images and avidly enhances after contrast administration. The authors provide a review of the normal findings and the signs of local tumor relapse after radical prostatectomy, external beam radiotherapy, brachytherapy and focal therapies. PMID:27012939

  4. Imaging of prostate cancer with PET/CT using 18F-Fluorocholine

    PubMed Central

    Vali, Reza; Loidl, Wolfgang; Pirich, Christian; Langesteger, Werner; Beheshti, Mohsen

    2015-01-01

    While 18F-Fluorodeoxyglucose (18F-FDG) Positron-Emission Tomography (PET) has limited value in prostate cancer (PCa), it may be useful for specific subgroups of PCa patients with hormone-resistant poorly differentiated cell types. 18F-Fluorocholine (18F-FCH) PET/CT has been increasingly used in primary and recurrent PCa and has been shown to add valuable information. Although there is a correlation between the foci of activity and the areas of malignancy in the prostate gland, the clinical value of 18F-FCH is still controversial for detection of the malignant focus in the prostate. For the T-staging of PCa at diagnosis the value of 18F-FCH is limited. This is probably due to limited resolution of PET system and positive findings in benign prostate diseases. Conversely, 18F-FCH PET/CT is a promising imaging modality for the delineation of local and distant nodal recurrence and bone metastases and is poised to have an impact on therapy management. In this review, recent studies of 18F-FCH PET/CT in PCa are summarized. PMID:25973332

  5. Image-guided radiotherapy for prostate cancer by CT-linear accelerator combination: Prostate movements and dosimetric considerations

    SciTech Connect

    Wong, James R.; Grimm, Lisa; Oren, Reva

    2005-02-01

    Purpose: Multiple studies have indicated that the prostate is not stationary and can move as much as 2 cm. Such prostate movements are problematic for intensity-modulated radiotherapy, with its associated tight margins and dose escalation. Because of these intrinsic daily uncertainties, a relative generous 'margin' is necessary to avoid marginal misses. Using the CT-linear accelerator combination in the treatment suite (Primatom, Siemens), we found that the daily intrinsic prostate movements can be easily corrected before each radiotherapy session. Dosimetric calculations were performed to evaluate the amount of discrepancy of dose to the target if no correction was done for prostate movement. Methods and materials: The Primatom consists of a Siemens Somatom CT scanner and a Siemens Primus linear accelerator installed in the same treatment suite and sharing a common table/couch. The patient is scanned by the CT scanner, which is movable on a pair of horizontal rails. During scanning, the couch does not move. The exact location of the prostate, seminal vesicles, and rectum are identified and localized. These positions are then compared with the planned positions. The daily movement of the prostate and rectum were corrected for and a new isocenter derived. The patient was treated immediately using the new isocenter. Results: Of the 108 patients with primary prostate cancer studied, 540 consecutive daily CT scans were performed during the last part of the cone down treatment. Of the 540 scans, 46% required no isocenter adjustments for the AP-PA direction, 54% required a shift of {>=}3 mm, 44% required a shift of >5 mm, and 15% required a shift of >10 mm. In the superoinferior direction, 27% required a shift of >3 mm, 25% required a shift of >5 mm, and 4% required a shift of >10 mm. In the right-left direction, 34% required a shift of >3 mm, 24% required a shift of >5 mm, and 5% required a shift of >10 mm. Dosimetric calculations for a typical case of prostate cancer

  6. Prostate-specific membrane antigen targeted protein contrast agents for molecular imaging of prostate cancer by MRI.

    PubMed

    Pu, Fan; Salarian, Mani; Xue, Shenghui; Qiao, Jingjuan; Feng, Jie; Tan, Shanshan; Patel, Anvi; Li, Xin; Mamouni, Kenza; Hekmatyar, Khan; Zou, Juan; Wu, Daqing; Yang, Jenny J

    2016-07-01

    Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd(3+) contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd(3+) binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 ± 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 ± 0.1 × 10(-22) M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM(-1) s(-1) and r2 of 37.9 mM(-1) s(-1) per Gd (55.2 and 75.8 mM(-1) s(-1) per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM(-1) s(-1) per Gd (188.0 mM(-1) s(-1) per molecule) and r1 of 18.6 mM(-1) s(-1) per Gd (37.2 mM(-1) s(-1) per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI. PMID:26961235

  7. Active Surveillance of Prostate Cancer: Use, Outcomes, Imaging, and Diagnostic Tools

    PubMed Central

    Tosoian, Jeffrey J; Loeb, Stacy; Epstein, Jonathan I; Turkbey, Baris; Choyke, Peter; Schaeffer, Edward M

    2016-01-01

    Active surveillance (AS) has emerged as a standard management option for men with very low-risk and low-risk prostate cancer, and contemporary data indicate that use of AS is increasing in the United States and abroad. In the favorable-risk population, reports from multiple prospective cohorts indicate a less than 1% likelihood of metastatic disease and prostate cancer-specific mortality over intermediate-term follow-up (median 5 to 6 years). Higher-risk men participating in AS appear to be at increased risk of adverse outcomes, but these populations have not been adequately studied to this point. Although monitoring on AS largely relies on serial prostate biopsy, a procedure associated with significant morbidity, there is a need for improved diagnostic tools for patient selection and monitoring. Revisions from the 2014 International Society of Urologic Pathology consensus conference have yielded a more intuitive reporting system and detailed reporting of low-intermediate grade tumors, which should facilitate the practice of AS. Meanwhile, emerging modalities such as multiparametric magnetic resonance imaging and tissue-based molecular testing have shown prognostic value in some populations. At this time, however, these instruments have not been sufficiently studied to consider their routine, standardized use in the AS setting. Future studies should seek to identify those platforms most informative in the AS population and propose a strategy by which promising diagnostic tools can be safely and efficiently incorporated into clinical practice. PMID:27249729

  8. What Is Prostate Cancer?

    MedlinePlus Videos and Cool Tools

    ... the more likely he is to develop the disease. Physician: Come on back, first room. Narrator: Most ... cancer. Prostate cancer is really a spectrum of diseases where on one end of the spectrum there ...

  9. Prostate cancer staging

    MedlinePlus

    ... test. A faster increase could show a more aggressive tumor. A prostate biopsy is done in your ... suggest the cancer is slow growing and not aggressive. Higher numbers indicate a faster growing cancer that ...

  10. Prostate cancer - treatment

    MedlinePlus

    ... when cancer has spread to the bone. External beam radiation therapy uses high-powered x-rays pointed ... radiation therapy used to treat prostate cancer. Proton beams target the tumor precisely, so there is less ...

  11. Detecting Prostate Cancer

    MedlinePlus Videos and Cool Tools

    ... abnormal and raises the index of suspicion that cancer may be present. Narrator: While the use of ... examination does not mean that they have prostate cancer. It means that we're concerned about it ...

  12. Observer assessment of multi-pinhole SPECT geometries for prostate cancer imaging: a simulation study

    NASA Astrophysics Data System (ADS)

    Kalantari, Faraz; Sen, Anando; Gifford, Howard C.

    2014-03-01

    SPECT imaging using In-111 ProstaScint is an FDA-approved method for diagnosing prostate cancer metastases within the pelvis. However, conventional medium-energy parallel-hole (MEPAR) collimators produce poor image quality and we are investigating the use of multipinhole (MPH) imaging as an alternative. This paper presents a method for evaluating MPH designs that makes use of sampling-sensitive (SS) mathematical model observers for tumor detectionlocalization tasks. Key to our approach is the redefinition of a normal (or background) reference image that is used with scanning model observers. We used this approach to compare different MPH configurations for the task of small-tumor detection in the prostate and surrounding lymph nodes. Four configurations used 10, 20, 30, and 60 pinholes evenly spaced over a complete circular orbit. A fixed-count acquisition protocol was assumed. Spherical tumors were placed within a digital anthropomorphic phantom having a realistic Prostascint biodistribution. Imaging data sets were generated with an analytical projector and reconstructed volumes were obtained with the OSEM algorithm. The MPH configurations were compared in a localization ROC (LROC) study with 2D pelvic images and both human and model observers. Regular and SS versions of the scanning channelized nonprewhitening (CNPW) and visual-search (VS) model observers were applied. The SS models demonstrated the highest correlations with the average human-observer results

  13. Chemoprevention of prostate cancer.

    PubMed

    Vemana, Goutham; Hamilton, Robert J; Andriole, Gerald L; Freedland, Stephen J

    2014-01-01

    Large prospective randomized trials, such as the Prostate Cancer Prevention Trial (PCPT), Reduction by Dutasteride of Prostate Cancer Events (REDUCE) trial, and Selenium and Vitamin E Cancer Prevention Trial (SELECT), have provided practitioners with considerable data regarding methods of treatment and prevention of prostate cancer. The best-studied medications for prevention are 5 alpha-reductase inhibitors. Their efficacy and side effects are well characterized. Other medications, dietary nutrients, and supplements have not been as well studied and generally do not demonstrate efficacy for disease prevention with an acceptable level of evidence. PMID:24188663

  14. In vivo imaging of prostate cancer using an anti-PSMA scFv fragment as a probe

    PubMed Central

    Mazzocco, Claire; Fracasso, Giulio; Germain-Genevois, Coralie; Dugot-Senant, Nathalie; Figini, Mariangela; Colombatti, Marco; Grenier, Nicolas; Couillaud, Franck

    2016-01-01

    We aimed to evaluate a fluorescent-labeled single chain variable fragment (scFv) of the anti-PSMA antibody as a specific probe for the detection of prostate cancer by in vivo fluorescence imaging. An orthotopic model of prostate cancer was generated by injecting LNCaP cells into the prostate lobe. ScFvD2B, a high affinity anti-PSMA antibody fragment, was labeled using a near-infrared fluorophore to generate a specific imaging probe (X770-scFvD2B). PSMA-unrelated scFv-X770 was used as a control. Probes were injected intravenously into mice with prostate tumors and fluorescence was monitored in vivo by fluorescence molecular tomography (FMT). In vitro assays showed that X770-scFvD2B specifically bound to PSMA and was internalized in PSMA-expressing LNCaP cells. After intravenous injection, X770-scFvD2B was detected in vivo by FMT in the prostate region. On excised prostates the scFv probe co-localized with the cancer cells and was found in PSMA-expressing cells. The PSMA-unrelated scFv used as a control did not label the prostate cancer cells. Our data demonstrate that scFvD2B is a high affinity contrast agent for in vivo detection of PSMA-expressing cells in the prostate. NIR-labeled scFvD2B could thus be further developed as a clinical probe for imaging-guided targeted biopsies. PMID:26996325

  15. In vivo imaging of prostate cancer using an anti-PSMA scFv fragment as a probe.

    PubMed

    Mazzocco, Claire; Fracasso, Giulio; Germain-Genevois, Coralie; Dugot-Senant, Nathalie; Figini, Mariangela; Colombatti, Marco; Grenier, Nicolas; Couillaud, Franck

    2016-01-01

    We aimed to evaluate a fluorescent-labeled single chain variable fragment (scFv) of the anti-PSMA antibody as a specific probe for the detection of prostate cancer by in vivo fluorescence imaging. An orthotopic model of prostate cancer was generated by injecting LNCaP cells into the prostate lobe. ScFvD2B, a high affinity anti-PSMA antibody fragment, was labeled using a near-infrared fluorophore to generate a specific imaging probe (X770-scFvD2B). PSMA-unrelated scFv-X770 was used as a control. Probes were injected intravenously into mice with prostate tumors and fluorescence was monitored in vivo by fluorescence molecular tomography (FMT). In vitro assays showed that X770-scFvD2B specifically bound to PSMA and was internalized in PSMA-expressing LNCaP cells. After intravenous injection, X770-scFvD2B was detected in vivo by FMT in the prostate region. On excised prostates the scFv probe co-localized with the cancer cells and was found in PSMA-expressing cells. The PSMA-unrelated scFv used as a control did not label the prostate cancer cells. Our data demonstrate that scFvD2B is a high affinity contrast agent for in vivo detection of PSMA-expressing cells in the prostate. NIR-labeled scFvD2B could thus be further developed as a clinical probe for imaging-guided targeted biopsies. PMID:26996325

  16. Prostate-specific membrane antigen targeted protein contrast agents for molecular imaging of prostate cancer by MRI

    NASA Astrophysics Data System (ADS)

    Pu, Fan; Salarian, Mani; Xue, Shenghui; Qiao, Jingjuan; Feng, Jie; Tan, Shanshan; Patel, Anvi; Li, Xin; Mamouni, Kenza; Hekmatyar, Khan; Zou, Juan; Wu, Daqing; Yang, Jenny J.

    2016-06-01

    Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd3+ contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd3+ binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 +/- 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 +/- 0.1 × 10-22 M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM-1 s-1 and r2 of 37.9 mM-1 s-1 per Gd (55.2 and 75.8 mM-1 s-1 per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM-1 s-1 per Gd (188.0 mM-1 s-1 per molecule) and r1 of 18.6 mM-1 s-1 per Gd (37.2 mM-1 s-1 per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI.Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high

  17. Initial Evaluation of [18F]DCFPyL for Prostate-Specific Membrane Antigen (PSMA)-Targeted PET Imaging of Prostate Cancer

    PubMed Central

    Szabo, Zsolt; Mena, Esther; Rowe, Steven P.; Plyku, Donika; Nidal, Rosa; Eisenberger, Mario A.; Antonarakis, Emmanuel S.; Fan, Hong; Dannals, Robert F.; Chen, Ying; Mease, Ronnie C.; Vranesic, Melin; Bhatnagar, Akrita; Sgouros, George; Cho, Steve Y.; Pomper, Martin G.

    2015-01-01

    Purpose Prostate-specific membrane antigen (PSMA) is a recognized target for imaging prostate cancer. Here we present initial safety, biodistribution, and radiation dosimetry results with [18F]DCFPyL, a second-generation fluorine-18-labeled small-molecule PSMA inhibitor, in patients with prostate cancer. Procedures Biodistribution was evaluated using sequential positron-emission tomography (PET) scans in nine patients with prostate cancer. Time-activity curves from the most avid tumor foci were determined. The radiation dose to selected organs was estimated using OLINDA/EXM. Results No major radiotracer-specific adverse events were observed. Physiologic accumulation was observed in known sites of PSMA expression. Accumulation in putative sites of prostate cancer was observed (SUVmax up to >100, and tumor-to-blood ratios up to >50). The effective radiation dose from [18F]DCFPyL was 0.0139 mGy/MBq or 5 mGy (0.5 rem) from an injected dose of 370 MBq (10 mCi). Conclusions [18F]DCFPyL is safe with biodistribution as expected, and its accumulation is high in presumed primary and metastatic foci. The radiation dose from [18F]DCFPyL is similar to that from other PET radiotracers. PMID:25896814

  18. Localized Prostate Cancer Detection with 18F FACBC PET/CT: Comparison with MR Imaging and Histopathologic Analysis

    PubMed Central

    Mena, Esther; Shih, Joanna; Pinto, Peter A.; Merino, Maria J.; Lindenberg, Maria L.; Bernardo, Marcelino; McKinney, Yolanda L.; Adler, Stephen; Owenius, Rikard; Choyke, Peter L.; Kurdziel, Karen A.

    2014-01-01

    Purpose To characterize uptake of 1-amino-3-fluorine 18-fluorocyclobutane-1-carboxylic acid (18F FACBC) in patients with localized prostate cancer, benign prostatic hyperplasia (BPH), and normal prostate tissue and to evaluate its potential utility in delineation of intraprostatic cancers in histopathologically confirmed localized prostate cancer in comparison with magnetic resonance (MR) imaging. Materials and Methods Institutional review board approval and written informed consent were obtained for this HIPAA-compliant prospective study. Twenty-one men underwent dynamic and static abdominopelvic 18F FACBC combined positron emission tomography (PET) and computed tomography (CT) and multiparametric (MP) 3-T endorectal MR imaging before robotic-assisted prostatectomy. PET/CT and MR images were coregistered by using pelvic bones as fiducial markers; this was followed by manual adjustments. Whole-mount histopathologic specimens were sliced with an MR-based patient-specific mold. 18F FACBC PET standardized uptake values (SUVs) were compared with those at MR imaging and histopathologic analysis for lesion- and sector-based (20 sectors per patient) analysis. Positive and negative predictive values for each modality were estimated by using generalized estimating equations with logit link function and working independence correlation structure. Results 18F FACBC tumor uptake was rapid but reversible. It peaked 3.6 minutes after injection and reached a relative plateau at 15–20 minutes (SUVmax[15–20min]). Mean prostate tumor SUVmax(15–20min) was significantly higher than that of the normal prostate (4.5 ± 0.5 vs 2.7 ± 0.5) (P < .001); however, it was not significantly different from that of BPH (4.3 ± 0.6) (P = .27). Sector-based comparison with histopathologic analysis, including all tumors, revealed sensitivity and specificity of 67% and 66%, respectively, for 18F FACBC PET/CT and 73% and 79%, respectively, for T2-weighted MR imaging. 18F FACBC PET/CT and MP MR

  19. Review of Salvage Therapy for Biochemically Recurrent Prostate Cancer: The Role of Imaging and Rationale for Systemic Salvage Targeted Anti-Prostate-Specific Membrane Antigen Radioimmunotherapy

    PubMed Central

    Kosuri, Satyajit; Akhtar, Naveed H.; Smith, Michael; Osborne, Joseph R.; Tagawa, Scott T.

    2012-01-01

    Despite local therapy with curative intent, approximately 30% of men suffer from biochemical relapse. Though some of these PSA relapses are not life threatening, many men eventually progress to metastatic disease and die of prostate cancer. Local therapy is an option for some men, but many have progression of disease following local salvage attempts. One significant issue in this setting is the lack of reliable imaging biomarkers to guide the use of local salvage therapy, as the likely reason for a low cure rate is the presence of undetected micrometastatic disease outside of the prostate/prostate bed. Androgen deprivation therapy is a cornerstone of therapy in the salvage setting. While subsets may benefit in terms of delay in time to metastatic disease and/or death, research is ongoing to improve salvage systemic therapy. Prostate-specific membrane antigen (PSMA) is highly overexpressed by the majority of prostate cancers. While initial methods of exploiting PSMA's high and selective expression were suboptimal, additional work in both imaging and therapeutics is progressing. Salvage therapy and imaging modalities in this setting are briefly reviewed, and the rationale for PSMA-based systemic salvage radioimmunotherapy is described. PMID:22693495

  20. J-aggregate Nanoparticles as Photoacoustic Contrast Agents for Prostate Cancer Imaging

    NASA Astrophysics Data System (ADS)

    Shakiba, Mojdeh

    Management of early stage prostate cancer (PCa) is plagued with the dilemma between active surveillance that risks progression, and aggressive treatments of potentially indolent disease that significantly reduces quality of life. This results from the inability of current diagnostic techniques to accurately distinguish between indolent and aggressive disease, which has resulted in overtreatment of PCa. Photoacoutic imaging allows for imaging of specific molecular constituents in tissue. To enable for its use in PCa imaging, we designed a novel organic nanoparticle that combines the unique spectral properties and efficient photon capture of nature's photosynthetic apparatus with the stable and specific delivery offered by nanoparticles. These Jaggregate nanoparticles are shown to produce an intense, narrow photo acoustic signal and to have nanoparticle-dependent photonic properties that enable for assessment of the state of the particle. Preliminary assessment of their use in an orthotopic PCa model showed accumulation in and delineation of the tumor boundary.

  1. An imaging agent to detect androgen receptor and its active splice variants in prostate cancer

    PubMed Central

    Imamura, Yusuke; Tien, Amy H.; Pan, Jinhe; Leung, Jacky K.; Banuelos, Carmen A.; Jian, Kunzhong; Wang, Jun; Mawji, Nasrin R.; Fernandez, Javier Garcia; Lin, Kuo-Shyan; Andersen, Raymond J.; Sadar, Marianne D.

    2016-01-01

    Constitutively active splice variants of androgen receptor (AR-Vs) lacking ligand-binding domain (LBD) are a mechanism of resistance to androgen receptor LBD–targeted (AR LBD–targeted) therapies for metastatic castration-resistant prostate cancer (CRPC). There is a strong unmet clinical need to identify prostate cancer patients with AR-V–positive lesions to determine whether they will benefit from further AR LBD–targeting therapies or should receive taxanes or investigational drugs like EPI-506 or galeterone. Both EPI-506 (NCT02606123) and galeterone (NCT02438007) are in clinical trials and are proposed to have efficacy against lesions that are positive for AR-Vs. AR activation function-1 (AF-1) is common to the N-terminal domains of full-length AR and AR-Vs. Here, we provide proof of concept for developing imaging compounds that directly bind AR AF-1 to detect both AR-Vs and full-length AR. 123I-EPI-002 had specific binding to AR AF-1, which enabled direct visualization of CRPC xenografts that express full-length AR and AR-Vs. Our findings highlight the potential of 123I-EPI-002 as an imaging agent for the detection of full-length AR and AR-Vs in CRPC. PMID:27525313

  2. Preoperative Multiparametric Magnetic Resonance Imaging Predicts Biochemical Recurrence in Prostate Cancer after Radical Prostatectomy

    PubMed Central

    George, Arvin K.; Frye, Thomas; Kilchevsky, Amichai; Fascelli, Michele; Shakir, Nabeel A.; Chelluri, Raju; Abboud, Steven F.; Walton-Diaz, Annerleim; Sankineni, Sandeep; Merino, Maria J.; Turkbey, Baris; Choyke, Peter L.; Wood, Bradford J.; Pinto, Peter A.

    2016-01-01

    Objectives To evaluate the utility of preoperative multiparametric magnetic resonance imaging (MP-MRI) in predicting biochemical recurrence (BCR) following radical prostatectomy (RP). Materials/Methods From March 2007 to January 2015, 421 consecutive patients with prostate cancer (PCa) underwent preoperative MP-MRI and RP. BCR-free survival rates were estimated using the Kaplan-Meier method. Cox proportional hazards models were used to identify clinical and imaging variables predictive of BCR. Logistic regression was performed to generate a nomogram to predict three-year BCR probability. Results Of the total cohort, 370 patients met inclusion criteria with 39 (10.5%) patients experiencing BCR. On multivariate analysis, preoperative prostate-specific antigen (PSA) (p = 0.01), biopsy Gleason score (p = 0.0008), MP-MRI suspicion score (p = 0.03), and extracapsular extension on MP-MRI (p = 0.03) were significantly associated with time to BCR. A nomogram integrating these factors to predict BCR at three years after RP demonstrated a c-index of 0.84, outperforming the predictive value of Gleason score and PSA alone (c-index 0.74, p = 0.02). Conclusion The addition of MP-MRI to standard clinical factors significantly improves prediction of BCR in a post-prostatectomy PCa cohort. This could serve as a valuable tool to support clinical decision-making in patients with moderate and high-risk cancers. PMID:27336392

  3. Cancer of the Prostate

    MedlinePlus

    ... at a Glance Show More At a Glance Estimated New Cases in 2016 180,890 % of All New Cancer Cases 10.7% Estimated Deaths in 2016 26,120 % of All Cancer ... of This Cancer : In 2013, there were an estimated 2,850,139 men living with prostate cancer ...

  4. Chemoprevention of prostate cancer.

    PubMed

    Stephenson, Andrew J; Abouassaly, Robert; Klein, Eric A

    2010-02-01

    Prostate cancer is an appropriate target for primary chemoprevention because of its ubiquity, disease-related mortality, treatment-related morbidity, and long latency period. The PCPT and REDUCE trials demonstrate that this cancer can be prevented by a relatively nontoxic oral pharmacologic agent (5alpha-reductase inhibitors). Evidence from the SELECT trial argues against the recommendation of the use of vitamins and micronutrients as chemoprevention of prostate cancer. Dietary modification may substantially alter a man's risk of prostate cancer, but the specific dietary manipulations that are necessary are poorly defined and these may need to be instituted in early adulthood to be successful. 5alpha-reductase inhibitors represent an effective primary prevention strategy, and these agents should be used more liberally for the prevention of prostate cancer, particularly in high-risk patients. PMID:20152515

  5. Drugs Approved for Prostate Cancer

    MedlinePlus

    ... Ask about Your Treatment Research Drugs Approved for Prostate Cancer This page lists cancer drugs approved by the ... that are not listed here. Drugs Approved for Prostate Cancer Abiraterone Acetate Bicalutamide Cabazitaxel Casodex (Bicalutamide) Degarelix Docetaxel ...

  6. A Study of Image-Guided Intensity-Modulated Radiotherapy With Fiducials for Localized Prostate Cancer Including Pelvic Lymph Nodes

    SciTech Connect

    Hsu, Annie; Pawlicki, Todd; Luxton, Gary; Hara, Wendy; King, Christopher R. . E-mail: crking@stanford.edu

    2007-07-01

    Purpose: To study the impact on nodal coverage and dose to fixed organs at risk when using daily fiducial localization of the prostate to deliver intensity-modulated radiotherapy (IMRT). Methods and Materials: Five patients with prostate cancer in whom prostate and pelvic nodes were irradiated with IMRT were studied. Dose was prescribed such that 95% of the prostate planning target volume (PTV) and 90% of the nodal PTV were covered. Random and systematic prostate displacements in the anterior-posterior, superior-inferior, and left-right directions were simulated to shift the original isocenter of the IMRT plan. The composite dose during the course of treatment was calculated. Results: Compared with a static setup, simulating random shifts reduced dose by less than 1.5% for nodal hotspot (i.e., dose to 1 cm{sup 3}), by less than 1% for the 90% nodal PTV coverage, and by less than 0.5% for the nodal mean dose. Bowel and femoral head hotspots were reduced by less than 1.5% and 2%, respectively. A 10-mm systematic offset reduced nodal coverage by up to 10%. Conclusion: The use of prostate fiducials for daily localization during IMRT treatment results in negligible changes in dose coverage of pelvic nodes or normal tissue sparing in the absence of a significant systematic offset. This offers a simple and practical solution to the problem of image-guided radiotherapy for prostate cancer when including pelvic nodes.

  7. Cancer of the prostate.

    PubMed Central

    Dearnaley, D. P.

    1994-01-01

    Prostate cancer presents a growing health problem in Western societies as longevity increases. It is characteristically a disease of elderly men associated with the development of osteoblastic bone metastases and initial hormone responsiveness to androgen deprivation. Previously regarded as a Cinderella of cancers, there is currently more controversy concerning the detection and management of both localised and metastatic disease than for any other common malignancy. A balance needs to be drawn between the potential gains of more aggressive management and the disadvantages in terms of increased treatment side effects and cost, taking into account both the natural course of the disease and the life expectancy of patients. Images FIG 1 FIG 2 PMID:8142838

  8. The economic effect of using magnetic resonance imaging and magnetic resonance ultrasound fusion biopsy for prostate cancer diagnosis.

    PubMed

    Hutchinson, Ryan C; Costa, Daniel N; Lotan, Yair

    2016-07-01

    Prostate magnetic resonance imaging (MRI) is a maturing imaging modality that has been used to improve detection and staging of prostate cancer. The goal of this review is to evaluate the economic effect of the use of MRI and MRI fusion in the diagnosis of prostate cancer. A literature review was used to identify articles regarding efficacy and cost of MRI and MRI-guided biopsies. There are currently a limited number of studies evaluating cost of incorporating MRI into clinical practice. These studies are primarily models projecting cost estimates based on meta-analyses of the literature. There is considerable variance in the effectiveness of MRI-guided biopsies, both cognitive and fusion, based on user experience, type of MRI (3T vs. 1.5T), use of endorectal coil and type of scoring system for abnormalities such that there is still potential for improvement in accuracy. There is also variability in assumed costs of incorporating MRI into clinical practice. The addition of MRI to the diagnostic algorithm for prostate cancer has caused a shift in how we understand the disease and in what tumors are found on initial and repeat biopsies. Further risk stratification may allow more men to pursue noncurative therapy, which in and of itself is cost-effective in properly selected men. As prostate cancer care comes under increasing scrutiny on a national level, there is pressure on providers to be more accurate in their diagnoses. This in turn can lead to additional testing including Multiparametric MRI, which adds upfront cost. Whether the additional cost of prostate MRI is warranted in detection of prostate cancer is an area of intense research. PMID:26725249

  9. Newer Imaging Modalities to Assist With Target Localization in the Radiation Treatment of Prostate Cancer and Possible Lymph Node Metastases

    SciTech Connect

    John, Subhash S. Zietman, Anthony L.; Shipley, William U.; Harisinghani, Mukesh G.

    2008-05-01

    Precise localization of prostate cancer and the drainage lymph nodes is mandatory to define an accurate clinical target volume for conformal radiotherapy. Better target definition and delineation on a daily basis is surely important in quality assurance for fractionated radiation therapy. This article reviews the evidence for major emerging techniques that show promise in better identifying the clinical target volume. Partial prostate boost by brachytherapy, intensity-modulated radiation therapy, or protons has become possible not only with standard imaging techniques but also with the availability of metabolic images obtained by magnetic resonance spectroscopy. Even though fluorine-18 fluorodeoxyglucose ({sup 18}F-FDG) positron emission tomography has not been found to be useful, novel radiolabeled tracers may eventually prove of value in the diagnosis and treatment planning of prostate cancer. For the metastatic lymph nodes, lymphotropic nanoparticle-enhanced magnetic resonance imaging using ultra-small superparamagnetic iron oxide particles has greater accuracy as compared with conventional techniques and has been instrumental in delineating the lymphatic drainage of the prostate gland. These novel investigational techniques could further help in optimizing conformal radiotherapy for patients with prostate cancer. The concepts of biologic target volume, real target volume, and multidimensional conformal radiotherapy are being explored.

  10. A new set of wavelet- and fractals-based features for Gleason grading of prostate cancer histopathology images

    NASA Astrophysics Data System (ADS)

    Mosquera Lopez, Clara; Agaian, Sos

    2013-02-01

    Prostate cancer detection and staging is an important step towards patient treatment selection. Advancements in digital pathology allow the application of new quantitative image analysis algorithms for computer-assisted diagnosis (CAD) on digitized histopathology images. In this paper, we introduce a new set of features to automatically grade pathological images using the well-known Gleason grading system. The goal of this study is to classify biopsy images belonging to Gleason patterns 3, 4, and 5 by using a combination of wavelet and fractal features. For image classification we use pairwise coupling Support Vector Machine (SVM) classifiers. The accuracy of the system, which is close to 97%, is estimated through three different cross-validation schemes. The proposed system offers the potential for automating classification of histological images and supporting prostate cancer diagnosis.

  11. Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images

    PubMed Central

    Fehr, Duc; Veeraraghavan, Harini; Wibmer, Andreas; Gondo, Tatsuo; Matsumoto, Kazuhiro; Vargas, Herbert Alberto; Sala, Evis; Hricak, Hedvig; Deasy, Joseph O.

    2015-01-01

    Noninvasive, radiological image-based detection and stratification of Gleason patterns can impact clinical outcomes, treatment selection, and the determination of disease status at diagnosis without subjecting patients to surgical biopsies. We present machine learning-based automatic classification of prostate cancer aggressiveness by combining apparent diffusion coefficient (ADC) and T2-weighted (T2-w) MRI-based texture features. Our approach achieved reasonably accurate classification of Gleason scores (GS) 6(3+3) vs. ≥7 and 7(3+4) vs. 7(4+3) despite the presence of highly unbalanced samples by using two different sample augmentation techniques followed by feature selection-based classification. Our method distinguished between GS 6(3+3) and ≥7 cancers with 93% accuracy for cancers occurring in both peripheral (PZ) and transition (TZ) zones and 92% for cancers occurring in the PZ alone. Our approach distinguished the GS 7(3+4) from GS 7(4+3) with 92% accuracy for cancers occurring in both the PZ and TZ and with 93% for cancers occurring in the PZ alone. In comparison, a classifier using only the ADC mean achieved a top accuracy of 58% for distinguishing GS 6(3+3) vs. GS ≥7 for cancers occurring in PZ and TZ and 63% for cancers occurring in PZ alone. The same classifier achieved an accuracy of 59% for distinguishing GS 7(3+4) from GS 7(4+3) occurring in the PZ and TZ and 60% for cancers occurring in PZ alone. Separate analysis of the cancers occurring in TZ alone was not performed owing to the limited number of samples. Our results suggest that texture features derived from ADC and T2-w MRI together with sample augmentation can help to obtain reasonably accurate classification of Gleason patterns. PMID:26578786

  12. Magnetic resonance imaging - ultrasound fusion targeted biopsy outperforms standard approaches in detecting prostate cancer: A meta-analysis

    PubMed Central

    Jiang, Xuping; Zhang, Jiayi; Tang, Jingyuan; Xu, Zhen; Zhang, Wei; Zhang, Qing; Guo, Hongqian; Zhou, Weimin

    2016-01-01

    The aim of the present study was to determine whether magnetic resonance imaging - ultrasound (MRI-US) fusion prostate biopsy is superior to systematic biopsy for making a definitive diagnosis of prostate cancer. The two strategies were also compared regarding their ability to detect clinically significant and insignificant prostate cancer. A literature search was conducted through the PubMed, EMBASE and China National Knowledge Infrastructure databases using appropriate search terms. A total of 3,415 cases from 21 studies were included in the present meta-analysis. Data were expressed as relative risk (RR) and 95% confidence interval. The results revealed that MRI-US fusion biopsy achieved a higher rate of overall prostate cancer detection compared with systematic biopsy (RR=1.09; P=0.047). Moreover, MRI-US fusion biopsy detected more clinically significant cancers compared with systematic biopsy (RR=1.22; P<0.01). It is therefore recommended that multi-parametric MRI-US is performed in men suspected of having prostate cancer to optimize the detection of clinically significant disease, while reducing the burden of biopsies. PMID:27446568

  13. Screening for prostate cancer.

    PubMed Central

    Cher, M L; Carroll, P R

    1995-01-01

    Prostate cancer is a serious health care problem in the United States. Whether or not to screen for it has become a timely issue. Although a large number of men have clinically important, asymptomatic, undetected prostate cancer, an even larger number have clinically unimportant cancer. To justify screening programs, not only must we avoid detecting biologically unimportant cancers, we must also detect and effectively treat that subset of tumors that, if undiagnosed, would progress, produce symptoms, and reduce life expectancy. Serum prostate-specific antigen (PSA) assay, or its variations such as PSA density, PSA velocity, and age-specific reference ranges, and the digital rectal examination are the best tests for detecting clinically important, asymptomatic, curable tumors. Recent data suggest that using serum PSA levels does not result in an overdetection of unimportant tumors. Highly effective, curative treatment of localized prostate cancer is available. These factors promote optimism that screening for prostate cancer will ultimately prove beneficial. Nonetheless, men should be informed regarding the benefits and possible risks before being screened for prostate cancer. PMID:7536993

  14. Chemoprevention of prostate cancer.

    PubMed

    Rittmaster, Roger S

    2011-06-01

    Over the past two decades, many more men are diagnosed with prostate cancer then die of the disease. This increase in diagnosis has led to aggressive treatment of indolent disease in many individuals and has been the impetus for finding a means of reducing the risk of prostate cancer. In the past decade, there have been eight large trials of prostate cancer risk reduction using dietary supplements, 5α-reductase inhibitors, or anti-estrogens. The only two trials which have demonstrated efficacy are those involving 5α-reductase inhibitors: the PCPT (finasteride) and REDUCE (dutasteride). This review examines prostate cancer risk reduction, with emphasis on conclusions that can be drawn from these two landmark studies. PMID:21604953

  15. Three-dimensional conformal external beam radiotherapy compared with permanent prostate implantation in low-risk prostate cancer based on endorectal magnetic resonance spectroscopy imaging and prostate-specific antigen level

    SciTech Connect

    Pickett, Barby . E-mail: pickett@radonc17.ucsf.edu; Kurhanewicz, John; Pouliot, Jean; Weinberg, Vivian; Shinohara, Katsuto; Coakley, Fergus; Roach, Mack

    2006-05-01

    Purpose: To evaluate the metabolic response by comparing the time to resolution of spectroscopic abnormalities (TRSA) and the time to prostate-specific antigen level in low-risk prostate cancer patients after treatment with three-dimensional conformal external beam radiotherapy (3D-CRT) compared with permanent prostate implantation (PPI). Recent studies have suggested that the treatment of low-risk prostate cancer yields similar results for patients treated with 3D-CRT or PPI. Methods and Materials: A total of 50 patients, 25 in each group, who had been treated with 3D-CRT or PPI, had undergone endorectal magnetic resonance spectroscopy imaging before and/or at varying times after therapy. The 3D-CRT patients had received radiation doses of {>=}72 Gy compared with 144 Gy for the PPI patients. The spectra from all usable voxels were examined for detectable levels of metabolic signal, and the percentages of atrophic and cancerous voxels were tabulated. Results: The median time to resolution of the spectroscopic abnormalities was 32.2 and 24.8 months and the time to the nadir prostate-specific antigen level was 52.4 and 38.0 months for the 3D-CRT and PPI patients, respectively. Of the 3D-CRT patients, 92% achieved negative endorectal magnetic resonance spectroscopy imaging findings, with 40% having complete metabolic atrophy. All 25 PPI patients had negative endorectal magnetic resonance spectroscopy imaging findings, with 60% achieving complete metabolic atrophy. Conclusion: The results of this study suggest that metabolic and biochemical responses of the prostate are more pronounced after PPI. Our results have not proved PPI is more effective at curing prostate cancer, but they have demonstrated that it may be more effective at destroying prostate metabolism.

  16. GRPR-selective PET imaging of prostate cancer using [(18)F]-lanthionine-bombesin analogs.

    PubMed

    Carlucci, G; Kuipers, A; Ananias, H J K; de Paula Faria, D; Dierckx, R A J O; Helfrich, W; Rink, R; Moll, G N; de Jong, I J; Elsinga, P H

    2015-05-01

    The gastrin-releasing peptide receptor (GRPR) is overexpressed in a variety of human malignancies, including prostate cancer. Bombesin (BBN) is a 14 amino acids peptide that selectively binds to GRPR. In this study, we developed two novel Al(18)F-labeled lanthionine-stabilized BBN analogs, designated Al(18)F-NOTA-4,7-lanthionine-BBN and Al(18)F-NOTA-2,6-lanthionine-BBN, for positron emission tomography (PET) imaging of GRPR expression using xenograft prostate cancer models. (Methyl)lanthionine-stabilized 4,7-lanthionine-BBN and 2,6-lanthionine-BBN analogs were conjugated with a NOTA chelator and radiolabeled with Al(18)F using the aluminum fluoride strategy. Al(18)F-NOTA-4,7-lanthionine-BBN and Al(18)F-NOTA-2,6-lanthionine-BBN was labeled with Al(18)F with good radiochemical yield and specific activity>30 GBq/μmol for both radiotracers. The logD values measured for Al(18)F-NOTA-4,7-lanthionine-BBN and Al(18)F-NOTA-2,6-lanthionine-BBN were -2.14 ± 0.14 and -2.34 ± 0.15, respectively. In athymic nude PC-3 xenografts, at 120 min post injection (p.i.), the uptake of Al(18)F-NOTA-4,7-lanthionine-BBN and Al(18)F-NOTA-2,6-lanthionine-BBN in prostate cancer (PC-3) mouse models was 0.82 ± 0.23% ID/g and 1.40 ± 0.81% ID/g, respectively. An excess of unlabeled ɛ-aminocaproic acid-BBN(7-14) (300-fold) was co-injected to assess GRPR binding specificity. Tumor uptake of Al(18)F-NOTA-4,7-lanthionine-BBN and Al(18)F-NOTA-2,6-lanthionine-BBN in PC-3 tumors was evaluated by microPET (μPET) imaging at 30, 60 and 120 min p.i. Blocking studies showed decreased uptake in PC-3 bearing mice. Stabilized 4,7-lanthionine-BBN and 2,6-lanthionine-BBN peptides were rapidly and successfully labeled with (18)F. Both tracers may have potential for GRPR-positive tumor imaging. PMID:25797109

  17. Immunotherapy in prostate cancer.

    PubMed

    Sobol, Ilya; Thompson, R H; Dong, Haidong; Krco, Christopher; Kwon, Eugene D

    2015-06-01

    Immunotherapy for the treatment of malignant neoplasms has made significant progress over the last 20 years. Multiple molecular targets and clinical agents have been developed recently, particularly in the field of metastatic adenocarcinoma of the prostate. Sipuleucel-T is currently the only FDA approved immunotherapy for prostate cancer. PSA-TRICOM (Prostvac) currently has a phase III randomized trial underway after a phase II trial showed an improvement in overall survival. Interestingly, both these agents showed improvement in overall survival with no measurable change in disease state, leading to significant controversy as the utility of these agents in prostate cancer. Ipilimumab revealed a benefit for a sub-cohort of men in a post-docetaxel group and is currently undergoing investigation in a pre-docetaxel group. There are a number of other targets such as PD-1 which have shown effectiveness in other neoplasms that will likely be investigated in the future for use in prostate cancer. PMID:25894495

  18. MR elastography and diffusion-weighted imaging of ex vivo prostate cancer: quantitative comparison to histopathology.

    PubMed

    Sahebjavaher, Ramin S; Nir, Guy; Gagnon, Louis O; Ischia, Joseph; Jones, Edward C; Chang, Silvia D; Yung, Andrew; Honarvar, Mohammad; Fazli, Ladan; Goldenberg, S Larry; Rohling, Robert; Sinkus, Ralph; Kozlowski, Piotr; Salcudean, Septimiu E

    2015-01-01

    The purpose of this work was (1) to develop a magnetic resonance elastography (MRE) system for imaging of the ex vivo human prostate and (2) to assess the diagnostic power of mono-frequency and multi-frequency MRE and diffusion weighted imaging (DWI) alone and combined as correlated with histopathology in a patient study. An electromagnetic driver was designed specifically for MRE studies in small-bore MR scanners. Ex vivo prostate specimens (post-fixation) of 14 patients who underwent radical prostatectomy were imaged with MRE at 7 T (nine cases had DWI). In six patients, the MRE examination was performed at three frequencies (600, 800, 1000 Hz) to extract the power-law exponent Gamma. The images were registered to wholemount pathology slides marked with the Gleason score. The areas under the receiver-operator-characteristic curves (AUC) were calculated. The methods were validated in a phantom study and it was demonstrated that (i) the driver does not interfere with the acquisition process and (ii) the driver can generate amplitudes greater than 100 µm for frequencies less than 1 kHz. In the quantitative study, cancerous tissue with Gleason score at least 3 + 3 was distinguished from normal tissue in the peripheral zone (PZ) with an average AUC of 0.75 (Gd ), 0.75 (Gl ), 0.70 (Gamma-Gd ), 0.68 (apparent diffusion coefficient, ADC), and 0.82 (Gd  + Gl  + ADC). The differentiation between PZ and central gland was modest for Gd (p < 0.07), Gl (p < 0.06) but not significant for Gamma (p < 0.2). A correlation of 0.4 kPa/h was found between the fixation time of the prostate specimen and the stiffness of the tissue, which could affect the diagnostic power results. DWI and MRE may provide complementary information; in fact MRE performed better than ADC in distinguishing normal from cancerous tissue in some cases. Multi-frequency (Gamma) analysis did not appear to improve the results. However, in light of the effect of tissue fixation, the

  19. Investigation of MR image distortion for radiotherapy treatment planning of prostate cancer

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Ma, C.-M.; Paskalev, K.; Li, J.; Yang, J.; Richardson, T.; Palacio, L.; Xu, X.; Chen, L.

    2006-03-01

    MR imaging based treatment planning for radiotherapy of prostate cancer is limited due to MR imaging system related geometrical distortions, especially for patients with large body sizes. On our 0.23 T open scanner equipped with the gradient distortion correction (GDC) software, the residual image distortions after the GDC were <5 mm within the central 36 cm × 36 cm area for a standard 48 cm field of view (FOV). In order to use MR imaging alone for treatment planning the effect of residual MR distortions on external patient contour determination, especially for the peripheral regions outside the 36 cm × 36 cm area, must be investigated and corrected. In this work, we performed phantom measurements to quantify MR system related residual geometric distortions after the GDC and the effective FOV. Our results show that for patients with larger lateral dimensions (>36 cm), the differences in patient external contours between distortion-free CT images and GDC-corrected MR images were 1-2 cm because of the combination of greater gradient distortion and loss of field homogeneity away from the isocentre and the uncertainties in patient setup during CT and MRI scans. The measured distortion maps were used to perform point-by-point corrections for patients with large dimensions inside the effective FOV. Using the point-by-point method, the geometrical distortion after the GDC were reduced to <3 mm for external contour determination and the effective FOV was expanded from 36 cm to 42 cm.

  20. [Imaging diagnosis in Focal Therapy for prostate cancer: Multiparametric Magnetic Resonance Imaging].

    PubMed

    Lista Mateos, F; Castillo Gallo, E

    2016-07-01

    The use of prostatic multiparametric MRI (mpMRI) has increased significantly over the last years, and has emerged as a crucial test for diagnosis, staging and treatment of prostate cancer (PCa). The use of the various available sequences (T2W, T1W, diffusion, perfusion and spectroscopy), as well as the different parameters they associate, not only enables to determine the group of patients subsidiary of focal ablative therapy, but also to perform a proper determination of the áreas to treat, as well as to monitor the development of therapy and to evaluate both oncological results and possible therapeutic failures. Despite the excellent results showed in the different studies, it is necessary to reach a consensus about its use on the different features associated with focal therapy, since it is a technique that requires not only large experience in its operation but also standardization. All this make it a complex technique and not free of difficulties in its interpretation. PMID:27416632

  1. Understanding Prostate Cancer: Newly Diagnosed

    MedlinePlus

    ... Wellness PCF Spotlight Glossary African American Men Understanding Prostate Cancer Newly Diagnosed Newly Diagnosed Staging the Disease Issues ... you care about has recently been diagnosed with prostate cancer, this section will help guide you through the ...

  2. New Prostate Cancer Treatment Target

    Cancer.gov

    Researchers have identified a potential alternative approach to blocking a key molecular driver of an advanced form of prostate cancer, called androgen-independent or castration-resistant prostate cancer.

  3. Early Outcomes From Three Prospective Trials of Image-Guided Proton Therapy for Prostate Cancer

    SciTech Connect

    Mendenhall, Nancy P.; Li Zuofeng; Hoppe, Bradford S.; Marcus, Robert B.; Mendenhall, William M.; Nichols, R. Charles; Morris, Christopher G.; Williams, Christopher R.; Costa, Joseph; Henderson, Randal

    2012-01-01

    Purpose: To report early outcomes with image-guided proton therapy for prostate cancer. Methods and Materials: We accrued 211 prostate cancer patients on prospective Institutional Review Board-approved trials of 78 cobalt gray equivalent (CGE) in 39 fractions for low-risk disease, dose escalation from 78 to 82 CGE for intermediate-risk disease, and 78 CGE with concomitant docetaxel followed by androgen deprivation for high-risk disease. Minimum follow-up was 2 years. Results: One intermediate-risk patient and 2 high-risk patients had disease progression. Pretreatment genitourinary (GU) symptom management was required in 38% of patients. A cumulative 88 (42%) patients required posttreatment GU symptom management. Four transient Grade 3 GU toxicities occurred, all among patients requiring pretreatment GU symptom management. Multivariate analysis showed correlation between posttreatment GU 2+ symptoms and pretreatment GU symptom management (p < 0.0001) and age (p = 0.0048). Only 1 Grade 3+ gastrointestinal (GI) symptom occurred. The prevalence of Grade 2+ GI symptoms was 0 (0%), 10 (5%), 12 (6%), and 8 (4%) at 6, 12, 18, and 24 months, with a cumulative incidence of 20 (10%) patients at 2 years after proton therapy. Univariate and multivariate analyses showed significant correlation between Grade 2+ rectal bleeding and proctitis and the percentage of rectal wall (rectum) receiving doses ranging from 40 CGE (10 CGE) to 80 CGE. Conclusions: Early outcomes with image-guided proton therapy suggest high efficacy and minimal toxicity with only 1.9% Grade 3 GU symptoms and <0.5% Grade 3 GI toxicities.

  4. Current role of multiparametric magnetic resonance imaging in the management of prostate cancer

    PubMed Central

    Katelaris, Nikolas Christopher; Bolton, Damien Michael; Weerakoon, Mahesha; Toner, Liam; Katelaris, Phillip Mark

    2015-01-01

    The purpose of this review was to evaluate the current role of multiparametric magnetic resonance imaging (mp-MRI) in the management of prostate cancer (PC). The diagnosis of PC remains controversial owing to overdetection of indolent disease, which leads to overtreatment and subsequent patient harm. mp-MRI has the potential to equilibrate the imbalance between detection and treatment. The limitation of the data for analysis with this new technology is problematic, however. This issue has been compounded by a paradigm shift in clinical practice aimed at utilizing this modality, which has been rolled out in an ad hoc fashion often with commercial motivation. Despite a growing body of literature, pertinent clinical questions remain. For example, can mp-MRI be calibrated to reliably detect biologically significant disease? As with any new technology, objective evaluation of the clinical applications of mp-MRI is essential. The focus of this review was on the evaluation of mp-MRI of the prostate with respect to clinical utility. PMID:25964833

  5. Current role of multiparametric magnetic resonance imaging in the management of prostate cancer.

    PubMed

    Katelaris, Nikolas Christopher; Bolton, Damien Michael; Weerakoon, Mahesha; Toner, Liam; Katelaris, Phillip Mark; Lawrentschuk, Nathan

    2015-05-01

    The purpose of this review was to evaluate the current role of multiparametric magnetic resonance imaging (mp-MRI) in the management of prostate cancer (PC). The diagnosis of PC remains controversial owing to overdetection of indolent disease, which leads to overtreatment and subsequent patient harm. mp-MRI has the potential to equilibrate the imbalance between detection and treatment. The limitation of the data for analysis with this new technology is problematic, however. This issue has been compounded by a paradigm shift in clinical practice aimed at utilizing this modality, which has been rolled out in an ad hoc fashion often with commercial motivation. Despite a growing body of literature, pertinent clinical questions remain. For example, can mp-MRI be calibrated to reliably detect biologically significant disease? As with any new technology, objective evaluation of the clinical applications of mp-MRI is essential. The focus of this review was on the evaluation of mp-MRI of the prostate with respect to clinical utility. PMID:25964833

  6. Magnetic resonance imaging for prostate cancer: Comparative studies including radical prostatectomy specimens and template transperineal biopsy

    PubMed Central

    Toner, Liam; Weerakoon, Mahesha; Bolton, Damien M.; Ryan, Andrew; Katelaris, Nikolas; Lawrentschuk, Nathan

    2015-01-01

    Purpose Multiparametric magnetic resonance imaging (mpMRI) is an emerging technique aiming to improve upon the diagnostic sensitivity of prostate biopsy. Because of variance in interpretation and application of techniques, results may vary. There is likely a learning curve to establish consistent reporting of mpMRI. This study aims to review current literature supporting the diagnostic utility of mpMRI when compared with radical prostatectomy (RP) and template transperineal biopsy (TTPB) specimens. Methods MEDLINE and PubMed database searches were conducted identifying relevant literature related to comparison of mpMRI with RP or TTPB histology. Results Data suggest that compared with RP and TTPB specimens, the sensitivity of mpMRI for prostate cancer (PCa) detection is 80–90% and the specificity for suspicious lesions is between 50% and 90%. Conclusions mpMRI has an increasing role for PCa diagnosis, staging, and directing management toward improving patient outcomes. Its sensitivity and specificity when compared with RP and TTPB specimens are less than what some expect, possibly reflecting a learning curve for the technique of mpMRI. PMID:26779455

  7. Multifunctional iron platinum stealth immunomicelles: targeted detection of human prostate cancer cells using both fluorescence and magnetic resonance imaging

    PubMed Central

    Huber, Dale L.; Monson, Todd C.; Ali, Abdul-Mehdi S.; Bisoffi, Marco; Sillerud, Laurel O.

    2011-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are the most common type of contrast agents used in contrast agent-enhanced magnetic resonance imaging (MRI). Still, there is a great deal of room for improvement, and nanoparticles with increased MRI relaxivities are needed to increase the contrast enhancement in MRI applied to various medical conditions including cancer. We report the synthesis of superparamagnetic iron platinum nanoparticles (SIPPs) and subsequent encapsulation using PEGylated phospholipids to create stealth immunomicelles (DSPE-SIPPs) that can be specifically targeted to human prostate cancer cell lines and detected using both MRI and fluorescence imaging. SIPP cores and DSPE-SIPPs were 8.5 ± 1.6 nm and 42.9 ± 8.2 nm in diameter, respectively, and the SIPPs had a magnetic moment of 120 A m2/kg iron. J591, a monoclonal antibody against prostate specific membrane antigen (PSMA), was conjugated to the DSPE-SIPPs (J591-DSPE-SIPPs), and specific targeting of J591-DSPE-SIPPs to PSMA-expressing human prostate cancer cell lines was demonstrated using fluorescence confocal microscopy. The transverse relaxivity of the DSPE-SIPPs, measured at 4.7 Tesla, was 300.6 ± 8.5 s−1 mM−1, which is 13-fold better than commercially available SPIONs (23.8 ± 6.9 s−1 mM−1) and ~3-fold better than reported relaxivities for Feridex® and Resovist®. Our data suggest that J591-DSPE-SIPPs specifically target human prostate cancer cells in vitro, are superior contrast agents in T2-weighted MRI, and can be detected using fluorescence imaging. To our knowledge, this is the first report on the synthesis of multifunctional SIPP micelles and using SIPPs for the specific detection of prostate cancer. PMID:22121333

  8. MYC and Prostate Cancer

    PubMed Central

    Koh, Cheryl M.; Bieberich, Charles J.; Dang, Chi V.; Nelson, William G.; Yegnasubramanian, Srinivasan; De Marzo, Angelo M.

    2010-01-01

    Prostate cancer, the majority of which is adenocarcinoma, is the most common epithelial cancer affecting a majority of elderly men in Western nations. Its manifestation, however, varies from clinically asymptomatic insidious neoplasms that progress slowly and do not threaten life to one that is highly aggressive with a propensity for metastatic spread and lethality if not treated in time. A number of somatic genetic and epigenetic alterations occur in prostate cancer cells. Some of these changes, such as loss of the tumor suppressors PTEN and p53, are linked to disease progression. Others, such as ETS gene fusions, appear to be linked more with early phases of the disease, such as invasion. Alterations in chromosome 8q24 in the region of MYC have also been linked to disease aggressiveness for many years. However, a number of recent studies in human tissues have indicated that MYC appears to be activated at the earliest phases of prostate cancer (e.g., in tumor-initiating cells) in prostatic intraepithelial neoplasia, a key precursor lesion to invasive prostatic adenocarcinoma. The initiation and early progression of prostate cancer can be recapitulated in genetically engineered mouse models, permitting a richer understanding of the cause and effects of loss of tumor suppressors and activation of MYC. The combination of studies using human tissues and mouse models paints an emerging molecular picture of prostate cancer development and early progression. This picture reveals that MYC contributes to disease initiation and progression by stimulating an embryonic stem cell–like signature characterized by an enrichment of genes involved in ribosome biogenesis and by repressing differentiation. These insights pave the way to potential novel therapeutic concepts based on MYC biology. PMID:21779461

  9. Dual-modality image guided high intensity focused ultrasound device design for prostate cancer: A numerical study

    NASA Astrophysics Data System (ADS)

    Hobson, Dexter; Curiel, Laura; Chapelon, Jean-Yves; Pichardo, Samuel

    2012-10-01

    In this study the feasibility of designing a multi-element prostate cancer treatment device using Magnetic Resonance Imaging and ultrasound imaging for guidance was determined. A parametric study was performed to determine the optimal focal length (L), operating frequency (f), element size (a) and central hole radius for lodging an imaging probe (r) of a device that would safely treat cancerous tissue within the prostate. Images from the Visible Human Project were used to determine simulated organ sizes and treatment locations. Elliptical tumors were placed throughout the simulated prostate and their lateral and axial limits were selected as test locations. Using Tesla C1060 (NVIDIA, Santa Clara, CA, USA) graphics processors, the Bio-Heat Transfer Equation was implemented to calculate the heating produced during the simulated treatment. L, f a and r were varied from 45 to 75mm, 2.25 to 3.00MHz, 1.5 to 8 times λ and 9 to 11mm, respectively. Results indicated that a device of 761 elements with a combination of L, f a and r of 68mm, 2.75MHz, 2.05λ and 9mm, respectively, could safely ablate tumors within the prostate and spare the surrounding organs.

  10. Prostate Cancer Support Groups

    PubMed Central

    Chambers, Suzanne; Garrett, Bernie; Bottorff, Joan L.; McKenzie, Michael; Han, Christina S.; Ogrodniczuk, John S.

    2015-01-01

    To understand prostate cancer (PCa) specialists’ views about prostate cancer support groups (PCSGs), a volunteer sample of Canada-based PCa specialists (n = 150), including urologists (n = 100), radiation oncologists (n = 40), and medical oncologists (n = 10) were surveyed. The 56-item questionnaire used in this study included six sets of attitudinal items to measure prostate cancer specialists’ beliefs about positive and negative influences of PCSGs, reasons for attending PCSGs, the attributes of effective PCSGs, and the value of face-to-face and web-based PCSGs. In addition, an open-ended question was included to invite additional input from participants. Results showed that PCSGs were positively valued, particularly for information sharing, education and psychosocial support. Inclusivity, privacy, and accessibility were identified as potential barriers, and recommendations were made for better marketing PCSGs to increase engagement. Findings suggest prostate cancer specialists highly valued the role and potential benefits of face-to-face PCSGs. Information provision and an educational role were perceived as key benefits. Some concerns were expressed about the ability of web-based PCSGs to effectively engage and educate men who experience prostate cancer. PMID:25061087

  11. Photoacoustic imaging with an acoustic lens detects prostate cancer cells labeled with PSMA-targeting near-infrared dye-conjugates

    NASA Astrophysics Data System (ADS)

    Dogra, Vikram; Chinni, Bhargava; Singh, Shalini; Schmitthenner, Hans; Rao, Navalgund; Krolewski, John J.; Nastiuk, Kent L.

    2016-06-01

    There is an urgent need for sensitive and specific tools to accurately image early stage, organ-confined human prostate cancers to facilitate active surveillance and reduce unnecessary treatment. Recently, we developed an acoustic lens that enhances the sensitivity of photoacoustic imaging. Here, we report the use of this device in conjunction with two molecular imaging agents that specifically target the prostate-specific membrane antigen (PSMA) expressed on the tumor cell surface of most prostate cancers. We demonstrate successful imaging of phantoms containing cancer cells labeled with either of two different PSMA-targeting agents, the ribonucleic acid aptamer A10-3.2 and a urea-based peptidomimetic inhibitor, each linked to the near-infrared dye IRDye800CW. By specifically targeting cells with these agents linked to a dye chosen for optimal signal, we are able to discriminate prostate cancer cells that express PSMA.

  12. Nonvisible tumors on multiparametric magnetic resonance imaging does not predict low-risk prostate cancer

    PubMed Central

    Lee, Seung Hwan; Koo, Kyo Chul; Lee, Dong Hoon; Chung, Byung Ha

    2015-01-01

    Purpose To determine whether multiparametric MRI could help predict the diagnosis of low-risk prostate cancer (PCA). Methods We retrospectively analyzed consecutive 623 patients with PCA who underwent multiparametric MRI before radical prostatectomy(RP). High-resolution T1- and T2-weighted, diffusion-weighted, and dynamic precontrast and postcontrast image sequences were obtained for each patient. Of the 623 patients, 177(28.4%) exhibited non visible tumors on MRI of clinical stage T1c. The imaging results were compared with the pathological findings with respect to both stage and Gleason scores (GS). Results Of the 177 prostatectomy patients with non visible tumors on MRI, pathological findings resulted in the upgrading of 49(27.7%) patients to a sum of GS 7 or more. 101(57.1%) patients exhibited tumor volumes greater than 0.5cc. The biochemical recurrence rate was significantly higher in the pathological upgraded group compared with the nonupgraded group after a mean follow-up time of 29 months. In the multiple logistic analysis, non visible tumor on MRI was not a significant predictor of low-risk PCA. Conclusions Even though cancer foci were not visualized by postbiopsy MRI, the pathological tumor volumes and extent of GS upgrading were relatively high. Therefore, nonvisible tumors by multiparametric MRI do not appear to be predictive of low-risk PCA. PMID:26779459

  13. In vivo small animal imaging for early assessment of therapeutic efficacy of photodynamic therapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Fei, Baowei; Wang, Hesheng; Chen, Xiang; Meyers, Joseph; Mulvilhill, John; Feyes, Denise; Edgehouse, Nancy; Duerk, Jeffrey L.; Pretlow, Thomas G.; Oleinick, Nancy L.

    2007-03-01

    We are developing in vivo small animal imaging techniques that can measure early effects of photodynamic therapy (PDT) for prostate cancer. PDT is an emerging therapeutic modality that continues to show promise in the treatment of cancer. At our institution, a new second-generation photosensitizing drug, the silicon phthalocyanine Pc 4, has been developed and evaluated at the Case Comprehensive Cancer Center. In this study, we are developing magnetic resonance imaging (MRI) techniques that provide therapy monitoring and early assessment of tumor response to PDT. We generated human prostate cancer xenografts in athymic nude mice. For the imaging experiments, we used a highfield 9.4-T small animal MR scanner (Bruker Biospec). High-resolution MR images were acquired from the treated and control tumors pre- and post-PDT and 24 hr after PDT. We utilized multi-slice multi-echo (MSME) MR sequences. During imaging acquisitions, the animals were anesthetized with a continuous supply of 2% isoflurane in oxygen and were continuously monitored for respiration and temperature. After imaging experiments, we manually segmented the tumors on each image slice for quantitative image analyses. We computed three-dimensional T2 maps for the tumor regions from the MSME images. We plotted the histograms of the T2 maps for each tumor pre- and post-PDT and 24 hr after PDT. After the imaging and PDT experiments, we dissected the tumor tissues and used the histologic slides to validate the MR images. In this study, six mice with human prostate cancer tumors were imaged and treated at the Case Center for Imaging Research. The T2 values of treated tumors increased by 24 +/- 14% 24 hr after the therapy. The control tumors did not demonstrate significant changes of the T2 values. Inflammation and necrosis were observed within the treated tumors 24 hour after the treatment. Preliminary results show that Pc 4-PDT is effective for the treatment of human prostate cancer in mice. The small animal MR

  14. Stokes polarimetry imaging of dog prostate tissue

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Johnston, William K., III; Walsh, Joseph T., Jr.

    2010-02-01

    Prostate cancer is the second leading cause of death in the United States in 2009. Radical prostatectomy (complete removal of the prostate) is the most common treatment for prostate cancer, however, differentiating prostate tissue from adjacent bladder, nerves, and muscle is difficult. Improved visualization could improve oncologic outcomes and decrease damage to adjacent nerves and muscle important for preservation of potency and continence. A novel Stokes polarimetry imaging (SPI) system was developed and evaluated using a dog prostate specimen in order to examine the feasibility of the system to differentiate prostate from bladder. The degree of linear polarization (DOLP) image maps from linearly polarized light illumination at different visible wavelengths (475, 510, and 650 nm) were constructed. The SPI system used the polarization property of the prostate tissue. The DOLP images allowed advanced differentiation by distinguishing glandular tissue of prostate from the muscular-stromal tissue in the bladder. The DOLP image at 650 nm effectively differentiated prostate and bladder by strong DOLP in bladder. SPI system has the potential to improve surgical outcomes in open or robotic-assisted laparoscopic removal of the prostate. Further in vivo testing is warranted.

  15. Imaging agents for in vivo molecular profiling of disseminated prostate cancer--targeting EGFR receptors in prostate cancer: comparison of cellular processing of [111In]-labeled affibody molecule Z(EGFR:2377) and cetuximab.

    PubMed

    Malmberg, Jennie; Tolmachev, Vladimir; Orlova, Anna

    2011-04-01

    Expression of receptor tyrosine-kinase (RTK) EGFR is low in normal prostate, but increases in prostate cancer. This receptor is significantly up-regulated as tumors progress into higher grade, androgen-insensitive and metastatic lesions. The up-regulated receptors could serve as targets for novel selective anti-cancer drugs, e.g. antibodies and tyrosine kinase inhibitors. Radionuclide imaging of RTK can facilitate patient stratification and monitoring of anti-RTK therapy of prostate cancer. The goal of the study was to evaluate binding and cellar processing of radiolabeled EGFR-targeting conjugates by prostate cancer cell lines. Receptor expression of EGFR was studied in three prostate cancer cell lines: DU145 (brain metastasis of PC, hormone insensitive), PC3 (bone metastasis of PC) and LNCaP (lymph node metastasis of PC, androgen and estrogen receptor positive). Uptake and internalization of anti-EGFR mAbs (cetuximab) and affibody molecule (Z2377) labeled with indium-111 was investigated. EGFR expression on prostate cancer cell lines was clearly demonstrated. Both labelled conjugates 111In-Z2377 and 111In-cetuximab bound to prostate cancer cells in the receptor mediated model. Expression levels were modest but correlate with degree of hormone independence. Internalization of Affibody molecules was relatively slow in all cell lines. Internalization of mAbs was more rapid. The level of EGFR expression in these cell lines is sufficient for in vivo molecular imaging. Slow internalization indicates possibility of the use of non-residualizing labels for affibody molecules. PMID:21253675

  16. Image-guided in vivo dosimetry for quality assurance of IMRT treatment for prostate cancer

    SciTech Connect

    Wertz, Hansjoerg . E-mail: hansjoerg.wertz@radonk.ma.uni-heidelberg.de; Boda-Heggemann, Judit; Walter, Cornelia; Dobler, Barbara; Mai, Sabine; Wenz, Frederik; Lohr, Frank

    2007-01-01

    Purpose: In external beam radiotherapy (EBRT) and especially in intensity-modulated radiotherapy (IMRT), the accuracy of the dose distribution in the patient is of utmost importance. It was investigated whether image guided in vivo dosimetry in the rectum is a reliable method for online dose verification. Methods and Materials: Twenty-one dose measurements were performed with an ionization chamber in the rectum of 7 patients undergoing IMRT for prostate cancer. The position of the probe was determined with cone beam computed tomography (CBCT). The point of measurement was determined relative to the isocenter and relative to an anatomic reference point. The dose deviations relative to the corresponding doses in the treatment plan were calculated. With an offline CT soft-tissue match, patient positioning after ultrasound was verified. Results: The mean magnitude {+-} standard deviation (SD) of patient positioning errors was 3.0 {+-} 2.5 mm, 5.1 {+-} 4.9 mm, and 4.3 {+-} 2.4 mm in the left-right, anteroposterior and craniocaudal direction. The dose deviations in points at corresponding positions relative to the isocenter were -1.4 {+-} 4.9% (mean {+-} SD). The mean dose deviation at corresponding anatomic positions was 6.5 {+-} 21.6%. In the rare event of insufficient patient positioning, dose deviations could be >30% because of the close proximity of the probe and the posterior dose gradient. Conclusions: Image-guided dosimetry in the rectum during IMRT of the prostate is a feasible and reliable direct method for dose verification when probe position is effectively controlled.

  17. SU-E-I-82: PET Radiopharmaceuticals for Prostate Cancer Imaging: A Review

    SciTech Connect

    Fernandes, F; Silva, D da; Rodrigues, L

    2015-06-15

    Purpose: The aim of this work was to review new and clinical practice PET radiopharmaceuticals for prostate cancer imaging. Methods: PET radiopharmaceuticals were reviewed on the main databases. Availability, dosimetry, accuracy and limitations were considered. Results: The following radioisotopes with respective physical half-life and mean positron energy were found: {sup 18}F (109,7 min, 249,8 keV), {sup 89}Zr (78,4 hs, 395,5 keV), {sup 11}C (20,4 min, 385,7 keV) and {sup 68}Ga (67,8 min, 836 keV). {sup 68}Ga was the only one not produced by cyclotron. Radiopharmaceuticals uptake by glucose metabolism ({sup 18}F-FDG), lipogenesis ({sup 11}C-Choline and {sup 11}C-Acetate), amino acid transport (Anti-{sup 18}F-FACBC), bone matrix ({sup 18}F-NaF), prostatespecific membrane antigen ({sup 68}Ga-PSMA and {sup 89}Zr-J591), CXCR receptors ({sup 89}Ga-Pentixafor), adrenal receptors ({sup 18}F-FDHT) and gastrin release peptide receptor (bombesin analogue). Most of radiopharmaceuticals are urinary excretion, so bladder is the critical organ. 11C-choline (pancreas), Anti-{sup 18}FFACBC (liver) and {sup 18}F-FBDC (stomach wall) are the exception. Higher effective dose was seen {sup 18}F-NaF (27 μSv/MBq) while the lowest was {sup 11}CAcetate (3,5 μSv/MBq). Conclusion: Even though {sup 18}F-FDG has a large availability its high urinary excretion and poor uptake to slow growing disease offers weak results for prostate cancer. Better accuracy is obtained when {sup 18}F-NaF is used for bone metastatic investigation although physicians tend to choose bone scintigraphy probably due to its cost and practice. Many guidelines in oncology consider {sup 11}C or {sup 18}F labeled with Choline the gold standard for biochemical relapse after radical treatment. Local, lymph node and distant metastatic relapse can be evaluated at same time with this radiopharmaceutical. There is no consensus over bigger urinary excretion for {sup 18}F labeling. Anti-{sup 18}F-FACBC, {sup 68}Ga-PSMA and {sup

  18. Tissue-type imaging (TTI) based on ultrasonic spectral and clinical parameters for detecting, evaluating, and managing prostate cancer

    NASA Astrophysics Data System (ADS)

    Feleppa, Ernest J.; Ketterling, Jeffrey A.; Dasgupta, Shreedevi; Kalisz, Andrew; Ramachandran, Sarayu; Porter, Christopher R.

    2005-04-01

    This study seeks to develop more-sensitive and -specific ultrasonic methods of imaging cancerous prostate tissue and thereby to improve means of guiding biopsies and planning, targeting, and monitoring treatment. Ultrasonic radio-frequency, echo-signal data, and clinical variables, e.g., PSA, voiding function, etc., during biopsy examinations were acquired. Spectra of the radio-frequency signals were computed in each biopsied region, and used to train neural networks; biopsy results served as the gold standard. A lookup table gave scores for cancer likelihood on a pixel-by-pixel basis from locally computed spectral-parameter and global clinical-parameter values. ROC curves used leave-one-patient- and leave-one-biopsy-out approaches to minimize classification bias. Resulting ROC-curve areas were 0.80+/-0.03 for neural-networks versus 0.66+/-0.03 for conventional classification. TTIs generated from data acquired pre-surgically showed tumors that were unrecognized in conventional images and during surgery. 3-D renderings of prostatectomy histology and TTIs showed encouraging correlations, which shows promise for improving the detection and management of prostate cancer, e.g., for biopsy guidance, planning dose-escalation and tissue-sparing options for radiation or cryotherapy, and assessing the effects of treatment. Combining MRS parameters with US spectral parameters appears capable of further improving prostate-cancer imaging. [Work supported by NIH.

  19. Structure-Activity Relationship of (18)F-Labeled Phosphoramidate Peptidomimetic Prostate-Specific Membrane Antigen (PSMA)-Targeted Inhibitor Analogues for PET Imaging of Prostate Cancer.

    PubMed

    Dannoon, Shorouk; Ganguly, Tanushree; Cahaya, Hendry; Geruntho, Jonathan J; Galliher, Matthew S; Beyer, Sophia K; Choy, Cindy J; Hopkins, Mark R; Regan, Melanie; Blecha, Joseph E; Skultetyova, Lubica; Drake, Christopher R; Jivan, Salma; Barinka, Cyril; Jones, Ella F; Berkman, Clifford E; VanBrocklin, Henry F

    2016-06-23

    A series of phosphoramidate-based prostate specific membrane antigen (PSMA) inhibitors of increasing lipophilicity were synthesized (4, 5, and 6), and their fluorine-18 analogs were evaluated for use as positron emission tomography (PET) imaging agents for prostate cancer. To gain insight into their modes of binding, they were also cocrystallized with the extracellular domain of PSMA. All analogs exhibited irreversible binding to PSMA with IC50 values ranging from 0.4 to 1.3 nM. In vitro assays showed binding and rapid internalization (80-95%, 2 h) of the radiolabeled ligands in PSMA(+) cells. In vivo distribution demonstrated significant uptake in CWR22Rv1 (PSMA(+)) tumor, with tumor to blood ratios of 25.6:1, 63.6:1, and 69.6:1 for [(18)F]4, [(18)F]5, and [(18)F]6, respectively, at 2 h postinjection. Installation of aminohexanoic acid (AH) linkers in the phosphoramidate scaffold improved their PSMA binding and inhibition and was critical for achieving suitable in vivo imaging properties, positioning [(18)F]5 and [(18)F]6 as favorable candidates for future prostate cancer imaging clinical trials. PMID:27228467

  20. Prostate cancer multi-feature analysis using trans-rectal ultrasound images.

    PubMed

    Mohamed, S S; Salama, M M A; Kamel, M; El-Saadany, E F; Rizkalla, K; Chin, J

    2005-08-01

    This note focuses on extracting and analysing prostate texture features from trans-rectal ultrasound (TRUS) images for tissue characterization. One of the principal contributions of this investigation is the use of the information of the images' frequency domain features and spatial domain features to attain a more accurate diagnosis. Each image is divided into regions of interest (ROIs) by the Gabor multi-resolution analysis, a crucial stage, in which segmentation is achieved according to the frequency response of the image pixels. The pixels with a similar response to the same filter are grouped to form one ROI. Next, from each ROI two different statistical feature sets are constructed; the first set includes four grey level dependence matrix (GLDM) features and the second set consists of five grey level difference vector (GLDV) features. These constructed feature sets are then ranked by the mutual information feature selection (MIFS) algorithm. Here, the features that provide the maximum mutual information of each feature and class (cancerous and non-cancerous) and the minimum mutual information of the selected features are chosen, yielding a reduced feature subset. The two constructed feature sets, GLDM and GLDV, as well as the reduced feature subset, are examined in terms of three different classifiers: the condensed k-nearest neighbour (CNN), the decision tree (DT) and the support vector machine (SVM). The accuracy classification results range from 87.5% to 93.75%, where the performance of the SVM and that of the DT are significantly better than the performance of the CNN. PMID:16030375

  1. NOTE: Prostate cancer multi-feature analysis using trans-rectal ultrasound images

    NASA Astrophysics Data System (ADS)

    Mohamed, S. S.; Salama, M. M. A.; Kamel, M.; El-Saadany, E. F.; Rizkalla, K.; Chin, J.

    2005-08-01

    This note focuses on extracting and analysing prostate texture features from trans-rectal ultrasound (TRUS) images for tissue characterization. One of the principal contributions of this investigation is the use of the information of the images' frequency domain features and spatial domain features to attain a more accurate diagnosis. Each image is divided into regions of interest (ROIs) by the Gabor multi-resolution analysis, a crucial stage, in which segmentation is achieved according to the frequency response of the image pixels. The pixels with a similar response to the same filter are grouped to form one ROI. Next, from each ROI two different statistical feature sets are constructed; the first set includes four grey level dependence matrix (GLDM) features and the second set consists of five grey level difference vector (GLDV) features. These constructed feature sets are then ranked by the mutual information feature selection (MIFS) algorithm. Here, the features that provide the maximum mutual information of each feature and class (cancerous and non-cancerous) and the minimum mutual information of the selected features are chosen, yeilding a reduced feature subset. The two constructed feature sets, GLDM and GLDV, as well as the reduced feature subset, are examined in terms of three different classifiers: the condensed k-nearest neighbour (CNN), the decision tree (DT) and the support vector machine (SVM). The accuracy classification results range from 87.5% to 93.75%, where the performance of the SVM and that of the DT are significantly better than the performance of the CNN.

  2. Chemotherapy in Prostate Cancer.

    PubMed

    Hurwitz, Michael

    2015-10-01

    For approximately a decade, chemotherapy has been shown to prolong life in patients with metastatic castration-resistant prostate cancer (mCRPC). Since that time, however, only two agents have proven to prolong life (docetaxel and cabazitaxel). However, in the last year, the addition of chemotherapy to primary hormonal therapy became a standard of care for high-volume castration-sensitive metastatic disease. Here I will review current prostate cancer chemotherapies, mechanisms of resistance to those therapies, and ongoing clinical studies of chemotherapy combinations and novel chemotherapeutics. PMID:26216506

  3. Prostate Cancer: Take Time to Decide

    MedlinePlus

    ... printing [PDF-983KB] Cancer Home Prostate Cancer: Take Time to Decide Infographic Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir Prostate Cancer: Take Time to Decide Most prostate cancers grow slowly, and ...

  4. Magnetic Resonance Imaging of the Prostate, Including Pre- and Postinterventions.

    PubMed

    Patel, Pritesh; Oto, Aytekin

    2016-09-01

    This article systematically reviews the rationale for magnetic resonance imaging in prostate cancer, in detection and following various treatment methods. A basic discussion of the identification of prostate cancer is imperative to understand postintervention imaging. Each available therapy, including surgery, radiation, hormone therapy, and focal therapies will be discussed along with associated imaging findings, providing the reader with a better understanding of current interventions in prostate cancer and imaging. PMID:27582606

  5. Reduction of Dose Delivered to Organs at Risk in Prostate Cancer Patients via Image-Guided Radiation Therapy

    SciTech Connect

    Pawlowski, Jason M.; Yang, Eddy S.; Malcolm, Arnold W.; Coffey, Charles W.; Ding, George X.

    2010-03-01

    Purpose: To determine whether image guidance can improve the dose delivered to target organs and organs at risk (OARs) for prostate cancer patients treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Eight prostate cancer patients were treated with IMRT to 76 Gy at 2 Gy per fraction. Daily target localization was performed via alignment of three intraprostatic fiducials and weekly kV-cone beam computed tomography (CBCT) scans. The prostate and OARs were manually contoured on each CBCT by a single physician. Daily patient setup shifts were obtained by comparing alignment of skin tattoos with the treatment position based on fiducials. Treatment fields were retrospectively applied to CBCT scans. The dose distributions were calculated using actual treatment plans (an 8-mm PTV margin everywhere except for 6-mm posteriorly) with and without image guidance shifts. Furthermore, the feasibility of margin reduction was evaluated by reducing planning margins to 4 mm everywhere except for 3 mm posteriorly. Results: For the eight treatment plans on the 56 CBCT scans, the average doses to 98% of the prostate (D98) were 102% (range, 99-104%) and 99% (range, 45-104%) with and without image guidance, respectively. Using margin reduction, the average D98s were 100% (range, 84-104%) and 92% (range, 40-104%) with and without image guidance, respectively. Conclusions: Currently, margins used in IMRT plans are adequate to deliver a dose to the prostate with conventional patient positioning using skin tattoos or bony anatomy. The use of image guidance may facilitate significant reduction of planning margins. Future studies to assess the efficacy of decreasing margins and improvement of treatment-related toxicities are warranted.

  6. Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Localization of Recurrent Prostate Cancer After External Beam Radiotherapy

    SciTech Connect

    Haider, Masoom A. Chung, Peter; Sweet, Joan; Toi, Ants; Jhaveri, Kartik; Menard, Cynthia; Warde, Padraig; Trachtenberg, John; Lockwood, Gina M.Math.; Milosevic, Michael

    2008-02-01

    Purpose: To compare the performance of T2-weighted (T2w) imaging and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) of the prostate gland in the localization of recurrent prostate cancer in patients with biochemical failure after external beam radiotherapy (EBRT). Methods and Materials: T2-weighted imaging and DCE MRI were performed in 33 patients with suspected relapse after EBRT. Dynamic contrast-enhanced MRI was performed with a temporal resolution of 95 s. Voxels enhancing at 46 s after injection to a greater degree than the mean signal intensity of the prostate at 618 s were considered malignant. Results from MRI were correlated with biopsies from six regions in the peripheral zone (PZ) (base, mid, and apex). The percentage of biopsy core positive for malignancy from each region was correlated with the maximum diameter of the tumor on DCE MRI with a linear regression model. Results: On a sextant basis, DCE MRI had significantly better sensitivity (72% [21of 29] vs. 38% [11 of 29]), positive predictive value (46% [21 of 46] vs. 24% [11 of 45]) and negative predictive value (95% [144 of 152] vs. 88% [135 of 153] than T2w imaging. Specificities were high for both DCE MRI and T2w imaging (85% [144 of 169] vs. 80% [135 of 169]). There was a linear relationship between tumor diameters on DCE MRI and the percentage of cancer tissue in the corresponding biopsy core (r = 0.9, p < 0.001), with a slope of 1.2. Conclusions: Dynamic contrast-enhanced MRI performs better than T2w imaging in the detection and localization of prostate cancer in the peripheral zone after EBRT. This may be helpful in the planning of salvage therapy.

  7. A Dosimetric Comparison between Conventional Fractionated and Hypofractionated Image-guided Radiation Therapies for Localized Prostate Cancer

    PubMed Central

    Li, Ming; Li, Gao-Feng; Hou, Xiu-Yu; Gao, Hong; Xu, Yong-Gang; Zhao, Ting

    2016-01-01

    Background: Image-guided radiation therapy (IGRT) is the preferred method for curative treatment of localized prostate cancer, which could improve disease outcome and reduce normal tissue toxicity reaction. IGRT using cone-beam computed tomography (CBCT) in combination with volumetric-modulated arc therapy (VMAT) potentially allows smaller treatment margins and dose escalation to the prostate. The aim of this study was to compare the difference of dosimetric diffusion in conventional IGRT using 7-field, step-and-shoot intensity-modulated radiation therapy (IMRT) and hypofractionated IGRT using VMAT for patients with localized prostate cancer. Methods: We studied 24 patients who received 78 Gy in 39 daily fractions or 70 Gy in 28 daily fractions to their prostate with/without the seminal vesicles using IMRT (n = 12) or VMAT (n = 12) for prostate cancer between November 2013 and October 2015. Image guidance was performed using kilovoltage CBCT scans equipped on the linear accelerator. Offline planning was performed using the daily treatment images registered with simulation computed tomography (CT) images. A total of 212 IMRT plans in conventional cohort and 292 VMAT plans in hypofractionated cohort were enrolled in the study. Dose distributions were recalculated on CBCT images registered with the planning CT scanner. Results: Compared with 7-field, step-and-shoot IMRT, VMAT plans resulted in improved planning target volume (PTV) D95% (7663.17 ± 69.57 cGy vs. 7789.17 ± 131.76 cGy, P < 0.001). VMAT reduced the rectal D25 (P < 0.001), D35 (P < 0.001), and D50 (P < 0.001), bladder V50 (P < 0.001), D25 (P = 0.002), D35 (P = 0.028), and D50 (P = 0.029). However, VMAT did not statistically significantly reduce the rectal V50, compared with 7-field, step-and-shoot IMRT (25.02 ± 5.54% vs. 27.43 ± 8.79%, P = 0.087). Conclusions: To deliver the hypofractionated radiotherapy in prostate cancer, VMAT significantly increased PTV D95% dose and decreased the dose of radiation

  8. [Prostate biopsy under magnetic resonance imaging guidance].

    PubMed

    Kuplevatskiy, V I; CherkashiN, M A; Roshchin, D A; Berezina, N A; Vorob'ev, N A

    2016-01-01

    Prostate cancer (PC) is one of the most important problems in modern oncology. According to statistical data, PC ranks second in the cancer morbidity structure in the Russian Federation and developed countries and its prevalence has been progressively increasing over the past decade. A need for early diagnosis and maximally accurate morphological verification of the diagnosis in difficult clinical cases (inconvenient tumor location for standard transrectal biopsy; gland scarring changes concurrent with prostatitis and hemorrhage; threshold values of prostate-specific antigen with unclear changes in its doubling per unit time; suspicion of biochemical recurrence or clinical tumor progression after special treatment) leads to revised diagnostic algorithms and clinically introduced new high-tech invasive diagnostic methods. This paper gives the first analysis of literature data on Russian practice using one of the new methods to verify prostate cancer (transrectal prostate cancer under magnetic resonance imaging (MRI) guidance). The have sought the 1995-2015 data in the MEDLINE and Pubmed. PMID:27192773

  9. [Grading of prostate cancer].

    PubMed

    Kristiansen, G; Roth, W; Helpap, B

    2016-07-01

    The current grading of prostate cancer is based on the classification system of the International Society of Urological Pathology (ISUP) following a consensus conference in Chicago in 2014. The foundations are based on the frequently modified grading system of Gleason. This article presents a brief description of the development to the current ISUP grading system. PMID:27393141

  10. Prostate cancer markers: An update

    PubMed Central

    PENTYALA, SRINIVAS; WHYARD, TERRY; PENTYALA, SAHANA; MULLER, JOHN; PFAIL, JOHN; PARMAR, SUNJIT; HELGUERO, CARLOS G.; KHAN, SARDAR

    2016-01-01

    As the most common noncutaneous malignancy in American men, prostate cancer currently accounts for 29% of all diagnosed cancers, and ranks second as the cause of cancer fatality in American men. Prostatic cancer is rarely symptomatic early in its course and therefore disease presentation often implies local extension or even metastatic disease. Thus, it is extremely critical to detect and diagnose prostate cancer in its earliest stages, often prior to the presentation of symptoms. Three of the most common techniques used to detect prostate cancer are the digital rectal exam, the transrectal ultrasound, and the use of biomarkers. This review presents an update regarding the field of prostate cancer biomarkers and comments on future biomarkers. Although there is not a lack of research in the field of prostate cancer biomarkers, the discovery of a novel biomarker that may have the advantage of being more specific and effective warrants future scientific inquiry. PMID:26998261

  11. Vitamin E and Prostate Cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vitamin E, its metabolites or its analogs, might help prevent prostate cancer initiation or progression. Prostate cancer is the most common non-skin malignancy and the second leading cause of cancer deaths among men in the United States, exceeded only by lung cancer. About 218,890 new cases of prost...

  12. Preclinical Study on GRPR-Targeted (68)Ga-Probes for PET Imaging of Prostate Cancer.

    PubMed

    Sun, Yao; Ma, Xiaowei; Zhang, Zhe; Sun, Ziyan; Loft, Mathias; Ding, Bingbing; Liu, Changhao; Xu, Liying; Yang, Meng; Jiang, Yuxin; Liu, Jianfeng; Xiao, Yuling; Cheng, Zhen; Hong, Xuechuan

    2016-08-17

    Gastrin-releasing peptide receptor (GRPR) targeted positron emission tomography (PET) is a highly promising approach for imaging of prostate cancer (PCa) in small animal models and patients. Developing a GRPR-targeted PET probe with excellent in vivo performance such as high tumor uptake, high contrast, and optimal pharmacokinetics is still very challenging. Herein, a novel bombesin (BBN) analogue (named SCH1) based on JMV594 peptide modified with an 8-amino octanoic acid spacer (AOC) was thus designed and conjugated with the metal chelator 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA). The resulting NODAGA-SCH1 was then radiolabeled with (68)Ga and evaluated for PET imaging of PCa. Compared with (68)Ga-NODAGA-JMV594 probe, (68)Ga-NODAGA-SCH1 exhibited excellent PET/CT imaging properties on PC-3 tumor-bearing nude mice, such as high tumor uptake (5.80 ± 0.42 vs 3.78 ± 0.28%ID/g, 2 h) and high tumor/muscle contrast (16.6 ± 1.50 vs 8.42 ± 0.61%ID/g, 2 h). Importantly, biodistribution data indicated a relatively similar accumulation of (68)Ga-NODAGA-SCH1 was observed in the liver (4.21 ± 0.42%ID/g) and kidney (3.41 ± 0.46%ID/g) suggesting that the clearance is through both the kidney and the liver. Overall, (68)Ga-NODAGA-SCH1 showed promising in vivo properties and is a promising candidate for translation into clinical PET-imaging of PCa patients. PMID:27399868

  13. Displacements of fiducial markers in patients with prostate cancer treated with image guided radiotherapy: A single-institution descriptive study

    PubMed Central

    Cendales, Ricardo; Torres, Felipe; Arbelaez, Juan; Gaitan, Armando; Vasquez, Jaider; Bobadilla, Ivan

    2014-01-01

    Aim To describe daily displacements when using fiducial markers as surrogates for the target volume in patients with prostate cancer treated with IGRT. Background The higher grade of conformity achieved with the use of modern radiation technologies in prostate cancer can increase the risk of geographical miss; therefore, an associated protocol of IGRT is recommended. Materials and methods A single-institution, retrospective, consecutive study was designed. 128 prostate cancer patients treated with daily on-line IGRT based on 2D kV orthogonal images were included. Daily displacement of the fiducial markers was considered as the difference between the position of the patient when using skin tattoos and the position after being relocated using fiducial markers. Measures of central tendency and dispersion were used to describe fiducial displacements. Results The implant itself took a mean time of 15 min. We did not detect any complications derived from the implant. 4296 sets of orthogonal images were identified, 128 sets of images corresponding to treatment initiation were excluded; 91 (2.1%) sets of images were excluded from the analysis after having identified that these images contained extreme outlier values. If IGRT had not been performed 25%, 10% or 5% of the treatments would have had displacements superior to 4, 7 or 9 mm respectively in any axis. Conclusions Image guidance is required when using highly conformal techniques; otherwise, at least 10% of daily treatments could have significant displacements. IGRT based on fiducial markers, with 2D kV orthogonal images is a convenient and fast method for performing image guidance. PMID:25535583

  14. 89Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer

    PubMed Central

    O’Donoghue, Joseph A.; Beylergil, Volkan; Lyashchenko, Serge; Ruan, Shutian; Solomon, Stephen B.; Durack, Jeremy C.; Carrasquillo, Jorge A.; Lefkowitz, Robert A.; Gonen, Mithat; Lewis, Jason S.; Holland, Jason P.; Cheal, Sarah M.; Reuter, Victor E.; Osborne, Joseph R.; Loda, Massimo F.; Smith-Jones, Peter M.; Weber, Wolfgang A.; Bander, Neil H.; Scher, Howard I.; Morris, Michael J.; Larson, Steven M.

    2015-01-01

    Purpose Given the bone tropism of prostate cancer, conventional imaging modalities poorly identify or quantify metastatic disease. 89Zr-huJ591 positron emission tomography (PET) imaging was performed in patients with metastatic prostate cancer to analyze and validate this as an imaging biomarker for metastatic disease. The purpose of this initial study was to assess safety, biodistribution, normal organ dosimetry, and optimal imaging time post-injection for lesion detection. Methods Ten patients with metastatic prostate cancer received 5 mCi of 89Zr-huJ591. Four whole-body scans with multiple whole-body count rate measurements and serum activity concentration measurements were obtained in all patients. Biodistribution, clearance, and lesion uptake by 89Zr-huJ591 immuno-PET imaging was analyzed and dosimetry was estimated using MIRD techniques. Initial assessment of lesion targeting of 89Zr-huJ591 was done. Optimal time for imaging post-injection was determined. Results The dose was well tolerated with mild chills and rigors seen in two patients. The clearance of 89Zr-huJ591 from serum was bi-exponential with biological half-lives of 7 ± 4.5 h (range 1.1–14 h) and 62 ± 13 h (range 51–89 h) for initial rapid and later slow phase. Whole-body biological clearance was 219 ± 48 h (range 153–317 h). The mean whole-body and liver residence time was 78.7 and 25.6 h, respectively. Dosimetric estimates to critical organs included liver 7.7 ± 1.5 cGy/mCi, renal cortex 3.5 ± 0.4 cGy/mCi, and bone marrow 1.2 ± 0.2 cGy/mCi. Optimal time for patient imaging after injection was 7 ± 1 days. Lesion targeting of bone or soft tissue was seen in all patients. Biopsies were performed in 8 patients for a total 12 lesions, all of which were histologically confirmed as metastatic prostate cancer. One biopsy-proven lesion was not positive on 89Zr-huJ591, while the remaining 11 lesions were 89Zr-huJ591 positive. Two biopsy-positive nodal lesions were noted only on 89Zr-huJ591

  15. What Tests Can Detect Prostate Cancer?

    MedlinePlus

    ... prostate cancer early detection What tests can detect prostate cancer early? The tests discussed below are used to ... also found in the blood. Most men without prostate cancer have PSA levels under 4 nanograms per milliliter ( ...

  16. Survival in prostate cancer prevention trial detailed

    Cancer.gov

    In the NCI-sponsored Prostate Cancer Prevention Trial, initial findings from a decade ago showed that the drug finasteride significantly reduced the risk of prostate cancer, but among those who did develop prostate cancer, paradoxically, the drug was asso

  17. Near-infrared fluorescence probe for the determination of acid phosphatase and imaging of prostate cancer cells.

    PubMed

    Lin, Zihan; Liu, Ziping; Zhang, Hao; Su, Xingguang

    2015-03-01

    In this paper, we developed a near-infrared mercaptopropionic acid (MPA)-capped CuInS2 quantum dot (QD) fluorescence probe for the detection of acid phosphatases (ACP), which is an important biomarker and indicator of prostate cancer. The fluorescence of CuInS2 QDs could be quenched by Cu(2+), and then the addition of adenosine-5'-triphosphate (ATP) could effectively turn on the quenched fluorescence due to the strong interaction between Cu(2+) and ATP. The ACP could catalyze the hydrolysis of ATP, which would disassemble the complex of Cu(2+)-ATP. Therefore, the recovered fluorescence could be quenched again by the addition of ACP. In our method, the limit of detection (LOD) is considerably low for ACP detection in solution. Using the CuInS2 QDs fluorescence probe, we successfully performed in vitro imaging of human prostate cancer cells. PMID:25632410

  18. NBN gain is predictive for adverse outcome following image-guided radiotherapy for localized prostate cancer.

    PubMed

    Berlin, Alejandro; Lalonde, Emilie; Sykes, Jenna; Zafarana, Gaetano; Chu, Kenneth C; Ramnarine, Varune R; Ishkanian, Adrian; Sendorek, Dorota H S; Pasic, Ivan; Lam, Wan L; Jurisica, Igor; van der Kwast, Theo; Milosevic, Michael; Boutros, Paul C; Bristow, Robert G

    2014-11-30

    Despite the use of clinical prognostic factors (PSA, T-category and Gleason score), 20-60% of localized prostate cancers (PCa) fail primary local treatment. Herein, we determined the prognostic importance of main sensors of the DNA damage response (DDR): MRE11A, RAD50, NBN, ATM, ATR and PRKDC. We studied copy number alterations in DDR genes in localized PCa treated with image-guided radiotherapy (IGRT; n=139) versus radical prostatectomy (RadP; n=154). In both cohorts, NBN gains were the most frequent genomic alteration (14.4 and 11% of cases, respectively), and were associated with overall tumour genomic instability (p<0.0001). NBN gains were the only significant predictor of 5yrs biochemical relapse-free rate (bRFR) following IGRT (46% versus 77%; p=0.00067). On multivariate analysis, NBN gain remained a significant independent predictor of bRFR after adjusting for known clinical prognostic variables (HR=3.28, 95% CI 1.56-6.89, Wald p-value=0.0017). No DDR-sensing gene was prognostic in the RadP cohort. In vitro studies correlated NBN gene overexpression with PCa cells radioresistance. In conclusion, NBN gain predicts for decreased bRFR in IGRT, but not in RadP patients. If validated independently, Nibrin gains may be the first PCa predictive biomarker to facilitate local treatment decisions using precision medicine approaches with surgery or radiotherapy. PMID:25415046

  19. In Vivo Molecular MRI Imaging of Prostate Cancer by Targeting PSMA with Polypeptide-Labeled Superparamagnetic Iron Oxide Nanoparticles

    PubMed Central

    Zhu, Yunkai; Sun, Ying; Chen, Yaqing; Liu, Weiyong; Jiang, Jun; Guan, Wenbin; Zhang, Zhongyang; Duan, Yourong

    2015-01-01

    The prostate specific membrane antigen (PSMA) is broadly overexpressed on prostate cancer (PCa) cell surfaces. In this study, we report the synthesis, characterization, in vitro binding assay, and in vivo magnetic resonance imaging (MRI) evaluation of PSMA targeting superparamagnetic iron oxide nanoparticles (SPIONs). PSMA-targeting polypeptide CQKHHNYLC was conjugated to SPIONs to form PSMA-targeting molecular MRI contrast agents. In vitro studies demonstrated specific uptake of polypeptide-SPIONs by PSMA expressing cells. In vivo MRI studies found that MRI signals in PSMA-expressing tumors could be specifically enhanced with polypeptide-SPION, and further Prussian blue staining showed heterogeneous deposition of SPIONs in the tumor tissues. Taken altogether, we have developed PSMA-targeting polypeptide-SPIONs that could specifically enhance MRI signal in tumor-bearing mice, which might provide a new strategy for the molecular imaging of PCa. PMID:25927579

  20. In Vivo Molecular MRI Imaging of Prostate Cancer by Targeting PSMA with Polypeptide-Labeled Superparamagnetic Iron Oxide Nanoparticles.

    PubMed

    Zhu, Yunkai; Sun, Ying; Chen, Yaqing; Liu, Weiyong; Jiang, Jun; Guan, Wenbin; Zhang, Zhongyang; Duan, Yourong

    2015-01-01

    The prostate specific membrane antigen (PSMA) is broadly overexpressed on prostate cancer (PCa) cell surfaces. In this study, we report the synthesis, characterization, in vitro binding assay, and in vivo magnetic resonance imaging (MRI) evaluation of PSMA targeting superparamagnetic iron oxide nanoparticles (SPIONs). PSMA-targeting polypeptide CQKHHNYLC was conjugated to SPIONs to form PSMA-targeting molecular MRI contrast agents. In vitro studies demonstrated specific uptake of polypeptide-SPIONs by PSMA expressing cells. In vivo MRI studies found that MRI signals in PSMA-expressing tumors could be specifically enhanced with polypeptide-SPION, and further Prussian blue staining showed heterogeneous deposition of SPIONs in the tumor tissues. Taken altogether, we have developed PSMA-targeting polypeptide-SPIONs that could specifically enhance MRI signal in tumor-bearing mice, which might provide a new strategy for the molecular imaging of PCa. PMID:25927579

  1. Imaging of HER2 may improve the outcome of external irradiation therapy for prostate cancer patients

    PubMed Central

    ANDERSSON, JENNIE; ROSESTEDT, MARIA; ORLOVA, ANNA

    2015-01-01

    Prostate cancer (PCa) is the most common type of cancer among males. Human epidermal growth factor receptor type 2 (HER2) expression in PCa has been reported by several studies and its involvement in the progression towards androgen-independent PCa has been discussed. External irradiation is one of the existing therapies, which has been demonstrated to be efficient in combination with androgen deprivation therapy for the treatment of advanced PCa. However, 20–40% of patients develop recurrent and more aggressive PCa within 10 years. The current study investigates the involvement of HER2 in survival and radioresistance in PCa cells and we hypothesized that, by monitoring HER2 expression, treatment may be personalized. The PCa cell lines, LNCap, PC3 and DU-145, received a 6 Gy single dose of external irradiation. The number of PC3 cells was not affected by a single dose of radiation, whereas a 5-fold decrease in cell number was detected in LNCap (P<0.00001) and DU-145 (P<0.0001) cells. The HER2 expression in PC3 exhibited a significant increase post irradiation, however, the expression was stable in the remaining cell lines. The administration of trastuzumab post-irradiation resulted in a 2-fold decrease in the PC3 cell number, while the drug did not demonstrate additional effects in LNCap and DU-145 cells, when compared with that of irradiation treatment alone. The results of the present study demonstrated that an increase in membranous HER2 expression in response to external irradiation may indicate cell radioresistance. Furthermore, imaging of HER2 expression prior to and following external irradiation may present a step towards personalized therapy in PCa. PMID:25624915

  2. Prostate cancer is not breast cancer

    PubMed Central

    Venniyoor, Ajit

    2016-01-01

    Cancers of the prostate and breast are hormone dependent cancers. There is a tendency to equate them and apply same algorithms for treatment. It is pointed out that metastatic prostate cancer with bone-only disease is a potentially fatal condition with a much poorer prognosis than metastatic breast cancer and needs a more aggressive approach. PMID:27051149

  3. Evolving Recommendations on Prostate Cancer Screening.

    PubMed

    Brawley, Otis W; Thompson, Ian M; Grönberg, Henrik

    2016-01-01

    Results of a number of studies demonstrate that the serum prostate-specific antigen (PSA) in and of itself is an inadequate screening test. Today, one of the most pressing questions in prostate cancer medicine is how can screening be honed to identify those who have life-threatening disease and need aggressive treatment. A number of efforts are underway. One such effort is the assessment of men in the landmark Prostate Cancer Prevention Trial that has led to a prostate cancer risk calculator (PCPTRC), which is available online. PCPTRC version 2.0 predicts the probability of the diagnosis of no cancer, low-grade cancer, or high-grade cancer when variables such as PSA, age, race, family history, and physical findings are input. Modern biomarker development promises to provide tests with fewer false positives and improved ability to find high-grade cancers. Stockholm III (STHLM3) is a prospective, population-based, paired, screen-positive, prostate cancer diagnostic study assessing a combination of plasma protein biomarkers along with age, family history, previous biopsy, and prostate examination for prediction of prostate cancer. Multiparametric MRI incorporates anatomic and functional imaging to better characterize and predict future behavior of tumors within the prostate. After diagnosis of cancer, several genomic tests promise to better distinguish the cancers that need treatment versus those that need observation. Although the new technologies are promising, there is an urgent need for evaluation of these new tests in high-quality, large population-based studies. Until these technologies are proven, most professional organizations have evolved to a recommendation of informed or shared decision making in which there is a discussion between the doctor and patient. PMID:27249774

  4. A prostate cancer computer-aided diagnosis system using multimodal magnetic resonance imaging and targeted biopsy labels

    NASA Astrophysics Data System (ADS)

    Liu, Peter; Wang, Shijun; Turkbey, Baris; Grant, Kinzya; Pinto, Peter; Choyke, Peter; Wood, Bradford J.; Summers, Ronald M.

    2013-02-01

    We propose a new method for prostate cancer classification based on supervised statistical learning methods by integrating T2-weighted, diffusion-weighted, and dynamic contrast-enhanced MRI images with targeted prostate biopsy results. In the first step of the method, all three imaging modalities are registered based on the image coordinates encoded in the DICOM images. In the second step, local statistical features are extracted in each imaging modality to capture intensity, shape, and texture information at every biopsy target. Finally, using support vector machines, supervised learning is conducted with the biopsy results to train a classification system that predicts the pathology of suspicious cancer lesions. The algorithm was tested with a dataset of 54 patients that underwent 164 targeted biopsies (58 positive, 106 negative). The proposed tri-modal MRI algorithm shows significant improvement over a similar approach that utilizes only T2-weighted MRI images (p= 0.048). The areas under the ROC curve for these methods were 0.82 (95% CI: [0.71, 0.93]) and 0.73 (95% CI: [0.55, 0.84]), respectively.

  5. OCT image segmentation of the prostate nerves

    NASA Astrophysics Data System (ADS)

    Chitchian, Shahab; Weldon, Thomas P.; Fried, Nathaniel M.

    2009-08-01

    The cavernous nerves course along the surface of the prostate and are responsible for erectile function. Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery may improve nerve preservation and postoperative sexual potency. In this study, 2-D OCT images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. Three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The features were segmented using a nearestneighbor classifier. N-ary morphological post-processing was used to remove small voids. The cavernous nerves were differentiated from the prostate gland with a segmentation error rate of only 0.058 +/- 0.019.

  6. Hepcidin regulation in prostate and its disruption in prostate cancer

    PubMed Central

    Tesfay, Lia; Clausen, Kathryn A.; Kim, Jin W.; Hegde, Poornima; Wang, Xiaohong; Miller, Lance D.; Deng, Zhiyong; Blanchette, Nicole; Arvedson, Tara; Miranti, Cindy K.; Babitt, Jodie L.; Lin, Herbert Y.; Peehl, Donna M.; Torti, Frank M.; Torti, Suzy V.

    2015-01-01

    Hepcidin is a circulating peptide hormone made by the liver that is a central regulator of systemic iron uptake and recycling. Here we report that prostate epithelial cells also synthesize hepcidin, and that synthesis and secretion of hepcidin are markedly increased in prostate cancer cells and tissue. Prostatic hepcidin functions as an autocrine hormone, decreasing cell surface ferroportin, an iron exporter, increasing intracellular iron retention, and promoting prostate cancer cell survival. Synthesis of hepcidin in prostate cancer is controlled by a unique intersection of pathways that involves BMP4/7, IL6, Wnt, and the dual BMP and Wnt antagonist, SOSTDC1. Epigenetic silencing of SOSTDC1 through methylation is increased in prostate cancer, and is associated with accelerated disease progression in prostate cancer patients. These results establish a new connection between iron metabolism and prostate cancer, and suggest that prostatic dysregulation of hepcidin contributes to prostate cancer growth and progression. PMID:25858146

  7. [Screening for prostate cancer].

    PubMed

    Koch, Klaus; Büchter, Roland; Lange, Stefan

    2013-04-01

    Prostate cancer screening has been a controversial for decades. The recently published findings of large trials have further intensified the debate. The prospect of reducing mortality from prostate cancer is measured against the risk of over-diagnosing the disease. In individual cases, the trade-off between possible benefits and harms is possible to ascertain, so general recommendations in favor of or against PSA tests for individuals cannot be made. The majority of men, however, are not well-informed on the possible advantages and drawbacks of screening. This situation urgently needs to be corrected. The PSA test is promoted to healthy men, who need to be provided with especially detailed information. If not provided with clear and unbiased information on the risks associated with the test (above all over-diagnosis and over-treatment), these men cannot be considered to be fully informed. PMID:23535548

  8. Biomarkers for prostate cancer.

    PubMed

    Schiffer, Eric

    2007-12-01

    Novel biomarkers for prostate cancer (PCa) are currently being assessed for utility in PCa diagnosis. This article aims to provide concise information on the current findings that impact prostate cancer research. Results of enzyme-linked immunosorbent assays (ELISA) for single biomarkers, quantitative polymerase chain reaction (PCR)-based assays for DNA/RNA markers will be reviewed in addition to high-throughput proteomic profiling of PCa specimens. The advantages/disadvantages of tissue, blood, urine or seminal plasma as sources for potential biomarkers are discussed emphasizing the consequences for PCa diagnosis. In summary, the majority of promising marker candidates available today needs further validation. Some of the identified markers have the potential to yield novel prognostic tools for PCa, provide novel insights into its pathophysiology, and contribute to the establishment of novel treatment strategies. PMID:17690889

  9. Cabazitaxel Plus Prednisone With Octreotide For Castration-Resistant Prostate Cancer (CRPC) Previously Treated With Docetaxel

    ClinicalTrials.gov

    2014-11-21

    Diarrhea; Hormone-resistant Prostate Cancer; Recurrent Prostate Cancer; Stage I Prostate Cancer; Stage IIA Prostate Cancer; Stage IIB Prostate Cancer; Stage III Prostate Cancer; Stage IV Prostate Cancer

  10. Biochip analysis of prostate cancer.

    PubMed

    Fan, M Q; Wang, P X; Feng, J Y; Xiao, Y; Huang, C B

    2014-01-01

    Microarray expression analysis was used to forecast the roles of differentially co-expressed genes (DCG) and DCG and links in the pathogenesis of prostate cancer. In addition, we demonstrate that the relationship between transcriptional factors (TFs) and their targets can be considered a key factor in determining the difference between primary and metastatic prostate cancer. Regulatory impact factors were adopted to calculate the impact of TF. We identified 5 TFs and 29 target genes important in the transition between normal prostate and primary prostate cancer and 2 TFs and 7 target genes important in the transition between primary and metastatic prostate cancer. These results suggest that it may be possible to predict the clinical behavior of prostate cancer based on gene expression analysis. PMID:24446298

  11. Five-Year Outcomes from 3 Prospective Trials of Image-Guided Proton Therapy for Prostate Cancer

    SciTech Connect

    Mendenhall, Nancy P.; Hoppe, Bradford S.; Nichols, Romaine C.; Mendenhall, William M.; Morris, Christopher G.; Li, Zuofeng; Su, Zhong; Williams, Christopher R.; Costa, Joseph; Henderson, Randal H.

    2014-03-01

    Purpose: To report 5-year clinical outcomes of 3 prospective trials of image-guided proton therapy for prostate cancer. Methods and Materials: A total of 211 prostate cancer patients (89 low-risk, 82 intermediate-risk, and 40 high-risk) were treated in institutional review board-approved trials of 78 cobalt gray equivalent (CGE) in 39 fractions for low-risk disease, 78 to 82 CGE for intermediate-risk disease, and 78 CGE with concomitant docetaxel therapy followed by androgen deprivation therapy for high-risk disease. Toxicities were graded according to Common Terminology Criteria for Adverse Events (CTCAE), version 3.0. Median follow-up was 5.2 years. Results: Five-year rates of biochemical and clinical freedom from disease progression were 99%, 99%, and 76% in low-, intermediate-, and high-risk patients, respectively. Actuarial 5-year rates of late CTCAE, version 3.0 (or version 4.0) grade 3 gastrointestinal and urologic toxicity were 1.0% (0.5%) and 5.4% (1.0%), respectively. Median pretreatment scores and International Prostate Symptom Scores at >4 years posttreatment were 8 and 7, 6 and 6, and 9 and 8, respectively, among the low-, intermediate-, and high-risk patients. There were no significant changes between median pretreatment summary scores and Expanded Prostate Cancer Index Composite scores at >4 years for bowel, urinary irritative and/or obstructive, and urinary continence. Conclusions: Five-year clinical outcomes with image-guided proton therapy included extremely high efficacy, minimal physician-assessed toxicity, and excellent patient-reported outcomes. Further follow-up and a larger patient experience are necessary to confirm these favorable outcomes.

  12. Novel Bispecific PSMA/GRPr Targeting Radioligands with Optimized Pharmacokinetics for Improved PET Imaging of Prostate Cancer.

    PubMed

    Liolios, C; Schäfer, M; Haberkorn, U; Eder, M; Kopka, K

    2016-03-16

    A new series of bispecific radioligands (BRLs) targeting prostate-specific membrane antigen (PSMA) and gastrin releasing peptide receptor (GRPr), both expressed on prostate cancer cells, was developed. Their design was based on the bombesin (BN) analogue, H2N-PEG2-[d-Tyr(6),β-Ala(11),Thi(13),Nle(14)]BN(6-14), which binds to GRPr with high affinity and specificity, and the peptidomimetic urea-based pseudoirreversible inhibitor of PSMA, Glu-ureido-Lys. The two pharmacophores were coupled through copper(I)-catalyzed azide-alkyne cycloaddition to the bis(tetrafluorophenyl) ester of the chelating agent HBED-CC via amino acid linkers made of positively charged His (H) and negatively charged Glu (E): -(HE)n- (n = 0-3). The BRLs were labeled with (68)Ga, and their preliminary pharmacological properties were evaluated in vitro (competitive and time kinetic binding assays) on prostate cancer (PC-3, LNCaP) and rat pancreatic (AR42J) cell lines and in vivo by biodistribution and small animal PET imaging studies in both normal and tumor-bearing mice. The IC50/Ki values determined for all BRLs essentially matched those of the respective monomers. The maximal cellular uptake of the BLRs was observed between 20 and 30 min. The BRLs showed a synergistic ability in vivo by targeting both PSMA (LNCaP) and GRPr (PC-3) positive tumors, whereas the charged -(HE)n- (n = 1-3) linkers significantly reduced the kidney and spleen uptake. The bispecific (PSMA and GRPr) targeting ability and optimized pharmacokinetics of the compounds developed in this study could lead to their future application in clinical practice as more sensitive radiotracers for noninvasive imaging of prostate cancer (PCa) by PET/CT and PET/MRI. PMID:26726823

  13. Texture features on T2-weighted magnetic resonance imaging: new potential biomarkers for prostate cancer aggressiveness

    NASA Astrophysics Data System (ADS)

    Vignati, A.; Mazzetti, S.; Giannini, V.; Russo, F.; Bollito, E.; Porpiglia, F.; Stasi, M.; Regge, D.

    2015-04-01

    To explore contrast (C) and homogeneity (H) gray-level co-occurrence matrix texture features on T2-weighted (T2w) Magnetic Resonance (MR) images and apparent diffusion coefficient (ADC) maps for predicting prostate cancer (PCa) aggressiveness, and to compare them with traditional ADC metrics for differentiating low- from intermediate/high-grade PCas. The local Ethics Committee approved this prospective study of 93 patients (median age, 65 years), who underwent 1.5 T multiparametric endorectal MR imaging before prostatectomy. Clinically significant (volume ≥0.5 ml) peripheral tumours were outlined on histological sections, contoured on T2w and ADC images, and their pathological Gleason Score (pGS) was recorded. C, H, and traditional ADC metrics (mean, median, 10th and 25th percentile) were calculated on the largest lesion slice, and correlated with the pGS through the Spearman correlation coefficient. The area under the receiver operating characteristic curve (AUC) assessed how parameters differentiate pGS = 6 from pGS ≥ 7. The dataset included 49 clinically significant PCas with a balanced distribution of pGS. The Spearman ρ and AUC values on ADC were: -0.489, 0.823 (mean) -0.522, 0.821 (median) -0.569, 0.854 (10th percentile) -0.556, 0.854 (25th percentile) -0.386, 0.871 (C); 0.533, 0.923 (H); while on T2w they were: -0.654, 0.945 (C); 0.645, 0.962 (H). AUC of H on ADC and T2w, and C on T2w were significantly higher than that of the mean ADC (p = 0.05). H and C calculated on T2w images outperform ADC parameters in correlating with pGS and differentiating low- from intermediate/high-risk PCas, supporting the role of T2w MR imaging in assessing PCa biological aggressiveness.

  14. A hybrid method for reliable registration of digitally reconstructed radiographs and kV x-ray images for image-guided radiation therapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Song, Yulin; Mueller, Boris; Chan, Maria F.; Sim, Sang E.; Mychalczak, Borys; Huang, Xiaolei

    2008-03-01

    Prostate cancer is the most common tumor site treated with intensity modulated radiation therapy (IMRT). However, due to patient and organ motions, treatment-induced physiological changes, and different daily filling in the bladder and rectum, the position of the prostate in relation to the fixed pelvic bone can change significantly. Without a reliable guiding technique, this could result in underdosing the target and overdosing the critical organs. Therefore, image-guided localization of the prostate must be performed prior to each treatment, which led to the development of a new radiation treatment modality, the image-guided radiation therapy (IGRT). One form of IGRT is to implant three gold seed markers into the prostate gland to serve as a fixed reference system. Daily patient setup verification is performed by using the gold seed markers-based image registration rather than the commonly used bony landmarks-based approach. In this paper, we present an efficient and automated method for registering digitally reconstructed radiographs (DRR) and kV X-ray images of the prostate with high accuracy using a hybrid method. Our technique relies on both internal fiducial markers (i.e. gold seed markers) implanted into the prostate and a robust, hybrid 2D registration method using a salient-region based image registration technique. The registration procedure consists of several novel steps. Validation experiments were performed to register DRR and kV X-ray images in anterior-posterior (AP) or lateral views and the results were reviewed by experienced radiation oncology physicists.

  15. Prostate Cancer and Sexual Function

    PubMed Central

    2012-01-01

    Prostate cancer is now ranked fifth in incidence among cancers in Korean adult males. This is attributable to the more Westernized dietary style which increases the morbidity of prostate cancer and the development of cancer diagnostic technologies, such as prostate-specific antigen and advanced medical systems, increasing the rate of prostate cancer diagnosis. Prostate cancer effects include not only erectile dysfunction caused by the disease itself, but also by psychiatric disorders caused by prostate cancer or its treatments. Prostate cancer by itself reduces sexual desire and the frequency of sexual intercourse. Additionally, surgery or hormonal therapy to block testosterone further increases the frequency of erectile dysfunction. Erectile dysfunction following radical prostatectomy is primarily attributable to nerve injury caused by intraoperative nerve traction, thermal injury, ischemic injury, and local inflammatory reactions. Additionally, the absence of nocturnal penile tumescence causes persistent hypoxia of the corpus cavernosum, which, secondarily, causes anatomical and functional changes in the corpus cavernosum. Preservation of erectile function is one of the most significant issues for patients with local prostate cancer. Erectile dysfunction following radical prostatectomy is known to have various prognoses, depending on preservation of the neurovascular bundle, patient age, and preoperative erectile status. Intracavernosal injections, PDE5 inhibitors, and penile rehabilitation therapy using a vacuum constriction device after radical prostatectomy are known to improve the recovery of erectile function. Recently, testosterone replacement therapy has also drawn attention as a treatment method. PMID:23596596

  16. Electronic portal imaging vs kilovoltage imaging in fiducial marker image-guided radiotherapy for prostate cancer: an analysis of set-up uncertainties

    PubMed Central

    Gill, S; Thomas, J; Fox, C; Kron, T; Thompson, A; Chander, S; Williams, S; Tai, K H; Duchesne, G; Foroudi, F

    2012-01-01

    Objectives The purpose of this study was to compare interfraction prostate displacement data between electronic portal imaging (EPI) and kilovoltage imaging (KVI) treatment units and discuss the impact of any difference on margin calculations for prostate cancer image-guided radiotherapy (IGRT). Methods Prostate interfraction displacement data was collected prospectively for the first 4 fractions in 333 patients treated with IGRT with daily pre-treatment EPI or KVI orthogonal imaging. Displacement was recorded in the anteroposterior (AP), left–right (LR) and superoinferior (SI) directions. The proportion of displacement <3 mm and the difference in median absolute displacements were calculated in all directions. Results 1088 image pairs were analysed in total, 448 by EPI and 640 by KVI. There were 23% (95% confidence interval [CI] 18–28%) more displacements under 3 mm for EPI than for KVI in the AP direction, 14% (95% CI 10–19%) more in the LR direction and 10% (95% CI 5–15%) more in the SI direction. The differences in absolute median displacement (KVI>EPI) were AP 1 mm, LR 1 mm and SI 0.5 mm. Wilcoxon rank-sum test showed that distributions were significantly different for all three dimensions (p<0.0001 for AP and LR and p=0.02 for SI). Conclusion EPI has a statistically significant smaller set-up error distribution than KVI. We would expect that, because fiducial marker imaging is less clear for EPI, the clinical target volume to planning target volume margin would be greater when using IGRT; however, relying wholly on displacement data gives the opposite result. We postulate that this is owing to observer bias, which is not accounted for in margin calculation formulas. PMID:21976627

  17. Configurations of a two-tiered amplified gene expression system in adenoviral vectors designed to improve the specificity of in vivo prostate cancer imaging

    PubMed Central

    Sato, M; Figueiredo, ML; Burton, JB; Johnson, M; Chen, M; Powell, R; Gambhir, SS; Carey, M; Wu, L

    2009-01-01

    Effective treatment for recurrent, disseminated prostate cancer is notably limited. We have developed adenoviral vectors with a prostate-specific two-step transcriptional amplification (TSTA) system that would express therapeutic genes at a robust level to target metastatic disease. The TSTA system employs the prostate-specific antigen (PSA) promoter/enhancer to drive a potent synthetic activator, which in turn activates the expression of the therapeutic gene. In this study, we explored different configurations of this bipartite system and discovered that physical separation of the two TSTA components into E1 and E3 regions of adenovirus was able to enhance androgen regulation and cell-discriminatory expression. The TSTA vectors that express imaging reporter genes were assessed by noninvasive imaging technologies in animal models. The improved selectivity of the E1E3 configured vector was reflected in silenced ectopic expression in the lung. Significantly, the enhanced specificity of the E1E3 vector enabled the detection of lung metastasis of prostate cancer. An E1E3 TSTA vector that expresses the herpes simplex virus thymidine kinase gene can effectively direct positron emission tomography (PET) imaging of the tumor. The prostate-targeted gene delivery vectors with robust and cell-specific expression capability will advance the development of safe and effective imaging guided therapy for recurrent metastatic stages of prostate cancer. PMID:18305574

  18. Quantitative identification of magnetic resonance imaging features of prostate cancer response following laser ablation and radical prostatectomy

    PubMed Central

    Litjens, Geert J. S.; Huisman, Henkjan J.; Elliott, Robin M.; Shih, Natalie Nc.; Feldman, Michael D.; Viswanath, Satish; Fütterer, Jurgen J.; Bomers, Joyce G. R.; Madabhushi, Anant

    2014-01-01

    Abstract. Laser interstitial thermotherapy (LITT) is a relatively new focal therapy technique for the ablation of localized prostate cancer. In this study, for the first time, we are integrating ex vivo pathology and magnetic resonance imaging (MRI) to assess the imaging characteristics of prostate cancer and treatment changes following LITT. Via a unique clinical trial, which gave us the availability of ex vivo histology and pre- and post-LITT MRIs, (1) we investigated the imaging characteristics of treatment effects and residual disease, and (2) evaluated treatment-induced feature changes in the ablated area relative to the residual disease. First, a pathologist annotated the ablated area and the residual disease on the ex vivo histology. Subsequently, we transferred the annotations to the post-LITT MRI using a semi-automatic elastic registration. The pre- and post-LITT MRIs were registered and features were extracted. A scoring metric based on the change in median pre- and post-LITT feature values was introduced, which allowed us to identify the most treatment responsive features. Our results show that (1) image characteristics for treatment effects and residual disease are different, and (2) the change of feature values between pre- and post-LITT MRIs can be a quantitative biomarker for treatment response. Finally, using feature change improved discrimination between the residual disease and treatment effects. PMID:26158070

  19. HUMAN PROSTATE CANCER RISK FACTORS

    EPA Science Inventory

    Prostate cancer has the highest prevalence of any non-skin cancer in the human body, with similar likelihood of neoplastic foci found within the prostates of men around the world regardless of diet, occupation, lifestyle, or other factors. Essentially all men with circulating an...

  20. Androgen Control in Prostate Cancer.

    PubMed

    Pelekanou, Vasiliki; Castanas, Elias

    2016-10-01

    Research on prostate cancer has extensively advanced in the past decade, through an improved understanding for its genetic basis and risk-stratification. Molecular classification of prostate cancer into distinct subtypes and the recognition of new histologic entities promise the development of tailored-made management strategies of patients. Nowadays, various alternatives are available for clinical management of localized disease ranging from observation alone through radical prostatectomy. In patients with castration-resistant prostate cancer, the approval of new drugs for the management of metastatic disease has offered promising results improving the survival of these patients. In this context, androgen receptors (AR) remain at the epicenter of prostate cancer research holding a prominent role in the biology and therapeutic regimens of prostate cancer. As many of castration-resistant tumors retain hormone-responsiveness, AR is a clinical relevant, druggable target. However, AR paradoxically remains neglected as a prostate cancer biomarker. The great advancements in prostate cancer preclinical and clinical research, imply further improvement in clinical and translational data, for patient selection and treatment optimization. For a precision medicine-guided clinical management of prostate cancer, AR evaluation has to be implemented in companion and complementary diagnostics, as discussed here. J. Cell. Biochem. 117: 2224-2234, 2016. © 2016 Wiley Periodicals, Inc. PMID:27104784

  1. A prospective study of the efficacy of magnetic resonance spectroscopy imaging for predicting locally advanced prostate cancer

    PubMed Central

    Razi, Ali; Parizi, Mehdi Kardoust; Kazemeini, Seid Mohammad; Abedi, Akbar

    2015-01-01

    Objective: To evaluate the efficacy of magnetic resonance spectroscopy imaging (MRSI) for predicting locally advanced prostate cancer (PC). Materials and methods: Between April 2009 and July 2012, 80 consecutive patients with clinically localized PC had undergone endorectal MRSI before radical retropubic prostatectomy. Clinicopathological parameters, including age, preoperative prostate-specific antigen (PSA), Gleason score (GS) at biopsy, perinural invasion at biopsy, prostate weight at surgery, GS of surgical specimen, and pathological staging were recorded. The MRSI findings were compared with the histopathological findings of the radical prostatectomy. The diagnostic accuracy measures consisting of sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) of MRSI, and other variables in the diagnosis of locally advanced PC (Pathology Stages pT3a, pT3b, or pT4) were evaluated. Results: Sensitivity, specificity, PPV, and NPV of MRSI in detecting locally advanced PC is 42.4%, 93.6%, 82.3%, and 69.8%, respectively [area under the receiver operating characteristic (ROC) curve=0.658, p value <0.0001]. MRSI, cancer-positive core percentage at biopsy, and GS at biopsy are more accurate factors among all the predictive variables in predicting locally advanced PC. Conclusion: MRSI may be considered as a complementary diagnostic modality with high specificity and moderate sensitivity in predicting locally advanced PC. Combination of this modality with other predictive factors helps the surgeon and patient to select an appropriate treatment strategy. PMID:26328204

  2. Approach to Oligometastatic Prostate Cancer.

    PubMed

    Bernard, Brandon; Gershman, Boris; Karnes, R Jeffrey; Sweeney, Christopher J; Vapiwala, Neha

    2016-01-01

    Oligometastatic prostate cancer has increasingly been recognized as a unique clinical state with therapeutic implications. It has been proposed that patients with oligometastases may have a more indolent course and that outcome may be further improved with metastasis-directed local ablative therapy. In addition, there are differing schools of thoughts regarding whether oligometastases represent isolated lesions-where targeted therapy may render a patient disease free-or whether they coexist with micrometastases, where targeted therapy in addition to systemic therapy is required for maximal clinical impact. As such, the approach to the patient with oligometastatic prostate cancer requires multidisciplinary consideration, with surgery, radiotherapy, and systemic therapy potentially of benefit either singularly or in combination. Indeed, mounting evidence suggests durable disease-free intervals and, in some cases, possibly cure, may be achieved with such a multimodal strategy. However, selecting patients that may benefit most from treatment of oligometastases is an ongoing challenge. Moreover, with the advent of new, highly sensitive imaging technologies, the spectrum based on CT of the abdomen and pelvis and technetium bone scan of localized to oligometastatic to widespread disease has become increasingly blurred. As such, new MRI- and PET-based modalities require validation. As some clinical guidelines advise against routine prostate-specific antigen screening, the possibility of more men presenting with locally advanced or de novo oligometastatic prostate cancer exists; thus, knowing how best to treat these patients may become more relevant at a population level. Ultimately, the arrival of prospective clinical data and better understanding of biology will hopefully further inform how best to treat men with this disease. PMID:27249693

  3. The value of magnetic resonance imaging and ultrasonography (MRI/US)-fusion biopsy platforms in prostate cancer detection: a systematic review.

    PubMed

    Gayet, Maudy; van der Aa, Anouk; Beerlage, Harrie P; Schrier, Bart Ph; Mulders, Peter F A; Wijkstra, Hessel

    2016-03-01

    Despite limitations considering the presence, staging and aggressiveness of prostate cancer, ultrasonography (US)-guided systematic biopsies (SBs) are still the 'gold standard' for the diagnosis of prostate cancer. Recently, promising results have been published for targeted prostate biopsies (TBs) using magnetic resonance imaging (MRI) and ultrasonography (MRI/US)-fusion platforms. Different platforms are USA Food and Drug Administration registered and have, mostly subjective, strengths and weaknesses. To our knowledge, no systematic review exists that objectively compares prostate cancer detection rates between the different platforms available. To assess the value of the different MRI/US-fusion platforms in prostate cancer detection, we compared platform-guided TB with SB, and other ways of MRI TB (cognitive fusion or in-bore MR fusion). We performed a systematic review of well-designed prospective randomised and non-randomised trials in the English language published between 1 January 2004 and 17 February 2015, using PubMed, Embase and Cochrane Library databases. Search terms included: 'prostate cancer', 'MR/ultrasound(US) fusion' and 'targeted biopsies'. Extraction of articles was performed by two authors (M.G. and A.A.) and were evaluated by the other authors. Randomised and non-randomised prospective clinical trials comparing TB using MRI/US-fusion platforms and SB, or other ways of TB (cognitive fusion or MR in-bore fusion) were included. In all, 11 of 1865 studies met the inclusion criteria, involving seven different fusion platforms and 2626 patients: 1119 biopsy naïve, 1433 with prior negative biopsy, 50 not mentioned (either biopsy naïve or with prior negative biopsy) and 24 on active surveillance (who were disregarded). The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was used to assess the quality of included articles. No clear advantage of MRI/US fusion-guided TBs was seen for cancer detection rates (CDRs) of all prostate

  4. SU-C-17A-03: Evaluation of Deformable Image Registration Methods Between MRI and CT for Prostate Cancer Radiotherapy

    SciTech Connect

    Wen, N; Glide-Hurst, C; Zhong, H; Chin, K; Kumarasiri, A; Liu, C; Liu, M; Siddiqui, S

    2014-06-15

    Purpose: We evaluated the performance of two commercially available and one open source B-Spline deformable image registration (DIR) algorithms between T2-weighted MRI and treatment planning CT using the DICE indices. Methods: CT simulation (CT-SIM) and MR simulation (MR-SIM) for four prostate cancer patients were conducted on the same day using the same setup and immobilization devices. CT images (120 kVp, 500 mAs, voxel size = 1.1x1.1x3.0 mm3) were acquired using an open-bore CT scanner. T2-weighted Turbo Spine Echo (T2W-TSE) images (TE/TR/α = 80/4560 ms/90°, voxel size = 0.7×0.7×2.5 mm3) were scanned on a 1.0T high field open MR-SIM. Prostates, seminal vesicles, rectum and bladders were delineated on both T2W-TSE and CT images by the attending physician. T2W-TSE images were registered to CT images using three DIR algorithms, SmartAdapt (Varian), Velocity AI (Velocity) and Elastix (Klein et al 2010) and contours were propagated. DIR results were evaluated quantitatively or qualitatively by image comparison and calculating organ DICE indices. Results: Significant differences in the contours of prostate and seminal vesicles were observed between MR and CT. On average, volume changes of the propagated contours were 5%, 2%, 160% and 8% for the prostate, seminal vesicles, bladder and rectum respectively. Corresponding mean DICE indices were 0.7, 0.5, 0.8, and 0.7. The intraclass correlation coefficient (ICC) was 0.9 among three algorithms for the Dice indices. Conclusion: Three DIR algorithms for CT/MR registration yielded similar results for organ propagation. Due to the different soft tissue contrasts between MRI and CT, organ delineation of prostate and SVs varied significantly, thus efforts to develop other DIR evaluation metrics are warranted. Conflict of interest: Submitting institution has research agreements with Varian Medical System and Philips Healthcare.

  5. New drugs in prostate cancer.

    PubMed

    Yoo, Sangjun; Choi, Se Young; You, Dalsan; Kim, Choung-Soo

    2016-06-01

    The standard primary treatment for advanced prostate cancer has been hormonal therapy since the 1940s. However, prostate cancer inevitably progresses to castration-resistant prostate cancer (CRPC) after a median duration of 18 months of androgen deprivation therapy. In patients with CRPC, docetaxel has been regarded as the standard treatment. However, survival advantages of docetaxel over other treatments are slim, and the need for new agents persists. In recent years, novel agents, including abiraterone, enzalutamide, cabazitaxel, radium-223, and sipuleucel-T, have been approved for the treatment of CRPC, and more such agents based on diverse mechanisms are under investigation or evaluation. In this article, the authors reviewed the current literature on recent advances in medical treatment of prostate cancer, especially CRPC. In addition, the authors elaborated on novel drugs for prostate cancer currently undergoing investigation and their mechanisms. PMID:27358841

  6. American Cancer Society Recommendations for Prostate Cancer Early Detection

    MedlinePlus

    ... Research Get Involved Find Local ACS Learn About Cancer » Prostate Cancer » More Information » Prostate Cancer Early Detection » American ... Causes Cancer? Breast Cancer Colon/Rectum Cancer Lung Cancer Prostate Cancer Skin Cancer Show All Cancer Types News ...

  7. Estimation of effective imaging dose for kilovoltage intratreatment monitoring of the prostate position during cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Ng, J. A.; Booth, J.; Poulsen, P.; Kuncic, Z.; Keall, P. J.

    2013-09-01

    Kilovoltage intratreatment monitoring (KIM) is a novel real-time localization modality where the tumor position is continuously measured during intensity modulated radiation therapy (IMRT) or intensity modulated arc therapy (IMAT) by a kilovoltage (kV) x-ray imager. Adding kV imaging during therapy adds radiation dose. The additional effective dose is quantified for prostate radiotherapy and compared to dose from other localization modalities. The software PCXMC 2.0 was used to calculate the effective dose delivered to a phantom as a function of imager angle and field size for a Varian On-Board Imager. The average angular effective dose was calculated for a field size of 6 cm × 6 cm. The average angular effective dose was used in calculations for different treatment scenarios. Treatment scenarios considered were treatment type and fractionation. For all treatment scenarios, (i.e. conventionally fractionated and stereotactic body radiotherapy (SBRT), IMRT and IMAT), the total KIM dose at 1 Hz ranged from 2-10 mSv. This imaging dose is less than the Navotek radioactive implant dose (64 mSv) and a standard SBRT cone beam computed tomography pretreatment scan dose (22 mSv) over an entire treatment regime. KIM delivers an acceptably low effective dose for daily use as a real-time image-guidance method for prostate radiotherapy.

  8. Automated detection of prostate cancer in digitized whole-slide images of H and E-stained biopsy specimens

    NASA Astrophysics Data System (ADS)

    Litjens, G.; Ehteshami Bejnordi, B.; Timofeeva, N.; Swadi, G.; Kovacs, I.; Hulsbergen-van de Kaa, C.; van der Laak, J.

    2015-03-01

    Automated detection of prostate cancer in digitized H and E whole-slide images is an important first step for computer-driven grading. Most automated grading algorithms work on preselected image patches as they are too computationally expensive to calculate on the multi-gigapixel whole-slide images. An automated multi-resolution cancer detection system could reduce the computational workload for subsequent grading and quantification in two ways: by excluding areas of definitely normal tissue within a single specimen or by excluding entire specimens which do not contain any cancer. In this work we present a multi-resolution cancer detection algorithm geared towards the latter. The algorithm methodology is as follows: at a coarse resolution the system uses superpixels, color histograms and local binary patterns in combination with a random forest classifier to assess the likelihood of cancer. The five most suspicious superpixels are identified and at a higher resolution more computationally expensive graph and gland features are added to refine classification for these superpixels. Our methods were evaluated in a data set of 204 digitized whole-slide H and E stained images of MR-guided biopsy specimens from 163 patients. A pathologist exhaustively annotated the specimens for areas containing cancer. The performance of our system was evaluated using ten-fold cross-validation, stratified according to patient. Image-based receiver operating characteristic (ROC) analysis was subsequently performed where a specimen containing cancer was considered positive and specimens without cancer negative. We obtained an area under the ROC curve of 0.96 and a 0.4 specificity at a 1.0 sensitivity.

  9. The link between benign prostatic hyperplasia and prostate cancer.

    PubMed

    Ørsted, David D; Bojesen, Stig E

    2013-01-01

    Benign prostatic hyperplasia (BPH) and prostate cancer are among the most common diseases of the prostate gland and represent significant burdens for patients and health-care systems in many countries. The two diseases share traits such as hormone-dependent growth and response to antiandrogen therapy. Furthermore, risk factors such as prostate inflammation and metabolic disruption have key roles in the development of both diseases. Despite these commonalities, BPH and prostate cancer exhibit important differences in terms of histology and localization. Although large-scale epidemiological studies have shown that men with BPH have an increased risk of prostate cancer and prostate-cancer-related mortality, it remains unclear whether this association reflects a causal link, shared risk factors or pathophysiological mechanisms, or detection bias upon statistical analysis. Establishing BPH as a causal factor for prostate cancer development could improve the accuracy of prognostication and expedite intervention, potentially reducing the number of men who die from prostate cancer. PMID:23165396

  10. Dual-Modality PET/Ultrasound imaging of the Prostate

    SciTech Connect

    Huber, Jennifer S.; Moses, William W.; Pouliot, Jean; Hsu, I.C.

    2005-11-11

    Functional imaging with positron emission tomography (PET)will detect malignant tumors in the prostate and/or prostate bed, as well as possibly help determine tumor ''aggressiveness''. However, the relative uptake in a prostate tumor can be so great that few other anatomical landmarks are visible in a PET image. Ultrasound imaging with a transrectal probe provides anatomical detail in the prostate region that can be co-registered with the sensitive functional information from the PET imaging. Imaging the prostate with both PET and transrectal ultrasound (TRUS) will help determine the location of any cancer within the prostate region. This dual-modality imaging should help provide better detection and treatment of prostate cancer. LBNL has built a high performance positron emission tomograph optimized to image the prostate.Compared to a standard whole-body PET camera, our prostate-optimized PET camera has the same sensitivity and resolution, less backgrounds and lower cost. We plan to develop the hardware and software tools needed for a validated dual PET/TRUS prostate imaging system. We also plan to develop dual prostate imaging with PET and external transabdominal ultrasound, in case the TRUS system is too uncomfortable for some patients. We present the design and intended clinical uses for these dual imaging systems.