Science.gov

Sample records for proteases display distinct

  1. Nicotiana benthamiana cathepsin B displays distinct enzymatic features which differ from its human relative and aleurain-like protease.

    PubMed

    Niemer, Melanie; Mehofer, Ulrich; Verdianz, Maria; Porodko, Andreas; Schähs, Philipp; Kracher, Daniel; Lenarcic, Brigita; Novinec, Marko; Mach, Lukas

    2016-03-01

    The tobacco-related plant species Nicotiana benthamiana has recently emerged as a versatile expression platform for the rapid generation of recombinant biopharmaceuticals, but product yield and quality frequently suffer from unintended proteolysis. Previous studies have highlighted that recombinant protein fragmentation in plants involves papain-like cysteine proteinases (PLCPs). For this reason, we have now characterized two major N. benthamiana PLCPs in detail: aleurain-like protease (NbALP) and cathepsin B (NbCathB). As typical for PLCPs, the precursor of NbCathB readily undergoes autocatalytic activation when incubated at low pH. On the contrary, maturation of NbALP requires the presence of a cathepsin L-like PLCP as processing enzyme. While the catalytic features of NbALP closely resemble those of its mammalian homologue cathepsin H, NbCathB displays remarkable differences to human cathepsin B. In particular, NbCathB appears to be a far less efficient peptidyldipeptidase (removing C-terminal dipeptides) than its human counterpart, suggesting that it functions primarily as an endopeptidase. Importantly, NbCathB was far more efficient than NbALP in processing the human anti-HIV-1 antibody 2F5 into fragments observed during its production in N. benthamiana. This suggests that targeted down-regulation of NbCathB could improve the performance of this plant-based expression platform. PMID:26166069

  2. The Plasmodium serine-type SERA proteases display distinct expression patterns and non-essential in vivo roles during life cycle progression of the malaria parasite.

    PubMed

    Putrianti, Elyzana D; Schmidt-Christensen, Anja; Arnold, Iris; Heussler, Volker T; Matuschewski, Kai; Silvie, Olivier

    2010-06-01

    Parasite proteases play key roles in several fundamental steps of the Plasmodium life cycle, including haemoglobin degradation, host cell invasion and parasite egress. Plasmodium exit from infected host cells appears to be mediated by a class of papain-like cysteine proteases called 'serine repeat antigens' (SERAs). A SERA subfamily, represented by Plasmodium falciparum SERA5, contains an atypical active site serine residue instead of a catalytic cysteine. Members of this SERAser subfamily are abundantly expressed in asexual blood stages, rendering them attractive drug and vaccine targets. In this study, we show by antibody localization and in vivo fluorescent tagging with the red fluorescent protein mCherry that the two P. berghei serine-type family members, PbSERA1 and PbSERA2, display differential expression towards the final stages of merozoite formation. Via targeted gene replacement, we generated single and double gene knockouts of the P. berghei SERAser genes. These loss-of-function lines progressed normally through the parasite life cycle, suggesting a specialized, non-vital role for serine-type SERAs in vivo. Parasites lacking PbSERAser showed increased expression of the cysteine-type PbSERA3. Compensatory mechanisms between distinct SERA subfamilies may thus explain the absence of phenotypical defect in SERAser disruptants, and challenge the suitability to develop potent antimalarial drugs based on specific inhibitors of Plasmodium serine-type SERAs. PMID:20039882

  3. High Throughput Substrate Phage Display for Protease Profiling

    PubMed Central

    Ratnikov, Boris; Cieplak, Piotr; Smith, Jeffrey W.

    2012-01-01

    Summary The interplay between a protease and its substrates is controlled at many different levels, including coexpression, colocalization, binding driven by ancillary contacts, and the presence of natural inhibitors. Here we focus on the most basic parameter that guides substrate recognition by a protease, the recognition specificity at the catalytic cleft. An understanding of this substrate specificity can be used to predict the putative substrates of a protease, to design protease activated imaging agents, and to initiate the design of active site inhibitors. Our group has characterized protease specificities of several matrix metalloproteinases using substrate phage display. Recently, we have adapted this method to a semiautomated platform that includes several high-throughput steps. The semiautomated platform allows one to obtain an order of magnitude more data, thus permitting precise comparisons among related proteases to define their functional distinctions. PMID:19377968

  4. High throughput substrate phage display for protease profiling.

    PubMed

    Ratnikov, Boris; Cieplak, Piotr; Smith, Jeffrey W

    2009-01-01

    The interplay between a protease and its substrates is controlled at many different levels, including coexpression, colocalization, binding driven by ancillary contacts, and the presence of natural inhibitors. Here we focus on the most basic parameter that guides substrate recognition by a protease, the recognition specificity at the catalytic cleft. An understanding of this substrate specificity can be used to predict the putative substrates of a protease, to design protease activated imaging agents, and to initiate the design of active site inhibitors. Our group has characterized protease specificities of several matrix metalloproteinases using substrate phage display. Recently, we have adapted this method to a semiautomated platform that includes several high-throughput steps. The semiautomated platform allows one to obtain an order of magnitude more data, thus permitting precise comparisons among related proteases to define their functional distinctions. PMID:19377968

  5. New soluble ATP-dependent protease, Ti, in Escherichia coli that is distinct from protease La

    SciTech Connect

    Chung, C.H.; Hwang, B.J.; Park, W.J.; Goldberg, A.L.

    1987-05-01

    E. coli must contain other ATP-requiring proteolytic systems in addition to protease La (the lon gene product). A new ATP-dependent protease was purified from lon cells which lack protease La, as shown by immuno-blotting. This enzyme hydrolyzes (TH)casein to acid-soluble products in the presence of ATP (or dATP) and MgS . Nonhydrolyzable ATP analogs, other nucleoside triphosphates and AMP can not replace ATP. Therefore, ATP hydrolysis appears necessary for proteolysis. The enzyme appears to be a serine protease, but also contains essential thiol residues. Unlike protease La, it is not inhibited by vanadate, heparin, or the defective R9 subunit of protease La. On gel filtration, this enzyme has an apparent Mr of 340,000 and is comprised of two components of 190,000D and 130,000D, which can be separated by phosphocellulose chromatography. By themselves, these components do not show ATP-dependent proteolysis, but when mixed, full activity is restored. These finding and similar ones of Maurizi and Gottesman indicate that E. coli contain two soluble ATP-dependent proteases, which function by different mechanisms. This new enzyme may contribute to the rapid breakdown of abnormal polypeptides or of normal proteins during starvation. The authors propose to name it protease Ti.

  6. Escherichia coli contains a soluble ATP-dependent protease (Ti) distinct from protease La

    SciTech Connect

    Hwang, B.J.; Park, W.J.; Chung, C.H.; Goldberg, A.L.

    1987-08-01

    The energy requirement for protein breakdown in Escherichia coli has generally been attributed to the ATP-dependence of protease La, the lon gene product. The authors have partially purified another ATP-dependent protease from lon/sup -/ cells that lack protease La (as shown by immunoblotting). This enzyme hydrolyzes (/sup 3/H)methyl-casein to acid-soluble products in the presence of ATP and Mg/sup 2 +/. ATP hydrolysis appears necessary for proteolytic activity. Since this enzyme is inhibited by diisopropyl fluorophosphate, it appears to be a serine protease, but it also contains essential thiol residues. They propose to name this enzyme protease Ti. It differs from protease La in nucleotide specificity, inhibitor sensitivity, and subunit composition. On gel filtration, protease Ti has an apparent molecular weight of 370,000. It can be fractionated by phosphocellulose chromatography or by DEAE chromatography into two components with apparent molecular weights of 260,000 and 140,000. When separated, they do not show preteolytic activity. One of these components, by itself, has ATPase activity and is labile in the absence of ATP. The other contains the diisopropyl fluorophosphate-sensitive proteolytic site. These results and the similar findings of Katayama-Fujimura et al. indicate that E. coli contains two ATP-hydrolyzing proteases, which differ in many biochemical features and probably in their physiological roles.

  7. Development of a glutathione production process from proteinaceous biomass resources using protease-displaying Saccharomyces cerevisiae.

    PubMed

    Hara, Kiyotaka Y; Kim, Songhee; Yoshida, Hideyo; Kiriyama, Kentaro; Kondo, Takashi; Okai, Naoko; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2012-02-01

    Glutathione is a valuable tri-peptide that is widely used in the pharmaceutical, food, and cosmetic industries. Glutathione is produced industrially by fermentation using Saccharomyces cerevisiae, and supplementation of fermentation with several amino acids can increase intracellular GSH content. More recently, however, focus has been given to protein as a resource for biofuel and fine chemical production. We demonstrate that expression of a protease on the cell surface of S. cerevisiae enables the direct use of keratin and soy protein as a source of amino acids and that these substrates enhanced intracellular GSH content. Furthermore, fermentation using soy protein also enhanced cell concentration. GSH fermentation from keratin and to a greater extent from soy protein using protease-displaying yeast yielded greater GSH productivity compared to GSH fermentation with amino acid supplementation. This protease-displaying yeast is potentially applicable to a variety of processes for the bio-production of value-added chemicals from proteinaceous biomass resources. PMID:22075633

  8. Subsarcolemmal and interfibrillar mitochondria display distinct superoxide production profiles.

    PubMed

    Crochemore, C; Mekki, M; Corbière, C; Karoui, A; Noël, R; Vendeville, C; Vaugeois, J-M; Monteil, C

    2015-03-01

    Cardiac subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM) subpopulations display distinct biochemical, morphological, and functional characteristics. Moreover, they appear to be differently influenced during cardiac pathologies or toxic injuries. Although mitochondrial reactive oxygen species seem to play a critical role in cardiac function and diseases, limited information exists about the superoxide production characteristics of these mitochondrial subpopulations. In this work, using direct measurement of superoxide by electron paramagnetic resonance, we showed that differences in superoxide production profiles were present between cardiac IFM and SSM, in terms of intensity and major sites of superoxide generation. In SSM incubated with glutamate plus malate as substrates, the total observed superoxide levels were significantly higher than those observed with IFM, with an important contribution of the NADH-oxidizing site of complex I (site If) and the quinol-oxidizing site of complex III (site IIIQ0). In both IFM and SSM, succinate leads to similar rates of total superoxide levels with a substantial role for contribution of reverse electron transfer. Finally, using two spin probes with different membrane permeabilities, our data on complex III showed direct intra- and extra-mitochondrial superoxide release whereas complex I- and II-dependent superoxide were exclusively released inside the mitochondria, confirming previous studies. Feasibility of this approach to measure intra- and extra-mitochondrial superoxide levels and to characterize distinct superoxide production profiles of cardiac IFM and SSM has been demonstrated. PMID:25689624

  9. OVCAR-3 Spheroid-Derived Cells Display Distinct Metabolic Profiles

    PubMed Central

    Vermeersch, Kathleen A.; Wang, Lijuan; Mezencev, Roman; McDonald, John F.; Styczynski, Mark P.

    2015-01-01

    Introduction Recently, multicellular spheroids were isolated from a well-established epithelial ovarian cancer cell line, OVCAR-3, and were propagated in vitro. These spheroid-derived cells displayed numerous hallmarks of cancer stem cells, which are chemo- and radioresistant cells thought to be a significant cause of cancer recurrence and resultant mortality. Gene set enrichment analysis of expression data from the OVCAR-3 cells and the spheroid-derived putative cancer stem cells identified several metabolic pathways enriched in differentially expressed genes. Before this, there had been little previous knowledge or investigation of systems-scale metabolic differences between cancer cells and cancer stem cells, and no knowledge of such differences in ovarian cancer stem cells. Methods To determine if there were substantial metabolic changes corresponding with these transcriptional differences, we used two-dimensional gas chromatography coupled to mass spectrometry to measure the metabolite profiles of the two cell lines. Results These two cell lines exhibited significant metabolic differences in both intracellular and extracellular metabolite measurements. Principal components analysis, an unsupervised dimensional reduction technique, showed complete separation between the two cell types based on their metabolite profiles. Pathway analysis of intracellular metabolomics data revealed close overlap with metabolic pathways identified from gene expression data, with four out of six pathways found enriched in gene-level analysis also enriched in metabolite-level analysis. Some of those pathways contained multiple metabolites that were individually statistically significantly different between the two cell lines, with one of the most broadly and consistently different pathways, arginine and proline metabolism, suggesting an interesting hypothesis about cancerous and stem-like metabolic phenotypes in this pair of cell lines. Conclusions Overall, we demonstrate for the

  10. Subclassification and Biochemical Analysis of Plant Papain-Like Cysteine Proteases Displays Subfamily-Specific Characteristics1[C][W

    PubMed Central

    Richau, Kerstin H.; Kaschani, Farnusch; Verdoes, Martijn; Pansuriya, Twinkal C.; Niessen, Sherry; Stüber, Kurt; Colby, Tom; Overkleeft, Hermen S.; Bogyo, Matthew; Van der Hoorn, Renier A.L.

    2012-01-01

    Papain-like cysteine proteases (PLCPs) are a large class of proteolytic enzymes associated with development, immunity, and senescence. Although many properties have been described for individual proteases, the distribution of these characteristics has not been studied collectively. Here, we analyzed 723 plant PLCPs and classify them into nine subfamilies that are present throughout the plant kingdom. Analysis of these subfamilies revealed previously unreported distinct subfamily-specific functional and structural characteristics. For example, the NPIR and KDEL localization signals are distinctive for subfamilies, and the carboxyl-terminal granulin domain occurs in two PLCP subfamilies, in which some individual members probably evolved by deletion of the granulin domains. We also discovered a conserved double cysteine in the catalytic site of SAG12-like proteases and two subfamily-specific disulfides in RD19A-like proteases. Protease activity profiling of representatives of the PLCP subfamilies using novel fluorescent probes revealed striking polymorphic labeling profiles and remarkably distinct pH dependency. Competition assays with peptide-epoxide scanning libraries revealed common and unique inhibitory fingerprints. Finally, we expand the detection of PLCPs by identifying common and organ-specific protease activities and identify previously undetected proteases upon labeling with cell-penetrating probes in vivo. This study provides the plant protease research community with tools for further functional annotation of plant PLCPs. PMID:22371507

  11. Distinct protease pathways control cell shape and apoptosis in v-src-transformed quail neuroretina cells

    SciTech Connect

    Neel, Benjamin D.; Gillet, Germain . E-mail: g.gillet@ibcp.fr

    2005-11-15

    Intracellular proteases play key roles in cell differentiation, proliferation and apoptosis. In nerve cells, little is known about their relative contribution to the pathways which control cell physiology, including cell death. Neoplastic transformation of avian neuroretina cells by p60 {sup v-src} tyrosine kinase results in dramatic morphological changes and deregulation of apoptosis. To identify the proteases involved in the cellular response to p60 {sup v-src}, we evaluated the effect of specific inhibitors of caspases, calpains and the proteasome on cell shape changes and apoptosis induced by p60 {sup v-src} inactivation in quail neuroretina cells transformed by tsNY68, a thermosensitive strain of Rous sarcoma virus. We found that the ubiquitin-proteasome pathway is recruited early after p60 {sup v-src} inactivation and is critical for morphological changes, whereas caspases are essential for cell death. This study provides evidence that distinct intracellular proteases are involved in the control of the morphology and fate of v-src-transformed cells.

  12. Distinct properties of proteases and nucleases in the gut, salivary gland and saliva of southern green stink bug, Nezara viridula.

    PubMed

    Lomate, Purushottam R; Bonning, Bryony C

    2016-01-01

    Stink bugs negatively impact numerous plant species of agricultural and horticultural importance. While efforts to develop effective control measures are underway, the unique digestive physiology of these pests presents a significant hurdle for either protein- or nucleotide-based management options. Here we report the comparative biochemical and proteomic characterization of proteases and nucleases from the gut, salivary gland and saliva of the southern green stink bug, Nezara viridula. The pH optimum for protease activity was acidic (5 to 6) in the gut with the primary proteases being cysteine proteases, and alkaline (8 to 9) in the saliva and salivary gland with the primary proteases being serine proteases. The serine proteases in saliva differ biochemically from trypsin and chymotrypsin, and the cathepsins in the gut and saliva showed distinct properties in inhibitor assays. Nuclease activity (DNase, RNase, dsRNase) was concentrated in the salivary gland and saliva with negligible activity in the gut. The most abundant proteins of the gut (530) and salivary gland (631) identified by proteomic analysis included four gut proteases along with eight proteases and one nuclease from the salivary gland. Understanding of N. viridula digestive physiology will facilitate the design of new strategies for management of this significant pest. PMID:27282882

  13. Distinct properties of proteases and nucleases in the gut, salivary gland and saliva of southern green stink bug, Nezara viridula

    PubMed Central

    Lomate, Purushottam R.; Bonning, Bryony C.

    2016-01-01

    Stink bugs negatively impact numerous plant species of agricultural and horticultural importance. While efforts to develop effective control measures are underway, the unique digestive physiology of these pests presents a significant hurdle for either protein- or nucleotide-based management options. Here we report the comparative biochemical and proteomic characterization of proteases and nucleases from the gut, salivary gland and saliva of the southern green stink bug, Nezara viridula. The pH optimum for protease activity was acidic (5 to 6) in the gut with the primary proteases being cysteine proteases, and alkaline (8 to 9) in the saliva and salivary gland with the primary proteases being serine proteases. The serine proteases in saliva differ biochemically from trypsin and chymotrypsin, and the cathepsins in the gut and saliva showed distinct properties in inhibitor assays. Nuclease activity (DNase, RNase, dsRNase) was concentrated in the salivary gland and saliva with negligible activity in the gut. The most abundant proteins of the gut (530) and salivary gland (631) identified by proteomic analysis included four gut proteases along with eight proteases and one nuclease from the salivary gland. Understanding of N. viridula digestive physiology will facilitate the design of new strategies for management of this significant pest. PMID:27282882

  14. SepM, a Streptococcal Protease Involved in Quorum Sensing, Displays Strict Substrate Specificity

    PubMed Central

    Biswas, Saswati; Cao, Luyang; Kim, Albert

    2015-01-01

    ABSTRACT Streptococcus mutans, a causative agent of dental caries, relies on multiple quorum-sensing (QS) pathways that coordinate the expression of factors needed for colonization in the oral cavity. S. mutans uses small peptides as QS signaling molecules that typically are secreted into the outside milieu. Competence-stimulating peptide (CSP) is one such QS signaling molecule that functions through the ComDE two-component signal transduction pathway. CSP is secreted through NlmTE, a dedicated ABC transporter that cleaves off the N-terminal leader peptide to generate a mature peptide that is 21 residues long (CSP-21). We recently identified a surface-localized protease, SepM, which further cleaves the CSP-21 peptide at the C-terminal end and removes the last 3 residues to generate CSP-18. CSP-18 is the active QS molecule that interacts with the ComD sensor kinase to activate the QS pathway. In this study, we show that SepM specifically cleaves CSP-21 between the Ala18 and Leu19 residues. We also show that SepM recognizes only Ala at position 18 and Leu at position 19, although some CSP-18 variants with a substitution at position 18 can function equally as well as the QS peptide. Furthermore, we demonstrate that SepM homologs from other streptococci are capable of processing CSP-21 to generate functional CSP-18. IMPORTANCE SepM is a membrane-associated streptococcal protease that processes competence-stimulating peptide (CSP) to generate an active quorum-sensing molecule in S. mutans. SepM belongs to the S16 family of serine proteases, and in this study, we found that SepM behaves as an endopeptidase. SepM displays strict substrate specificity and cleaves the peptide bond between the Ala and Leu residues. This is the first report of an endopeptidase that specifically cleaves these two residues. PMID:26553848

  15. Regulation of distinct pools of amyloid β-protein by multiple cellular proteases.

    PubMed

    Leissring, Malcolm A; Turner, Anthony J

    2013-01-01

    Alzheimer's disease (AD) is a progressive, age-related neurodegenerative disorder characterized by extracellular and intracellular deposition of the amyloid β-protein (Aβ). The study of rare, familial forms of AD has shown that sustained elevations in the production of Aβ (either all forms or specific pathogenic variants thereof) are sufficient to trigger the full spectrum of cognitive and histopathological features of the disease. Although the exact cause or causes remain unknown, emerging evidence suggests that impairments in the clearance of Aβ, after it is produced, may underlie the vast majority of sporadic AD cases. This review focuses on Aβ-degrading proteases (AβDPs), which have emerged as particularly important mediators of Aβ clearance. A wide variety of proteases that - by virtue of their particular regional and subcellular localization profiles - define distinct pools of Aβ have been identified. Different pools of Aβ, in turn, may contribute differentially to the pathogenesis of the disease. The study of individual AβDPs, therefore, promises to offer new insights into the mechanistic basis of AD pathogenesis and, ultimately, may facilitate the development of effective methods for its prevention or treatment or both. PMID:23953275

  16. Regulation of distinct pools of amyloid β-protein by multiple cellular proteases

    PubMed Central

    2013-01-01

    Alzheimer’s disease (AD) is a progressive, age-related neurodegenerative disorder characterized by extracellular and intracellular deposition of the amyloid β-protein (Aβ). The study of rare, familial forms of AD has shown that sustained elevations in the production of Aβ (either all forms or specific pathogenic variants thereof) are sufficient to trigger the full spectrum of cognitive and histopathological features of the disease. Although the exact cause or causes remain unknown, emerging evidence suggests that impairments in the clearance of Aβ, after it is produced, may underlie the vast majority of sporadic AD cases. This review focuses on Aβ-degrading proteases (AβDPs), which have emerged as particularly important mediators of Aβ clearance. A wide variety of proteases that – by virtue of their particular regional and subcellular localization profiles – define distinct pools of Aβ have been identified. Different pools of Aβ, in turn, may contribute differentially to the pathogenesis of the disease. The study of individual AβDPs, therefore, promises to offer new insights into the mechanistic basis of AD pathogenesis and, ultimately, may facilitate the development of effective methods for its prevention or treatment or both. PMID:23953275

  17. Crystal Structures of the Viral Protease Npro Imply Distinct Roles for the Catalytic Water in Catalysis

    PubMed Central

    Zögg, Thomas; Sponring, Michael; Schindler, Sabrina; Koll, Maria; Schneider, Rainer; Brandstetter, Hans; Auer, Bernhard

    2013-01-01

    Summary Npro is a key effector protein of pestiviruses such as bovine viral diarrhea virus and abolishes host cell antiviral defense mechanisms. Synthesized as the N-terminal part of the viral polyprotein, Npro releases itself via an autoproteolytic cleavage, triggering its immunological functions. However, the mechanisms of its proteolytic action and its immune escape were unclear. Here, we present the crystal structures of Npro to 1.25 Å resolution. Structures of pre- and postcleavage intermediates identify three catalytically relevant elements. The trapping of the putative catalytic water reveals its distinct roles as a base, acid, and nucleophile. The presentation of the substrate further explains the enigmatic latency of the protease, ensuring a single in cis cleavage. Additionally, we identified a zinc-free, disulfide-linked conformation of the TRASH motif, an interaction hub of immune factors. The structure opens additional opportunities in utilizing Npro as an autocleaving fusion protein and as a pharmaceutical target. PMID:23643950

  18. Neuropeptidomics Mass Spectrometry Reveals Signaling Networks Generated by Distinct Protease Pathways in Human Systems.

    PubMed

    Hook, Vivian; Bandeira, Nuno

    2015-12-01

    Neuropeptides regulate intercellular signaling as neurotransmitters of the central and peripheral nervous systems, and as peptide hormones in the endocrine system. Diverse neuropeptides of distinct primary sequences of various lengths, often with post-translational modifications, coordinate and integrate regulation of physiological functions. Mass spectrometry-based analysis of the diverse neuropeptide structures in neuropeptidomics research is necessary to define the full complement of neuropeptide signaling molecules. Human neuropeptidomics has notable importance in defining normal and dysfunctional neuropeptide signaling in human health and disease. Neuropeptidomics has great potential for expansion in translational research opportunities for defining neuropeptide mechanisms of human diseases, providing novel neuropeptide drug targets for drug discovery, and monitoring neuropeptides as biomarkers of drug responses. In consideration of the high impact of human neuropeptidomics for health, an observed gap in this discipline is the few published articles in human neuropeptidomics compared with, for example, human proteomics and related mass spectrometry disciplines. Focus on human neuropeptidomics will advance new knowledge of the complex neuropeptide signaling networks participating in the fine control of neuroendocrine systems. This commentary review article discusses several human neuropeptidomics accomplishments that illustrate the rapidly expanding diversity of neuropeptides generated by protease processing of pro-neuropeptide precursors occurring within the secretory vesicle proteome. Of particular interest is the finding that human-specific cathepsin V participates in producing enkephalin and likely other neuropeptides, indicating unique proteolytic mechanisms for generating human neuropeptides. The field of human neuropeptidomics has great promise to solve new mechanisms in disease conditions, leading to new drug targets and therapeutic agents for human

  19. Neuropeptidomics Mass Spectrometry Reveals Signaling Networks Generated by Distinct Protease Pathways in Human Systems

    NASA Astrophysics Data System (ADS)

    Hook, Vivian; Bandeira, Nuno

    2015-12-01

    Neuropeptides regulate intercellular signaling as neurotransmitters of the central and peripheral nervous systems, and as peptide hormones in the endocrine system. Diverse neuropeptides of distinct primary sequences of various lengths, often with post-translational modifications, coordinate and integrate regulation of physiological functions. Mass spectrometry-based analysis of the diverse neuropeptide structures in neuropeptidomics research is necessary to define the full complement of neuropeptide signaling molecules. Human neuropeptidomics has notable importance in defining normal and dysfunctional neuropeptide signaling in human health and disease. Neuropeptidomics has great potential for expansion in translational research opportunities for defining neuropeptide mechanisms of human diseases, providing novel neuropeptide drug targets for drug discovery, and monitoring neuropeptides as biomarkers of drug responses. In consideration of the high impact of human neuropeptidomics for health, an observed gap in this discipline is the few published articles in human neuropeptidomics compared with, for example, human proteomics and related mass spectrometry disciplines. Focus on human neuropeptidomics will advance new knowledge of the complex neuropeptide signaling networks participating in the fine control of neuroendocrine systems. This commentary review article discusses several human neuropeptidomics accomplishments that illustrate the rapidly expanding diversity of neuropeptides generated by protease processing of pro-neuropeptide precursors occurring within the secretory vesicle proteome. Of particular interest is the finding that human-specific cathepsin V participates in producing enkephalin and likely other neuropeptides, indicating unique proteolytic mechanisms for generating human neuropeptides. The field of human neuropeptidomics has great promise to solve new mechanisms in disease conditions, leading to new drug targets and therapeutic agents for human

  20. Barrel-shaped ClpP Proteases Display Attenuated Cleavage Specificities.

    PubMed

    Gersch, Malte; Stahl, Matthias; Poreba, Marcin; Dahmen, Maria; Dziedzic, Anna; Drag, Marcin; Sieber, Stephan A

    2016-02-19

    ClpP is a self-compartmentalizing protease with crucial roles in bacterial and mitochondrial protein quality control. Although the ClpP homocomplex is composed of 14 equivalent active sites, it degrades a multitude of substrates to small peptides, demonstrating its capability to carry out diverse cleavage reactions. Here, we show that ClpP proteases from E. coli, S. aureus, and human mitochondria exhibit preferences for certain amino acids in the P1, P2, and P3 positions using a tailored fluorogenic substrate library. However, this high specificity is not retained during proteolysis of endogenous substrates as shown by mass spectrometric analysis of peptides produced in ClpXP-mediated degradation reactions. Our data suggest a mechanism that implicates the barrel-shaped architecture of ClpP not only in shielding the active sites to prevent uncontrolled proteolysis but also in providing high local substrate concentrations to enable efficient proteolytic processing. Furthermore, we introduce customized fluorogenic substrates with unnatural amino acids that greatly surpass the sensitivity of previously used tools. We used these to profile the activity of cancer-patient- and Perrault-syndrome-derived ClpP mutant proteins. PMID:26606371

  1. Deletion mutants of AP-1 adaptin subunits display distinct phenotypes in fission yeast.

    PubMed

    Ma, Yan; Takeuchi, Mai; Sugiura, Reiko; Sio, Susie O; Kuno, Takayoshi

    2009-08-01

    Adaptins are subunits of the heterotetrameric (beta/mu/gamma/sigma) adaptor protein (AP) complexes that are involved in clathrin-mediated membrane trafficking. Here, we show that in Schizosaccharomyces pombe the deletion strains of each individual subunit of the AP-1 complex [Apl2 (beta), Apl4 (gamma), Apm1 (mu) and Aps1 (sigma)] caused distinct phenotypes on growth sensitivity to temperature or drugs. We also show that the Deltaapm1 and Deltaapl2 mutants displayed similar but more severe phenotypes than those of Deltaaps1 or Deltaapl4 mutants. Furthermore, the Deltaapl2Deltaaps1 and Deltaapl2Deltaapl4 double mutants displayed synthetic growth defects, whereas the Deltaaps1Deltaapl4 and Deltaapl2Deltaapm1 double mutants did not. In pull-down assay, Apm1 binds Apl2 even in the absence of Aps1 and Apl4, and Apl4 binds Aps1 even in the absence of Apm1 and Apl2. Consistently, the deletion of any subunit generally caused the disassociation of the heterotetrameric complex from endosomes, although some subunits weakly localized to endosomes. In addition, the deletion of individual subunits caused similar endosomal accumulation of v-SNARE synaptobrevin Syb1. Altogether, results suggest that the four subunits are all essential for the heterotetrameric complex formation and for the AP-1 function in exit transport from endosomes. PMID:19624755

  2. Beta and gamma-cytoplasmic actins display distinct distribution and functional diversity.

    PubMed

    Dugina, Vera; Zwaenepoel, Ingrid; Gabbiani, Giulio; Clément, Sophie; Chaponnier, Christine

    2009-08-15

    Using newly generated monoclonal antibodies, we have compared the distribution of beta- and gamma-cytoplasmic actin in fibroblastic and epithelial cells, in which they play crucial roles during various key cellular processes. Whereas beta-actin is preferentially localized in stress fibers, circular bundles and at cell-cell contacts, suggesting a role in cell attachment and contraction, gamma-actin displays a more versatile organization, according to cell activities. In moving cells, gamma-actin is mainly organized as a meshwork in cortical and lamellipodial structures, suggesting a role in cell motility; in stationary cells, gamma-actin is also recruited into stress fibers. beta-actin-depleted cells become highly spread, display broad protrusions and reduce their stress-fiber content; by contrast, gamma-actin-depleted cells acquire a contractile phenotype with thick actin bundles and shrinked lamellar and lamellipodial structures. Moreover, beta- and gamma-actin depleted fibroblasts exhibit distinct changes in motility compared with their controls, suggesting a specific role for each isoform in cell locomotion. Our results reveal new aspects of beta- and gamma-actin organization that support their functional diversity. PMID:19638415

  3. Endemic versus epidemic viral spreads display distinct patterns of HTLV-2b replication

    SciTech Connect

    Gabet, Anne-Sophie; Moules, Vincent; Sibon, David; Nass, Catharie C.; Mortreux, Franck; Mauclere, Philippe; Gessain, Antoine; Murphy, Edward L.; Wattel, Eric . E-mail: wattel@lyon.fnclcc.fr

    2006-02-05

    As the replication pattern of leukemogenic PTLVs possesses a strong pathogenic impact, we investigated HTLV-2 replication in vivo in asymptomatic carriers belonging into 2 distinct populations infected by the same HTLV-2b subtype. They include epidemically infected American blood donors, in whom HTLV-2b has been present for only 30 years, and endemically infected Bakola Pygmies from Cameroon, characterized by a long viral endemicity (at least few generations). In blood donors, both the circulating proviral loads and the degree of infected cell proliferation were largely lower than those characterizing asymptomatic carriers infected with leukemogenic PTLVs (HTLV-1, STLV-1). This might contribute to explain the lack of known link between HTLV-2b infection and the development of malignancies in this population. In contrast, endemically infected individuals displayed high proviral loads resulting from the extensive proliferation of infected cells. The route and/or the duration of infection, viral genetic drift, host immune response, genetic background, co-infections or a combination thereof might have contributed to these differences between endemically and epidemically infected subjects. As the clonality pattern observed in endemically infected individuals is very reminiscent of that of leukemogenic PTLVs at the pre-leukemic stage, our results highlight the possible oncogenic effect of HTLV-2b infection in such population.

  4. Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms

    PubMed Central

    Kachgal, Suraj; Putnam, Andrew J.

    2012-01-01

    Using a fibrin-based angiogenesis model, we have established that there is no canonical mechanism used by ECs to degrade the surrounding extracellular matrix (ECM), but rather the set of proteases used is dependent on the mural cells providing the angiogenic cues. Mesenchymal stem cells (MSCs) originating from different tissues, which are thought to be phenotypically similar, promote angiogenesis through distinct mechanisms. Specifically, adipose-derived stem cells (ASCs) promote utilization of the plasminogen activator-plasmin axis by ECs as the primary means of vessel invasion and elongation in fibrin. Matrix metalloproteinases (MMPs) serve a purpose in regulating capillary diameter and possibly in stabilizing the nascent vessels. These proteolytic mechanisms are more akin to those involved in fibroblast-mediated angiogenesis than to those in bone marrow-derived stem cell (BMSC)-mediated angiogenesis. In addition, expression patterns of angiogenic factors such as urokinase plasminogen activator (uPA), hepatocyte growth factor (HGF), and tumor necrosis factor alpha (TNFα) were similar for ASC and fibroblast-mediated angiogenesis, and in direct contrast to BMSC-mediated angiogenesis. The present study illustrates that the nature of the heterotypic interactions between mural cells and endothelial cells depend on the identity of the mural cell used. Even MSCs which are shown to behave phenotypically similar do not stimulate angiogenesis via the same mechanisms. PMID:21104120

  5. Distinct types of protease systems are involved in homeostasis regulation of mitochondrial morphology via balanced fusion and fission.

    PubMed

    Saita, Shotaro; Ishihara, Takaya; Maeda, Maki; Iemura, Shun-Ichiro; Natsume, Tohru; Mihara, Katsuyoshi; Ishihara, Naotada

    2016-05-01

    Mitochondrial morphology is dynamically regulated by fusion and fission. Several GTPase proteins control fusion and fission, and posttranslational modifications of these proteins are important for the regulation. However, it has not been clarified how the fusion and fission is balanced. Here, we report the molecular mechanism to regulate mitochondrial morphology in mammalian cells. Ablation of the mitochondrial fission, by repression of Drp1 or Mff, or by over-expression of MiD49 or MiD51, results in a reduction in the fusion GTPase mitofusins (Mfn1 and Mfn2) in outer membrane and long form of OPA1 (L-OPA1) in inner membrane. RNAi- or CRISPR-induced ablation of Drp1 in HeLa cells enhanced the degradation of Mfns via the ubiquitin-proteasome system (UPS). We further found that UPS-related protein BAT3/BAG6, here we identified as Mfn2-interacting protein, was implicated in the turnover of Mfns in the absence of mitochondrial fission. Ablation of the mitochondrial fission also enhanced the proteolytic cleavage of L-OPA1 to soluble S-OPA1, and the OPA1 processing was reversed by inhibition of the inner membrane protease OMA1 independent on the mitochondrial membrane potential. Our findings showed that the distinct degradation systems of the mitochondrial fusion proteins in different locations are enhanced in response to the mitochondrial morphology. PMID:26935475

  6. Evidence for the presence of a protease-activated receptor distinct from the thrombin receptor in human keratinocytes.

    PubMed Central

    Santulli, R J; Derian, C K; Darrow, A L; Tomko, K A; Eckardt, A J; Seiberg, M; Scarborough, R M; Andrade-Gordon, P

    1995-01-01

    Thrombin receptor activation was explored in human epidermal keratinocytes and human dermal fibroblasts, cells that are actively involved in skin tissue repair. The effects of thrombin, trypsin, and the receptor agonist peptides SFLLRN and TFRIFD were assessed in inositolphospholipid hydrolysis and calcium mobilization studies. Thrombin and SFLLRN stimulated fibroblasts in both assays to a similar extent, whereas TFRIFD was less potent. Trypsin demonstrated weak efficacy in these assays in comparison with thrombin. Results in fibroblasts were consistent with human platelet thrombin receptor activation. Keratinocytes, however, exhibited a distinct profile, with trypsin being a far better activator of inositolphospholipid hydrolysis and calcium mobilization than thrombin. Furthermore, SFLLRN was more efficacious than thrombin, whereas no response was observed with TFRIFD. Since our data indicated that keratinocytes possess a trypsin-sensitive receptor, we addressed the possibility that these cells express the human homologue of the newly described murine protease-activated receptor, PAR-2 [Nystedt, S., Emilsson, K., Wahlestedt, C. & Sundelin, J. (1994) Proc. Natl. Acad. Sci. USA 91, 9208-9212]. PAR-2 is activated by nanomolar concentrations of trypsin and possesses the tethered ligand sequence SLIGRL. SLIGRL was found to be equipotent with SFLLRN in activating keratinocyte inositolphospholipid hydrolysis and calcium mobilization. Desensitization studies indicated that SFLLRN, SLIGRL, and trypsin activate a common receptor, PAR-2. Northern blot analyses detected a transcript of PAR-2 in total RNA from keratinocytes but not fibroblasts. Levels of thrombin receptor message were equivalent in the two cell types. Our results indicate that human keratinocytes possess PAR-2, suggesting a potential role for this receptor in tissue repair and/or skin-related disorders. Images Fig. 6 PMID:7568091

  7. Cloning and heterologous expression of SS10, a subtilisin-like protease displaying antifungal activity from Trichoderma harzianum.

    PubMed

    Yan, Liu; Qian, Yang

    2009-01-01

    Trichoderma harzianum parasitizes a large variety of phytopathogenic fungi. Trichoderma harzianum mycoparasitic activity depends on the secretion of complex mixtures of hydrolytic enzymes able to degrade the host cell wall. A gene (SS10) encoding a subtilisin-like protease was cloned from T. harzianum T88, a biocontrol agent effective against soil-borne fungal pathogens. The full-length cDNA was isolated by 5' and 3' rapid amplification of the cDNA ends. The coding region of the gene is 1302 bp long, encoding 433 amino acids of a predicted protein with a molecular mass of 45 kDa and a pI of 6.1. Analysis of the deduced amino acid sequence revealed that this protein had homology to the serine proteases of the subtilisin-like superfamily (subtilases) (EC 3.4.21.) and had a predicted active site made up of the catalytic residues Asp 187, His 218 and Ser 376. Northern experiments demonstrated that SS10 was induced in response to different fungal cell walls. Subtilisin-like protease gene SS10 was expressed in Saccharomyces cerevisiae under control of the GAL1 promoter. The enzyme activity culminates (17.8 U mL(-1)) 60 h after induction with galactose. The optimal enzyme reaction temperature was 50 degrees C and the optimal pH was 8. The subtilisin-like protease exerted broad-spectrum antifungal activity against Alternaria alternata, Fusarium oxysporum, Rhizoctonia solani, Sclerotinia sclerotiorum and Cytospora chrysosperma. PMID:19025577

  8. Mice with Shank3 Mutations Associated with ASD and Schizophrenia Display Both Shared and Distinct Defects.

    PubMed

    Zhou, Yang; Kaiser, Tobias; Monteiro, Patrícia; Zhang, Xiangyu; Van der Goes, Marie S; Wang, Dongqing; Barak, Boaz; Zeng, Menglong; Li, Chenchen; Lu, Congyi; Wells, Michael; Amaya, Aldo; Nguyen, Shannon; Lewis, Michael; Sanjana, Neville; Zhou, Yongdi; Zhang, Mingjie; Zhang, Feng; Fu, Zhanyan; Feng, Guoping

    2016-01-01

    Genetic studies have revealed significant overlaps of risk genes among psychiatric disorders. However, it is not clear how different mutations of the same gene contribute to different disorders. We characterized two lines of mutant mice with Shank3 mutations linked to ASD and schizophrenia. We found both shared and distinct synaptic and behavioral phenotypes. Mice with the ASD-linked InsG3680 mutation manifest striatal synaptic transmission defects before weaning age and impaired juvenile social interaction, coinciding with the early onset of ASD symptoms. On the other hand, adult mice carrying the schizophrenia-linked R1117X mutation show profound synaptic defects in prefrontal cortex and social dominance behavior. Furthermore, we found differential Shank3 mRNA stability and SHANK1/2 upregulation in these two lines. These data demonstrate that different alleles of the same gene may have distinct phenotypes at molecular, synaptic, and circuit levels in mice, which may inform exploration of these relationships in human patients. PMID:26687841

  9. Cytokinin and Auxin Display Distinct but Interconnected Distribution and Signaling Profiles to Stimulate Cambial Activity.

    PubMed

    Immanen, Juha; Nieminen, Kaisa; Smolander, Olli-Pekka; Kojima, Mikiko; Alonso Serra, Juan; Koskinen, Patrik; Zhang, Jing; Elo, Annakaisa; Mähönen, Ari Pekka; Street, Nathaniel; Bhalerao, Rishikesh P; Paulin, Lars; Auvinen, Petri; Sakakibara, Hitoshi; Helariutta, Ykä

    2016-08-01

    Despite the crucial roles of phytohormones in plant development, comparison of the exact distribution profiles of different hormones within plant meristems has thus far remained scarce. Vascular cambium, a wide lateral meristem with an extensive developmental zonation, provides an optimal system for hormonal and genetic profiling. By taking advantage of this spatial resolution, we show here that two major phytohormones, cytokinin and auxin, display different yet partially overlapping distribution profiles across the cambium. In contrast to auxin, which has its highest concentration in the actively dividing cambial cells, cytokinins peak in the developing phloem tissue of a Populus trichocarpa stem. Gene expression patterns of cytokinin biosynthetic and signaling genes coincided with this hormonal gradient. To explore the functional significance of cytokinin signaling for cambial development, we engineered transgenic Populus tremula × tremuloides trees with an elevated cytokinin biosynthesis level. Confirming that cytokinins function as major regulators of cambial activity, these trees displayed stimulated cambial cell division activity resulting in dramatically increased (up to 80% in dry weight) production of the lignocellulosic trunk biomass. To connect the increased growth to hormonal status, we analyzed the hormone distribution and genome-wide gene expression profiles in unprecedentedly high resolution across the cambial zone. Interestingly, in addition to showing an elevated cambial cytokinin content and signaling level, the cambial auxin concentration and auxin-responsive gene expression were also increased in the transgenic trees. Our results indicate that cytokinin signaling specifies meristematic activity through a graded distribution that influences the amplitude of the cambial auxin gradient. PMID:27426519

  10. Why p-OMe- and p-Cl-β-Methylphenethylamines Display Distinct Activities upon MAO-B Binding

    PubMed Central

    Celis-Barros, Cristian; Zapata-Torres, Gerald

    2016-01-01

    Despite their structural and chemical commonalities, p-chloro-β-methylphenethylamine and p-methoxy-β-methylphenethylamine display distinct inhibitory and substrate activities upon MAO-B binding. Density Functional Theory (DFT) quantum chemical calculations reveal that β-methylation and para-substitution underpin the observed activities sustained by calculated transition state energy barriers, attained conformations and key differences in their interactions in the enzyme’s substrate binding site. Although both compounds meet substrate requirements, it is clear that β-methylation along with the physicochemical features of the para-substituents on the aromatic ring determine the activity of these compounds upon binding to the MAO B-isoform. While data for a larger set of compounds might lend generality to our conclusions, our experimental and theoretical results strongly suggest that the contrasting activities displayed depend on the conformations adopted by these compounds when they bind to the enzyme. PMID:27152414

  11. A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis.

    PubMed Central

    Greenberg, S G; Davies, P

    1990-01-01

    Paired helical filaments (PHFs) are prominent components of Alzheimer disease (AD) neurofibrillary tangles (NFTs). Rather than isolating NFTs, we selected for PHF populations that can be extracted from AD brain homogenates. About 50% of PHF immunoreactivity can be obtained in 27,200 x g supernatants following homogenization in buffers containing 0.8 M NaCl. We further enriched for PHFs by taking advantage of their insolubility in the presence of zwitterionic detergents and 2-mercaptoethanol, removal of aggregates by filtration through 0.45-microns filters, and sucrose density centrifugation. PHF-enriched fractions contained two to five proteins of 57-68 kDa that displayed the same antigenic properties as PHFs. Since the 57- to 68-kDa PHF proteins are antigenically related to tau proteins, they are similar to the tau proteins previously observed in NFTs. However, further analysis revealed that PHF-associated tau can be distinguished from normal, soluble tau by PHF antibodies that do not recognize human adult tau and by one- and two-dimensional PAGE. Images PMID:2116006

  12. Coexisting orchid species have distinct mycorrhizal communities and display strong spatial segregation.

    PubMed

    Jacquemyn, Hans; Brys, Rein; Merckx, Vincent S F T; Waud, Michael; Lievens, Bart; Wiegand, Thorsten

    2014-04-01

    Because orchids are dependent on mycorrhizal fungi for germination and establishment of seedlings, differences in the mycorrhizal communities associating with orchids can be expected to mediate the abundance, spatial distribution and coexistence of terrestrial orchids in natural communities. We assessed the small-scale spatial distribution of seven orchid species co-occurring in 25 × 25 m plots in two Mediterranean grasslands. In order to characterize the mycorrhizal community associating with each orchid species, 454 pyrosequencing was used. The extent of spatial clustering was assessed using techniques of spatial point pattern analysis. The community of mycorrhizal fungi consisted mainly of members of the Tulasnellaceae, Thelephoraceae and Ceratobasidiaceae, although sporadically members of the Sebacinaceae, Russulaceae and Cortinariaceae were observed. Pronounced differences in mycorrhizal communities were observed between species, whereas strong clustering and significant segregation characterized the spatial distribution of orchid species. However, spatial segregation was not significantly related to phylogenetic dissimilarity of fungal communities. Our results indicate that co-occurring orchid species have distinctive mycorrhizal communities and show strong spatial segregation, suggesting that mycorrhizal fungi are important factors driving niche partitioning in terrestrial orchids and may therefore contribute to orchid coexistence. PMID:24325257

  13. Two Distinct Hepatitis C Virus Genotype 1a Clades Have Different Geographical Distribution and Association With Natural Resistance to NS3 Protease Inhibitors.

    PubMed

    De Luca, Andrea; Di Giambenedetto, Simona; Lo Presti, Alessandra; Sierra, Saleta; Prosperi, Mattia; Cella, Eleonora; Giovanetti, Marta; Torti, Carlo; Caudai, Cinzia; Vicenti, Ilaria; Saladini, Francesco; Almi, Paolo; Grima, Pierfrancesco; Blanc, Pierluigi; Fabbiani, Massimiliano; Rossetti, Barbara; Gagliardini, Roberta; Kaiser, Rolf; Ciccozzi, Massimo; Zazzi, Maurizio

    2015-04-01

    Background.  Hepatitis C virus (HCV) genotype 1 is the most prevalent worldwide. Subtype 1a, compared with 1b, shows lower response rates and higher propensity to select for drug resistance to NS3 and selected NS5A and nonnucleoside NS5B inhibitors. Two distinct clades of subtype 1a have been described. Methods.  Using Bayesian methodology, we performed a time-scaled phylogeny reconstruction of clade separation and characterized the geographic distribution, phylodynamics, and association with natural resistance variants of NS3 sequences from 362 patients carrying subtype 1a HCV. Results.  All sequences segregated in 2 clearly distinct clades. Clade I showed an earlier origin from the common ancestor compared with clade II. Clade I virus was more prevalent in non-European countries, represented mostly by United States, compared with European (75.7% vs 49.3%; P < .001). The prevalence of the natural NS3 variant Q80K, associated with resistance to the macrocyclic protease inhibitor simeprevir, was detected in 51.6% of clade I and 0% of clade II (P < .001); clade I showed a lower genetic barrier for Q80K, whereas no sign of selective pressure at any protease inhibitor resistance-associated codon was detected. Conclusions.  Hepatitis C virus subtype 1a clades have a clearly different distribution in Europe and the United States, and the natural resistance mutation Q80K is exclusively associated with clade I. PMID:26213689

  14. Two Distinct Hepatitis C Virus Genotype 1a Clades Have Different Geographical Distribution and Association With Natural Resistance to NS3 Protease Inhibitors

    PubMed Central

    De Luca, Andrea; Di Giambenedetto, Simona; Lo Presti, Alessandra; Sierra, Saleta; Prosperi, Mattia; Cella, Eleonora; Giovanetti, Marta; Torti, Carlo; Caudai, Cinzia; Vicenti, Ilaria; Saladini, Francesco; Almi, Paolo; Grima, Pierfrancesco; Blanc, Pierluigi; Fabbiani, Massimiliano; Rossetti, Barbara; Gagliardini, Roberta; Kaiser, Rolf; Ciccozzi, Massimo; Zazzi, Maurizio

    2015-01-01

    Background. Hepatitis C virus (HCV) genotype 1 is the most prevalent worldwide. Subtype 1a, compared with 1b, shows lower response rates and higher propensity to select for drug resistance to NS3 and selected NS5A and nonnucleoside NS5B inhibitors. Two distinct clades of subtype 1a have been described. Methods. Using Bayesian methodology, we performed a time-scaled phylogeny reconstruction of clade separation and characterized the geographic distribution, phylodynamics, and association with natural resistance variants of NS3 sequences from 362 patients carrying subtype 1a HCV. Results. All sequences segregated in 2 clearly distinct clades. Clade I showed an earlier origin from the common ancestor compared with clade II. Clade I virus was more prevalent in non-European countries, represented mostly by United States, compared with European (75.7% vs 49.3%; P < .001). The prevalence of the natural NS3 variant Q80K, associated with resistance to the macrocyclic protease inhibitor simeprevir, was detected in 51.6% of clade I and 0% of clade II (P < .001); clade I showed a lower genetic barrier for Q80K, whereas no sign of selective pressure at any protease inhibitor resistance-associated codon was detected. Conclusions. Hepatitis C virus subtype 1a clades have a clearly different distribution in Europe and the United States, and the natural resistance mutation Q80K is exclusively associated with clade I. PMID:26213689

  15. Met-ase: Cloning and distinct chromosomal location of a serine protease preferentially expressed in human natural killer cells

    SciTech Connect

    Smyth, M.J.; Trapani, J.A. ); Sayers, T.J.; Wiltrout, T. ); Powers, J.C. )

    1993-12-01

    A cDNA clone encoding a human NK serine protease was obtained by screening a [lambda]-gt10 library from the Lopez NK leukemia with the rat natural killer Met-ase (RNK-Met-1) cDNA clone. In Northern blot analysis human Met-ase (Hu-Met-1) cDNA hybridized with a 0.9-kb mRNA in two human NK leukemia cell lines, unstimulated human PBMC, and untreated purified CD3[sup [minus

  16. Distinct 3D Architecture and Dynamics of the Human HtrA2(Omi) Protease and Its Mutated Variants.

    PubMed

    Gieldon, Artur; Zurawa-Janicka, Dorota; Jarzab, Miroslaw; Wenta, Tomasz; Golik, Przemyslaw; Dubin, Grzegorz; Lipinska, Barbara; Ciarkowski, Jerzy

    2016-01-01

    HtrA2(Omi) protease controls protein quality in mitochondria and plays a major role in apoptosis. Its HtrA2S306A mutant (with the catalytic serine routinely disabled for an X-ray study to avoid self-degradation) is a homotrimer whose subunits contain the serine protease domain (PD) and the regulatory PDZ domain. In the inactive state, a tight interdomain interface limits penetration of both PDZ-activating ligands and PD substrates into their respective target sites. We successfully crystalized HtrA2V226K/S306A, whose active counterpart HtrA2V226K has had higher proteolytic activity, suggesting higher propensity to opening the PD-PDZ interface than that of the wild type HtrA2. Yet, the crystal structure revealed the HtrA2V226K/S306A architecture typical of the inactive protein. To get a consistent interpretation of crystallographic data in the light of kinetic results, we employed molecular dynamics (MD). V325D inactivating mutant was used as a reference. Our simulations demonstrated that upon binding of a specific peptide ligand NH2-GWTMFWV-COOH, the PDZ domains open more dynamically in the wild type protease compared to the V226K mutant, whereas the movement is not observed in the V325D mutant. The movement relies on a PDZ vs. PD rotation which opens the PD-PDZ interface in a lid-like (budding flower-like in trimer) fashion. The noncovalent hinges A and B are provided by two clusters of interfacing residues, harboring V325D and V226K in the C- and N-terminal PD barrels, respectively. The opening of the subunit interfaces progresses in a sequential manner during the 50 ns MD simulation. In the systems without the ligand only minor PDZ shifts relative to PD are observed, but the interface does not open. Further activation-associated events, e.g. PDZ-L3 positional swap seen in any active HtrA protein (vs. HtrA2), were not observed. In summary, this study provides hints on the mechanism of activation of wtHtrA2, the dynamics of the inactive HtrA2V325D, but does not

  17. Distinct 3D Architecture and Dynamics of the Human HtrA2(Omi) Protease and Its Mutated Variants

    PubMed Central

    Gieldon, Artur; Zurawa-Janicka, Dorota; Jarzab, Miroslaw; Wenta, Tomasz; Golik, Przemyslaw; Dubin, Grzegorz; Lipinska, Barbara; Ciarkowski, Jerzy

    2016-01-01

    HtrA2(Omi) protease controls protein quality in mitochondria and plays a major role in apoptosis. Its HtrA2S306A mutant (with the catalytic serine routinely disabled for an X-ray study to avoid self-degradation) is a homotrimer whose subunits contain the serine protease domain (PD) and the regulatory PDZ domain. In the inactive state, a tight interdomain interface limits penetration of both PDZ-activating ligands and PD substrates into their respective target sites. We successfully crystalized HtrA2V226K/S306A, whose active counterpart HtrA2V226K has had higher proteolytic activity, suggesting higher propensity to opening the PD-PDZ interface than that of the wild type HtrA2. Yet, the crystal structure revealed the HtrA2V226K/S306A architecture typical of the inactive protein. To get a consistent interpretation of crystallographic data in the light of kinetic results, we employed molecular dynamics (MD). V325D inactivating mutant was used as a reference. Our simulations demonstrated that upon binding of a specific peptide ligand NH2-GWTMFWV-COOH, the PDZ domains open more dynamically in the wild type protease compared to the V226K mutant, whereas the movement is not observed in the V325D mutant. The movement relies on a PDZ vs. PD rotation which opens the PD-PDZ interface in a lid-like (budding flower-like in trimer) fashion. The noncovalent hinges A and B are provided by two clusters of interfacing residues, harboring V325D and V226K in the C- and N-terminal PD barrels, respectively. The opening of the subunit interfaces progresses in a sequential manner during the 50 ns MD simulation. In the systems without the ligand only minor PDZ shifts relative to PD are observed, but the interface does not open. Further activation-associated events, e.g. PDZ-L3 positional swap seen in any active HtrA protein (vs. HtrA2), were not observed. In summary, this study provides hints on the mechanism of activation of wtHtrA2, the dynamics of the inactive HtrA2V325D, but does not

  18. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa.

    PubMed

    Cho, Jung Keun; Curtis-Long, Marcus J; Lee, Kon Ho; Kim, Dae Wook; Ryu, Hyung Won; Yuk, Heung Joo; Park, Ki Hun

    2013-06-01

    SARS-CoV papain-like protease (PLpro) is an important antiviral target due to its key roles in SARS virus replication. The MeOH extracts of the fruits of the Paulownia tree yielded many small molecules capable of targeting PLpro. Five of these compounds were new geranylated flavonoids, tomentin A, tomentin B, tomentin C, tomentin D, tomentin E (1-5). Structure analysis of new compounds (1-5) by NMR showed that they all contain a 3,4-dihydro-2H-pyran moiety. This chemotype is very rare and is derived from cyclization of a geranyl group with a phenol functionality. Most compounds (1-12) inhibited PLpro in a dose dependent manner with IC50's raging between 5.0 and 14.4 μM. All new compounds having the dihydro-2H-pyran group showed better inhibition than their parent compounds (1 vs 11, 2 vs 9, 4 vs 12, 5 vs 6). In kinetic studies, 1-12 emerged to be reversible, mixed inhibitors. PMID:23623680

  19. TARP-associated AMPA receptors display an increased maximum channel conductance and multiple kinetically distinct open states

    PubMed Central

    Shelley, Chris; Farrant, Mark; Cull-Candy, Stuart G

    2012-01-01

    Fast excitatory synaptic transmission in the CNS is mediated mainly by AMPA-type glutamate receptors (AMPARs), whose biophysical properties are dramatically modulated by the presence of transmembrane AMPAR regulatory proteins (TARPs). To help construct a kinetic model that will realistically describe native AMPAR/TARP function, we have examined the single-channel properties of homomeric GluA1 AMPARs in combination with the TARPs, γ-2, γ-4 and γ-5. In a saturating concentration of agonist, each of these AMPAR/TARP combinations gave rise to single-channel currents with multiple conductance levels that appeared intrinsic to the receptor-channel complex, and showed long-lived subconductance states. The open time and burst length distributions of the receptor complexes displayed multiple dwell-time components. In the case of γ-2- and γ-4-associated receptors, these distributions included a long-lived component lasting tens of milliseconds that was absent from both GluA1 alone and γ-5-associated receptors. The open time distributions for each conductance level required two dwell-time components, indicating that at each conductance level the channel occupies a minimum of two kinetically distinct open states. We have explored how these data place novel constraints on possible kinetic models of TARP-associated AMPARs that may be used to define AMPAR-mediated synaptic transmission. PMID:22988139

  20. Penta- and hexa-coordinate ferric hemoglobins display distinct pH titration profiles measured by Soret peak shifts.

    PubMed

    Uppal, Sheetal; Kumar, Amit; Shandilya, Manish; Mukhi, Nitika; Singh, Amit Kumar; Kateriya, Suneel; Kaur, Jagreet; Kundu, Suman

    2016-10-01

    Hemoglobins with diverse characteristics have been identified in all kingdoms of life. Their ubiquitous presence indicates that these proteins play important roles in physiology, though function for all hemoglobins are not yet established with certainty. Their physiological role may depend on their ability to bind ligands, which in turn is dictated by their heme chemistry. However, we have an incomplete understanding of the mechanism of ligand binding for these newly discovered hemoglobins and the measurement of their kinetic parameters depend on their coordination at the heme iron. To gain insights into their functional role, it is important to categorize the new hemoglobins into either penta- or hexa-coordinated varieties. We demonstrate that simple pH titration and absorbance measurements can determine the coordination state of heme iron atom in ferric hemoglobins, thus providing unambiguous information about the classification of new globins. This method is rapid, sensitive and requires low concentration of protein. Penta- and hexa-coordinate hemoglobins displayed distinct pH titration profiles as observed in a variety of hemoglobins. The pentacoordinate distal histidine mutant proteins of hexacoordinate hemoglobins and ligand-bound hexacoordinate forms of pentacoordinate hemoglobins reverse the pH titration profiles, thus validating the sensitivity of this spectroscopic technique. PMID:27449132

  1. Genomic subtypes of breast cancer identified by array-comparative genomic hybridization display distinct molecular and clinical characteristics

    PubMed Central

    2010-01-01

    Introduction Breast cancer is a profoundly heterogeneous disease with respect to biologic and clinical behavior. Gene-expression profiling has been used to dissect this complexity and to stratify tumors into intrinsic gene-expression subtypes, associated with distinct biology, patient outcome, and genomic alterations. Additionally, breast tumors occurring in individuals with germline BRCA1 or BRCA2 mutations typically fall into distinct subtypes. Methods We applied global DNA copy number and gene-expression profiling in 359 breast tumors. All tumors were classified according to intrinsic gene-expression subtypes and included cases from genetically predisposed women. The Genomic Identification of Significant Targets in Cancer (GISTIC) algorithm was used to identify significant DNA copy-number aberrations and genomic subgroups of breast cancer. Results We identified 31 genomic regions that were highly amplified in > 1% of the 359 breast tumors. Several amplicons were found to co-occur, the 8p12 and 11q13.3 regions being the most frequent combination besides amplicons on the same chromosomal arm. Unsupervised hierarchical clustering with 133 significant GISTIC regions revealed six genomic subtypes, termed 17q12, basal-complex, luminal-simple, luminal-complex, amplifier, and mixed subtypes. Four of them had striking similarity to intrinsic gene-expression subtypes and showed associations to conventional tumor biomarkers and clinical outcome. However, luminal A-classified tumors were distributed in two main genomic subtypes, luminal-simple and luminal-complex, the former group having a better prognosis, whereas the latter group included also luminal B and the majority of BRCA2-mutated tumors. The basal-complex subtype displayed extensive genomic homogeneity and harbored the majority of BRCA1-mutated tumors. The 17q12 subtype comprised mostly HER2-amplified and HER2-enriched subtype tumors and had the worst prognosis. The amplifier and mixed subtypes contained tumors

  2. Mutant Thyroid Hormone Receptors (TRs) Isolated from Distinct Cancer Types Display Distinct Target Gene Specificities: a Unique Regulatory Repertoire Associated with Two Renal Clear Cell Carcinomas

    PubMed Central

    Rosen, Meghan D.; Chan, Ivan H.

    2011-01-01

    Thyroid hormone receptors (TRs) are hormone-regulated transcription factors that regulate a diverse array of biological activities, including metabolism, homeostasis, and development. TRs also serve as tumor suppressors, and aberrant TR function (via mutation, deletion, or altered expression) is associated with a spectrum of both neoplastic and endocrine diseases. A particularly high frequency of TR mutations has been reported in renal clear cell carcinoma (RCCC) and in hepatocellular carcinoma (HCC). We have shown that HCC-TR mutants regulate only a fraction of the genes targeted by wild-type TRs but have gained the ability to regulate other, unique, targets. We have suggested that this altered gene recognition may contribute to the neoplastic phenotype. Here, to determine the generality of this phenomenon, we examined a distinct set of TR mutants associated with RCCC. We report that two different TR mutants, isolated from independent RCCC tumors, possess greatly expanded target gene specificities that extensively overlap one another, but only minimally overlap that of the wild-type TRs, or those of two HCC-TR mutants. Many of the genes targeted by either or both RCCC-TR mutants have been previously implicated in RCCC and include a series of metallothioneins, solute carriers, and genes involved in glycolysis and energy metabolism. We propose as a hypothesis that TR mutations from RCCC and HCC may play tissue-specific roles in carcinogenesis, and that the divergent target gene recognition patterns of TR mutants isolated from the two different types of tumors may arise from different selective pressures during development of RCCC vs. HCC. PMID:21622534

  3. Structure-based discovery of small molecule hepsin and HGFA protease inhibitors: Evaluation of potency and selectivity derived from distinct binding pockets.

    PubMed

    Franco, Francisco M; Jones, Darin E; Harris, Peter K W; Han, Zhenfu; Wildman, Scott A; Jarvis, Cassie M; Janetka, James W

    2015-05-15

    Hepatocyte growth factor activator (HGFA), matriptase and hepsin are all S1 trypsin-like serine endopeptidases. HGFA is a plasma protease while hepsin and matriptase are type II transmembrane proteases (TTSPs). Upregulated expression and activity of all three proteases is associated with aberrant cancer cell signaling through c-MET and RON tyrosine kinase cell-signaling pathways in cancer. We modeled known benzamidine protease inhibitor scaffolds into the active sites of matriptase, hepsin and HGFA to design new non-peptide inhibitors of hepsin and HGFA. First, we used a docking model of the irreversible inhibitor, Nafamostat, bound to the active site of HGFA in order to explore structure activity relationships (SAR). Compounds were screened for inhibition of HGFA activity in a kinetic enzyme assay using a chromogenic substrate. Next, we designed matched pair compound libraries of 3-amidino and 4-amidino phenylalanine (benzamidine) arginine peptidomimetics based on the structure of matriptase inhibitor, CJ-672. Compounds were screened for inhibition of HGFA, matriptase, and hepsin enzyme activity using fluorogenic substrates. Using this strategy we have discovered the first reported non-peptide small molecule inhibitors of both HGFA and hepsin. These inhibitors have differential potency and selectivity towards all three proteases. A subset of piperazinyl ureas highlighted by 25a, have excellent potency and selectivity for hepsin over matriptase and HGFA. PMID:25882520

  4. Subcutaneous Allergic Sensitization to Protease Allergen Is Dependent on Mast Cells but Not IL-33: Distinct Mechanisms between Subcutaneous and Intranasal Routes.

    PubMed

    Kamijo, Seiji; Suzuki, Mayu; Hara, Mutsuko; Shimura, Sakiko; Ochi, Hirono; Maruyama, Natsuko; Matsuda, Akira; Saito, Hirohisa; Nakae, Susumu; Suto, Hajime; Ichikawa, Saori; Ikeda, Shigaku; Ogawa, Hideoki; Okumura, Ko; Takai, Toshiro

    2016-05-01

    Protease activity of papain, a plant-derived occupational allergen homologous to mite major allergens, is essential to IgE/IgG1 production and lung eosinophilia induced by intranasal papain administration in mice, and IL-33 contributes to these responses. In this work, we investigate skin and Ab responses induced by s.c. papain administration into ear lobes and responses induced by subsequent airway challenge with papain. Subcutaneous papain injection induced swelling associated with increased epidermal thickness, dermal inflammation, serum IgE/IgG1 responses, and Th2 cytokine production in draining lymph node cells restimulated in vitro. These responses were markedly less upon s.c. administration of protease inhibitor-treated papain. Results obtained by using mast cell-deficient mice and reconstitution of tissue mast cells suggested the contribution of mast cells to papain-specific IgE/IgG1 responses and eosinophil infiltration. The responses were equivalent between wild-type and IL-33(-/-) mice. After the subsequent airway challenge, the s.c. presensitized wild-type mice showed more severe lung eosinophilia than those without the presensitization. The presensitized IL-33(-/-) mice showed modest lung eosinophilia, which was absent without the presensitization, but its severity and IgE boost by the airway challenge were markedly less than the presensitized wild-type mice, in which protease activity of inhaled papain contributed to the responses. The results suggest that mechanisms for the protease-dependent sensitization differ between skin and airway and that cooperation of mast cell-dependent, IL-33-independent initial sensitization via skin and protease-induced, IL-33-mediated mechanism in re-exposure via airway to protease allergens maximizes the magnitude of the transition from skin inflammation to asthma in natural history of progression of allergic diseases. PMID:27001956

  5. Group A rotavirus and norovirus display sharply distinct seasonal profiles in Belém, northern Brazil

    PubMed Central

    Siqueira, Jones Anderson Monteiro; Linhares, Alexandre da Costa; Gonçalves, Maryelle dos Santos; de Carvalho, Thaís Cristina Nascimento; Justino, Maria Cleonice Aguiar; Mascarenhas, Joana D'Arc Pereira; Gabbay, Yvone Benchimol

    2013-01-01

    Several viruses have been associated with acute gastroenteritis (AGE), and group A rotavirus (RVA) and nor-ovirus (NoV) are the most prevalent. This study aimed to assess their prevalence among children hospitalised for diarrhoea during a three-year surveillance study. From May 2008-April 2011, overall positivity rates of 21.6% (628/2904) and 35.4% (171/483) were observed for RVA and NoV, respectively. The seasonality observed indicated distinct patterns when both viruses were compared. This finding may explain why hospitalisation for AGE remains constant throughout the year. Continuous AGE monitoring is needed to better assess the patterns of infection. PMID:23903985

  6. Group A rotavirus and norovirus display sharply distinct seasonal profiles in Belém, northern Brazil.

    PubMed

    Siqueira, Jones Anderson Monteiro; Linhares, Alexandre da Costa; Gonçalves, Maryelle dos Santos; Carvalho, Thaís Cristina Nascimento de; Justino, Maria Cleonice Aguiar; Mascarenhas, Joana D'Arc Pereira; Gabbay, Yvone Benchimol

    2013-08-01

    Several viruses have been associated with acute gastroenteritis (AGE), and group A rotavirus (RVA) and norovirus (NoV) are the most prevalent. This study aimed to assess their prevalence among children hospitalised for diarrhoea during a three-year surveillance study. From May 2008-April 2011, overall positivity rates of 21.6% (628/2904) and 35.4% (171/483) were observed for RVA and NoV, respectively. The seasonality observed indicated distinct patterns when both viruses were compared. This finding may explain why hospitalisation for AGE remains constant throughout the year. Continuous AGE monitoring is needed to better assess the patterns of infection. PMID:23903985

  7. Human Mesenchymal Stromal Cells from Different Sources Diverge in Their Expression of Cell Surface Proteins and Display Distinct Differentiation Patterns

    PubMed Central

    Elahi, Kourosch C.; Klein, Gerd; Avci-Adali, Meltem; Sievert, Karl D.; MacNeil, Sheila; Aicher, Wilhelm K.

    2016-01-01

    When germ-free cell cultures became a laboratory routine, hopes were high for using this novel technology for treatment of diseases or replacement of cells in patients suffering from injury, inflammation, or cancer or even refreshing cells in the elderly. Today, more than 50 years after the first successful bone marrow transplantation, clinical application of hematopoietic stem cells is a routine procedure, saving the lives of many every day. However, transplanting other than hematopoietic stem and progenitor cells is still limited to a few applications, and it mainly applies to mesenchymal stromal cells (MSCs) isolated from bone marrow. But research progressed and different trials explore the clinical potential of human MSCs isolated from bone marrow but also from other tissues including adipose tissue. Recently, MSCs isolated from bone marrow (bmMSCs) were shown to be a blend of distinct cells and MSCs isolated from different tissues show besides some common features also some significant differences. This includes the expression of distinct antigens on subsets of MSCs, which was utilized recently to define and separate functionally different subsets from bulk MSCs. We therefore briefly discuss differences found in subsets of human bmMSCs and in MSCs isolated from some other sources and touch upon how this could be utilized for cell-based therapies. PMID:26770208

  8. Ovarian Cancers Harboring Inactivating Mutations in CDK12 Display a Distinct Genomic Instability Pattern Characterized by Large Tandem Duplications.

    PubMed

    Popova, Tatiana; Manié, Elodie; Boeva, Valentina; Battistella, Aude; Goundiam, Oumou; Smith, Nicholas K; Mueller, Christopher R; Raynal, Virginie; Mariani, Odette; Sastre-Garau, Xavier; Stern, Marc-Henri

    2016-04-01

    CDK12 is a recurrently mutated gene in serous ovarian carcinoma, whose downregulation is associated with impaired expression of DNA damage repair genes and subsequent hypersensitivity to DNA-damaging agents and PARP1/2 inhibitors. In this study, we investigated the genomic landscape associated with CDK12 inactivation in patients with serous ovarian carcinoma. We show that CDK12 loss was consistently associated with a particular genomic instability pattern characterized by hundreds of tandem duplications of up to 10 megabases (Mb) in size. Tandem duplications were characterized by a bimodal (∼0.3 and ∼3 Mb) size distribution and overlapping microhomology at the breakpoints. This genomic instability, denoted as the CDK12 TD-plus phenotype, is remarkably distinct from other alteration patterns described in breast and ovarian cancers. The CDK12 TD-plus phenotype was associated with a greater than 10% gain in genomic content and occurred at a 3% to 4% rate in The Cancer Genome Atlas-derived and in-house cohorts of patients with serous ovarian carcinoma. Moreover, CDK12-inactivating mutations together with the TD-plus phenotype were also observed in prostate cancers. Our finding provides new insight toward deciphering the function of CDK12 in genome maintenance and oncogenesis. Cancer Res; 76(7); 1882-91. ©2016 AACR. PMID:26787835

  9. Human decidual macrophages and NK cells differentially express Toll-like receptors and display distinct cytokine profiles upon TLR stimulation.

    PubMed

    Duriez, Marion; Quillay, Héloïse; Madec, Yoann; El Costa, Hicham; Cannou, Claude; Marlin, Romain; de Truchis, Claire; Rahmati, Mona; Barré-Sinoussi, Françoise; Nugeyre, Marie-Thérèse; Menu, Elisabeth

    2014-01-01

    Maternofetal pathogen transmission is partially controlled at the level of the maternal uterine mucosa at the fetal implantation site (the decidua basalis), where maternal and fetal cells are in close contact. Toll-like receptors (TLRs) may play an important role in initiating rapid immune responses against pathogens in the decidua basalis, however the tolerant microenvironment should be preserved in order to allow fetal development. Here we investigated the expression and functionality of TLRs expressed by decidual macrophages (dMs) and NK cells (dNKs), the major decidual immune cell populations. We report for the first time that both human dMs and dNK cells express mRNAs encoding TLRs 1-9, albeit with a higher expression level in dMs. TLR2, TLR3, and TLR4 protein expression checked by flow cytometry was positive for both dMs and dNK cells. In vitro treatment of primary dMs and dNK cells with specific TLR2, TLR3, TLR4, TLR7/8, and TLR9 agonists enhanced their secretion of pro- and anti-inflammatory cytokines, as well as cytokines and chemokines involved in immune cell crosstalk. Only dNK cells released IFN-γ, whereas only dMs released IL-1β, IL-10, and IL-12. TLR9 activation of dMs resulted in a distinct pattern of cytokine expression compared to the other TLRs. The cytokine profiles expressed by dMs and dNK cells upon TLR activation are compatible with maintenance of the fetotolerant immune environment during initiation of immune responses to pathogens at the maternofetal interface. PMID:25071732

  10. Regulator of G protein signaling 8 inhibits protease-activated receptor 1/Gi/o signaling by forming a distinct G protein-dependent complex in live cells.

    PubMed

    Lee, Jinyong; Ghil, Sungho

    2016-05-01

    Activation of seven-transmembrane-domain-possessing G protein-coupled receptors (GPCRs) by extracellular stimuli elicits intracellular responses. One class of GPCRs-protease-activated receptors (PARs)-is activated by endogenous proteases, such as thrombin and trypsin. Members of the regulator of G protein signaling (RGS) family stimulate GTP hydrolysis of G protein alpha (Gα) subunits, thereby inhibiting GPCR/Gα-mediated signaling. We previously reported that RGS2 and RGS4 inhibit PAR1/Gα-mediated signaling by interacting with PAR1 in a Gα-dependent manner. Here, employing the bioluminescence resonance energy transfer (BRET) technique, we identified RGS8 as a novel PAR1-interacting protein. Very little BRET activity was observed between PAR1-Venus (PAR1-Ven) and RGS8-Luciferase (RGS8-Luc) in the absence of Gα. However, in the presence of Gαo, BRET activity was specifically and significantly increased. This interaction was confirmed by biochemical and immunofluorescence assays. Notably, RGS8 inhibited PAR1/Gαi/o-mediated adenylyl cyclase and ERK activation, and prevented Gαo-induced neurite outgrowth and activation of Necdin protein, a downstream target of Gαo. Our findings suggest a novel function of RGS8 and reveal cellular mechanisms by which RGS8 mediates PAR1 inhibition. PMID:26829215

  11. Supermarket Proteases.

    ERIC Educational Resources Information Center

    Hagar, William G.; Bullerwell, Lornie D.

    2003-01-01

    Presents a laboratory activity on enzymes. Uses common items found in the supermarket that contain protease enzymes, such as contact lens cleaner and meat tenderizer. Demonstrates the digestion of gelatin proteins as part of enzymatic reactions. (Author/SOE)

  12. Distinct roles of secreted HtrA proteases from gram-negative pathogens in cleaving the junctional protein and tumor suppressor E-cadherin.

    PubMed

    Hoy, Benjamin; Geppert, Tim; Boehm, Manja; Reisen, Felix; Plattner, Patrick; Gadermaier, Gabriele; Sewald, Norbert; Ferreira, Fatima; Briza, Peter; Schneider, Gisbert; Backert, Steffen; Wessler, Silja

    2012-03-23

    The periplasmic chaperone and serine protease HtrA is important for bacterial stress responses and protein quality control. Recently, we discovered that HtrA from Helicobacter pylori is secreted and cleaves E-cadherin to disrupt the epithelial barrier, but it remained unknown whether this maybe a general virulence mechanism. Here, we show that important other pathogens including enteropathogenic Escherichia coli, Shigella flexneri, and Campylobacter jejuni, but not Neisseria gonorrhoeae, cleaved E-cadherin on host cells. HtrA deletion in C. jejuni led to severe defects in E-cadherin cleavage, loss of cell adherence, paracellular transmigration, and basolateral invasion. Computational modeling of HtrAs revealed a conserved pocket in the active center exhibiting pronounced proteolytic activity. Differential E-cadherin cleavage was determined by an alanine-to-glutamine exchange in the active center of neisserial HtrA. These data suggest that HtrA-mediated E-cadherin cleavage is a prevalent pathogenic mechanism of multiple gram-negative bacteria representing an attractive novel target for therapeutic intervention to combat bacterial infections. PMID:22337879

  13. Diverged Alleles of the Anopheles gambiae Leucine-Rich Repeat Gene APL1A Display Distinct Protective Profiles against Plasmodium falciparum

    PubMed Central

    Mitri, Christian; Riehle, Michelle M.; Bischoff, Emmanuel; Brito-Fravallo, Emma; Takashima, Eizo; Thiery, Isabelle; Zettor, Agnes; Petres, Stephane; Bourgouin, Catherine; Vernick, Kenneth D.; Eiglmeier, Karin

    2012-01-01

    Functional studies have demonstrated a role for the Anopheles gambiae APL1A gene in resistance against the human malaria parasite, Plasmodium falciparum. Here, we exhaustively characterize the structure of the APL1 locus and show that three structurally different APL1A alleles segregate in the Ngousso colony. Genetic association combined with RNAi-mediated gene silencing revealed that APL1A alleles display distinct protective profiles against P. falciparum. One APL1A allele is sufficient to explain the protective phenotype of APL1A observed in silencing experiments. Epitope-tagged APL1A isoforms expressed in an in vitro hemocyte-like cell system showed that under assay conditions, the most protective APL1A isoform (APL1A2) localizes within large cytoplasmic vesicles, is not constitutively secreted, and forms only one protein complex, while a less protective isoform (APL1A1) is constitutively secreted in at least two protein complexes. The tested alleles are identical to natural variants in the wild A. gambiae population, suggesting that APL1A genetic variation could be a factor underlying natural heterogeneity of vector susceptibility to P. falciparum. PMID:23285147

  14. The antihelmintic flubendazole inhibits microtubule function through a mechanism distinct from Vinca alkaloids and displays preclinical activity in leukemia and myeloma.

    PubMed

    Spagnuolo, Paul A; Hu, Jiayi; Hurren, Rose; Wang, Xiaoming; Gronda, Marcela; Sukhai, Mahadeo A; Di Meo, Ashley; Boss, Jonathan; Ashali, Iman; Beheshti Zavareh, Reza; Fine, Noah; Simpson, Craig D; Sharmeen, Sumaiya; Rottapel, Rob; Schimmer, Aaron D

    2010-06-10

    On-patent and off-patent drugs with previously unrecognized anticancer activity could be rapidly repurposed for this new indication given their prior toxicity testing. To identify such compounds, we conducted chemical screens and identified the antihelmintic flubendazole. Flubendazole induced cell death in leukemia and myeloma cell lines and primary patient samples at nanomolar concentrations. Moreover, it delayed tumor growth in leukemia and myeloma xenografts without evidence of toxicity. Mechanistically, flubendazole inhibited tubulin polymerization by binding tubulin at a site distinct from vinblastine. In addition, cells resistant to vinblastine because of overexpression of P-glycoprotein remained fully sensitive to flubendazole, indicating that flubendazole can overcome some forms of vinblastine resistance. Given the different mechanisms of action, we evaluated the combination of flubendazole and vinblastine in vitro and in vivo. Flubendazole synergized with vinblastine to reduce the viability of OCI-AML2 cells. In addition, combinations of flubendazole with vinblastine or vincristine in a leukemia xenograft model delayed tumor growth more than either drug alone. Therefore, flubendazole is a novel microtubule inhibitor that displays preclinical activity in leukemia and myeloma. PMID:20348394

  15. Distinct Acid Resistance and Survival Fitness Displayed by Curli Variants of Enterohemorrhagic Escherichia coli O157:H7▿†

    PubMed Central

    Carter, Michelle Q.; Brandl, Maria T.; Louie, Jacqueline W.; Kyle, Jennifer L.; Carychao, Diana K.; Cooley, Michael B.; Parker, Craig T.; Bates, Anne H.; Mandrell, Robert E.

    2011-01-01

    Curli are adhesive fimbriae of Enterobacteriaceae and are involved in surface attachment, cell aggregation, and biofilm formation. Here, we report that both inter- and intrastrain variations in curli production are widespread in enterohemorrhagic Escherichia coli O157:H7. The relative proportions of curli-producing variants (C+) and curli-deficient variants (C−) in an E. coli O157:H7 cell population varied depending on the growth conditions. In variants derived from the 2006 U.S. spinach outbreak strains, the shift between the C+ and C− subpopulations occurred mostly in response to starvation and was unidirectional from C− to C+; in variants derived from the 1993 hamburger outbreak strains, the shift occurred primarily in response to oxygen depletion and was bidirectional. Furthermore, curli variants derived from the same strain displayed marked differences in survival fitness: C+ variants grew to higher concentrations in nutrient-limited conditions than C− variants, whereas C− variants were significantly more acid resistant than C+ variants. This difference in acid resistance does not appear to be linked to the curli fimbriae per se, since a csgA deletion mutant in either a C+ or a C− variant exhibited an acid resistance similar to that of its parental strain. Our data suggest that natural curli variants of E. coli O157:H7 carry several distinct physiological properties that are important for their environmental survival. Maintenance of curli variants in an E. coli O157:H7 population may provide a survival strategy in which C+ variants are selected in a nutrient-limited environment, whereas C− variants are selected in an acidic environment, such as the stomach of an animal host, including that of a human. PMID:21478320

  16. Phytaspase, a relocalisable cell death promoting plant protease with caspase specificity

    PubMed Central

    Chichkova, Nina V; Shaw, Jane; Galiullina, Raisa A; Drury, Georgina E; Tuzhikov, Alexander I; Kim, Sang Hyon; Kalkum, Markus; Hong, Teresa B; Gorshkova, Elena N; Torrance, Lesley; Vartapetian, Andrey B; Taliansky, Michael

    2010-01-01

    Caspases are cysteine-dependent proteases and are important components of animal apoptosis. They introduce specific breaks after aspartate residues in a number of cellular proteins mediating programmed cell death (PCD). Plants encode only distant homologues of caspases, the metacaspases that are involved in PCD, but do not possess caspase-specific proteolytic activity. Nevertheless, plants do display caspase-like activities indicating that enzymes structurally distinct from classical caspases may operate as caspase-like proteases. Here, we report the identification and characterisation of a novel PCD-related subtilisin-like protease from tobacco and rice named phytaspase (plant aspartate-specific protease) that possesses caspase specificity distinct from that of other known caspase-like proteases. We provide evidence that phytaspase is synthesised as a proenzyme, which is autocatalytically processed to generate the mature enzyme. Overexpression and silencing of the phytaspase gene showed that phytaspase is essential for PCD-related responses to tobacco mosaic virus and abiotic stresses. Phytaspase is constitutively secreted into the apoplast before PCD, but unexpectedly is re-imported into the cell during PCD providing insights into how phytaspase operates. PMID:20111004

  17. Proteases as Insecticidal Agents

    PubMed Central

    Harrison, Robert L.; Bonning, Bryony C.

    2010-01-01

    Proteases from a variety of sources (viruses, bacteria, fungi, plants, and insects) have toxicity towards insects. Some of these insecticidal proteases evolved as venom components, herbivore resistance factors, or microbial pathogenicity factors, while other proteases play roles in insect development or digestion, but exert an insecticidal effect when over-expressed from genetically engineered plants or microbial pathogens. Many of these proteases are cysteine proteases, although insect-toxic metalloproteases and serine proteases have also been examined. The sites of protease toxic activity range from the insect midgut to the hemocoel (body cavity) to the cuticle. This review discusses these insecticidal proteases along with their evaluation and use as potential pesticides. PMID:22069618

  18. T-cell alpha beta + and gamma delta + deficient mice display abnormal but distinct phenotypes toward a natural, widespread infection of the intestinal epithelium.

    PubMed Central

    Roberts, S J; Smith, A L; West, A B; Wen, L; Findly, R C; Owen, M J; Hayday, A C

    1996-01-01

    Vertebrate immune systems contain T cells bearing either alpha beta or gamma delta T-cell antigen receptors (TCRs). alpha beta T cells perform all well-characterized T-cell effector functions, while the biological functions of gamma delta + cells remain unclear. Of particular interest is the role of gamma delta + cells during epithelial infections, since gamma delta + cells are commonly abundant within epithelia. Eimeria spp. are intracellular protozoa that infect epithelia of most vertebrates, causing coccidiosis. This study shows that in response to Eimeria vermiformis, mice lacking alpha beta T cells display defects in protective immunity, while mice lacking gamma delta + cells display exaggerated intestinal damage, apparently due to a failure to regulate the consequences of the alpha beta T cell response. An immuno-downregulatory role during infection, and during autoimmune disease, may be a general one for gamma delta + cells. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8876213

  19. Pseudomonas aeruginosa isolates from dental unit waterlines can be divided in two distinct groups, including one displaying phenotypes similar to isolates from cystic fibrosis patients

    PubMed Central

    Ouellet, Myriam M.; Leduc, Annie; Nadeau, Christine; Barbeau, Jean; Charette, Steve J.

    2015-01-01

    Pseudomonas aeruginosa displays broad genetic diversity, giving it an astonishing capacity to adapt to a variety of environments and to infect a wide range of hosts. While many P. aeruginosa isolates of various origins have been analyzed, isolates from cystic fibrosis (CF) patients have received the most attention. Less is known about the genetic and phenotypic diversity of P. aeruginosa isolates that colonize other environments where flourishing biofilms can be found. In the present study, 29 P. aeruginosa isolates from dental unit waterlines and CF patients were collected and their genetic and phenotypes profiles were compared to determine whether environmental and clinical isolates are related. The isolates were first classified using the random amplified polymorphic DNA method. This made it possible to distribute the isolates into one clinical cluster and two environmental clusters. The isolates in the environmental cluster that were genetically closer to the clinical cluster also displayed phenotypes similar to the clinical isolates. The isolates from the second environmental cluster displayed opposite phenotypes, particularly an increased capacity to form biofilms. The isolates in this cluster were also the only ones harboring genes that encoded specific epimerases involved in the synthesis of lipopolysaccharides, which could explain their increased ability to form biofilms. In conclusion, the isolates from the dental unit waterlines could be distributed into two clusters, with some of the environmental isolates resembled the clinical isolates. PMID:25653647

  20. Serine protease autotransporters of enterobacteriaceae (SPATEs): biogenesis and function.

    PubMed

    Dautin, Nathalie

    2010-06-01

    Serine Protease Autotransporters of Enterobacteriaceae (SPATEs) constitute a large family of proteases secreted by Escherichia coli and Shigella. SPATEs exhibit two distinct proteolytic activities. First, a C-terminal catalytic site triggers an intra-molecular cleavage that releases the N-terminal portion of these proteins in the extracellular medium. Second, the secreted N-terminal domains of SPATEs are themselves proteases; each contains a canonical serine-protease catalytic site. Some of these secreted proteases are toxins, eliciting various effects on mammalian cells. Here, we discuss the biogenesis of SPATEs and their function as toxins. PMID:22069633

  1. Two ScFv antibody libraries derived from identical VL-VH framework with different binding site designs display distinct binding profiles.

    PubMed

    Huovinen, Tuomas; Syrjänpää, Markku; Sanmark, Hanna; Brockmann, Eeva-Christine; Azhayev, Alex; Wang, Qi; Vehniäinen, Markus; Lamminmäki, Urpo

    2013-10-01

    In directed evolution experiments, a single randomization scheme of an antibody gene does not provide optimal diversity for recognition of all sizes of antigens. In this study, we have expanded the recognition potential of our universal library, termed ScFvP, with a second distinct diversification scheme. In the second library, termed ScFvM, diversity was designed closer to the center of the antigen binding site in the same antibody framework as earlier. Also, the CDR-H3 loop structures were redesigned to be shorter, 5-12 aa and mostly without the canonical salt bridge between Arg106H and Asp116H to increase the flexibility of the loop and to allow more space in the center of the paratope for binding smaller targets. Antibodies were selected from the two libraries against various antigens separately and as a mixture. The origin and characteristics of the retrieved antibodies indicate that complementary diversity results in complementary functionality widening the spectrum of targets amenable for selection. PMID:23966567

  2. Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isoforms and Their Conformationally Restricted Mutants

    PubMed Central

    Lee, Sunmin; Tsutsumi, Shinji; Yim, Kendrick; Rivas, Candy; Alarcon, Sylvia; Schwartz, Harvey; Khamit-Kush, Kofi; Scroggins, Bradley T.; Beebe, Kristin; Trepel, Jane B.; Neckers, Len

    2015-01-01

    The two cytosolic/nuclear isoforms of the molecular chaperone HSP90, stress-inducible HSP90α and constitutively expressed HSP90β, fold, assemble and maintain the three-dimensional structure of numerous client proteins. Because many HSP90 clients are important in cancer, several HSP90 inhibitors have been evaluated in the clinic. However, little is known concerning possible unique isoform or conformational preferences of either individual HSP90 clients or inhibitors. In this report, we compare the relative interaction strength of both HSP90α and HSP90β with the transcription factors HSF1 and HIF1α, the kinases ERBB2 and MET, the E3-ubiquitin ligases KEAP1 and RHOBTB2, and the HSP90 inhibitors geldanamycin and ganetespib. We observed unexpected differences in relative client and drug preferences for the two HSP90 isoforms, with HSP90α binding each client protein with greater apparent affinity compared to HSP90β, while HSP90β bound each inhibitor with greater relative interaction strength compared to HSP90α. Stable HSP90 interaction was associated with reduced client activity. Using a defined set of HSP90 conformational mutants, we found that some clients interact strongly with a single, ATP-stabilized HSP90 conformation, only transiently populated during the dynamic HSP90 chaperone cycle, while other clients interact equally with multiple HSP90 conformations. These data suggest different functional requirements among HSP90 clientele that, for some clients, are likely to be ATP-independent. Lastly, the two inhibitors examined, although sharing the same binding site, were differentially able to access distinct HSP90 conformational states. PMID:26517842

  3. Protease and protease inhibitory activity in pregnant and postpartum involuting uterus

    SciTech Connect

    Milwidsky, A.; Beller, U.; Palti, Z.; Mayer, M.

    1982-08-15

    The presence of two distinct proteolytic activities in the rat uterus was confirmed with /sup 14/C-labeled globin used as a sensitive protein substrate and following release of label into the trichloroacetic acid-soluble supernatant fraction. Protease I is a cytoplasmic acid protease while protease II is associated with the pellet fraction, can be extracted by 0.6 M sodium chloride, and is active at pH 7.0. Protease I activity is low during pregnancy and markedly increases at term achieving maximal activity at day 3 post partum with a subsequent decline to preterm activity values. Lactation did not affect the uterine protease I activity. Protease II activity is not significantly different during pregnancy, at term, and post partum. The presence of an inhibitor of protease I was suggested by a decrease in enzyme activity with an increased cytosolic protein concentration. The inhibitor also lessened bovine trypsin activity but had no effect on protease II. Although its inhibitory potency on trypsin fluctuated during the various uterine physiologic stages, these changes appeared to be statistically insignificant. Human uterine samples were also found to contain the two protease activities with similar changes in protease I post partum. It is suggested that, both in the rat and in man, uterine involution post partum is associated with a marked increase in activity of acid cytosolic protease, while a particulate neutral protease and a soluble inhibitor of trypsin, which are also present in uterine cells, do not appear to play a significant role in the dissolution of uterine tissues after parturition.

  4. Investigations with Protease.

    ERIC Educational Resources Information Center

    Yip, Din Yan

    1997-01-01

    Presents two simple and reliable ways for measuring protease activity that can be used for a variety of investigations in a range of biology class levels. The investigations use protease from a variety of sources. (DDR)

  5. Proteases from the Regenerating Gut of the Holothurian Eupentacta fraudatrix

    PubMed Central

    Lamash, Nina E.; Dolmatov, Igor Yu

    2013-01-01

    Four proteases with molecular masses of 132, 58, 53, and 47 kDa were detected in the digestive system of the holothurian Eupentacta fraudatrix. These proteases displayed the gelatinase activity and characteristics of zinc metalloproteinases. The 58 kDa protease had similar protease inhibitor sensitivity to that of mammalian matrix metalloproteinases. Zymographic assay revealed different lytic activities of all four proteases during intestine regeneration in the holothurian. The 132 kDa protease showed the highest activity at the first stage. During morphogenesis (stages 2–4 of regeneration), the highest activity was measured for the 53 and 58 kDa proteases. Inhibition of protease activity exerts a marked effect on regeneration, which was dependent on the time when 1,10-phenanthroline injections commenced. When metalloproteinases were inhibited at the second stage of regeneration, the restoration rates were decreased. However, such an effect proved to be reversible, and when inhibition ceased, the previous rate of regeneration was recovered. When protease activity is inhibited at the first stage, regeneration is completely abolished, and the animals die, suggesting that early activation of the proteases is crucial for triggering the regenerative process in holothurians. The role of the detected proteases in the regeneration processes of holothurians is discussed. PMID:23505505

  6. Human immunodeficiency virus type 1 viral background plays a major role in development of resistance to protease inhibitors.

    PubMed Central

    Rose, R E; Gong, Y F; Greytok, J A; Bechtold, C M; Terry, B J; Robinson, B S; Alam, M; Colonno, R J; Lin, P F

    1996-01-01

    The observed in vitro and in vivo benefit of combination treatment with anti-human immunodeficiency virus (HIV) agents prompted us to examine the potential of resistance development when two protease inhibitors are used concurrently. Recombinant HIV-1 (NL4-3) proteases containing combined resistance mutations associated with BMS-186318 and A-77003 (or saquinavir) were either inactive or had impaired enzyme activity. Subsequent construction of HIV-1 (NL4-3) proviral clones containing the same mutations yielded viruses that were severely impaired in growth or nonviable, confirming that combination therapy may be advantageous. However, passage of BMS-186318-resistant HIV-1 (RF) in the presence of either saquinavir or SC52151, which represented sequential drug treatment, produced viable viruses resistant to both BMS-186318 and the second compound. The predominant breakthrough virus contained the G48V/A71T/V82A protease mutations. The clone-purified RF (G48V/A71T/V82A) virus, unlike the corresponding defective NL4-3 triple mutant, grew well and displayed cross-resistance to four distinct protease inhibitors. Chimeric virus and in vitro mutagenesis studies indicated that the RF-specific protease sequence, specifically the Ile at residue 10, enabled the NL4-3 strain with the triple mutant to grow. Our results clearly indicate that viral genetic background will play a key role in determining whether cross-resistance variants will arise. Images Fig. 1 PMID:8643685

  7. Emergence of Resistance to Protease Inhibitor Amprenavir in Human Immunodeficiency Virus Type 1-Infected Patients: Selection of Four Alternative Viral Protease Genotypes and Influence of Viral Susceptibility to Coadministered Reverse Transcriptase Nucleoside Inhibitors

    PubMed Central

    Maguire, Michael; Shortino, Denise; Klein, Astrid; Harris, Wendy; Manohitharajah, Varsha; Tisdale, Margaret; Elston, Robert; Yeo, Jane; Randall, Sharon; Xu, Fan; Parker, Hayley; May, Jackie; Snowden, Wendy

    2002-01-01

    Previous data have indicated that the development of resistance to amprenavir, an inhibitor of the human immunodeficiency virus type 1 protease, is associated with the substitution of valine for isoleucine at residue 50 (I50V) in the viral protease. We present further findings from retrospective genotypic and phenotypic analyses of plasma samples from protease inhibitor-naïve and nucleoside reverse transcriptase inhibitor (NRTI)-experienced patients who experienced virological failure while participating in a clinical trial where they had been randomized to receive either amprenavir or indinavir in combination with NRTIs. Paired baseline and on-therapy isolates from 31 of 48 (65%) amprenavir-treated patients analyzed demonstrated the selection of protease mutations. These mutations fell into four distinct categories, characterized by the presence of either I50V, I54L/I54M, I84V, or V32I+I47V and often included accessory mutations, commonly M46I/L. The I50V and I84V genotypes displayed the greatest reductions in susceptibility to amprenavir, although each of the amprenavir-selected genotypes conferred little or no cross-resistance to other protease inhibitors. There was a significant association, for both amprenavir and indinavir, between preexisting baseline resistance to NRTIs subsequently received during the study and development of protease mutations (P = 0.014 and P = 0.031, respectively). Our data provide a comprehensive analysis of the mechanisms by which amprenavir resistance develops during clinical use and present evidence that resistance to concomitant agents in the treatment regimen predisposes to the development of mutations associated with protease inhibitor resistance and treatment failure. PMID:11850255

  8. AAA proteases in mitochondria: diverse functions of membrane-bound proteolytic machines.

    PubMed

    Tatsuta, Takashi; Langer, Thomas

    2009-11-01

    FtsH/AAA proteases comprise a distinct family of membrane-bound, ATP-dependent proteases present in eubacteria and eukaryotic cells, where they are confined to mitochondria and chloroplasts. Here, we will summarize versatile functions of AAA proteases within mitochondria, which ensure mitochondrial integrity and cell survival, acting both as quality control and processing enzymes. PMID:19781639

  9. Structural determinants of tobacco vein mottling virus protease substrate specificity

    SciTech Connect

    Sun, Ping; Austin, Brian P.; Tozer, Jozsef; Waugh, David

    2010-10-28

    Tobacco vein mottling virus (TVMV) is a member of the Potyviridae, one of the largest families of plant viruses. The TVMV genome is translated into a single large polyprotein that is subsequently processed by three virally encoded proteases. Seven of the nine cleavage events are carried out by the NIa protease. Its homolog from the tobacco etch virus (TEV) is a widely used reagent for the removal of affinity tags from recombinant proteins. Although TVMV protease is a close relative of TEV protease, they exhibit distinct sequence specificities. We report here the crystal structure of a catalytically inactive mutant TVMV protease (K65A/K67A/C151A) in complex with a canonical peptide substrate (Ac-RETVRFQSD) at 1.7-{angstrom} resolution. As observed in several crystal structures of TEV protease, the C-terminus ({approx}20 residues) of TVMV protease is disordered. Unexpectedly, although deleting the disordered residues from TEV protease reduces its catalytic activity by {approx}10-fold, an analogous truncation mutant of TVMV protease is significantly more active. Comparison of the structures of TEV and TVMV protease in complex with their respective canonical substrate peptides reveals that the S3 and S4 pockets are mainly responsible for the differing substrate specificities. The structure of TVMV protease suggests that it is less tolerant of variation at the P1{prime} position than TEV protease. This conjecture was confirmed experimentally by determining kinetic parameters k{sub cat} and K{sub m} for a series of oligopeptide substrates. Also, as predicted by the cocrystal structure, we confirm that substitutions in the P6 position are more readily tolerated by TVMV than TEV protease.

  10. Fibrin(ogen)olytic activity of bumblebee venom serine protease

    SciTech Connect

    Qiu Yuling; Choo, Young Moo; Yoon, Hyung Joo; Jia Jingming; Cui Zheng; Wang Dong; Kim, Doh Hoon; Sohn, Hung Dae; Jin, Byung Rae

    2011-09-01

    Bee venom is a rich source of pharmacologically active components; it has been used as an immunotherapy to treat bee venom hypersensitivity, and venom therapy has been applied as an alternative medicine. Here, we present evidence that the serine protease found in bumblebee venom exhibits fibrin(ogen)olytic activity. Compared to honeybee venom, bumblebee venom contains a higher content of serine protease, which is one of its major components. Venom serine proteases from bumblebees did not cross-react with antibodies against the honeybee venom serine protease. We provide functional evidence indicating that bumblebee (Bombus terrestris) venom serine protease (Bt-VSP) acts as a fibrin(ogen)olytic enzyme. Bt-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. However, Bt-VSP is not a plasminogen activator, and its fibrinolytic activity is less than that of plasmin. Taken together, our results define roles for Bt-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings offer significant insight into the allergic reaction sequence that is initiated by bee venom serine protease and its potential usefulness as a clinical agent in the field of hemostasis and thrombosis. - Graphical abstract: Display Omitted Highlights: > Bumblebee venom serine protease (Bt-VSP) is a fibrin(ogen)olytic enzyme. > Bt-VSP activates prothrombin. > Bt-VSP directly degrades fibrinogen into fibrin degradation products. > Bt-VSP is a hemostatically active protein that is a potent clinical agent.

  11. Extracellular acid proteases from Neurospora crassa.

    PubMed Central

    Lindberg, R A; Rhodes, W G; Eirich, L D; Drucker, H

    1982-01-01

    Three electrophoretically distinct acid proteases appear in culture filtrates of Neurospora crassa. Like the previously investigated alkaline and neutral proteases, these enzymes require induction by an exogenous protein. But in contrast to alkaline and neutral proteases, which are synthesized and secreted in response to limitation of any one of three nutrilites (carbon, nitrogen or sulfur), extracellular elaboration of the acidic proteases is more specifically a function of the missing nutrilite. AcP, a pepstatin-inhibitable enzyme similar to other fungal carboxyl proteases, was secreted in large amounts when protein was the sole source of sulfur. Only trace amounts were secreted when nitrogen was the limiting nutrilite, and it was undetectable under carbon limitation. M-1, a chelator-sensitive protease, was secreted when nitrogen or carbon was limiting. M-2, also chelator sensitive, was present only when nitrogen or sulfur was limiting. The evidence presented suggests that the differential regulation of the acidic proteases with respect to nutrilite deprivation may not occur at the level of transcription. AcP and M-2 were partially purified from nitrogen-derepressed cultures by ultrafiltration, cation-exchange chromatography, and gel filtration. AcP has a molecular weight of 66,000, is stable from pH 3.0 to 6.0, and is optimally active toward bovine serum albumin at pH 4.0. M-2 has a molecular weight of 18,000, is stable from pH 1.6 to 5.5, and has optimal activity at pH 4.5. Images PMID:6210687

  12. Extracellular acid proteases from Neurospora crassa.

    PubMed

    Lindberg, R A; Rhodes, W G; Eirich, L D; Drucker, H

    1982-06-01

    Three electrophoretically distinct acid proteases appear in culture filtrates of Neurospora crassa. Like the previously investigated alkaline and neutral proteases, these enzymes require induction by an exogenous protein. But in contrast to alkaline and neutral proteases, which are synthesized and secreted in response to limitation of any one of three nutrilites (carbon, nitrogen or sulfur), extracellular elaboration of the acidic proteases is more specifically a function of the missing nutrilite. AcP, a pepstatin-inhibitable enzyme similar to other fungal carboxyl proteases, was secreted in large amounts when protein was the sole source of sulfur. Only trace amounts were secreted when nitrogen was the limiting nutrilite, and it was undetectable under carbon limitation. M-1, a chelator-sensitive protease, was secreted when nitrogen or carbon was limiting. M-2, also chelator sensitive, was present only when nitrogen or sulfur was limiting. The evidence presented suggests that the differential regulation of the acidic proteases with respect to nutrilite deprivation may not occur at the level of transcription. AcP and M-2 were partially purified from nitrogen-derepressed cultures by ultrafiltration, cation-exchange chromatography, and gel filtration. AcP has a molecular weight of 66,000, is stable from pH 3.0 to 6.0, and is optimally active toward bovine serum albumin at pH 4.0. M-2 has a molecular weight of 18,000, is stable from pH 1.6 to 5.5, and has optimal activity at pH 4.5. PMID:6210687

  13. Extracellular acid proteases from Neurospora crassa

    SciTech Connect

    Lindberg, R.A.; Rhodes, W.G.; Eirich, L.D.; Drucker, H.

    1982-06-01

    Three electrophoretically distinct acid proteases appear in culture filtrates of Neurospora crassa. Like the previously investigated alkaline and neutral proteases, these enzymes require induction by an exogenous protein. But in contrast to alkaline and neutral proteases, which are synthesized and secreted in response to limitation of any one of three nutrilites (carbon, nitrogen or sulfur), extracellular elaboration of the acidic proteases is more specifically a function of the missing nutrilite. AcP, a pepstatin-inhibitable enzyme similar to other fungal carboxyl proteases, was secreted in large amounts when protein was the sole source of sulfur. Only trace amounts were secreted when nitrogen was the limiting nutrilite, and it was undetectable under carbon limitation. M-1, a chelator-sensitive protease, was secreted when nitrogen or carbon was limiting. M-2, also chelator sensitive, was present only when nitrogen or sulfur was limiting. The evidence presented suggests that the differential regulation of the acidic proteases with respect to nutrilite deprivation may not occur at the level of transcription. AcP and M-2 were partially purified from nitrogen-derepressed cultures by ultrafiltration, cation-exchange chromatography, and gel filtration. AcP has a molecular weight of 66,000, is stable from pH 3.0 to 6.0, and is optimally active toward bovine serum albumin at pH 4.0. M-2 has a molecular weight of 18,000, is stable from pH 1.6 to 5.5, and has optimal activity at pH 4.5.

  14. Display system

    NASA Technical Reports Server (NTRS)

    Story, A. W. (Inventor)

    1973-01-01

    A situational display and a means for creating the display are disclosed. The display comprises a moving line or raster, on a cathode ray tube, which is disposed intermediate of two columns of lamps or intensifications on the cathode ray tube. The raster and lights are controlled in such a manner that pairs of lights define a line which is either tracked or chased by the raster in accordance with the relationship between the optimum and actual values of a monitored parameter.

  15. Distinctive G Protein-Dependent Signaling by Protease-Activated Receptor 2 (PAR2) in Smooth Muscle: Feedback Inhibition of RhoA by cAMP-Independent PKA

    PubMed Central

    Sriwai, Wimolpak; Mahavadi, Sunila; Al-Shboul, Othman; Grider, John R.; Murthy, Karnam S.

    2013-01-01

    We examined expression of protease-activated receptors 2 (PAR2) and characterized their signaling pathways in rabbit gastric muscle cells. The PAR2 activating peptide SLIGRL (PAR2-AP) stimulated Gq, G13, Gi1, PI hydrolysis, and Rho kinase activity, and inhibited cAMP formation. Stimulation of PI hydrolysis was partly inhibited in cells expressing PAR2 siRNA, Gaq or Gai minigene and in cells treated with pertussis toxin, and augmented by expression of dominant negative regulator of G protein signaling (RGS4(N88S)). Stimulation of Rho kinase activity was abolished by PAR-2 or Ga13 siRNA, and by Ga13 minigene. PAR2-AP induced a biphasic contraction; initial contraction was selectively blocked by the inhibitor of PI hydrolysis (U73122) or MLC kinase (ML-9), whereas sustained contraction was selectively blocked by the Rho kinase inhibitor (Y27632). PAR2-AP induced phosphorylation of MLC20, MYPT1 but not CPI-17. PAR2-AP also caused a decrease in the association of NF-kB and PKA catalytic subunit: the effect of PAR2-AP was blocked by PAR2 siRNA or phosphorylation-deficient RhoA (RhoA(S188A)). PAR2-AP-induced degradation of IkBa and activation of NF-kB were abolished by the blockade of RhoA activity by Clostridium botulinum C3 exoenzyme suggesting RhoA-dependent activation of NF-kB. PAR2-AP-stimulated Rho kinase activity was significantly augmented by the inhibitors of PKA (myristoylated PKI), IKK2 (IKKIV) or NF-kB (MG132), and in cells expressing dominant negative mutants of IKK (IKK(K44A), IkBa (IkBa (S32A/S36A)) or RhoA(S188A), suggesting feedback inhibition of Rho kinase activity via PKA derived from NF-kB pathway. PAR2-AP induced phosphorylation of RhoA and the phosphorylation was attenuated in cells expressing phosphorylation-deficient RhoA(S188A). Our results identified signaling pathways activated by PAR2 to mediate smooth muscle contraction and a novel pathway for feedback inhibition of PAR2-stimulated RhoA. The pathway involves activation of the NF-kB to release

  16. Display Tactics

    ERIC Educational Resources Information Center

    Tetlow, Linda

    2009-01-01

    Display took a wide variety of forms ranging from students presenting their initial planning and thought processes, to displays of their finished work, and their suggestions for extending the task should they, or others, have time to return to it in the future. A variety of different media were used from traditional posters in many shapes and…

  17. Projection displays

    NASA Astrophysics Data System (ADS)

    Chiu, George L.; Yang, Kei H.

    1998-08-01

    Projection display in today's market is dominated by cathode ray tubes (CRTs). Further progress in this mature CRT projector technology will be slow and evolutionary. Liquid crystal based projection displays have gained rapid acceptance in the business market. New technologies are being developed on several fronts: (1) active matrix built from polysilicon or single crystal silicon; (2) electro- optic materials using ferroelectric liquid crystal, polymer dispersed liquid crystals or other liquid crystal modes, (3) micromechanical-based transducers such as digital micromirror devices, and grating light valves, (4) high resolution displays to SXGA and beyond, and (5) high brightness. This article reviews the projection displays from a transducer technology perspective along with a discussion of markets and trends.

  18. Screening and characterization of protease producing actinomycetes from marine saltern.

    PubMed

    Suthindhiran, Krish; Jayasri, Mangalam Achuthananda; Dipali, Dipa; Prasar, Apurva

    2014-10-01

    In the course of systematic screening program for bioactive actinomycetes, an alkaline protease producing halophilic strain Actinopolyspora sp. VITSDK2 was isolated from marine saltern, Southern India. The strain was identified as Actinopolyspora based on its phenotypic and phylogenetic characters. The protease was partially purified using ammonium sulfate precipitation and subsequently by DEAE cellulose column chromatography. The enzyme was further purified using HPLC and the molecular weight was found to be 22 kDa as determined by SDS-PAGE analysis. The purified protease exhibited pH stability in a wide range of 4-12 with optimum at 10.0. The enzyme was found to be stable between 25 and 80 °C and displayed a maximum activity at 60 °C. The enzyme activity was increased marginally in presence of Mn(2+) , Mg(2+) , and Ca(2+) and decreased in presence of Cu(2+) . PMSF and DFP completely inhibited the activity suggesting it belongs to serine protease. Further, the proteolytic activity was abolished in presence of N-tosyl-L-lysine chloromethyl ketone suggesting this might be chymotrypsin-like serine protease. The protease was 96% active when kept for 10 days at room temperature. The results indicate that the enzyme belong to chymotrypsin-like serine protease exhibiting both pH and thermostability, which can be used for various applications in industries. PMID:24136565

  19. Six-Message Electromechanical Display System

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.

    2007-01-01

    A proposed electromechanical display system would be capable of presenting as many as six distinct messages. In the proposed system, each display element would include a cylinder having a regular hexagonal cross section.

  20. Protease production by Streptococcus sanguis associated with subacute bacterial endocarditis.

    PubMed Central

    Straus, D C

    1982-01-01

    A viridans streptococcus (Streptococcus sanguis biotype II) isolated from the blood of a patient with subacute bacterial endocarditis was examined for protease production. In broth culture, extracellular proteolytic enzymes were not produced by this organism until after the early exponential phase of growth, with maximal protease production occurring during the stationary phase. Four distinct proteases were isolated and purified from the supernatant fluids of stationary-phase cultures, employing a combination of ion-exchange column chromatography, gel filtration column chromatography, and polyacrylamide gel electrophoresis. All four proteases could be eluted from a diethylaminoethyl cellulose column at a sodium chloride gradient concentration of 0.25 M but were separable by gel filtration chromatography on a Sephadex G-100 column. They varied in molecular weights as determined by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis from approximately 13,000 to 230,000. All four proteases had pH optima of between 8.0 and 9.0, and two of the proteases were active against casein, human serum albumin, and gelatin but were not active against elastin and collagen. The remaining two proteases were able to degrade only casein and gelatin. These results show that S. sanguis is able to excrete maximal levels of potentially destructive enzymes when the organisms are not actively multiplying. This finding may explain some of the damage caused in heart tissue by these organisms during subacute bacterial endocarditis. Images PMID:6759404

  1. Inhibitors of rhomboid proteases.

    PubMed

    Wolf, Eliane V; Verhelst, Steven H L

    2016-03-01

    Rhomboid proteases form one of the most widespread families of intramembrane proteases. They utilize a catalytic serine-histidine dyad located several Å below the surface of the membrane for substrate hydrolysis. Multiple studies have implicated rhomboid proteases in biologically and medically relevant processes. Several assays have been developed that are able to monitor rhomboid activity. With the aid of these assays, different types of inhibitors have been found, all based on electrophiles that covalently react with the active site machinery. Although the currently available inhibitors have limited selectivity and moderate potency, they can function as research tools and as starting point for the development of activity-based probes, which are reagents that can specifically detect active rhomboid species. Structural studies on complexes of inhibitors with the Escherichia coli rhomboid GlpG have provided insight into how substrate recognition may occur. Future synthetic efforts, aided by high-throughput screening or structure-based design, may lead to more potent and selective inhibitors for this interesting family of proteases. PMID:26166068

  2. Characterization of protease IV expression in Pseudomonas aeruginosa clinical isolates.

    PubMed

    Conibear, Tim C R; Willcox, Mark D P; Flanagan, Judith L; Zhu, Hua

    2012-02-01

    Expression of protease IV by Pseudomonas aeruginosa during ocular infections contributes significantly to tissue damage. However, several P. aeruginosa strains isolated from ocular infections or inflammatory events produce very low levels of protease IV. The aim of the present study was to characterize, genetically and phenotypically, the presence and expression of the protease IV gene in a group of clinical isolates that cause adverse ocular events of varying degrees, and to elucidate the possible control mechanisms of expression associated with this virulence factor. Protease IV gene sequences from seven clinical isolates of P. aeruginosa were determined and compared to P. aeruginosa strains PAO1 and PA103-29. Production and enzyme activity of protease IV were measured in test strains and compared to that of quorum-sensing gene (lasRI) mutants and the expression of other virulence factors. Protease IV gene sequence similarities between the isolates were 97.5-99.5 %. The strains were classified into two distinct phylogenetic groups that correlated with the presence of exo-enzymes from type three secretion systems (TTSS). Protease IV concentrations produced by PAOΔlasRI mutants and the two clinical isolates with a lasRI gene deficiency were restored to levels comparable to strain PAO1 following complementation of the quorum-sensing gene deficiencies. The protease IV gene is highly conserved in P. aeruginosa clinical isolates that cause a range of adverse ocular events. Observed variations within the gene sequence appear to correlate with presence of specific TTSS genes. Protease IV expression was shown to be regulated by the Las quorum-sensing system. PMID:21921113

  3. From proteases to proteomics

    PubMed Central

    Neurath, Hans

    2001-01-01

    This personal and professional autobiography covers the 50-yr period of 1950–2000 and includes the following topics: History of the University of Washington School of Medicine and its Department of Biochemistry (Mount Rainier and the University of Washington, recruiting faculty, biology, research programs); scientific editing (publication, Biochemistry, Protein Science, electronic publication); Europe revisited (Heidelberg, approaching retirement, the German Research Center, reunion in Vienna); and 50 yr of research on proteolytic enzymes (trypsin, carboxypeptidases, mast cell proteases, future developments). PMID:11274481

  4. Novel proteases: common themes and surprising features.

    PubMed

    Vandeputte-Rutten, Lucy; Gros, Piet

    2002-12-01

    Proteases perform a wide variety of functions, inside and outside cells, regulating many biological processes. Recent years have witnessed a number of significant advances in the structural biology of proteases, including aspects of intracellular protein and peptide degradation by self-compartmentalizing proteases, activation of proteases in proteolytic cascades of regulatory pathways, and mechanisms of microbial proteases in pathogenicity. PMID:12504673

  5. Autocatalytic processing of m-AAA protease subunits in mitochondria.

    PubMed

    Koppen, Mirko; Bonn, Florian; Ehses, Sarah; Langer, Thomas

    2009-10-01

    m-AAA proteases are ATP-dependent proteolytic machines in the inner membrane of mitochondria which are crucial for the maintenance of mitochondrial activities. Conserved nuclear-encoded subunits, termed paraplegin, Afg3l1, and Afg3l2, form various isoenzymes differing in their subunit composition in mammalian mitochondria. Mutations in different m-AAA protease subunits are associated with distinct neuronal disorders in human. However, the biogenesis of m-AAA protease complexes or of individual subunits is only poorly understood. Here, we have examined the processing of nuclear-encoded m-AAA protease subunits upon import into mitochondria and demonstrate autocatalytic processing of Afg3l1 and Afg3l2. The mitochondrial processing peptidase MPP generates an intermediate form of Afg3l2 that is matured autocatalytically. Afg3l1 or Afg3l2 are also required for maturation of newly imported paraplegin subunits after their cleavage by MPP. Our results establish that mammalian m-AAA proteases can act as processing enzymes in vivo and reveal overlapping activities of Afg3l1 and Afg3l2. These findings might be of relevance for the pathogenesis of neurodegenerative disorders associated with mutations in different m-AAA protease subunits. PMID:19656850

  6. Genomic and metabolic comparison with Dickeya dadantii 3937 reveals the emerging Dickeya solani potato pathogen to display distinctive metabolic activities and T5SS/T6SS-related toxin repertoire

    PubMed Central

    2014-01-01

    Background The pectinolytic enterobacteria of the Pectobacterium and Dickeya genera are causative agents of maceration-associated diseases affecting a wide variety of crops and ornamentals. For the past decade, the emergence of a novel species D. solani was observed in potato fields in Europe and the Mediterranean basin. The purpose of this study is to search by comparative genomics the genetic traits that could be distinctive to other Dickeya species and be involved in D. solani adaptation to the potato plant host. Results D. solani 3337 exhibits a 4.9 Mb circular genome that is characterized by a low content in mobile elements with the identification of only two full length insertion sequences. A genomic comparison with the deeply-annotated model D. dadantii 3937 strain was performed. While a large majority of Dickeya virulence genes are shared by both strains, a few hundreds genes of D. solani 3337, mostly regrouped in 25 genomic regions, are distinctive to D. dadantii 3937. These genomic regions are present in the other available draft genomes of D. solani strains and interestingly some of them were not found in the sequenced genomes of the other Dickeya species. These genomic regions regroup metabolic genes and are often accompanied by genes involved in transport systems. A metabolic analysis correlated some metabolic genes with distinctive functional traits of both D. solani 3337 and D. dadantii 3937. Three identified D. solani genomic regions also regroup NRPS/PKS encoding genes. In addition, D. solani encodes a distinctive arsenal of T5SS and T6SS-related toxin-antitoxin systems. These genes may contribute to bacteria-bacteria interactions and to the fitness of D. solani to the plant environment. Conclusions This study highlights the genomic specific traits of the emerging pathogen D. solani and will provide the basis for studying those that are involved in the successful adaptation of this emerging pathogen to the potato plant host. PMID:24735398

  7. Proteases of human rhinovirus: role in infection.

    PubMed

    Jensen, Lora M; Walker, Erin J; Jans, David A; Ghildyal, Reena

    2015-01-01

    Human rhinoviruses (HRV) are the major etiological agents of the common cold and asthma exacerbations, with significant worldwide health and economic impact. Although large-scale population vaccination has proved successful in limiting or even eradicating many viruses, the more than 100 distinct serotypes mean that conventional vaccination is not a feasible strategy to combat HRV. An alternative strategy is to target conserved viral proteins such as the HRV proteases, 2A(pro) and 3C(pro), the focus of this review. Necessary for host cell shutoff, virus replication, and pathogenesis, 2A(pro) and 3C(pro) are clearly viable drug targets, and indeed, 3C(pro) has been successfully targeted for treating the common cold in experimental infection. 2A(pro) and 3C(pro) are crucial for virus replication due to their role in polyprotein processing as well as cleavage of key cellular proteins to inhibit cellular transcription and translation. Intriguingly, the action of the HRV proteases also disrupts nucleocytoplasmic trafficking, contributing to HRV cytopathic effects. Improved understanding of the protease-cell interactions should enable new therapeutic approaches to be identified for drug development. PMID:25261311

  8. Protease-mediated drug delivery

    NASA Astrophysics Data System (ADS)

    Dickson, Eva F.; Goyan, Rebecca L.; Kennedy, James C.; Mackay, M.; Mendes, M. A. K.; Pottier, Roy H.

    2003-12-01

    Drugs used in disease treatment can cause damage to both malignant and normal tissue. This toxicity limits the maximum therapeutic dose. Drug targeting is of high interest to increase the therapeutic efficacy of the drug without increasing systemic toxicity. Certain tissue abnormalities, disease processes, cancers, and infections are characterized by high levels of activity of specific extracellular and/or intracellular proteases. Abnormally high activity levels of specific proteases are present at sites of physical or chemical trauma, blood clots, malignant tumors, rheumatoid arthritis, inflammatory bowel disease, gingival disease, glomerulonerphritis, and acute pancreatitis. Abnormal protease activity is suspected in development of liver thrombosis, pulmonary emphysema, atherosclerosis, and muscular dystrophy. Inactiviating disease-associated proteases by the administration of appropriate protease inhibitors has had limited success. Instead, one could use such proteases to target drugs to treat the condition. Protease mediated drug delivery offers such a possibility. Solubilizing groups are attached to insoluble drugs via a polypeptide chain which is specifically cleavable by certian proteases. When the solubilized drug enounters the protease, the solubilizing moieties are cleaved, and the drug precipitates at the disease location. Thus, a smaller systemic dosage could result in a therapeutic drug concentration at the treatment site with less systemic toxicity.

  9. Structure-guided mutagenesis of active site residues in the dengue virus two-component protease NS2B-NS3

    PubMed Central

    2010-01-01

    Background The dengue virus two-component protease NS2B/NS3 mediates processing of the viral polyprotein precursor and is therefore an important determinant of virus replication. The enzyme is now intensively studied with a view to the structure-based development of antiviral inhibitors. Although 3-dimensional structures have now been elucidated for a number of flaviviral proteases, enzyme-substrate interactions are characterized only to a limited extend. The high selectivity of the dengue virus protease for the polyprotein precursor offers the distinct advantage of designing inhibitors with exquisite specificity for the viral enzyme. To identify important determinants of substrate binding and catalysis in the active site of the dengue virus NS3 protease, nine residues, L115, D129, G133, T134, Y150, G151, N152, S163 and I165, located within the S1 and S2 pockets of the enzyme were targeted by alanine substitution mutagenesis and effects on enzyme activity were fluorometrically assayed. Methods Alanine substitutions were introduced by site-directed mutagenesis at residues L115, D129, G133, T134, Y150, G151, N152, S163 and I165 and recombinant proteins were purified from overexpressing E. coli. Effects of these substitutions on enzymatic activity of the NS3 protease were assayed by fluorescence release from the synthetic model substrate GRR-amc and kinetic parameters Km, kcat and kcat/Km were determined. Results Kinetic data for mutant derivatives in the active site of the dengue virus NS3 protease were essentially in agreement with a functional role of the selected residues for substrate binding and/or catalysis. Only the L115A mutant displayed activity comparable to the wild-type enzyme, whereas mutation of residues Y150 and G151 to alanine completely abrogated enzyme activity. A G133A mutant had an approximately 10-fold reduced catalytic efficiency thus suggesting a critical role for this residue seemingly as part of the oxyanion binding hole. Conclusions Kinetic

  10. Two mitochondrial matrix proteases act sequentially in the processing of mammalian matrix enzymes.

    PubMed

    Kalousek, F; Hendrick, J P; Rosenberg, L E

    1988-10-01

    The imported precursors of the mammalian matrix enzymes malate dehydrogenase [(S)-malate:NAD+ oxidoreductase, EC 1.1.1.37] and ornithine transcarbamylase (carbamoyl-phosphate:L-ornithine carbamoyltransferase, EC 2.1.3.3) are cleaved to their mature subunits in two steps, each catalyzed by matrix-localized processing proteases. The number and properties of these proteases are the subjects of this report. We have identified and characterized two distinct protease activities in a crude matrix fraction from rat liver: processing protease I, which cleaves these precursors to the corresponding intermediate form; and processing protease II, which cleaves the intermediate forms to mature subunits. Protease I is insensitive to chelation by EDTA and to inactivation with N-ethylmaleimide; protease II is inhibited by 5 mM EDTA and is inactivated by treatment with N-ethylmaleimide. We have prepared from mitochondrial matrix an 800-fold-enriched protease I fraction free of protease II activity by using the following steps: ion exchange, hydroxyapatite, molecular sieving, and hydrophobic chromatography. Using similar procedures, we also have prepared an approximately 2000-fold-enriched protease II fraction, which has a trace amount of contaminating protease I. This enriched protease II fraction has little or no cleavage activity toward mitochondrial precursors but rapidly and efficiently converts intermediate forms to mature size. Finally, we show that protease I alone is sufficient to cleave the precursor of a third nuclear-encoded mitochondrial protein subunit--the beta subunit of propionyl-CoA carboxylase [propanoyl-CoA:carbon dioxide ligase (ADP-forming), EC 6.4.1.3]--to its mature size. PMID:3050998

  11. Advanced poly-LED displays

    NASA Astrophysics Data System (ADS)

    Childs, Mark; Nisato, Giovanni; Fish, D.; Giraldo, Andrea; Jenkins, A. J.; Johnson, Mark T.

    2003-05-01

    Philips have been actively developing polymer OLED (poly-LED) displays as a future display technology. Their emissive nature leads to a very attractive visual appearance, with wide viewing angle, high brightness and fast response speed. Whilst the first generation of poly-LED displays are likely to be passive-matrix driven, power reduction and resolution increase will lead to the use of active-matrix poly-LED displays. Philips Research have designed, fabricated and characterized five different designs of active-matrix polymer-LED display. Each of the five displays makes use of a distinct pixel programming- or pixel drive-technique, including current programming, threshold voltage measurement and photodiode feedback. It will be shown that hte simplest voltage-programmed current-source pixel suffers from potentially unacceptable brightness non-uniformity, and that advanced pixel circuits can provide a solution to this. Optical-feedback pixel circuits will be discussed, showing that they can be used to improve uniformity and compensate for image burn-in due to polymer-LED material degradation, improving display lifetime. Philips research has also been active in developing technologies required to implement poly-LED displays on flexible substrates, including materials, processing and testing methods. The fabrication of flexible passive-matrix poly-LED displays will be presented, as well as the ongoing work to assess the suitability of processing flexible next-generation poly-LED displays.

  12. Acid phosphatase and protease activities in immobilized rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Troup, J. P.; Fitts, R. H.

    1982-01-01

    The effect of hind-limb immobilization on selected Iysosomal enzyme activities was studied in rat hing-limb muscles composed primarily of type 1. 2A, or 2B fibers. Following immobilization, acid protease and acid phosphatase both exhibited signifcant increases in their activity per unit weight in all three fiber types. Acid phosphatase activity increased at day 14 of immobilization in the three muscles and returned to control levels by day 21. Acid protease activity also changed biphasically, displaying a higher and earlier rise than acid phosphatase. The pattern of change in acid protease, but not acid phosphatase, closely parallels observed muscle wasting. The present data therefore demonstrate enhanced proteolytic capacity of all three fiber types early during muscular atrophy. In addition, the data suggest a dependence of basal hydrolytic and proteolytic activities and their adaptive response to immobilization on muscle fiber composition.

  13. Protease degradable electrospun fibrous hydrogels

    PubMed Central

    Wade, Ryan J.; Bassin, Ethan J.; Rodell, Christopher B.; Burdick, Jason A.

    2015-01-01

    Electrospun nanofibers are promising in biomedical applications to replicate features of the natural extracellular matrix (ECM). However, nearly all electrospun scaffolds are either non-degradable or degrade hydrolytically, whereas natural ECM degrades proteolytically, often through matrix metalloproteinases (MMPs). Here, we synthesize reactive macromers that contain protease-cleavable and fluorescent peptides and are able to form both isotropic hydrogels and electrospun fibrous hydrogels through a photoinitiated polymerization. These biomimetic scaffolds are susceptible to protease-mediated cleavage in vitro in a protease dose dependent manner and in vivo in a subcutaneous mouse model using transdermal fluorescent imaging to monitor degradation. Importantly, materials containing an alternate and non-protease-cleavable peptide sequence are stable in both in vitro and in vivo settings. To illustrate the specificity in degradation, scaffolds with mixed fiber populations support selective fiber degradation based on individual fiber degradability. Overall, this represents a novel biomimetic approach to generate protease-sensitive fibrous scaffolds for biomedical applications. PMID:25799370

  14. PROSTATE-SPECIFIC ANTIGEN IS A “CHYMOTRYPSIN-LIKE” SERINE PROTEASE WITH UNIQUE P1 SUBSTRATE SPECIFICITY

    PubMed Central

    LeBeau, Aaron M.; Singh, Pratap; Isaacs, John T.; Denmeade, Samuel R.

    2012-01-01

    Prostate-Specific Antigen (PSA), a serine protease belonging to the human kallikrein family, is best known as a prostate cancer biomarker. Emerging evidence suggests that PSA may also play a salient role in prostate cancer development and progression. With large amounts of enzymatically active PSA continuously and selectively produced by all stages of prostate cancer, PSA is an attractive target. PSA inhibitors, therefore, may represent a promising class of therapeutics and/or imaging agents. PSA displays chymotrypsin-like specificity, cleaving after hydrophobic residues, in addition to possessing a unique ability to cleave after glutamine in the P1 position. In this study, we investigated the structural motifs of the PSA S1 pocket that give it a distinct architecture and specificity when compared to the S1 pocket of chymotrypsin. Using the previously described PSA substrate Ser-Ser-Lys-Leu-Gln (SSKLQ) as a template, peptide aldehyde based inhibitors containing novel P1 aldehydes were made and tested against both proteases. Glutamine derivative aldehydes were highly specific for PSA while inhibitors with hydrophobic P1 aldehydes were potent inhibitors of both proteases with Ki values < 500 nM. The crystal structure of PSA was used to generate a model that allowed GOLD docking studies to be performed to further understand the critical interactions required for inhibitor binding to the S1 pockets of PSA and chymotrypsin. In conclusion, these results provide experimental and structural evidence that the S1 specificity pocket of PSA is distinctly different from that of chymotrypsin and that the development of highly specific PSA inhibitors is feasible. PMID:19281249

  15. Biochemical analysis of a papain-like protease isolated from the latex of Asclepias curassavica L.

    PubMed

    Liggieri, Constanza; Obregon, Walter; Trejo, Sebastian; Priolo, Nora

    2009-02-01

    Most of the species belonging to Asclepiadaceae family usually secrete an endogenous milk-like fluid in a network of laticifer cells in which sub-cellular organelles intensively synthesize proteins and secondary metabolites. A new papain-like endopeptidase (asclepain c-II) has been isolated and characterized from the latex extracted from petioles of Asclepias curassavica L. (Asclepiadaceae). Asclepain c-II was the minor proteolytic component in the latex, but showed higher specific activity than asclepain c-I, the main active fraction previously studied. Both enzymes displayed quite distinct biochemical characteristics, confirming that they are different enzymes. Crude extract was purified by cation exchange chromatography (FPLC). Two active fractions, homogeneous by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and mass spectrometry, were isolated. Asclepain c-II displayed a molecular mass of 23,590 Da, a pI higher than 9.3, maximum proteolytic activity at pH 9.4-10.2, and showed poor thermostability. The activity of asclepain c-II is inhibited by cysteine proteases inhibitors like E-64, but not by any other protease inhibitors such as 1,10-phenantroline, phenylmethanesulfonyl fluoride, and pepstatine. The Nterminal sequence (LPSFVDWRQKGVVFPIRNQGQCGSCWTFSA) showed a high similarity with those of other plant cysteine proteinases. When assayed on N-alpha-CBZ-amino acid-p-nitrophenyl esters, the enzyme exhibited higher preference for the glutamine derivative. Determinations of kinetic parameters were performed with N-alpha-CBZ-L-Gln-p-nitrophenyl ester as substrate: K(m)=0.1634 mM, k(cat)=121.48 s(-1), and k(cat)/K(m)=7.4 x 10(5) s(-1)/mM. PMID:19204833

  16. Regulation of Extracellular Protease Production in Bacillus cereus T: Characterization of Mutants Producing Altered Amounts of Protease

    PubMed Central

    Aronson, A. I.; Angelo, N.; Holt, S. C.

    1971-01-01

    Twenty-nine mutants of Bacillus cereus T were selected on casein agar for their inability to produce large amounts of extracellular protease. They all formed spores, and 27 were also auxotrophs for purines or pyrimidines. Upon reversion to prototrophy, a large fraction regained the capacity to produce protease. Conversely, reversion to normal protease production resulted in loss of the purine or pyrimidine requirement in a large fraction of the revertants. One spontaneous low-protease-producing pyrimidine auxotroph studied in detail grew as well as the wild type and produced spores which were identical to those produced by the wild type on the basis of heat resistance, dipicolinic acid content, density, and appearance in the electron microscope. The rate of protein turnover in the mutant was the same as the wild type. The mutant did grow poorly, however, when casein was the principal carbon source. A mutant excreting 5 to 10 times as much protease as the wild type was isolated as a secondary mutation from the hypoproducer discussed above. Loss of the pyrimidine requirement in this case did not alter the regulation of protease production. Although the secondary mutant grew somewhat faster in most media than the wild type, the final cell yield was lower. The spores of this mutant appeared to have excess coat on the basis of both electron microscopic and chemical studies. There appear to be closely related but distinct catabolic controls for both extracellular protease and spore formation. These controls can be dissociated as for the hypoproducers but can also appear integrated as for the hyperprotease producer. Images PMID:4104235

  17. Preliminary crystallographic studies of an anti-HIV-1 protease antibody that inhibits enzyme activity.

    PubMed Central

    Lescar, J.; Stouracova, R.; Riottot, M. M.; Chitarra, V.; Brynda, J.; Fabry, M.; Horejsi, M.; Sedlacek, J.; Bentley, G. A.

    1996-01-01

    F11.2.32, a monoclonal antibody directed against the HIV-1 protease, displays strong inhibitory effects toward the catalytic activity of the enzyme. The antibody cross-reacts with peptides 36-46 and 36-57 from the protease. Crystals of the Fab have been obtained both in the free state and as complexes formed with the protease peptide fragments, 36-46 and 36-57. Diffraction data have been collected for the free and complexed forms of Fab F11.2.32 and preliminary models for the crystal structures were obtained by molecular replacement. PMID:8732768

  18. Serine proteases of parasitic helminths.

    PubMed

    Yang, Yong; Wen, Yun jun; Cai, Ya Nan; Vallée, Isabelle; Boireau, Pascal; Liu, Ming Yuan; Cheng, Shi Peng

    2015-02-01

    Serine proteases form one of the most important families of enzymes and perform significant functions in a broad range of biological processes, such as intra- and extracellular protein metabolism, digestion, blood coagulation, regulation of development, and fertilization. A number of serine proteases have been identified in parasitic helminths that have putative roles in parasite development and nutrition, host tissues and cell invasion, anticoagulation, and immune evasion. In this review, we described the serine proteases that have been identified in parasitic helminths, including nematodes (Trichinella spiralis, T. pseudospiralis, Trichuris muris, Anisakis simplex, Ascaris suum, Onchocerca volvulus, O. lienalis, Brugia malayi, Ancylostoma caninum, and Steinernema carpocapsae), cestodes (Spirometra mansoni, Echinococcus granulosus, and Schistocephalus solidus), and trematodes (Fasciola hepatica, F. gigantica, and Schistosoma mansoni). Moreover, the possible biological functions of these serine proteases in the endogenous biological phenomena of these parasites and in the host-parasite interaction were also discussed. PMID:25748703

  19. Serine Proteases of Parasitic Helminths

    PubMed Central

    Yang, Yong; Wen, Yun jun; Cai, Ya Nan; Vallée, Isabelle; Boireau, Pascal; Liu, Ming Yuan; Cheng, Shi Peng

    2015-01-01

    Serine proteases form one of the most important families of enzymes and perform significant functions in a broad range of biological processes, such as intra- and extracellular protein metabolism, digestion, blood coagulation, regulation of development, and fertilization. A number of serine proteases have been identified in parasitic helminths that have putative roles in parasite development and nutrition, host tissues and cell invasion, anticoagulation, and immune evasion. In this review, we described the serine proteases that have been identified in parasitic helminths, including nematodes (Trichinella spiralis, T. pseudospiralis, Trichuris muris, Anisakis simplex, Ascaris suum, Onchocerca volvulus, O. lienalis, Brugia malayi, Ancylostoma caninum, and Steinernema carpocapsae), cestodes (Spirometra mansoni, Echinococcus granulosus, and Schistocephalus solidus), and trematodes (Fasciola hepatica, F. gigantica, and Schistosoma mansoni). Moreover, the possible biological functions of these serine proteases in the endogenous biological phenomena of these parasites and in the host-parasite interaction were also discussed. PMID:25748703

  20. Identification and structural analysis of four serine proteases in a monotreme, the platypus, Ornithorhynchus anatinus.

    PubMed

    Poorafshar, M; Aveskogh, M; Munday, B; Hellman, L

    2000-11-01

    To study the emergence of the major subfamilies of serine proteases during vertebrate evolution, we present here the primary structure of four serine proteases expressed in the spleen of a monotreme, the platypus, Ornithorhynchus anatinus. Partial cDNA clones for four serine proteases were isolated by a PCR-based strategy. This strategy is based on the high level of sequence identity between various members of the large gene family of trypsin-related serine proteases, over two highly conserved regions, those of the histidine and the serine of the catalytic triad. The partial cDNA clones were used to isolate full-length or almost full-length cDNA clones for three of these proteases from a platypus spleen cDNA library. By phylogenetic analysis, these three clones were identified as being the platypus homologues of human coagulation factor X, neutrophil elastase, and a protease distantly related to the T-cell granzymes. The remaining partial clone was found to represent a close homologue of human complement factor D (adipsin). The isolation of these four clones shows that several of the major subfamilies of serine proteases had evolved as separate subfamilies long before the radiation of the major mammalian lineages of today, the monotremes, the marsupials, and the placental mammals. Upon comparison of the corresponding proteases of monotremes and eutherian mammals, the coagulation and complement proteases were shown to display a higher degree of conservation compared to the hematopoietic proteases N-elastase and the T-cell granzymes. This latter finding indicates a higher evolutionary pressure to maintain specific functions in the complement and coagulation enzymes compared to many of the hematopoietic serine proteases. PMID:11132153

  1. Crystal Structure of a Novel Viral Protease with a Serine/Lysine Catalytic Dyad Mechanism

    SciTech Connect

    Feldman,A.; Lee, J.; Delmas, B.; Paetzel, M.

    2006-01-01

    The blotched snakehead virus (BSNV), an aquatic birnavirus, encodes a polyprotein (NH2-pVP2-X-VP4-VP3-COOH) that is processed through the proteolytic activity of its own protease (VP4) to liberate itself and the viral proteins pVP2, X and VP3. The protein pVP2 is further processed by VP4 to give rise to the capsid protein VP2 and four structural peptides. We report here the crystal structure of a VP4 protease from BSNV, which displays a catalytic serine/lysine dyad in its active site. This is the first crystal structure of a birnavirus protease and the first crystal structure of a viral protease that utilizes a lysine general base in its catalytic mechanism. The topology of the VP4 substrate binding site is consistent with the enzymes substrate specificity and a nucleophilic attack from the si-face of the substrates scissile bond. Despite low levels of sequence identity, VP4 shows similarities in its active site to other characterized Ser/Lys proteases such as signal peptidase, LexA protease and Lon protease. Together, the structure of VP4 provides insights into the mechanism of a recently characterized clan of serine proteases that utilize a lysine general base and reveals the structure of potential targets for antiviral therapy, especially for other related and economically important viruses, such as infectious bursal disease virus in poultry and infectious pancreatic necrosis virus in aquaculture.

  2. Reversible Unfolding of Rhomboid Intramembrane Proteases.

    PubMed

    Panigrahi, Rashmi; Arutyunova, Elena; Panwar, Pankaj; Gimpl, Katharina; Keller, Sandro; Lemieux, M Joanne

    2016-03-29

    Denaturant-induced unfolding of helical membrane proteins provides insights into their mechanism of folding and domain organization, which take place in the chemically heterogeneous, anisotropic environment of a lipid membrane. Rhomboid proteases are intramembrane proteases that play key roles in various diseases. Crystal structures have revealed a compact helical bundle with a buried active site, which requires conformational changes for the cleavage of transmembrane substrates. A dimeric form of the rhomboid protease has been shown to be important for activity. In this study, we examine the mechanism of refolding for two distinct rhomboids to gain insight into their secondary structure-activity relationships. Although helicity is largely abolished in the unfolded states of both proteins, unfolding is completely reversible for HiGlpG but only partially reversible for PsAarA. Refolding of both proteins results in reassociation of the dimer, with a 90% regain of catalytic activity for HiGlpG but only a 70% regain for PsAarA. For both proteins, a broad, gradual transition from the native, folded state to the denatured, partly unfolded state was revealed with the aid of circular dichroism spectroscopy as a function of denaturant concentration, thus arguing against a classical two-state model as found for many globular soluble proteins. Thermal denaturation has irreversible destabilizing effects on both proteins, yet reveals important functional details regarding substrate accessibility to the buried active site. This concerted biophysical and functional analysis demonstrates that HiGlpG, with a simple six-transmembrane-segment organization, is more robust than PsAarA, which has seven predicted transmembrane segments, thus rendering HiGlpG amenable to in vitro studies of membrane-protein folding. PMID:27028647

  3. Allosteric antibody inhibition of human hepsin protease.

    PubMed

    Koschubs, Tobias; Dengl, Stefan; Dürr, Harald; Kaluza, Klaus; Georges, Guy; Hartl, Christiane; Jennewein, Stefan; Lanzendörfer, Martin; Auer, Johannes; Stern, Alvin; Huang, Kuo-Sen; Packman, Kathryn; Gubler, Ueli; Kostrewa, Dirk; Ries, Stefan; Hansen, Silke; Kohnert, Ulrich; Cramer, Patrick; Mundigl, Olaf

    2012-03-15

    Hepsin is a type II transmembrane serine protease that is expressed in several human tissues. Overexpression of hepsin has been found to correlate with tumour progression and metastasis, which is so far best studied for prostate cancer, where more than 90% of such tumours show this characteristic. To enable improved future patient treatment, we have developed a monoclonal humanized antibody that selectively inhibits human hepsin and does not inhibit other related proteases. We found that our antibody, hH35, potently inhibits hepsin enzymatic activity at nanomolar concentrations. Kinetic characterization revealed non-linear, slow, tight-binding inhibition. This correlates with the crystal structure we obtained for the human hepsin-hH35 antibody Fab fragment complex, which showed that the antibody binds hepsin around α3-helix, located far from the active centre. The unique allosteric mode of inhibition of hH35 is distinct from the recently described HGFA (hepatocyte growth factor activator) allosteric antibody inhibition. We further explain how a small change in the antibody design induces dramatic structural rearrangements in the hepsin antigen upon binding, leading to complete enzyme inactivation. PMID:22132769

  4. A novel carboxyl-terminal protease derived from Paenibacillus lautus CHN26 exhibiting high activities at multiple sites of substrates

    PubMed Central

    2013-01-01

    Background Carboxyl-terminal protease (CtpA) plays essential functions in posttranslational protein processing in prokaryotic and eukaryotic cells. To date, only a few bacterial ctpA genes have been characterized. Here we cloned and characterized a novel CtpA. The encoding gene, ctpAp (ctpA of Paenibacillus lautus), was derived from P. lautus CHN26, a Gram-positive bacterium isolated by functional screening. Recombinant protein was obtained from protein over-expression in Escherichia coli and the biochemical properties of the enzyme were investigated. Results Screening of environmental sediment samples with a skim milk-containing medium led to the isolation of a P. lautus CHN26 strain that exhibited a high proteolytic activity. A gene encoding a carboxyl-terminal protease (ctpAp) was cloned from the isolate and characterized. The deduced mature protein contains 466 aa with a calculated molecular mass of 51.94 kDa, displaying 29-38% amino acid sequence identity to characterized bacterial CtpA enzymes. CtpAp contains an unusual catalytic dyad (Ser309-Lys334) and a PDZ substrate-binding motif, characteristic for carboxyl-terminal proteases. CtpAp was expressed as a recombinant protein and characterized. The purified enzyme showed an endopeptidase activity, which effectively cleaved α S1- and β- casein substrates at carboxyl-terminus as well as at multiple internal sites. Furthermore, CtpAp exhibited a high activity at room temperature and strong tolerance to conventional protease inhibitors, demonstrating that CtpAp is a novel endopeptidase. Conclusions Our work on CtpA represents the first investigation of a member of Family II CtpA enzymes. The gene was derived from a newly isolated P. lautus CHN26 strain exhibiting a high protease activity in the skim milk assay. We have demonstrated that CtpAp is a novel endopeptidase with distinct cleavage specificities, showing a strong potential in biotechnology and industry applications. PMID:24161150

  5. Evidence for Reduced Drug Susceptibility without Emergence of Major Protease Mutations following Protease Inhibitor Monotherapy Failure in the SARA Trial

    PubMed Central

    Sutherland, Katherine A.; Parry, Chris M.; McCormick, Adele; Kapaata, Anne; Lyagoba, Fred; Kaleebu, Pontiano; Gilks, Charles F.; Goodall, Ruth; Spyer, Moira; Kityo, Cissy; Pillay, Deenan; Gupta, Ravindra K.

    2015-01-01

    Background Major protease mutations are rarely observed following failure with protease inhibitors (PI), and other viral determinants of failure to PI are poorly understood. We therefore characterized Gag-Protease phenotypic susceptibility in subtype A and D viruses circulating in East Africa following viral rebound on PIs. Methods Samples from baseline and treatment failure in patients enrolled in the second line LPV/r trial SARA underwent phenotypic susceptibility testing. Data were expressed as fold-change in susceptibility relative to a LPV-susceptible reference strain. Results We cloned 48 Gag-Protease containing sequences from seven individuals and performed drug resistance phenotyping from pre-PI and treatment failure timepoints in seven patients. For the six patients where major protease inhibitor resistance mutations did not emerge, mean fold-change EC50 to LPV was 4.07 fold (95% CI, 2.08–6.07) at the pre-PI timepoint. Following viral failure the mean fold-change in EC50 to LPV was 4.25 fold (95% CI, 1.39–7.11, p = 0.91). All viruses remained susceptible to DRV. In our assay system, the major PI resistance mutation I84V, which emerged in one individual, conferred a 10.5-fold reduction in LPV susceptibility. One of the six patients exhibited a significant reduction in susceptibility between pre-PI and failure timepoints (from 4.7 fold to 9.6 fold) in the absence of known major mutations in protease, but associated with changes in Gag: V7I, G49D, R69Q, A120D, Q127K, N375S and I462S. Phylogenetic analysis provided evidence of the emergence of genetically distinct viruses at the time of treatment failure, indicating ongoing viral evolution in Gag-protease under PI pressure. Conclusions Here we observe in one patient the development of significantly reduced susceptibility conferred by changes in Gag which may have contributed to treatment failure on a protease inhibitor containing regimen. Further phenotype-genotype studies are required to elucidate genetic

  6. Microbial inhibitors of cysteine proteases.

    PubMed

    Kędzior, Mateusz; Seredyński, Rafał; Gutowicz, Jan

    2016-08-01

    Cysteine proteases are one of the major classes of proteolytic enzymes involved in a number of physiological and pathological processes in plants, animals and microorganisms. When their synthesis, activity and localization in mammalian cells are altered, they may contribute to the development of many diseases, including rheumatoid arthritis, osteoporosis and cancer. Therefore, cysteine proteases have become promising drug targets for the medical treatment of these disorders. Inhibitors of cysteine proteases are also produced by almost every group of living organisms, being responsible for the control of intracellular proteolytic activity. Microorganisms synthesize cysteine protease inhibitors not only to regulate the activity of endogenous, often virulent enzymes, but also to hinder the host's proteolytic defense system and evade its immune responses against infections. Present work describes known to date microbial inhibitors of cysteine proteases in terms of their structure, enzyme binding mechanism, specificity and pathophysiological roles. The overview of both proteinaceous and small-molecule inhibitors produced by all groups of microorganisms (bacteria, archaea, fungi, protists) and viruses is provided. Subsequently, possible applications of microbial inhibitors in science, medicine and biotechnology are also highlighted. PMID:27048482

  7. A Fragment-Based Method to Discover Irreversible Covalent Inhibitors of Cysteine Proteases

    PubMed Central

    2015-01-01

    A novel fragment-based drug discovery approach is reported which irreversibly tethers drug-like fragments to catalytic cysteines. We attached an electrophile to 100 fragments without significant alterations in the reactivity of the electrophile. A mass spectrometry assay discovered three nonpeptidic inhibitors of the cysteine protease papain. The identified compounds display the characteristics of irreversible inhibitors. The irreversible tethering system also displays specificity: the three identified papain inhibitors did not covalently react with UbcH7, USP08, or GST-tagged human rhinovirus 3C protease. PMID:24870364

  8. Display formats manual

    NASA Technical Reports Server (NTRS)

    Runnels, R. L.

    1973-01-01

    The standards and procedures for the generation of operational display formats to be used in the Mission Control Center (MCC) display control system are presented. The required effort, forms, and fundamentals for the design, specifications, and production of display formats are identified. The principles of display design and system constraints controlling the creation of optimum operational displays for mission control are explained. The basic two types of MCC display systems for presenting information are described.

  9. Structure-based design and functional studies of novel noroviral 3C protease chimaeras offer insights into substrate specificity

    PubMed Central

    Herod, Morgan R.; Prince, Cynthia A.; Skilton, Rachel J.; Ward, Vernon K.; Cooper, Jonathan B.; Clarke, Ian N.

    2014-01-01

    The norovirus NS6 protease is a key target for anti-viral drug development. Noroviruses encode a 2200 amino acid polyprotein which is cleaved by this critical protease at five defined boundary substrates into six mature non-structural (NS) proteins. Studies of the human norovirus (HNV) NS6 protease, in the context of a full ORF1 polyprotein, have been severely hampered because HNVs are not culturable. Thus, investigations into the HNV NS6 protease have been largely restricted to in vitro assays using Escherichia coli-expressed, purified enzyme. The NS6 protease is formed of two distinct domains joined by a linking loop. Structural data suggest that domain 2 of the protease possesses substantial substrate binding pockets which form the bulk of the interactions with the NS boundaries and largely dictate boundary specificity and cleavage. We have constructed chimaeric murine norovirus (MNV) genomes carrying individual domains from the HNV protease and demonstrated by cell transfection that chimaeric HNV proteases have functional activity in the context of the full-length ORF1 polyprotein. Although domain 2 primarily confers boundary specificity, our data suggest that an inter-domain interaction exists within HNV NS6 protease which influences cleavage of specific substrates. The present study also shows that chimaeric MNVs provide improved models for studying HNV protein function in the context of a full ORF1 polyprotein. PMID:25275273

  10. Structure-based design and functional studies of novel noroviral 3C protease chimaeras offer insights into substrate specificity.

    PubMed

    Herod, Morgan R; Prince, Cynthia A; Skilton, Rachel J; Ward, Vernon K; Cooper, Jonathan B; Clarke, Ian N

    2014-12-15

    The norovirus NS6 protease is a key target for anti-viral drug development. Noroviruses encode a 2200 amino acid polyprotein which is cleaved by this critical protease at five defined boundary substrates into six mature non-structural (NS) proteins. Studies of the human norovirus (HNV) NS6 protease, in the context of a full ORF1 polyprotein, have been severely hampered because HNVs are not culturable. Thus, investigations into the HNV NS6 protease have been largely restricted to in vitro assays using Escherichia coli-expressed, purified enzyme. The NS6 protease is formed of two distinct domains joined by a linking loop. Structural data suggest that domain 2 of the protease possesses substantial substrate binding pockets which form the bulk of the interactions with the NS boundaries and largely dictate boundary specificity and cleavage. We have constructed chimaeric murine norovirus (MNV) genomes carrying individual domains from the HNV protease and demonstrated by cell transfection that chimaeric HNV proteases have functional activity in the context of the full-length ORF1 polyprotein. Although domain 2 primarily confers boundary specificity, our data suggest that an inter-domain interaction exists within HNV NS6 protease which influences cleavage of specific substrates. The present study also shows that chimaeric MNVs provide improved models for studying HNV protein function in the context of a full ORF1 polyprotein. PMID:25275273

  11. Treatment of chronic hepatitis C: anticipated impact of resistance in patients treated with protease inhibitors.

    PubMed

    Kronenberger, Bernd; Zeuzem, Stefan

    2009-02-01

    A main target of specifically targeted antiviral therapy for hepatitis C (STAT-C) is the NS3-protease, which has key functions in the hepatitis C virus (HCV) replication cycle. HCV/NS3-protease inhibitors have shown high antiviral activity in vitro and in patients with chronic hepatitis C. Protease-resistant HCV variants occurred rapidly in patients receiving protease-inhibitor monotherapy. The development of resistance can be best explained by selection of preexisting resistant variants, which grow out under selective pressure. Numerous mutations associated with resistance were identified. Clinical trials showed that protease-resistant strains are sensitive to interferon and that a triple combination of protease inhibitors, peginterferon, and ribavirin may improve the sustained virologic response rate compared with standard peginterferon/ribavirin combination therapy. Overall, it can be anticipated that successful treatment with protease inhibitors will require either combination therapy with peginterferon/ribavirin or a combination of STAT-C compounds with distinct modes of action and resistance patterns. PMID:19166654

  12. Exogenous proteases for meat tenderization.

    PubMed

    Bekhit, Alaa A; Hopkins, David L; Geesink, Geert; Bekhit, Adnan A; Franks, Philip

    2014-01-01

    The use of exogenous proteases to improve meat tenderness has attracted much interest recently, with a view to consistent production of tender meat and added value to lower grade meat cuts. This review discusses the sources, characteristics, and use of exogenous proteases in meat tenderization to highlight the specificity of the proteases toward meat proteins and their impact on meat quality. Plant enzymes (such as papain, bromelain, and ficin) have been extensively investigated as meat tenderizers. New plant proteases (actinidin and zingibain) and microbial enzyme preparations have been of recent interest due to controlled meat tenderization and other advantages. Successful use of these enzymes in fresh meat requires their enzymatic kinetics and characteristics to be determined, together with an understanding of the impact of the surrounding environmental conditions of the meat (pH, temperature) on enzyme function. This enables the optimal conditions for tenderizing fresh meat to be established, and the elimination or reduction of any negative impacts on other quality attributes. PMID:24499119

  13. Evaluation on Potential Contributions of Protease Activated Receptors Related Mediators in Allergic Inflammation

    PubMed Central

    Zhang, Huiyun; Zeng, Xiaoning; He, Shaoheng

    2014-01-01

    Protease activated receptors (PARs) have been recognized as a distinctive four-member family of seven transmembrane G protein-coupled receptors (GPCRs) that can be cleaved by certain serine proteases. In recent years, there has been considerable interest in the role of PARs in allergic inflammation, the fundamental pathologic changes of allergy, but the potential roles of PARs in allergy remain obscure. Since many of these proteases are produced and actively involved in the pathologic process of inflammation including exudation of plasma components, inflammatory cell infiltration, and tissue damage and repair, PARs appear to make important contribution to allergy. The aim of the present review is to summarize the expression of PARs in inflammatory and structural cells, the influence of agonists or antagonists of PARs on cell behavior, and the involvement of PARs in allergic disorders, which will help us to better understand the roles of serine proteases and PARs in allergy. PMID:24876677

  14. Intra-domain phage display (ID-PhD) of peptides and protein mini-domains censored from canonical pIII phage display

    PubMed Central

    Tjhung, Katrina F.; Deiss, Frédérique; Tran, Jessica; Chou, Ying; Derda, Ratmir

    2015-01-01

    In this paper, we describe multivalent display of peptide and protein sequences typically censored from traditional N-terminal display on protein pIII of filamentous bacteriophage M13. Using site-directed mutagenesis of commercially available M13KE phage cloning vector, we introduced sites that permit efficient cloning using restriction enzymes between domains N1 and N2 of the pIII protein. As infectivity of phage is directly linked to the integrity of the connection between N1 and N2 domains, intra-domain phage display (ID-PhD) allows for simple quality control of the display and the natural variations in the displayed sequences. Additionally, direct linkage to phage propagation allows efficient monitoring of sequence cleavage, providing a convenient system for selection and evolution of protease-susceptible or protease-resistant sequences. As an example of the benefits of such an ID-PhD system, we displayed a negatively charged FLAG sequence, which is known to be post-translationally excised from pIII when displayed on the N-terminus, as well as positively charged sequences which suppress production of phage when displayed on the N-terminus. ID-PhD of FLAG exhibited sub-nanomolar apparent Kd suggesting multivalent nature of the display. A TEV-protease recognition sequence (TEVrs) co-expressed in tandem with FLAG, allowed us to demonstrate that 99.9997% of the phage displayed the FLAG-TEVrs tandem and can be recognized and cleaved by TEV-protease. The residual 0.0003% consisted of phage clones that have excised the insert from their genome. ID-PhD is also amenable to display of protein mini-domains, such as the 33-residue minimized Z-domain of protein A. We show that it is thus possible to use ID-PhD for multivalent display and selection of mini-domain proteins (Affibodies, scFv, etc.). PMID:25972845

  15. Intra-domain phage display (ID-PhD) of peptides and protein mini-domains censored from canonical pIII phage display.

    PubMed

    Tjhung, Katrina F; Deiss, Frédérique; Tran, Jessica; Chou, Ying; Derda, Ratmir

    2015-01-01

    In this paper, we describe multivalent display of peptide and protein sequences typically censored from traditional N-terminal display on protein pIII of filamentous bacteriophage M13. Using site-directed mutagenesis of commercially available M13KE phage cloning vector, we introduced sites that permit efficient cloning using restriction enzymes between domains N1 and N2 of the pIII protein. As infectivity of phage is directly linked to the integrity of the connection between N1 and N2 domains, intra-domain phage display (ID-PhD) allows for simple quality control of the display and the natural variations in the displayed sequences. Additionally, direct linkage to phage propagation allows efficient monitoring of sequence cleavage, providing a convenient system for selection and evolution of protease-susceptible or protease-resistant sequences. As an example of the benefits of such an ID-PhD system, we displayed a negatively charged FLAG sequence, which is known to be post-translationally excised from pIII when displayed on the N-terminus, as well as positively charged sequences which suppress production of phage when displayed on the N-terminus. ID-PhD of FLAG exhibited sub-nanomolar apparent Kd suggesting multivalent nature of the display. A TEV-protease recognition sequence (TEVrs) co-expressed in tandem with FLAG, allowed us to demonstrate that 99.9997% of the phage displayed the FLAG-TEVrs tandem and can be recognized and cleaved by TEV-protease. The residual 0.0003% consisted of phage clones that have excised the insert from their genome. ID-PhD is also amenable to display of protein mini-domains, such as the 33-residue minimized Z-domain of protein A. We show that it is thus possible to use ID-PhD for multivalent display and selection of mini-domain proteins (Affibodies, scFv, etc.). PMID:25972845

  16. Multiple Miniature Avionic Displays

    NASA Technical Reports Server (NTRS)

    Rye, Jeffrey M. (Inventor); Dorneich, Michael C. (Inventor); Gannon, Aaron J. (Inventor)

    2008-01-01

    A display screen for displaying multiple sets of information is provided. In one embodiment, an aviation display screen includes a main window and a plurality of miniature windows. The main window is adapted to illustrate one set of information. Each miniature window is adapted to display a set of avionic information. The avionic display is further adapted to toggle a select set of avionic information in one of the miniature windows into the main window.

  17. System status display information

    NASA Technical Reports Server (NTRS)

    Summers, L. G.; Erickson, J. B.

    1984-01-01

    The system Status Display is an electronic display system which provides the flight crew with enhanced capabilities for monitoring and managing aircraft systems. Guidelines for the design of the electronic system displays were established. The technical approach involved the application of a system engineering approach to the design of candidate displays and the evaluation of a Hernative concepts by part-task simulation. The system engineering and selection of candidate displays are covered.

  18. Network Analyses Reveal Pervasive Functional Regulation Between Proteases in the Human Protease Web

    PubMed Central

    Fortelny, Nikolaus; Cox, Jennifer H.; Kappelhoff, Reinhild; Starr, Amanda E.; Lange, Philipp F.; Pavlidis, Paul; Overall, Christopher M.

    2014-01-01

    Proteolytic processing is an irreversible posttranslational modification affecting a large portion of the proteome. Protease-cleaved mediators frequently exhibit altered activity, and biological pathways are often regulated by proteolytic processing. Many of these mechanisms have not been appreciated as being protease-dependent, and the potential in unraveling a complex new dimension of biological control is increasingly recognized. Proteases are currently believed to act individually or in isolated cascades. However, conclusive but scattered biochemical evidence indicates broader regulation of proteases by protease and inhibitor interactions. Therefore, to systematically study such interactions, we assembled curated protease cleavage and inhibition data into a global, computational representation, termed the protease web. This revealed that proteases pervasively influence the activity of other proteases directly or by cleaving intermediate proteases or protease inhibitors. The protease web spans four classes of proteases and inhibitors and so links both recently and classically described protease groups and cascades, which can no longer be viewed as operating in isolation in vivo. We demonstrated that this observation, termed reachability, is robust to alterations in the data and will only increase in the future as additional data are added. We further show how subnetworks of the web are operational in 23 different tissues reflecting different phenotypes. We applied our network to develop novel insights into biologically relevant protease interactions using cell-specific proteases of the polymorphonuclear leukocyte as a system. Predictions from the protease web on the activity of matrix metalloproteinase 8 (MMP8) and neutrophil elastase being linked by an inactivating cleavage of serpinA1 by MMP8 were validated and explain perplexing Mmp8 −/− versus wild-type polymorphonuclear chemokine cleavages in vivo. Our findings supply systematically derived and

  19. Intestinal proteases of free-living and parasitic astigmatid mites.

    PubMed

    Holt, Deborah C; Burgess, Stewart T G; Reynolds, Simone L; Mahmood, Wajahat; Fischer, Katja

    2013-02-01

    Among arthropod pests, mites are responsible for considerable damage to crops, humans and other animals. However, detailed physiological data on these organisms remain sparse, mainly because of their small size but possibly also because of their extreme diversity. Focusing on intestinal proteases, we draw together information from three distinct mite species that all feed on skin but have separately adapted to a free-living, a strictly ecto-parasitic and a parasitic lifestyle. A wide range of studies involving immunohistology, molecular biology, X-ray crystallography and enzyme biochemistry of mite gut proteases suggests that these creatures have diverged considerably as house dust mites, sheep scab mites and scabies mites. Each species has evolved a particular variation of a presumably ancestral repertoire of digestive enzymes that have become specifically adapted to their individual environmental requirements. PMID:22427061

  20. A computational module assembled from different protease family motifs identifies PI PLC from Bacillus cereus as a putative prolyl peptidase with a serine protease scaffold.

    PubMed

    Rendón-Ramírez, Adela; Shukla, Manish; Oda, Masataka; Chakraborty, Sandeep; Minda, Renu; Dandekar, Abhaya M; Ásgeirsson, Bjarni; Goñi, Félix M; Rao, Basuthkar J

    2013-01-01

    Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling, and modular reuse of catalytic units. We have previously established a computational method to detect functions in proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP). CLASP identified a promiscuous serine protease scaffold in alkaline phosphatases (AP) and a scaffold recognizing a β-lactam (imipenem) in a cold-active Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database. Since APs and proteases are an integral component of outer membrane vesicles (OMV), we sought to query other OMV proteins, like phospholipase C (PLC), using this search module. Our analysis indicated that phosphoinositide-specific PLC from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM). Edman degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and electrostatic congruence of active site residues. PMID:23940667

  1. Biotechnology of Cold-Active Proteases

    PubMed Central

    Joshi, Swati; Satyanarayana, Tulasi

    2013-01-01

    The bulk of Earth’s biosphere is cold (<5 °C) and inhabited by psychrophiles. Biocatalysts from psychrophilic organisms (psychrozymes) have attracted attention because of their application in the ongoing efforts to decrease energy consumption. Proteinases as a class represent the largest category of industrial enzymes. There has been an emphasis on employing cold-active proteases in detergents because this allows laundry operations at ambient temperatures. Proteases have been used in environmental bioremediation, food industry and molecular biology. In view of the present limited understanding and availability of cold-active proteases with diverse characteristics, it is essential to explore Earth’s surface more in search of an ideal cold-active protease. The understanding of molecular and mechanistic details of these proteases will open up new avenues to tailor proteases with the desired properties. A detailed account of the developments in the production and applications of cold-active proteases is presented in this review. PMID:24832807

  2. Seamless tiled display system

    NASA Technical Reports Server (NTRS)

    Dubin, Matthew B. (Inventor); Larson, Brent D. (Inventor); Kolosowsky, Aleksandra (Inventor)

    2006-01-01

    A modular and scalable seamless tiled display apparatus includes multiple display devices, a screen, and multiple lens assemblies. Each display device is subdivided into multiple sections, and each section is configured to display a sectional image. One of the lens assemblies is optically coupled to each of the sections of each of the display devices to project the sectional image displayed on that section onto the screen. The multiple lens assemblies are configured to merge the projected sectional images to form a single tiled image. The projected sectional images may be merged on the screen by magnifying and shifting the images in an appropriate manner. The magnification and shifting of these images eliminates any visual effect on the tiled display that may result from dead-band regions defined between each pair of adjacent sections on each display device, and due to gaps between multiple display devices.

  3. Thin optical display panel

    DOEpatents

    Veligdan, James Thomas

    1997-01-01

    An optical display includes a plurality of optical waveguides each including a cladding bound core for guiding internal display light between first and second opposite ends by total internal reflection. The waveguides are stacked together to define a collective display thickness. Each of the cores includes a heterogeneous portion defining a light scattering site disposed longitudinally between the first and second ends. Adjacent ones of the sites are longitudinally offset from each other for forming a longitudinal internal image display over the display thickness upon scattering of internal display light thereagainst for generating a display image. In a preferred embodiment, the waveguides and scattering sites are transparent for transmitting therethrough an external image in superposition with the display image formed by scattering the internal light off the scattering sites for defining a heads up display.

  4. Isolation and characterization of two serine proteases from metagenomic libraries of the Gobi and Death Valley deserts.

    PubMed

    Neveu, Julie; Regeard, Christophe; DuBow, Michael S

    2011-08-01

    The screening of environmental DNA metagenome libraries for functional activities can provide an important source of new molecules and enzymes. In this study, we identified 17 potential protease-producing clones from two metagenomic libraries derived from samples of surface sand from the Gobi and Death Valley deserts. Two of the proteases, DV1 and M30, were purified and biochemically examined. These two proteases displayed a molecular mass of 41.5 kDa and 45.7 kDa, respectively, on SDS polyacrylamide gels. Alignments with known protease sequences showed less than 55% amino acid sequence identity. These two serine proteases appear to belong to the subtilisin (S8A) family and displayed several unique biochemical properties. Protease DV1 had an optimum pH of 8 and an optimal activity at 55°C, while protease M30 had an optimum pH >11 and optimal activity at 40°C. The properties of these enzymes make them potentially useful for biotechnological applications and again demonstrate that metagenomic approaches can be useful, especially when coupled with the study of novel environments such as deserts. PMID:21494865

  5. A new chymotrypsin-like serine protease involved in dietary protein digestion in a primitive animal, Scorpio maurus: purification and biochemical characterization

    PubMed Central

    2011-01-01

    Background Most recent works on chymotrypsins have been focused on marine animals and insects. However, no study was reported in chelicerate. Results Scorpion chymotrypsin-like protease (SCP) was purified to homogeneity from delipidated hepatopancreases. The protease NH2-terminal sequence exhibited more than 60% monoacids identity with those of insect putative peptidases. The protease displayed no sequence homology with classical proteases. From this point of view, the protease recalls the case of the scorpion lipase which displayed no sequence homology with known lipases. The scorpion amylase purified and characterized by our time, has an amino-acids sequence similar to those of mammalian amylases. The enzyme was characterized with respect its biochemical properties: it was active on a chymotrypsin substrate and had an apparent molecular mass of 25 kDa, like the classically known chymotrypsins. The dependence of the SCP activity and stability on pH and temperature was similar to that of mammalian chymotrypsin proteases. However, the SCP displayed a lower specific activity and a boarder pH activity range (from 6 to 9). Conclusion lower animal have a less evaluated digestive organ: a hepatopancreas, whereas, higher ones possess individualized pancreas and liver. A new chymotrypsin-like protease was purified for the first time from the scorpion hepatopancreas. Its biochemical characterization showed new features as compared to classical chymotrypsin-higher-animals proteases. PMID:21777432

  6. Serum Stable Natural Peptides Designed by mRNA Display

    PubMed Central

    Howell, Shannon M.; Fiacco, Stephen V.; Takahashi, Terry T.; Jalali-Yazdi, Farzad; Millward, Steven W.; Hu, Biliang; Wang, Pin; Roberts, Richard W.

    2014-01-01

    Peptides constructed with the 20 natural amino acids are generally considered to have little therapeutic potential because they are unstable in the presence of proteases and peptidases. However, proteolysis cleavage can be idiosyncratic, and it is possible that natural analogues of functional sequences exist that are highly resistant to cleavage. Here, we explored this idea in the context of peptides that bind to the signaling protein Gαi1. To do this, we used a two-step in vitro selection process to simultaneously select for protease resistance while retaining function–first by degrading the starting library with protease (chymotrypsin), followed by positive selection for binding via mRNA display. Starting from a pool of functional sequences, these experiments revealed peptides with 100–400 fold increases in protease resistance compared to the parental library. Surprisingly, selection for chymotrypsin resistance also resulted in similarly improved stability in human serum (~100 fold). Mechanistically, the decreases in cleavage results from both a lower rate of cleavage (kcat) and a weaker interaction with the protease (Km). Overall, our results demonstrate that the hydrolytic stability of functional, natural peptide sequences can be improved by two orders of magnitude simply by optimizing the primary sequence. PMID:25234472

  7. Molecular Imaging of Proteases in Cancer

    PubMed Central

    Yang, Yunan; Hong, Hao; Zhang, Yin; Cai, Weibo

    2010-01-01

    Proteases play important roles during tumor angiogenesis, invasion, and metastasis. Various molecular imaging techniques have been employed for protease imaging: optical (both fluorescence and bioluminescence), magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET). In this review, we will summarize the current status of imaging proteases in cancer with these techniques. Optical imaging of proteases, in particular with fluorescence, is the most intensively validated and many of the imaging probes are already commercially available. It is generally agreed that the use of activatable probes is the most accurate and appropriate means for measuring protease activity. Molecular imaging of proteases with other techniques (i.e. MRI, SPECT, and PET) has not been well-documented in the literature which certainly deserves much future effort. Optical imaging and molecular MRI of protease activity has very limited potential for clinical investigation. PET/SPECT imaging is suitable for clinical investigation; however the optimal probes for PET/SPECT imaging of proteases in cancer have yet to be developed. Successful development of protease imaging probes with optimal in vivo stability, tumor targeting efficacy, and desirable pharmacokinetics for clinical translation will eventually improve cancer patient management. Not limited to cancer, these protease-targeted imaging probes will also have broad applications in other diseases such as arthritis, atherosclerosis, and myocardial infarction. PMID:20234801

  8. Selection preserves Ubiquitin Specific Protease 4 alternative exon skipping in therian mammals

    PubMed Central

    Vlasschaert, Caitlyn; Xia, Xuhua; Gray, Douglas A.

    2016-01-01

    Ubiquitin specific protease 4 (USP4) is a highly networked deubiquitinating enzyme with reported roles in cancer, innate immunity and RNA splicing. In mammals it has two dominant isoforms arising from inclusion or skipping of exon 7 (E7). We evaluated two plausible mechanisms for the generation of these isoforms: (A) E7 skipping due to a long upstream intron and (B) E7 skipping due to inefficient 5′ splice sites (5′SS) and/or branchpoint sites (BPS). We then assessed whether E7 alternative splicing is maintained by selective pressure or arose from genetic drift. Both transcript variants were generated from a USP4-E7 minigene construct with short flanking introns, an observation consistent with the second mechanism whereby differential splice signal strengths are the basis of E7 skipping. Optimization of the downstream 5′SS eliminated E7 skipping. Experimental validation of the correlation between 5′SS identity and exon skipping in vertebrates pinpointed the +6 site as the key splicing determinant. Therian mammals invariably display a 5′SS configuration favouring alternative splicing and the resulting isoforms have distinct subcellular localizations. We conclude that alternative splicing of mammalian USP4 is under selective maintenance and that long and short USP4 isoforms may target substrates in various cellular compartments. PMID:26833277

  9. Screens and Displays.

    ERIC Educational Resources Information Center

    Edstrom, Malin

    1987-01-01

    Discusses the characteristics of different computer screen technologies including the possible harmful effects on health of cathode ray tube (CRT) terminals. CRT's are compared to other technologies including liquid crystal displays, plasma displays, electroluminiscence displays, and light emitting diodes. A chart comparing the different…

  10. XVD Image Display Program

    NASA Technical Reports Server (NTRS)

    Deen, Robert G.; Andres, Paul M.; Mortensen, Helen B.; Parizher, Vadim; McAuley, Myche; Bartholomew, Paul

    2009-01-01

    The XVD [X-Windows VICAR (video image communication and retrieval) Display] computer program offers an interactive display of VICAR and PDS (planetary data systems) images. It is designed to efficiently display multiple-GB images and runs on Solaris, Linux, or Mac OS X systems using X-Windows.

  11. Game engines and immersive displays

    NASA Astrophysics Data System (ADS)

    Chang, Benjamin; Destefano, Marc

    2014-02-01

    While virtual reality and digital games share many core technologies, the programming environments, toolkits, and workflows for developing games and VR environments are often distinct. VR toolkits designed for applications in visualization and simulation often have a different feature set or design philosophy than game engines, while popular game engines often lack support for VR hardware. Extending a game engine to support systems such as the CAVE gives developers a unified development environment and the ability to easily port projects, but involves challenges beyond just adding stereo 3D visuals. In this paper we outline the issues involved in adapting a game engine for use with an immersive display system including stereoscopy, tracking, and clustering, and present example implementation details using Unity3D. We discuss application development and workflow approaches including camera management, rendering synchronization, GUI design, and issues specific to Unity3D, and present examples of projects created for a multi-wall, clustered, stereoscopic display.

  12. The morphology of displays of pulsating auroras.

    NASA Technical Reports Server (NTRS)

    Cresswell, G. R.

    1972-01-01

    An auroral substorm generates displays of pulsating auroras in ways which show a dependence upon both local time and latitude relative to the auroral oval. For several hours after midnight pulsating auroras can be observed in the wake of poleward expansions or within equatorward spreading diffuse envelopes of meridional extent of several hundred kilometers. As the dawn meridian is approached the displays of pulsating auroras tend increasingly to be comprised of distinct eastward drifting patches easily recorded by all-sky cameras.

  13. The effect of environmental conditions on expression of Bacteroides fragilis and Bacteroides thetaiotaomicron C10 protease genes

    PubMed Central

    2012-01-01

    Background Bacteroides fragilis and Bacteroides thetaiotaomicron are members of the normal human intestinal microbiota. However, both organisms are capable of causing opportunistic infections, during which the environmental conditions to which the bacteria are exposed change dramatically. To further explore their potential for contributing to infection, we have characterized the expression in B. thetaiotaomicron of four homologues of the gene encoding the C10 cysteine protease SpeB, a potent extracellular virulence factor produced by Streptococcus pyogenes. Results We identified a paralogous set of genes (btp genes) in the B. thetaiotaomicron genome, that were related to C10 protease genes we recently identified in B. fragilis. Similar to C10 proteases found in B. fragilis, three of the B. thetaiotaomicron homologues were transcriptionally coupled to genes encoding small proteins that are similar in structural architecture to Staphostatins, protease inhibitors associated with Staphopains in Staphylococcus aureus. The expression of genes for these C10 proteases in both B. fragilis and B. thetaiotaomicron was found to be regulated by environmental stimuli, in particular by exposure to oxygen, which may be important for their contribution to the development of opportunistic infections. Conclusions Genes encoding C10 proteases are increasingly identified in operons which also contain genes encoding proteins homologous to protease inhibitors. The Bacteroides C10 protease gene expression levels are responsive to different environmental stimuli suggesting they may have distinct roles in the bacterial-host interaction. PMID:22943521

  14. Modulation of HIV-1 Gag NC/p1 cleavage efficiency affects protease inhibitor resistance and viral replicative capacity

    PubMed Central

    2012-01-01

    Background Mutations in the substrate of HIV-1 protease, especially changes in the NC/p1 cleavage site, can directly contribute to protease inhibitor (PI) resistance and also compensate for defects in viral replicative capacity (RC) due to a drug resistant protease. These NC/p1 changes are known to enhance processing of the Gag protein. To investigate the capacity of HIV-1 to modulate Gag cleavage and its consequences for PI resistance and RC, we performed a detailed enzymatic and virological analysis using a set of PI resistant NC/p1 variants (HXB2431V, HXB2436E+437T, HXB2437T and HXB2437V). Results Here, we demonstrate that single NC/p1 mutants, which displayed only a slight increase in PI resistance did not show an obvious change in RC. In contrast, the double NC/p1 mutant, which displayed a clear increase in processing efficiency and PI resistance, demonstrated a clear reduction in RC. Cleavage analysis showed that a tridecameric NC/p1 peptide representing the double NC/p1 mutant was cleaved in two specific ways instead of one. The observed decrease in RC for the double NC/p1 mutant (HXB2436E+437T) could (partially) be restored by either reversion of the 436E change or by acquisition of additional changes in the NC/p1 cleavage site at codon 435 or 438 as was revealed during in vitro evolution experiments. These changes not only restored RC but also reduced PI resistance levels. Furthermore these changes normalized Gag processing efficiency and obstructed the novel secondary cleavage site observed for the double NC/p1 mutant. Conclusions The results of this study clearly demonstrate that HIV-1 can modulate Gag processing and thereby PI resistance. Distinct increases in Gag cleavage and PI resistance result in a reduced RC that can only be restored by amino acid changes in NC/p1 which reduce Gag processing to an optimal rate. PMID:22462820

  15. Evaluating Peripheral Displays

    NASA Astrophysics Data System (ADS)

    Matthews, Tara; Hsieh, Gary; Mankoff, Jennifer

    Although peripheral displays have been a domain of inquiry for over a decade now, evaluation criteria and techniques for this area are still being created. Peripheral display evaluation is an acknowledged challenge in a field setting. This chapter first describes models and methods that have been tailored specifically to evaluating peripheral displays (measuring how well they achieve their goals). Then, we present evaluation criteria used in past evaluations of peripheral displays, ranging from issues such as learnability to distraction. After explaining how these criteria have been assessed in the past, we present a case study evaluation of two e-mail peripheral displays that demonstrates the pros and cons of various evaluation techniques.

  16. Extracellular proteases as targets for drug development.

    PubMed

    Cudic, Mare; Fields, Gregg B

    2009-08-01

    Proteases constitute one of the primary targets in drug discovery. In the present review, we focus on extracellular proteases (ECPs) because of their differential expression in many pathophysiological processes, including cancer, cardiovascular conditions, and inflammatory, pulmonary, and periodontal diseases. Many new ECP inhibitors are currently under clinical investigation and a significant increase in new therapies based on protease inhibition can be expected in the coming years. In addition to directly blocking the activity of a targeted protease, one can take advantage of differential expression in disease states to selectively deliver therapeutic or imaging agents. Recent studies in targeted drug development for the metalloproteases (matrix metalloproteinases, adamalysins, pappalysins, neprilysin, angiotensin-converting enzyme, metallocarboxypeptidases, and glutamate carboxypeptidase II), serine proteases (elastase, coagulation factors, tissue/urokinase plasminogen activator system, kallikreins, tryptase, dipeptidyl peptidase IV) and cysteine proteases (cathepsin B) are discussed herein. PMID:19689354

  17. Advances in protease engineering for laundry detergents.

    PubMed

    Vojcic, Ljubica; Pitzler, Christian; Körfer, Georgette; Jakob, Felix; Ronny Martinez; Maurer, Karl-Heinz; Schwaneberg, Ulrich

    2015-12-25

    Proteases are essential ingredients in modern laundry detergents. Over the past 30 years, subtilisin proteases employed in the laundry detergent industry have been engineered by directed evolution and rational design to tailor their properties towards industrial demands. This comprehensive review discusses recent success stories in subtilisin protease engineering. Advances in protease engineering for laundry detergents comprise simultaneous improvement of thermal resistance and activity at low temperatures, a rational strategy to modulate pH profiles, and a general hypothesis for how to increase promiscuous activity towards the production of peroxycarboxylic acids as mild bleaching agents. The three protease engineering campaigns presented provide in-depth analysis of protease properties and have identified principles that can be applied to improve or generate enzyme variants for industrial applications beyond laundry detergents. PMID:25579194

  18. Cytoplasmic bacteriophage display system

    DOEpatents

    Studier, F.W.; Rosenberg, A.H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest. 1 fig.

  19. Cytoplasmic bacteriophage display system

    DOEpatents

    Studier, F. William; Rosenberg, Alan H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest.

  20. Type-I Prenyl Protease Function Is Required in the Male Germline of Drosophila melanogaster

    PubMed Central

    Adolphsen, Katie; Amell, Amanda; Havko, Nathan; Kevorkian, Sara; Mears, Kyle; Neher, Hayley; Schwarz, Dietmar; Schulze, Sandra R.

    2012-01-01

    Many proteins require the addition of a hydrophobic prenyl anchor (prenylation) for proper trafficking and localization in the cell. Prenyl proteases play critical roles in modifying proteins for membrane anchorage. The type I prenyl protease has a defined function in yeast (Ste24p/Afc1p) where it modifies a mating pheromone, and in humans (Zmpste24) where it has been implicated in a disease of premature aging. Despite these apparently very different biological processes, the type I prenyl protease gene is highly conserved, encoded by a single gene in a wide range of animal and plant groups. A notable exception is Drosophila melanogaster, where the gene encoding the type I prenyl protease has undergone an unprecedented series of duplications in the genome, resulting in five distinct paralogs, three of which are organized in a tandem array, and demonstrate high conservation, particularly in the vicinity of the active site of the enzyme. We have undertaken targeted deletion to remove the three tandem paralogs from the genome. The result is a male fertility defect, manifesting late in spermatogenesis. Our results also show that the ancestral type I prenyl protease gene in Drosophila is under strong purifying selection, while the more recent replicates are evolving rapidly. Our rescue data support a role for the rapidly evolving tandem paralogs in the male germline. We propose that potential targets for the male-specific type I prenyl proteases include proteins involved in the very dramatic cytoskeletal remodeling events required for spermatid maturation. PMID:22690372

  1. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  2. Proteases in biological control and biotechnology

    SciTech Connect

    Cunningham, D.D.; Long, G.L.

    1987-01-01

    This book explores the role of proteases in biological control systems and diseases, examines their structures and evolution, and reviews the methods by which proteases and protease inhibitors are engineered. In addition, the use of recombinant DNA technology is explained throughout the volume. Specific topics examined include: the versatility of proteolytic enzymes, the intricate proteolytic control mechanisms in hemostasis and their application to thrombolytic therapy, the evolution of proteolytic enzymes, and the role of limited proteolytic processing in several biological control processes.

  3. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  4. Pathogen-Secreted Proteases Activate a Novel Plant Immune Pathway

    PubMed Central

    Cheng, Zhenyu; Li, Jian-Feng; Niu, Yajie; Zhang, Xue-Cheng; Woody, Owen Z.; Xiong, Yan; Djonović, Slavica; Millet, Yves; Bush, Jenifer; McConkey, Brendan J.; Sheen, Jen; Ausubel, Frederick M.

    2015-01-01

    Mitogen-Activated Protein Kinase (MAPK) cascades play central roles in innate immune signaling networks in plants and animals1,2. In plants, however, the molecular mechanisms of how signal perception is transduced to MAPK activation remain elusive1. We report that pathogen-secreted proteases activate a previously unknown signaling pathway in Arabidopsis thaliana involving the Gα, Gβ and Gγ subunits of heterotrimeric G-protein complexes, which function upstream of a MAPK cascade. In this pathway, Receptor for Activated C Kinase 1 (RACK1) functions as a novel scaffold that binds to the Gβ subunit as well as to all three tiers of the MAPK cascade, thereby linking upstream G protein signaling to downstream activation of a MAPK cascade. The protease-G protein-RACK1-MAPK cascade modules identified in these studies are distinct from previously described plant immune signaling pathways such as the one elicited by bacterial flagellin, in which G proteins function downstream of or in parallel to a MAPK cascade without the involvement of the RACK1 scaffolding protein. The discovery of the novel protease-mediated immune signaling pathway described here was facilitated by the use of the broad host range, opportunistic bacterial pathogen Pseudomonas aeruginosa. The ability of P. aeruginosa to infect both plants and animals makes it an excellent model to identify novel types of immunoregulatory strategies that account for its niche adaptation to diverse host tissues and immune systems. PMID:25731164

  5. Proteases from Canavalia ensiformis: Active and Thermostable Enzymes with Potential of Application in Biotechnology

    PubMed Central

    Gonçalves, Rayane Natshe; Gozzini Barbosa, Suellen Duarte

    2016-01-01

    Extracts of leaves, seeds, roots, and stem from a tropical legume, C. ensiformis, were prepared employing buffers and detergent in aqueous solution. Leaf extracts had the highest protein content and the most pronounced peptidase activity with optimal pH in the neutral to alkaline range. All extracts exhibited peaks of activity at various pH values, suggesting the presence of distinctive classes of proteases. N-α-Tosyl-L-arginine methyl ester hydrolysis was maximal at 30°C to 60°C and peptidase activity from all extracts presented very good thermal stability after 24 h incubation at 70°C. C. ensiformis proteases exhibited molecular masses of about 200–57, 40–37, and 20–15 kDa by SDS-PAGE analysis. These enzymes cleaved hemoglobin, bovine serum albumin, casein, and gelatin at different levels. Serine and metalloproteases are the major proteases in C. ensiformis extracts, modulated by divalent cations, stable at 1% of surfactant Triton X-100 and at different concentrations of the reducing agent β-mercaptoethanol. Thus, C. ensiformis expresses a particular set of proteases in distinctive organs with high activity and stability, making this legume an important source of proteases with biotechnological potential.

  6. Structural Evidence for Regulation and Specificity of Flaviviral Proteases and Evolution of the Flaviviridae Fold

    SciTech Connect

    Aleshin,A.; Shiryaev, S.; Strongin, A.; Liddington, R.

    2007-01-01

    Pathogenic members of the flavivirus family, including West Nile Virus (WNV) and Dengue Virus (DV), are growing global threats for which there are no specific treatments. The two-component flaviviral enzyme NS2B-NS3 cleaves the viral polyprotein precursor within the host cell, a process that is required for viral replication. Here, we report the crystal structure of WNV NS2B-NS3pro both in a substrate-free form and in complex with the trypsin inhibitor aprotinin/BPTI. We show that aprotinin binds in a substrate-mimetic fashion in which the productive conformation of the protease is fully formed, providing evidence for an 'induced fit' mechanism of catalysis and allowing us to rationalize the distinct substrate specificities of WNV and DV proteases. We also show that the NS2B cofactor of WNV can adopt two very distinct conformations and that this is likely to be a general feature of flaviviral proteases, providing further opportunities for regulation. Finally, by comparing the flaviviral proteases with the more distantly related Hepatitis C virus, we provide insights into the evolution of the Flaviviridae fold. Our work should expedite the design of protease inhibitors to treat a range of flaviviral infections.

  7. Proteolytic crosstalk in multi-protease networks.

    PubMed

    Ogle, Curtis T; Mather, William H

    2016-01-01

    Processive proteases, such as ClpXP in E. coli, are conserved enzyme assemblies that can recognize and rapidly degrade proteins. These proteases are used for a number of purposes, including degrading mistranslated proteins and controlling cellular stress response. However, proteolytic machinery within the cell is limited in capacity and can lead to a bottleneck in protein degradation, whereby many proteins compete ('queue') for proteolytic resources. Previous work has demonstrated that such queueing can lead to pronounced statistical relationships between different protein counts when proteins compete for a single common protease. However, real cells contain many different proteases, e.g. ClpXP, ClpAP, and Lon in E. coli, and it is not clear how competition between proteins for multiple classes of protease would influence the dynamics of cellular networks. In the present work, we theoretically demonstrate that a multi-protease proteolytic bottleneck can substantially couple the dynamics for both simple and complex (oscillatory) networks, even between substrates with substantially different affinities for protease. For these networks, queueing often leads to strong positive correlations between protein counts, and these correlations are strongest near the queueing theoretic point of balance. Furthermore, we find that the qualitative behavior of these networks depends on the relative size of the absolute affinity of substrate to protease compared to the cross affinity of substrate to protease, leading in certain regimes to priority queue statistics. PMID:27042892

  8. Proteolytic crosstalk in multi-protease networks

    NASA Astrophysics Data System (ADS)

    Ogle, Curtis T.; Mather, William H.

    2016-04-01

    Processive proteases, such as ClpXP in E. coli, are conserved enzyme assemblies that can recognize and rapidly degrade proteins. These proteases are used for a number of purposes, including degrading mistranslated proteins and controlling cellular stress response. However, proteolytic machinery within the cell is limited in capacity and can lead to a bottleneck in protein degradation, whereby many proteins compete (‘queue’) for proteolytic resources. Previous work has demonstrated that such queueing can lead to pronounced statistical relationships between different protein counts when proteins compete for a single common protease. However, real cells contain many different proteases, e.g. ClpXP, ClpAP, and Lon in E. coli, and it is not clear how competition between proteins for multiple classes of protease would influence the dynamics of cellular networks. In the present work, we theoretically demonstrate that a multi-protease proteolytic bottleneck can substantially couple the dynamics for both simple and complex (oscillatory) networks, even between substrates with substantially different affinities for protease. For these networks, queueing often leads to strong positive correlations between protein counts, and these correlations are strongest near the queueing theoretic point of balance. Furthermore, we find that the qualitative behavior of these networks depends on the relative size of the absolute affinity of substrate to protease compared to the cross affinity of substrate to protease, leading in certain regimes to priority queue statistics.

  9. Maize death acids, 9-lipoxygenase-derived cyclopente(a)nones, display activity as cytotoxic phytoalexins and transcriptional mediators.

    PubMed

    Christensen, Shawn A; Huffaker, Alisa; Kaplan, Fatma; Sims, James; Ziemann, Sebastian; Doehlemann, Gunther; Ji, Lexiang; Schmitz, Robert J; Kolomiets, Michael V; Alborn, Hans T; Mori, Naoki; Jander, Georg; Ni, Xinzhi; Sartor, Ryan C; Byers, Sara; Abdo, Zaid; Schmelz, Eric A

    2015-09-01

    Plant damage promotes the interaction of lipoxygenases (LOXs) with fatty acids yielding 9-hydroperoxides, 13-hydroperoxides, and complex arrays of oxylipins. The action of 13-LOX on linolenic acid enables production of 12-oxo-phytodienoic acid (12-OPDA) and its downstream products, termed "jasmonates." As signals, jasmonates have related yet distinct roles in the regulation of plant resistance against insect and pathogen attack. A similar pathway involving 9-LOX activity on linolenic and linoleic acid leads to the 12-OPDA positional isomer, 10-oxo-11-phytodienoic acid (10-OPDA) and 10-oxo-11-phytoenoic acid (10-OPEA), respectively; however, physiological roles for 9-LOX cyclopentenones have remained unclear. In developing maize (Zea mays) leaves, southern leaf blight (Cochliobolus heterostrophus) infection results in dying necrotic tissue and the localized accumulation of 10-OPEA, 10-OPDA, and a series of related 14- and 12-carbon metabolites, collectively termed "death acids." 10-OPEA accumulation becomes wound inducible within fungal-infected tissues and at physiologically relevant concentrations acts as a phytoalexin by suppressing the growth of fungi and herbivores including Aspergillus flavus, Fusarium verticillioides, and Helicoverpa zea. Unlike previously established maize phytoalexins, 10-OPEA and 10-OPDA display significant phytotoxicity. Both 12-OPDA and 10-OPEA promote the transcription of defense genes encoding glutathione S transferases, cytochrome P450s, and pathogenesis-related proteins. In contrast, 10-OPEA only weakly promotes the accumulation of multiple protease inhibitor transcripts. Consistent with a role in dying tissue, 10-OPEA application promotes cysteine protease activation and cell death, which is inhibited by overexpression of the cysteine protease inhibitor maize cystatin-9. Unlike jasmonates, functions for 10-OPEA and associated death acids are consistent with specialized roles in local defense reactions. PMID:26305953

  10. Maize death acids, 9-lipoxygenase–derived cyclopente(a)nones, display activity as cytotoxic phytoalexins and transcriptional mediators

    PubMed Central

    Christensen, Shawn A.; Huffaker, Alisa; Kaplan, Fatma; Sims, James; Ziemann, Sebastian; Doehlemann, Gunther; Ji, Lexiang; Schmitz, Robert J.; Kolomiets, Michael V.; Alborn, Hans T.; Mori, Naoki; Jander, Georg; Ni, Xinzhi; Sartor, Ryan C.; Byers, Sara; Abdo, Zaid; Schmelz, Eric A.

    2015-01-01

    Plant damage promotes the interaction of lipoxygenases (LOXs) with fatty acids yielding 9-hydroperoxides, 13-hydroperoxides, and complex arrays of oxylipins. The action of 13-LOX on linolenic acid enables production of 12-oxo-phytodienoic acid (12-OPDA) and its downstream products, termed “jasmonates.” As signals, jasmonates have related yet distinct roles in the regulation of plant resistance against insect and pathogen attack. A similar pathway involving 9-LOX activity on linolenic and linoleic acid leads to the 12-OPDA positional isomer, 10-oxo-11-phytodienoic acid (10-OPDA) and 10-oxo-11-phytoenoic acid (10-OPEA), respectively; however, physiological roles for 9-LOX cyclopentenones have remained unclear. In developing maize (Zea mays) leaves, southern leaf blight (Cochliobolus heterostrophus) infection results in dying necrotic tissue and the localized accumulation of 10-OPEA, 10-OPDA, and a series of related 14- and 12-carbon metabolites, collectively termed “death acids.” 10-OPEA accumulation becomes wound inducible within fungal-infected tissues and at physiologically relevant concentrations acts as a phytoalexin by suppressing the growth of fungi and herbivores including Aspergillus flavus, Fusarium verticillioides, and Helicoverpa zea. Unlike previously established maize phytoalexins, 10-OPEA and 10-OPDA display significant phytotoxicity. Both 12-OPDA and 10-OPEA promote the transcription of defense genes encoding glutathione S transferases, cytochrome P450s, and pathogenesis-related proteins. In contrast, 10-OPEA only weakly promotes the accumulation of multiple protease inhibitor transcripts. Consistent with a role in dying tissue, 10-OPEA application promotes cysteine protease activation and cell death, which is inhibited by overexpression of the cysteine protease inhibitor maize cystatin-9. Unlike jasmonates, functions for 10-OPEA and associated death acids are consistent with specialized roles in local defense reactions. PMID:26305953

  11. Loss of Bace2 in zebrafish affects melanocyte migration and is distinct from Bace1 knock out phenotypes.

    PubMed

    van Bebber, Frauke; Hruscha, Alexander; Willem, Michael; Schmid, Bettina; Haass, Christian

    2013-11-01

    Alzheimer's disease is the most frequent dementia. Pathologically, Alzheimer's disease is characterized by the accumulation of senile plaques composed of amyloid β-peptide (Aβ). Two proteases, β- and γ-secretase proteolytically generate Aβ from its precursor, the ß-amyloid precursor protein (APP). Inhibition of β-secretase, also referred to as beta-site APP cleaving enzyme (BACE1) or γ-secretase is therefore of prime interest for the development of amyloid-lowering drugs. To assess the in vivo function of zebrafish Bace1 (zBace1), we generated zBace1 knock out fish by zinc finger nuclease-mediated genome editing. bace1 mutants (bace1-/-) are hypomyelinated in the PNS while the CNS is not affected. Moreover, the number of mechanosensory neuromasts is elevated in bace1-/-. Mutations in zebrafish Bace2 (zBace2) revealed a distinct melanocyte migration phenotype, which is not observed in bace1-/-. Double homozygous bace1-/-; bace2-/- fish do not enhance the single mutant phenotypes indicating non-redundant distinct physiological functions. Single homozygous bace1 mutants as well as double homozygous bace1 and bace2 mutants are viable and fertile suggesting that Bace1 is a promising drug target without major side effects. The identification of a specific bace2 -/- associated phenotype further allows improving selective Bace1 inhibitors and to distinguish between Bace 1 and Bace 2 inhibition in vivo. Inhibition of BACE1 protease activity has therapeutic importance for Alzheimer's disease. Analysis of BACE1 and BACE2 knock-out zebrafish revealed that they exhibit distinct phenotypes. bace1 mutants display hypomyelination in the PNS and supernumerary neuromasts while in bace2 mutants the shape and migration of melanocytes is affected. These phenotypes are not further enhanced in the viable double mutants. Our data suggest that blocking BACE1 activity is a safe therapeutic approach. PMID:23406323

  12. Polyplanar optic display

    SciTech Connect

    Veligdan, J.; Biscardi, C.; Brewster, C.; DeSanto, L.; Beiser, L.

    1997-07-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 100 milliwatt green solid state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, the authors discuss the electronic interfacing to the DLP{trademark} chip, the opto-mechanical design and viewing angle characteristics.

  13. Virtual acoustics displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Fisher, Scott S.; Stone, Philip K.; Foster, Scott H.

    1991-01-01

    The real time acoustic display capabilities are described which were developed for the Virtual Environment Workstation (VIEW) Project at NASA-Ames. The acoustic display is capable of generating localized acoustic cues in real time over headphones. An auditory symbology, a related collection of representational auditory 'objects' or 'icons', can be designed using ACE (Auditory Cue Editor), which links both discrete and continuously varying acoustic parameters with information or events in the display. During a given display scenario, the symbology can be dynamically coordinated in real time with 3-D visual objects, speech, and gestural displays. The types of displays feasible with the system range from simple warnings and alarms to the acoustic representation of multidimensional data or events.

  14. Display innovations through glass

    NASA Astrophysics Data System (ADS)

    Hamilton, Lori L.

    2016-03-01

    Prevailing trends in thin, lightweight, high-resolution, and added functionality, such as touch sensing, continue to drive innovation in the display market. While display volumes grow, so do consumers’ need for portability, enhanced optical performance, and mechanical reliability. Technical advancements in glass design and process have enabled display innovations in these areas while supporting industry growth. Opportunities for further innovation remain open for glass manufacturers to drive new applications, enhanced functionality, and increased demand.

  15. Displaying Data As Movies

    NASA Technical Reports Server (NTRS)

    Moore, Judith G.

    1992-01-01

    NMSB Movie computer program displays large sets of data (more than million individual values). Presentation dynamic, rapidly displaying sequential image "frames" in main "movie" window. Any sequence of two-dimensional sets of data scaled between 0 and 255 (1-byte resolution) displayed as movie. Time- or slice-wise progression of data illustrated. Originally written to present data from three-dimensional ultrasonic scans of damaged aerospace composite materials, illustrates data acquired by thermal-analysis systems measuring rates of heating and cooling of various materials. Developed on Macintosh IIx computer with 8-bit color display adapter and 8 megabytes of memory using Symantec Corporation's Think C, version 4.0.

  16. Interactive holographic display

    NASA Astrophysics Data System (ADS)

    Son, Jung-Young; Lee, Beam-Ryeol; Kim, Jin-Woong; Chernyshov, Oleksii O.; Park, Min-Chul

    2014-06-01

    A holographic display which is capable of displaying floating holographic images is introduced. The display is for user interaction with the image on the display. It consists of two parts; multiplexed holographic image generation and a spherical mirror. The time multiplexed image from 2 X 10 DMD frames appeared on PDLC screen is imaged by the spherical mirror and becomes a floating image. This image is combined spatially with two layered TV images appearing behind. Since the floating holographic image has a real spatial position and depth, it allows a user to interact with the image.

  17. JAVA Stereo Display Toolkit

    NASA Technical Reports Server (NTRS)

    Edmonds, Karina

    2008-01-01

    This toolkit provides a common interface for displaying graphical user interface (GUI) components in stereo using either specialized stereo display hardware (e.g., liquid crystal shutter or polarized glasses) or anaglyph display (red/blue glasses) on standard workstation displays. An application using this toolkit will work without modification in either environment, allowing stereo software to reach a wider audience without sacrificing high-quality display on dedicated hardware. The toolkit is written in Java for use with the Swing GUI Toolkit and has cross-platform compatibility. It hooks into the graphics system, allowing any standard Swing component to be displayed in stereo. It uses the OpenGL graphics library to control the stereo hardware and to perform the rendering. It also supports anaglyph and special stereo hardware using the same API (application-program interface), and has the ability to simulate color stereo in anaglyph mode by combining the red band of the left image with the green/blue bands of the right image. This is a low-level toolkit that accomplishes simply the display of components (including the JadeDisplay image display component). It does not include higher-level functions such as disparity adjustment, 3D cursor, or overlays all of which can be built using this toolkit.

  18. Tissue dissociation enzyme neutral protease assessment.

    PubMed

    Breite, A G; Dwulet, F E; McCarthy, R C

    2010-01-01

    Neutral proteases, essential components of purified tissue dissociation enzymes required for successful human islet isolation, show variable activities and effects of substrate on their activities. Initially we used a spectrophotometric endpoint assay with azocasein substrate to measure neutral protease activity. After critical review of the results, we observed these data to be inconsistent and not correlating expected differences in specific activities between thermolysin and Bacillus polymyxa proteases. This observation led to the development of a fluorescent microplate assay using fluorescein isothyocyanate-conjugated bovine serum albumin (FITC-BSA) as the substrate. This simpler, more flexible method offered a homogeneous, kinetic enzyme assay allowing determination of steady state reaction rates of sample replicates at various dilutions. The assay had a linear range of 4- to 8-fold and interassay coefficients of variation for B polymyxa protease and thermolysin of <9% and <15%, respectively, which were lower than those using the spectrophotometric endpoint assay, namely, 54% and 36%, respectively. This format allowed for incorporation of enzyme inhibitors, as illustrated by addition of sulfhydryl protease inhibitors, which, consistent with earlier reports, strongly indicated that the main contaminant in purified collagenase preparations was clostripain. Determination of the specific activities for several purified neutral proteases showed that the B polymyxa and Clostridium histolyticum proteases had approximately 40% and 15% specific activities, respectively, of those obtained with purified thermolysin, indicating the different characteristics of neutral protease enzymes for cell isolation procedures. PMID:20692405

  19. Display technology - Human factors concepts

    NASA Astrophysics Data System (ADS)

    Stokes, Alan; Wickens, Christopher; Kite, Kirsten

    1990-03-01

    Recent advances in the design of aircraft cockpit displays are reviewed, with an emphasis on their applicability to automobiles. The fundamental principles of display technology are introduced, and individual chapters are devoted to selective visual attention, command and status displays, foveal and peripheral displays, navigational displays, auditory displays, color and pictorial displays, head-up displays, automated systems, and dual-task performance and pilot workload. Diagrams, drawings, and photographs of typical displays are provided.

  20. Cordysobin, a novel alkaline serine protease with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Cordyceps sobolifera.

    PubMed

    Wang, Shou-Xian; Liu, Yu; Zhang, Guo-Qing; Zhao, Shuang; Xu, Feng; Geng, Xiao-Li; Wang, He-Xiang

    2012-01-01

    A novel serine protease, designated as cordysobin, was purified from dried fruiting bodies of the mushroom Cordyceps sobolifera. The isolation procedure utilized ion exchange chromatography on DEAE-cellulose and SP-Sepharose followed by gel filtration on Superdex 75. The protease did not adsorb on DEAE-cellulose but bound to SP-Sepharose. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), the protease resolved as a single band with an apparent molecular mass of 31 kDa. Its optimal pH was 10.0, and the optimal temperature was 65°C. The protease displayed a K(m) value of 0.41 μM and 13.44 μM·min⁻¹ using Suc-Leu-Leu-Val-Tyr-MCA as substrate at pH 10.0 and 37°C. Protease activity was enhanced by the Fe²⁺ ion at low concentration range of 1.25-10 mM and was strongly inhibited by Hg²⁺ up to 1.25 mM. The protease was strongly inhibited by chymostatin and phenylmethylsulfonyl fluoride (PMSF), suggesting that it is a serine protease. It manifested significant inhibitory activity toward HIV-1 reverse transcriptase (RT) with an IC₅₀ value of 8.2×10⁻³ μM, which is the highest anti-HIV-1 RT activity of reported mushroom proteins. PMID:22014786

  1. Split image optical display

    DOEpatents

    Veligdan, James T.

    2007-05-29

    A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.

  2. Split image optical display

    DOEpatents

    Veligdan, James T.

    2005-05-31

    A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.

  3. Display and Presentation Boards.

    ERIC Educational Resources Information Center

    Midgley, Thomas Keith

    The use of display and presentation boards as tools to help teachers/trainers convey messages more clearly is briefly discussed, and 24 different types of display and presentation boards are described and illustrated; i.e., chalk, paste-up, hook-n-loop, electric, flannel, scroll, communication planning, acetate pocket, slot, pin-tack, preview,…

  4. Polyplanar optical display electronics

    SciTech Connect

    DeSanto, L.; Biscardi, C.

    1997-07-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a 100 milliwatt green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments. In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) circuit board is removed from the Texas Instruments DLP light engine assembly. Due to the compact architecture of the projection system within the display chassis, the DMD{trademark} chip is operated remotely from the Texas Instruments circuit board. The authors discuss the operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with various video formats (CVBS, Y/C or S-video and RGB) including the format specific to the B-52 aircraft. A brief discussion of the electronics required to drive the laser is also presented.

  5. Effective Monitor Display Design.

    ERIC Educational Resources Information Center

    Harrell, William

    1999-01-01

    Describes some of the factors that affect computer monitor display design and provides suggestions and insights into how screen displays can be designed more effectively. Topics include color, font choices, organizational structure of text, space outline, and general principles. (Author/LRW)

  6. Generation of bioactive peptide hydrolysates from cattle plasma using plant and fungal proteases.

    PubMed

    Bah, Clara S F; Bekhit, Alaa El-Din A; McConnell, Michelle A; Carne, Alan

    2016-12-15

    Four protease preparations from plant and fungal sources (papain, bromelain, FP400 and FPII) were used to hydrolyse plasma which was separated from slaughterhouse cattle blood. The o-phthaldialdehyde assay was used to follow the release of TCA-soluble peptides over a 24h period. Hydrolysis profiles were displayed using SDS-PAGE. The in vitro antioxidant and antimicrobial activities of the hydrolysates were determined. The results showed that hydrolysates of cattle plasma generated with fungal protease FPII had higher antioxidant activities. Overall than hydrolysates generated with papain, bromelain and FP400. None of the hydrolysates demonstrated antimicrobial activity. The FPII peptide hydrolysate was fractionated using gel permeation chromatography, OFFGEL isoelectric focusing and RP-HPLC. The RP-HPLC fraction with highest antioxidant activity contained 15 novel peptide sequences. The use of protease FPII to hydrolyse cattle plasma resulted in a hydrolysate with high antioxidant properties and unique peptide sequences. PMID:27451160

  7. Protease-degradable electrospun fibrous hydrogels

    NASA Astrophysics Data System (ADS)

    Wade, Ryan J.; Bassin, Ethan J.; Rodell, Christopher B.; Burdick, Jason A.

    2015-03-01

    Electrospun nanofibres are promising in biomedical applications to replicate features of the natural extracellular matrix (ECM). However, nearly all electrospun scaffolds are either non-degradable or degrade hydrolytically, whereas natural ECM degrades proteolytically, often through matrix metalloproteinases. Here we synthesize reactive macromers that contain protease-cleavable and fluorescent peptides and are able to form both isotropic hydrogels and electrospun fibrous hydrogels through a photoinitiated polymerization. These biomimetic scaffolds are susceptible to protease-mediated cleavage in vitro in a protease dose-dependent manner and in vivo in a subcutaneous mouse model using transdermal fluorescent imaging to monitor degradation. Importantly, materials containing an alternate and non-protease-cleavable peptide sequence are stable in both in vitro and in vivo settings. To illustrate the specificity in degradation, scaffolds with mixed fibre populations support selective fibre degradation based on individual fibre degradability. Overall, this represents a novel biomimetic approach to generate protease-sensitive fibrous scaffolds for biomedical applications.

  8. Progress and prospects on DENV protease inhibitors.

    PubMed

    Timiri, Ajay Kumar; Sinha, Barij Nayan; Jayaprakash, Venkatesan

    2016-07-19

    New treatments are desperately required to combat increasing rate of dengue fever cases reported in tropical and sub-tropical parts of the world. Among the ten proteins (structural and non-structural) encoded by dengue viral genome, NS2B-NS3 protease is an ideal target for drug discovery. It is responsible for the processing of poly protein that is required for genome replication of the virus. Moreover, inhibitors designed against proteases were found successful in Human Immuno-deficiency Virus (HIV) and Hepatitis C Virus (HCV). Complete molecular mechanism and a survey of inhibitors reported against dengue protease will be helpful in designing effective and potent inhibitors. This review provides an insight on molecular mechanism of dengue virus protease and covers up-to-date information on different inhibitors reported against dengue proteases with medicinal chemistry perspective. PMID:27092412

  9. System status display evaluation

    NASA Technical Reports Server (NTRS)

    Summers, Leland G.

    1988-01-01

    The System Status Display is an electronic display system which provides the crew with an enhanced capability for monitoring and managing the aircraft systems. A flight simulation in a fixed base cockpit simulator was used to evaluate alternative design concepts for this display system. The alternative concepts included pictorial versus alphanumeric text formats, multifunction versus dedicated controls, and integration of the procedures with the system status information versus paper checklists. Twelve pilots manually flew approach patterns with the different concepts. System malfunctions occurred which required the pilots to respond to the alert by reconfiguring the system. The pictorial display, the multifunction control interfaces collocated with the system display, and the procedures integrated with the status information all had shorter event processing times and lower subjective workloads.

  10. Defense display market assessment

    NASA Astrophysics Data System (ADS)

    Desjardins, Daniel D.; Hopper, Darrel G.

    1998-09-01

    This paper addresses the number, function and size of principal military displays and establishes a basis to determine the opportunities for technology insertion in the immediate future and into the next millennium. Principal military displays are defined as those occupying appreciable crewstation real-estate and/or those without which the platform could not carry out its intended mission. DoD 'office' applications are excluded from this study. The military displays market is specified by such parameters as active area and footprint size, and other characteristics such as luminance, gray scale, resolution, angle, color, video capability, and night vision imaging system (NVIS) compatibility. Funded, future acquisitions, planned and predicted crewstation modification kits, and form-fit upgrades are taken into account. This paper provides an overview of the DoD niche market, allowing both government and industry a necessary reference by which to meet DoD requirements for military displays in a timely and cost-effective manner. The aggregate DoD market for direct-view and large-area military displays is presently estimated to be in excess of 242,000. Miniature displays are those which must be magnified to be viewed, involve a significantly different manufacturing paradigm and are used in helmet mounted displays and thermal weapon sight applications. Some 114,000 miniature displays are presently included within Service weapon system acquisition plans. For vendor production planning purposes it is noted that foreign military sales could substantially increase these quantities. The vanishing vendor syndrome (VVS) for older display technologies continues to be a growing, pervasive problem throughout DoD, which consequently must leverage the more modern display technologies being developed for civil- commercial markets.

  11. HIV-1 protease mutations and protease inhibitor cross-resistance.

    PubMed

    Rhee, Soo-Yon; Taylor, Jonathan; Fessel, W Jeffrey; Kaufman, David; Towner, William; Troia, Paolo; Ruane, Peter; Hellinger, James; Shirvani, Vivian; Zolopa, Andrew; Shafer, Robert W

    2010-10-01

    The effects of many protease inhibitor (PI)-selected mutations on the susceptibility to individual PIs are unknown. We analyzed in vitro susceptibility test results on 2,725 HIV-1 protease isolates. More than 2,400 isolates had been tested for susceptibility to fosamprenavir, indinavir, nelfinavir, and saquinavir; 2,130 isolates had been tested for susceptibility to lopinavir; 1,644 isolates had been tested for susceptibility to atazanavir; 1,265 isolates had been tested for susceptibility to tipranavir; and 642 isolates had been tested for susceptibility to darunavir. We applied least-angle regression (LARS) to the 200 most common mutations in the data set and identified a set of 46 mutations associated with decreased PI susceptibility of which 40 were not polymorphic in the eight most common HIV-1 group M subtypes. We then used least-squares regression to ascertain the relative contribution of each of these 46 mutations. The median number of mutations associated with decreased susceptibility to each PI was 28 (range, 19 to 32), and the median number of mutations associated with increased susceptibility to each PI was 2.5 (range, 1 to 8). Of the mutations with the greatest effect on PI susceptibility, I84AV was associated with decreased susceptibility to eight PIs; V32I, G48V, I54ALMSTV, V82F, and L90M were associated with decreased susceptibility to six to seven PIs; I47A, G48M, I50V, L76V, V82ST, and N88S were associated with decreased susceptibility to four to five PIs; and D30N, I50L, and V82AL were associated with decreased susceptibility to fewer than four PIs. This study underscores the greater impact of nonpolymorphic mutations compared with polymorphic mutations on decreased PI susceptibility and provides a comprehensive quantitative assessment of the effects of individual mutations on susceptibility to the eight clinically available PIs. PMID:20660676

  12. Deficient activity of von Willebrand factor-cleaving protease in chronic relapsing thrombotic thrombocytopenic purpura.

    PubMed

    Furlan, M; Robles, R; Solenthaler, M; Wassmer, M; Sandoz, P; Lämmle, B

    1997-05-01

    In patients with thrombotic thrombocytopenic purpura (TTP), excessive intravascular platelet aggregation has been associated with appearance in plasma of unusually large von Willebrand factor (vWF) multimers. These extremely adhesive vWF multimers may arise due to deficiency of a "depolymerase" cleaving vWF to smaller molecular forms, either by reducing the interdimeric disulfide bridges or by proteolytic degradation. We studied the activity of a recently described vWF-cleaving protease in four patients with chronic relapsing TTP. Diluted plasma samples of TTP patients were incubated with purified normal human vWF in the presence of a serine protease inhibitor, at low ionic strength, and in the presence of urea and barium ions. The extent of vWF degradation was assayed by electrophoresis in sodium dodecyl sulfate-agarose gels and immunoblotting. Four patients, that included two brothers, with chronic relapsing TTP displayed either substantially reduced levels or a complete absence of vWF-cleaving protease activity. In none of these patient plasmas was an inhibitor of or an antibody against the vWF-cleaving protease established. Our data suggest that the unusually large vWF multimers found in TTP patients may be caused by deficient vWF-cleaving protease activity. Deficiency of this protease may be inherited in an autosomal recessive manner and seems to predispose to chronic relapsing TTP. The assay of the vWF-cleaving protease activity may be used as a sensitive diagnostic tool for identification of subjects with a latent TTP tendency. PMID:9129011

  13. Dengue protease activity: the structural integrity and interaction of NS2B with NS3 protease and its potential as a drug target.

    PubMed

    Phong, Wai Y; Moreland, Nicole J; Lim, Siew P; Wen, Daying; Paradkar, Prasad N; Vasudevan, Subhash G

    2011-10-01

    Flaviviral NS3 serine proteases require the NS2B cofactor region (cNS2B) to be active. Recent crystal structures of WNV (West Nile virus) protease in complex with inhibitors revealed that cNS2B participates in the formation of the protease active site. No crystal structures of ternary complexes are currently available for DENV (dengue virus) to validate the role of cNS2B in active site formation. In the present study, a GST (glutathione transferase) fusion protein of DENV-2 cNS2B49-95 was used as a bait to pull down DENV-2 protease domain (NS3pro). The affinity of NS3pro for cNS2B was strong (equilibrium-binding constant <200 nM) and the heterodimeric complex displayed a catalytic efficiency similar to that of single-chain DENV-2 cNS2B/NS3pro. Various truncations and mutations in the cNS2B sequence showed that conformational integrity of the entire 47 amino acids is critical for protease activity. Furthermore, DENV-2 NS3 protease can be pulled down and transactivated by cNS2B cofactors from DENV-1, -3, -4 and WNV, suggesting that mechanisms for activation are conserved across the flavivirus genus. To validate NS2B as a potential target in allosteric inhibitor development, a cNS2B-specific human monoclonal antibody (3F10) was utilized. 3F10 disrupted the interaction between cNS2B and NS3 in vitro and reduced DENV viral replication in HEK (human embryonic kidney)-293 cells. This provides proof-of-concept for developing assays to find inhibitors that block the interaction between NS2B and NS3 during viral translation. PMID:21329491

  14. Microlaser-based displays

    NASA Astrophysics Data System (ADS)

    Bergstedt, Robert; Fink, Charles G.; Flint, Graham W.; Hargis, David E.; Peppler, Philipp W.

    1997-07-01

    Laser Power Corporation has developed a new type of projection display, based upon microlaser technology and a novel scan architecture, which provides the foundation for bright, extremely high resolution images. A review of projection technologies is presented along with the limitations of each and the difficulties they experience in trying to generate high resolution imagery. The design of the microlaser based projector is discussed along with the advantage of this technology. High power red, green, and blue microlasers have been designed and developed specifically for use in projection displays. These sources, in combination with high resolution, high contrast modulator, produce a 24 bit color gamut, capable of supporting the full range of real world colors. The new scan architecture, which reduces the modulation rate and scan speeds required, is described. This scan architecture, along with the inherent brightness of the laser provides the fundamentals necessary to produce a 5120 by 4096 resolution display. The brightness and color uniformity of the display is excellent, allowing for tiling of the displays with far fewer artifacts than those in a traditionally tiled display. Applications for the display include simulators, command and control centers, and electronic cinema.

  15. Protease proteomics: revealing protease in vivo functions using systems biology approaches.

    PubMed

    Doucet, Alain; Overall, Christopher M

    2008-10-01

    Proteases irreversibly modify proteins by cleaving their amide bonds and are implicated in virtually every important biological process such as immunity, development and tissue repair. Accordingly, it is easy to see that deregulated proteolysis is a pathognomic feature of many diseases. Most of the current information available on proteases was acquired using in vitro methods, which reveals molecular structure, enzyme kinetics and active-site specificity. However, considerably less is known about the relevant biological functions and combined roles of proteases in moulding the proteome. Although models using genetically modified animals are powerful, they are slow to develop, they can be difficult to interpret, and while useful, they remain only models of human disease. Therefore, to understand how proteases accomplish their tasks in organisms and how they participate in pathology, we need to elucidate the protease degradome-the repertoire of proteases expressed by a cell, a tissue or an organism at a particular time-their expression level, activation state, their biological substrates, also known as the substrate degradome-the repertoire of substrates for each protease-and the effect of the activity of each protease on the pathways of the system under study. Achieving this goal is challenging because several proteases might cleave the same protein, and proteases also form pathways and interact to form the protease web [Overall, C.M., Kleifeld, O., 2006. Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer 6 (3), 227-239]. Hence, the net proteolytic potential of the degradome at a particular time on a substrate and pathway must also be understood. Proteomics offers one of the few routes to the understanding of proteolysis in complex in vivo systems and especially in man where genetic manipulations are impossible. The aim of this chapter is to review methods and tools that allow

  16. Vibrio cholerae hemagglutinin(HA)/protease: An extracellular metalloprotease with multiple pathogenic activities.

    PubMed

    Benitez, Jorge A; Silva, Anisia J

    2016-06-01

    Vibrio cholerae of serogroup O1 and O139, the etiological agent of the diarrheal disease cholera, expresses the extracellular Zn-dependent metalloprotease hemagglutinin (HA)/protease also reported as vibriolysin. This enzyme is also produced by non-O1/O139 (non-cholera) strains that cause mild, sporadic illness (i.e. gastroenteritis, wound or ear infections). Orthologs of HA/protease are present in other members of the Vibrionaceae family pathogenic to humans and fish. HA/protease belongs to the M4 neutral peptidase family and displays significant amino acid sequence homology to Pseudomonas aeruginosa elastase (LasB) and Bacillus thermoproteolyticus thermolysin. It exhibits a broad range of potentially pathogenic activities in cell culture and animal models. These activities range from the covalent modification of other toxins, the degradation of the protective mucus barrier and disruption of intestinal tight junctions. Here we review (i) the structure and regulation of HA/protease expression, (ii) its interaction with other toxins and the intestinal mucosa and (iii) discuss the possible role(s) of HA/protease in the pathogenesis of cholera. PMID:26952544

  17. Biochemical characterization of a detergent-stable serine alkaline protease from Caldicoprobacter guelmensis.

    PubMed

    Bouacem, Khelifa; Bouanane-Darenfed, Amel; Laribi-Habchi, Hassiba; Elhoul, Mouna Ben; Hmida-Sayari, Aïda; Hacene, Hocine; Ollivier, Bernard; Fardeau, Marie-Laure; Jaouadi, Bassem; Bejar, Samir

    2015-11-01

    Caldicoprobacter guelmensis isolated from the hydrothermal hot spring of Guelma (Algeria) produced high amounts of extracellular thermostable serine alkaline protease (called SAPCG) (23,000U/mL). The latter was purified by ammonium sulphate precipitation, UNO Q-6 FPLC and Zorbex PSM 300 HPLC, and submitted to biochemical characterization assays. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzyme was a monomer, with a molecular mass of 55,824.19Da. The 19 N-terminal residue sequence of SAPCG showed high homology with those of microbial proteases. The enzyme was completely inhibited by phenylmethanesulfonyl fluoride (PMSF) and diiodopropyl fluorophosphates (DFP), which suggested its belonging to the serine protease family. It showed optimum protease activity at pH 10 and 70°C with casein as a substrate. The thermoactivity and thermostability of SAPCG were enhanced in the presence of 2mM Ca(2+). Its half-life times at 80 and 90°C were 180 and 60min, respectively. Interestingly, the SAPCG protease exhibited significant compatibility with iSiS and Persil, and wash performance analysis revealed that it could remove blood-stains effectively. Overall, SAPCG displayed a number of attractive properties that make it a promising candidate for future applications as an additive in detergent formulations. PMID:26261082

  18. Serine Protease Catalysis: A Computational Study of Tetrahedral Intermediates and Inhibitory Adducts.

    PubMed

    Ngo, Phong D; Mansoorabadi, Steven O; Frey, Perry A

    2016-08-01

    Peptide boronic acids and peptidyl trifluoromethyl ketones (TFKs) inhibit serine proteases by forming monoanionic, tetrahedral adducts to serine in the active sites. Investigators regard these adducts as analogs of monoanionic, tetrahedral intermediates. Density functional theory (DFT) calculations and fractional charge analysis show that tetrahedral adducts of model peptidyl TFKs are structurally and electrostatically very similar to corresponding tetrahedral intermediates. In contrast, the DFT calculations show the structures and electrostatic properties of analogous peptide boronate adducts to be significantly different. The peptide boronates display highly electrostatically positive boron, with correspondingly negative ligands in the tetrahedra. In addition, the computed boron-oxygen and boron-carbon bond lengths in peptide boronates (which are identical or very similar to the corresponding bonds in a peptide boronate adduct of α-lytic protease determined by X-ray crystallography at subangstrom resolution) are significantly longer than the corresponding bond lengths in model tetrahedral intermediates. Since protease-peptidyl TFKs incorporate low-barrier hydrogen bonds (LBHBs) between an active site histidine and aspartate, while the protease-peptide boronates do not, these data complement the spectroscopic and chemical evidence for the participation of LBHBs in catalysis by serine proteases. Moreover, while the potency of these classes of inhibitors can be correlated to the structures of the peptide moieties, the present results indicate that the strength of their bonds to serine contribute significantly to their inhibitory properties. PMID:27387593

  19. Detection of proteases from Sporosarcina aquimarina and Algoriphagus antarcticus isolated from Antarctic soil.

    PubMed

    Santos, Anderson F; Pires, Fabiano; Jesus, Hugo E; Santos, André L S; Peixoto, Raquel; Rosado, Alexandre S; D'Avila-Levy, Claudia M; Branquinha, Marta H

    2015-03-01

    Two psychrophilic bacterial samples were isolated from King George Island soil, in Antarctica. The phylogenetic analysis based on the 16S rRNA (rrs) gene led to the correlation with the closest related isolates as Sporosarcina aquimarina (99%) and Algoriphagus antarcticus (99%), with query coverage of 99% and 98%, respectively. The spent culture media from both isolates displayed proteolytic activities detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis containing gelatin as protein substrate. Under the employed conditions, S. aquimarina showed a 55 kDa protease with the best activity detected at pH 7.0 and at 27°C. A. antarcticus also showed a single extracellular protease, however its molecular mass was around 90kDa and its best activity was detected at pH 9.0 and at 37°C. The proteases from both isolates were inhibited by 1,10-phenanthroline and EDTA, two metalloprotease inhibitors. This is the first record of protease detection in both species, and our results may contribute to broaden the basic knowledge of proteases from the Antarctica environment and may help prospecting future biotechnological applications of these enzymes. PMID:25806979

  20. Protease nexin-1 regulates retinal vascular development.

    PubMed

    Selbonne, Sonia; Francois, Deborah; Raoul, William; Boulaftali, Yacine; Sennlaub, Florian; Jandrot-Perrus, Martine; Bouton, Marie-Christine; Arocas, Véronique

    2015-10-01

    We recently identified protease nexin-1 (PN-1) or serpinE2, as a possibly underestimated player in maintaining angiogenic balance. Here, we used the well-characterized postnatal vascular development of newborn mouse retina to further investigate the role and the mechanism of action of PN-1 in physiological angiogenesis. The development of retinal vasculature was analysed by endothelial cell staining with isolectin B4. PN-1-deficient (PN-1(-/-)) retina displayed increased vascularization in the postnatal period, with elevated capillary thickness and density, compared to their wild-type littermate (WT). Moreover, PN-1(-/-) retina presented more veins/arteries than WT retina. The kinetics of retinal vasculature development, retinal VEGF expression and overall retinal structure were similar in WT and PN-1(-/-) mice, but we observed a hyperproliferation of vascular cells in PN-1(-/-) retina. Expression of PN-1 was analysed by immunoblotting and X-Gal staining of retinas from mice expressing beta-galactosidase under a PN-1 promoter. PN-1 was highly expressed in the first week following birth and then progressively decreased to a low level in adult retina where it localized on the retinal arteries. PCR arrays performed on mouse retinal RNA identified two angiogenesis-related factors, midkine and Smad5, that were overexpressed in PN-1(-/-) newborn mice and this was confirmed by RT-PCR. Both the higher vascularization and the overexpression of midkine and Smad5 mRNA were also observed in gastrocnemius muscle of PN-1(-/-) mice, suggesting that PN-1 interferes with these pathways. Together, our results demonstrate that PN-1 strongly limits physiological angiogenesis and suggest that modulation of PN-1 expression could represent a new way to regulate angiogenesis. PMID:26109427

  1. Extracellular proteases of Trichoderma species. A review.

    PubMed

    Kredics, L; Antal, Zsuzsanna; Szekeres, A; Hatvani, L; Manczinger, L; Vágvölgyi, Cs; Nagy, Erzsébet

    2005-01-01

    Cellulolytic, xylanolytic, chitinolytic and beta-1,3-glucanolytic enzyme systems of species belonging to the filamentous fungal genus Trichoderma have been investigated in details and are well characterised. The ability of Trichoderma strains to produce extracellular proteases has also been known for a long time, however, the proteolytic enzyme system is relatively unknown in this genus. Fortunately, in the recent years more and more attention is focused on the research in this field. The role of Trichoderma proteases in the biological control of plant pathogenic fungi and nematodes has been demonstrated, and it is also suspected that they may be important for the competitive saprophytic ability of green mould isolates and may represent potential virulence factors of Trichoderma strains as emerging fungal pathogens of clinical importance. The aim of this review is to summarize the information available about the extracellular proteases of Trichoderma. Numerous studies are available about the extracellular proteolytic enzyme profiles of Trichoderma strains and about the effect of abiotic environmental factors on protease activities. A number of protease enzymes have been purified to homogeneity and some protease encoding genes have been cloned and characterized. These results will be reviewed and the role of Trichoderma proteases in biological control as well as their advantages and disadvantages in biotechnology will be discussed. PMID:16003937

  2. A biotechnology perspective of fungal proteases

    PubMed Central

    de Souza, Paula Monteiro; Bittencourt, Mona Lisa de Assis; Caprara, Carolina Canielles; de Freitas, Marcela; de Almeida, Renata Paula Coppini; Silveira, Dâmaris; Fonseca, Yris Maria; Ferreira, Edivaldo Ximenes; Pessoa, Adalberto; Magalhães, Pérola Oliveira

    2015-01-01

    Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications. PMID:26273247

  3. A biotechnology perspective of fungal proteases.

    PubMed

    de Souza, Paula Monteiro; Bittencourt, Mona Lisa de Assis; Caprara, Carolina Canielles; de Freitas, Marcela; de Almeida, Renata Paula Coppini; Silveira, Dâmaris; Fonseca, Yris Maria; Ferreira Filho, Edivaldo Ximenes; Pessoa Junior, Adalberto; Magalhães, Pérola Oliveira

    2015-06-01

    Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications. PMID:26273247

  4. Regulation of protease production in Clostridium sporogenes.

    PubMed Central

    Allison, C; Macfarlane, G T

    1990-01-01

    The physiological and nutritional factors that regulate protease synthesis in Clostridium sporogenes C25 were studied in batch and continuous cultures. Formation of extracellular proteases occurred at the end of active growth and during the stationary phase in batch cultures. Protease production was inversely related to growth rate in glucose-excess and glucose-limited chemostats over the range D = 0.05 to 0.70 h-1. In pulse experiments, glucose, ammonia, phosphate, and some amino acids (tryptophan, proline, tyrosine, and isoleucine) strongly repressed protease synthesis. This repression was not relieved by addition of 4 mM cyclic AMP, cyclic GMP, or dibutyryl cyclic AMP. Protease formation was markedly inhibited by 4 mM ATP and ADP, but GTP and GDP had little effect on the process. It is concluded that protease production by C. sporogenes is strongly influenced by the amount of energy available to the cells, with the highest levels of protease synthesis occurring under energy-limiting conditions. PMID:2268158

  5. Map display design

    NASA Technical Reports Server (NTRS)

    Aretz, Anthony J.

    1990-01-01

    This paper presents a cognitive model of a pilot's navigation task and describes an experiment comparing a visual momentum map display to the traditional track-up and north-up approaches. The data show the advantage to a track-up map is its congruence with the ego-centered forward view; however, the development of survey knowledge is hindered by the inconsistency of the rotating display. The stable alignment of a north-up map aids the acquisition of survey knowledge, but there is a cost associated with the mental rotation of the display to a track-up alignment for ego-centered tasks. The results also show that visual momentum can be used to reduce the mental rotation costs of a north-up display.

  6. Stainless steel display evaluation

    NASA Astrophysics Data System (ADS)

    Hopper, Darrel G.; Meyer, Frederick M.; Longo, Sam J.; Trissell, Terry L.

    2007-04-01

    Active matrix organic light emitting diode (AMOLED) technology is one candidate to become a low power alternative in some applications to the currently dominant, active matrix liquid crystal display (AMLCD), technology. Furthermore, fabrication of the AMOLED on stainless steel (SS) foil rather than the traditional glass substrate, while presenting a set of severe technical challenges, opens up the potential for displays that are both lighter and less breakable. Also, transition to an SS foil substrate may enable rollable displays - large when used but small for stowage within gear already worn or carried or installed. Research has been initiated on AMOLED/SS technology and the first 320 x 240 color pixel 4-in. demonstration device has been evaluated in the AFRL Display Test and Evaluation Laboratory. Results of this evaluation are reported along with a research roadmap.

  7. Military display performance parameters

    NASA Astrophysics Data System (ADS)

    Desjardins, Daniel D.; Meyer, Frederick

    2012-06-01

    The military display market is analyzed in terms of four of its segments: avionics, vetronics, dismounted soldier, and command and control. Requirements are summarized for a number of technology-driving parameters, to include luminance, night vision imaging system compatibility, gray levels, resolution, dimming range, viewing angle, video capability, altitude, temperature, shock and vibration, etc., for direct-view and virtual-view displays in cockpits and crew stations. Technical specifications are discussed for selected programs.

  8. Raster graphics display library

    NASA Technical Reports Server (NTRS)

    Grimsrud, Anders; Stephenson, Michael B.

    1987-01-01

    The Raster Graphics Display Library (RGDL) is a high level subroutine package that give the advanced raster graphics display capabilities needed. The RGDL uses FORTRAN source code routines to build subroutines modular enough to use as stand-alone routines in a black box type of environment. Six examples are presented which will teach the use of RGDL in the fastest, most complete way possible. Routines within the display library that are used to produce raster graphics are presented in alphabetical order, each on a separate page. Each user-callable routine is described by function and calling parameters. All common blocks that are used in the display library are listed and the use of each variable within each common block is discussed. A reference on the include files that are necessary to compile the display library is contained. Each include file and its purpose are listed. The link map for MOVIE.BYU version 6, a general purpose computer graphics display system that uses RGDL software, is also contained.

  9. Affinity-Tagged Miniprion Derivatives Spontaneously Adopt Protease-Resistant Conformations

    PubMed Central

    Supattapone, Surachai; Nguyen, Hoang-Oanh B.; Muramoto, Tamaki; Cohen, Fred E.; DeArmond, Stephen J.; Prusiner, Stanley B.; Scott, Michael

    2000-01-01

    An abridged PrP molecule of 106 amino acids designated PrP106 can form infectious miniprions in transgenic (Tg) mice (29). Addition of six-histidine (His6) affinity tags to selective sites within PrP106 resulted unexpectedly in new PrP proteins that spontaneously adopted protease-resistant conformations when expressed in neuroblastoma cells and Tg mice. Acquisition of protease resistance depended on the length, charge, and placement of the affinity tag. Introduction of the disease-linked mutation E200K into the sequence of PrP106(140/6His) increased the recovery of protease-resistant PrP fivefold, whereas introduction of the mutations C213A and Δ214–220 did not affect the recovery of protease-resistant PrP. Treatment of cultured cells expressing affinity-tagged PrP106 mutants with polypropyleneimine dendrimer rendered these proteins sensitive to protease digestion in a manner similar to wild-type PrPSc. We conclude that certain affinity-tagged PrP106 proteins spontaneously fold into conformations partially resembling, yet distinct from, wild-type PrPSc. These proteins might be useful tools in the identification of new disease-causing mutations as well as for screening compounds for therapeutic efficacy. PMID:11090193

  10. Quantitative Correlation of Conformational Binding Enthalpy with Substrate Specificity of Serine Proteases

    PubMed Central

    2015-01-01

    Members of the same protease family show different substrate specificity, even if they share identical folds, depending on the physiological processes they are part of. Here, we investigate the key factors for subpocket and global specificity of factor Xa, elastase, and granzyme B which despite all being serine proteases and sharing the chymotrypsin-fold show distinct substrate specificity profiles. We determined subpocket interaction potentials with GRID for static X-ray structures and an in silico generated ensemble of conformations. Subpocket interaction potentials determined for static X-ray structures turned out to be insufficient to explain serine protease specificity for all subpockets. Therefore, we generated conformational ensembles using molecular dynamics simulations. We identified representative binding site conformations using distance-based hierarchical agglomerative clustering and determined subpocket interaction potentials for each representative conformation of the binding site. Considering the differences in subpocket interaction potentials for these representative conformations as well as their abundance allowed us to quantitatively explain subpocket specificity for the nonprime side for all three example proteases on a molecular level. The methods to identify key regions determining subpocket specificity introduced in this study are directly applicable to other serine proteases, and the results provide starting points for new strategies in rational drug design. PMID:26709959

  11. HIV-1 Protease: Structure, Dynamics and Inhibition

    SciTech Connect

    Louis, John M.; Ishima, R.; Torchia, D.A.; Weber, Irene T.

    2008-06-03

    The HIV-1 protease is synthesized as part of a large Gag-Pol precursor protein. It is responsible for its own release from the precursor and the processing of the Gag and Gag-Pol polyproteins into the mature structural and functional proteins required for virus maturation. Because of its indispensable role, the mature HIV-1 protease dimer has proven to be a successful target for the development of antiviral agents. In the last 5 years, a major emphasis in protease research has been to improve inhibitor design and treatment regimens.

  12. Differential Signaling by Protease-Activated Receptors: Implications for Therapeutic Targeting

    PubMed Central

    Sidhu, Tejminder S.; French, Shauna L.; Hamilton, Justin R.

    2014-01-01

    Protease-activated receptors (PARs) are a family of four G protein-coupled receptors that exhibit increasingly appreciated differences in signaling and regulation both within and between the receptor class. By nature of their proteolytic self-activation mechanism, PARs have unique processes of receptor activation, “ligand” binding, and desensitization/resensitization. These distinctive aspects have presented both challenges and opportunities in the targeting of PARs for therapeutic benefit—the most notable example of which is inhibition of PAR1 on platelets for the prevention of arterial thrombosis. However, more recent studies have uncovered further distinguishing features of PAR-mediated signaling, revealing mechanisms by which identical proteases elicit distinct effects in the same cell, as well as how distinct proteases produce different cellular consequences via the same receptor. Here we review this differential signaling by PARs, highlight how important distinctions between PAR1 and PAR4 are impacting on the progress of a new class of anti-thrombotic drugs, and discuss how these more recent insights into PAR signaling may present further opportunities for manipulating PAR activation and signaling in the development of novel therapies. PMID:24733067

  13. Roles of FtsH protease in choloroplast biogensis and protection of photosystems from high temperatures stress in higher plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AtFtsH11 protease gene is essential for Arabidopsis plant to survive at moderate heat stress. Under high and normal light at 21ºC, ftsh11 mutants were indistinguishable from wild type plants in photosynthesis capability and in overall growth. However, mutant plants display a host of dramatic change...

  14. Cleavage of fibrinogen by the human neutrophil neutral peptide-generating protease.

    PubMed Central

    Wintroub, B U; Coblyn, J S; Kaempfer, C E; Austen, K F

    1980-01-01

    The human neutrophil peptide-generating protease, which generates a low molecular weight vasoactive peptide from a plasma protein substrate, is directly fibrinolytic and cleaves human fibrinogen in a manner distinct from plasmin. Fibrinogen was reduced from 340,000 Mr to derivatives of 270,000-325,000 Mr during interaction with the protease at enzyme-to-substrate ratios of 0.3 or 1.0 microgram/1.0 mg. The 310,000-325,000 Mr cleavage fragments exhibited prolonged thrombin-induced clotting activity but were able to be coagulated, whereas the 270,000-290,000 Mr fragments were not able to be coagulated. Anticoagulants were not generated at either enzyme dose. As analyzed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis in 4-30% gradient gels and 10% gels stained for protein and carbohydrate, the diminution to 310,000-325,000 Mr and the prolongation of thrombin-induced clotting time resulted from cleavage of the fibrinogen A alpha chain. The further decrease in size to 270,000-290,000 Mr was associated with B beta-chain and gamma-chain cleavage and an inability to form gamma-gamma dimers. The neutral peptide-generating protease, a distinct human neutrophil neutral protease with fibrinolytic and fibrinogenolytic activities comparable to those of plasmin on a weight basis, cleaves fibrinogen in a manner that is distinct from the action of plasmin, leukocyte elastase, and leukocyte granule extracts. It may be that the concerted action of this neutrophil protease to generate a vasoactive peptide and to digest fibrinogen and fibrin facilitates neutrophil movement through vascular and extravascular sites. Images PMID:7001479

  15. Lung protease/anti-protease network and modulation of mucus production and surfactant activity.

    PubMed

    Garcia-Verdugo, Ignacio; Descamps, Delphyne; Chignard, Michel; Touqui, Lhousseine; Sallenave, Jean-Michel

    2010-11-01

    Lung epithelium guarantees gas-exchange (performed in the alveoli) and protects from external insults (pathogens, pollutants…) present within inhaled air. Both functions are facilitated by secretions lining airway surface liquid, mucus (in the upper airways) and pulmonary surfactant (in the alveoli). Mucins, the main glycoproteins present within the mucus, are responsible for its rheologic properties and participate in lung defense mechanisms. In parallel, lung collectins are pattern recognition molecules present in pulmonary surfactant that also modulate lung defense. During chronic airways diseases, excessive protease activity can promote mucus hypersecretion and degradation of lung collectins and therefore contribute to the pathophysiology of these diseases. Importantly, secretion of local and systemic anti-proteases might be crucial to equilibrate the protease/anti-protease unbalance and therefore preserve the function of lung host defense compounds and airway surface liquid homeostasis. In this review we will present information relative to proteases able to modulate mucin production and lung collectin integrity, two important compounds of innate immune defense. One strategy to preserve physiological mucus production and collectin integrity during chronic airways diseases might be the over-expression of local 'alarm' anti-proteases such as SLPI and elafin. Interestingly, a cross-talk between lung collectins and anti-protease activity has recently been described, implicating the presence within the lung of a complex network between proteases, anti-proteases and pattern recognition molecules, which aims to keep or restore homeostasis in resting or inflamed lungs. PMID:20493919

  16. Single layer multi-color luminescent display

    NASA Technical Reports Server (NTRS)

    Robertson, James B. (Inventor)

    1991-01-01

    The invention is a multi-color luminescent display comprising an insulator substrate and a single layer of host material which may be a phosphor deposited thereon that hosts one or more differential impurities, therein forming a pattern of selected and distinctly colored phosphors such as blue, green, and red phosphors in a single layer of host material. Transparent electrical conductor means may be provided for subjecting selected portions of the pattern of colored phosphors to an electric field thereby forming a multi-color, single layer electroluminescent display.

  17. Phage and Yeast Display.

    PubMed

    Sheehan, Jared; Marasco, Wayne A

    2015-02-01

    Despite the availability of antimicrobial drugs, the continued development of microbial resistance--established through escape mutations and the emergence of resistant strains--limits their clinical utility. The discovery of novel, therapeutic, monoclonal antibodies (mAbs) offers viable clinical alternatives in the treatment and prophylaxis of infectious diseases. Human mAb-based therapies are typically nontoxic in patients and demonstrate high specificity for the intended microbial target. This specificity prevents negative impacts on the patient microbiome and avoids driving the resistance of nontarget species. The in vitro selection of human antibody fragment libraries displayed on phage or yeast surfaces represents a group of well-established technologies capable of generating human mAbs. The advantage of these forms of microbial display is the large repertoire of human antibody fragments present during a single selection campaign. Furthermore, the in vitro selection environments of microbial surface display allow for the rapid isolation of antibodies--and their encoding genes--against infectious pathogens and their toxins that are impractical within in vivo systems, such as murine hybridomas. This article focuses on the technologies of phage display and yeast display, as these strategies relate to the discovery of human mAbs for the treatment and vaccine development of infectious diseases. PMID:26104550

  18. Synthesis of amino heterocycle aspartyl protease inhibitors.

    PubMed

    Chambers, Rachel K; Khan, Tanweer A; Olsen, David B; Sleebs, Brad E

    2016-06-14

    Aspartyl proteases are important pharmacological targets. Historically aspartyl proteases have been commonly targeted with transition state derived peptidomimetics. The strategy to develop aspartyl protease inhibitors has undertaken a dramatic paradigm shift in the last 10 years. The pharmaceutical industry in 2005 disclosed several scaffolds or "head groups" that prompted the field to move beyond peptidomimetic derived inhibitors. Since the discovery of the first amino heterocycle aspartyl protease inhibitor, the amino hydantoin, industry and academia have positioned themselves for a foothold on the new molecular space, designing a variety of related "head groups". Both the design and synthetic efforts involved in constructing these scaffolds are varied and complex. Here we highlight the synthetic strategies used to access these amino heterocycle scaffolds. PMID:27143279

  19. 33 CFR 173.27 - Numbers: Display; size; color.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Numbers: Display; size; color...: Display; size; color. (a) Each number required by § 173.15 must: (1) Be painted on or permanently attached...; (3) Contrast with the color of the background and be distinctly visible and legible; (4) Have...

  20. 33 CFR 173.27 - Numbers: Display; size; color.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Numbers: Display; size; color...: Display; size; color. (a) Each number required by § 173.15 must: (1) Be painted on or permanently attached...; (3) Contrast with the color of the background and be distinctly visible and legible; (4) Have...

  1. 33 CFR 173.27 - Numbers: Display; size; color.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Numbers: Display; size; color...: Display; size; color. (a) Each number required by § 173.15 must: (1) Be painted on or permanently attached...; (3) Contrast with the color of the background and be distinctly visible and legible; (4) Have...

  2. 33 CFR 173.27 - Numbers: Display; size; color.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Numbers: Display; size; color...: Display; size; color. (a) Each number required by § 173.15 must: (1) Be painted on or permanently attached...; (3) Contrast with the color of the background and be distinctly visible and legible; (4) Have...

  3. 33 CFR 173.27 - Numbers: Display; size; color.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Numbers: Display; size; color...: Display; size; color. (a) Each number required by § 173.15 must: (1) Be painted on or permanently attached...; (3) Contrast with the color of the background and be distinctly visible and legible; (4) Have...

  4. EKG and ultrasonoscope display

    NASA Technical Reports Server (NTRS)

    Lee, Robert D. (Inventor)

    1979-01-01

    A system is disclosed which permits simultaneous display of an EKG waveform in real time in conjunction with a two-dimensional cross-sectional image of the heart, so that the EKG waveform can be directly compared with dimensional changes in the heart. The apparatus of the invention includes an ultrasonoscope for producing a C-scan cross-sectional image of the heart. An EKG monitor circuit along with EKG logic circuitry is combined with the ultrasonoscope circuitry to produce on the same oscilloscope screen a continuous vertical trace showing the EKG waveform simultaneously with the heart image. The logic circuitry controls the oscilloscope display such that the display of both heart and EKG waveforms occurs on a real time basis.

  5. A new fusion protein platform for quantitatively measuring activity of multiple proteases

    PubMed Central

    2014-01-01

    Background Recombinant proteins fused with specific cleavage sequences are widely used as substrate for quantitatively analyzing the activity of proteases. Here we propose a new fusion platform for multiple proteases, by using diaminopropionate ammonia-lyase (DAL) as the fusion protein. It was based on the finding that a fused His6-tag could significantly decreases the activities of DAL from E. coli (eDAL) and Salmonella typhimurium (sDAL). Previously, we have shown that His6GST-tagged eDAL could be used to determine the activity of tobacco etch virus protease (TEVp) under different temperatures or in the denaturant at different concentrations. In this report, we will assay different tags and cleavage sequences on DAL for expressing yield in E. coli, stability of the fused proteins and performance of substrate of other common proteases. Results We tested seven different protease cleavage sequences (rhinovirus 3C, TEV protease, factor Xa, Ssp DnaB intein, Sce VMA1 intein, thrombin and enterokinase), three different tags (His6, GST, CBD and MBP) and two different DALs (eDAL and sDAL), for their performance as substrate to the seven corresponding proteases. Among them, we found four active DAL-fusion substrates suitable for TEVp, factor Xa, thrombin and DnaB intein. Enterokinase cleaved eDAL at undesired positions and did not process sDAL. Substitution of GST with MBP increase the expression level of the fused eDAL and this fusion protein was suitable as a substrate for analyzing activity of rhinovirus 3C. We demonstrated that SUMO protease Ulp1 with a N-terminal His6-tag or MBP tag displayed different activity using the designed His6SUMO-eDAL as substrate. Finally, owing to the high level of the DAL-fusion protein in E. coli, these protein substrates can also be detected directly from the crude extract. Conclusion The results show that our designed DAL-fusion proteins can be used to quantify the activities of both sequence- and conformational-specific proteases, with

  6. Mutagenesis of the NS3 Protease of Dengue Virus Type 2

    PubMed Central

    Valle, Rosaura P. C.; Falgout, Barry

    1998-01-01

    The flavivirus protease is composed of two viral proteins, NS2B and NS3. The amino-terminal portion of NS3 contains sequence and structural motifs characteristic of bacterial and cellular trypsin-like proteases. We have undertaken a mutational analysis of the region of NS3 which contains the catalytic serine, five putative substrate binding residues, and several residues that are highly conserved among flavivirus proteases and among all serine proteases. In all, 46 single-amino-acid substitutions were created in a cloned NS2B-NS3 cDNA fragment of dengue virus type 2, and the effect of each mutation on the extent of self-cleavage of the NS2B-NS3 precursor at the NS2B-NS3 junction was assayed in vivo. Twelve mutations almost completely or completely inhibited protease activity, 9 significantly reduced it, 14 decreased cleavage, and 11 yielded wild-type levels of activity. Substitution of alanine at ultraconserved residues abolished NS3 protease activity. Cleavage was also inhibited by substituting some residues that are conserved among flavivirus NS3 proteins. Two (Y150 and G153) of the five putative substrate binding residues could not be replaced by alanine, and only Y150 and N152 could be replaced by a conservative change. The two other putative substrate binding residues, D129 and F130, were more freely substitutable. By analogy with the trypsin model, it was proposed that D129 is located at the bottom of the substrate binding pocket so as to directly interact with the basic amino acid at the substrate cleavage site. Interestingly, we found that significant cleavage activity was displayed by mutants in which D129 was replaced by E, S, or A and that low but detectable protease activity was exhibited by mutants in which D129 was replaced by K, R, or L. Contrary to the proposed model, these results indicate that D129 is not a major determinant of substrate binding and that its interaction with the substrate, if it occurs at all, is not essential. This mutagenesis

  7. A radiometric assay for HIV-1 protease

    SciTech Connect

    Hyland, L.J.; Dayton, B.D.; Moore, M.L.; Shu, A.Y.; Heys, J.R.; Meek, T.D. )

    1990-08-01

    A rapid, high-throughput radiometric assay for HIV-1 protease has been developed using ion-exchange chromatography performed in 96-well filtration plates. The assay monitors the activity of the HIV-1 protease on the radiolabeled form of a heptapeptide substrate, (tyrosyl-3,5-3H)Ac-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2, which is based on the p17-p24 cleavage site found in the viral polyprotein substrate Pr55gag. Specific cleavage of this uncharged heptapeptide substrate by HIV-1 protease releases the anionic product (tyrosyl-3,5-3H)Ac-Ser-Gln-Asn-Tyr, which is retained upon minicolumns of the anion-exchange resin AG1-X8. Protease activity is determined from the recovery of this radiolabeled product following elution with formic acid. This facile and highly sensitive assay may be utilized for steady-state kinetic analysis of the protease, for measurements of enzyme activity during its purification, and as a routine assay for the evaluation of protease inhibitors from natural product or synthetic sources.

  8. Protease activation in glycerol-based deep eutectic solvents.

    PubMed

    Zhao, Hua; Baker, Gary A; Holmes, Shaletha

    2011-11-01

    Deep eutectic solvents (DESs) consisting of mixtures of a choline salt (chloride or acetate form) and glycerol are prepared as easily accessible, biodegradable, and inexpensive alternatives to conventional aprotic cation-anion paired ionic liquids. These DES systems display excellent fluidity coupled with thermal stability to nearly 200 °C. In this work, the transesterification activities of cross-linked proteases (subtilisin and α-chymotrypsin), immobilized on chitosan, were individually examined in these novel DESs. In the 1:2 molar ratio mixture of choline chloride/glycerol containing 3% (v/v) water, cross-linked subtilisin exhibited an excellent activity (2.9 μmo l min(-1) g(-1)) in conjunction with a selectivity of 98% in the transesterification reaction of N-acetyl-L-phenylalanine ethyl ester with 1-propanol. These highly encouraging results advocate more extensive exploration of DESs in protease-mediated biotransformations of additional polar substrates and use of DESs in biocatalysis more generally. PMID:21909232

  9. Extracellular Protease Digestion to Evaluate Membrane Protein Cell Surface Localization

    PubMed Central

    Besingi, Richard N.; Clark, Patricia L.

    2016-01-01

    Membrane proteins play crucial roles in signaling and as anchors for cell surface display. Proper secretion of a membrane protein can be evaluated by its susceptibility to digestion by an extracellular protease, but this requires a crucial control to confirm membrane integrity during digestion. This protocol describes how to use this approach to determine how efficiently a protein is secreted to the outer surface of Gram-negative bacteria. Its success relies upon careful selection of an appropriate intracellular reporter protein that will remain undigested if the membrane barrier remains intact, but is rapidly digested when cells are lysed prior to evaluation. Reporter proteins that are resistant to proteases (e.g. maltose-binding protein) do not return accurate results; in contrast, proteins that are more readily digested (e.g. SurA) serve as more sensitive reporters of membrane integrity, yielding more accurate measurements of membrane protein localization. Similar considerations apply when evaluating membrane protein localization in other contexts, including eukaryotic cells and organelle membranes. Evaluating membrane protein localization using this approach requires only standard biochemistry laboratory equipment for cell lysis, gel electrophoresis and western blotting. After expression of the protein of interest, this procedure can be completed in 4 h. PMID:26584447

  10. Protease activation in glycerol-based deep eutectic solvents

    PubMed Central

    Zhao, Hua; Baker, Gary A.; Holmes, Shaletha

    2011-01-01

    Deep eutectic solvents (DESs) consisting of mixtures of a choline salt (chloride or acetate form) and glycerol are prepared as easily accessible, biodegradable, and inexpensive alternatives to conventional aprotic cation-anion paired ionic liquids. These DES systems display excellent fluidity coupled with thermal stability to nearly 200 °C. In this work, the transesterification activities of cross-linked proteases (subtilisin and α-chymotrypsin), immobilized on chitosan, were individually examined in these novel DESs. In the 1:2 molar ratio mixture of choline chloride/glycerol containing 3% (v/v) water, cross-linked subtilisin exhibited an excellent activity (2.9 μmo l min−1 g−1) in conjunction with a selectivity of 98% in the transesterification reaction of N-acetyl-L-phenylalanine ethyl ester with 1-propanol. These highly encouraging results advocate more extensive exploration of DESs in protease-mediated biotransformations of additional polar substrates and use of DESs in biocatalysis more generally. PMID:21909232

  11. Integrated display scanner

    DOEpatents

    Veligdan, James T.

    2004-12-21

    A display scanner includes an optical panel having a plurality of stacked optical waveguides. The waveguides define an inlet face at one end and a screen at an opposite end, with each waveguide having a core laminated between cladding. A projector projects a scan beam of light into the panel inlet face for transmission from the screen as a scan line to scan a barcode. A light sensor at the inlet face detects a return beam reflected from the barcode into the screen. A decoder decodes the return beam detected by the sensor for reading the barcode. In an exemplary embodiment, the optical panel also displays a visual image thereon.

  12. Thin display optical projector

    DOEpatents

    Veligdan, James T.

    1999-01-01

    An optical system (20) projects light into a planar optical display (10). The display includes laminated optical waveguides (12) defining an inlet face (14) at one end and an outlet screen (16) at an opposite end. A first mirror (26) collimates light from a light source (18) along a first axis, and distributes the light along a second axis. A second mirror (28) collimates the light from the first mirror along the second axis to illuminate the inlet face and produce an image on the screen.

  13. A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior.

    PubMed

    Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H; Muyldermans, Serge; Declerck, Paul J; Huang, Mingdong; Andreasen, Peter A; Ngo, Jacky Chi Ki

    2016-07-15

    A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30-40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors. PMID:27226628

  14. ADAM Proteases and Gastrointestinal Function.

    PubMed

    Jones, Jennifer C; Rustagi, Shelly; Dempsey, Peter J

    2016-01-01

    A disintegrin and metalloproteinases (ADAMs) are a family of cell surface proteases that regulate diverse cellular functions, including cell adhesion, migration, cellular signaling, and proteolysis. Proteolytically active ADAMs are responsible for ectodomain shedding of membrane-associated proteins. ADAMs rapidly modulate key cell signaling pathways in response to changes in the extracellular environment (e.g., inflammation) and play a central role in coordinating intercellular communication within the local microenvironment. ADAM10 and ADAM17 are the most studied members of the ADAM family in the gastrointestinal tract. ADAMs regulate many cellular processes associated with intestinal development, cell fate specification, and the maintenance of intestinal stem cell/progenitor populations. Several signaling pathway molecules that undergo ectodomain shedding by ADAMs [e.g., ligands and receptors from epidermal growth factor receptor (EGFR)/ErbB and tumor necrosis factor α (TNFα) receptor (TNFR) families] help drive and control intestinal inflammation and injury/repair responses. Dysregulation of these processes through aberrant ADAM expression or sustained ADAM activity is linked to chronic inflammation, inflammation-associated cancer, and tumorigenesis. PMID:26667078

  15. ADAM Proteases and Gastrointestinal Function

    PubMed Central

    Jones, Jennifer C.; Rustagi, Shelly; Dempsey, Peter J.

    2016-01-01

    A disintegrin and metalloproteinases (ADAMs) are a family of cell surface proteases that regulate diverse cellular functions, including cell adhesion, migration, cellular signaling, and proteolysis. Proteolytically active ADAMs are responsible for ectodomain shedding of membrane-associated proteins. ADAMs rapidly modulate key cell signaling pathways in response to changes in the extracellular environment (e.g., inflammation) and play a central role in coordinating intercellular communication within the local microenvironment. ADAM10 and ADAM17 are the most studied members of the ADAM family in the gastrointestinal tract. ADAMs regulate many cellular processes associated with intestinal development, cell fate specification, and the maintenance of intestinal stem cell/progenitor populations. Several signaling pathway molecules that undergo ectodomain shedding by ADAMs [e.g., ligands and receptors from epidermal growth factor receptor (EGFR)/ErbB and tumor necrosis factor α (TNFα) receptor (TNFR) families] help drive and control intestinal inflammation and injury/repair responses. Dysregulation of these processes through aberrant ADAM expression or sustained ADAM activity is linked to chronic inflammation, inflammation-associated cancer, and tumorigenesis. PMID:26667078

  16. Neutral serine proteases of neutrophils.

    PubMed

    Kettritz, Ralph

    2016-09-01

    Neutrophil serine proteases (NSPs) exercise tissue-degrading and microbial-killing effects. The spectrum of NSP-mediated functions grows continuously, not least because of methodological progress. Sensitive and specific FRET substrates were developed to study the proteolytic activity of each NSP member. Advanced biochemical methods are beginning to characterize common and specific NSP substrates. The resulting novel information indicates that NSPs contribute not only to genuine inflammatory neutrophil functions but also to autoimmunity, metabolic conditions, and cancer. Tight regulatory mechanisms control the proteolytic potential of NSPs. However, not all NSP functions depend on their enzymatic activity. Proteinase-3 (PR3) is somewhat unique among the NSPs for PR3 functions as an autoantigen. Patients with small-vessel vasculitis develop autoantibodies to PR3 that bind their target antigens on the neutrophil surface and trigger neutrophil activation. These activated cells subsequently contribute to vascular necrosis with life-threatening multiorgan failure. This article discusses various aspects of NSP biology and highlights translational aspects with strong clinical implications. PMID:27558338

  17. Synergistic Caseinolytic Activity and Differential Fibrinogenolytic Action of Multiple Proteases of Maclura spinosa (Roxb. ex Willd.) latex

    PubMed Central

    Venkatesh, B. K.; Achar, Raghu Ram; Sharanappa, P.; Priya, B. S.; Swamy, S. Nanjunda

    2015-01-01

    Background: Kollamalayaali tribes of South India use latex of Maclura spinosa for milk curdling. This action is implicated to proteases which exhibit strong pharmacological potential in retardation of blood flow and acceleration of wound healing. Objective: To validate the presence of a proteolytic enzyme(s) in Maclura spinosa latex (MSL), and to investigate their probable role in hemostasis. Materials and Methods: Processed latex was examined for proteolytic and hemostatic activity using casein and human fibrinogen as substrates, respectively. Caseinoltyic activity was compared with two standard proteases viz., trypsin I and trypsin II. Effect of various standard protease inhibitors viz., iodoacetic acid (IAA), phenylmethylsulfonyl fluoride (PMSF), ethylene glycol tetraacetic acid, and ethylenediaminetetraacetic acid on both caseinolytic and fibrinogenolytic activities were examined. Electrophoretogram of fibrinogenolytic assays were subjected to densitometric analysis. Results: Proteolytic action of MSL was found to be highly efficient over trypsin I and trypsin II in dose-dependent caseinolytic activity (P < 0.05; specific activity of 1,080 units/mg protein). The Aα and Bβ bands of human fibrinogen were readily cleaved by MSL (for 1 μg crude protein and 30 min of incubation time). Furthermore, MSL cleaved γ subunit in dose- and time-dependent manner. Quantitative correlation of these results was obtained by densitometric analysis. The caseinolytic activity of MSL was inhibited by IAA, PMSF. While, only PMSF inhibited fibrinogenolytic activity. Conclusions: MSL contains proteolytic enzymes belonging to two distinct superfamilies viz., serine protease and cysteine proteases. The fibrinogenolytic activity of MSL is restricted to serine proteases only. The study extrapolates the use of M. spinosa latex from milk curdling to hemostasis. SUMMARY Proteolytic enzymes present in latex of Maclura spinosa can be assigned to two different protease superfamilies viz

  18. The spectrum of low molecular weight alpha-amylase/protease inhibitor genes expressed in the US bread wheat Butte 86

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complement of genes encoding alpha-amylase/protease inhibitors expressed in Triticum aestivum cv. Butte 86 was characterized by transcript and proteomic analysis. Coding sequences for 18 distinct proteins were identified among a collection of expressed sequence tags (ESTs) from Butte 86 developi...

  19. Christmas Light Display

    NASA Astrophysics Data System (ADS)

    Ross, Arthur; Renfro, Timothy

    2012-03-01

    The Digital Electronics class at McMurry University created a Christmas light display that toggles the power of different strands of lights, according to what frequencies are played in a song, as an example of an analog to digital circuit. This was accomplished using a BA3830S IC six-band audio filter and six solid-state relays.

  20. A Plasma Display Terminal.

    ERIC Educational Resources Information Center

    Stifle, Jack

    A graphics terminal designed for use as a remote computer input/output terminal is described. Although the terminal is intended for use in teaching applications, it has several features which make it useful in many other computer terminal applications. These features include: a 10-inch square plasma display panel, permanent storage of information…

  1. Drivers license display system

    NASA Astrophysics Data System (ADS)

    Prokoski, Francine J.

    1997-01-01

    Carjackings are only one of a growing class of law enforcement problems associated with increasingly violent crimes and accidents involving automobiles plays weapons, drugs and alcohol. Police traffic stops have become increasingly dangerous, with an officer having no information about a vehicle's potentially armed driver until approaching him. There are 15 million alcoholics in the US and 90 percent of them have drivers licenses. Many of them continue driving even after their licenses have ben revoked or suspended. There are thousands of unlicensed truck drivers in the country, and also thousands who routinely exceed safe operating periods without rest; often using drugs in an attempt to stay alert. MIKOS has developed the Drivers License Display Systems to reduce these and other related risks. Although every state requires the continuous display of vehicle registration information on every vehicle using public roads, no state yet requires the display of driver license information. The technology exists to provide that feature as an add-on to current vehicles for nominal cost. An initial voluntary market is expected to include: municipal, rental, and high value vehicles which are most likely to be mis-appropriated. It is anticipated that state regulations will eventually require such systems in the future, beginning with commercial vehicles, and then extending to high risk drivers and eventually all vehicles. The MIKOS system offers a dual-display approach which can be deployed now, and which will utilize all existing state licenses without requiring standardization.

  2. Document Management on Display.

    ERIC Educational Resources Information Center

    Grimshaw, Anne

    1998-01-01

    Describes some of the products displayed at the United Kingdom's largest document management, imaging and workflow exhibition (Document 97, Birmingham, England, October 7-9, 1997). Includes recognition technologies; document delivery; scanning; document warehousing; document management and retrieval software; workflow systems; Internet software;…

  3. Refreshing Refreshable Braille Displays.

    PubMed

    Russomanno, Alexander; O'Modhrain, Sile; Gillespie, R Brent; Rodger, Matthew W M

    2015-01-01

    The increased access to books afforded to blind people via e-publishing has given them long-sought independence for both recreational and educational reading. In most cases, blind readers access materials using speech output. For some content such as highly technical texts, music, and graphics, speech is not an appropriate access modality as it does not promote deep understanding. Therefore blind braille readers often prefer electronic braille displays. But, these are prohibitively expensive. The search is on, therefore, for a low-cost refreshable display that would go beyond current technologies and deliver graphical content as well as text. And many solutions have been proposed, some of which reduce costs by restricting the number of characters that can be displayed, even down to a single braille cell. In this paper, we demonstrate that restricting tactile cues during braille reading leads to poorer performance in a letter recognition task. In particular, we show that lack of sliding contact between the fingertip and the braille reading surface results in more errors and that the number of errors increases as a function of presentation speed. These findings suggest that single cell displays which do not incorporate sliding contact are likely to be less effective for braille reading. PMID:25879973

  4. Creative Display & Environment.

    ERIC Educational Resources Information Center

    Jackson, Margaret

    This book builds a case for the importance of the learning environment as functional, inviting, and enabling for children. Chapter 1, "A pressing need: why display and environment for learning matter," introduces the book, discusses a strategy for staff development, suggests points to consider when surveying the school, and talks about involving…

  5. Digital holographic display

    NASA Astrophysics Data System (ADS)

    Lee, Cheok Peng; Chia, Yong Poo; Singh, Vijay Raj; Asundi, A.; Khoo, Xuan Jie; Tay, Kiat Long; Zhou, Junxiang

    2009-12-01

    This paper describes how a Digital Holographic Projector is designed and implemented to project two-dimension virtual images onto the volumetric display media. In this research, we focus on the method to create 3D models, diffractive algorithm and the display media. A 3D model is generated based on the 360° view with views at every 10° interval from a 3D perspective view software. The hologram interference fringes are re-producing from the Fraunhofer algorithm. In order to make more flexible and portable, a Compact Vision System is introduced to storage multiply interference fringes. At the same time, the fringes are sent out at 30 Hz frame by frame continually to the digital micro-mirror1. With the presence of Nd: YVO4 green laser and various optical components, the 3D 360° hologram images are dynamically reconstructed and projected onto the high speed rotating diffuser forming a 3D model at any viewing angle on the volumetric display media. Both volumetric display media, wet and dry methods are demonstrated to show their feasibility and convenience. Finally, the dry volumetric technique with vertical projection mounting is adopted and as the result shown that the speckle noise is significance reduced.

  6. Digital holographic display

    NASA Astrophysics Data System (ADS)

    Lee, Cheok Peng; Chia, Yong Poo; Singh, Vijay Raj; Asundi, A.; Khoo, Xuan Jie; Tay, Kiat Long; Zhou, Junxiang

    2010-03-01

    This paper describes how a Digital Holographic Projector is designed and implemented to project two-dimension virtual images onto the volumetric display media. In this research, we focus on the method to create 3D models, diffractive algorithm and the display media. A 3D model is generated based on the 360° view with views at every 10° interval from a 3D perspective view software. The hologram interference fringes are re-producing from the Fraunhofer algorithm. In order to make more flexible and portable, a Compact Vision System is introduced to storage multiply interference fringes. At the same time, the fringes are sent out at 30 Hz frame by frame continually to the digital micro-mirror1. With the presence of Nd: YVO4 green laser and various optical components, the 3D 360° hologram images are dynamically reconstructed and projected onto the high speed rotating diffuser forming a 3D model at any viewing angle on the volumetric display media. Both volumetric display media, wet and dry methods are demonstrated to show their feasibility and convenience. Finally, the dry volumetric technique with vertical projection mounting is adopted and as the result shown that the speckle noise is significance reduced.

  7. Carbohydrate protease conjugates: Stabilized proteases for peptide synthesis

    SciTech Connect

    Wartchow, C.A.; Wang, Peng; Bednarski, M.D.; Callstrom, M.R. |

    1995-12-31

    The synthesis of oligopeptides using stable carbohydrate protease conjugates (CPCs) was examined in acetonitrile solvent systems. CPC[{alpha}-chymotrypsin] was used for the preparation of peptides containing histidine, phenylalanine, tryptophan in the P{sub 1} position in 60-93% yield. The CPC[{alpha}-chymotrypsin]-catalyzed synthesis of octamer Z-Gly-Gly-Phe-Gly-Gly-Phe-Gly-Gly-OEt from Z-Gly-Gly-Phe-Gly-Gly-Phe-OMe was achieved in 71% yield demonstrating that synthesis peptides containing both hydrophylic and hydrophobic amino acids. The P{sub 2} specificity of papain for aromatic residues was utilized for the 2 + 3 coupling of Z-Tyr-Gly-OMe to H{sub 2}N-Gly-Phe-Leu-OH to generate the leucine enkephalin derivative in 79% yield. Although papain is nonspecific for the hydrolysis of N-benzyloxycarbonyl amino acid methyl esters in aqueous solution, the rates of synthesis for these derivitives with nucleophile leucine tert-butyl ester differed by nearly 2 orders of magnitude. CPC[thermolysin] was used to prepare the aspartame precursor Z-Asp-Phe-OMe in 90% yield. The increased stability of CPCs prepared from periodate-modified poly(2-methacryl- amido-2-deoxy-D-glucose), poly(2-methacrylamido-2-deoxy-D-galactose), and poly(5-methacryl-amido-5-deoxy-D-ribose), carbohydrate materials designed to increase the aldehyde concentration in aqueous solution, suggests that the stability of CPCs is directly related to the aldehyde concentration of the carbohydrate material. Periodate oxidation of poly(2-methacrylamido-2-deoxy-D-glucose) followed by covalent attachment to {alpha}-chymotrypsin gave a CPC with catalytic activity in potassium phosphate buffer at 90{degrees}C for 2 h. 1 fig., 1 tab., 40 refs.

  8. Mapping protease substrates using a biotinylated phage substrate library.

    SciTech Connect

    Scholle, M. D.; Kriplani, U.; Pabon, A.; Sishtla, K.; Glucksman, M. J.; Kay, B. K.; Biosciences Division; Chicago Medical School

    2005-05-05

    We describe a bacteriophage M13 substrate library encoding the AviTag (BirA substrate) and combinatorial heptamer peptides displayed at the N terminus of the mature form of capsid protein III. Phages are biotinylated efficiently (> or = 50%) when grown in E. coli cells coexpressing BirA, and such viral particles can be immobilized on a streptavidin-coated support and released by protease cleavage within the combinatorial peptide. We have used this library to map the specificity of human Factor Xa and a neuropeptidase, neurolysin (EC3.4.24.16). Validation by analysis of isolated peptide substrates has revealed that neurolysin recognizes the motif hydrophobic-X-Pro-Arg-hydrophobic, where Arg-hydrophobic is the scissile bond.

  9. Identification and characterization of a cathepsin L-like cysteine protease from Gnathostoma spinigerum.

    PubMed

    Kongkerd, Natthawan; Uparanukraw, Pichart; Morakote, Nimit; Sajid, Mohammed; McKerrow, James H

    2008-08-01

    Gnathostoma spinigerum is a causative agent of human gnathostomiasis, a common parasitic disease involving skin and visceral organs, especially the central nervous system. In this study, we identified a cDNA encoding a cathepsin L-like cysteine protease (GsCL1) from the lambdaZAP cDNA library of G. spinigerum advanced third-stage larva (aL3) and characterized the biochemical properties of the recombinant enzyme. The cloned cDNA of 1484bp encoded 398 amino acids which contained a typical signal peptide sequence (23 amino acids), a pro-domain (156 amino acids), and a mature domain (219 amino acids) with an approximate molecular weight of 24kDa. The deduced amino acid sequence of GsCL1 gene showed 53-64% identity to cathepsin L proteases of various organisms including a cathepsin L family member (cpl-1) of Caenorhabditis elegans. Recombinant proGsCL1 expressed in Pichia pastoris showed typical biochemical characteristics of cysteine proteases. The expressed enzyme displayed optimal protease activity toward Z-Phe-Arg-AMC substrate at pH 6.0 but not toward Z-Arg-Arg-AMC. The activity was sensitive to cysteine protease inhibitors E-64 and K11777. The preference for large hydrophilic and aromatic residues in the P2 position (I, L, F, W, U, V) was typical of cathepsin L proteases. Mouse anti-GST-proGsCL1 serum showed reactivity with 35-, 38- and 45-kDa proteins in the aL3 extracts. These proteins were shown to localize inside the intestinal cells of aL3. PMID:18554733

  10. Digital Holography Display (2)

    NASA Astrophysics Data System (ADS)

    Lee, Cheok Peng; Asundi, A.; Yu, Yang; Xiao, Zhen Zhong

    This paper describes the extension work from the last Digital Holography Projector System. From the developed works shows that, some unforeseen factors have created the difficulties for the system alignment. Such factors are the DMD frame rate, light source and diffractive zero order. It is really the challenging development works to achieve the virtual 3D model display on the high speed rotation screen. The three most key factors are emphasizing: 1) The display device's frame rate; 2) The light source orientation angle; and 3) The zero order filtering optic. 1) This device's is the digital micro mirror, in short is DMD. It is the high speed switching device has developed by the most recent technology. The switching frame rate can go up as high as 291fps. At first, the 8 bits depth file must be digitalized and stored for DMD onboard Ram. The digitalized data are transmitting from the PC USB to DMD onboard Ram. Instead of the data are downloading directly from the PC to DVI or VGA during display, this downloading method cause slower down the display speed, which is the common frame rate of 30 Hz. Next, the onboard Ram data then transfer to the DMD mirror's for display, at the 8 bits 291 fps speed. At this frame rate, the display 2D image can almost cover for 10 of out of the 360 0 in 1 revolution. 2) This laser light source must be installed such that free for orientated in any arbitrary angle from 220 to 450. Which is normalized to the DMD mirrors and the brief sketch show on figure (a). The purpose of orientated the light source is ensure that multi diffractive order would be reflected straight from the mirrors. (This multi diffractive order is the phenomenon of the digital micro mirror's characteristic). This mean, the reconstruct images would be followed the DMD normalized direction reflected up to fibre conduit. Moreover, this orientated method install of the laser light source is making space for other optical lenses or device driver/controller. Because, all

  11. Localization of the Clostridium difficile Cysteine Protease Cwp84 and Insights into Its Maturation Process▿

    PubMed Central

    ChapetónMontes, Diana; Candela, Thomas; Collignon, Anne; Janoir, Claire

    2011-01-01

    Clostridium difficile is a nosocomial pathogen involved in antibiotic-associated diarrhea. C. difficile expresses a cysteine protease, Cwp84, which has been shown to degrade some proteins of the extracellular matrix and play a role in the maturation of the precursor of the S-layer proteins. We sought to analyze the localization and the maturation process of this protease. Two identifiable forms of the protease were found to be associated in the bacteria: a form of ∼80 kDa and a cleaved one of 47 kDa, identified as the mature protease. They were found mainly in the bacterial cell surface fractions and weakly in the extracellular fraction. The 80-kDa protein was noncovalently associated with the S-layer proteins, while the 47-kDa form was found to be tightly associated with the underlying cell wall. Our data supported that the anchoring of the Cwp84 47-kDa form is presumably due to a reassociation of the secreted protein. Moreover, we showed that the complete maturation of the recombinant protein Cwp8430-803 is a sequential process beginning at the C-terminal end, followed by one or more cleavages at the N-terminal end. The processing sites of recombinant Cwp84 are likely to be residues Ser-92 and Lys-518. No proteolytic activity was detected with the mature recombinant protease Cwp8492-518 (47 kDa). In contrast, a fragment including the propeptide (Cwp8430-518) displayed proteolytic activity on azocasein and fibronectin. These results showed that Cwp84 is processed essentially at the bacterial cell surface and that its different forms may display different proteolytic activities. PMID:21784932

  12. Protease inhibitors targeting coronavirus and filovirus entry.

    PubMed

    Zhou, Yanchen; Vedantham, Punitha; Lu, Kai; Agudelo, Juliet; Carrion, Ricardo; Nunneley, Jerritt W; Barnard, Dale; Pöhlmann, Stefan; McKerrow, James H; Renslo, Adam R; Simmons, Graham

    2015-04-01

    In order to gain entry into cells, diverse viruses, including Ebola virus, SARS-coronavirus and the emerging MERS-coronavirus, depend on activation of their envelope glycoproteins by host cell proteases. The respective enzymes are thus excellent targets for antiviral intervention. In cell culture, activation of Ebola virus, as well as SARS- and MERS-coronavirus can be accomplished by the endosomal cysteine proteases, cathepsin L (CTSL) and cathepsin B (CTSB). In addition, SARS- and MERS-coronavirus can use serine proteases localized at the cell surface, for their activation. However, it is currently unclear which protease(s) facilitate viral spread in the infected host. We report here that the cysteine protease inhibitor K11777, ((2S)-N-[(1E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]-2-{[(E)-4-methylpiperazine-1-carbonyl]amino}-3-phenylpropanamide) and closely-related vinylsulfones act as broad-spectrum antivirals by targeting cathepsin-mediated cell entry. K11777 is already in advanced stages of development for a number of parasitic diseases, such as Chagas disease, and has proven to be safe and effective in a range of animal models. K11777 inhibition of SARS-CoV and Ebola virus entry was observed in the sub-nanomolar range. In order to assess whether cysteine or serine proteases promote viral spread in the host, we compared the antiviral activity of an optimized K11777-derivative with that of camostat, an inhibitor of TMPRSS2 and related serine proteases. Employing a pathogenic animal model of SARS-CoV infection, we demonstrated that viral spread and pathogenesis of SARS-CoV is driven by serine rather than cysteine proteases and can be effectively prevented by camostat. Camostat has been clinically used to treat chronic pancreatitis, and thus represents an exciting potential therapeutic for respiratory coronavirus infections. Our results indicate that camostat, or similar serine protease inhibitors, might be an effective option for treatment of SARS and

  13. Protease-activated receptors mediate crosstalk between coagulation and fibrinolysis.

    PubMed

    McEachron, Troy A; Pawlinski, Rafal; Richards, Kristy L; Church, Frank C; Mackman, Nigel

    2010-12-01

    The coagulation and fibrinolytic systems contribute to malignancy by increasing angiogenesis, tumor growth, tumor invasion, and tumor metastasis. Oncogenic transformation increases the expression of tissue factor (TF) that results in local generation of coagulation proteases and activation of protease-activated receptor (PAR)-1 and PAR-2. We compared the PAR-dependent expression of urokinase plasminogen activator (uPA) and plasminogen activator inhibitor (PAI)-1 in 2 murine mammary adencocarcinoma cell lines: metastatic 4T1 cells and nonmetastatic 67NR cells. 4T1 cells expressed TF, PAR-1 and PAR-2 whereas 67NR cells expressed TF and PAR-1. We also silenced PAR-1 or PAR-2 expression in the 4T1 cells. We discovered 2 distinct mechanisms for PAR-dependent expression of uPA and PAI-1. First, we found that factor Xa or thrombin activation of PAR-1 led to a rapid release of stored intracellular uPA into the culture supernatant. Second, thrombin transactivation of a PAR-1/PAR-2 complex resulted in increases in PAI-1 mRNA and protein expression. Cells lacking PAR-2 failed to express PAI-1 in response to thrombin and factor Xa did not activate the PAR-1/PAR-2 complex. Our results reveal how PAR-1 and PAR-2 on tumor cells mediate crosstalk between coagulation and fibrinolysis. PMID:20736455

  14. Protease-activated receptors mediate crosstalk between coagulation and fibrinolysis

    PubMed Central

    McEachron, Troy A.; Pawlinski, Rafal; Richards, Kristy L.; Church, Frank C.

    2010-01-01

    The coagulation and fibrinolytic systems contribute to malignancy by increasing angiogenesis, tumor growth, tumor invasion, and tumor metastasis. Oncogenic transformation increases the expression of tissue factor (TF) that results in local generation of coagulation proteases and activation of protease-activated receptor (PAR)-1 and PAR-2. We compared the PAR-dependent expression of urokinase plasminogen activator (uPA) and plasminogen activator inhibitor (PAI)-1 in 2 murine mammary adencocarcinoma cell lines: metastatic 4T1 cells and nonmetastatic 67NR cells. 4T1 cells expressed TF, PAR-1 and PAR-2 whereas 67NR cells expressed TF and PAR-1. We also silenced PAR-1 or PAR-2 expression in the 4T1 cells. We discovered 2 distinct mechanisms for PAR-dependent expression of uPA and PAI-1. First, we found that factor Xa or thrombin activation of PAR-1 led to a rapid release of stored intracellular uPA into the culture supernatant. Second, thrombin transactivation of a PAR-1/PAR-2 complex resulted in increases in PAI-1 mRNA and protein expression. Cells lacking PAR-2 failed to express PAI-1 in response to thrombin and factor Xa did not activate the PAR-1/PAR-2 complex. Our results reveal how PAR-1 and PAR-2 on tumor cells mediate crosstalk between coagulation and fibrinolysis. PMID:20736455

  15. ADAMTS: a novel family of extracellular matrix proteases.

    PubMed

    Tang, B L

    2001-01-01

    ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) is a novel family of extracellular proteases found in both mammals and invertebrates. Members of the family may be distinguished from the ADAM (a disintegrin and metalloprotease) family members based on the multiple copies of thrombospondin 1-like repeats they carry. With at least nine members in mammals alone, the ADAMTS family members are predicted by their structural domains to be extracellular matrix (ECM) proteins with a wide range of activities and functions distinct from members of the ADAM family that are largely anchored on the cell surface. ADAMTS2 is a procollagen N-proteinase, and the mutations of its gene are responsible for Human Ehlers-Danlos syndrome type VII C and bovine dermatosparaxis. ADAMTS4 and ADAMTS5 are aggrecanases implicated in the degradation of cartilage aggrecan in arthritic diseases. Other members of the ADAMTS family have also been implicated in roles during embryonic development and angiogenesis. Current and future studies on this emerging group of ECM proteases may provide important insights into developmental or pathological processes involving ECM remodeling. PMID:11167130

  16. Virtual acoustic displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.

    1991-01-01

    A 3D auditory display can potentially enhance information transfer by combining directional and iconic information in a quite naturalistic representation of dynamic objects in the interface. Another aspect of auditory spatial clues is that, in conjunction with other modalities, it can act as a potentiator of information in the display. For example, visual and auditory cues together can reinforce the information content of the display and provide a greater sense of presence or realism in a manner not readily achievable by either modality alone. This phenomenon will be particularly useful in telepresence applications, such as advanced teleconferencing environments, shared electronic workspaces, and monitoring telerobotic activities in remote or hazardous situations. Thus, the combination of direct spatial cues with good principles of iconic design could provide an extremely powerful and information-rich display which is also quite easy to use. An alternative approach, recently developed at ARC, generates externalized, 3D sound cues over headphones in realtime using digital signal processing. Here, the synthesis technique involves the digital generation of stimuli using Head-Related Transfer Functions (HRTF's) measured in the two ear-canals of individual subjects. Other similar approaches include an analog system developed by Loomis, et. al., (1990) and digital systems which make use of transforms derived from normative mannikins and simulations of room acoustics. Such an interface also requires the careful psychophysical evaluation of listener's ability to accurately localize the virtual or synthetic sound sources. From an applied standpoint, measurement of each potential listener's HRTF's may not be possible in practice. For experienced listeners, localization performance was only slightly degraded compared to a subject's inherent ability. Alternatively, even inexperienced listeners may be able to adapt to a particular set of HRTF's as long as they provide adequate

  17. A Novel Bioluminescent Protease Assay Using Engineered Firefly Luciferase

    PubMed Central

    Wigdal, Susan S; Anderson, Jessica L; Vidugiris, Gediminas J; Shultz, John; Wood, Keith V; Fan, Frank

    2008-01-01

    Proteases play important roles in a variety of disease processes. Understanding their biological functions underpins the efforts of drug discovery. We have developed a bioluminescent protease assay using a circularly permuted form of firefly luciferase, wherein the native enzyme termini were joined by a peptide containing a protease site of interest. Protease cleavage of these mutant luciferases greatly activates the enzyme, typically over 100 fold. The mutant luciferase substrates are easily generated by molecular cloning and cell-free translation reactions and thus the protease substrates do not need to be chemically synthesized or purchased. The assay has broad applicability using a variety of proteases and their cognate sites and can sensitively detect protease activity. In this report we further demonstrate its utility for the evaluation of protease recognition sequence specificity and subsequent establishment of an optimized assay for the identification and characterization of protease inhibitors using high throughput screening. PMID:20161840

  18. Calcium and SOL Protease Mediate Temperature Resetting of Circadian Clocks

    PubMed Central

    Tataroglu, Ozgur; Zhao, Xiaohu; Busza, Ania; Ling, Jinli; O’Neill, John S.; Emery, Patrick

    2015-01-01

    Summary Circadian clocks integrate light and temperature input to remain synchronized with the day/night cycle. Although light input to the clock is well studied, the molecular mechanisms by which circadian clocks respond to temperature remain poorly understood. We found that temperature phase shifts Drosophila circadian clocks through degradation of the pacemaker protein TIM. This degradation is mechanistically distinct from photic CRY-dependent TIM degradation. Thermal TIM degradation is triggered by cytosolic calcium increase and CALMODULIN binding to TIM and is mediated by the atypical calpain protease SOL. This thermal input pathway and CRY-dependent light input thus converge on TIM, providing a molecular mechanism for the integration of circadian light and temperature inputs. Mammals use body temperature cycles to keep peripheral clocks synchronized with their brain pacemaker. Interestingly, downregulating the mammalian SOL homolog SOLH blocks thermal mPER2 degradation and phase shifts. Thus, we propose that circadian thermosensation in insects and mammals share common principles. PMID:26590423

  19. Development of potent inhibitors of the coxsackievirus 3C protease

    SciTech Connect

    Lee, Eui Seung; Lee, Won Gil; Yun, Soo-Hyeon; Rho, Seong Hwan; Im, Isak; Yang, Sung Tae; Sellamuthu, Saravanan; Lee, Yong Jae; Kwon, Sun Jae; Park, Ohkmae K.; Jeon, Eun-Seok; Park, Woo Jin . E-mail: wjpark@gist.ac.kr; Kim, Yong-Chul . E-mail: yongchul@gist.ac.kr

    2007-06-22

    Coxsackievirus B3 (CVB3) 3C protease (3CP) plays essential roles in the viral replication cycle, and therefore, provides an attractive therapeutic target for treatment of human diseases caused by CVB3 infection. CVB3 3CP and human rhinovirus (HRV) 3CP have a high degree of amino acid sequence similarity. Comparative modeling of these two 3CPs revealed one prominent distinction; an Asn residue delineating the S2' pocket in HRV 3CP is replaced by a Tyr residue in CVB3 3CP. AG7088, a potent inhibitor of HRV 3CP, was modified by substitution of the ethyl group at the P2' position with various hydrophobic aromatic rings that are predicted to interact preferentially with the Tyr residue in the S2' pocket of CVB3 3CP. The resulting derivatives showed dramatically increased inhibitory activities against CVB3 3CP. In addition, one of the derivatives effectively inhibited the CVB3 proliferation in vitro.

  20. Identification of covalent active site inhibitors of dengue virus protease

    PubMed Central

    Koh-Stenta, Xiaoying; Joy, Joma; Wang, Si Fang; Kwek, Perlyn Zekui; Wee, John Liang Kuan; Wan, Kah Fei; Gayen, Shovanlal; Chen, Angela Shuyi; Kang, CongBao; Lee, May Ann; Poulsen, Anders; Vasudevan, Subhash G; Hill, Jeffrey; Nacro, Kassoum

    2015-01-01

    Dengue virus (DENV) protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described. PMID:26677315

  1. Enhancing Displays by Blurring

    NASA Technical Reports Server (NTRS)

    Tiana, C.; Pavel, M.; Ahumada, Albert J., Jr.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Some Enhanced Vision cockpit displays consist of synthetic imagery superimposed on a real image. The high spatial frequency components of the synthetic imagery can mislead an operator by masking features of the real image. We demonstrate that blurring the synthetic image prior to superposition reduces its masking effect in high- contrast regions of the real image, while maintaining its enhancing properties in regions of the real image where visibility is low.

  2. Text File Display Program

    NASA Technical Reports Server (NTRS)

    Vavrus, J. L.

    1986-01-01

    LOOK program permits user to examine text file in pseudorandom access manner. Program provides user with way of rapidly examining contents of ASCII text file. LOOK opens text file for input only and accesses it in blockwise fashion. Handles text formatting and displays text lines on screen. User moves forward or backward in file by any number of lines or blocks. Provides ability to "scroll" text at various speeds in forward or backward directions.

  3. Microgap flat panel display

    DOEpatents

    Wuest, C.R.

    1998-12-08

    A microgap flat panel display is disclosed which includes a thin gas-filled display tube that utilizes switched X-Y ``pixel`` strips to trigger electron avalanches and activate a phosphor at a given location on a display screen. The panel utilizes the principal of electron multiplication in a gas subjected to a high electric field to provide sufficient electron current to activate standard luminescent phosphors located on an anode. The X-Y conductive strips of a few micron widths may for example, be deposited on opposite sides of a thin insulating substrate, or on one side of the adjacent substrates and function as a cathode. The X-Y strips are separated from the anode by a gap filled with a suitable gas. Electrical bias is selectively switched onto X and Y strips to activate a ``pixel`` in the region where these strips overlap. A small amount of a long-lived radioisotope is used to initiate an electron avalanche in the overlap region when bias is applied. The avalanche travels through the gas filled gap and activates a luminescent phosphor of a selected color. The bias is adjusted to give a proportional electron multiplication to control brightness for given pixel. 6 figs.

  4. Microgap flat panel display

    DOEpatents

    Wuest, Craig R.

    1998-01-01

    A microgap flat panel display which includes a thin gas-filled display tube that utilizes switched X-Y "pixel" strips to trigger electron avalanches and activate a phosphor at a given location on a display screen. The panel utilizes the principal of electron multiplication in a gas subjected to a high electric field to provide sufficient electron current to activate standard luminescent phosphors located on an anode. The X-Y conductive strips of a few micron widths may for example, be deposited on opposite sides of a thin insulating substrate, or on one side of the adjacent substrates and function as a cathode. The X-Y strips are separated from the anode by a gap filled with a suitable gas. Electrical bias is selectively switched onto X and Y strips to activate a "pixel" in the region where these strips overlap. A small amount of a long-lived radioisotope is used to initiate an electron avalanche in the overlap region when bias is applied. The avalanche travels through the gas filled gap and activates a luminescent phosphor of a selected color. The bias is adjusted to give a proportional electron multiplication to control brightness for given pixel.

  5. Phage display of proteins.

    PubMed

    Kościelska, K; Kiczak, L; Kasztura, M; Wesołowska, O; Otlewski, J

    1998-01-01

    In recent years the phage display approach has become an increasingly popular method in protein research. This method enables the presentation of large peptide and protein libraries on the surface of phage particles from which molecules of desired functional property(ies) can be rapidly selected. The great advantage of this method is a direct linkage between an observed phenotype and encapsulated genotype, which allows fast determination of selected sequences. The phage display approach is a powerful tool in generating highly potent biomolecules, including: search for specific antibodies, determining enzyme specificity, exploring protein-protein and protein-DNA interactions, minimizing proteins, introducing new functions into different protein scaffolds, and searching sequence space of protein folding. In this article many examples are given to illustrate that this technique can be used in different fields of protein science. The phage display has a potential of the natural evolution and its possibilities are far beyond rational prediction. Assuming that we can design the selection agents and conditions we should be able to engineer any desired protein function or feature. PMID:9918498

  6. Engine monitoring display study

    NASA Technical Reports Server (NTRS)

    Hornsby, Mary E.

    1992-01-01

    The current study is part of a larger NASA effort to develop displays for an engine-monitoring system to enable the crew to monitor engine parameter trends more effectively. The objective was to evaluate the operational utility of adding three types of information to the basic Boeing Engine Indicating and Crew Alerting System (EICAS) display formats: alphanumeric alerting messages for engine parameters whose values exceed caution or warning limits; alphanumeric messages to monitor engine parameters that deviate from expected values; and a graphic depiction of the range of expected values for current conditions. Ten training and line pilots each flew 15 simulated flight scenarios with five variants of the basic EICAS format; these variants included different combinations of the added information. The pilots detected engine problems more quickly when engine alerting messages were included in the display; adding a graphic depiction of the range of expected values did not affect detection speed. The pilots rated both types of alphanumeric messages (alert and monitor parameter) as more useful and easier to interpret than the graphic depiction. Integrating engine parameter messages into the EICAS alerting system appears to be both useful and preferred.

  7. Attention-Seeking Displays.

    PubMed

    Számadó, Szabolcs

    2015-01-01

    Animal communication abounds with extravagant displays. These signals are usually interpreted as costly signals of quality. However, there is another important function for these signals: to call the attention of the receiver to the signaller. While there is abundant empirical evidence to show the importance of this stage, it is not yet incorporated into standard signalling theory. Here I investigate a general model of signalling - based on a basic action-response game - that incorporates this searching stage. I show that giving attention-seeking displays and searching for them can be an ESS. This is a very general result and holds regardless whether only the high quality signallers or both high and low types give them. These signals need not be costly at the equilibrium and they need not be honest signals of any quality, as their function is not to signal quality but simply to call the attention of the potential receivers. These kind of displays are probably more common than their current weight in the literature would suggest. PMID:26287489

  8. Attention-Seeking Displays

    PubMed Central

    Számadó, Szabolcs

    2015-01-01

    Animal communication abounds with extravagant displays. These signals are usually interpreted as costly signals of quality. However, there is another important function for these signals: to call the attention of the receiver to the signaller. While there is abundant empirical evidence to show the importance of this stage, it is not yet incorporated into standard signalling theory. Here I investigate a general model of signalling - based on a basic action-response game - that incorporates this searching stage. I show that giving attention-seeking displays and searching for them can be an ESS. This is a very general result and holds regardless whether only the high quality signallers or both high and low types give them. These signals need not be costly at the equilibrium and they need not be honest signals of any quality, as their function is not to signal quality but simply to call the attention of the potential receivers. These kind of displays are probably more common than their current weight in the literature would suggest. PMID:26287489

  9. Production of alkaline protease from Cellulosimicrobium cellulans

    PubMed Central

    Ferracini-Santos, Luciana; Sato, Hélia H

    2009-01-01

    Cellulosimicrobium cellulans is one of the microorganisms that produces a wide variety of yeast cell wall-degrading enzymes, β-1,3-glucanase, protease and chitinase. Dried cells of Saccharomyces cerevisiae were used as carbon and nitrogen source for cell growth and protease production. The medium components KH2PO4, KOH and dried yeast cells showed a significant effect (p<0.05) on the factorial fractional design. A second design was prepared using two factors: pH and percentage of dried yeast cells. The results showed that the culture medium for the maximum production of protease was 0.2 g/l of MgSO4.7H2O, 2.0 g/l of (NH4)2SO4 and 8% of dried yeast cells in 0.15M phosphate buffer at pH 8.0. The maximum alkaline protease production was 7.0 ± 0.27 U/ml over the center point. Crude protease showed best activity at 50ºC and pH 7.0-8.0, and was stable at 50ºC. PMID:24031317

  10. Ubiquitous Displays: A Distributed Network of Active Displays

    NASA Astrophysics Data System (ADS)

    Majumder, Aditi

    In this chapter we present our work-in-progress on developing a new display paradigm where displays are not mere carriers of information, but active members of the workspace interacting with data, user, environment and other displays. The goal is to integrate such active displays seamlessly with the environment making them ubiquitous to multiple users and data. Such ubiquitous display can be a critical component of the future collaborative workspace.