Science.gov

Sample records for protein kinases reveals

  1. The crystal structure of choline kinase reveals a eukaryotic protein kinase fold

    SciTech Connect

    Peisach, D.; Gee, P.; Kent, K.; Xu, Z.

    2010-03-08

    Choline kinase catalyzes the ATP-dependent phosphorylation of choline, the first committed step in the CDP-choline pathway for the biosynthesis of phosphatidylcholine. The 2.0 {angstrom} crystal structure of a choline kinase from C. elegans (CKA-2) reveals that the enzyme is a homodimeric protein with each monomer organized into a two-domain fold. The structure is remarkably similar to those of protein kinases and aminoglycoside phosphotransferases, despite no significant similarity in amino acid sequence. Comparisons to the structures of other kinases suggest that ATP binds to CKA-2 in a pocket formed by highly conserved and catalytically important residues. In addition, a choline binding site is proposed to be near the ATP binding pocket and formed by several structurally flexible loops.

  2. Protein-tyrosine phosphorylation interaction network in Bacillus subtilis reveals new substrates, kinase activators and kinase cross-talk

    PubMed Central

    Shi, Lei; Pigeonneau, Nathalie; Ventroux, Magali; Derouiche, Abderahmane; Bidnenko, Vladimir; Mijakovic, Ivan; Noirot-Gros, Marie-Françoise

    2014-01-01

    Signal transduction in eukaryotes is generally transmitted through phosphorylation cascades that involve a complex interplay of transmembrane receptors, protein kinases, phosphatases and their targets. Our previous work indicated that bacterial protein-tyrosine kinases and phosphatases may exhibit similar properties, since they act on many different substrates. To capture the complexity of this phosphorylation-based network, we performed a comprehensive interactome study focused on the protein-tyrosine kinases and phosphatases in the model bacterium Bacillus subtilis. The resulting network identified many potential new substrates of kinases and phosphatases, some of which were experimentally validated. Our study highlighted the role of tyrosine and serine/threonine kinases and phosphatases in DNA metabolism, transcriptional control and cell division. This interaction network reveals significant crosstalk among different classes of kinases. We found that tyrosine kinases can bind to several modulators, transmembrane or cytosolic, consistent with a branching of signaling pathways. Most particularly, we found that the division site regulator MinD can form a complex with the tyrosine kinase PtkA and modulate its activity in vitro. In vivo, it acts as a scaffold protein which anchors the kinase at the cell pole. This network highlighted a role of tyrosine phosphorylation in the spatial regulation of the Z-ring during cytokinesis. PMID:25374563

  3. Survey of activated kinase proteins reveals potential targets for cholangiocarcinoma treatment.

    PubMed

    Dokduang, Hasaya; Juntana, Sirinun; Techasen, Anchalee; Namwat, Nisana; Yongvanit, Puangrat; Khuntikeo, Narong; Riggins, Gregory J; Loilome, Watcharin

    2013-12-01

    Improving therapy for patients with cholangiocarcinoma (CCA) presents a significant challenge. This is made more difficult by a lack of a clear understanding of potential molecular targets, such as deregulated kinases. In this work, we profiled the activated kinases in CCA in order to apply them as the targets for CCA therapy. Human phospho-receptor tyrosine kinases (RTKs) and phospho-kinase array analyses revealed that multiple kinases are activated in both CCA cell lines and human CCA tissues that included cell growth, apoptosis, cell to cell interaction, movement, and angiogenesis RTKs. Predominately, the kinases activated downstream were those in the PI3K/Akt, Ras/MAPK, JAK/STAT, and Wnt/β-catenin signaling pathways. Western blot analysis confirms that Erk1/2 and Akt activation were increased in CCA tissues when compared with their normal adjacent tissue. The inhibition of kinase activation using multi-targeted kinase inhibitors, sorafenib and sunitinib led to significant cell growth inhibition and apoptosis induction via suppression of Erk1/2 and Akt activation, whereas drugs with specificity to a single kinase showed less potency. In conclusion, our study reveals the involvement of multiple kinase proteins in CCA growth that might serve as therapeutic targets for combined kinase inhibition. PMID:23812726

  4. A protein kinase screen of Neurospora crassa mutant strains reveals that the SNF1 protein kinase promotes glycogen synthase phosphorylation.

    PubMed

    Candido, Thiago De Souza; Gonçalves, Rodrigo Duarte; Felício, Ana Paula; Freitas, Fernanda Zanolli; Cupertino, Fernanda Barbosa; De Carvalho, Ana Carolina Gomes Vieira; Bertolini, Maria Célia

    2014-12-15

    Glycogen functions as a carbohydrate reserve in a variety of organisms and its metabolism is highly regulated. The activities of glycogen synthase and glycogen phosphorylase, the rate-limiting enzymes of the synthesis and degradation processes, respectively, are regulated by allosteric modulation and reversible phosphorylation. To identify the protein kinases affecting glycogen metabolism in Neurospora crassa, we performed a screen of 84 serine/threonine kinase knockout strains. We identified multiple kinases that have already been described as controlling glycogen metabolism in different organisms, such as NcSNF1, NcPHO85, NcGSK3, NcPKA, PSK2 homologue and NcATG1. In addition, many hypothetical kinases have been implicated in the control of glycogen metabolism. Two kinases, NcIME-2 and NcNIMA, already functionally characterized but with no functions related to glycogen metabolism regulation, were also identified. Among the kinases identified, it is important to mention the role of NcSNF1. We showed in the present study that this kinase was implicated in glycogen synthase phosphorylation, as demonstrated by the higher levels of glycogen accumulated during growth, along with a higher glycogen synthase (GSN) ±glucose 6-phosphate activity ratio and a lesser set of phosphorylated GSN isoforms in strain Ncsnf1KO, when compared with the wild-type strain. The results led us to conclude that, in N. crassa, this kinase promotes phosphorylation of glycogen synthase either directly or indirectly, which is the opposite of what is described for Saccharomyces cerevisiae. The kinases also play a role in gene expression regulation, in that gdn, the gene encoding the debranching enzyme, was down-regulated by the proteins identified in the screen. Some kinases affected growth and development, suggesting a connection linking glycogen metabolism with cell growth and development. PMID:25253091

  5. Stimulus-Specific Distinctions in Spatial and Temporal Dynamics of Stress-Activated Protein Kinase Kinase Kinases Revealed by a Fluorescence Resonance Energy Transfer Biosensor▿

    PubMed Central

    Tomida, Taichiro; Takekawa, Mutsuhiro; O'Grady, Pauline; Saito, Haruo

    2009-01-01

    The stress-activated protein kinases (SAPKs), namely, p38 and JNK, are members of the mitogen-activated protein kinase family and are important determinants of cell fate when cells are exposed to environmental stresses such as UV and osmostress. SAPKs are activated by SAPK kinases (SAP2Ks), which are in turn activated by various SAP2K kinases (SAP3Ks). Because conventional methods, such as immunoblotting using phospho-specific antibodies, measure the average activity of SAP3Ks in a cell population, the intracellular dynamics of SAP3K activity are largely unknown. Here, we developed a reporter of SAP3K activity toward the MKK6 SAP2K, based on fluorescence resonance energy transfer, that can uncover the dynamic behavior of SAP3K activation in cells. Using this reporter, we demonstrated that SAP3K activation occurs either synchronously or asynchronously among a cell population and in different cellular compartments in single cells, depending on the type of stress applied. In particular, SAP3Ks are activated by epidermal growth factor and osmostress on the plasma membrane, by anisomycin and UV in the cytoplasm, and by etoposide in the nucleus. These observations revealed previously unknown heterogeneity in SAPK responses and supplied answers to the question of the cellular location in which various stresses induce stimulus-specific SAPK responses. PMID:19737916

  6. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    SciTech Connect

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  7. Protein synthesis inhibitors reveal differential regulation of mitogen-activated protein kinase and stress-activated protein kinase pathways that converge on Elk-1.

    PubMed Central

    Zinck, R; Cahill, M A; Kracht, M; Sachsenmaier, C; Hipskind, R A; Nordheim, A

    1995-01-01

    Inhibitors of protein synthesis, such as anisomycin and cycloheximide, lead to superinduction of immediate-early genes. We demonstrate that these two drugs activate intracellular signaling pathways involving both the mitogen-activated protein kinase (MAPK) and stress-activated protein kinase (SAPK) cascades. The activation of either pathway correlates with phosphorylation of the c-fos regulatory transcription factor Elk-1. In HeLa cells, anisomycin stabilizes c-fos mRNA when protein synthesis is inhibited to only 50%. Under these conditions, anisomycin, in contrast to cycloheximide, rapidly induces kinase activation and efficient Elk-1 phosphorylation. However, full inhibition of translation by either drug leads to prolonged activation of SAPK activity, while MAPK induction is transient. This correlates with prolonged Elk-1 phosphorylation and c-fos transcription. Elk-1 induction and c-fos activation are also observed in KB cells, in which anisomycin strongly induces SAPKs but not MAPKs. Purified p54 SAPK alpha efficiently phosphorylates the Elk-1 C-terminal domain in vitro and comigrates with anisomycin-activated kinases in in-gel kinase assays. Thus, Elk-1 provides a potential convergence point for the MAPK and SAPK signaling pathways. The activation of signal cascades and control of transcription factor function therefore represent prominent processes in immediate-early gene superinduction. PMID:7651411

  8. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    PubMed Central

    Wernimont, Amy K.; Artz, Jennifer D.; Finerty, Patrick; Lin, Y.; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond

    2013-01-01

    Calcium-dependent protein kinases (CDPKs) play pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites, and comprise a CaMK-like kinase domain regulated by a calcium-binding domain in the C-terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N-terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate-binding site. This large conformational change constitutes a distinct mechanism in calcium signal transduction pathways. PMID:20436473

  9. The Protein Architecture of Human Secretory Vesicles Reveals Differential Regulation of Signaling Molecule Secretion by Protein Kinases

    PubMed Central

    Taupenot, Laurent; Ziegler, Michael; O'Connor, Daniel T.; Ma, Qi; Smoot, Michael; Ideker, Trey; Hook, Vivian

    2012-01-01

    Secretory vesicles are required for release of chemical messengers to mediate intercellular signaling among human biological systems. It is necessary to define the organization of the protein architecture of the ‘human’ dense core secretory vesicles (DCSV) to understand mechanisms for secretion of signaling molecules essential for cellular regulatory processes. This study, therefore, conducted extensive quantitative proteomics and systems biology analyses of human DCSV purified from human pheochromocytoma. Over 600 human DCSV proteins were identified with quantitative evaluation of over 300 proteins, revealing that most proteins participate in producing peptide hormones and neurotransmitters, enzymes, and the secretory machinery. Systems biology analyses provided a model of interacting DCSV proteins, generating hypotheses for differential intracellular protein kinases A and C signaling pathways. Activation of cellular PKA and PKC pathways resulted in differential secretion of neuropeptides, catecholamines, and β-amyloid of Alzheimer's disease for mediating cell-cell communication. This is the first study to define a model of the protein architecture of human DCSV for human disease and health. PMID:22916103

  10. Analysis of Protein Phosphatase-1 and Aurora Protein Kinase Suppressors Reveals New Aspects of Regulatory Protein Function in Saccharomyces cerevisiae

    PubMed Central

    Ghosh, Anuprita; Cannon, John F.

    2013-01-01

    Protein phosphatase-1 (PP1) controls many processes in eukaryotic cells. Modulation of mitosis by reversing phosphorylation of proteins phosphorylated by aurora protein kinase is a critical function for PP1. Overexpression of the sole PP1, Glc7, in budding yeast, Saccharomyces cerevisiae, is lethal. This work shows that lethality requires the function of Glc7 regulatory proteins Sds22, Reg2, and phosphorylated Glc8. This finding shows that Glc7 overexpression induced cell death requires a specific subset of the many Glc7-interacting proteins and therefore is likely caused by promiscuous dephosphorylation of a variety of substrates. Additionally, suppression can occur by reducing Glc7 protein levels by high-copy Fpr3 without use of its proline isomerase domain. This divulges a novel function of Fpr3. Most suppressors of GLC7 overexpression also suppress aurora protein kinase, ipl1, temperature-sensitive mutations. However, high-copy mutant SDS22 genes show reciprocal suppression of GLC7 overexpression induced cell death or ipl1 temperature sensitivity. Sds22 binds to many proteins besides Glc7. The N-terminal 25 residues of Sds22 are sufficient to bind, directly or indirectly, to seven proteins studied here including the spindle assembly checkpoint protein, Bub3. These data demonstrate that Sds22 organizes several proteins in addition to Glc7 to perform functions that counteract Ipl1 activity or lead to hyper Glc7 induced cell death. These data also emphasize that Sds22 targets Glc7 to nuclear locations distinct from Ipl1 substrates. PMID:23894419

  11. Stochastic detection of Pim protein kinases reveals electrostatically enhanced association of a peptide substrate

    PubMed Central

    Harrington, Leon; Cheley, Stephen; Alexander, Leila T.; Knapp, Stefan; Bayley, Hagan

    2013-01-01

    In stochastic sensing, the association and dissociation of analyte molecules is observed as the modulation of an ionic current flowing through a single engineered protein pore, enabling the label-free determination of rate and equilibrium constants with respect to a specific binding site. We engineered sensors based on the staphylococcal α-hemolysin pore to allow the single-molecule detection and characterization of protein kinase–peptide interactions. We enhanced this approach by using site-specific proteolysis to generate pores bearing a single peptide sensor element attached by an N-terminal peptide bond to the trans mouth of the pore. Kinetics and affinities for the Pim protein kinases (Pim-1, Pim-2, and Pim-3) and cAMP-dependent protein kinase were measured and found to be independent of membrane potential and in good agreement with previously reported data. Kinase binding exhibited a distinct current noise behavior that forms a basis for analyte discrimination. Finally, we observed unusually high association rate constants for the interaction of Pim kinases with their consensus substrate Pimtide (∼107 to 108 M–1⋅s–1), the result of electrostatic enhancement, and propose a cellular role for this phenomenon. PMID:24194548

  12. Phosphoproteomic Profiling Reveals Epstein-Barr Virus Protein Kinase Integration of DNA Damage Response and Mitotic Signaling

    PubMed Central

    Li, Renfeng; Pinto, Sneha M.; Shaw, Patrick G.; Huang, Tai-Chung; Wan, Jun; Qian, Jiang; Gowda, Harsha; Wu, Xinyan; Lv, Dong-Wen; Zhang, Kun; Manda, Srikanth S.; Pandey, Akhilesh; Hayward, S. Diane

    2015-01-01

    Epstein-Barr virus (EBV) is etiologically linked to infectious mononucleosis and several human cancers. EBV encodes a conserved protein kinase BGLF4 that plays a key role in the viral life cycle. To provide new insight into the host proteins regulated by BGLF4, we utilized stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics to compare site-specific phosphorylation in BGLF4-expressing Akata B cells. Our analysis revealed BGLF4-mediated hyperphosphorylation of 3,046 unique sites corresponding to 1,328 proteins. Frequency analysis of these phosphosites revealed a proline-rich motif signature downstream of BGLF4, indicating a broader substrate recognition for BGLF4 than its cellular ortholog cyclin-dependent kinase 1 (CDK1). Further, motif analysis of the hyperphosphorylated sites revealed enrichment in ATM, ATR and Aurora kinase substrates while functional analyses revealed significant enrichment of pathways related to the DNA damage response (DDR), mitosis and cell cycle. Phosphorylation of proteins associated with the mitotic spindle assembly checkpoint (SAC) indicated checkpoint activation, an event that inactivates the anaphase promoting complex/cyclosome, APC/C. Furthermore, we demonstrated that BGLF4 binds to and directly phosphorylates the key cellular proteins PP1, MPS1 and CDC20 that lie upstream of SAC activation and APC/C inhibition. Consistent with APC/C inactivation, we found that BGLF4 stabilizes the expression of many known APC/C substrates. We also noted hyperphosphorylation of 22 proteins associated the nuclear pore complex, which may contribute to nuclear pore disassembly and SAC activation. A drug that inhibits mitotic checkpoint activation also suppressed the accumulation of extracellular EBV virus. Taken together, our data reveal that, in addition to the DDR, manipulation of mitotic kinase signaling and SAC activation are mechanisms associated with lytic EBV replication. All MS data have been deposited in

  13. Phosphoproteomic Profiling Reveals Epstein-Barr Virus Protein Kinase Integration of DNA Damage Response and Mitotic Signaling.

    PubMed

    Li, Renfeng; Liao, Gangling; Nirujogi, Raja Sekhar; Pinto, Sneha M; Shaw, Patrick G; Huang, Tai-Chung; Wan, Jun; Qian, Jiang; Gowda, Harsha; Wu, Xinyan; Lv, Dong-Wen; Zhang, Kun; Manda, Srikanth S; Pandey, Akhilesh; Hayward, S Diane

    2015-12-01

    Epstein-Barr virus (EBV) is etiologically linked to infectious mononucleosis and several human cancers. EBV encodes a conserved protein kinase BGLF4 that plays a key role in the viral life cycle. To provide new insight into the host proteins regulated by BGLF4, we utilized stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics to compare site-specific phosphorylation in BGLF4-expressing Akata B cells. Our analysis revealed BGLF4-mediated hyperphosphorylation of 3,046 unique sites corresponding to 1,328 proteins. Frequency analysis of these phosphosites revealed a proline-rich motif signature downstream of BGLF4, indicating a broader substrate recognition for BGLF4 than its cellular ortholog cyclin-dependent kinase 1 (CDK1). Further, motif analysis of the hyperphosphorylated sites revealed enrichment in ATM, ATR and Aurora kinase substrates while functional analyses revealed significant enrichment of pathways related to the DNA damage response (DDR), mitosis and cell cycle. Phosphorylation of proteins associated with the mitotic spindle assembly checkpoint (SAC) indicated checkpoint activation, an event that inactivates the anaphase promoting complex/cyclosome, APC/C. Furthermore, we demonstrated that BGLF4 binds to and directly phosphorylates the key cellular proteins PP1, MPS1 and CDC20 that lie upstream of SAC activation and APC/C inhibition. Consistent with APC/C inactivation, we found that BGLF4 stabilizes the expression of many known APC/C substrates. We also noted hyperphosphorylation of 22 proteins associated the nuclear pore complex, which may contribute to nuclear pore disassembly and SAC activation. A drug that inhibits mitotic checkpoint activation also suppressed the accumulation of extracellular EBV virus. Taken together, our data reveal that, in addition to the DDR, manipulation of mitotic kinase signaling and SAC activation are mechanisms associated with lytic EBV replication. All MS data have been deposited in

  14. Application of a New Dual Localization-Affinity Purification Tag Reveals Novel Aspects of Protein Kinase Biology in Aspergillus nidulans

    PubMed Central

    De Souza, Colin P.; Hashmi, Shahr B.; Osmani, Aysha H.; Osmani, Stephen A.

    2014-01-01

    Filamentous fungi occupy critical environmental niches and have numerous beneficial industrial applications but devastating effects as pathogens and agents of food spoilage. As regulators of essentially all biological processes protein kinases have been intensively studied but how they regulate the often unique biology of filamentous fungi is not completely understood. Significant understanding of filamentous fungal biology has come from the study of the model organism Aspergillus nidulans using a combination of molecular genetics, biochemistry, cell biology and genomic approaches. Here we describe dual localization-affinity purification (DLAP) tags enabling endogenous N or C-terminal protein tagging for localization and biochemical studies in A. nidulans. To establish DLAP tag utility we endogenously tagged 17 protein kinases for analysis by live cell imaging and affinity purification. Proteomic analysis of purifications by mass spectrometry confirmed association of the CotA and NimXCdk1 kinases with known binding partners and verified a predicted interaction of the SldABub1/R1 spindle assembly checkpoint kinase with SldBBub3. We demonstrate that the single TOR kinase of A. nidulans locates to vacuoles and vesicles, suggesting that the function of endomembranes as major TOR cellular hubs is conserved in filamentous fungi. Comparative analysis revealed 7 kinases with mitotic specific locations including An-Cdc7 which unexpectedly located to mitotic spindle pole bodies (SPBs), the first such localization described for this family of DNA replication kinases. We show that the SepH septation kinase locates to SPBs specifically in the basal region of apical cells in a biphasic manner during mitosis and again during septation. This results in gradients of SepH between G1 SPBs which shift along hyphae as each septum forms. We propose that SepH regulates the septation initiation network (SIN) specifically at SPBs in the basal region of G1 cells and that localized gradients

  15. Phosphoproteomics reveals malaria parasite Protein Kinase G as a signalling hub regulating egress and invasion

    PubMed Central

    Alam, Mahmood M.; Solyakov, Lev; Bottrill, Andrew R.; Flueck, Christian; Siddiqui, Faiza A.; Singh, Shailja; Mistry, Sharad; Viskaduraki, Maria; Lee, Kate; Hopp, Christine S.; Chitnis, Chetan E.; Doerig, Christian; Moon, Robert W.; Green, Judith L.; Holder, Anthony A.; Baker, David A.; Tobin, Andrew B.

    2015-01-01

    Our understanding of the key phosphorylation-dependent signalling pathways in the human malaria parasite, Plasmodium falciparum, remains rudimentary. Here we address this issue for the essential cGMP-dependent protein kinase, PfPKG. By employing chemical and genetic tools in combination with quantitative global phosphoproteomics, we identify the phosphorylation sites on 69 proteins that are direct or indirect cellular targets for PfPKG. These PfPKG targets include proteins involved in cell signalling, proteolysis, gene regulation, protein export and ion and protein transport, indicating that cGMP/PfPKG acts as a signalling hub that plays a central role in a number of core parasite processes. We also show that PfPKG activity is required for parasite invasion. This correlates with the finding that the calcium-dependent protein kinase, PfCDPK1, is phosphorylated by PfPKG, as are components of the actomyosin complex, providing mechanistic insight into the essential role of PfPKG in parasite egress and invasion. PMID:26149123

  16. Phosphoproteomics reveals malaria parasite Protein Kinase G as a signalling hub regulating egress and invasion.

    PubMed

    Alam, Mahmood M; Solyakov, Lev; Bottrill, Andrew R; Flueck, Christian; Siddiqui, Faiza A; Singh, Shailja; Mistry, Sharad; Viskaduraki, Maria; Lee, Kate; Hopp, Christine S; Chitnis, Chetan E; Doerig, Christian; Moon, Robert W; Green, Judith L; Holder, Anthony A; Baker, David A; Tobin, Andrew B

    2015-01-01

    Our understanding of the key phosphorylation-dependent signalling pathways in the human malaria parasite, Plasmodium falciparum, remains rudimentary. Here we address this issue for the essential cGMP-dependent protein kinase, PfPKG. By employing chemical and genetic tools in combination with quantitative global phosphoproteomics, we identify the phosphorylation sites on 69 proteins that are direct or indirect cellular targets for PfPKG. These PfPKG targets include proteins involved in cell signalling, proteolysis, gene regulation, protein export and ion and protein transport, indicating that cGMP/PfPKG acts as a signalling hub that plays a central role in a number of core parasite processes. We also show that PfPKG activity is required for parasite invasion. This correlates with the finding that the calcium-dependent protein kinase, PfCDPK1, is phosphorylated by PfPKG, as are components of the actomyosin complex, providing mechanistic insight into the essential role of PfPKG in parasite egress and invasion. PMID:26149123

  17. A forward genetic screen reveals that calcium-dependent protein kinase 3 regulates egress in Toxoplasma.

    PubMed

    Garrison, Erin; Treeck, Moritz; Ehret, Emma; Butz, Heidi; Garbuz, Tamila; Oswald, Benji P; Settles, Matt; Boothroyd, John; Arrizabalaga, Gustavo

    2012-01-01

    Egress from the host cell is a crucial and highly regulated step in the biology of the obligate intracellular parasite, Toxoplasma gondii. Active egress depends on calcium fluxes and appears to be a crucial step in escaping the attack from the immune system and, potentially, in enabling the parasites to shuttle into appropriate cells for entry into the brain of the host. Previous genetic screens have yielded mutants defective in both ionophore-induced egress and ionophore-induced death. Using whole genome sequencing of one mutant and subsequent analysis of all mutants from these screens, we find that, remarkably, four independent mutants harbor a mis-sense mutation in the same gene, TgCDPK3, encoding a calcium-dependent protein kinase. All four mutations are predicted to alter key regions of TgCDPK3 and this is confirmed by biochemical studies of recombinant forms of each. By complementation we confirm a crucial role for TgCDPK3 in the rapid induction of parasite egress and we establish that TgCDPK3 is critical for formation of latent stages in the brains of mice. Genetic knockout of TgCDPK3 confirms a crucial role for this kinase in parasite egress and a non-essential role for it in the lytic cycle. PMID:23209419

  18. Protein kinase R reveals an evolutionary model for defeating viral mimicry

    PubMed Central

    Elde, Nels C.; Child, Stephanie J.; Geballe, Adam P.; Malik, Harmit S.

    2008-01-01

    Distinguishing self from non-self is a fundamental biological challenge. Many pathogens exploit the challenge of self discrimination by employing mimicry to subvert key cellular processes including the cell cycle, apoptosis, and cytoskeletal dynamics1-5. Other mimics interfere with immunity6, 7. Poxviruses encode K3L, a mimic of eIF2α, which is the substrate of Protein Kinase R (PKR), an important component of innate immunity in vertebrates8, 9. The PKR-K3L interaction exemplifies the conundrum imposed by viral mimicry. To be effective, PKR must recognize a conserved substrate (eIF2α) while avoiding rapidly evolving substrate mimics like K3L. Using the PKR-K3L system and a combination of phylogenetic and functional analyses, we uncover evolutionary strategies by which host proteins can overcome mimicry. We find that PKR has evolved under dramatic episodes of positive selection in primates. The ability of PKR to evade viral mimics is partly due to positive selection at sites most intimately involved in eIF2α recognition. We also find that adaptive changes on multiple surfaces of PKR produce combinations of substitutions that increase the odds of defeating mimicry. Thus, while it can appear that pathogens gain insurmountable advantages by mimicking cellular components, host factors like PKR can compete in molecular ‘arms races’ with mimics because of remarkable evolutionary flexibility at protein interaction interfaces challenged by mimicry. PMID:19043403

  19. Protein Kinases and Addiction

    PubMed Central

    Lee, Anna M.; Messing, Robert O.

    2011-01-01

    Although drugs of abuse have different chemical structures and interact with different protein targets, all appear to usurp common neuronal systems that regulate reward and motivation. Addiction is a complex disease that is thought to involve drug-induced changes in synaptic plasticity due to alterations in cell signaling, gene transcription, and protein synthesis. Recent evidence suggests that drugs of abuse interact with and change a common network of signaling pathways that include a subset of specific protein kinases. The best studied of these kinases are reviewed here and include extracellular signal-regulated kinase, cAMP-dependent protein kinase, cyclin-dependent protein kinase 5, protein kinase C, calcium/calmodulin-dependent protein kinase II, and Fyn tyrosine kinase. These kinases have been implicated in various aspects of drug addiction including acute drug effects, drug self-administration, withdrawal, reinforcement, sensitization, and tolerance. Identifying protein kinase substrates and signaling pathways that contribute to the addicted state may provide novel approaches for new pharma-cotherapies to treat drug addiction. PMID:18991950

  20. A comprehensive protein–protein interactome for yeast PAS kinase 1 reveals direct inhibition of respiration through the phosphorylation of Cbf1

    PubMed Central

    DeMille, Desiree; Bikman, Benjamin T.; Mathis, Andrew D.; Prince, John T.; Mackay, Jordan T.; Sowa, Steven W.; Hall, Tacie D.; Grose, Julianne H.

    2014-01-01

    Per-Arnt-Sim (PAS) kinase is a sensory protein kinase required for glucose homeostasis in yeast, mice, and humans, yet little is known about the molecular mechanisms of its function. Using both yeast two-hybrid and copurification approaches, we identified the protein–protein interactome for yeast PAS kinase 1 (Psk1), revealing 93 novel putative protein binding partners. Several of the Psk1 binding partners expand the role of PAS kinase in glucose homeostasis, including new pathways involved in mitochondrial metabolism. In addition, the interactome suggests novel roles for PAS kinase in cell growth (gene/protein expression, replication/cell division, and protein modification and degradation), vacuole function, and stress tolerance. In vitro kinase studies using a subset of 25 of these binding partners identified Mot3, Zds1, Utr1, and Cbf1 as substrates. Further evidence is provided for the in vivo phosphorylation of Cbf1 at T211/T212 and for the subsequent inhibition of respiration. This respiratory role of PAS kinase is consistent with the reported hypermetabolism of PAS kinase–deficient mice, identifying a possible molecular mechanism and solidifying the evolutionary importance of PAS kinase in the regulation of glucose homeostasis. PMID:24850888

  1. Live imaging of endogenous Ca²⁺/calmodulin-dependent protein kinase II in neurons reveals that ischemia-related aggregation does not require kinase activity.

    PubMed

    Barcomb, Kelsey; Goodell, Dayton J; Arnold, Don B; Bayer, K Ulrich

    2015-11-01

    The Ca(2+) /calmodulin-dependent protein kinase II (CaMKII) forms 12meric holoenzymes. These holoenzymes cluster into larger aggregates within neurons under ischemic conditions and in vitro when ischemic conditions are mimicked. This aggregation is thought to be mediated by interaction between the regulatory domain of one kinase subunit with the T-site of another kinase subunit in a different holoenzyme, an interaction that requires stimulation by Ca(2+) /CaM and nucleotide for its induction. This model makes several predictions that were verified here: Aggregation in vitro was reduced by the CaMKII inhibitors tatCN21 and tatCN19o (which block the T-site) as well as by KN93 (which is CaM-competitive). Notably, these and previously tested manipulations that block CaMKII activation all reduced aggregation, suggesting an alternative mechanism that instead requires kinase activity. However, experiments with the nucleotide-competitive broad-spectrum kinase inhibitors staurosporin and H7 showed that this is not the case. In vitro, staurosporine and H7 enabled CaMKII aggregation even in the absence of nucleotide. Within rat hippocampal neurons, an intra-body enabled live monitoring of endogenous CaMKII aggregation. This aggregation was blocked by tatCN21, but not by staurosporine, even though both effectively inhibit CaMKII activity. These results support the mechanistic model for CaMKII aggregation and show that kinase activity is not required. CaMKII aggregation is prevented by inhibiting kinase activity with mutations (red italics; shown previously) or inhibitors (red bold; shown here), indicating requirement of kinase activity. However, we show here that nucleotide-competitive inhibitors (green) allow CaMKII aggregation (including endogenous CaMKII within neurons), demonstrating that kinase activity is not required and supporting the current mechanistic model for CaMKII aggregation. PMID:26212614

  2. Targeted massively parallel sequencing of angiosarcomas reveals frequent activation of the mitogen activated protein kinase pathway

    PubMed Central

    Murali, Rajmohan; Chandramohan, Raghu; Möller, Inga; Scholz, Simone L.; Berger, Michael; Huberman, Kety; Viale, Agnes; Pirun, Mono; Socci, Nicholas D.; Bouvier, Nancy; Bauer, Sebastian; Artl, Monika; Schilling, Bastian; Schimming, Tobias; Sucker, Antje; Schwindenhammer, Benjamin; Grabellus, Florian; Speicher, Michael R.; Schaller, Jörg; Hillen, Uwe; Schadendorf, Dirk; Mentzel, Thomas; Cheng, Donavan T.; Wiesner, Thomas; Griewank, Klaus G.

    2015-01-01

    Angiosarcomas are rare malignant mesenchymal tumors of endothelial differentiation. The clinical behavior is usually aggressive and the prognosis for patients with advanced disease is poor with no effective therapies. The genetic bases of these tumors have been partially revealed in recent studies reporting genetic alterations such as amplifications of MYC (primarily in radiation-associated angiosarcomas), inactivating mutations in PTPRB and R707Q hotspot mutations of PLCG1. Here, we performed a comprehensive genomic analysis of 34 angiosarcomas using a clinically-approved, hybridization-based targeted next-generation sequencing assay for 341 well-established oncogenes and tumor suppressor genes. Over half of the angiosarcomas (n = 18, 53%) harbored genetic alterations affecting the MAPK pathway, involving mutations in KRAS, HRAS, NRAS, BRAF, MAPK1 and NF1, or amplifications in MAPK1/CRKL, CRAF or BRAF. The most frequently detected genetic aberrations were mutations in TP53 in 12 tumors (35%) and losses of CDKN2A in 9 tumors (26%). MYC amplifications were generally mutually exclusive of TP53 alterations and CDKN2A loss and were identified in 8 tumors (24%), most of which (n = 7, 88%) arose post-irradiation. Previously reported mutations in PTPRB (n = 10, 29%) and one (3%) PLCG1 R707Q mutation were also identified. Our results demonstrate that angiosarcomas are a genetically heterogeneous group of tumors, harboring a wide range of genetic alterations. The high frequency of genetic events affecting the MAPK pathway suggests that targeted therapies inhibiting MAPK signaling may be promising therapeutic avenues in patients with advanced angiosarcomas. PMID:26440310

  3. Limited Proteolysis Combined with Stable Isotope Labeling Reveals Conformational Changes in Protein (Pseudo)kinases upon Binding Small Molecules.

    PubMed

    Di Michele, Michela; Stes, Elisabeth; Vandermarliere, Elien; Arora, Rohit; Astorga-Wells, Juan; Vandenbussche, Jonathan; van Heerde, Erika; Zubarev, Roman; Bonnet, Pascal; Linders, Joannes T M; Jacoby, Edgar; Brehmer, Dirk; Martens, Lennart; Gevaert, Kris

    2015-10-01

    Likely due to conformational rearrangements, small molecule inhibitors may stabilize the active conformation of protein kinases and paradoxically promote tumorigenesis. We combined limited proteolysis with stable isotope labeling MS to monitor protein conformational changes upon binding of small molecules. Applying this method to the human serine/threonine kinase B-Raf, frequently mutated in cancer, we found that binding of ATP or its nonhydrolyzable analogue AMP-PNP, but not ADP, stabilized the structure of both B-Raf(WT) and B-Raf(V600E). The ATP-competitive type I B-Raf inhibitor vemurafenib and the type II inhibitor sorafenib stabilized the kinase domain (KD) but had distinct effects on the Ras-binding domain. Stabilization of the B-Raf(WT) KD was confirmed by hydrogen/deuterium exchange MS and molecular dynamics simulations. Our results are further supported by cellular assays in which we assessed cell viability and phosphorylation profiles in cells expressing B-Raf(WT) or B-Raf(V600E) in response to vemurafenib or sorafenib. Our data indicate that an overall stabilization of the B-Raf structure by specific inhibitors activates MAPK signaling and increases cell survival, helping to explain clinical treatment failure. We also applied our method to monitor conformational changes upon nucleotide binding of the pseudokinase KSR1, which holds high potential for inhibition in human diseases. PMID:26293246

  4. Mass Spectrometry Reveals Protein Kinase CK2 High-Order Oligomerization via the Circular and Linear Assembly.

    PubMed

    Seetoh, Wei-Guang; Chan, Daniel Shiu-Hin; Matak-Vinković, Dijana; Abell, Chris

    2016-06-17

    CK2 is an intrinsically active protein kinase that is crucial for cellular viability. However, conventional kinase regulatory mechanisms do not apply to CK2, and its mode of regulation remains elusive. Interestingly, CK2 is known to undergo reversible ionic-strength-dependent oligomerization. Furthermore, a regulatory mechanism based on autoinhibitory oligomerization has been postulated on the basis of the observation of circular trimeric oligomers and linear CK2 assemblies in various crystal structures. Here, we employ native mass spectrometry to monitor the assembly of oligomeric CK2 species in an ionic-strength-dependent manner. A subsequent combination of ion mobility spectrometry-mass spectrometry and hydrogen-deuterium exchange mass spectrometry techniques was used to analyze the conformation of CK2 oligomers. Our findings support ionic-strength-dependent CK2 oligomerization, demonstrate the transient nature of the α/β interaction, and show that CK2 oligomerization proceeds via both the circular and linear assembly. PMID:26999075

  5. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses1[OPEN

    PubMed Central

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A.; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A.; Kay, Steve A.; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R.; Schroeder, Julian I.

    2015-01-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases. PMID:26175513

  6. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses.

    PubMed

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A; Kay, Steve A; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R; Schroeder, Julian I

    2015-09-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases. PMID:26175513

  7. Analyses of Compact Trichinella Kinomes Reveal a MOS-Like Protein Kinase with a Unique N-Terminal Domain.

    PubMed

    Stroehlein, Andreas J; Young, Neil D; Korhonen, Pasi K; Chang, Bill C H; Sternberg, Paul W; La Rosa, Giuseppe; Pozio, Edoardo; Gasser, Robin B

    2016-01-01

    Parasitic worms of the genus Trichinella (phylum Nematoda; class Enoplea) represent a complex of at least twelve taxa that infect a range of different host animals, including humans, around the world. They are foodborne, intracellular nematodes, and their life cycles differ substantially from those of other nematodes. The recent characterization of the genomes and transcriptomes of all twelve recognized taxa of Trichinella now allows, for the first time, detailed studies of their molecular biology. In the present study, we defined, curated, and compared the protein kinase complements (kinomes) of Trichinella spiralis and T. pseudospiralis using an integrated bioinformatic workflow employing transcriptomic and genomic data sets. We examined how variation in the kinome might link to unique aspects of Trichinella morphology, biology, and evolution. Furthermore, we utilized in silico structural modeling to discover and characterize a novel, MOS-like kinase with an unusual, previously undescribed N-terminal domain. Taken together, the present findings provide a basis for comparative investigations of nematode kinomes, and might facilitate the identification of Enoplea-specific intervention and diagnostic targets. Importantly, the in silico modeling approach assessed here provides an exciting prospect of being able to identify and classify currently unknown (orphan) kinases, as a foundation for their subsequent structural and functional investigation. PMID:27412987

  8. Analyses of Compact Trichinella Kinomes Reveal a MOS-Like Protein Kinase with a Unique N-Terminal Domain

    PubMed Central

    Stroehlein, Andreas J.; Young, Neil D.; Korhonen, Pasi K.; Chang, Bill C. H.; Sternberg, Paul W.; La Rosa, Giuseppe; Pozio, Edoardo; Gasser, Robin B.

    2016-01-01

    Parasitic worms of the genus Trichinella (phylum Nematoda; class Enoplea) represent a complex of at least twelve taxa that infect a range of different host animals, including humans, around the world. They are foodborne, intracellular nematodes, and their life cycles differ substantially from those of other nematodes. The recent characterization of the genomes and transcriptomes of all twelve recognized taxa of Trichinella now allows, for the first time, detailed studies of their molecular biology. In the present study, we defined, curated, and compared the protein kinase complements (kinomes) of Trichinella spiralis and T. pseudospiralis using an integrated bioinformatic workflow employing transcriptomic and genomic data sets. We examined how variation in the kinome might link to unique aspects of Trichinella morphology, biology, and evolution. Furthermore, we utilized in silico structural modeling to discover and characterize a novel, MOS-like kinase with an unusual, previously undescribed N-terminal domain. Taken together, the present findings provide a basis for comparative investigations of nematode kinomes, and might facilitate the identification of Enoplea-specific intervention and diagnostic targets. Importantly, the in silico modeling approach assessed here provides an exciting prospect of being able to identify and classify currently unknown (orphan) kinases, as a foundation for their subsequent structural and functional investigation. PMID:27412987

  9. Transcriptomic analysis reveals numerous diverse protein kinases and transcription factors involved in desiccation tolerance in the resurrection plant Myrothamnus flabellifolia

    PubMed Central

    Ma, Chao; Wang, Hong; Macnish, Andrew J; Estrada-Melo, Alejandro C; Lin, Jing; Chang, Youhong; Reid, Michael S; Jiang, Cai-Zhong

    2015-01-01

    The woody resurrection plant Myrothamnus flabellifolia has remarkable tolerance to desiccation. Pyro-sequencing technology permitted us to analyze the transcriptome of M. flabellifolia during both dehydration and rehydration. We identified a total of 8287 and 8542 differentially transcribed genes during dehydration and rehydration treatments respectively. Approximately 295 transcription factors (TFs) and 484 protein kinases (PKs) were up- or down-regulated in response to desiccation stress. Among these, the transcript levels of 53 TFs and 91 PKs increased rapidly and peaked early during dehydration. These regulators transduce signal cascades of molecular pathways, including the up-regulation of ABA-dependent and independent drought stress pathways and the activation of protective mechanisms for coping with oxidative damage. Antioxidant systems are up-regulated, and the photosynthetic system is modified to reduce ROS generation. Secondary metabolism may participate in the desiccation tolerance of M. flabellifolia as indicated by increases in transcript abundance of genes involved in isopentenyl diphosphate biosynthesis. Up-regulation of genes encoding late embryogenesis abundant proteins and sucrose phosphate synthase is also associated with increased tolerance to desiccation. During rehydration, the transcriptome is also enriched in transcripts of genes encoding TFs and PKs, as well as genes involved in photosynthesis, and protein synthesis. The data reported here contribute comprehensive insights into the molecular mechanisms of desiccation tolerance in M. flabellifolia. PMID:26504577

  10. Transcriptomic analysis reveals numerous diverse protein kinases and transcription factors involved in desiccation tolerance in the resurrection plant Myrothamnus flabellifolia.

    PubMed

    Ma, Chao; Wang, Hong; Macnish, Andrew J; Estrada-Melo, Alejandro C; Lin, Jing; Chang, Youhong; Reid, Michael S; Jiang, Cai-Zhong

    2015-01-01

    The woody resurrection plant Myrothamnus flabellifolia has remarkable tolerance to desiccation. Pyro-sequencing technology permitted us to analyze the transcriptome of M. flabellifolia during both dehydration and rehydration. We identified a total of 8287 and 8542 differentially transcribed genes during dehydration and rehydration treatments respectively. Approximately 295 transcription factors (TFs) and 484 protein kinases (PKs) were up- or down-regulated in response to desiccation stress. Among these, the transcript levels of 53 TFs and 91 PKs increased rapidly and peaked early during dehydration. These regulators transduce signal cascades of molecular pathways, including the up-regulation of ABA-dependent and independent drought stress pathways and the activation of protective mechanisms for coping with oxidative damage. Antioxidant systems are up-regulated, and the photosynthetic system is modified to reduce ROS generation. Secondary metabolism may participate in the desiccation tolerance of M. flabellifolia as indicated by increases in transcript abundance of genes involved in isopentenyl diphosphate biosynthesis. Up-regulation of genes encoding late embryogenesis abundant proteins and sucrose phosphate synthase is also associated with increased tolerance to desiccation. During rehydration, the transcriptome is also enriched in transcripts of genes encoding TFs and PKs, as well as genes involved in photosynthesis, and protein synthesis. The data reported here contribute comprehensive insights into the molecular mechanisms of desiccation tolerance in M. flabellifolia. PMID:26504577

  11. Quantitative Phosphoproteomic Study Reveals that Protein Kinase A Regulates Neural Stem Cell Differentiation Through Phosphorylation of Catenin Beta-1 and Glycogen Synthase Kinase 3β.

    PubMed

    Wang, Shuxin; Li, Zheyi; Shen, Hongyan; Zhang, Zhong; Yin, Yuxin; Wang, Qingsong; Zhao, Xuyang; Ji, Jianguo

    2016-08-01

    Protein phosphorylation is central to the understanding of multiple cellular signaling pathways responsible for regulating the self-renewal and differentiation of neural stem cells (NSCs). Here we performed a large-scale phosphoproteomic analysis of rat fetal NSCs using strong cation exchange chromatography prefractionation and citric acid-assisted two-step enrichment with TiO2 strategy followed by nanoLC-MS/MS analysis. Totally we identified 32,546 phosphosites on 5,091 phosphoproteins, among which 23,945 were class I phosphosites, and quantified 16,000 sites during NSC differentiation. More than 65% of class I phosphosites were novel when compared with PhosphoSitePlus database. Quantification results showed that the early and late stage of NSC differentiation differ greatly. We mapped 69 changed phosphosites on 20 proteins involved in Wnt signaling pathway, including S552 on catenin beta-1 (Ctnnb1) and S9 on glycogen synthase kinase 3β (Gsk3β). Western blotting and real-time PCR results proved that Wnt signaling pathway plays critical roles in NSC fate determination. Furthermore, inhibition and activation of PKA dramatically affected the phosphorylation state of Ctnnb1 and Gsk3β, which regulates the differentiation of NSCs. Our data provides a valuable resource for studying the self-renewal and differentiation of NSCs. Stem Cells 2016;34:2090-2101. PMID:27097102

  12. A Kinase Inhibitor Screen Reveals Protein Kinase C-dependent Endocytic Recycling of ErbB2 in Breast Cancer Cells*

    PubMed Central

    Bailey, Tameka A.; Luan, Haitao; Tom, Eric; Bielecki, Timothy Alan; Mohapatra, Bhopal; Ahmad, Gulzar; George, Manju; Kelly, David L.; Natarajan, Amarnath; Raja, Srikumar M.; Band, Vimla; Band, Hamid

    2014-01-01

    ErbB2 overexpression drives oncogenesis in 20–30% cases of breast cancer. Oncogenic potential of ErbB2 is linked to inefficient endocytic traffic into lysosomes and preferential recycling. However, regulation of ErbB2 recycling is incompletely understood. We used a high-content immunofluorescence imaging-based kinase inhibitor screen on SKBR-3 breast cancer cells to identify kinases whose inhibition alters the clearance of cell surface ErbB2 induced by Hsp90 inhibitor 17-AAG. Less ErbB2 clearance was observed with broad-spectrum PKC inhibitor Ro 31-8220. A similar effect was observed with Go 6976, a selective inhibitor of classical Ca2+-dependent PKCs (α, β1, βII, and γ). PKC activation by PMA promoted surface ErbB2 clearance but without degradation, and ErbB2 was observed to move into a juxtanuclear compartment where it colocalized with PKC-α and PKC-δ together with the endocytic recycling regulator Arf6. PKC-α knockdown impaired the juxtanuclear localization of ErbB2. ErbB2 transit to the recycling compartment was also impaired upon PKC-δ knockdown. PMA-induced Erk phosphorylation was reduced by ErbB2 inhibitor lapatinib, as well as by knockdown of PKC-δ but not that of PKC-α. Our results suggest that activation of PKC-α and -δ mediates a novel positive feedback loop by promoting ErbB2 entry into the endocytic recycling compartment, consistent with reported positive roles for these PKCs in ErbB2-mediated tumorigenesis. As the endocytic recycling compartment/pericentrion has emerged as a PKC-dependent signaling hub for G-protein-coupled receptors, our findings raise the possibility that oncogenesis by ErbB2 involves previously unexplored PKC-dependent endosomal signaling. PMID:25225290

  13. Crystal structure of the human protein kinase CK2 regulatory subunit reveals its zinc finger-mediated dimerization.

    PubMed Central

    Chantalat, L; Leroy, D; Filhol, O; Nueda, A; Benitez, M J; Chambaz, E M; Cochet, C; Dideberg, O

    1999-01-01

    Protein kinase CK2 is a tetramer composed of two alpha catalytic subunits and two beta regulatory subunits. The structure of a C-terminal truncated form of the human beta subunit has been determined by X-ray crystallography to 1.7 A resolution. One dimer is observed in the asymmetric unit of the crystal. The most striking feature of the structure is the presence of a zinc finger mediating the dimerization. The monomer structure consists of two domains, one entirely alpha-helical and one including the zinc finger. The dimer has a crescent shape holding a highly acidic region at both ends. We propose that this acidic region is involved in the interactions with the polyamines and/or catalytic subunits. Interestingly, conserved amino acid residues among beta subunit sequences are clustered along one linear ridge that wraps around the entire dimer. This feature suggests that protein partners may interact with the dimer through a stretch of residues in an extended conformation. PMID:10357806

  14. The protein interaction landscape of the human CMGC kinase group.

    PubMed

    Varjosalo, Markku; Keskitalo, Salla; Van Drogen, Audrey; Nurkkala, Helka; Vichalkovski, Anton; Aebersold, Ruedi; Gstaiger, Matthias

    2013-04-25

    Cellular information processing via reversible protein phosphorylation requires tight control of the localization, activity, and substrate specificity of protein kinases, which to a large extent is accomplished by complex formation with other proteins. Despite their critical role in cellular regulation and pathogenesis, protein interaction information is available for only a subset of the 518 human protein kinases. Here we present a global proteomic analysis of complexes of the human CMGC kinase group. In addition to subgroup-specific functional enrichment and modularity, the identified 652 high-confidence kinase-protein interactions provide a specific biochemical context for many poorly studied CMGC kinases. Furthermore, the analysis revealed a kinase-kinase subnetwork and candidate substrates for CMGC kinases. Finally, the presented interaction proteome uncovered a large set of interactions with proteins genetically linked to a range of human diseases, including cancer, suggesting additional routes for analyzing the role of CMGC kinases in controlling human disease pathways. PMID:23602568

  15. Redox Regulation of Protein Kinases

    PubMed Central

    Truong, Thu H.; Carroll, Kate S.

    2015-01-01

    Protein kinases represent one of the largest families of genes found in eukaryotes. Kinases mediate distinct cellular processes ranging from proliferation, differentiation, survival, and apoptosis. Ligand-mediated activation of receptor kinases can lead to the production of endogenous H2O2 by membrane-bound NADPH oxidases. In turn, H2O2 can be utilized as a secondary messenger in signal transduction pathways. This review presents an overview of the molecular mechanisms involved in redox regulation of protein kinases and its effects on signaling cascades. In the first half, we will focus primarily on receptor tyrosine kinases (RTKs), whereas the latter will concentrate on downstream non-receptor kinases involved in relaying stimulant response. Select examples from the literature are used to highlight the functional role of H2O2 regarding kinase activity, as well as the components involved in H2O2 production and regulation during cellular signaling. In addition, studies demonstrating direct modulation of protein kinases by H2O2 through cysteine oxidation will be emphasized. Identification of these redox-sensitive residues may help uncover signaling mechanisms conserved within kinase subfamilies. In some cases, these residues can even be exploited as targets for the development of new therapeutics. Continued efforts in this field will further basic understanding of kinase redox regulation, and delineate the mechanisms involved in physiologic and pathological H2O2 responses. PMID:23639002

  16. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia.

    PubMed

    Roth Flach, Rachel J; Danai, Laura V; DiStefano, Marina T; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K; Bortell, Rita; Alonso, Laura C; Czech, Michael P

    2016-07-29

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. PMID:27226575

  17. Protein kinase domain of twitchin has protein kinase activity and an autoinhibitory region.

    PubMed

    Lei, J; Tang, X; Chambers, T C; Pohl, J; Benian, G M

    1994-08-19

    Twitchin is a 753-kDa polypeptide located in the muscle A-bands of the nematode, Caenorhabditis elegans. It consists of multiple copies of both fibronectin III and immunoglobulin C2 domains and, near the C terminus, a protein kinase domain with greatest homology to the catalytic domains of myosin light chain kinases. We have expressed and purified from Escherichia coli twitchin's protein kinase catalytic core and flanking sequences that do not include fibronectin III and immunoglobulin C2 domains. The protein was shown to phosphorylate a model substrate and to undergo autophosphorylation. The autophosphorylation occurs at a slow rate, attaining a maximum at 3 h with a stoichiometry of about 1.0 mol of phosphate/mol of protein, probably through an intramolecular mechanism. Sequence analysis of proteolytically derived phosphopeptides revealed that autophosphorylation occurred N-terminal to the catalytic core, predominantly at Thr-5910, with possible minor sites at Ser5912 and/or Ser-5913. This portion of twitchin (residues 5890-6268) was also phosphorylated in vitro by protein kinase C in the absence of calcium and phosphotidylserine, but not by cAMP-dependent protein kinase. By comparing the activities of three twitchin segments, the enzyme appears to be inhibited by the 60-amino acid residues lying just C-terminal to the kinase catalytic core. Thus, like a number of other protein kinases including myosin light chain kinases, the twitchin kinase appears to be autoregulated. PMID:8063727

  18. Neuronal migration and protein kinases

    PubMed Central

    Ohshima, Toshio

    2015-01-01

    The formation of the six-layered structure of the mammalian cortex via the inside-out pattern of neuronal migration is fundamental to neocortical functions. Extracellular cues such as Reelin induce intracellular signaling cascades through the protein phosphorylation. Migrating neurons also have intrinsic machineries to regulate cytoskeletal proteins and adhesion properties. Protein phosphorylation regulates these processes. Moreover, the balance between phosphorylation and dephosphorylation is modified by extracellular cues. Multipolar-bipolar transition, radial glia-guided locomotion and terminal translocation are critical steps of radial migration of cortical pyramidal neurons. Protein kinases such as Cyclin-dependent kinase 5 (Cdk5) and c-Jun N-terminal kinases (JNKs) involve these steps. In this review, I shall give an overview the roles of protein kinases in neuronal migration. PMID:25628530

  19. Protein Crystals of Raf Kinase

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This image shows crystals of the protein raf kinase grown on Earth (photo a) and on USML-2 (photo b). The space-grown crystals are an order of magnitude larger. Principal Investigator: Dan Carter of New Century Pharmaceuticals

  20. Quantitative proteomics reveals protein kinases and phosphatases in the individual phases of contextual fear conditioning in the C57BL/6J mouse.

    PubMed

    Šmidák, Roman; Mayer, Rupert Laurenz; Bileck, Andrea; Gerner, Christopher; Mechtcheriakova, Diana; Stork, Oliver; Lubec, Gert; Li, Lin

    2016-04-15

    A series of protein kinases and phosphatases (PKPs) have been linked to contextual fear conditioning (cFC) but information is mainly derived from immunochemical studies. It was therefore decided to use an explorative label-free quantitative proteomics approach to concomitantly determine PKPs in hippocampi of mice in the individual phases of cFC. C57BL/6J mice were divided into four groups: three training groups representing the acquisition, consolidation and retrieval phases of cFC and a foot shock control group. Using this approach we identified 32 protein kinases or phosphatases/phosphatase subunits with significantly changed protein levels in one or more training groups as compared to foot shock control. These include members of PKP signalling modules of mitogen-activated protein kinase (MAP3K10, RAF1, KSR2), Ca2+/calmodulin-dependent protein kinase (CaMKIIα, DAPK1), protein kinase C (PRKCD) and protein phosphatases 1, 2A, 2B(3) previously implicated in various learning paradigms. In addition, our analysis showed protein kinases WNK1, LYN, VRK1, ABL1, CDK4, CDKL3, SgK223 and ADCK1, and protein phosphatases PTPRF, ACP1, DNAJC6, SSH2 and UBASH3B that have not been directly linked to fear memory processes so far. Determination of PKPs in the individual cFC phases represents a valuable resource for interpretation of previous and design of future studies on PKPs in memory mechanisms. PMID:26748257

  1. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Linn, Anning

    1996-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK.

  2. Neutron Diffraction Reveals Hydrogen Bonds Critical for cGMP-Selective Activation: Insights for cGMP-Dependent Protein Kinase Agonist Design

    PubMed Central

    2015-01-01

    High selectivity of cyclic-nucleotide binding (CNB) domains for cAMP and cGMP are required for segregating signaling pathways; however, the mechanism of selectivity remains unclear. To investigate the mechanism of high selectivity in cGMP-dependent protein kinase (PKG), we determined a room-temperature joint X-ray/neutron (XN) structure of PKG Iβ CNB-B, a domain 200-fold selective for cGMP over cAMP, bound to cGMP (2.2 Å), and a low-temperature X-ray structure of CNB-B with cAMP (1.3 Å). The XN structure directly describes the hydrogen bonding interactions that modulate high selectivity for cGMP, while the structure with cAMP reveals that all these contacts are disrupted, explaining its low affinity for cAMP. PMID:25271401

  3. Neutron diffraction reveals hydrogen bonds critical for cGMP-selective activation: insights for cGMP-dependent protein kinase agonist design.

    PubMed

    Huang, Gilbert Y; Gerlits, Oksana O; Blakeley, Matthew P; Sankaran, Banumathi; Kovalevsky, Andrey Y; Kim, Choel

    2014-11-01

    High selectivity of cyclic-nucleotide binding (CNB) domains for cAMP and cGMP are required for segregating signaling pathways; however, the mechanism of selectivity remains unclear. To investigate the mechanism of high selectivity in cGMP-dependent protein kinase (PKG), we determined a room-temperature joint X-ray/neutron (XN) structure of PKG Iβ CNB-B, a domain 200-fold selective for cGMP over cAMP, bound to cGMP (2.2 Å), and a low-temperature X-ray structure of CNB-B with cAMP (1.3 Å). The XN structure directly describes the hydrogen bonding interactions that modulate high selectivity for cGMP, while the structure with cAMP reveals that all these contacts are disrupted, explaining its low affinity for cAMP. PMID:25271401

  4. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning; Davis, Roger; Derijard, Benoit

    2005-03-08

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  5. Oncoprotein protein kinase

    DOEpatents

    Davis, Roger; Derijard, Benoit; Karin, Michael; Hibi, Masahiko; Lin, Anning

    2005-01-25

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  6. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1999-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  7. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  8. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1998-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  9. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning; Davis, Roger; Derijard, Benoit

    2003-02-04

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  10. Oncoprotein protein kinase

    DOEpatents

    Karin, M.; Hibi, M.; Lin, A.

    1997-02-25

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE is disclosed. The polypeptide has serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences. The method of detection of JNK is also provided. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites. 44 figs.

  11. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  12. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Lin, Anning

    1999-11-30

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  13. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2004-03-16

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  14. Protein kinase A signalling in Schistosoma mansoni cercariae and schistosomules.

    PubMed

    Hirst, Natasha L; Lawton, Scott P; Walker, Anthony J

    2016-06-01

    Cyclic AMP (cAMP)-dependent protein kinase/protein kinase A regulates multiple processes in eukaryotes by phosphorylating diverse cellular substrates, including metabolic and signalling enzymes, ion channels and transcription factors. Here we provide insight into protein kinase A signalling in cercariae and 24h in vitro cultured somules of the blood parasite, Schistosoma mansoni, which causes human intestinal schistosomiasis. Functional mapping of activated protein kinase A using anti-phospho protein kinase A antibodies and confocal laser scanning microscopy revealed activated protein kinase A in the central and peripheral nervous system, oral-tip sensory papillae, oesophagus and excretory system of intact cercariae. Cultured 24h somules, which biologically represent the skin-resident stage of the parasite, exhibited similar activation patterns in oesophageal and nerve tissues but also displayed striking activation at the tegument and activation in a region resembling the germinal 'stem' cell cluster. The adenylyl cyclase activator, forskolin, stimulated somule protein kinase A activation and produced a hyperkinesia phenotype. The biogenic amines, serotonin and dopamine known to be present in skin also induced protein kinase A activation in somules, whereas neuropeptide Y or [Leu(31),Pro(34)]-neuropeptide Y attenuated protein kinase A activation. However, neuropeptide Y did not block the forskolin-induced somule hyperkinesia. Bioinformatic investigation of potential protein associations revealed 193 medium confidence and 59 high confidence protein kinase A interacting partners in S. mansoni, many of which possess putative protein kinase A phosphorylation sites. These data provide valuable insight into the intricacies of protein kinase A signalling in S. mansoni and a framework for further physiological investigations into the roles of protein kinase A in schistosomes, particularly in the context of interactions between the parasite and the host. PMID:26777870

  15. Protein Kinase A: A Master Kinase of Granulosa Cell Differentiation

    PubMed Central

    Puri, Pawan; Little-Ihrig, Lynda; Chandran, Uma; Law, Nathan C.; Hunzicker-Dunn, Mary; Zeleznik, Anthony J.

    2016-01-01

    Activation of protein kinase A (PKA) by follicle stimulating hormone (FSH) transduces the signal that drives differentiation of ovarian granulosa cells (GCs). An unresolved question is whether PKA is sufficient to initiate the complex program of GC responses to FSH. We compared signaling pathways and gene expression profiles of GCs stimulated with FSH or expressing PKA-CQR, a constitutively active mutant of PKA. Both FSH and PKA-CQR stimulated the phosphorylation of proteins known to be involved in GC differentiation including CREB, ß-catenin, AKT, p42/44 MAPK, GAB2, GSK-3ß, FOXO1, and YAP. In contrast, FSH stimulated the phosphorylation of p38 MAP kinase but PKA-CQR did not. Microarray analysis revealed that 85% of transcripts that were up-regulated by FSH were increased to a comparable extent by PKA-CQR and of the transcripts that were down-regulated by FSH, 76% were also down-regulated by PKA-CQR. Transcripts regulated similarly by FSH and PKA-CQR are involved in steroidogenesis and differentiation, while transcripts more robustly up-regulated by PKA-CQR are involved in ovulation. Thus, PKA, under the conditions of our experimental approach appears to function as a master upstream kinase that is sufficient to initiate the complex pattern of intracellular signaling pathway and gene expression profiles that accompany GC differentiation. PMID:27324437

  16. Differential AMP-activated Protein Kinase (AMPK) Recognition Mechanism of Ca2+/Calmodulin-dependent Protein Kinase Kinase Isoforms.

    PubMed

    Fujiwara, Yuya; Kawaguchi, Yoshinori; Fujimoto, Tomohito; Kanayama, Naoki; Magari, Masaki; Tokumitsu, Hiroshi

    2016-06-24

    Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ) is a known activating kinase for AMP-activated protein kinase (AMPK). In vitro, CaMKKβ phosphorylates Thr(172) in the AMPKα subunit more efficiently than CaMKKα, with a lower Km (∼2 μm) for AMPK, whereas the CaMKIα phosphorylation efficiencies by both CaMKKs are indistinguishable. Here we found that subdomain VIII of CaMKK is involved in the discrimination of AMPK as a native substrate by measuring the activities of various CaMKKα/CaMKKβ chimera mutants. Site-directed mutagenesis analysis revealed that Leu(358) in CaMKKβ/Ile(322) in CaMKKα confer, at least in part, a distinct recognition of AMPK but not of CaMKIα. PMID:27151216

  17. SUMOylation regulates the SNF1 protein kinase

    PubMed Central

    Simpson-Lavy, Kobi J.; Johnston, Mark

    2013-01-01

    The AMP-activated protein kinase (AMPK) is a major stress sensor of mammalian cells. AMPK’s homolog in the yeast Saccharomyces cerevisiae, the SNF1 protein kinase, is a central regulator of carbon metabolism that inhibits the Snf3/Rgt2-Rgt1 glucose sensing pathway and activates genes involved in respiration. We present evidence that glucose induces modification of the Snf1 catalytic subunt of SNF1 with the small ubiquitin-like modifier protein SUMO, catalyzed by the SUMO (E3) ligase Mms21. Our results suggest that SUMOylation of Snf1 inhibits its function in two ways: by interaction of SUMO attached to lysine 549 with a SUMO-interacting sequence motif located near the active site of Snf1, and by targeting Snf1 for destruction via the Slx5-Slx8 (SUMO-directed) ubiquitin ligase. These findings reveal another way SNF1 function is regulated in response to carbon source. PMID:24108357

  18. Mitogen-activated protein kinase cascades in Vitis vinifera

    PubMed Central

    Çakır, Birsen; Kılıçkaya, Ozan

    2015-01-01

    Protein phosphorylation is one of the most important mechanisms to control cellular functions in response to external and endogenous signals. Mitogen-activated protein kinases (MAPK) are universal signaling molecules in eukaryotes that mediate the intracellular transmission of extracellular signals resulting in the induction of appropriate cellular responses. MAPK cascades are composed of four protein kinase modules: MAPKKK kinases (MAPKKKKs), MAPKK kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs. In plants, MAPKs are activated in response to abiotic stresses, wounding, and hormones, and during plant pathogen interactions and cell division. In this report, we performed a complete inventory of MAPK cascades genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with MAPK, MAPK kinases, MAPK kinase kinases and MAPK kinase kinase kinase kinase members of Arabidopsis thaliana, we revealed the existence of 14 MAPKs, 5 MAPKKs, 62 MAPKKKs, and 7 MAPKKKKs in Vitis vinifera. We identified orthologs of V. vinifera putative MAPKs in different species, and ESTs corresponding to members of MAPK cascades in various tissues. This work represents the first complete inventory of MAPK cascades in V. vinifera and could help elucidate the biological and physiological functions of these proteins in V. vinifera. PMID:26257761

  19. Protein kinase CK2 and protein kinase D are associated with the COP9 signalosome

    PubMed Central

    Uhle, Stefan; Medalia, Ohad; Waldron, Richard; Dumdey, Renate; Henklein, Peter; Bech-Otschir, Dawadschargal; Huang, Xiaohua; Berse, Matthias; Sperling, Joseph; Schade, Rüdiger; Dubiel, Wolfgang

    2003-01-01

    The COP9 signalosome (CSN) purified from human erythrocytes possesses kinase activity that phosphoryl ates proteins such as c-Jun and p53 with consequence for their ubiquitin (Ub)-dependent degradation. Here we show that protein kinase CK2 (CK2) and protein kinase D (PKD) co-purify with CSN. Immunoprecipi tation and far-western blots reveal that CK2 and PKD are in fact associated with CSN. As indicated by electron microscopy with gold-labeled ATP, at least 10% of CSN particles are associated with kinases. Kinase activity, most likely due to CK2 and PKD, co-immuno precipitates with CSN from HeLa cells. CK2 binds to ΔCSN3(111–403) and CSN7, whereas PKD interacts with full-length CSN3. CK2 phosphorylates CSN2 and CSN7, and PKD modifies CSN7. Both CK2 and PKD phosphorylate c-Jun as well as p53. CK2 phosphoryl ates Thr155, which targets p53 to degradation by the Ub system. Curcumin, emodin, DRB and resveratrol block CSN-associated kinases and induce degradation of c-Jun in HeLa cells. Curcumin treatment results in elevated amounts of c-Jun–Ub conjugates. We conclude that CK2 and PKD are recruited by CSN in order to regulate Ub conjugate formation. PMID:12628923

  20. Structures of cGMP-Dependent Protein Kinase (PKG) Iα Leucine Zippers Reveal an Interchain Disulfide Bond Important for Dimer Stability

    PubMed Central

    Qin, Liying; Reger, Albert S.; Guo, Elaine; Yang, Matthew P.; Zwart, Peter; Casteel, Darren E.; Kim, Choel

    2016-01-01

    cGMP-dependent protein kinase (PKG) Iα is a central regulator of smooth muscle tone and vasorelaxation. The N-terminal leucine zipper (LZ) domain dimerizes and targets PKG Iα by interacting with G-kinase-anchoring proteins. The PKG Iα LZ contains C42 that is known to form a disulfide bond upon oxidation and to activate PKG Iα. To understand the molecular details of the PKG Iα LZ and C42–C42′ disulfide bond, we determined crystal structures of the PKG Iα wild-type (WT) LZ and C42L LZ. Our data demonstrate that the C42–C42′ disulfide bond dramatically stabilizes PKG Iα and that the C42L mutant mimics the oxidized WT LZ structurally. PMID:26132214

  1. The Multiple Personalities of the Regulatory Subunit of Protein Kinase CK2: CK2 Dependent and CK2 Independent Roles Reveal a Secret Identity for CK2β

    PubMed Central

    2005-01-01

    Protein kinase CK2 (formerly casein kinase II), an enzyme that participates in a wide variety of cellular processes, has traditionally been classified as a stable tetrameric complex consisting of two catalytic CK2α or CK2α' subunits and two regulatory CK2β subunits. While consideration of CK2 as a tetrameric complex remains relevant, significant evidence has emerged to challenge the view that its individual subunits exist exclusively within these complexes. This review will summarize biochemical and genetic evidence indicating that the regulatory CK2β subunit exists and performs functions independently of CK2 tetramers. For example, unbalanced expression of catalytic and regulatory CK2 subunits has been observed in a variety of tissues and tumors. Furthermore, localization studies including live cell imaging have demonstrated that while the catalytic and regulatory subunits of CK2 exhibit extensive co-localization, independent mobility of the individual CK2 subunits can also be observed within cells. Identification of proteins that interact with CK2β in the absence of catalytic CK2 subunits reinforces the notion that CK2β has functions distinct from CK2 and begins to offer insights into these CK2-independent functions. In this respect, the discovery that CK2β can interact with and modulate the activity of a number of other serine/threonine protein kinases including A-Raf, c-Mos and Chk1 is particularly striking. This review will discuss the interactions between CK2β and these protein kinases with special emphasis on the properties of CK2β that mediate these interactions and on the implications of these interactions in yielding new prospects for elucidation of the cellular functions of CK2β. PMID:15951851

  2. Long Wavelength Monitoring of Protein Kinase Activity

    PubMed Central

    Oien, Nathan P.; Nguyen, Luong T.; Jernigan, Finith E.; Priestman, Melanie A.

    2014-01-01

    A family of long wavelength protein kinase fluorescent reporters is described in which the probing wavelength is pre-programmed using readily available fluorophores. These agents can assess protein kinase activity within the optical window of tissue, as exemplified by monitoring endogenous cAMP-dependent protein kinase activity (1) in erythrocyte lysates and (2) in intact erythrocytes using a light-activatable reporter. PMID:24604833

  3. Plant protein kinase substrates identification using protein microarrays.

    PubMed

    Ma, Shisong; Dinesh-Kumar, Savithramma P

    2015-01-01

    Protein kinases regulate signaling pathways by phosphorylating their targets. They play critical roles in plant signaling networks. Although many important protein kinases have been identified in plants, their substrates are largely unknown. We have developed and produced plant protein microarrays with more than 15,000 purified plant proteins. Here, we describe a detailed protocol to use these microarrays to identify plant protein kinase substrates via in vitro phosphorylation assays on these arrays. PMID:25930701

  4. Ternary structure reveals mechanism of a membrane diacylglycerol kinase

    SciTech Connect

    Li, Dianfan; Stansfeld, Phillip J.; Sansom, Mark S. P.; Keogh, Aaron; Vogeley, Lutz; Howe, Nicole; Lyons, Joseph A.; Aragao, David; Fromme, Petra; Fromme, Raimund; Basu, Shibom; Grotjohann, Ingo; Kupitz, Christopher; Rendek, Kimberley; Weierstall, Uwe; Zatsepin, Nadia A.; Cherezov, Vadim; Liu, Wei; Bandaru, Sateesh; English, Niall J.; Gati, Cornelius; Barty, Anton; Yefanov, Oleksandr; Chapman, Henry N.; Diederichs, Kay; Messerschmidt, Marc; Boutet, Sébastien; Williams, Garth J.; Marvin Seibert, M.; Caffrey, Martin

    2015-12-17

    Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternary structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. As a result, the active site architecture shows clear evidence of having arisen by convergent evolution.

  5. Ternary structure reveals mechanism of a membrane diacylglycerol kinase

    PubMed Central

    Li, Dianfan; Stansfeld, Phillip J.; Sansom, Mark S. P.; Keogh, Aaron; Vogeley, Lutz; Howe, Nicole; Lyons, Joseph A.; Aragao, David; Fromme, Petra; Fromme, Raimund; Basu, Shibom; Grotjohann, Ingo; Kupitz, Christopher; Rendek, Kimberley; Weierstall, Uwe; Zatsepin, Nadia A.; Cherezov, Vadim; Liu, Wei; Bandaru, Sateesh; English, Niall J.; Gati, Cornelius; Barty, Anton; Yefanov, Oleksandr; Chapman, Henry N.; Diederichs, Kay; Messerschmidt, Marc; Boutet, Sébastien; Williams, Garth J.; Marvin Seibert, M.; Caffrey, Martin

    2015-01-01

    Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternary structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. The active site architecture shows clear evidence of having arisen by convergent evolution. PMID:26673816

  6. Ternary structure reveals mechanism of a membrane diacylglycerol kinase

    NASA Astrophysics Data System (ADS)

    Li, Dianfan; Stansfeld, Phillip J.; Sansom, Mark S. P.; Keogh, Aaron; Vogeley, Lutz; Howe, Nicole; Lyons, Joseph A.; Aragao, David; Fromme, Petra; Fromme, Raimund; Basu, Shibom; Grotjohann, Ingo; Kupitz, Christopher; Rendek, Kimberley; Weierstall, Uwe; Zatsepin, Nadia A.; Cherezov, Vadim; Liu, Wei; Bandaru, Sateesh; English, Niall J.; Gati, Cornelius; Barty, Anton; Yefanov, Oleksandr; Chapman, Henry N.; Diederichs, Kay; Messerschmidt, Marc; Boutet, Sébastien; Williams, Garth J.; Marvin Seibert, M.; Caffrey, Martin

    2015-12-01

    Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternary structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. The active site architecture shows clear evidence of having arisen by convergent evolution.

  7. Mitogen activated protein kinase at the nuclear pore complex

    PubMed Central

    Faustino, Randolph S; Maddaford, Thane G; Pierce, Grant N

    2011-01-01

    Abstract Mitogen activated protein (MAP) kinases control eukaryotic proliferation, and import of kinases into the nucleus through the nuclear pore complex (NPC) can influence gene expression to affect cellular growth, cell viability and homeostatic function. The NPC is a critical regulatory checkpoint for nucleocytoplasmic traffic that regulates gene expression and cell growth, and MAP kinases may be physically associated with the NPC to modulate transport. In the present study, highly enriched NPC fractions were isolated and investigated for associated kinases and/or activity. Endogenous kinase activity was identified within the NPC fraction, which phosphorylated a 30 kD nuclear pore protein. Phosphomodification of this nucleoporin, here termed Nup30, was inhibited by apigenin and PD-98059, two MAP kinase antagonists as well as with SB-202190, a pharmacological blocker of p38. Furthermore, high throughput profiling of enriched NPCs revealed constitutive presence of all members of the MAP kinase family, extracellular regulated kinases (ERK), p38 and Jun N-terminal kinase. The NPC thus contains a spectrum of associated MAP kinases that suggests an intimate role for ERK and p38 in regulation of nuclear pore function. PMID:20497490

  8. Fibronectin phosphorylation by ecto-protein kinase

    SciTech Connect

    Imada, Sumi; Sugiyama, Yayoi; Imada, Masaru )

    1988-12-01

    The presence of membrane-associated, extracellular protein kinase (ecto-protein kinase) and its substrate proteins was examined with serum-free cultures of Swiss 3T3 fibroblast. When cells were incubated with ({gamma}-{sup 32})ATP for 10 min at 37{degree}C, four proteins with apparent molecular weights between 150 and 220 kDa were prominently phosphorylated. These proteins were also radiolabeled by lactoperoxidase catalyzed iodination and were sensitive to mild tryptic digestion, suggesting that they localized on the cell surface or in the extracellular matrix. Phosphorylation of extracellular proteins with ({gamma}-{sup 32}P)ATP in intact cell culture is consistent with the existence of ecto-protein kinase. Anti-fibronectin antibody immunoprecipitated one of the phosphoproteins which comigrated with a monomer and a dimer form of fibronectin under reducing and nonreducing conditions of electrophoresis, respectively. The protein had affinity for gelatin as demonstrated by retention with gelatin-conjugated agarose. This protein substrate of ecto-protein kinase was thus concluded to be fibronectin. The sites of phosphorylation by ecto-protein kinase were compared with those of intracellularly phosphorylated fibronectin by the analysis of radiolabeled amino acids and peptides. Ecto-protein kinase phosphorylated fibronectin at serine and threonine residues which were distinct from the sites of intracellular fibronectin phosphorylation.

  9. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2001-07-03

    The present invention relates to purine analogs that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such purine analogs to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  10. Global Analysis of Serine/Threonine and Tyrosine Protein Phosphatase Catalytic Subunit Genes in Neurospora crassa Reveals Interplay Between Phosphatases and the p38 Mitogen-Activated Protein Kinase

    PubMed Central

    Ghosh, Arit; Servin, Jacqueline A.; Park, Gyungsoon; Borkovich, Katherine A.

    2013-01-01

    Protein phosphatases are integral components of the cellular signaling machinery in eukaryotes, regulating diverse aspects of growth and development. The genome of the filamentous fungus and model organism Neurospora crassa encodes catalytic subunits for 30 protein phosphatase genes. In this study, we have characterized 24 viable N. crassa phosphatase catalytic subunit knockout mutants for phenotypes during growth, asexual development, and sexual development. We found that 91% of the mutants had defects in at least one of these traits, whereas 29% possessed phenotypes in all three. Chemical sensitivity screens were conducted to reveal additional phenotypes for the mutants. This resulted in the identification of at least one chemical sensitivity phenotype for 17 phosphatase knockout mutants, including novel chemical sensitivities for two phosphatase mutants lacking a growth or developmental phenotype. Hence, chemical sensitivity or growth/developmental phenotype was observed for all 24 viable mutants. We investigated p38 mitogen-activated protein kinase (MAPK) phosphorylation profiles in the phosphatase mutants and identified nine potential candidates for regulators of the p38 MAPK. We demonstrated that the PP2C class phosphatase pph-8 (NCU04600) is an important regulator of female sexual development in N. crassa. In addition, we showed that the Δcsp-6 (ΔNCU08380) mutant exhibits a phenotype similar to the previously identified conidial separation mutants, Δcsp-1 and Δcsp-2, that lack transcription factors important for regulation of conidiation and the circadian clock. PMID:24347630

  11. The Role of Mitogen-Activated Protein Kinase-Activated Protein Kinases (MAPKAPKs) in Inflammation

    PubMed Central

    Moens, Ugo; Kostenko, Sergiy; Sveinbjørnsson, Baldur

    2013-01-01

    Mitogen-activated protein kinase (MAPK) pathways are implicated in several cellular processes including proliferation, differentiation, apoptosis, cell survival, cell motility, metabolism, stress response and inflammation. MAPK pathways transmit and convert a plethora of extracellular signals by three consecutive phosphorylation events involving a MAPK kinase kinase, a MAPK kinase, and a MAPK. In turn MAPKs phosphorylate substrates, including other protein kinases referred to as MAPK-activated protein kinases (MAPKAPKs). Eleven mammalian MAPKAPKs have been identified: ribosomal-S6-kinases (RSK1-4), mitogen- and stress-activated kinases (MSK1-2), MAPK-interacting kinases (MNK1-2), MAPKAPK-2 (MK2), MAPKAPK-3 (MK3), and MAPKAPK-5 (MK5). The role of these MAPKAPKs in inflammation will be reviewed. PMID:24705157

  12. Dynamic architecture of a protein kinase

    PubMed Central

    McClendon, Christopher L.; Kornev, Alexandr P.; Gilson, Michael K.; Taylor, Susan S.

    2014-01-01

    Protein kinases are dynamically regulated signaling proteins that act as switches in the cell by phosphorylating target proteins. To establish a framework for analyzing linkages between structure, function, dynamics, and allostery in protein kinases, we carried out multiple microsecond-scale molecular-dynamics simulations of protein kinase A (PKA), an exemplar active kinase. We identified residue–residue correlated motions based on the concept of mutual information and used the Girvan–Newman method to partition PKA into structurally contiguous “communities.” Most of these communities included 40–60 residues and were associated with a particular protein kinase function or a regulatory mechanism, and well-known motifs based on sequence and secondary structure were often split into different communities. The observed community maps were sensitive to the presence of different ligands and provide a new framework for interpreting long-distance allosteric coupling. Communication between different communities was also in agreement with the previously defined architecture of the protein kinase core based on the “hydrophobic spine” network. This finding gives us confidence in suggesting that community analyses can be used for other protein kinases and will provide an efficient tool for structural biologists. The communities also allow us to think about allosteric consequences of mutations that are linked to disease. PMID:25319261

  13. Constitutive expression and silencing of a novel seed specific calcium dependent protein kinase gene in rice reveals its role in grain filling.

    PubMed

    Manimaran, P; Mangrauthia, Satendra K; Sundaram, R M; Balachandran, S M

    2015-02-01

    Ca(2+) sensor protein kinases are prevalent in most plant species including rice. They play diverse roles in plant signaling mechanism. Thirty one CDPK genes have been identified in rice and some are functionally characterized. In the present study, the newly identified rice CDPK gene OsCPK31 was functionally validated by overexpression and silencing in Taipei 309 rice cultivar. Spikelets of overexpressing plants showed hard dough stage within 15d after pollination (DAP) with rapid grain filling and early maturation. Scanning electron microscopy of endosperm during starch granule formation confirmed early grain filling. Further, seeds of overexpressing transgenic lines matured early (20-22 DAP) and the average number of maturity days reduced significantly. On the other hand, silencing lines showed more number of unfilled spikelet without any difference in maturity duration. It will be interesting to further decipher the role of OsCPK31 in biological pathways associated with distribution of photosynthetic assimilates during grain filling stage. PMID:25462965

  14. Leishmania amazonensis: PKC-like protein kinase modulates the (Na++K+)ATPase activity.

    PubMed

    Almeida-Amaral, Elmo Eduardo de; Caruso-Neves, Celso; Lara, Lucienne Silva; Pinheiro, Carla Mônica; Meyer-Fernandes, José Roberto

    2007-08-01

    The present study aimed to identify the presence of protein kinase C-like (PKC-like) in Leishmania amazonensis and to elucidate its possible role in the modulation of the (Na(+)+K(+))ATPase activity. Immunoblotting experiments using antibody against a consensus sequence (Ac 543-549) of rabbit protein kinase C (PKC) revealed the presence of a protein kinase of 80 kDa in L. amazonensis. Measurements of protein kinase activity showed the presence of both (Ca(2+)-dependent) and (Ca(2+)-independent) protein kinase activity in plasma membrane and cytosol. Phorbol ester (PMA) activation of the Ca(2+)-dependent protein kinase stimulated the (Na(+)+K(+))ATPase activity, while activation of the Ca(2+)-independent protein kinase was inhibitory. Both effects of protein kinase on the (Na(+)+K(+))ATPase of the plasma membrane were lower than that observed in intact cells. PMA induced the translocation of protein kinase from cytosol to plasma membrane, indicating that the maximal effect of protein kinase on the (Na(+)+K(+))ATPase activity depends on the synergistic action of protein kinases from both plasma membrane and cytosol. This is the first demonstration of a protein kinase activated by PMA in L. amazonensis and the first evidence for a possible role in the regulation of the (Na(+)+K(+))ATPase activity in this trypanosomatid. Modulation of the (Na(+)+K(+))ATPase by protein kinase in a trypanosomatid opens up new possibilities to understand the regulation of ion homeostasis in this parasite. PMID:17475255

  15. Phosphorylation of spore coat proteins by a family of atypical protein kinases.

    PubMed

    Nguyen, Kim B; Sreelatha, Anju; Durrant, Eric S; Lopez-Garrido, Javier; Muszewska, Anna; Dudkiewicz, Małgorzata; Grynberg, Marcin; Yee, Samantha; Pogliano, Kit; Tomchick, Diana R; Pawłowski, Krzysztof; Dixon, Jack E; Tagliabracci, Vincent S

    2016-06-21

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis; however, the mechanism by which CotH affects germination is unclear. Here, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology. PMID:27185916

  16. Giant protein kinases: domain interactions and structural basis of autoregulation.

    PubMed Central

    Kobe, B; Heierhorst, J; Feil, S C; Parker, M W; Benian, G M; Weiss, K R; Kemp, B E

    1996-01-01

    The myosin-associated giant protein kinases twitchin and titin are composed predominantly of fibronectin- and immunoglobulin-like modules. We report the crystal structures of two autoinhibited twitchin kinase fragments, one from Aplysia and a larger fragment from Caenorhabditis elegans containing an additional C-terminal immunoglobulin-like domain. The structure of the longer fragment shows that the immunoglobulin domain contacts the protein kinase domain on the opposite side from the catalytic cleft, laterally exposing potential myosin binding residues. Together, the structures reveal the cooperative interactions between the autoregulatory region and the residues from the catalytic domain involved in protein substrate binding, ATP binding, catalysis and the activation loop, and explain the differences between the observed autoinhibitory mechanism and the one found in the structure of calmodulin-dependent kinase I. Images PMID:9003756

  17. Proteomic and Metabolic Analyses of S49 Lymphoma Cells Reveal Novel Regulation of Mitochondria by cAMP and Protein Kinase A.

    PubMed

    Wilderman, Andrea; Guo, Yurong; Divakaruni, Ajit S; Perkins, Guy; Zhang, Lingzhi; Murphy, Anne N; Taylor, Susan S; Insel, Paul A

    2015-09-01

    Cyclic AMP (cAMP), acting via protein kinase A (PKA), regulates many cellular responses, but the role of mitochondria in such responses is poorly understood. To define such roles, we used quantitative proteomic analysis of mitochondria-enriched fractions and performed functional and morphologic studies of wild-type (WT) and kin(-) (PKA-null) murine S49 lymphoma cells. Basally, 75 proteins significantly differed in abundance between WT and kin(-) S49 cells. WT, but not kin(-), S49 cells incubated with the cAMP analog 8-(4-chlorophenylthio)adenosine cAMP (CPT-cAMP) for 16 h have (a) increased expression of mitochondria-related genes and proteins, including ones in pathways of branched-chain amino acid and fatty acid metabolism and (b) increased maximal capacity of respiration on branched-chain keto acids and fatty acids. CPT-cAMP also regulates the cellular rate of ATP-utilization, as the rates of both ATP-linked respiration and proton efflux are decreased in WT but not kin(-) cells. CPT-cAMP protected WT S49 cells from glucose or glutamine deprivation, In contrast, CPT-cAMP did not protect kin(-) cells or WT cells treated with the PKA inhibitor H89 from glutamine deprivation. Under basal conditions, the mitochondrial structure of WT and kin(-) S49 cells is similar. Treatment with CPT-cAMP produced apoptotic changes (i.e. decreased mitochondrial density and size and loss of cristae) in WT, but not kin(-) cells. Together, these findings show that cAMP acts via PKA to regulate multiple aspects of mitochondrial function and structure. Mitochondrial perturbation thus likely contributes to cAMP/PKA-mediated cellular responses. PMID:26203188

  18. Proteomic and Metabolic Analyses of S49 Lymphoma Cells Reveal Novel Regulation of Mitochondria by cAMP and Protein Kinase A*

    PubMed Central

    Wilderman, Andrea; Guo, Yurong; Divakaruni, Ajit S.; Perkins, Guy; Zhang, Lingzhi; Murphy, Anne N.; Taylor, Susan S.; Insel, Paul A.

    2015-01-01

    Cyclic AMP (cAMP), acting via protein kinase A (PKA), regulates many cellular responses, but the role of mitochondria in such responses is poorly understood. To define such roles, we used quantitative proteomic analysis of mitochondria-enriched fractions and performed functional and morphologic studies of wild-type (WT) and kin− (PKA-null) murine S49 lymphoma cells. Basally, 75 proteins significantly differed in abundance between WT and kin− S49 cells. WT, but not kin−, S49 cells incubated with the cAMP analog 8-(4-chlorophenylthio)adenosine cAMP (CPT-cAMP) for 16 h have (a) increased expression of mitochondria-related genes and proteins, including ones in pathways of branched-chain amino acid and fatty acid metabolism and (b) increased maximal capacity of respiration on branched-chain keto acids and fatty acids. CPT-cAMP also regulates the cellular rate of ATP-utilization, as the rates of both ATP-linked respiration and proton efflux are decreased in WT but not kin− cells. CPT-cAMP protected WT S49 cells from glucose or glutamine deprivation, In contrast, CPT-cAMP did not protect kin− cells or WT cells treated with the PKA inhibitor H89 from glutamine deprivation. Under basal conditions, the mitochondrial structure of WT and kin− S49 cells is similar. Treatment with CPT-cAMP produced apoptotic changes (i.e. decreased mitochondrial density and size and loss of cristae) in WT, but not kin− cells. Together, these findings show that cAMP acts via PKA to regulate multiple aspects of mitochondrial function and structure. Mitochondrial perturbation thus likely contributes to cAMP/PKA-mediated cellular responses. PMID:26203188

  19. Dynamics of Protein Kinases: Insights from Nuclear Magnetic Resonance

    PubMed Central

    Xiao, Yao; Liddle, Jennifer C.; Pardi, Arthur; Ahn, Natalie G.

    2015-01-01

    CONSPECTUS Protein kinases are ubiquitous enzymes with critical roles in cellular processes and pathology. As a result, researchers have studied their activity and regulatory mechanisms extensively. Thousands of X-ray structures give snapshots of the architectures of protein kinases in various states of activation and ligand binding. However, the extent of and manner by which protein motions and conformational dynamics underlie the function and regulation of these important enzymes is not well understood. Nuclear magnetic resonance (NMR) methods provide complementary information about protein conformation and dynamics in solution. However, until recently, the large size of these enzymes prevented researchers from using these methods with kinases. Developments in transverse relaxation-optimized spectroscopy (TROSY)-based techniques and more efficient isotope labeling strategies are now allowing researchers to carry out NMR studies on full-length protein kinases. In this Account, we describe recent insights into the role of dynamics in protein kinase regulation and catalysis that have been gained from NMR measurements of chemical shift changes and line broadening, residual dipolar couplings, and relaxation. These findings show strong associations between protein motion and events that control kinase activity. Dynamic and conformational changes occurring at ligand binding sites and other regulatory domains of these proteins propagate to conserved kinase core regions that mediate catalytic function. NMR measurements of slow time scale (microsecond to millisecond) motions also reveal that kinases carry out global exchange processes that synchronize multiple residues and allosteric interconversion between conformational states. Activating covalent modifications or ligand binding to form the Michaelis complex can induce these global processes. Inhibitors can also exploit the exchange properties of kinases by using conformational selection to form dynamically quenched

  20. Transcriptome analysis of cyclic AMP-dependent protein kinase A–regulated genes reveals the production of the novel natural compound fumipyrrole by Aspergillus fumigatus

    PubMed Central

    Macheleidt, Juliane; Scherlach, Kirstin; Neuwirth, Toni; Schmidt-Heck, Wolfgang; Straßburger, Maria; Spraker, Joseph; Baccile, Joshua A.; Schroeder, Frank C.; Keller, Nancy P.; Hertweck, Christian; Heinekamp, Thorsten; Brakhage, Axel A.

    2015-01-01

    Summary Aspergillus fumigatus is an opportunistic human pathogenic fungus causing life-threatening infections in immunocompromised patients. Adaptation to different habitats and also virulence of the fungus depends on signal perception and transduction by modules such as the cyclic AMP-dependent protein kinase A (PKA) pathway. Here, by transcriptome analysis, 632 differentially regulated genes of this important signaling cascade were identified, including 23 putative transcriptional regulators. The highest upregulated transcription factor gene was located in a previously unknown secondary metabolite gene cluster, which we named fmp, encoding an incomplete nonribosomal peptide synthetase, FmpE. Overexpression of the regulatory gene fmpR using the TetOn system led to the specific expression of the other six genes of the fmp cluster. Metabolic profiling of wild type and fmpR overexpressing strain by HPLC-DAD and HPLCHRESI-MS and structure elucidation by NMR led to identification of 5-benzyl-1H-pyrrole-2-carboxylic acid, which we named fumipyrrole. Fumipyrrole was not described as natural product yet. Chemical synthesis of fumipyrrole confirmed its structure. Interestingly, deletion of fmpR or fmpE led to reduced growth and sporulation of the mutant strains. Although fmp cluster genes were transcribed in infected mouse lungs, deletion of fmpR resulted in wild-type virulence in a murine infection model. PMID:25582336

  1. Regulation of Axonal Transport by Protein Kinases.

    PubMed

    Gibbs, Katherine L; Greensmith, Linda; Schiavo, Giampietro

    2015-10-01

    The intracellular transport of organelles, proteins, lipids, and RNA along the axon is essential for neuronal function and survival. This process, called axonal transport, is mediated by two classes of ATP-dependent motors, kinesins, and cytoplasmic dynein, which carry their cargoes along microtubule tracks. Protein kinases regulate axonal transport through direct phosphorylation of motors, adapter proteins, and cargoes, and indirectly through modification of the microtubule network. The misregulation of axonal transport by protein kinases has been implicated in the pathogenesis of several nervous system disorders. Here, we review the role of protein kinases acting directly on axonal transport and discuss how their deregulation affects neuronal function, paving the way for the exploitation of these enzymes as novel drug targets. PMID:26410600

  2. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2004-10-12

    The present invention relates to 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  3. Focused Proteomics Revealed a Novel Rho-kinase Signaling Pathway in the Heart.

    PubMed

    Yura, Yoshimitsu; Amano, Mutsuki; Takefuji, Mikito; Bando, Tomohiro; Suzuki, Kou; Kato, Katsuhiro; Hamaguchi, Tomonari; Hasanuzzaman Shohag, Md; Takano, Tetsuya; Funahashi, Yasuhiro; Nakamuta, Shinichi; Kuroda, Keisuke; Nishioka, Tomoki; Murohara, Toyoaki; Kaibuchi, Kozo

    2016-08-23

    Protein phosphorylation plays an important role in the physiological regulation of cardiac function. Myocardial contraction and pathogenesis of cardiac diseases have been reported to be associated with adaptive or maladaptive protein phosphorylation; however, phosphorylation signaling in the heart is not fully elucidated. We recently developed a novel kinase-interacting substrate screening (KISS) method for exhaustive screening of protein kinase substrates, using mass spectrometry and affinity chromatography. First, we examined protein phosphorylation by extracellular signal-regulated kinase (ERK) and protein kinase A (PKA), which has been relatively well studied in cardiomyocytes. The KISS method showed that ERK and PKA mediated the phosphorylation of known cardiac-substrates of each kinase such as Rps6ka1 and cTnI, respectively. Using this method, we found about 330 proteins as Rho-kinase-mediated substrates, whose substrate in cardiomyocytes is unknown. Among them, CARP/Ankrd1, a muscle ankyrin repeat protein, was confirmed as a novel Rho-kinase-mediated substrate. We also found that non-phosphorylatable form of CARP repressed cardiac hypertrophy-related gene Myosin light chain-2v (MLC-2v) promoter activity, and decreased cell size of heart derived H9c2 myoblasts more efficiently than wild type-CARP. Thus, focused proteomics enable us to reveal a novel signaling pathway in the heart. PMID:27334702

  4. Protein kinase activators alter glial cholesterol esterification

    SciTech Connect

    Jeng, I.; Dills, C.; Klemm, N.; Wu, C.

    1986-05-01

    Similar to nonneural tissues, the activity of glial acyl-CoA cholesterol acyltransferase is controlled by a phosphorylation and dephosphorylation mechanism. Manipulation of cyclic AMP content did not alter the cellular cholesterol esterification, suggesting that cyclic AMP is not a bioregulator in this case. Therefore, the authors tested the effect of phorbol-12-myristate 13-acetate (PMA) on cellular cholesterol esterification to determine the involvement of protein kinase C. PMA has a potent effect on cellular cholesterol esterification. PMA depresses cholesterol esterification initially, but cells recover from inhibition and the result was higher cholesterol esterification, suggesting dual effects of protein kinase C. Studies of other phorbol analogues and other protein kinase C activators such as merezein indicate the involvement of protein kinase C. Oleoyl-acetyl glycerol duplicates the effect of PMA. This observation is consistent with a diacyl-glycerol-protein kinase-dependent reaction. Calcium ionophore A23187 was ineffective in promoting the effect of PMA. They concluded that a calcium-independent and protein C-dependent pathway regulated glial cholesterol esterification.

  5. Studies of mice with cyclic AMP-dependent protein kinase (PKA) defects reveal the critical role of PKA's catalytic subunits in anxiety.

    PubMed

    Briassoulis, George; Keil, Margaret F; Naved, Bilal; Liu, Sophie; Starost, Matthew F; Nesterova, Maria; Gokarn, Nirmal; Batistatos, Anna; Wu, T John; Stratakis, Constantine A

    2016-07-01

    Cyclic adenosine mono-phosphate-dependent protein kinase (PKA) is critically involved in the regulation of behavioral responses. Previous studies showed that PKA's main regulatory subunit, R1α, is involved in anxiety-like behaviors. The purpose of this study was to determine how the catalytic subunit, Cα, might affect R1α's function and determine its effects on anxiety-related behaviors. The marble bury (MB) and elevated plus maze (EPM) tests were used to assess anxiety-like behavior and the hotplate test to assess nociception in wild type (WT) mouse, a Prkar1a heterozygote (Prkar1a(+/-)) mouse with haploinsufficiency for the regulatory subunit (R1α), a Prkaca heterozygote (Prkaca(+/-)) mouse with haploinsufficiency for the catalytic subunit (Cα), and a double heterozygote mouse (Prkar1a(+/-)/Prkaca(+/-)) with haploinsufficiency for both R1α and Cα. We then examined specific brain nuclei involved in anxiety. Results of MB test showed a genotype effect, with increased anxiety-like behavior in Prkar1a(+/-) and Prkar1a(+/-)/Prkaca(+/-) compared to WT mice. In the EPM, Prkar1a(+/-) spent significantly less time in the open arms, while Prkaca(+/-) and Prkar1a(+/-)/Prkaca(+/-) mice displayed less exploratory behavior compared to WT mice. The loss of one Prkar1a allele was associated with a significant increase in PKA activity in the basolateral (BLA) and central (CeA) amygdala and ventromedial hypothalamus (VMH) in both Prkar1a(+/-) and Prkar1a(+/-)/Prkaca(+/-) mice. Alterations of PKA activity induced by haploinsufficiency of its main regulatory or most important catalytic subunits result in anxiety-like behaviors. The BLA, CeA, and VMH are implicated in mediating these PKA effects in brain. PMID:26992826

  6. [Mitogen-activated protein kinases in atherosclerosis].

    PubMed

    Bryk, Dorota; Olejarz, Wioletta; Zapolska-Downar, Danuta

    2014-01-01

    Intracellular signalling cascades, in which MAPK (mitogen-activated protein kinases) intermediate, are responsible for a biological response of a cell to an external stimulus. MAP kinases, which include ERK1/2 (extracellular signalling-regulated kinase), JNK (c-Jun N-terminal kinase) and p 38 MAPK, regulate the activity of many proteins, enzymes and transcription factors and thus have a wide spectrum of biological effects. Many basic scientific studies have defined numerous details of their pathway organization and activation. There are also more and more studies suggesting that individual MAP kinases probably play an important role in the pathogenesis of atherosclerosis. They may mediate inflammatory processes, endothelial cell activation, monocyte/macrophage recruitment and activation, smooth muscle cell proliferation and T-lymphocyte differentiation, all of which represent crucial mechanisms involved in pathogenesis of atherosclerosis. The specific inhibition of an activity of the respective MAP kinases may prove a new therapeutic approach to attenuate atherosclerotic plaque formation in the future. In this paper, we review the current state of knowledge concerning MAP kinase-dependent cellular and molecular mechanisms underlying atherosclerosis. PMID:24491891

  7. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

    PubMed Central

    Zourelidou, Melina; Absmanner, Birgit; Weller, Benjamin; Barbosa, Inês CR; Willige, Björn C; Fastner, Astrid; Streit, Verena; Port, Sarah A; Colcombet, Jean; de la Fuente van Bentem, Sergio; Hirt, Heribert; Kuster, Bernhard; Schulze, Waltraud X; Hammes, Ulrich Z; Schwechheimer, Claus

    2014-01-01

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the—in many cells—asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant. DOI: http://dx.doi.org/10.7554/eLife.02860.001 PMID:24948515

  8. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID.

    PubMed

    Zourelidou, Melina; Absmanner, Birgit; Weller, Benjamin; Barbosa, Inês C R; Willige, Björn C; Fastner, Astrid; Streit, Verena; Port, Sarah A; Colcombet, Jean; de la Fuente van Bentem, Sergio; Hirt, Heribert; Kuster, Bernhard; Schulze, Waltraud X; Hammes, Ulrich Z; Schwechheimer, Claus

    2014-01-01

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the--in many cells--asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant. PMID:24948515

  9. Definition of an electrostatic relay switch critical for the cAMP-dependent activation of protein kinase A as revealed by the D170A mutant of RIalpha.

    PubMed

    Abu-Abed, Mona; Das, Rahul; Wang, Lijun; Melacini, Giuseppe

    2007-10-01

    The Regulatory (R) subunit of Protein Kinase A (PKA) inhibits its kinase activity by shielding the Catalytic (C) subunit from physiological substrates. This inhibition is reversed in response to extra-cellular signals that increase cAMP levels in the cytoplasm. Upon cAMP binding to R, C is allosterically released from R, activating a spectrum of downstream signaling cascades. Crystallographic data indicated that a series of distinct conformational changes within CBD-A must occur to relay the cAMP signal from the cAMP binding site to the R:C interaction interface. One critical cAMP relay site within the CBD-A of R has been identified as Asp170 because the D170A mutation selectively reduces the negative cooperativity between the cAMP- and C-recognition sites (i.e. the KD for the R:C complex in the presence of cAMP is reduced by more than 12-fold), without significantly compromising the high affinity of R for both binding partners. Here, utilizing an integrated set of comparative NMR analyses we have elucidated how this critical electrostatic switch is able to control the interaction network which transmits the cAMP signal within CBD-A. The D170A-induced variations in backbone chemical shifts as well as in hydrogen-deuterium and hydrogen-hydrogen exchange profiles show that Asp170 not only plays a pivotal role in controlling the local conformation of the phosphate binding cassette (PBC), where cAMP docks, but also significantly affects the long-range cAMP-dependent interaction network that extends from the PBC to the three major sites of C-recognition. We also found that the D170A mutation promotes partial unfolding, thus assisting the uncoupling of the alpha- and beta-subdomains of CBD-A as required for the major alpha-helical conformational re-arrangement necessary for C-binding. Overall, the emerging map of allosteric networks features Asp170 as an essential component of an electrostatic switch mechanism that stabilizes the conformation of the PBC region for

  10. Allosteric activation of apicomplexan calcium-dependent protein kinases.

    PubMed

    Ingram, Jessica R; Knockenhauer, Kevin E; Markus, Benedikt M; Mandelbaum, Joseph; Ramek, Alexander; Shan, Yibing; Shaw, David E; Schwartz, Thomas U; Ploegh, Hidde L; Lourido, Sebastian

    2015-09-01

    Calcium-dependent protein kinases (CDPKs) comprise the major group of Ca2+-regulated kinases in plants and protists. It has long been assumed that CDPKs are activated, like other Ca2+-regulated kinases, by derepression of the kinase domain (KD). However, we found that removal of the autoinhibitory domain from Toxoplasma gondii CDPK1 is not sufficient for kinase activation. From a library of heavy chain-only antibody fragments (VHHs), we isolated an antibody (1B7) that binds TgCDPK1 in a conformation-dependent manner and potently inhibits it. We uncovered the molecular basis for this inhibition by solving the crystal structure of the complex and simulating, through molecular dynamics, the effects of 1B7-kinase interactions. In contrast to other Ca2+-regulated kinases, the regulatory domain of TgCDPK1 plays a dual role, inhibiting or activating the kinase in response to changes in Ca2+ concentrations. We propose that the regulatory domain of TgCDPK1 acts as a molecular splint to stabilize the otherwise inactive KD. This dependence on allosteric stabilization reveals a novel susceptibility in this important class of parasite enzymes. PMID:26305940

  11. Allosteric activation of apicomplexan calcium-dependent protein kinases

    PubMed Central

    Ingram, Jessica R.; Knockenhauer, Kevin E.; Markus, Benedikt M.; Mandelbaum, Joseph; Ramek, Alexander; Shan, Yibing; Shaw, David E.; Schwartz, Thomas U.; Ploegh, Hidde L.; Lourido, Sebastian

    2015-01-01

    Calcium-dependent protein kinases (CDPKs) comprise the major group of Ca2+-regulated kinases in plants and protists. It has long been assumed that CDPKs are activated, like other Ca2+-regulated kinases, by derepression of the kinase domain (KD). However, we found that removal of the autoinhibitory domain from Toxoplasma gondii CDPK1 is not sufficient for kinase activation. From a library of heavy chain-only antibody fragments (VHHs), we isolated an antibody (1B7) that binds TgCDPK1 in a conformation-dependent manner and potently inhibits it. We uncovered the molecular basis for this inhibition by solving the crystal structure of the complex and simulating, through molecular dynamics, the effects of 1B7–kinase interactions. In contrast to other Ca2+-regulated kinases, the regulatory domain of TgCDPK1 plays a dual role, inhibiting or activating the kinase in response to changes in Ca2+ concentrations. We propose that the regulatory domain of TgCDPK1 acts as a molecular splint to stabilize the otherwise inactive KD. This dependence on allosteric stabilization reveals a novel susceptibility in this important class of parasite enzymes. PMID:26305940

  12. Oncoprotein protein kinase antibody kit

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2008-12-23

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  13. Non-degradative Ubiquitination of Protein Kinases

    PubMed Central

    Ball, K. Aurelia; Johnson, Jeffrey R.; Lewinski, Mary K.; Guatelli, John; Verschueren, Erik; Krogan, Nevan J.; Jacobson, Matthew P.

    2016-01-01

    Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well. PMID:27253329

  14. Pyruvate Kinase M2 Regulates Gene Transcription by Acting as A Protein Kinase

    PubMed Central

    Gao, Xueliang; Wang, Haizhen; Jenny, J. Yang; Liu, Xiaowei; Liu, Zhi-Ren

    2012-01-01

    Summary Pyruvate kinase isoform M2 (PKM2) is a glycolysis enzyme catalyzing conversion of phosphoenolpyruvate (PEP) to pyruvate with transferring a phosphate from PEP to ADP. We report here that PKM2 localizes to the cell nucleus. The levels of nuclear PKM2 correlate with cell proliferation. PKM2 activates transcription of MEK5 by phosphorylating stat3 at Y705. In vitro phosphorylation assays show that PKM2 is a protein kinase using PEP as phosphate donor. ADP competes with the protein substrate binding, indicating that the substrate may bind to the ADP site of PKM2. Our experiments suggest that PKM2 dimer is an active protein kinase, while the tetramer is an active pyruvate kinase. Expression a PKM2 mutant that exists as a dimer promotes cell proliferation, indicating that protein kinase activity of PKM2 plays a role in promoting cell proliferation. Our study reveals an important link between metabolism alteration and gene expression during tumor transformation and progression. PMID:22306293

  15. Ternary structure reveals mechanism of a membrane diacylglycerol kinase

    DOE PAGESBeta

    Li, Dianfan; Stansfeld, Phillip J.; Sansom, Mark S. P.; Keogh, Aaron; Vogeley, Lutz; Howe, Nicole; Lyons, Joseph A.; Aragao, David; Fromme, Petra; Fromme, Raimund; et al

    2015-12-17

    Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternarymore » structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. As a result, the active site architecture shows clear evidence of having arisen by convergent evolution.« less

  16. A potent and highly selective peptide substrate for protein kinase C assay.

    PubMed Central

    Toomik, R; Ek, P

    1997-01-01

    Protein kinases exhibit substrate specificities that are often primarily determined by the amino acids around the phosphorylation sites. Peptides corresponding to protein kinase C phosphorylation sites in several different proteins were synthesized on SPOTs membrane which has recently been found to be applicable for studies of protein kinase specificity. After phosphorylation with protein kinase C, we chose the best phosphorylated peptides for the investigation of the importance of amino acids immediately adjacent to the phosphorylation site. The selectivity of the best protein kinase C substrates from this study was analysed with protein kinases A, CK1 and CK2. According to these tests, the most favourable characteristics of SPOTs-membrane-associated peptides were demonstrated by peptide KRAKRKTAKKR. Kinetic analysis of peptide phosphorylation with protein kinase C revealed an apparent Km of 0.49 +/- 0.13 microM and Vmax of 10.0 +/- 0.5 nmol/min per mg with soluble peptide KRAKRKTAKKR. In addition, we assayed several other soluble peptides commonly used as protein kinase C substrates. Peptide KRAKRKTAKKR showed the lowest Km and the highest Vmax/Km value in comparison with peptides FKKSFKL, pEKRPSQRSKYL and KRAKRKTTKKR. Furthermore, of the peptides tested, KRAKRKTAKKR was the most selective substrate for protein kinase C. The favourable kinetic parameters combined with the selectivity should make the KRAKRKTAKKR peptide useful as a substrate for protein kinase C in the assays of both purified enzyme and in crude cell extracts. PMID:9065763

  17. Problem-Solving Test: "In Vitro" Protein Kinase A Reaction

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2009-01-01

    Phosphorylation of proteins by protein kinases is an important mechanism in the regulation of protein activity. Among hundreds of protein kinases present in human cells, PKA, the first kinase discovered, belongs to the most important and best characterized group of these enzymes. The author presents an experiment that analyzes the "in vitro"…

  18. Kinase inhibitor profiling reveals unexpected opportunities to inhibit disease-associated mutant kinases

    PubMed Central

    Duong-Ly, Krisna C.; Devarajan, Karthik; Liang, Shuguang; Horiuchi, Kurumi Y.; Wang, Yuren; Ma, Haiching; Peterson, Jeffrey R.

    2016-01-01

    Summary Small-molecule kinase inhibitors have typically been designed to inhibit wild-type kinases rather than the mutant forms that frequently arise in diseases such as cancer. Mutations can have serious clinical implications by increasing kinase catalytic activity or conferring therapeutic resistance. To identify opportunities to repurpose inhibitors against disease-associated mutant kinases, we conducted a large-scale functional screen of 183 known kinase inhibitors against 76 recombinant, mutant kinases. The results revealed lead compounds with activity against clinically important mutant kinases including ALK, LRRK2, RET, and EGFR as well as unexpected opportunities for repurposing FDA-approved kinase inhibitors as leads for additional indications. Furthermore, using T674I PDGFRα as an example, we show how single-dose screening data can provide predictive structure-activity data to guide subsequent inhibitor optimization. This study provides a resource for the development of inhibitors against numerous disease-associated mutant kinases and illustrates the potential of unbiased profiling as an approach to compound-centric inhibitor development. PMID:26776524

  19. Protein kinase activity associated with pancreatic zymogen granules.

    PubMed

    Burnham, D B; Munowitz, P; Thorn, N; Williams, J A

    1985-05-01

    Purified zymogen granules were prepared from rat pancreas by using an iso-osmotic Percoll gradient. In the presence of [gamma-32P]ATP, phosphorylation of several granule proteins was induced by Ca2+, most notably a Mr-13 000 protein, whereas addition of cyclic AMP was without effect. When phosphatidylserine was also added, Ca2+ increased the phosphorylation of additional proteins, with the largest effect on a protein of Mr 62 000. Purified granules were also able to phosphorylate exogenous substrates. Ca2+-induced phosphorylation of lysine-rich histone was enhanced over 3-fold in the presence of phosphatidylserine, and cyclic AMP-activated protein kinase activity was revealed with mixed histone as substrate. The concentrations of free Ca2+ and cyclic AMP required for half-maximal phosphorylation of both endogenous and exogenous proteins were 1-3 microM and 57 nM respectively. Treatment of granules with 0.25 M-KCl resulted in the release of phosphatidylserine-dependent kinase activity into a high-speed granule supernatant. In contrast, granule-protein substrates of Ca2+-activated kinase activity were resistant to KCl extraction, and in fact were present in purified granule membranes. Kinase activity activated by cyclic AMP was not extracted by KCl treatment. It is concluded that phosphorylation of integral membrane proteins in the zymogen granule can be induced by one or more Ca2+-activated protein kinases. Such a reaction is a potential mechanism by which exocytosis may be regulated in the exocrine pancreas by Ca2+-mediated secretagogues. PMID:4004796

  20. Protein kinase activity associated with pancreatic zymogen granules.

    PubMed Central

    Burnham, D B; Munowitz, P; Thorn, N; Williams, J A

    1985-01-01

    Purified zymogen granules were prepared from rat pancreas by using an iso-osmotic Percoll gradient. In the presence of [gamma-32P]ATP, phosphorylation of several granule proteins was induced by Ca2+, most notably a Mr-13 000 protein, whereas addition of cyclic AMP was without effect. When phosphatidylserine was also added, Ca2+ increased the phosphorylation of additional proteins, with the largest effect on a protein of Mr 62 000. Purified granules were also able to phosphorylate exogenous substrates. Ca2+-induced phosphorylation of lysine-rich histone was enhanced over 3-fold in the presence of phosphatidylserine, and cyclic AMP-activated protein kinase activity was revealed with mixed histone as substrate. The concentrations of free Ca2+ and cyclic AMP required for half-maximal phosphorylation of both endogenous and exogenous proteins were 1-3 microM and 57 nM respectively. Treatment of granules with 0.25 M-KCl resulted in the release of phosphatidylserine-dependent kinase activity into a high-speed granule supernatant. In contrast, granule-protein substrates of Ca2+-activated kinase activity were resistant to KCl extraction, and in fact were present in purified granule membranes. Kinase activity activated by cyclic AMP was not extracted by KCl treatment. It is concluded that phosphorylation of integral membrane proteins in the zymogen granule can be induced by one or more Ca2+-activated protein kinases. Such a reaction is a potential mechanism by which exocytosis may be regulated in the exocrine pancreas by Ca2+-mediated secretagogues. Images Fig. 1. Fig. 2. Fig. 7. Fig. 8. PMID:4004796

  1. Protein kinase A alterations in adrenocortical tumors.

    PubMed

    Espiard, S; Ragazzon, B; Bertherat, J

    2014-11-01

    Stimulation of the cAMP pathway by adrenocorticotropin (ACTH) is essential for adrenal cortex maintenance, glucocorticoid and adrenal androgens synthesis, and secretion. Various molecular and cellular alterations of the cAMP pathway have been observed in endocrine tumors. Protein kinase A (PKA) is a central key component of the cAMP pathway. Molecular alterations of PKA subunits have been observed in adrenocortical tumors. PKA molecular defects can be germline in hereditary disorders or somatic in sporadic tumors. Heterozygous germline inactivating mutations of the PKA regulatory subunit RIα gene (PRKAR1A) can be observed in patients with ACTH-independent Cushing's syndrome (CS) due to primary pigmented nodular adrenocortical disease (PPNAD). PRKAR1A is considered as a tumor suppressor gene. Interestingly, these mutations can also be observed as somatic alterations in sporadic cortisol-secreting adrenocortical adenomas. Germline gene duplication of the catalytic subunits Cα (PRKACA) has been observed in patients with PPNAD. Furthermore, exome sequencing revealed recently activating somatic mutations of PRKACA in about 40% of cortisol-secreting adrenocortical adenomas. In vitro and in vivo functional studies help in the progress to understand the mechanisms of adrenocortical tumors development due to PKA regulatory subunits alterations. All these alterations are observed in benign oversecreting tumors and are mimicking in some way cAMP pathway constitutive activation. On the long term, unraveling these alterations will open new strategies of pharmacological treatment targeting the cAMP pathway in adrenal tumors and cortisol-secretion disorders. PMID:25105543

  2. Mycobacterium tuberculosis Serine/Threonine Protein Kinases

    PubMed Central

    PRISIC, SLADJANA; HUSSON, ROBERT N.

    2014-01-01

    The Mycobacterium tuberculosis genome encodes 11 serine/threonine protein kinases (STPKs). A similar number of two-component systems are also present, indicating that these two signal transduction mechanisms are both important in the adaptation of this bacterial pathogen to its environment. The M. tuberculosis phosphoproteome includes hundreds of Ser- and Thr-phosphorylated proteins that participate in all aspects of M. tuberculosis biology, supporting a critical role for the STPKs in regulating M. tuberculosis physiology. Nine of the STPKs are receptor type kinases, with an extracytoplasmic sensor domain and an intracellular kinase domain, indicating that these kinases transduce external signals. Two other STPKs are cytoplasmic and have regulatory domains that sense changes within the cell. Structural analysis of some of the STPKs has led to advances in our understanding of the mechanisms by which these STPKs are activated and regulated. Functional analysis has provided insights into the effects of phosphorylation on the activity of several proteins, but for most phosphoproteins the role of phosphorylation in regulating function is unknown. Major future challenges include characterizing the functional effects of phosphorylation for this large number of phosphoproteins, identifying the cognate STPKs for these phosphoproteins, and determining the signals that the STPKs sense. Ultimately, combining these STPK-regulated processes into larger, integrated regulatory networks will provide deeper insight into M. tuberculosis adaptive mechanisms that contribute to tuberculosis pathogenesis. Finally, the STPKs offer attractive targets for inhibitor development that may lead to new therapies for drug-susceptible and drug-resistant tuberculosis. PMID:25429354

  3. A new autoinhibited kinase conformation reveals a salt-bridge switch in kinase activation

    PubMed Central

    Wei, Qiang; Yang, Shaoyuan; Li, Dan; Zhang, Xiaoying; Zheng, Jimin; Jia, Zongchao

    2016-01-01

    In the structure of autoinhibited EphA2 tyrosine kinase reported herein, we have captured the entire activation segment, revealing a previously unknown role of the conserved Arg762 in kinase autoinhibition by interacting with the essential Mg2+-chelating Asp757. While it is well known that this Arg residue is involved in an electrostatic interaction with the phospho-residue of the activation loop to stabilize the active conformation, our structure determination revealed a new role for the Arg, acting as a switch between the autoinhibited and activated conformations. Mutation of Arg762 to Ala in EphA2 sensitized Mg2+ response, resulting in enhanced kinase catalytic activity and Mg2+ cooperativity. Furthermore, mutation of the corresponding Arg/Lys to Ala in PKA and p38MAPK also exhibited similar behavior. This new salt bridge-mediated switch may thus be an important mechanism of activation on a broader scope for kinases which utilize autophosphorylation. PMID:27324091

  4. Protein kinases as drug targets in cancer.

    PubMed

    Arslan, Mehmet Alper; Kutuk, Ozgur; Basaga, Huveyda

    2006-11-01

    Identification of the key roles of protein kinases in signaling pathways leading to development of cancer has caused pharmacological interest to concentrate extensively on targeted therapies as a more specific and effective way for blockade of cancer progression. This review will mainly focus on inhibitors targeting these key components of cellular signaling by employing a technology-based point of view with respect to ATP- and non-ATP-competitive small molecule inhibitors and monoclonal antibodies of selected protein kinases, particularly, mammalian target of rapamycin (mTOR), BCR-ABL, MEK, p38 MAPK, EGFR PDGFR, VEGFR, HER2 and Raf. Inhibitors of the heat shock protein Hsp90 are also included in a separate section, as this protein plays an essential role for the maturation/proper activation of cancer-related protein kinases. In the following review, the molecular details of the mode of action of these inhibitors as well as the emergence of drug resistance encountered in several cases are discussed in light of the structural, molecular and clinical studies conducted so far. PMID:17100568

  5. Crystal Structure of the Protein Kinase Domain of Yeast AMP-Activated Protein Kinase Snf1

    SciTech Connect

    Rudolph,M.; Amodeo, G.; Bai, Y.; Tong, L.

    2005-01-01

    AMP-activated protein kinase (AMPK) is a master metabolic regulator, and is an important target for drug development against diabetes, obesity, and other diseases. AMPK is a hetero-trimeric enzyme, with a catalytic ({alpha}) subunit, and two regulatory ({beta} and {gamma}) subunits. Here we report the crystal structure at 2.2 Angstrom resolution of the protein kinase domain (KD) of the catalytic subunit of yeast AMPK (commonly known as SNF1). The Snf1-KD structure shares strong similarity to other protein kinases, with a small N-terminal lobe and a large C-terminal lobe. Two negative surface patches in the structure may be important for the recognition of the substrates of this kinase.

  6. Identification of four plastid-localized protein kinases.

    PubMed

    Richter, Andreas S; Gartmann, Hans; Fechler, Mona; Rödiger, Anja; Baginsky, Sacha; Grimm, Bernhard

    2016-06-01

    In chloroplasts, protein phosphorylation regulates important processes, including metabolism, photosynthesis, gene expression, and signaling. Because the hitherto known plastid protein kinases represent only a fraction of existing kinases, we aimed at the identification of novel plastid-localized protein kinases that potentially phosphorylate enzymes of the tetrapyrrole biosynthesis (TBS) pathway. We screened publicly available databases for proteins annotated as putative protein kinase family proteins with predicted chloroplast localization. Additionally, we analyzed chloroplast fractions which were separated by sucrose density gradient centrifugation by mass spectrometry. We identified four new candidates for protein kinases, which were confirmed to be plastid localized by expression of GFP-fusion proteins in tobacco leaves. A phosphorylation assay with the purified kinases confirmed the protein kinase activity for two of them. PMID:27214872

  7. Characterization of three mitogen-activated protein kinases (MAPK) genes reveals involvement of ERK and JNK, not p38 in defense against bacterial infection in Yesso scallop Patinopecten yessoensis.

    PubMed

    Sun, Yan; Zhang, Lingling; Zhang, Meiwei; Li, Ruojiao; Li, Yangping; Hu, Xiaoli; Wang, Shi; Bao, Zhenmin

    2016-07-01

    Mitogen-activated protein kinases (MAPKs) are protein Ser/Thr kinases that play a vital role in innate immune responses by converting extracellular stimuli into a wide range of cellular responses. Although MAPKs have been extensively studied in various vertebrates and invertebrates, our current understanding of MAPK signaling cascade in scallop is in its infancy. In this study, three MAPK genes (PyERK, PyJNK, and Pyp38) were identified from Yesso scallop Patinopecten yessoensis. The open reading frame of PyERK, PyJNK, and Pyp38 was 1104, 1227, and 1104 bp, encoding 367, 408, and 367 amino acids, respectively. Conservation in some splicing sites was revealed across the three PyMAPKs, suggesting the common descent of MAPKs genes. The expression profiles of PyMAPKs over the course of ten different developmental stages showed that they had different expression patterns. In adult scallops, PyMAPKs were primarily expressed in muscles, hemocytes, gill, and mantle. To gain insights into their role in innate immunity, we investigated their expression profiles after infection with Gram-positive bacteria (Micrococcus luteus) and Gram-negative bacteria (Vibrio anguillarum). Significant difference in gene expression was only found in PyERK and PyJNK, but not Pyp38, suggesting Pyp38 may not participate in immune response to bacterial infection. Besides, PyERK and PyJNK exhibited more drastic change against the invasion of V. anguillarum than M. luteus, suggesting they could be more sensitive to Gram-negative bacteria than Gram-positive bacteria. This study provides valuable resource for elucidating the role of MAPK signal pathway in bivalve innate immune response. PMID:27155450

  8. Dynamics connect substrate recognition to catalysis in protein kinase A

    PubMed Central

    Masterson, Larry R.; Cheng, Cecilia; Yu, Tao; Tonelli, Marco; Kornev, Alexandr; Taylor, Susan S.; Veglia, Gianluigi

    2012-01-01

    Atomic resolution studies of protein kinases have traditionally been carried out in the inhibitory state, limiting our current knowledge on the mechanisms of substrate recognition and catalysis. Using NMR, x-ray crystallography, and thermodynamic measurements we analyzed the substrate recognition process of cAMP-dependent protein kinase (PKA), finding that entropy and protein dynamics play a prominent role. The nucleotide acts as a dynamic and allosteric activator by coupling the two lobes of apo PKA, enhancing the enzyme dynamics synchronously, and priming it for catalysis. The formation of the ternary complex is entropically driven and NMR spin relaxation data reveal that both substrate and PKA are dynamic in the closed state. Our results show that the enzyme toggles between open and closed states, which indicate that a population shift/conformational selection rather than an induced-fit mechanism governs substrate recognition. PMID:20890288

  9. Transduction proteins of olfactory receptor cells: identification of guanine nucleotide binding proteins and protein kinase C

    SciTech Connect

    Anholt, R.R.H.; Mumby, S.M.; Stoffers, D.A.; Girard, P.R.; Kuo, J.F.; Snyder, S.H.

    1987-02-10

    The authors have analyzed guanine nucleotide binding proteins (G-proteins) in the olfactory epithelium of Rana catesbeiana using subunit-specific antisera. The olfactory epithelium contained the ..cap alpha.. subunits of three G-proteins, migrating on polyacrylamide gels in SDS with apparent molecular weights of 45,000, 42,000, and 40,000, corresponding to G/sub s/, G/sub i/, and G/sub o/, respectively. A single ..beta.. subunit with an apparent molecular weight of 36,000 was detected. An antiserum against the ..cap alpha.. subunit of retinal transducin failed to detect immunoreactive proteins in olfactory cilia detached from the epithelium. The olfactory cilia appeared to be enriched in immunoreactive G/sub s..cap alpha../ relative to G/sub ichemically bond/ and G/sub ochemically bond/ when compared to membranes prepared from the olfactory epithelium after detachment of the cilia. Bound antibody was detected by autoradiography after incubation with (/sup 125/I)protein. Immunohistochemical studies using an antiserum against the ..beta.. subunit of G-proteins revealed intense staining of the ciliary surface of the olfactory epithelium and of the axon bundles in the lamina propria. In contrast, an antiserum against a common sequence of the ..cap alpha.. subunits preferentially stained the cell membranes of the olfactory receptor cells and the acinar cells of Bowman's glands and the deep submucosal glands. In addition to G-proteins, they have identified protein kinase C in olfactory cilia via a protein kinase C specific antiserum and via phorbol ester binding. However, in contrast to the G-proteins, protein kinase C occurred also in cilia isolated from respiratory epithelium.

  10. Protein kinase activity associated with simian virus 40 T antigen.

    PubMed Central

    Griffin, J D; Spangler, G; Livingston, D M

    1979-01-01

    Incubation of simian virus 40 (SV40) tumor (T) antigen-containing immunoprecipitates with [gamma-32P]ATP results in the incorporation of radioactive phosphate into large T antigen. Highly purified preparations of large T antigen from a SV40-transformed cell line, SV80, are able to catalyze the phosphorylation of a known phosphate acceptor, casein. The kinase activity migrates with large T antigen through multiple purification steps. Sedimentation analysis under non-T-antigen-aggregating conditions reveals that kinase activity and the immunoreactive protein comigrate as a 6S structure. The kinase activity of purified preparations of large T antigen can be specifically adsorbed to solid-phase anti-T IgG, and partially purified T antigen from a SV40 tsA transformation is thermolabile in its ability to phosphorylate casein when compared to comparably purified wild-type T antigen. These observations indicate that the SV40 large T antigen is closely associated with protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) activity. Images PMID:223152

  11. Protein kinase A alterations in endocrine tumors.

    PubMed

    Yu, B; Ragazzon, B; Rizk-Rabin, M; Bertherat, J

    2012-09-01

    Various molecular and cellular alterations of the cyclic adenosine monophosphate (cAMP) pathway have been observed in endocrine tumors. Since protein kinase A (PKA) is a central key component of the cAMP pathway, studies of the alterations of PKA subunits in endocrine tumors reveal new aspects of the mechanisms of cAMP pathway alterations in human diseases. So far, most alterations have been observed for the regulatory subunits, mainly PRKAR1A and to a lower extent, PRKAR2B. One of the best examples of such alteration today is the multiple neoplasia syndrome Carney complex (CNC). The most common endocrine gland manifestations of CNC are pituitary GH-secreting adenomas, thyroid tumors, testicular tumors, and ACTH-independent Cushing's syndrome due to primary pigmented nodular adrenocortical disease (PPNAD). Heterozygous germline inactivating mutations of the PKA regulatory subunit RIα gene (PRKAR1A) are observed in about two-third of CNC patients, and also in patients with isolated PPNAD. PRKAR1A is considered as a tumor suppressor gene. Interestingly, these mutations can also be observed as somatic alterations in sporadic endocrine tumors. More than 120 different PRKAR1A mutations have been found today. Most of them lead to an unstable mutant mRNA, which will be degraded by nonsense mediated mRNA decay. In vitro and in vivo functional studies are in progress to understand the mechanisms of endocrine tumor development due to PKA regulatory subunits inactivation. PRKAR1A mutations stimulate in most models PKA activity, mimicking in some way cAMP pathway constitutive activation. Cross-talks with other signaling pathways summarized in this review have been described and might participate in endocrine tumorigenesis. PMID:22752956

  12. Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids.

    PubMed Central

    Dynan, W S; Yoo, S

    1998-01-01

    The Ku protein-DNA-dependent protein kinase system is one of the major pathways by which cells of higher eukaryotes respond to double-strand DNA breaks. The components of the system are evolutionarily conserved and homologs are known from a number of organisms. The Ku protein component binds directly to DNA ends and may help align them for ligation. Binding of Ku protein to DNA also nucleates formation of an active enzyme complex containing the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The interaction between Ku protein, DNA-PKcs and nucleic acids has been extensively investigated. This review summarizes the results of these biochemical investigations and relates them to recent molecular genetic studies that reveal highly characteristic repair and recombination defects in mutant cells lacking Ku protein or DNA-PKcs. PMID:9512523

  13. Osmotic stress signaling via protein kinases.

    PubMed

    Fujii, Hiroaki; Zhu, Jian-Kang

    2012-10-01

    Plants face various kinds of environmental stresses, including drought, salinity, and low temperature, which cause osmotic stress. An understanding of the plant signaling pathways that respond to osmotic stress is important for both basic biology and agriculture. In this review, we summarize recent investigations concerning the SNF1-related protein kinase (SnRK) 2 kinase family, which play central roles in osmotic stress responses. SnRK2s are activated by osmotic stress, and a mutant lacking SnRK2s is hypersensitive to osmotic stress. Many questions remain about the signaling pathway upstream and downstream of SnRK2s. Because some SnRK2s also functions in the abscisic acid (ABA) signaling pathway, which has recently been well clarified, study of SnRK2s in ABA signaling can provide clues regarding their roles in osmotic stress signaling. PMID:22828864

  14. Glycogen Synthase Kinase 3β Interaction Protein Functions as an A-kinase Anchoring Protein*

    PubMed Central

    Hundsrucker, Christian; Skroblin, Philipp; Christian, Frank; Zenn, Hans-Michael; Popara, Viola; Joshi, Mangesh; Eichhorst, Jenny; Wiesner, Burkhard; Herberg, Friedrich W.; Reif, Bernd; Rosenthal, Walter; Klussmann, Enno

    2010-01-01

    A-kinase anchoring proteins (AKAPs) include a family of scaffolding proteins that target protein kinase A (PKA) and other signaling proteins to cellular compartments and thereby confine the activities of the associated proteins to distinct regions within cells. AKAPs bind PKA directly. The interaction is mediated by the dimerization and docking domain of regulatory subunits of PKA and the PKA-binding domain of AKAPs. Analysis of the interactions between the dimerization and docking domain and various PKA-binding domains yielded a generalized motif allowing the identification of AKAPs. Our bioinformatics and peptide array screening approaches based on this signature motif identified GSKIP (glycogen synthase kinase 3β interaction protein) as an AKAP. GSKIP directly interacts with PKA and GSK3β (glycogen synthase kinase 3β). It is widely expressed and facilitates phosphorylation and thus inactivation of GSK3β by PKA. GSKIP contains the evolutionarily conserved domain of unknown function 727. We show here that this domain of GSKIP and its vertebrate orthologues binds both PKA and GSK3β and thereby provides a mechanism for the integration of PKA and GSK3β signaling pathways. PMID:20007971

  15. 3pK, a new mitogen-activated protein kinase-activated protein kinase located in the small cell lung cancer tumor suppressor gene region.

    PubMed Central

    Sithanandam, G; Latif, F; Duh, F M; Bernal, R; Smola, U; Li, H; Kuzmin, I; Wixler, V; Geil, L; Shrestha, S

    1996-01-01

    NotI linking clones, localized to the human chromosome 3p21.3 region and homozygously deleted in small cell lung cancer cell lines NCI-H740 and NCI-H1450, were used to search for a putative tumor suppressor gene(s). One of these clones, NL1G210, detected a 2.5-kb mRNA in all examined human tissues, expression being especially high in the heart and skeletal muscle. Two overlapping cDNA clones containing the entire open reading frame were isolated from a human heart cDNA library and fully characterized. Computer analysis and a search of the GenBank database to reveal high sequence identity of the product of this gene to serine-threonine kinases, especially to mitogen-activated protein kinase-activated protein kinase 2, a recently described substrate of mitogen-activated kinases. Sequence identitiy was 72% at the nucleotide level and 75% at the amino acid level, strongly suggesting that this protein is a serine-threonine kinase. Here we demonstrate that the new gene, referred to as 3pK (for chromosome 3p kinase), in fact encodes a mitogen-activated protein kinase-regulated protein serine-threonine kinase with a novel substrate specificity. PMID:8622688

  16. A Screen for Novel Phosphoinositide 3-kinase Effector Proteins*

    PubMed Central

    Dixon, Miles J.; Gray, Alexander; Boisvert, François-Michel; Agacan, Mark; Morrice, Nicholas A.; Gourlay, Robert; Leslie, Nicholas R.; Downes, C. Peter; Batty, Ian H.

    2011-01-01

    Class I phosphoinositide 3-kinases exert important cellular effects through their two primary lipid products, phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2). As few molecular targets for PtdIns(3,4)P2 have yet been identified, a screen for PI 3-kinase-responsive proteins that is selective for these is described. This features a tertiary approach incorporating a unique, primary recruitment of target proteins in intact cells to membranes selectively enriched in PtdIns(3,4)P2. A secondary purification of these proteins, optimized using tandem pleckstrin homology domain containing protein-1 (TAPP-1), an established PtdIns(3,4)P2 selective ligand, yields a fraction enriched in proteins of potentially similar lipid binding character that are identified by liquid chromatography-tandem MS. Thirdly, this approach is coupled to stable isotope labeling with amino acids in cell culture using differential isotope labeling of cells stimulated in the absence and presence of the PI 3-kinase inhibitor wortmannin. This provides a ratio-metric readout that distinguishes authentically responsive components from copurifying background proteins. Enriched fractions thus obtained from astrocytoma cells revealed a subset of proteins that exhibited ratios indicative of their initial, cellular responsiveness to PI 3-kinase activation. The inclusion among these of tandem pleckstrin homology domain containing protein-1, three isoforms of Akt, switch associated protein-70, early endosome antigen-1 and of additional proteins expressing recognized lipid binding domains demonstrates the utility of this strategy and lends credibility to the novel candidate proteins identified. The latter encompass a broad set of proteins that include the gene product of TBC1D2A, a putative Rab guanine nucleotide triphosphatase activating protein (GAP) and IQ motif containing GAP1, a potential tumor promoter. A sequence comparison of the former protein indicates

  17. Photoinduced structural changes to protein kinase A

    NASA Astrophysics Data System (ADS)

    Rozinek, Sarah C.; Thomas, Robert J.; Brancaleon, Lorenzo

    2014-03-01

    The importance of porphyrins in organisms is underscored by the ubiquitous biological and biochemical functions that are mediated by these compounds and by their potential biomedical and biotechnological applications. Protoporphyrin IX (PPIX) is the precursor to heme and has biomedical applications such as its use as a photosensitizer in phototherapy and photodetection of cancer. Among other applications, our group has demonstrated that low-irradiance exposure to laser irradiation of PPIX, Fe-PPIX, or meso-tetrakis (4-sulfonatophenyl) porphyrin (TSPP) non-covalently docked to a protein causes conformational changes in the polypeptide. Such approach can have remarkable consequences in the study of protein structure/function relationship and can be used to prompt non-native protein properties. Therefore we have investigated protein kinase A (PKA), a more relevant protein model towards the photo-treatment of cancer. PKA's enzymatic functions are regulated by the presence of cyclic adenosine monophosphate for intracellular signal transduction involved in, among other things, stimulation of transcription, tumorigenesis in Carney complex and migration of breast carcinoma cells. Since phosphorylation is a necessary step in some cancers and inflammatory diseases, inhibiting the protein kinase, and therefore phosphorylation, may serve to treat these diseases. Changes in absorption, steady-state fluorescence, and fluorescence lifetime indicate: 1) both TSPP and PPIX non-covalently bind to PKA where they maintain photoreactivity; 2) absorptive photoproduct formation occurs only when PKA is bound to TSPP and irradiated; and 3) PKA undergoes secondary structural changes after irradiation with either porphyrin bound. These photoinduced changes could affect the protein's enzymatic and signaling capabilities.

  18. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    PubMed Central

    Shi, Lei; Pigeonneau, Nathalie; Ravikumar, Vaishnavi; Dobrinic, Paula; Macek, Boris; Franjevic, Damjan; Noirot-Gros, Marie-Francoise; Mijakovic, Ivan

    2014-01-01

    Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD, and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells. PMID:25278935

  19. New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression.

    PubMed

    Galinier, A; Kravanja, M; Engelmann, R; Hengstenberg, W; Kilhoffer, M C; Deutscher, J; Haiech, J

    1998-02-17

    Carbon catabolite repression (CCR) is the prototype of a signal transduction mechanism. In enteric bacteria, cAMP was considered to be the second messenger in CCR by playing a role reminiscent of its actions in eukaryotic cells. However, recent results suggest that CCR in Escherichia coli is mediated mainly by an inducer exclusion mechanism. In many Gram-positive bacteria, CCR is triggered by fructose-1,6-bisphosphate, which activates HPr kinase, presumed to be one of the most ancient serine protein kinases. We here report cloning of the Bacillus subtilis hprK and hprP genes and characterization of the encoded HPr kinase and P-Ser-HPr phosphatase. P-Ser-HPr phosphatase forms a new family of phosphatases together with bacterial phosphoglycolate phosphatase, yeast glycerol-3-phosphatase, and 2-deoxyglucose-6-phosphate phosphatase whereas HPr kinase represents a new family of protein kinases on its own. It does not contain the domain structure typical for eukaryotic protein kinases. Although up to now the HPr modifying/demodifying enzymes were thought to exist only in Gram-positive bacteria, a sequence comparison revealed that they also are present in several Gram-negative pathogenic bacteria. PMID:9465101

  20. Protein Kinase A Opposes the Phosphorylation-dependent Recruitment of Glycogen Synthase Kinase 3β to A-kinase Anchoring Protein 220.

    PubMed

    Whiting, Jennifer L; Nygren, Patrick J; Tunquist, Brian J; Langeberg, Lorene K; Seternes, Ole-Morten; Scott, John D

    2015-08-01

    The proximity of an enzyme to its substrate can influence rate and magnitude of catalysis. A-kinase anchoring protein 220 (AKAP220) is a multivalent anchoring protein that can sequester a variety of signal transduction enzymes. These include protein kinase A (PKA) and glycogen synthase kinase 3β (GSK3β). Using a combination of molecular and cellular approaches we show that GSK3β phosphorylation of Thr-1132 on AKAP220 initiates recruitment of this kinase into the enzyme scaffold. We also find that AKAP220 anchors GSK3β and its substrate β-catenin in membrane ruffles. Interestingly, GSK3β can be released from the multienzyme complex in response to PKA phosphorylation on serine 9, which suppresses GSK3β activity. The signaling scaffold may enhance this regulatory mechanism, as AKAP220 has the capacity to anchor two PKA holoenzymes. Site 1 on AKAP220 (residues 610-623) preferentially interacts with RII, whereas site 2 (residues 1633-1646) exhibits a dual specificity for RI and RII. In vitro affinity measurements revealed that site 2 on AKAP220 binds RII with ∼10-fold higher affinity than site 1. Occupancy of both R subunit binding sites on AKAP220 could provide a mechanism to amplify local cAMP responses and enable cross-talk between PKA and GSK3β. PMID:26088133

  1. Cl- Channels in CF: Lack of Activation by Protein Kinase C and cAMP-Dependent Protein Kinase

    NASA Astrophysics Data System (ADS)

    Hwang, Tzyh-Chang; Lu, Luo; Zeitlin, Pamela L.; Gruenert, Dieter C.; Huganir, Richard; Guggino, William B.

    1989-06-01

    Secretory chloride channels can be activated by adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase in normal airway epithelial cells but not in cells from individuals with cystic fibrosis (CF). In excised, inside-out patches of apical membrane of normal human airway cells and airway cells from three patients with CF, the chloride channels exhibited a characteristic outwardly rectifying current-voltage relation and depolarization-induced activation. Channels from normal tissues were activated by both cAMP-dependent protein kinase and protein kinase C. However, chloride channels from CF patients could not be activated by either kinase. Thus, gating of normal epithelial chloride channels is regulated by both cAMP-dependent protein kinase and protein kinase C, and regulation by both kinases is defective in CF.

  2. Calcium-Dependent Protein Kinase Genes in Corn Roots

    NASA Technical Reports Server (NTRS)

    Takezawa, D.; Patil, S.; Bhatia, A.; Poovaiah, B. W.

    1996-01-01

    Two cDNAs encoding Ca-2(+) - Dependent Protein Kinases (CDPKs), Corn Root Protein Kinase 1 and 2 (CRPK 1, CRPK 2) were isolated from the root tip library of corn (Zea mays L., cv. Merit) and their nucleotide sequences were determined. Deduced amino acid sequences of both the clones have features characteristic of plant CDPKS, including all 11 conserved serine/threonine kinase subdomains, a junction domain and a calmodulin-like domain with four Ca-2(+), -binding sites. Northern analysis revealed that CRPKI mRNA is preferentially expressed in roots, especially in the root tip; whereas, the expression of CRPK2 mRNA was very low in all the tissues tested. In situ hybridization experiments revealed that CRPKI mRNA is highly expressed in the root apex, as compared to other parts of the root. Partially purified CDPK from the root tip phosphorylates syntide-2, a common peptide substrate for plant CDPKs, and the phosphorylation was stimulated 7-fold by the addition of Ca-2(+). Our results show that two CDPK isoforms are expressed in corn roots and they may be involved in the Ca-2(+)-dependent signal transduction process.

  3. Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase Akt/protein kinase B

    PubMed Central

    Jiang, Bing-Hua; Aoki, Masahiro; Zheng, Jenny Z.; Li, Jian; Vogt, Peter K.

    1999-01-01

    The oncogene p3k, coding for a constitutively active form of phosphatidylinositol 3-kinase (PI 3-kinase), strongly activates myogenic differentiation. Inhibition of endogenous PI 3-kinase activity with the specific inhibitor LY294002, or with dominant-negative mutants of PI 3-kinase, interferes with myotube formation and with the expression of muscle-specific proteins. Here we demonstrate that a downstream target of PI 3-kinase, serine-threonine kinase Akt, plays an important role in myogenic differentiation. Expression of constitutively active forms of Akt dramatically enhances myotube formation and expression of the muscle-specific proteins MyoD, creatine kinase, myosin heavy chain, and desmin. Transdominant negative forms of Akt inhibit myotube formation and the expression of muscle-specific proteins. The inhibition of myotube formation and the reduced expression of muscle-specific proteins caused by the PI 3-kinase inhibitor LY294002 are completely reversed by constitutively active forms of Akt. Wild-type cellular Akt effects a partial reversal of LY294002-induced inhibition of myogenic differentiation. This result suggests that Akt can substitute for PI 3-kinase in the stimulation of myogenesis; Akt may be an essential downstream component of PI 3-kinase-induced muscle differentiation. PMID:10051597

  4. Regulation of mitogen-activated protein kinase by protein kinase C and mitogen-activated protein kinase phosphatase-1 in vascular smooth muscle.

    PubMed

    Trappanese, Danielle M; Sivilich, Sarah; Ets, Hillevi K; Kako, Farah; Autieri, Michael V; Moreland, Robert S

    2016-06-01

    Vascular smooth muscle contraction is primarily regulated by phosphorylation of myosin light chain. There are also modulatory pathways that control the final level of force development. We tested the hypothesis that protein kinase C (PKC) and mitogen-activated protein (MAP) kinase modulate vascular smooth muscle activity via effects on MAP kinase phosphatase-1 (MKP-1). Swine carotid arteries were mounted for isometric force recording and subjected to histamine stimulation in the presence and absence of inhibitors of PKC [bisindolylmaleimide-1 (Bis)], MAP kinase kinase (MEK) (U0126), and MKP-1 (sanguinarine) and flash frozen for measurement of MAP kinase, PKC-potentiated myosin phosphatase inhibitor 17 (CPI-17), and caldesmon phosphorylation levels. CPI-17 was phosphorylated in response to histamine and was inhibited in the presence of Bis. Caldesmon phosphorylation levels increased in response to histamine stimulation and were decreased in response to MEK inhibition but were not affected by the addition of Bis. Inhibition of PKC significantly increased p42 MAP kinase, but not p44 MAP kinase. Inhibition of MEK with U0126 inhibited both p42 and p44 MAP kinase activity. Inhibition of MKP-1 with sanguinarine blocked the Bis-dependent increase of MAP kinase activity. Sanguinarine alone increased MAP kinase activity due to its effects on MKP-1. Sanguinarine increased MKP-1 phosphorylation, which was inhibited by inhibition of MAP kinase. This suggests that MAP kinase has a negative feedback role in inhibiting MKP-1 activity. Therefore, PKC catalyzes MKP-1 phosphorylation, which is reversed by MAP kinase. Thus the fine tuning of vascular contraction is due to the concerted effort of PKC, MAP kinase, and MKP-1. PMID:27053523

  5. Identification of Protein Kinase Substrates by the Kinase-Interacting Substrate Screening (KISS) Approach.

    PubMed

    Amano, Mutsuki; Nishioka, Tomoki; Yura, Yoshimitsu; Kaibuchi, Kozo

    2016-01-01

    Identifying the substrates of protein kinases to understand their modes of action has been undertaken by various approaches and remains an ongoing challenge. Phosphoproteomic technologies have accelerated the accumulation of data concerning protein phosphorylation and have uncovered vast numbers of phosphorylation sites in vivo. In this unit, a novel in vitro screening approach for protein kinase substrates is presented, based on protein-protein interaction and mass spectrometry-based phosphoproteomic technology. © 2016 by John Wiley & Sons, Inc. PMID:27580705

  6. Protein kinases are potential targets to treat inflammatory bowel disease

    PubMed Central

    Yang, Lei; Yan, Yutao

    2014-01-01

    Protein kinases play a crucial role in the pathogenesis of inflammatory bowel disease (IBD), the two main forms of which are ulcerative colitis and Crohn’s disease. In this article, we will review the mechanisms of involvement of protein kinases in the pathogenesis of and intervention against IBD, in terms of their effects on genetics, microbiota, mucous layer and tight junction, and the potential of protein kinases as therapeutic targets against IBD. PMID:25374761

  7. The Roles of Protein Kinases in Learning and Memory

    ERIC Educational Resources Information Center

    Giese, Karl Peter; Mizuno, Keiko

    2013-01-01

    In the adult mammalian brain, more than 250 protein kinases are expressed, but only a few of these kinases are currently known to enable learning and memory. Based on this information it appears that learning and memory-related kinases either impact on synaptic transmission by altering ion channel properties or ion channel density, or regulate…

  8. Targeting of calcium/calmodulin-dependent protein kinase II.

    PubMed Central

    Colbran, Roger J

    2004-01-01

    Calcium/calmodulin-dependent protein kinase II (CaMKII) has diverse roles in virtually all cell types and it is regulated by a plethora of mechanisms. Local changes in Ca2+ concentration drive calmodulin binding and CaMKII activation. Activity is controlled further by autophosphorylation at multiple sites, which can generate an autonomously active form of the kinase (Thr286) or can block Ca2+/calmodulin binding (Thr305/306). The regulated actions of protein phosphatases at these sites also modulate downstream signalling from CaMKII. In addition, CaMKII targeting to specific subcellular microdomains appears to be necessary to account for the known signalling specificity, and targeting is regulated by Ca2+/calmodulin and autophosphorylation. The present review focuses on recent studies revealing the diversity of CaMKII interactions with proteins localized to neuronal dendrites. Interactions with various subunits of the NMDA (N-methyl-D-aspartate) subtype of glutamate receptor have attracted the most attention, but binding of CaMKII to cytoskeletal and several other regulatory proteins has also been reported. Recent reports describing the molecular basis of each interaction and their potential role in the normal regulation of synaptic transmission and in pathological situations are discussed. These studies have revealed fundamental regulatory mechanisms that are probably important for controlling CaMKII functions in many cell types. PMID:14653781

  9. The selectivity of protein kinase inhibitors: a further update

    PubMed Central

    Bain, Jenny; Plater, Lorna; Elliott, Matt; Shpiro, Natalia; Hastie, C. James; Mclauchlan, Hilary; Klevernic, Iva; Arthur, J. Simon C.; Alessi, Dario R.; Cohen, Philip

    2007-01-01

    The specificities of 65 compounds reported to be relatively specific inhibitors of protein kinases have been profiled against a panel of 70–80 protein kinases. On the basis of this information, the effects of compounds that we have studied in cells and other data in the literature, we recommend the use of the following small-molecule inhibitors: SB 203580/SB202190 and BIRB 0796 to be used in parallel to assess the physiological roles of p38 MAPK (mitogen-activated protein kinase) isoforms, PI-103 and wortmannin to be used in parallel to inhibit phosphatidylinositol (phosphoinositide) 3-kinases, PP1 or PP2 to be used in parallel with Src-I1 (Src inhibitor-1) to inhibit Src family members; PD 184352 or PD 0325901 to inhibit MKK1 (MAPK kinase-1) or MKK1 plus MKK5, Akt-I-1/2 to inhibit the activation of PKB (protein kinase B/Akt), rapamycin to inhibit TORC1 [mTOR (mammalian target of rapamycin)–raptor (regulatory associated protein of mTOR) complex], CT 99021 to inhibit GSK3 (glycogen synthase kinase 3), BI-D1870 and SL0101 or FMK (fluoromethylketone) to be used in parallel to inhibit RSK (ribosomal S6 kinase), D4476 to inhibit CK1 (casein kinase 1), VX680 to inhibit Aurora kinases, and roscovitine as a pan-CDK (cyclin-dependent kinase) inhibitor. We have also identified harmine as a potent and specific inhibitor of DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A) in vitro. The results have further emphasized the need for considerable caution in using small-molecule inhibitors of protein kinases to assess the physiological roles of these enzymes. Despite being used widely, many of the compounds that we analysed were too non-specific for useful conclusions to be made, other than to exclude the involvement of particular protein kinases in cellular processes. PMID:17850214

  10. CDPKs are dual-specificity protein kinases and tyrosine autophosphorylation attenuates kinase activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium-dependent protein kinases (CDPKs or CPKs) are classified as serine/threonine protein kinases but we made the surprising observation that soybean CDPK' and several Arabidopsis isoforms (AtCPK4 and AtCPK34) could also autophosphorylate on tyrosine residues. In studies with His6-GmCDPK', we ide...

  11. Regulation of hippocampus-dependent memory by cyclic AMP-dependent protein kinase

    PubMed Central

    Abel, Ted; Nguyen, Peter V.

    2010-01-01

    The hippocampus is crucial for the consolidation of new declarative long-term memories. Genetic and behavioral experimentation have revealed that several protein kinases are critical for the formation of hippocampus-dependent long-term memories. Cyclic-AMP dependent protein kinase (PKA) is a serine–threonine kinase that has been strongly implicated in the expression of specific forms of hippocampus-dependent memory. We review evidence that PKA is required for hippocampus-dependent memory in mammals, and we highlight some of the proteins that have been implicated as targets of PKA. Future directions and open questions regarding the role of PKA in memory storage are also described. PMID:18394470

  12. Protein Kinases: Emerging Therapeutic Targets in Chronic Lymphocytic Leukemia

    PubMed Central

    Balakrishnan, Kumudha; Gandhi, Varsha

    2014-01-01

    Introduction Although protein kinases are primary targets for inhibition in hematological malignancies, until recently their contribution to chronic lymphocytic leukemia (CLL) was poorly understood. Insights into B cell receptor (BCR) signaling and its role in regulating key cellular functions have shed light on candidate protein kinases that are aberrantly activated in CLL. In this regard, protein kinases are now considered as potential drug targets in CLL. Area covered This review has covered signaling pathways and associated protein kinases in CLL and the kinase inhibitors currently available in preclinical and clinical investigations. Individual protein kinases that are abnormally active in CLL and the functional consequences of their inhibition are discussed. Expert opinion A growing body of evidence suggests that protein kinases are druggable targets for patients with CLL. The emergence of novel and bio-available kinase inhibitors and their promising clinical activity in CLL underscore the oncogenic role of kinases in leukemogenesis. Further investigations directed towards their role as single agents or in combinations may provide insight into understanding the substantial role of kinase mediated signal transduction pathways and their inhibition in B- CLL. PMID:22409342

  13. Targeted covalent inactivation of protein kinases by resorcylic acid lactone polyketides

    PubMed Central

    Schirmer, Andreas; Kennedy, Jonathan; Murli, Sumati; Reid, Ralph; Santi, Daniel V.

    2006-01-01

    Resorcylic acid lactones containing a cis-enone are susceptible to Michael addition reactions and are potent inhibitors of several protein kinases. A structural-bioinformatics analysis identified a conserved Cys residue in the ATP-binding site of the kinases reported to be inhibited by cis-enone resorcylic acid lactones but absent in those that are not. Mining of the kinome database revealed that a subset of some 46 kinases contained this Cys residue. Screening a panel of 124 kinases with the resorcylic acid lactone hypothemycin showed that 18 of 19 targets containing the conserved Cys were inhibited. Kinetic analyses showed time-dependent inhibition, a hallmark of covalent inactivation, and biochemical studies of the interaction of extracellular signal-regulated kinase (ERK)2 with hypothemycin confirmed covalent adduct formation. Resorcylic acid lactones are unique among kinase inhibitors in that they target mitogen-activated protein (MAP) kinase pathways at four levels: mitogen receptors, MAP kinase kinase (MEK)1/2 and ERK1/2, and certain downstream ERK substrates. Cell lines dependent on the activation of Tyr kinase mitogen receptor targets of the resorcylic acid lactones were unusually sensitive toward hypothemycin and showed the expected inhibition of kinase phosphorylation due to inhibition of the mitogen receptors and/or MEK1/2 and ERK1/2. Among cells without mitogen receptor targets, those harboring an ERK pathway-activating B-RAF V600E mutation were selectively and potently inhibited by hypothemycin. Hypothemycin also prevented stimulated activation of the p38 cascade through inhibition of the Cys-containing targets MEK3/6 and TGF-β-activated kinase 1 and of the JNK/SAPK (c-Jun N-terminal kinase/stress-activated protein kinase) cascade through inhibition of MEK4/7. PMID:16537514

  14. Protein kinase C, an elusive therapeutic target?

    PubMed Central

    Mochly-Rosen, Daria; Das, Kanad; Grimes, Kevin V

    2013-01-01

    Preface Protein kinase C (PKC) has been a tantalizing target for drug discovery ever since it was first identified as the receptor for the tumor promoter phorbol ester in 19821. Although initial therapeutic efforts focused on cancer, additional diseases, including diabetic complications, heart failure, myocardial infarction, pain and bipolar disease were targeted as researchers developed a better understanding of the roles that PKC’s eight conventional and novel isozymes play in health and disease. Unfortunately, both academic and pharmaceutical efforts have yet to result in the approval of a single new drug that specifically targets PKC. Why does PKC remain an elusive drug target? This review will provide a short account of some of the efforts, challenges and opportunities in developing PKC modulators to address unmet clinical needs. PMID:23197040

  15. Structural investigation of protein kinase C inhibitors

    NASA Technical Reports Server (NTRS)

    Barak, D.; Shibata, M.; Rein, R.

    1991-01-01

    The phospholipid and Ca2+ dependent protein kinase (PKC) plays an essential role in a variety of cellular events. Inhibition of PKC was shown to arrest growth in tumor cell cultures making it a target for possible antitumor therapy. Calphostins are potent inhibitors of PKC with high affinity for the enzyme regulatory site. Structural characteristics of calphostins, which confer the inhibitory activity, are investigated by comparing their optimized structures with the existing models for PKC activation. The resulting model of inhibitory activity assumes interaction with two out of the three electrostatic interaction sites postulated for activators. The model shows two sites of hydrophobic interaction and enables the inhibitory activity of gossypol to be accounted for.

  16. The extended protein kinase C superfamily.

    PubMed Central

    Mellor, H; Parker, P J

    1998-01-01

    Members of the mammalian protein kinase C (PKC) superfamily play key regulatory roles in a multitude of cellular processes, ranging from control of fundamental cell autonomous activities, such as proliferation, to more organismal functions, such as memory. However, understanding of mammalian PKC signalling systems is complicated by the large number of family members. Significant progress has been made through studies based on comparative analysis, which have defined a number of regulatory elements in PKCs which confer specific location and activation signals to each isotype. Further studies on simple organisms have shown that PKC signalling paradigms are conserved through evolution from yeast to humans, underscoring the importance of this family in cellular signalling and giving novel insights into PKC function in complex mammalian systems. PMID:9601053

  17. Human protein kinase CK2 genes.

    PubMed

    Wirkner, U; Voss, H; Lichter, P; Pyerin, W

    1994-01-01

    We have analyzed the genomic structure of human protein kinase CK2. Of the presumably four genes, the gene encoding the regulatory subunit beta and a processed (pseudo)gene of the catalytic subunit alpha have been characterized completely. In addition, a 18.9 kb-long central part of the gene encoding the catalytic subunit alpha has been characterized. The subunit beta gene spans 4.2 kb and is composed of seven exons. Its promoter region shows several features of a "housekeeping gene" and shares common features with the promoter of the regulatory subunit of cAMP-dependent protein kinase. Conforming to the genomic structure, the beta gene transcripts form a band around 1.1 kb. The central part of the subunit alpha gene contains eight exons comprising bases 102 to 824 of the translated region. Within the introns, 16 Alu repeats were identified, some of which arranged in tandems. The structure of both human CK2 coding genes, alpha and beta, is highly conserved. Several introns are located at corresponding positions in the respective genes of the nematode Caenorhabditis elegans. The processed alpha (pseudo)gene has a complete open reading frame and is 99% homologous to the coding region of the CK2 alpha cDNA. Although the gene has a promoter-like upstream region, no transcript could be identified so far. The genomic clones were used for localization in the human genome. The beta gene was mapped to locus 6p21, the alpha gene to locus 20p13 and the alpha (pseudo)gene to locus 11p15. There is no evidence for additional alpha or beta loci in the human genome. PMID:7735323

  18. Quantitative Proteomics Reveals That Hsp90 Inhibition Preferentially Targets Kinases and the DNA Damage Response*

    PubMed Central

    Sharma, Kirti; Vabulas, R. Martin; Macek, Boris; Pinkert, Stefan; Cox, Jürgen; Mann, Matthias; Hartl, F. Ulrich

    2012-01-01

    Despite the increasing importance of heat shock protein 90 (Hsp90) inhibitors as chemotherapeutic agents in diseases such as cancer, their global effects on the proteome remain largely unknown. Here we use high resolution, quantitative mass spectrometry to map protein expression changes associated with the application of the Hsp90 inhibitor, 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG). In depth data obtained from five replicate SILAC experiments enabled accurate quantification of about 6,000 proteins in HeLa cells. As expected, we observed activation of a heat shock response with induced expression of molecular chaperones, which refold misfolded proteins, and proteases, which degrade irreparably damaged polypeptides. Despite the broad range of known Hsp90 substrates, bioinformatics analysis revealed that particular protein classes were preferentially affected. These prominently included proteins involved in the DNA damage response, as well as protein kinases and especially tyrosine kinases. We followed up on this observation with a quantitative phosphoproteomic analysis of about 4,000 sites, which revealed that Hsp90 inhibition leads to much more down- than up-regulation of the phosphoproteome (34% down versus 6% up). This study defines the cellular response to Hsp90 inhibition at the proteome level and sheds light on the mechanisms by which it can be used to target cancer cells. PMID:22167270

  19. Diversity, classification and function of the plant protein kinase superfamily

    PubMed Central

    Lehti-Shiu, Melissa D.; Shiu, Shin-Han

    2012-01-01

    Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase repertoire, or kinome, is in general significantly larger than other eukaryotes, ranging in size from 600 to 2500 members. This large variation in kinome size is mainly due to the expansion and contraction of a few families, particularly the receptor-like kinase/Pelle family. A number of protein kinases reside in highly conserved, low copy number families and often play broadly conserved regulatory roles in metabolism and cell division, although functions of plant homologues have often diverged from their metazoan counterparts. Members of expanded plant kinase families often have roles in plant-specific processes and some may have contributed to adaptive evolution. Nonetheless, non-adaptive explanations, such as kinase duplicate subfunctionalization and insufficient time for pseudogenization, may also contribute to the large number of seemingly functional protein kinases in plants. PMID:22889912

  20. DIRECT MODULATION OF THE PROTEIN KINASE A CATALYTIC SUBUNIT α BY GROWTH FACTOR RECEPTOR TYROSINE KINASES

    PubMed Central

    Caldwell, George B.; Howe, Alan K.; Nickl, Christian K.; Dostmann, Wolfgang R.; Ballif, Bryan A.; Deming, Paula B.

    2011-01-01

    The cyclic-AMP-dependent protein kinase A (PKA) regulates processes such as cell proliferation and migration following activation of growth factor receptor tyrosine kinases (RTKs), yet the signaling mechanisms that link PKA with growth factor receptors remain largely undefined. Here we report that RTKs can directly modulate the function of the catalytic subunit of PKA (PKA-C) through post-translational modification. In vitro kinase assays revealed that both the epidermal growth factor and platelet derived growth factor receptors (EGFR and PDGFR, respectively) tyrosine phosphorylate PKA-C. Mass spectrometry identified tyrosine 330 (Y330) as a receptor-mediated phosphorylation site and mutation of Y330 to phenylalanine (Y330F) all but abolished the RTK-mediated phosphorylation of PKA-C in vitro. Y330 resides within a conserved region at the C-terminal tail of PKA-C that allosterically regulates enzymatic activity. Therefore, the effect of phosphorylation at Y330 on the activity of PKA-C was investigated. The Km for a peptide substrate was markedly decreased when PKA-C subunits were tyrosine phosphorylated by the receptors as compared to un-phosphorylated controls. Importantly, tyrosine-phosphorylated PKA-C subunits were detected in cells stimulated with EGF, PDGF and FGF2 and in fibroblasts undergoing PDGF-mediated chemotaxis. These results demonstrate a direct, functional interaction between RTKs and PKA-C and identify tyrosine phosphorylation as a novel mechansim for regulating PKA activity. PMID:21866565

  1. Cloning of the mitogen-activated S6 kinase from rat liver reveals an enzyme of the second messenger subfamily

    SciTech Connect

    Kozma, S.C.; Ferrari, S. Bassand, P.; Siegmann, M.; Thomas, G. ); Totty, N. )

    1990-10-01

    Recently the authors reported the purification of a mitogen-activated S6 kinase from Swiss mouse 3T3 fibroblasts and rat liver. The rat liver protein was cleaved with cyanogen bromide or trypsin and 17 of the resulting peptides were sequenced. DNA primers were generated from 3 peptides that had homology to sequences of the conserved catalytic domain of protein kinases. These primers were used in the polymerase chain reaction to obtain a 0.4-kilobase DNA fragment. This fragment was either radioactively labeled and hybridized to Northern blots of poly(A){sup {sup plus}} mRNA or used to screen a rat liver cDNA library. Northern blot analysis revealed four transcripts of 2.5, 3.2, 4.0, and 6.0 kilobases, and five S6 kinase clones were obtained by screening the library. Only two of the clones, which were identical, encoded a full-length protein. This protein had a molecular weight of 56,160, which correlated closely to that of the dephosphorylated kinase determined by SDS/PAGE. The catalytic domain of the kinase resembles that of other serine/threonine kinases belonging to the second messenger subfamily of protein kinases.

  2. Quantitative proteomics reveal ATM kinase-dependent exchange in DNA damage response complexes.

    PubMed

    Choi, Serah; Srivas, Rohith; Fu, Katherine Y; Hood, Brian L; Dost, Banu; Gibson, Gregory A; Watkins, Simon C; Van Houten, Bennett; Bandeira, Nuno; Conrads, Thomas P; Ideker, Trey; Bakkenist, Christopher J

    2012-10-01

    ATM is a protein kinase that initiates a well-characterized signaling cascade in cells exposed to ionizing radiation (IR). However, the role for ATM in coordinating critical protein interactions and subsequent exchanges within DNA damage response (DDR) complexes is unknown. We combined SILAC-based tandem mass spectrometry and a subcellular fractionation protocol to interrogate the proteome of irradiated cells treated with or without the ATM kinase inhibitor KU55933. We developed an integrative network analysis to identify and prioritize proteins that were responsive to KU55933, specifically in chromatin, and that were also enriched for physical interactions with known DNA repair proteins. This analysis identified 53BP1 and annexin A1 (ANXA1) as strong candidates. Using fluorescence recovery after photobleaching, we found that the exchange of GFP-53BP1 in DDR complexes decreased with KU55933. Further, we found that ANXA1 knockdown sensitized cells to IR via a mechanism that was not potentiated by KU55933. Our study reveals a role for ATM kinase activity in the dynamic exchange of proteins in DDR complexes and identifies a role for ANXA1 in cellular radioprotection. PMID:22909323

  3. Protein kinase C catalyses the phosphorylation and activation of rat liver phospholipid methyltransferase.

    PubMed Central

    Villalba, M; Pajares, M A; Renart, M F; Mato, J M

    1987-01-01

    When a partially purified rat liver phospholipid methyltransferase is incubated with [gamma-32P]ATP and rat brain protein kinase C, phospholipid methyltransferase (Mr 50,000, pI 4.75) becomes phosphorylated. Phosphorylation of the enzyme showed Ca2+/lipid-dependency. Protein kinase C-dependent phosphorylation of phospholipid methyltransferase was accompanied by an approx. 2-fold activation of the enzyme activity. Activity changes and enzyme phosphorylation showed the same time course. Activation of the enzyme also showed Ca2+/lipid-dependency. Protein kinase C mediates phosphorylation of predominantly serine residues of the methyltransferase. One major peak of phosphorylation was identified by analysis of tryptic phosphopeptides by isoelectrofocusing. This peak (pI 5.2) differs from that phosphorylated by the cyclic AMP-dependent protein kinase (pI 7.2), demonstrating the specificity of phosphorylation of protein kinase C. Tryptic-peptide mapping by h.p.l.c. of the methyltransferase phosphorylated by protein kinase C revealed one major peak of radioactivity, which could be resolved into two labelled phosphopeptides by t.l.c. The significance of protein kinase C-mediated phosphorylation of phospholipid methyltransferase is discussed. Images Fig. 1. Fig. 4. PMID:3593229

  4. Rac-1 and Raf-1 kinases, components of distinct signaling pathways, activate myotonic dystrophy protein kinase

    NASA Technical Reports Server (NTRS)

    Shimizu, M.; Wang, W.; Walch, E. T.; Dunne, P. W.; Epstein, H. F.

    2000-01-01

    Myotonic dystrophy protein kinase (DMPK) is a serine-threonine protein kinase encoded by the myotonic dystrophy (DM) locus on human chromosome 19q13.3. It is a close relative of other kinases that interact with members of the Rho family of small GTPases. We show here that the actin cytoskeleton-linked GTPase Rac-1 binds to DMPK, and coexpression of Rac-1 and DMPK activates its transphosphorylation activity in a GTP-sensitive manner. DMPK can also bind Raf-1 kinase, the Ras-activated molecule of the MAP kinase pathway. Purified Raf-1 kinase phosphorylates and activates DMPK. The interaction of DMPK with these distinct signals suggests that it may play a role as a nexus for cross-talk between their respective pathways and may partially explain the remarkable pleiotropy of DM.

  5. Cytoskeletal protein kinases: titin and its relations in mechanosensing.

    PubMed

    Gautel, Mathias

    2011-07-01

    Titin, the giant elastic ruler protein of striated muscle sarcomeres, contains a catalytic kinase domain related to a family of intrasterically regulated protein kinases. The most extensively studied member of this branch of the human kinome is the Ca(2+)-calmodulin (CaM)-regulated myosin light-chain kinases (MLCK). However, not all kinases of the MLCK branch are functional MLCKs, and about half lack a CaM binding site in their C-terminal autoinhibitory tail (AI). A unifying feature is their association with the cytoskeleton, mostly via actin and myosin filaments. Titin kinase, similar to its invertebrate analogue twitchin kinase and likely other "MLCKs", is not Ca(2+)-calmodulin-activated. Recently, local protein unfolding of the C-terminal AI has emerged as a common mechanism in the activation of CaM kinases. Single-molecule data suggested that opening of the TK active site could also be achieved by mechanical unfolding of the AI. Mechanical modulation of catalytic activity might thus allow cytoskeletal signalling proteins to act as mechanosensors, creating feedback mechanisms between cytoskeletal tension and tension generation or cellular remodelling. Similar to other MLCK-like kinases like DRAK2 and DAPK1, TK is linked to protein turnover regulation via the autophagy/lysosomal system, suggesting the MLCK-like kinases have common functions beyond contraction regulation. PMID:21416260

  6. Regulation of mitochondrial protein import by cytosolic kinases.

    PubMed

    Schmidt, Oliver; Harbauer, Angelika B; Rao, Sanjana; Eyrich, Beate; Zahedi, René P; Stojanovski, Diana; Schönfisch, Birgit; Guiard, Bernard; Sickmann, Albert; Pfanner, Nikolaus; Meisinger, Chris

    2011-01-21

    Mitochondria import a large number of nuclear-encoded proteins via membrane-bound transport machineries; however, little is known about regulation of the preprotein translocases. We report that the main protein entry gate of mitochondria, the translocase of the outer membrane (TOM complex), is phosphorylated by cytosolic kinases-in particular, casein kinase 2 (CK2) and protein kinase A (PKA). CK2 promotes biogenesis of the TOM complex by phosphorylation of two key components, the receptor Tom22 and the import protein Mim1, which in turn are required for import of further Tom proteins. Inactivation of CK2 decreases the levels of the TOM complex and thus mitochondrial protein import. PKA phosphorylates Tom70 under nonrespiring conditions, thereby inhibiting its receptor activity and the import of mitochondrial metabolite carriers. We conclude that cytosolic kinases exert stimulatory and inhibitory effects on biogenesis and function of the TOM complex and thus regulate protein import into mitochondria. PMID:21215441

  7. Transphosphorylation of E. coli proteins during production of recombinant protein kinases provides a robust system to characterize kinase specificity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein kinase specificity is of fundamental importance to pathway regulation and signal transduction. Here, we report a convenient system to monitor the activity and specificity of recombinant protein kinases expressed in E.coli. We apply this to the study of the cytoplasmic domain of the plant rec...

  8. Purification of catalytic domain of rat spleen p72syk kinase and its phosphorylation and activation by protein kinase C.

    PubMed Central

    Borowski, P; Heiland, M; Kornetzky, L; Medem, S; Laufs, R

    1998-01-01

    The catalytic domain of p72(syk) kinase (CDp72(syk)) was purified from a 30000 g particulate fraction of rat spleen. The purification procedure employed sequential chromatography on columns of DEAE-Sephacel and Superdex-200, and elution from HA-Ultrogel by chloride. The analysis of the final CDp72(syk) preparation by SDS/PAGE revealed a major silver-stained 40 kDa protein. The kinase was identified by covalent modification of its ATP-binding site with [14C]5'-fluorosulphonylbenzoyladenosine and by immunoblotting with a polyclonal antibody against the 'linker' region of p72(syk). By using poly(Glu4, Tyr1) as a substrate, the specific activity of the enzyme was determined as 18.5 nmol Pi/min per mg. Casein, histones H1 and H2B and myelin basic protein were efficiently phosphorylated by CDp72(syk). The kinase exhibited a limited ability to phosphorylate random polymers containing tyrosine residues. CDp72(syk) autophosphorylation activity was associated with an activation of the kinase towards exogenous substrates. The extent of activation was dependent on the substrates added. CDp72(syk) was phosphorylated by protein kinase C (PKC) on serine and threonine residues. With a newly developed assay method, we demonstrated that the PKC-mediated phosphorylation had a strong activating effect on the tyrosine kinase activity of CDp72(syk). Studies extended to conventional PKC isoforms revealed an isoform-dependent manner (alpha > betaI = betaII > gamma) of CDp72(syk) phosphorylation. The different phosphorylation efficiencies of the PKC isoforms closely correlated with the ability to enhance the tyrosine kinase activity. PMID:9531509

  9. Insulin-induced Drosophila S6 kinase activation requires phosphoinositide 3-kinase and protein kinase B.

    PubMed Central

    Lizcano, Jose M; Alrubaie, Saif; Kieloch, Agnieszka; Deak, Maria; Leevers, Sally J; Alessi, Dario R

    2003-01-01

    An important mechanism by which insulin regulates cell growth and protein synthesis is through activation of the p70 ribosomal S6 protein kinase (S6K). In mammalian cells, insulin-induced PI3K (phosphoinositide 3-kinase) activation, generates the lipid second messenger PtdIns(3,4,5) P (3), which is thought to play a key role in triggering the activation of S6K. Although the major components of the insulin-signalling pathway are conserved in Drosophila, recent studies suggested that S6K activation does not require PI3K in this system. To investigate further the role of dPI3K (Drosophila PI3K) in dS6K (Drosophila S6K) activation, we examined the effect of two structurally distinct PI3K inhibitors on insulin-induced dS6K activation in Kc167 and S2 Drosophila cell lines. We found that both inhibitors prevented insulin-stimulated phosphorylation and activation of dS6K. To investigate further the role of the dPI3K pathway in regulating dS6K activation, we also used dsRNAi (double-stranded RNA-mediated interference) to decrease expression of dPI3K and the PtdIns(3,4,5) P (3) phosphatase dPTEN ( Drosophila phosphatase and tensin homologue deleted on chromosome 10) in Kc167 and S2 cells. Knock-down of dPI3K prevented dS6K activation, whereas knock-down of dPTEN, which would be expected to increase PtdIns(3,4,5) P (3) levels, stimulated dS6K activity. Moreover, when the expression of the dPI3K target, dPKB (Drosophila protein kinase B), was decreased to undetectable levels, we found that insulin could no longer trigger dS6K activation. This observation provides the first direct demonstration that dPKB is required for insulin-stimulated dS6K activation. We also present evidence that the amino-acid-induced activation of dS6K in the absence of insulin, thought to be mediated by dTOR (Drosophila target of rapamycin), which is unaffected by the inhibition of dPI3K by wortmannin. The results of the present study support the view that, in Drosophila cells, dPI3K and dPKB, as well d

  10. Protein Kinase C Pharmacology: Refining the Toolbox

    PubMed Central

    Wu-Zhang, Alyssa X.; Newton, Alexandra C.

    2014-01-01

    SYNOPSIS Protein kinase C (PKC) has been in the limelight since the discovery three decades ago that it acts as a major receptor for the tumor-promoting phorbol esters. Phorbol esters, with their potent ability to activate two of the three classes of PKC isozymes, have remained the best pharmacological tool for directly modulating PKC activity. However, with the discovery of other phorbol ester-responsive proteins, the advent of various small-molecule and peptide modulators, and the need to distinguish isozyme-specific activity, the pharmacology of PKC has become increasingly complex. Not surprisingly, many of the compounds originally touted as direct modulators of PKC have subsequently been shown to hit many other cellular targets and, in some cases, not even directly modulate PKC. The complexities and reversals in PKC pharmacology have led to widespread confusion about the current status of the pharmacological tools available to control PKC activity. Here, we aim to clarify the cacophony in the literature regarding the current state of bona fide and discredited cellular PKC modulators, including activators, small-molecule inhibitors, and peptides, and also address the use of genetically-encoded reporters and of PKC mutants to measure the effects of these drugs on the spatiotemporal dynamics of signaling by specific isozymes. PMID:23662807

  11. Modulators of Stomatal Lineage Signal Transduction Alter Membrane Contact Sites and Reveal Specialization among ERECTA Kinases.

    PubMed

    Ho, Chin-Min Kimmy; Paciorek, Tomasz; Abrash, Emily; Bergmann, Dominique C

    2016-08-22

    Signal transduction from a cell's surface to its interior requires dedicated signaling elements and a cellular environment conducive to signal propagation. Plant development, defense, and homeostasis rely on plasma membrane receptor-like kinases to perceive endogenous and environmental signals, but little is known about their immediate downstream targets and signaling modifiers. Using genetics, biochemistry, and live-cell imaging, we show that the VAP-RELATED SUPPRESSOR OF TMM (VST) family is required for ERECTA-mediated signaling in growth and cell-fate determination and reveal a role for ERECTA-LIKE2 in modulating signaling by its sister kinases. We show that VSTs are peripheral plasma membrane proteins that can form complexes with integral ER-membrane proteins, thereby potentially influencing the organization of the membrane milieu to promote efficient and differential signaling from the ERECTA-family members to their downstream intracellular targets. PMID:27554856

  12. Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2.

    PubMed

    Saruhashi, Masashi; Kumar Ghosh, Totan; Arai, Kenta; Ishizaki, Yumiko; Hagiwara, Kazuya; Komatsu, Kenji; Shiwa, Yuh; Izumikawa, Keiichi; Yoshikawa, Harunori; Umezawa, Taishi; Sakata, Yoichi; Takezawa, Daisuke

    2015-11-17

    Plant response to drought and hyperosmosis is mediated by the phytohormone abscisic acid (ABA), a sesquiterpene compound widely distributed in various embryophyte groups. Exogenous ABA as well as hyperosmosis activates the sucrose nonfermenting 1 (SNF1)-related protein kinase2 (SnRK2), which plays a central role in cellular responses against drought and dehydration, although the details of the activation mechanism are not understood. Analysis of a mutant of the moss Physcomitrella patens with reduced ABA sensitivity and reduced hyperosmosis tolerance revealed that a protein kinase designated "ARK" (for "ABA and abiotic stress-responsive Raf-like kinase") plays an essential role in the activation of SnRK2. ARK encoded by a single gene in P. patens belongs to the family of group B3 Raf-like MAP kinase kinase kinases (B3-MAPKKKs) mediating ethylene, disease resistance, and salt and sugar responses in angiosperms. Our findings indicate that ARK, as a novel regulatory component integrating ABA and hyperosmosis signals, represents the ancestral B3-MAPKKKs, which multiplied, diversified, and came to have specific functions in angiosperms. PMID:26540727

  13. Mechanism of inhibition of Raf-1 by protein kinase A.

    PubMed Central

    Häfner, S; Adler, H S; Mischak, H; Janosch, P; Heidecker, G; Wolfman, A; Pippig, S; Lohse, M; Ueffing, M; Kolch, W

    1994-01-01

    The cytoplasmic Raf-1 kinase is essential for mitogenic signalling by growth factors, which couple to tyrosine kinases, and by tumor-promoting phorbol esters such as 12-O-tetradecanoylphorbol-13-acetate, which activate protein kinase C (PKC). Signalling by the Raf-1 kinase can be blocked by activation of the cyclic AMP (cAMP)-dependent protein kinase A (PKA). The molecular mechanism of this inhibition is not precisely known but has been suggested to involve attenuation of Raf-1 binding to Ras. Using purified proteins, we show that in addition to weakening the interaction of Raf-1 with Ras, PKA can inhibit Raf-1 function directly via phosphorylation of the Raf-1 kinase domain. Phosphorylation by PKA interferes with the activation of Raf-1 by either PKC alpha or the tyrosine kinase Lck and even can downregulate the kinase activity of Raf-1 previously activated by PKC alpha or amino-terminal truncation. This type of inhibition can be dissociated from the ability of Raf-1 to associate with Ras, since (i) the isolated Raf-1 kinase domain, which lacks the Ras binding domain, is still susceptible to inhibition by PKA, (ii) phosphorylation of Raf-1 by PKC alpha alleviates the PKA-induced reduction of Ras binding but does not prevent the downregulation of Raf-1 kinase activity by PKA and (iii) cAMP agonists antagonize transformation by v-Raf, which is Ras independent. Images PMID:7935389

  14. Cross-species sequence analysis reveals multiple charged residue-rich domains that regulate nuclear/cytoplasmic partitioning and membrane localization of a kinase anchoring protein 12 (SSeCKS/Gravin).

    PubMed

    Streb, Jeffrey W; Miano, Joseph M

    2005-07-29

    A kinase anchoring proteins (AKAPs) assemble and compartmentalize multiprotein signaling complexes at discrete subcellular locales and thus confer specificity to transduction cascades using ubiquitous signaling enzymes, such as protein kinase A. Intrinsic targeting domains in each AKAP determine the subcellular localization of these complexes and, along with protein-protein interaction domains, form the core of AKAP function. As a foundational step toward elucidating the relationship between location and function, we have used cross-species sequence analysis and deletion mapping to facilitate the identification of the targeting determinants of AKAP12 (also known as SSeCKS or Gravin). Three charged residue-rich regions were identified that regulate two aspects of AKAP12 localization, nuclear/cytoplasmic partitioning and perinuclear/cell periphery targeting. Using deletion mapping and green fluorescent protein chimeras, we uncovered a heretofore unrecognized nuclear localization potential. Five nuclear localization signals, including a novel class of this type of signal termed X2-NLS, are found in the central region of AKAP12 and are important for nuclear targeting. However, this nuclear localization is suppressed by the negatively charged C terminus that mediates nuclear exclusion. In this condition, the distribution of AKAP12 is regulated by an N-terminal targeting domain that simultaneously directs perinuclear and peripheral AKAP12 localization. Three basic residue-rich regions in the N-terminal targeting region have similarity to the MARCKS proteins and were found to control AKAP12 localization to ganglioside-rich regions at the cell periphery. Our data suggest that AKAP12 localization is regulated by a hierarchy of targeting domains and that the localization of AKAP12-assembled signaling complexes may be dynamically regulated. PMID:15923193

  15. Nicotinamide Riboside Kinase Structures Reveal New Pathways to NAD+

    PubMed Central

    Bogan, Katrina L; Belenky, Peter; Wojcik, Marzena; Seidle, Heather F; Nedyalkova, Lyudmila; Yang, Tianle; Sauve, Anthony A; Park, Hee-Won; Brenner, Charles

    2007-01-01

    The eukaryotic nicotinamide riboside kinase (Nrk) pathway, which is induced in response to nerve damage and promotes replicative life span in yeast, converts nicotinamide riboside to nicotinamide adenine dinucleotide (NAD+) by phosphorylation and adenylylation. Crystal structures of human Nrk1 bound to nucleoside and nucleotide substrates and products revealed an enzyme structurally similar to Rossmann fold metabolite kinases and allowed the identification of active site residues, which were shown to be essential for human Nrk1 and Nrk2 activity in vivo. Although the structures account for the 500-fold discrimination between nicotinamide riboside and pyrimidine nucleosides, no enzyme feature was identified to recognize the distinctive carboxamide group of nicotinamide riboside. Indeed, nicotinic acid riboside is a specific substrate of human Nrk enzymes and is utilized in yeast in a novel biosynthetic pathway that depends on Nrk and NAD+ synthetase. Additionally, nicotinic acid riboside is utilized in vivo by Urh1, Pnp1, and Preiss-Handler salvage. Thus, crystal structures of Nrk1 led to the identification of new pathways to NAD+. PMID:17914902

  16. Nicotinamide riboside kinase structures reveal new pathways to NAD+.

    PubMed

    Tempel, Wolfram; Rabeh, Wael M; Bogan, Katrina L; Belenky, Peter; Wojcik, Marzena; Seidle, Heather F; Nedyalkova, Lyudmila; Yang, Tianle; Sauve, Anthony A; Park, Hee-Won; Brenner, Charles

    2007-10-01

    The eukaryotic nicotinamide riboside kinase (Nrk) pathway, which is induced in response to nerve damage and promotes replicative life span in yeast, converts nicotinamide riboside to nicotinamide adenine dinucleotide (NAD+) by phosphorylation and adenylylation. Crystal structures of human Nrk1 bound to nucleoside and nucleotide substrates and products revealed an enzyme structurally similar to Rossmann fold metabolite kinases and allowed the identification of active site residues, which were shown to be essential for human Nrk1 and Nrk2 activity in vivo. Although the structures account for the 500-fold discrimination between nicotinamide riboside and pyrimidine nucleosides, no enzyme feature was identified to recognize the distinctive carboxamide group of nicotinamide riboside. Indeed, nicotinic acid riboside is a specific substrate of human Nrk enzymes and is utilized in yeast in a novel biosynthetic pathway that depends on Nrk and NAD+ synthetase. Additionally, nicotinic acid riboside is utilized in vivo by Urh1, Pnp1, and Preiss-Handler salvage. Thus, crystal structures of Nrk1 led to the identification of new pathways to NAD+. PMID:17914902

  17. Aurora kinase inhibitors reveal mechanisms of HURP in nucleation of centrosomal and kinetochore microtubules

    PubMed Central

    Wu, Jiun-Ming; Chen, Chiung-Tong; Coumar, Mohane Selvaraj; Lin, Wen-Hsin; Chen, Zi-Jie; Hsu, John T.-A.; Peng, Yi-Hui; Shiao, Hui-Yi; Lin, Wen-Hsing; Chu, Chang-Ying; Wu, Jian-Sung; Lin, Chih-Tsung; Chen, Ching-Ping; Hsueh, Ching-Cheng; Chang, Kai-Yen; Kao, Li-Pin; Huang, Chi-Ying F.; Chao, Yu-Sheng; Wu, Su-Ying; Hsieh, Hsing-Pang; Chi, Ya-Hui

    2013-01-01

    The overexpression of Aurora kinases in multiple tumors makes these kinases appealing targets for the development of anticancer therapies. This study identified two small molecules with a furanopyrimidine core, IBPR001 and IBPR002, that target Aurora kinases and induce a DFG conformation change at the ATP site of Aurora A. Our results demonstrate the high potency of the IBPR compounds in reducing tumorigenesis in a colorectal cancer xenograft model in athymic nude mice. Human hepatoma up-regulated protein (HURP) is a substrate of Aurora kinase A, which plays a crucial role in the stabilization of kinetochore fibers. This study used the IBPR compounds as well as MLN8237, a proven Aurora A inhibitor, as chemical probes to investigate the molecular role of HURP in mitotic spindle formation. These compounds effectively eliminated HURP phosphorylation, thereby revealing the coexistence and continuous cycling of HURP between unphosphorylated and phosphorylated forms that are associated, respectively, with microtubules emanating from centrosomes and kinetochores. Furthermore, these compounds demonstrate a spatial hierarchical preference for HURP in the attachment of microtubules extending from the mother to the daughter centrosome. The finding of inequality in the centrosomal microtubules revealed by these small molecules provides a versatile tool for the discovery of new cell-division molecules for the development of antitumor drugs. PMID:23610398

  18. Protein kinase C mediates platelet secretion and thrombus formation through protein kinase D2

    PubMed Central

    Konopatskaya, Olga; Matthews, Sharon A.; Harper, Matthew T.; Gilio, Karen; Cosemans, Judith M. E. M.; Williams, Christopher M.; Navarro, Maria N.; Carter, Deborah A.; Heemskerk, Johan W. M.; Leitges, Michael; Cantrell, Doreen; Poole, Alastair W.

    2016-01-01

    Platelets are highly specialized blood cells critically involved in hemostasis and thrombosis. Members of the protein kinase C (PKC) family have established roles in regulating platelet function and thrombosis, but the molecular mechanisms are not clearly understood. In particular, the conventional PKC isoform, PKCα, is a major regulator of platelet granule secretion, but the molecular pathway from PKCα to secretion is not defined. Protein kinase D (PKD) is a family of 3 kinases activated by PKC, which may represent a step in the PKC signaling pathway to secretion. In the present study, we show that PKD2 is the sole PKD member regulated downstream of PKC in platelets, and that the conventional, but not novel, PKC isoforms provide the upstream signal. Platelets from a gene knock-in mouse in which 2 key phosphorylation sites in PKD2 have been mutated (Ser707Ala/Ser711Ala) show a significant reduction in agonist-induced dense granule secretion, but not in α-granule secretion. This deficiency in dense granule release was responsible for a reduced platelet aggregation and a marked reduction in thrombus formation. Our results show that in the molecular pathway to secretion, PKD2 is a key component of the PKC-mediated pathway to platelet activation and thrombus formation through its selective regulation of dense granule secretion. PMID:21527521

  19. Myotonic dystrophy protein kinase (DMPK) and its role in the pathogenesis of myotonic dystrophy 1.

    PubMed

    Kaliman, Perla; Llagostera, Esther

    2008-11-01

    Myotonic dystrophy 1 (DM1) is an autosomal, dominant inherited, neuromuscular disorder. The DM1 mutation consists in the expansion of an unstable CTG-repeat in the 3'-untranslated region of a gene encoding DMPK (myotonic dystrophy protein kinase). Clinical expression of DM1 is variable, presenting a progressive muscular dystrophy that affects distal muscles more than proximal and is associated with the inability to relax muscles appropriately (myotonia), cataracts, cardiac arrhythmia, testicular atrophy and insulin resistance. DMPK is a Ser/Thr protein kinase homologous to the p21-activated kinases MRCK and ROCK/rho-kinase/ROK. The most abundant isoform of DMPK is an 80 kDa protein mainly expressed in smooth, skeletal and cardiac muscles. Decreased DMPK protein levels may contribute to the pathology of DM1, as revealed by gene target studies. Here we review current understanding of the structural, functional and pathophysiological characteristics of DMPK. PMID:18583094

  20. Tonoplast-Bound Protein Kinase Phosphorylates Tonoplast Intrinsic Protein 1

    PubMed Central

    Johnson, Kenneth D.; Chrispeels, Maarten J.

    1992-01-01

    Tonoplast intrinsic protein (TIP) is a member of a family of putative membrane channels found in bacteria, animals, and plants. Plants have seed-specific, vegetative/reproductive organ-specific, and water-stress-induced forms of TIP. Here, we report that the seed-specific TIP is a phosphoprotein whose phosphorylation can be monitored in vivo by allowing bean cotyledons to take up [32P]orthophosphate and in vitro by incubating purified tonoplasts with γ-labeled [32P]ATP. Characterization of the in vitro phosphorylation of TIP indicates that a membrane-bound protein kinase phosphorylates TIP in a Ca2+-dependent manner. The capacity of the isolated tonoplast membranes to phosphorylate TIP declined markedly during seed germination, and this decline occurred well before the development-mediated decrease in TIP occurs. Phosphoamino acid analysis of purified, radiolabeled TIP showed that serine is the major, if not only, phosphorylated residue, and cyanogen bromide cleavage yielded a single radioactive peptide peak on a reverse-phase high-performance liquid chromatogram. Estimation of the molecular mass of the cyanogen bromide phosphopeptide by laser desorption mass spectroscopy led to its identification as the hydrophilic N-terminal domain of TIP. The putative phosphate-accepting serine residue occurs in a consensus phosphorylation site for serine/threonine protein kinases. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:16653198

  1. Resolution of thylakoid polyphenol oxidase and a protein kinase

    SciTech Connect

    Race, H.L.; Davenport, J.W.; Hind, G.

    1995-12-31

    The predominant protein kinase activity in octylglucoside (OG) extracts of spinach thylakoids has been attributed to a 64-kDa protein, tp64. Recent work calls into question the relation between tp64 and protein kinase activity, which were fractionated apart using fluid phase IEF and hydroxylapatite chromatography. Hind et al. sequenced tp64 from the cDNA and showed it to be a polyphenol oxidase (PPO) homolog. Its transit peptide indicates a location for the mature protein within the thylakoid lumen, where there is presumably no ATP and where it is remote from the presumed kinase substrates: the stromally exposed regions of integral PS-II membrane proteins. Here the authors suggest that the kinase is a 64-kDa protein distinct from tp64.

  2. Direct Phosphorylation and Activation of a Mitogen-Activated Protein Kinase by a Calcium-Dependent Protein Kinase in Rice[C][W

    PubMed Central

    Xie, Kabin; Chen, Jianping; Wang, Qin; Yang, Yinong

    2014-01-01

    The mitogen-activated protein kinase (MAPK) is a pivotal point of convergence for many signaling pathways in eukaryotes. In the classical MAPK cascade, a signal is transmitted via sequential phosphorylation and activation of MAPK kinase kinase, MAPK kinase (MKK), and MAPK. The activation of MAPK is dependent on dual phosphorylation of a TXY motif by an MKK, which is considered the sole kinase to phosphorylate and activate MAPK. Here, we report a novel regulatory mechanism of MAPK phosphorylation and activation besides the canonical MAPK cascade. A rice (Oryza sativa) calcium-dependent protein kinase (CDPK), CPK18, was identified as an upstream kinase of MAPK (MPK5) in vitro and in vivo. Curiously, CPK18 was shown to phosphorylate and activate MPK5 without affecting the phosphorylation of its TXY motif. Instead, CPK18 was found to predominantly phosphorylate two Thr residues (Thr-14 and Thr-32) that are widely conserved in MAPKs from land plants. Further analyses reveal that the newly identified CPK18-MPK5 pathway represses defense gene expression and negatively regulates rice blast resistance. Our results suggest that land plants have evolved an MKK-independent phosphorylation pathway that directly connects calcium signaling to the MAPK machinery. PMID:25035404

  3. The Src-family tyrosine kinase inhibitor PP1 interferes with the activation of ribosomal protein S6 kinases.

    PubMed Central

    Shah, O Jameel; Kimball, Scot R; Jefferson, Leonard S

    2002-01-01

    Considerable biochemical and pharmacological evidence suggests that the activation of ribosomal protein S6 kinases (S6Ks) by activated receptor tyrosine kinases involves multiple co-ordinated input signals. However, the identities of many of these inputs remain poorly described, and their precise involvement in S6K activation has been the subject of great investigative effort. In the present study, we have shown that 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1), a selective inhibitor of the Src family of non-receptor tyrosine kinases, interferes with the activation of 70 and 85 kDa S6K gene products (p70S6K1 and p85S6K1) by insulin, insulin-like growth factor 1, sodium orthovanadate and activated alleles of phosphoinositide 3-kinase and H-Ras. PP1 also impedes the activation of AKT/protein kinase B and the extracellular signal-regulated protein kinases 1 and 2 by these various stimuli. Insulin-like growth factor 1 was observed to induce a sustained increase in c-Src autophosphorylation as revealed using anti-phospho-Y416 antisera, but this effect was absent from the cells treated with PP1. To conclude, an activated allele of p70S6K1 is compared with the wild-type allele, resistant to inhibition by PP1 when co-expressed with phosphoinositide-dependent kinase 1 (PDK1), suggesting that PP1 affects p70S6K1 via a PDK1-independent pathway. Thus activation of Src may supply a necessary signal for the activation of p70S6K1 and possibly other S6Ks. PMID:12014987

  4. Citron kinase enhances ubiquitination of HIV-1 Gag protein and intracellular HIV-1 budding.

    PubMed

    Ding, Jiwei; Zhao, Jianyuan; Sun, Lei; Mi, Zeyun; Cen, Shan

    2016-09-01

    Assembly and budding of human immunodeficiency virus type 1 (HIV-1) particles is a complex process involving a number of host proteins. We have previously reported that the RhoA effector citron kinase enhances HIV-1 production. However, the underlying mechanism is not clear. In this study, we found that citron kinase interacted with HIV-1 Gag protein via its zinc finger and leucine zipper domains. Electron microscopy analysis revealed that citron kinase induced viral particle assembly in multivesicular bodies (MVBs). Citron kinase enhanced ubiquitination of HIV-1 Gag protein. Knockdown of Nedd4L, a member of the HECT ubiquitin E3 ligase family, partly decreased the ability of citron kinase to enhance HIV-1 production and reduced ubiquitination of HIV-1 Gag. Interestingly, the function of citron kinase to promote HIV-1 budding was severely impaired when endogenous ALIX was knocked down. Overexpression of the AAA-type ATPase VPS4 eliminated citron-kinase-mediated enhancement of HIV-1 production. Our results suggest that citron kinase interacts with HIV-1 Gag and enhances HIV-1 production by promoting Gag ubiquitination and inducing viral release via the MVB pathway. PMID:27339686

  5. RAF protein-serine/threonine kinases: Structure and regulation

    SciTech Connect

    Roskoski, Robert

    2010-08-27

    Research highlights: {yields} The formation of unique side-to-side RAF dimers is required for full kinase activity. {yields} RAF kinase inhibitors block MEK activation in cells containing oncogenic B-RAF. {yields} RAF kinase inhibitors can lead to the paradoxical increase in RAF kinase activity. -- Abstract: A-RAF, B-RAF, and C-RAF are a family of three protein-serine/threonine kinases that participate in the RAS-RAF-MEK-ERK signal transduction cascade. This cascade participates in the regulation of a large variety of processes including apoptosis, cell cycle progression, differentiation, proliferation, and transformation to the cancerous state. RAS mutations occur in 15-30% of all human cancers, and B-RAF mutations occur in 30-60% of melanomas, 30-50% of thyroid cancers, and 5-20% of colorectal cancers. Activation of the RAF kinases requires their interaction with RAS-GTP along with dephosphorylation and also phosphorylation by SRC family protein-tyrosine kinases and other protein-serine/threonine kinases. The formation of unique side-to-side RAF dimers is required for full kinase activity. RAF kinase inhibitors are effective in blocking MEK1/2 and ERK1/2 activation in cells containing the oncogenic B-RAF Val600Glu activating mutation. RAF kinase inhibitors lead to the paradoxical increase in RAF kinase activity in cells containing wild-type B-RAF and wild-type or activated mutant RAS. C-RAF plays a key role in this paradoxical increase in downstream MEK-ERK activation.

  6. Information transfer by leaky, heterogeneous, protein kinase signaling systems

    PubMed Central

    Voliotis, Margaritis; Perrett, Rebecca M.; McWilliams, Chris; McArdle, Craig A.; Bowsher, Clive G.

    2014-01-01

    Cells must sense extracellular signals and transfer the information contained about their environment reliably to make appropriate decisions. To perform these tasks, cells use signal transduction networks that are subject to various sources of noise. Here, we study the effects on information transfer of two particular types of noise: basal (leaky) network activity and cell-to-cell variability in the componentry of the network. Basal activity is the propensity for activation of the network output in the absence of the signal of interest. We show, using theoretical models of protein kinase signaling, that the combined effect of the two types of noise makes information transfer by such networks highly vulnerable to the loss of negative feedback. In an experimental study of ERK signaling by single cells with heterogeneous ERK expression levels, we verify our theoretical prediction: In the presence of basal network activity, negative feedback substantially increases information transfer to the nucleus by both preventing a near-flat average response curve and reducing sensitivity to variation in substrate expression levels. The interplay between basal network activity, heterogeneity in network componentry, and feedback is thus critical for the effectiveness of protein kinase signaling. Basal activity is widespread in signaling systems under physiological conditions, has phenotypic consequences, and is often raised in disease. Our results reveal an important role for negative feedback mechanisms in protecting the information transfer function of saturable, heterogeneous cell signaling systems from basal activity. PMID:24395805

  7. Sequence and Structure Signatures of Cancer Mutation Hotspots in Protein Kinases

    PubMed Central

    Dixit, Anshuman; Yi, Lin; Gowthaman, Ragul; Torkamani, Ali; Schork, Nicholas J.; Verkhivker, Gennady M.

    2009-01-01

    Protein kinases are the most common protein domains implicated in cancer, where somatically acquired mutations are known to be functionally linked to a variety of cancers. Resequencing studies of protein kinase coding regions have emphasized the importance of sequence and structure determinants of cancer-causing kinase mutations in understanding of the mutation-dependent activation process. We have developed an integrated bioinformatics resource, which consolidated and mapped all currently available information on genetic modifications in protein kinase genes with sequence, structure and functional data. The integration of diverse data types provided a convenient framework for kinome-wide study of sequence-based and structure-based signatures of cancer mutations. The database-driven analysis has revealed a differential enrichment of SNPs categories in functional regions of the kinase domain, demonstrating that a significant number of cancer mutations could fall at structurally equivalent positions (mutational hotspots) within the catalytic core. We have also found that structurally conserved mutational hotspots can be shared by multiple kinase genes and are often enriched by cancer driver mutations with high oncogenic activity. Structural modeling and energetic analysis of the mutational hotspots have suggested a common molecular mechanism of kinase activation by cancer mutations, and have allowed to reconcile the experimental data. According to a proposed mechanism, structural effect of kinase mutations with a high oncogenic potential may manifest in a significant destabilization of the autoinhibited kinase form, which is likely to drive tumorigenesis at some level. Structure-based functional annotation and prediction of cancer mutation effects in protein kinases can facilitate an understanding of the mutation-dependent activation process and inform experimental studies exploring molecular pathology of tumorigenesis. PMID:19834613

  8. Phosphorylation and activation of calcineurin by glycogen synthase (casein) kinase-1 and cyclic AMP-dependent protein kinase

    SciTech Connect

    Singh, T.J.; Wang, J.H.

    1986-05-01

    Calcineurin is a phosphoprotein phosphatase that is activated by divalent cations and further stimulated by calmodulin. In this study calcineurin is shown to be a substrate for both glycogen synthase (casein) kinase-1 (CK-1) and cyclic AMP-dependent protein kinase (A-kinase). Either kinase can catalyze the incorporation of 1.0-1.4 mol /sup 32/P/mol calcineurin. Analysis by SDS-PAGE revealed that only the ..cap alpha.. subunit is phosphorylated. Phosphorylation of calcineurin by either kinase leads to its activation. Using p-nitrophenyl phosphate as a substrate the authors observed a 2-3 fold activation of calcineurin by either Mn/sup 2 +/ or Ni/sup 2 +/ (in the presence or absence of calmodulin) after phosphorylation of calcineurin by either CK-1 or A-kinase. In the absence of Mn/sup 2 +/ or Ni/sup 2 +/ phosphorylated calcineurin, like the nonphosphorylated enzyme, showed very little activity. Ni/sup 2 +/ was a more potent activator of phosphorylated calcineurin compared to Mn/sup 2 +/. Higher levels of activation (5-8 fold) of calcineurin by calmodulin was observed when phosphorylated calcineurin was pretreated with Ni/sup 2 +/ before measurement of phosphatase activity. These results indicate that phosphorylation may be an important mechanism by which calcineurin activity is regulated by Ca/sup 2 +/.

  9. Purification and characterization of a casein kinase 2-type protein kinase from pea nuclei

    NASA Technical Reports Server (NTRS)

    Li, H.; Roux, S. J.

    1992-01-01

    Almost all the polyamine-stimulated protein kinase activity associated with the chromatin fraction of nuclei purified from etiolated pea (Pisum sativum L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.35 molar NaCl. This protein kinase can be further purified over 2000-fold by salt fractionation and anion-exchange and casein-agarose column chromatography, after which it is more than 90% pure. The purified kinase has a specific activity of about 650 nanomoles per minute per milligram protein in the absence of polyamines, with either ATP or GTP as phosphoryl donor. Spermidine can stimulate its activity fourfold, with half-maximal activation at about 2 millimolar. Spermine and putrescine also stimulate activity, although somewhat less effectively. This kinase has a tetrameric alpha 2 beta 2 structure with a native molecular weight of 130,000, and subunit molecular weights of 36,000 for the catalytic subunit (alpha) and 29,000 for the regulatory subunit (beta). In western blot analyses, only the alpha subunit reacts strongly with polyclonal antibodies to a Drosophila casein kinase II. The pea kinase can use casein and phosvitin as artificial substrates, phosphorylating both the serine and threonine residues of casein. It has a pH optimum near 8.0, a Vmax of 1.5 micromoles per minute per milligram protein, and a Km for ATP of approximately 75 micromolar. Its activity can be almost completely inhibited by heparin at 5 micrograms per milliliter, but is relatively insensitive to concentrations of staurosporine, K252a, and chlorpromazine that strongly antagonize Ca(2+) -regulated protein kinases. These results are discussed in relation to recent findings that casein kinase 2-type kinases may phosphorylate trans-acting factors that bind to light-regulated promoters in plants.

  10. Identification of the regulatory autophosphorylation site of autophosphorylation-dependent protein kinase (auto-kinase). Evidence that auto-kinase belongs to a member of the p21-activated kinase family.

    PubMed Central

    Yu, J S; Chen, W J; Ni, M H; Chan, W H; Yang, S D

    1998-01-01

    Autophosphorylation-dependent protein kinase (auto-kinase) was identified from pig brain and liver on the basis of its unique autophosphorylation/activation property [Yang, Fong, Yu and Liu (1987) J. Biol. Chem. 262, 7034-7040; Yang, Chang and Soderling (1987) J. Biol. Chem. 262, 9421-9427]. Its substrate consensus sequence motif was determined as being -R-X-(X)-S*/T*-X3-S/T-. To characterize auto-kinase further, we partly sequenced the kinase purified from pig liver. The N-terminal sequence (VDGGAKTSDKQKKKAXMTDE) and two internal peptide sequences (EKLRTIV and LQNPEK/ILTP/FI) of auto-kinase were obtained. These sequences identify auto-kinase as a C-terminal catalytic fragment of p21-activated protein kinase 2 (PAK2 or gamma-PAK) lacking its N-terminal regulatory region. Auto-kinase can be recognized by an antibody raised against the C-terminal peptide of human PAK2 by immunoblotting. Furthermore the autophosphorylation site sequence of auto-kinase was successfully predicted on the basis of its substrate consensus sequence motif and the known PAK2 sequence, and was further demonstrated to be RST(P)MVGTPYWMAPEVVTR by phosphoamino acid analysis, manual Edman degradation and phosphopeptide mapping via the help of phosphorylation site analysis of a synthetic peptide corresponding to the sequence of PAK2 from residues 396 to 418. During the activation process, auto-kinase autophosphorylates mainly on a single threonine residue Thr402 (according to the sequence numbering of human PAK2). In addition, a phospho-specific antibody against a synthetic phosphopeptide containing this identified sequence was generated and shown to be able to differentially recognize the activated auto-kinase autophosphorylated at Thr402 but not the non-phosphorylated/inactive auto-kinase. Immunoblot analysis with this phospho-specific antibody further revealed that the change in phosphorylation level of Thr402 of auto-kinase was well correlated with the activity change of the kinase during both

  11. Mitogen-Activated Protein Kinase Kinase 3 Is Required for Regulation during Dark-Light Transition.

    PubMed

    Lee, Horim

    2015-07-01

    Plant growth and development are coordinately orchestrated by environmental cues and phytohormones. Light acts as a key environmental factor for fundamental plant growth and physiology through photosensory phytochromes and underlying molecular mechanisms. Although phytochromes are known to possess serine/threonine protein kinase activities, whether they trigger a signal transduction pathway via an intracellular protein kinase network remains unknown. In analyses of mitogen-activated protein kinase kinase (MAPKK, also called MKK) mutants, the mkk3 mutant has shown both a hypersensitive response in plant hormone gibberellin (GA) and a less sensitive response in red light signaling. Surprisingly, light-induced MAPK activation in wild-type (WT) seedlings and constitutive MAPK phosphorylation in dark-grown mkk3 mutant seedlings have also been found, respectively. Therefore, this study suggests that MKK3 acts in negative regulation in darkness and in light-induced MAPK activation during dark-light transition. PMID:26082029

  12. Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2

    PubMed Central

    Saruhashi, Masashi; Kumar Ghosh, Totan; Arai, Kenta; Ishizaki, Yumiko; Hagiwara, Kazuya; Komatsu, Kenji; Shiwa, Yuh; Izumikawa, Keiichi; Yoshikawa, Harunori; Umezawa, Taishi; Sakata, Yoichi; Takezawa, Daisuke

    2015-01-01

    Plant response to drought and hyperosmosis is mediated by the phytohormone abscisic acid (ABA), a sesquiterpene compound widely distributed in various embryophyte groups. Exogenous ABA as well as hyperosmosis activates the sucrose nonfermenting 1 (SNF1)-related protein kinase2 (SnRK2), which plays a central role in cellular responses against drought and dehydration, although the details of the activation mechanism are not understood. Analysis of a mutant of the moss Physcomitrella patens with reduced ABA sensitivity and reduced hyperosmosis tolerance revealed that a protein kinase designated “ARK” (for “ABA and abiotic stress-responsive Raf-like kinase”) plays an essential role in the activation of SnRK2. ARK encoded by a single gene in P. patens belongs to the family of group B3 Raf-like MAP kinase kinase kinases (B3-MAPKKKs) mediating ethylene, disease resistance, and salt and sugar responses in angiosperms. Our findings indicate that ARK, as a novel regulatory component integrating ABA and hyperosmosis signals, represents the ancestral B3-MAPKKKs, which multiplied, diversified, and came to have specific functions in angiosperms. PMID:26540727

  13. Regulatory crosstalk by protein kinases on CFTR trafficking and activity

    NASA Astrophysics Data System (ADS)

    Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  14. Regulatory Crosstalk by Protein Kinases on CFTR Trafficking and Activity

    PubMed Central

    Farinha, Carlos M.; Swiatecka-Urban, Agnieszka; Brautigan, David L.; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e., channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease. PMID:26835446

  15. Protein kinase C sensitizes olfactory adenylate cyclase.

    PubMed

    Frings, S

    1993-02-01

    Effects of neurotransmitters on cAMP-mediated signal transduction in frog olfactory receptor cells (ORCs) were studied using in situ spike recordings and radioimmunoassays. Carbachol, applied to the mucosal side of olfactory epithelium, amplified the electrical response of ORCs to cAMP-generating odorants, but did not affect unstimulated cells. A similar augmentation of odorant response was observed in the presence of phorbol dibutyrate (PDBu), an activator of protein kinase C (PKC). The electrical response to forskolin, an activator of adenylate cyclase (AC), was also enhanced by PDBu, and it was attenuated by the PKC inhibitor Goe 6983. Forskolin-induced accumulation of cAMP in olfactory tissue was potentiated by carbachol, serotonin, and PDBu to a similar extent. Potentiation was completely suppressed by the PKC inhibitors Goe 6983, staurosporine, and polymyxin B, suggesting that the sensitivity of olfactory AC to stimulation by odorants and forskolin was increased by PKC. Experiments with deciliated olfactory tissue indicated that sensitization of AC was restricted to sensory cilia of ORCs. To study the effects of cell Ca2+ on these mechanisms, the intracellular Ca2+ concentration of olfactory tissue was either increased by ionomycin or decreased by BAPTA/AM. Increasing cell Ca2+ had two effects on cAMP production: (a) the basal cAMP production was enhanced by a mechanism sensitive to inhibitors of calmodulin; and (b) similar to phorbol ester, cell Ca2+ caused sensitization of AC to stimulation by forskolin, an effect sensitive to Goe 6983. Decreasing cell Ca2+ below basal levels rendered AC unresponsive to stimulation by forskolin. These data suggest that a crosstalk mechanism is functional in frog ORCs, linking the sensitivity of AC to the activity of PKC. At increased activity of PKC, olfactory AC becomes more responsive to stimulation by odorants, forskolin, and cell Ca2+. Neurotransmitters appear to use this crosstalk mechanism to regulate olfactory

  16. In silico design of protein kinase inhibitors: successes and failures.

    PubMed

    Dubinina, Galina G; Chupryna, Oleksandr O; Platonov, Maxim O; Borisko, Petro O; Ostrovska, Galina V; Tolmachov, Andriy O; Shtil, Alexander A

    2007-03-01

    Protein kinases are among the most exploited targets in modern drug discovery due to key roles these enzymes play in human diseases including cancer. The in silico approach, an important part of rational design of protein kinase inhibitors, is founded on vast information about 3D structures of these enzymes. This review summarizes general structural features of the kinase inhibitors and the studies applied toward a large scale chemical database for virtual screening. Analyzed are the ways of validating the modern docking tools and their combinations with different scoring functions. In particular, we discuss the kinase flexibility as a reason for failures of the docking procedure. Finally, evidence is provided for the main patterns of kinase-inhibitor interactions and creation of the hinge-region-directed 2D filters. PMID:17348826

  17. Characterization of a tomato protein kinase gene induced by infection by Potato spindle tuber viroid.

    PubMed

    Hammond, R W; Zhao, Y

    2000-09-01

    Viroids--covalently closed, circular RNA molecules in the size range of 250 to 450 nucleotides-are the smallest known infectious agents and cause a number of diseases of crop plants. Viroids do not encode proteins and replicate within the nucleus without a helper virus. In many cases, viroid infection results in symptoms of stunting, epinasty, and vein clearing. In our study of the molecular basis of the response of tomato cv. Rutgers to infection by Potato spindle tuber viroid (PSTVd), we have identified a specific protein kinase gene, pkv, that is transcriptionally activated in plants infected with either the intermediate or severe strain of PSTVd, at a lower level in plants inoculated with a mild strain, and not detectable in mock-inoculated plants. A full-length copy of the gene encoding the 55-kDa PKV (protein kinase viroid)-induced protein has been isolated and sequence analysis revealed significant homologies to cyclic nucleotide-dependent protein kinases. Although the sequence motifs in the catalytic domain suggest that it is a serine/threonine protein kinase, the recombinant PKV protein autophosphorylates in vitro on serine and tyrosine residues, suggesting that it is a putative member of the class of dual-specificity protein kinases. PMID:10975647

  18. Activation of protein kinase C induces mitogen-activated protein kinase dephosphorylation and pronucleus formation in rat oocytes.

    PubMed

    Lu, Qing; Smith, Gary D; Chen, Da-Yuan; Han, Zhi-Ming; Sun, Qing-Yuan

    2002-07-01

    Mammalian oocytes are arrested at metaphase of the second meiotic division (MII) before fertilization. When oocytes are stimulated by spermatozoa, they exit MII stage and complete meiosis. It has been suggested that an immediate increase in intracellular free calcium concentration and inactivation of maturation promoting factor (MPF) are required for oocyte activation. However, the underlying mechanism is still unclear. In the present study, we investigated the role of protein kinase C (PKC) and mitogen-activated protein (MAP) kinase, and their interplay in rat oocyte activation. We found that MAP kinase became dephosphorylated in correlation with pronucleus formation after fertilization. Protein kinase C activators, phorbol 12-myriatate 13-acetate (PMA) and 1,2-dioctanoyl-rac-glycerol (diC8), triggered dephosphorylation of MAP kinase and pronucleus formation in a dose-dependent and time-dependent manner. Dephosphorylation of MAP kinase was also correlated with pronucleus formation when oocytes were treated with PKC activators. Effects of PKC activators were abolished by the PKC inhibitors, calphostin C and staurosporine, as well as a protein phosphatase blocker, okadaic acid (OA). These results suggest that PKC activation may cause rat oocyte pronucleus formation via MAP kinase dephosphorylation, which is probably mediated by OA-sensitive protein phosphatases. We also provide evidence supporting the involvement of such a process in fertilization. PMID:12080000

  19. The Dimeric Architecture of Checkpoint Kinases Mec1ATR and Tel1ATM Reveal a Common Structural Organization.

    PubMed

    Sawicka, Marta; Wanrooij, Paulina H; Darbari, Vidya C; Tannous, Elias; Hailemariam, Sarem; Bose, Daniel; Makarova, Alena V; Burgers, Peter M; Zhang, Xiaodong

    2016-06-24

    The phosphatidylinositol 3-kinase-related protein kinases are key regulators controlling a wide range of cellular events. The yeast Tel1 and Mec1·Ddc2 complex (ATM and ATR-ATRIP in humans) play pivotal roles in DNA replication, DNA damage signaling, and repair. Here, we present the first structural insight for dimers of Mec1·Ddc2 and Tel1 using single-particle electron microscopy. Both kinases reveal a head to head dimer with one major dimeric interface through the N-terminal HEAT (named after Huntingtin, elongation factor 3, protein phosphatase 2A, and yeast kinase TOR1) repeat. Their dimeric interface is significantly distinct from the interface of mTOR complex 1 dimer, which oligomerizes through two spatially separate interfaces. We also observe different structural organizations of kinase domains of Mec1 and Tel1. The kinase domains in the Mec1·Ddc2 dimer are located in close proximity to each other. However, in the Tel1 dimer they are fully separated, providing potential access of substrates to this kinase, even in its dimeric form. PMID:27129217

  20. The Dimeric Architecture of Checkpoint Kinases Mec1ATR and Tel1ATM Reveal a Common Structural Organization*

    PubMed Central

    Sawicka, Marta; Wanrooij, Paulina H.; Darbari, Vidya C.; Tannous, Elias; Hailemariam, Sarem; Bose, Daniel; Makarova, Alena V.; Burgers, Peter M.; Zhang, Xiaodong

    2016-01-01

    The phosphatidylinositol 3-kinase-related protein kinases are key regulators controlling a wide range of cellular events. The yeast Tel1 and Mec1·Ddc2 complex (ATM and ATR-ATRIP in humans) play pivotal roles in DNA replication, DNA damage signaling, and repair. Here, we present the first structural insight for dimers of Mec1·Ddc2 and Tel1 using single-particle electron microscopy. Both kinases reveal a head to head dimer with one major dimeric interface through the N-terminal HEAT (named after Huntingtin, elongation factor 3, protein phosphatase 2A, and yeast kinase TOR1) repeat. Their dimeric interface is significantly distinct from the interface of mTOR complex 1 dimer, which oligomerizes through two spatially separate interfaces. We also observe different structural organizations of kinase domains of Mec1 and Tel1. The kinase domains in the Mec1·Ddc2 dimer are located in close proximity to each other. However, in the Tel1 dimer they are fully separated, providing potential access of substrates to this kinase, even in its dimeric form. PMID:27129217

  1. Regulation of eukaryotic-like protein kinase activity of DspA from Myxococcus xanthus by autophosphorylation.

    PubMed

    Okamoto, Reiko; Takegawa, Kaoru; Kimura, Yoshio

    2014-02-01

    A Myxococcus xanthus DspA contains 12 subdomains characteristic of eukaryotic-like protein kinases but with an atypical sequence, RDxSPHN, in the catalytic loop, different from the consensus motifs observed in Ser/Thr kinases (RDxKxxN) or Tyr kinases (RDx(A/R)A(A/R)N). DspA phosphorylated myelin basic protein (MBP) on Ser and Thr residues. Mutations of the SPHN motif within the catalytic loop to KPHN or KPEN for Ser/Thr kinases, AARN for Tyr kinases and TPHN or TSHN for Dictyostelium Tyr kinases markedly reduced autophosphorylation and kinase activities. Phosphorylation assays, Western blot analysis and mutational analysis revealed that DspA is a dual-specificity kinase that autophosphorylates on two Thr residues (Thr-199 and Thr-201) in the activation loop and two Tyr residues (Tyr-35 and Tyr-111). RD kinases such as DspA are activated by phosphorylation in the activation loop. Replacement of Thr-199 or/and Thr-201 in the DspA activation loop by alanine also almost abolished autophosphorylation and kinase activities. In addition, mutation of either Tyr-35 or Tyr-111 to phenylalanine decreased kinase activities against MBP, and double mutation abolished kinase activity. These results suggested that DspA is activated by dual autophosphorylation of Thr residues in the activation loop, and autophosphorylation on two Tyr residues of DspA are required for high-level kinase activity. PMID:24194533

  2. The C-terminal tail of protein kinase D2 and protein kinase D3 regulates their intracellular distribution

    SciTech Connect

    Papazyan, Romeo; Rozengurt, Enrique; Rey, Osvaldo . E-mail: orey@mednet.ucla.edu

    2006-04-14

    We generated a set of GFP-tagged chimeras between protein kinase D2 (PKD2) and protein kinase D3 (PKD3) to examine in live cells the contribution of their C-terminal region to their intracellular localization. We found that the catalytic domain of PKD2 and PKD3 can localize to the nucleus when expressed without other kinase domains. However, when the C-terminal tail of PKD2 was added to its catalytic domain, the nuclear localization of the resulting protein was inhibited. In contrast, the nuclear localization of the CD of PKD3 was not inhibited by its C-terminal tail. Furthermore, the exchange of the C-terminal tail of PKD2 and PKD3 in the full-length proteins was sufficient to exchange their intracellular localization. Collectively, these data demonstrate that the short C-terminal tail of these kinases plays a critical role in determining their cytoplasmic/nuclear localization.

  3. Protein kinase C coordinates histone H3 phosphorylation and acetylation

    PubMed Central

    Darieva, Zoulfia; Webber, Aaron; Warwood, Stacey; Sharrocks, Andrew D

    2015-01-01

    The re-assembly of chromatin following DNA replication is a critical event in the maintenance of genome integrity. Histone H3 acetylation at K56 and phosphorylation at T45 are two important chromatin modifications that accompany chromatin assembly. Here we have identified the protein kinase Pkc1 as a key regulator that coordinates the deposition of these modifications in S. cerevisiae under conditions of replicative stress. Pkc1 phosphorylates the histone acetyl transferase Rtt109 and promotes its ability to acetylate H3K56. Our data also reveal novel cross-talk between two different histone modifications as Pkc1 also enhances H3T45 phosphorylation and this modification is required for H3K56 acetylation. Our data therefore uncover an important role for Pkc1 in coordinating the deposition of two different histone modifications that are important for chromatin assembly. DOI: http://dx.doi.org/10.7554/eLife.09886.001 PMID:26468616

  4. Analysis of Substrates of Protein Kinase C Isoforms in Human Breast Cells By The Traceable Kinase Method

    PubMed Central

    Chen, Xiangyu; Zhao, Xin; Abeyweera, Thushara P.; Rotenberg, Susan A.

    2012-01-01

    A previous report (Biochemistry 46: 2364–2370, 2007) described the application of The Traceable Kinase Method to identify substrates of PKCα in non-transformed human breast MCF-10A cells. Here, a non-radioactive variation of this method compared the phospho-protein profiles of three traceable PKC isoforms (α, δ and ζ) for the purpose of identifying novel, isoform-selective substrates. Each FLAG-tagged traceable kinase was expressed and co-immunoprecipitated along with high affinity substrates. The isolated kinase and its associated substrates were subjected to an in vitro phosphorylation reaction with traceable kinase-specific N6-phenyl-ATP, and the resulting phospho-proteins were analyzed by Western blot with an antibody that recognizes the phosphorylated PKC consensus site. Phospho-protein profiles generated by PKC-α and -δ were similar and differed markedly from that of PKC-ζ. Mass spectrometry of selected bands revealed known PKC substrates and several potential substrates that included the small GTPase-associated effector protein Cdc42 effector protein-4 (CEP4). Of those potential substrates tested, only CEP4 was phosphorylated by pure PKC-α, –δ, and −ζ isoforms in vitro, and by endogenous PKC isoforms in MCF-10A cells treated with DAG-lactone, a membrane permeable PKC activator. Under these conditions, the stoichiometry of CEP4 phosphorylation was 3.2 ± 0.5 (mol phospho-CEP4/mol CEP4). Following knock-down with isoform-specific shRNA-encoding plasmids, phosphorylation of CEP4 was substantially decreased in response to silencing of each of the three isoforms (PKC–α, –δ, or –ζ), whereas testing of kinase-dead mutants supported a role for only PKC-α and –δ in CEP4 phosphorylation. These findings identify CEP4 as a novel intracellular PKC substrate that is phosphorylated by multiple PKC isoforms. PMID:22897107

  5. Leishmania Infection Engages Non-Receptor Protein Kinases Differentially to Persist in Infected Hosts

    PubMed Central

    Zhang, Naixin; Kima, Peter E.

    2016-01-01

    Protein kinases play important roles in the regulation of cellular activities. In cells infected by pathogens, there is an increasing appreciation that dysregulated expression of protein kinases promotes the success of intracellular infections. In Leishmania-infected cells, expression and activation of protein kinases, such as the mitogen-activated protein kinases, kinases in the PI3-kinase signaling pathway, and kinases in the NF-κB-signaling pathway, are modulated in some manner. Several recent reviews have discussed our current understanding of the roles of these kinases in Leishmania infections. Apart from the kinases in the pathways enumerated above, there are other host cell protein kinases that are activated during the Leishmania infection of mammalian cells whose roles also appear to be significant. This review discusses recent observations on the Abl family of protein kinases and the protein kinase regulated by RNA in Leishmania infections. PMID:27148265

  6. Protein kinase inhibitors in plants of the myrtaceae, proteaceae, and leguminosae.

    PubMed

    Larkin, M; Brazier, J; Ternai, B; Polya, G M

    1993-12-01

    Methanolic extracts of leaves, flowers, stems, bark, and other parts of representative plants of the Myrtaceae, specifically of the EUCALYPTUS, MELALEUCA, THRYPTOMENA, CALLISTOMEN, ACMENA, AND ANGOPHORA genera, variously contain high levels of inhibitors of plant Ca (2+)-dependent protein kinase (CDPK) and of Ca (2+)-calmodulin-dependent myosin light chain kinase (MLCK). In terms of the protein kinase inhibition unit (PKIU), defined as the amount in the standard protein kinase assays causing 50% inhibition of protein kinase activity, these inhibitor levels ranged from the non-detectable to 179,000 PKIU (gram fresh weight) (-1) [(g FW) (-1)] and there was no consistent pattern of inhibitor distribution. A variety of other plants tested had low or non-detectable levels of CDPK and MLCK inhibitors. Plants of the EUCALYPTUS, MELALEUCA, ANGOPHORA, and GREVILLEA genera contained inhibitors of the catalytic subunit of the cyclic AMP-dependent protein kinase (cAK), inhibitor levels ranging from 20,000 to 9,600,000 PKIU (g FW) (-1). In general, cAK inhibitor levels found in the Myrtaceae were mostly much higher than levels of CDPK and MLCK inhibitors and reversed phase HPLC of such plant extracts revealed a multiplicity of components associated with cAK inhibitory activity. These IN VITRO screening procedures enable rapid detection and quantitation of levels of bioactive plant defence compounds with medicinal potential. PMID:17230363

  7. Targeting protein kinases in central nervous system disorders

    PubMed Central

    Chico, Laura K.; Van Eldik, Linda J.; Watterson, D. Martin

    2010-01-01

    Protein kinases are a growing drug target class in disorders in peripheral tissues, but the development of kinase-targeted therapies for central nervous system (CNS) diseases remains a challenge, largely owing to issues associated specifically with CNS drug discovery. However, several candidate therapeutics that target CNS protein kinases are now in various stages of preclinical and clinical development. We review candidate compounds and discuss selected CNS protein kinases that are emerging as important therapeutic targets. In addition, we analyse trends in small-molecule properties that correlate with key challenges in CNS drug discovery, such as blood–brain barrier penetrance and cytochrome P450-mediated metabolism, and discuss the potential of future approaches that will integrate molecular-fragment expansion with pharmacoinformatics to address these challenges. PMID:19876042

  8. AKAP79 Selectively Enhances Protein Kinase C Regulation of GluR1 at a Ca2+-Calmodulin-dependent Protein Kinase II/Protein Kinase C Site*

    PubMed Central

    Tavalin, Steven J.

    2008-01-01

    Enhancement of AMPA receptor activity in response to synaptic plasticity inducing stimuli may arise, in part, through phosphorylation of the GluR1 AMPA receptor subunit at Ser-831. This site is a substrate for both Ca2+-calmodulin-dependent protein kinase II (CaMKII) and protein kinase C (PKC). However, neuronal protein levels of CaMKII may exceed those of PKC by an order of magnitude. Thus, it is unclear how PKC could effectively regulate this common target site. The multivalent neuronal scaffold A-kinase-anchoring protein 79 (AKAP79) is known to bind PKC and is linked to GluR1 by synapse-associated protein 97 (SAP97). Here, biochemical studies demonstrate that AKAP79 localizes PKC activity near the receptor, thus accelerating Ser-831 phosphorylation. Complementary electrophysiological studies indicate that AKAP79 selectively shifts the dose-dependence for PKC modulation of GluR1 receptor currents ∼20-fold, such that low concentrations of PKC are as effective as much higher CaMKII concentrations. By boosting PKC activity near a target substrate, AKAP79 provides a mechanism to overcome limitations in kinase abundance thereby ensuring faithful signal propagation and efficient modification of AMPA receptor-mediated responses. PMID:18305116

  9. Protein Kinase Cδ mediates the activation of Protein Kinase D2 in Platelets

    PubMed Central

    Bhavanasi, Dheeraj; Kim, Soochong; Goldfinger, Lawrence E.; Kunapuli, Satya P.

    2011-01-01

    Protein Kinase D (PKD) is a subfamily of serine/threonine specific family of kinases, comprised of PKD1, PKD2 and PKD3 (PKCμ, PKD2 and PKCν in humans). It is known that PKCs activate PKD, but the relative expression of isoforms of PKD or the specific PKC isoform/s responsible for its activation in platelets is not known. This study is aimed at investigating the pathway involved in activation of PKD in platelets. We show that PKD2 is the major isoform of PKD that is expressed in human as well as murine platelets but not PKD1 or PKD3. PKD2 activation induced by AYPGKF was abolished with a Gq inhibitor YM-254890, but was not affected by Y-27632, a RhoA/p160ROCK inhibitor, indicating that PKD2 activation is Gq-, but not G12/13-mediated Rho-kinase dependent. Calcium-mediated signals are also required for activation of PKD2 as dimethyl BAPTA inhibited its phosphorylation. GF109203X, a pan PKC inhibitor abolished PKD2 phosphorylation but Go6976, a classical PKC inhibitor had no effect suggesting that novel PKC isoforms are involved in PKD2 activation. Importantly, Rottlerin, a non-selective PKCδ inhibitor, inhibited AYPGKF-induced PKD2 activation in human platelets. Similarly, AYPGKF- and Convulxin-induced PKD2 phosphorylation was dramatically inhibited in PKCδ-deficient platelets, but not in PKCθ– or PKCε–deficient murine platelets compared to that of wild type platelets. Hence, we conclude that PKD2 is a common signaling target downstream of various agonist receptors in platelets and Gq-mediated signals along with calcium and novel PKC isoforms, in particular, PKCδ activate PKD2 in platelets. PMID:21736870

  10. Human immunodeficiency virus type 1 Nef binds directly to Lck and mitogen-activated protein kinase, inhibiting kinase activity.

    PubMed Central

    Greenway, A; Azad, A; Mills, J; McPhee, D

    1996-01-01

    It is now well established that human immunodeficiency virus type I (HIV-1) Nef contributes substantially to disease pathogenesis by augmenting virus replication and markedly perturbing T-cell function. The effect of Nef on host cell activation could be explained in part by its interaction with specific cellular proteins involved in signal transduction, including at least a member of the src family kinase, Lck, and the serine/threonine kinase, mitogen-activated protein kinase (MAPK). Recombinant Nef directly interacted with purified Lck and MAPK in coprecipitation experiments and binding assays. A proline-rich repeat sequence [(Pxx)4] in Nef occurring between amino acid residues 69 to 78 is highly conserved and bears strong resemblance to a defined consensus sequence identified as an SH3 binding domain present in several proteins which can interact with the SH3 domain of various signalling and cytoskeletal proteins. Binding and coprecipitation assays with short synthetic peptides corresponding to the proline-rich repeat sequence [(Pxx)4] of Nef and the SH2, SH3, or SH2 and SH3 domains of Lck revealed that the interaction between these two proteins is at least in part mediated by the proline repeat sequence of Nef and the SH3 domain of Lck. In addition to direct binding to full-length Nef, MAPK was also shown to bind the same proline repeat motif. Nef protein significantly decreased the in vitro kinase activity of Lck and MAPK. Inhibition of key members of signalling cascades, including those emanating from the T-cell receptor, by the HIV-1 Nef protein undoubtedly alters the ability of the infected T cell to respond to antigens or cytokines, facilitating HIV-1 replication and contributing to HIV-1-induced disease pathogenesis. PMID:8794306

  11. Phosphorylation of the Kinase Interaction Motif in Mitogen-activated Protein (MAP) Kinase Phosphatase-4 Mediates Cross-talk between Protein Kinase A and MAP Kinase Signaling Pathways*

    PubMed Central

    Dickinson, Robin J.; Delavaine, Laurent; Cejudo-Marín, Rocío; Stewart, Graeme; Staples, Christopher J.; Didmon, Mark P.; Trinidad, Antonio Garcia; Alonso, Andrés; Pulido, Rafael; Keyse, Stephen M.

    2011-01-01

    MAP kinase phosphatase 4 (DUSP9/MKP-4) plays an essential role during placental development and is one of a subfamily of three closely related cytoplasmic dual-specificity MAPK phosphatases, which includes the ERK-specific enzymes DUSP6/MKP-3 and DUSP7/MKP-X. However, unlike DUSP6/MKP-3, DUSP9/MKP-4 also inactivates the p38α MAP kinase both in vitro and in vivo. Here we demonstrate that inactivation of both ERK1/2 and p38α by DUSP9/MKP-4 is mediated by a conserved arginine-rich kinase interaction motif located within the amino-terminal non-catalytic domain of the protein. Furthermore, DUSP9/MKP-4 is unique among these cytoplasmic MKPs in containing a conserved PKA consensus phosphorylation site 55RRXSer-58 immediately adjacent to the kinase interaction motif. DUSP9/MKP-4 is phosphorylated on Ser-58 by PKA in vitro, and phosphorylation abrogates the binding of DUSP9/MKP-4 to both ERK2 and p38α MAP kinases. In addition, although mutation of Ser-58 to either alanine or glutamic acid does not affect the intrinsic catalytic activity of DUSP9/MKP-4, phospho-mimetic (Ser-58 to Glu) substitution inhibits both the interaction of DUSP9/MKP-4 with ERK2 and p38α in vivo and its ability to dephosphorylate and inactivate these MAP kinases. Finally, the use of a phospho-specific antibody demonstrates that endogenous DUSP9/MKP-4 is phosphorylated on Ser-58 in response to the PKA agonist forskolin and is also modified in placental tissue. We conclude that DUSP9/MKP-4 is a bona fide target of PKA signaling and that attenuation of DUSP9/MKP-4 function can mediate cross-talk between the PKA pathway and MAPK signaling through both ERK1/2 and p38α in vivo. PMID:21908610

  12. A Novel Mode of Protein Kinase Inhibition Exploiting Hydrophobic Motifs of Autoinhibited Kinases

    SciTech Connect

    S Eathiraj; R Palma; M Hirschi; E Volckova; E Nakuci; J Castro; C Chen; T Chan; D France; M Ashwell

    2011-12-31

    Protein kinase inhibitors with enhanced selectivity can be designed by optimizing binding interactions with less conserved inactive conformations because such inhibitors will be less likely to compete with ATP for binding and therefore may be less impacted by high intracellular concentrations of ATP. Analysis of the ATP-binding cleft in a number of inactive protein kinases, particularly in the autoinhibited conformation, led to the identification of a previously undisclosed non-polar region in this cleft. This ATP-incompatible hydrophobic region is distinct from the previously characterized hydrophobic allosteric back pocket, as well as the main pocket. Generalized hypothetical models of inactive kinases were constructed and, for the work described here, we selected the fibroblast growth factor receptor (FGFR) tyrosine kinase family as a case study. Initial optimization of a FGFR2 inhibitor identified from a library of commercial compounds was guided using structural information from the model. We describe the inhibitory characteristics of this compound in biophysical, biochemical, and cell-based assays, and have characterized the binding mode using x-ray crystallographic studies. The results demonstrate, as expected, that these inhibitors prevent activation of the autoinhibited conformation, retain full inhibitory potency in the presence of physiological concentrations of ATP, and have favorable inhibitory activity in cancer cells. Given the widespread regulation of kinases by autoinhibitory mechanisms, the approach described herein provides a new paradigm for the discovery of inhibitors by targeting inactive conformations of protein kinases.

  13. The eukaryotic protein kinase superfamily of the necrotrophic fungal plant pathogen, Sclerotinia sclerotiorum.

    PubMed

    Hegedus, Dwayne D; Gerbrandt, Kelsey; Coutu, Cathy

    2016-05-01

    Protein kinases have been implicated in the regulation of many processes that guide pathogen development throughout the course of infection. A survey of the Sclerotinia sclerotiorum genome for genes encoding proteins containing the highly conserved eukaryotic protein kinase (ePK) domain, the largest protein kinase superfamily, revealed 92 S. sclerotiorum ePKs. This review examines the composition of the S. sclerotiorum ePKs based on conserved motifs within the ePK domain family, and relates this to orthologues found in other filamentous fungi and yeasts. The ePKs are also discussed in terms of their proposed role(s) in aspects of host pathogenesis, including the coordination of mycelial growth/development and deployment of pathogenicity determinants in response to environmental stimuli, nutrients and stress. PMID:26395470

  14. Mycobacterium tuberculosis MtrB Sensor Kinase Interactions with FtsI and Wag31 Proteins Reveal a Role for MtrB Distinct from That Regulating MtrA Activities

    PubMed Central

    Plocinska, Renata; Martinez, Luis; Gorla, Purushotham; Pandeeti, Emmanuel; Sarva, Krishna; Blaszczyk, Ewelina; Dziadek, Jaroslaw

    2014-01-01

    The septal association of Mycobacterium tuberculosis MtrB, the kinase partner of the MtrAB two-component signal transduction system, is necessary for the optimal expression of the MtrA regulon targets, including ripA, fbpB, and ftsI, which are involved in cell division and cell wall synthesis. Here, we show that MtrB, irrespective of its phosphorylation status, interacts with Wag31, whereas only phosphorylation-competent MtrB interacts with FtsI. We provide evidence that FtsI depletion compromises the MtrB septal assembly and MtrA regulon expression; likewise, the absence of MtrB compromises FtsI localization and, possibly, FtsI activity. We conclude from these results that FtsI and MtrB are codependent for their activities and that FtsI functions as a positive modulator of MtrB activation and MtrA regulon expression. In contrast to FtsI, Wag31 depletion does not affect MtrB septal assembly and MtrA regulon expression, whereas the loss of MtrB increased Wag31 localization and the levels of PknA/PknB (PknA/B) serine-threonine protein kinase-mediated Wag31 phosphorylation. Interestingly, we found that FtsI decreased levels of phosphorylated Wag31 (Wag31∼P) and that MtrB interacted with PknA/B. Overall, our results indicate that MtrB interactions with FtsI, Wag31, and PknA/B are required for its optimal localization, MtrA regulon expression, and phosphorylation of Wag31. Our results emphasize a new role for MtrB in cell division and cell wall synthesis distinct from that regulating the MtrA phosphorylation activities. PMID:25225272

  15. Protein kinase C mediated phosphorylation blocks juvenile hormone action.

    PubMed

    Kethidi, Damu R; Li, Yiping; Palli, Subba R

    2006-03-01

    Juvenile hormones (JH) regulate a wide variety of developmental and physiological processes in insects. Although the biological actions of JH are well documented, the molecular mechanisms underlying JH action are poorly understood. We studied the molecular basis of JH action using a JH response element (JHRE) identified in the promoter region of JH esterase gene cloned from Choristoneura fumiferana, which is responsive to JH and 20-hydroxyecdysone (20E). In Drosophila melanogaster L57 cells, the JHRE-regulated reporter gene was induced by JH I, JH III, methoprene, and hydroprene. Nuclear proteins isolated from L57 cells bound to the JHRE and exposure of these proteins to ATP resulted in a reduction in their DNA binding. Either JH III or calf intestinal alkaline phosphatase (CIAP) was able to restore the binding of nuclear proteins to the DNA. In addition, protein kinase C inhibitors increased and protein kinase C activators reduced the binding of nuclear proteins to the JHRE. In transactivation assays, protein kinase C inhibitors induced the luciferase gene placed under the control of a minimal promoter and the JHRE. These data suggest that protein kinase C mediated phosphorylation prevents binding of nuclear proteins to juvenile hormone responsive promoters resulting in suppression of JH action. PMID:16448742

  16. Peptide biosensors for the electrochemical measurement of protein kinase activity.

    PubMed

    Kerman, Kagan; Song, Haifeng; Duncan, James S; Litchfield, David W; Kraatz, Heinz-Bernhard

    2008-12-15

    The kinase activities are elucidated using the novel redox-active cosubstrate adenosine 5'-[gamma-ferrocene] triphosphate (Fc-ATP), which enables the kinase-catalyzed transfer of a redox active gamma-phosphate-Fc to a hydroxyamino acid. In this report, a versatile electrochemical biosensor is developed for monitoring the activity and inhibition of a serine/threonine kinase, casein kinase 2 (CK2), and protein tyrosine kinases, Abl1-T315I and HER2, in buffered solutions and in cell lysates. The method is based on the labeling of a specific phosphorylation event with Fc, followed by electrochemical detection. The electrochemical response obtained from the "ferrocenylated" peptides enables monitoring the activity of the kinase and its substrate, as well as the inhibition of small molecule inhibitors on protein phosphorylation. Kinetic information was extracted from the electrochemical measurements for the determination of K(m) and V(m) values, which were in agreement with those previously reported. Kinase reactions were also performed in the presence of well-defined inhibitors of CK2, 4,5,6,7-tetrabromo-2-azabenzimidazole, 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole, and E-3-(2,3,4,5-tetrabromophenyl)acrylic acid as well as the nonspecific kinase inhibitors, staurosporine and N-benzoylstaurosporine. On the basis of the dependency of the Fc signal on inhibitor concentration, K(i) of the inhibitors was estimated, which were also in agreement with the literature values. The performance of the biosensor was optimized including the kinase reaction, incubation with Fc-ATP, and the small molecule inhibitors. Peptide modified electrochemical biosensors are promising candidates for cost-effective in vitro kinase activity and inhibitor screening assays. PMID:18989981

  17. Analysis of the Human Kinome Using Methods Including Fold Recognition Reveals Two Novel Kinases

    PubMed Central

    Bourne, Philip E.

    2008-01-01

    Background Protein sequence similarity is a commonly used criterion for inferring the unknown function of a protein from a protein of known function. However, proteins can diverge significantly over time such that sequence similarity is difficult, if not impossible, to find. In some cases, a structural similarity remains over long evolutionary time scales and once detected can be used to predict function. Methodology/Principal Findings Here we employed a high-throughput approach to assign structural and functional annotation to the human proteome, focusing on the collection of human protein kinases, the human kinome. We compared human protein sequences to a library of domains from known structures using WU-BLAST, PSI-BLAST, and 123D. This approach utilized both sequence comparison and fold recognition methods. The resulting set of potential protein kinases was cross-checked against previously identified human protein kinases, and analyzed for conserved kinase motifs. Conclusions/Significance We demonstrate that our structure-based method can be used to identify both typical and atypical human protein kinases. We also identify two potentially novel kinases that contain an interesting combination of kinase and acyl-CoA dehydrogenase domains. PMID:18270584

  18. Focal adhesion kinases and calcium/calmodulin-dependent protein kinases regulate protein tyrosine phosphorylation in stallion sperm.

    PubMed

    González-Fernández, Lauro; Macías-García, Beatriz; Loux, Shavahn C; Varner, Dickson D; Hinrichs, Katrin

    2013-06-01

    Protein tyrosine phosphorylation (PY) is a hallmark of sperm capacitation. In stallion sperm, calcium inhibits PY at pH <7.8, mediated by calmodulin. To explore the mechanism of that inhibition, we incubated stallion sperm in media without added calcium, with calcium, or with calcium plus the calmodulin inhibitor W-7 (Ca/W-7 treatment). Treatment with inhibitors of calcium/calmodulin-dependent kinases, protein kinase A (PRKA), or Src family kinases suppressed the PY induced by the absence of added calcium, but not that induced by the Ca/W-7 treatment, indicating that PY in the absence of added calcium occurred via the canonical PRKA pathway, but that PY in the Ca/W-7 treatment did not. This suggested that when calmodulin was inhibited, calcium stimulated PY via a noncanonical pathway. Incubation with PF-431396, an inhibitor of focal adhesion kinases (FAKs), a family of calcium-induced protein tyrosine kinases, inhibited the PY induced both by the absence of added calcium and by the Ca/W-7 treatment. Western blotting demonstrated that both FAK family members, protein tyrosine kinases 2 and 2B, were phosphorylated in the absence of added calcium and in the Ca/W-7 treatment, but not in the presence of calcium without calmodulin inhibitors. Inhibition of FAK proteins inhibited PY in stallion sperm incubated under capacitating conditions (in the presence of calcium, bovine serum albumin, and bicarbonate at pH >7.8). These results show for the first time a role for calcium/calmodulin-dependent kinases in PRKA-dependent sperm PY; a non-PRKA-dependent pathway regulating sperm PY; and the apparent involvement of the FAK family of protein tyrosine kinases downstream in both pathways. PMID:23595906

  19. Archaeal protein kinases and protein phosphatases: insights from genomics and biochemistry.

    PubMed Central

    Kennelly, Peter J

    2003-01-01

    Protein phosphorylation/dephosphorylation has long been considered a recent addition to Nature's regulatory arsenal. Early studies indicated that this molecular regulatory mechanism existed only in higher eukaryotes, suggesting that protein phosphorylation/dephosphorylation had emerged to meet the particular signal-transduction requirements of multicellular organisms. Although it has since become apparent that simple eukaryotes and even bacteria are sites of protein phosphorylation/dephosphorylation, the perception widely persists that this molecular regulatory mechanism emerged late in evolution, i.e. after the divergence of the contemporary phylogenetic domains. Only highly developed cells, it was reasoned, could afford the high 'overhead' costs inherent in the acquisition of dedicated protein kinases and protein phosphatases. The advent of genome sequencing has provided an opportunity to exploit Nature's phylogenetic diversity as a vehicle for critically examining this hypothesis. In tracing the origins and evolution of protein phosphorylation/dephosphorylation, the members of the Archaea, the so-called 'third domain of life', will play a critical role. Whereas several studies have demonstrated that archaeal proteins are subject to modification by covalent phosphorylation, relatively little is known concerning the identities of the proteins affected, the impact on their functional properties, or the enzymes that catalyse these events. However, examination of several archaeal genomes has revealed the widespread presence of several ostensibly 'eukaryotic' and 'bacterial' protein kinase and protein phosphatase paradigms. Similar findings of 'phylogenetic trespass' in members of the Eucarya (eukaryotes) and the Bacteria suggest that this versatile molecular regulatory mechanism emerged at an unexpectedly early point in development of 'life as we know it'. PMID:12444920

  20. A secretory kinase complex regulates extracellular protein phosphorylation.

    PubMed

    Cui, Jixin; Xiao, Junyu; Tagliabracci, Vincent S; Wen, Jianzhong; Rahdar, Meghdad; Dixon, Jack E

    2015-01-01

    Although numerous extracellular phosphoproteins have been identified, the protein kinases within the secretory pathway have only recently been discovered, and their regulation is virtually unexplored. Fam20C is the physiological Golgi casein kinase, which phosphorylates many secreted proteins and is critical for proper biomineralization. Fam20A, a Fam20C paralog, is essential for enamel formation, but the biochemical function of Fam20A is unknown. Here we show that Fam20A potentiates Fam20C kinase activity and promotes the phosphorylation of enamel matrix proteins in vitro and in cells. Mechanistically, Fam20A is a pseudokinase that forms a functional complex with Fam20C, and this complex enhances extracellular protein phosphorylation within the secretory pathway. Our findings shed light on the molecular mechanism by which Fam20C and Fam20A collaborate to control enamel formation, and provide the first insight into the regulation of secretory pathway phosphorylation. PMID:25789606

  1. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    SciTech Connect

    Simarro, Maria; Gimenez-Cassina, Alfredo; Kedersha, Nancy; Lazaro, Jean-Bernard; Adelmant, Guillaume O.; Marto, Jarrod A.; Rhee, Kirsten; Tisdale, Sarah; Danial, Nika; Benarafa, Charaf; Orduna, Anonio; Anderson, Paul

    2010-10-22

    Research highlights: {yields} Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. {yields} The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. {yields} Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

  2. Protein Kinase C and Extracellular Signal-Regulated Kinase Regulate Movement, Attachment, Pairing and Egg Release in Schistosoma mansoni

    PubMed Central

    Ressurreição, Margarida; De Saram, Paulu; Kirk, Ruth S.; Rollinson, David; Emery, Aidan M.; Page, Nigel M.; Davies, Angela J.; Walker, Anthony J.

    2014-01-01

    Protein kinases C (PKCs) and extracellular signal-regulated kinases (ERKs) are evolutionary conserved cell signalling enzymes that coordinate cell function. Here we have employed biochemical approaches using ‘smart’ antibodies and functional screening to unravel the importance of these enzymes to Schistosoma mansoni physiology. Various PKC and ERK isotypes were detected, and were differentially phosphorylated (activated) throughout the various S. mansoni life stages, suggesting isotype-specific roles and differences in signalling complexity during parasite development. Functional kinase mapping in adult worms revealed that activated PKC and ERK were particularly associated with the adult male tegument, musculature and oesophagus and occasionally with the oesophageal gland; other structures possessing detectable activated PKC and/or ERK included the Mehlis' gland, ootype, lumen of the vitellaria, seminal receptacle and excretory ducts. Pharmacological modulation of PKC and ERK activity in adult worms using GF109203X, U0126, or PMA, resulted in significant physiological disturbance commensurate with these proteins occupying a central position in signalling pathways associated with schistosome muscular activity, neuromuscular coordination, reproductive function, attachment and pairing. Increased activation of ERK and PKC was also detected in worms following praziquantel treatment, with increased signalling associated with the tegument and excretory system and activated ERK localizing to previously unseen structures, including the cephalic ganglia. These findings support roles for PKC and ERK in S. mansoni homeostasis, and identify these kinase groups as potential targets for chemotherapeutic treatments against human schistosomiasis, a neglected tropical disease of enormous public health significance. PMID:24921927

  3. Targeted Activation of Conventional and Novel Protein Kinases C through Differential Translocation Patterns

    PubMed Central

    Hui, Xin; Reither, Gregor; Kaestner, Lars

    2014-01-01

    Activation of the two ubiquitous families of protein kinases, protein kinase A (PKA) and protein kinase C (PKC), is thought to be independently coupled to stimulation of Gαs and Gαq, respectively. Live-cell confocal imaging of protein kinase C fluorescent protein fusion constructs revealed that simultaneous activation of Gαs and Gαq resulted in a differential translocation of the conventional PKCα to the plasma membrane while the novel PKCδ was recruited to the membrane of the endoplasmic reticulum (ER). We demonstrate that the PKCδ translocation was driven by a novel Gαs-cyclic AMP-EPAC-RAP-PLCε pathway resulting in specific diacylglycerol production at the membrane of the ER. Membrane-specific phosphorylation sensors revealed that directed translocation resulted in phosphorylation activity confined to the target membrane. Specific stimulation of PKCδ caused phosphorylation of the inositol-1,4,5-trisphosphate receptor and dampening of global Ca2+ signaling revealed by graded flash photolysis of caged inositol-1,4,5-trisphosphate. Our data demonstrate a novel signaling pathway enabling differential decoding of incoming stimuli into PKC isoform-specific membrane targeting, significantly enhancing the versatility of cyclic AMP signaling, thus demonstrating the possible interconnection between the PKA and PKC pathways traditionally treated independently. We thus provide novel and elementary understanding and insights into intracellular signaling events. PMID:24732802

  4. Chimeric calcium/calmodulin-dependent protein kinase in tobacco: differential regulation by calmodulin isoforms

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Xia, M.; Poovaiah, B. W.

    1998-01-01

    cDNA clones of chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) from tobacco (TCCaMK-1 and TCCaMK-2) were isolated and characterized. The polypeptides encoded by TCCaMK-1 and TCCaMK-2 have 15 different amino acid substitutions, yet they both contain a total of 517 amino acids. Northern analysis revealed that CCaMK is expressed in a stage-specific manner during anther development. Messenger RNA was detected when tobacco bud sizes were between 0.5 cm and 1.0 cm. The appearance of mRNA coincided with meiosis and became undetectable at later stages of anther development. The reverse polymerase chain reaction (RT-PCR) amplification assay using isoform-specific primers showed that both of the CCaMK mRNAs were expressed in anther with similar expression patterns. The CCaMK protein expressed in Escherichia coli showed Ca2+-dependent autophosphorylation and Ca2+/calmodulin-dependent substrate phosphorylation. Calmodulin isoforms (PCM1 and PCM6) had differential effects on the regulation of autophosphorylation and substrate phosphorylation of tobacco CCaMK, but not lily CCaMK. The evolutionary tree of plant serine/threonine protein kinases revealed that calmodulin-dependent kinases form one subgroup that is distinctly different from Ca2+-dependent protein kinases (CDPKs) and other serine/threonine kinases in plants.

  5. Varicella-Zoster Virus Open Reading Frame 66 Protein Kinase and Its Relationship to Alphaherpesvirus US3 Kinases

    PubMed Central

    Erazo, Angela

    2014-01-01

    The varicella-zoster virus (VZV) open reading frame (ORF) 66 encodes a basophilic kinase orthologous to the US3 protein kinases found in all alphaherpesviruses. This review summarizes current information on the ORF66 kinase, and outlines apparent differences from other US3 kinases, as well as some of the conserved functions. One critical difference is the VZV ORF66 kinase targeting of the major regulatory VZV IE62 protein to control its nuclear import and assembly into the VZV virion, which is so far unprecedented in the alphaherpesviruses. However, ORF66 targets some cellular targets which are also targeted by US3 kinases of other herpesviruses, including the histone deacetylase-1 and 2 proteins, pathways that lead to changes in actin dynamics, and the targeting of substrates of protein kinase A, including the nuclear matrix protein matrin 3. PMID:20186610

  6. Expression, purification and crystallization of a human tau-tubulin kinase 2 that phosphorylates tau protein

    SciTech Connect

    Kitano-Takahashi, Michiko; Morita, Hiroyuki; Kondo, Shin; Tomizawa, Kayoko; Kato, Ryohei; Tanio, Michikazu; Shirota, Yoshiko; Takahashi, Hiroshi; Sugio, Shigetoshi; Kohno, Toshiyuki

    2007-07-01

    The kinase domain (residues 1–331) of human tau-tubulin kinase 2 was expressed in insect cells, purified and crystallized. Diffraction data have been collected to 2.9 Å resolution. Tau-tubulin kinase 2 (TTBK2) is a Ser/Thr kinase that putatively phosphorylates residues Ser208 and Ser210 (numbered according to a 441-residue human tau isoform) in tau protein. Functional analyses revealed that a recombinant kinase domain (residues 1–331) of human TTBK2 expressed in insect cells with a baculovirus overexpression system retains kinase activity for tau protein. The kinase domain of TTBK2 was crystallized using the hanging-drop vapour-diffusion method. The crystals belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 55.6, b = 113.7, c = 117.3 Å, α = β = γ = 90.0°. Diffraction data were collected to 2.9 Å resolution using synchrotron radiation at BL24XU of SPring-8.

  7. Membrane-bound Dictyostelium myosin heavy chain kinase: a developmentally regulated substrate-specific member of the protein kinase C family.

    PubMed Central

    Ravid, S; Spudich, J A

    1992-01-01

    A cDNA clone corresponding to the Dictyostelium myosin heavy chain kinase (MHCK) gene was isolated using antibodies specific to the purified enzyme. Sequence analysis of the cDNA revealed that the Dictyostelium MHCK possesses all of the domains characteristic of members of the protein kinase C family. The amino-terminal region of the MHCK contains the cysteine-rich motif with an internal duplication that is present in all known protein kinase C species. This domain precedes sequences that are highly homologous to protein kinase catalytic domains. The carboxyl-terminal region contains a cluster of 23 serine and threonine residues that may represent the autophosphorylation domain of the Dictyostelium MHCK. These results, along with previous studies that indicate that this enzyme has very restrictive substrate specificity, incorporates approximately 20 mol of phosphate per mol of kinase through an autophosphorylation reaction, and is expressed only during development, suggest that the Dictyostelium MHCK is a distinct member of the protein kinase C family and imply that this kinase family, which may include members with very specific cellular functions, may be even more heterogeneous than previously thought. Images PMID:1321427

  8. The molecular basis of targeting protein kinases in cancer therapeutics.

    PubMed

    Tsai, Chung-Jung; Nussinov, Ruth

    2013-08-01

    In this paper, we provide an overview of targeted anticancer therapies with small molecule kinase inhibitors. First, we discuss why a single constitutively active kinase emanating from a variety of aberrant genetic alterations is capable of transforming a normal cell, leading it to acquire the hallmarks of a cancer cell. To draw attention to the fact that kinase inhibition in targeted cancer therapeutics differs from conventional cytotoxic chemotherapy, we exploit a conceptual framework explaining why suppressed kinase activity will selectively kill only the so-called oncogene 'addicted' cancer cell, while sparing the healthy cell. Second, we introduce the protein kinase superfamily in light of its common active conformation with precisely positioned structural elements, and the diversified auto-inhibitory conformations among the kinase families. Understanding the detailed activation mechanism of individual kinases is essential to relate the observed oncogenic alterations to the elevated constitutively active state, to identify the mechanism of consequent drug resistance, and to guide the development of the next-generation inhibitors. To clarify the vital importance of structural guidelines in studies of oncogenesis, we explain how somatic mutations in EGFR result in kinase constitutive activation. Third, in addition to the common theme of secondary (acquired) mutations that prevent drug binding from blocking a signaling pathway which is hijacked by the aberrant activated kinase, we discuss scenarios of drug resistance and relapse by compensating lesions that bypass the inactivated pathway in a vertical or horizontal fashion. Collectively, these suggest that the future challenge of cancer therapy with small molecule kinase inhibitors will rely on the discovery of distinct combinations of optimized drugs to target individual subtypes of different cancers. PMID:23651790

  9. Changes of epidermal cell morphology and keratin expression induced by inhibitors of protein kinase C.

    PubMed

    Hegemann, L; Wevers, A; Bonnekoh, B; Mahrle, G

    1992-03-01

    Several lines of evidence show protein kinase C as being involved in various regulatory processes in keratinocyte biology, e.g. proliferation and differentiation. In the present study, we investigated the effects of three different inhibitors of protein kinase C, staurosporine, CP 46'665-1, and tiflucarbine, on cell morphology and keratin expression in a non-tumorigenic human keratinocyte cell line (HaCaT cells). Staurosporine, being the most potent inhibitor of protein kinase C activity in vitro, and CP 46'665-1 induced morphological transformation to a fibroblast-like cell shape. In contrast, no changes in cell morphology were observed after exposure to tiflucarbine. The investigation of keratin expression in HaCaT cells grown in the presence of the different compounds revealed the following changes: After 72 h of cultivation, keratins 8 and 18 were still expressed in treated cells, whereas expression of keratin 13 was decreased as compared to control cells. Immunoblotting to detect vimentin demonstrated its absence in treated and control cells. Since tiflucarbine is known as a dual protein kinase C/calmodulin inhibitor whereas staurosporine and CP 46'665-1 do not antagonize calmodulin function, it might be possible that not only protein kinase C but also calmodulin is involved in the process leading to the morphological changes. PMID:1376142

  10. Revisiting protein kinase-substrate interactions: Toward therapeutic development.

    PubMed

    de Oliveira, Paulo Sérgio L; Ferraz, Felipe Augusto N; Pena, Darlene A; Pramio, Dimitrius T; Morais, Felipe A; Schechtman, Deborah

    2016-01-01

    Despite the efforts of pharmaceutical companies to develop specific kinase modulators, few drugs targeting kinases have been completely successful in the clinic. This is primarily due to the conserved nature of kinases, especially in the catalytic domains. Consequently, many currently available inhibitors lack sufficient selectivity for effective clinical application. Kinases phosphorylate their substrates to modulate their activity. One of the important steps in the catalytic reaction of protein phosphorylation is the correct positioning of the target residue within the catalytic site. This positioning is mediated by several regions in the substrate binding site, which is typically a shallow crevice that has critical subpockets that anchor and orient the substrate. The structural characterization of this protein-protein interaction can aid in the elucidation of the roles of distinct kinases in different cellular processes, the identification of substrates, and the development of specific inhibitors. Because the region of the substrate that is recognized by the kinase can be part of a linear consensus motif or a nonlinear motif, advances in technology beyond simple linear sequence scanning for consensus motifs were needed. Cost-effective bioinformatics tools are already frequently used to predict kinase-substrate interactions for linear consensus motifs, and new tools based on the structural data of these interactions improve the accuracy of these predictions and enable the identification of phosphorylation sites within nonlinear motifs. In this Review, we revisit kinase-substrate interactions and discuss the various approaches that can be used to identify them and analyze their binding structures for targeted drug development. PMID:27016527

  11. Biochemical Screening of Five Protein Kinases from Plasmodium falciparum against 14,000 Cell-Active Compounds

    PubMed Central

    Crowther, Gregory J.; Hillesland, Heidi K.; Keyloun, Katelyn R.; Reid, Molly C.; Lafuente-Monasterio, Maria Jose; Ghidelli-Disse, Sonja; Leonard, Stephen E.; He, Panqing; Jones, Jackson C.; Krahn, Mallory M.; Mo, Jack S.; Dasari, Kartheek S.; Fox, Anna M. W.; Boesche, Markus; El Bakkouri, Majida; Rivas, Kasey L.; Leroy, Didier; Hui, Raymond; Drewes, Gerard; Maly, Dustin J.; Van Voorhis, Wesley C.; Ojo, Kayode K.

    2016-01-01

    In 2010 the identities of thousands of anti-Plasmodium compounds were released publicly to facilitate malaria drug development. Understanding these compounds’ mechanisms of action—i.e., the specific molecular targets by which they kill the parasite—would further facilitate the drug development process. Given that kinases are promising anti-malaria targets, we screened ~14,000 cell-active compounds for activity against five different protein kinases. Collections of cell-active compounds from GlaxoSmithKline (the ~13,000-compound Tres Cantos Antimalarial Set, or TCAMS), St. Jude Children’s Research Hospital (260 compounds), and the Medicines for Malaria Venture (the 400-compound Malaria Box) were screened in biochemical assays of Plasmodium falciparum calcium-dependent protein kinases 1 and 4 (CDPK1 and CDPK4), mitogen-associated protein kinase 2 (MAPK2/MAP2), protein kinase 6 (PK6), and protein kinase 7 (PK7). Novel potent inhibitors (IC50 < 1 μM) were discovered for three of the kinases: CDPK1, CDPK4, and PK6. The PK6 inhibitors are the most potent yet discovered for this enzyme and deserve further scrutiny. Additionally, kinome-wide competition assays revealed a compound that inhibits CDPK4 with few effects on ~150 human kinases, and several related compounds that inhibit CDPK1 and CDPK4 yet have limited cytotoxicity to human (HepG2) cells. Our data suggest that inhibiting multiple Plasmodium kinase targets without harming human cells is challenging but feasible. PMID:26934697

  12. G-protein coupled receptor kinases in inflammation and disease

    PubMed Central

    Packiriswamy, Nandakumar; Parameswaran, Narayanan

    2015-01-01

    G-protein coupled receptor kinases (GRKs) are serine/threonine protein kinases originally discovered for their role in G-protein coupled receptor (GPCR) phosphorylation. Recent studies have demonstrated a much broader function for this kinase family including phosphorylation of cytosolic substrates involved in cell signaling pathways stimulated by GPCRs as well as non-GPCRs. In addition, GRKs modulate signaling via phosphorylation-independent functions. Because of these various biochemical functions, GRKs have been shown to affect critical physiological and pathophysiological processes and thus are considered as drug targets in diseases such as heart failure. Role of GRKs in inflammation and inflammatory diseases is an evolving area of research and several studies including work from our lab in the recent years have demonstrated critical role of GRKs in the immune system. In this review we discuss the classical and the newly emerging functions of GRKs in the immune system and their role in inflammation and disease processes. PMID:26226012

  13. MAPK-Activated Protein Kinases (MKs): Novel Insights and Challenges

    PubMed Central

    Gaestel, Matthias

    2016-01-01

    Downstream of MAPKs, such as classical/atypical ERKs and p38 MAPKs, but not of JNKs, signaling is often mediated by protein kinases which are phosphorylated and activated by MAPKs and, therefore, designated MAPK-activated protein kinases (MAPKAPKs). Recently, novel insights into the specificity of the assembly of MAPK/MAPKAPK hetero-dimeric protein kinase signaling complexes have been gained. In addition, new functional aspects of MKs have been described and established functions have been challenged. This short review will summarize recent developments including the linear motif (LM) in MKs, the ERK-independent activation of RSK, the RSK-independent effects of some RSK-inhibitors and the challenged role of MK5/PRAK in tumor suppression. PMID:26779481

  14. MAPK-Activated Protein Kinases (MKs): Novel Insights and Challenges.

    PubMed

    Gaestel, Matthias

    2015-01-01

    Downstream of MAPKs, such as classical/atypical ERKs and p38 MAPKs, but not of JNKs, signaling is often mediated by protein kinases which are phosphorylated and activated by MAPKs and, therefore, designated MAPK-activated protein kinases (MAPKAPKs). Recently, novel insights into the specificity of the assembly of MAPK/MAPKAPK hetero-dimeric protein kinase signaling complexes have been gained. In addition, new functional aspects of MKs have been described and established functions have been challenged. This short review will summarize recent developments including the linear motif (LM) in MKs, the ERK-independent activation of RSK, the RSK-independent effects of some RSK-inhibitors and the challenged role of MK5/PRAK in tumor suppression. PMID:26779481

  15. Purification and characterization of a thylakoid protein kinase

    SciTech Connect

    Coughlan, S.J.; Hind, G.

    1986-01-01

    Control of state transitions in the thylakoid by reversible phosphorylation of the light-harvesting chlorophyll a/b protein complex of photosystem II (LHC-II) is modulated by a kinase. The kinase catalyzing this phosphorylation is associated with the thylakoid membrane, and is regulated by the redox state of the plastoquinone pool. The isolation and partial purification from spinach thylakoids of two protein kinases (CPK1, CPK2) of apparent molecular masses 25 kDa and 38 kDa has been reported. Neither enzyme utilizes isolated LHC-II as a substrate. The partial purification of a third protein kinase (LHCK) which can utilize both lysine-rich histones (IIIs and Vs) and isolated LHC-II as substrate has now been purified to homogeneity and characterized by SDS-polyacrylamide gel electrophoresis as a 64 kDa peptide. From a comparison of the two isolation procedures we have concluded that CPK1 is indeed a protein kinase, but has a lower specific activity than that of LHCK. 8 refs., 4 figs.

  16. Cyclic AMP-dependent protein kinase activity in Trypanosoma cruzi.

    PubMed Central

    Ulloa, R M; Mesri, E; Esteva, M; Torres, H N; Téllez-Iñón, M T

    1988-01-01

    A cyclic AMP-dependent protein kinase activity from epimastigote forms of Trypanosoma cruzi was characterized. Cytosolic extracts were chromatographed on DEAE-cellulose columns, giving two peaks of kinase activity, which were eluted at 0.15 M- and 0.32 M-NaCl respectively. The second activity peak was stimulated by nanomolar concentrations of cyclic AMP. In addition, a cyclic AMP-binding protein co-eluted with the second kinase activity peak. Cyclic AMP-dependent protein kinase activity was further purified by gel filtration, affinity chromatography on histone-agarose and cyclic AMP-agarose, as well as by chromatography on CM-Sephadex. The enzyme ('holoenzyme') could be partially dissociated into two different components: 'catalytic' and 'regulatory'. The 'regulatory' component had specific binding for cyclic AMP, and it inhibited phosphotransferase activity of the homologous 'catalytic component' or of the 'catalytic subunit' from bovine heart. Cyclic AMP reversed these inhibitions. A 'holoenzyme preparation' was phosphorylated in the absence of exogenous phosphate acceptor and analysed by polyacrylamide-gel electrophoresis. A 56 kDa band was phosphorylated. The same preparation was analysed by Western blotting, by using polyclonal antibodies to the regulatory subunits of protein kinases type I or II. Both antibodies reacted with the 56 kDa band. Images Fig. 7. Fig. 8. PMID:2848508

  17. Structure-Based Design of an Organoruthenium Phosphatidyl-inositol-3-Kinase Inhibitor Reveals a Switch Governing Lipid Kinase Potency and Selectivity

    SciTech Connect

    Xie,P.; Williams, D.; Atilla-Gokcumen, G.; Milk, L.; Xiao, M.; Smalley, K.; Herlyn, M.; Meggers, E.; Marmorstein, R.

    2008-01-01

    Mutations that constitutively activate the phosphatidyl-inositol-3-kinase (PI3K) signaling pathway, including alterations in PI3K, PTEN, and AKT, are found in a variety of human cancers, implicating the PI3K lipid kinase as an attractive target for the development of therapeutic agents to treat cancer and other related diseases. In this study, we report on the combination of a novel organometallic kinase inhibitor scaffold with structure-based design to develop a PI3K inhibitor, called E5E2, with an IC50 potency in the mid-low-nanomolar range and selectivity against a panel of protein kinases. We also show that E5E2 inhibits phospho-AKT in human melanoma cells and leads to growth inhibition. Consistent with a role for the PI3K pathway in tumor cell invasion, E5E2 treatment also inhibits the migration of melanoma cells in a 3D spheroid assay. The structure of the PI3K?/E5E2 complex reveals the molecular features that give rise to this potency and selectivity toward lipid kinases with implications for the design of a subsequent generation of PI3K-isoform-specific organometallic inhibitors.

  18. Solution structure of the cAMP-dependent protein kinase

    SciTech Connect

    Trewhella, J.; Olah, G.A.; Walsh, D.A.; Mitchell, R.D.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project as Los Alamos National Laboratory (LANL). Protein phosphorylation is well established as one of the most important mechanisms of signal transduction and cellular regulation. Two of the key enzymes that catalyze these phosphorylation reactions are the cAMP- (PKA) and cGMP- (PKG) dependent protein kinases. PKA has served as the prototypic model of this class of enzymes that now comprises in excess of 300 phylogenetically related proteins. A large number of these protein kinases are critical for the regulation of cell function and a full analysis of their similarities and differences is essential to understand their diverse physiological roles. The cAMP-dependent protein kinase has the subunit structure R2C2, in which C and R refer to the catalytic and regulatory subunits, respectively. The cGMP-dependent protein kinase (PKG) is highly homologous to PKA but is distinguished from it by having the regulatory and catalytic domains on a contiguous polypeptide. The studies described here use small-angle scattering and Fourier Transform InfraRed (FTIR) spectroscopy to study domain movements and conformational changes in these enzymes in different functional states in order to elucidate the molecular bases for the regulation of their activities.

  19. The Roles of NDR Protein Kinases in Hippo Signalling

    PubMed Central

    Hergovich, Alexander

    2016-01-01

    The Hippo tumour suppressor pathway has emerged as a critical regulator of tissue growth through controlling cellular processes such as cell proliferation, death, differentiation and stemness. Traditionally, the core cassette of the Hippo pathway includes the MST1/2 protein kinases, the LATS1/2 protein kinases, and the MOB1 scaffold signal transducer, which together regulate the transcriptional co-activator functions of the proto-oncoproteins YAP and TAZ through LATS1/2-mediated phosphorylation of YAP/TAZ. Recent research has identified additional kinases, such as NDR1/2 (also known as STK38/STK38L) and MAP4Ks, which should be considered as novel members of the Hippo core cassette. While these efforts helped to expand our understanding of Hippo core signalling, they also began to provide insights into the complexity and redundancy of the Hippo signalling network. Here, we focus on summarising our current knowledge of the regulation and functions of mammalian NDR kinases, discussing parallels between the NDR pathways in Drosophila and mammals. Initially, we provide a general overview of the cellular functions of NDR kinases in cell cycle progression, centrosome biology, apoptosis, autophagy, DNA damage signalling, immunology and neurobiology. Finally, we put particular emphasis on discussing NDR1/2 as YAP kinases downstream of MST1/2 and MOB1 signalling in Hippo signalling. PMID:27213455

  20. Ethanol increases affinity of protein kinase C for phosphatidylserine

    SciTech Connect

    Chin, J.H.

    1986-03-01

    Protein kinase C is a calcium-dependent enzyme that requires phospholipid for its activation. It is present in relatively high concentration in the brain and may be involved in neuronal function. The present experiments test whether the membrane disorder induced by ethanol affects the activity of kinase C by changing its interaction with membrane lipid. Fractions rich in kinase C were purified from rat brain cytosol by DEAE-cellulose chromatography and Sephadex G-200 gel filtration. Enzyme activity was assayed by measuring the phosphorylation of histone H1. As expected, phosphatidylserine activated the enzyme, and the stimulation was further increased by the addition of calcium and/or diacylglycerol. At low concentration of free calcium (0.5-1..mu..M), ethanol (800 mM0 enhanced kinase C activity if the presence of phospholipid. similar results were observed in the absence of calcium. Double reciprocal plots of the data showed that ethanol increased the affinity of the enzyme for phosphatidylserine without affecting the V/sub max. The stimulation of kinase C activity by ethanol was not observed at high calcium concentrations. These experiments suggest that ethanol may activated protein kinase C at physiological levels of calcium by facilitating its transfer into the hydrophobic membrane environment.

  1. Role of Protein Kinase C, PI3-kinase and Tyrosine Kinase in Activation of MAP Kinase by Glucose and Agonists of G-protein Coupled Receptors in INS-1 Cells

    PubMed Central

    Böcker, Dietmar

    2001-01-01

    MAP (mitogen-activated protein) kinase (also called Erk 1/2) plays a crucial role in cell proliferation and differentiation. Its impact on secretory events is less well established. The interplay of protein kinase C (PKC), PI3-kinase nd cellular tyrosine kinase with MAP kinase activity using inhibitors and compounds such as glucose, phorbol 12-myristate 13-acetate (PMA) and agonists of G-protein coupled receptors like gastrin releasing peptide (GRP), oxytocin (OT) and glucose-dependent insulinotropic peptide (GIP) was investigated in INS-1 cells, an insulin secreting cell line. MAP kinase activity was determined by using a peptide derived from the EGF receptor as a MAP kinase substrate and [ P 32 ]ATP. Glucose as well as GRP, OT and GIP exhibited a time-dependent increase in MAP kinase activity with a maximum at time point 2.5 min. All further experiments were performed using 2.5 min incubations. The flavone PD 098059 is known to bind to the inactive forms of MEK1 (MAPK/ERK-Kinase) thus preventing activation by upstream activators. 20 μM PD 098059 ( IC 50 =51 μM) inhibited MAP kinase stimulated by either glucose, GRP, OT, GIP or PMA. Inhibiton (“downregulation”) of PKC by a long term (22h) pretreatment with 1 μM PMA did not influence MAP kinase activity when augmented by either of the above mentioned compound. To investigate whether PI3-kinase and cellular tyrosine kinase are involved in G-protein mediated effects on MAP kinase, inhibitors were used: 100 nM wortmannin (PI3-kinase inhibitor) reduced the effects of GRP, OT and GIP but not that of PMA; 100 μM genistein (tyrosine kinase inhibitor) inhibited the stimulatory effect of either above mentioned compound on MAP kinase activation. Inhibition of MAP kinase by 20 μM PD 098059 did not influence insulin secretion modulated by either compound (glucose, GRP, OT or GIP). [ H 3 ]Thymidine incorporation, however, was severely inhibited by PD 098059. Thus MAP kinase is important for INS-1 cell proliferation but

  2. Transcriptional Regulation by Protein Kinase A in Cryptococcus neoformans

    PubMed Central

    Hu, Guanggan; Steen, Barbara R; Lian, Tianshun; Sham, Anita P; Tam, Nicola; Tangen, Kristin L; Kronstad, James W

    2007-01-01

    A defect in the PKA1 gene encoding the catalytic subunit of cyclic adenosine 5′-monophosphate (cAMP)–dependent protein kinase A (PKA) is known to reduce capsule size and attenuate virulence in the fungal pathogen Cryptococcus neoformans. Conversely, loss of the PKA regulatory subunit encoded by pkr1 results in overproduction of capsule and hypervirulence. We compared the transcriptomes between the pka1 and pkr1 mutants and a wild-type strain, and found that PKA influences transcript levels for genes involved in cell wall synthesis, transport functions such as iron uptake, the tricarboxylic acid cycle, and glycolysis. Among the myriad of transcriptional changes in the mutants, we also identified differential expression of ribosomal protein genes, genes encoding stress and chaperone functions, and genes for secretory pathway components and phospholipid synthesis. The transcriptional influence of PKA on these functions was reminiscent of the linkage between transcription, endoplasmic reticulum stress, and the unfolded protein response in Saccharomyces cerevisiae. Functional analyses confirmed that the PKA mutants have a differential response to temperature stress, caffeine, and lithium, and that secretion inhibitors block capsule production. Importantly, we also found that lithium treatment limits capsule size, thus reinforcing potential connections between this virulence trait and inositol and phospholipid metabolism. In addition, deletion of a PKA-regulated gene, OVA1, revealed an epistatic relationship with pka1 in the control of capsule size and melanin formation. OVA1 encodes a putative phosphatidylethanolamine-binding protein that appears to negatively influence capsule production and melanin accumulation. Overall, these findings support a role for PKA in regulating the delivery of virulence factors such as the capsular polysaccharide to the cell surface and serve to highlight the importance of secretion and phospholipid metabolism as potential targets for

  3. Bryostatins activate protein kinase C in intact human platelets

    SciTech Connect

    Smith, J.B.; Tallant, E.A.; Pettit, G.R.; Wallace, R.W.

    1986-05-01

    Bryostatins, macrocyclic lactones isolated from a marine bryozoan, have antineoplastic activity in the P388 lymphocytic leukemia system. These compounds also stimulate growth in Swiss 3T3 cells, induce secretion in leukocytes, inhibit phorbol dibutyrate binding to a high affinity receptor, and activate the C-kinase in vitro. In human platelets, phorbol esters induce aggregation and activate protein kinase C, resulting in phosphorylation of a 47K protein and the 20K myosin light chain. The authors now show that bryostatin 7 (B-7) triggers platelet aggregation to the same rate and extent as phorbol 12-myristate 13-acetate (PMA). B-7 also causes the in vivo activation of the C-kinase, resulting in phosphorylation of both the 47K and the 20K proteins; the time courses and dose-responses of these B-7-induced phosphorylations were similar to those found with PMA. In addition, B-7 increases the level of /sup 32/P-incorporation into the platelet polyphosphoinositides, which also occurs in response to PMA. Bryostatin 3 (B-3), which has been shown to be much less potent than B-7 in mimicking other PMA effects, was much less effective than PMA or B-7 in inducing platelet aggregation and in stimulating /sup 32/P-incorporation into both proteins and the phosphoinositides. These results demonstrate that, intact human platelets, bryostatins mimic the phorbol esters tumor promoters and directly activate protein kinase C.

  4. Protein Kinase Cα Mediates Erlotinib Resistance in Lung Cancer Cells

    PubMed Central

    Abera, Mahlet B.

    2015-01-01

    Overexpression and mutational activation of the epidermal growth factor receptor (EGFR) plays an important role in the pathogenesis of non–small cell lung cancer (NSCLC). EGFR tyrosine-kinase inhibitors (TKIs) are given as a primary therapy for advanced patients with EGFR-activating mutations; however, the majority of these tumors relapse and patients eventually develop resistance to TKIs. To address a potential role of protein kinase C (PKC) isozymes in the resistance to TKIs, we used the isogenic NSCLC H1650 cell line and its erlotinib-resistant derivative H1650-M3, a cell line that displays a mesenchymal-like morphology driven by transforming growth factor-β signaling. We found that H1650-M3 cells display remarkable PKCα upregulation and PKCδ downregulation. Notably, silencing PKCα from H1650-M3 cells using RNA interference caused a significant reduction in the expression of epithelial-to-mesenchymal transition (EMT) markers vimentin, Zeb2, Snail, and Twist. Moreover, pharmacological inhibition or PKCα RNA interference depletion and PKCδ restoring sensitized H1650-M3 cells to erlotinib. Whereas ectopic overexpression of PKCα in parental H1650 cells was not sufficient to alter the expression of EMT genes or to confer resistance to erlotinib, it caused downregulation of PKCδ expression, suggesting a unidirectional crosstalk. Finally, mechanistic studies revealed that PKCα upregulation in H1650-M3 cells is driven by transforming growth factor-β. Our results identified important roles for specific PKC isozymes in erlotinib resistance and EMT in lung cancer cells, and highlight PKCα as a potential target for lung cancer treatment. PMID:25724832

  5. Protein kinase Cα mediates erlotinib resistance in lung cancer cells.

    PubMed

    Abera, Mahlet B; Kazanietz, Marcelo G

    2015-05-01

    Overexpression and mutational activation of the epidermal growth factor receptor (EGFR) plays an important role in the pathogenesis of non-small cell lung cancer (NSCLC). EGFR tyrosine-kinase inhibitors (TKIs) are given as a primary therapy for advanced patients with EGFR-activating mutations; however, the majority of these tumors relapse and patients eventually develop resistance to TKIs. To address a potential role of protein kinase C (PKC) isozymes in the resistance to TKIs, we used the isogenic NSCLC H1650 cell line and its erlotinib-resistant derivative H1650-M3, a cell line that displays a mesenchymal-like morphology driven by transforming growth factor-β signaling. We found that H1650-M3 cells display remarkable PKCα upregulation and PKCδ downregulation. Notably, silencing PKCα from H1650-M3 cells using RNA interference caused a significant reduction in the expression of epithelial-to-mesenchymal transition (EMT) markers vimentin, Zeb2, Snail, and Twist. Moreover, pharmacological inhibition or PKCα RNA interference depletion and PKCδ restoring sensitized H1650-M3 cells to erlotinib. Whereas ectopic overexpression of PKCα in parental H1650 cells was not sufficient to alter the expression of EMT genes or to confer resistance to erlotinib, it caused downregulation of PKCδ expression, suggesting a unidirectional crosstalk. Finally, mechanistic studies revealed that PKCα upregulation in H1650-M3 cells is driven by transforming growth factor-β. Our results identified important roles for specific PKC isozymes in erlotinib resistance and EMT in lung cancer cells, and highlight PKCα as a potential target for lung cancer treatment. PMID:25724832

  6. The FRK1 mitogen-activated protein kinase kinase kinase (MAPKKK) from Solanum chacoense is involved in embryo sac and pollen development

    PubMed Central

    Lafleur, Edith; Kapfer, Christelle; Joly, Valentin; Liu, Yang; Tebbji, Faiza; Daigle, Caroline; Gray-Mitsumune, Madoka; Cappadocia, Mario; Nantel, André; Matton, Daniel P.

    2015-01-01

    The fertilization-related kinase 1 (ScFRK1), a nuclear-localized mitogen-activated protein kinase kinase kinase (MAPKKK) from the wild potato species Solanum chacoense, belongs to a small group of pMEKKs that do not possess an extended N- or C-terminal regulatory domain. Initially selected based on its highly specific expression profile following fertilization, in situ expression analyses revealed that the ScFRK1 gene is also expressed early on during female gametophyte development in the integument and megaspore mother cell and, later, in the synergid and egg cells of the embryo sac. ScFRK1 mRNAs are also detected in pollen mother cells. Transgenic plants with lower or barely detectable levels of ScFRK1 mRNAs lead to the production of small fruits with severely reduced seed set, resulting from a concomitant decline in the number of normal embryo sacs produced. Megagametogenesis and microgametogenesis were affected, as megaspores did not progress beyond the functional megaspore (FG1) stage and the microspore collapsed around the first pollen mitosis. As for other mutants that affect embryo sac development, pollen tube guidance was severely affected in the ScFRK1 transgenic lines. Gametophyte to sporophyte communication was also affected, as observed from a marked change in the transcriptomic profiles of the sporophytic tissues of the ovule. The ScFRK1 MAPKKK is thus involved in a signalling cascade that regulates both male and female gamete development. PMID:25576576

  7. The FRK1 mitogen-activated protein kinase kinase kinase (MAPKKK) from Solanum chacoense is involved in embryo sac and pollen development.

    PubMed

    Lafleur, Edith; Kapfer, Christelle; Joly, Valentin; Liu, Yang; Tebbji, Faiza; Daigle, Caroline; Gray-Mitsumune, Madoka; Cappadocia, Mario; Nantel, André; Matton, Daniel P

    2015-04-01

    The fertilization-related kinase 1 (ScFRK1), a nuclear-localized mitogen-activated protein kinase kinase kinase (MAPKKK) from the wild potato species Solanum chacoense, belongs to a small group of pMEKKs that do not possess an extended N- or C-terminal regulatory domain. Initially selected based on its highly specific expression profile following fertilization, in situ expression analyses revealed that the ScFRK1 gene is also expressed early on during female gametophyte development in the integument and megaspore mother cell and, later, in the synergid and egg cells of the embryo sac. ScFRK1 mRNAs are also detected in pollen mother cells. Transgenic plants with lower or barely detectable levels of ScFRK1 mRNAs lead to the production of small fruits with severely reduced seed set, resulting from a concomitant decline in the number of normal embryo sacs produced. Megagametogenesis and microgametogenesis were affected, as megaspores did not progress beyond the functional megaspore (FG1) stage and the microspore collapsed around the first pollen mitosis. As for other mutants that affect embryo sac development, pollen tube guidance was severely affected in the ScFRK1 transgenic lines. Gametophyte to sporophyte communication was also affected, as observed from a marked change in the transcriptomic profiles of the sporophytic tissues of the ovule. The ScFRK1 MAPKKK is thus involved in a signalling cascade that regulates both male and female gamete development. PMID:25576576

  8. Microfluidic IEF technique for sequential phosphorylation analysis of protein kinases

    NASA Astrophysics Data System (ADS)

    Choi, Nakchul; Song, Simon; Choi, Hoseok; Lim, Bu-Taek; Kim, Young-Pil

    2015-11-01

    Sequential phosphorylation of protein kinases play the important role in signal transduction, protein regulation, and metabolism in living cells. The analysis of these phosphorylation cascades will provide new insights into their physiological functions in many biological functions. Unfortunately, the existing methods are limited to analyze the cascade activity. Therefore, we suggest a microfluidic isoelectric focusing technique (μIEF) for the analysis of the cascade activity. Using the technique, we show that the sequential phosphorylation of a peptide by two different kinases can be successfully detected on a microfluidic chip. In addition, the inhibition assay for kinase activity and the analysis on a real sample have also been conducted. The results indicate that μIEF is an excellent means for studies on phosphorylation cascade activity.

  9. HRR25, a putative protein kinase from budding yeast: Association with repair of damaged DNA

    SciTech Connect

    Hoekstra, M.F.; Ou, A.C.; DeMaggio, A.J.; Burbee, D.G. ); Liskay, R.M. ); Heffron, F. )

    1991-08-30

    In simple eukaryotes, protein kinases regulate mitotic and meiotic cell cycles, the response to polypeptide pheromones, and the initiation of nuclear DNA synthesis. The protein HRR25 from the budding yeast Saccharomyces cerevisiae was defined by the mutation hrr25-1. This mutation resulted in sensitivity to continuous expression of the HO double-strand endonuclease, to methyl methanesulfonate, and to x-irradiation. Homozygotes of hrr25-1 were unable to sporulate and disruption and deletion of HRR25 interfered with mitotic and meiotic cell division. Sequence analysis revealed two distinctive regions in the protein. The NH{sub 2}-terminus of HRR25 contains the hallmark features of protein kinases, whereas the COOH-terminus is rich in proline and glutamine. Mutations in HRR25 at conserved residues found in all protein kinases inactivated the gene, and these mutants exhibited the hrr25 null phenotypes. Taken together, the hrr25 mutant phenotypes and the features of the gene product indicate that HRR25 is a distinctive member of the protein kinase superfamily.

  10. G Protein-coupled Receptor Kinase 5 Phosphorylates Nucleophosmin and Regulates Cell Sensitivity to Polo-like Kinase 1 Inhibition*

    PubMed Central

    So, Christopher H.; Michal, Allison M.; Mashayekhi, Rouzbeh; Benovic, Jeffrey L.

    2012-01-01

    G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors, leading to their desensitization and endocytosis. GRKs have also been implicated in phosphorylating other classes of proteins and can localize in a variety of cellular compartments, including the nucleus. Here, we attempted to identify potential nuclear substrates for GRK5. Our studies reveal that GRK5 is able to interact with and phosphorylate nucleophosmin (NPM1) both in vitro and in intact cells. NPM1 is a nuclear protein that regulates a variety of cell functions including centrosomal duplication, cell cycle control, and apoptosis. GRK5 interaction with NPM1 is mediated by the N-terminal domain of each protein, and GRK5 primarily phosphorylates NPM1 at Ser-4, a site shared with polo-like kinase 1 (PLK1). NPM1 phosphorylation by GRK5 and PLK1 correlates with the sensitivity of cells to undergo apoptosis with cells having higher GRK5 levels being less sensitive and cells with lower GRK5 being more sensitive to PLK1 inhibitor-induced apoptosis. Taken together, our results demonstrate that GRK5 phosphorylates Ser-4 in nucleophosmin and regulates the sensitivity of cells to PLK1 inhibition. PMID:22467873

  11. Cyclophilin represents a novel class of protein kinases

    SciTech Connect

    Harding, M.W.; Gorelick, F.S.; Handschumacher, R.E.

    1987-05-01

    Cyclophilin (CyP, Mr 17,737, pI 9.6), a highly specific cytosolic receptor for cyclosporin A (CsA) has ser/thr protein kinase activity. Incorporation of /sup 32/P into bovine histone H/sub 3/ (BH/sub 3/) was catalyzed by major and minor CyP isozymes at the same rate. Salt effects were biphasic with optimal kinase activity between 50-100 mM Na/sup +/ or K/sup +/. Kinase activity was maximal at 37/sup 0/C, stable for 5 min at 45/sup 0/, labile at 56/sup 0/, optimal between pH 6.8 and 8.0 and had an apparent Km of 20 uM ATP with both isozymes. The specific activity of CyP was 1.0 nmole P/mg protein/min with chicken histone H/sub 1/ (CH/sub 1/), 0.2 nmoles P/mg prot/min with BH/sub 3/ and less than 0.01 nmoles P/mg prot/min with synapsin, casein, phosvitin, and ribosomal protein S6. Cofactors including Mn/sup + +/, Zn/sup + +/, Ca/sup + +/, phosphatidyl serine, diolein and phorbol ester, cAMP, cGMP and Ca/sup + +/ did not affect basal CyP kinase activity. CsA (<200 ng/ml) inhibited phosphorylation of CH/sub 3/ by 50% but did not inhibit phosphorylation of other histones; 2ug CsA/ml was required to cause 50% inhibition of cAMP and Ca/sup + +//CaM dependent kinases. A non-immunosuppressive analog (Me-leu-11-CsA) that does not bind to CyP did not inhibit CH/sub 3/ phosphorylation. Thus, CyP is a novel protein kinase that mediates immunosuppression by CsA.

  12. Further characterization of protein kinase C in mouse mast cells

    SciTech Connect

    White, J.R.; Ishizaka, T.

    1986-03-01

    Bridging of cell-bound IgE antibody molecules on colony stimulating factor dependent mouse mast cell line (PT-18) cells by multivalent antigen induces the mobilization and uptake of Ca/sup 2 +/ monitored by Quin-2 and the production of diacylglycerol. Exposure of the sensitized cells to antigen also induces a substantial increase in protein kinase C (PKC) activity in the plasma membrane (340 units to 1375 units: 1 unit = 1 pmol of /sup 32/P incorporated into Histone H-1/min/10/sup 7/ cells), within 30 seconds. There is also an increase in /sup 3/H phorbol-12, 13-dibutyrate (/sup 3/H-PDB) binding which parallels the increase in PKC activity both in kinetics and antigen dose dependency. Determination of K/sub m/ and V/sub max/ for PKC revealed no difference between the cytosolic and membranous forms of PKC. Partial purification of PKC from the membrane of sensitized mast cells which had been labeled with /sup 32/P and stimulated with DNP-HSA revealed a protein of 80-84,000 molecular weight, which migrated on polyacrylamide gel electrophoresis just above an authentic standard of PKC purified from rat brain. Treatment of the PKC from mouse mast cell membrane with alkaline phosphatase resulted in a reduction of phosphorylating activity and bindability of /sup 3/H-PDB. In conclusion, the authors speculate that activation of mouse mast cells by cross-linking IgE results in the phosphorylation of a silent-pool of PKC converting it from an inactive state to an activated form.

  13. Mitogen-Activated Protein Kinases and Mitogen Kinase Phosphatase 1: A Critical Interplay in Macrophage Biology

    PubMed Central

    Lloberas, Jorge; Valverde-Estrella, Lorena; Tur, Juan; Vico, Tania; Celada, Antonio

    2016-01-01

    Macrophages are necessary in multiple processes during the immune response or inflammation. This review emphasizes the critical role of the mitogen-activated protein kinases (MAPKs) and mitogen kinase phosphatase-1 (MKP-1) in the functional activities of macrophages. While the phosphorylation of MAPKs is required for macrophage activation or proliferation, MKP-1 dephosphorylates these kinases, thus playing a balancing role in the control of macrophage behavior. MKP-1 is a nuclear-localized dual-specificity phosphatase whose expression is regulated at multiple levels, including at the transcriptional and post-transcriptional level. The regulatory role of MKP-1 in the interplay between MAPK phosphorylation/dephosphorylation makes this molecule a critical regulator of macrophage biology and inflammation. PMID:27446931

  14. Contractions Activate Hormone-Sensitive Lipase in Rat Muscle by Protein Kinase C and Mitogen-Activated Protein Kinase

    PubMed Central

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia; Ploug, Thorkil; Galbo, Henrik

    2003-01-01

    Intramuscular triacylglycerol is an important energy store and is also related to insulin resistance. The mobilization of fatty acids from this pool is probably regulated by hormone-sensitive lipase (HSL), which has recently been shown to exist in muscle and to be activated by both adrenaline and contractions. Adrenaline acts via cAMP-dependent protein kinase (PKA). The signalling mediating the effect of contractions is unknown and was explored in this study. Incubated soleus muscles from 70 g male rats were electrically stimulated to perform repeated tetanic contractions for 5 min. The contraction-induced activation of HSL was abolished by the protein kinase C (PKC) inhibitors bisindolylmaleimide I and calphostin C and reduced 50 % by the mitogen-activated protein kinase kinase (MEK) inhibitor U0126, which also completely blocked extracellular signal-regulated kinase (ERK) 1 and 2 phosphorylation. None of the inhibitors reduced adrenaline-induced HSL activation in soleus muscle. Both phorbol-12-myristate-13-acetate (PMA), which activates PKC and, in turn, ERK, and caffeine, which increases intracellular Ca2+ without eliciting contraction, increased HSL activity. Activated ERK increased HSL activity in supernatant from basal but not from electrically stimulated muscle. In conclusion, in muscle, PKC can stimulate HSL through ERK. Contractions and adrenaline enhance muscle HSL activity by different signalling mechanisms. The effect of contractions is mediated by PKC, at least partly via the ERK pathway. PMID:12794177

  15. Regulation of cholesterol esterification by protein kinase C

    SciTech Connect

    Jeng, I.; Dills, C.; Klemm, N.; Wu, C.

    1986-03-05

    They have recently identified acyl-CoA cholesterol acyltransferase as the key enzyme for cholesterol esterification in the central nervous system. They found that the activity of glial acyl-CoA cholesterol acyltransferase could be controlled by a phosphorylation-dephosphorylation mechanism. However, repeated attempts to identify cyclic AMP as the bioregulator for this reaction failed. Recently, they have studied the possible involvement of protein kinase C in the regulation of glial cholesterol esterification. Phorbol-12-myristate 13-acetate (PMA) can activate cellular cholesterol esterification in a complex, time-dependent manner. Phorbol analogues inactive toward protein kinase C are also ineffective in this assay. Furthermore, oleoyl-acetyl-glycerol mimics the effect of PMA, confirming the proposal that protein kinase C mediates the effect of these compounds and that the natural bioregulator is probably diacylglycerol. Receptor-mediated polyphosphatidyl-inositol cleavage often produces diacylglycerol and inositol triphosphate. The synergic effects of these two compounds are known to be necessary to elicit other biological responses. Their preliminary studies using calcium ionophore A23187 indicates that Ca/sup + +/ is not required for cellular cholesterol esterification. In sum, glial cholesterol esterification is probably regulated by a calcium-independent and protein kinase C-dependent reaction.

  16. Isoform Specificity of Protein Kinase Cs in Synaptic Plasticity

    ERIC Educational Resources Information Center

    Sossin, Wayne S.

    2007-01-01

    Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used "Aplysia" as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented…

  17. Targeting protein kinases to reverse multidrug resistance in sarcoma.

    PubMed

    Chen, Hua; Shen, Jacson; Choy, Edwin; Hornicek, Francis J; Duan, Zhenfeng

    2016-02-01

    Sarcomas are a group of cancers that arise from transformed cells of mesenchymal origin. They can be classified into over 50 subtypes, accounting for approximately 1% of adult and 15% of pediatric cancers. Wide surgical resection, radiotherapy, and chemotherapy are the most common treatments for the majority of sarcomas. Among these therapies, chemotherapy can palliate symptoms and prolong life for some sarcoma patients. However, sarcoma cells can have intrinsic or acquired resistance after treatment with chemotherapeutics drugs, leading to the development of multidrug resistance (MDR). MDR attenuates the efficacy of anticancer drugs and results in treatment failure for sarcomas. Therefore, overcoming MDR is an unmet need for sarcoma therapy. Certain protein kinases demonstrate aberrant expression and/or activity in sarcoma cells, which have been found to be involved in the regulation of sarcoma cell progression, such as cell cycle, apoptosis, and survival. Inhibiting these protein kinases may not only decrease the proliferation and growth of sarcoma cells, but also reverse their resistance to chemotherapeutic drugs to subsequently reduce the doses of anticancer drugs and decrease drug side-effects. The discovery of novel strategies targeting protein kinases opens a door to a new area of sarcoma research and provides insight into the mechanisms of MDR in chemotherapy. This review will focus on the recent studies in targeting protein kinase to reverse chemotherapeutic drug resistance in sarcoma. PMID:26827688

  18. Activation of Protein Kinase C-α and Src Kinase Increases Urea Transporter A1 α-2, 6 Sialylation

    PubMed Central

    Li, Xuechen; Yang, Baoxue; Chen, Minguang; Klein, Janet D.; Sands, Jeff M.

    2015-01-01

    The urea transporter A1 (UT-A1) is a glycosylated protein with two glycoforms: 117 and 97 kD. In diabetes, the increased abundance of the heavily glycosylated 117-kD UT-A1 corresponds to an increase of kidney tubule urea permeability. We previously reported that diabetes not only causes an increase of UT-A1 protein abundance but also, results in UT-A1 glycan changes, including an increase of sialic acid content. Because activation of the diacylglycerol (DAG)-protein kinase C (PKC) pathway is elevated in diabetes and PKC-α regulates UT-A1 urea transport activity, we explored the role of PKC in UT-A1 glycan sialylation. We found that activation of PKC specifically promotes UT-A1 glycan sialylation in both UT-A1-MDCK cells and rat kidney inner medullary collecting duct suspensions, and inhibition of PKC activity blocks high glucose-induced UT-A1 sialylation. Overexpression of PKC-α promoted UT-A1 sialylation and membrane surface expression. Conversely, PKC-α–deficient mice had significantly less sialylated UT-A1 compared with wild-type mice. Furthermore, the effect of PKC-α–induced UT-A1 sialylation was mainly mediated by Src kinase but not Raf-1 kinase. Functionally, increased UT-A1 sialylation corresponded with enhanced urea transport activity. Thus, our results reveal a novel mechanism by which PKC regulates UT-A1 function by increasing glycan sialylation through Src kinase pathways, which may have an important role in preventing the osmotic diuresis caused by glucosuria under diabetic conditions. PMID:25300290

  19. PK12, a plant dual-specificity protein kinase of the LAMMER family, is regulated by the hormone ethylene.

    PubMed Central

    Sessa, G; Raz, V; Savaldi, S; Fluhr, R

    1996-01-01

    The ethylene signal is transduced in plant cells via phosphorylation events. To identify protein kinases whose levels of expression are modulated by the plant hormone ethylene, we utilized a differential reverse transcriptase-polymerase chain reaction approach using mRNA extracted from ethylene-treated and untreated tobacco leaves. An ethylene-induced cDNA clone, PK12, encoding a protein kinase, was isolated. PK12 is a new member of the recently defined LAMMER family of protein kinases, which has been identified in mammals, flies, yeasts, and plants. The LAMMER kinases are related to the cell cycle-dependent CDC2-type kinases and are characterized by their similarity at kinase subdomain X. The recombinant PK12 protein autophosphorylates in vitro on serine, threonine, and tyrosine residues, thereby making it a member of the dual-specificity protein kinases. Immunoprecipitation of PK12 from plant extracts and kinase assay revealed that the apparent PK12 activity is rapidly and transiently increased when plants are treated with ethylene. By using in situ hybridization, we detected accumulation of the PK12 transcript in leaves after ethylene treatment and in the untreated flower abscission zone. The tissue in this zone is known to constitutively express ethylene-regulated genes. PMID:8989879

  20. Ten things you should know about protein kinases: IUPHAR Review 14

    PubMed Central

    Fabbro, Doriano; Cowan-Jacob, Sandra W; Moebitz, Henrik

    2015-01-01

    Many human malignancies are associated with aberrant regulation of protein or lipid kinases due to mutations, chromosomal rearrangements and/or gene amplification. Protein and lipid kinases represent an important target class for treating human disorders. This review focus on ‘the 10 things you should know about protein kinases and their inhibitors', including a short introduction on the history of protein kinases and their inhibitors and ending with a perspective on kinase drug discovery. Although the ‘10 things’ have been, to a certain extent, chosen arbitrarily, they cover in a comprehensive way the past and present efforts in kinase drug discovery and summarize the status quo of the current kinase inhibitors as well as knowledge about kinase structure and binding modes. Besides describing the potentials of protein kinase inhibitors as drugs, this review also focus on their limitations, particularly on how to circumvent emerging resistance against kinase inhibitors in oncological indications. PMID:25630872

  1. Baculovirus protein PK2 subverts eIF2α kinase function by mimicry of its kinase domain C-lobe

    PubMed Central

    Li, John J.; Cao, Chune; Fixsen, Sarah M.; Young, Janet M.; Bando, Hisanori; Elde, Nels C.; Katsuma, Susumu; Dever, Thomas E.; Sicheri, Frank

    2015-01-01

    Phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) by eIF2α family kinases is a conserved mechanism to limit protein synthesis under specific stress conditions. The baculovirus-encoded protein PK2 inhibits eIF2α family kinases in vivo, thereby increasing viral fitness. However, the precise mechanism by which PK2 inhibits eIF2α kinase function remains an enigma. Here, we probed the mechanism by which PK2 inhibits the model eIF2α kinase human RNA-dependent protein kinase (PKR) as well as native insect eIF2α kinases. Although PK2 structurally mimics the C-lobe of a protein kinase domain and possesses the required docking infrastructure to bind eIF2α, we show that PK2 directly binds the kinase domain of PKR (PKRKD) but not eIF2α. The PKRKD–PK2 interaction requires a 22-residue N-terminal extension preceding the globular PK2 body that we term the “eIF2α kinase C-lobe mimic” (EKCM) domain. The functional insufficiency of the N-terminal extension of PK2 implicates a role for the adjacent EKCM domain in binding and inhibiting PKR. Using a genetic screen in yeast, we isolated PK2-activating mutations that cluster to a surface of the EKCM domain that in bona fide protein kinases forms the catalytic cleft through sandwiching interactions with a kinase N-lobe. Interaction assays revealed that PK2 associates with the N- but not the C-lobe of PKRKD. We propose an inhibitory model whereby PK2 engages the N-lobe of an eIF2α kinase domain to create a nonfunctional pseudokinase domain complex, possibly through a lobe-swapping mechanism. Finally, we show that PK2 enhances baculovirus fitness in insect hosts by targeting the endogenous insect heme-regulated inhibitor (HRI)–like eIF2α kinase. PMID:26216977

  2. Selective Phosphorylation Inhibitor of Delta Protein Kinase C-Pyruvate Dehydrogenase Kinase Protein-Protein Interactions: Application for Myocardial Injury in Vivo.

    PubMed

    Qvit, Nir; Disatnik, Marie-Hélène; Sho, Eiketsu; Mochly-Rosen, Daria

    2016-06-22

    Protein kinases regulate numerous cellular processes, including cell growth, metabolism, and cell death. Because the primary sequence and the three-dimensional structure of many kinases are highly similar, the development of selective inhibitors for only one kinase is challenging. Furthermore, many protein kinases are pleiotropic, mediating diverse and sometimes even opposing functions by phosphorylating multiple protein substrates. Here, we set out to develop an inhibitor of a selective protein kinase phosphorylation of only one of its substrates. Focusing on the pleiotropic delta protein kinase C (δPKC), we used a rational approach to identify a distal docking site on δPKC for its substrate, pyruvate dehydrogenase kinase (PDK). We reasoned that an inhibitor of PDK's docking should selectively inhibit the phosphorylation of only PDK without affecting phosphorylation of the other δPKC substrates. Our approach identified a selective inhibitor of PDK docking to δPKC with an in vitro Kd of ∼50 nM and reducing cardiac injury IC50 of ∼5 nM. This inhibitor, which did not affect the phosphorylation of other δPKC substrates even at 1 μM, demonstrated that PDK phosphorylation alone is critical for δPKC-mediated injury by heart attack. The approach we describe is likely applicable for the identification of other substrate-specific kinase inhibitors. PMID:27218445

  3. Protein kinase A signaling during bidirectional axenic differentiation in Leishmania.

    PubMed

    Bachmaier, Sabine; Witztum, Ronit; Tsigankov, Polina; Koren, Roni; Boshart, Michael; Zilberstein, Dan

    2016-02-01

    Parasitic protozoa of the genus Leishmania are obligatory intracellular parasites that cycle between the phagolysosome of mammalian macrophages, where they proliferate as intracellular amastigotes, and the midgut of female sand flies, where they proliferate as extracellular promastigotes. Shifting between the two environments induces signaling pathway-mediated developmental processes that enable adaptation to both host and vector. Developmentally regulated expression and phosphorylation of protein kinase A subunits in Leishmania and in Trypanosoma brucei point to an involvement of protein kinase A in parasite development. To assess this hypothesis in Leishmania donovani, we determined proteome-wide changes in phosphorylation of the conserved protein kinase A phosphorylation motifs RXXS and RXXT, using a phospho-specific antibody. Rapid dephosphorylation of these motifs was observed upon initiation of promastigote to amastigote differentiation in culture. No phosphorylated sites were detected in axenic amastigotes. To analyse the kinetics of (re)phosphorylation during axenic reverse differentiation from L. donovani amastigotes to promastigotes, we first established a map of this process with morphological and molecular markers. Upon initiation, the parasites rested for 6-12h before proliferation of an asynchronous population resumed. After early changes in cell shape, the major changes in molecular marker expression and flagella biogenesis occurred between 24 and 33h after initiation. RXXS/T re-phosphorylation and expression of the regulatory subunit PKAR1 correlated with promastigote maturation, indicating a promastigote-specific function of protein kinase A signaling. This is supported by the localization of PKAR1 to the flagellum, an organelle reduced to a remnant in amastigote forms. We conclude that a significant increase in protein kinase A-mediated phosphorylation is part of the ordered changes that characterise the amastigote to promastigote differentiation

  4. Phosphoproteins and protein kinases of the Golgi apparatus membrane

    SciTech Connect

    Capasso, J.M.; Abeijon, C.; Hirschberg, C.B.

    1985-11-25

    Incubation of a highly purified fraction derived from rat liver Golgi apparatus with (gamma-TSP)ATP results in phosphorylation of several endogenous phosphoproteins. One phosphoprotein with an apparent Mr of 48,300 is radiolabeled to an apparent extent at least 5-fold higher than any other phosphoprotein as part of either the Golgi apparatus or highly purified rat liver fractions derived from the rough endoplasmic reticulum, mitochondria, plasma membrane, coated vesicles, cytosol, and total homogenate. Approximately 70% of the 48.3-kDa phosphoprotein appears to be a specific extrinsic Golgi membrane protein with the phosphorylated amino acid being threonine. The protein kinase which phosphorylates the 48.3-kDa protein is an intrinsic Golgi membrane protein and is dependent on MgS , independent of CaS , calmodulin, and cAMP, and is inhibited by N-ethylmaleimide. Preliminary evidence suggests that there are also intrinsic membrane protein kinases in the Golgi apparatus which are dependent on CaS and cAMP. The physiological role of the above phosphoproteins and protein kinases is not known.

  5. Protein kinase inhibitors against malignant lymphoma

    PubMed Central

    D’Cruz, Osmond J; Uckun, Fatih M

    2013-01-01

    Introduction Tyrosine kinases (TKs) are intimately involved in multiple signal transduction pathways regulating survival, activation, proliferation and differentiation of lymphoid cells. Deregulation or overexpression of specific oncogenic TKs is implicated in maintaining the malignant phenotype in B-lineage lymphoid malignancies. Several novel targeted TK inhibitors (TKIs) have recently emerged as active in the treatment of relapsed or refractory B-cell lymphomas that inhibit critical signaling pathways, promote apoptotic mechanisms or modulate the tumor microenvironment. Areas covered In this review, the authors summarize the clinical outcomes of newer TKIs in various B-cell lymphomas from published and ongoing clinical studies and abstracts from major cancer and hematology conferences. Expert opinion Multiple clinical trials have demonstrated that robust antitumor activity can be obtained with TKIs directed toward specific oncogenic TKs that are genetically deregulated in various subtypes of B-cell lymphomas. Clinical success of targeting TKIs is dependent upon on identifying reliable molecular and clinical markers associated with select cohorts of patients. Further understanding of the signaling pathways should stimulate the identification of novel molecular targets and expand the development of new therapeutic options and individualized therapies. PMID:23496343

  6. Identification and analysis of a novel protein-tyrosine kinase from bovine thymus

    SciTech Connect

    Zioncheck, T.F.; Harrison, M.L.; Geahlen, R.L.

    1986-05-01

    A cytosolic protein-tyrosine kinase has been identified and purified to near homogeneity from calf thymus by using the phosphorylation of the tyrosine-containing peptide angiotensin I as an assay. Specific peptide phosphorylating activity was enhanced by carrying out the assay at high ionic strength (2M NaCl). The inclusion of NaCl at this concentration acts to stimulate endogenous protein-tyrosine kinase activity while simultaneously inhibiting other endogenous kinases. The purification procedure involved extraction of the enzyme from calf-thymus and sequential chromatography on columns of DEAE-cellulose, heparin-agarose, casein-sepharose, butylagarose, and Sephadex G-75. Analysis of the most highly purified preparations by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single Coomassie blue-stained band of 41 KDa. This molecular weight was consistent with results obtained from gel filtration, indicating that the enzyme exists as a monomer. The enzyme has also been found to catalyze an autophosphorylation reaction. Incubation of the enzyme with Mn/sup 2 +/ and (..gamma..-/sup 32/P)ATP led to its modification on a tyrosine residue. Phosphopeptide mapping experiments indicated that the 41 KDa kinase was distinct from p56, the major membrane-associated protein-tyrosine kinase in T lymphocytes.

  7. Active Site Inhibitors Protect Protein Kinase C from Dephosphorylation and Stabilize Its Mature Form*

    PubMed Central

    Gould, Christine M.; Antal, Corina E.; Reyes, Gloria; Kunkel, Maya T.; Adams, Ryan A.; Ziyar, Ahdad; Riveros, Tania; Newton, Alexandra C.

    2011-01-01

    Conformational changes acutely control protein kinase C (PKC). We have previously shown that the autoinhibitory pseudosubstrate must be removed from the active site in order for 1) PKC to be phosphorylated by its upstream kinase phosphoinositide-dependent kinase 1 (PDK-1), 2) the mature enzyme to bind and phosphorylate substrates, and 3) the mature enzyme to be dephosphorylated by phosphatases. Here we show an additional level of conformational control; binding of active site inhibitors locks PKC in a conformation in which the priming phosphorylation sites are resistant to dephosphorylation. Using homogeneously pure PKC, we show that the active site inhibitor Gö 6983 prevents the dephosphorylation by pure protein phosphatase 1 (PP1) or the hydrophobic motif phosphatase, pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP). Consistent with results using pure proteins, treatment of cells with the competitive inhibitors Gö 6983 or bisindolylmaleimide I, but not the uncompetitive inhibitor bisindolylmaleimide IV, prevents the dephosphorylation and down-regulation of PKC induced by phorbol esters. Pulse-chase analyses reveal that active site inhibitors do not affect the net rate of priming phosphorylations of PKC; rather, they inhibit the dephosphorylation triggered by phorbol esters. These data provide a molecular explanation for the recent studies showing that active site inhibitors stabilize the phosphorylation state of protein kinases B/Akt and C. PMID:21715334

  8. Phosphorylation of mouse melanopsin by protein kinase A.

    PubMed

    Blasic, Joseph R; Brown, R Lane; Robinson, Phyllis R

    2012-01-01

    The visual pigment melanopsin is expressed in intrinsically photosensitive retinal ganglion cells (ipRGCs) in the mammalian retina, where it is involved in non-image forming light responses including circadian photoentrainment, pupil constriction, suppression of pineal melatonin synthesis, and direct photic regulation of sleep. It has recently been shown that the melanopsin-based light response in ipRGCs is attenuated by the neurotransmitter dopamine. Here, we use a heterologous expression system to demonstrate that mouse melanopsin can be phosphorylated by protein kinase A, and that phosphorylation can inhibit melanopsin signaling in HEK cells. Site-directed mutagenesis experiments revealed that this inhibitory effect is primarily mediated by phosphorylation of sites T186 and S287 located in the second and third intracellular loops of melanopsin, respectively. Furthermore, we show that this phosphorylation can occur in vivo using an in situ proximity-dependent ligation assay (PLA). Based on these data, we suggest that the attenuation of the melanopsin-based light response by dopamine is mediated by direct PKA phosphorylation of melanopsin, rather than phosphorylation of a downstream component of the signaling cascade. PMID:23049792

  9. Positive feedback of protein kinase C proteolytic activation during apoptosis.

    PubMed Central

    Leverrier, Sabrina; Vallentin, Alice; Joubert, Dominique

    2002-01-01

    In contrast with protein kinase Calpha (PKCalpha) and PKCepsilon, which are better known for promoting cell survival, PKCdelta is known for its pro-apoptotic function, which is exerted mainly through a caspase-3-dependent proteolytic activation pathway. In the present study, we used the rat GH3B6 pituitary adenoma cell line to show that PKCalpha and PKCepsilon are activated and relocalized together with PKCdelta when apoptosis is induced by a genotoxic stress. Proteolytic activation is a crucial step used by the three isoforms since: (1) the catalytic domains of the PKCalpha, PKCepsilon or PKCdelta isoforms (CDalpha, CDepsilon and CDdelta respectively) accumulated, and this accumulation was dependent on the activity of both calpain and caspase; and (2) transient expression of CDalpha, CDepsilon or CDdelta sufficed to induce apoptosis. However, following this initial step of proteolytic activation, the pathways diverge; cytochrome c release and caspase-3 activation are induced by CDepsilon and CDdelta, but not by CDalpha. Another interesting finding of the present study is the proteolysis of PKCdelta induced by CDepsilon expression that revealed the existence of a cross-talk between PKC isoforms during apoptosis. Hence the PKC family may participate in the apoptotic process of pituitary adenoma cells at two levels: downstream of caspase and calpain, and via retro-activation of caspase-3, resulting in the amplification of its own proteolytic activation. PMID:12238950

  10. Alterations in brain protein kinase C after experimental brain injury.

    PubMed

    Padmaperuma, B; Mark, R; Dhillon, H S; Mattson, M P; Prasad, M R

    1996-04-01

    Regional activities and levels of protein kinase C were measured after lateral fluid percussion brain injury in rats. At 5 min and 20 min after injury, neither cofactor-dependent nor -independent PKC activities in the cytosol and membrane fractions changed in the injured and contralateral cortices or in the ipsilateral hippocampus. Western blot analysis revealed decreases in the levels of cytosolic PKC alpha and PKC beta in the injured cortex after brain injury. In the same site, a significant increase in the levels of membrane PKC alpha and PKC beta was observed after injury. Although the level of PKC alpha did not change and that of PKC beta decreased in the cytosol of the ipsilateral hippocampus, these levels did not increase in the membrane fraction after injury. The levels of PKC gamma were generally unchanged in the cytosol and the membrane, except for its decrease in the cytosol of the hippocampus. There were no changes in the levels of any PKC isoform in either the cytosol or the membrane of the contralateral cortex after injury. The present results suggest a translocation of PKC alpha and PKC beta from the cytosol to the membrane in the injured cortex after brain injury. The observation that such a translocation occurs only in the brain regions that undergo substantial neuronal loss suggests that membrane PKC may play a role in neuronal damage after brain injury. PMID:8861605

  11. Juvenile hormone diol kinase, a calcium-binding protein with kinase activity, from the silkworm, Bombyx mori.

    PubMed

    Li, Sheng; Zhang, Qi-Rui; Xu, Wei-Hua; Schooley, David A

    2005-11-01

    Juvenile hormone (JH) diol kinase (JHDK) is an important enzyme involved in the JH degradation pathway. Bombyx mori (Bommo)-JHDK cDNA (637bp) contains an open reading frame encoding a 183-amino acid protein, which reveals a high degree of identity to the two previously reported JHDKs. JHDK is similar to GTP-binding proteins with three conserved sequence elements involved in purine nucleotide binding, contains eight alpha-helices and three EF-hand motifs, and resembles the three-dimensional model of 2SCP and some other calcium-binding proteins. The Bommo-JHDK gene has only a single copy in the silkworm haploid genome, contains only one exon, and its 5'-upstream sequence does not have a JH response element. Although Bommo-JHDK is highly expressed in the gut of the silkworm, its mRNA expression remains at a constant level during larval development suggesting this enzyme is constitutive and not regulated by JH, at least at the transcriptional level. Recombinant Bommo-JHDK catalyzed the conversion of 10S-JH diol into JH diol phosphate, confirming its enzymatic function. Recombinant enzyme formed a dimer and had biochemical characteristics similar to other JHDKs. Bommo-JHDK, a calcium-binding protein with kinase activity, provides unique insights on how JH levels are regulated in the silkworm. PMID:16203205

  12. Phosphorylation of the mRNA cap binding protein and eIF-4A by different protein kinases

    SciTech Connect

    Hagedorn, C.H.

    1987-05-01

    These studies were done to determine the identity of a protein kinase that phosphorylates the mRNA cap binding protein (CBP). Two chromatographic steps (dye and ligand and ion exchange HPLC) produced a 500x purification of an enzyme activity in rabbit reticulocytes that phosphorylated CBP at serine residues. Isoelectric focusing analysis of kinase treated CBP demonstrated 5 isoelectric species of which the 2 most anodic species were phosphorylated (contained /sup 32/P). This kinase activity phosphorylated CBP when it was isolated or in the eIF-4F complex. Purified protein kinase C, cAMP or cGMP dependent protein kinase, casein kinase I or II, myosin light chain kinase or insulin receptor kinase did not significantly phosphorylate isolated CBP or CBP in the eIF-4F complex. However, cAMP and cGMP dependent protein kinases and casein kinase II phosphorylated eIF-4A but did not phosphorylate the 46 kDa component of eIF-4F. cAMP dependent protein kinase phosphorylated a approx. 220 kDa protein doublet in eIF-4F preparations. These studies indicate that CBP kinase activity probably represents a previously unidentified protein kinase. In addition, eIF-4A appears to be phosphorylated by several protein kinases whereas the 46 kDa component of the eIF-4F complex was not.

  13. Structures of 5-Methylthioribose Kinase Reveal Substrate Specificity and Unusual Mode of Nucleotide Binding

    SciTech Connect

    Ku,S.; Yip, P.; Cornell, K.; Riscoe, M.; Behr, J.; Guillerm, G.; Howell, P.

    2007-01-01

    The methionine salvage pathway is ubiquitous in all organisms, but metabolic variations exist between bacteria and mammals. 5-Methylthioribose (MTR) kinase is a key enzyme in methionine salvage in bacteria and the absence of a mammalian homolog suggests that it is a good target for the design of novel antibiotics. The structures of the apo-form of Bacillus subtilis MTR kinase, as well as its ADP, ADP-PO4, AMPPCP, and AMPPCP-MTR complexes have been determined. MTR kinase has a bilobal eukaryotic protein kinase fold but exhibits a number of unique features. The protein lacks the DFG motif typically found at the beginning of the activation loop and instead coordinates magnesium via a DXE motif (Asp{sup 250}-Glu{sup 252}). In addition, the glycine-rich loop of the protein, analogous to the 'Gly triad' in protein kinases, does not interact extensively with the nucleotide. The MTR substrate-binding site consists of Asp{sup 233} of the catalytic HGD motif, a novel twin arginine motif (Arg{sup 340}/Arg{sup 341}), and a semi-conserved W-loop, which appears to regulate MTR binding specificity. No lobe closure is observed for MTR kinase upon substrate binding. This is probably because the enzyme lacks the lobe closure/inducing interactions between the C-lobe of the protein and the ribosyl moiety of the nucleotide that are typically responsible for lobe closure in protein kinases. The current structures suggest that MTR kinase has a dissociative mechanism.

  14. GIT1/βPIX signaling proteins and PAK1 kinase regulate microtubule nucleation.

    PubMed

    Černohorská, Markéta; Sulimenko, Vadym; Hájková, Zuzana; Sulimenko, Tetyana; Sládková, Vladimíra; Vinopal, Stanislav; Dráberová, Eduarda; Dráber, Pavel

    2016-06-01

    Microtubule nucleation from γ-tubulin complexes, located at the centrosome, is an essential step in the formation of the microtubule cytoskeleton. However, the signaling mechanisms that regulate microtubule nucleation in interphase cells are largely unknown. In this study, we report that γ-tubulin is in complexes containing G protein-coupled receptor kinase-interacting protein 1 (GIT1), p21-activated kinase interacting exchange factor (βPIX), and p21 protein (Cdc42/Rac)-activated kinase 1 (PAK1) in various cell lines. Immunofluorescence microscopy revealed association of GIT1, βPIX and activated PAK1 with centrosomes. Microtubule regrowth experiments showed that depletion of βPIX stimulated microtubule nucleation, while depletion of GIT1 or PAK1 resulted in decreased nucleation in the interphase cells. These data were confirmed for GIT1 and βPIX by phenotypic rescue experiments, and counting of new microtubules emanating from centrosomes during the microtubule regrowth. The importance of PAK1 for microtubule nucleation was corroborated by the inhibition of its kinase activity with IPA-3 inhibitor. GIT1 with PAK1 thus represent positive regulators, and βPIX is a negative regulator of microtubule nucleation from the interphase centrosomes. The regulatory roles of GIT1, βPIX and PAK1 in microtubule nucleation correlated with recruitment of γ-tubulin to the centrosome. Furthermore, in vitro kinase assays showed that GIT1 and βPIX, but not γ-tubulin, serve as substrates for PAK1. Finally, direct interaction of γ-tubulin with the C-terminal domain of βPIX and the N-terminal domain of GIT1, which targets this protein to the centrosome, was determined by pull-down experiments. We propose that GIT1/βPIX signaling proteins with PAK1 kinase represent a novel regulatory mechanism of microtubule nucleation in interphase cells. PMID:27012601

  15. Caspase processing activates atypical protein kinase C zeta by relieving autoinhibition and destabilizes the protein.

    PubMed Central

    Smith, Lucinda; Wang, Zhi; Smith, Jeffrey B

    2003-01-01

    Treatment of HeLa cells with tumour necrosis factor alpha (TNFalpha) induced caspase processing of ectopic PKC (protein kinase C) zeta, which converted most of the holoenzyme into the freed kinase domain and increased immune-complex kinase activity. The goal of the present study was to determine the basis for the increased kinase activity that is associated with caspase processing of PKC zeta. Atypical PKC iota is largely identical with PKC zeta, except for a 60-amino-acid segment that lacks the caspase-processing sites of the zeta isoform. Replacement of this segment of PKC zeta with the corresponding segment of PKC iota prevented caspase processing and activation of the kinase function. Processing of purified recombinant PKC zeta by caspase 3 in vitro markedly increased its kinase activity. Caspase processing activated PKC zeta in vitro or intracellularly without increasing the phosphorylation of Thr410 of PKC zeta, which is required for catalytic competency. The freed kinase domain of PKC zeta had a much shorter half-life than the holoenzyme in transfected HeLa cells and in non-transfected kidney epithelial cells. Treatment with TNF-alpha shortened the half-life of the kinase domain protein, and proteasome blockade stabilized the protein. Studies of kinase-domain mutants indicate that a lack of negative charge at Thr410 can shorten the half-life of the freed kinase domain. The present findings indicate that the freed kinase domain has substantially higher kinase activity and a much shorter half-life than the holoenzyme because of accelerated degradation by the ubiquitin-proteasome system. PMID:12887331

  16. A threading approach to protein structure prediction: Studies on TNF-like molecules, Rev proteins, and protein kinases

    NASA Astrophysics Data System (ADS)

    Ihm, Yungok

    The main focus of this dissertation is the application of the threading approach to specific biological problems. The threading scheme developed in our group targets incorporating important structural features necessary for detecting structural similarity between the target sequence and the template structure. This enables us to use our threading method to solve problems for which sequence-based methods are not very much useful. We applied our threading method to predict the three-dimensional structures of lentivirus (EIAV, HIV-1, FIV, SIV) Rev proteins. Predicted structures of Rev proteins suggest that they share a structural similarity among themselves (four-helix bundle). Also, the threading approach has been utilized for screening for potential TNF-like molecules in Arabidopsis. The threading approach identified 35 potential TNF-like proteins in Arabidopsis, six of which are particularly interesting to be tested for the receptor kinase ligand activity. Threading method has also been used to identify potentially new protein kinases, which are not included in the protein kinase data base of C. elegans and Arabidopis. We identified eleven potentially new protein kinases and an additional protein worth investigating for protein kinase activity in C. elegans. Further, we identified ten potentially new protein kinases and additional four proteins worth investigating for the protein kinase activity in Arabidopsis.

  17. Characterization of nuclear protein kinases of Xenopus laevis oocytes

    SciTech Connect

    Leiva, L.; Gonzalez, C.; Allende, C.; Allende, J.

    1986-05-01

    Xenopus laevis oocytes contain large nuclei (germinal vesicles) that can be isolated in very pure form and which permit the study of enzymatic activities present in these organelles. Incubation of pure oocyte nuclear homogenates with /sup 32/P in a buffered solution containing 5 mM MgCl/sub 2/ results in the phosphorylation of a large number of proteins by endogenous protein kinases. This phosphorylation is not affected by the addition of cyclic nucleotides or calcium ion and calmodulin. On the other hand the nuclear kinases are considerably stimulated by spermine and spermidine and strongly inhibited by heparin (10 ..mu..g/ml). Addition of exogenous protein substrates shows that the major oocyte kinases are very active with casein and phosvitin as substrates but do not phosphorylate histones or protamines. DEAE-Sephadex chromatography of the nuclear extract fractionates the casein phosphorylating activity in two main peaks. The first peak is not retained on the column equilibrated with 0.1 M NH/sub 2/SO/sub 4/ and uses exclusively ATP as phosphate donor and is insensitive to polyamines or heparin. The second peak which corresponds to 70% of the casein phosphorylation elutes at 0.27 M NH/sub 2/SO/sub 4/ and uses both ATP and GTP as phosphate donors and is greatly stimulated by polyamines and completely inhibited by 10 ..mu..g/ml heparin. On this evidence the authors conclude that the major protein kinase peak corresponds to casein kinase type II which has been found in mammalian nuclei.

  18. Identification and Validation of Inhibitor-Responsive Kinase Substrates using a New Paradigm to Measure Kinase-Specific Protein Phosphorylation Index

    PubMed Central

    Li, Xiang; Rao, Varsha; Jin, Jin; Guan, Bin; Anderes, Kenna L.; Bieberich, Charles J.

    2012-01-01

    Regulation of all cellular processes requires dynamic regulation of protein phosphorylation. We have developed an unbiased system to globally quantify the phosphorylation index for substrates of a specific kinase by independently quantifying phosphorylated and total substrate molecules in a reverse in-gel kinase assay. Non-phosphorylated substrate molecules are first quantified in the presence and absence of a specific stimulus. Total substrate molecules are then measured after complete chemical de-phosphorylation, and a ratio of phosphorylated to total substrate is derived. To demonstrate the utility of this approach, we profiled and quantified changes in phosphorylation index for Protein Kinase CK2 substrates that respond to a small-molecule inhibitor. A broad range of inhibitor-induced changes in phosphorylation was observed in cultured cells. Differences among substrates in the kinetics of phosphorylation change were also revealed. Comparison of CK2 inhibitor-induced changes in phosphorylation in cultured cells and in mouse peripheral blood lymphocytes in vivo revealed distinct kinetic and depth-of-response profiles. This technology provides a new approach to facilitate functional analyses of kinase-specific phosphorylation events. This strategy can be used to dissect the role of phosphorylation in cellular events, to facilitate kinase inhibitor target validation studies, and to inform in vivo analyses of kinase inhibitor drug efficacy. PMID:22663298

  19. Prediction of cancer driver mutations in protein kinases.

    PubMed

    Torkamani, Ali; Schork, Nicholas J

    2008-03-15

    A large number of somatic mutations accumulate during the process of tumorigenesis. A subset of these mutations contribute to tumor progression (known as "driver" mutations) whereas the majority of these mutations are effectively neutral (known as "passenger" mutations). The ability to differentiate between drivers and passengers will be critical to the success of upcoming large-scale cancer DNA resequencing projects. Here we show a method capable of discriminating between drivers and passengers in the most frequently cancer-associated protein family, protein kinases. We apply this method to multiple cancer data sets, validating its accuracy by showing that it is capable of identifying known drivers, has excellent agreement with previous statistical estimates of the frequency of drivers, and provides strong evidence that predicted drivers are under positive selection by various sequence and structural analyses. Furthermore, we identify particular positions in protein kinases that seem to play a role in oncogenesis. Finally, we provide a ranked list of candidate driver mutations. PMID:18339846

  20. Protein kinase C mechanisms that contribute to cardiac remodelling

    PubMed Central

    Newton, Alexandra C.; Antal, Corina E.; Steinberg, Susan F.

    2016-01-01

    Protein phosphorylation is a highly-regulated and reversible process that is precisely controlled by the actions of protein kinases and protein phosphatases. Factors that tip the balance of protein phosphorylation lead to changes in a wide range of cellular responses, including cell proliferation, differentiation and survival. The protein kinase C (PKC) family of serine/threonine kinases sits at nodal points in many signal transduction pathways; PKC enzymes have been the focus of considerable attention since they contribute to both normal physiological responses as well as maladaptive pathological responses that drive a wide range of clinical disorders. This review provides a background on the mechanisms that regulate individual PKC isoenzymes followed by a discussion of recent insights into their role in the pathogenesis of diseases such as cancer. We then provide an overview on the role of individual PKC isoenzymes in the regulation of cardiac contractility and pathophysiological growth responses, with a focus on the PKC-dependent mechanisms that regulate pump function and/or contribute to the pathogenesis of heart failure. PMID:27433023

  1. Protein kinase C mechanisms that contribute to cardiac remodelling.

    PubMed

    Newton, Alexandra C; Antal, Corina E; Steinberg, Susan F

    2016-09-01

    Protein phosphorylation is a highly-regulated and reversible process that is precisely controlled by the actions of protein kinases and protein phosphatases. Factors that tip the balance of protein phosphorylation lead to changes in a wide range of cellular responses, including cell proliferation, differentiation and survival. The protein kinase C (PKC) family of serine/threonine kinases sits at nodal points in many signal transduction pathways; PKC enzymes have been the focus of considerable attention since they contribute to both normal physiological responses as well as maladaptive pathological responses that drive a wide range of clinical disorders. This review provides a background on the mechanisms that regulate individual PKC isoenzymes followed by a discussion of recent insights into their role in the pathogenesis of diseases such as cancer. We then provide an overview on the role of individual PKC isoenzymes in the regulation of cardiac contractility and pathophysiological growth responses, with a focus on the PKC-dependent mechanisms that regulate pump function and/or contribute to the pathogenesis of heart failure. PMID:27433023

  2. Circulating protein synthesis rates reveal skeletal muscle proteome dynamics.

    PubMed

    Shankaran, Mahalakshmi; King, Chelsea L; Angel, Thomas E; Holmes, William E; Li, Kelvin W; Colangelo, Marc; Price, John C; Turner, Scott M; Bell, Christopher; Hamilton, Karyn L; Miller, Benjamin F; Hellerstein, Marc K

    2016-01-01

    Here, we have described and validated a strategy for monitoring skeletal muscle protein synthesis rates in rodents and humans over days or weeks from blood samples. We based this approach on label incorporation into proteins that are synthesized specifically in skeletal muscle and escape into the circulation. Heavy water labeling combined with sensitive tandem mass spectrometric analysis allowed integrated synthesis rates of proteins in muscle tissue across the proteome to be measured over several weeks. Fractional synthesis rate (FSR) of plasma creatine kinase M-type (CK-M) and carbonic anhydrase 3 (CA-3) in the blood, more than 90% of which is derived from skeletal muscle, correlated closely with FSR of CK-M, CA-3, and other proteins of various ontologies in skeletal muscle tissue in both rodents and humans. Protein synthesis rates across the muscle proteome generally changed in a coordinate manner in response to a sprint interval exercise training regimen in humans and to denervation or clenbuterol treatment in rodents. FSR of plasma CK-M and CA-3 revealed changes and interindividual differences in muscle tissue proteome dynamics. In human subjects, sprint interval training primarily stimulated synthesis of structural and glycolytic proteins. Together, our results indicate that this approach provides a virtual biopsy, sensitively revealing individualized changes in proteome-wide synthesis rates in skeletal muscle without a muscle biopsy. Accordingly, this approach has potential applications for the diagnosis, management, and treatment of muscle disorders. PMID:26657858

  3. Circulating protein synthesis rates reveal skeletal muscle proteome dynamics

    PubMed Central

    Shankaran, Mahalakshmi; King, Chelsea L.; Angel, Thomas E.; Holmes, William E.; Li, Kelvin W.; Colangelo, Marc; Price, John C.; Turner, Scott M.; Bell, Christopher; Hamilton, Karyn L.; Miller, Benjamin F.; Hellerstein, Marc K.

    2015-01-01

    Here, we have described and validated a strategy for monitoring skeletal muscle protein synthesis rates in rodents and humans over days or weeks from blood samples. We based this approach on label incorporation into proteins that are synthesized specifically in skeletal muscle and escape into the circulation. Heavy water labeling combined with sensitive tandem mass spectrometric analysis allowed integrated synthesis rates of proteins in muscle tissue across the proteome to be measured over several weeks. Fractional synthesis rate (FSR) of plasma creatine kinase M-type (CK-M) and carbonic anhydrase 3 (CA-3) in the blood, more than 90% of which is derived from skeletal muscle, correlated closely with FSR of CK-M, CA-3, and other proteins of various ontologies in skeletal muscle tissue in both rodents and humans. Protein synthesis rates across the muscle proteome generally changed in a coordinate manner in response to a sprint interval exercise training regimen in humans and to denervation or clenbuterol treatment in rodents. FSR of plasma CK-M and CA-3 revealed changes and interindividual differences in muscle tissue proteome dynamics. In human subjects, sprint interval training primarily stimulated synthesis of structural and glycolytic proteins. Together, our results indicate that this approach provides a virtual biopsy, sensitively revealing individualized changes in proteome-wide synthesis rates in skeletal muscle without a muscle biopsy. Accordingly, this approach has potential applications for the diagnosis, management, and treatment of muscle disorders. PMID:26657858

  4. Evidence that phytochrome functions as a protein kinase in plant light signalling

    PubMed Central

    Shin, Ah-Young; Han, Yun-Jeong; Baek, Ayoung; Ahn, Taeho; Kim, Soo Young; Nguyen, Thai Son; Son, Minky; Lee, Keun Woo; Shen, Yu; Song, Pill-Soon; Kim, Jeong-Il

    2016-01-01

    It has been suggested that plant phytochromes are autophosphorylating serine/threonine kinases. However, the biochemical properties and functional roles of putative phytochrome kinase activity in plant light signalling are largely unknown. Here, we describe the biochemical and functional characterization of Avena sativa phytochrome A (AsphyA) as a potential protein kinase. We provide evidence that phytochrome-interacting factors (PIFs) are phosphorylated by phytochromes in vitro. Domain mapping of AsphyA shows that the photosensory core region consisting of PAS-GAF-PHY domains in the N-terminal is required for the observed kinase activity. Moreover, we demonstrate that transgenic plants expressing mutant versions of AsphyA, which display reduced activity in in vitro kinase assays, show hyposensitive responses to far-red light. Further analysis reveals that far-red light-induced phosphorylation and degradation of PIF3 are significantly reduced in these transgenic plants. Collectively, these results suggest a positive relationship between phytochrome kinase activity and photoresponses in plants. PMID:27173885

  5. Evidence that phytochrome functions as a protein kinase in plant light signalling.

    PubMed

    Shin, Ah-Young; Han, Yun-Jeong; Baek, Ayoung; Ahn, Taeho; Kim, Soo Young; Nguyen, Thai Son; Son, Minky; Lee, Keun Woo; Shen, Yu; Song, Pill-Soon; Kim, Jeong-Il

    2016-01-01

    It has been suggested that plant phytochromes are autophosphorylating serine/threonine kinases. However, the biochemical properties and functional roles of putative phytochrome kinase activity in plant light signalling are largely unknown. Here, we describe the biochemical and functional characterization of Avena sativa phytochrome A (AsphyA) as a potential protein kinase. We provide evidence that phytochrome-interacting factors (PIFs) are phosphorylated by phytochromes in vitro. Domain mapping of AsphyA shows that the photosensory core region consisting of PAS-GAF-PHY domains in the N-terminal is required for the observed kinase activity. Moreover, we demonstrate that transgenic plants expressing mutant versions of AsphyA, which display reduced activity in in vitro kinase assays, show hyposensitive responses to far-red light. Further analysis reveals that far-red light-induced phosphorylation and degradation of PIF3 are significantly reduced in these transgenic plants. Collectively, these results suggest a positive relationship between phytochrome kinase activity and photoresponses in plants. PMID:27173885

  6. Regulation of polar auxin transport by protein and lipid kinases.

    PubMed

    Armengot, Laia; Marquès-Bueno, Maria Mar; Jaillais, Yvon

    2016-07-01

    The directional transport of auxin, known as polar auxin transport (PAT), allows asymmetric distribution of this hormone in different cells and tissues. This system creates local auxin maxima, minima, and gradients that are instrumental in both organ initiation and shape determination. As such, PAT is crucial for all aspects of plant development but also for environmental interaction, notably in shaping plant architecture to its environment. Cell to cell auxin transport is mediated by a network of auxin carriers that are regulated at the transcriptional and post-translational levels. Here we review our current knowledge on some aspects of the 'non-genomic' regulation of auxin transport, placing an emphasis on how phosphorylation by protein and lipid kinases controls the polarity, intracellular trafficking, stability, and activity of auxin carriers. We describe the role of several AGC kinases, including PINOID, D6PK, and the blue light photoreceptor phot1, in phosphorylating auxin carriers from the PIN and ABCB families. We also highlight the function of some receptor-like kinases (RLKs) and two-component histidine kinase receptors in PAT, noting that there are probably RLKs involved in co-ordinating auxin distribution yet to be discovered. In addition, we describe the emerging role of phospholipid phosphorylation in polarity establishment and intracellular trafficking of PIN proteins. We outline these various phosphorylation mechanisms in the context of primary and lateral root development, leaf cell shape acquisition, as well as root gravitropism and shoot phototropism. PMID:27242371

  7. Regulation of polar auxin transport by protein and lipid kinases

    PubMed Central

    Jaillais, Yvon

    2016-01-01

    The directional transport of auxin, known as polar auxin transport, allows asymmetric distribution of this hormone in different cells and tissues. This system creates local auxin maxima, minima and gradients that are instrumental in both organ initiation and shape determination. As such, polar auxin transport is crucial for all aspects of plant development but also for environmental interaction, notably in shaping plant architecture to its environment. Cell-to-cell auxin transport is mediated by a network of auxin carriers that are regulated at the transcriptional and post-translational levels. Here we review our current knowledge on some aspects of the ‘non-genomic’ regulation of auxin transport, putting an emphasis on how phosphorylation by protein and lipid kinases controls the polarity, intracellular trafficking, stability and activity of auxin carriers. We describe the role of several AGC kinases, including PINOID, D6PK and the blue light photoreceptor phot1, in phosphorylating auxin carriers from the PIN and ABCB families. We also highlight the function of some Receptor-Like Kinases (RLK) and two-component histidine kinase receptors in polar auxin transport, noticing that there are likely RLKs involved in coordinating auxin distribution yet to be discovered. In addition, we describe the emerging role of phospholipid phosphorylation in polarity establishment and intracellular trafficking of PIN proteins. We outline these various phosphorylation mechanisms in the context of primary and lateral root development, leaf cell shape acquisition as well as root gravitropism and shoot phototropism. PMID:27242371

  8. Regulation of glutamate metabolism by protein kinases in mycobacteria.

    PubMed

    O'Hare, Helen M; Durán, Rosario; Cerveñansky, Carlos; Bellinzoni, Marco; Wehenkel, Anne Marie; Pritsch, Otto; Obal, Gonzalo; Baumgartner, Jens; Vialaret, Jérome; Johnsson, Kai; Alzari, Pedro M

    2008-12-01

    Protein kinase G of Mycobacterium tuberculosis has been implicated in virulence and in regulation of glutamate metabolism. Here we show that this kinase undergoes a pattern of autophosphorylation that is distinct from that of other M. tuberculosis protein kinases characterized to date and we identify GarA as a substrate for phosphorylation by PknG. Autophosphorylation of PknG has little effect on kinase activity but promotes binding to GarA, an interaction that is also detected in living mycobacteria. PknG phosphorylates GarA at threonine 21, adjacent to the residue phosphorylated by PknB (T22), and these two phosphorylation events are mutually exclusive. Like the homologue OdhI from Corynebacterium glutamicum, the unphosphorylated form of GarA is shown to inhibit alpha-ketoglutarate decarboxylase in the TCA cycle. Additionally GarA is found to bind and modulate the activity of a large NAD(+)-specific glutamate dehydrogenase with an unusually low affinity for glutamate. Previous reports of a defect in glutamate metabolism caused by pknG deletion may thus be explained by the effect of unphosphorylated GarA on these two enzyme activities, which may also contribute to the attenuation of virulence. PMID:19019160

  9. A secretory kinase complex regulates extracellular protein phosphorylation

    PubMed Central

    Cui, Jixin; Xiao, Junyu; Tagliabracci, Vincent S; Wen, Jianzhong; Rahdar, Meghdad; Dixon, Jack E

    2015-01-01

    Although numerous extracellular phosphoproteins have been identified, the protein kinases within the secretory pathway have only recently been discovered, and their regulation is virtually unexplored. Fam20C is the physiological Golgi casein kinase, which phosphorylates many secreted proteins and is critical for proper biomineralization. Fam20A, a Fam20C paralog, is essential for enamel formation, but the biochemical function of Fam20A is unknown. Here we show that Fam20A potentiates Fam20C kinase activity and promotes the phosphorylation of enamel matrix proteins in vitro and in cells. Mechanistically, Fam20A is a pseudokinase that forms a functional complex with Fam20C, and this complex enhances extracellular protein phosphorylation within the secretory pathway. Our findings shed light on the molecular mechanism by which Fam20C and Fam20A collaborate to control enamel formation, and provide the first insight into the regulation of secretory pathway phosphorylation. DOI: http://dx.doi.org/10.7554/eLife.06120.001 PMID:25789606

  10. West Nile virus methyltransferase domain interacts with protein kinase G

    PubMed Central

    2013-01-01

    Background The flaviviral nonstructural protein 5 (NS5) is a phosphoprotein, though the precise identities and roles of many specific phosphorylations remain unknown. Protein kinase G (PKG), a cGMP-dependent protein kinase, has previously been shown to phosphorylate dengue virus NS5. Methods We used mass spectrometry to specifically identify NS5 phosphosites. Co-immunoprecipitation assays were used to study protein-protein interactions. Effects on viral replication were measured via replicon system and plaque assay titering. Results We identified multiple sites in West Nile virus (WNV) NS5 that are phosphorylated during a WNV infection, and showed that the N-terminal methyltransferase domain of WNV NS5 can be specifically phosphorylated by PKG in vitro. Expressing PKG in cell culture led to an enhancement of WNV viral production. We hypothesized this effect on replication could be caused by factors beyond the specific phosphorylations of NS5. Here we show for the first time that PKG is also able to stably interact with a viral substrate, WNV NS5, in cell culture and in vitro. While the mosquito-borne WNV NS5 interacted with PKG, tick-borne Langat virus NS5 did not. The methyltransferase domain of NS5 is able to mediate the interaction between NS5 and PKG, and mutating positive residues in the αE region of the methyltransferase interrupts the interaction. These same mutations completely inhibited WNV replication. Conclusions PKG is not required for WNV replication, but does make a stable interaction with NS5. While the consequence of the NS5:PKG interaction when it occurs is unclear, mutational data demonstrates that this interaction occurs in a region of NS5 that is otherwise necessary for replication. Overall, the results identify an interaction between virus and a cellular kinase and suggest a role for a host kinase in enhancing flaviviral replication. PMID:23876037

  11. Signals fly when kinases meet Rho-of-plants (ROP) small G-proteins.

    PubMed

    Fehér, Attila; Lajkó, Dézi Bianka

    2015-08-01

    Rho-type small GTP-binding plant proteins function as two-state molecular switches in cellular signalling. There is accumulating evidence that Rho-of-plants (ROP) signalling is positively controlled by plant receptor kinases, through the ROP guanine nucleotide exchange factor proteins. These signalling modules regulate cell polarity, cell shape, hormone responses, and pathogen defence, among other things. Other ROP-regulatory proteins might also be subjected to protein phosphorylation by cellular kinases (e.g., mitogen-activated protein kinases or calcium-dependent protein kinases), in order to integrate various cellular signalling pathways with ROP GTPase-dependent processes. In contrast to the role of kinases in upstream ROP regulation, much less is known about the potential link between ROP GTPases and downstream kinase signalling. In other eukaryotes, Rho-type G-protein-activated kinases are widespread and have a key role in many cellular processes. Recent data indicate the existence of structurally different ROP-activated kinases in plants, but their ROP-dependent biological functions still need to be validated. In addition to these direct interactions, ROPs may also indirectly control the activity of mitogen-activated protein kinases or calcium-dependent protein kinases. These kinases may therefore function as upstream as well as downstream kinases in ROP-mediated signalling pathways, such as the phosphatidylinositol monophosphate kinases involved in cell polarity establishment. PMID:26089155

  12. Cellular reprogramming through mitogen-activated protein kinases

    PubMed Central

    Lee, Justin; Eschen-Lippold, Lennart; Lassowskat, Ines; Böttcher, Christoph; Scheel, Dierk

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554) in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins) as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression—including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding, and degradation) steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes. PMID:26579181

  13. Protein kinase Cδ regulates vaccinia-related kinase 1 in DNA damage–induced apoptosis

    PubMed Central

    Park, Choon-Ho; Choi, Bo-Hwa; Jeong, Min-Woo; Kim, Sangjune; Kim, Wanil; Song, Yun Seon; Kim, Kyong-Tai

    2011-01-01

    Vaccinia-related kinase 1 (VRK1) is a novel serine/threonine kinase that plays an important role in cell proliferation. However, little is known about the upstream regulators of VRK1 activity. Here we provide evidence for a role of protein kinase Cδ (PKCδ) in the regulation of murine VRK1. We show that PKCδ interacts with VRK1, phosphorylates the Ser-355 residue in the putative regulatory region, and negatively regulates its kinase activity in vitro. Intriguingly, PKCδ-induced cell death was facilitated by phosphorylation of VRK1 when cells were exposed to a DNA-damaging agent. In addition, p53 played a critical role in the regulation of DNA damage–induced cell death accompanied by PKCδ-mediated modulation of VRK1. In p53-deficient cells, PKCδ-mediated phosphorylation of VRK1 had no effect on cell viability. However, cells overexpressing p53 exhibited significant reduction of cell viability when cotransfected with both VRK1 and PKCδ. Taken together, these results indicate that PKCδ regulates phosphorylation and down-regulation of VRK1, thereby contributing to cell cycle arrest and apoptotic cell death in a p53-dependent manner. PMID:21346188

  14. Structural Bioinformatics and Protein Docking Analysis of the Molecular Chaperone-Kinase Interactions: Towards Allosteric Inhibition of Protein Kinases by Targeting the Hsp90-Cdc37 Chaperone Machinery

    PubMed Central

    Lawless, Nathan; Blacklock, Kristin; Berrigan, Elizabeth; Verkhivker, Gennady

    2013-01-01

    A fundamental role of the Hsp90-Cdc37 chaperone system in mediating maturation of protein kinase clients and supporting kinase functional activity is essential for the integrity and viability of signaling pathways involved in cell cycle control and organism development. Despite significant advances in understanding structure and function of molecular chaperones, the molecular mechanisms and guiding principles of kinase recruitment to the chaperone system are lacking quantitative characterization. Structural and thermodynamic characterization of Hsp90-Cdc37 binding with protein kinase clients by modern experimental techniques is highly challenging, owing to a transient nature of chaperone-mediated interactions. In this work, we used experimentally-guided protein docking to probe the allosteric nature of the Hsp90-Cdc37 binding with the cyclin-dependent kinase 4 (Cdk4) kinase clients. The results of docking simulations suggest that the kinase recognition and recruitment to the chaperone system may be primarily determined by Cdc37 targeting of the N-terminal kinase lobe. The interactions of Hsp90 with the C-terminal kinase lobe may provide additional “molecular brakes” that can lock (or unlock) kinase from the system during client loading (release) stages. The results of this study support a central role of the Cdc37 chaperone in recognition and recruitment of the kinase clients. Structural analysis may have useful implications in developing strategies for allosteric inhibition of protein kinases by targeting the Hsp90-Cdc37 chaperone machinery. PMID:24287464

  15. Catalytic and molecular properties of highly purified phosvitin/casein kinase type II from human epithelial cells in culture (HeLa) and relation to ecto protein kinase.

    PubMed

    Pyerin, W; Burow, E; Michaely, K; Kübler, D; Kinzel, V

    1987-03-01

    Phosvitin/casein type II kinase was purified from HeLa cell extracts to homogeneity and characterized. The kinase prefers phosvitin over casein (Vmax phosvitin greater than Vmax casein; apparent Km 0.5 microM phosvitin and 3.3 microM casein) and utilizes as cosubstrate ATP (apparent Km 3-4 microM), GTP (apparent Km 4-5 microM) and other purine nucleoside triphosphates, including dATP and dGTP but not pyrimidine nucleoside triphosphates. Enzyme reaction is optimal at pH 6-8 and at 10-25 mM Mg2+.Mg2+ cannot be replaced by, but is antagonized by other divalent metal ions. The kinase is stimulated by polycations (spermine) and monovalent cations (Na+,K+), and is inhibited by fluoride, 2,3-diphosphoglycerate, and low levels of heparin (50% inhibition at 0.1 microgram/ml). The HeLa enzyme is composed of three subunits with Mr of approximately 43,000 (alpha), 38,000 (alpha'), and 28,000 (beta) forming alpha alpha'beta 2 and alpha'2 beta 2 structures with obvious sequence homology of alpha with alpha' but not with beta. Photoaffinity labeling with [alpha-32P]- and [gamma-32P]8-azido-ATP revealed high affinity binding sites on subunits alpha and alpha' but not on subunit beta. The kinase autophosphorylates subunit beta and, much weaker, subunits alpha and alpha'. Ecto protein kinase, detectable only by its enzyme activity but not yet as a protein (J. Biol. Chem. 257, 322-329), was characterized in cell-bound form and in released form, and the released form both with and without prior separation from phosvitin which was employed to induce the kinase release from intact HeLa cells (Proc. Natl. Acad. Sci. U.S.A. 80, 4021-4025). Ratios of phosvitin/casein phosphorylation (greater than 2) and of ATP/GTP utilization (1.5-2.1), inhibition by heparin (50% inhibition at 0.1 microgram/ml), and amino-acid side chains phosphorylated in phosvitin and casein (serine, threonine) are comparable for cell-bound and released form. These properties resemble those of type II kinase as does Mr

  16. The Catalytic Subunit of DNA-Dependent Protein Kinase Coordinates with Polo-Like Kinase 1 to Facilitate Mitotic Entry.

    PubMed

    Lee, Kyung-Jong; Shang, Zeng-Fu; Lin, Yu-Fen; Sun, Jingxin; Morotomi-Yano, Keiko; Saha, Debabrata; Chen, Benjamin P C

    2015-04-01

    DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is the key regulator of the non-homologous end joining pathway of DNA double-strand break repair. We have previously reported that DNA-PKcs is required for maintaining chromosomal stability and mitosis progression. Our further investigations reveal that deficiency in DNA-PKcs activity caused a delay in mitotic entry due to dysregulation of cyclin-dependent kinase 1 (Cdk1), the key driving force for cell cycle progression through G2/M transition. Timely activation of Cdk1 requires polo-like kinase 1 (Plk1), which affects modulators of Cdk1. We found that DNA-PKcs physically interacts with Plk1 and could facilitate Plk1 activation both in vitro and in vivo. Further, DNA-PKcs-deficient cells are highly sensitive to Plk1 inhibitor BI2536, suggesting that the coordination between DNA-PKcs and Plk1 is not only crucial to ensure normal cell cycle progression through G2/M phases but also required for cellular resistance to mitotic stress. On the basis of the current study, it is predictable that combined inhibition of DNA-PKcs and Plk1 can be employed in cancer therapy strategy for synthetic lethality. PMID:25925375

  17. Protein Kinase Cδ Mediates Neurogenic but Not Mitogenic Activation of Mitogen-Activated Protein Kinase in Neuronal Cells

    PubMed Central

    Corbit, Kevin C.; Foster, David A.; Rosner, Marsha Rich

    1999-01-01

    In several neuronal cell systems, fibroblast-derived growth factor (FGF) and nerve growth factor (NGF) act as neurogenic agents, whereas epidermal growth factor (EGF) acts as a mitogen. The mechanisms responsible for these different cellular fates are unclear. We report here that although FGF, NGF, and EGF all activate mitogen-activated protein (MAP) kinase (extracellular signal-related kinase [ERK]) in rat hippocampal (H19-7) and pheochromocytoma (PC12) cells, the activation of ERK by the neurogenic agents FGF and NGF is dependent upon protein kinase Cδ (PKCδ), whereas ERK activation in response to the mitogenic EGF is independent of PKCδ. Antisense PKCδ oligonucleotides or the PKCδ-specific inhibitor rottlerin inhibited FGF- and NGF-induced, but not EGF-induced, ERK activation. In contrast, EGF-induced ERK activation was inhibited by the phosphatidylinositol-3-kinase inhibitor wortmannin, which had no effect upon FGF-induced ERK activation. Rottlerin also inhibited the activation of MAP kinase kinase (MEK) in response to activated Raf, but had no effect upon c-Raf activity or ERK activation by activated MEK. These results indicate that PKCδ functions either downstream from or in parallel with c-Raf, but upstream of MEK. Inhibition of PKCδ also blocked neurite outgrowth induced by FGF and NGF in PC12 cells and by activated Raf in H19-7 cells, indicating a role for PKCδ in the neurogenic effects of FGF, NGF, and Raf. Interestingly, the PKCδ requirement is apparently cell type specific, since FGF-induced ERK activation was independent of PKCδ in NIH 3T3 murine fibroblasts, in which FGF is a mitogen. These data demonstrate that PKCδ contributes to growth factor specificity and response in neuronal cells and may also promote cell-type-specific differences in growth factor signaling. PMID:10330161

  18. Research Resource: Roles for Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 (CaMKK2) in Systems Metabolism.

    PubMed

    Marcelo, Kathrina L; Ribar, Thomas; Means, Christopher R; Tsimelzon, Anna; Stevens, Robert D; Ilkayeva, Olga; Bain, James R; Hilsenbeck, Susan G; Newgard, Christopher B; Means, Anthony R; York, Brian

    2016-05-01

    A number of epidemiological studies have implicated calcium (Ca(2+)) signaling as a major factor in obesity that contributes to aberrant systems metabolism. Somewhat paradoxically, obesity correlates with decreased circulating Ca(2+) levels, leading to increased release of intracellular Ca(2+) stores from the endoplasmic reticulum. These findings suggest that insulin resistance associated with the obese state is linked to activation of canonical Ca(2+) signaling pathways. Mechanistically, increased intracellular Ca(2+) binds calmodulin (CaM) to activate a set of Ca(2+)/CaM-dependent protein kinases. In this research resource, we explore the metabolic functions and implications of Ca(2+)/CaM-dependent protein kinase kinase 2 (CaMKK2) as a metabolic effector of Ca(2+)/CaM action. We reveal the importance of CaMKK2 for gating insulin release from pancreatic β-cells while concomitantly influencing the sensitivity of insulin-responsive tissues. To provide a better understanding of the metabolic impact of CaMKK2 loss, we performed targeted metabolomic analyses of key metabolic byproducts of glucose, fatty acid, and amino acid metabolism in mice null for CaMKK2. We quantified amino acids and acyl carnitines in 3 insulin-sensitive tissues (liver, skeletal muscle, plasma) isolated from CaMKK2(-/-) mice and their wild-type littermates under conditions of dietary stress (low-fat diet, normal chow, high-fat diet, and fasting), thereby unveiling unique metabolic functions of CaMKK2. Our findings highlight CaMKK2 as a molecular rheostat for insulin action and emphasize the importance of Ca(2+)/CaM/CaMKK2 in regulation of whole-body metabolism. These findings reveal that CaMKK2 may be an attractive therapeutic target for combatting comorbidities associated with perturbed insulin signaling. PMID:27003444

  19. Requirement for the Kinase Activity of Human DNA-Dependent Protein Kinase Catalytic Subunit in DNA Strand Break Rejoining

    PubMed Central

    Kurimasa, Akihiro; Kumano, Satoshi; Boubnov, Nikolai V.; Story, Michael D.; Tung, Chang-Shung; Peterson, Scott R.; Chen, David J.

    1999-01-01

    The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an enormous, 470-kDa protein serine/threonine kinase that has homology with members of the phosphatidylinositol (PI) 3-kinase superfamily. This protein contributes to the repair of DNA double-strand breaks (DSBs) by assembling broken ends of DNA molecules in combination with the DNA-binding factors Ku70 and Ku80. It may also serve as a molecular scaffold for recruiting DNA repair factors to DNA strand breaks. This study attempts to better define the role of protein kinase activity in the repair of DNA DSBs. We constructed a contiguous 14-kb human DNA-PKcs cDNA and demonstrated that it can complement the DNA DSB repair defects of two mutant cell lines known to be deficient in DNA-PKcs (M059J and V3). We then created deletion and site-directed mutations within the conserved PI 3-kinase domain of the DNA-PKcs gene to test the importance of protein kinase activity for DSB rejoining. These DNA-PKcs mutant constructs are able to express the protein but fail to complement the DNA DSB or V(D)J recombination defects of DNA-PKcs mutant cells. These results indicate that the protein kinase activity of DNA-PKcs is essential for the rejoining of DNA DSBs in mammalian cells. We have also determined a model structure for the DNA-PKcs kinase domain based on comparisons to the crystallographic structure of a cyclic AMP-dependent protein kinase. This structure gives some insight into which amino acid residues are crucial for the kinase activity in DNA-PKcs. PMID:10207111

  20. Ribosomal protein S6 kinase 1 signaling regulates mammalian lifespan

    PubMed Central

    Selman, Colin; Tullet, Jennifer M.A.; Wieser, Daniela; Irvine, Elaine; Lingard, Steven J.; Choudhury, Agharul I.; Claret, Marc; Al-Qassab, Hind; Carmignac, Danielle; Ramadani, Faruk; Woods, Angela; Robinson, Iain C.A.; Schuster, Eugene; Batterham, Rachel L.; Kozma, Sara C.; Thomas, George; Carling, David; Okkenhaug, Klaus; Thornton, Janet M.; Partridge, Linda; Gems, David; Withers, Dominic J.

    2016-01-01

    Caloric restriction (CR) protects against aging and disease but the mechanisms by which this affects mammalian lifespan are unclear. We show in mice that deletion of the nutrient-responsive mTOR (mammalian target of rapamycin) signaling pathway component ribosomal S6 protein kinase 1 (S6K1) led to increased lifespan and resistance to age-related pathologies such as bone, immune and motor dysfunction and loss of insulin sensitivity. Deletion of S6K1 induced gene expression patterns similar to those seen in CR or with pharmacological activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK), a conserved regulator of the metabolic response to CR. Our results demonstrate that S6K1 influences healthy mammalian lifespan, and suggest therapeutic manipulation of S6K1 and AMPK might mimic CR and provide broad protection against diseases of aging. PMID:19797661

  1. Mitogen Activated Protein kinase signal transduction pathways in the prostate

    PubMed Central

    Maroni, Paul D; Koul, Sweaty; Meacham, Randall B; Koul, Hari K

    2004-01-01

    The biochemistry of the mitogen activated protein kinases ERK, JNK, and p38 have been studied in prostate physiology in an attempt to elucidate novel mechanisms and pathways for the treatment of prostatic disease. We reviewed articles examining mitogen-activated protein kinases using prostate tissue or cell lines. As with other tissue types, these signaling modules are links/transmitters for important pathways in prostate cells that can result in cellular survival or apoptosis. While the activation of the ERK pathway appears to primarily result in survival, the roles of JNK and p38 are less clear. Manipulation of these pathways could have important implications for the treatment of prostate cancer and benign prostatic hypertrophy. PMID:15219238

  2. Structural and functional diversity in the activity and regulation of DAPK-related protein kinases.

    PubMed

    Temmerman, Koen; Simon, Bertrand; Wilmanns, Matthias

    2013-11-01

    Within the large group of calcium/calmodulin-dependent protein kinases (CAMKs) of the human kinome, there is a distinct branch of highly related kinases that includes three families: death-associated protein-related kinases, myosin light-chain-related kinases and triple functional domain protein-related kinases. In this review, we refer to these collectively as DMT kinases. There are several functional features that span the three families, such as a broad involvement in apoptotic processes, cytoskeletal association and cellular plasticity. Other CAMKs contain a highly conserved HRD motif, which is a prerequisite for kinase regulation through activation-loop phosphorylation, but in all 16 members of the DMT branch, this is replaced by an HF/LD motif. This DMT kinase signature motif substitutes phosphorylation-dependent active-site interactions with a local hydrophobic core that maintains an active kinase conformation. Only about half of the DMT kinases have an additional autoregulatory domain, C-terminal to the kinase domain that binds calcium/calmodulin in order to regulate kinase activity. Protein substrates have been identified for some of the DMT kinases, but little is known about the mechanism of recognition. Substrate conformation could be an equally important parameter in substrate recognition as specific preferences in sequence position. Taking the data together, this kinase branch encapsulates a treasure trove of features that renders it distinct from many other protein kinases and calls for future research activities in this field. PMID:23745726

  3. Tripolin A, a Novel Small-Molecule Inhibitor of Aurora A Kinase, Reveals New Regulation of HURP's Distribution on Microtubules

    PubMed Central

    Kesisova, Iliana A.; Nakos, Konstantinos C.; Tsolou, Avgi; Angelis, Dimitrios; Lewis, Joe; Chatzaki, Aikaterini; Agianian, Bogos; Giannis, Athanassios; Koffa, Maria D.

    2013-01-01

    Mitotic regulators exhibiting gain of function in tumor cells are considered useful cancer therapeutic targets for the development of small-molecule inhibitors. The human Aurora kinases are a family of such targets. In this study, from a panel of 105 potential small-molecule inhibitors, two compounds Tripolin A and Tripolin B, inhibited Aurora A kinase activity in vitro. In human cells however, only Tripolin A acted as an Aurora A inhibitor. We combined in vitro, in vivo single cell and in silico studies to demonstrate the biological action of Tripolin A, a non-ATP competitive inhibitor. Tripolin A reduced the localization of pAurora A on spindle microtubules (MTs), affected centrosome integrity, spindle formation and length, as well as MT dynamics in interphase, consistent with Aurora A inhibition by RNAi or other specific inhibitors, such as MLN8054 or MLN8237. Interestingly, Tripolin A affected the gradient distribution towards the chromosomes, but not the MT binding of HURP (Hepatoma Up-Regulated Protein), a MT-associated protein (MAP) and substrate of the Aurora A kinase. Therefore Tripolin A reveals a new way of regulating mitotic MT stabilizers through Aurora A phosphorylation. Tripolin A is predicted to bind Aurora A similarly but not identical to MLN8054, therefore it could be used to dissect pathways orchestrated by Aurora kinases as well as a scaffold for further inhibitor development. PMID:23516487

  4. Protein kinase C in pain: Involvement of multiple isoforms

    PubMed Central

    Velázquez, Kandy T.; Mohammad, Husam; Sweitzer, Sarah M.

    2007-01-01

    Pain is the primary reason that people seek medical care. At present chronic unremitting pain is the third greatest health problem after heart disease and cancer. Chronic pain is an economic burden in lost wages, lost productivity, medical expenses, legal fees and compensation. Chronic pain is defined as a pain of greater than two months duration and can be of an inflammatory or neuropathic origin that can arise following nerve injury or in the absence of any apparent injury. Chronic pain is characterized by an altered pain perception that includes allodynia (a response to a normally non-noxious stimuli), and hyperalgesia (an exaggerated response to a normally noxious stimuli). This type of pain is often insensitive to the traditional pain drugs or surgical intervention and thus the study of the cellular and molecular mechanisms that contribute to chronic pain are of the up-most importance for the development of a new generation of analgesic agents. Protein kinase C isozymes are under investigation as potential therapeutics for the treatment of chronic pain conditions. The anatomical localization of protein kinase C isozymes in both peripheral and central nervous system sites that process pain have made them the topic of basic science research for close to two decades. This review will outline the research to date on protein kinase C involvement in pain and analgesia. In addition, this review will try to synthesize these works to begin to develop a comprehensive mechanistic understanding of how protein kinase C may function as the master regulator of peripheral and central sensitization that underlies many chronic pain conditions. PMID:17548207

  5. Phosphorylation of Mycobacterium tuberculosis protein tyrosine kinase A PtkA by Ser/Thr protein kinases.

    PubMed

    Zhou, Peifu; Wong, Dennis; Li, Wu; Xie, Jianping; Av-Gay, Yossef

    2015-11-13

    Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), has inflicted about one third of mankind and claims millions of deaths worldwide annually. Signalling plays an important role in Mtb pathogenesis and persistence, and thus represents attractive resource for drug target candidates. Here, we show that protein tyrosine kinase A (PtkA) can be phosphorylated by Mtb endogenous eukaryotic-like Ser/Thr protein kinases (eSTPKs). Kinase assays showed that PknA, PknD, PknF, and PknK can phosphorylate PtkA in dose- and time-dependent manner. Enzyme kinetics suggests that PknA has the highest affinity and enzymatic efficiency towards PtkA. Furthermore, protein-protein interaction assay in surrogate host showed that PtkA interacts with multi-eSTPKs in vivo, including PknA. Lastly, we show that PtkA phosphorylation by eSTPKs occurs on threonine residues and may effect tyrosine phosphorylation levels and thus PtkA activity in vitro. These results demonstrate that PtkA can serve as a substrate to many eSTPKs and suggests that's its activity can be regulated. PMID:26417687

  6. Cell signaling through protein kinase C oxidation and activation.

    PubMed

    Cosentino-Gomes, Daniela; Rocco-Machado, Nathália; Meyer-Fernandes, José Roberto

    2012-01-01

    Due to the growing importance of cellular signaling mediated by reactive oxygen species (ROS), proteins that are reversibly modulated by these reactant molecules are of high interest. In this context, protein kinases and phosphatases, which act coordinately in the regulation of signal transduction through the phosphorylation and dephosphorylation of target proteins, have been described to be key elements in ROS-mediated signaling events. The major mechanism by which these proteins may be modified by oxidation involves the presence of key redox-sensitive cysteine residues. Protein kinase C (PKC) is involved in a variety of cellular signaling pathways. These proteins have been shown to contain a unique structural feature that is susceptible to oxidative modification. A large number of scientific studies have highlighted the importance of ROS as a second messenger in numerous cellular processes, including cell proliferation, gene expression, adhesion, differentiation, senescence, and apoptosis. In this context, the goal of this review is to discuss the mechanisms by which PKCs are modulated by ROS and how these processes are involved in the cellular response. PMID:23109817

  7. Expression of a gibberellin-induced leucine-rich repeat receptor-like protein kinase in deepwater rice and its interaction with kinase-associated protein phosphatase

    SciTech Connect

    Knaap, E. van der; Sauter, M.; Kende, H. . DOE Plant Research Lab.); Song, W.Y.; Ruan, D.L.; Ronald, P.C. . Dept. of Plant Pathology)

    1999-06-01

    The authors identified in deepwater rice (Oryza sativa L.) a gene encoding a leucine-rich repeat receptor-like transmembrane protein kinase, OsTMK (O. sativa transmembrane kinase). The transcript levels of OsTMK increased in the rice internode in response to gibberellin. Expression of OsTMK was especially high in regions undergoing cell division and elongation. The kinase domain of OsTMK was enzymatically active autophosphorylating on serine and threonine residues. A cDNA encoding a rice ortholog of a kinase-associated type 2C protein phosphatase (OsKAPP) was cloned. KAPPs are putative downstream components in kinase-mediated signal transduction pathways. The kinase interaction domain of OsKAPP was phosphorylated in vitro by the kinase domain of OsTMK. RNA gel-blot analysis indicated that the expression of OsTMK and OsKAPP was similar in different tissues of the rice plant. In protein-binding assays, OsKAPP interacted with a receptor-like protein kinase, RLK5 of Arabidopsis, but not with the protein kinase domains of the rice and maize receptor-like protein kinases Xa21 and ZmPK1, respectively.

  8. Quantitative proteomic profiling identifies protein correlates to EGFR kinase inhibition.

    PubMed

    Kani, Kian; Faca, Vitor M; Hughes, Lindsey D; Zhang, Wenxuan; Fang, Qiaojun; Shahbaba, Babak; Luethy, Roland; Erde, Jonathan; Schmidt, Joanna; Pitteri, Sharon J; Zhang, Qing; Katz, Jonathan E; Gross, Mitchell E; Plevritis, Sylvia K; McIntosh, Martin W; Jain, Anjali; Hanash, Samir; Agus, David B; Mallick, Parag

    2012-05-01

    Clinical oncology is hampered by lack of tools to accurately assess a patient's response to pathway-targeted therapies. Serum and tumor cell surface proteins whose abundance, or change in abundance in response to therapy, differentiates patients responding to a therapy from patients not responding to a therapy could be usefully incorporated into tools for monitoring response. Here, we posit and then verify that proteomic discovery in in vitro tissue culture models can identify proteins with concordant in vivo behavior and further, can be a valuable approach for identifying tumor-derived serum proteins. In this study, we use stable isotope labeling of amino acids in culture (SILAC) with proteomic technologies to quantitatively analyze the gefitinib-related protein changes in a model system for sensitivity to EGF receptor (EGFR)-targeted tyrosine kinase inhibitors. We identified 3,707 intracellular proteins, 1,276 cell surface proteins, and 879 shed proteins. More than 75% of the proteins identified had quantitative information, and a subset consisting of 400 proteins showed a statistically significant change in abundance following gefitinib treatment. We validated the change in expression profile in vitro and screened our panel of response markers in an in vivo isogenic resistant model and showed that these were markers of gefitinib response and not simply markers of phospho-EGFR downregulation. In doing so, we also were able to identify which proteins might be useful as markers for monitoring response and which proteins might be useful as markers for a priori prediction of response. PMID:22411897

  9. Quantitative Proteomic profiling identifies protein correlates to EGFR kinase inhibition

    PubMed Central

    Kani, Kian; Faca, Vitor M.; Hughes, Lindsey D.; Zhang, Wenxuan; Fang, Qiaojun; Shahbaba, Babak; Luethy, Roland; Erde, Jonathan; Schmidt, Joanna; Pitteri, Sharon J.; Zhang, Qing; Katz, Jonathan E.; Gross, Mitchell E.; Plevritis, Sylvia K.; McIntosh, Martin W.; Jain, Anjali; Hanash, Sam; Agus, David B.; Mallick, Parag

    2014-01-01

    Clinical oncology is hampered by a lack of tools to accurately assess a patient’s response to pathway-targeted therapies. Serum and tumor cell surface proteins whose abundance, or change in abundance in response to therapy, differentiates patients responding to a therapy from patients not-responding to a therapy could be usefully incorporated into tools for monitoring response. Here we posit and then verify that proteomic discovery in in vitro tissue culture models can identify proteins with concordant in vivo behavior and further, can be a valuable approach for identifying tumor-derived serum proteins. In this study we use Stable Isotope Labeling of Amino acids in Culture (SILAC) with proteomic technologies to quantitatively analyze the gefitinib-related protein changes in a model system for sensitivity to EGFR targeted tyrosine kinase inhibitors. We identified 3,707 intracellular proteins, 1,276 cell surface proteins, and 879 shed proteins. More than 75% of the proteins identified had quantitative information and a subset consisting of [400] proteins showed a statistically significant change in abundance following gefitinib treatment. We validated the change in expression profile in vitro and screened our panel of response markers in an in vivo isogenic resistant model and demonstrated that these were markers of gefitinib response and not simply markers of phospho-EGFR downregulation. In doing so, we also were able to identify which proteins might be useful as markers for monitoring response and which proteins might be useful as markers for a priori prediction of response. PMID:22411897

  10. Activation of S6 kinase in human neutrophils by calcium pyrophosphate dihydrate crystals: protein kinase C-dependent and phosphatidylinositol-3-kinase-independent pathways.

    PubMed Central

    Tudan, C; Jackson, J K; Charlton, L; Pelech, S L; Sahl, B; Burt, H M

    1998-01-01

    Phosphatidylinositol 3-kinase (PI 3-kinase) has been shown previously to be a central enzyme in crystal-induced neutrophil activation. Since activation of the 70 kDa S6 kinase (p70S6K) has been shown to be dependent on PI 3-kinase activation in mammalian cells, and since the former is a key enzyme in the transmission of signals to the cell nucleus, activation of p70(S6K) was investigated in crystal-stimulated neutrophils. Cytosolic fractions from calcium pyrophosphate dihydrate (CPPD)-crystal-activated neutrophils were separated by Mono Q chromatography and analysed for phosphotransferase activity using a range of substrates and probed by Western analysis using antibodies to p70(S6K) and mitogen-activated protein kinase (MAP kinase). CPPD crystals induced a robust, transient activation (peak activity at 2 min) of p70(S6K) that was fully inhibited by pretreatment with rapamycin. This is the first report of the activation of p70(S6K) in neutrophil signal transduction pathways induced by an agonist. This crystal-induced activation of p70(S6K) could also be inhibited by a protein kinase C (PKC) inhibitor (Compound 3), but not by the PI 3-kinase inhibitor wortmannin. CPPD crystals also activated the ERK1 and ERK2 forms of MAP kinase (wortmannin insensitive), PKC (Compound 3 sensitive) and protein kinase B (wortmannin sensitive) in neutrophils. These data suggest that activation of p70(S6K) may proceed through a PI 3-kinase- and protein kinase B-independent but PKC-dependent pathway in crystal-activated neutrophils. PMID:9531494

  11. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho.

    PubMed Central

    Matsui, T; Amano, M; Yamamoto, T; Chihara, K; Nakafuku, M; Ito, M; Nakano, T; Okawa, K; Iwamatsu, A; Kaibuchi, K

    1996-01-01

    The small GTP binding protein Rho is implicated in cytoskeletal responses to extracellular signals such as lysophosphatidic acid to form stress fibers and focal contacts. Here we have purified a Rho-interacting protein with a molecular mass of approximately 164 kDa (p164) from bovine brain. This protein bound to GTPgammaS (a non-hydrolyzable GTP analog).RhoA but not to GDP.RhoA or GTPgammaS.RhoA with a mutation in the effector domain (RhoAA37).p164 had a kinase activity which was specifically stimulated by GTPgammaS.RhoA. We obtained the cDNA encoding p164 on the basis of its partial amino acid sequences and named it Rho-associated kinase (Rho-kinase). Rho-kinase has a catalytic domain in the N-terminal portion, a coiled coil domain in the middle portion and a zinc finger-like motif in the C-terminal portion. The catalytic domain shares 72% sequence homology with that of myotonic dystrophy kinase and the coiled coil domain contains a Rho-interacting interface. When COS7 cells were cotransfected with Rho-kinase and activated RhoA, some Rho-kinase was recruited to membranes. Thus it is likely that Rho-kinase is a putative target serine/threonine kinase for Rho and serves as a mediator of the Rho-dependent signaling pathway. Images PMID:8641286

  12. Intrinsic disorder within an AKAP-protein kinase A complex guides local substrate phosphorylation

    PubMed Central

    Smith, F Donelson; Reichow, Steve L; Esseltine, Jessica L; Shi, Dan; Langeberg, Lorene K; Scott, John D; Gonen, Tamir

    2013-01-01

    Anchoring proteins sequester kinases with their substrates to locally disseminate intracellular signals and avert indiscriminate transmission of these responses throughout the cell. Mechanistic understanding of this process is hampered by limited structural information on these macromolecular complexes. A-kinase anchoring proteins (AKAPs) spatially constrain phosphorylation by cAMP-dependent protein kinases (PKA). Electron microscopy and three-dimensional reconstructions of type-II PKA-AKAP18γ complexes reveal hetero-pentameric assemblies that adopt a range of flexible tripartite configurations. Intrinsically disordered regions within each PKA regulatory subunit impart the molecular plasticity that affords an ∼16 nanometer radius of motion to the associated catalytic subunits. Manipulating flexibility within the PKA holoenzyme augmented basal and cAMP responsive phosphorylation of AKAP-associated substrates. Cell-based analyses suggest that the catalytic subunit remains within type-II PKA-AKAP18γ complexes upon cAMP elevation. We propose that the dynamic movement of kinase sub-structures, in concert with the static AKAP-regulatory subunit interface, generates a solid-state signaling microenvironment for substrate phosphorylation. DOI: http://dx.doi.org/10.7554/eLife.01319.001 PMID:24192038

  13. Protein kinase CK2 interacts with Chk2 and phosphorylates Mre11 on serine 649

    SciTech Connect

    Kim, Seong-Tae . E-mail: stkim@med.skku.ac.kr

    2005-05-27

    The Mre11-Rad50-Nbs1 protein complex has been known to be involved in a variety of DNA metabolic events that involve DNA double-strand breaks (DSBs). The phosphorylation of Mre11 is increased in response to ionizing radiation, which suggests that phosphorylation of Mre11 may be an important regulatory mechanism of this complex. Mre11-phosphorylating kinase activities were observed in Chk2 immunoprecipitates and HeLa nuclear extracts. Through the tandem affinity tagging system and conventional chromatography, this kinase was purified and identified as protein kinase CK2. CK2 phosphorylates Mre11 in vitro. In vitro kinase assay with a series of truncated Mre11 proteins as substrates for CK2 and site-directed mutagenesis showed that serine 649 of Mre11 is mainly phosphorylated by CK2 in vitro. In vivo labeling and phosphopeptide mapping analysis revealed that this phosphorylation occurs in vivo. These data implicate CK2 as a potential upstream regulator of Mre11 function.

  14. Knockdown of the C. elegans Kinome identifies Kinases required for normal protein Homeostasis, Mitochondrial network structure, and Sarcomere structure in muscle

    PubMed Central

    2013-01-01

    Background Kinases are important signalling molecules for modulating cellular processes and major targets of drug discovery programs. However, functional information for roughly half the human kinome is lacking. We conducted three kinome wide, >90%, RNAi screens and epistasis testing of some identified kinases against known intramuscular signalling systems to increase the functional annotation of the C. elegans kinome and expand our understanding of kinome influence upon muscle protein degradation. Results 96 kinases were identified as required for normal protein homeostasis, 74 for normal mitochondrial networks and 50 for normal sarcomere structure. Knockdown of kinases required only for normal protein homeostasis and/or mitochondrial structure was significantly less likely to produce a developmental or behavioural phenotype than knockdown of kinases required for normal sarcomere structure and/or other sub-cellular processes. Lastly, assessment of kinases for which knockdown produced muscle protein degradation against the known regulatory pathways in C. elegans muscle revealed that close to half of kinase knockdowns activated autophagy in a MAPK dependent fashion. Conclusions Roughly 40% of kinases studied, 159 of 397, are important in establishing or maintaining muscle cell health, with most required for both. For kinases where decreased expression triggers protein degradation, autophagy is most commonly activated. These results increase the annotation of the C. elegans kinome to roughly 75% and enable future kinome research. As 33% of kinases identified have orthologues expressed in human muscle, our results also enable testing of whether identified kinases function similarly in maintaining human muscle homeostasis. PMID:24060339

  15. Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence.

    PubMed

    Cho, Hsing-Yi; Wen, Tuan-Nan; Wang, Ying-Tsui; Shih, Ming-Che

    2016-04-01

    SNF1 RELATED PROTEIN KINASE 1 (SnRK1) is proposed to be a central integrator of the plant stress and energy starvation signalling pathways. We observed that the Arabidopsis SnRK1.1 dominant negative mutant (SnRK1.1 (K48M) ) had lower tolerance to submergence than the wild type, suggesting that SnRK1.1-dependent phosphorylation of target proteins is important in signalling pathways triggered by submergence. We conducted quantitative phosphoproteomics and found that the phosphorylation levels of 57 proteins increased and the levels of 27 proteins decreased in Col-0 within 0.5-3h of submergence. Among the 57 proteins with increased phosphorylation in Col-0, 38 did not show increased phosphorylation levels in SnRK1.1 (K48M) under submergence. These proteins are involved mainly in sugar and protein synthesis. In particular, the phosphorylation of MPK6, which is involved in regulating ROS responses under abiotic stresses, was disrupted in the SnRK1.1 (K48M) mutant. In addition, PTP1, a negative regulator of MPK6 activity that directly dephosphorylates MPK6, was also regulated by SnRK1.1. We also showed that energy conservation was disrupted in SnRK1.1 (K48M) , mpk6, and PTP1 (S7AS8A) under submergence. These results reveal insights into the function of SnRK1 and the downstream signalling factors related to submergence. PMID:27029354

  16. Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence

    PubMed Central

    Cho, Hsing-Yi; Wen, Tuan-Nan; Wang, Ying-Tsui; Shih, Ming-Che

    2016-01-01

    SNF1 RELATED PROTEIN KINASE 1 (SnRK1) is proposed to be a central integrator of the plant stress and energy starvation signalling pathways. We observed that the Arabidopsis SnRK1.1 dominant negative mutant (SnRK1.1 K48M) had lower tolerance to submergence than the wild type, suggesting that SnRK1.1-dependent phosphorylation of target proteins is important in signalling pathways triggered by submergence. We conducted quantitative phosphoproteomics and found that the phosphorylation levels of 57 proteins increased and the levels of 27 proteins decreased in Col-0 within 0.5–3h of submergence. Among the 57 proteins with increased phosphorylation in Col-0, 38 did not show increased phosphorylation levels in SnRK1.1 K48M under submergence. These proteins are involved mainly in sugar and protein synthesis. In particular, the phosphorylation of MPK6, which is involved in regulating ROS responses under abiotic stresses, was disrupted in the SnRK1.1 K48M mutant. In addition, PTP1, a negative regulator of MPK6 activity that directly dephosphorylates MPK6, was also regulated by SnRK1.1. We also showed that energy conservation was disrupted in SnRK1.1 K48M, mpk6, and PTP1 S7AS8A under submergence. These results reveal insights into the function of SnRK1 and the downstream signalling factors related to submergence. PMID:27029354

  17. Pivotal Role of Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 in Inflammatory Pulmonary Diseases

    PubMed Central

    Qian, Feng; Deng, Jing; Wang, Gang; Ye, Richard D.; Christman, John W.

    2016-01-01

    Mitogen-activated protein kinase (MAPK)-activated protein kinase (MK2) is exclusively regulated by p38 MAPK in vivo. Upon activation of p38 MAPK, MK2 binds with p38 MAPK, leading to phosphorylation of TTP, Hsp27, Akt and Cdc25 that are involved in regulation of various essential cellular functions. In this review, we discuss current knowledge about molecular mechanisms of MK2 in regulation of TNF-α production, NADPH oxidase activation, neutrophil migration, and DNA-damage-induced cell cycle arrest which are involved in the molecular pathogenesis of acute lung injury, pulmonary fibrosis, and non-small-cell lung cancer. Collectively current and emerging new information indicate that developing MK2 inhibitors and blocking MK2-mediated signal pathways is a potential therapeutic strategy for treatment of inflammatory and fibrotic lung diseases and lung cancer. PMID:26119506

  18. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis

    PubMed Central

    Jette, Nicholas; Lees-Miller, Susan P.

    2015-01-01

    The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemistry, structure and function of DNA-PK, its roles in DNA double strand break repair and its newly described roles in mitosis and other cellular processes. PMID:25550082

  19. Protein-protein interactions in plant mitogen-activated protein kinase cascades.

    PubMed

    Zhang, Tong; Chen, Sixue; Harmon, Alice C

    2016-02-01

    Mitogen-activated protein kinases (MAPKs) form tightly controlled signaling cascades that play essential roles in plant growth, development, and defense. However, the molecular mechanisms underlying MAPK cascades are still elusive, due largely to our poor understanding of how they relay the signals. Extensive effort has been devoted to characterization of MAPK-substrate interactions to illustrate phosphorylation-based signaling. The diverse MAPK substrates identified also shed light on how spatiotemporal-specific protein-protein interactions function in distinct MAPK cascade-mediated biological processes. This review surveys various technologies used for characterizing MAPK-substrate interactions and presents case studies of MPK4 and MPK6, highlighting the multiple functions of MAPKs. Mass spectrometry-based approaches in identifying MAPK-interacting proteins are emphasized due to their increasing utility and effectiveness. The potential for using MAPKs and their substrates in enhancing plant stress tolerance is also discussed. PMID:26646897

  20. A Quantitative Mass Spectrometry-based Approach for Identifying Protein Kinase-Clients and Quantifying Kinase Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Homo sapiens and Arabidopsis thaliana genomes are believed to encode >500 and >1,000 protein kinases, respectively. Despite this abundance, few bona fide kinase-client relationships have been described in detail. Mass spectrometry (MS)-based approaches have been integral to the large-scale mapp...

  1. Isolation and Characterization of Kinase Interacting Protein 1, a Pollen Protein That Interacts with the Kinase Domain of PRK1, a Receptor-Like Kinase of Petunia1

    PubMed Central

    Skirpan, Andrea L.; McCubbin, Andrew G.; Ishimizu, Takeshi; Wang, Xi; Hu, Yi; Dowd, Peter E.; Ma, Hong; Kao, Teh-hui

    2001-01-01

    Many receptor-like kinases have been identified in plants and have been shown by genetic or transgenic knockouts to play diverse physiological roles; however, to date, the cytosolic interacting proteins of relatively few of these kinases have been identified. We have previously identified a predominantly pollen-expressed receptor-like kinase of petunia (Petunia inflata), named PRK1, and we have shown by the antisense RNA approach that it is required for microspores to progress from the unicellular to bicellular stage. To investigate the PRK1-mediated signal transduction pathway, PRK1-K cDNA, encoding most of the cytoplasmic domain of PRK1, was used as bait in yeast (Saccharomyces cerevisiae) two-hybrid screens of pollen/pollen tube cDNA libraries of petunia. A protein named kinase interacting protein 1 (KIP1) was found to interact very strongly with PRK1-K. This interaction was greatly reduced when lysine-462 of PRK1-K, believed to be essential for kinase activity, was replaced with arginine (the resulting protein is named PRK1-K462R). The amino acid sequence of KIP1 deduced from full-length cDNA contains an EF-hand Ca2+-binding motif and nine predicted coiled-coil regions. The yeast two-hybrid assay and affinity chromatography showed that KIP1 interacts with itself to form a dimer or higher multimer. KIP1 is present in a single copy in the genome, and is expressed predominantly in pollen with a similar temporal pattern to PRK1. In situ hybridization showed that PRK1 and KIP1 transcripts were localized in the cytoplasm of pollen. PRK1-K phosphorylated KIP1-NT (amino acids 1–716), whereas PRK1-K462R only weakly phosphorylated KIP1-NT in vitro. PMID:11500547

  2. Structure of Escherichia coli tyrosine Kinase Etk Reveals a Novel Activation Mechanism

    SciTech Connect

    Lee,D.; Zheng, J.; She, Y.; Jia, Z.

    2008-01-01

    While protein tyrosine (Tyr) kinases (PTKs) have been extensively characterized in eukaryotes, far less is known about their emerging counterparts in prokaryotes. The inner-membrane Wzc/Etk protein belongs to the bacterial PTK family, which has an important function in regulating the polymerization and transport of virulence-determining capsular polysaccharide (CPS). The kinase uses a unique two-step activation process involving intra-phosphorylation of a Tyr residue, although the molecular mechanism remains unknown. Herein, we report the first crystal structure of a bacterial PTK, the C-terminal kinase domain of Escherichia coli Tyr kinase (Etk) at 2.5-Angstroms resolution. The fold of the Etk kinase domain differs markedly from that of eukaryotic PTKs. Based on the observed structure and supporting mass spectrometric evidence of Etk, a unique activation mechanism is proposed that involves the phosphorylated Tyr residue, Y574, at the active site and its specific interaction with a previously unidentified key Arg residue, R614, to unblock the active site. Both in vitro kinase activity and in vivo antibiotics resistance studies using structure-guided mutants further support the novel activation mechanism.

  3. IMMUNOCYTOCHEMICAL LOCALIZATION OF CALCIUM/CALMODULIN-DEPENDENT PROTEIN KINASE II IN RAT BRAIN

    EPA Science Inventory

    Calcium/calmodulin-dependent protein kinase II (CaM kinase II) is a prominent enzyme in mammalian brain capable of phosphorylating a variety of substrate proteins. In the present investigation, the subcellular and regional distribution of CaM kinase II has been studied by light a...

  4. Leishmania major MPK7 Protein Kinase Activity Inhibits Intracellular Growth of the Pathogenic Amastigote Stage ▿

    PubMed Central

    Morales, Miguel A.; Pescher, Pascale; Späth, Gerald F.

    2010-01-01

    During the infectious cycle, protozoan parasites of the genus Leishmania undergo several adaptive differentiation steps that are induced by environmental factors and crucial for parasite infectivity. Genetic analyses of signaling proteins underlying Leishmania stage differentiation are often rendered difficult due to lethal null mutant phenotypes. Here we used a transgenic strategy to gain insight into the functions of the mitogen-activated Leishmania major protein kinases LmaMPK7 and LmaMPK10 in parasite virulence. We established L. major and Leishmania donovani lines expressing episomal green fluorescent protein (GFP)-LmaMPK7 and GFP-LmaMPK10 fusion proteins. The transgenic lines were normal in promastigote morphology, growth, and the ability to differentiate into metacyclic and amastigote stages. While parasites expressing GFP-LmaMPK10 showed normal infectivity by mouse footpad analysis and macrophage infection assays, GFP-LmaMPK7 transgenic parasites displayed a strong delay in lesion formation and reduced intracellular parasite growth. Significantly, the effects of GFP-LmaMPK7 on virulence and proliferation were due exclusively to protein kinase activity, as the overexpression of two kinase-dead mutants had no effect on parasite infectivity. GFP-LmaMPK7 transgenic L. donovani cells revealed a reversible, stage-specific growth defect in axenic amastigotes that was independent of cell death but linked to nonsynchronous growth arrest and a significant reduction of de novo protein biosynthesis. Our data suggest that LmaMPK7 protein kinase activity may be implicated in parasite growth control and thus relevant for the development of nonproliferating stages during the infectious cycle. PMID:19801421

  5. Interacting factors and cellular localization of SR protein-specific kinase Dsk1

    SciTech Connect

    Tang, Zhaohua; Luca, Maria; Taggart-Murphy, Laura; Portillio, Jessica; Chang, Cathey; Guven, Ayse; Lin, Ren-Jang; Murray, Johanne; Carr, Antony

    2012-10-01

    Schizosaccharomyces pombe Dsk1 is an SR protein-specific kinase (SRPK), whose homologs have been identified in every eukaryotic organism examined. Although discovered as a mitotic regulator with protein kinase activity toward SR splicing factors, it remains largely unknown about what and how Dsk1 contributes to cell cycle and pre-mRNA splicing. In this study, we investigated the Dsk1 function by determining interacting factors and cellular localization of the kinase. Consistent with its reported functions, we found that pre-mRNA processing and cell cycle factors are prominent among the proteins co-purified with Dsk1. The identification of these factors led us to find Rsd1 as a novel Dsk1 substrate, as well as the involvement of Dsk1 in cellular distribution of poly(A){sup +} RNA. In agreement with its role in nuclear events, we also found that Dsk1 is mainly localized in the nucleus during G{sub 2} phase and at mitosis. Furthermore, we revealed the oscillation of Dsk1 protein in a cell cycle-dependent manner. This paper marks the first comprehensive analysis of in vivo Dsk1-associated proteins in fission yeast. Our results reflect the conserved role of SRPK family in eukaryotic organisms, and provide information about how Dsk1 functions in pre-mRNA processing and cell-division cycle.

  6. KESTREL: a powerful method for identifying the physiological substrates of protein kinases

    PubMed Central

    Cohen, Philip; Knebel, Axel

    2005-01-01

    The identification of all the substrates of every protein kinase is one of the major challenges of post-genomic research. Here we review a powerful method for tackling this problem that we have developed over the last 5 years. The method has so far been used to identify novel substrates for eight different protein kinases, demonstrating that it is of general utility. Importantly, the method can be used to identify distinct physiological substrates of protein kinases, such as PKB (protein kinase B) and SGK (serum- and glucocorticoid-induced kinase), that are closely related in structure and have similar specificity determinants. PMID:16336195

  7. AMP-activated protein kinase kinase: detection with recombinant AMPK alpha1 subunit.

    PubMed

    Hamilton, Stephen R; O'Donnell, John B; Hammet, Andrew; Stapleton, David; Habinowski, Susan A; Means, Anthony R; Kemp, Bruce E; Witters, Lee A

    2002-05-10

    The AMP-activated protein kinase (AMPK) is a heterotrimeric serine/threonine protein kinase important for the responses to metabolic stress. It consists of a catalytic alpha subunit and two non-catalytic subunits, beta and gamma, and is regulated both by the allosteric action of AMP and by phosphorylation of the alpha and beta subunits catalyzed by AMPKK(s) and autophosphorylation. The Thr172 site on the alpha subunit has been previously characterized as an activating phosphorylation site. Using bacterially expressed AMPK alpha1 subunit proteins, we have explored the role of Thr172-directed AMPKKs in alpha subunit regulation. Recombinant alpha1 subunit proteins, representing the N-terminus, have been expressed as maltose binding protein (MBP) 6x His fusion proteins and purified to homogeneity by Ni(2+) chromatography. Both wild-type alpha1(1-312) and alpha1(1-312)T172D are inactive when expressed in bacteria, but the former can be fully phosphorylated (1 mol/mol) on Thr172 and activated by a surrogate AMPKK, CaMKKbeta. The corresponding AMPKalpha1(1-392), an alpha construct containing its autoinhibitory sequence, can be similarly phosphorylated, but it remains inactive. In an insulinoma cell line, either low glucose or 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) treatment leads to activation and T172 phosphorylation of endogenous AMPK. Under the same conditions of cell incubation, we have identified an AMPKK activity that both phosphorylates and activates the recombinant alpha1(1-312), but this Thr172-directed AMPKK activity is unaltered by low glucose or AICAR, indicating that it is constitutively active. PMID:12051742

  8. Synthetic sulfoglycolipids targeting the serine-threonine protein kinase Akt.

    PubMed

    Costa, Barbara; Dangate, Milind; Vetro, Maria; Donvito, Giulia; Gabrielli, Luca; Amigoni, Loredana; Cassinelli, Giuliana; Lanzi, Cinzia; Ceriani, Michela; De Gioia, Luca; Filippi, Giulia; Cipolla, Laura; Zaffaroni, Nadia; Perego, Paola; Colombo, Diego

    2016-08-15

    The serine-threonine protein kinase Akt, also known as protein kinase B, is a key component of the phosphoinositide 3-kinase (PI3K)-Akt-mTOR axis. Deregulated activation of this pathway is frequent in human tumors and Akt-dependent signaling appears to be critical in cell survival. PI3K activation generates 3-phosphorylated phosphatidylinositols that bind Akt pleckstrin homology (PH) domain. The blockage of Akt PH domain/phosphoinositides interaction represents a promising approach to interfere with the oncogenic potential of over-activated Akt. In the present study, phosphatidyl inositol mimics based on a β-glucoside scaffold have been synthesized as Akt inhibitors. The compounds possessed one or two lipophilic moieties of different length at the anomeric position of glucose, and an acidic or basic group at C-6. Docking studies, ELISA Akt inhibition assays, and cellular assays on different cell models highlighted 1-O-octadecanoyl-2-O-β-d-sulfoquinovopyranosyl-sn-glycerol as the best Akt inhibitor among the synthesized compounds, which could be considered as a lead for further optimization in the design of Akt inhibitors. PMID:27316541

  9. Cutting Edge: Il-1 Receptor-Associated Kinase 4 Structures Reveal Novel Features And Multiple Conformations

    SciTech Connect

    Kuglstatter, A.; Villasenor, A.G.; Shaw, D.; Lee, S.W.; Tsing, S.; Niu, L.; Song, K.W.; Barnett, J.W.; Browner, M.F.

    2007-07-09

    L-1R-associated kinase (IRAK)4 plays a central role in innate and adaptive immunity, and is a crucial component in IL-1/TLR signaling. We have determined the crystal structures of the apo and ligand-bound forms of human IRAK4 kinase domain. These structures reveal several features that provide opportunities for the design of selective IRAK4 inhibitors. The N-terminal lobe of the IRAK4 kinase domain is structurally distinctive due to a loop insertion after an extended N-terminal helix. The gatekeeper residue is a tyrosine, a unique feature of the IRAK family. The IRAK4 structures also provide insights into the regulation of its activity. In the apo structure, two conformations coexist, differing in the relative orientation of the two kinase lobes and the position of helix C. In the presence of an ATP analog only one conformation is observed, indicating that this is the active conformation.

  10. The Predikin webserver: improved prediction of protein kinase peptide specificity using structural information

    PubMed Central

    Saunders, Neil F. W.

    2008-01-01

    The Predikin webserver allows users to predict substrates of protein kinases. The Predikin system is built from three components: a database of protein kinase substrates that links phosphorylation sites with specific protein kinase sequences; a perl module to analyse query protein kinases and a web interface through which users can submit protein kinases for analysis. The Predikin perl module provides methods to (i) locate protein kinase catalytic domains in a sequence, (ii) classify them by type or family, (iii) identify substrate-determining residues, (iv) generate weighted scoring matrices using three different methods, (v) extract putative phosphorylation sites in query substrate sequences and (vi) score phosphorylation sites for a given kinase, using optional filters. The web interface provides user-friendly access to each of these functions and allows users to obtain rapidly a set of predictions that they can export for further analysis. The server is available at http://predikin.biosci.uq.edu.au. PMID:18477637

  11. Diacylglycerol kinase regulation of protein kinase D during oxidative stress-induced intestinal cell injury

    SciTech Connect

    Song Jun; Li Jing; Mourot, Joshua M.; Mark Evers, B.; Chung, Dai H.

    2008-10-17

    We recently demonstrated that protein kinase D (PKD) exerts a protective function during oxidative stress-induced intestinal epithelial cell injury; however, the exact role of DAG kinase (DGK){zeta}, an isoform expressed in intestine, during this process is unknown. We sought to determine the role of DGK during oxidative stress-induced intestinal cell injury and whether DGK acts as an upstream regulator of PKD. Inhibition of DGK with R59022 compound or DGK{zeta} siRNA transfection decreased H{sub 2}O{sub 2}-induced RIE-1 cell apoptosis as measured by DNA fragmentation and increased PKD phosphorylation. Overexpression of kinase-dead DGK{zeta} also significantly increased PKD phosphorylation. Additionally, endogenous nuclear DGK{zeta} rapidly translocated to the cytoplasm following H{sub 2}O{sub 2} treatment. Our findings demonstrate that DGK is involved in the regulation of oxidative stress-induced intestinal cell injury. PKD activation is induced by DGK{zeta}, suggesting DGK is an upstream regulator of oxidative stress-induced activation of the PKD signaling pathway in intestinal epithelial cells.

  12. Heat-shock protein-25/27 phosphorylation by the delta isoform of protein kinase C.

    PubMed Central

    Maizels, E T; Peters, C A; Kline, M; Cutler, R E; Shanmugam, M; Hunzicker-Dunn, M

    1998-01-01

    Small heat-shock proteins (sHSPs) are widely expressed 25-28 kDa proteins whose functions are dynamically regulated by phosphorylation. While recent efforts have clearly delineated a stress-responsive p38 mitogen-activated protein-kinase (MAPK)-dependent kinase pathway culminating in activation of the heat-shock (HSP)-kinases, mitogen-activated protein-kinase-activated protein kinase-2 and -3, not all sHSP phosphorylation events can be explained by the p38 MAPK-dependent pathway. The contribution of protein kinase C (PKC) to sHSP phosphorylation was suggested by early studies but later questioned on the basis of the reported poor ability of purified PKC to phosphorylate sHSP in vitro. The current study re-evaluates the role of PKC in sHSP phosphorylation in the light of the isoform complexity of the PKC family. We evaluated the sHSP phosphorylation status in rat corpora lutea obtained from two stages of pregnancy, mid-pregnancy and late-pregnancy, which express different levels of the novel PKC isoform, PKC-delta. Two-dimensional Western blot analysis showed that HSP-27 was more highly phosphorylated in vivo in corpora lutea of late pregnancy, corresponding to the developmental stage in which PKC-delta is abundant and active. Late-pregnant luteal extracts contained a lipid-sensitive HSP-kinase activity which exactly co-purified with PKC-delta using hydroxyapatite and S-Sepharose column chromatography. To determine whether there might be preferential phosphorylation of sHSP by a particular PKC isoform, purified recombinant PKC isoforms corresponding to those PKC isoforms detected in rat corpora lutea were evaluated for HSP-kinase activity in vitro. Recombinant PKC-delta effectively catalysed the phosphorylation of sHSP in vitro, and PKC-alpha was 30-50% as effective as an HSP-kinase; other PKCs tested (beta1, beta2, epsilon and zeta) were poor HSP-kinases. These results show that select PKC family members can function as direct HSP-kinases in vitro. Moreover, the

  13. The calcium-dependent protein kinase CPK7 acts on root hydraulic conductivity.

    PubMed

    Li, Guowei; Boudsocq, Marie; Hem, Sonia; Vialaret, Jérôme; Rossignol, Michel; Maurel, Christophe; Santoni, Véronique

    2015-07-01

    The hydraulic conductivity of plant roots (Lp(r)) is determined in large part by the activity of aquaporins. Mechanisms occurring at the post-translational level, in particular phosphorylation of aquaporins of the plasma membrane intrinsic protein 2 (PIP2) subfamily, are thought to be of critical importance for regulating root water transport. However, knowledge of protein kinases and phosphatases acting on aquaporin function is still scarce. In the present work, we investigated the Lp(r) of knockout Arabidopsis plants for four Ca(2+)-dependent protein kinases. cpk7 plants showed a 30% increase in Lp(r) because of a higher aquaporin activity. A quantitative proteomic analysis of wild-type and cpk7 plants revealed that PIP gene expression and PIP protein quantity were not correlated and that CPK7 has no effect on PIP2 phosphorylation. In contrast, CPK7 exerts a negative control on the cellular abundance of PIP1s, which likely accounts for the higher Lp(r) of cpk7. In addition, this study revealed that the cellular amount of a few additional proteins including membrane transporters is controlled by CPK7. The overall work provides evidence for CPK7-dependent stability of specific membrane proteins. PMID:25366820

  14. Protein Kinase C Enzymes in the Hematopoietic and Immune Systems.

    PubMed

    Altman, Amnon; Kong, Kok-Fai

    2016-05-20

    The protein kinase C (PKC) family, discovered in the late 1970s, is composed of at least 10 serine/threonine kinases, divided into three groups based on their molecular architecture and cofactor requirements. PKC enzymes have been conserved throughout evolution and are expressed in virtually all cell types; they represent critical signal transducers regulating cell activation, differentiation, proliferation, death, and effector functions. PKC family members play important roles in a diverse array of hematopoietic and immune responses. This review covers the discovery and history of this enzyme family, discusses the roles of PKC enzymes in the development and effector functions of major hematopoietic and immune cell types, and points out gaps in our knowledge, which should ignite interest and further exploration, ultimately leading to better understanding of this enzyme family and, above all, its role in the many facets of the immune system. PMID:27168244

  15. Hint1 knockout results in a compromised activation of protein kinase C gamma in the brain.

    PubMed

    Zhang, Fan; Fang, Zhenfei; Wang, Jia Bei

    2015-10-01

    Previous studies have implicated a role of the histidine triad nucleotide-binding protein 1 (Hint1) in the pathogenesis of schizophrenia. Protein kinase C gamma (PKCγ) could be potentially involved in the Hint1-implicated pathogenesis since PKCγ was identified as a Hint1 interacting protein. Recently, a debate was brought forward from the understanding how Hint1 affects the expression and activity of PKCγ in the brain. In the present study, we use Hint1 knockout mice and biochemical analysis to define the effect of Hint1 on protein PKCγ. Our data reveal that Hint1-deficiency in mouse brains led to increased protein levels of PKCγ in the cortex and hippocampus, the striatum and thalamus and amygdala. Without stimulation, PKCγ protein in Hint1-deficient brain displayed a basal activity that was reflected by control-leveled phosphorylations of PKCγ T514 and T674 at its kinase domain. Upon psycho-stimulation, both sites of PKCγ T514 and T674 were activated in these brain structures via phosphorylation; however, the phosphorylation level at the site of PKCγ T674 apparently attenuated in Hint1-deficient mice compared to wild-type control. Thus, we conclude that Hint1 deficiency leads to an increased protein level of PKCγ in the brain and a compromised activation response of PKCγ upon stimulation. These findings suggest an inhibitory role of Hint1 on the protein PKCγ in the brain and an impaired PKCγ-mediated phosphorylation signal in Hint1-deficient neuron. PMID:26133792

  16. A protein kinase associated with paired helical filaments in Alzheimer disease.

    PubMed Central

    Vincent, I J; Davies, P

    1992-01-01

    We have identified a protein kinase in immunoaffinity-purified preparations of paired helical filaments from brain tissue of individuals with Alzheimer disease. The kinase phosphorylates the filament proteins in vitro in a manner independent of second messenger regulation or of modulation by heparin and polyamines. Physiological concentrations of hemin, an oxidized heme porphyrin, inhibit the kinase and abolish Alz-50 immunoreactivity of the proteins. Since paired helical filaments are composed of hyperphosphorylated proteins, association of a protein kinase with the filaments provides a mechanism for abnormal processing of the proteins in disease. Images PMID:1557394

  17. Phosphorylation of Human Choline Kinase Beta by Protein Kinase A: Its Impact on Activity and Inhibition

    PubMed Central

    Chang, Ching Ching; Few, Ling Ling; Konrad, Manfred; See Too, Wei Cun

    2016-01-01

    Choline kinase beta (CKβ) is one of the CK isozymes involved in the biosynthesis of phosphatidylcholine. CKβ is important for normal mitochondrial function and muscle development as the lack of the ckβ gene in human and mice results in the development of muscular dystrophy. In contrast, CKα is implicated in tumorigenesis and has been extensively studied as an anticancer target. Phosphorylation of human CKα was found to regulate the enzyme’s activity and its subcellular location. This study provides evidence for CKβ phosphorylation by protein kinase A (PKA). In vitro phosphorylation of CKβ by PKA was first detected by phosphoprotein staining, as well as by in-gel kinase assays. The phosphorylating kinase was identified as PKA by Western blotting. CKβ phosphorylation by MCF-7 cell lysate was inhibited by a PKA-specific inhibitor peptide, and the intracellular phosphorylation of CKβ was shown to be regulated by the level of cyclic adenosine monophosphate (cAMP), a PKA activator. Phosphorylation sites were located on CKβ residues serine-39 and serine-40 as determined by mass spectrometry and site-directed mutagenesis. Phosphorylation increased the catalytic efficiencies for the substrates choline and ATP about 2-fold, without affecting ethanolamine phosphorylation, and the S39D/S40D CKβ phosphorylation mimic behaved kinetically very similar. Remarkably, phosphorylation drastically increased the sensitivity of CKβ to hemicholinium-3 (HC-3) inhibition by about 30-fold. These findings suggest that CKβ, in concert with CKα, and depending on its phosphorylation status, might play a critical role as a druggable target in carcinogenesis. PMID:27149373

  18. Protein-tyrosine Phosphatase and Kinase Specificity in Regulation of SRC and Breast Tumor Kinase* ♦

    PubMed Central

    Fan, Gaofeng; Aleem, Saadat; Yang, Ming; Miller, W. Todd; Tonks, Nicholas K.

    2015-01-01

    Despite significant evidence to the contrary, the view that phosphatases are “nonspecific” still pervades the field. Systems biology approaches to defining how signal transduction pathways are integrated at the level of whole organisms also often downplay the contribution of phosphatases, defining them as “erasers” that serve merely to restore the system to its basal state. Here, we present a study that counteracts the idea of “nonspecific phosphatases.” We have characterized two structurally similar and functionally related kinases, BRK and SRC, which are regulated by combinations of activating autophosphorylation and inhibitory C-terminal sites of tyrosine phosphorylation. We demonstrated specificity at the level of the kinases in that SRMS phosphorylated the C terminus of BRK, but not SRC; in contrast, CSK is the kinase responsible for C-terminal phosphorylation of SRC, but not BRK. For the phosphatases, we observed that RNAi-mediated suppression of PTP1B resulted in opposing effects on the activity of BRK and SRC and have defined the mechanisms underlying this specificity. PTP1B inhibited BRK by directly dephosphorylating the Tyr-342 autophosphorylation site. In contrast, PTP1B potentiated SRC activity, but not by dephosphorylating SRC itself directly; instead, PTP1B regulated the interaction between CBP/PAG and CSK. SRC associated with, and phosphorylated, the transmembrane protein CBP/PAG at Tyr-317, resulting in CSK recruitment. We identified PAG as a substrate of PTP1B, and dephosphorylation abolished recruitment of the inhibitory kinase CSK. Overall, these findings illustrate how the combinatorial effects of PTKs and PTPs may be integrated to regulate signaling, with both classes of enzymes displaying exquisite specificity. PMID:25897081

  19. Systematic identification of signal integration by protein kinase A

    PubMed Central

    Filteau, Marie; Diss, Guillaume; Dubé, Alexandre K.; Schraffl, Andrea; Bachmann, Verena A.; Gagnon-Arsenault, Isabelle; Chrétien, Andrée-Ève; Steunou, Anne-Lise; Dionne, Ugo; Bisson, Nicolas; Stefan, Eduard; Landry, Christian R.

    2015-01-01

    Cellular processes and homeostasis control in eukaryotic cells is achieved by the action of regulatory proteins such as protein kinase A (PKA). Although the outbound signals from PKA directed to processes such as metabolism, growth, and aging have been well charted, what regulates this conserved regulator remains to be systematically identified to understand how it coordinates biological processes. Using a yeast PKA reporter assay, we identified genes that influence PKA activity by measuring protein–protein interactions between the regulatory and the two catalytic subunits of the PKA complex in 3,726 yeast genetic-deletion backgrounds grown on two carbon sources. Overall, nearly 500 genes were found to be connected directly or indirectly to PKA regulation, including 80 core regulators, denoting a wide diversity of signals regulating PKA, within and beyond the described upstream linear pathways. PKA regulators span multiple processes, including the antagonistic autophagy and methionine biosynthesis pathways. Our results converge toward mechanisms of PKA posttranslational regulation by lysine acetylation, which is conserved between yeast and humans and that, we show, regulates protein complex formation in mammals and carbohydrate storage and aging in yeast. Taken together, these results show that the extent of PKA input matches with its output, because this kinase receives information from upstream and downstream processes, and highlight how biological processes are interconnected and coordinated by PKA. PMID:25831502

  20. Phosphoenolpyruvate-dependent protein kinase from skeletal muscle

    SciTech Connect

    Khandelwal, R.L.; Bhanot, P.; Waygood, E.B.

    1986-05-01

    Soluble extracts of skeletal muscle from rat, rabbit and hamster when incubated with 0.1 mM (/sup 32/P)phosphoenolpyruvate give rise to a similar set of phosphoproteins as resolved by SDS-PAGE with Mr 25,000, 35,000, 37,000, 43,000 and 59,000. The phosphorylation of these proteins is neither inhibited by excess ATP nor achieved by incubation with (..gamma..-/sup 32/P)ATP. Except for the Mr 43,000 phosphoprotein, the phosphorylation of the other proteins dramatically increased in the presence of 0.1 mM CTP. Although phosphatase inhibits such as NaF and PPi were not effective, CTP may act to inhibit phosphatase activity rather than activating a protein kinase. The phosphoamino acids produced in these phosphoproteins were acid stable and only phosphoserine has been routinely identified. Using DEAE-cellulose, CM-Sephadex and Ultrogel AcA44 chromatography, the Mr 37,000 phosphoprotein has been purified from rabbit skeletal muscle to near homogeneity. No physiological role for either the protein kinase or its substrates has yet been found.

  1. Andes Virus Nucleocapsid Protein Interrupts Protein Kinase R Dimerization To Counteract Host Interference in Viral Protein Synthesis

    PubMed Central

    Wang, Zekun

    2014-01-01

    ABSTRACT Pathogenic hantaviruses delay the type I interferon response during early stages of viral infection. However, the robust interferon response and induction of interferon-stimulated genes observed during later stages of hantavirus infection fail to combat the virus replication in infected cells. Protein kinase R (PKR), a classical interferon-stimulated gene product, phosphorylates the eukaryotic translation initiation factor eIF2α and causes translational shutdown to create roadblocks for the synthesis of viral proteins. The PKR-induced translational shutdown helps host cells to establish an antiviral state to interrupt virus replication. However, hantavirus-infected cells do not undergo translational shutdown and fail to establish an antiviral state during the course of viral infection. In this study, we showed for the first time that Andes virus infection induced PKR overexpression. However, the overexpressed PKR was not active due to a significant inhibition of autophosphorylation. Further studies revealed that Andes virus nucleocapsid protein inhibited PKR dimerization, a critical step required for PKR autophosphorylation to attain activity. The studies reported here establish a hantavirus nucleocapsid protein as a new PKR inhibitor. These studies provide mechanistic insights into hantavirus resistance to the host interferon response and solve the puzzle of the lack of translational shutdown observed in hantavirus-infected cells. The sensitivity of hantavirus replication to PKR has likely imposed a selective evolutionary pressure on hantaviruses to evade the PKR antiviral response for survival. We envision that evasion of the PKR antiviral response by NP has likely helped hantaviruses to exist during evolution and to survive in infected hosts with a multifaceted antiviral defense. IMPORTANCE Protein kinase R (PKR), a versatile antiviral host factor, shuts down the translation machinery upon activation in virus-infected cells to create hurdles for the

  2. Identification of intracellular signaling pathways that induce myotonic dystrophy protein kinase expression during myogenesis.

    PubMed

    Carrasco, Marta; Canicio, Judith; Palacín, Manuel; Zorzano, Antonio; Kaliman, Perla

    2002-08-01

    Myotonic dystrophy (DM) is the most common inherited adult neuromuscular disorder. DM is caused by a CTG expansion in the 3'-untranslated region of a protein kinase gene (DMPK). Decreased DMPK protein levels may contribute to the pathology of DM, as revealed by gene target studies. However, the postnatal regulation of DMPK expression and its pathophysiological role remain undefined. We studied the regulation of DMPK protein and mRNA expression during myogenesis in rat L6E9 myoblasts, mouse C2C12 myoblasts, and 10T1/2 fibroblasts stably expressing the myogenic transcription factor MyoD (10T1/2-MyoD). We detected DMPK as an 80-kDa protein mainly localized to the cytosolic fraction of skeletal muscle cells. DMPK expression and protein kinase activity were enhanced in IGF-II-differentiated cells. In L6E9 and C2C12 cells, DMPK expression was regulated through the same signaling pathways (i.e. phosphatidylinositol 3-kinase, nuclear factor-kappaB, nitric oxide synthase, and p38 mitogen-activated protein kinase) that had been described as being crucial for the myogenesis induced by either low serum or IGF-II. However, in 10T1/2-MyoD cells, p38 MAPK inhibition blocked cell fusion and caveolin-3 expression without affecting DMPK up-regulation. These results suggest that although DMPK is induced during myogenesis, its expression cannot be totally associated with the development of a fully differentiated phenotype. PMID:12130568

  3. Mitogen-activated protein kinase kinase kinase 1 (MAP3K1) integrates developmental signals for eyelid closure

    PubMed Central

    Geh, Esmond; Meng, Qinghang; Mongan, Maureen; Wang, Jingcai; Takatori, Atsushi; Zheng, Yi; Puga, Alvaro; Lang, Richard A.; Xia, Ying

    2011-01-01

    Developmental eyelid closure is an evolutionarily conserved morphogenetic event requiring proliferation, differentiation, cytoskeleton reorganization, and migration of epithelial cells at the tip of the developing eyelid. Many signaling events take place during eyelid closure, but how the signals converge to regulate the morphogenetic process remains an open and intriguing question. Here we show that mitogen-activated protein kinase kinase kinase 1 (MAP3K1) highly expressed in the developing eyelid epithelium, forms with c-Jun, a regulatory axis that orchestrates morphogenesis by integrating two different networks of eyelid closure signals. A TGF-α/EGFR-RhoA module initiates one of these networks by inducing c-Jun expression which, in a phosphorylation-independent manner, binds to the Map3k1 promoter and causes an increase in MAP3K1 expression. RhoA knockout in the ocular surface epithelium disturbs this network by decreasing MAP3K1 expression, and causes delayed eyelid closure in Map3k1 hemizygotes. The second network is initiated by the enzymatic activity of MAP3K1, which phosphorylates and activates a JNK-c-Jun module, leading to AP-1 transactivation and induction of its downstream genes, such as Pai-1. MAP3K1 inactivation reduces AP-1 activity and PAI-1 expression both in cells and developing eyelids. MAP3K1 is therefore the nexus of an intracrine regulatory loop connecting the TGF-α/EGFR/RhoA-c-Jun and JNK-c-Jun-AP-1 pathways in developmental eyelid closure. PMID:21969564

  4. Profiling the substrate specificity of protein kinases by on-bead screening of peptide libraries.

    PubMed

    Trinh, Thi B; Xiao, Qing; Pei, Dehua

    2013-08-20

    A robust, high-throughput method has been developed to screen one-bead-one-compound peptide libraries to systematically profile the sequence specificity of protein kinases. Its ability to provide individual sequences of the preferred substrates permits the identification of sequence contextual effects and nonpermissive residues. Application of the library method to kinases Pim1, MKK6, and Csk revealed that Pim1 and Csk are highly active toward peptide substrates and recognize specific sequence motifs, whereas MKK6 has little activity or sequence selectivity against peptide substrates. Pim1 recognizes peptide substrates of the consensus RXR(H/R)X(S/T); it accepts essentially any amino acid at the S/T-2 and S/T+1 positions, but strongly disfavors acidic residues (Asp or Glu) at the S/T-2 position and a proline residue at the S/T+1 position. The selected Csk substrates show strong sequence covariance and fall into two classes with the consensus sequences of (D/E)EPIYϕXϕ and (D/E)(E/D)S(E/D/I)YϕXϕ (where X is any amino acid and ϕ is a hydrophobic amino acid). Database searches and in vitro kinase assays identified phosphatase PTP-PEST as a Pim1 substrate and phosphatase SHP-1 as a potential Csk substrate. Our results demonstrate that the sequence specificity of protein kinases is defined not only by favorable interactions between permissive residue(s) on the substrate and their cognate binding site(s) on the kinase but also by repulsive interactions between the kinase and nonpermissive residue(s). PMID:23848432

  5. Protein kinase Cζ exhibits constitutive phosphorylation and phosphatidylinositol-3,4,5-triphosphate-independent regulation

    PubMed Central

    Tobias, Irene S.; Kaulich, Manuel; Kim, Peter K.; Simon, Nitya; Jacinto, Estela; Dowdy, Steven F.; King, Charles C.; Newton, Alexandra C.

    2016-01-01

    Atypical protein kinase C (aPKC) isoenzymes are key modulators of insulin signalling, and their dysfunction correlates with insulin-resistant states in both mice and humans. Despite the engaged interest in the importance of aPKCs to type 2 diabetes, much less is known about the molecular mechanisms that govern their cellular functions than for the conventional and novel PKC isoenzymes and the functionally-related protein kinase B (Akt) family of kinases. Here we show that aPKC is constitutively phosphorylated and, using a genetically-encoded reporter for PKC activity, basally active in cells. Specifically, we show that phosphorylation at two key regulatory sites, the activation loop and turn motif, of the aPKC PKCζ in multiple cultured cell types is constitutive and independently regulated by separate kinases: ribosome-associated mammalian target of rapamycin complex 2 (mTORC2) mediates co-translational phosphorylation of the turn motif, followed by phosphorylation at the activation loop by phosphoinositide-dependent kinase-1 (PDK1). Live cell imaging reveals that global aPKC activity is constitutive and insulin unresponsive, in marked contrast to the insulin-dependent activation of Akt monitored by an Akt-specific reporter. Nor does forced recruitment to phosphoinositides by fusing the pleckstrin homology (PH) domain of Akt to the kinase domain of PKCζ alter either the phosphorylation or activity of PKCζ. Thus, insulin stimulation does not activate PKCζ through the canonical phosphatidylinositol-3,4,5-triphosphate-mediated pathway that activates Akt, contrasting with previous literature on PKCζ activation. These studies support a model wherein an alternative mechanism regulates PKCζ-mediated insulin signalling that does not utilize conventional activation via agonist-evoked phosphorylation at the activation loop. Rather, we propose that scaffolding near substrates drives the function of PKCζ. PMID:26635352

  6. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation*

    PubMed Central

    Sundararaman, Ananthalakshmy; Amirtham, Usha; Rangarajan, Annapoorni

    2016-01-01

    The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKβ. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca2+/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells. PMID:27226623

  7. Platelet-derived growth factor stimulates protein kinase D through the activation of phospholipase Cgamma and protein kinase C.

    PubMed

    Van Lint, J; Ni, Y; Valius, M; Merlevede, W; Vandenheede, J R

    1998-03-20

    Platelet-derived growth factor (PDGF) stimulates protein kinase D (PKD) in a time- and dose-dependent manner. We have used a series of PDGF receptor mutants that display a selective impairment of the binding of SH2-containing proteins (GTPase-activating protein, SHP-2, phospholipase Cgamma (PLCgamma), or phosphatidylinositol 3'-kinase (PI3K)) to show that Tyr-1021, the PLCgamma-binding site, is essential for PKD stimulation by PDGF in A431 cells. We next investigated whether any one of these four binding sites could mediate PKD activation in the absence of the other three sites. F5, a receptor mutant that lacks all four binding sites for GTPase-activating protein, PLCgamma, PI3K, and SHP-2, fails to activate PKD. A panel of single add-back mutants was used to investigate if any one of these four sites could restore signaling to PKD. Of the four sites, only the PLCgamma+ single add-back receptor restored PDGF-mediated activation of PKD, and only this add-back receptor produced diacylglycerol (DAG) in a PDGF-dependent manner. 1,2-Dioctanoyl-sn-glycerol, a membrane-permeant DAG analog, was found to be sufficient for activation of PKD. Taken together, these data indicate that PLCgamma activation is not only necessary, but also sufficient to mediate PDGF-induced PKD activation. Although the presence of a pleckstrin homology domain makes PKD a potential PI3K target, PKD was not stimulated by selective PI3K activation, and wortmannin, an inhibitor of PI3K, did not inhibit PDGF signaling to PKD. The activation of PKD by DAG or by the wild-type and PLCgamma+ add-back PDGF receptors was inhibited by GF109203X, suggesting a role for protein kinase C in the stimulation of PKD by PDGF. PDGF induced a time-dependent phosphorylation of PKD that closely correlated with activation. The PDGF-induced activation and phosphorylation of PKD were reversed by in vitro incubation of PKD with protein phosphatase 1 or 2A, indicating that PDGF signaling to PKD involves the Ser

  8. Competition between members of the tribbles pseudokinase protein family shapes their interactions with mitogen activated protein kinase pathways.

    PubMed

    Guan, Hongtao; Shuaib, Aban; Leon, David Davila De; Angyal, Adrienn; Salazar, Maria; Velasco, Guillermo; Holcombe, Mike; Dower, Steven K; Kiss-Toth, Endre

    2016-01-01

    Spatio-temporal regulation of intracellular signalling networks is key to normal cellular physiology; dysregulation of which leads to disease. The family of three mammalian tribbles proteins has emerged as an important controller of signalling via regulating the activity of mitogen activated protein kinases (MAPK), the PI3-kinase induced signalling network and E3 ubiquitin ligases. However, the importance of potential redundancy in the action of tribbles and how the differences in affinities for the various binding partners may influence signalling control is currently unclear. We report that tribbles proteins can bind to an overlapping set of MAPK-kinases (MAPKK) in live cells and dictate the localisation of the complexes. Binding studies in transfected cells reveal common regulatory mechanisms and suggest that tribbles and MAPKs may interact with MAPKKs in a competitive manner. Computational modelling of the impact of tribbles on MAPK activation suggests a high sensitivity of this system to changes in tribbles levels, highlighting that these proteins are ideally placed to control the dynamics and balance of activation of concurrent signalling pathways. PMID:27600771

  9. Competition between members of the tribbles pseudokinase protein family shapes their interactions with mitogen activated protein kinase pathways

    PubMed Central

    Guan, Hongtao; Shuaib, Aban; Leon, David Davila De; Angyal, Adrienn; Salazar, Maria; Velasco, Guillermo; Holcombe, Mike; Dower, Steven K.; Kiss-Toth, Endre

    2016-01-01

    Spatio-temporal regulation of intracellular signalling networks is key to normal cellular physiology; dysregulation of which leads to disease. The family of three mammalian tribbles proteins has emerged as an important controller of signalling via regulating the activity of mitogen activated protein kinases (MAPK), the PI3-kinase induced signalling network and E3 ubiquitin ligases. However, the importance of potential redundancy in the action of tribbles and how the differences in affinities for the various binding partners may influence signalling control is currently unclear. We report that tribbles proteins can bind to an overlapping set of MAPK-kinases (MAPKK) in live cells and dictate the localisation of the complexes. Binding studies in transfected cells reveal common regulatory mechanisms and suggest that tribbles and MAPKs may interact with MAPKKs in a competitive manner. Computational modelling of the impact of tribbles on MAPK activation suggests a high sensitivity of this system to changes in tribbles levels, highlighting that these proteins are ideally placed to control the dynamics and balance of activation of concurrent signalling pathways. PMID:27600771

  10. WNK1, the kinase mutated in an inherited high-blood-pressure syndrome, is a novel PKB (protein kinase B)/Akt substrate.

    PubMed Central

    Vitari, Alberto C; Deak, Maria; Collins, Barry J; Morrice, Nick; Prescott, Alan R; Phelan, Anne; Humphreys, Sian; Alessi, Dario R

    2004-01-01

    Recent evidence indicates that mutations in the gene encoding the WNK1 [with no K (lysine) protein kinase-1] results in an inherited hypertension syndrome called pseudohypoaldosteronism type II. The mechanisms by which WNK1 is regulated or the substrates it phosphorylates are currently unknown. We noticed that Thr-60 of WNK1, which lies N-terminal to the catalytic domain, is located within a PKB (protein kinase B) phosphorylation consensus sequence. We found that PKB phosphorylated WNK1 efficiently compared with known substrates, and both peptide map and mutational analysis revealed that the major PKB site of phosphorylation was Thr-60. Employing a phosphospecific Thr-60 WNK1 antibody, we demonstrated that IGF1 (insulin-like growth factor) stimulation of HEK-293 cells induced phosphorylation of endogenously expressed WNK1 at Thr-60. Consistent with PKB mediating this phosphorylation, inhibitors of PI 3-kinase (phosphoinositide 3-kinase; wortmannin and LY294002) but not inhibitors of mammalian target of rapamycin (rapamycin) or MEK1 (mitogen-activated protein kinase kinase-1) activation (PD184352), inhibited IGF1-induced phosphorylation of endogenous WNK1 at Thr-60. Moreover, IGF1-induced phosphorylation of endogenous WNK1 did not occur in PDK1-/- ES (embryonic stem) cells, in which PKB is not activated. In contrast, IGF1 still induced normal phosphorylation of WNK1 in PDK1(L155E/L155E) knock-in ES cells in which PKB, but not S6K (p70 ribosomal S6 kinase) or SGK1 (serum- and glucocorticoid-induced protein kinase 1), is activated. Our study provides strong pharmacological and genetic evidence that PKB mediates the phosphorylation of WNK1 at Thr-60 in vivo. We also performed experiments which suggest that the phosphorylation of WNK1 by PKB is not regulating its kinase activity or cellular localization directly. These results provide the first connection between the PI 3-kinase/PKB pathway and WNK1, suggesting a mechanism by which this pathway may influence blood

  11. Inhibitory effects of homeodomain-interacting protein kinase 2 on the aorta-gonad-mapharsen hematopoiesis

    SciTech Connect

    Ohtsu, Naoki; Nobuhisa, Ikuo; Mochita, Miyuki; Taga, Tetsuya . E-mail: taga@kaiju.medic.kumamoto-u.ac.jp

    2007-01-01

    Definitive hematopoiesis starts in the aorta-gonad-mesonephros (AGM) region of the mouse embryo. Our previous studies revealed that STAT3, a gp130 downstream transcription factor, is required for AGM hematopoiesis and that homeodomain-interacting protein kinase 2 (HIPK2) phosphorylates serine-727 of STAT3. HIPK2 is a serine/threonine kinase known to be involved in transcriptional repression and apoptosis. In the present study, we examined the role of HIPK2 in hematopoiesis in mouse embryo. HIPK2 transcripts were found in fetal hematopoietic tissues such as the mouse AGM region and fetal liver. In cultured AGM cells, HIPK2 protein was detected in adherent cells. Functional analyses of HIPK2 were carried out by introducing wild-type and mutant HIPK2 constructs into AGM cultures. Production of CD45{sup +} hematopoietic cells was suppressed by forced expression of HIPK2 in AGM cultures. This suppression required the kinase domain and nuclear localization signals of HIPK2, but the kinase activity was dispensable. HIPK2-overexpressing AGM-derived nonadherent cells did not form cobblestone-like colonies in cultures with stromal cells. Furthermore, overexpression of HIPK2 in AGM cultures impeded the expansion of CD45{sup low}c-Kit{sup +} cells, which exhibit the immature hematopoietic progenitor phenotype. These data indicate that HIPK2 plays a negative regulatory role in AGM hematopoiesis in the mouse embryo.

  12. Mitochondrial ADCK3 employs an atypical protein kinase-like fold to enable coenzyme Q biosynthesis.

    PubMed

    Stefely, Jonathan A; Reidenbach, Andrew G; Ulbrich, Arne; Oruganty, Krishnadev; Floyd, Brendan J; Jochem, Adam; Saunders, Jaclyn M; Johnson, Isabel E; Minogue, Catherine E; Wrobel, Russell L; Barber, Grant E; Lee, David; Li, Sheng; Kannan, Natarajan; Coon, Joshua J; Bingman, Craig A; Pagliarini, David J

    2015-01-01

    The ancient UbiB protein kinase-like family is involved in isoprenoid lipid biosynthesis and is implicated in human diseases, but demonstration of UbiB kinase activity has remained elusive for unknown reasons. Here, we quantitatively define UbiB-specific sequence motifs and reveal their positions within the crystal structure of a UbiB protein, ADCK3. We find that multiple UbiB-specific features are poised to inhibit protein kinase activity, including an N-terminal domain that occupies the typical substrate binding pocket and a unique A-rich loop that limits ATP binding by establishing an unusual selectivity for ADP. A single alanine-to-glycine mutation of this loop flips this coenzyme selectivity and enables autophosphorylation but inhibits coenzyme Q biosynthesis in vivo, demonstrating functional relevance for this unique feature. Our work provides mechanistic insight into UbiB enzyme activity and establishes a molecular foundation for further investigation of how UbiB family proteins affect diseases and diverse biological pathways. PMID:25498144

  13. Mitochondrial ADCK3 employs an atypical protein kinase-like fold to enable coenzyme Q biosynthesis

    PubMed Central

    Stefely, Jonathan A.; Reidenbach, Andrew G.; Ulbrich, Arne; Oruganty, Krishnadev; Floyd, Brendan J.; Jochem, Adam; Saunders, Jaclyn M.; Johnson, Isabel E.; Minogue, Catherine E.; Wrobel, Russell L.; Barber, Grant E.; Lee, David; Li, Sheng; Kannan, Natarajan; Coon, Joshua J.; Bingman, Craig A.; Pagliarini, David J.

    2014-01-01

    SUMMARY The ancient UbiB protein kinase-like family is involved in isoprenoid lipid biosynthesis and is implicated in human diseases, but demonstration of UbiB kinase activity has remained elusive for unknown reasons. Here, we quantitatively define UbiB-specific sequence motifs and reveal their positions within the crystal structure of a UbiB protein, ADCK3. We find that multiple UbiB-specific features are poised to inhibit protein kinase activity, including an N-terminal domain that occupies the typical substrate binding pocket and a unique A-rich loop that limits ATP binding by establishing an unusual selectivity for ADP. A single alanine-to-glycine mutation of this loop flips this coenzyme selectivity and enables autophosphorylation, but inhibits coenzyme Q biosynthesis in vivo, demonstrating functional relevance for this unique feature. Our work provides mechanistic insight into UbiB enzyme activity and establishes a molecular foundation for further investigation of how UbiB family proteins affect diseases and diverse biological pathways. PMID:25498144

  14. Serum Albumin Stimulates Protein Kinase G-dependent Microneme Secretion in Toxoplasma gondii.

    PubMed

    Brown, Kevin M; Lourido, Sebastian; Sibley, L David

    2016-04-29

    Microneme secretion is essential for motility, invasion, and egress in apicomplexan parasites. Although previous studies indicate that Ca(2+) and cGMP control microneme secretion, little is known about how these pathways are naturally activated. Here we have developed genetically encoded indicators for Ca(2+) and microneme secretion to better define the signaling pathways that regulate these processes in Toxoplasma gondii We found that microneme secretion was triggered in vitro by exposure to a single host protein, serum albumin. The natural agonist serum albumin induced microneme secretion in a protein kinase G-dependent manner that correlated with increased cGMP levels. Surprisingly, serum albumin acted independently of elevated Ca(2+) and yet it was augmented by artificial agonists that raise Ca(2+), such as ethanol. Furthermore, although ethanol elevated intracellular Ca(2+), it alone was unable to trigger secretion without the presence of serum or serum albumin. This dichotomy was recapitulated by zaprinast, a phosphodiesterase inhibitor that elevated cGMP and separately increased Ca(2+) in a protein kinase G-independent manner leading to microneme secretion. Taken together, these findings reveal that microneme secretion is centrally controlled by protein kinase G and that this pathway is further augmented by elevation of intracellular Ca(2.) PMID:26933037

  15. Toward the rational design of protein kinase casein kinase-2 inhibitors.

    PubMed

    Sarno, Stefania; Moro, Stefano; Meggio, Flavio; Zagotto, Giuseppe; Dal Ben, Diego; Ghisellini, Paola; Battistutta, Roberto; Zanotti, Giuseppe; Pinna, Lorenzo A

    2002-01-01

    Casein kinase-2 (CK2) probably is the most pleiotropic member of the protein kinase family, with more than 200 substrates known to date. Unlike the great majority of protein kinases, which are tightly regulated enzymes, CK2 is endowed with high constitutive activity, a feature that is suspected to underlie its oncogenic potential and possible implication in viral infections. This makes CK2 an attractive target for anti-neoplastic and antiviral drugs. Here, we present an overview of our present knowledge about CK2 inhibitors, with special reference to the information drawn from two recently solved crystal structures of CK2alpha in complex with emodin and with 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), this latter being the most specific CK2 inhibitor known to date. A comparison with a series of anthraquinone and xanthenone derivatives highlights the crucial relevance of the hydroxyl group at position 3 for inhibition by emodin, and discloses the possibility of increasing the inhibitory potency by placing an electron withdrawing group at position 5. We also present mutational data corroborating the relevance of two hydrophobic residues unique to CK2, Val66 and Ile174, for the interactions with emodin and TBB, but not with the flavonoid inhibitors quercetin and fisetin. In particular, the CK2alpha mutant V66A displays 27- and 11-fold higher IC(50) values with emodin and TBB, respectively, as compared with the wild-type, while the IC(50) value with quercetin is unchanged. The data presented pave the road toward the rational design of more potent and selective inhibitors of CK2 and the generation of CK2 mutants refractory to inhibition, useful to probe the implication of CK2 in specific cellular functions. PMID:12191608

  16. Requirement of the FATC domain of protein kinase Tel1 for localization to DNA ends and target protein recognition

    PubMed Central

    Ogi, Hiroo; Goto, Greicy H.; Ghosh, Avik; Zencir, Sevil; Henry, Everett; Sugimoto, Katsunori

    2015-01-01

    Two large phosphatidylinositol 3-kinase–related protein kinases (PIKKs), ATM and ATR, play a central role in the DNA damage response pathway. PIKKs contain a highly conserved extreme C-terminus called the FRAP-ATM-TRRAP-C-terminal (FATC) domain. In budding yeast, ATM and ATR correspond to Tel1 and Mec1, respectively. In this study, we characterized functions of the FATC domain of Tel1 by introducing substitution or truncation mutations. One substitution mutation, termed tel1-21, and a truncation mutation, called tel1-ΔC, did not significantly affect the expression level. The tel1-21 mutation impaired the cellular response to DNA damage and conferred moderate telomere maintenance defect. In contrast, the tel1-ΔC mutation behaved like a null mutation, conferring defects in both DNA damage response and telomere maintenance. Tel1-21 protein localized to DNA ends as effectively as wild-type Tel1 protein, whereas Tel1-ΔC protein failed. Introduction of a hyperactive TEL1-hy mutation suppressed the tel1-21 mutation but not the tel1-ΔC mutation. In vitro analyses revealed that both Tel1-21 and Tel1-ΔC proteins undergo efficient autophosphorylation but exhibit decreased kinase activities toward the exogenous substrate protein, Rad53. Our results show that the FATC domain of Tel1 mediates localization to DNA ends and contributes to phosphorylation of target proteins. PMID:26246601

  17. Identification of a 42-kilodalton phosphotyrosyl protein as a serine(threonine) protein kinase by renaturation.

    PubMed Central

    Ferrell, J E; Martin, G S

    1990-01-01

    We have surveyed fibroblast lysates for protein kinases that might be involved in mitogenesis. The assay we have used exploits the ability of blotted, sodium dodecyl sulfate-denatured proteins to regain enzymatic activity after guanidine treatment. About 20 electrophoretically distinct protein kinases could be detected by this method in lysates from NIH 3T3 cells. One of the kinases, a 42-kilodalton serine(threonine) kinase (PK42), was found to possess two- to fourfold-higher in vitro activity when isolated from serum-stimulated cells than when isolated from serum-starved cells. This kinase comigrated on sodium dodecyl sulfate-gels with a protein (p42) whose phosphotyrosine content increased in response to serum stimulation. The time courses of p42 tyrosine phosphorylation and PK42 activation were similar, reaching maximal levels within 10 min and returning to basal levels within 5 h. Both p42 tyrosine phosphorylation and PK42 activation were stimulated by low concentrations of phorbol esters, and the responses of p42 and PK42 to TPA were abolished by chronic 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment. Chronic TPA treatment had less effect on serum-induced p42 tyrosine phosphorylation and PK42 activation. PK42 and p42 bound to DEAE-cellulose, and both eluted at a salt concentration of 250 mM. Thus, PK42 and p42 comigrate and cochromatograph, and the kinase activity of PK42 correlates with the tyrosine phosphorylation of p42. These findings suggest that PK42 and p42 are related or identical, that PK42 is activated by tyrosine phosphorylation, and that this tyrosine phosphorylation can be regulated by protein kinase C. Images PMID:1692963

  18. Photoswitchable diacylglycerols enable optical control of protein kinase C.

    PubMed

    Frank, James Allen; Yushchenko, Dmytro A; Hodson, David J; Lipstein, Noa; Nagpal, Jatin; Rutter, Guy A; Rhee, Jeong-Seop; Gottschalk, Alexander; Brose, Nils; Schultz, Carsten; Trauner, Dirk

    2016-09-01

    Increased levels of the second messenger lipid diacylglycerol (DAG) induce downstream signaling events including the translocation of C1-domain-containing proteins toward the plasma membrane. Here, we introduce three light-sensitive DAGs, termed PhoDAGs, which feature a photoswitchable acyl chain. The PhoDAGs are inactive in the dark and promote the translocation of proteins that feature C1 domains toward the plasma membrane upon a flash of UV-A light. This effect is quickly reversed after the termination of photostimulation or by irradiation with blue light, permitting the generation of oscillation patterns. Both protein kinase C and Munc13 can thus be put under optical control. PhoDAGs control vesicle release in excitable cells, such as mouse pancreatic islets and hippocampal neurons, and modulate synaptic transmission in Caenorhabditis elegans. As such, the PhoDAGs afford an unprecedented degree of spatiotemporal control and are broadly applicable tools to study DAG signaling. PMID:27454932

  19. Modulation of the protein kinase activity of mTOR.

    PubMed

    Lawrence, J C; Lin, T A; McMahon, L P; Choi, K M

    2004-01-01

    mTOR is a founding member of a family of protein kinases having catalytic domains homologous to those in phosphatidylinositol 3-OH kinase. mTOR participates in the control by insulin of the phosphorylation of lipin, which is required for adipocyte differentiation, and the two translational regulators, p70S6K and PHAS-I. The phosphorylation of mTOR, itself, is stimulated by insulin in Ser2448, a site that is also phosphorylated by protein kinase B (PKB) in vitro and in response to activation of PKB activity in vivo. Ser2448 is located in a short stretch of amino acids not found in the two TOR proteins in yeast. A mutant mTOR lacking this stretch exhibited increased activity, and binding of the antibody, mTAb-1, to this region markedly increased mTOR activity. In contrast, rapamycin-FKBP12 inhibited mTOR activity towards both PHAS-I and p70S6K, although this complex inhibited the phosphorylation of some sites more than that of others. Mutating Ser2035 to Ile in the FKBP12-rapamycin binding domain rendered mTOR resistant to inhibition by rapamycin. Unexpectedly, this mutation markedly decreased the ability of mTOR to phosphorylate certain sites in both PHAS-I and p70S6K. The results support the hypotheses that rapamycin disrupts substrate recognition instead of directly inhibiting phosphotransferase activity and that mTOR activity in cells is controlled by the phosphorylation of an inhibitory regulatory domain containing the mTAb-1 epitope. PMID:14560959

  20. Radial Spoke Protein 3 Is a Mammalian Protein Kinase A-anchoring Protein That Binds ERK1/2*

    PubMed Central

    Jivan, Arif; Earnest, Svetlana; Juang, Yu-Chi; Cobb, Melanie H.

    2009-01-01

    Initially identified in Chlamydomonas, RSP3 (radial spoke protein 3) is 1 of more than 20 identified radial spoke structural components of motile cilia and is required for axonemal sliding and flagellar motility. The mammalian orthologs for this and other radial spoke proteins, however, remain to be characterized. We found mammalian RSP3 to bind to the MAPK ERK2 through a yeast two-hybrid screen designed to identify interacting proteins that have a higher affinity for the phosphorylated, active form of the protein kinase. Consistent with the screening result, the human homolog, RSPH3, interacts with and is a substrate for ERK1/2. Moreover, RSPH3 is a protein kinase A-anchoring protein (AKAP) that scaffolds the cAMP-dependent protein kinase holoenzyme. The binding of RSPH3 to the regulatory subunits of cAMP-dependent protein kinase, RIIα and RIIβ, is regulated by ERK1/2 activity and phosphorylation. Here we describe an ERK1/2-interacting AKAP and suggest a mechanism by which cAMP-dependent protein kinase-AKAP binding can be modulated by the activity of other enzymes. PMID:19684019

  1. (Na+ + K+)-ATPase Is a Target for Phosphoinositide 3-Kinase/Protein Kinase B and Protein Kinase C Pathways Triggered by Albumin*

    PubMed Central

    Peruchetti, Diogo B.; Pinheiro, Ana Acacia S.; Landgraf, Sharon S.; Wengert, Mira; Takiya, Christina M.; Guggino, William B.; Caruso-Neves, Celso

    2011-01-01

    In recent decades, evidence has confirmed the crucial role of albumin in the progression of renal disease. However, the possible role of signaling pathways triggered by physiologic concentrations of albumin in the modulation of proximal tubule (PT) sodium reabsorption has not been considered. In the present work, we have shown that a physiologic concentration of albumin increases the expression of the α1 subunit of (Na+ + K+)-ATPase in LLC-PK1 cells leading to an increase in enzyme activity. This process involves the sequential activation of PI3K/protein kinase B and protein kinase C pathways promoting inhibition of protein kinase A. This integrative network is inhibited when albumin concentration is increased, similar to renal disease, leading to a decrease in the α1 subunit of (Na+ + K+)-ATPase expression. Together, the results indicate that variation in albumin concentration in PT cells has an important effect on PT sodium reabsorption and, consequently, on renal sodium excretion. PMID:22057272

  2. Polypeptide-dependent protein kinase from bakers' yeast.

    PubMed Central

    Yanagita, Y; Abdel-Ghany, M; Raden, D; Nelson, N; Racker, E

    1987-01-01

    The purification and properties of a protein serine kinase (PK-P) extracted with Triton X-100 from membranes of bakers' yeast are described. The enzyme is virtually inactive unless either a histone or a heat-stable polypeptide from yeast membranes and Mg2+ are added. Other divalent cations substitute for Mg2+ poorly or not at all; most of them, including Mn2+, inhibit when added in the presence of 5 mM Mg2+. The enzyme is unstable but can be stabilized by addition of 0.1% Triton X-100 and 20% glycerol. The final preparation shows, on silver-stained electrophoresis gels, two major bands (Mr 41,000 and 35,000). According to gel filtration the molecular weight of the active protein is about 75,000. Of the two subunits, only the smaller one appears to be autophosphorylated. In addition to casein, the enzyme phosphorylates several proteins including the H+-ATPase (Mr 100,000) in the yeast plasma membrane. In order to demonstrate the phosphorylation of the ATPase (up to 0.9 equivalents), exposure of the latter to an acid phosphatase was required. Other phosphorylated proteins include mRNA cap-binding protein from mammalian erythrocytes and yeast, a glucocorticoid receptor protein, and a preparation of the guanine nucleotide-binding proteins Gi and Go from brain. A partial purification of a natural activator from yeast plasma membranes is described. Images PMID:3547402

  3. Regulation of ABC Transporter Function Via Phosphorylation by Protein Kinases

    PubMed Central

    Stolarczyk, Elzbieta I.; Reiling, Cassandra J.; Paumi, Christian M.

    2011-01-01

    ATP-binding cassette (ABC) transporters are multispanning membrane proteins that utilize ATP to move a broad range of substrates across cellular membranes. ABC transporters are involved in a number of human disorders and diseases [1]. Overexpression of a subset of the transporters has been closely linked to multidrug resistance in both bacteria and viruses and in cancer. A poorly understood and important aspect of ABC transporter biology is the role of phosphorylation as a mechanism to regulate transporter function. In this review, we summarize the current literature addressing the role of phosphorylation in regulating ABC transporter function. A comprehensive list of all the phosphorylation sites that have been identified for the human ABC transporters is presented, and we discuss the role of individual kinases in regulating transporter function. We address the potential pitfalls and difficulties associated with identifying phosphorylation sites and the corresponding kinase(s), and we discuss novel techniques that may circumvent these problems. We conclude by providing a brief perspective on studying ABC transporter phosphorylation. PMID:21118091

  4. Role of protein kinase B in Alzheimer's neurofibrillary pathology.

    PubMed

    Pei, Jin-Jing; Khatoon, Sabiha; An, Wen-Lin; Nordlinder, Maria; Tanaka, Toshihisa; Braak, Heiko; Tsujio, Ichiro; Takeda, Masatoshi; Alafuzoff, Irina; Winblad, Bengt; Cowburn, Richard F; Grundke-Iqbal, Inge; Iqbal, Khalid

    2003-04-01

    Protein kinase B (PKB) is an important intermediate in the phosphatidylinositol-3 kinase signaling cascade that acts to phosphorylate glycogen synthase kinase-3 (GSK-3) at its serine 9 residue, thereby inactivating it. Activated GSK-3 has been previously shown to be preferentially associated with neurofibrillary tangles (NFTs) in Alzheimer's disease (AD) brain. In the present study, we performed immunohistochemistry with an antibody to the active form of PKB in brains with different stages of neurofibrillary degeneration. We found that the amount of activated PKB (p-Thr308) increased in correlation to the progressive sequence of AT8 immunoreactivity and neurofibrillary changes assessed according to Braak's criteria. By confocal microscopy, activated PKB (p-Thr308) was found to appear in particular in neurons that are known to later develop NFTs in AD. Western blotting showed that activated PKB was increased by more than 50% in the 16,000- g supernatants of AD brains as compared with normal aged and Huntington's disease controls. This increase in PKB levels corresponded with a several-fold increase in the levels of total tau and abnormally hyperphosphorylated tau at the Tau-1 site. These studies suggest the involvement of PKB/GSK-3 signaling in Alzheimer neurofibrillary degeneration. PMID:12624792

  5. Interacting Protein Kinases Involved in the Regulation of Flagellar Length

    PubMed Central

    Erdmann, Maja; Scholz, Anne; Melzer, Inga M.; Schmetz, Christel; Wiese, Martin

    2006-01-01

    A striking difference of the life stages of the protozoan parasite Leishmania is a long flagellum in the insect stage promastigotes and a rudimentary organelle in the mammalian amastigotes. LmxMKK, a mitogen-activated protein (MAP) kinase kinase from Leishmania mexicana, is required for growth of a full-length flagellum. We identified LmxMPK3, a MAP kinase homologue, with a similar expression pattern as LmxMKK being not detectable in amastigotes, up-regulated during the differentiation to promastigotes, constantly expressed in promastigotes, and shut down during the differentiation to amastigotes. LmxMPK3 null mutants resemble the LmxMKK knockouts with flagella reduced to one-fifth of the wild-type length, stumpy cell bodies, and vesicles and membrane fragments in the flagellar pocket. A constitutively activated recombinant LmxMKK activates LmxMPK3 in vitro. Moreover, LmxMKK is likely to be directly involved in the phosphorylation of LmxMPK3 in vivo. Finally, LmxMPK3 is able to phosphorylate LmxMKK, indicating a possible feedback regulation. This is the first time that two interacting components of a signaling cascade have been described in the genus Leishmania. Moreover, we set the stage for the analysis of reversible phosphorylation in flagellar morphogenesis. PMID:16467378

  6. Structural insight into nucleotide recognition by human death-associated protein kinase

    SciTech Connect

    McNamara, Laurie K.; Watterson, D. Martin; Brunzelle, Joseph S.

    2009-03-01

    The crystal structures of DAPK–ADP–Mg{sup 2+} and DAPK–AMP-PNP–Mg{sup 2+} complexes were determined at 1.85 and 2.00 Å resolution, respectively. Comparison of the two nucleotide-bound states with apo DAPK revealed localized changes in the glycine-rich loop region that were indicative of a transition from a more open state to a more closed state on binding of the nucleotide substrate and to an intermediate state with the bound nucleotide product. Death-associated protein kinase (DAPK) is a member of the Ca{sup 2+}/calmodulin-regulated family of serine/threonine protein kinases. The role of the kinase activity of DAPK in eukaryotic cell apoptosis and the ability of bioavailable DAPK inhibitors to rescue neuronal death after brain injury have made it a drug-discovery target for neurodegenerative disorders. In order to understand the recognition of nucleotides by DAPK and to gain insight into DAPK catalysis, the crystal structure of human DAPK was solved in complex with ADP and Mg{sup 2+} at 1.85 Å resolution. ADP is a product of the kinase reaction and product release is considered to be the rate-limiting step of protein kinase catalytic cycles. The structure of DAPK–ADP–Mg{sup 2+} was compared with a newly determined DAPK–AMP-PNP–Mg{sup 2+} structure and the previously determined apo DAPK structure (PDB code http://scripts.iucr.org/cgi-bin/cr.cgi?rm). The comparison shows that nucleotide-induced changes are localized to the glycine-rich loop region of DAPK.

  7. A novel protein kinase is essential in bloodstream Trypanosoma brucei.

    PubMed

    Jensen, Bryan C; Booster, Nick; Vidadala, Rama Subba Rao; Maly, Dustin J; Parsons, Marilyn

    2016-07-01

    Human African trypanosomiasis a fatal disease for which no vaccines exist and treatment regimens are difficult. Here, we evaluate a Trypanosoma brucei protein kinase, AEK1, as a potential drug target. Conditional knockouts confirmed AEK1 essentiality in bloodstream forms. For chemical validation, we overcame the lack of AEK1 inhibitors by creating parasites expressing a single, functional analog-sensitive AEK1 allele. Analog treatment of mice infected with this strain delayed parasitemia and death, with one-third of animals showing no parasitemia. These studies validate AEK1 as a drug target and highlight the need for further understanding of its function. PMID:27018127

  8. Protein kinase A dependent membrane protein phosphorylation and chloride conductance in endosomal vesicles from kidney cortex

    SciTech Connect

    Reenstra, W.W.; Bae, H.R.; Verkman, A.S. Univ. of California, San Francisco ); Sabolic, I. Harvard Medical School, Charlestown, MA )

    1992-01-14

    Regulation of Cl conductance by protein kinase A action, cell-free measurements of Cl transport and membrane protein phosphorylation were carried out in apical endocytic vesicles from rabbit kidney proximal tubule. Cl transport was measured by a stopped-flow quenching assay in endosomes labeled in vivo with the fluorescent Cl indicator 6-methoxy-N-(3-sulfopropyl)quinolinium. Phosphorylation was studied in a purified endosomal preparation by SDS-PAGE and autoradiography of membrane proteins labeled by ({gamma}-{sup 32}P)ATP. These results suggest that, in a cell-free system, protein kinase A increases Cl conductance in endosomes from kidney proximal tubule by a phosphorylation mechanism. The labeled protein has a size similar to that of the 64-kDa putative kidney Cl channel reported by Landry et al. but is much smaller than the {approximately}170-kDa cystic fibrosis transmembrane conductance regulatory protein.

  9. Phosphorylation of a Ras-related GTP-binding protein, Rap-1b, by a neuronal Ca2+/calmodulin-dependent protein kinase, CaM kinase Gr.

    PubMed Central

    Sahyoun, N; McDonald, O B; Farrell, F; Lapetina, E G

    1991-01-01

    A neuron-specific Ca2+/calmodulin-dependent protein kinase, CaM kinase Gr, phosphorylates selectively a Ras-related GTP-binding protein (Rap-1b) that is enriched in brain tissue. The phosphorylation reaction achieves a stoichiometry of about 1 and involves a serine residue near the carboxyl terminus of the substrate. Both CaM kinase Gr and cAMP-dependent protein kinase, but not CaM kinase II, phosphorylate identical or contiguous serine residues in Rap-1b. The rate of phosphorylation of Rap-1b by CaM kinase Gr is enhanced following autophosphorylation of the protein kinase. Other low molecular weight GTP-binding proteins belonging to the Ras superfamily, including Rab-3A, Rap-2b, and c-Ha-ras p21, are not phosphorylated by CaM kinase Gr. The phosphorylation of Rap-1b itself can be reversed by an endogenous brain phosphoprotein phosphatase. These observations provide a potential connection between a neuronal Ca2(+)-signaling pathway and a specific low molecular weight GTP-binding protein that may regulate neuronal transmembrane signaling, vesicle transport, or neurotransmitter release. Images PMID:1901412

  10. Molecular cloning of a docking protein, BRDG1, that acts downstream of the Tec tyrosine kinase

    PubMed Central

    Ohya, Ken-ichi; Kajigaya, Sachiko; Kitanaka, Akira; Yoshida, Koji; Miyazato, Akira; Yamashita, Yoshihiro; Yamanaka, Takeo; Ikeda, Uichi; Shimada, Kazuyuki; Ozawa, Keiya; Mano, Hiroyuki

    1999-01-01

    Tec, Btk, Itk, Bmx, and Txk constitute the Tec family of protein tyrosine kinases (PTKs), a family with the distinct feature of containing a pleckstrin homology (PH) domain. Tec acts in signaling pathways triggered by the B cell antigen receptor (BCR), cytokine receptors, integrins, and receptor-type PTKs. Although upstream regulators of Tec family kinases are relatively well characterized, little is known of the downstream effectors of these enzymes. The yeast two-hybrid system has identified several proteins that interact with the kinase domain of Tec, one of which is now revealed to be a previously unknown docking protein termed BRDG1 (BCR downstream signaling 1). BRDG1 contains a proline-rich motif, a PH domain, and multiple tyrosine residues that are potential target sites for Src homology 2 domains. In 293 cells expressing recombinant BRDG1 and various PTKs, Tec and Pyk2, but not Btk, Bmx, Lyn, Syk, or c-Abl, induced marked phosphorylation of BRDG1 on tyrosine residues. BRDG1 was also phosphorylated by Tec directly in vitro. Efficient phosphorylation of BRDG1 by Tec required the PH and SH2 domains as well as the kinase domain of the latter. Furthermore, BRDG1 was shown to participate in a positive feedback loop by increasing the activity of Tec. BRDG1 transcripts are abundant in the human B cell line Ramos, and the endogenous protein underwent tyrosine phosphorylation in response to BCR stimulation. BRDG1 thus appears to function as a docking protein acting downstream of Tec in BCR signaling. PMID:10518561

  11. Protein kinase inhibitors in the treatment of inflammatory and autoimmune diseases

    PubMed Central

    Patterson, H; Nibbs, R; McInnes, I; Siebert, S

    2014-01-01

    Protein kinases mediate protein phosphorylation, which is a fundamental component of cell signalling, with crucial roles in most signal transduction cascades: from controlling cell growth and proliferation to the initiation and regulation of immunological responses. Aberrant kinase activity is implicated in an increasing number of diseases, with more than 400 human diseases now linked either directly or indirectly to protein kinases. Protein kinases are therefore regarded as highly important drug targets, and are the subject of intensive research activity. The success of small molecule kinase inhibitors in the treatment of cancer, coupled with a greater understanding of inflammatory signalling cascades, has led to kinase inhibitors taking centre stage in the pursuit for new anti-inflammatory agents for the treatment of immune-mediated diseases. Herein we discuss the main classes of kinase inhibitors; namely Janus kinase (JAK), mitogen-activated protein kinase (MAPK) and spleen tyrosine kinase (Syk) inhibitors. We provide a mechanistic insight into how these inhibitors interfere with kinase signalling pathways and discuss the clinical successes and failures in the implementation of kinase-directed therapeutics in the context of inflammatory and autoimmune disorders. PMID:24313320

  12. SAICAR induces protein kinase activity of PKM2 that is necessary for sustained proliferative signaling of cancer cells

    PubMed Central

    Keller, Kirstie E.; Doctor, Zainab M.; Dwyer, Zachary W.; Lee, Young-Sam

    2014-01-01

    Abnormal metabolism and sustained proliferation are hallmarks of cancer. Pyruvate kinase M2 (PKM2) is a metabolic enzyme that plays important roles in both processes. Recently, PKM2 was shown to have protein kinase activity phosphorylating histone H3 and promoting cancer cell proliferation. However, the mechanism and extent of this novel protein kinase in cancer cells remain unclear. Here, we report that binding of SAICAR, a metabolite abundant in proliferating cells, induces PKM2’s protein kinase activity in vitro and in cells. Protein microarray experiments revealed that more than 100 human proteins– mostly protein kinases– are phosphorylated by PKM2-SAICAR. In particular, PKM2-SAICAR phosphorylates and activates Erk1/2, which in turn sensitizes PKM2 for SAICAR-binding through phosphorylation. Additionally, PKM2-SAICAR was necessary to induce sustained Erk1/2 activation and mitogen-induced cell proliferation. Thus, the ligand-induced protein kinase activity from PKM2 is a mechanism that directly couples cell proliferation with intracellular metabolic status. PMID:24606918

  13. Phospholamban and troponin I are substrates for protein kinase C in vitro but not in intact beating guinea pig hearts

    SciTech Connect

    Edes, I.; Kranias, E.G. )

    1990-08-01

    The incorporation of (32P)inorganic phosphate into membranous, myofibrillar, and cytosolic proteins was studied in Langendorff-perfused guinea pig hearts treated with phorbol 12-myristate 13-acetate (PMA) or 1,2-dioctanoylglycerol (D8G), which are potent activators of protein kinase C. Control hearts were perfused with an inactive phorbol ester (4 alpha-phorbol 12,13-didecanoate), which does not cause activation of protein kinase C. To ensure the blockade of different receptor systems, the perfusions were carried out in the presence of prazosin, propranolol, and atropine. Perfusion of hearts with either PMA (4 microM) or D8G (200 microM) was associated with a negative effect on left ventricular inotropy and relaxation. Examination of the 32P incorporation into various fractions revealed that there were no increases in the degree of phosphorylation of phospholamban in sarcoplasmic reticulum, and troponin I and C protein in the myofibrils, although these proteins were found to be substrates for protein kinase C in vitro. However, in the same hearts, there were significant changes in the 32P incorporation into a 28-kDa cytosolic-protein. Examination of the activity levels of protein kinase C in hearts perfused with PMA indicated a redistribution of this activity from the cytosolic to the membrane fraction, suggesting the activation of the enzyme in vivo. These findings indicate that cardiac regulatory phosphoproteins, which may be phosphorylated by protein kinase C in vitro, are not substrates for protein kinase C in beating hearts perfused with phorbol esters or diacylglycerol analogues.

  14. Spatial Phosphoprotein Profiling Reveals a Compartmentalized Extracellular Signal-regulated Kinase Switch Governing Neurite Growth and Retraction

    SciTech Connect

    Wang, Yingchun; Yang, Feng; Fu, Yi; Huang, Xiahe; Wang, Wei; Jiang, Xining; Gritsenko, Marina A.; Zhao, Rui; Monroe, Matthew E.; Pertz, Olivier C.; Purvine, Samuel O.; Orton, Daniel J.; Jacobs, Jon M.; Camp, David G.; Smith, Richard D.; Klemke, Richard L.

    2011-05-20

    Abstract - Brain development and spinal cord regeneration require neurite sprouting and growth cone navigation in response to extension and collapsing factors present in the extracellular environment. These external guidance cues control neurite growth cone extension and retraction processes through intracellular protein phosphorylation of numerous cytoskeletal, adhesion, and polarity complex signaling proteins. However, the complex kinase/substrate signaling networks that mediate neuritogenesis have not been investigated. Here, we compare the neurite phosphoproteome under growth and retraction conditions using neurite purification methodology combined with mass spectrometry. More than 4000 non-redundant phosphorylation sites from 1883 proteins have been annotated and mapped to signaling pathways that control kinase/phosphatase networks, cytoskeleton remodeling, and axon/dendrite specification. Comprehensive informatics and functional studies revealed a compartmentalized ERK activation/deactivation cytoskeletal switch that governs neurite growth and retraction, respectively. Our findings provide the first system-wide analysis of the phosphoprotein signaling networks that enable neurite growth and retraction and reveal an important molecular switch that governs neuritogenesis.

  15. Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation.

    PubMed Central

    King, W G; Mattaliano, M D; Chan, T O; Tsichlis, P N; Brugge, J S

    1997-01-01

    Cell attachment to fibronectin stimulates the integrin-dependent interaction of p85-associated phosphatidylinositol (PI) 3-kinase with integrin-dependent focal adhesion kinase (FAK) as well as activation of the Ras/mitogen-activated protein (MAP) kinase pathway. However, it is not known if this PI 3-kinase-FAK interaction increases the synthesis of the 3-phosphorylated phosphoinositides (3-PPIs) or what role, if any, is played by activated PI 3-kinase in integrin signaling. We demonstrate here the integrin-dependent accumulation of the PI 3-kinase products, PI 3,4-bisphosphate [PI(3,4)P2] and PI(3,4,5)P3, as well as activation of AKT kinase, a serine/threonine kinase that can be stimulated by binding of PI(3,4)P2. The PI 3-kinase inhibitors wortmannin and LY294002 significantly decreased the integrin-induced accumulation of the 3-PPIs and activation of AKT kinase, without having significant effects on the levels of PI(4,5)P2 or tyrosine phosphorylation of paxillin. These inhibitors also reduced cell adhesion/spreading onto fibronectin but had no effect on attachment to polylysine. Interestingly, integrin-mediated Erk-2, Mek-1, and Raf-1 activation, but not Ras-GTP loading, was inhibited at least 80% by wortmannin and LY294002. In support of the pharmacologic results, fibronectin activation of Erk-2 and AKT kinases was completely inhibited by overexpression of a dominant interfering p85 subunit of PI 3-kinase. We conclude that integrin-mediated adhesion to fibronectin results in the accumulation of the PI 3-kinase products PI(3,4)P2 and PI(3,4,5)P3 as well as the PI 3-kinase-dependent activation of the kinases Raf-1, Mek-1, Erk-2, and AKT and that PI 3-kinase may function upstream of Raf-1 but downstream of Ras in integrin activation of Erk-2 MAP and AKT kinases. PMID:9234699

  16. Nuclear translocation of doublecortin-like protein kinase and phosphorylation of a transcription factor JDP2

    SciTech Connect

    Nagamine, Tadashi; Nomada, Shohgo; Onouchi, Takashi; Kameshita, Isamu; Sueyoshi, Noriyuki

    2014-03-28

    Highlights: • Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase. • In living cells, DCLK was cleaved into two functional fragments. • zDCLK(kinase) was translocated into the nucleus by osmotic stresses. • Jun dimerization protein 2 (JDP2) was identified as zDCLK(kinase)-binding protein. • JDP2 was efficiently phosphorylated by zDCLK(kinase) only when histone was present. - Abstract: Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase predominantly expressed in brain. In a previous paper, we reported that zebrafish DCLK2 (zDCLK) was cleaved into two functional fragments; the N-terminal zDCLK(DC + SP) with microtubule-binding activity and the C-terminal zDCLK(kinase) with a Ser/Thr protein kinase activity. In this study, we demonstrated that zDCLK(kinase) was widely distributed in the cytoplasm and translocated into the nucleus when the cells were treated under hyperosmotic conditions with NaCl or mannitol. By two-hybrid screening using the C-terminal domain of DCLK, Jun dimerization protein 2 (JDP2), a nuclear transcription factor, was identified as zDCLK(kinase)-binding protein. Furthermore, JDP2 served as an efficient substrate for zDCLK(kinase) only when histone was present. These results suggest that the kinase fragment of DCLK is translocated into the nucleus upon hyperosmotic stresses and that the kinase efficiently phosphorylates JDP2, a possible target in the nucleus, with the aid of histones.

  17. Global discovery of protein kinases and other nucleotide-binding proteins by mass spectrometry.

    PubMed

    Xiao, Yongsheng; Wang, Yinsheng

    2016-09-01

    Nucleotide-binding proteins, such as protein kinases, ATPases and GTP-binding proteins, are among the most important families of proteins that are involved in a number of pivotal cellular processes. However, global study of the structure, function, and expression level of nucleotide-binding proteins as well as protein-nucleotide interactions can hardly be achieved with the use of conventional approaches owing to enormous diversity of the nucleotide-binding protein family. Recent advances in mass spectrometry (MS) instrumentation, coupled with a variety of nucleotide-binding protein enrichment methods, rendered MS-based proteomics a powerful tool for the comprehensive characterizations of the nucleotide-binding proteome, especially the kinome. Here, we review the recent developments in the use of mass spectrometry, together with general and widely used affinity enrichment approaches, for the proteome-wide capture, identification and quantification of nucleotide-binding proteins, including protein kinases, ATPases, GTPases, and other nucleotide-binding proteins. The working principles, advantages, and limitations of each enrichment platform in identifying nucleotide-binding proteins as well as profiling protein-nucleotide interactions are summarized. The perspectives in developing novel MS-based nucleotide-binding protein detection platform are also discussed. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 35:601-619, 2016. PMID:25376990

  18. Inhibition of small G proteins by clostridium sordellii lethal toxin activates cdc2 and MAP kinase in Xenopus oocytes.

    PubMed

    Rime, H; Talbi, N; Popoff, M R; Suziedelis, K; Jessus, C; Ozon, R

    1998-12-15

    The lethal toxin (LT) from Clostridium sordellii is a glucosyltransferase that modifies and inhibits small G proteins of the Ras family, Ras and Rap, as well as Rac proteins. LT induces cdc2 kinase activation and germinal vesicle breakdown (GVBD) when microinjected into full-grown Xenopus oocytes. Toxin B from Clostridium difficile, that glucosylates and inactivates Rac proteins, does not induce cdc2 activation, indicating that proteins of the Ras family, Ras and/or Rap, negatively regulate cdc2 kinase activation in Xenopus oocyte. In oocyte extracts, LT catalyzes the incorporation of [14C]glucose into a group of proteins of 23 kDa and into one protein of 27 kDa. The 23-kDa proteins are recognized by anti-Rap1 and anti-Rap2 antibodies, whereas the 27-kDa protein is recognized by several anti-Ras antibodies and probably corresponds to K-Ras. Microinjection of LT into oocytes together with UDP-[14C]glucose results in a glucosylation pattern similar to the in vitro glucosylation, indicating that the 23- and 27-kDa proteins are in vivo substrates of LT. In vivo time-course analysis reveals that the 27-kDa protein glucosylation is completed within 2 h, well before cdc2 kinase activation, whereas the 23-kDa proteins are partially glucosylated at GVBD. This observation suggests that the 27-kDa Ras protein could be the in vivo target of LT allowing cdc2 kinase activation. Interestingly, inactivation of Ras proteins does not prevent the phosphorylation of c-Raf1 and the activation of MAP kinase that occurs normally around GVBD. PMID:9882492

  19. Casein kinase II protein kinase is bound to lamina-matrix and phosphorylates lamin-like protein in isolated pea nuclei

    NASA Technical Reports Server (NTRS)

    Li, H.; Roux, S. J.

    1992-01-01

    A casein kinase II (CK II)-like protein kinase was identified and partially isolated from a purified envelope-matrix fraction of pea (Pisum sativum L.) nuclei. When [gamma-32P]ATP was directly added to the envelope-matrix preparation, the three most heavily labeled protein bands had molecular masses near 71, 48, and 46 kDa. Protein kinases were removed from the preparation by sequential extraction with Triton X-100, EGTA, 0.3 M NaCl, and a pH 10.5 buffer, but an active kinase still remained bound to the remaining lamina-matrix fraction after these treatments. This kinase had properties resembling CK II kinases previously characterized from animal and plant sources: it preferred casein as an artificial substrate, could use GTP as efficiently as ATP as the phosphoryl donor, was stimulated by spermine, was calcium independent, and had a catalytic subunit of 36 kDa. Some animal and plant CK II kinases have regulatory subunits near 29 kDa, and a lamina-matrix-bound protein of this molecular mass was recognized on immunoblot by anti-Drosophila CK II polyclonal antibodies. Also found associated with the envelope-matrix fraction of pea nuclei were p34cdc2-like and Ca(2+)-dependent protein kinases, but their properties could not account for the protein kinase activity bound to the lamina. The 71-kDa substrate of the CK II-like kinase was lamin A-like, both in its molecular mass and in its cross-reactivity with anti-intermediate filament antibodies. Lamin phosphorylation is considered a crucial early step in the entry of cells into mitosis, so lamina-bound CK II kinases may be important control points for cellular proliferation.

  20. Ras protein/cAMP-dependent protein kinase signaling is negatively regulated by a deubiquitinating enzyme, Ubp3, in yeast.

    PubMed

    Li, Yang; Wang, Yuqi

    2013-04-19

    Ras proteins and cAMP-dependent protein kinase (protein kinase A, PKA) are important components of a nutrient signaling pathway that mediates cellular responses to glucose in yeast. The molecular mechanisms that regulate Ras/PKA-mediated signaling remain to be fully understood. Here, we provide evidence that Ras/PKA signaling is negatively regulated by a deubiquitinating enzyme, Ubp3. Disrupting the activity of Ubp3 leads to hyperactivation of PKA, as evidenced by much enhanced phosphorylation of PKA substrates, decreased accumulation of glycogen, larger cell size, and increased sensitivity to heat shock. Levels of intracellular cAMP and the active forms of Ras proteins are also elevated in the ubp3Δ mutant. Consistent with a possibility that the increased cAMP is responsible for the abnormal signaling behavior of the ubp3Δ mutant, overexpressing PDE2, which encodes a phosphodiesterase that hydrolyzes cAMP, significantly relieves the cell size increase and heat shock sensitivity of the mutant. Further analysis reveals that Ubp3 interacts with a Ras GTPase-accelerating protein, Ira2, and regulates its level of ubiquitination. Together, our data indicate that Ubp3 is a new regulator of the Ras/PKA signaling pathway and suggest that Ubp3 regulates this pathway by controlling the ubiquitination of Ras GTPase-accelerating protein Ira2. PMID:23476013

  1. A- Kinase Anchoring Protein 150 Controls Protein Kinase C-mediated Phosphorylation and Sensitization of TRPV1

    PubMed Central

    Jeske, Nathaniel A.; Patwardhan, Amol M.; Ruparel, Nikita B.; Akopian, Armen N; Shapiro, Mark S.; Henry, Michael A.

    2009-01-01

    Post-translational modifications on various receptor proteins have significant effects on receptor activation. For the Transient Receptor Potential family V type 1 (TRPV1) receptor, phosphorylation of certain serine/threonine amino acid residues sensitizes the receptor to activation by capsaicin and heat. Although Protein Kinase C (PKC) phosphorylates TRPV1 on certain serine/threonine residues, it is not completely understood how PKC functionally associates with TRPV1. Recent studies have reported that the A-kinase Anchoring Protein 150 (AKAP150) mediates PKA phosphorylation of TRPV1 in several nociceptive models. Here, we demonstrate that AKAP150 also mediates PKC-directed phosphorylation and sensitization of TRPV1. In cultured rat trigeminal ganglia, immunocytochemical analyses demonstrate co-localization of AKAP150 and PKC isoforms α, δ, ε, and γ in TRPV1-positive neurons. Additional biochemical evidence supports immunocytochemical results, indicating that AKAP150 preferentially associates with certain PKC isoforms in rat trigeminal ganglia neurons. Employing siRNA-mediated knock-down of AKAP150 expression, we demonstrate that PKC-mediated phosphorylation of TRPV1 and sensitization to a capsaicin response is dependent upon functional expression of the AKAP150 scaffolding protein. Furthermore, PKC-induced sensitization to a thermal stimulus is abrogated in AKAP150 knock-out animals relative to wild-type. Collectively, results from these studies indicate that the AKAP150 scaffolding protein functionally modulates PKC-mediated phosphorylation and sensitization of the TRPV1 receptor in rat sensory neurons, suggesting the scaffolding protein to be an integral regulator of peripheral inflammatory hyperalgesia. PMID:19767149

  2. Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley.

    PubMed

    Nakamura, Shingo; Pourkheirandish, Mohammad; Morishige, Hiromi; Kubo, Yuta; Nakamura, Masako; Ichimura, Kazuya; Seo, Shigemi; Kanamori, Hiroyuki; Wu, Jianzhong; Ando, Tsuyu; Hensel, Goetz; Sameri, Mohammad; Stein, Nils; Sato, Kazuhiro; Matsumoto, Takashi; Yano, Masahiro; Komatsuda, Takao

    2016-03-21

    Seed dormancy has fundamental importance in plant survival and crop production; however, the mechanisms regulating dormancy remain unclear [1-3]. Seed dormancy levels generally decrease during domestication to ensure that crops successfully germinate in the field. However, reduction of seed dormancy can cause devastating losses in cereals like wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) due to pre-harvest sprouting, the germination of mature seed (grain) on the mother plant when rain occurs before harvest. Understanding the mechanisms of dormancy can facilitate breeding of crop varieties with the appropriate levels of seed dormancy [4-8]. Barley is a model crop [9, 10] and has two major seed dormancy quantitative trait loci (QTLs), SD1 and SD2, on chromosome 5H [11-19]. We detected a QTL designated Qsd2-AK at SD2 as the single major determinant explaining the difference in seed dormancy between the dormant cultivar "Azumamugi" (Az) and the non-dormant cultivar "Kanto Nakate Gold" (KNG). Using map-based cloning, we identified the causal gene for Qsd2-AK as Mitogen-activated Protein Kinase Kinase 3 (MKK3). The dormant Az allele of MKK3 is recessive; the N260T substitution in this allele decreases MKK3 kinase activity and appears to be causal for Qsd2-AK. The N260T substitution occurred in the immediate ancestor allele of the dormant allele, and the established dormant allele became prevalent in barley cultivars grown in East Asia, where the rainy season and harvest season often overlap. Our findings show fine-tuning of seed dormancy during domestication and provide key information for improving pre-harvest sprouting tolerance in barley and wheat. PMID:26948880

  3. Protein kinase A and protein kinase C modulators have reciprocal effects on mesenchymal condensation during skin appendage morphogenesis.

    PubMed

    Noveen, A; Jiang, T X; Chuong, C M

    1995-10-01

    The molecular signaling of secondary induction is a fundamental process in organogenesis during embryonic development. To study the signal transduction pathways involved, we used developing chicken skin as a model and focused on the roles of intracellular signaling during feather morphogenesis. Protein kinase C (PKC) immunoreactivity increases in the whole layer of forming dermis around H and H stage 30. This is followed by a gradual and highly localized decrease of PKC expression immediately beneath each forming feather germ. In contrast, cAMP response element binding protein (CREB) is ubiquitously expressed in both epithelium and mesenchyme. From stage 29 on, phosphorylated CREB (P-CREB), reflecting the activity of protein kinase A (PKA), begins to be seen in placode but not in interplacode epithelia. P-CREB is also expressed in bud mesenchyme transiently between stages 33 and 36, but not in the interbud mesenchyme. The presence and activity of PKC, PKA, and P-CREB in developing chicken skin are further characterized by immunoblot, kinase activity, and gel shift assays. To explore their physiological significance, embryonic chicken dorsal skin explants were treated with different modulators in medium or in beads for localized effects. The results showed that PKA activators and PKC inhibitors can expand a feather bud domain by enhancing dermal condensation, while PKC activators and PKA inhibitors can expand interbud domains. Neural cell adhesion molecule (N-CAM) is involved in dermal condensation. We observed that activation of PKA causes diffused expression of N-CAM in mesenchyme while activation of PKC causes the disappearance of N-CAM in precondensed mesenchymal regions. A model of how the well-concerted PKA and PKC signaling may be involved in the formation and size regulation of dermal condensation is presented. PMID:7556946

  4. The structure of Legionella pneumophila LegK4 type four secretion system (T4SS) effector reveals a novel dimeric eukaryotic-like kinase

    PubMed Central

    Flayhan, Ali; Bergé, Célia; Baïlo, Nathalie; Doublet, Patricia; Bayliss, Richard; Terradot, Laurent

    2015-01-01

    Bacterial pathogens subvert signalling pathways to promote invasion and/or replication into the host. LegK1-4 proteins are eukaryotic-like serine/threonine kinases that are translocated by the Dot/Icm type IV secretion system (T4SS) of several Legionella pneumophila strains. We present the crystal structures of an active fragment of the LegK4 protein in apo and substrate-bound states. The structure of LegK41–445 reveals a eukaryotic-like kinase domain flanked by a novel cap domain and a four-helix bundle. The protein self-assembles through interactions mediated by helices αF and αG that generate a dimeric interface not previously observed in a protein kinase. The helix αG is displaced compared to previous kinase structures, and its role in stabilization of the activation loop is taken on by the dimerisation interface. The apo-form of the protein has an open conformation with a disordered P-loop but a structured activation segment in absence of targeted phosphorylation. The nucleotide-binding site of LegK4 contains an unusual set of residues that mediate non-canonical interactions with AMP-PNP. Nucleotide binding results in limited changes in the active site, suggesting that LegK4 constitutive kinase activity does not depend on phosphorylation of the activation loop but on the stabilizing effects of the dimer. PMID:26419332

  5. Spatial Organization in Protein Kinase A Signaling Emerged at the Base of Animal Evolution.

    PubMed

    Peng, Mao; Aye, Thin Thin; Snel, Berend; van Breukelen, Bas; Scholten, Arjen; Heck, Albert J R

    2015-07-01

    In phosphorylation-directed signaling, spatial and temporal control is organized by complex interaction networks that diligently direct kinases toward distinct substrates to fine-tune specificity. How these protein networks originate and evolve into complex regulatory machineries are among the most fascinating research questions in biology. Here, spatiotemporal signaling is investigated by tracing the evolutionary dynamics of each functional domain of cAMP-dependent protein kinase (PKA) and its diverse set of A-kinase anchoring proteins (AKAPs). Homologues of the catalytic (PKA-C) and regulatory (PKA-R) domains of the (PKA-R)2-(PKA-C)2 holoenzyme were found throughout evolution. Most variation was observed in the RIIa of PKA-R, crucial for dimerization and docking to AKAPs. The RIIa domain was not observed in all PKA-R homologues. In the fungi and distinct protist lineages, the RIIa domain emerges within PKA-R, but it displays large sequence variation. These organisms do not harbor homologues of AKAPs, suggesting that efficient docking to direct spatiotemporal PKA activity evolved in multicellular eukaryotes. To test this in silico hypothesis, we experimentally screened organisms with increasing complexity by cAMP-based chemical proteomics to reveal that the occurrence of PKA-AKAP interactions indeed coincided and expanded within vertebrates, suggesting a crucial role for AKAPs in the advent of metazoan multicellularity. PMID:26066639

  6. Protein Kinase C alpha (PKCα) dependent signaling mediates endometrial cancer cell growth and tumorigenesis

    PubMed Central

    Haughian, James M.; Reno, Elaine M.; Thorne, Alicia M.; Bradford, Andrew P.

    2009-01-01

    Endometrial cancer is the most common invasive gynecologic malignancy, yet molecular mechanisms and signaling pathways underlying its etiology and pathophysiology remain poorly characterized. We sought to define a functional role for the protein kinase C (PKC) isoform, PKCα, in an established cell model of endometrial adenocarcinoma. Ishikawa cells depleted of PKCα protein grew slower, formed fewer colonies in anchorage-independent growth assays and exhibited impaired xenograft tumor formation in nude mice. Consistent with impaired growth, PKCα knockdown increased levels of the cyclin dependent kinase (CDK) inhibitors p21Cip1/WAF1 (p21) and p27Kip1 (p27). Despite the absence of functional phosphatase and tensin homologue (PTEN) protein in Ishikawa cells, PKCα knockdown reduced Akt phosphorylation at serine 473 and concomitantly inhibited phosphorylation of the Akt target, glycogen synthase kinase-3β (GSK-3β). PKCα knockdown also resulted in decreased basal ERK phosphorylation and attenuated ERK activation following EGF stimulation. p21 and p27 expression was not increased by treatment of Ishikawa cells with ERK and Akt inhibitors, suggesting PKCα regulates CDK expression independently of Akt and ERK. Immunohistochemical analysis of grade 1 endometrioid adenocarcinoma revealed aberrant PKCα expression, with foci of elevated PKCα staining, not observed in normal endometrium. These studies demonstrate a critical role for PKCα signaling in endometrial tumorigenesis by regulating expression of CDK inhibitors p21 and p27 and activation of Akt and ERK dependent proliferative pathways. Thus, targeting PKCα may provide novel therapeutic options in endometrial tumors. PMID:19672862

  7. Conserved autophosphorylation pattern in activation loops and juxtamembrane regions of Mycobacterium tuberculosis Ser/Thr protein kinases.

    PubMed

    Durán, Rosario; Villarino, Andrea; Bellinzoni, Marco; Wehenkel, Annemarie; Fernandez, Pablo; Boitel, Brigitte; Cole, Stewart T; Alzari, Pedro M; Cerveñansky, Carlos

    2005-08-01

    The identification of phosphorylation sites in proteins provides a powerful tool to study signal transduction pathways and to establish interaction networks involving signaling elements. Using different strategies to identify phosphorylated residues, we report here mass spectrometry studies of the entire intracellular regions of four 'receptor-like' protein kinases from Mycobacterium tuberculosis (PknB, PknD, PknE, and PknF), each consisting of an N-terminal kinase domain and a juxtamembrane region of varying length (26-100 residues). The enzymes were observed to incorporate different numbers of phosphates, from five in PknB up to 11 in PknD or PknE, and all detected sites were dephosphorylated by the cognate mycobacterial phosphatase PstP. Comparison of the phosphorylation patterns reveals two recurrent clusters of pThr/pSer residues, respectively, in their activation loops and juxtamembrane regions, which have a distinct effect on kinase activity. All studied kinases have at least two conserved phosphorylated residues in their activation loop and mutations of these residues in PknB significantly decreased the kinase activity, whereas deletion of the entire juxtamembrane regions in PknB and PknF had little effect on their activities. These results reinforce the hypothesis that mycobacterial kinase regulation includes a conserved activation loop mechanism, and suggest that phosphorylation sites in the juxtamembrane region might be involved in putative kinase-mediated signaling cascades. PMID:15967413

  8. A new class of mutations reveals a novel function for the original phosphatidylinositol 3-kinase binding site

    PubMed Central

    Hong, Y. Kate; Mikami, Aki; Schaffhausen, Brian; Jun, Toni; Roberts, Thomas M.

    2003-01-01

    Previous studies have demonstrated that the specificity of Src homology 2 (SH2) and phosphotyrosine-binding domain interactions are mediated by phosphorylated tyrosines and their neighboring amino acids. Two of the first phosphotyrosine-based binding sites were found on middle T antigen of polyoma virus. Tyr-250 acts as a binding site for ShcA, whereas Tyr-315 forms a binding site for the SH2 domain of the p85 subunit of phosphatidylinositol 3-kinase. However, genetic analysis of a given phosphotyrosine's role in signaling can be complicated when it serves as a binding site for multiple proteins. The situation is particularly difficult when the phosphotyrosine serves as a secondary binding site for a protein with primary binding determinates elsewhere. Mutation of a tyrosine residue to phenylalanine blocks association of all bound proteins. Here we show that the mutation of the amino acids following the phosphorylated tyrosine to alanine can reveal phosphotyrosine function as a secondary binding site, while abrogating the phosphotyrosine motif's role as a primary binding site for SH2 domains. We tested this methodology by using middle T antigen. Our results suggest that Tyr-250 is a secondary binding site for phosphatidylinositol 3-kinase, whereas Tyr-315 is a secondary binding site for a yet-to-be-identified protein, which is critical for transformation. PMID:12881485

  9. Functions of AMP-activated protein kinase in adipose tissue

    PubMed Central

    Daval, Marie; Foufelle, Fabienne; Ferré, Pascal

    2006-01-01

    AMP-activated protein kinase (AMPK) is involved in cellular energy homeostasis. Its functions have been extensively studied in muscles and liver. AMPK stimulates pathways which increase energy production (glucose transport, fatty acid oxidation) and switches off pathways which consume energy (lipogenesis, protein synthesis, gluconeogenesis). This has led to the concept that AMPK has an interesting pharmaceutical potential in situations of insulin resistance and it is indeed the target of existing drugs and hormones which improve insulin sensitivity. Adipose tissue is a key player in energy metabolism through the release of substrates and hormones involved in metabolism and insulin sensitivity. Activation of AMPK in adipose tissue can be achieved through situations such as fasting and exercise. Leptin and adiponectin as well as hypoglycaemic drugs are activators of adipose tissue AMPK. This activation probably involves changes in the AMP/ATP ratio and the upstream kinase LKB1. When activated, AMPK limits fatty acid efflux from adipocytes and favours local fatty acid oxidation. Since fatty acids have a key role in insulin resistance, especially in muscles, activating AMPK in adipose tissue might be found to be beneficial in insulin-resistant states, particularly as AMPK activation also reduces cytokine secretion in adipocytes. PMID:16709632

  10. Pyruvate kinase M2 is a phosphotyrosine-binding protein

    SciTech Connect

    Christofk, H.R.; Vander Heiden, M.G.; Wu, N.; Asara, J.M.; Cantley, L.C.

    2008-06-03

    Growth factors stimulate cells to take up excess nutrients and to use them for anabolic processes. The biochemical mechanism by which this is accomplished is not fully understood but it is initiated by phosphorylation of signalling proteins on tyrosine residues. Using a novel proteomic screen for phosphotyrosine-binding proteins, we have made the observation that an enzyme involved in glycolysis, the human M2 (fetal) isoform of pyruvate kinase (PKM2), binds directly and selectively to tyrosine-phosphorylated peptides. We show that binding of phosphotyrosine peptides to PKM2 results in release of the allosteric activator fructose-1,6-bisphosphate, leading to inhibition of PKM2 enzymatic activity. We also provide evidence that this regulation of PKM2 by phosphotyrosine signalling diverts glucose metabolites from energy production to anabolic processes when cells are stimulated by certain growth factors. Collectively, our results indicate that expression of this phosphotyrosine-binding form of pyruvate kinase is critical for rapid growth in cancer cells.

  11. Protein kinase Cη is targeted to lipid droplets.

    PubMed

    Suzuki, Michitaka; Iio, Yuri; Saito, Naoaki; Fujimoto, Toyoshi

    2013-04-01

    Protein kinase C (PKC) is a family of kinases that regulate numerous cellular functions. They are classified into three subfamilies, i.e., conventional PKCs, novel PKCs, and atypical PKCs, that have different domain structures. Generally, PKCs exist as a soluble protein in the cytosol in resting cells and they are recruited to target membranes upon stimulation. In the present study, we found that PKCη tagged with EGFP distributed in lipid droplets (LD) and induced a significant reduction in LD size. Two other novel PKCs, PKCδ and PKCε, also showed some concentration around LDs, but it was less distinct and less frequent than that of PKCη. Conventional and atypical PKCs (α, βII, γ, and ζ) did not show any preferential distribution around LDs. 1,2-Diacylglycerol, which can activate novel PKCs without an increase of Ca(2+) concentration, is the immediate precursor of triacylglycerol and exists in LDs. The present results suggest that PKCη modifies lipid metabolism by phosphorylating unidentified targets in LDs. PMID:23436195

  12. Protein kinase A activity and Hedgehog signaling pathway.

    PubMed

    Kotani, Tomoya

    2012-01-01

    Protein kinase A (PKA) is a well-known kinase that plays fundamental roles in a variety of biological processes. In Hedgehog-responsive cells, PKA plays key roles in proliferation and fate specification by modulating the transduction of Hedgehog signaling. In the absence of Hedgehog, a basal level of PKA activity represses the transcription of Hedgehog target genes. The main substrates of PKA in this process are the Ci/Gli family of bipotential transcription factors, which activate and repress Hedgehog target gene expression. PKA phosphorylates Ci/Gli, promoting the production of the repressor forms of Ci/Gli and thus repressing Hedgehog target gene expression. In contrast, the activation of Hedgehog signaling in response to Hedgehog increases the active forms of Ci/Gli, resulting in Hedgehog target gene expression. Because both decreased and increased levels of PKA activity cause abnormal cell proliferation and alter cell fate specification, the basal level of PKA activity in Hedgehog-responsive cells should be precisely regulated. However, the mechanism by which PKA activity is regulated remains obscure and appears to vary between cell types, tissues, and organisms. To date, two mechanisms have been proposed. One is a classical mechanism in which PKA activity is regulated by a small second messenger, cAMP; the other is a novel mechanism in which PKA activity is regulated by a protein, Misty somites. PMID:22391308

  13. A-kinase anchoring proteins as potential drug targets

    PubMed Central

    Tröger, Jessica; Moutty, Marie C; Skroblin, Philipp; Klussmann, Enno

    2012-01-01

    A-kinase anchoring proteins (AKAPs) crucially contribute to the spatial and temporal control of cellular signalling. They directly interact with a variety of protein binding partners and cellular constituents, thereby directing pools of signalling components to defined locales. In particular, AKAPs mediate compartmentalization of cAMP signalling. Alterations in AKAP expression and their interactions are associated with or cause diseases including chronic heart failure, various cancers and disorders of the immune system such as HIV. A number of cellular dysfunctions result from mutations of specific AKAPs. The link between malfunctions of single AKAP complexes and a disease makes AKAPs and their interactions interesting targets for the development of novel drugs. LINKED ARTICLES This article is part of a themed section on Novel cAMP Signalling Paradigms. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-2 PMID:22122509

  14. ACQUISITION AND LOSS OF NEURONAL CA2+/CALMODULIN-DEPENDENT PROTEIN KINASE DURING NEURONAL DIFFERENTIATION

    EPA Science Inventory

    Neurons display characteristic schedules by which they acquire and lose the neuron-specific Ca2+/calmodulin-dependent protein Kinase-Gr (CaM Kinase-Gr) during differentiation. uch schedules are exemplified by patterns of expression of this kinase in the developing cerebellum and ...

  15. A-Kinase Anchoring Proteins: From protein complexes to physiology and disease

    PubMed Central

    Carnegie, Graeme K.; Means, Christopher K.; Scott, John D.

    2009-01-01

    Protein scaffold complexes are a key mechanism by which a common signaling pathway can serve many different functions. Sequestering a signaling enzyme to a specific subcellular environment not only ensures that the enzyme is near its relevant targets, but also segregates this activity to prevent indiscriminate phosphorylation of other substrates. One family of diverse, well-studied scaffolding proteins are the A-kinase anchoring proteins (AKAPs). These anchoring proteins form multi-protein complexes that integrate cAMP signaling with other pathways and signaling events. In this review we focus on recent advances in the elucidation of AKAP function. PMID:19319965

  16. Inhibition of protein kinase CK2 by flavonoids and tyrphostins. A structural insight.

    PubMed

    Lolli, Graziano; Cozza, Giorgio; Mazzorana, Marco; Tibaldi, Elena; Cesaro, Luca; Donella-Deana, Arianna; Meggio, Flavio; Venerando, Andrea; Franchin, Cinzia; Sarno, Stefania; Battistutta, Roberto; Pinna, Lorenzo A

    2012-08-01

    Sixteen flavonoids and related compounds have been tested for their ability to inhibit three acidophilic Ser/Thr protein kinases: the Golgi apparatus casein kinase (G-CK) recently identified with protein FAM20C, protein kinase CK1, and protein kinase CK2. While G-CK is entirely insensitive to all compounds up to 40 μM concentration, consistent with the view that it is not a member of the kinome, and CK1 is variably inhibited in an isoform-dependent manner by fisetin and luteolin, and to a lesser extent by myricetin and quercetin, CK2 is susceptible to drastic inhibition by many flavonoids, displaying with six of them IC(50) values < 1 μM. A common denominator of these compounds (myricetin, quercetin, fisetin, kaempferol, luteolin, and apigenin) is a flavone scaffold with at least two hydroxyl groups at positions 7 and 4'. Inhibition is competitive with respect to the phospho-donor substrate ATP. The crystal structure of apigenin and luteolin in complex with the catalytic subunit of Zea mays CK2 has been solved, revealing their ability to interact with both the hinge region (Val116) and the positive area near Lys68 and the conserved water W1, the two main polar ligand anchoring points in the CK2 active site. Modeling experiments account for the observation that luteolin but not apigenin inhibits also CK1. The observation that luteolin shares its pyrocatechol moiety with tyrphostin AG99 prompted us to solve also the structure of this compound in complex with CK2. AG99 was found inside the ATP pocket, consistent with its mode of inhibition competitive with respect to ATP. As in the case of luteolin, the pyrocatechol group of AG99 is critical for binding, interacting with the positive area in the deepest part of the CK2 active site. PMID:22794353

  17. Association of Common Genetic Variants in Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 with Type 2 Diabetes Mellitus in a Chinese Han Population

    PubMed Central

    Li, Ting-Ting; Qiao, Hong; Tong, Hui-Xin; Zhuang, Tian-Wei; Wang, Tong-Tong

    2016-01-01

    Background: A study has identified several novel susceptibility variants of the mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) gene for type 2 diabetes mellitus (T2DM) within the German population. Among the variants, five single nucleotide polymorphisms (SNPs) of MAP4K4 (rs1003376, rs11674694, rs2236935, rs2236936, and rs6543087) showed significant association with T2DM or diabetes-related quantitative traits. We aimed to evaluate whether common SNPs in the MAP4K4 gene were associated with T2DM in the Chinese population. Methods: Five candidate SNPs were genotyped in 996 patients newly diagnosed with T2DM and in 976 control subjects, using the SNPscan™ method. All subjects were recruited from the Second Affiliated Hospital, Harbin Medical University from October 2010 to September 2013. We evaluated the T2DM risk conferred by individual SNPs and haplotypes using logistic analysis, and the association between the five SNPs and metabolic traits in the subgroups. Results: Of the five variants, SNP rs2236935T/C was significantly associated with T2DM in this study population (odds ratio = 1.293; 95% confidence interval: 1.034–1.619, P = 0.025). In addition, among the controls, rs1003376 was significantly associated with an increased body mass index (P = 0.045) and homeostatic model assessment-insulin resistance (P = 0.037). Conclusions: MAP4K4 gene is associated with T2DM in a Chinese Han population, and MAP4K4 gene variants may contribute to the risk toward the development of T2DM. PMID:27174326

  18. Identification and functional analysis of mitogen-activated protein kinase kinase kinase (MAPKKK) genes in canola (Brassica napus L.)

    PubMed Central

    Sun, Yun; Wang, Chen; Yang, Bo; Jiang, Yuan-Qing

    2014-01-01

    Mitogen-activated protein kinase (MAPK) signalling cascades, consisting of three types of reversibly phosphorylated kinases (MAPKKK, MAPKK, and MAPK), are involved in important processes including plant immunity and hormone responses. The MAPKKKs comprise the largest family in the MAPK cascades, yet only a few of these genes have been associated with physiological functions, even in the model plant Arabidopsis thaliana. Canola (Brassica napus L.) is one of the most important oilseed crops in China and worldwide. To explore MAPKKK functions in biotic and abiotic stress responses in canola, 66 MAPKKK genes were identified and 28 of them were cloned. Phylogenetic analysis of these canola MAPKKKs with homologous genes from representative species classified them into three groups (A–C), comprising four MAPKKKs, seven ZIKs, and 17 Raf genes. A further 15 interaction pairs between these MAPKKKs and the downstream BnaMKKs were identified through a yeast two-hybrid assay. The interactions were further validated through bimolecular fluorescence complementation (BiFC) analysis. In addition, by quantitative real-time reverse transcription–PCR, it was further observed that some of these BnaMAPKKK genes were regulated by different hormone stimuli, abiotic stresses, or fungal pathogen treatments. Interestingly, two novel BnaMAPKKK genes, BnaMAPKKK18 and BnaMAPKKK19, which could elicit hypersensitive response (HR)-like cell death when transiently expressed in Nicotiana benthamiana leaves, were successfully identified. Moreover, it was found that BnaMAPKKK19 probably mediated cell death through BnaMKK9. Overall, the present work has laid the foundation for further characterization of this important MAPKKK gene family in canola. PMID:24604738

  19. Identification and functional analysis of mitogen-activated protein kinase kinase kinase (MAPKKK) genes in canola (Brassica napus L.).

    PubMed

    Sun, Yun; Wang, Chen; Yang, Bo; Wu, Feifei; Hao, Xueyu; Liang, Wanwan; Niu, Fangfang; Yan, Jingli; Zhang, Hanfeng; Wang, Boya; Deyholos, Michael K; Jiang, Yuan-Qing

    2014-05-01

    Mitogen-activated protein kinase (MAPK) signalling cascades, consisting of three types of reversibly phosphorylated kinases (MAPKKK, MAPKK, and MAPK), are involved in important processes including plant immunity and hormone responses. The MAPKKKs comprise the largest family in the MAPK cascades, yet only a few of these genes have been associated with physiological functions, even in the model plant Arabidopsis thaliana. Canola (Brassica napus L.) is one of the most important oilseed crops in China and worldwide. To explore MAPKKK functions in biotic and abiotic stress responses in canola, 66 MAPKKK genes were identified and 28 of them were cloned. Phylogenetic analysis of these canola MAPKKKs with homologous genes from representative species classified them into three groups (A-C), comprising four MAPKKKs, seven ZIKs, and 17 Raf genes. A further 15 interaction pairs between these MAPKKKs and the downstream BnaMKKs were identified through a yeast two-hybrid assay. The interactions were further validated through bimolecular fluorescence complementation (BiFC) analysis. In addition, by quantitative real-time reverse transcription-PCR, it was further observed that some of these BnaMAPKKK genes were regulated by different hormone stimuli, abiotic stresses, or fungal pathogen treatments. Interestingly, two novel BnaMAPKKK genes, BnaMAPKKK18 and BnaMAPKKK19, which could elicit hypersensitive response (HR)-like cell death when transiently expressed in Nicotiana benthamiana leaves, were successfully identified. Moreover, it was found that BnaMAPKKK19 probably mediated cell death through BnaMKK9. Overall, the present work has laid the foundation for further characterization of this important MAPKKK gene family in canola. PMID:24604738

  20. QSAR Study of p56lck Protein Tyrosine Kinase Inhibitory Activity of Flavonoid Derivatives Using MLR and GA-PLS

    PubMed Central

    Fassihi, Afshin; Sabet, Razieh

    2008-01-01

    Quantitative relationships between molecular structure and p56lck protein tyrosine kinase inhibitory activity of 50 flavonoid derivatives are discovered by MLR and GA-PLS methods. Different QSAR models revealed that substituent electronic descriptors (SED) parameters have significant impact on protein tyrosine kinase inhibitory activity of the compounds. Between the two statistical methods employed, GA-PLS gave superior results. The resultant GA-PLS model had a high statistical quality (R2 = 0.74 and Q2 = 0.61) for predicting the activity of the inhibitors. The models proposed in the present work are more useful in describing QSAR of flavonoid derivatives as p56lck protein tyrosine kinase inhibitors than those provided previously. PMID:19325836

  1. Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis

    PubMed Central

    Roth Flach, Rachel J.; Skoura, Athanasia; Matevossian, Anouch; Danai, Laura V.; Zheng, Wei; Cortes, Christian; Bhattacharya, Samit K.; Aouadi, Myriam; Hagan, Nana; Yawe, Joseph C.; Vangala, Pranitha; Menendez, Lorena Garcia; Cooper, Marcus P.; Fitzgibbons, Timothy P.; Buckbinder, Leonard; Czech, Michael P.

    2015-01-01

    Signalling pathways that control endothelial cell (EC) permeability, leukocyte adhesion and inflammation are pivotal for atherosclerosis initiation and progression. Here we demonstrate that the Sterile-20-like mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), which has been implicated in inflammation, is abundantly expressed in ECs and in atherosclerotic plaques from mice and humans. On the basis of endothelial-specific MAP4K4 gene silencing and gene ablation experiments in Apoe−/− mice, we show that MAP4K4 in ECs markedly promotes Western diet-induced aortic macrophage accumulation and atherosclerotic plaque development. Treatment of Apoe−/− and Ldlr−/− mice with a selective small-molecule MAP4K4 inhibitor also markedly reduces atherosclerotic lesion area. MAP4K4 silencing in cultured ECs attenuates cell surface adhesion molecule expression while reducing nuclear localization and activity of NFκB, which is critical for promoting EC activation and atherosclerosis. Taken together, these results reveal that MAP4K4 is a key signalling node that promotes immune cell recruitment in atherosclerosis. PMID:26688060

  2. A novel role for copper in Ras/mitogen-activated protein kinase signaling.

    PubMed

    Turski, Michelle L; Brady, Donita C; Kim, Hyung J; Kim, Byung-Eun; Nose, Yasuhiro; Counter, Christopher M; Winge, Dennis R; Thiele, Dennis J

    2012-04-01

    Copper (Cu) is essential for development and proliferation, yet the cellular requirements for Cu in these processes are not well defined. We report that Cu plays an unanticipated role in the mitogen-activated protein (MAP) kinase pathway. Ablation of the Ctr1 high-affinity Cu transporter in flies and mouse cells, mutation of Ctr1, and Cu chelators all reduce the ability of the MAP kinase kinase Mek1 to phosphorylate the MAP kinase Erk. Moreover, mice bearing a cardiac-tissue-specific knockout of Ctr1 are deficient in Erk phosphorylation in cardiac tissue. in vitro investigations reveal that recombinant Mek1 binds two Cu atoms with high affinity and that Cu enhances Mek1 phosphorylation of Erk in a dose-dependent fashion. Coimmunoprecipitation experiments suggest that Cu is important for promoting the Mek1-Erk physical interaction that precedes the phosphorylation of Erk by Mek1. These results demonstrate a role for Ctr1 and Cu in activating a pathway well known to play a key role in normal physiology and in cancer. PMID:22290441

  3. Structure of Human G Protein-Coupled Receptor Kinase 2 in Complex with the Kinase Inhibitor Balanol

    SciTech Connect

    Tesmer, John J.G.; Tesmer, Valerie M.; Lodowski, David T.; Steinhagen, Henning; Huber, Jochen

    2010-07-19

    G protein-coupled receptor kinase 2 (GRK2) is a pharmaceutical target for the treatment of cardiovascular diseases such as congestive heart failure, myocardial infarction, and hypertension. To better understand how nanomolar inhibition and selectivity for GRK2 might be achieved, we have determined crystal structures of human GRK2 in complex with G{beta}{gamma} in the presence and absence of the AGC kinase inhibitor balanol. The selectivity of balanol among human GRKs is assessed.

  4. Autophosphorylation Activity of a Soluble Hexameric Histidine Kinase Correlates with the Shift in Protein Conformational Equilibrium

    PubMed Central

    Wojnowska, Marta; Yan, Jun; Sivalingam, Ganesh N.; Cryar, Adam; Gor, Jayesh; Thalassinos, Konstantinos; Djordjevic, Snezana

    2013-01-01

    Summary In a commonly accepted model, in response to stimuli, bacterial histidine kinases undergo a conformational transition between an active and inactive form. Structural information on histidine kinases is limited. By using ion mobility-mass spectrometry (IM-MS), we demonstrate an exchange between two conformational populations of histidine kinase ExsG that are linked to different levels of kinase activity. ExsG is an atypical signaling protein that incorporates an uncommon histidine kinase catalytic core at the C terminus preceded by an N-terminal “receiver domain” that is normally associated with the response regulator proteins in two-component signal transduction systems. IM-MS analysis and enzymatic assays indicate that phosphorylation of the ExsG receiver domain stabilizes the “compact” form of the protein and inhibits kinase core activity; in contrast, nucleotide binding required for kinase activity is associated with the more open conformation of ExsG. PMID:24210218

  5. Using Bacteria to Determine Protein Kinase Specificity and Predict Target Substrates

    PubMed Central

    Lubner, Joshua M.; Church, George M.; Husson, Robert N.; Schwartz, Daniel

    2012-01-01

    The identification of protein kinase targets remains a significant bottleneck for our understanding of signal transduction in normal and diseased cellular states. Kinases recognize their substrates in part through sequence motifs on substrate proteins, which, to date, have most effectively been elucidated using combinatorial peptide library approaches. Here, we present and demonstrate the ProPeL method for easy and accurate discovery of kinase specificity motifs through the use of native bacterial proteomes that serve as in vivo libraries for thousands of simultaneous phosphorylation reactions. Using recombinant kinases expressed in E. coli followed by mass spectrometry, the approach accurately recapitulated the well-established motif preferences of human basophilic (Protein Kinase A) and acidophilic (Casein Kinase II) kinases. These motifs, derived for PKA and CK II using only bacterial sequence data, were then further validated by utilizing them in conjunction with the scan-x software program to computationally predict known human phosphorylation sites with high confidence. PMID:23300758

  6. Interaction between protein kinase C and protein kinase A can modulate transmitter release at the rat neuromuscular synapse.

    PubMed

    Santafé, M M; Garcia, N; Lanuza, M A; Tomàs, M; Tomàs, J

    2009-02-15

    We used intracellular recording to investigate the functional interaction between protein kinase C (PKC) and protein kinase A (PKA) signal transduction cascades in the control of transmitter release in the neuromuscular synapses from adult rats. Our results indicate that: 1) PKA and PKC are independently involved in asynchronous release. 2) Evoked acetylcholine (ACh) release is enhanced with the PKA agonist Sp-8-BrcAMP and the PKC agonist phorbol ester (PMA). 3) PKA has a constitutive role in promoting a component of normal evoked transmitter release because, when the kinase is inhibited with H-89, the release diminishes. However, the PKC inhibitor calphostin C (CaC) does not affect ACh release. 4) PKA regulates neurotransmission without PKC involvement because, after PMA or CaC modulation of the PKC activity, coupling to the ACh release of PKA can normally be stimulated with Sp-8-BrcAMP or inhibited with H-89. 5) After PKA inhibition with H-89, PKC stimulation with PMA (or inhibition with CaC) does not lead to any change in evoked ACh release. However, in PKA-stimulated preparations with Sp-8-BrcAMP, PKC becomes tonically active, thus potentiating a component of release that can now be blocked with CaC. In normal conditions, therefore, PKA was able to modulate ACh release independently of PKC activity, whereas PKA stimulation caused the PKC coupling to evoked release. In contrast, PKA inhibition prevent PKC stimulation (with the phorbol ester) and coupling to ACh output. There was therefore some dependence of PKC on PKA activity in the fine control of the neuromuscular synaptic functionalism and ACh release. PMID:18816790

  7. Identification of a protein kinase activity in purified foot- and-mouth disease virus.

    PubMed Central

    Grubman, M J; Baxt, B; La Torre, J L; Bachrach, H L

    1981-01-01

    Purified preparations of foot-and-mouth disease virus types A, O, and C contain a protein kinase activity which can transfer the gamma phosphate of [32P]ATP to virion structural proteins VP2 and VP3 and exogenous acceptor proteins. Utilizing protamine sulfate as an acceptor, the kinase activity can be demonstrated in disrupted virus but not in intact virus. The enzyme is heat labile with optimal activity at pH 7 or greater. Serine residues of protamine sulfate were identified as the amino acid phosphorylated by the protein kinase. Treatment of purified virus with trypsin, which cleaves VP3, did not affect the protein kinase activity. The results indicate that the protein kinase activity found in FMDV is present in an internally located protein of viral or host origin. Images PMID:6268834

  8. Effect of various protein kinase inhibitors on the induction of milk protein gene expression by prolactin.

    PubMed

    Bayat-Sarmadi, M; Houdebine, L M

    1993-03-01

    Prolactin has many known functions and one of them is to induce the expression of milk protein gene expression in the mammary gland. Specific membrane receptors have been recently characterized but the transduction mechanism involved in the transfer of the prolactin signal to milk protein genes remains unknown. In the present work, it is shown that several protein kinase inhibitors block prolactin action on milk protein genes. Primary rabbit mammary cells were cultured for several days on floating collagen gel in a serum-free medium. Prolactin and the inhibitors of protein kinase were then added to the culture medium. After 1 day, the concentration of alpha s1-casein in the culture medium was measured using a specific radioimmunoassay. The concentration of several mRNAs in cell extracts was also evaluated using Northern blot analysis. alpha s1-Casein secretion and alpha s1-casein mRNA accumulation were induced by prolactin. This induction was blocked by staurosporine, sphingosine, quercetin, genistein and to some extent by o-hydroxyphenyl acetate, but not by H7, polymyxin B, benzylsuccinate and lavendustin A. The concentration of the mRNA coding for transferrin, which is abundantly secreted in rabbit milk independently of prolactin action, was only moderately altered by the inhibitors. The concentration of two house-keeping mRNAs, beta-actin and glyceraldehyde 3-phosphate dehydrogenase, was lowered only by genistein after 1 day but not after 4 h of culture. These data show for the first time that a Ser/Thre kinase, which is not kinase C, and possibly a tyrosine kinase is involved in the transduction of the prolactin message from the receptor to the milk protein genes. PMID:8472863

  9. Viral Evolved Inhibition Mechanism of the RNA Dependent Protein Kinase PKR's Kinase Domain, a Structural Perspective

    PubMed Central

    Krishna, K. Hari; Vadlamudi, Yallamandayya; Kumar, Muthuvel Suresh

    2016-01-01

    The protein kinase PKR activated by viral dsRNA, phosphorylates the eIF2α, which inhibit the mechanism of translation initiation. Viral evolved proteins mimicking the eIF2α block its phosphorylation and help in the viral replication. To decipher the molecular basis for the PKR’s substrate and inhibitor interaction mechanisms, we carried the molecular dynamics studies on the catalytic domain of PKR in complex with substrate eIF2α, and inhibitors TAT and K3L. The studies conducted show the altered domain movements of N lobe, which confers open and close state to the substrate-binding cavity. In addition, PKR exhibits variations in the secondary structural transition of the activation loop residues, and inter molecular contacts with the substrate and the inhibitors. Phosphorylation of the P+1 loop at the Thr-451 increases the affinity of the binding proteins exhibiting its role in the phosphorylation events. The implications of structural mechanisms uncovered will help to understand the basis of the evolution of the host-viral and the viral replication mechanisms. PMID:27088597

  10. Bile acids modulate the Golgi membrane fission process via a protein kinase Ceta and protein kinase D-dependent pathway in colonic epithelial cells.

    PubMed

    Byrne, Anne-Marie; Foran, Eilis; Sharma, Ruchika; Davies, Anthony; Mahon, Ciara; O'Sullivan, Jacintha; O'Donoghue, Diarmuid; Kelleher, Dermot; Long, Aideen

    2010-04-01

    Deoxycholic acid (DCA) is a secondary bile acid that modulates signalling pathways in epithelial cells. DCA has been implicated in pathogenesis of colon carcinoma, particularly by activation of the protein kinase C (PKC) pathway. Ursodeoxycholic acid (UDCA), a tertiary bile acid, has been observed to have chemopreventive effects. The aim of this study was to investigate the effect of DCA and UDCA on the subcellular localization and activity of PKCeta and its downstream effects on Golgi structure in a colon cancer cell model. PKCeta expression was localized to the Golgi in HCT116 colon cancer cells. DCA induced fragmentation of the Golgi in these cells following activation of PKCeta and its downstream effector protein kinase D (PKD). Pretreatment of cells with UDCA or a glucocorticoid, dexamethasone, inhibited DCA-induced PKCeta/PKD activation and Golgi fragmentation. Knockdown of glucocorticoid receptor (GR) expression using small interfering RNA or inhibition using the GR antagonist mifepristone attenuated the inhibitory effect of UDCA on Golgi fragmentation. Elevated serum and faecal levels of DCA have been previously reported in patients with ulcerative colitis (UC) and colon cancer. Analysis of Golgi architecture in vivo using tissue microarrays revealed Golgi fragmentation in UC and colorectal cancer tissue. We have demonstrated that DCA can disrupt the structure of the Golgi, an organelle critical for normal cell function. Inhibition of this DCA-induced Golgi fragmentation by UDCA was mediated via the GR. This represents a potential mechanism of observed chemopreventive effects of UDCA in benign and malignant disease of the colon. PMID:20093383

  11. Phosphotyrosine-dependent targeting of mitogen-activated protein kinase in differentiated contractile vascular cells.

    PubMed

    Khalil, R A; Menice, C B; Wang, C L; Morgan, K G

    1995-06-01

    Tyrosine phosphorylation has been linked to plasmalemmal targeting of src homology-2-containing proteins, activation of mitogen-activated protein (MAP) kinase, nuclear signaling, and proliferation of cultured cells. Significant tyrosine phosphorylation and MAP kinase activities have also been reported in differentiated cells, but the signaling role of tyrosine-phosphorylated MAP kinase in these cells is unclear. The spatial and temporal relation between phosphotyrosine and MAP kinase immunoreactivity was quantified in differentiated contractile vascular smooth muscle cells by using digital imaging microscopy. An initial association of MAP kinase with the plasmalemma required upstream protein kinase C activity but occurred in a tyrosine phosphorylation-independent manner. Subsequent to membrane association, a delayed redistribution of MAP kinase, colocalizing with the actin-binding protein caldesmon, occurred in a tyrosine phosphorylation-dependent manner. The apparent association of MAP kinase with the contractile proteins coincided with contractile activation. Thus, tyrosine phosphorylation appears to target MAP kinase to cytoskeletal proteins in contractile vascular cells. This targeting mechanism may determine the specific destination and thereby the specialized function of MAP kinase in other phenotypes. PMID:7538916

  12. Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates.

    PubMed

    Hoffman, Nolan J; Parker, Benjamin L; Chaudhuri, Rima; Fisher-Wellman, Kelsey H; Kleinert, Maximilian; Humphrey, Sean J; Yang, Pengyi; Holliday, Mira; Trefely, Sophie; Fazakerley, Daniel J; Stöckli, Jacqueline; Burchfield, James G; Jensen, Thomas E; Jothi, Raja; Kiens, Bente; Wojtaszewski, Jørgen F P; Richter, Erik A; James, David E

    2015-11-01

    Exercise is essential in regulating energy metabolism and whole-body insulin sensitivity. To explore the exercise signaling network, we undertook a global analysis of protein phosphorylation in human skeletal muscle biopsies from untrained healthy males before and after a single high-intensity exercise bout, revealing 1,004 unique exercise-regulated phosphosites on 562 proteins. These included substrates of known exercise-regulated kinases (AMPK, PKA, CaMK, MAPK, mTOR), yet the majority of kinases and substrate phosphosites have not previously been implicated in exercise signaling. Given the importance of AMPK in exercise-regulated metabolism, we performed a targeted in vitro AMPK screen and employed machine learning to predict exercise-regulated AMPK substrates. We validated eight predicted AMPK substrates, including AKAP1, using targeted phosphoproteomics. Functional characterization revealed an undescribed role for AMPK-dependent phosphorylation of AKAP1 in mitochondrial respiration. These data expose the unexplored complexity of acute exercise signaling and provide insights into the role of AMPK in mitochondrial biochemistry. PMID:26437602

  13. Distinct roles for protein kinase C isoforms in regulating platelet purinergic receptor function.

    PubMed

    Mundell, Stuart J; Jones, Matthew L; Hardy, Adam R; Barton, Johanna F; Beaucourt, Stephanie M; Conley, Pamela B; Poole, Alastair W

    2006-09-01

    ADP is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors (GPCRs), P2Y1 and P2Y12. We have shown previously that the receptors are functionally desensitized, in a homologous manner, by distinct kinase-dependent mechanisms in which P2Y1 is regulated by protein kinase C (PKC) and P2Y12 by G protein-coupled receptor kinases. In this study, we addressed whether different PKC isoforms play different roles in regulating the trafficking and activity of these two GPCRs. Expression of PKCalpha and PKCdelta dominant-negative mutants in 1321N1 cells revealed that both isoforms regulated P2Y1 receptor signaling and trafficking, although only PKCdelta was capable of regulating P2Y12, in experiments in which PKC was directly activated by the phorbol ester phorbol 12-myristate 13-acetate (PMA). These results were paralleled in human platelets, in which PMA reduced subsequent ADP-induced P2Y1 and P2Y12 receptor signaling. PKC isoform-selective inhibitors revealed that novel, but not conventional, isoforms of PKC regulate P2Y12 function, whereas both novel and classic isoforms regulate P2Y1 activity. It is also noteworthy that we studied receptor internalization in platelets by a radioligand binding approach showing that both receptors internalize rapidly in these cells. ADP-induced P2Y1 receptor internalization is attenuated by PKC inhibitors, whereas that of the P2Y12 receptor is unaffected. Both P2Y1 and P2Y12 receptors can also undergo PMA-stimulated internalization, and here again, novel but not classic PKCs regulate P2Y12, whereas both novel and classic isoforms regulate P2Y1 internalization. This study therefore is the first to reveal distinct roles for PKC isoforms in the regulation of platelet P2Y receptor function and trafficking. PMID:16804093

  14. The Structure of an NDR/LATS Kinase-Mob Complex Reveals a Novel Kinase-Coactivator System and Substrate Docking Mechanism.

    PubMed

    Gógl, Gergő; Schneider, Kyle D; Yeh, Brian J; Alam, Nashida; Nguyen Ba, Alex N; Moses, Alan M; Hetényi, Csaba; Reményi, Attila; Weiss, Eric L

    2015-05-01

    Eukaryotic cells commonly use protein kinases in signaling systems that relay information and control a wide range of processes. These enzymes have a fundamentally similar structure, but achieve functional diversity through variable regions that determine how the catalytic core is activated and recruited to phosphorylation targets. "Hippo" pathways are ancient protein kinase signaling systems that control cell proliferation and morphogenesis; the NDR/LATS family protein kinases, which associate with "Mob" coactivator proteins, are central but incompletely understood components of these pathways. Here we describe the crystal structure of budding yeast Cbk1-Mob2, to our knowledge the first of an NDR/LATS kinase-Mob complex. It shows a novel coactivator-organized activation region that may be unique to NDR/LATS kinases, in which a key regulatory motif apparently shifts from an inactive binding mode to an active one upon phosphorylation. We also provide a structural basis for a substrate docking mechanism previously unknown in AGC family kinases, and show that docking interaction provides robustness to Cbk1's regulation of its two known in vivo substrates. Co-evolution of docking motifs and phosphorylation consensus sites strongly indicates that a protein is an in vivo regulatory target of this hippo pathway, and predicts a new group of high-confidence Cbk1 substrates that function at sites of cytokinesis and cell growth. Moreover, docking peptides arise in unstructured regions of proteins that are probably already kinase substrates, suggesting a broad sequential model for adaptive acquisition of kinase docking in rapidly evolving intrinsically disordered polypeptides. PMID:25966461

  15. Protein kinase and phosphatase activities of thylakoid membranes

    SciTech Connect

    Michel, H.; Shaw, E.K.; Bennett, J.

    1987-01-01

    Dephosphorylation of the 25 and 27 kDa light-harvesting Chl a/b proteins (LHCII) of the thylakoid membranes is catalyzed by a phosphatase which differs from previously reported thylakoid-bound phosphatases in having an alkaline pH optimum (9.0) and a requirement for Mg/sup 2 +/ ions. Dephosphorylation of the 8.3 kDa psb H gene product requires a Mg/sup 2 +/ ion concentration more than 200 fold higher than that for dephosphorylation of LHC II. The 8.3 kDa and 27 kDa proteins appear to be phosphorylated by two distinct kinases, which differ in substrate specificity and sensitivity to inhibitors. The plastoquinone antagonist 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB) inhibits phosphorylation of the 27 kDa LHC II much more readily than phosphorylation of the 8.3 kDa protein. A similar pattern of inhibition is seen for two synthetic oligopeptides (MRKSATTKKAVC and ATQTLESSSRC) which are analogs of the phosphorylation sites of the two proteins. Possible modes of action of DBMIB are discussed. 45 refs., 7 figs., 3 tabs.

  16. Mechanical Impact Induces Cartilage Degradation via Mitogen Activated Protein Kinases

    PubMed Central

    Ding, Lei; Heying, Emily; Nicholson, Nathan; Stroud, Nicolas J.; Homandberg, Gene A.; Guo, Danping; Buckwalter, Joseph A.; Martin, James A.

    2010-01-01

    Objective To determine the activation of MAP kinases in and around cartilage subjected to mechanical damage and to determine the effects of their inhibitors on impaction induced chondrocyte death and cartilage degeneration. Design The phosphorylation of MAP kinases was examined with confocal microscopy and immunoblotting. The effects of MAP kinase inhibitors on impaction-induced chondrocyte death and proteoglycan loss were determined with fluorescent microscopy and DMMB assay. The expression of catabolic genes at mRNA levels was examined with quantitative real time PCR. Results Early p38 activation was detected at 20 min and 1 hr post-impaction. At 24 hr, enhanced phosphorylation of p38 and ERK1/2 was visualized in chondrocytes from in and around impact sites. The phosphorylation of p38 was increased by 3.0-fold in impact sites and 3.3-fold in adjacent cartilage. The phosphorylation of ERK-1 was increased by 5.8-fold in impact zone and 5.4-fold in adjacent cartilage; the phosphorylation of ERK-2 increased by 4.0-fold in impacted zone and 3.6-fold in adjacent cartilage. Furthermore, the blocking of p38 pathway did not inhibit impaction-induced ERK activation. The inhibition of p38 or ERK pathway significantly reduced injury-related chondrocyte death and proteoglycan losses. Quantative Real-time PCR analysis revealed that blunt impaction significantly up-regulated MMP-13, TNF-α, and ADAMTS-5 expression. Conclusion These findings implicate p38 and ERK MAPKs in the post injury spread of cartilage degeneration and suggest that the risk of PTOA following joint trauma could be decreased by blocking their activities, which might be involved in up-regulating expressions of MMP-13, ADAMTS-5, and TNF-α. PMID:20813194

  17. Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions.

    PubMed Central

    Biondi, Ricardo M; Nebreda, Angel R

    2003-01-01

    Signal transduction pathways use protein kinases for the modification of protein function by phosphorylation. A major question in the field is how protein kinases achieve the specificity required to regulate multiple cellular functions. Here we review recent studies that illuminate the mechanisms used by three families of Ser/Thr protein kinases to achieve substrate specificity. These kinases rely on direct docking interactions with substrates, using sites distinct from the phospho-acceptor sequences. Docking interactions also contribute to the specificity and regulation of protein kinase activities. Mitogen-activated protein kinase (MAPK) family members can associate with and phosphorylate specific substrates by virtue of minor variations in their docking sequences. Interestingly, the same MAPK docking pocket that binds substrates also binds docking sequences of positive and negative MAPK regulators. In the case of glycogen synthase kinase 3 (GSK3), the presence of a phosphate-binding site allows docking of previously phosphorylated (primed) substrates; this docking site is also required for the mechanism of GSK3 inhibition by phosphorylation. In contrast, non-primed substrates interact with a different region of GSK3. Phosphoinositide-dependent protein kinase-1 (PDK1) contains a hydrophobic pocket that interacts with a hydrophobic motif present in all known substrates, enabling their efficient phosphorylation. Binding of the substrate hydrophobic motifs to the pocket in the kinase domain activates PDK1 and other members of the AGC family of protein kinases. Finally, the analysis of protein kinase structures indicates that the sites used for docking substrates can also bind N- and C-terminal extensions to the kinase catalytic core and participate in the regulation of its activity. PMID:12600273

  18. Identifying Human Kinase-Specific Protein Phosphorylation Sites by Integrating Heterogeneous Information from Various Sources

    PubMed Central

    Li, Tingting; Du, Pufeng; Xu, Nanfang

    2010-01-01

    Phosphorylation is an important type of protein post-translational modification. Identification of possible phosphorylation sites of a protein is important for understanding its functions. Unbiased screening for phosphorylation sites by in vitro or in vivo experiments is time consuming and expensive; in silico prediction can provide functional candidates and help narrow down the experimental efforts. Most of the existing prediction algorithms take only the polypeptide sequence around the phosphorylation sites into consideration. However, protein phosphorylation is a very complex biological process in vivo. The polypeptide sequences around the potential sites are not sufficient to determine the phosphorylation status of those residues. In the current work, we integrated various data sources such as protein functional domains, protein subcellular location and protein-protein interactions, along with the polypeptide sequences to predict protein phosphorylation sites. The heterogeneous information significantly boosted the prediction accuracy for some kinase families. To demonstrate potential application of our method, we scanned a set of human proteins and predicted putative phosphorylation sites for Cyclin-dependent kinases, Casein kinase 2, Glycogen synthase kinase 3, Mitogen-activated protein kinases, protein kinase A, and protein kinase C families (avaiable at http://cmbi.bjmu.edu.cn/huphospho). The predicted phosphorylation sites can serve as candidates for further experimental validation. Our strategy may also be applicable for the in silico identification of other post-translational modification substrates. PMID:21085571

  19. Computational study of Gleevec and G6G reveals molecular determinants of kinase inhibitor selectivity

    SciTech Connect

    Lin, Yen -Lin; Meng, Yilin; Huang, Lei; Roux, Benoît

    2014-10-22

    Gleevec is a potent inhibitor of Abl tyrosine kinase but not of the highly homologous c-Src kinase. Because the ligand binds to an inactive form of the protein in which an Asp-Phe-Gly structural motif along the activation loop adopts a so-called DFG-out conformation, it was suggested that binding specificity was controlled by a “conformational selection” mechanism. In this context, the binding affinity displayed by the kinase inhibitor G6G poses an intriguing challenge. Although it possesses a chemical core very similar to that of Gleevec, G6G is a potent inhibitor of both Abl and c-Src kinases. Both inhibitors bind to the DFG-out conformation of the kinases, which seems to be in contradiction with the conformational selection mechanism. To address this issue and display the hidden thermodynamic contributions affecting the binding selectivity, molecular dynamics free energy simulations with explicit solvent molecules were carried out. Relative to Gleevec, G6G forms highly favorable van der Waals dispersive interactions upon binding to the kinases via its triazine functional group, which is considerably larger than the corresponding pyridine moiety in Gleevec. Upon binding of G6G to c-Src, these interactions offset the unfavorable free energy cost of the DFG-out conformation. When binding to Abl, however, G6G experiences an unfavorable free energy penalty due to steric clashes with the phosphate-binding loop, yielding an overall binding affinity that is similar to that of Gleevec. Such steric clashes are absent when G6G binds to c-Src, due to the extended conformation of the phosphate-binding loop.

  20. Computational study of Gleevec and G6G reveals molecular determinants of kinase inhibitor selectivity

    DOE PAGESBeta

    Lin, Yen -Lin; Meng, Yilin; Huang, Lei; Roux, Benoît

    2014-10-22

    Gleevec is a potent inhibitor of Abl tyrosine kinase but not of the highly homologous c-Src kinase. Because the ligand binds to an inactive form of the protein in which an Asp-Phe-Gly structural motif along the activation loop adopts a so-called DFG-out conformation, it was suggested that binding specificity was controlled by a “conformational selection” mechanism. In this context, the binding affinity displayed by the kinase inhibitor G6G poses an intriguing challenge. Although it possesses a chemical core very similar to that of Gleevec, G6G is a potent inhibitor of both Abl and c-Src kinases. Both inhibitors bind to themore » DFG-out conformation of the kinases, which seems to be in contradiction with the conformational selection mechanism. To address this issue and display the hidden thermodynamic contributions affecting the binding selectivity, molecular dynamics free energy simulations with explicit solvent molecules were carried out. Relative to Gleevec, G6G forms highly favorable van der Waals dispersive interactions upon binding to the kinases via its triazine functional group, which is considerably larger than the corresponding pyridine moiety in Gleevec. Upon binding of G6G to c-Src, these interactions offset the unfavorable free energy cost of the DFG-out conformation. When binding to Abl, however, G6G experiences an unfavorable free energy penalty due to steric clashes with the phosphate-binding loop, yielding an overall binding affinity that is similar to that of Gleevec. Such steric clashes are absent when G6G binds to c-Src, due to the extended conformation of the phosphate-binding loop.« less

  1. Chemical Proteomics Reveals Ferrochelatase as a Common Off-target of Kinase Inhibitors.

    PubMed

    Klaeger, Susan; Gohlke, Bjoern; Perrin, Jessica; Gupta, Vipul; Heinzlmeir, Stephanie; Helm, Dominic; Qiao, Huichao; Bergamini, Giovanna; Handa, Hiroshi; Savitski, Mikhail M; Bantscheff, Marcus; Médard, Guillaume; Preissner, Robert; Kuster, Bernhard

    2016-05-20

    Many protein kinases are valid drug targets in oncology because they are key components of signal transduction pathways. The number of clinical kinase inhibitors is on the rise, but these molecules often exhibit polypharmacology, potentially eliciting desired and toxic effects. Therefore, a comprehensive assessment of a compound's target space is desirable for a better understanding of its biological effects. The enzyme ferrochelatase (FECH) catalyzes the conversion of protoporphyrin IX into heme and was recently found to be an off-target of the BRAF inhibitor Vemurafenib, likely explaining the phototoxicity associated with this drug in melanoma patients. This raises the question of whether FECH binding is a more general feature of kinase inhibitors. To address this, we applied a chemical proteomics approach using kinobeads to evaluate 226 clinical kinase inhibitors for their ability to bind FECH. Surprisingly, low or submicromolar FECH binding was detected for 29 of all compounds tested and isothermal dose response measurements confirmed target engagement in cells. We also show that Vemurafenib, Linsitinib, Neratinib, and MK-2461 reduce heme levels in K562 cells, verifying that drug binding leads to a loss of FECH activity. Further biochemical and docking experiments identified the protoporphyrin pocket in FECH as one major drug binding site. Since the genetic loss of FECH activity leads to photosensitivity in humans, our data strongly suggest that FECH inhibition by kinase inhibitors is the molecular mechanism triggering photosensitivity in patients. We therefore suggest that a FECH assay should generally be part of the preclinical molecular toxicology package for the development of kinase inhibitors. PMID:26863403

  2. Structural Characterization of Proline-rich Tyrosine Kinase 2 (PYK2) Reveals a Unique (DFG-out) Conformation and Enables Inhibitor Design

    PubMed Central

    Han, Seungil; Mistry, Anil; Chang, Jeanne S.; Cunningham, David; Griffor, Matt; Bonnette, Peter C.; Wang, Hong; Chrunyk, Boris A.; Aspnes, Gary E.; Walker, Daniel P.; Brosius, Arthur D.; Buckbinder, Leonard

    2009-01-01

    Proline-rich tyrosine kinase 2 (PYK2) is a cytoplasmic, non-receptor tyrosine kinase implicated in multiple signaling pathways. It is a negative regulator of osteogenesis and considered a viable drug target for osteoporosis treatment. The high-resolution structures of the human PYK2 kinase domain with different inhibitor complexes establish the conventional bilobal kinase architecture and show the conformational variability of the DFG loop. The basis for the lack of selectivity for the classical kinase inhibitor, PF-431396, within the FAK family is explained by our structural analyses. Importantly, the novel DFG-out conformation with two diarylurea inhibitors (BIRB796, PF-4618433) reveals a distinct subclass of non-receptor tyrosine kinases identifiable by the gatekeeper Met-502 and the unique hinge loop conformation of Leu-504. This is the first example of a leucine residue in the hinge loop that blocks the ATP binding site in the DFG-out conformation. Our structural, biophysical, and pharmacological studies suggest that the unique features of the DFG motif, including Leu-504 hinge-loop variability, can be exploited for the development of selective protein kinase inhibitors. PMID:19244237

  3. Structural Characterization of Proline-rich Tyrosine Kinase 2 (PYK2) Reveals a Unique (DFG-out) Conformation and Enables Inhibitor Design

    SciTech Connect

    Han, Seungil; Mistry, Anil; Chang, Jeanne S.; Cunningham, David; Griffor, Matt; Bonnette, Peter C.; Wang, Hong; Chrunyk, Boris A.; Aspnes, Gary E.; Walker, Daniel P.; Brosius, Arthur D.; Buckbinder, Leonard; Pfizer

    2009-05-21

    Proline-rich tyrosine kinase 2 (PYK2) is a cytoplasmic, non-receptor tyrosine kinase implicated in multiple signaling pathways. It is a negative regulator of osteogenesis and considered a viable drug target for osteoporosis treatment. The high-resolution structures of the human PYK2 kinase domain with different inhibitor complexes establish the conventional bilobal kinase architecture and show the conformational variability of the DFG loop. The basis for the lack of selectivity for the classical kinase inhibitor, PF-431396, within the FAK family is explained by our structural analyses. Importantly, the novel DFG-out conformation with two diarylurea inhibitors (BIRB796, PF-4618433) reveals a distinct subclass of non-receptor tyrosine kinases identifiable by the gatekeeper Met-502 and the unique hinge loop conformation of Leu-504. This is the first example of a leucine residue in the hinge loop that blocks the ATP binding site in the DFG-out conformation. Our structural, biophysical, and pharmacological studies suggest that the unique features of the DFG motif, including Leu-504 hinge-loop variability, can be exploited for the development of selective protein kinase inhibitors.

  4. The protein kinase TOUSLED facilitates RNAi in Arabidopsis

    PubMed Central

    Uddin, Mohammad Nazim; Dunoyer, Patrice; Schott, Gregory; Akhter, Salina; Shi, Chunlin; Lucas, William J.; Voinnet, Olivier; Kim, Jae-Yean

    2014-01-01

    RNA silencing is an evolutionarily conserved mechanism triggered by double-stranded RNA that is processed into 21- to 24-nt small interfering (si)RNA or micro (mi)RNA by RNaseIII-like enzymes called Dicers. Gene regulations by RNA silencing have fundamental implications in a large number of biological processes that include antiviral defense, maintenance of genome integrity and the orchestration of cell fates. Although most generic or core components of the various plant small RNA pathways have been likely identified over the past 15 years, factors involved in RNAi regulation through post-translational modifications are just starting to emerge, mostly through forward genetic studies. A genetic screen designed to identify factors required for RNAi in Arabidopsis identified the serine/threonine protein kinase, TOUSLED (TSL). Mutations in TSL affect exogenous and virus-derived siRNA activity in a manner dependent upon its kinase activity. By contrast, despite their pleiotropic developmental phenotype, tsl mutants show no defect in biogenesis or activity of miRNA or endogenous trans-acting siRNA. These data suggest a possible role for TSL phosphorylation in the specific regulation of exogenous and antiviral RNA silencing in Arabidopsis and identify TSL as an intrinsic regulator of RNA interference. PMID:24920830

  5. Targeting protein kinase C in mantle cell lymphoma.

    PubMed

    Rauert-Wunderlich, Hilka; Rudelius, Martina; Ott, German; Rosenwald, Andreas

    2016-05-01

    Although targeting the Bruton tyrosine kinase (BTK) with ibrutinib has changed lymphoma treatment, patients with mantle cell lymphoma (MCL) remain incurable. In this study, we characterized a broad range of MCL cell lines and primary MCL cells with respect to the response to the BTK inhibitor, ibrutinib, and compared it with the response to the protein kinase C (PKC) inhibitor, sotrastaurin. At clinically relevant concentrations, each drug induced potent cell death only in the REC-1 cell line, which was accompanied by robust inhibition of AKT and ERK1/ERK2 (ERK1/2, also termed MAPK3/MAPK1) phosphorylation. In sensitive REC-1 cells, the drug-mediated impaired phosphorylation was obvious on the levels of B-cell receptor-induced and basal phosphorylation. Similar results were obtained in primary MCL cells with ibrutinib and in a subset with sotrastaurin. The various drug-resistant MCL cell lines showed very distinct responses in terms of basal AKT and ERK1/2 phosphorylation. Interestingly, targeting PKC and BTK at the same time led to ibrutinib-mediated rescue of a weak sotrastaurin-induced apoptosis in MINO cells. Additional targeting of AKT sensitized MINO cells to inhibitor-mediated cytotoxicity. In summary, MCL cells are heterogeneous in their response to BTK or PKC inhibition, indicating the need for even more individualized targeted treatment approaches in subsets of MCL patients. PMID:26914495

  6. The WNKs: atypical protein kinases with pleiotropic actions

    PubMed Central

    McCormick, James A.; Ellison, David H.

    2011-01-01

    WNKs are serine/threonine kinases that comprise a unique branch of the kinome. They are so-named owing to the unusual placement of an essential catalytic lysine. WNKs have now been identified in diverse organisms. In humans and other mammals, four genes encoding WNKs. WNKs are widely expressed at the message level, although data on protein expression is more limited. Soon after the WNKs were identified, mutations in genes encoding WNK 1 and 4 were determined to cause the human disease, Familial Hyperkalemic Hypertension (also known as pseudohypoaldosteronism II, or Gordon’s Syndrome). For this reason, a major focus of investigation has been to dissect the role of WNK kinases in renal regulation of ion transport. More recently, a different mutation in WNK1 was identified as the cause of hereditary sensory and autonomic neuropathy type II (HSANII), an early-onset autosomal disease of peripheral sensory nerves. Thus, the WNKs represent an important family of potential targets for the treatment of human disease, and further elucidation of their physiological actions outside of the kidney and brain is necessary. In this review, we describe the gene structure and mechanisms regulating expression and activity of the WNKs. Subsequently, we outline substrates and targets of WNKs, and effects of WNKs on cellular physiology, both in the kidney and elsewhere. Next, consequences of these effects on integrated physiological function are outlined. Finally, we discuss the known and putative pathophysiological relevance of the WNKs. PMID:21248166

  7. Protein Kinase C and Acute Respiratory Distress Syndrome

    PubMed Central

    Mondrinos, Mark J.; Kennedy, Paul A.; Lyons, Melanie; Deutschman, Clifford S.; Kilpatrick, Laurie E.

    2013-01-01

    The Acute Respiratory Distress Syndrome (ARDS) is a major public health problem and a leading source of morbidity in Intensive Care Units (ICUs). Lung tissue in patients with ARDS is characterized by inflammation, with exuberant neutrophil infiltration, activation and degranulation that is thought to initiate tissue injury through the release of proteases and oxygen radicals. Treatment of ARDS is supportive primarily because the underlying pathophysiology is poorly understood. This gap in knowledge must be addressed in order to identify urgently needed therapies. Recent research efforts in anti-inflammatory drug development have focused on identifying common control points in multiple signaling pathways. The protein kinase C (PKC) serine-threonine kinases are master regulators of proinflammatory signaling hubs, making them attractive therapeutic targets. Pharmacological inhibition of broad spectrum PKC activity and, more importantly, of specific PKC isoforms (as well as deletion of PKCs in mice) exerts protective effects in various experimental models of lung injury. Furthermore, PKC isoforms have been implicated in inflammatory processes that may be involved in the pathophysiologic changes that result in ARDS, including activation of innate immune and endothelial cells, neutrophil trafficking to the lung, regulation of alveolar epithelial barrier functions and control of neutrophil pro-inflammatory and pro-survival signaling. This review focuses on the mechanistic involvement of PKC isoforms in the pathogenesis of ARDS and highlights the potential of developing new therapeutic paradigms based on the selective inhibition (or activation) of specific PKC isoforms. PMID:23572089

  8. Cell cycle regulation by the NEK family of protein kinases.

    PubMed

    Fry, Andrew M; O'Regan, Laura; Sabir, Sarah R; Bayliss, Richard

    2012-10-01

    Genetic screens for cell division cycle mutants in the filamentous fungus Aspergillus nidulans led to the discovery of never-in-mitosis A (NIMA), a serine/threonine kinase that is required for mitotic entry. Since that discovery, NIMA-related kinases, or NEKs, have been identified in most eukaryotes, including humans where eleven genetically distinct proteins named NEK1 to NEK11 are expressed. Although there is no evidence that human NEKs are essential for mitotic entry, it is clear that several NEK family members have important roles in cell cycle control. In particular, NEK2, NEK6, NEK7 and NEK9 contribute to the establishment of the microtubule-based mitotic spindle, whereas NEK1, NEK10 and NEK11 have been implicated in the DNA damage response. Roles for NEKs in other aspects of mitotic progression, such as chromatin condensation, nuclear envelope breakdown, spindle assembly checkpoint signalling and cytokinesis have also been proposed. Interestingly, NEK1 and NEK8 also function within cilia, the microtubule-based structures that are nucleated from basal bodies. This has led to the current hypothesis that NEKs have evolved to coordinate microtubule-dependent processes in both dividing and non-dividing cells. Here, we review the functions of the human NEKs, with particular emphasis on those family members that are involved in cell cycle control, and consider their potential as therapeutic targets in cancer. PMID:23132929

  9. Biochemical and biophysical characterization of four EphB kinase domains reveals contrasting thermodynamic, kinetic and inhibition profiles.

    PubMed

    Overman, Ross C; Debreczeni, Judit E; Truman, Caroline M; McAlister, Mark S; Attwood, Teresa K

    2013-01-01

    The Eph (erythropoietin-producing hepatocellular carcinoma) B receptors are important in a variety of cellular processes through their roles in cell-to-cell contact and signalling; their up-regulation and down-regulation has been shown to have implications in a variety of cancers. A greater understanding of the similarities and differences within this small, highly conserved family of tyrosine kinases will be essential to the identification of effective therapeutic opportunities for disease intervention. In this study, we have developed a route to production of multi-milligram quantities of highly purified, homogeneous, recombinant protein for the kinase domain of these human receptors in Escherichia coli. Analyses of these isolated catalytic fragments have revealed stark contrasts in their amenability to recombinant expression and their physical properties: e.g., a >16°C variance in thermal stability, a 3-fold difference in catalytic activity and disparities in their inhibitor binding profiles. We find EphB3 to be an outlier in terms of both its intrinsic stability, and more importantly its ligand-binding properties. Our findings have led us to speculate about both their biological significance and potential routes for generating EphB isozyme-selective small-molecule inhibitors. Our comprehensive methodologies provide a template for similar in-depth studies of other kinase superfamily members. PMID:23627399

  10. Heat Shock Factor 1 Is a Substrate for p38 Mitogen-Activated Protein Kinases.

    PubMed

    Dayalan Naidu, Sharadha; Sutherland, Calum; Zhang, Ying; Risco, Ana; de la Vega, Laureano; Caunt, Christopher J; Hastie, C James; Lamont, Douglas J; Torrente, Laura; Chowdhry, Sudhir; Benjamin, Ivor J; Keyse, Stephen M; Cuenda, Ana; Dinkova-Kostova, Albena T

    2016-09-15

    Heat shock factor 1 (HSF1) monitors the structural integrity of the proteome. Phosphorylation at S326 is a hallmark for HSF1 activation, but the identity of the kinase(s) phosphorylating this site has remained elusive. We show here that the dietary agent phenethyl isothiocyanate (PEITC) inhibits heat shock protein 90 (Hsp90), the main negative regulator of HSF1; activates p38 mitogen-activated protein kinase (MAPK); and increases S326 phosphorylation, trimerization, and nuclear translocation of HSF1, and the transcription of a luciferase reporter, as well as the endogenous prototypic HSF1 target Hsp70. In vitro, all members of the p38 MAPK family rapidly and stoichiometrically catalyze the S326 phosphorylation. The use of stable knockdown cell lines and inhibitors indicated that among the p38 MAPKs, p38γ is the principal isoform responsible for the phosphorylation of HSF1 at S326 in cells. A protease-mass spectrometry approach confirmed S326 phosphorylation and unexpectedly revealed that p38 MAPK also catalyzes the phosphorylation of HSF1 at S303/307, previously known repressive posttranslational modifications. Thus, we have identified p38 MAPKs as highly efficient catalysts for the phosphorylation of HSF1. Furthermore, our findings suggest that the magnitude and persistence of activation of p38 MAPK are important determinants of the extent and duration of the heat shock response. PMID:27354066

  11. Heat Shock Factor 1 Is a Substrate for p38 Mitogen-Activated Protein Kinases

    PubMed Central

    Dayalan Naidu, Sharadha; Sutherland, Calum; Zhang, Ying; Risco, Ana; de la Vega, Laureano; Caunt, Christopher J.; Hastie, C. James; Lamont, Douglas J.; Torrente, Laura; Chowdhry, Sudhir; Benjamin, Ivor J.; Keyse, Stephen M.; Cuenda, Ana

    2016-01-01

    Heat shock factor 1 (HSF1) monitors the structural integrity of the proteome. Phosphorylation at S326 is a hallmark for HSF1 activation, but the identity of the kinase(s) phosphorylating this site has remained elusive. We show here that the dietary agent phenethyl isothiocyanate (PEITC) inhibits heat shock protein 90 (Hsp90), the main negative regulator of HSF1; activates p38 mitogen-activated protein kinase (MAPK); and increases S326 phosphorylation, trimerization, and nuclear translocation of HSF1, and the transcription of a luciferase reporter, as well as the endogenous prototypic HSF1 target Hsp70. In vitro, all members of the p38 MAPK family rapidly and stoichiometrically catalyze the S326 phosphorylation. The use of stable knockdown cell lines and inhibitors indicated that among the p38 MAPKs, p38γ is the principal isoform responsible for the phosphorylation of HSF1 at S326 in cells. A protease-mass spectrometry approach confirmed S326 phosphorylation and unexpectedly revealed that p38 MAPK also catalyzes the phosphorylation of HSF1 at S303/307, previously known repressive posttranslational modifications. Thus, we have identified p38 MAPKs as highly efficient catalysts for the phosphorylation of HSF1. Furthermore, our findings suggest that the magnitude and persistence of activation of p38 MAPK are important determinants of the extent and duration of the heat shock response. PMID:27354066

  12. Multifunctional proteins revealed by overlapping clustering in protein interaction network

    PubMed Central

    Chapple, Charles E.; Guénoche, Alain; Brun, Christine

    2012-01-01

    Motivation: Multifunctional proteins perform several functions. They are expected to interact specifically with distinct sets of partners, simultaneously or not, depending on the function performed. Current graph clustering methods usually allow a protein to belong to only one cluster, therefore impeding a realistic assignment of multifunctional proteins to clusters. Results: Here, we present Overlapping Cluster Generator (OCG), a novel clustering method which decomposes a network into overlapping clusters and which is, therefore, capable of correct assignment of multifunctional proteins. The principle of OCG is to cover the graph with initial overlapping classes that are iteratively fused into a hierarchy according to an extension of Newman's modularity function. By applying OCG to a human protein–protein interaction network, we show that multifunctional proteins are revealed at the intersection of clusters and demonstrate that the method outperforms other existing methods on simulated graphs and PPI networks. Availability: This software can be downloaded from http://tagc.univ-mrs.fr/welcome/spip.php?rubrique197 Contact: brun@tagc.univ-mrs.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22080466

  13. Mitogen-Activated Protein Kinase Phosphatase-2 Deletion Impairs Synaptic Plasticity and Hippocampal-Dependent Memory

    PubMed Central

    Abdul Rahman, Nor Zaihana; Greenwood, Sam M.; Brett, Ros R.; Tossell, Kyoko; Ungless, Mark A.; Plevin, Robin

    2016-01-01

    Mitogen-activated protein kinases (MAPKs) regulate brain function and their dysfunction is implicated in a number of brain disorders, including Alzheimer's disease. Thus, there is great interest in understanding the signaling systems that control MAPK function. One family of proteins that contribute to this process, the mitogen-activated protein kinase phosphatases (MKPs), directly inactivate MAPKs through dephosphorylation. Recent studies have identified novel functions of MKPs in development, the immune system, and cancer. However, a significant gap in our knowledge remains in relation to their role in brain functioning. Here, using transgenic mice where the Dusp4 gene encoding MKP-2 has been knocked out (MKP-2−/− mice), we show that long-term potentiation is impaired in MKP-2−/− mice compared with MKP-2+/+ controls whereas neuronal excitability, evoked synaptic transmission, and paired-pulse facilitation remain unaltered. Furthermore, spontaneous EPSC (sEPSC) frequency was increased in acute slices and primary hippocampal cultures prepared from MKP-2−/− mice with no effect on EPSC amplitude observed. An increase in synapse number was evident in primary hippocampal cultures, which may account for the increase in sEPSC frequency. In addition, no change in ERK activity was detected in both brain tissue and primary hippocampal cultures, suggesting that the effects of MKP-2 deletion were MAPK independent. Consistent with these alterations in hippocampal function, MKP-2−/− mice show deficits in spatial reference and working memory when investigated using the Morris water maze. These data show that MKP-2 plays a role in regulating hippocampal function and that this effect may be independent of MAPK signaling. SIGNIFICANCE STATEMENT Recently, there has been significant focus on proteins that control mitogen-activated protein kinases' (MAPKs) function, namely the mitogen-activated protein kinase phosphatases (MKPs). Recent studies have revealed novel

  14. The unique protein kinase Cη: implications for breast cancer (review).

    PubMed

    Pal, Deepanwita; Basu, Alakananda

    2014-08-01

    Deregulation of key signal transduction pathways that govern important cellular processes leads to cancer. The development of effective therapeutics for cancer warrants a comprehensive understanding of the signaling pathways that are deregulated in cancer. The protein kinase C (PKC) family has served as an attractive target for cancer therapy for decades owing to its crucial roles in several cellular processes. PKCη is a novel member of the PKC family that plays critical roles in various cellular processes such as growth, proliferation, differentiation and cell death. The regulation of PKCη appears to be unique compared to other PKC isozymes, and there are conflicting reports regarding its role in cancer. This review focuses on the unique aspects of PKCη in terms of its structure, regulation and subcellular distribution and speculates on how these features could account for its distinct functions. We have also discussed the functional implications of PKCη in cancer with particular emphasis on breast cancer. PMID:24841225

  15. Intramolecular conformational changes optimize protein kinase C signaling.

    PubMed

    Antal, Corina E; Violin, Jonathan D; Kunkel, Maya T; Skovsø, Søs; Newton, Alexandra C

    2014-04-24

    Optimal tuning of enzyme signaling is critical for cellular homeostasis. We use fluorescence resonance energy transfer reporters in live cells to follow conformational transitions that tune the affinity of a multidomain signal transducer, protein kinase C (PKC), for optimal response to second messengers. This enzyme comprises two diacylglycerol sensors, the C1A and C1B domains, that have a sufficiently high intrinsic affinity for ligand so that the enzyme would be in a ligand-engaged, active state if not for mechanisms that mask its domains. We show that both diacylglycerol sensors are exposed in newly synthesized PKC and that conformational transitions following priming phosphorylations mask the domains so that the lower affinity sensor, the C1B domain, is the primary diacylglycerol binder. The conformational rearrangements of PKC serve as a paradigm for how multimodule transducers optimize their dynamic range of signaling. PMID:24631122

  16. Chromatographic resolution of altered forms of protein kinase C

    SciTech Connect

    Ashendel, C.L.; Minor, P.L.; Baudoin, P.A.; Carlos, M.

    1987-05-01

    Rapid chromatographic resolution of protein kinase C (PKC) in extracts of rat brain on DEAE-cellulose yielded two major peaks of activity. These fractions bound phorbol esters with identical affinity and specificity and had similar ratios of PKC to phorbol ester-binding activities. Chicken egg yolk antibodies raised to PKC in the first fraction reacted with 74 to 76 kilodalton peptides in the second fraction. Chromatography of each fraction on hydroxylapatite yielded similar distributions of three PKC isozymes. Rechromatography of the DEAE-cellulose fractions on DEAE-cellulose confirmed that these forms of PKC were not rapidly interconvertible. Results of experiments in which extracts or fractions were incubated with MgATP and phosphatase inhibitors were consistent with elution of dephospho-PKC in the first fraction while the second fraction contained phospho-PKC. If confirmed, this suggests that a substantial fraction of PKC in rat and mouse tissues exists in the phosphorylated form.

  17. Mitogen-activated protein kinases in male reproductive function

    PubMed Central

    Li, Michelle W.M.; Mruk, Dolores D.; Cheng, C. Yan

    2009-01-01

    Recent studies have shown that male reproductive function is modulated via the mitogen-activated protein kinase (MAPK) cascade. The MAPK cascade is involved in numerous male reproductive processes, including spermatogenesis, sperm maturation and activation, capacitation and acrosome reaction, before fertilization of the oocyte. In this review, we discuss the latest findings in this rapidly developing field regarding the role of MAPK in male reproduction in animal models and in human spermatozoa in vitro. This research will facilitate the design of future studies in humans, although much work is needed before this information can be used to manage male infertility and environmental toxicant-induced testicular injury in men, such as blood–testis-barrier disruption. PMID:19303360

  18. Mitogen-activated protein kinase (MAPK) in cardiac tissues.

    PubMed

    Page, C; Doubell, A F

    Mitogen-activated protein kinase (MAPK) has recently emerged as a prominent role player in intracellular signalling in the ventricular myocyte with attention being focussed on its possible role in the development of ventricular hypertrophy. It is becoming clear that MAPK is also active in other cells of cardiac origin such as cardiac fibroblasts and possible functions of this signalling pathway in the heart have yet to be explored. In this report the mammalian MAPK pathway is briefly outlined, before reviewing current knowledge of the MAPK pathway in cardiac tissue (ventricular myocytes, vascular smooth muscle cells and cardiac fibroblasts). New data is also presented on the presence and activity of MAPK in two additional cardiac celltypes namely atrial myocytes and vascular endothelial cells from the coronary microcirculation. PMID:8739228

  19. Linking protein kinase CK2 and auxin transport.

    PubMed

    Marquès-Bueno, Maria Mar; Moreno-Romero, Jordi; Abas, Lindy; de Michele, Roberto; Martínez, M Carmen

    2011-10-01

    Studies performed in different organisms have highlighted the importance of protein kinase CK2 in cell growth and cell viability. However, the plant signaling pathways in which CK2 is involved are largely unknown. We have reported that a dominant-negative mutant of CK2 in Arabidopsis thaliana shows phenotypic traits that are typically linked to alterations in auxin-dependent processes. We demonstrated that auxin transport is, indeed, impaired in these mutant plants, and that this correlates with misexpression and mislocalization of PIN efflux transporters and of PINOID. Our data establishes a link between CK2 activity and the regulation of auxin homeostasis in plants, strongly suggesting that CK2 might be required at multiple points of the pathways regulating auxin fluxes.  PMID:21918377

  20. Expression pattern of Protein Kinase C ϵ during mouse embryogenesis

    PubMed Central

    2013-01-01

    Background Protein kinase C epsilon (PKCϵ) belongs to the novel PKC subfamily, which consists of diacylglycerol dependent- and calcium independent-PKCs. Previous studies have shown that PKCϵ is important in different contexts, such as wound healing or cancer. In this study, we contribute to expand the knowledge on PKCϵ by reporting its expression pattern during murine midgestation using the LacZ reporter gene and immunostaining procedures. Results Sites showing highest PKCϵ expression were heart at ealier stages, and ganglia in older embryos. Other stained domains included somites, bone, stomach, kidney, and blood vessels. Conclusions The seemingly strong expression of PKCϵ in heart and ganglia shown in this study suggests a important role of this isoform in the vascular and nervous systems during mouse development. However, functional redundancy with other PKCs during midgestation within these domains and others reported here possibly exists since PKCϵ deficient mice do not display obvious embryonic developmental defects. PMID:23639204

  1. Two distinct mechanisms for negative regulation of the Wee1 protein kinase.

    PubMed Central

    Tang, Z; Coleman, T R; Dunphy, W G

    1993-01-01

    The Wee1 protein kinase negatively regulates the entry into mitosis by catalyzing the inhibitory tyrosine phosphorylation of the Cdc2 protein. To examine the potential mechanisms for Wee1 regulation during the cell cycle, we have introduced a recombinant form of the fission yeast Wee1 protein kinase into Xenopus egg extracts. We find that the Wee1 protein undergoes dramatic changes in its phosphorylation state and kinase activity during the cell cycle. The Wee1 protein oscillates between an underphosphorylated 107 kDa form during interphase and a hyperphosphorylated 170 kDa version at mitosis. The mitosis-specific hyperphosphorylation of the Wee1 protein results in a substantial reduction in its activity as a Cdc2-specific tyrosine kinase. This phosphorylation occurs in the N-terminal region of the protein that lies outside the C-terminal catalytic domain, which was recently shown to be a substrate for the fission yeast Nim1 protein kinase. These experiments demonstrate the existence of a Wee1 regulatory system, consisting of both a Wee1-inhibitory kinase and a Wee1-stimulatory phosphatase, which controls the phosphorylation of the N-terminal region of the Wee1 protein. Moreover, these findings indicate that there are apparently two potential mechanisms for negative regulation of the Wee1 protein, one involving phosphorylation of its C-terminal domain by the Nim1 protein and the other involving phosphorylation of its N-terminal region by a different kinase. Images PMID:7504624

  2. HPLC-DAD protein kinase inhibitor analysis in human serum.

    PubMed

    Dziadosz, Marek; Lessig, Rüdiger; Bartels, Heidemarie

    2012-04-15

    We here describe an HPLC-DAD method to analyse different protein kinase inhibitors. Potential applications of this method are pharmacokinetic studies and therapeutic drug monitoring. Optimised chromatography conditions resulted in a very good separation of seven inhibitors (vatalanib, bosutinib, canertinib, tandutinib, pazopanib, dasatinib - internal standard and erlotinib). The good sensitivity makes this method competitive with LC/MS/MS. The separation was performed with a Lichrospher 100-5 RP8, 250 mm × 4 mm column maintained at 30 ± 1 °C, and with a mobile phase of 0.05 M H(3)PO(4)/KH(2)PO(4) (pH=2.3)-acetonitrile (7:3, v/v) at a flow rate of 0.7 mL/min. A simple and fast sample preparation sequence with liquid-liquid extraction led to good recoveries (73-90%) of all analytes. The recovery hardly reached 50% only for pazopanib. This method can also be used for targeted protein kinase inhibitor quantification. A perfect linearity in the validated range (20-10,000 ng/mL) and an LOQ of 20 ng/mL were achieved. The relative standard deviations and accuracies of all examined drug concentrations gave values much lower than 15% both for between- and within-batch calculations. All analysed PKIs were stable for 6 months in a 1mg/mL dimethyl sulfoxide stock solution. Vatalanib, bosutinib and erlotinib were also stable in human serum in the whole examined concentration range. PMID:22425385

  3. Bryostatins: potent, new activators of protein kinase C

    SciTech Connect

    Smith, L.; Pettit, G.R.; Smith, J.B.

    1986-03-01

    Bryostatins (B) are a class of 17 macrocyclic lactones that have antineoplastic activity in the murine P388 lymphocytic leukemia system. Bryostatin-1 (B-1) is a potent co-mitogen for the Swiss 3T3 line of murine fibroblasts that have been arrested in G/sub 1//G/sub 0/. B-1 and insulin synergistically increase entry into the S phase of the cell cycle measured autoradiographically as % nuclei labeled with (/sup 3/H)thymidine. A prior treatment of the cells with phorbol 13-myristate 12-acetate (PMA) selectively eliminated the mitogenic response to B-1 or PMA. Conversely, a prior treatment of the cells with B-1 eliminated the mitogenic response to PMA or B-1. Five other B are approximately equipotent to B-1, but B-3 is 5 to 10 times less potent than B-1 as a mitogen. B-1 inhibits the binding of (/sup 3/H)phorbol dibutyrate ((/sup 3/H)PDB) at 4/sup 0/C to a high affinity receptor in the cells. B-3 was also less potent than B-1 as an inhibitor of (/sup 3/H)PDB binding. B-3 differs from B-1 in the diacylglycerol-like component of the molecule. In vitro B-1 and PMA are similarly potent activators of protein kinase C from bovine brain. Further comparisons of the relative activities of the various B are needed to define the structural features that are critical for the activation of protein kinase C which may help in the design of tumor promoter antagonists.

  4. Disruption of the serine/threonine protein kinase H affects phthiocerol dimycocerosates synthesis in Mycobacterium tuberculosis

    PubMed Central

    Gómez-Velasco, Anaximandro; Bach, Horacio; Rana, Amrita K.; Cox, Liam R.; Bhatt, Apoorva; Besra, Gurdyal S.

    2013-01-01

    Mycobacterium tuberculosis possesses a complex cell wall that is unique and essential for interaction of the pathogen with its human host. Emerging evidence suggests that the biosynthesis of complex cell-wall lipids is mediated by serine/threonine protein kinases (STPKs). Herein, we show, using in vivo radiolabelling, MS and immunostaining analyses, that targeted deletion of one of the STPKs, pknH, attenuates the production of phthiocerol dimycocerosates (PDIMs), a major M. tuberculosis virulence lipid. Comparative protein expression analysis revealed that proteins in the PDIM biosynthetic pathway are differentially expressed in a deleted pknH strain. Furthermore, we analysed the composition of the major lipoglycans, lipoarabinomannan (LAM) and lipomannan (LM), and found a twofold higher LAM/LM ratio in the mutant strain. Thus, we provide experimental evidence that PknH contributes to the production and synthesis of M. tuberculosis cell-wall components. PMID:23412844

  5. Modulation of neurosteroid potentiation by protein kinases at synaptic- and extrasynaptic-type GABAA receptors

    PubMed Central

    Adams, Joanna M.; Thomas, Philip; Smart, Trevor G.

    2015-01-01

    GABAA receptors are important for inhibition in the CNS where neurosteroids and protein kinases are potent endogenous modulators. Acting individually, these can either enhance or depress receptor function, dependent upon the type of neurosteroid or kinase and the receptor subunit combination. However, in vivo, these modulators probably act in concert to fine-tune GABAA receptor activity and thus inhibition, although how this is achieved remains unclear. Therefore, we investigated the relationship between these modulators at synaptic-type α1β3γ2L and extrasynaptic-type α4β3δ GABAA receptors using electrophysiology. For α1β3γ2L, potentiation of GABA responses by tetrahydro-deoxycorticosterone was reduced after inhibiting protein kinase C, and enhanced following its activation, suggesting this kinase regulates neurosteroid modulation. In comparison, neurosteroid potentiation was reduced at α1β3S408A,S409Aγ2L receptors, and unaltered by PKC inhibitors or activators, indicating that phosphorylation of β3 subunits is important for regulating neurosteroid activity. To determine whether extrasynaptic-type GABAA receptors were similarly modulated, α4β3δ and α4β3S408A,S409Aδ receptors were investigated. Neurosteroid potentiation was reduced at both receptors by the kinase inhibitor staurosporine. By contrast, neurosteroid-mediated potentiation at α4S443Aβ3S408A,S409Aδ receptors was unaffected by protein kinase inhibition, strongly suggesting that phosphorylation of α4 and β3 subunits is required for regulating neurosteroid activity at extrasynaptic receptors. Western blot analyses revealed that neurosteroids increased phosphorylation of β3S408,S409 implying that a reciprocal pathway exists for neurosteroids to modulate phosphorylation of GABAA receptors. Overall, these findings provide important insight into the regulation of GABAA receptors in vivo, and into the mechanisms by which GABAergic inhibitory transmission may be simultaneously tuned by

  6. Structural assembly of the signaling competent ERK2-RSK1 heterodimeric protein kinase complex.

    PubMed

    Alexa, Anita; Gógl, Gergő; Glatz, Gábor; Garai, Ágnes; Zeke, András; Varga, János; Dudás, Erika; Jeszenői, Norbert; Bodor, Andrea; Hetényi, Csaba; Reményi, Attila

    2015-03-01

    Mitogen-activated protein kinases (MAPKs) bind and activate their downstream kinase substrates, MAPK-activated protein kinases (MAPKAPKs). Notably, extracellular signal regulated kinase 2 (ERK2) phosphorylates ribosomal S6 kinase 1 (RSK1), which promotes cellular growth. Here, we determined the crystal structure of an RSK1 construct in complex with its activator kinase. The structure captures the kinase-kinase complex in a precatalytic state where the activation loop of the downstream kinase (RSK1) faces the enzyme's (ERK2) catalytic site. Molecular dynamics simulation was used to show how this heterodimer could shift into a signaling-competent state. This structural analysis combined with biochemical and cellular studies on MAPK→MAPKAPK signaling showed that the interaction between the MAPK binding linear motif (residing in a disordered kinase domain extension) and the ERK2 "docking" groove plays the major role in making an encounter complex. This interaction holds kinase domains proximal as they "readjust," whereas generic kinase domain surface contacts bring them into a catalytically competent state. PMID:25730857

  7. Angiotensin II stimulates melanogenesis via the protein kinase C pathway

    PubMed Central

    LIU, LI-HONG; FAN, XIN; XIA, ZHI-KUAN; AN, XU-XI; YANG, RONG-YA

    2015-01-01

    Melanogenesis is a physiological process that results in the synthesis of melanin pigments, which serve a crucial function in hyperpigmentation. The aim of the present study was to determine the effects of angiotensin II (Ang II) on melanogenesis and to elucidate the molecular events of Ang II-induced melanogenesis. Experiments were performed on human melanocytes to elucidate the pigmenting effect of Ang II and the underlying mechanisms. The elements involved in melanogenesis, including melanin content, tyrosinase (TYR) activity, and microphthalmia-associated transcription factor (MITF) and TYR expression at the mRNA and protein levels were evaluated. Melanin content and TYR activity increased in response to Ang II treatment in a concentration-dependent manner. MITF and TYR mRNA and protein expression levels were increased significantly in response to Ang II in a concentration-dependent manner. The Ang II-induced increase in melanin synthesis was reduced significantly in response to co-treatment with Ro-32-0432, a protein kinase C (PKC) inhibitor, whereas co-treatment with H-89, a PKA inhibitor, did not attenuate the Ang II-induced increase in melanin levels. These results suggest that PKC is required for Ang II-induced pigmentation in human melanocytes and that the mechanism involves the PKC pathway and MITF upregulation. PMID:26622519

  8. Human pyruvate kinase M2: a multifunctional protein.

    PubMed

    Gupta, Vibhor; Bamezai, Rameshwar N K

    2010-11-01

    Glycolysis, a central metabolic pathway, harbors evolutionary conserved enzymes that modulate and potentially shift the cellular metabolism on requirement. Pyruvate kinase, which catalyzes the last but rate-limiting step of glycolysis, is expressed in four isozymic forms, depending on the tissue requirement. M2 isoform (PKM2) is exclusively expressed in embryonic and adult dividing/tumor cells. This tetrameric allosterically regulated isoform is intrinsically designed to downregulate its activity by subunit dissociation (into dimer), which results in partial inhibition of glycolysis at the last step. This accumulates all upstream glycolytic intermediates as an anabolic feed for synthesis of lipids and nucleic acids, whereas reassociation of PKM2 into active tetramer replenishes the normal catabolism as a feedback after cell division. In addition, involvement of this enzyme in a variety of pathways, protein-protein interactions, and nuclear transport suggests its potential to perform multiple nonglycolytic functions with diverse implications, although multidimensional role of this protein is as yet not fully explored. This review aims to provide an overview of the involvement of PKM2 in various physiological pathways with possible functional implications. PMID:20857498

  9. Expression of AMP-activated protein kinase subunits during chicken embryonic and post-hatch development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AMP-activated protein kinase (AMPK) is a highly conserved serine/threonine protein kinase that senses cellular energy status (AMP/ATP ratio) and acts to maintain energy homeostasis by regulating the activities of energy-consuming and energy-generating metabolic pathways. AMPK is a heterotrimeric en...

  10. Homeodomain-interacting protein kinase (Hipk) phosphorylates the small SPOC family protein Spenito.

    PubMed

    Dewald, D N; Steinmetz, E L; Walldorf, U

    2014-12-01

    The Drosophila homeodomain-interacting protein kinase (Hipk) is a versatile regulator involved in a variety of pathways, such as Notch and Wingless signalling, thereby acting in processes including the promotion of eye development or control of cell numbers in the nervous system. In vertebrates, extensive studies have related its homologue HIPK2 to important roles in the control of p53-mediated apoptosis and tumour suppression. Spenito (Nito) belongs to the group of small SPOC family proteins and has a role, amongst others, as a regulator of Wingless signalling downstream of Armadillo. In the present study, we show that both proteins have an enzyme-substrate relationship, adding a new interesting component to the broad range of Hipk interactions, and we map several phosphorylation sites of Nito. Furthermore, we were able to define a preliminary consensus motif for Hipk target sites, which will simplify the identification of new substrates of this kinase. PMID:25040100

  11. Dataset of integrin-linked kinase protein: Protein interactions in cardiomyocytes identified by mass spectrometry.

    PubMed

    Traister, Alexandra; Lu, Mingliang; Coles, John G; Maynes, Jason T

    2016-06-01

    Using hearts from mice overexpressing integrin linked kinase (ILK) behind the cardiac specific promoter αMHC, we have performed immunoprecipitation and mass spectrometry to identify novel ILK protein:protein interactions that regulate cardiomyocyte activity and calcium flux. Integrin linked kinase complexes were captured from mouse heart lysates using a commercial antibody, with subsequent liquid chromatography tandem mass spectral analysis. Interacting partners were identified using the MASCOT server, and important interactions verified using reverse immunoprecipitation and mass spectrometry. All ILK interacting proteins were identified in a non-biased manner, and are stored in the ProteomeXchange Consortium via the PRIDE partner repository (reference ID PRIDE: PXD001053). The functional role of identified ILK interactions in cardiomyocyte function and arrhythmia were subsequently confirmed in human iPSC-cardiomyocytes. PMID:27408918

  12. Treponema denticola Activates Mitogen-Activated Protein Kinase Signal Pathways through Toll-Like Receptor 2▿

    PubMed Central

    Ruby, John; Rehani, Kunal; Martin, Michael

    2007-01-01

    Treponema denticola, a spirochete indigenous to the oral cavity, is associated with host inflammatory responses to anaerobic polymicrobial infections of the root canal, periodontium, and alveolar bone. However, the cellular mechanisms responsible for the recognition of T. denticola by the innate immune system and the underlying cell signaling pathways that regulate the inflammatory response to T. denticola are currently unresolved. In this study, we demonstrate that T. denticola induces innate immune responses via the utilization of Toll-like receptor 2 (TLR2) but not TLR4. Assessment of TLR2/1 and TLR2/6 heterodimers revealed that T. denticola predominantly utilizes TLR2/6 for the induction of cellular responses. Analysis of the mitogen-activated protein kinase (MAPK) signaling pathway in T. denticola-stimulated monocytes identified a prolonged up-regulation of the MAPK extracellular signal-related kinase 1/2 (ERK1/2) and p38, while no discernible increase in phospho-c-Jun N-terminal kinase 1/2 (JNK1/2) levels was observed. With the aid of pharmacological inhibitors selectively targeting ERK1/2 via the mitogen-activated protein kinase/extracellular signal-related kinase 1/2 kinase and p38, we further demonstrate that ERK1/2 and p38 play a major role in T. denticola-mediated pro- and anti-inflammatory cytokine production. PMID:17923521

  13. Functional control of the Candida albicans cell wall by catalytic protein kinase A subunit Tpk1

    PubMed Central

    Fanning, S; Xu, W; Beaurepaire, C; Suhan, JP; Nantel, A; Mitchell, AP

    2014-01-01

    SUMMARY The cyclic AMP-protein kinase A pathway governs numerous biological features of the fungal pathogen Candida albicans. The catalytic protein kinase A subunits, Tpk1 (orf19.4892) and Tpk2 (orf19.2277), have divergent roles, and most studies indicate a more pronounced role for Tpk2. Here we dissect two Tpk1-responsive properties: adherence and cell wall integrity. Homozygous tpk1/tpk1 mutants are hyperadherent, and a Tpk1 defect enables biofilm formation in the absence of Bcr1, a transcriptional regulator of biofilm adhesins. A quantitative gene expression-based assay reveals that tpk1/tpk1 and bcr1/bcr1 genotypes show mixed epistasis, as expected if Tpk1 and Bcr1 act mainly in distinct pathways. Overexpression of individual Tpk1-repressed genes indicates that cell surface proteins Als1, Als2, Als4, Csh1, and Csp37 contribute to Tpk1-regulated adherence. Tpk1 is also required for cell wall integrity, but has no role in the gene expression response to cell wall inhibition by caspofungin. Interestingly, increased expression of the adhesin gene ALS2 confers a cell wall defect, as manifested in hypersensitivity to the cell wall inhibitor caspofungin and a shallow cell wall structure. Our findings indicate that Tpk1 governs C. albicans cell wall properties through repression of select cell surface protein genes. PMID:22882910

  14. Steroidogenic Acute Regulatory Protein Overexpression Correlates with Protein Kinase A Activation in Adrenocortical Adenoma.

    PubMed

    Zhou, Weiwei; Wu, Luming; Xie, Jing; Su, Tingwei; Jiang, Lei; Jiang, Yiran; Cao, Yanan; Liu, Jianmin; Ning, Guang; Wang, Weiqing

    2016-01-01

    The association of pathological features of cortisol-producing adrenocortical adenomas (ACAs) with somatic driver mutations and their molecular classification remain unclear. In this study, we explored the association between steroidogenic acute regulatory protein (StAR) expression and the driver mutations activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling to identify the pathological markers of ACAs. Immunohistochemical staining for StAR and mutations in the protein kinase cAMP-activated catalytic subunit alpha (PRKACA), protein kinase cAMP-dependent type I regulatory subunit alpha (PRKAR1A) and guanine nucleotide binding protein, alpha stimulating (GNAS) genes were examined in 97 ACAs. The association of StAR expression with the clinical and mutational features of the ACAs was analyzed. ACAs with mutations in PRKACA, GNAS, and PRKAR1A showed strong immunopositive staining for StAR. The concordance between high StAR expression and mutations activating cAMP/PKA signaling in the ACAs was 99.0%. ACAs with high expression of StAR had significantly smaller tumor volume (P < 0.001) and higher urinary cortisol per tumor volume (P = 0.032) than those with low expression of StAR. Our findings suggest that immunohistochemical staining for StAR is a reliable pathological approach for the diagnosis and classification of ACAs with cAMP/PKA signaling-activating mutations. PMID:27606678

  15. Pharmacological modulation of protein kinases as a new approach to treat addiction to cocaine and opiates.

    PubMed

    García-Pardo, María Pilar; Roger-Sanchez, Concepción; Rodríguez-Arias, Marta; Miñarro, Jose; Aguilar, María Asunción

    2016-06-15

    Drug addiction shares brain mechanisms and molecular substrates with learning and memory processes, such as the stimulation of glutamate receptors and their downstream signalling pathways. In the present work we provide an up-to-date review of studies that have demonstrated the implication of the main memory-related calcium-dependent protein kinases in opiate and cocaine addiction. The effects of these drugs of abuse in different animal models of drug reward, dependence and addiction are altered by manipulation of the mitogen-activated protein kinase (MAPK) family, particularly extracellular signal regulated kinase (ERK), calcium/calmodulin-dependent kinase II (CaMKII), the protein kinase C (PKC) family (including PKMζ), cAMP-dependent protein kinase A (PKA), cGMP-dependent protein kinase G (PKG), the phosphatidylinositol 3-kinase (PI3K) pathway and its downstream target mammalian target of Rapamycin (mTOR), cyclin-dependent kinase 5 (Cdk5), heat-shock proteins (Hsp) and other enzymes and proteins. Research suggests that drugs of abuse induce dependence and addiction by modifying the signalling pathways that involve these memory-related protein kinases, and supports the idea that drug addiction is an excessive aberrant learning disorder in which the maladaptive memory of drug-associated cues maintains compulsive drug use and contributes to relapse. Moreover, the studies we review offer new pharmacological strategies to treat opiate and cocaine dependence based on the manipulation of these protein kinases. In particular, disruption of reconsolidation of drug-related memories may have a high therapeutic value in the treatment of drug addiction. PMID:27056740

  16. Computational Modeling Reveals Optimal Strategy for Kinase Transport by Microtubules to Nerve Terminals

    PubMed Central

    Koon, Yen Ling; Koh, Cheng Gee; Chiam, Keng-Hwee

    2014-01-01

    Intracellular transport of proteins by motors along cytoskeletal filaments is crucial to the proper functioning of many eukaryotic cells. Since most proteins are synthesized at the cell body, mechanisms are required to deliver them to the growing periphery. In this article, we use computational modeling to study the strategies of protein transport in the context of JNK (c-JUN NH2-terminal kinase) transport along microtubules to the terminals of neuronal cells. One such strategy for protein transport is for the proteins of the JNK signaling cascade to bind to scaffolds, and to have the whole protein-scaffold cargo transported by kinesin motors along microtubules. We show how this strategy outperforms protein transport by diffusion alone, using metrics such as signaling rate and signal amplification. We find that there exists a range of scaffold concentrations for which JNK transport is optimal. Increase in scaffold concentration increases signaling rate and signal amplification but an excess of scaffolds results in the dilution of reactants. Similarly, there exists a range of kinesin motor speeds for which JNK transport is optimal. Signaling rate and signal amplification increases with kinesin motor speed until the speed of motor translocation becomes faster than kinase/scaffold-motor binding. Finally, we suggest experiments that can be performed to validate whether, in physiological conditions, neuronal cells do indeed adopt such an optimal strategy. Understanding cytoskeletal-assisted protein transport is crucial since axonal and cell body accumulation of organelles and proteins is a histological feature in many human neurodegenerative diseases. In this paper, we have shown that axonal transport performance changes with altered transport component concentrations and transport speeds wherein these aspects can be modulated to improve axonal efficiency and prevent or slowdown axonal deterioration. PMID:24691408

  17. Cooperative Roles of Fish Protein Kinase Containing Z-DNA Binding Domains and Double-Stranded RNA-Dependent Protein Kinase in Interferon-Mediated Antiviral Response▿†

    PubMed Central

    Liu, Ting-Kai; Zhang, Yi-Bing; Liu, Ying; Sun, Fan; Gui, Jian-Fang

    2011-01-01

    The double-stranded RNA (dsRNA)-dependent protein kinase (PKR) inhibits protein synthesis by phosphorylating eukaryotic translation initiation factor 2α (eIF2α). In fish species, in addition to PKR, there exists a PKR-like protein kinase containing Z-DNA binding domains (PKZ). However, the antiviral role of fish PKZ and the functional relationship between fish PKZ and PKR remain unknown. Here we confirmed the coexpression of fish PKZ and PKR proteins in Carassius auratus blastula embryonic (CAB) cells and identified them as two typical interferon (IFN)-inducible eIF2α kinases, both of which displayed an ability to inhibit virus replication. Strikingly, fish IFN or all kinds of IFN stimuli activated PKZ and PKR to phosphorylated eIF2α. Overexpression of both fish kinases together conferred much more significant inhibition of virus replication than overexpression of either protein, whereas morpholino knockdown of both made fish cells more vulnerable to virus infection than knockdown of either. The antiviral ability of fish PKZ was weaker than fish PKR, which correlated with its lower ability to phosphorylate eIF2α than PKR. Moreover, the independent association of fish PKZ or PKR reveals that each of them formed homodimers and that fish PKZ phosphorylated eIF2α independently on fish PKR and vice versa. These results suggest that fish PKZ and PKR play a nonredundant but cooperative role in IFN antiviral response. PMID:21937641

  18. Protein kinase small molecule inhibitors for rheumatoid arthritis: Medicinal chemistry/clinical perspectives

    PubMed Central

    Malemud, Charles J; Blumenthal, David E

    2014-01-01

    Medicinal chemistry strategies have contributed to the development, experimental study of and clinical trials assessment of the first type of protein kinase small molecule inhibitor to target the Janus kinase/Signal Transducers and Activators of Transcription (JAK/STAT) signaling pathway. The orally administered small molecule inhibitor, tofacitinib, is the first drug to target the JAK/STAT pathway for entry into the armamentarium of the medical therapy of rheumatoid arthritis. The introduction of tofacitinib into general rheumatologic practice coupled with increasing understanding that additional cellular signal transduction pathways including the mitogen-activated protein kinase and phosphatidylinositide-3-kinase/Akt/mammalian target of rapamycin pathways as well as spleen tyrosine kinase also contribute to immune-mediated inflammatory in rheumatoid arthritis makes it likely that further development of orally administered protein kinase small molecule inhibitors for rheumatoid arthritis will occur in the near future. PMID:25232525

  19. Rho-associated protein kinase modulates neurite extension by regulating microtubule remodeling and vinculin distribution

    PubMed Central

    Chen, Ke’en; Zhang, Wenbin; Chen, Jing; Li, Sumei; Guo, Guoqing

    2013-01-01

    Rho-associated protein kinase is an essential regulator of cytoskeletal dynamics during the process of neurite extension. However, whether Rho kinase regulates microtubule remodeling or the distribution of adhesive proteins to mediate neurite outgrowth remains unclear. By specifically modulating Rho kinase activity with pharmacological agents, we studied the morpho-dynamics of neurite outgrowth. We found that lysophosphatidic acid, an activator of Rho kinase, inhibited neurite outgrowth, which could be reversed by Y-27632, an inhibitor of Rho kinase. Meanwhile, reorganization of microtubules was noticed during these processes, as indicated by their significant changes in the soma and growth cone. In addition, exposure to lysophosphatidic acid led to a decreased membrane distribution of vinculin, a focal adhesion protein in neurons, whereas Y-27632 recruited vinculin to the membrane. Taken together, our data suggest that Rho kinase regulates rat hippocampal neurite growth and microtubule formation via a mechanism associated with the redistribution of vinculin. PMID:25206623

  20. Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases

    PubMed Central

    Steger, Martin; Tonelli, Francesca; Ito, Genta; Davies, Paul; Trost, Matthias; Vetter, Melanie; Wachter, Stefanie; Lorentzen, Esben; Duddy, Graham; Wilson, Stephen; Baptista, Marco AS; Fiske, Brian K; Fell, Matthew J; Morrow, John A; Reith, Alastair D; Alessi, Dario R; Mann, Matthias

    2016-01-01

    Mutations in Park8, encoding for the multidomain Leucine-rich repeat kinase 2 (LRRK2) protein, comprise the predominant genetic cause of Parkinson's disease (PD). G2019S, the most common amino acid substitution activates the kinase two- to threefold. This has motivated the development of LRRK2 kinase inhibitors; however, poor consensus on physiological LRRK2 substrates has hampered clinical development of such therapeutics. We employ a combination of phosphoproteomics, genetics, and pharmacology to unambiguously identify a subset of Rab GTPases as key LRRK2 substrates. LRRK2 directly phosphorylates these both in vivo and in vitro on an evolutionary conserved residue in the switch II domain. Pathogenic LRRK2 variants mapping to different functional domains increase phosphorylation of Rabs and this strongly decreases their affinity to regulatory proteins including Rab GDP dissociation inhibitors (GDIs). Our findings uncover a key class of bona-fide LRRK2 substrates and a novel regulatory mechanism of Rabs that connects them to PD. DOI: http://dx.doi.org/10.7554/eLife.12813.001 PMID:26824392

  1. Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases.

    PubMed

    Steger, Martin; Tonelli, Francesca; Ito, Genta; Davies, Paul; Trost, Matthias; Vetter, Melanie; Wachter, Stefanie; Lorentzen, Esben; Duddy, Graham; Wilson, Stephen; Baptista, Marco As; Fiske, Brian K; Fell, Matthew J; Morrow, John A; Reith, Alastair D; Alessi, Dario R; Mann, Matthias

    2016-01-01

    Mutations in Park8, encoding for the multidomain Leucine-rich repeat kinase 2 (LRRK2) protein, comprise the predominant genetic cause of Parkinson's disease (PD). G2019S, the most common amino acid substitution activates the kinase two- to threefold. This has motivated the development of LRRK2 kinase inhibitors; however, poor consensus on physiological LRRK2 substrates has hampered clinical development of such therapeutics. We employ a combination of phosphoproteomics, genetics, and pharmacology to unambiguously identify a subset of Rab GTPases as key LRRK2 substrates. LRRK2 directly phosphorylates these both in vivo and in vitro on an evolutionary conserved residue in the switch II domain. Pathogenic LRRK2 variants mapping to different functional domains increase phosphorylation of Rabs and this strongly decreases their affinity to regulatory proteins including Rab GDP dissociation inhibitors (GDIs). Our findings uncover a key class of bona-fide LRRK2 substrates and a novel regulatory mechanism of Rabs that connects them to PD. PMID:26824392

  2. Azorella compacta methanolic extract induces apoptosis via activation of mitogen-activated protein kinase.

    PubMed

    Sung, Min Hee; Kwon, Ok-Kyoung; Oh, Sei-Ryang; Lee, Joongku; Park, Sang-Hong; Han, Sang Bae; Ahn, Kyung-Seop

    2015-11-01

    Azorella compacta Phil. (AC) is an alpine medicinal plant used traditionally for antibacterial treatment. Recent studies have revealed that this plant also has anti‑diabetic effects, but that it is toxic. The present study investigated the underlying mechanisms of action of AC extract against human leukemia HL60 cells. Apoptosis induction was measured by MTT assay, fluorescence microscopy, DNA fragmentation assay, flow cytometric analysis, reverse transcription quantitative polymerase chain reaction and western blot analyses. It was found that AC extract inhibited the growth of HL60 and other cancer cell lines in a dose‑dependent manner. The cytotoxic effects of AC extract on HL60 cells were associated with apoptosis characterized by DNA fragmentation and dose‑dependent increases in Annexin V‑positive cells, as determined by flow cytometric analysis. AC‑extract‑induced apoptosis was accompanied by activated/cleaved caspase‑3, caspase‑9 and poly(adenosine diphosphate‑ribose) polymerase (PARP). The increases in apoptosis were also associated with decreases of the apoptosis-inhibitor B-cell lymphoma 2 (Bcl‑2), upregulation of pro‑apoptotic Bcl-2-associated X (Bax) protein and downregulation of anti‑apoptotic Bcl extra large protein. Furthermore, western blot analysis of mitogen-activated protein kinase (MAPK)-associated proteins indicated that treatment with AC extract increased the levels of c-Jun N-terminal kinase, extracellular signal-regulated kinase and p38. In addition, the expression of Bax and cleaved PARP was blocked when AC treatment was performed in the presence of MAPK inhibitors. It was therefore concluded that AC induced apoptosis in human leukemia HL60 cells via an intrinsic pathway controlled through MAPK-associated signaling. PMID:26397193

  3. Protein kinases paralleling late-phase LTP formation in dorsal hippocampus in the rat.

    PubMed

    Li, Lin; Wan, Jia; Sase, Sunetra; Gröger, Marion; Pollak, Arnold; Korz, Volker; Lubec, Gert

    2014-10-01

    Hippocampal long term potentiation (LTP), representing a cellular model for learning and memory formation, can be dissociated into at least two phases: a protein-synthesis-independent early phase, lasting about 4h and a protein-synthesis-dependent late phase LTP lasting 6h or longer, or even days. A large series of protein kinases have been shown to be involved and herein, a distinct set of protein kinases proposed to be involved in memory retrieval in previous work was tested in dorsal hippocampus of the rat following induction of late-phase LTP. A bipolar stimulation electrode was chronically implanted into the perforant path, while two monopolar recording electrodes were implanted into the dentate gyrus of the dorsal hippocampus. The recording electrode was measuring extracellular excitatory postsynaptic potentials, while the other one measured population spikes. Protein kinases were determined by immunoblotting and immunoflourescence on hippocampal areas showed the distribution pattern of protein kinases PKN1 and NEK7. Induction of LTP was proven, elevated levels for protein kinases PKN1, RPS6KB1, STK4, CDC42BPB, PRKG, TLK, BMX and decreased levels for NEK7, MAK14 and PLK1 were observed. A remarkable overlap of protein kinases observed in spatial memory processes with those proposed in LTP formation was demonstrated. The findings may be relevant for design of future studies on protein kinases and for the interpretation of previous work. PMID:24911953

  4. Detection of protein kinase activity by renaturation in sodium dodecyl sulfate-polyacrylamide gels

    SciTech Connect

    Anostario, M. Jr.; Harrison, M.L.; Geahlen, R.L.

    1986-05-01

    The authors have developed a procedure for identifying protein kinase activity in protein samples following electrophoresis on SDS-polyacrylamide gels. Proteins are allowed to renature directly in the gel by removal of detergent. The gel is then incubated with (..gamma..-/sup 32/P)ATP to allow renatured protein kinases to autophosphorylate or to phosphorylate various substrates which can be incorporated into the gel. The positions of the radiolabeled proteins can then be detected by autoradiography. With this technique, using purified catalytic subunit of cAMP-dependent protein kinase, enzyme concentrations as low as 0.01 ..mu..g can be detected on gels containing 1.0 mg/ml casein. The procedure is also applicable for the determination of active subunits of multisubunit protein kinases. For example, when the two subunits of casein kinase II are separated by SDS-polyacrylamide gel electrophoresis and allowed to renature, only the larger ..cap alpha.. subunit shows activity. This procedure can also be used to detect and distinguish kinases present in heterogeneous mixtures. Starting with a particulate fraction from LSTRA, a murine T cell lymphoma, several distinct enzymes were detected, including a 30,000 Dalton protein with protein-tyrosine kinase activity. This same enzyme has also been detected in T lymphocytes and other T lymphoid cell lines.

  5. Protein kinase C is involved in the regulation of several calreticulin posttranslational modifications.

    PubMed

    Cristina Castañeda-Patlán, M; Razo-Paredes, Roberto; Carrisoza-Gaytán, Rolando; González-Mariscal, Lorenza; Robles-Flores, Martha

    2010-01-01

    Calreticulin (CRT) is a highly versatile lectin-like chaperone that affects many cellular functions both inside and outside the endoplasmic reticulum lumen. We previously reported that calreticulin interacts with several protein kinase C isozymes both in vitro and in vivo. The aim of this study was to elucidate the molecular determinants involved in the association between these proteins and the biochemical significance of their interaction. Using full-length or CRT-domain constructs expressed as GST-fusion proteins, we found that protein kinase C binds to the CRT N domain in overlay and pull-down assays. Phosphorylation experiments showed that only this CRT domain is phosphorylated by the kinase. Lectin blot analysis demonstrated that CRT is modified by N-glycosylation, but this modification did not affect its interaction with protein kinase C. We also demonstrated that although both domains of protein kinase C theta can bind to CRT, it is the catalytic one that binds with higher affinity to CRT. Immunofluorescence studies showed that CRT and PKC co-localize mainly at the ER (estimated in 35%). Activation of protein kinase C induced caused transient changes in CRT localization, and unexpectedly, also induced changes in posttranslational modifications found in the protein: CRT N-glycosylation is abolished, whereas tyrosine phosphorylation and O-linked beta-N-acetylglucosamine modification are increased. Together, these findings suggest that protein kinase C is involved in the regulation of CRT function. PMID:19800981

  6. Concentrated expression of Ca2+/ calmodulin-dependent protein kinase II and protein kinase C in the mushroom bodies of the brain of the honeybee Apis mellifera L.

    PubMed

    Kamikouchi, A; Takeuchi, H; Sawata, M; Natori, S; Kubo, T

    2000-02-21

    We have previously used the differential display method to identify a gene that is expressed preferentially in the mushroom bodies of worker honeybees and to show that it encodes a putative inositol 1,4,5-trisphosphate receptor (IP3R) homologue (Kamikouchi et al. [1998] Biochem. Biophys. Res. Commun. 242:181-186). In the present study, we examined whether the expression of some of the genes for proteins involved in the intracellular Ca2+ signal transduction is also concentrated in the mushroom bodies of the honeybee by isolating cDNA fragments that encode the Ca2+/calmodulin-dependent protein kinase II (CaMKII) and protein kinase C (PKC) homologues of the honeybee. In situ hybridization analysis revealed that the expression of these genes was also concentrated in the mushroom bodies of the honeybee brain: The CaMKII gene was expressed preferentially in the large-type Kenyon cells of the mushroom bodies, whereas that for PKC was expressed in both the large and small types of Kenyon cells. The expression of the genes for IP3R and CaMKII was concentrated in the mushroom bodies of the queen and drone as well as in those of the worker bee. Furthermore, the enzymatic activities of CaMKII and PKC were found to be higher in the mushroom bodies/central bodies than in the optic and antennal lobes of the worker bee brain. These results suggest that the function of the intracellular Ca2+ signal transduction is enhanced in Kenyon cells in comparison to other neuronal cell types in the honeybee brain. PMID:10701869

  7. Interaction of Rio1 Kinase with Toyocamycin Reveals a Conformational Switch That Controls Oligomeric State and Catalytic Activity

    SciTech Connect

    Kiburu, Irene N.; LaRonde-LeBlanc, Nicole

    2012-10-10

    Rio1 kinase is an essential ribosome-processing factor required for proper maturation of 40 S ribosomal subunit. Although its structure is known, several questions regarding its functional remain to be addressed. We report that both Archaeoglobus fulgidus and human Rio1 bind more tightly to an adenosine analog, toyocamycin, than to ATP. Toyocamycin has antibiotic, antiviral and cytotoxic properties, and is known to inhibit ribosome biogenesis, specifically the maturation of 40 S. We determined the X-ray crystal structure of toyocamycin bound to Rio1 at 2.0 {angstrom} and demonstrated that toyocamycin binds in the ATP binding pocket of the protein. Despite this, measured steady state kinetics were inconsistent with strict competitive inhibition by toyocamycin. In analyzing this interaction, we discovered that Rio1 is capable of accessing multiple distinct oligomeric states and that toyocamycin may inhibit Rio1 by stabilizing a less catalytically active oligomer. We also present evidence of substrate inhibition by high concentrations of ATP for both archaeal and human Rio1. Oligomeric state studies show both proteins access a higher order oligomeric state in the presence of ATP. The study revealed that autophosphorylation by Rio1 reduces oligomer formation and promotes monomerization, resulting in the most active species. Taken together, these results suggest the activity of Rio1 may be modulated by regulating its oligomerization properties in a conserved mechanism, identifies the first ribosome processing target of toyocamycin and presents the first small molecule inhibitor of Rio1 kinase activity.

  8. Lectin Receptor Kinases Participate in Protein-Protein Interactions to Mediate Plasma Membrane-Cell Wall Adhesions in Arabidopsis1

    PubMed Central

    Gouget, Anne; Senchou, Virginie; Govers, Francine; Sanson, Arnaud; Barre, Annick; Rougé, Pierre; Pont-Lezica, Rafael; Canut, Hervé

    2006-01-01

    Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsis thaliana), are disrupted by the RGD (arginine-glycine-aspartic acid) tripeptide sequence, a characteristic cell adhesion motif in mammals. In planta induced-O (IPI-O) is an RGD-containing protein from the plant pathogen Phytophthora infestans that can disrupt cell wall-plasma membrane adhesions through its RGD motif. To identify peptide sequences that specifically bind the RGD motif of the IPI-O protein and potentially play a role in receptor recognition, we screened a heptamer peptide library displayed in a filamentous phage and selected two peptides acting as inhibitors of the plasma membrane RGD-binding activity of Arabidopsis. Moreover, the two peptides also disrupted cell wall-plasma membrane adhesions. Sequence comparison of the RGD-binding peptides with the Arabidopsis proteome revealed 12 proteins containing amino acid sequences in their extracellular domains common with the two RGD-binding peptides. Eight belong to the receptor-like kinase family, four of which have a lectin-like extracellular domain. The lectin domain of one of these, At5g60300, recognized the RGD motif both in peptides and proteins. These results imply that lectin receptor kinases are involved in protein-protein interactions with RGD-containing proteins as potential ligands, and play a structural and signaling role at the plant cell surfaces. PMID:16361528

  9. Protein kinase C beta II suppresses colorectal cancer by regulating IGF-1 mediated cell survival.

    PubMed

    Dowling, Catríona M; Phelan, James; Callender, Julia A; Cathcart, Mary Clare; Mehigan, Brian; McCormick, Paul; Dalton, Tara; Coffey, John C; Newton, Alexandra C; O'Sullivan, Jacintha; Kiely, Patrick A

    2016-04-12

    Despite extensive efforts, cancer therapies directed at the Protein Kinase C (PKC) family of serine/threonine kinases have failed in clinical trials. These therapies have been directed at inhibiting PKC and have, in some cases, worsened disease outcome. Here we examine colon cancer patients and show not only that PKC Beta II is a tumour suppressor, but patients with low levels of this isozyme have significantly decreased disease free survival. Specifically, analysis of gene expression levels of all PKC genes in matched normal and cancer tissue samples from colon cancer patients revealed a striking down-regulation of the gene coding PKC Beta in the cancer tissue (n = 21). Tissue microarray analysis revealed a dramatic down-regulation of PKC Beta II protein levels in both the epithelial and stromal diseased tissue (n = 166). Of clinical significance, low levels of the protein in the normal tissue of patients is associated with a low (10%) 10 year survival compared with a much higher (60%) survival in patients with relatively high levels of the protein. Consistent with PKC Beta II levels protecting against colon cancer, overexpression of PKC Beta II in colon cancer cell lines reveals that PKC Beta II reverses transformation in cell based assays. Further to this, activation of PKC Beta II results in a dramatic downregulation of IGF-I-induced AKT, indicating a role for PKCs in regulating IGF-1 mediated cell survival. Thus, PKC Beta II is a tumour suppressor in colon cancer and low levels serve as a predictor for poor survival outcome. PMID:26989024

  10. Protein kinase C beta II suppresses colorectal cancer by regulating IGF-1 mediated cell survival

    PubMed Central

    Dowling, Catríona M.; Phelan, James; Callender, Julia A.; Cathcart, Mary Clare; Mehigan, Brian; McCormick, Paul; Dalton, Tara; Coffey, John C.; Newton, Alexandra C.; O'sullivan, Jacintha; Kiely, Patrick A.

    2016-01-01

    Despite extensive efforts, cancer therapies directed at the Protein Kinase C (PKC) family of serine/threonine kinases have failed in clinical trials. These therapies have been directed at inhibiting PKC and have, in some cases, worsened disease outcome. Here we examine colon cancer patients and show not only that PKC Beta II is a tumour suppressor, but patients with low levels of this isozyme have significantly decreased disease free survival. Specifically, analysis of gene expression levels of all PKC genes in matched normal and cancer tissue samples from colon cancer patients revealed a striking down-regulation of the gene coding PKC Beta in the cancer tissue (n = 21). Tissue microarray analysis revealed a dramatic down-regulation of PKC Beta II protein levels in both the epithelial and stromal diseased tissue (n = 166). Of clinical significance, low levels of the protein in the normal tissue of patients is associated with a low (10%) 10 year survival compared with a much higher (60%) survival in patients with relatively high levels of the protein. Consistent with PKC Beta II levels protecting against colon cancer, overexpression of PKC Beta II in colon cancer cell lines reveals that PKC Beta II reverses transformation in cell based assays. Further to this, activation of PKC Beta II results in a dramatic downregulation of IGF-I-induced AKT, indicating a role for PKCs in regulating IGF-1 mediated cell survival. Thus, PKC Beta II is a tumour suppressor in colon cancer and low levels serve as a predictor for poor survival outcome. PMID:26989024

  11. Phosphorylation of ornithine decarboxylase by a polyamine-dependent protein kinase.

    PubMed Central

    Atmar, V J; Kuehn, G D

    1981-01-01

    This paper presents evidence that a polyamine-dependent protein kinase (EC 2.7.1.37) purified from nuclei of the slime mold Physarum polycephalum catalyzes phosphorylation of ornithine decarboxylase (OrnDCase; L-ornithine carboxy-lyase, EC 4.1.1.17). The protein kinase had properties similar to OrnDCase antizyme. Phosphocellulose chromatography of nuclear preparations from P. polycephalum yielded the polyamine-dependent protein kinase of subunit Mr 26,000 that was resolved from a second fraction in which the protein kinase copurified with a phosphate-acceptor protein of subunit Mr 70,000. At Na+ concentrations less than approximately 150 mM, a complex formed between the protein kinase and the phosphate-acceptor protein. The complex did not demonstrate protein kinase or OrnDCase activity. The complex was dissociated by greater than 150 mM Na+ into its constituent proteins. The dissociated complex catalyzed phosphorylation of the Mr 70,000 component in the presence of spermidine and spermine, and it also demonstrated OrnDCase activity. The purified Mr 70,000 component from the complex and authentic OrnDCase, purified by procedures previously reported, were virtually identical with respect to OrnDCase activity, capacity to be phosphorylated by the polyamine-dependent protein kinase, amino acid composition, and immunological crossreactivity. Phosphorylation of OrnDCase by the polyamine-dependent protein kinase sharply inhibited OrnDCase activity. Thus, this is an example of posttranslational covalent modification of OrnDCase with concurrent alteration of its catalytic function. It is also an unusual example of control of the first enzyme in a biosynthetic pathway by a protein kinase that is, in turn, modulated by the immediate end products of the pathway. Images PMID:6946489

  12. Ca2+/Calmodulin-Dependent Protein Kinase Kinases (CaMKKs) Effects on AMP-Activated Protein Kinase (AMPK) Regulation of Chicken Sperm Functions

    PubMed Central

    Nguyen, Thi Mong Diep; Combarnous, Yves; Praud, Christophe; Duittoz, Anne; Blesbois, Elisabeth

    2016-01-01

    Sperm require high levels of energy to ensure motility and acrosome reaction (AR) accomplishment. The AMP-activated protein kinase (AMPK) has been demonstrated to be strongly involved in the control of these properties. We address here the question of the potential role of calcium mobilization on AMPK activation and function in chicken sperm through the Ca2+/calmodulin-dependent protein kinase kinases (CaMKKs) mediated pathway. The presence of CaMKKs and their substrates CaMKI and CaMKIV was evaluated by western-blotting and indirect immunofluorescence. Sperm were incubated in presence or absence of extracellular Ca2+, or of CaMKKs inhibitor (STO-609). Phosphorylations of AMPK, CaMKI, and CaMKIV, as well as sperm functions were evaluated. We demonstrate the presence of both CaMKKs (α and β), CaMKI and CaMKIV in chicken sperm. CaMKKα and CaMKI were localized in the acrosome, the midpiece, and at much lower fluorescence in the flagellum, whereas CaMKKβ was mostly localized in the flagellum and much less in the midpiece and the acrosome. CaMKIV was only present in the flagellum. The presence of extracellular calcium induced an increase in kinases phosphorylation and sperm activity. STO-609 reduced AMPK phosphorylation in the presence of extracellular Ca2+ but not in its absence. STO-609 did not affect CaMKIV phosphorylation but decreased CaMKI phosphorylation and this inhibition was quicker in the presence of extracellular Ca2+ than in its absence. STO-609 efficiently inhibited sperm motility and AR, both in the presence and absence of extracellular Ca2+. Our results show for the first time the presence of CaMKKs (α and β) and one of its substrate, CaMKI in different subcellular compartments in germ cells, as well as the changes in the AMPK regulation pathway, sperm motility and AR related to Ca2+ entry in sperm through the Ca2+/CaM/CaMKKs/CaMKI pathway. The Ca2+/