Science.gov

Sample records for protein toll-like receptor

  1. Toll-like receptors.

    PubMed

    Lien, Egil; Ingalls, Robin R

    2002-01-01

    The ability of a host to sense invasion by pathogenic organisms and to respond appropriately to control infection is paramount to survival. In the case of sepsis and septic shock, however, an exaggerated systemic response may, in fact, contribute to the morbidity and mortality associated with overwhelming infections. The innate immune system has evolved as the first line of defense against invading microorganisms. The Toll-like receptors (TLRs) are a part of this innate immune defense, recognizing conserved patterns on microorganisms. These TLRs and their signaling pathways are represented in such diverse creatures as mammals, fruit flies, and plants. Ten members of the TLR family have been identified in humans, and several of them appear to recognize specific microbial products, including lipopolysaccharide, bacterial lipoproteins, peptidoglycan, and bacterial DNA. Signals initiated by the interaction of TLRs with specific microbial patterns direct the subsequent inflammatory response. Thus, TLR signaling represents a key component of the innate immune response to microbial infection. PMID:11782555

  2. Type III secretion needle proteins induce cell signaling and cytokine secretion via Toll-like receptors.

    PubMed

    Jessen, Danielle L; Osei-Owusu, Patrick; Toosky, Melody; Roughead, William; Bradley, David S; Nilles, Matthew L

    2014-06-01

    Pathogens are recognized by hosts by use of various receptors, including the Toll-like receptor (TLR) and Nod-like receptor (NLR) families. Ligands for these varied receptors, including bacterial products, are identified by the immune system, resulting in development of innate immune responses. Only a couple of components from type III secretion (T3S) systems are known to be recognized by TLR or NLR family members. Known T3S components that are detected by pattern recognition receptors (PRRs) are (i) flagellin, detected by TLR5 and NLRC4 (Ipaf); and (ii) T3S rod proteins (PrgJ and homologs) and needle proteins (PrgI and homologs), detected by NAIP and the NLRC4 inflammasome. In this report, we characterize the induction of proinflammatory responses through TLRs by the Yersinia pestis T3S needle protein, YscF, the Salmonella enterica needle proteins PrgI and SsaG, and the Shigella needle protein, MxiH. More specifically, we determine that the proinflammatory responses occur through TLR2 and -4. These data support the hypothesis that T3S needles have an unrecognized role in bacterial pathogenesis by modulating immune responses. PMID:24643544

  3. Toll-Like Receptors in Chronic Pain

    PubMed Central

    Nicotra, Lauren; Loram, Lisa C; Watkins, Linda R; Hutchinson, Mark R

    2011-01-01

    Proinflammatory central immune signaling contributes significantly to the initiation and maintenance of heightened pain states. Recent discoveries have implicated the innate immune system, pattern recognition Toll-like receptors in triggering these proinflammatory central immune signaling events. These exciting developments have been complemented by the discovery of neuronal expression of Toll-like receptors, suggesting pain pathways can be activated directly by the detection of pathogen associated molecular patterns or danger associated molecular patterns. This review will examine the evidence to date implicating Toll-like receptors and their associated signaling components in heightened pain states. In addition, insights into the impact Toll-like receptors have on priming central immune signaling systems for heightened pain states will be discussed. The influence possible sex differences in Toll-like receptor signaling have for female pain and the recognition of small molecule xenobiotics by Toll-like receptors will also be reviewed. PMID:22001158

  4. A Role for the Adaptor Proteins TRAM and TRIF in Toll-like Receptor 2 Signaling*

    PubMed Central

    Nilsen, Nadra J.; Vladimer, Gregory I.; Stenvik, Jørgen; Orning, M. Pontus A.; Zeid-Kilani, Maria V.; Bugge, Marit; Bergstroem, Bjarte; Conlon, Joseph; Husebye, Harald; Hise, Amy G.; Fitzgerald, Katherine A.; Espevik, Terje; Lien, Egil

    2015-01-01

    Toll-like receptors (TLRs) are involved in sensing invading microbes by host innate immunity. TLR2 recognizes bacterial lipoproteins/lipopeptides, and lipopolysaccharide activates TLR4. TLR2 and TLR4 signal via the Toll/interleukin-1 receptor adaptors MyD88 and MAL, leading to NF-κB activation. TLR4 also utilizes the adaptors TRAM and TRIF, resulting in activation of interferon regulatory factor (IRF) 3. Here, we report a new role for TRAM and TRIF in TLR2 regulation and signaling. Interestingly, we observed that TLR2-mediated induction of the chemokine Ccl5 was impaired in TRAM or TRIF deficient macrophages. Inhibition of endocytosis reduced Ccl5 release, and the data also suggested that TRAM and TLR2 co-localize in early endosomes, supporting the hypothesis that signaling may occur from an intracellular compartment. Ccl5 release following lipoprotein challenge additionally involved the kinase Tbk-1 and Irf3, as well as MyD88 and Irf1. Induction of Interferon-β and Ccl4 by lipoproteins was also partially impaired in cells lacking TRIF cells. Our results show a novel function of TRAM and TRIF in TLR2-mediated signal transduction, and the findings broaden our understanding of how Toll/interleukin-1 receptor adaptor proteins may participate in signaling downstream from TLR2. PMID:25505250

  5. MAP1S Protein Regulates the Phagocytosis of Bacteria and Toll-like Receptor (TLR) Signaling.

    PubMed

    Shi, Ming; Zhang, Yifan; Liu, Leyuan; Zhang, Tingting; Han, Fang; Cleveland, Joseph; Wang, Fen; McKeehan, Wallace L; Li, Yu; Zhang, Dekai

    2016-01-15

    Phagocytosis is a critical cellular process for innate immune defense against microbial infection. The regulation of phagocytosis process is complex and has not been well defined. An intracellular molecule might regulate cell surface-initiated phagocytosis, but the underlying molecular mechanism is poorly understood (1). In this study, we found that microtubule-associated protein 1S (MAP1S), a protein identified recently that is involved in autophagy (2), is expressed primarily in macrophages. MAP1S-deficient macrophages are impaired in the phagocytosis of bacteria. Furthermore, we demonstrate that MAP1S interacts directly with MyD88, a key adaptor of Toll-like receptors (TLRs), upon TLR activation and affects the TLR signaling pathway. Intriguingly, we also observe that, upon TLR activation, MyD88 participates in autophagy processing in a MAP1S-dependent manner by co-localizing with MAP1 light chain 3 (MAP1-LC3 or LC3). Therefore, we reveal that an intracellular autophagy-related molecule of MAP1S controls bacterial phagocytosis through TLR signaling. PMID:26565030

  6. Mincle suppresses Toll-like receptor 4 activation.

    PubMed

    Greco, Stephanie H; Mahmood, Syed Kashif; Vahle, Anne-Kristin; Ochi, Atsuo; Batel, Jennifer; Deutsch, Michael; Barilla, Rocky; Seifert, Lena; Pachter, H Leon; Daley, Donnele; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Miller, George

    2016-07-01

    Regulation of Toll-like receptor responses is critical for limiting tissue injury and autoimmunity in both sepsis and sterile inflammation. We found that Mincle, a C-type lectin receptor, regulates proinflammatory Toll-like receptor 4 signaling. Specifically, Mincle ligation diminishes Toll-like receptor 4-mediated inflammation, whereas Mincle deletion or knockdown results in marked hyperresponsiveness to lipopolysaccharide in vitro, as well as overwhelming lipopolysaccharide-mediated inflammation in vivo. Mechanistically, Mincle deletion does not up-regulate Toll-like receptor 4 expression or reduce interleukin 10 production after Toll-like receptor 4 ligation; however, Mincle deletion decreases production of the p38 mitogen-activated protein kinase-dependent inhibitory intermediate suppressor of cytokine signaling 1, A20, and ABIN3 and increases expression of the Toll-like receptor 4 coreceptor CD14. Blockade of CD14 mitigates the increased sensitivity of Mincle(-/-) leukocytes to Toll-like receptor 4 ligation. Collectively, we describe a major role for Mincle in suppressing Toll-like receptor 4 responses and implicate its importance in nonmycobacterial models of inflammation. PMID:26747838

  7. The biology of Toll-like receptors.

    PubMed

    Means, T K; Golenbock, D T; Fenton, M J

    2000-09-01

    In 1997, a human homologue of the Drosophila Toll protein was described, a protein later to be designated Toll-like receptor 4 (TLR4). Since that time, additional human and murine TLR proteins have been identified. Mammalian TLR proteins appear to represent a conserved family of innate immune recognition receptors. These receptors are coupled to a signaling pathway that is conserved in mammals, insects, and plants, resulting in the activation of genes that mediate innate immune defenses. Numerous studies have now identified a wide variety of chemically-diverse bacterial products that serve as putative ligands for TLR proteins. More recent studies have identified the first endogenous protein ligands for TLR proteins. TLR signaling represents a key feature of innate immune response to pathogen invasion. PMID:10817965

  8. Dependence of Bacterial Protein Adhesins on Toll-Like Receptors for Proinflammatory Cytokine Induction

    PubMed Central

    Hajishengallis, George; Martin, Michael; Sojar, Hakimuddin T.; Sharma, Ashu; Schifferle, Robert E.; DeNardin, Ernesto; Russell, Michael W.; Genco, Robert J.

    2002-01-01

    Toll-like receptors (TLRs) are important signal transducers that mediate inflammatory reactions induced by microbes through pattern recognition of virulence molecules such as lipopolysaccharide (LPS) and lipoproteins. We investigated whether proinflammatory cytokine responses induced by certain bacterial protein adhesins may also depend on TLRs. In differentiated THP-1 mononuclear cells stimulated by LPS-free recombinant fimbrillin (rFimA) from Porphyromonas gingivalis, cytokine release was abrogated by monoclonal antibodies (MAbs) to CD14 and TLR4 but not to TLR2. Similar experiments using anti-β2 integrin MAbs suggested that β2 integrins (CD11/CD18) also play a role in cytokine induction by rFimA or native fimbriae. Minor fimbriae (distinct from the fimA-encoded major fimbriae) of P. gingivalis induced proinflammatory cytokine release in a CD14- and TLR2-dependent mode. Cytokine induction by BspA, a leucine-rich repeat protein from Bacteroides forsythus, depended heavily on CD14 and TLR2. We also found that the ability of the streptococcal protein AgI/II to stimulate cytokine release depended partially on CD14 and TLR4, and the AgI/II segment that possibly interacts with these receptors was identified as its N-terminal saliva-binding region. When THP-1 cells were exposed to rFimA for 24 h, surface expression of CD14 and CD18 was decreased and the cells became hyporesponsive to cytokine induction by a second challenge with rFimA. However, tolerance induction was abolished when the THP-1 cells were pretreated with rFimA in the presence of either anti-CD14 MAb or anti-TLR4 MAb. Induction of cross-tolerance between rFimA and LPS correlated with downregulation of the pattern recognition receptors involved. Our data suggest that the CD14-TLR2/4 system is involved in cytokine production and tolerance induction upon interaction with certain proinflammatory bacterial protein adhesins. PMID:11874886

  9. Structure of toll-like receptors.

    PubMed

    Gay, Nicholas J; Gangloff, Monique

    2008-01-01

    The ten human Toll-like receptors are able to respond to an extremely diverse range of microbial products ranging from di- and tri-acylated lipids to nucleic acids. An understanding of the molecular structure adopted by the receptor extracellular, transmembrane, and cytoplasmic domains and the way in which these structures interact with ligands and downstream signaling adapters can explain how recognition and signal transduction are achieved at a molecular level. In this article we discuss how the leucine-rich repeats of the receptor ectodomain have evolved to bind a wide variety of biological molecules. We also discuss how ligand binding induces dimerization of two receptor chains and initiates a series of protein conformational changes that lead to a signaling event in the cytoplasm of the immune system cell. Thus, the signaling process of the TLRs can be viewed as a unidirectional molecular switch. PMID:18071660

  10. Mycobacterial signaling through toll-like receptors

    PubMed Central

    Basu, Joyoti; Shin, Dong-Min; Jo, Eun-Kyeong

    2012-01-01

    Studies over the past decade have helped to decipher molecular networks dependent on Toll-like receptor (TLR) signaling, in mycobacteria-infected macrophages. Stimulation of TLRs by mycobacteria and their antigenic components rapidly induces intracellular signaling cascades involved in the activation of nuclear factor-κB and mitogen-activated protein kinase pathways, which play important roles in orchestrating proinflammatory responses and innate defense through generation of a variety of antimicrobial effector molecules. Recent studies have provided evidence that mycobacterial TLR-signaling cross talks with other intracellular antimicrobial innate pathways, the autophagy process and functional vitamin D receptor (VDR) signaling. In this article we describe recent advances in the recognition, responses, and regulation of mycobacterial signaling through TLRs. PMID:23189273

  11. Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence.

    PubMed

    Stack, Julianne; Haga, Ismar R; Schröder, Martina; Bartlett, Nathan W; Maloney, Geraldine; Reading, Patrick C; Fitzgerald, Katherine A; Smith, Geoffrey L; Bowie, Andrew G

    2005-03-21

    Viral immune evasion strategies target key aspects of the host antiviral response. Recently, it has been recognized that Toll-like receptors (TLRs) have a role in innate defense against viruses. Here, we define the function of the vaccinia virus (VV) protein A46R and show it inhibits intracellular signalling by a range of TLRs. TLR signalling is triggered by homotypic interactions between the Toll-like-interleukin-1 resistance (TIR) domains of the receptors and adaptor molecules. A46R contains a TIR domain and is the only viral TIR domain-containing protein identified to date. We demonstrate that A46R targets the host TIR adaptors myeloid differentiation factor 88 (MyD88), MyD88 adaptor-like, TIR domain-containing adaptor inducing IFN-beta (TRIF), and the TRIF-related adaptor molecule and thereby interferes with downstream activation of mitogen-activated protein kinases and nuclear factor kappaB. TRIF mediates activation of interferon (IFN) regulatory factor 3 (IRF3) and induction of IFN-beta by TLR3 and TLR4 and suppresses VV replication in macrophages. Here, A46R disrupted TRIF-induced IRF3 activation and induction of the TRIF-dependent gene regulated on activation, normal T cell expressed and secreted. Furthermore, we show that A46R is functionally distinct from another described VV TLR inhibitor, A52R. Importantly, VV lacking the A46R gene was attenuated in a murine intranasal model, demonstrating the importance of A46R for VV virulence. PMID:15767367

  12. MAPPING OF TOLL LIKE RECEPTOR (TLR) GENES IN RAINBOW TROUT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toll-like receptors (TLRs) are a family of transmembrane proteins that recognize conserved pathogen structures to induce innate immune effector molecules. In vertebrates, TLRs can distinguish among classes of pathogens and serve an important role in orchestrating the appropriate adaptive immune resp...

  13. HCV core and NS3 proteins mediate toll like receptor induced innate immune response in corneal epithelium.

    PubMed

    Rajalakshmy, Ayilam Ramachandran; Malathi, Jambulingam; Madhavan, Hajib Naraharirao

    2014-11-01

    Direct association of dry eye syndrome and hepatitis C virus (HCV) infection is a well established fact. In this context, the current study examines the in vitro corneal inflammatory response with respect to HCV core and NS3 antigens. Toll like receptors (TLRs) are pattern recognition receptors which can mediate innate immune response. In the present study, corneal epithelial cells responded to HCV core and NS3 proteins by secreting pro-inflammatory cytokines IL-8, IL-6 and TNF-α via TLR1, TLR2 and TLR6 mediated innate immune response. MyD88/NF-kB signalling was involved in pro-inflammatory cytokine production. Corneal epithelium synthesised nitric oxide (NO) via iNOS during HCV core and NS3 exposure. On later stages of inflammation, cells underwent apoptosis which lead to cell death. SiRNA mediated silencing of TLR1, TLR2 and TLR6 resulted in a significant down regulation of IL-8 and NO. In conclusion, this study indicates that HCV core and NS3 proteins are capable of inducing immune response in corneal epithelium which can potentiate the pathology of HCV associated dry eye condition. Blocking specific TLR response can have therapeutic application in controlling the inflammatory response associated with this dry eye condition. PMID:25280963

  14. HIV-1 Tat Protein Suppresses Cholangiocyte Toll-Like Receptor 4 Expression and Defense against Cryptosporidium parvum

    PubMed Central

    O’Hara, Steven P.; Small, Aaron J.; Gajdos, Gabriella B.; Badley, Andrew D.; Chen, Xian-Ming; LaRusso, Nicholas F.

    2009-01-01

    Biliary cryptosporidiosis is associated with acquired immunodeficiency syndrome (AIDS) cholangiopathy and occurs almost exclusively in adult patients with AIDS. Infection of biliary epithelial cells (cholangiocytes) with Cryptosporidium parvum induces Toll-like receptor (TLR) 4 expression and stimulates a TLR-dependent response against infection. Here, we tested whether human immunodeficiency virus type 1 (HIV-1) Tat affects TLR expression and, hence, anti–C. parvum defense responses. Using an in vitro model of human biliary cryptosporidiosis, we found that recombinant Tat protein increased TLR4 mRNA expression in both uninfected and C. parvum–infected cholangiocytes. Conversely, Tat decreased TLR4 protein levels and suppressed C. parvum–induced TLR4 protein expression. Using actinomycin to inhibit transcription, we found that Tat increased the half-life of TLR4 mRNA from ~25 to 60 min, and RNA gel-shift assays demonstrated direct binding of Tat to TLR4 mRNA. In vitro transcription/translation studies suggested that Tat does not affect transcription but does decrease TLR4 translation. Importantly, more parasites were found in Tat-treated cells than in control cells 48h after infection. These findings suggest that Tat inhibits cholangiocyte TLR4protein expression through translational inhibition. These events appear to diminish the ability of cholangiocytes to initsiate an innate immune response to C. parvum. We suggest that these findings may contribute to the unusual susceptibility of HIV-infected individuals to biliary cryptosporidiosis. PMID:19265483

  15. Toll-like Receptors in Tumor Immunotherapy

    PubMed Central

    Paulos, Chrystal M.; Kaiser, Andrew; Wrzesinski, Claudia; Hinrichs, Christian S.; Cassard, Lydie; Boni, Andrea; Muranski, Pawel; Sanchez-Perez, Luis; Palmer, Douglas C.; Yu, Zhiya; Antony, Paul A.; Gattinoni, Luca; Rosenberg, Steven A.; Restifo, Nicholas P.

    2007-01-01

    Lymphodepletion with chemotherapeutic agents or total body irradiation (TBI) before adoptive transfer of tumor-specific T cells is a critical advancement in the treatment of patients with melanoma. More than 50% of patients that are refractory to other treatments experience an objective or curative response with this approach. Emerging data indicate that the key mechanisms underlying how TBI augments the functions of adoptively transferred T cells include (a) the depletion of regulatory Tcells (Treg) and myeloid-derived suppressor cells that limit the function and proliferation of adoptively transferred cells; (b) the removal of immune cells that act as “sinks” for homeostatic cytokines, whose levels increase after lymphodepletion; and (c) the activation of the innate immune system via Toll-like receptor 4 signaling, which is engaged by microbial lipopolysaccharide that translocated across the radiation-injured gut. Here, we review these mechanisms and focus on the effect of Toll-like receptor agonists in adoptive immunotherapy. We also discuss alternate regimens to chemotherapy or TBI, which might be used to safely treat patients with advanced disease and promote tumor regression. PMID:17875756

  16. Gedunin Binds to Myeloid Differentiation Protein 2 and Impairs Lipopolysaccharide-Induced Toll-Like Receptor 4 Signaling in Macrophages.

    PubMed

    Borges, Perla Villani; Moret, Katelim Hottz; Maya-Monteiro, Clarissa Menezes; Souza-Silva, Franklin; Alves, Carlos Roberto; Batista, Paulo Ricardo; Caffarena, Ernesto Raúl; Pacheco, Patrícia; Henriques, Maria das Graças; Penido, Carmen

    2015-11-01

    Recognition of bacterial lipopolysaccharide (LPS) by innate immune system is mediated by the cluster of differentiation 14/Toll-like receptor 4/myeloid differentiation protein 2 (MD-2) complex. In this study, we investigated the modulatory effect of gedunin, a limonoid from species of the Meliaceae family described as a heat shock protein Hsp90 inhibitor, on LPS-induced response in immortalized murine macrophages. The pretreatment of wild-type (WT) macrophages with gedunin (0.01-100 µM, noncytotoxic concentrations) inhibited LPS (50 ng/ml)-induced calcium influx, tumor necrosis factor-α, and nitric oxide production in a concentration-dependent manner. The selective effect of gedunin on MyD88-adapter-like/myeloid differentiation primary response 88- and TRIF-related adaptor molecule/TIR domain-containing adapter-inducing interferon-β-dependent signaling pathways was further investigated. The pretreatment of WT, TIR domain-containing adapter-inducing interferon-β knockout, and MyD88 adapter-like knockout macrophages with gedunin (10 µM) significantly inhibited LPS (50 ng/ml)-induced tumor necrosis factor-α and interleukin-6 production, at 6 hours and 24 hours, suggesting that gedunin modulates a common event between both signaling pathways. Furthermore, gedunin (10 µM) inhibited LPS-induced prostaglandin E2 production, cyclooxygenase-2 expression, and nuclear factor κB translocation into the nucleus of WT macrophages, demonstrating a wide-range effect of this chemical compound. In addition to the ability to inhibit LPS-induced proinflammatory mediators, gedunin also triggered anti-inflammatory factors interleukin-10, heme oxygenase-1, and Hsp70 in macrophages stimulated or not with LPS. In silico modeling studies revealed that gedunin efficiently docked into the MD-2 LPS binding site, a phenomenon further confirmed by surface plasmon resonance. Our results reveal that, in addition to Hsp90 modulation, gedunin acts as a competitive inhibitor of LPS, blocking

  17. Treponema denticola Activates Mitogen-Activated Protein Kinase Signal Pathways through Toll-Like Receptor 2▿

    PubMed Central

    Ruby, John; Rehani, Kunal; Martin, Michael

    2007-01-01

    Treponema denticola, a spirochete indigenous to the oral cavity, is associated with host inflammatory responses to anaerobic polymicrobial infections of the root canal, periodontium, and alveolar bone. However, the cellular mechanisms responsible for the recognition of T. denticola by the innate immune system and the underlying cell signaling pathways that regulate the inflammatory response to T. denticola are currently unresolved. In this study, we demonstrate that T. denticola induces innate immune responses via the utilization of Toll-like receptor 2 (TLR2) but not TLR4. Assessment of TLR2/1 and TLR2/6 heterodimers revealed that T. denticola predominantly utilizes TLR2/6 for the induction of cellular responses. Analysis of the mitogen-activated protein kinase (MAPK) signaling pathway in T. denticola-stimulated monocytes identified a prolonged up-regulation of the MAPK extracellular signal-related kinase 1/2 (ERK1/2) and p38, while no discernible increase in phospho-c-Jun N-terminal kinase 1/2 (JNK1/2) levels was observed. With the aid of pharmacological inhibitors selectively targeting ERK1/2 via the mitogen-activated protein kinase/extracellular signal-related kinase 1/2 kinase and p38, we further demonstrate that ERK1/2 and p38 play a major role in T. denticola-mediated pro- and anti-inflammatory cytokine production. PMID:17923521

  18. Toll-Like Receptor Stimulation Induces Nondefensin Protein Expression and Reverses Antibiotic-Induced Gut Defense Impairment

    PubMed Central

    Wu, Ying-Ying; Hsu, Ching-Mei; Chen, Pei-Hsuan; Fung, Chang-Phone

    2014-01-01

    Prior antibiotic exposure is associated with increased mortality in Gram-negative bacteria-induced sepsis. However, how antibiotic-mediated changes of commensal bacteria promote the spread of enteric pathogenic bacteria in patients remains unclear. In this study, the effects of systemic antibiotic treatment with or without Toll-like receptor (TLR) stimulation on bacterium-killing activity, antibacterial protein expression in the intestinal mucosa, and bacterial translocation were examined in mice receiving antibiotics with or without oral supplementation of dead Escherichia coli or Staphylococcus aureus. We developed a systemic ampicillin, vancomycin, and metronidazole treatment protocol to simulate the clinical use of antibiotics. Antibiotic treatment decreased the total number of bacteria, including aerobic bacteria belonging to the family Enterobacteriaceae and the genus Enterococcus as well as organisms of the anaerobic genera Lactococcus and Bifidobacterium in the intestinal mucosa and lumen. Antibiotic treatment significantly decreased the bacterium-killing activity of the intestinal mucosa and the expression of non-defensin-family proteins, such as RegIIIβ, RegIIIγ, C-reactive protein-ductin, and RELMβ, but not the defensin-family proteins, and increased Klebsiella pneumoniae translocation. TLR stimulation after antibiotic treatment increased NF-κB DNA binding activity, nondefensin protein expression, and bacterium-killing activity in the intestinal mucosa and decreased K. pneumoniae translocation. Moreover, germfree mice showed a significant decrease in nondefensin proteins as well as intestinal defense against pathogen translocation. Since TLR stimulation induced NF-κB DNA binding activity, TLR4 expression, and mucosal bacterium-killing activity in germfree mice, we conclude that the commensal microflora is critical in maintaining intestinal nondefensin protein expression and the intestinal barrier. In turn, we suggest that TLR stimulation induces

  19. Toll-Like Receptor Signaling Pathways

    PubMed Central

    Kawasaki, Takumi; Kawai, Taro

    2014-01-01

    Toll-like receptors (TLRs) play crucial roles in the innate immune system by recognizing pathogen-associated molecular patterns derived from various microbes. TLRs signal through the recruitment of specific adaptor molecules, leading to activation of the transcription factors NF-κB and IRFs, which dictate the outcome of innate immune responses. During the past decade, the precise mechanisms underlying TLR signaling have been clarified by various approaches involving genetic, biochemical, structural, cell biological, and bioinformatics studies. TLR signaling appears to be divergent and to play important roles in many aspects of the innate immune responses to given pathogens. In this review, we describe recent progress in our understanding of TLR signaling regulation and its contributions to host defense. PMID:25309543

  20. A coding IRAK2 protein variant compromises Toll-like receptor (TLR) signaling and is associated with colorectal cancer survival.

    PubMed

    Wang, Hui; Flannery, Sinead M; Dickhöfer, Sabine; Huhn, Stefanie; George, Julie; Kubarenko, Andriy V; Lascorz, Jesus; Bevier, Melanie; Willemsen, Joschka; Pichulik, Tica; Schafmayer, Clemens; Binder, Marco; Manoury, Bénédicte; Paludan, Søren R; Alarcon-Riquelme, Marta; Bowie, Andrew G; Försti, Asta; Weber, Alexander N R

    2014-08-15

    Within innate immune signaling pathways, interleukin-1 receptor-associated kinases (IRAKs) fulfill key roles downstream of multiple Toll-like receptors and the interleukin-1 receptor. Although human IRAK4 deficiency was shown to lead to severe immunodeficiency in response to pyogenic bacterial infection during childhood, little is known about the role of human IRAK2. We here identified a non-synonymous IRAK2 variant, rs35060588 (coding R214G), as hypofunctional in terms of NF-κB signaling and Toll-like receptor-mediated cytokine induction. This was due to reduced ubiquitination of TRAF6, a key step in signal transduction. IRAK2 rs35060588 occurs in 3-9% of individuals in different ethnic groups, and our studies suggested a genetic association of rs35060588 with colorectal cancer survival. This for the first time implicates human IRAK2 in a human disease and highlights the R214G IRAK2 variant as a potential novel and broadly applicable biomarker for disease or as a therapeutic intervention point. PMID:24973222

  1. High glucose induces inflammatory cytokine through protein kinase C-induced toll-like receptor 2 pathway in gingival fibroblasts

    SciTech Connect

    Jiang, Shao-Yun; Wei, Cong-Cong; Shang, Ting-Ting; Lian, Qi; Wu, Chen-Xuan; Deng, Jia-Yin

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer High glucose significantly induced TLR2 expression in gingival fibroblasts. Black-Right-Pointing-Pointer High glucose increased NF-{kappa}B p65 nuclear activity, IL-1{beta} and TNF-{alpha} levels. Black-Right-Pointing-Pointer PKC-{alpha}/{delta}-TLR2 pathway is involved in periodontal inflammation under high glucose. -- Abstract: Toll-like receptors (TLRs) play a key role in innate immune response and inflammation, especially in periodontitis. Meanwhile, hyperglycemia can induce inflammation in diabetes complications. However, the activity of TLRs in periodontitis complicated with hyperglycemia is still unclear. In the present study, high glucose (25 mmol/l) significantly induced TLR2 expression in gingival fibroblasts (p < 0.05). Also, high glucose increased nuclear factor kappa B (NF-{kappa}B) p65 nuclear activity, tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-l{beta} (IL-1{beta}) levels. Protein kinase C (PKC)-{alpha} and {delta} knockdown with siRNA significantly decreased TLR2 and NF-{kappa}B p65 expression (p < 0.05), whereas inhibition of PKC-{beta} had no effect on TLR2 and NF-{kappa}B p65 under high glucose (p < 0.05). Additional studies revealed that TLR2 knockdown significantly abrogated high-glucose-induced NF-{kappa}B expression and inflammatory cytokine secretion. Collectively, these data suggest that high glucose stimulates TNF-{alpha} and IL-1{beta} secretion via inducing TLR2 through PKC-{alpha} and PKC-{delta} in human gingival fibroblasts.

  2. Toll-Like Receptors and Prostate Cancer

    PubMed Central

    Zhao, Shu; Zhang, Yifan; Zhang, Qingyuan; Wang, Fen; Zhang, Dekai

    2014-01-01

    Prostate cancer is the second leading cause of cancer-related death in men after lung cancer. Immune responses clearly play a critical role in the tumorigenesis and in the efficacy of radiation therapy and chemotherapy in prostate cancer; however, the underlying molecular mechanisms are still poorly understood. Toll-like receptors (TLRs) are a well-known family of pattern recognition receptors that play a key role in host immune system. Recent studies demonstrate that there are links between TLRs and cancer; however, the function and biological importance of TLRs in prostate cancer seems complex. To elucidate the role of TLRs and innate immunity in prostate cancer might provide us with a better understanding of the molecular mechanisms of this disease. Moreover, utilizing the agonists or antagonists of TLRs might represent a promising new strategy against prostate cancer. In this review, we summarize recent advances on the studies of association between TLR signaling and prostate cancer, TLR polymorphisms and prostate cancer risk, and provide some insights about TLRs as potential targets for prostate cancer immunotherapy. PMID:25101092

  3. Toll-Like Receptors of Deuterostome Invertebrates

    PubMed Central

    Satake, Honoo; Sekiguchi, Toshio

    2012-01-01

    Defensive systems against pathogens are responsible not only for survival or lifetime of an individual but also for the evolution of a species. Innate immunity is expected to be more important for invertebrates than mammals, given that adaptive immunity has not been acquired in the former. Toll-like receptors (TLRs) have been shown to play a crucial role in host defense of pathogenic microbes in innate immunity of mammals. Recent genome-wide analyses have suggested that TLR or their related genes are conserved in invertebrates. In particular, numerous TLR-related gene candidates were detected in deuterostome invertebrates, including a sea urchin (222 TLR-related gene candidates) and amphioxus (72 TLR-related gene candidates). Molecular phylogenetic analysis verified that most of sea urchin or amphioxus TLR candidates are paralogous, suggesting that these organisms expanded TLR-related genes in a species-specific manner. In contrast, another deuterostome invertebrate, the ascidian Ciona intestinalis, was found to possess only two TLR genes. Moreover, Ciona TLRs, Ci-TLR1 and Ci-TLR2, were shown to possess “hybrid” functionality of mammalian TLRs. Such functionality of Ci-TLRs could not be predicted by sequence comparison with vertebrate TLRs, indicating confounding evolutionary lineages of deuterostome invertebrate TLRs or their candidates. In this review article, we present recent advances in studies of TLRs or their candidates among deuterostome invertebrates, and provide insight into an evolutionary process of TLRs. PMID:22566918

  4. DIFFERENTIAL TOLL-LIKE RECEPTOR ACTIVATION IN LUNG ISCHEMIA REPERFUSION INJURY

    PubMed Central

    Phelan, Patrick; Merry, Heather E.; Hwang, Billanna; Mulligan, Michael S.

    2015-01-01

    Objective The requirement for toll-like receptors in lung ischemia reperfusion injury (LIRI) has been demonstrated but not fully characterized. We have previously reported that toll-like receptor-4 is required by alveolar macrophages but not pulmonary endothelial or epithelial cells for the development of LIRI. Additionally, we have demonstrated differential patterns of mitogen-activated protein kinase activation and cytokine release in these cell types during LIRI. We sought to determine whether the differences in their activation responses related to cell specific toll-like receptor activation requirements. Methods Primary cultures of alveolar macrophages, pulmonary endothelial, and immortalized epithelial cells were pretreated with toll-like receptor-2 or -4 short interference (si)RNA prior to hypoxia and reoxygenation. Cell lysates and media were analyzed for receptor knockdown, mitogen-activated protein kinase activation, and cytokine production. Rats were pretreated with toll-like receptor-2 or -4 siRNA prior to lung ischemia reperfusion and changes in lung vascular permeability were assessed. Results Toll-like receptor-2 knockdown in alveolar macrophages did not affect mitogen-activated protein kinase phosphorylation or cytokine secretion. Conversely, toll-like receptor-2 knockdown in pulmonary endothelial and epithelial cells demonstrated significant reductions in ERK 1/2 activation and cytokine secretion. Toll-like receptor-4, but not toll-like receptor-2, decreased lung permeability index in LIRI. Conclusions Differential toll-like receptor signaling and mitogen-activated protein kinase activation in response to LIRI appear to be cell specific. siRNA provides an outstanding tool for examination of the underlying mechanism. PMID:25911179

  5. A Comparative Analysis of the Mechanism of Toll-Like Receptor-Disruption by TIR-Containing Protein C from Uropathogenic Escherichia coli

    PubMed Central

    Waldhuber, Anna; Snyder, Greg A.; Römmler, Franziska; Cirl, Christine; Müller, Tina; Xiao, Tsan Sam; Svanborg, Catharina; Miethke, Thomas

    2016-01-01

    The TIR-containing protein C (TcpC) of uropathogenic Escherichia coli strains is a powerful virulence factor by impairing the signaling cascade of Toll-like receptors (TLRs). Several other bacterial pathogens like Salmonella, Yersinia, Staphylococcus aureus but also non-pathogens express similar proteins. We discuss here the pathogenic potential of TcpC and its interaction with TLRs and TLR-adapter proteins on the molecular level and compare its activity with the activity of other bacterial TIR-containing proteins. Finally, we analyze and compare the structure of bacterial TIR-domains with the TIR-domains of TLRs and TLR-adapters. PMID:26938564

  6. Toll-Like Receptor Signaling in Vertebrates: Testing the Integration of Protein, Complex, and Pathway Data in the Protein Ontology Framework

    PubMed Central

    Ruttenberg, Alan; Smith, Barry; Natale, Darren A.; Wu, Cathy; D’Eustachio, Peter

    2015-01-01

    The Protein Ontology (PRO) provides terms for and supports annotation of species-specific protein complexes in an ontology framework that relates them both to their components and to species-independent families of complexes. Comprehensive curation of experimentally known forms and annotations thereof is expected to expose discrepancies, differences, and gaps in our knowledge. We have annotated the early events of innate immune signaling mediated by Toll-Like Receptor 3 and 4 complexes in human, mouse, and chicken. The resulting ontology and annotation data set has allowed us to identify species-specific gaps in experimental data and possible functional differences between species, and to employ inferred structural and functional relationships to suggest plausible resolutions of these discrepancies and gaps. PMID:25894391

  7. Nucleic acid recognizing Toll-like receptors and autoimmunity.

    PubMed

    von Landenberg, Philipp; Bauer, Stefan

    2007-12-01

    The understanding of autoimmune diseases experienced an impressive boost since the Toll-like receptors (TLRs) have been identified as possible key players in autoimmune pathophysiology. Although these receptors recognize a variety of structures derived from viruses, bacteria, and fungi leading to subsequent initiation of the relevant immune responses, recent data support the idea that TLRs are crucial in the induction and perpetuation of certain autoimmune diseases, especially the systemic lupus erythematosus (SLE). In this review, we will summarize recent data on involvement of TLRs in the development of autoimmune diseases. We will focus on TLRs 7, 8, and 9 that were originally identified as receptors specific for bacterial and viral RNA/DNA, but more recent in vitro and in vivo studies have linked these receptors to the detection of host RNA, DNA, and RNA-associated or DNA-associated proteins in the context of autoimmunity. PMID:18060756

  8. Role of Adaptor Protein Toll-Like Interleukin Domain Containing Adaptor Inducing Interferon β in Toll-Like Receptor 3- and 4-Mediated Regulation of Hepatic Drug Metabolizing Enzyme and Transporter Genes.

    PubMed

    Shah, Pranav; Omoluabi, Ozozoma; Moorthy, Bhagavatula; Ghose, Romi

    2016-01-01

    The expressions and activities of hepatic drug-metabolizing enzymes and transporters (DMETs) are altered during infection and inflammation. Inflammatory responses in the liver are mediated primarily by Toll-like receptor (TLR)-signaling, which involves recruitment of Toll/interleukin (IL)-1 receptor (TIR) domain containing adaptor protein (TIRAP) and TIR domain containing adaptor inducing interferon (IFN)-β (TRIF) that eventually leads to induction of proinflammatory cytokines and mitogen-activated protein kinases (MAPKs). Lipopolysaccharide (LPS) activates the Gram-negative bacterial receptor TLR4 and polyinosinic:polycytidylic acid (polyI:C) activates the viral receptor TLR3. TLR4 signaling involves TIRAP and TRIF, whereas TRIF is the only adaptor protein involved in the TLR3 pathway. We have shown previously that LPS-mediated downregulation of DMETs is independent of TIRAP. To determine the role of TRIF, we treated TRIF(+/+) and TRIF(-/-) mice with LPS or polyI:C. LPS downregulated (∼40%-60%) Cyp3a11, Cyp2a4, Ugt1a1, Mrp2 mRNA levels, whereas polyI:C downregulated (∼30%-60%) Cyp3a11, Cyp2a4, Cyp1a2, Cyp2b10, Ugt1a1, Mrp2, and Mrp3 mRNA levels in TRIF(+/+) mice. This downregulation was not attenuated in TRIF(-/-) mice. Induction of cytokines by LPS was observed in both TRIF(+/+) and TRIF(-/-) mice. Cytokine induction was delayed in polyI:C-treated TRIF(-/-) mice, indicating that multiple mechanisms mediating polyI:C signaling exist. To assess the role of MAPKs, primary hepatocytes were pretreated with specific inhibitors before treatment with LPS/polyI:C. We found that only the c-jun-N-terminal kinase (JNK) inhibitor attenuated the down-regulation of DMETs. These results show that TRIF-independent pathways can be involved in the downregulation of DMETs through TLR4 and 3. JNK-dependent mechanisms likely mediate this downregulation. PMID:26470915

  9. Structural characterization and immunomodulatory activity of Grifola frondosa polysaccharide via toll-like receptor 4-mitogen-activated protein kinases-nuclear factor κB pathways.

    PubMed

    Ma, Xiaolei; Meng, Meng; Han, Lirong; Cheng, Dai; Cao, Xiaohong; Wang, Chunling

    2016-06-15

    We isolated a neutral polysaccharide from the fruiting body of a mushroom Grifola frondosa (GFP-A). The aim of this study was to characterize a neutral α-d-polysaccharide derived from G. frondosa and evaluate its immunomodulatory effect on toll-like receptor 4, mitogen-activated protein kinases and nuclear factor κB pathways of protein expression in macrophages. The structural features of GFP-A were characterized by physicochemical and instrumental analyses. Its molecular weight was found to be 8.48 × 10(2) kDa. The main chain of GFP-A consisted of (1 → 4)-linked and (1 → 6)-linked α-d-glucopyranosyl, and (1 → 3,6)-linked α-d-mannopyranosyl residues, which branched at C-3. The branches consisted of (1 → 6)-linked α-d-galactopyranosyl and t-l-rhamnopyranosyl residues. An in vitro immunomodulatory assay for pro-inflammatory cytokines (interleukin-1β, interleukin-2, tumor necrosis factor alpha, etc.) using the macrophage cell line, RAW 264.7, revealed that GFP-A exhibited significant immunomodulatory activity by stimulating the toll-like receptor 4, mitogen-activated protein kinases to nuclear factor κB/pathway. PMID:27220562

  10. Enhanced antibody responses to a detoxified lipopolysaccharide-group B meningococcal outer membrane protein vaccine are due to synergistic engagement of Toll-like receptors.

    PubMed

    Chen, Wilbur H; Basu, Subhendu; Bhattacharjee, Apurba K; Cross, Alan S

    2010-10-01

    When given passively or elicited actively, antibodies induced by a detoxified Escherichia coli Rc chemotype (J5) mutant lipopolysaccharide (J5dLPS)-group B meningococcal outer membrane protein (OMP) complex vaccine protected animals from lethal sepsis. The protection from sepsis is believed to be dependent on high levels of antibodies against the core glycolipid (CGL), a region of LPS that is rather conserved among Enterobacteriaceae. The addition of unmethylated deoxycytidyl-deoxyguanosine dinucleotide (CpG)-containing oligodeoxynucleotides (ODN) was used as an immuno-adjuvant to improve antibody responses. In preparation for a Phase I human trial, we elucidated potential contributions by which the sepsis vaccine (J5dLPS-OMP) and CpG ODN might enhance the antibody response and provide evidence that the generation of immune responses is Toll-like receptor (TLR) dependent. Toll-like receptor 2, TLR4, and TLR9 were each essential for generating robust cytokine and antibody responses. The signature cytokine of dendritic cells, interleukin-12, was one of the cytokines that demonstrated synergy with the optimal TLR ligand/ engagement combination. We conclude that the involvement of multiple TLRs upon immunization was critical for the generation of optimal antibody responses. These observations provide further evidence for the inclusion of innate immune-based adjuvants during the development of next-generation vaccines. PMID:19822632

  11. Toll-like receptor signaling adapter proteins govern spread of neuropathic pain and recovery following nerve injury in male mice

    PubMed Central

    2013-01-01

    Background Spinal Toll-like receptors (TLRs) and signaling intermediaries have been implicated in persistent pain states. We examined the roles of two major TLR signaling pathways and selected TLRs in a mononeuropathic allodynia. Methods L5 spinal nerve ligation (SNL) was performed in wild type (WT, C57BL/6) male and female mice and in male Tlr2 -/- Tlr3 -/- , Tlr4 -/- , Tlr5 -/- , Myd88 -/- , Trif lps2 , Myd88/Trif lps2 , Tnf -/- , and Ifnar1 -/- mice. We also examined L5 ligation in Tlr4 -/- female mice. We examined tactile allodynia using von Frey hairs. Iba-1 (microglia) and GFAP (astrocytes) were assessed in spinal cords by immunostaining. Tactile thresholds were analyzed by 1- and 2-way ANOVA and the Bonferroni post hoc test was used. Results In WT male and female mice, SNL lesions resulted in a persistent and robust ipsilateral, tactile allodynia. In males with TLR2, 3, 4, or 5 deficiencies, tactile allodynia was significantly, but incompletely, reversed (approximately 50%) as compared to WT. This effect was not seen in female Tlr4 -/- mice. Increases in ipsilateral lumbar Iba-1 and GFAP were seen in mutant and WT mice. Mice deficient in MyD88, or MyD88 and TRIF, showed an approximately 50% reduction in withdrawal thresholds and reduced ipsilateral Iba-1. In contrast, TRIF and interferon receptor null mice developed a profound ipsilateral and contralateral tactile allodynia. In lumbar sections of the spinal cords, we observed a greater increase in Iba-1 immunoreactivity in the TRIF-signaling deficient mice as compared to WT, but no significant increase in GFAP. Removing MyD88 abrogated the contralateral allodynia in the TRIF signaling-deficient mice. Conversely, IFNβ, released downstream to TRIF signaling, administered intrathecally, temporarily reversed the tactile allodynia. Conclusions These observations suggest a critical role for the MyD88 pathway in initiating neuropathic pain, but a distinct role for the TRIF pathway and interferon in regulating

  12. Toll-like receptors in the pathogenesis of inflammatory diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toll-like receptors (TLRs) are newly established immune receptors which are critical for host defense through the activation of both innate and adaptive immunity. TLRs can recognize molecules with both microbial and non-microbial origins. Emerging evidence now suggests that TLRs are implicated in th...

  13. Toward Self-Adjuvanting Subunit Vaccines: Model Peptide and Protein Antigens Incorporating Covalently Bound Toll-Like Receptor-7 Agonistic Imidazoquinolines

    PubMed Central

    Shukla, Nikunj M.; Lewis, Tyler C.; Day, Timothy P.; Mutz, Cole A.; Ukani, Rehman; Hamilton, Chase D.; Balakrishna, Rajalakshmi

    2011-01-01

    Toll-like receptor (TLR)-7 agonists show prominent Th1-biased immunostimulatory activities. A TLR7-active N1-(4-aminomethyl)benzyl substituted imidazoquinoline 1 served as a convenient precursor for the syntheses of isothiocyanate and maleimide derivatives for covalent attachment to free amine and thiol groups of peptides and proteins. 1 was also amenable to direct reductive amination with maltoheptaose without significant loss of activity. Covalent conjugation of the isothiocyanate derivative 2 to α-lactalbumin could be achieved under mild, non-denaturing conditions, in a controlled manner and with full preservation of antigenicity. The self-adjuvanting α-lactalbumin construct induced robust, high-affinity immunoglobulin titers in murine models. The premise of covalently decorating protein antigens with adjuvants offers the possibility of drastically reducing systemic exposure of the adjuvant, and yet eliciting strong, Th1-biased immune responses. PMID:21549593

  14. Follistatin-related protein/follistatin-like 1 evokes an innate immune response via CD14 and toll-like receptor 4.

    PubMed

    Murakami, Kosaku; Tanaka, Masao; Usui, Takashi; Kawabata, Daisuke; Shiomi, Aoi; Iguchi-Hashimoto, Mikiko; Shimizu, Masakazu; Yukawa, Naoichiro; Yoshifuji, Hajime; Nojima, Takaki; Ohmura, Koichiro; Fujii, Takao; Umehara, Hisanori; Mimori, Tsuneyo

    2012-02-17

    Follistatin-related protein (FRP)/follistatin-like 1 (FSTL1) has multi-specific binding nature especially with TGF-β superfamily proteins, and thereby modulates organ development. However, its function in immune systems remains unclear. Previously, we reported FRP interacts with CD14, which is known to mediate toll-like receptor 4 (TLR4) signaling. Here, we investigated whether FRP activates TLR4 signaling. Recombinant FRP induced interleukin 6 or interleukin 8 production from target cells in a CD14- and TLR4-dependent manner. Moreover, similar to lipopolysaccharide (LPS), FRP induced tolerance to the second LPS stimulation. FRP has the function of evoking innate immune responses as one of the endogenous TLR4 agonists. PMID:22265692

  15. Assembly and localization of Toll-like receptor signalling complexes.

    PubMed

    Gay, Nicholas J; Symmons, Martyn F; Gangloff, Monique; Bryant, Clare E

    2014-08-01

    Signal transduction by the Toll-like receptors (TLRs) is central to host defence against many pathogenic microorganisms and also underlies a large burden of human disease. Thus, the mechanisms and regulation of signalling by TLRs are of considerable interest. In this Review, we discuss the molecular basis for the recognition of pathogen-associated molecular patterns, the nature of the protein complexes that mediate signalling, and the way in which signals are regulated and integrated at the level of allosteric assembly, post-translational modification and subcellular trafficking of the components of the signalling complexes. These fundamental molecular mechanisms determine whether the signalling output leads to a protective immune response or to serious pathologies such as sepsis. A detailed understanding of these processes at the molecular level provides a rational framework for the development of new drugs that can specifically target pathological rather than protective signalling in inflammatory and autoimmune disease. PMID:25060580

  16. [Negative regulation of Toll-like receptor signalling].

    PubMed

    Antosz, Halina; Choroszyńska, Dorota

    2013-01-01

    The mechanism of innate immunity is based on the pattern recognition receptors (PRR) that recognize molecular patterns associated with pathogens (PAMPs). Among PRR receptors Toll-like receptors (TLR) are distinguished. As a result of contact with pathogens, TLRs activate specific intracellular signaling pathways. It happens through proteins such as adaptor molecules, e.g. MyD88, TIRAP, TRIF, TRAM, and IPS-1, which participate in the cascade activation of kinases (IKK, MAP, RIP-1, TBK-1) as well as transcription factors (NF-κB, AP-1) and regulatory factor (IRF3). The result of this activation is the production of active proinflammatory cytokines, chemokines, interferons and enzymes. The PRR pathways are controlled by extra- and intracellular molecules to prevent overexpression of PRR. They include soluble receptors (sTLR), transmembrane proteins (ST2, SIGIRR, RP105, TRAIL-R) and intracellular inhibitors (SOCS-1, SOCS-3, sMyD88, TOLLIP, IRAK-M, SARM, A20, β-arrestin, CYLD, SHP). These molecules maintain the balance between activation and inhibition and ensure balancing of the beneficial and adverse effects of antigen recognition. PMID:23619234

  17. Toll-like receptors as sensors of pathogens.

    PubMed

    Hallman, M; Rämet, M; Ezekowitz, R A

    2001-09-01

    Initial recognition of microbes, as they enter the body, is based on germ line-encoded pattern recognition receptors that selectively bind to essential components of pathogens. This allows the body to respond immediately to the microbial invasion before the development of active immunity. The signal-transducing receptors that trigger the acute inflammatory cascade have been elusive until very recently. On the basis of their genetic similarity to the Toll signaling pathway in Drosophila, mammalian Toll-like receptors (TLRs) have been identified. By now, nine transmembrane proteins in the TLR family have been described. Mammalian TLR4 is the signal-transducing receptor activated by the bacterial lipopolysaccharide. The activation of TLR4 leads to DNA binding of the transcription factor NF-kappaB, resulting in activation of the inflammatory cascade. Activation of other TLRs is likely to have similar consequences. TLR2 mediates the host response to Gram-positive bacteria and yeast. TLR1 and TLR6 may participate in the activation of macrophages by Gram-positive bacteria, whereas TLR9 appears to respond to a specific sequence of bacterial DNA. The TLRs that control the onset of an acute inflammatory response are critical antecedents for the development of adaptive acquired immunity. Genetic and developmental variation in the expression of microbial pattern recognition receptors may affect the individual's predisposition to infections in childhood and may contribute to susceptibility to severe neonatal inflammatory diseases, allergies, and autoimmune diseases. PMID:11518816

  18. The COPII adaptor protein TMED7 is required to initiate and mediate the anterograde trafficking of Toll-like receptor 4 to the plasma membrane

    PubMed Central

    Liaunardy-Jopeace, Ardiyanto; Bryant, Clare E.; Gay, Nicholas J.

    2015-01-01

    Toll-like receptor 4 (TLR4), the receptor for the bacterial product endotoxin, is subject to multiple points of regulation at the levels of signaling, biogenesis, and trafficking. Dysregulation of TLR4 signaling can cause serious inflammatory diseases, such as sepsis. We found that the p24 family protein TMED7 (transmembrane emp24 protein transport domain containing 7) is required for the trafficking of TLR4 from the endoplasmic reticulum to the cell surface through the Golgi. TMED7 formed a stable complex with the ectodomain of TLR4, an interaction that required the coiled-coil and GOLD domains, but not the cytosolic, COP II sorting motif, of TMED7. Depletion of TMED7 reduced TLR4 signaling mediated by the adaptor protein MyD88, but not that mediated by the adaptor proteins TRAM and TRIF. Truncated forms of TMED7 lacking the COP II sorting motif or the transmembrane domain were mislocalized and resulted in constitutive activation of TLR4 signaling. Together, these results support the hypothesis that p24 proteins perform a quality control step by recognizing correctly folded anterograde cargo, such as TLR4, in early secretory compartments and facilitating the translocation of this cargo to the cell surface. PMID:25074978

  19. Tyrosine Phosphorylation in Toll-Like Receptor Signaling

    PubMed Central

    Chattopadhyay, Saurabh; Sen, Ganes C.

    2014-01-01

    There is a wealth of knowledge about how different Ser/Thr protein kinases participate in Toll-like receptor (TLR) signaling. In many cases, we know the identities of the Ser/Thr residues of various components of the TLR-signaling pathways that are phosphorylated, the functional consequences of the phosphorylation and the responsible protein kinases. In contrast, the analysis of Tyr-phosphorylation of TLRs and their signaling proteins is currently incomplete, because several existing analyses are not systematic or they do not rely on robust experimental data. Nevertheless, it is clear that many TLRs require, for signaling, ligand-dependent phosphorylation of specific Tyr residues in their cytoplasmic domains; the list includes TLR2, TLR3, TLR4, TLR5, TLR8 and TLR9. In this article, we discuss the current status of knowledge on the effect of Tyr-phosphorylation of TLRs and their signaling proteins on their biochemical and biological functions, the possible identities of the relevant protein tyrosine kinases (PTKs) and the nature of regulations of PTK-mediated activation of TLR signaling pathways. PMID:25022196

  20. Allergens and Activation of the Toll-Like Receptor Response.

    PubMed

    Monie, Tom P; Bryant, Clare E

    2016-01-01

    Pattern recognition receptors (PRRs) provide a crucial function in the detection of exogenous and endogenous danger signals. The Toll-like receptors (TLRs) were the first family of PRRs to be discovered and have been extensively studied since. Whilst TLRs remain the best characterized family of PRRs there is still much to be learnt about their mode of activation and the mechanisms of signal transduction they employ. Much of our understanding of these processes has been gathered through the use of cell based signaling assays utilizing specific gene-reporters or cytokine secretion based readouts. More recently it has become apparent that the repertoire of ligands recognized by these receptors may be wider than originally assumed and that their activation may be sensitized, or at least modulated by the presence of common household allergens such as the cat dander protein Fel d 1, or the house dust mite allergen Der p 2. In this chapter we provide an overview of the cell culture and stimulation processes required to study TLR signaling in HEK293 based assays and in bone marrow-derived macrophages. PMID:26803639

  1. Subverting Toll-Like Receptor Signaling by Bacterial Pathogens

    PubMed Central

    McGuire, Victoria A.; Arthur, J. Simon C.

    2015-01-01

    Pathogenic bacteria are detected by pattern-recognition receptors (PRRs) expressed on innate immune cells, which activate intracellular signal transduction pathways to elicit an immune response. Toll-like receptors are, perhaps, the most studied of the PRRs and can activate the mitogen-activated protein kinase (MAPK) and Nuclear Factor-κB (NF-κB) pathways. These pathways are critical for mounting an effective immune response. In order to evade detection and promote virulence, many pathogens subvert the host immune response by targeting components of these signal transduction pathways. This mini-review highlights the diverse mechanisms that bacterial pathogens have evolved to manipulate the innate immune response, with a particular focus on those that target MAPK and NF-κB signaling pathways. Understanding the elaborate strategies that pathogens employ to subvert the immune response not only highlights the importance of these proteins in mounting effective immune responses, but may also identify novel approaches for treatment or prevention of infection. PMID:26648936

  2. Toll-Like Receptor Pathways in Autoimmune Diseases.

    PubMed

    Chen, Ji-Qing; Szodoray, Peter; Zeher, Margit

    2016-02-01

    Autoimmune diseases are a family of chronic systemic inflammatory disorders, characterized by the dysregulation of the immune system which finally results in the break of tolerance to self-antigen. Several studies suggest that Toll-like receptors (TLRs) play an essential role in the pathogenesis of autoimmune diseases. TLRs belong to the family of pattern recognition receptors (PRRs) that recognize a wide range of pathogen-associated molecular patterns (PAMPs). TLRs are type I transmembrane proteins and located on various cellular membranes. Two main groups have been classified based on their location; the extracelluar group referred to the ones located on the plasma membrane while the intracellular group all located in endosomal compartments responsible for the recognition of nucleic acids. They are released by the host cells and trigger various intracellular pathways which results in the production of proinflammatory cytokines, chemokines, as well as the expression of co-stimulatory molecules to protect against invading microorganisms. In particular, TLR pathway-associated proteins, such as IRAK, TRAF, and SOCS, are often dysregulated in this group of diseases. TLR-associated gene expression profile analysis together with single nucleotide polymorphism (SNP) assessment could be important to explain the pathomechanism driving autoimmune diseases. In this review, we summarize recent findings on TLR pathway regulation in various autoimmune diseases, including Sjögren's syndrome (SS), systemic lupus erythematosus (SLE), multiple sclerosis (MS), rheumatoid arthritis (RA), systemic sclerosis (SSc), and psoriasis. PMID:25687121

  3. Toll-Like Receptor 9 in Breast Cancer

    PubMed Central

    Sandholm, Jouko; Selander, Katri S.

    2014-01-01

    Toll-like receptor 9 (TLR9) is a cellular DNA receptor of the innate immune system. DNA recognition via TLR9 results in an inflammatory reaction, which eventually also activates a Th1-biased adaptive immune attack. In addition to cells of the immune system, TLR9 mRNA and protein are also widely expressed in breast cancer cell lines and in clinical breast cancer specimens. Although synthetic TLR9-ligands induce cancer cell invasion in vitro, the role of TLR9 in cancer pathophysiology has remained unclear. In the studies conducted so far, tumor TLR9 expression has been shown to have prognostic significance only in patients that have triple-negative breast cancer (TNBC). Specifically, high tumor TLR9 expression predicts good prognosis among TNBC patients. Pre-clinical studies suggest that TLR9 expression may affect tumor immunophenotype and contribute to the immunogenic benefit of chemotherapy. In this review, we discuss the possible contribution of tumor TLR9 to the pathogenesis and treatment responses in breast cancer. PMID:25101078

  4. Toll-like receptor signaling in primary immune deficiencies.

    PubMed

    Maglione, Paul J; Simchoni, Noa; Cunningham-Rundles, Charlotte

    2015-11-01

    Toll-like receptors (TLRs) recognize common microbial or host-derived macromolecules and have important roles in early activation of the immune system. Patients with primary immune deficiencies (PIDs) affecting TLR signaling can elucidate the importance of these proteins to the human immune system. Defects in interleukin-1 receptor-associated kinase-4 and myeloid differentiation factor 88 (MyD88) lead to susceptibility to infections with bacteria, while mutations in nuclear factor-κB essential modulator (NEMO) and other downstream mediators generally induce broader susceptibility to bacteria, viruses, and fungi. In contrast, TLR3 signaling defects are specific for susceptibility to herpes simplex virus type 1 encephalitis. Other PIDs induce functional alterations of TLR signaling pathways, such as common variable immunodeficiency in which plasmacytoid dendritic cell defects enhance defective responses of B cells to shared TLR agonists. Dampening of TLR responses is seen for TLRs 2 and 4 in chronic granulomatous disease (CGD) and X-linked agammaglobulinemia (XLA). Enhanced TLR responses, meanwhile, are seen for TLRs 5 and 9 in CGD, TLRs 4, 7/8, and 9 in XLA, TLRs 2 and 4 in hyper IgE syndrome, and for most TLRs in adenosine deaminase deficiency. PMID:25930993

  5. TRADITIONAL BIOCHEMICAL ASSAYS FOR STUDYING TOLL-LIKE RECEPTOR 9

    PubMed Central

    Leifer, Cynthia A.; Rose, William A.; Botelho, Fernando

    2015-01-01

    Understanding the mechanistic basis of receptor activation and regulation can offer therapeutic targets for disease treatment. Evidence is emerging for a role of the normally foreign responsive Toll-like receptors (TLRs) in the development of autoimmunity through response to self-patterns. Regulatory mechanisms governing this class of receptors are poorly understood, and failures within this system likely contribute to development of autoimmunity. In this article, we review biochemical assays used to study one of the self-pattern responsive TLRs, TLR9, and suggest that these studies are critical for development of new targets for autoimmune therapies. PMID:23323977

  6. Toll-Like Receptor Gene Expression during Trichinella spiralis Infection

    PubMed Central

    Kim, Sin; Park, Mi Kyung; Yu, Hak Sun

    2015-01-01

    In Trichinella spiralis infection, type 2 helper T (Th2) cell-related and regulatory T (Treg) cell-related immune responses are the most important immune events. In order to clarify which Toll-like receptors (TLRs) are closely associated with these responses, we analyzed the expression of mouse TLR genes in the small intestine and muscle tissue during T. spiralis infection. In addition, the expression of several chemokine- and cytokine-encoding genes, which are related to Th2 and Treg cell mediated immune responses, were analyzed in mouse embryonic fibroblasts (MEFs) isolated from myeloid differentiation factor 88 (MyD88)/TIR-associated proteins (TIRAP) and Toll receptor-associated activator of interferons (TRIF) adapter protein deficient and wild type (WT) mice. The results showed significantly increased TLR4 and TLR9 gene expression in the small intestine after 2 weeks of T. spiralis infection. In the muscle, TLR1, TLR2, TLR5, and TLR9 gene expression significantly increased after 4 weeks of infection. Only the expression of the TLR4 and TLR9 genes was significantly elevated in WT MEF cells after treatment with excretory-secretory (ES) proteins. Gene expression for Th2 chemokine genes were highly enhanced by ES proteins in WT MEF cells, while this elevation was slightly reduced in MyD88/TIRAP-/- MEF cells, and quite substantially decreased in TRIF-/- MEF cells. In contrast, IL-10 and TGF-β expression levels were not elevated in MyD88/TIRAP-/- MEF cells. In conclusion, we suggest that TLR4 and TLR9 might be closely linked to Th2 cell and Treg cell mediated immune responses, although additional data are needed to convincingly prove this observation. PMID:26323841

  7. Toll-Like Receptor Gene Expression during Trichinella spiralis Infection.

    PubMed

    Kim, Sin; Park, Mi Kyung; Yu, Hak Sun

    2015-08-01

    In Trichinella spiralis infection, type 2 helper T (Th2) cell-related and regulatory T (Treg) cell-related immune responses are the most important immune events. In order to clarify which Toll-like receptors (TLRs) are closely associated with these responses, we analyzed the expression of mouse TLR genes in the small intestine and muscle tissue during T. spiralis infection. In addition, the expression of several chemokine- and cytokine-encoding genes, which are related to Th2 and Treg cell mediated immune responses, were analyzed in mouse embryonic fibroblasts (MEFs) isolated from myeloid differentiation factor 88 (MyD88)/TIR-associated proteins (TIRAP) and Toll receptor-associated activator of interferons (TRIF) adapter protein deficient and wild type (WT) mice. The results showed significantly increased TLR4 and TLR9 gene expression in the small intestine after 2 weeks of T. spiralis infection. In the muscle, TLR1, TLR2, TLR5, and TLR9 gene expression significantly increased after 4 weeks of infection. Only the expression of the TLR4 and TLR9 genes was significantly elevated in WT MEF cells after treatment with excretory-secretory (ES) proteins. Gene expression for Th2 chemokine genes were highly enhanced by ES proteins in WT MEF cells, while this elevation was slightly reduced in MyD88/TIRAP(-/-) MEF cells, and quite substantially decreased in TRIF(-/-) MEF cells. In contrast, IL-10 and TGF-β expression levels were not elevated in MyD88/TIRAP(-/-) MEF cells. In conclusion, we suggest that TLR4 and TLR9 might be closely linked to Th2 cell and Treg cell mediated immune responses, although additional data are needed to convincingly prove this observation. PMID:26323841

  8. Recombinant production of functional full-length and truncated human TRAM/TICAM-2 adaptor protein involved in Toll-like receptor and interferon signaling.

    PubMed

    Ullah, M Obayed; Valkov, Eugene; Ve, Thomas; Williams, Simon; Mas, Caroline; Mansell, Ashley; Kobe, Bostjan

    2015-02-01

    TRAM/TICAM-2 is used by Toll-like receptor 4 (TLR4) as a bridging adaptor during the mammalian innate immune response. It recruits TRIF, another TIR domain-containing adaptor protein, to TLR4 via TIR domain interactions, which leads to the activation of transcription factors responsible for the production of type-1 interferon and cytokines. The molecular mechanisms of these dual interactions mediated by the TRAM TIR domain are not clear. To understand the molecular basis of TIR:TIR domain interactions, structural and biochemical studies of TRAM TIR domain are necessary, and require a functional soluble protein. In this paper, we report a successful purification and characterization of full-length TRAM. Because full-length TRAM likely contains unstructured regions that may be disadvantageous for structural studies, we also carried out a systematic construct design to determine the boundaries of the TRAM TIR domain. The truncated TRAM constructs were designed based on secondary structure predictions and screened by small-scale expression. Selected constructs were subjected to biophysical analyses. We show that the expressed TRAM TIR domain is functional using in vitro GST pull-down assays that demonstrate a physical interaction with the TLR4 TIR domain. We further show, by site-directed mutagenesis, that the "BB loop" regions of both the TRAM TIR domain and the TLR4 TIR domain are crucial for this physical interaction. PMID:25306876

  9. Toll-like receptors: potential targets for lupus treatment

    PubMed Central

    Wu, Yan-wei; Tang, Wei; Zuo, Jian-ping

    2015-01-01

    Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by the loss of tolerance to self-nuclear antigens. Accumulating evidence shows that Toll-like receptors (TLRs), previously proven to be critical for host defense, are implicated in the pathogenesis of autoimmune diseases by recognition of self-molecules. Genome-wide association studies, experimental mouse models and clinical sample studies have provided evidence for the involvement of TLRs, including TLR2/4, TLR5, TLR3 and TLR7/8/9, in SLE pathogenesis. A number of downstream proteins in the TLR signaling cascade (such as MyD88, IRAKs and IFN-α) are identified as potential therapeutic targets for SLE treatment. Numerous antagonists targeting TLR signaling, including oligonucleotides, small molecular inhibitors and antibodies, are currently under preclinical studies or clinical trials for SLE treatment. Moreover, the emerging new manipulation of TLR signaling by microRNA (miRNA) regulation shows promise for the future treatment of SLE. PMID:26592511

  10. Oxidized low density lipoprotein induces bone morphogenetic protein-2 in coronary artery endothelial cells via Toll-like receptors 2 and 4.

    PubMed

    Su, Xin; Ao, Lihua; Shi, Yi; Johnson, Thomas R; Fullerton, David A; Meng, Xianzhong

    2011-04-01

    Vascular calcification is a common complication in atherosclerosis. Bone morphogenetic protein-2 (BMP-2) plays an important role in atherosclerotic vascular calcification. The aim of this study was to determine the effect of oxidized low density lipoprotein (oxLDL) on BMP-2 protein expression in human coronary artery endothelial cells (CAECs), the roles of Toll-like receptor (TLR) 2 and TLR4 in oxLDL-induced BMP-2 expression, and the signaling pathways involved. Human CAECs were stimulated with oxLDL. The roles of TLR2 and TLR4 in oxLDL-induced BMP-2 expression were determined by pretreatment with neutralizing antibody, siRNA, and overexpression. Stimulation with oxLDL increased cellular BMP-2 protein levels in a dose-dependent manner (40-160 μg/ml). Pretreatment with neutralizing antibodies against TLR2 and TLR4 or silencing of these two receptors reduced oxLDL-induced BMP-2 expression. Overexpression of TLR2 and TLR4 enhanced the cellular BMP-2 response to oxLDL. Furthermore, oxLDL was co-localized with TLR2 and TLR4. BMP-2 expression was associated with activation of nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (MAPK), and extracellular signal-regulated kinase (ERK)1/2. Inhibition of NF-κB and ERK1/2 reduced BMP-2 expression whereas inhibition of p38 MAPK had no effect. In conclusion, oxLDL induces BMP-2 expression through TLR2 and TLR4 in human CAECs. The NF-κB and ERK1/2 pathways are involved in the signaling mechanism. These findings underscore an important role for TLR2 and TLR4 in mediating the BMP-2 response to oxLDL in human CAECs and indicate that these two immunoreceptors contribute to the mechanisms underlying atherosclerotic vascular calcification. PMID:21325271

  11. Toll-like Receptor 4 in CNS Pathologies

    PubMed Central

    Buchanan, Madison M.; Hutchinson, Mark; Watkins, Linda R.; Yin, Hang

    2010-01-01

    The responses of the brain to infection, ischemia and trauma share remarkable similarities. These and other conditions of the CNS coordinate an innate immune response marked by activation of microglia, the macrophage-like cells of the nervous system. An important contributor to microglial activation is toll-like receptor 4 (TLR4), a pathogen-associated molecular pattern receptor known to initiate an inflammatory cascade in response to various CNS stimuli. The present review traces new efforts to characterize and control the contribution of TLR4 to inflammatory etiologies of the nervous system. PMID:20402965

  12. Therapeutic potential of Toll-like receptor 9 activation.

    PubMed

    Krieg, Arthur M

    2006-06-01

    In the decade since the discovery that mouse B cells respond to certain unmethylated CpG dinucleotides in bacterial DNA, a specific receptor for these 'CpG motifs' has been identified, Toll-like receptor 9 (TLR9), and a new approach to immunotherapy has moved into the clinic based on the use of synthetic oligodeoxynucleotides (ODN) as TLR9 agonists. This review highlights the current understanding of the mechanism of action of these CpG ODN, and provides an overview of the preclinical data and early human clinical trial results using these drugs to improve vaccines and treat cancer, infectious disease and allergy/asthma. PMID:16763660

  13. Filarial Lymphatic Pathology Reflects Augmented Toll-Like Receptor-Mediated, Mitogen-Activated Protein Kinase-Mediated Proinflammatory Cytokine Production ▿ †

    PubMed Central

    Babu, Subash; Anuradha, R.; Kumar, N. Pavan; George, P. Jovvian; Kumaraswami, V.; Nutman, Thomas B.

    2011-01-01

    Lymphatic filariasis can be associated with the development of serious pathology in the form of lymphedema, hydrocele, and elephantiasis in a subset of infected patients. Toll-like receptors (TLRs) are thought to play a major role in the development of filarial pathology. To elucidate the role of TLRs in the development of lymphatic pathology, we examined cytokine responses to different Toll ligands in patients with chronic lymphatic pathology (CP), infected patients with subclinical pathology (INF), and uninfected, endemic-normal (EN) individuals. TLR2, -7, and -9 ligands induced significantly elevated production of Th1 and other proinflammatory cytokines in CP patients in comparison to both INF and EN patients. TLR adaptor expression was not significantly different among the groups; however, both TLR2 and TLR9 ligands induced significantly higher levels of phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein (MAP) kinases (MAPK) as well as increased activation of NF-κB in CP individuals. Pharmacologic inhibition of both ERK1/2 and p38 MAP kinase pathways resulted in significantly diminished production of proinflammatory cytokines in CP individuals. Our data, therefore, strongly suggest an important role for TLR2- and TLR9-mediated proinflammatory cytokine induction and activation of both the MAPK and NF-κB pathways in the development of pathology in human lymphatic filariasis. PMID:21875961

  14. Toll-like Receptor 4 Mediates the Inflammatory Responses and Matrix Protein Remodeling in Remote Non-Ischemic Myocardium in a Mouse Model of Myocardial Ischemia and Reperfusion

    PubMed Central

    Zhai, Yufeng; Ao, Lihua; Cleveland, Joseph C.; Zeng, Qingchun; Reece, T. Brett; Fullerton, David A.; Meng, Xianzhong

    2015-01-01

    The signaling mechanism that mediates inflammatory responses in remote non-ischemic myocardium following regional ischemia/reperfusion (I/R) remains incompletely understood. Myocardial Toll-like receptor 4 (TLR4) can be activated by multiple proteins released from injured cells and plays a role in myocardial inflammation and injury expansion. We tested the hypothesis that TLR4 occupies an important role in mediating the inflammatory responses and matrix protein remodeling in the remote non-ischemic myocardium following regional I/R injury. Methods and results: TLR4-defective (C3H/HeJ) and TLR4-competent (C3H/HeN) mice were subjected to coronary artery ligation (30 min) and reperfusion for 1, 3, 7 or 14 days. In TLR4-competent mice, levels of monocyte chemoattractant protein -1 (MCP-1), keratinocyte chemoattractant (KC), intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) were elevated in the remote non-ischemic myocardium at day 1, 3, and 7 of reperfusion. Levels of collagen I, collagen IV, matrix metalloproteinase (MMP) 2 and MMP 9 were increased in the remote non-ischemic myocardium at day 7 and 14 of reperfusion. MMP 2 and MMP 9 activities were also increased. TLR4 deficiency resulted in a moderate reduction in myocardial infarct size. However, it markedly downgraded the changes in the levels of chemokines, adhesion molecules and matrix proteins in the remote non-ischemic myocardium. Further, left ventricular function at day 14 was significantly improved in TLR4-defective mice. In conclusion, TLR4 mediates the inflammatory responses and matrix protein remodeling in the remote non-ischemic myocardium following regional myocardial I/R injury and contributes to the mechanism of adverse cardiac remodeling. PMID:25823011

  15. Evidence for adaptation of porcine Toll-like receptors.

    PubMed

    Darfour-Oduro, Kwame A; Megens, Hendrik-Jan; Roca, Alfred; Groenen, Martien A M; Schook, Lawrence B

    2016-03-01

    Naturally endemic infectious diseases provide selective pressures for pig populations. Toll-like receptors (TLRs) represent the first line of immune defense against pathogens and are likely to play a crucial adaptive role for pig populations. This study was done to determine whether wild and domestic pig populations representing diverse global environments demonstrate local TLR adaptation. The genomic sequence encoding the ectodomain, responsible for interacting with pathogen ligands of bacterial (TLR1, TLR2 and TLR6) and viral (TLR3, TLR7 and TLR8) receptors, was obtained. Mitochondrial D-loop region sequences were obtained and a phylogenetic analysis using these sequences revealed a clear separation of animals into Asian (n = 27) and European (n = 40) clades. The TLR sequences were then analyzed for population-specific positive selection signatures within wild boars and domesticated pig populations derived from Asian and European clades. Using within-population and between-population tests for positive selection, a TLR2-derived variant 376A (126Thr), estimated to have arisen in 163,000 years ago with a frequency of 83.33% within European wild boars, 98.00% within domestic pig breeds of European origin, 40.00% within Asian wild boars, and 11.36% within Asian domestic pigs, was identified to be under positive selection in pigs of European origin. The variant is located within the N terminal domain of the TLR2 protein 3D crystal structure and could affect ligand binding. This study suggests the TLR2 gene contributing to responses to bacterial pathogens has been crucial in adaptation of pigs to pathogens. PMID:26701185

  16. Toll-like receptor sensing of human herpesvirus infection

    PubMed Central

    West, John A.; Gregory, Sean M.; Damania, Blossom

    2012-01-01

    Toll-like receptors (TLRs) are evolutionarily conserved pathogen sensors that constitute the first line of defense in the human immune system. Herpesviruses are prevalent throughout the world and cause significant disease in the human population. Sensing of herpesviruses via TLRs has only been documented in the last 10 years and our understanding of the relationship between these sentinels of the immune system and herpesvirus infection has already provided great insight into how the host cell responds to viral infection. This report will summarize the activation and modulation of TLR signaling in the context of human herpesvirus infections. PMID:23061052

  17. Endotoxin Tolerance Inhibits Lyn and c-Src Phosphorylation and Association with Toll-Like Receptor 4 but Increases Expression and Activity of Protein Phosphatases.

    PubMed

    Xiong, Yanbao; Murphy, Michael; Manavalan, Tissa T; Pattabiraman, Goutham; Qiu, Fu; Chang, Hui-Hsin; Ho, I-Cheng; Medvedev, Andrei E

    2016-01-01

    Endotoxin tolerance protects the host by limiting excessive 'cytokine storm' during sepsis, but compromises the ability to counteract infections in septic shock survivors. It reprograms Toll-like receptor (TLR) 4 responses by attenuating the expression of proinflammatory cytokines without suppressing anti-inflammatory and antimicrobial mediators, but the mechanisms of reprogramming remain unclear. In this study, we demonstrate that the induction of endotoxin tolerance in human monocytes, THP-1 and MonoMac-6 cells inhibited lipopolysaccharide (LPS)-mediated phosphorylation of Lyn, c-Src and their recruitment to TLR4, but increased total protein phosphatase (PP) activity and the expression of protein tyrosine phosphatase (PTP) 1B, PP2A, PTP nonreceptor type (PTPN) 22 and mitogen-activated protein kinase phosphatase (MKP)-1. Chemical PP inhibitors, okadaic acid, dephostatin and cantharidic acid markedly decreased or completely abolished LPS tolerance, indicating the importance of phosphatases in endotoxin tolerization. Overexpression of PTPN22 decreased LPS-mediated nuclear factor (NF)-x03BA;B activation, p38 phosphorylation and CXCL8 gene expression, while PTPN22 ablation upregulated LPS-induced p65 NF-x03BA;B and p38 phosphorylation and the expression of TNF-α and pro-IL-1β mRNA, indicating PTPN22 as an inhibitor of TLR4 signaling. Thus, LPS tolerance interferes with TLR4 signaling by inhibiting Lyn and c-Src phosphorylation and their recruitment to TLR4, while increasing the phosphatase activity and expression of PP2A, PTPN22, PTP1B and MKP1. PMID:26457672

  18. Pycnogenol, an extract from French maritime pine, suppresses Toll-like receptor 4-mediated expression of adipose differentiation-related protein in macrophages.

    PubMed

    Gu, Jian-Qiu; Ikuyama, Shoichiro; Wei, Ping; Fan, Bin; Oyama, Jun-Ichi; Inoguchi, Toyoshi; Nishimura, Junji

    2008-12-01

    Adipose differentiation-related protein (ADRP) is highly expressed in macrophages and human atherosclerotic lesions. We demonstrated that Toll-like receptor (TLR) 4-mediated signals, which are involved in atherosclerosis formation, enhanced the expression of ADRP in macrophages. Lipopolysaccharide (LPS) enhanced the ADRP expression in RAW264.7 cells or peritoneal macrophages from wild-type mice, but not in macrophages from TLR4-deficient mice. Actinomycin D almost completely abolished the LPS effect, whereas cycloheximide decreased the expression at 12 h, indicating that the LPS-induced ADRP expression was stimulated at the transcriptional level and was also mediated by new protein synthesis. LPS enhanced the ADRP promoter activity, in part, by stimulating activator protein (AP)-1 binding to the Ets/AP-1 element. In addition, preceding the increase of the ADRP mRNA, LPS induced the expression of interleukin (IL)-6, IL-1alpha, and interferon-beta mRNAs, all of which stimulated the ADRP expression. Antibodies against these cytokines or inhibitors of c-Jun NH(2)-terminal kinase and nuclear factor (NF)-kappaB suppressed the ADRP mRNA level. Thus TLR4 signals stimulate the ADRP expression both in direct and indirect manners. Pycnogenol (PYC), an extract of French maritime pine, suppressed the expression of ADRP and the above-mentioned cytokines. PYC suppressed the ADRP promoter activity and enhancer activity of AP-1 and NF-kappaB, whereas it did not affect the LPS-induced DNA binding of these factors. In conclusion, TLR4-mediated signals stimulate the ADRP expression in macrophages while PYC antagonizes this process. PYC, a widely used dietary supplement, might be useful for prevention of atherosclerosis. PMID:18854426

  19. Toll-like Receptors of the Ascidian Ciona intestinalis

    PubMed Central

    Sasaki, Naoko; Ogasawara, Michio; Sekiguchi, Toshio; Kusumoto, Shoichi; Satake, Honoo

    2009-01-01

    Key transmembrane proteins in the innate immune system, Toll-like receptors (TLRs), have been suggested to occur in the genome of non-mammalian organisms including invertebrates. However, authentic invertebrate TLRs have been neither structurally nor functionally investigated. In this paper, we originally present the structures, localization, ligand recognition, activities, and inflammatory cytokine production of all TLRs of the ascidian Ciona intestinalis, designated as Ci-TLR1 and Ci-TLR2. The amino acid sequence of Ci-TLR1 and Ci-TLR2 were found to possess unique structural organization with moderate sequence similarity to functionally characterized vertebrate TLRs. ci-tlr1 and ci-tlr2 genes were expressed predominantly in the stomach and intestine as well as in hemocytes. Ci-TLR1 and Ci-TLR2 expressed in HEK293 cells, unlike vertebrate TLRs, were localized to both the plasma membrane and endosomes. Intriguingly, both Ci-TLR1 and Ci-TLR2 stimulate NF-κB induction in response to multiple pathogenic ligands such as double-stranded RNA, and bacterial cell wall components that are differentially recognized by respective vertebrate TLRs, revealing that Ci-TLRs recognize broader pathogen-associated molecular patterns than vertebrate TLRs. The Ci-TLR-stimulating pathogenic ligands also induced the expression of Ci-TNFα in the intestine and stomach where Ci-TLRs are expressed. These results provide evidence that the TLR-triggered innate immune systems are essentially conserved in ascidians, and that Ci-TLRs possess “hybrid” biological and immunological functions, compared with vertebrate TLRs. Moreover, it is presumed that chordate TLR ancestors also acquired the Ci-TLR-like multiple cellular localization and pathogen-associated molecular pattern recognition. PMID:19651780

  20. Oxygen-glucose deprivation of neurons transfected with toll-like receptor 3-siRNA: Determination of an optimal transfection sequence

    PubMed Central

    Cui, Guiyun; Wang, Xiaopeng; Ye, Xinchun; Zu, Jie; Zan, Kun; Hua, Fang

    2013-01-01

    Toll-like receptor 3 protein expression has been shown to be upregulated during cerebral ischemia/reperfusion injury in rats. In this study, rat primary cortical neurons were subjected to oxygen-glucose deprivation to simulate cerebral ischemia/reperfusion injury. Chemically synthesized small interfering RNA (siRNA)-1280, -1724 and -418 specific to toll-like receptor 3 were transfected into oxygen-glucose deprived cortical neurons to suppress the upregulation of toll-like receptor 3 protein expression. Western blotting demonstrated that after transfection with siRNA, toll-like receptor 3 protein expression reduced, especially in the toll-like receptor 3-1724 group. These results suggested that siRNA-1724 is an optimal sequence for inhibiting toll-like receptor 3 expression in cortical neurons following oxygen-glucose deprivation. PMID:25206644

  1. Toll-like receptors and diabetes complications: recent advances.

    PubMed

    Rosa Ramirez, Sandra; Ravi Krishna Dasu, Mohan

    2012-11-01

    Diabetes mellitus (DM) is a disease with constellation of metabolic aberrations resulting in debilitating complications. The prevalence of DM worldwide was 2.8% (171 million people) in 2000 and estimated to be at 4.4% (366 million people) in 2030. DM is a major risk factor for heart, kidney diseases, and lower limb amputations. Emerging in vitro and in vivo data suggest that systemic inflammation plays a role in the pathogenesis of DM complications via innate immune receptors. Toll-like receptors (TLRs) are key innate immune receptors that mediate the inflammatory responses in DM. There are no reviews that collectively summarize and examine the detrimental role of TLRs in the manifestation of DM complications namely heart disease, nephropathy, neuropathy, and wound healing. Thus, in this review, we will provide summaries of the TLR expression and activation and elucidate their role in propagating inflammation seen in DM complications. PMID:22934553

  2. Characterization of two negative regulators of the Toll-like receptor pathway in Apostichopus japonicus: inhibitor of NF-κB and Toll-interacting protein.

    PubMed

    Lu, Yali; Li, Chenghua; Wang, Dongqun; Su, Xiurong; Jin, Chunhua; Li, Ye; Li, Taiwu

    2013-11-01

    The Toll-like receptor (TLR) signaling cascade plays a central role in host cell recognition and responses to microbial pathogens via the specific recognition of distinct pathogen-associated molecular patterns (PAMPs). However, no negative regulators of the TLR-signaling cascade have been described in sea cucumber (Apostichopus japonicus). In the present study, two negative regulators known as the inhibitor of NF-κB (IκB) and Toll-interacting protein (Tollip) have been identified in coelomocytes of this species using transcriptome sequencing and RACE (denoted as AjIκB and AjTollip, respectively). Both of these factors share a remarkably high degree of structural conservation with their mammalian orthologs, such as a central ankyrin repeat domain (ARD) for the deduced amino acids of AjIκB and the C2 and CUE domains for AjTollip. Constitutive expression patterns with differential expression levels were observed for these two genes. Moreover, mRNA transcript expression for AjIκB and AjTollip was highest in the tentacle and abundant in the muscle, respectively. Vibrio splendidus challenge study revealed that the expression level of these two genes was decreased within the first 48 h with 0.53-fold and 0.61-fold decrease compared with that in the control group for AjIκB and AjTollip, respectively. Taken together, these results indicated that AjIκB and AjTollip functioned as negative regulators in the TLR cascade in response to a V. splendidus challenge. PMID:23978566

  3. Pneumococal Surface Protein A (PspA) Regulates Programmed Death Ligand 1 Expression on Dendritic Cells in a Toll-Like Receptor 2 and Calcium Dependent Manner

    PubMed Central

    Vashishta, Mohit; Khan, Naeem; Mehto, Subhash; Sehgal, Devinder; Natarajan, Krishnamurthy

    2015-01-01

    Pneumonia leads to high mortality in children under the age of five years worldwide, resulting in close to 20 percent of all deaths in this age group. Therefore, investigations into host-pathogen interactions during Streptococcus pneumoniae infection are key in devising strategies towards the development of better vaccines and drugs. To that end, in this study we investigated the role of S. pneumoniae and its surface antigen Pneumococcal surface protein A (PspA) in modulating the expression of co-stimulatory molecule Programmed Death Ligand 1 (PD-L1) expression on dendritic cells (DCs) and the subsequent effects of increased PD-L1 on key defence responses. Our data indicate that stimulation of DCs with PspA increases the surface expression of PD-L1 in a time and dose dependent manner. Characterization of mechanisms involved in PspA induced expression of PD-L1 indicate the involvement of Toll-Like Receptor 2 (TLR2) and calcium homeostasis. While calcium release from intracellular stores positively regulated PD-L1 expression, calcium influx from external milieu negatively regulated PD-L1 expression. Increase in PD-L1 expression, when costimulated with PspA and through TLR2 was higher than when stimulated with PspA or through TLR2. Further, knockdown of TLR2 and the intermediates in the TLR signaling machinery pointed towards the involvement of a MyD88 dependent pathway in PspA induced PD-L1 expression. Incubation of DCs with S. pneumoniae resulted in the up-regulation of PD-L1 expression, while infection with a strain lacking surface PspA failed to do so. Our data also suggests the role of PspA in ROS generation. These results suggest a novel and specific role for PspA in modulating immune responses against S. pneumoniae by regulating PD-L1 expression. PMID:26214513

  4. Protein kinase Cε-calcineurin cosignaling downstream of toll-like receptor 4 downregulates fibrosis and induces wound healing gene expression in cardiac myofibroblasts.

    PubMed

    Mesquita, Rui F D S; Paul, Margaret A; Valmaseda, Aida; Francois, Asvi; Jabr, Rita; Anjum, Shahzia; Marber, Michael S; Budhram-Mahadeo, Vishwanie; Heads, Richard J

    2014-02-01

    The pathways which regulate resolution of inflammation and contribute to positive remodeling of the myocardium following injury are poorly understood. Here we show that protein kinase C epsilon (PKCε) cooperates with the phosphatase calcineurin (CN) to potentiate induction of cardioprotective gene expression while suppressing expression of fibrosis markers. This was achieved by detailed analysis of the regulation of cyclooxygenase 2 (COX-2) expression as a marker gene and by using gene expression profiling to identify genes regulated by coexpression of CN-Aα/PKCε in adult rat cardiac myofibroblasts (ARVFs) on a larger scale. GeneChip analysis of CN-Aα/PKCε-coexpressing ARVFs showed that COX-2 provides a signature for wound healing and is associated with downregulation of fibrosis markers, including connective tissue growth factor (CTGF), fibronectin, and collagens Col1a1, Col3a1, Col6a3, Col11a1, Col12a1, and Col14a1, with concomitant upregulation of cardioprotection markers, including COX-2 itself, lipocalin 2 (LCN2), tissue inhibitor of metalloproteinase 1 (TIMP-1), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS). In primary rat cardiomyocyte cultures Toll-like receptor 4 (TLR4) agonist- or PKCε/CN-dependent COX-2 induction occurred in coresident fibroblasts and was blocked by selective inhibition of CN or PKC α/ε or elimination of fibroblasts. Furthermore, ectopic expression of PKCε and CN in ARVFs showed that the effects on COX-2 expression are mediated by specific NFAT sites within the COX-2 promoter as confirmed by site-directed mutagenesis and chromatin immunoprecipitation (ChIP). Therefore, PKCε may negatively regulate adverse myocardial remodeling by cooperating with CN to downregulate fibrosis and induce transcription of cardioprotective wound healing genes, including COX-2. PMID:24298017

  5. The GroEL protein of Porphyromonas gingivalis regulates atherogenic phenomena in endothelial cells mediated by upregulating toll-like receptor 4 expression.

    PubMed

    Huang, Chun-Yao; Shih, Chun-Ming; Tsao, Nai-Wen; Lin, Yi-Wen; Shih, Chun-Che; Chiang, Kuang-Hsing; Shyue, Song-Kun; Chang, Yu-Jia; Hsieh, Chi-Kun; Lin, Feng-Yen

    2016-01-01

    Porphyromonas gingivalis (P. gingivalis) is a bacterial species that causes periodontitis. GroEL from P. gingivalis may possess biological activity and may be involved in the destruction of periodontal tissues. However, it is unclear whether P. gingivalis GroEL enhances the appearance of atherogenic phenomena in endothelial cells and vessels. Here, we constructed recombinant GroEL from P. gingivalis to investigate its effects in human coronary artery endothelial cells (HCAECs) in vitro and on aortas of high-cholesterol (HC)-fed B57BL/6 and B57BL/6-Tlr4(lps-del) mice in vivo. The results showed that GroEL impaired tube-formation capacity under non-cytotoxic conditions in HCAECs. GroEL increased THP-1 cell/HCAEC adhesion by increasing the expression of intracellular adhesion molecule (ICAM)-1 and vascular adhesion molecule (VCAM)-1 in endothelial cells. Additionally, GroEL increased DiI-oxidized low density lipoprotein (oxLDL) uptake, which may be mediated by elevated lectin-like oxLDL receptor (LOX)-1 but not scavenger receptor expressed by endothelial cells (SREC) and scavenger receptor class B1 (SR-B1) expression. Furthermore, GroEL interacts with toll-like receptor 4 (TLR4) and plays a causal role in atherogenesis in HCAECs. Human antigen R (HuR), an RNA-binding protein with a high affinity for the 3' untranslated region (3'UTR) of TLR4 mRNA, contributes to the up-regulation of TLR4 induced by GroEL in HCAECs. In a GroEL animal administration study, GroEL elevated ICAM-1, VCAM-1, LOX-1 and TLR4 expression in the aortas of HC diet-fed wild C57BL/6 but not C57BL/6-Tlr4(lps-del) mice. Taken together, our findings suggest that P. gingivalis GroEL may contribute to cardiovascular disorders by affecting TLR4 expression. PMID:27158334

  6. The GroEL protein of Porphyromonas gingivalis regulates atherogenic phenomena in endothelial cells mediated by upregulating toll-like receptor 4 expression

    PubMed Central

    Huang, Chun-Yao; Shih, Chun-Ming; Tsao, Nai-Wen; Lin, Yi-Wen; Shih, Chun-Che; Chiang, Kuang-Hsing; Shyue, Song-Kun; Chang, Yu-Jia; Hsieh, Chi-Kun; Lin, Feng-Yen

    2016-01-01

    Porphyromonas gingivalis (P. gingivalis) is a bacterial species that causes periodontitis. GroEL from P. gingivalis may possess biological activity and may be involved in the destruction of periodontal tissues. However, it is unclear whether P. gingivalis GroEL enhances the appearance of atherogenic phenomena in endothelial cells and vessels. Here, we constructed recombinant GroEL from P. gingivalis to investigate its effects in human coronary artery endothelial cells (HCAECs) in vitro and on aortas of high-cholesterol (HC)-fed B57BL/6 and B57BL/6-Tlr4lps-del mice in vivo. The results showed that GroEL impaired tube-formation capacity under non-cytotoxic conditions in HCAECs. GroEL increased THP-1 cell/HCAEC adhesion by increasing the expression of intracellular adhesion molecule (ICAM)-1 and vascular adhesion molecule (VCAM)-1 in endothelial cells. Additionally, GroEL increased DiI-oxidized low density lipoprotein (oxLDL) uptake, which may be mediated by elevated lectin-like oxLDL receptor (LOX)-1 but not scavenger receptor expressed by endothelial cells (SREC) and scavenger receptor class B1 (SR-B1) expression. Furthermore, GroEL interacts with toll-like receptor 4 (TLR4) and plays a causal role in atherogenesis in HCAECs. Human antigen R (HuR), an RNA-binding protein with a high affinity for the 3’ untranslated region (3’UTR) of TLR4 mRNA, contributes to the up-regulation of TLR4 induced by GroEL in HCAECs. In a GroEL animal administration study, GroEL elevated ICAM-1, VCAM-1, LOX-1 and TLR4 expression in the aortas of HC diet-fed wild C57BL/6 but not C57BL/6-Tlr4lps-del mice. Taken together, our findings suggest that P. gingivalis GroEL may contribute to cardiovascular disorders by affecting TLR4 expression. PMID:27158334

  7. Novel drugs targeting Toll-like receptors for antiviral therapy

    PubMed Central

    Patel, Mira C; Shirey, Kari Ann; Pletneva, Lioubov M; Boukhvalova, Marina S; Garzino-Demo, Alfredo; Vogel, Stefanie N; Blanco, Jorge CG

    2014-01-01

    Toll-like receptors (TLRs) are sentinel receptors of the host innate immune system that recognize conserved ‘pathogen-associated molecular patterns’ of invading microbes, including viruses. The activation of TLRs establishes antiviral innate immune responses and coordinates the development of long-lasting adaptive immunity in order to control viral pathogenesis. However, microbe-induced damage to host tissues may release ‘danger-associated molecular patterns’ that also activate TLRs, leading to an overexuberant inflammatory response and, ultimately, to tissue damage. Thus, TLRs have proven to be promising targets as therapeutics for the treatment of viral infections that result in inflammatory damage or as adjuvants in order to enhance the efficacy of vaccines. Here, we explore recent advances in TLR biology with a focus on novel drugs that target TLRs (agonists and antagonists) for antiviral therapy. PMID:25620999

  8. Dysregulation of Human Toll-like Receptor Function in Aging

    PubMed Central

    Shaw, Albert C.; Panda, Alexander; Joshi, Samit R.; Qian, Feng; Allore, Heather G.; Montgomery, Ruth R.

    2010-01-01

    Studies addressing immunosenescence in the immune system have expanded to focus on the innate as well as the adaptive responses. In particular, aging results in alterations in the function of Toll-like receptors (TLRs), the first described pattern recognition receptor family of the innate immune system. Recent studies have begun to elucidate the consequences of aging on TLR function in human cohorts and add to existing findings performed in animal models. In general, these studies show that human TLR function is impaired in the context of aging, and in addition there is evidence for inappropriate persistence of TLR activation in specific systems. These findings are consistent with an overarching theme of age-associated dysregulation of TLR signaling that likely contributes to the increased morbidity and mortality from infectious diseases found in geriatric patients. PMID:21074638

  9. Unique features of chicken Toll-like receptors.

    PubMed

    Keestra, A Marijke; de Zoete, Marcel R; Bouwman, Lieneke I; Vaezirad, Mahdi M; van Putten, Jos P M

    2013-11-01

    Toll-like receptors (TLRs) are a major class of innate immune pattern recognition receptors that have a key role in immune homeostasis and the defense against infections. The research explosion that followed the discovery of TLRs more than a decade ago has boosted fundamental knowledge on the function of the immune system and the resistance against disease, providing a rational for clinical modulation of the immune response. In addition, the conserved nature of the ancient TLR system throughout the animal kingdom has enabled a comparative biology approach to understand the evolution, structural architecture, and function of TLRs. In the present review we focus on TLR biology in the avian species, and, especially, on the unique functional properties of the chicken TLR repertoire. PMID:23628643

  10. Application potential of toll-like receptors in cancer immunotherapy

    PubMed Central

    Shi, Ming; Chen, Xi; Ye, Kangruo; Yao, Yuanfei; Li, Yu

    2016-01-01

    Abstract Toll-like receptors (TLRs), as the most important pattern recognition receptors in innate immunity, play a pivotal role in inducing immune response through recognition of microbial invaders or specific agonists. Recent studies have suggested that TLRs could serve as important regulators in the development of a variety of cancer. However, increasing evidences have shown that TLRs may display quite opposite outcomes in cancer development. Although several potential therapeutic Toll-like receptor ligands have been found, the mechanism and therapy prospect of TLRs in cancer development has to be further elucidated to accelerate the clinical application. By performing a systematic review of the present findings on TLRs in cancer immunology, we attempted to evaluate the therapeutic potential of TLRs in cancer therapy and elucidate the potential mechanism of cancer progress regulated by TLR signaling and the reported targets on TLRs for clinical application. An electronic databases search was conducted in PubMed, Chinese Scientific Journal Database, and Chinese Biomedical Literature Database from their inception to February 1, 2016. The following keywords were used to search the databases: Toll-like receptors, cancer therapy, therapeutic target, innate immunity. Of 244 studies that were identified, 97 nonrelevant studies were excluded. In total, 147 full-text articles were assessed, and from these, 54 were excluded as they did not provide complete key information. Thus, 93 studies were considered eligible and included in the analysis. According to the data from the included trials, 14 TLR ligands (77.8%) from 82 studies have been demonstrated to display antitumor property in various cancers, whereas 4 ligands (22.2%) from 11 studies promote tumors. Among them, only 3 TLR ligands have been approved for cancer therapy, and 9 ligands were in clinical trials. In addition, the potential mechanism of recently reported targets on TLRs for clinical application was also

  11. Innate Immune Regulation by Toll-Like Receptors in the Brain

    PubMed Central

    Mallard, Carina

    2012-01-01

    The innate immune system plays an important role in cerebral health and disease. In recent years the role of innate immune regulation by toll-like receptors in the brain has been highlighted. In this paper the expression of toll-like receptors and endogenous toll-like receptor ligands in the brain and their role in cerebral ischemia will be discussed. Further, the ability of systemic toll-like receptor ligands to induce cerebral inflammation will be reviewed. Finally, the capacity of toll-like receptors to both increase (sensitization) and decrease (preconditioning/tolerance) the vulnerability of the brain to damage will be disclosed. Studies investigating the role of toll-like receptors in the developing brain will be emphasized. PMID:23097717

  12. Toll-Like Receptors in Leishmania Infections: Guardians or Promoters?

    PubMed Central

    Faria, Marilia S.; Reis, Flavia C. G.; Lima, Ana Paula C. A.

    2012-01-01

    Protozoa of the genus Leishmania cause a wide variety of pathologies ranging from self-healing skin lesions to visceral damage, depending on the parasite species. The outcome of infection depends on the quality of the adaptive immune response, which is determined by parasite factors and the host genetic background. Innate responses, resulting in the generation of mediators with anti-leishmanial activity, contribute to parasite control and help the development of efficient adaptive responses. Among those, the potential contribution of members of the Toll-like receptors (TLRs) family in the control of Leishmania infections started to be investigated about a decade ago. Although most studies appoint a protective role for TLRs, there is growing evidence that in some cases, TLRs facilitate infection. This review highlights recent advances in TLR function during Leishmania infections and discusses their potential role in restraining parasite growth versus yielding disease. PMID:22523644

  13. Current Views of Toll-Like Receptor Signaling Pathways

    PubMed Central

    Yamamoto, Masahiro; Takeda, Kiyoshi

    2010-01-01

    On microbial invasion, the host immediately evokes innate immune responses. Recent studies have demonstrated that Toll-like receptors (TLRs) play crucial roles in innate responses that lead not only to the clearance of pathogens but also to the efficient establishment of acquired immunity by directly detecting molecules from microbes. In terms of intracellular TLR-mediated signaling pathways, cytoplasmic adaptor molecules containing Toll/IL-1R (TIR) domains play important roles in inflammatory immune responses through the production of proinflammatory cytokines, nitric oxide, and type I interferon, and upregulation of costimulatory molecules. In this paper, we will describe our current understanding of the relationship between TLRs and their ligands derived from pathogens such as viruses, bacteria, fungi, and parasites. Moreover, we will review the historical and current literature to describe the mechanisms behind TLR-mediated activation of innate immune responses. PMID:21197425

  14. Toll-like receptors in antiviral innate immunity

    PubMed Central

    Lester, Sandra N.; Li, Kui

    2014-01-01

    Toll-like receptors (TLRs) are fundamental sensor molecules of the host innate immune system, which detect conserved molecular signatures of a wide range of microbial pathogens and initiate innate immune responses via distinct signaling pathways. Various TLRs are implicated in the early interplay of host cells with invading viruses, which regulates viral replication and/or host responses, ultimately impacting on viral pathogenesis. To survive the host innate defense mechanisms, many viruses have developed strategies to evade or counteract signaling through the TLR pathways, creating an advantageous environment for their propagation. Here we review the current knowledge of the roles TLRs play in antiviral innate immune responses, discuss examples of TLR-mediated viral recognition, and describe strategies used by viruses to antagonize the host antiviral innate immune responses. PMID:24316048

  15. Degranulation of Paneth Cells via Toll-Like Receptor 9

    PubMed Central

    Rumio, Cristiano; Besusso, Dario; Palazzo, Marco; Selleri, Silvia; Sfondrini, Lucia; Dubini, Francesco; Ménard, Sylvie; Balsari, Andrea

    2004-01-01

    The release of antimicrobial peptides and growth factors by Paneth cells is thought to play an important role in protecting the small intestine, but the mechanisms involved have remained obscure. Immunohistochemistry and immunofluorescence showed that Paneth cells express Toll-like receptor 9 (TLR9) in the granules. Injection of mice with oligonucleotides containing CpG sequence (CpG-ODNs) led to a down-modulation of TLR9 and a striking decrease in the number of large secretory granules, consistent with degranulation. Moreover CpG-ODN treatment increased resistance to oral challenge with virulent Salmonella typhimurium. Moreover, our findings demonstrate a sentinel role for Paneth cells through TLR9. PMID:15277213

  16. Antiinfective applications of toll-like receptor 9 agonists.

    PubMed

    Krieg, Arthur M

    2007-07-01

    The innate immune system detects pathogens by the presence of highly conserved pathogen-expressed molecules, which trigger host immune defenses. Toll-like receptor (TLR) 9 detects unmethylated CpG dinucleotides in bacterial or viral DNA, and can be stimulated for therapeutic applications with synthetic oligodeoxynucleotides containing immune stimulatory "CpG motifs." TLR9 activation induces both innate and adaptive immunity. The TLR9-induced innate immune activation can be applied in the prevention or treatment of infectious diseases, and the adaptive immune-enhancing effects can be harnessed for improving vaccines. This article highlights the current understanding of the mechanism of action of CpG oligodeoxynucleotides, and provides an overview of the preclinical data and early human clinical trial results, applying these TLR9 agonists in the field of infectious diseases. PMID:17607015

  17. Reprint of: Microglial toll-like receptors and Alzheimer's disease.

    PubMed

    Su, Fan; Bai, Feng; Zhou, Hong; Zhang, Zhijun

    2016-07-01

    Microglial activation represents an important pathological hallmark of Alzheimer's disease (AD), and emerging data highlight the involvement of microglial toll-like receptors (TLRs) in the course of AD. TLRs have been observed to exert both beneficial and detrimental effects on AD-related pathologies, and transgenic animal models have provided direct and credible evidence for an association between TLRs and AD. Moreover, analyses of genetic polymorphisms have suggested interactions between genetic polymorphisms in TLRs and AD risk, further supporting the hypothesis that TLRs are involved in AD. In this review, we summarize the key evidence in this field. Future studies should focus on exploring the mechanisms underlying the potential roles of TLRs in AD. PMID:27255539

  18. Toll-like receptor signaling and regulation of intestinal immunity.

    PubMed

    Kamdar, Karishma; Nguyen, Vivien; DePaolo, R William

    2013-04-01

    The intestine is a complex organ that must maintain tolerance to innocuous food antigens and commensal microbiota while being also able to mount inflammatory responses against invading pathogenic microorganisms. The ability to restrain tolerogenic responses while permitting inflammatory responses requires communication between commensal bacteria, intestinal epithelial cells and immune cells. Disruption or improper signaling between any of these factors may lead to uncontrolled inflammation and the development of inflammatory diseases. Toll-like receptors (TLR) recognize conserved molecular motifs of microorganisms and, not surprisingly, are important for maintaining tolerance to commensal microbiota, as well as inducing inflammation against pathogens. Perturbations in individual TLR signaling can lead to a number of different outcomes and illustrate a system of regulation within the intestine in which each TLR plays a largely non-redundant role in mucosal immunity. This review will discuss recent findings on the roles of individual TLRs and intestinal homeostasis. PMID:23334153

  19. Toll-Like Receptors and Ischemic Brain Injury

    PubMed Central

    Gesuete, Raffaella; Kohama, Steven G.; Stenzel-Poore, Mary

    2014-01-01

    Toll-like receptors (TLRs) are master regulators of innate immunity and play an integral role in the activation of the inflammatory response during infections. In addition, TLRs influence the body’s response to numerous forms of injury. Recent data have shown that TLRs play a modulating role in ischemic brain damage after stroke. Interestingly, their stimulation prior to ischemia induces a tolerant state that is neuroprotective. This phenomenon, referred to as TLR preconditioning, is the result of reprogramming of the TLR response to ischemic injury. This review addresses the role of TLRs in brain ischemia and the activation of endogenous neuroprotective pathways in the setting of preconditioning. We highlight the protective role of the interferon-related response and the potential site of action for TLR preconditioning involving the blood-brain-barrier. Pharmacological modulation of TLR activation to promote protection against stroke is a promising approach for the development of prophylactic and acute therapies targeting ischemic brain injury. PMID:24709682

  20. Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using Toll-like receptor 7 agonist imiquimod as vaccine adjuvant

    PubMed Central

    Adams, Sylvia; O'Neill, David W.; Nonaka, Daisuke; Hardin, Elizabeth; Chiriboga, Luis; Siu, Kimberly; Cruz, Crystal M.; Angiulli, Angelica; Angiulli, Francesca; Ritter, Erika; Holman, Rose Marie; Shapiro, Richard L.; Berman, Russell S.; Berner, Natalie; Shao, Yongzhao; Manches, Olivier; Pan, Linda; Venhaus, Ralph R.; Hoffman, Eric W.; Jungbluth, Achim; Gnjatic, Sacha; Old, Lloyd; Pavlick, Anna C.; Bhardwaj, Nina

    2008-01-01

    T cell-mediated immunity to microbes and to cancer can be enhanced by the activation of dendritic cells (DCs) via Toll-like receptors (TLRs). In this study, we evaluated the safety and feasibility of topical imiquimod, a TLR7 agonist, in a series of vaccinations (26) proteins,(27) and DNA, (28, 29) as well as in vaccines using recombinant Listeria(30) or DCs.(31) In humans, it was shown that topical imiquimod treatment may enhance the immunogenicity of a melanoma peptide vaccine when given with systemic FLT3 ligand. (32) In addition, injection of immature DCs into imiquimod pretreated skin lead to DC activation in situ and enhanced migratory capacity to draining lymph nodes in cancer patients. (33) In this study, we test the safety and feasibility of imiquimod in a vaccine against the cancer/testis antigen NY-ESO-1, and evaluate the immunogenicity of the combination. NY-ESO-1 is detectable in approximately 30% of metastatic melanomas. (34-36) It is against the cancer/testis antigen NY-ESO-1 in patients with malignant melanoma. Recombinant, full-length NY-ESO-1 protein was administered intradermally into imiquimod pre-conditioned sites followed by additional topical applications of imiquimod. The regimen was very well-tolerated with only mild and transient local reactions and constitutional symptoms. Secondarily, we examined the systemic immune response induced by the imiquimod/NY-ESO-1 combination, and show that it elicited both humoral and cellular responses in a significant fraction of patients. Skin biopsies were assessed for imiquimod's in situ immunomodulatory effects. Compared with untreated skin, topical imiquimod induced dermal mononuclear cell infiltrates in all patients composed primarily of T cells, monocytes, macrophages, myeloid DCs and natural killer (NK) cells, and to a lesser extent plasmacytoid DCs. DC activation was evident. This study demonstrates the feasibility and excellent safety profile of a topically applied TLR7 agonist utilized as a

  1. Interplay between HIV-1 and Toll-like receptors in human myeloid cells: friend or foe in HIV-1 pathogenesis?

    PubMed

    Donninelli, Gloria; Gessani, Sandra; Del Cornò, Manuela

    2016-01-01

    The Toll-like receptors are the first line of the host response to pathogens, representing an essential component of the innate and adaptive immune response. They recognize different pathogens and trigger responses directed at eliminating the invader and at developing immunologic long-term memory, ultimately affecting viral pathogenesis. In viral infections, sensing of nucleic acids and/or viral structural proteins generally induces a protective immune response. Thus, it is not surprising that many viruses have developed strategies to evade or counteract signaling through the Toll-like receptor pathways, to survive the host defense machinery and ensure propagation. Thus, Toll-like receptor engagement can also be part of viral pathogenic mechanisms. Evidence for a direct interaction of Toll-like receptors with human immunodeficiency virus type 1 (HIV-1) structures has started to be achieved, and alterations of their expression and function have been described in HIV-1-positive subjects. Furthermore, Toll-like receptor triggering by bacterial and viral ligands have been described to modulate HIV-1 replication and host response, leading to protective or detrimental effects. This review covers major advances in the field of HIV-1 interplay with Toll-like receptors, focusing on human myeloid cells (e.g., monocytes/macrophages and dendritic cells). The role of this interaction in the dysregulation of myeloid cell function and in dictating aspects of the multifaceted pathogenesis of acquired immunodeficiency syndrome will be discussed. PMID:26307548

  2. Toll-like receptor signalling and their therapeutic targeting in colorectal cancer.

    PubMed

    Moossavi, Shirin; Rezaei, Nima

    2013-06-01

    Intestinal homeostasis is dependent on the proper host/microbiota interaction via pattern recognition receptors. Toll-like receptors are a specialised group of membrane receptors which detect pathogen-associated conserved structures. They are present in the intestinal tract and are required for intestinal homeostasis. Dysregulation in the Toll-like receptor signalling can conceivably result in a dysregulated immune response which could contribute to major intestinal pathologies including colorectal cancer. Evidence for the role of microbiota and toll-like receptors in colorectal cancer is emerging. In this report the evidence for the contribution of toll-like receptors to the pathogenesis of colorectal cancer; potential mechanisms affecting toll-like receptor signalling; and their therapeutic targeting in colorectal cancer are reviewed. PMID:23602501

  3. Toll-Like Receptor 7-Targeted Therapy in Respiratory Disease.

    PubMed

    Lebold, Katie M; Jacoby, David B; Drake, Matthew G

    2016-03-01

    Allergic asthma and allergic rhinitis are inflammatory diseases of the respiratory tract characterized by an excessive type-2 T helper cell (Th2) immune response. Toll-like receptor 7 (TLR7) is a single-stranded viral RNA receptor expressed in the airway that initiates a Th1 immune response and has garnered interest as a novel therapeutic target for treatment of allergic airway diseases. In animal models, synthetic TLR7 agonists reduce airway hyperreactivity, eosinophilic inflammation, and airway remodeling while decreasing Th2-associated cytokines. Furthermore, activation of TLR7 rapidly relaxes airway smooth muscle via production of nitric oxide. Thus, TLR7 has dual bronchodilator and anti-inflammatory effects. Two TLR7 ligands with promising pharmacologic profiles have entered clinical trials for the treatment of allergic rhinitis. Moreover, TLR7 agonists are potential antiviral therapies against respiratory viruses. TLR7 agonists enhance influenza vaccine efficacy and also reduce viral titers when given during an active airway infection. In this review, we examine the current data supporting TLR7 as a therapeutic target in allergic airway diseases. PMID:27226793

  4. Toll-Like Receptor 7-Targeted Therapy in Respiratory Disease

    PubMed Central

    Lebold, Katie M.; Jacoby, David B.; Drake, Matthew G.

    2016-01-01

    Summary Allergic asthma and allergic rhinitis are inflammatory diseases of the respiratory tract characterized by an excessive type-2 T helper cell (Th2) immune response. Toll-like receptor 7 (TLR7) is a single-stranded viral RNA receptor expressed in the airway that initiates a Th1 immune response and has garnered interest as a novel therapeutic target for treatment of allergic airway diseases. In animal models, synthetic TLR7 agonists reduce airway hyperreactivity, eosinophilic inflammation, and airway remodeling while decreasing Th2-associated cytokines. Furthermore, activation of TLR7 rapidly relaxes airway smooth muscle via production of nitric oxide. Thus, TLR7 has dual bronchodilator and anti-inflammatory effects. Two TLR7 ligands with promising pharmacologic profiles have entered clinical trials for the treatment of allergic rhinitis. Moreover, TLR7 agonists are potential antiviral therapies against respiratory viruses. TLR7 agonists enhance influenza vaccine efficacy and also reduce viral titers when given during an active airway infection. In this review, we examine the current data supporting TLR7 as a therapeutic target in allergic airway diseases. PMID:27226793

  5. Microbiota regulates type 1 diabetes through Toll-like receptors

    PubMed Central

    Burrows, Michael P.; Volchkov, Pavel; Kobayashi, Koichi S.; Chervonsky, Alexander V.

    2015-01-01

    Deletion of the innate immune adaptor myeloid differentiation primary response gene 88 (MyD88) in the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D) results in microbiota-dependent protection from the disease: MyD88-negative mice in germ-free (GF), but not in specific pathogen-free conditions develop the disease. These results could be explained by expansion of particular protective bacteria (“specific lineage hypothesis”) or by dominance of negative (tolerizing) signaling over proinflammatory signaling (“balanced signal hypothesis”) in mutant mice. Here we found that colonization of GF mice with a variety of intestinal bacteria was capable of reducing T1D in MyD88-negative (but not wild-type NOD mice), favoring the balanced signal hypothesis. However, the receptors and signaling pathways involved in prevention or facilitation of the disease remained unknown. The protective signals triggered by the microbiota were revealed by testing NOD mice lacking MyD88 in combination with knockouts of several critical components of innate immune sensing for development of T1D. Only MyD88- and TIR-domain containing adapter inducing IFN β (TRIF) double deficient NOD mice developed the disease. Thus, TRIF signaling (likely downstream of Toll-like receptor 4, TLR4) serves as one of the microbiota-induced tolerizing pathways. At the same time another TLR (TLR2) provided prodiabetic signaling by controlling the microbiota, as reduction in T1D incidence caused by TLR2 deletion was reversed in GF TLR2-negative mice. Our results support the balanced signal hypothesis, in which microbes provide signals that both promote and inhibit autoimmunity by signaling through different receptors, including receptors of the TLR family. PMID:26216961

  6. Control of Toll-like Receptor-mediated T Cell-independent Type 1 Antibody Responses by the Inducible Nuclear Protein IκB-ζ*

    PubMed Central

    Hanihara-Tatsuzawa, Fumito; Miura, Hanae; Kobayashi, Shuhei; Isagawa, Takayuki; Okuma, Atsushi; Manabe, Ichiro; MaruYama, Takashi

    2014-01-01

    Antibody responses have been classified as being either T cell-dependent or T cell-independent (TI). TI antibody responses are further classified as being either type 1 (TI-1) or type 2 (TI-2), depending on their requirement for B cell-mediated antigen receptor signaling. Although the mechanistic basis of antibody responses has been studied extensively, it remains unclear whether different antibody responses share similarities in their transcriptional regulation. Here, we show that mice deficient in IκB-ζ, specifically in their B cells, have impaired TI-1 antibody responses but normal T cell-dependent and TI-2 antibody responses. The absence of IκB-ζ in B cells also impaired proliferation triggered by Toll-like receptor (TLR) activation, plasma cell differentiation, and class switch recombination (CSR). Mechanistically, IκB-ζ-deficient B cells could not induce TLR-mediated induction of activation-induced cytidine deaminase (AID), a class-switch DNA recombinase. Retroviral transduction of AID in IκB-ζ-deficient B cells restored CSR activity. Furthermore, acetylation of histone H3 in the vicinity of the transcription start site of the gene that encodes AID was reduced in IκB-ζ-deficient B cells relative to IκB-ζ-expressing B cells. These results indicate that IκB-ζ regulates TLR-mediated CSR by inducing AID. Moreover, IκB-ζ defines differences in the transcriptional regulation of different antibody responses. PMID:25124037

  7. Control of Toll-like receptor-mediated T cell-independent type 1 antibody responses by the inducible nuclear protein IκB-ζ.

    PubMed

    Hanihara-Tatsuzawa, Fumito; Miura, Hanae; Kobayashi, Shuhei; Isagawa, Takayuki; Okuma, Atsushi; Manabe, Ichiro; MaruYama, Takashi

    2014-11-01

    Antibody responses have been classified as being either T cell-dependent or T cell-independent (TI). TI antibody responses are further classified as being either type 1 (TI-1) or type 2 (TI-2), depending on their requirement for B cell-mediated antigen receptor signaling. Although the mechanistic basis of antibody responses has been studied extensively, it remains unclear whether different antibody responses share similarities in their transcriptional regulation. Here, we show that mice deficient in IκB-ζ, specifically in their B cells, have impaired TI-1 antibody responses but normal T cell-dependent and TI-2 antibody responses. The absence of IκB-ζ in B cells also impaired proliferation triggered by Toll-like receptor (TLR) activation, plasma cell differentiation, and class switch recombination (CSR). Mechanistically, IκB-ζ-deficient B cells could not induce TLR-mediated induction of activation-induced cytidine deaminase (AID), a class-switch DNA recombinase. Retroviral transduction of AID in IκB-ζ-deficient B cells restored CSR activity. Furthermore, acetylation of histone H3 in the vicinity of the transcription start site of the gene that encodes AID was reduced in IκB-ζ-deficient B cells relative to IκB-ζ-expressing B cells. These results indicate that IκB-ζ regulates TLR-mediated CSR by inducing AID. Moreover, IκB-ζ defines differences in the transcriptional regulation of different antibody responses. PMID:25124037

  8. Cathepsins are required for Toll-like receptor 9 responses

    SciTech Connect

    Matsumoto, Fumi; Saitoh, Shin-ichiroh; Fukui, Ryutaroh; Kobayashi, Toshihiko; Tanimura, Natsuko; Konno, Kazunori; Kusumoto, Yutaka; Akashi-Takamura, Sachiko; Miyake, Kensuke

    2008-03-14

    Toll-like receptors (TLR) recognize a variety of microbial products and activate defense responses. Pathogen sensing by TLR2/4 requires accessory molecules, whereas little is known about a molecule required for DNA recognition by TLR9. After endocytosis of microbes, microbial DNA is exposed and recognized by TLR9 in lysosomes. We here show that cathepsins, lysosomal cysteine proteases, are required for TLR9 responses. A cell line Ba/F3 was found to be defective in TLR9 responses despite enforced TLR9 expression. Functional cloning with Ba/F3 identified cathepsin B/L as a molecule required for TLR9 responses. The protease activity was essential for the complementing effect. TLR9 responses were also conferred by cathepsin S or F, but not by cathepsin H. TLR9-dependent B cell proliferation and CD86 upregulation were apparently downregulated by cathepsin B/L inhibitors. Cathepsin B inhibitor downregulated interaction of CpG-B with TLR9 in 293T cells. These results suggest roles for cathepsins in DNA recognition by TLR9.

  9. Toll-Like Receptor 4 Deficiency Impairs Motor Coordination

    PubMed Central

    Zhu, Jian-Wei; Li, Yi-Fei; Wang, Zhao-Tao; Jia, Wei-Qiang; Xu, Ru-Xiang

    2016-01-01

    The cerebellum plays an essential role in balance and motor coordination. Purkinje cells (PCs) are the sole output neurons of the cerebellar cortex and are critical for the execution of its functions, including motor coordination. Toll-like receptor (TLR) 4 is involved in the innate immune response and is abundantly expressed in the central nervous system; however, little is known about its role in cerebellum-related motor functions. To address this question, we evaluated motor behavior in TLR4 deficient mice. We found that TLR4−∕− mice showed impaired motor coordination. Morphological analyses revealed that TLR4 deficiency was associated with a reduction in the thickness of the molecular layer of the cerebellum. TLR4 was highly expressed in PCs but not in Bergmann glia or cerebellar granule cells; however, loss of TLR4 decreased the number of PCs. These findings suggest a novel role for TLR4 in cerebellum-related motor coordination through maintenance of the PC population. PMID:26909014

  10. Selective Toll-Like Receptor Expression in Human Fetal Lung

    PubMed Central

    Petrikin, Joshua E; Gaedigk, Roger; Leeder, J Steven; Truog, William E

    2010-01-01

    Toll-like receptors (TLRs) are critical components of the innate immune system, acting as pattern recognition molecules and triggering an inflammatory response. TLR associated gene products are of interest in modulating inflammatory related pulmonary diseases of the neonate. The ontogeny of TLR related genes in human fetal lung has not been previously described and could elucidate additional functions and identify strategies for attenuating the effects of fetal inflammation. We examined the expression of 84 TLR related genes on 23 human fetal lung samples from three groups with estimated ages of 60 (57-59d), 90 (89-91d), and 130 (117-154d) days. Using a false detection rate algorithm, we identified 32 genes displaying developmental regulation with TLR2 having the greatest up-regulation of TLR genes (9.2 fold increase) and TLR4 unchanged. We confirmed the TLR2 up-regulation by examining an additional 133 fetal lung tissue samples with a fluorogenic polymerase chain reaction assay (TaqMan®) and found an exponential best-fit curve over the time studied. The best-fit curve predicts a 6.1 fold increase from 60d to 130d. We conclude that TLR2 is developmentally expressed from the early pseudoglandular stage of lung development to the canalicular stage. PMID:20581745

  11. Orphan receptor IL-17RD regulates Toll-like receptor signalling via SEFIR/TIR interactions.

    PubMed

    Mellett, Mark; Atzei, Paola; Bergin, Ronan; Horgan, Alan; Floss, Thomas; Wurst, Wolfgang; Callanan, John J; Moynagh, Paul N

    2015-01-01

    Receptor families of the innate immune response engage in 'cross-talk' to tailor optimal immune responses against invading pathogens. However, these responses are subject to multiple levels of regulation to keep in check aberrant inflammatory signals. Here, we describe a role for the orphan receptor interleukin-17 receptor D (IL-17RD) in negatively regulating Toll-like receptor (TLR)-induced responses. Deficiency of IL-17RD expression in cells leads to enhanced pro-inflammatory signalling and gene expression in response to TLR stimulation, and Il17rd(-/-) mice are more susceptible to TLR-induced septic shock. We demonstrate that the intracellular Sef/IL-17R (SEFIR) domain of IL-17RD targets TIR adaptor proteins to inhibit TLR downstream signalling thus revealing a paradigm involving cross-regulation of members of the IL-17R and TLR families. PMID:25808990

  12. Heat Shock Protein gp96 Is a Master Chaperone for Toll-like Receptors and Is Important in the Innate Function of Macrophages

    PubMed Central

    Yang, Yi; Liu, Bei; Dai, Jie; Srivastava, Pramod K.; Zammit, David J.; Lefrançois, Leo; Li, Zihai

    2010-01-01

    SUMMARY gp96 is an endoplasmic reticulum chaperone for cell-surface Toll-like receptors (TLRs). Little is known about its roles in chaperoning other TLRs or in the biology of macrophage in vivo. We generated a macrophage-specific gp96-deficient mouse. Despite normal development and activation by interferon-γ, tumor necrosis factor-α, and interleukin-1β, the mutant macrophages failed to respond to ligands of both cell-surface and intracellular TLRs including TLR2, TLR4, TLR5, TLR7, and TLR9. Furthermore, we found that TLR4 and TLR9 preferentially interacted with a super-glycosylated gp96 species. The categorical loss of TLRs in gp96-deficient macrophages operationally created a conditional and cell-specific TLR null mouse. These mice were resistant to endotoxin shock but were highly susceptible to Listeria monocytogenes. Our results demonstrate that gp96 is the master chaperone for TLRs and that macrophages, but not other myeloid cells, are the dominant source of proinflammatory cytokines during endotoxemia and Listeria infections. PMID:17275357

  13. Deviation from major codons in the Toll-like receptor genes is associated with low Toll-like receptor expression

    PubMed Central

    Zhong, Fei; Cao, Weiping; Chan, Edmund; Tay, Puei Nam; Cahya, Florence Feby; Zhang, Haifeng; Lu, Jinhua

    2005-01-01

    Microbial structures activate Toll-like receptors (TLRs) and TLR-mediated cell signalling elicits and regulates host immunity. Most TLRs are poorly expressed but the underlying expression mechanism is not clear. Examination TLR sequences revealed that most human TLR genes deviated from using major human codons. CD14 resembles TLRs in sequence but its gene preferentially uses major codons. Indeed, CD14 expression on monocytes was higher than expression of TLR1 and TLR2. The TLR9 gene is abundant in major codons and it also showed higher expression than TLR1, TLR2 and TLR7 in transfected 293T cells. Change of the 5′-end 302 base pairs of the TLR2 sequence into major human codons markedly increased TLR2 expression, which led to increased TLR2-mediated constitutive nuclear factor-κB activation. Change of the 5′-end 381 base pairs of the CD14 sequence into prevalent TLR codons markedly reduced CD14 expression. These results collectively show that the deviation of TLR sequences from using major codons dictates the low TLR expression and this may protect the host against excessive inflammation and tissue damages. PMID:15606798

  14. Toll like receptor polymorphisms in allogeneic hematopoietic cell transplantation

    PubMed Central

    Kornblit, Brian; Enevold, Christian; Wang, Tao; Spellman, Stephen; Haagenson, Mike; Lee, Stephanie J; Müller, Klaus

    2014-01-01

    To assess the impact of the genetic variation in toll-like receptors (TLR) on outcome after allogeneic myeloablative conditioning hematopoietic cell transplantation (HCT) we have investigated 29 single nucleotide polymorphisms (SNP) across 10 TLRs in 816 patients and donors. Only donor genotype of TLR8 rs3764879, which is located on the X chromosome, was significantly associated with outcome at the Bonferroni corrected level P≤0.001. Male hemizygosity and female homozygosity for the minor allele were significantly associated with disease free survival (DFS) (hazard ratio (HR) 1.47 (95% confidence interval (CI) 1.16–1.85); P=0.001). Further analysis stratified by donor sex due to confounding by sex, was suggestive for associations with overall survival (male donor: HR 1.41 (95% CI 1.09–1.83), P=0.010); female donor: (HR 2.78 (95% CI 1.43–5.41), P=0.003), DFS (male donor: HR 1.45 (95% CI 1.12–1.87), P=0.005; female donor: HR 2.34 (95% CI 1.18–4.65), P=0.015) and treatment related mortality (male donor: HR 1.49 (95% CI 1.09–2.04), P=0.012; female donor: HR 3.12 (95% CI 1.44–6.74), P=0.004). In conclusion our findings suggest that the minor allele of TLR8 rs3764879 of the donor is associated with outcome after myeloablative conditioned allogeneic HCT. PMID:25464115

  15. Stimulation by toll-like receptors inhibits osteoclast differentiation.

    PubMed

    Takami, Masamichi; Kim, Nacksung; Rho, Jaerang; Choi, Yongwon

    2002-08-01

    Osteoclasts, the cells capable of resorbing bone, are derived from hemopoietic precursor cells of monocyte-macrophage lineage. The same precursor cells can also give rise to macrophages and dendritic cells, which are essential for proper immune responses to various pathogens. Immune responses to microbial pathogens are often triggered because various microbial components induce the maturation and activation of immunoregulatory cells such as macrophages or dendritic cells by stimulating Toll-like receptors (TLRs). Since osteoclasts arise from the same precursors as macrophages, we tested whether TLRs play any role during osteoclast differentiation. We showed here that osteoclast precursors prepared from mouse bone marrow cells expressed all known murine TLRs (TLR1-TLR9). Moreover, various TLR ligands (e.g., peptidoglycan, poly(I:C) dsRNA, LPS, and CpG motif of unmethylated DNA, which act as ligands for TLR2, 3, 4, and 9, respectively) induced NF-kappa B activation and up-regulated TNF-alpha production in osteoclast precursor cells. Unexpectedly, however, TLR stimulation of osteoclast precursors by these microbial products strongly inhibited their differentiation into multinucleated, mature osteoclasts induced by TNF-related activation-induced cytokine. Rather, TLR stimulation maintained the phagocytic activity of osteoclast precursors in the presence of osteoclastogenic stimuli M-CSF and TNF-related activation-induced cytokine. Taken together, these results suggest that TLR stimulation of osteoclast precursors inhibits their differentiation into noninflammatory mature osteoclasts during microbial infection. This process favors immune responses and may be critical to prevent pathogenic effects of microbial invasion on bone. PMID:12133979

  16. Study of Toll-like receptor gene loci in sarcoidosis

    PubMed Central

    Schürmann, M; Kwiatkowski, R; Albrecht, M; Fischer, A; Hampe, J; Müller-Quernheim, J; Schwinger, E; Schreiber, S

    2008-01-01

    Sarcoidosis is a multi-factorial systemic disease of granulomatous inflammation. Current concepts of the aetiology include interactions of unknown environmental triggers with an inherited susceptibility. Toll-like receptors (TLRs) are main components of innate immunity and therefore TLR genes are candidate susceptibility genes in sarcoidosis. Ten members of the human TLR gene family have been identified and mapped to seven chromosomal segments. The aim of this study was to investigate all known TLR gene loci for genetic linkage with sarcoidosis and to follow positive signals with different methods. We analysed linkage of TLR gene loci to sarcoidosis by use of closely flanking microsatellite markers in 83 families with 180 affected siblings. We found significant linkage between sarcoidosis and markers of the TLR4 gene locus on chromosome 9q (non-parametric linkage score 2·63, P = 0·0043). No linkage was found for the remaining TLR gene loci. We subsequently genotyped 1203 sarcoidosis patients from 997 families, 1084 relatives and 537 control subjects for four single nucleotide polymorphisms of TLR4, including Asp299Gly and Thr399Ile. This genotype data set was studied by case–control comparisons and transmission disequilibrium tests, but showed no significant results. In summary, TLR4 − w ith significant genetic linkage results − appears to be the most promising member of the TLR gene family for further investigation in sarcoidosis. However, our results do not confirm the TLR4 polymorphisms Asp299Gly and Thr399Ile as susceptibility markers. Our results rather point to another as yet unidentified variant within or close to TLR4 that might confer susceptibility to sarcoidosis. PMID:18422738

  17. Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through Toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-κB signaling pathways

    PubMed Central

    Choi, Yung Hyun; Kim, Gi-Young; Lee, Hye Hyeon

    2014-01-01

    Cordycepin is the main functional component of the Cordyceps species, which has been widely used in traditional Oriental medicine. This compound possesses many pharmacological properties, such as an ability to enhance immune function, as well as antioxidant, antiaging, and anticancer effects. In the present study, we investigated the anti-inflammatory effects of cordycepin using a murine macrophage RAW 264.7 cell model. Our data demonstrated that cordycepin suppressed production of proinflammatory mediators such as nitric oxide (NO) and prostaglandin E2 by inhibiting inducible NO synthase and cyclooxygenase-2 gene expression. Cordycepin also inhibited the release of proinflammatory cytokines, including tumor necrosis factor-alpha and interleukin-1-beta, through downregulation of respective mRNA expression. In addition, pretreatment with cordycepin significantly inhibited lipopolysaccharide (LPS)-induced phosphorylation of mitogen-activating protein kinases and attenuated nuclear translocation of NF-κB by LPS, which was associated with abrogation of inhibitor kappa B-alpha degradation. Furthermore, cordycepin potently inhibited the binding of LPS to macrophages and LPS-induced Toll-like receptor 4 and myeloid differentiation factor 88 expression. Taken together, the results suggest that the inhibitory effects of cordycepin on LPS-stimulated inflammatory responses in RAW 264.7 macrophages are associated with suppression of mitogen-activating protein kinases and activation of NF-κB by inhibition of the Toll-like receptor 4 signaling pathway. PMID:25342887

  18. Toll-Like Receptor 3 and Suppressor of Cytokine Signaling Proteins Regulate CXCR4 and CXCR7 Expression in Bone Marrow-Derived Human Multipotent Stromal Cells

    PubMed Central

    Tomchuck, Suzanne L.; Henkle, Sarah L.; Coffelt, Seth B.; Betancourt, Aline M.

    2012-01-01

    Background The use of bone marrow-derived human multipotent stromal cells (hMSC) in cell-based therapies has dramatically increased in recent years, as researchers have exploited the ability of these cells to migrate to sites of tissue injury, inflammation, and tumors. Our group established that hMSC respond to “danger” signals – by-products of damaged, infected or inflamed tissues – via activation of Toll-like receptors (TLRs). However, little is known regarding downstream signaling mediated by TLRs in hMSC. Methodology/Principal Findings We demonstrate that TLR3 stimulation activates a Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 1 pathway, and increases expression of suppressor of cytokine signaling (SOCS) 1 and SOCS3 in hMSC. Our studies suggest that each of these SOCS plays a distinct role in negatively regulating TLR3 and JAK/STAT signaling. TLR3-mediated interferon regulatory factor 1 (IRF1) expression was inhibited by SOCS3 overexpression in hMSC while SOCS1 overexpression reduced STAT1 activation. Furthermore, our study is the first to demonstrate that when TLR3 is activated in hMSC, expression of CXCR4 and CXCR7 is downregulated. SOCS3 overexpression inhibited internalization of both CXCR4 and CXCR7 following TLR3 stimulation. In contrast, SOCS1 overexpression only inhibited CXCR7 internalization. Conclusion/Significance These results demonstrate that SOCS1 and SOCS3 each play a functionally distinct role in modulating TLR3, JAK/STAT, and CXCR4/CXCR7 signaling in hMSC and shed further light on the way hMSC respond to danger signals. PMID:22745793

  19. Adaptors in toll-like receptor signaling and their potential as therapeutic targets.

    PubMed

    Ve, Thomas; Gay, Nicholas J; Mansell, Ashley; Kobe, Bostjan; Kellie, Stuart

    2012-10-01

    To initiate the innate immune response, Toll-like receptors (TLRs) associate with cytoplasmic adaptor proteins through TIR (Toll/interleukin-1 receptor) domain interactions. The four principal signaling adaptor proteins include MyD88, MAL, TRIF and TRAM, and the fifth protein SARM, involved in negative regulation of TLR pathways, is usually considered a part of the TIR domain-containing adaptor protein group. Other TIR domain-containing proteins have also been shown to regulate these signaling pathways, including ST2 and SIGIRR, as well as several bacterial and viral TIR domain-containing proteins that modulate these pathways as virulence factors. TLR pathways and the adaptor proteins are associated with a number of diseases, including infection, sepsis, inflammatory, allergic and autoimmune diseases and cancer. We review our current understanding of the structure and function of adaptor proteins and their regulatory proteins, their association with disease and their potential as therapeutic targets in human disease. PMID:22664090

  20. Characterization, expression analysis and localization pattern of toll-like receptor 1 (tlr1) and toll-like receptor 2 (tlr2) genes in grass carp Ctenopharyngodon idella.

    PubMed

    He, L B; Wang, H; Luo, L F; Jiang, S H; Liu, L Y; Li, Y M; Huang, R; Liao, L J; Zhu, Z Y; Wang, Y P

    2016-08-01

    In this study, the toll-like receptor 1 (tlr1) and toll-like receptor 2 (tlr2) genes of grass carp Ctenopharyngodon idella were cloned and characterized. tlr1 and tlr2 were found to be highly expressed in immune system organs such as spleen, middle kidney and heart kidney. The expression level of tlr1 and tlr2 was found to be up-regulated at the later stage of viral challenge process. Moreover, subcellular localization indicated that Tlr1 and Tlr2 shared similar localization pattern and both of them may locate in the plasma membrane of transfected cells. PMID:27221024

  1. Allergens as Immuno-Modulatory Proteins: the cat dander protein Fel d 1 enhances Toll-like receptor activation by lipid ligands

    PubMed Central

    Herre, Jurgen; Grönlund, Hans; Brooks, Heather; Hopkins, Lee; Waggoner, Lisa; Murton, Ben; Gangloff, Monique; Opaleye, Olaniyi; Chilvers, Edwin R.; Fitzgerald, Kate; Gay, Nick; Monie, Tom; Bryant, Clare

    2013-01-01

    Allergic responses can be triggered by structurally diverse allergens. Most allergens are proteins yet extensive research has not revealed how they initiate the allergic response and why the myriad of other inhaled proteins do not. Amongst these allergens, the cat secretoglobulin protein Fel d 1, is the major allergen and responsible for severe allergic responses. In this study we show that like the mite dust allergen Der p 2, Fel d 1 substantially enhances signalling through the innate receptors TLR4 and TLR2. In contrast to Der p 2 however, Fel d 1 does not act by mimicking the TLR4 co-receptor MD2 and is not able to bind stably to the TLR4/MD2 complex in vitro. Fel d 1 does however, bind to the TLR4 agonist lipopolysaccharide, suggesting that a lipid transfer mechanism may be involved in the Fel d 1 enhancement of TLR signalling. We also show that the dog allergen Can f 6, a member of a distinct class of lipocalin allergens, has very similar properties to Fel d 1. We propose that Fel d 1 and Can f 6 belong to a group of allergen immunomodulatory proteins (IMPs) that enhance innate immune signalling and promote airway hypersensitivity reactions in diseases such as asthma. PMID:23878318

  2. C-reactive protein gene and Toll-like receptor 4 gene polymorphisms can relate to the development of psoriatic arthritis.

    PubMed

    Akbal, Ayla; Oğuz, Sevilay; Gökmen, Ferhat; Bilim, Serhat; Reşorlu, Hatice; Sılan, Fatma; Uludağ, Ahmet

    2015-02-01

    We aimed to determine in psoriatic arthritis (PsA) patients the Toll-like receptor (TLR) 4 and C-reactive gene (CRP) polymorphisms and allele frequency and to investigate the relationship between clinical parameters and gene polymorphisms. We enrolled in this study 31 PsA and 41 healthy control subjects. PsA diagnosis was according to CASPAR criteria. Bath ankylosing spondylitis diseases activity index, Maastricht ankylosing spondylitis enthesitis score, and Bath ankylosing spondylitis functional index were measured. C, A, and T alleles of CRP and A and G alleles of TLR 4 were determined using the analysis of melting curves after real-time PCR. CRP A, C, and T allele frequency in controls was 26.8, 73.2, and 36.6%, respectively. In the PsA patient group, A, C, and T allele frequency was 9.7, 87.1, and 12.9%, respectively. Between control and PsA groups, there was a significant difference in A, C, and T allele frequency (P = 0.008, 0.038, and 0.001, respectively). The frequency of CRP gene polymorphisms (CA, AA, CT, TA, and TT alleles) in the control group was 56.1% and in the PsA group was 22.6%. There was a significant difference between the two groups (P = 0.004). The absence of a CRP gene polymorphism was a risk factor for PsA (odds ratio 4.3, 95% CI; 1.5-12.4, P = 0.005). TLR gene haploid frequency was investigated, and all control subjects had the wild-type AA allele. PsA patient GA allele frequency was 6.5%. There was no significant difference between the two groups (P = 0.182). GA mutant allele frequency was related to PsA (odds ratio 7.03, 95% CI; 0.32-151.9, P = 0.214). We have shown that CRP gene polymorphisms are higher in control subjects than PsA patients, and TLR 4 gene polymorphisms were found to be related to PsA. PMID:24696367

  3. A new Vitreoscilla filiformis extract grown on spa water-enriched medium activates endogenous cutaneous antioxidant and antimicrobial defenses through a potential Toll-like receptor 2/protein kinase C, zeta transduction pathway.

    PubMed

    Mahe, Yann F; Perez, Marie-Jesus; Tacheau, Charlotte; Fanchon, Chantal; Martin, Richard; Rousset, Françoise; Seite, Sophie

    2013-01-01

    Vitreoscilla filiformis (VF) biomass (VFB) has been widely used in cosmetic preparations and shown to modulate the major inducible free-radical scavenger mitochondrial superoxide dismutase in skin cells. By adding La Roche-Posay (LRP) thermal spring water to the VF culture medium, we obtained a biomass (LRP-VFB) with a similar mitochondrial superoxide dismutase activation capacity to VF. Also, the new biomass more powerfully stimulated mRNA expression and antimicrobial peptides in reconstructed epidermis. Interestingly, a predictive computer model that analyzed transducing events within skin epidermal cells suggested that this protective activity may involve the Toll-like receptor 2/protein kinase C, zeta transduction pathway. Protein kinase C, zeta inhibition was effectively shown to abolish VFB-induced gene stimulation and confirmed this hypothesis. This thus opens new avenues for investigation into the improvement of skin homeostatic defense in relation to the control of its physiological microbiota and innate immunity. PMID:24039440

  4. Bioinformatic Analysis of Toll-Like Receptor Sequences and Structures.

    PubMed

    Monie, Tom P; Gay, Nicholas J; Gangloff, Monique

    2016-01-01

    Continual advancements in computing power and sophistication, coupled with rapid increases in protein sequence and structural information, have made bioinformatic tools an invaluable resource for the molecular and structural biologist. With the degree of sequence information continuing to expand at an almost exponential rate, it is essential that scientists today have a basic understanding of how to utilise, manipulate and analyse this information for the benefit of their own experiments. In the context of Toll-Interleukin I Receptor domain containing proteins, we describe here a series of the more common and user-friendly bioinformatic tools available as Internet-based resources. These will enable the identification and alignment of protein sequences; the identification of functional motifs; the characterisation of protein secondary structure; the identification of protein structural folds and distantly homologous proteins; and the validation of the structural geometry of modelled protein structures. PMID:26803620

  5. Lipopolysaccharide Decreases Single Immunoglobulin Interleukin-1 Receptor-related Molecule (SIGIRR) Expression by Suppressing Specificity Protein 1 (Sp1) via the Toll-like Receptor 4 (TLR4)-p38 Pathway in Monocytes and Neutrophils*

    PubMed Central

    Ueno-Shuto, Keiko; Kato, Kosuke; Tasaki, Yukihiro; Sato, Miki; Sato, Keizo; Uchida, Yuji; Sakai, Hiromichi; Ono, Tomomi; Suico, Mary Ann; Mitsutake, Kazunori; Tokutomi, Naofumi; Kai, Hirofumi; Shuto, Tsuyoshi

    2014-01-01

    Single immunoglobulin interleukin-1 receptor-related molecule (SIGIRR) is one of the immunoglobulin-like membrane proteins that is crucial for negative regulation of toll-like receptor 4 (TLR4) and interleukin-1 receptor. Despite the importance of understanding its expression and function, knowledge is limited on the regulatory mechanism in the epithelial tissues, such as the liver, lung, and gut, where its predominant expression is originally described. Here, we found expression of SIGIRR in non-epithelial innate immune cells, including primary peripheral blood monocytes, polymorphonuclear neutrophils, monocytic RAW264 cells, and neutrophilic-differentiated HL-60 cells. Consistent with previous findings in epithelial tissues, SIGIRR gene and protein expression were also down-regulated by LPS treatment in a time-dependent manner in primary blood monocytes and polymorphonuclear neutrophils. A reduction was also observed in RAW264 and differentiated HL-60 cells. Notably, exogenous introduction of the dominant negative form of TLR4 and siRNA of p38 resulted in inhibition of LPS-induced SIGIRR down-regulation, whereas treatment with p38 activator anisomycin showed a dose-dependent decrease in SIGIRR expression, suggesting TLR4-p38 signal as a critical pathway for LPS-induced SIGIRR down-regulation. Finally, reporter gene and chromatin immunoprecipitation assays demonstrated that Sp1 is a key factor that directly binds to the proximal promoter of SIGIRR gene and consequently regulates basal SIGIRR expression, which is negatively regulated by the LPS-dependent TLR4-p38 pathway. In summary, the data precisely demonstrate how LPS down-regulates SIGIRR expression and provide a role of LPS signal that counteracts Sp1-dependent basal promoter activation of SIGIRR gene via TLR4-p38 pathway in non-epithelial innate immune cells. PMID:24821721

  6. Toll-like receptors in bony fish: from genomics to function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Receptors that recognize conserved pathogen molecules are the first line of cellular innate immunity defense. Toll-like receptors (TLRs) are the best understood of the innate immune receptors that detect infections in mammals. Key features of the fish TLRs and the factors involved in their signali...

  7. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products.

    PubMed

    Lien, E; Sellati, T J; Yoshimura, A; Flo, T H; Rawadi, G; Finberg, R W; Carroll, J D; Espevik, T; Ingalls, R R; Radolf, J D; Golenbock, D T

    1999-11-19

    Toll-like receptors (TLRs) 2 and 4 are signal transducers for lipopolysaccharide, the major proinflammatory constituent in the outer membrane of Gram-negative bacteria. We observed that membrane lipoproteins/lipopeptides from Borrelia burgdorferi, Treponema pallidum, and Mycoplasma fermentans activated cells heterologously expressing TLR2 but not those expressing TLR1 or TLR4. These TLR2-expressing cells were also stimulated by living motile B. burgdorferi, suggesting that TLR2 recognition of lipoproteins is relevant to natural Borrelia infection. Importantly, a TLR2 antibody inhibited bacterial lipoprotein/lipopeptide-induced tumor necrosis factor release from human peripheral blood mononuclear cells, and TLR2-null Chinese hamster macrophages were insensitive to lipoprotein/lipopeptide challenge. The data suggest a role for the native protein in cellular activation by these ligands. In addition, TLR2-dependent responses were seen using whole Mycobacterium avium and Staphylococcus aureus, demonstrating that this receptor can function as a signal transducer for a wide spectrum of bacterial products. We conclude that diverse pathogens activate cells through TLR2 and propose that this molecule is a central pattern recognition receptor in host immune responses to microbial invasion. PMID:10559223

  8. IFN-alpha/beta-dependent cross-priming induced by specific toll-like receptor agonists.

    PubMed

    Durand, Vanessa; Wong, Simon Y C; Tough, David F; Le Bon, Agnes

    2006-04-12

    Toll-like receptors (TLR) are pattern recognition receptors that have been identified as crucial in the initiation of innate immune responses against pathogens. They are thought to be involved in shaping appropriate adaptive immune responses, although their precise contribution has not yet been fully characterised. Our aim was to investigate in vivo the effect of different TLR stimuli on cellular immune responses. We examined the ability of a range of TLR stimuli to induce CD8+ T cell responses against a model soluble protein antigen, ovalbumin (OVA). We found that TLR 3, TLR 4, and TLR 9 agonists induced functional cross-priming, and that this process was dependent on IFN-alpha/beta signalling pathway. PMID:16823911

  9. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious diseases

    PubMed Central

    Skevaki, C; Pararas, M; Kostelidou, K; Tsakris, A; Routsias, J G

    2015-01-01

    Toll-like receptors (TLRs) are the best-studied family of pattern-recognition receptors (PRRs), whose task is to rapidly recognize evolutionarily conserved structures on the invading microorganisms. Through binding to these patterns, TLRs trigger a number of proinflammatory and anti-microbial responses, playing a key role in the first line of defence against the pathogens also promoting adaptive immunity responses. Growing amounts of data suggest that single nucleotide polymorphisms (SNPs) on the various human TLR proteins are associated with altered susceptibility to infection. This review summarizes the role of TLRs in innate immunity, their ligands and signalling and focuses on the TLR SNPs which have been linked to infectious disease susceptibility. PMID:25560985

  10. MicroRNAs: New Regulators of Toll-Like Receptor Signalling Pathways

    PubMed Central

    He, Xiaobing; Jing, Zhizhong; Cheng, Guofeng

    2014-01-01

    Toll-like receptors (TLRs), a critical family of pattern recognition receptors (PRRs), are responsible for the innate immune responses via signalling pathways to provide effective host defence against pathogen infections. However, TLR-signalling pathways are also likely to stringently regulate tissue maintenance and homeostasis by elaborate modulatory mechanisms. MicroRNAs (miRNAs) have emerged as key regulators and as an essential part of the networks involved in regulating TLR-signalling pathways. In this review, we highlight our understanding of the regulation of miRNA expression profiles by TLR-signalling pathways and the regulation of TLR-signalling pathways by miRNAs. We focus on the roles of miRNAs in regulating TLR-signalling pathways by targeting multiple molecules, including TLRs themselves, their associated signalling proteins and regulatory molecules, and transcription factors and functional cytokines induced by them, at multiple levels. PMID:24772440

  11. Cleavage of fibrinogen by proteinases elicits allergic responses through Toll-like receptor 4.

    PubMed

    Millien, Valentine Ongeri; Lu, Wen; Shaw, Joanne; Yuan, Xiaoyi; Mak, Garbo; Roberts, Luz; Song, Li-Zhen; Knight, J Morgan; Creighton, Chad J; Luong, Amber; Kheradmand, Farrah; Corry, David B

    2013-08-16

    Proteinases and the innate immune receptor Toll-like receptor 4 (TLR4) are essential for expression of allergic inflammation and diseases such as asthma. A mechanism that links these inflammatory mediators is essential for explaining the fundamental basis of allergic disease but has been elusive. Here, we demonstrate that TLR4 is activated by airway proteinase activity to initiate both allergic airway disease and antifungal immunity. These outcomes were induced by proteinase cleavage of the clotting protein fibrinogen, yielding fibrinogen cleavage products that acted as TLR4 ligands on airway epithelial cells and macrophages. Thus, allergic airway inflammation represents an antifungal defensive strategy that is driven by fibrinogen cleavage and TLR4 activation. These findings clarify the molecular basis of allergic disease and suggest new therapeutic strategies. PMID:23950537

  12. Trypanosoma cruzi and its components as exogenous mediators of inflammation recognized through Toll-like receptors.

    PubMed Central

    Campos, Marco A; Gazzinelli, Ricardo T

    2004-01-01

    Trypanosoma cruzi is the etiologic agent of Chagas' disease, a parasitic disease of enormous importance in Latin America. Herein we review the studies that revealed the receptors from innate immunity that are involved in the recognition of this protozoan parasite. We showed that the recognition of T. cruzi and its components occurs through Toll-like receptors (TLR) 2/CD14. Further, we showed in vivo the importance of the myeloid differentiation factor (MyD88), an adapter protein essential for the function of TLRs, in determining the parasitemia and mortality rate of mice infected with T. cruzi. We also discuss the implications of these findings in the pathophysiology of Chagas' disease. PMID:15223603

  13. Regulation of migration and invasion by Toll-like receptor-9 signaling network in prostate cancer

    PubMed Central

    Qiu, Jian-Ge; Zhang, Wen-Ji; Mei, Xiao-Long; Shi, Zhi; Di, Jin-Ming

    2015-01-01

    Toll-like receptors (TLRs) play an important role in tumorigenesis and progress of prostate cancer. However, the function and mechanism of Toll-like receptor-9 (TLR9) in prostate cancer is not totally understood. Here, we found that high expression of TLR9 was associated with a higher probability of lymph node metastasis and poor prognosis. Further in vitro functional study verified that silence of TLR9 inhibited migration and invasion of PC-3 cells, indicating expression of TLR9 involving in the migration and invasion of cancer cells. The data of microarray exhibited silence of TLR9 induced 205 genes with larger than 2-fold changes in expression levels, including 164 genes down-regulated and 41 genes up-regulated. Functional Gene Ontology (GO) processes annotation demonstrated that the top three scores of molecular and cellular functions were regulation of programmed cell death, regulation of locomotion and response to calcium ion. TLR9 signaling network analysis of the migration and invasion related genes identified several genes, like matrix metallopeptidase 2 (MMP2), matrix metallopeptidase 9 (MMP9), chemokine receptor 4 (CXCR4) and interleukin 8 (IL8), formed the core interaction network based on their known biological relationships. A few genes, such as odontogenic ameloblast-associated protein (ODAM), claudin 2 (CLDN2), gap junction protein beta 1 (GJB1) and Rho-associated coiled-coil containing protein kinase 1 pseudogene 1 (ROCK1P1), so far have not been found to interact with the other genes. This study provided the foundation to discover the new molecular mechanism in signaling networks of invasion and metastasis in prostate cancer. PMID:26087186

  14. The role of Toll-like receptors in host defense against microbial infection.

    PubMed

    Krutzik, S R; Sieling, P A; Modlin, R L

    2001-02-01

    The Toll family of proteins is central to Drosophila host defense against microbial infection. Maintained throughout evolution, mammalian Toll-like receptors (TLRs) are proteins that participate in innate immunity to bacteria in at least four ways. First, TLRs participate in the recognition of molecular patterns present on microorganisms. Second, TLRs are expressed at the interface with the environment, the site of microbial invasion. Third, activation of TLRs induces expression of co-stimulatory molecules and the release of cytokines that instruct the adaptive immune response. Fourth, activation of TLRs leads to direct antimicrobial effector pathways that can result in elimination of the foreign invader. The recent investigation of TLRs in these areas has provided new insights into mechanisms of innate immunity. PMID:11154925

  15. Toll-Like Receptor Interactions Measured by Microscopic and Flow Cytometric FRET.

    PubMed

    Horvath, Gabor L; Langhoff, Pia; Latz, Eicke

    2016-01-01

    Protein-protein interactions regulate biological networks. The most proximal events that initiate signal transduction frequently are receptor dimerization or conformational changes in receptor complexes. Toll-like receptors (TLRs) are transmembrane receptors that are activated by a number of exogenous and endogenous ligands. Most TLRs can respond to multiple ligands and the different TLRs recognize structurally diverse molecules ranging from proteins, sugars, lipids, and nucleic acids. TLRs can be expressed on the plasma membrane or in endosomal compartments and ligand recognition thus proceeds in different microenvironments. Not surprisingly, distinctive mechanisms of TLR receptor activation have evolved. A detailed understanding of the mechanisms of TLR activation is important for the development of novel synthetic TLR activators or pharmacological inhibitors of TLRs. Confocal laser scanning microscopy combined with GFP technology allows the direct visualization of TLR expression in living cells. Fluorescence resonance energy transfer (FRET) measurements between two differentially tagged proteins permit the study of TLR interaction, and distances between receptors in the range of molecular interactions can be measured and visualized. Additionally, FRET measurements combined with confocal microscopy provide detailed information about molecular interactions in different subcellular localizations. These techniques permit the dynamic visualization of early signaling events in living cells and can be utilized in pharmacological or genetic screens. PMID:26803621

  16. Use of toll-like receptor agonists to reduce Salmonella colonization in neonatal swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toll-like receptors (TLR) are members of a highly conserved group of receptors which recognize conserved molecular aspects of microbes. The purpose of these experiments were to ascertain the effects of the administration of the TLR 9 agonist, CpG, on the colonization of neonatal swine with Salmonel...

  17. Alveolar Macrophages and Toll-like Receptor 4 Mediate Ventilated Lung Ischemia Reperfusion Injury in Mice

    PubMed Central

    Prakash, Arun; Mesa, Kailin R.; Wilhelmsen, Kevin; Xu, Fengyun; Dodd-o, Jeffrey M.; Hellman, Judith

    2012-01-01

    Background Ischemia reperfusion (I/R) injury involves sterile inflammation and is commonly associated with diverse clinical situations such as hemorrhage followed by resuscitation, transient embolic events, and organ transplantation. I/R injury can induce lung dysfunction whether the I/R occurs in the lung itself or in a remote organ. Recently, evidence has emerged that receptors and pathways of the innate immune system are involved in recognizing sterile inflammation and overlap considerably with those involved in recognition and response to pathogens. Methods We used a mouse surgical model of transient unilateral left pulmonary artery occlusion without bronchial involvement to create ventilated lung I/R injury. Additionally, we mimicked nutritional I/R injury in vitro by transiently depriving cells of all nutrients. Results Compared with sham-operated mice, mice subjected to ventilated lung I/R injury had upregulated lung expression of inflammatory mediator messenger RNA for IL-1β, IL-6, and CXCL1 and 2, paralleled by histologic evidence of lung neutrophil recruitment, and increased plasma levels of IL-1β, IL-6 and HMGB1 proteins. This inflammatory response to I/R required toll-like receptor-4. Furthermore, we demonstrated in vitro cooperativity and cross-talk between macrophages and endothelial cells, resulting in augmented inflammatory responses to I/R. Remarkably, we found that selective depletion of alveolar macrophages rendered mice resistant to ventilated lung I/R injury. Conclusions Our data reveal that alveolar macrophages and the pattern recognition receptor, toll-like receptor-4 are required for the generation of the early inflammatory response to lung I/R injury. PMID:22890118

  18. Vibrio cholerae Proteome-Wide Screen for Immunostimulatory Proteins Identifies Phosphatidylserine Decarboxylase as a Novel Toll-Like Receptor 4 Agonist

    PubMed Central

    Thanawastien, Ann; Montor, Wagner R.; LaBaer, Joshua; Mekalanos, John J.; Yoon, Sang Sun

    2009-01-01

    Recognition of conserved bacterial components provides immediate and efficient immune responses and plays a critical role in triggering antigen-specific adaptive immunity. To date, most microbial components that are detected by host innate immune system are non-proteinaceous structural components. In order to identify novel bacterial immunostimulatory proteins, we developed a new high-throughput approach called “EPSIA”, Expressed Protein Screen for Immune Activators. Out of 3,882 Vibrio cholerae proteins, we identified phosphatidylserine decarboxylase (PSD) as a conserved bacterial protein capable of activating host innate immunity. PSD in concentrations as low as 100 ng/ml stimulated RAW264.7 murine macrophage cells and primary peritoneal macrophage cells to secrete TNFα and IL-6, respectively. PSD-induced proinflammatory response was dependent on the presence of MyD88, a known adaptor molecule for innate immune response. An enzymatically inactive PSD mutant and heat-inactivated PSD induced ∼40% and ∼15% of IL-6 production compared to that by native PSD, respectively. This suggests that PSD induces the production of IL-6, in part, via its enzymatic activity. Subsequent receptor screening determined TLR4 as a receptor mediating the PSD-induced proinflammatory response. Moreover, no detectable IL-6 was produced in TLR4-deficient mouse macrophages by PSD. PSD also exhibited a strong adjuvant activity against a co-administered antigen, BSA. Anti-BSA response was decreased in TLR4-deficient mice immunized with BSA in combination with PSD, further proving the role of TLR4 in PSD signaling in vivo. Taken together, these results provide evidence for the identification of V. cholerae PSD as a novel TLR4 agonist and further demonstrate the potential application of PSD as a vaccine adjuvant. PMID:19696891

  19. Heat shock up-regulates expression of Toll-like receptor-2 and Toll-like receptor-4 in human monocytes via p38 kinase signal pathway

    PubMed Central

    Zhou, Jun; An, Huazhang; Xu, Hongmei; Liu, Shuxun; Cao, Xuetao

    2005-01-01

    Heat stress can alert innate immunity by inducing stress proteins such as heat-shock proteins (HSPs). However, it remains unclear whether heat stress affects the activation of antigen-presenting cell (APC) in response to pathogen-associated molecule patterns (PAMPs) by directly regulating pathogen recognition receptors (PRRs). As an important kind of PRRs, Toll-like receptors (TLRs) play critical roles in the activation of immune system. In this study, we demonstrated that heat shock up-regulated the expression of HSP70 as well as TLR2 and TLR4 in monocytes. The induction of TLRs was prior to that of HSP70, which suggesting the up-regulation of TLR2 and TLR4 might be independent of the induction of HSP70. Heat shock activated p38 kinase, extracellular signal-related kinase (ERK) and nuclear factor-kappa B (NF-κB) signal pathways in monocytes. Pretreatment with specific inhibitor of p38 kinase, but not those of ERK and NF-κB, inhibited heat shock-induced up-regulation of TLR2 and TLR4. This indicates that p38 pathway takes part in heat shock-induced up-regulation of TLR2 and TLR4. Heat shock also increased lipoteichoic acid- or lipopolysaccharide-induced interleukin-6 production by monocytes. These results suggest that the p38 kinase-mediated up-regulation of TLR2 and TLR4 might be involved in the enhanced response to PAMP in human monocytes induced by heat shock. PMID:15804289

  20. DIESEL EXHAUST ENHANCES TOLL-LIKE RECEPTOR 3 EXPRESSION AND SIGNALING IN RESPIRATORY EPITHELIAL CELLS

    EPA Science Inventory

    Our previous studies have shown that prior exposure of respiratory epithelial cells to an aqueous-trapped solution of DE (DEas) enhances the susceptibility to Influenza infections. Here we examined the effect of DEas on the toll-like receptor 3 (TLR3) pathway, which is responsib...

  1. Toll Like Receptor-4 Mediates Vascular Inflammation and Insulin Resistance in Diet-Induced Obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vascular dysfunction is a major complication of metabolic disorders such as diabetes and obesity. The current studies were undertaken to determine if inflammatory responses are activated in the vasculature of mice with diet-induced obesity (DIO), and if so, whether Toll Like Receptor-4 (TLR4), a ke...

  2. HIGH GLUCOSE INDUCES TOLL-LIKE RECEPTOR EXPRESSION IN HUMAN MONOCYTES: MECHANISM OF ACTIVATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Hyperglycemia induced inflammation is central in diabetes complications and monocytes are important in orchestrating these effects. Toll-like receptors (TLRs) play a key role in innate immune responses as well as inflammation. However, there is a paucity of data examining the expression a...

  3. Suppression of the TRIF-dependent signaling pathway of Toll-like receptors by luteolin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toll-like receptors (TLRs) play an important role in induction of immune and inflammatory responses by recognizing invading pathogens. TLRs have two major downstream signaling pathways activated through the interaction with adaptor molecules, MyD88 and TRIF, leading to the expression of proinflammat...

  4. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic low-grade inflammation is a hallmark of obesity and thought to contribute to the development of obesity-related insulin resistance. Toll-like receptor 4 (Tlr4) is a key mediator of pro-inflammatory responses. Mice lacking Tlr4s are protected from diet-induced insulin resistance and inflammat...

  5. In silico analysis of human Toll-like receptor 7 ligand binding domain.

    PubMed

    Gupta, Chhedi Lal; Akhtar, Salman; Sayyed, Uzma; Pathak, Neelam; Bajpai, Preeti

    2016-05-01

    Toll-like receptors recognizing pathogen-associated molecular patterns are preface actors for innate immunity. Among them TLR7 is a transmembrane protein playing very crucial role in the signaling pathways involved in innate immunity by recognizing viral ssRNA and specific small molecule agonists. The unavailability of experimental 3D structure of this receptor till date hampers the focused exploration of TLR7 interaction with its ligands. However, several proteins possessing high homology domain enabled us to construct a reliable 3D model of hTLR7 ECD, which was employed to generate the homodimer model using protein-protein docking strategy. Further molecular docking studies between developed homodimer model and ligands were performed to explore the most preferred site of hTLR7 ECD interacting with ligands. The comparative analysis of docking energies and protein-ligand interactions of all the ligands revealed resiquimod as the prominent agonist. Furthermore, molecular interactions between protein-ligand complexes suggested LRR15 and LRR16 region of hTLR7 ECD as the most preferential site for ligand binding. The Ser434 and Gly437 of LRR15 region of hTLR7 were found to be conserved with Drosophila Toll protein. The obtained complex model may lead to a better understanding of TLR7 functioning along with its inheritance from invertebrates to mammals. PMID:25817271

  6. Toll-like receptors: cellular signal transducers for exogenous molecular patterns causing immune responses.

    PubMed

    Kirschning, C J; Bauer, S

    2001-09-01

    Innate immunity initiates protection of the host organism against invasion and subsequent multiplication of microbes by specific recognition. Germ line-encoded receptors have been identified for microbial products such as mannan, lipopeptide, peptidoglycan (PGN), lipoteichoic acid (LTA), lipopolysaccharide (LPS), and CpG-DNA. The Drosophila Toll protein has been shown to be involved in innate immune response of the adult fruitfly. Members of the family of Toll-like receptors (TLRs) in vertebrates have been implicated as pattern recognition receptors (PRRs). Ten TLRs are known and six of these have been demonstrated to mediate cellular activation by distinct microbial products. TLR4 has been implicated as activator of adaptive immunity, and analysis of systemic LPS responses in mice led to the identification of LPS-resistant strains instrumental in its identification as a transmembrane LPS signal transducer. Structural similarities between TLRs and receptor molecules involved in immune responses such as CD14 and the IL-1 receptors (IL-1Rs), as well as functional analysis qualified TLR2 as candidate receptor for LPS and other microbial products. Targeted disruption of the TLR9 gene in mice led to identification of TLR9 as CpG-DNA signal transducer. Involvement of TLR5 in cell activation by bacterial flagellin has been demonstrated. Further understanding of recognition and cellular signaling activated through the ancient host defense system represented by Toll will eventually lead to means for its therapeutic modulation. PMID:11680785

  7. Role of Toll-like receptors in lung innate defense against invasive aspergillosis. Distinct impact in immunocompetent and immunocompromized hosts.

    PubMed

    Chignard, Michel; Balloy, Viviane; Sallenave, Jean-Michel; Si-Tahar, Mustapha

    2007-09-01

    Toll-like receptors are key to pathogen recognition by a host and to the subsequent triggering of an innate immune response. Experimental and clinical evidence shows that defects in Toll-like receptors or in signaling pathways downstream from these receptors render hosts susceptible to various types of infection, including aspergillosis. Patients receiving an immunosuppressive regimen, including corticosteroid therapy or cytotoxic chemotherapy, are also susceptible to infections. Aspergillus fumigatus is an opportunistic pathogen that infects the lungs of immunosuppressed hosts. Here, we review the evidence that experimental inactivation of various Toll-like receptors and of their signaling pathways may worsen cases of invasive pulmonary aspergillosis. Moreover, the literature clearly indicates that the type of immunosuppression is very important, as it influences whether or not Toll-like receptors contribute to infection. The involvement of Toll-like receptors, based on the immunological status of the patient, should be considered if an immunosuppressive treatment must be administered. PMID:17604224

  8. Mycoplasma bovis-derived lipid-associated membrane proteins activate IL-1β production through the NF-κB pathway via toll-like receptor 2 and MyD88.

    PubMed

    Wang, Yang; Liu, Suli; Li, Yuan; Wang, Qi; Shao, Jiari; Chen, Ying; Xin, Jiuqing

    2016-02-01

    Mycoplasma bovis causes pneumonia, otitis media, and arthritis in young calves, resulting in economic losses to the cattle industry worldwide. M. bovis pathogenesis results in part from excessive immune responses. Lipid-associated membrane proteins (LAMPs) can potently induce host innate immunity. However, interactions between M. bovis-derived LAMPs and Toll-like receptors (TLRs), or signaling pathways eliciting active inflammation and NF-κB activation, are incompletely understood. Here, we found that IL-1β expression was induced in embryonic bovine lung (EBL) cells stimulated with M. bovis-derived LAMPs. Subcellular-localization analysis revealed nuclear p65 translocation following EBL cell stimulation with M. bovis-derived LAMPs. An NF-κB inhibitor reversed M. bovis-derived LAMP-induced IL-1β expression. TLR2 and myeloid differentiation primary response gene 88 (MyD88) overexpression increased LAMP-dependent IL-1β induction. TLR2-neutralizing antibodies reduced IL-1β expression during LAMP stimulation. LAMPs also inhibited IL-1β expression following overexpression of a dominant-negative MyD88 protein. These results suggested that M. bovis-derived LAMPs activate IL-1β production through the NF-κB pathway via TLR2 and MyD88. PMID:26499291

  9. Bovine Viral Diarrhea Virus Type 2 Impairs Macrophage Responsiveness to Toll-Like Receptor Ligation with the Exception of Toll-Like Receptor 7.

    PubMed

    Schaut, Robert G; Ridpath, Julia F; Sacco, Randy E

    2016-01-01

    Bovine viral diarrhea virus (BVDV) is a member of the Flaviviridae family. BVDV isolates are classified into two biotypes based on the development of cytopathic (cp) or non-cytopathic (ncp) effects in epithelial cell culture. BVDV isolates are further separated into species, BVDV1 and 2, based on genetic differences. Symptoms of BVDV infection range from subclinical to severe, depending on strain virulence, and may involve multiple organ systems and induction of a generalized immunosuppression. During BVDV-induced immune suppression, macrophages, critical to innate immunity, may have altered pathogen recognition receptor (PRR) signaling, including signaling through toll-like receptors (TLRs). Comparison of BVDV 2 strains with different biotypes and virulence levels is valuable to determining if there are differences in host macrophage cellular responses between viral phenotypes. The current study demonstrates that cytopathic (cp), noncytopathic (ncp), high (hv) or low virulence (lv) BVDV2 infection of bovine monocyte-derived macrophages (MDMΦ) result in differential expression of pro-inflammatory cytokines compared to uninfected MDMΦ. A hallmark of cp BVDV2 infection is IL-6 production. In response to TLR2 or 4 ligation, as might be observed during secondary bacterial infection, cytokine secretion was markedly decreased in BVDV2-infected MDMΦ, compared to non-infected MDMΦ. Macrophages were hyporesponsive to viral TLR3 or TLR8 ligation. However, TLR7 stimulation of BVDV2-infected MDMΦ induced cytokine secretion, unlike results observed for other TLRs. Together, these data suggest that BVDV2 infection modulated mRNA responses and induced a suppression of proinflammatory cytokine protein responses to TLR ligation in MDMΦ with the exception of TLR7 ligation. It is likely that there are distinct differences in TLR pathways modulated following BVDV2 infection, which have implications for macrophage responses to secondary infections. PMID:27420479

  10. Bovine Viral Diarrhea Virus Type 2 Impairs Macrophage Responsiveness to Toll-Like Receptor Ligation with the Exception of Toll-Like Receptor 7

    PubMed Central

    Schaut, Robert G.; Ridpath, Julia F.; Sacco, Randy E.

    2016-01-01

    Bovine viral diarrhea virus (BVDV) is a member of the Flaviviridae family. BVDV isolates are classified into two biotypes based on the development of cytopathic (cp) or non-cytopathic (ncp) effects in epithelial cell culture. BVDV isolates are further separated into species, BVDV1 and 2, based on genetic differences. Symptoms of BVDV infection range from subclinical to severe, depending on strain virulence, and may involve multiple organ systems and induction of a generalized immunosuppression. During BVDV-induced immune suppression, macrophages, critical to innate immunity, may have altered pathogen recognition receptor (PRR) signaling, including signaling through toll-like receptors (TLRs). Comparison of BVDV 2 strains with different biotypes and virulence levels is valuable to determining if there are differences in host macrophage cellular responses between viral phenotypes. The current study demonstrates that cytopathic (cp), noncytopathic (ncp), high (hv) or low virulence (lv) BVDV2 infection of bovine monocyte-derived macrophages (MDMΦ) result in differential expression of pro-inflammatory cytokines compared to uninfected MDMΦ. A hallmark of cp BVDV2 infection is IL-6 production. In response to TLR2 or 4 ligation, as might be observed during secondary bacterial infection, cytokine secretion was markedly decreased in BVDV2-infected MDMΦ, compared to non-infected MDMΦ. Macrophages were hyporesponsive to viral TLR3 or TLR8 ligation. However, TLR7 stimulation of BVDV2-infected MDMΦ induced cytokine secretion, unlike results observed for other TLRs. Together, these data suggest that BVDV2 infection modulated mRNA responses and induced a suppression of proinflammatory cytokine protein responses to TLR ligation in MDMΦ with the exception of TLR7 ligation. It is likely that there are distinct differences in TLR pathways modulated following BVDV2 infection, which have implications for macrophage responses to secondary infections. PMID:27420479

  11. Murine retroviruses activate B cells via interaction with toll-like receptor 4

    PubMed Central

    Rassa, John C.; Meyers, Jennifer L.; Zhang, Yuanming; Kudaravalli, Rama; Ross, Susan R.

    2002-01-01

    Although most retroviruses require activated cells as their targets for infection, it is not known how this is achieved in vivo. A candidate protein for the activation of B cells by either mouse mammary tumor virus (MMTV) or murine leukemia virus is the toll-like receptor 4 (TLR4), a component of the innate immune system. MMTV caused B cell activation in C3H/HeN mice but not in C3H/HeJ or BALB/c (C.C3H Tlr4lps-d) congenic mice, both of which have a mutant TLR4 gene. This activation was independent of viral gene expression, because it occurred after treatment of MMTV with ultraviolet light or 2,2′-dithiodipyridine and in azidothymidine-treated mice. Nuclear extracts prepared from the lymphocytes of MMTV-injected C3H/HeN but not C3H/HeJ mice showed increased nuclear factor κB activity. Additionally, the MMTV- and Moloney murine leukemia virus envelope proteins coimmunoprecipitated with TLR4 when expressed in 293T cells. The MMTV receptor failed to coimmunoprecipitate with TLR4, suggesting that MMTV/TLR4 interaction is independent of virus attachment and fusion. These results identify retroviral proteins that interact with a mammalian toll receptor and show that direct activation by such viruses may initiate in vivo infection pathways. PMID:11854525

  12. Translational Mini-Review Series on Toll-like Receptors: Toll-like receptor ligands as novel pharmaceuticals for allergic disorders

    PubMed Central

    Goldman, M

    2007-01-01

    Characterization of the Toll-like receptor (TLR) family and associated signalling pathways provides a key molecular basis for our understanding of the relationship between exposure to microbial products and susceptibility to immune-mediated disorders. Indeed, ligation of TLR controls innate and adaptive immune responses by inducing synthesis of pro- as well as anti-inflammatory cytokines and activation of effector as well as regulatory lymphocytes. TLRs are therefore considered as major targets for the development of vaccine adjuvants, but also of new immunotherapies. Herein, we review the potential of TLR ligands as a novel class of pharmaceuticals for the prevention or treatment of allergic disorders. PMID:17223960

  13. Toll-Like Receptor- and Filarial Antigen-Mediated, Mitogen-Activated Protein Kinase- and NF-κB-Dependent Regulation of Angiogenic Growth Factors in Filarial Lymphatic Pathology

    PubMed Central

    Anuradha, R.; Kumar, N. Pavan; George, P. Jovvian; Kumaraswami, V.; Nutman, Thomas B.

    2012-01-01

    Filarial lymphatic pathology is of multifactorial origin, with inflammation, lymphangiogenesis, and innate immune responses all playing important roles. The role of Toll-like receptors (TLRs) in the development of filarial pathology is well characterized. Similarly, the association of pathology with elevated levels of plasma angiogenic factors has also been documented. To examine the association between TLR function and the development of lymphangiogenesis in filarial infections, we examined TLR- and filarial antigen-induced expression and production of various angiogenic growth factors. We demonstrate that TLR ligands (specifically TLR2, -3, and -5 ligands) induce significantly increased expression/production of vascular endothelial growth factor A (VEGF-A) and angiopoietin-1 (Ang-1) in the peripheral blood mononuclear cells of individuals with lymphatic pathology (CP individuals) compared to that in cells of asymptomatic infected (INF) individuals. Similarly, filarial antigens induce significantly enhanced production of VEGF-C in CP compared with INF individuals. TLR2-mediated enhancement of angiogenic growth factor production in CP individuals was shown to be dependent on mitogen-activated protein kinase (MAPK) and NF-κB signaling, as pharmacologic inhibition of either extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAPK, or NF-κB signaling resulted in significantly diminished production of VEGF-A and Ang-1. Our data therefore strongly suggest an important association between TLR signaling and lymphangiogenesis in the development of pathology in human lymphatic filariasis. PMID:22508858

  14. Toll-like receptor 4 (TLR4) antagonist eritoran tetrasodium attenuates liver ischemia and reperfusion injury through inhibition of high-mobility group box protein B1 (HMGB1) signaling.

    PubMed

    Mcdonald, Kerry-Ann; Huang, Hai; Tohme, Samer; Loughran, Patricia; Ferrero, Kimberly; Billiar, Timothy; Tsung, Allan

    2014-01-01

    Toll-like receptor 4 (TLR4) is ubiquitously expressed on parenchymal and immune cells of the liver and is the most studied TLR responsible for the activation of proinflammatory signaling cascades in liver ischemia and reperfusion (I/R). Since pharmacological inhibition of TLR4 during the sterile inflammatory response of I/R has not been studied, we sought to determine whether eritoran, a TLR4 antagonist trialed in sepsis, could block hepatic TLR4-mediated inflammation and end organ damage. When C57BL/6 mice were pretreated with eritoran and subjected to warm liver I/R, there was significantly less hepatocellular injury compared to control counterparts. Additionally, we found that eritoran is protective in liver I/R through inhibition of high-mobility group box protein B1 (HMGB1)-mediated inflammatory signaling. When eritoran was administered in conjunction with recombinant HMGB1 during liver I/R, there was significantly less injury, suggesting that eritoran blocks the HMGB1-TLR4 interaction. Not only does eritoran attenuate TLR4-dependent HMGB1 release in vivo, but this TLR4 antagonist also dampened HMGB1's release from hypoxic hepatocytes in vitro and thereby weakened HMGB1's activation of innate immune cells. HMGB1 signaling through TLR4 makes an important contribution to the inflammatory response seen after liver I/R. This study demonstrates that novel blockade of HMGB1 by the TLR4 antagonist eritoran leads to the amelioration of liver injury. PMID:25375408

  15. Effect of Chlamydia pneumoniae on Cellular ATP Content in Mouse Macrophages: Role of Toll-Like Receptor 2

    PubMed Central

    Yaraei, Kambiz; Campbell, Lee Ann; Zhu, Xiaodong; Liles, W. Conrad; Kuo, Cho-chou; Rosenfeld, Michael E.

    2005-01-01

    Chlamydiae are obligate intracellular gram-negative bacteria and are dependent on the host cell for ATP. Thus, chlamydial infection may alter the intracellular levels of ATP and affect all energy-dependent processes within the cell. We have shown that both live C. pneumoniae and inactivated C. pneumoniae induce markers of cell death prior to completion of the bacterial growth cycle. As depletion of ATP could account for the observed increase in cell death, the effects of C. pneumoniae on ATP concentrations within mouse macrophages were investigated. Live, heat-killed, and UV-inactivated C. pneumoniae cultures (at multiplicities of infection [MOIs] of 0.01, 0.1, and 1.0) were incubated with mouse bone marrow macrophages isolated from C57BL/6J mice and mice deficient in Toll-like receptors. Treatment of the macrophages with both live and inactivated C. pneumoniae increased the ATP content of the cells. In cells infected with live C. pneumoniae, the increase was inversely proportional to the MOI. In cells treated with inactivated C. pneumoniae, the increase in ATP content was smaller than that induced by infection with live organisms and was proportional to the MOI. The increase in ATP content early in the developmental cycle was independent of the growth of C. pneumoniae, while sustained induction required live organisms. The capacity of C. pneumoniae to increase the ATP content was ablated in macrophages deficient in expression of either Toll-like receptor 2 or the Toll-like receptor accessory protein MyD88. In contrast, no effect was observed in macrophages lacking expression of Toll-like receptor 4. PMID:15972526

  16. Reptile Toll-like receptor 5 unveils adaptive evolution of bacterial flagellin recognition

    PubMed Central

    Voogdt, Carlos G. P.; Bouwman, Lieneke I.; Kik, Marja J. L.; Wagenaar, Jaap A.; van Putten, Jos P. M.

    2016-01-01

    Toll-like receptors (TLR) are ancient innate immune receptors crucial for immune homeostasis and protection against infection. TLRs are present in mammals, birds, amphibians and fish but have not been functionally characterized in reptiles despite the central position of this animal class in vertebrate evolution. Here we report the cloning, characterization, and function of TLR5 of the reptile Anolis carolinensis (Green Anole lizard). The receptor (acTLR5) displays the typical TLR protein architecture with 22 extracellular leucine rich repeats flanked by a N- and C-terminal leucine rich repeat domain, a membrane-spanning region, and an intracellular TIR domain. The receptor is phylogenetically most similar to TLR5 of birds and most distant to fish TLR5. Transcript analysis revealed acTLR5 expression in multiple lizard tissues. Stimulation of acTLR5 with TLR ligands demonstrated unique responsiveness towards bacterial flagellin in both reptile and human cells. Comparison of acTLR5 and human TLR5 using purified flagellins revealed differential sensitivity to Pseudomonas but not Salmonella flagellin, indicating development of species-specific flagellin recognition during the divergent evolution of mammals and reptiles. Our discovery of reptile TLR5 fills the evolutionary gap regarding TLR conservation across vertebrates and provides novel insights in functional evolution of host-microbe interactions. PMID:26738735

  17. Reptile Toll-like receptor 5 unveils adaptive evolution of bacterial flagellin recognition.

    PubMed

    Voogdt, Carlos G P; Bouwman, Lieneke I; Kik, Marja J L; Wagenaar, Jaap A; van Putten, Jos P M

    2016-01-01

    Toll-like receptors (TLR) are ancient innate immune receptors crucial for immune homeostasis and protection against infection. TLRs are present in mammals, birds, amphibians and fish but have not been functionally characterized in reptiles despite the central position of this animal class in vertebrate evolution. Here we report the cloning, characterization, and function of TLR5 of the reptile Anolis carolinensis (Green Anole lizard). The receptor (acTLR5) displays the typical TLR protein architecture with 22 extracellular leucine rich repeats flanked by a N- and C-terminal leucine rich repeat domain, a membrane-spanning region, and an intracellular TIR domain. The receptor is phylogenetically most similar to TLR5 of birds and most distant to fish TLR5. Transcript analysis revealed acTLR5 expression in multiple lizard tissues. Stimulation of acTLR5 with TLR ligands demonstrated unique responsiveness towards bacterial flagellin in both reptile and human cells. Comparison of acTLR5 and human TLR5 using purified flagellins revealed differential sensitivity to Pseudomonas but not Salmonella flagellin, indicating development of species-specific flagellin recognition during the divergent evolution of mammals and reptiles. Our discovery of reptile TLR5 fills the evolutionary gap regarding TLR conservation across vertebrates and provides novel insights in functional evolution of host-microbe interactions. PMID:26738735

  18. Interaction between Cannabinoid System and Toll-Like Receptors Controls Inflammation.

    PubMed

    McCoy, Kathleen L

    2016-01-01

    Since the discovery of the endocannabinoid system consisting of cannabinoid receptors, endogenous ligands, and biosynthetic and metabolizing enzymes, interest has been renewed in investigating the promise of cannabinoids as therapeutic agents. Abundant evidence indicates that cannabinoids modulate immune responses. An inflammatory response is triggered when innate immune cells receive a danger signal provided by pathogen- or damage-associated molecular patterns engaging pattern-recognition receptors. Toll-like receptor family members are prominent pattern-recognition receptors expressed on innate immune cells. Cannabinoids suppress Toll-like receptor-mediated inflammatory responses. However, the relationship between the endocannabinoid system and innate immune system may not be one-sided. Innate immune cells express cannabinoid receptors and produce endogenous cannabinoids. Hence, innate immune cells may play a role in regulating endocannabinoid homeostasis, and, in turn, the endocannabinoid system modulates local inflammatory responses. Studies designed to probe the interaction between the innate immune system and the endocannabinoid system may identify new potential molecular targets in developing therapeutic strategies for chronic inflammatory diseases. This review discusses the endocannabinoid system and Toll-like receptor family and evaluates the interaction between them. PMID:27597805

  19. Interaction between Cannabinoid System and Toll-Like Receptors Controls Inflammation

    PubMed Central

    2016-01-01

    Since the discovery of the endocannabinoid system consisting of cannabinoid receptors, endogenous ligands, and biosynthetic and metabolizing enzymes, interest has been renewed in investigating the promise of cannabinoids as therapeutic agents. Abundant evidence indicates that cannabinoids modulate immune responses. An inflammatory response is triggered when innate immune cells receive a danger signal provided by pathogen- or damage-associated molecular patterns engaging pattern-recognition receptors. Toll-like receptor family members are prominent pattern-recognition receptors expressed on innate immune cells. Cannabinoids suppress Toll-like receptor-mediated inflammatory responses. However, the relationship between the endocannabinoid system and innate immune system may not be one-sided. Innate immune cells express cannabinoid receptors and produce endogenous cannabinoids. Hence, innate immune cells may play a role in regulating endocannabinoid homeostasis, and, in turn, the endocannabinoid system modulates local inflammatory responses. Studies designed to probe the interaction between the innate immune system and the endocannabinoid system may identify new potential molecular targets in developing therapeutic strategies for chronic inflammatory diseases. This review discusses the endocannabinoid system and Toll-like receptor family and evaluates the interaction between them. PMID:27597805

  20. HIV Gag protein conjugated to a Toll-like receptor 7/8 agonist improves the magnitude and quality of Th1 and CD8+ T cell responses in nonhuman primates

    NASA Astrophysics Data System (ADS)

    Wille-Reece, Ulrike; Flynn, Barbara J.; Loré, Karin; Koup, Richard A.; Kedl, Ross M.; Mattapallil, Joseph J.; Weiss, Walter R.; Roederer, Mario; Seder, Robert A.

    2005-10-01

    Induction and maintenance of antibody and T cell responses will be critical for developing a successful vaccine against HIV. A rational approach for generating such responses is to design vaccines or adjuvants that have the capacity to activate specific antigen-presenting cells. In this regard, dendritic cells (DCs) are the most potent antigen-presenting cells for generating primary T cell responses. Here, we report that Toll-like receptor (TLR) agonists and ligands that activate DCs in vitro influence the magnitude and quality of the cellular immune response in nonhuman primates (NHPs) when administered with HIV Gag protein. NHPs immunized with HIV Gag protein and a TLR7/8 agonist or a TLR9 ligand [CpG oligodeoxynucleotides (CpG ODN)] had significantly increased Gag-specific T helper 1 and antibody responses, compared with animals immunized with HIV Gag protein alone. Importantly, conjugating the HIV Gag protein to the TLR7/8 agonist (Gag-TLR7/8 conjugate) dramatically enhanced the magnitude and altered the quality of the T helper 1 response, compared with animals immunized with HIV Gag protein and the TLR7/8 agonist or CpG ODN. Furthermore, immunization with the Gag-TLR7/8 conjugate vaccine elicited Gag-specific CD8+ T responses. Collectively, our results show that conjugating HIV Gag protein to a TLR7/8 agonist is an effective way to elicit broad-based adaptive immunity in NHPs. This type of vaccine formulation should have utility in preventive or therapeutic vaccines in which humoral and cellular immunity is required. vaccine | dendritic cell | cross-presentation | cellular immunity

  1. Escherichia coli Strain Nissle 1917 Ameliorates Experimental Colitis via Toll-Like Receptor 2- and Toll-Like Receptor 4-Dependent Pathways

    PubMed Central

    Grabig, A.; Paclik, D.; Guzy, C.; Dankof, A.; Baumgart, D. C.; Erckenbrecht, J.; Raupach, B.; Sonnenborn, U.; Eckert, J.; Schumann, R. R.; Wiedenmann, B.; Dignass, A. U.; Sturm, A.

    2006-01-01

    Toll-like receptors (TLRs) are key components of the innate immune system that trigger antimicrobial host defense responses. The aim of the present study was to analyze the effects of probiotic Escherichia coli Nissle strain 1917 in experimental colitis induced in TLR-2 and TLR-4 knockout mice. Colitis was induced in wild-type (wt), TLR-2 knockout, and TLR-4 knockout mice via administration of 5% dextran sodium sulfate (DSS). Mice were treated with either 0.9% NaCl or 107 E. coli Nissle 1917 twice daily, followed by the determination of disease activity, mucosal damage, and cytokine secretion. wt and TLR-2 knockout mice exposed to DSS developed acute colitis, whereas TLR-4 knockout mice developed significantly less inflammation. In wt mice, but not TLR-2 or TLR-4 knockout mice, E. coli Nissle 1917 ameliorated colitis and decreased proinflammatory cytokine secretion. In TLR-2 knockout mice a selective reduction of gamma interferon secretion was observed after E. coli Nissle 1917 treatment. In TLR-4 knockout mice, cytokine secretion was almost undetectable and not modulated by E. coli Nissle 1917, indicating that TLR-4 knockout mice do not develop colitis similar to the wt mice. Coculture of E. coli Nissle 1917 and human T cells increased TLR-2 and TLR-4 protein expression in T cells and increased NF-κB activity via TLR-2 and TLR-4. In conclusion, our data provide evidence that E. coli Nissle 1917 ameliorates experimental induced colitis in mice via TLR-2- and TLR-4-dependent pathways. PMID:16790781

  2. Suppression of Mitochondrial Biogenesis through Toll-Like Receptor 4–Dependent Mitogen-Activated Protein Kinase Kinase/Extracellular Signal-Regulated Kinase Signaling in Endotoxin-Induced Acute Kidney Injury

    PubMed Central

    Smith, Joshua A.; Stallons, L. Jay; Collier, Justin B.; Chavin, Kenneth D.

    2015-01-01

    Although disruption of mitochondrial homeostasis and biogenesis (MB) is a widely accepted pathophysiologic feature of sepsis-induced acute kidney injury (AKI), the molecular mechanisms responsible for this phenomenon are unknown. In this study, we examined the signaling pathways responsible for the suppression of MB in a mouse model of lipopolysaccharide (LPS)-induced AKI. Downregulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a master regulator of MB, was noted at the mRNA level at 3 hours and protein level at 18 hours in the renal cortex, and was associated with loss of renal function after LPS treatment. LPS-mediated suppression of PGC-1α led to reduced expression of downstream regulators of MB and electron transport chain proteins along with a reduction in renal cortical mitochondrial DNA content. Mechanistically, Toll-like receptor 4 (TLR4) knockout mice were protected from renal injury and disruption of MB after LPS exposure. Immunoblot analysis revealed activation of tumor progression locus 2/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (TPL-2/MEK/ERK) signaling in the renal cortex by LPS. Pharmacologic inhibition of MEK/ERK signaling attenuated renal dysfunction and loss of PGC-1α, and was associated with a reduction in proinflammatory cytokine (e.g., tumor necrosis factor-α [TNF-α], interleukin-1β) expression at 3 hours after LPS exposure. Neutralization of TNF-α also blocked PGC-1α suppression, but not renal dysfunction, after LPS-induced AKI. Finally, systemic administration of recombinant tumor necrosis factor-α alone was sufficient to produce AKI and disrupt mitochondrial homeostasis. These findings indicate an important role for the TLR4/MEK/ERK pathway in both LPS-induced renal dysfunction and suppression of MB. TLR4/MEK/ERK/TNF-α signaling may represent a novel therapeutic target to prevent mitochondrial dysfunction and AKI produced by sepsis. PMID:25503387

  3. Retinol-Binding Protein 4 Inhibits Insulin Signaling in Adipocytes by Inducing Proinflammatory Cytokines in Macrophages through a c-Jun N-Terminal Kinase- and Toll-Like Receptor 4-Dependent and Retinol-Independent Mechanism

    PubMed Central

    Norseen, Julie; Hosooka, Tetsuya; Hammarstedt, Ann; Yore, Mark M.; Kant, Shashi; Aryal, Pratik; Kiernan, Urban A.; Phillips, David A.; Maruyama, Hiroshi; Kraus, Bettina J.; Usheva, Anny; Davis, Roger J.; Smith, Ulf

    2012-01-01

    Retinol-binding protein 4 (RBP4), the sole retinol transporter in blood, is secreted from adipocytes and liver. Serum RBP4 levels correlate highly with insulin resistance, other metabolic syndrome factors, and cardiovascular disease. Elevated serum RBP4 causes insulin resistance, but the molecular mechanisms are unknown. Here we show that RBP4 induces expression of proinflammatory cytokines in mouse and human macrophages and thereby indirectly inhibits insulin signaling in cocultured adipocytes. This occurs through activation of c-Jun N-terminal protein kinase (JNK) and Toll-like receptor 4 (TLR4) pathways independent of the RBP4 receptor, STRA6. RBP4 effects are markedly attenuated in JNK1−/− JNK2−/− macrophages and TLR4−/− macrophages. Because RBP4 is a retinol-binding protein, we investigated whether these effects are retinol dependent. Unexpectedly, retinol-free RBP4 (apo-RBP4) is as potent as retinol-bound RBP4 (holo-RBP4) in inducing proinflammatory cytokines in macrophages. Apo-RBP4 is likely to be physiologically significant since RBP4/retinol ratios are increased in serum of lean and obese insulin-resistant humans compared to ratios in insulin-sensitive humans, indicating that higher apo-RBP4 is associated with insulin resistance independent of obesity. Thus, RBP4 may cause insulin resistance by contributing to the development of an inflammatory state in adipose tissue through activation of proinflammatory cytokines in macrophages. This process reveals a novel JNK- and TLR4-dependent and retinol- and STRA6-independent mechanism of action for RBP4. PMID:22431523

  4. Expression of Toll-like receptors in nasal epithelium in allergic rhinitis.

    PubMed

    Renkonen, Jutta; Toppila-Salmi, Sanna; Joenväärä, Sakari; Mattila, Pirkko; Parviainen, Ville; Hagström, Jaana; Haglund, Caj; Lehtonen, Mikko; Renkonen, Risto

    2015-08-01

    Toll-like receptors (TLRs) are important in barrier homeostasis, but their role in airborne allergies is not fully understood. The aim was to evaluate baseline and allergen-induced expression of TLR proteins in nasal epithelium during allergic rhinitis. Nineteen otherwise healthy non-smoking volunteers both allergic to birch pollen and non-allergic controls were enrolled. We took nasal biopsies before and after off-seasonal intranasal birch pollen or diluent challenge. The expression of epithelial TLR1-7, TLR9-10, and MyD88 proteins was immunohistochemically evaluated from the nasal biopsies. The TLR1-3 and TLR5-10 mRNAs were observed by RNA-microarray. Baseline epithelial expression of TLR proteins was wide and identical in controls and atopics. After off-seasonal intranasal birch pollen challenge, a negative change in the expression score of TLR1 and TLR6 proteins was detected in the atopic group. TLR mRNA expression was not affected by birch pollen challenge. Nasal epithelium seems to express all known TLRs. The mechanisms by which TLR1, and TLR6 proteins could affect pollen allergen transport need further studies. PMID:26061394

  5. Toll-like receptors; their physiological role and signal transduction system.

    PubMed

    Takeuchi, O; Akira, S

    2001-04-01

    Drosophila Toll protein is a transmembrane receptor whose function is to recognize the invasion of microorganisms as well as to establish dorso-ventral polarity. Recently, mammalian homologues of Toll, designated as Toll-like receptors (TLRs) have been discovered. So far, six members (TLR1-6) have been reported and two of these, TLR2 and TLR4, have been shown to be essential for the recognition of distinct bacterial cell wall components. TLR2 discriminates peptidoglycan (PGN), lipoprotein, lipoarabinomannan (LAM) and zymosan, whereas TLR4 recognizes lipopolysaccharide (LPS), lipoteichoic acid (LTA) and Taxol. Bacterial components elicit the activation of an intracellular signaling cascade via TLR in a similar way to that occurs upon ligand binding to IL-1 receptor (IL-1R). This signaling pathway leads to the activation of a transcription factor NF-kappaB and c-Jun N-terminal kinase (JNK), which initiate the transcription of proinflammatory cytokine genes. Particularly, analysis of knockout mice revealed a pivotal role for MyD88 in the signaling of the TLR/IL-1R family. Taken together, TLRs and the downstream signaling pathway play a key role in innate immune recognition and in subsequent activation of adaptive immunity. PMID:11357875

  6. Modulation of Toll-Like Receptor Activity by Leukocyte Ig-Like Receptors and Their Effects during Bacterial Infection

    PubMed Central

    Pilsbury, Louise E.; Allen, Rachel L.; Vordermeier, Martin

    2010-01-01

    Toll-like receptors (TLRs) are a potent trigger for inflammatory immune responses. Without tight regulation their activation could lead to pathology, so it is imperative to extend our understanding of the regulatory mechanisms that govern TLR expression and function. One family of immunoregulatory proteins which can provide a balancing effect on TLR activity are the Leukocyte Ig-like receptors (LILRs), which act as innate immune receptors for self-proteins. Here we describe the LILR family, their inhibitory effect on TLR activity in cells of the monocytic lineage, their signalling pathway, and their antimicrobial effects during bacterial infection. Agents have already been identified which enhances or inhibits LILR activity raising the future possibility that modulation of LILR function could be used as a means to modulate TLR activity. PMID:20634939

  7. Toll-like receptor 4-related immunostimulatory polysaccharides: Primary structure, activity relationships, and possible interaction models.

    PubMed

    Zhang, Xiaorui; Qi, Chunhui; Guo, Yan; Zhou, Wenxia; Zhang, Yongxiang

    2016-09-20

    Toll-like receptor (TLR) 4 is an important polysaccharide receptor; however, the relationships between the structures and biological activities of TLR4 and polysaccharides remain unknown. Many recent findings have revealed the primary structure of TLR4/MD-2-related polysaccharides, and several three-dimensional structure models of polysaccharide-binding proteins have been reported; and these models provide insights into the mechanisms through which polysaccharides interact with TLR4. In this review, we first discuss the origins of polysaccharides related to TLR4, including polysaccharides from higher plants, fungi, bacteria, algae, and animals. We then briefly describe the glucosidic bond types of TLR4-related heteroglycans and homoglycans and describe the typical molecular weights of TLR4-related polysaccharides. The primary structures and activity relationships of polysaccharides with TLR4/MD-2 are also discussed. Finally, based on the existing interaction models of LPS with TLR4/MD-2 and linear polysaccharides with proteins, we provide insights into the possible interaction models of polysaccharide ligands with TLR4/MD-2. To our knowledge, this review is the first to summarize the primary structures and activity relationships of TLR4-related polysaccharides and the possible mechanisms of interaction for TLR4 and TLR4-related polysaccharides. PMID:27261743

  8. Molecular and Cellular Regulation of Toll-Like Receptor-4 Activity Induced by Lipopolysaccharide Ligands

    PubMed Central

    Liaunardy-Jopeace, Ardiyanto; Gay, Nicholas J.

    2014-01-01

    As well as being the primary signaling receptor for bacterial endotoxin or lipopolysaccharide Toll-like receptor-4 function is modulated by numerous factors not only in the context of microbial pathogenesis but also autoimmune and allergic diseases. TLR4 is subject to multiple levels of endogenous control and regulation from biosynthesis and trafficking to signal transduction and degradation. On the other hand regulation of TLR4 activity breaks down during Gram −ve sepsis leading to systemic damage, multi organ failure, and death. In this article, we review how TLR4 traffics from the early secretory pathway, the cis/trans Golgi to the cell surface and endolysosomal compartments. We will present evidence about how these processes influence signaling and can potentially lead to increased sensitivity to ligand-dependent activation as well as ligand-independent constitutive activation that may contribute to pathogenesis in sepsis. We will also discuss how sustained signaling may be coupled to endocytosis and consider the potential molecular mechanisms of immuno-modulators that modify TLR4 signaling function including the cat allergen FelD1 and endogenous protein ligands such as the extracellular matrix protein tenascin C and calprotectin (MRP8/14). PMID:25339952

  9. Toll-like receptor 4 confers inflammatory response to Suilysin

    PubMed Central

    Bi, Lili; Pian, Yaya; Chen, Shaolong; Ren, Zhiqiang; Liu, Peng; Lv, Qingyu; Zheng, Yuling; Zhang, Shengwei; Hao, Huaijie; Yuan, Yuan; Jiang, Yongqiang

    2015-01-01

    Streptococcus suis serotype 2 (SS2) is an emerging human pathogen worldwide. A large outbreak occurred in the summer of 2005 in China. Serum samples from this outbreak revealed that levels of the main proinflammatory cytokines were significantly higher in patients with streptococcal toxic-shock-like syndrome (STSLS) than in patients with meningitis only. However, the mechanism underlying the cytokine storm in STSLS caused by SS2 remained unclear. In this study, we found that suilysin (SLY) is the main protein inflammatory stimulus of SS2 and that native SLY (nSLY) stimulated cytokines independently of its haemolytic ability. Interestingly, a small amount of SLY (Å Mol/L) induced strong, long-term TNF-α release from human PBMCs. We also found that nSLY stimulated TNF-α in wild-type macrophages but not in macrophages from mice that carried a spontaneous mutation in TLR4 (P712H). We demonstrated for the first time that SLY stimulates immune cells through TLR4. In addition, the Myd88 adaptor-p38-MAPK pathway was involved in this process. The present study suggested that the TLR4-dependent inflammatory responses induced by SLY in host might contribute to the STSLS caused by SS2 and that p38-MAPK could be used as a target to control the release of excess TNF-α induced by SS2. PMID:26167160

  10. Human Lipopolysaccharide-binding Protein (LBP) and CD14 Independently Deliver Triacylated Lipoproteins to Toll-like Receptor 1 (TLR1) and TLR2 and Enhance Formation of the Ternary Signaling Complex*

    PubMed Central

    Ranoa, Diana Rose E.; Kelley, Stacy L.; Tapping, Richard I.

    2013-01-01

    Bacterial lipoproteins are the most potent microbial agonists for the Toll-like receptor 2 (TLR2) subfamily, and this pattern recognition event induces cellular activation, leading to host immune responses. Triacylated bacterial lipoproteins coordinately bind TLR1 and TLR2, resulting in a stable ternary complex that drives intracellular signaling. The sensitivity of TLR-expressing cells to lipoproteins is greatly enhanced by two lipid-binding serum proteins known as lipopolysaccharide-binding protein (LBP) and soluble CD14 (sCD14); however, the physical mechanism that underlies this increased sensitivity is not known. To address this, we measured the ability of LBP and sCD14 to drive ternary complex formation between soluble extracellular domains of TLR1 and TLR2 and a synthetic triacylated lipopeptide agonist. Importantly, addition of substoichiometric amounts of either LBP or sCD14 significantly enhanced formation of a TLR1·TLR2 lipopeptide ternary complex as measured by size exclusion chromatography. However, neither LBP nor sCD14 was physically associated with the final ternary complex. Similar results were obtained using outer surface protein A (OspA), a naturally occurring triacylated lipoprotein agonist from Borrelia burgdorferi. Activation studies revealed that either LBP or sCD14 sensitized TLR-expressing cells to nanogram levels of either the synthetic lipopeptide or OspA lipoprotein agonist. Together, our results show that either LBP or sCD14 can drive ternary complex formation and TLR activation by acting as mobile carriers of triacylated lipopeptides or lipoproteins. PMID:23430250

  11. Heat shock protein 60 stimulates the migration of vascular smooth muscle cells via Toll-like receptor 4 and ERK MAPK activation

    PubMed Central

    Zhao, Ying; Zhang, Chenxu; Wei, Xuge; Li, Pei; Cui, Ying; Qin, Yuanhua; Wei, Xiaoqing; Jin, Minli; Kohama, Kazuhiro; Gao, Ying

    2015-01-01

    Accumulating evidence indicates that heat shock protein (HSP) 60 is strongly associated with the pathology of atherosclerosis (AS). However, the precise mechanisms by which HSP60 promotes atherosclerosis remain unclear. In the present study, we found that HSP60 mRNA and protein expression levels in the thoracic aorta are enhanced not only in a mouse model of AS but also in high-fat diet (HFD) mice. HSP60 expression and secretion was activated by platelet-derived growth factor-BB (PDGF-BB) and interleukin (IL)-8 in both human umbilical vein endothelial cells (HUVECs) and vascular smooth muscle cells (VSMCs). HSP60 was found to induce VSMC migration, and exposure to HSP60 activated ERK MAPK signaling. U0126, an inhibitor of ERK, reduced VSMC migration. The HSP60-stimulated VSMCs were found to express TLR4 mRNA but not TLR2 mRNA. Knockdown of TLR4 by siRNA reduced HSP60-induced VSMC migration and HSP60-induced ERK activation. Finally, HSP60 induced IL-8 secretion in VSMCs. Together these results suggest that HSP60 is involved in the stimulation of VSMC migration, via TLR4 and ERK MAPK activation. Meanwhile, activation of HSP60 is one of the most powerful methods of sending a ‘danger signal’ to the immune system to generate IL-8, which assists in the management of an infection or disease. PMID:26477505

  12. HIV-1 Tat Protein Induces PD-L1 (B7-H1) Expression on Dendritic Cells through Tumor Necrosis Factor Alpha- and Toll-Like Receptor 4-Mediated Mechanisms

    PubMed Central

    Planès, Rémi; BenMohamed, Lbachir; Leghmari, Kaoutar; Delobel, Pierre; Izopet, Jacques

    2014-01-01

    ABSTRACT Chronic human immunodeficiency virus type 1 (HIV-1) infection is associated with induction of T-cell coinhibitory pathways. However, the mechanisms by which HIV-1 induces upregulation of coinhibitory molecules remain to be fully elucidated. The aim of the present study was to determine whether and how HIV-1 Tat protein, an immunosuppressive viral factor, induces the PD-1/PD-L1 coinhibitory pathway on human dendritic cells (DCs). We found that treatment of DCs with whole HIV-1 Tat protein significantly upregulated the level of expression of PD-L1. This PD-L1 upregulation was observed in monocyte-derived dendritic cells (MoDCs) obtained from either uninfected or HIV-1-infected patients as well as in primary myeloid DCs from HIV-negative donors. In contrast, no effect on the expression of PD-L2 or PD-1 molecules was detected. The induction of PD-L1 on MoDCs by HIV-1 Tat (i) occurred in dose- and time-dependent manners, (ii) was mediated by the N-terminal 1–45 fragment of Tat, (iii) did not require direct cell-cell contact but appeared rather to be mediated by soluble factor(s), (iv) was abrogated following neutralization of tumor necrosis factor alpha (TNF-α) or blocking of Toll-like receptor 4 (TLR4), (v) was absent in TLR4-knockoout (KO) mice but could be restored following incubation with Tat-conditioned medium from wild-type DCs, (vi) impaired the capacity of MoDCs to functionally stimulate T cells, and (vii) was not reversed functionally following PD-1/PD-L1 pathway blockade, suggesting the implication of other Tat-mediated coinhibitory pathways. Our results demonstrate that HIV-1 Tat protein upregulates PD-L1 expression on MoDCs through TNF-α- and TLR4-mediated mechanisms, functionally compromising the ability of DCs to stimulate T cells. The findings offer a novel potential molecular target for the development of an anti-HIV-1 treatment. IMPORTANCE The objective of this study was to investigate the effect of human immunodeficiency virus type 1 (HIV

  13. The evolution of bat nucleic acid-sensing Toll-like receptors.

    PubMed

    Escalera-Zamudio, Marina; Zepeda-Mendoza, M Lisandra; Loza-Rubio, Elizabeth; Rojas-Anaya, Edith; Méndez-Ojeda, Maria L; Arias, Carlos F; Greenwood, Alex D

    2015-12-01

    We characterized the nucleic acid-sensing Toll-like receptors (TLR) of a New World bat species, the common vampire bat (Desmodus rotundus), and through a comparative molecular evolutionary approach searched for general adaptation patterns among the nucleic acid-sensing TLRs of eight different bats species belonging to three families (Pteropodidae, Vespertilionidae and Phyllostomidae). We found that the bat TLRs are evolving slowly and mostly under purifying selection and that the divergence pattern of such receptors is overall congruent with the species tree, consistent with the evolution of many other mammalian nuclear genes. However, the chiropteran TLRs exhibited unique mutations fixed in ligand-binding sites, some of which involved nonconservative amino acid changes and/or targets of positive selection. Such changes could potentially modify protein function and ligand-binding properties, as some changes were predicted to alter nucleic acid binding motifs in TLR 9. Moreover, evidence for episodic diversifying selection acting specifically upon the bat lineage and sublineages was detected. Thus, the long-term adaptation of chiropterans to a wide variety of environments and ecological niches with different pathogen profiles is likely to have shaped the evolution of the bat TLRs in an order-specific manner. The observed evolutionary patterns provide evidence for potential functional differences between bat and other mammalian TLRs in terms of resistance to specific pathogens or recognition of nucleic acids in general. PMID:26503258

  14. Toll-Like Receptor Polymorphisms, Inflammatory and Infectious Diseases, Allergies, and Cancer

    PubMed Central

    2013-01-01

    Toll-like receptors (TLRs) are germ-line-encoded innate immune sensors that recognize conserved microbial structures and host alarmins and signal expression of MHC proteins, costimulatory molecules, and inflammatory mediators by macrophages, neutrophils, dendritic cells, and other cell types. These processes activate immediate and early mechanisms of innate host defense, as well as initiate and orchestrate adaptive immune responses. Several single-nucleotide polymorphisms (SNPs) within the TLR genes have been associated with altered susceptibility to infectious, inflammatory, and allergic diseases, and have been found to play a role in tumorigenesis. Critical advances in our understanding of innate immune functions and genome-wide association studies (GWAS) have uncovered complex interactions of genetic polymorphisms within TLRs and environmental factors. However, conclusions obtained in the course of such analyses are restricted by limited power of many studies that is likely to explain controversial findings. Further, linkages to certain ethnic backgrounds, gender, and the presence of multigenic effects further complicate the interpretations of how the TLR SNPs affect immune responses. For many TLRs, the molecular mechanisms by which SNPs impact receptor functions remain unknown. In this review, I have summarized current knowledge about the TLR polymorphisms, their impact on TLR signaling, and associations with various inflammatory, infectious, allergic diseases and cancers, and discussed the directions of future scientific research. PMID:23675778

  15. Toll-like receptor cascade and gene polymorphism in host–pathogen interaction in Lyme disease

    PubMed Central

    Rahman, Shusmita; Shering, Maria; Ogden, Nicholas H; Lindsay, Robbin; Badawi, Alaa

    2016-01-01

    Lyme disease (LD) risk occurs in North America and Europe where the tick vectors of the causal agent Borrelia burgdorferi sensu lato are found. It is associated with local and systemic manifestations, and has persistent posttreatment health complications in some individuals. The innate immune system likely plays a critical role in both host defense against B. burgdorferi and disease severity. Recognition of B. burgdorferi, activation of the innate immune system, production of proinflammatory cytokines, and modulation of the host adaptive responses are all initiated by Toll-like receptors (TLRs). A number of Borrelia outer-surface proteins (eg, OspA and OspB) are recognized by TLRs. Specifically, TLR1 and TLR2 were identified as the receptors most relevant to LD. Several functional single-nucleotide polymorphisms have been identified in TLR genes, and are associated with varying cytokines types and synthesis levels, altered pathogen recognition, and disruption of the downstream signaling cascade. These single-nucleotide polymorphism-related functional alterations are postulated to be linked to disease development and posttreatment persistent illness. Elucidating the role of TLRs in LD may facilitate a better understanding of disease pathogenesis and can provide an insight into novel therapeutic targets during active disease or postinfection and posttreatment stages. PMID:27330321

  16. Energetics of Endotoxin Recognition in the Toll-Like Receptor 4 Innate Immune Response

    PubMed Central

    Paramo, Teresa; Tomasio, Susana M.; Irvine, Kate L.; Bryant, Clare E.; Bond, Peter J.

    2015-01-01

    Bacterial outer membrane lipopolysaccharide (LPS) potently stimulates the mammalian innate immune system, and can lead to sepsis, the primary cause of death from infections. LPS is sensed by Toll-like receptor 4 (TLR4) in complex with its lipid-binding coreceptor MD-2, but subtle structural variations in LPS can profoundly modulate the response. To better understand the mechanism of LPS-induced stimulation and bacterial evasion, we have calculated the binding affinity to MD-2 of agonistic and antagonistic LPS variants including lipid A, lipid IVa, and synthetic antagonist Eritoran, and provide evidence that the coreceptor is a molecular switch that undergoes ligand-induced conformational changes to appropriately activate or inhibit the receptor complex. The plasticity of the coreceptor binding cavity is shown to be essential for distinguishing between ligands, whilst similar calculations for a model bacterial LPS bilayer reveal the “membrane-like” nature of the protein cavity. The ability to predict the activity of LPS variants should facilitate the rational design of TLR4 therapeutics. PMID:26647780

  17. Toll-like receptors in prostate infection and cancer between bench and bedside

    PubMed Central

    Gambara, Guido; Cesaris, Paola; Nunzio, Cosimo; Ziparo, Elio; Tubaro, Andrea; Filippini, Antonio; Riccioli, Anna

    2013-01-01

    Toll-Like receptors (TLRs) are a family of evolutionary conserved transmembrane proteins that recognize highly conserved molecules in pathogens. TLR-expressing cells represent the first line of defence sensing pathogen invasion, triggering innate immune responses and subsequently priming antigen-specific adaptive immunity. In vitro and in vivo studies on experimental cancer models have shown both anti- and pro-tumoural activity of different TLRs in prostate cancer, indicating these receptors as potential targets for cancer therapy. In this review, we highlight the intriguing duplicity of TLR stimulation by pathogens: their protective role in cases of acute infections, and conversely their negative role in favouring hyperplasia and/or cancer onset, in cases of chronic infections. This review focuses on the role of TLRs in the pathophysiology of prostate infection and cancer by exploring the biological bases of the strict relation between TLRs and prostate cancer. In particular, we highlight the debated question of how reliable mutations or deregulated expression of TLRs are as novel diagnostic or prognostic tools for prostate cancer. So far, the anticancer activity of numerous TLR ligands has been evaluated in clinical trials only in organs other than the prostate. Here we review recent clinical trials based on the most promising TLR agonists in oncology, envisaging a potential application also in prostate cancer therapy. PMID:23551576

  18. Non-cell-autonomous Neurotoxicity of α-synuclein Through Microglial Toll-like Receptor 2

    PubMed Central

    Kim, Changyoun; Lee, He-Jin; Masliah, Eliezer

    2016-01-01

    Synucleinopathies are a collection of neurological diseases that are characterized by deposition of α-synuclein aggregates in neurons and glia. These diseases include Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. Although it has been increasingly clear that α-synuclein is implicated in the pathogenesis of PD and other synucleinopathies, the precise mechanism underlying the disease process remains to be unraveled. The past studies on how α-synuclein exerts pathogenic actions have focused on its direct, cell-autonomous neurotoxic effects. However, recent findings suggested that there might be indirect, non-cell-autonomous pathways, perhaps through the changes in glial cells, for the pathogenic actions of this protein. Here, we present evidence that α-synuclein can cause neurodegeneration through a non-cell-autonomous manner. We show that α-synuclein can be secreted from neurons and induces inflammatory responses in microglia, which in turn secreted neurotoxic agents into the media causing neurodegeneration. The neurotoxic response of microglia was mediated by activation of toll-like receptor 2 (TLR2), a receptor for neuron-derived α-synuclein. This work suggests that TLR2 is the key molecule that mediates non-cell-autonomous neurotoxic effects of α-synuclein, hence a candidate for the therapeutic target. PMID:27358579

  19. Toll-Like Receptor 3 Influences Glucose Homeostasis and β-Cell Insulin Secretion.

    PubMed

    Strodthoff, Daniela; Ma, Zuheng; Wirström, Tina; Strawbridge, Rona J; Ketelhuth, Daniel F J; Engel, David; Clarke, Robert; Falkmer, Sture; Hamsten, Anders; Hansson, Göran K; Björklund, Anneli; Lundberg, Anna M

    2015-10-01

    Toll-like receptors (TLRs) have been implicated in the pathogenesis of type 2 diabetes. We examined the function of TLR3 in glucose metabolism and type 2 diabetes-related phenotypes in animals and humans. TLR3 is highly expressed in the pancreas, suggesting that it can influence metabolism. Using a diet-induced obesity model, we show that TLR3-deficient mice had enhanced glycemic control, facilitated by elevated insulin secretion. Despite having high insulin levels, Tlr3(-/-) mice did not experience disturbances in whole-body insulin sensitivity, suggesting that they have a robust metabolic system that manages increased insulin secretion. Increase in insulin secretion was associated with upregulation of islet glucose phosphorylation as well as exocytotic protein VAMP-2 in Tlr3(-/-) islets. TLR3 deficiency also modified the plasma lipid profile, decreasing VLDL levels due to decreased triglyceride biosynthesis. Moreover, a meta-analysis of two healthy human populations showed that a missense single nucleotide polymorphism in TLR3 (encoding L412F) was linked to elevated insulin levels, consistent with our experimental findings. In conclusion, our results increase the understanding of the function of innate receptors in metabolic disorders and implicate TLR3 as a key control system in metabolic regulation. PMID:25918231

  20. Toll-like receptor cascade and gene polymorphism in host-pathogen interaction in Lyme disease.

    PubMed

    Rahman, Shusmita; Shering, Maria; Ogden, Nicholas H; Lindsay, Robbin; Badawi, Alaa

    2016-01-01

    Lyme disease (LD) risk occurs in North America and Europe where the tick vectors of the causal agent Borrelia burgdorferi sensu lato are found. It is associated with local and systemic manifestations, and has persistent posttreatment health complications in some individuals. The innate immune system likely plays a critical role in both host defense against B. burgdorferi and disease severity. Recognition of B. burgdorferi, activation of the innate immune system, production of proinflammatory cytokines, and modulation of the host adaptive responses are all initiated by Toll-like receptors (TLRs). A number of Borrelia outer-surface proteins (eg, OspA and OspB) are recognized by TLRs. Specifically, TLR1 and TLR2 were identified as the receptors most relevant to LD. Several functional single-nucleotide polymorphisms have been identified in TLR genes, and are associated with varying cytokines types and synthesis levels, altered pathogen recognition, and disruption of the downstream signaling cascade. These single-nucleotide polymorphism-related functional alterations are postulated to be linked to disease development and posttreatment persistent illness. Elucidating the role of TLRs in LD may facilitate a better understanding of disease pathogenesis and can provide an insight into novel therapeutic targets during active disease or postinfection and posttreatment stages. PMID:27330321

  1. The Toll-like receptor-3 agonist poly(I:C) triggers nigrostriatal dopaminergic degeneration

    PubMed Central

    Deleidi, Michela; Hallett, Penelope J.; Koprich, James B.; Chung, Chee-Yeun; Isacson, Ole

    2010-01-01

    In Parkinson’s disease (PD), loss of striatal dopaminergic (DA) terminals and degeneration of DA neurons in the substantia nigra (SN) are associated with glial reactions. Such inflammatory processes are commonly considered an epiphenomenon of neuronal degeneration. However, there is increasing recognition of the role of neuroinflammation as an initiation factor of DA neuron degeneration. To investigate this issue, we established a new model of brain inflammation by injecting the Toll-like receptor 3 (TLR-3) agonist polyinosinic:polycytidylic acid [poly(I:C)] in the SN of adult rats. Poly(I:C) injection induced a sustained inflammatory reaction in the SN and in the dorsolateral striatum. Significant changes were detected in proteins relevant to synaptic transmission and axonal transport. In addition, cytoplasmic mislocalization of neuronal TDP-43 was observed. Poly(I:C) injection increased the susceptibility of midbrain DA neurons to a subsequent neurotoxic trigger (low dose 6-hydroxydopamine). Systemic delivery of IL-1 receptor antagonist (IL1-ra) protected SN DA neurons exposed to combined poly(I:C) induced inflammatory and neurotoxic oxidative stress. These data indicate that viral-like neuroinflammation induces predegenerative changes in the DA system, which lowers the set point toward neuronal dysfunction and degeneration. New powerful neuroprotective therapies for PD might be considered by targeting critical inflammatory mechanisms, including cytokine-induced neurotoxicity. PMID:21123556

  2. Tenascin C upregulates interleukin-6 expression in human cardiac myofibroblasts via toll-like receptor 4

    PubMed Central

    Maqbool, Azhar; Spary, Emma J; Manfield, Iain W; Ruhmann, Michaela; Zuliani-Alvarez, Lorena; Gamboa-Esteves, Filomena O; Porter, Karen E; Drinkhill, Mark J; Midwood, Kim S; Turner, Neil A

    2016-01-01

    AIM: To investigate the effect of Tenascin C (TNC) on the expression of pro-inflammatory cytokines and matrix metalloproteinases in human cardiac myofibroblasts (CMF). METHODS: CMF were isolated and cultured from patients undergoing coronary artery bypass grafting. Cultured cells were treated with either TNC (0.1 μmol/L, 24 h) or a recombinant protein corresponding to different domains of the TNC protein; fibrinogen-like globe (FBG) and fibronectin type III-like repeats (TNIII 5-7) (both 1 μmol/L, 24 h). The expression of the pro-inflammatory cytokines; interleukin (IL)-6, IL-1β, TNFα and the matrix metalloproteinases; MMPs (MMP1, 2, 3, 9, 10, MT1-MMP) was assessed using real time RT-PCR and western blot analysis. RESULTS: TNC increased both IL-6 and MMP3 (P < 0.01) mRNA levels in cultured human CMF but had no significant effect on the other markers studied. The increase in IL-6 mRNA expression was mirrored by an increase in protein secretion as assessed by enzyme-linked immunosorbant assay (P < 0.01). Treating CMF with the recombinant protein FBG increased IL-6 mRNA and protein (P < 0.01) whereas the recombinant protein TNIII 5-7 had no effect. Neither FBG nor TNIII 5-7 had any significant effect on MMP3 expression. The expression of toll-like receptor 4 (TLR4) in human CMF was confirmed by real time RT-PCR, western blot and immunohistochemistry. Pre-incubation of cells with TLR4 neutralising antisera attenuated the effect of both TNC and FBG on IL-6 mRNA and protein expression. CONCLUSION: TNC up-regulates IL-6 expression in human CMF, an effect mediated through the FBG domain of TNC and via the TLR4 receptor. PMID:27231521

  3. A novel pro-inflammatory protein of Streptococcus suis 2 induces the Toll-like receptor 2-dependent expression of pro-inflammatory cytokines in RAW 264.7 macrophages via activation of ERK1/2 pathway

    PubMed Central

    Zhang, Qiang; Yang, Yujie; Yan, Shuxian; Liu, Jiantao; Xu, Zhongmin; Yu, Junping; Song, Yajing; Zhang, Anding; Jin, Meilin

    2015-01-01

    Streptococcus suis 2 is an important swine pathogen and an emergent zoonotic pathogen. Excessive inflammation caused by S. suis is responsible for the high levels of early mortality observed in septic shock-like syndrome cases. However, the mechanisms through which S. suis 2 (SS2) causes excessive inflammation remain unclear. Thus, this study aimed to identify novel pro-inflammatory mediators that play important roles in the development of therapies against SS2 infection. In this study, the novel pro-inflammatory protein HP0459, which was encoded by the SSUSC84_0459 gene, was discovered. The stimulation of RAW 264.7 macrophages with recombinant HP0459 protein induced the expression of pro-inflammatory cytokines (IL-1β, MCP-1 and TNF-α). Compared with the wild-type (WT) strain, the isogenic knockout of HP0459 in SS2 led to reduced production of pro-inflammatory cytokines in RAW264.7 macrophages and in vivo. The pro-inflammatory activity of HP0459 was significantly reduced by an antibody against Toll-like receptor 2 (TLR2) in RAW264.7 macrophages and was lower in TLR2-deficient (TLR2-/-) macrophages than in WT macrophages. Furthermore, specific inhibitors of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathways significantly decreased the HP0459-induced pro-inflammatory cytokine production, and a western blot assay showed that HP0459 stimulation induced the activation of the ERK1/2 pathway. Taken together, our data indicate that HP0459 is a novel pro-inflammatory mediator of SS2 and induces TLR2-dependent pro-inflammatory activity in RAW264.7 macrophages through the ERK1/2 pathway. PMID:25806027

  4. Association of Toll-like receptors 2, 3, and 4 genes polymorphisms with periapical pathosis risk

    PubMed Central

    Özan, Ülkü; Ocak, Zeynep; Özan, Fatih; Oktay, Elif-Aybala; Şahman, Halil; Yikilgan, İhsan; Oruçoğlu, Hasan; Er, Kürşat

    2016-01-01

    Background The aim of this study was to investigate the role of gene variations of Toll-like receptors (TLR) 2, 3, and 4 on genetic susceptibility to periapical pathosis. Material and Methods One hundred patients were included in the study and divided into two groups as follows; Control Group (n=50) that have root canal treatment and no periapical lesion, Patient Group (n=50) that have root canal treatment and periapical lesion. TLR2 Arg753Gln, TLR3 (c.1377C/T) and TLR4 Asp299Gly and Thr399Ile polymorphisms were genotyped by using PCR-RFLP. Genotypical analysis of control and patient groups were investigated to disclose whether there is any association between periapical lesions and gene variations. Results There are no significant statistical differences between control and patient groups according to TLR 2 and 4 gene sequence. On the contrary, CC allele detected 74% for TLR 3 in patient group, and this difference was found to be statistically significant (p < 0.005). Conclusions According to these results, it can be suggested that patients with Toll-like receptor 3 gene polymorphisms could be susceptible to periapical pathosis. Key words:Toll-like receptors, periapical pathosis, endodontics. PMID:27031066

  5. Contribution of Ninjurin1 to Toll-like receptor 4 signaling and systemic inflammation.

    PubMed

    Jennewein, Carla; Sowa, Ralf; Faber, Anne C; Dildey, Madlen; von Knethen, Andreas; Meybohm, Patrick; Scheller, Bertram; Dröse, Stefan; Zacharowski, Kai

    2015-11-01

    Nerve injury-induced protein (Ninjurin [Ninj]) 1 is an adhesion molecule originally identified in Schwann cells after nerve injury, whereas it is also expressed in leukocytes, epithelium, endothelium, and various organs, and is induced under inflammatory conditions. Its contribution to inflammation was so far restricted to the nervous system and exclusively attributed to its role during leukocyte migration. We hypothesized a proinflammatory role for Ninj1 also outside the nervous system. To elucidate its impact during inflammation, we analyzed expression levels and its contribution to inflammation in septic mice and studied its effect on inflammatory signaling in vitro. The effect on inflammation was analyzed by genetic (only in vitro) and pharmacologic repression in septic mice (cecal ligation and puncture) and cell culture, respectively. Repression of Ninj1 by an inhibitory peptide or small interfering RNA attenuated LPS-triggered inflammation in macrophages and endothelial cells by modulating p38 phosphorylation and activator protein-1 activation. Inhibition of Ninj1 in septic mice reduced systemic and pulmonary inflammation as well as organ damage, and ameliorated survival after 24 hours. Ninj1 is elevated under inflammatory conditions and contributes to inflammation not only by mediating leukocyte migration, but also by modulating Toll-like receptor 4-dependent expression of inflammatory mediators. We assume that, owing to both mechanisms, inhibition reduces systemic inflammation and organ damage in septic mice. Our data contribute to a better understanding of the complex inflammatory mechanisms and add a novel therapeutic target for inflammatory conditions such as sepsis. PMID:25860173

  6. Intracellular Osteopontin inhibits toll-like receptor signaling and impedes liver carcinogenesis.

    PubMed

    Fan, Xiaoyu; He, Chunyan; Jing, Wei; Zhou, Xuyu; Chen, Rui; Cao, Lei; Zhu, Minhui; Jia, Rongjie; Wang, Hao; Guo, Yajun; Zhao, Jian

    2015-01-01

    Osteopontin (OPN) has been implicated widely in tumor growth and metastasis, but the range of its contributions is not yet fully understood. In this study, we show that genetic ablation of Opn in mice sensitizes them to diethylnitrosamine (DEN)-induced hepatocarcinogenesis. Opn-deficient mice (Opn(-/-) mice) exhibited enhanced production of proinflammatory cytokines and compensatory proliferation. Administering OPN antibody or recombinant OPN protein to wild-type or Opn(-/-) mice-derived macrophages, respectively, had little effect on cytokine production. In contrast, overexpression of intracellular OPN (iOPN) in Opn-deficient macrophages strongly suppressed production of proinflammatory cytokines. In addition, we found that iOPN was able to interact with the pivotal Toll-like receptor (TLR) signaling protein MyD88 in macrophages after stimulation with cellular debris, thereby disrupting TLR signaling in macrophages. Our results indicated that iOPN was capable of functioning as an endogenous negative regulator of TLR-mediated immune responses, acting to ameliorate production of proinflammatory cytokines and curtail DEN-induced hepatocarcinogenesis. Together, our results expand the important role of OPN in inflammation-associated cancers and deepen its relevance for novel treatment strategies in liver cancer. PMID:25398438

  7. Cancer-associated toll-like receptor modulation and insinuation in infection susceptibility: association or coincidence?

    PubMed

    Khan, A A; Khan, Z; Warnakulasuriya, S

    2016-06-01

    Toll-like receptors (TLRs) are key players in maintaining protection against any invading pathogen. These molecules are microbial sensing proteins which detect pathogen-associated molecular patterns and induce the body's innate immune system to elicit a response against invading pathogens. In addition to their role in pathogen recognition and elimination, these proteins are highly important in cancer biology and also play a variety of roles in normal to cancerous transformation or its prevention. There is much published literature on the role of TLRs in pathogen recognition and elimination, but recently the number of articles relevant to the role of TLR in carcinogenesis has increased due to their importance in this area. On the one hand, they are involved in microbial elimination and, on the other hand, their modulation during cancer development has several implications. Accumulating a diverse thread of cancer-associated TLR modulation and infection susceptibility has several caveats. Some cancer-associated TLR modulation increases susceptibility to particular infections, while increased expression of certain TLR was found to help in the carcinogenic process through inducing inflammation. This article concludes that clinicians should consider TLR modulation during infection risk assessment in cancer patients. These modulations should also be considered while designing management strategies against cancer and its associated infections. PMID:26861598

  8. Bioinformatics analysis of the structural and evolutionary characteristics for toll-like receptor 15.

    PubMed

    Wang, Jinlan; Zhang, Zheng; Chang, Fen; Yin, Deling

    2016-01-01

    Toll-like receptors (TLRs) play important role in the innate immune system. TLR15 is reported to have a unique role in defense against pathogens, but its structural and evolution characterizations are still poorly understood. In this study, we identified 57 completed TLR15 genes from avian and reptilian genomes. TLR15 clustered into an individual clade and was closely related to family 1 on the phylogenetic tree. Unlike the TLRs in family 1 with the broken asparagine ladders in the middle, TLR15 ectodomain had an intact asparagine ladder that is critical to maintain the overall shape of ectodomain. The conservation analysis found that TLR15 ectodomain had a highly evolutionarily conserved region on the convex surface of LRR11 module, which is probably involved in TLR15 activation process. Furthermore, the protein-protein docking analysis indicated that TLR15 TIR domains have the potential to form homodimers, the predicted interaction interface of TIR dimer was formed mainly by residues from the BB-loops and αC-helixes. Although TLR15 mainly underwent purifying selection, we detected 27 sites under positive selection for TLR15, 24 of which are located on its ectodomain. Our observations suggest the structural features of TLR15 which may be relevant to its function, but which requires further experimental validation. PMID:27257554

  9. Reconstitution of a Functional Toll-like Receptor 5 Binding Site in Campylobacter jejuni Flagellin*

    PubMed Central

    de Zoete, Marcel R.; Keestra, A. Marijke; Wagenaar, Jaap A.; van Putten, Jos P. M.

    2010-01-01

    Bacterial flagellin is important for intestinal immune homeostasis. Flagellins from most species activate Toll-like receptor 5 (TLR5). The principal bacterial food-borne pathogen Campylobacter jejuni escapes TLR5 recognition, probably due to an alternate flagellin subunit structure. We investigated the molecular basis of TLR5 evasion by aiming to reconstitute TLR5 stimulating activity in live C. jejuni. Both native glycosylated C. jejuni flagellins (FlaA and FlaB) and recombinant proteins purified from Escherichia coli failed to activate NF-κB in HEK293 cells expressing TLR5. Introduction of multiple defined regions from Salmonella flagellin into C. jejuni FlaA via a recombinatorial approach revealed three regions critical for the activation of human and mouse TLR5, including a β-hairpin structure not previously implicated in TLR5 recognition. Surprisingly, this domain was not required for the activation of chicken TLR5, indicating a selective requirement for the β-hairpin in the recognition of mammalian TLR5. Expression of the active chimeric protein in C. jejuni resulted in secreted glycosylated flagellin that induced a potent TLR5 response. Overall, our results reveal a novel structural requirement for TLR5 recognition of bacterial flagellin and exclude flagellin glycosylation as an additional mechanism of bacterial evasion of the TLR5 response. PMID:20164175

  10. Reconstitution of a functional Toll-like receptor 5 binding site in Campylobacter jejuni flagellin.

    PubMed

    de Zoete, Marcel R; Keestra, A Marijke; Wagenaar, Jaap A; van Putten, Jos P M

    2010-04-16

    Bacterial flagellin is important for intestinal immune homeostasis. Flagellins from most species activate Toll-like receptor 5 (TLR5). The principal bacterial food-borne pathogen Campylobacter jejuni escapes TLR5 recognition, probably due to an alternate flagellin subunit structure. We investigated the molecular basis of TLR5 evasion by aiming to reconstitute TLR5 stimulating activity in live C. jejuni. Both native glycosylated C. jejuni flagellins (FlaA and FlaB) and recombinant proteins purified from Escherichia coli failed to activate NF-kappaB in HEK293 cells expressing TLR5. Introduction of multiple defined regions from Salmonella flagellin into C. jejuni FlaA via a recombinatorial approach revealed three regions critical for the activation of human and mouse TLR5, including a beta-hairpin structure not previously implicated in TLR5 recognition. Surprisingly, this domain was not required for the activation of chicken TLR5, indicating a selective requirement for the beta-hairpin in the recognition of mammalian TLR5. Expression of the active chimeric protein in C. jejuni resulted in secreted glycosylated flagellin that induced a potent TLR5 response. Overall, our results reveal a novel structural requirement for TLR5 recognition of bacterial flagellin and exclude flagellin glycosylation as an additional mechanism of bacterial evasion of the TLR5 response. PMID:20164175

  11. Dynamic evolution of toll-like receptor multigene families in echinoderms.

    PubMed

    Buckley, Katherine M; Rast, Jonathan P

    2012-01-01

    The genome sequence of the purple sea urchin, Strongylocentrotus purpuratus, a large and long-lived invertebrate, provides a new perspective on animal immunity. Analysis of this genome uncovered a highly complex immune system in which the gene families that encode homologs of the pattern recognition receptors that form the core of vertebrate innate immunity are encoded in large multigene families. The sea urchin genome contains 253 Toll-like receptor (TLR) sequences, more than 200 Nod-like receptors and 1095 scavenger receptor cysteine-rich domains, a 10-fold expansion relative to vertebrates. Given their stereotypic protein structure and simple intron-exon architecture, the TLRs are the most tractable of these families for more detailed analysis. A role for these receptors in immune defense is suggested by their similarity to TLRs in other organisms, sequence diversity, and expression in immunologically active tissues, including phagocytes. The complexity of the sea urchin TLR multigene families is largely derived from expansions independent of those in vertebrates and protostomes, although a small family of TLRs with structure similar to that of Drosophila Toll can be traced to an ancient eumetazoan ancestor. Several other echinoderm sequences are now available, including Lytechinus variegatus, as well as partial sequences from two other sea urchin species. Here, we present an analysis of the invertebrate deuterostome TLRs with emphasis on the echinoderms. Representatives of most of the S. purpuratus TLR subfamilies and homologs of the mccTLR sequences are found in L. variegatus, although the L. variegatus TLR gene family is notably smaller (68 TLR sequences). The phylogeny of these genes within sea urchins highlights lineage-specific expansions at higher resolution than is evident at the phylum level. These analyses identify quickly evolving TLR subfamilies that are likely to have novel immune recognition functions and other, more stable, subfamilies that may

  12. Epigenetic Regulation of Tolerance to Toll-Like Receptor Ligands in Alveolar Epithelial Cells.

    PubMed

    Neagos, Jacqueline; Standiford, Theodore J; Newstead, Michael W; Zeng, Xianying; Huang, Steven K; Ballinger, Megan N

    2015-12-01

    To protect the host against exuberant inflammation and injury responses, cells have the ability to become hyporesponsive or "tolerized" to repeated stimulation by microbial and nonmicrobial insults. The lung airspace is constantly exposed to a variety of exogenous and endogenous Toll-like receptor (TLR) ligands, yet the ability of alveolar epithelial cells (AECs) to be tolerized has yet to be examined. We hypothesize that type II AECs will develop a tolerance phenotype upon repeated TLR agonist exposure. To test this hypothesis, primary AECs isolated from the lungs of mice and a murine AEC cell line (MLE-12) were stimulated with either a vehicle control or a TLR ligand for 18 hours, washed, then restimulated with either vehicle or TLR ligand for an additional 6 hours. Tolerance was assessed by measurement of TLR ligand-stimulated chemokine production (monocyte chemoattractant protein [MCP]-1/CCL2, keratinocyte chemoattractant [KC]/CXCL1, and macrophage inflammatory protein [MIP]-2/CXCL2). Sequential treatment of primary AECs or MLE-12 cells with TLR agonists resulted in induction of either tolerance or cross-tolerance. The induction of tolerance was not due to expression of specific negative regulators of TLR signaling (interleukin-1 receptor associated kinase [IRAK]-M, Toll-interacting protein [Tollip], single Ig IL-1-related receptor [SIGIRR], or suppressor of cytokine signaling [SOCS]), inhibitory microRNAs (miRs; specifically, miR-155 and miR146a), or secretion of inhibitory or regulatory soluble mediators (prostaglandin E2, IL-10, transforming growth factor-β, or IFN-α/β). Moreover, inhibition of histone demethylation or DNA methylation did not prevent the development of tolerance. However, treatment of AECs with the histone deacetylase inhibitors trichostatin A or suberoylanilide hyrozamine resulted in reversal of the tolerance phenotype. These findings indicate a novel mechanism by which epigenetic modification regulates the induction of tolerance in AECs

  13. Barley malt increases hindgut and portal butyric acid, modulates gene expression of gut tight junction proteins and Toll-like receptors in rats fed high-fat diets, but high advanced glycation end-products partially attenuate the effects.

    PubMed

    Zhong, Yadong; Teixeira, Cristina; Marungruang, Nittaya; Sae-Lim, Watina; Tareke, Eden; Andersson, Roger; Fåk, Frida; Nyman, Margareta

    2015-09-01

    Barley malt, a product of controlled germination, has been shown to produce high levels of butyric acid in the cecum and portal serum of rats and may therefore have anti-inflammatory effects. The aim of the study was to investigate how four barley malts, caramelized and colored malts, 50-malt and 350-malt, differing in functional characteristics concerning beta-glucan content and color, affect short-chain fatty acids (SCFA), barrier function and inflammation in the hindgut of rats fed high-fat diets. Male Wistar rats were given malt-supplemented high-fat diets for four weeks. Low and high-fat diets containing microcrystalline cellulose were incorporated as controls. All diets contained 70 g kg(-1) dietary fiber. The malt-fed groups were found to have had induced higher amounts of butyric and propionic acids in the hindgut and portal serum compared with controls, while cecal succinic acid only increased to a small extent. Fat increased the mRNA expression of tight junction proteins and Toll-like receptors (TLR) in the small intestine and distal colon of the rats, as well as the concentration of some amino acids in the portal plasma, but malt seemed to counteract these adverse effects to some extent. However, the high content of advanced glycation end-products (AGE) in caramelized malt tended to prohibit the positive effects on occludin in the small intestine and plasma amino acids seen with the other malt products. In conclusion, malting seems to be an interesting process for producing foods with positive health effects, but part of these effects may be destroyed if the malt contains a high content of AGE. PMID:26227569

  14. Toll-like Receptor 4 (TLR4) Antagonist Eritoran Tetrasodium Attenuates Liver Ischemia and Reperfusion Injury through Inhibition of High-Mobility Group Box Protein B1 (HMGB1) Signaling

    PubMed Central

    McDonald, Kerry-Ann; Huang, Hai; Tohme, Samer; Loughran, Patricia; Ferrero, Kimberly; Billiar, Timothy; Tsung, Allan

    2014-01-01

    Toll-like receptor 4 (TLR4) is ubiquitously expressed on parenchymal and immune cells of the liver and is the most studied TLR responsible for the activation of proinflammatory signaling cascades in liver ischemia and reperfusion (I/R). Since pharmacological inhibition of TLR4 during the sterile inflammatory response of I/R has not been studied, we sought to determine whether eritoran, a TLR4 antagonist trialed in sepsis, could block hepatic TLR4-mediated inflammation and end organ damage. When C57BL/6 mice were pretreated with eritoran and subjected to warm liver I/R, there was significantly less hepatocellular injury compared to control counterparts. Additionally, we found that eritoran is protective in liver I/R through inhibition of high-mobility group box protein B1 (HMGB1)-mediated inflammatory signaling. When eritoran was administered in conjunction with recombinant HMGB1 during liver I/R, there was significantly less injury, suggesting that eritoran blocks the HMGB1–TLR4 interaction. Not only does eritoran attenuate TLR4-dependent HMGB1 release in vivo, but this TLR4 antagonist also dampened HMGB1’s release from hypoxic hepatocytes in vitro and thereby weakened HMGB1’s activation of innate immune cells. HMGB1 signaling through TLR4 makes an important contribution to the inflammatory response seen after liver I/R. This study demonstrates that novel blockade of HMGB1 by the TLR4 antagonist eritoran leads to the amelioration of liver injury. PMID:25375408

  15. Sleep Deprivation and Divergent Toll-like Receptor-4 Activation of Cellular Inflammation in Aging

    PubMed Central

    Carroll, Judith E.; Carrillo, Carmen; Olmstead, Richard; Witarama, Tuff; Breen, Elizabeth C.; Yokomizo, Megumi; Seeman, Teresa E.; Irwin, Michael R.

    2015-01-01

    Objectives: Sleep disturbance and aging are associated with increases in inflammation, as well as increased risk of infectious disease. However, there is limited understanding of the role of sleep loss on age-related differences in immune responses. This study examines the effects of sleep deprivation on toll-like receptor activation of monocytic inflammation in younger compared to older adults. Design, Setting, and Participants: Community-dwelling adults (n = 70) who were categorized as younger (25–39 y old, n = 21) and older (60–84 y old, n = 49) participants, underwent a sleep laboratory-based experimental partial sleep deprivation (PSD) protocol including adaptation, an uninterrupted night of sleep, sleep deprivation (sleep restricted to 03:00–07:00), and recovery. Measurement and Results: Blood samples were obtained each morning to measure toll-like receptor-4 activation of monocyte intracellular production of the inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Partial sleep deprivation induced a significant increase in the production of IL-6 and/or TNF-α that persisted after a night of recovery sleep (F(2,121.2) = 3.8, P < 0.05). Age moderated the effects of sleep loss, such that younger adults had an increase in inflammatory cytokine production that was not present in older adults (F(2,121.2) = 4.0, P < 0.05). Conclusion: Older adults exhibit reduced toll-like receptor 4 stimulated cellular inflammation that, unlike in younger adults, is not activated after a night of partial sleep loss. Whereas sleep loss increases cellular inflammation in younger adults and may contribute to inflammatory disorders, blunted toll-like receptor activation in older adults may increase the risk of infectious disease seen with aging. Citation: Carroll JE, Carrillo C, Olmstead R, Witarama T, Breen EC, Yokomizo M, Seeman TE, Irwin MR. Sleep deprivation and divergent toll-like receptor-4 activation of cellular inflammation in aging. SLEEP

  16. Elevated Toll-Like Receptor-Induced CXCL8 Secretion in Human Blood Basophils from Allergic Donors Is Independent of Toll-Like Receptor Expression Levels

    PubMed Central

    Steiner, Markus; Hawranek, Thomas; Schneider, Michael; Ferreira, Fatima; Horejs-Hoeck, Jutta; Harrer, Andrea; Himly, Martin

    2016-01-01

    Human blood basophils have recently gained interest in addition to their function as allergic effector cells. Previous work suggests the involvement of innate immune mechanisms in the development and exacerbation of allergic responses, which might be mediated by basophils. We assayed the expression levels of Toll-like receptor (TLR) 1, 2, 4 and 6 on purified basophils from birch pollen-, house dust mite-, and non-allergic individuals. Additionally, we compared cytokine and chemokine secretion upon TLR stimulation in these basophil donor groups. Expression of TLR4 on the basophils of the allergic donor groups was decreased and CXCL8 secretion was elevated upon stimulation of TLR1/2 and TLR2/6 compared to the non-allergic donors. Decreased TLR expression and elevated CXCL8 secretion may represent possible mechanisms for aggravation of allergic symptoms in case of parasitic infection. PMID:26870962

  17. Toll-Like Receptor 2 and NLRP3 Cooperate To Recognize a Functional Bacterial Amyloid, Curli

    PubMed Central

    Rapsinski, Glenn J.; Wynosky-Dolfi, Meghan A.; Oppong, Gertrude O.; Tursi, Sarah A.; Wilson, R. Paul; Brodsky, Igor E.

    2014-01-01

    Amyloids are proteins with cross-β-sheet structure that contribute to pathology and inflammation in complex human diseases, including Alzheimer's disease, Parkinson's disease, type II diabetes, and secondary amyloidosis. Bacteria also produce amyloids as a component of their extracellular matrix during biofilm formation. Recently, several human amyloids were shown to activate the NLRP3 inflammasome, leading to the activation of caspase 1 and production of interleukin 1β (IL-1β). In this study, we investigated the activation of the NLRP3 inflammasome by bacterial amyloids using curli fibers, produced by Salmonella enterica serovar Typhimurium and Escherichia coli. Here, we show that curli fibers activate the NLRP3 inflammasome, leading to the production of IL-1β via caspase 1 activation. Investigation of the underlying mechanism revealed that activation of Toll-like receptor 2 (TLR2) by curli fibers is critical in the generation of IL-1β. Interestingly, activation of the NLRP3 inflammasome by curli fibers or by amyloid β of Alzheimer's disease does not cause cell death in macrophages. Overall, these data identify a cross talk between TLR2 and NLRP3 in response to the bacterial amyloid curli and generation of IL-1β as a product of this interaction. PMID:25422268

  18. Signaling to NF-kappaB by Toll-like receptors.

    PubMed

    Kawai, Taro; Akira, Shizuo

    2007-11-01

    Innate immunity is the first line of defense against invading pathogens. A family of Toll-like receptors (TLRs) acts as primary sensors that detect a wide variety of microbial components and elicit innate immune responses. All TLR signaling pathways culminate in activation of the transcription factor nuclear factor-kappaB (NF-kappaB), which controls the expression of an array of inflammatory cytokine genes. NF-kappaB activation requires the phosphorylation and degradation of inhibitory kappaB (IkappaB) proteins, which is triggered by two kinases, IkappaB kinase alpha (IKKalpha) and IKKbeta. In addition, several TLRs activate alternative pathways involving the IKK-related kinases TBK1 [TRAF family member-associated NF-kappaB activator (TANK) binding kinase-1] and IKKi, which elicit antiviral innate immune responses. Here, we review recent progress in our understanding of the role of NF-kappaB in TLR signaling pathways and discuss potential implications for molecular medicine. PMID:18029230

  19. Leptospiral lipopolysaccharide stimulates the expression of toll-like receptor 2 and cytokines in pig fibroblasts.

    PubMed

    Guo, Yijie; Fukuda, Tomokazu; Donai, Kenichiro; Kuroda, Kengo; Masuda, Mizuki; Nakamura, Shuichi; Yoneyama, Hiroshi; Isogai, Emiko

    2015-02-01

    Pigs throughout the world are afflicted with leptospirosis, causing serious economic losses and potential hazards to human health. Although it has been known that leptospiral lipopolysaccharide (L-LPS) is involved in an immunological reaction between an antigen and a host cell, little is known about how the immune system of pigs can respond to L-LPS. Here, we stimulated pig fibroblasts by L-LPS and then quantitatively measured gene and protein expression levels of two toll-like receptors (TLRs), TLR2 and TLR4, by real-time PCR and Western blotting. As a result, expression of TLR2 was found to be significantly up-regulated within 24 h after L-LPS stimulation whereas induction of TLR4 expression was relatively weak. We also revealed that of myeloid differentiation primary response gene 88 (MyD88), interleukin 6 (IL-6) and IL-8 gene expressions were markedly up-regulated by L-LPS stimulation. These results may suggest that the pig cell can activate TLR2 rather than TLR4 by L-LPS stimulation, thereby inducing expression of cytokines. PMID:25039909

  20. Rice bran feruloylated oligosaccharides activate dendritic cells via Toll-like receptor 2 and 4 signaling.

    PubMed

    Lin, Chi Chen; Chen, Hua Han; Chen, Yu Kuo; Chang, Hung Chia; Lin, Ping Yi; Pan, I-Hong; Chen, Der-Yuan; Chen, Chuan Mu; Lin, Su Yi

    2014-01-01

    This work presents the effects of feruloylated oligosaccharides (FOs) of rice bran on murine bone marrow-derived dendritic cells (BMDCs) and the potential pathway through which the effects are mediated. We found that FOs induced phenotypic maturation of DCs, as shown by the increased expression of CD40, CD80/CD86 and MHC-I/II molecules. FOs efficiently induced maturation of DCs generated from C3H/HeN or C57BL/6 mice with normal toll-like receptor 4 (TLR-4) or TLR-2 but not DCs from mice with mutated TLR4 or TLR2. The mechanism of action of FOs may be mediated by increased phosphorylation of ERK, p38 and JNK mitogen-activated protein kinase (MAPKs) and increased NF-kB activity, which are important signaling molecules downstream of TLR-4 and TLR-2. These data suggest that FOs induce DCs maturation through TLR-4 and/or TLR-2 and that FOs might have potential efficacy against tumor or virus infection or represent a candidate-adjuvant approach for application in immunotherapy and vaccination. PMID:24762969

  1. Toll-Like Receptor 4 Reduces Oxidative Injury via Glutathione Activity in Sheep.

    PubMed

    Deng, Shoulong; Yu, Kun; Wu, Qian; Li, Yan; Zhang, Xiaosheng; Zhang, Baolu; Liu, Guoshi; Liu, Yixun; Lian, Zhengxing

    2016-01-01

    Toll-like receptor 4 (TLR4) is an important sensor of Gram-negative bacteria and can trigger activation of the innate immune system. Increased activation of TLR4 can lead to the induction of oxidative stress. Herein, the pathway whereby TLR4 affects antioxidant activity was studied. In TLR4-overexpressing sheep, TLR4 expression was found to be related to the integration copy number when monocytes were challenged with lipopolysaccharide (LPS). Consequently, production of malondialdehyde (MDA) was increased, which could increase the activation of prooxidative stress enzymes. Meanwhile, activation of an antioxidative enzyme, glutathione peroxidase (GSH-Px), was increased. Real-time PCR showed that expression of activating protein-1 (AP-1) and the antioxidative-related genes was increased. By contrast, the expression levels of superoxide dismutase 1 (SOD1) and catalase (CAT) were reduced. In transgenic sheep, glutathione (GSH) levels were dramatically reduced. Furthermore, transgenic sheep were intradermally injected with LPS in each ear. The amounts of inflammatory infiltrates were correlated with the number of TLR4 copies that were integrated in the genome. Additionally, the translation of γ-glutamylcysteine synthetase (γ-GCS) was increased. Our findings indicated that overexpression of TLR4 in sheep could ameliorate oxidative injury through GSH secretion that was induced by LPS stimulation. Furthermore, TLR4 promoted γ-GCS translation through the AP-1 pathway, which was essential for GSH synthesis. PMID:26640618

  2. Activation of toll like receptor-3 induces corneal epithelial barrier dysfunction.

    PubMed

    Wei, Jie; Jiang, Hua; Gao, Hongrui; Wang, Guangjie

    2015-06-01

    The epithelial barrier is critical in the maintenance of the homeostasis of the cornea. A number of eye disorders are associated with the corneal epithelial barrier dysfunction. Viral infection is one common eye disease type. This study aims to elucidate the mechanism by which the activation of toll like receptor 3 (TLR3) in the disruption of the corneal epithelial barrier. In this study, HCE cells (a human corneal epithelial cell line) were cultured into epithelial layers using as an in vitro model of the corneal epithelial barrier. PolyI:C was used as a ligand of TLR3. The transepithelial electric resistance (TER) and permeability of the HCE epithelial layer were assessed using as the parameters to evaluate the corneal epithelial barrier integrity. The results showed that exposure to PolyI:C markedly decreased the TER and increased the permeability of the HCE epithelial layers; the levels of cell junction protein, E-cadherin, were repressed by PolyI:C via increasing histone deacetylase-1 (HDAC1), the latter binding to the promoter of E-cadherin and repressed the transcription of E-cadherin. The addition of butyrate (an inhibitor of HDAC1) to the culture blocked the corneal epithelial barrier dysfunction caused by PolyI:C. In conclusion, activation of TLR3 can disrupt the corneal epithelial barrier, which can be blocked by the inhibitor of HDAC1. PMID:25912142

  3. Trypanosoma cruzi and Its Soluble Antigens Induce NET Release by Stimulating Toll-Like Receptors

    PubMed Central

    Diniz, Larissa Figueiredo Alves; Souza, Priscila Silva Sampaio; Pinge-Filho, Phileno; Toledo, Karina Alves

    2015-01-01

    Neutrophils release fibrous traps of DNA, histones, and granule proteins known as neutrophil extracellular traps (NETs), which contribute to microbicidal killing and have been implicated in autoimmunity. The role of NET formation in the host response to nonbacterial pathogens is not well-understood. In this study, we investigated the release of NETs by human neutrophils upon their interaction with Trypanosoma cruzi (Y strain) parasites. Our results showed that human neutrophils stimulated by T. cruzi generate NETs composed of DNA, histones, and elastase. The release occurred in a dose-, time-, and reactive oxygen species-dependent manner to decrease trypomastigote and increase amastigote numbers of the parasites without affecting their viability. NET release was decreased upon blocking with antibodies against Toll-like receptors 2 and 4. In addition, living parasites were not mandatory in the release of NETs induced by T. cruzi, as the same results were obtained when molecules from its soluble extract were tested. Our results increase the understanding of the stimulation of NETs by parasites, particularly T. cruzi. We suggest that contact of T. cruzi with NETs during Chagas’s disease can limit infection by affecting the infectivity/pathogenicity of the parasite. PMID:26431537

  4. Improved Chemotherapeutic Activity by Morus alba Fruits through Immune Response of Toll-Like Receptor 4

    PubMed Central

    Chang, Bo Yoon; Kim, Seon Beom; Lee, Mi Kyeong; Park, Hyun; Kim, Sung Yeon

    2015-01-01

    Morus alba L. fruits have long been used in traditional medicine by many cultures. Their medicinal attributes include cardiovascular, hepatoprotective, neuroprotective and immunomodulatory actions. However, their mechanism of macrophage activation and anti-cancer effects remain unclear. The present study investigated the molecular mechanisms of immune stimulation and improved chemotherapeutic effect of M. alba L. fruit extract (MFE). MFE stimulated the production of cytokines, nitric oxide (NO) and tumor necrosis factor-α (TNF-α) and tumoricidal properties of macrophages. MFE activated macrophages through the mitogen-activated protein kinase (MAPKinase) and nuclear factor-κB (NF-κB) signaling pathways downstream from toll-like receptor (TLR) 4. MFE was shown to exhibit cytotoxicity of CT26 cells via the activated macrophages, even though MFE did not directly affect CT26 cells. In a xenograft mouse model, MFE significantly enhanced anti-cancer activity combined with 5-fluorouracil and markedly promoted splenocyte proliferation, natural killer (NK) cell activity, cytotoxic T lymphocyte (CTL) activity and IFN-γ production. Immunoglobulin G (IgG) antibody levels were significantly increased. These results indicate the indirect anti-cancer activity of MFE through improved immune response mediated by TLR4 signaling. M. alba L. fruit extract might be a potential anti-tumor immunomodulatory candidate chemotherapy agent. PMID:26473845

  5. Toll-Like Receptors as Novel Therapeutic Targets for Ovarian Cancer

    PubMed Central

    Muccioli, Maria; Sprague, Leslee; Nandigam, Harika; Pate, Michelle; Benencia, Fabian

    2012-01-01

    Ovarian cancer (OC) is an aggressive disease that affects approximately 1 in 70 women and has a poor prognosis (<50%, 5-year survival rate), in part because it is often diagnosed at a late stage. There are three main types of OC: neoplasms of surface epithelial, germ cell, or stromal origin, with surface epithelial tumors comprising about 80% of all OCs. In addition to improving diagnostics, it is necessary to develop more effective treatments for epithelial-origin OC. Here, we describe the paradoxical roles of toll-like receptor (TLR) signaling in the progression of cancer and discuss how its modulation may result in decreased tumor growth and metastasis via the attenuation of proangiogenic cytokines and potentiation of proapoptotic factors. In particular, it has been found that TLR activity can behave like a “double-edged sword”, as its signaling pathways have been implicated as having both tumor-suppressive and tumor-promoting effects. With particular emphasis on OC, we discuss the need to consider the signaling details of TLRs and associated proteins in the multiple cell types present in the tumor milieu to achieve safe and effective design of TLR-based cancer therapies. PMID:22530148

  6. Characterization of toll-like receptors 1-10 in spotted hyenas

    PubMed Central

    Flies, Andrew S.; Maksimoski, Matthew; Mansfield, Linda S.; Weldele, Mary L.; Holekamp, Kay E.

    2014-01-01

    Previous research has shown that spotted hyenas (Crocuta crocuta) regularly survive exposure to deadly pathogens such as rabies, canine distemper virus, and anthrax, suggesting that they have robust immune defenses. Toll-like receptors (TLRs) recognize conserved molecular patterns and initiate a wide range of innate and adaptive immune responses. TLR genes are evolutionarily conserved, and assessing TLR expression in various tissues can provide insight into overall immunological organization and function. Studies of the hyena immune system have been minimal thus far due to the logistical and ethical challenges of sampling and preserving the immunological tissues of this and other long-lived, wild species. Tissue samples were opportunistically collected from captive hyenas humanely euthanized for a separate study. We developed primers to amplify partial sequences for TLRs 1-10, sequenced the amplicons, compared sequence identity to those in other mammals, and quantified TLR expression in lymph nodes, spleens, lungs, and pancreases. Results show that hyena TLR DNA and protein sequences are similar to TLRs in other mammals, and that TLRs 1-10 were expressed in all tissues tested. This information will be useful in the development of new assays to understand the interactions among the hyena immune system, pathogens, and the microbial communities that inhabit hyenas. PMID:24488231

  7. Cloning, expression and functional analysis of the duck Toll-like receptor 5 (TLR5) gene

    PubMed Central

    Cheng, Yuqiang; Sun, Yingjie; Wang, Hengan; Shi, Shuduan; Yan, Yaxian; Li, Jing

    2015-01-01

    Toll-like receptor 5 (TLR5) is responsible for the recognition of bacterial flagellin in vertebrates. In the present study, the first TLR5 gene in duck was cloned. The open reading frame (ORF) of duck TLR5 (dTLR5) cDNA is 2580 bp and encodes a polypeptide of 859 amino acids. We also cloned partial sequences of myeloid differentiation factor 88, 2'-5'-oligoadenylate synthetase (OAS), and myxovirus resistance (Mx) genes from duck. dTLR5 mRNA was highly expressed in the bursa of Fabricius, spleen, trachea, lung, jejunum, rectum, and skin; moderately expressed in the muscular and glandular tissues, duodenum, ileum, caecum, and pancreas; and minimally expressed in the heart, liver, kidney, and muscle. DF-1 or HeLa cells transfected with DNA constructs encoding dTLR5 can activate NF-κB leading to the activation of interleukin-6 (IL-6) promoter. When we challenged ducks with a Herts33 Newcastle disease virus (NDV), mRNA transcription of the antiviral molecules Mx, Double stranded RNA activated protein kinase (PKR), and OAS was up-regulated in the liver, lung, and spleen 1 and 2 days post-inoculation. PMID:25269719

  8. Bioinformatics analysis of the structural and evolutionary characteristics for toll-like receptor 15

    PubMed Central

    Wang, Jinlan; Chang, Fen

    2016-01-01

    Toll-like receptors (TLRs) play important role in the innate immune system. TLR15 is reported to have a unique role in defense against pathogens, but its structural and evolution characterizations are still poorly understood. In this study, we identified 57 completed TLR15 genes from avian and reptilian genomes. TLR15 clustered into an individual clade and was closely related to family 1 on the phylogenetic tree. Unlike the TLRs in family 1 with the broken asparagine ladders in the middle, TLR15 ectodomain had an intact asparagine ladder that is critical to maintain the overall shape of ectodomain. The conservation analysis found that TLR15 ectodomain had a highly evolutionarily conserved region on the convex surface of LRR11 module, which is probably involved in TLR15 activation process. Furthermore, the protein–protein docking analysis indicated that TLR15 TIR domains have the potential to form homodimers, the predicted interaction interface of TIR dimer was formed mainly by residues from the BB-loops and αC-helixes. Although TLR15 mainly underwent purifying selection, we detected 27 sites under positive selection for TLR15, 24 of which are located on its ectodomain. Our observations suggest the structural features of TLR15 which may be relevant to its function, but which requires further experimental validation. PMID:27257554

  9. Characterization of Toll-like receptors 1-10 in spotted hyenas.

    PubMed

    Flies, Andrew S; Maksimoski, Matthew T; Mansfield, Linda S; Weldele, Mary L; Holekamp, Kay E

    2014-06-01

    Previous research has shown that spotted hyenas (Crocuta crocuta) regularly survive exposure to deadly pathogens such as rabies, canine distemper virus, and anthrax, suggesting that they have robust immune defenses. Toll-like receptors (TLRs) recognize conserved molecular patterns and initiate a wide range of innate and adaptive immune responses. TLR genes are evolutionarily conserved, and assessing TLR expression in various tissues can provide insight into overall immunological organization and function. Studies of the hyena immune system have been minimal thus far due to the logistical and ethical challenges of sampling and preserving the immunological tissues of this and other long-lived, wild species. Tissue samples were opportunistically collected from captive hyenas humanely euthanized for a separate study. We developed primers to amplify partial sequences for TLRs 1-10, sequenced the amplicons, compared sequence identity to those in other mammals, and quantified TLR expression in lymph nodes, spleens, lungs, and pancreases. Results show that hyena TLR DNA and protein sequences are similar to TLRs in other mammals, and that TLRs 1-10 were expressed in all tissues tested. This information will be useful in the development of new assays to understand the interactions among the hyena immune system, pathogens, and the microbial communities that inhabit hyenas. PMID:24488231

  10. Molecular Regulation of Toll-like Receptors in Asthma and COPD

    PubMed Central

    Zuo, Li; Lucas, Kurt; Fortuna, Christopher A.; Chuang, Chia-Chen; Best, Thomas M.

    2015-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) have both been historically associated with significant morbidity and financial burden. These diseases can be induced by several exogenous factors, such as pathogen-associated molecular patterns (PAMPs) (e.g., allergens and microbes). Endogenous factors, including reactive oxygen species, and damage-associated molecular patterns (DAMPs) recognized by toll-like receptors (TLRs), can also result in airway inflammation. Asthma is characterized by the dominant presence of eosinophils, mast cells, and clusters of differentiation (CD)4+ T cells in the airways, while COPD typically results in the excessive formation of neutrophils, macrophages, and CD8+ T cells in the airways. In both asthma and COPD, in the respiratory tract, TLRs are the primary proteins of interest associated with the innate and adaptive immune responses; hence, multiple treatment options targeting TLRs are being explored in an effort to reduce the severity of the symptoms of these disorders. TLR-mediated pathways for both COPD and asthma have their similarities and differences with regards to cell types and the pro-inflammatory cytotoxins present in the airway. Because of the complex TLR cascade, a variety of treatments have been used to minimize airway hypersensitivity and promote bronchodilation. Although unsuccessful at completely alleviating COPD and severe asthmatic symptoms, new studies are focused on possible targets within the TLR cascade to ameliorate airway inflammation. PMID:26617525

  11. Release of Toll-Like Receptor-2-Activating Bacterial Lipoproteins in Shigella flexneri Culture Supernatants

    PubMed Central

    Aliprantis, Antonios O.; Weiss, David S.; Radolf, Justin D.; Zychlinsky, Arturo

    2001-01-01

    Shigella spp. cause dysentery, a severe form of bloody diarrhea. Apoptosis, or programmed cell death, is induced during Shigella infections and has been proposed to be a key event in the pathogenesis of dysentery. Here, we describe a novel cytotoxic activity in the sterile-culture supernatants of Shigella flexneri. An identical activity was identified in purified S. flexneri endotoxin, defined here as a mixture of lipopolysaccharide (LPS) and endotoxin-associated proteins (EP). Separation of endotoxin into EP and LPS revealed the activity to partition exclusively to the EP fraction. Biochemical characterization of S. flexneri EP and culture supernatants, including enzymatic deactivation, reverse-phase high-pressure liquid chromatography analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and a Toll-like receptor-2 (TLR2) activation assay, indicates that the cytotoxic component is a mixture of bacterial lipoproteins (BLP). We show that biologically active BLP are liberated into culture supernatants of actively growing S. flexneri. In addition, our data indicate that BLP, and not LPS, are the component of endotoxin of gram-negative organisms responsible for activating TLR2. The activation of apoptosis by BLP shed from S. flexneri is discussed as a novel aspect of the interaction of bacteria with the host. PMID:11553567

  12. Toll-Like Receptor 4 Reduces Oxidative Injury via Glutathione Activity in Sheep

    PubMed Central

    Deng, Shoulong; Yu, Kun; Wu, Qian; Li, Yan; Zhang, Xiaosheng; Zhang, Baolu; Liu, Guoshi; Liu, Yixun; Lian, Zhengxing

    2016-01-01

    Toll-like receptor 4 (TLR4) is an important sensor of Gram-negative bacteria and can trigger activation of the innate immune system. Increased activation of TLR4 can lead to the induction of oxidative stress. Herein, the pathway whereby TLR4 affects antioxidant activity was studied. In TLR4-overexpressing sheep, TLR4 expression was found to be related to the integration copy number when monocytes were challenged with lipopolysaccharide (LPS). Consequently, production of malondialdehyde (MDA) was increased, which could increase the activation of prooxidative stress enzymes. Meanwhile, activation of an antioxidative enzyme, glutathione peroxidase (GSH-Px), was increased. Real-time PCR showed that expression of activating protein-1 (AP-1) and the antioxidative-related genes was increased. By contrast, the expression levels of superoxide dismutase 1 (SOD1) and catalase (CAT) were reduced. In transgenic sheep, glutathione (GSH) levels were dramatically reduced. Furthermore, transgenic sheep were intradermally injected with LPS in each ear. The amounts of inflammatory infiltrates were correlated with the number of TLR4 copies that were integrated in the genome. Additionally, the translation of γ-glutamylcysteine synthetase (γ-GCS) was increased. Our findings indicated that overexpression of TLR4 in sheep could ameliorate oxidative injury through GSH secretion that was induced by LPS stimulation. Furthermore, TLR4 promoted γ-GCS translation through the AP-1 pathway, which was essential for GSH synthesis. PMID:26640618

  13. Role of Toll-Like Receptor 13 in Innate Immune Recognition of Group B Streptococci

    PubMed Central

    Signorino, Giacomo; Mohammadi, Nastaran; Patanè, Francesco; Buscetta, Marco; Venza, Mario; Venza, Isabella; Mancuso, Giuseppe; Midiri, Angelina; Alexopoulou, Lena; Teti, Giuseppe; Beninati, Concetta

    2014-01-01

    Murine Toll-like receptor 13 (TLR13), an endosomal receptor that is not present in humans, is activated by an unmethylated motif present in the large ribosomal subunit of bacterial RNA (23S rRNA). Little is known, however, of the impact of TLR13 on antibacterial host defenses. Here we examined the role of this receptor in the context of infection induced by the model pathogen group B streptococcus (GBS). To this end, we used bacterial strains masked from TLR13 recognition by virtue of constitutive expression of the ErmC methyltransferase, which results in dimethylation of the 23S rRNA motif at a critical adenine residue. We found that TLR13-mediated rRNA recognition was required for optimal induction of tumor necrosis factor alpha and nitrous oxide in dendritic cell and macrophage cultures stimulated with heat-killed bacteria or purified bacterial RNA. However, TLR13-dependent recognition was redundant when live bacteria were used as a stimulus. Moreover, masking bacterial rRNA from TLR13 recognition did not increase the ability of GBS to avoid host defenses and replicate in vivo. In contrast, increased susceptibility to infection was observed under conditions in which signaling by all endosomal TLRs was abolished, i.e., in mice with a loss-of-function mutation in the chaperone protein UNC93B1. Our data lend support to the conclusion that TLR13 participates in GBS recognition, although blockade of the function of this receptor can be compensated for by other endosomal TLRs. Lack of selective pressure by bacterial infections might explain the evolutionary loss of TLR13 in humans. However, further studies using different bacterial species are needed to prove this hypothesis. PMID:25225249

  14. Cleavage and activation of a Toll-like receptor by microbial proteases

    PubMed Central

    de Zoete, Marcel R.; Bouwman, Lieneke I.; Keestra, A. Marijke; van Putten, Jos P. M.

    2011-01-01

    Toll-like receptors (TLRs) are innate receptors that show high conservation throughout the animal kingdom. Most TLRs can be clustered into phylogenetic groups that respond to similar types of ligands. One exception is avian TLR15. This receptor does not categorize into one of the existing groups of TLRs and its ligand is still unknown. Here we report that TLR15 is a sensor for secreted virulence-associated fungal and bacterial proteases. Activation of TLR15 involves proteolytic cleavage of the receptor ectodomain and stimulation of NF-κB–dependent gene transcription. Receptor activation can be mimicked by the expression of a truncated TLR15 of which the entire ectodomain is removed, suggesting that receptor cleavage alleviates receptor inhibition by the leucine-rich repeat domain. Our results indicate TLR15 as a unique type of innate immune receptor that combines TLR characteristics with an activation mechanism typical for the evolutionary distinct protease-activated receptors. PMID:21383168

  15. Cleavage and activation of a Toll-like receptor by microbial proteases.

    PubMed

    de Zoete, Marcel R; Bouwman, Lieneke I; Keestra, A Marijke; van Putten, Jos P M

    2011-03-22

    Toll-like receptors (TLRs) are innate receptors that show high conservation throughout the animal kingdom. Most TLRs can be clustered into phylogenetic groups that respond to similar types of ligands. One exception is avian TLR15. This receptor does not categorize into one of the existing groups of TLRs and its ligand is still unknown. Here we report that TLR15 is a sensor for secreted virulence-associated fungal and bacterial proteases. Activation of TLR15 involves proteolytic cleavage of the receptor ectodomain and stimulation of NF-κB-dependent gene transcription. Receptor activation can be mimicked by the expression of a truncated TLR15 of which the entire ectodomain is removed, suggesting that receptor cleavage alleviates receptor inhibition by the leucine-rich repeat domain. Our results indicate TLR15 as a unique type of innate immune receptor that combines TLR characteristics with an activation mechanism typical for the evolutionary distinct protease-activated receptors. PMID:21383168

  16. Plasminogen activator inhibitor-1 stimulates macrophage activation through Toll-like Receptor-4.

    PubMed

    Gupta, Kamlesh K; Xu, Zhi; Castellino, Francis J; Ploplis, Victoria A

    2016-08-26

    While inflammation is often associated with increased Plasminogen Activator Inhibitor-1 (PAI-1), the functional consequences of PAI-1 in inflammation have yet to be fully determined. The aim of this study was to establish the in vivo relevance of PAI-1 in inflammation. A mouse model of systemic inflammation was employed in wild-type (WT) and PAI-1 deficient (PAI-1(-/-)) mice. Mice survival, macrophage infiltration into the lungs, and plasma levels of pro-inflammatory cytokines were assessed after lipopolysaccharide (LPS) infusion. In vitro experiments were conducted to examine changes in LPS-induced inflammatory responses after PAI-1 exposure. PAI-1 was shown to regulate inflammation, in vivo, and affect macrophage infiltration into lungs. Further, PAI-1 activated macrophages, and increased pro-inflammatory cytokines at both the mRNA and protein levels in these cells. The effect of PAI-1 on macrophage activation was dose-dependent and LPS-independent. Proteolytic inhibitory activity and Lipoprotein Receptor-related Protein (LRP) and vitronectin (VN) binding functions, were not involved in PAI-1-mediated activation of macrophages. However, the effect of PAI-1 on macrophage activation was partially blocked by a TLR4 neutralizing antibody. Furthermore, PAI-1-induced Tumor Necrosis Factor-alpha (TNF-α) and Macrophage Inflammatory Protein-2 (MIP-2) expression was reduced in TLR4(-/-) macrophages compared to WT macrophages. These results demonstrate that PAI-1 is involved in the regulation of host inflammatory responses through Toll-like Receptor-4 (TLR4)-mediated macrophage activation. PMID:27317488

  17. Toll-like receptor and antimicrobial peptide expression in the bovine endometrium

    PubMed Central

    Davies, Darren; Meade, Kieran G; Herath, Shan; Eckersall, P David; Gonzalez, Deyarina; White, John O; Conlan, R Steven; O'Farrelly, Cliona; Sheldon, I Martin

    2008-01-01

    Background The endometrium is commonly infected with bacteria leading to severe disease of the uterus in cattle and humans. The endometrial epithelium is the first line of defence for this mucosal surface against bacteria and Toll-like receptors (TLRs) are a critical component of the innate immune system for detection of pathogen associated molecular patterns (PAMPs). Antimicrobial peptides, acute phase proteins and Mucin-1 (MUC-1) also provide non-specific defences against microbes on mucosal surfaces. The present study examined the expression of innate immune defences in the bovine endometrium and tested the hypothesis that endometrial epithelial cells express functional receptors of the TLR family and the non-specific effector molecules for defence against bacteria. Methods Bovine endometrial tissue and purified populations of primary epithelial and stromal cells were examined using RT-PCR for gene expression of TLRs, antimicrobial peptides and MUC-1. Functional responses were tested by evaluating the secretion of prostaglandin E2 and acute phase proteins when cells were treated with bacterial PAMPs such as bacterial lipopolysaccharide (LPS) and lipoproteins. Results The endometrium expressed TLRs 1 to 10, whilst purified populations of epithelial cells expressed TLRs 1 to 7 and 9, and stromal cells expressed TLRs 1 to 4, 6, 7, 9 and 10. The TLRs appear to be functional as epithelial cells secreted prostaglandin E2 in response to bacterial PAMPs. In addition, the epithelial cells expressed antimicrobial peptides, such as Tracheal and Lingual Antimicrobial Peptides (TAP and LAP) and MUC-1, which were upregulated when the cells were treated with LPS. However, the epithelial cells did not express appreciable amounts of the acute phase proteins haptoglobin or serum amyloid A. Conclusion Epithelial cells have an essential role in the orchestration of innate immune defence of the bovine endometrium and are likely to be the key to prevention of endometrial infection

  18. Nerve Growth Factor Is Regulated by Toll-Like Receptor 2 in Human Intervertebral Discs.

    PubMed

    Krock, Emerson; Currie, J Brooke; Weber, Michael H; Ouellet, Jean A; Stone, Laura S; Rosenzweig, Derek H; Haglund, Lisbet

    2016-02-12

    Nerve growth factor (NGF) contributes to the development of chronic pain associated with degenerative connective tissue pathologies, such as intervertebral disc degeneration and osteoarthritis. However, surprisingly little is known about the regulation of NGF in these conditions. Toll-like receptors (TLR) are pattern recognition receptors classically associated with innate immunity but more recently were found to be activated by endogenous alarmins such as fragmented extracellular matrix proteins found in degenerating discs or cartilage. In this study we investigated if TLR activation regulates NGF and which signaling mechanisms control this response in intervertebral discs. TLR2 agonists, TLR4 agonists, or IL-1β (control) treatment increased NGF, brain-derived neurotrophic factor (BDNF), and IL-1β gene expression in human disc cells isolated from healthy, pain-free organ donors. However, only TLR2 activation or IL-1β treatment increased NGF protein secretion. TLR2 activation increased p38, ERK1/2, and p65 activity and increased p65 translocation to the cell nucleus. JNK activity was not affected by TLR2 activation. Inhibition of NF-κB, and to a lesser extent p38, but not ERK1/2 activity, blocked TLR2-driven NGF up-regulation at both the transcript and protein levels. These results provide a novel mechanism of NGF regulation in the intervertebral disc and potentially other pathogenic connective tissues. TLR2 and NF-κB signaling are known to increase cytokines and proteases, which accelerate matrix degradation. Therefore, TLR2 or NF-κB inhibition may both attenuate chronic pain and slow the degenerative progress in vivo. PMID:26668319

  19. Detection of Neu1 Sialidase Activity in Regulating TOLL-like Receptor Activation

    PubMed Central

    Abdulkhalek, Samar

    2010-01-01

    Mammalian Toll-like receptors (TLRs) are a family of receptors that recognize pathogen-associated molecular patterns. Not only are TLRs crucial sensors of microbial (e.g., viruses, bacteria and parasite) infections, they also play an important role in the pathophysiology of infectious diseases, inflammatory diseases, and possibly in autoimmune diseases. Thus, the intensity and duration of TLR responses against infectious diseases must be tightly controlled. It follows that understanding the structural integrity of sensor receptors, their ligand interactions and signaling components is essential for subsequent immunological protection. It would also provide important opportunities for disease modification through sensor manipulation. Although the signaling pathways of TLR sensors are well characterized, the parameters controlling interactions between the sensors and their ligands still remain poorly defined. We have recently identified a novel mechanism of TLR activation by its natural ligand, which has not been previously observed 1,2. It suggests that ligand-induced TLR activation is tightly controlled by Neu1 sialidase activation. We have also reported that Neu1 tightly regulates neurotrophin receptors like TrkA and TrkB 3, which involve Neu1 and matrix metalloproteinase-9 (MMP-9) cross-talk in complex with the receptors 4. The sialidase assay has been initially use to find a novel ligand, thymoquinone, in the activation of Neu4 sialidase on the cell surface of macrophages, dendritic cells and fibroblast cells via GPCR Gαi proteins and MMP-9 5. For TLR receptors, our data indicate that Neu1 sialidase is already in complex with TLR-2, -3 and -4 receptors, and is induced upon ligand binding to either receptor. Activated Neu1 sialidase hydrolyzes sialyl α-2,3-linked β-galactosyl residues distant from ligand binding to remove steric hinderance to TLR-4 dimerization, MyD88/TLR4 complex recruitment, NFkB activation and pro-inflammatory cell responses. In a

  20. Toll-like receptors in the pathogenesis of autoimmune diseases: recent and emerging translational developments

    PubMed Central

    Duffy, Laura; O’Reilly, Steven C

    2016-01-01

    Autoinflammatory diseases are defined as the loss of self-tolerance in which an inflammatory response to self-antigens occurs, which are a significant global burden. Toll-like receptors are key pattern recognition receptors, which integrate signals leading to the activation of transcription factors and ultimately proinflammatory cytokines. Recently, it has become apparent that these are at the nexus of autoinflammatory diseases making them viable and attractive drug targets. The aim of this review was to evaluate the role of innate immunity in autoinflammatory conditions alongside the role of negative regulation while suggesting possible therapeutic targets. PMID:27579291

  1. The adenosine system modulates Toll-like receptor function: basic mechanisms, clinical correlates and translational opportunities

    PubMed Central

    Coombs, Melanie R. Power; Belderbos, Mirjam E.; Gallington, Leighanne C.; Bont, Louis; Levy, Ofer

    2014-01-01

    Adenosine is an endogenous purine metabolite whose concentration in human blood plasma rises from nanomolar to micromolar during stress or hypoxia. Leukocytes express seven-transmembrane adenosine receptors whose engagement modulates Toll-like receptor-mediated cytokine responses, in part via modulation of intracellular cyclic adenosine monophosphate (cAMP). Adenosine congeners are used clinically to treat arrhythmias and apnea of prematurity. Herein we consider the potential of adenosine congeners as innate immune response modifiers to prevent and/or treat infection. PMID:21342073

  2. Ketamine inhibits tumor necrosis factor-{alpha} and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation

    SciTech Connect

    Wu, G.-J.; Chen, T.-L.; Ueng, Y.-F.; Chen, R.-M.

    2008-04-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-{alpha} (TNF-{alpha}) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 {mu}M ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 {mu}M of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-{alpha} and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-{alpha} and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 {mu}M) significantly inhibited LPS-induced TNF-{alpha} and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-{alpha} and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-{alpha} and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms

  3. Toll-like receptor-4 pathway is required for the pathogenesis of human chronic endometritis

    PubMed Central

    JU, JINFEN; LI, LIANGPENG; XIE, JINGYAN; WU, YAN; WU, XI; LI, WEIHON

    2014-01-01

    Toll-like receptor (TLR) signal transduction is a central component of the primary innate immune response to pathogenic challenge. TLR4, a member of the TLR family, is highly expressed in the endometrial cells of the uterus and could thus be a key link between human chronic endometritis (CE) and the immune system. However, the exact biological function of TLR4 in human CE remains largely unexplored. The present study aimed to examine the role of TLR4 in human CE. A comprehensive expression and activation analysis of TLR4 in the endometrial cells of the uterus from patients with human CE (n=25) and normal endometrial (NE) tissue (n=15) was performed. Western blot analyses demonstrated that compared with NE, the protein expression TLR4 markedly increased in human CE. Endometrial tissue scrapings were also used for total RNA extraction and were transcribed and amplified by reverse transcription quantitative polymerase chain reaction. The results showed that significant upregulation of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and downregulation of IL-10 mRNA was observed in CE compared with the NE group. Furthermore, the protein of the signaling adapter myeloid differentiation factor-88 and the accessory molecules (TNF receptor associated factor 6 and transforming growth factor-β-activated kinase 1) were also detected in all the assayed tissues. Of note, differential expression (CE versus NE) was observed by immunoblotting at each level of the nuclear factor-κB signaling cascade, including inhibitor κBα and P65 (all P<0.05). The altered TLR4 and its corresponding downstream signaling molecules in CE cells may be of relevance for the progression of the human CE. These findings indicate that the evaluation of expression patterns of TLR4 holds promise for the treatment of human CE. PMID:25371751

  4. A novel Toll like receptor with two TIR domains (HcToll-2) is involved in regulation of antimicrobial peptide gene expression of Hyriopsis cumingii.

    PubMed

    Ren, Qian; Lan, Jiang-Feng; Zhong, Xue; Song, Xiao-Jun; Ma, Fei; Hui, Kai-Min; Wang, Wen; Yu, Xiao-Qiang; Wang, Jin-Xing

    2014-07-01

    Animal Toll-like receptors (TLRs) are involved in innate immunity. Toll proteins are generally transmembrane proteins. In this study, an atypical Toll-like receptor (HcToll-2) was identified from the triangle-shell pearl mussel Hyriopsis cumingii, which belongs to phylum Mollusca. Unlike the typical Toll like receptors with extracellular leucine-rich repeats (LRRs), transmembrane, and intracellular Toll/interleukin-1 receptor (TIR) domains, HcToll-2 has two homologous TIR domains located at the C-terminal (designated as HcTIR1 and HcTIR2) and lacks a transmembrane domain. Phylogenetic analysis showed that HcTIR1 was clustered with TIR of sea anemone Toll, and HcTIR2 was clustered with TIR of Drosophila Toll. HcToll-2 mRNA could be detected in the hepatopancreas and was upregulated after challenge with Escherichia coli and Staphylococcus aureus. Recombinant HcLRR protein with GST tag could bind to bacteria and also to LPS and PGN. Over-expression of both HcTIR1 and HcTIR2 induced drosomycin genes in Drosophila S2 cells. RNAi analysis showed that HcToll-2 was required for the expression of theromacin, which is a cysteine-rich antimicrobial peptide (AMP) gene. This research is the first report of an atypical Toll-like receptor HcToll-2 involved in antibacterial immunity through induction of AMP expression. PMID:24631579

  5. Toll-like receptor 9 regulates melanogenesis through NF-κB activation.

    PubMed

    Sun, Lijun; Pan, Shengjun; Yang, Yuejin; Sun, Jingying; Liang, Daoyan; Wang, Xin; Xie, Xin; Hu, Jun

    2016-08-01

    Toll-like receptors play essential roles in the modulation of melanogenesis, which has been implicated in the pathogenesis of hyper- or hypopigmentation-related diseases. However, little is currently known regarding the role of TLR9 in human melanocytes. TLR9 recognizes unmethylated cytosine-phosphate-guanine motif-containing oligodeoxynucleotides, and cytosine-phosphate-guanine ODN2006 acts as an hTLR9 agonist. The aim of the present study was to investigate the effect of cytosine-phosphate-guanine ODN2006 on melanogenesis in the human melanocyte cells. MTT assay and enzyme-linked immunosorbent assay indicated that ODN2006 stimulation (0, 1, 5, 10 µM) dose-dependently reduced cell viability and promoted the production of TNF-α, IL-6, and IL-8 in PIG1 melanocytes. The mRNA and protein levels of PMEL and TYRosinase were elevated at 6 h, and then decreased 24 h later, but were significantly augmented 72 h later following ODN2006 stimulation; whereas, TLR9 expressions were time-dependently increased in PIG1 melanocytes. Moreover, ultraviolet B irradiation combined with ODN2006 stimulation induced much more significant enhancement of PMEL, TYRosinase, and TLR9 mRNA and protein after three days in PIG1 melanocytes, and the similar results were obtained using the primary human melanocytes. The expression of TLR9 protein was down-regulated by TLR9 siRNA transfection. ODN2006 had an additive effect on ultraviolet B-induced melanogenesis and PMEL expression, as well as NF-κB activation, which could be blocked by TLR9 knockdown, the NF-κB specific inhibitor PDTC, or the TBK1 inhibitor BX795. Collectively, we concluded that TLR9 regulates melanogenesis through NF-κB activation, suggesting that TLR9 may play a role in microbial-induced melanogenesis. PMID:27075928

  6. Trichostatin A Protects Liver against Septic Injury through Inhibiting Toll-Like Receptor Signaling.

    PubMed

    Kim, So-Jin; Park, Jin-Sook; Lee, Do-Won; Lee, Sun-Mee

    2016-07-01

    Sepsis, a serious clinical problem, is characterized by a systemic inflammatory response to infection and leads to organ failure. Toll-like receptor (TLR) signaling is intimately implicated in hyper-inflammatory responses and tissue injury during sepsis. Histone deacetylase (HDAC) inhibitors have been reported to exhibit anti-inflammatory properties. The aim of this study was to investigate the hepatoprotective mechanisms of trichostatin A (TSA), a HDAC inhibitor, associated with TLR signaling pathway during sepsis. The anti-inflammatory properties of TSA were assayed in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Polymicrobial sepsis was induced in mice by cecal ligation and puncture (CLP), a clinically relevant model of sepsis. The mice were intraperitoneally received TSA (1, 2 or 5 mg/kg) 30 min before CLP. The serum and liver samples were collected 6 and 24-h after CLP. TSA inhibited the increased production of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in LPS-stimulated RAW264.7 cells. TSA improved sepsis-induced mortality, attenuated liver injury and decreased serum TNF-α and IL-6 levels. CLP increased the levels of TLR4, TLR2 and myeloid differentiation primary response protein 88 (MyD88) protein expression and association of MyD88 with TLR4 and TLR2, which were attenuated by TSA. CLP increased nuclear translocation of nuclear factor kappa B and decreased cytosolic inhibitor of kappa B (IκB) protein expression, which were attenuated by TSA. Moreover, CLP decreased acetylation of IκB kinase (IKK) and increased association of IKK with IκB and TSA attenuated these alterations. Our findings suggest that TSA attenuates liver injury by inhibiting TLR-mediated inflammatory response during sepsis. PMID:27068262

  7. Trichostatin A Protects Liver against Septic Injury through Inhibiting Toll-Like Receptor Signaling

    PubMed Central

    Kim, So-Jin; Park, Jin-Sook; Lee, Do-Won; Lee, Sun-Mee

    2016-01-01

    Sepsis, a serious clinical problem, is characterized by a systemic inflammatory response to infection and leads to organ failure. Toll-like receptor (TLR) signaling is intimately implicated in hyper-inflammatory responses and tissue injury during sepsis. Histone deacetylase (HDAC) inhibitors have been reported to exhibit anti-inflammatory properties. The aim of this study was to investigate the hepatoprotective mechanisms of trichostatin A (TSA), a HDAC inhibitor, associated with TLR signaling pathway during sepsis. The anti-inflammatory properties of TSA were assayed in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Polymicrobial sepsis was induced in mice by cecal ligation and puncture (CLP), a clinically relevant model of sepsis. The mice were intraperitoneally received TSA (1, 2 or 5 mg/kg) 30 min before CLP. The serum and liver samples were collected 6 and 24-h after CLP. TSA inhibited the increased production of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in LPS-stimulated RAW264.7 cells. TSA improved sepsis-induced mortality, attenuated liver injury and decreased serum TNF-α and IL-6 levels. CLP increased the levels of TLR4, TLR2 and myeloid differentiation primary response protein 88 (MyD88) protein expression and association of MyD88 with TLR4 and TLR2, which were attenuated by TSA. CLP increased nuclear translocation of nuclear factor kappa B and decreased cytosolic inhibitor of kappa B (IκB) protein expression, which were attenuated by TSA. Moreover, CLP decreased acetylation of IκB kinase (IKK) and increased association of IKK with IκB and TSA attenuated these alterations. Our findings suggest that TSA attenuates liver injury by inhibiting TLR-mediated inflammatory response during sepsis. PMID:27068262

  8. Toll-like receptor 4-positive macrophages protect mice from Pasteurella pneumotropica-induced pneumonia

    NASA Technical Reports Server (NTRS)

    Hart, Marcia L.; Mosier, Derek A.; Chapes, Stephen K.

    2003-01-01

    This study investigates Toll-like receptor 4 (TLR4)-positive macrophages in early recognition and clearance of pulmonary bacteria. TLR4 is a trans-membrane receptor that is the primary recognition molecule for lipopolysaccharide of gram-negative bacteria. The TLR4(Lps-del) mouse strains C57BL10/ScN (B10) and STOCK Abb(tm1) TLR4(Lps-del) Slc11a1(s)(B10 x C2D) are susceptible to pulmonary infections and develop pneumonia when naturally or experimentally infected by the opportunistic bacterium Pasteurella pneumotropica. Since these mice have the TLR4(Lps-del) genotype, we hypothesized that reconstitution of mice with TLR4-positive macrophages would provide resistance to this bacterium. A cultured macrophage cell line (C2D macrophages) and bone marrow cells from C2D mice were adoptively transferred to B10 and B10 x C2D mice by intraperitoneal injection. C2D macrophages increased B10 and B10 x C2D mouse resistance to P. pneumotropica. In C2D-recipient mice there was earlier transcription of tumor necrosis factor alpha and chemokines JE and macrophage inflammatory protein 2 (MIP-2) in the lungs of B10 and B10 x C2D mice, and there was earlier transcription of KC and MIP-1alpha in B10 x C2D mice. In addition, the course of inflammation following experimental Pasteurella challenge was altered in C2D recipients. C2D macrophages also protected B10 x C2D mice, which lack CD4(+) T cells. These data indicate that macrophages are critical for pulmonary immunity and can provide host resistance to P. pneumotropica. This study indicates that TLR4-positive macrophages are important for early recognition and clearance of pulmonary bacterial infections.

  9. Modeling the interactions of bacteria and Toll-like receptor-mediated inflammation in necrotizing enterocolitis

    PubMed Central

    Arciero, Julia; Ermentrout, G. Bard; Siggers, Richard; Afrazi, Amin; Hackam, David; Vodovotz, Yoram; Rubin, Jonathan

    2016-01-01

    Necrotizing enterocolitis (NEC) is a severe disease of the gastrointestinal tract in premature infants, characterized by a disrupted intestinal epithelium and an exaggerated pro-inflammatory response. Since the activation of Toll-like receptor-4 (TLR4) blocks cell migration and proliferation and contributes to an uncontrolled inflammatory response within the intestine, this receptor has been identified as a key contributor to the development of NEC. Toll-like receptor-9 (TLR9) has been shown to sense bacterial genome components (CpG DNA) and to play an anti-inflammatory role in NEC. We present in vitro results demonstrating direct inhibition of TLR4 activation by CpG DNA, and we develop a mathematical model of bacteria–immune interactions within the intestine to investigate how such inhibition of TLR4 signaling might alter inflammation, associated bacterial invasion of tissue, and resulting outcomes. The model predicts that TLR9 can inhibit both the beneficial and detrimental effects of TLR4, and thus a proper balance of action by these two receptors is needed to promote intestinal health. The model results are also used to explore three interventions that could potentially prevent the development of NEC: reducing bacteria in the mucus layer, administering probiotic treatment, and blocking TLR4 activation. While the model shows that these interventions would be successful in most cases, the model is also used to identify situations in which the proposed treatments might be harmful. PMID:23238281

  10. Virtual Screening Approaches towards the Discovery of Toll-Like Receptor Modulators.

    PubMed

    Pérez-Regidor, Lucía; Zarioh, Malik; Ortega, Laura; Martín-Santamaría, Sonsoles

    2016-01-01

    This review aims to summarize the latest efforts performed in the search for novel chemical entities such as Toll-like receptor (TLR) modulators by means of virtual screening techniques. This is an emergent research field with only very recent (and successful) contributions. Identification of drug-like molecules with potential therapeutic applications for the treatment of a variety of TLR-regulated diseases has attracted considerable interest due to the clinical potential. Additionally, the virtual screening databases and computational tools employed have been overviewed in a descriptive way, widening the scope for researchers interested in the field. PMID:27618029

  11. Syntheses of fluorescent imidazoquinoline conjugates as probes of Toll-like receptor 7

    PubMed Central

    Shukla, Nikunj M.; Mutz, Cole A.; Ukani, Rehman; Warshakoon, Hemamali J.; Moore, David S.; David, Sunil A.

    2010-01-01

    Toll-like receptor (TLR)-7 agonists show prominent immunostimulatory activities. The synthesis of a TLR7-active N1-(4-aminomethyl)benzyl substituted imidazoquinoline 5d served as a convenient precursor for the covalent attachment of fluorophores without significant loss of activity. Fluorescence microscopy experiments show that the fluorescent analogues are internalized and distributed in the endosomal compartment. Flow cytometry experiments using whole human blood show differential partitioning into B, T, and natural killer (NK) lymphocytic subsets, which correlate with the degree of activation in these subsets. These fluorescently-labeled imidazoquinolines will likely be useful in examining the trafficking of TLR7 in immunological synapses. PMID:20933417

  12. Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy

    PubMed Central

    Iribarren, Kristina; Bloy, Norma; Buqué, Aitziber; Cremer, Isabelle; Eggermont, Alexander; Fridman, Wolf Hervé; Fucikova, Jitka; Galon, Jérôme; Špíšek, Radek; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2016-01-01

    ABSTRACT Accumulating preclinical evidence indicates that Toll-like receptor (TLR) agonists efficiently boost tumor-targeting immune responses (re)initiated by most, if not all, paradigms of anticancer immunotherapy. Moreover, TLR agonists have been successfully employed to ameliorate the efficacy of various chemotherapeutics and targeted anticancer agents, at least in rodent tumor models. So far, only three TLR agonists have been approved by regulatory agencies for use in cancer patients. Moreover, over the past decade, the interest of scientists and clinicians in these immunostimulatory agents has been fluctuating. Here, we summarize recent advances in the preclinical and clinical development of TLR agonists for cancer therapy. PMID:27141345

  13. Novel Role of Toll-Like Receptor 3 in Hepatitis C-Associated Glomerulonephritis

    PubMed Central

    Wörnle, Markus; Schmid, Holger; Banas, Bernhard; Merkle, Monika; Henger, Anna; Roeder, Maximilian; Blattner, Simone; Bock, Elisabeth; Kretzler, Matthias; Gröne, Hermann-Josef; Schlöndorff, Detlef

    2006-01-01

    Hepatitis C virus (HCV) infection is frequently complicated by glomerulonephritis with immune complexes containing viral RNA. We examined the potential influence of Toll-like receptors (TLRs), specifically TLR3 recognition of viral dsRNA exemplified by polyriboinosinic:polyribocytidylic acid [poly(I:C) RNA]. Normal human kidney stained positive for TLR3 on mesangial cells (MCs), vascular smooth muscle cells, and collecting duct epithelium. Cultured MCs have low TLR3 mRNA levels with predominant intracellular protein localization, which was increased by tumor necrosis factor-α, interleukin (IL)-1β, interferon (IFN)-γ, and the TLR3 ligand poly(I:C) RNA. Poly(I:C) RNA stimulation of MCs increased mRNA and protein synthesis of IL-6, IL-1β, M-CSF, IL-8/CXCL8, RANTES/CCL5, MCP-1/CCL2, and ICAM-I; it also increased anti-proliferative and proapoptotic effects, the latter of which was decreased by inhibiting caspase-8. In microdissected glomeruli of normal and non-HCV membranoproliferative glomerulonephritis biopsies, TLR3 mRNA expression was low. In contrast TLR3 mRNA expression was significantly increased in hepatitis C-positive glomerulonephritis and was associated with enhanced mRNA for RANTES/CCL5 and MCP-1/CCL2. We hypothesize that immune complexes containing viral RNA activate mesangial TLR3 during HCV infection, thereby contributing to chemokine/cytokine release and effecting proliferation and apoptosis. Thus, TLR3 expression on renal cells, and especially MCs, may establish a link between viral infections and glomerular diseases. PMID:16436653

  14. Central role of liver in anticancer and radioprotective activities of Toll-like receptor 5 agonist.

    PubMed

    Burdelya, Lyudmila G; Brackett, Craig M; Kojouharov, Bojidar; Gitlin, Ilya I; Leonova, Katerina I; Gleiberman, Anatoli S; Aygun-Sunar, Semra; Veith, Jean; Johnson, Christopher; Haderski, Gary J; Stanhope-Baker, Patricia; Allamaneni, Shyam; Skitzki, Joseph; Zeng, Ming; Martsen, Elena; Medvedev, Alexander; Scheblyakov, Dmitry; Artemicheva, Nataliya M; Logunov, Denis Y; Gintsburg, Alexander L; Naroditsky, Boris S; Makarov, Sergei S; Gudkov, Andrei V

    2013-05-14

    Vertebrate Toll-like receptor 5 (TLR5) recognizes bacterial flagellin proteins and activates innate immune responses to motile bacteria. In addition, activation of TLR5 signaling can inhibit growth of TLR5-expressing tumors and protect normal tissues from radiation and ischemia-reperfusion injuries. To understand the mechanisms behind these phenomena at the organismal level, we assessed nuclear factor kappa B (NF-κB) activation (indicative of TLR5 signaling) in tissues and cells of mice treated with CBLB502, a pharmacologically optimized flagellin derivative. This identified the liver and gastrointestinal tract as primary CBLB502 target organs. In particular, liver hepatocytes were the main cell type directly and specifically responding to systemic administration of CBLB502 but not to that of the TLR4 agonist LPS. To assess CBLB502 impact on other pathways, we created multireporter mice with hepatocytes transduced in vivo with reporters for 46 inducible transcription factor families and found that along with NF-κB, CBLB502 strongly activated STAT3-, phenobarbital-responsive enhancer module (PREM), and activator protein 1 (AP-1-) -driven pathways. Livers of CBLB502-treated mice displayed induction of numerous immunomodulatory factors and massive recruitment of various types of immune cells. This led to inhibition of growth of liver metastases of multiple tumors regardless of their TLR5 status. The changed liver microenvironment was not, however, hepatotoxic, because CBLB502 induced resistance to Fas-mediated apoptosis in normal liver cells. Temporary occlusion of liver blood circulation prevented CBLB502 from protecting hematopoietic progenitors in lethally irradiated mice, indicating involvement of a factor secreted by responding liver cells. These results define the liver as the key mediator of TLR5-dependent effects in vivo and suggest clinical applications for TLR5 agonists as hepatoprotective and antimetastatic agents. PMID:23630282

  15. The Role of Toll-Like Receptor 4 in Infectious and Noninfectious Inflammation

    PubMed Central

    Molteni, Monica; Gemma, Sabrina

    2016-01-01

    Toll-like receptor 4 (TLR4) belongs to the family of pattern recognition receptors (PRRs). They are highly conserved receptors that recognize conserved pathogen-associated molecular patterns (PAMPs), thus representing the first line of defense against infections. TLR4 has been long recognized as the sensing receptor for gram-negative lipopolysaccharide (LPS). In addition, it also binds endogenous molecules produced as a result of tissue injury. Hence, TLR4 represents a key receptor on which both infectious and noninfectious stimuli converge to induce a proinflammatory response. TLR4-mediated inflammation, triggered by exogenous or endogenous ligands, is also involved in several acute and chronic diseases, having a pivotal role as amplifier of the inflammatory response. This review focuses on the research progress about the role of TLR4 activation in infectious and noninfectious (e.g., sterile) inflammation and the effects of TLR4 signaling in some pathological conditions. PMID:27293318

  16. Structural characterisation of Toll-like receptor 1 (TLR1) and Toll-like receptor 6 (TLR6) in elephant and harbor seals.

    PubMed

    Woodman, Sally; Gibson, Amanda J; García, Ana Rubio; Contreras, Guillermo Sanchez; Rossen, John W; Werling, Dirk; Offord, Victoria

    2016-01-01

    Pinnipeds are a diverse clade of semi-aquatic mammals, which act as key indicators of ecosystem health. Their transition from land to marine environments provides a complex microbial milieu, making them vulnerable to both aquatic and terrestrial pathogens, thereby contributing to pinniped population decline. Indeed, viral pathogens such as influenza A virus and phocine distemper virus (PDV) have been identified as the cause of several of these mass mortality events. Furthermore, bacterial infection with mammalian Brucella sp. and methicillin-resistant Staphylococcus aureus strains have also been observed in marine mammals, posing further risk to both co-habiting endangered species and public health. During these disease outbreaks, mortality rates have varied amongst different pinniped species. Analyses of innate immune receptors at the host-pathogen interface have previously identified variants which may drive these species-specific responses. Through a combination of both sequence- and structure-based methods, this study characterises members of the Toll-like receptor (TLR) 1 superfamily from both harbour and elephant seals, identifying variations which will help us to understand these species-specific innate immune responses, potentially aiding the development of specific vaccine-adjuvants for these species. PMID:26827833

  17. AP1S3 mutations are associated with pustular psoriasis and impaired Toll-like receptor 3 trafficking.

    PubMed

    Setta-Kaffetzi, Niovi; Simpson, Michael A; Navarini, Alexander A; Patel, Varsha M; Lu, Hui-Chun; Allen, Michael H; Duckworth, Michael; Bachelez, Hervé; Burden, A David; Choon, Siew-Eng; Griffiths, Christopher E M; Kirby, Brian; Kolios, Antonios; Seyger, Marieke M B; Prins, Christa; Smahi, Asma; Trembath, Richard C; Fraternali, Franca; Smith, Catherine H; Barker, Jonathan N; Capon, Francesca

    2014-05-01

    Adaptor protein complex 1 (AP-1) is an evolutionary conserved heterotetramer that promotes vesicular trafficking between the trans-Golgi network and the endosomes. The knockout of most murine AP-1 complex subunits is embryonically lethal, so the identification of human disease-associated alleles has the unique potential to deliver insights into gene function. Here, we report two founder mutations (c.11T>G [p.Phe4Cys] and c.97C>T [p.Arg33Trp]) in AP1S3, the gene encoding AP-1 complex subunit σ1C, in 15 unrelated individuals with a severe autoinflammatory skin disorder known as pustular psoriasis. Because the variants are predicted to destabilize the 3D structure of the AP-1 complex, we generated AP1S3-knockdown cell lines to investigate the consequences of AP-1 deficiency in skin keratinocytes. We found that AP1S3 silencing disrupted the endosomal translocation of the innate pattern-recognition receptor TLR-3 (Toll-like receptor 3) and resulted in a marked inhibition of downstream signaling. These findings identify pustular psoriasis as an autoinflammatory phenotype caused by defects in vesicular trafficking and demonstrate a requirement of AP-1 for Toll-like receptor homeostasis. PMID:24791904

  18. The role of toll-like receptor 9 in chronic stress-induced apoptosis in macrophage.

    PubMed

    Xiang, Yanxiao; Yan, Hui; Zhou, Jun; Zhang, Qi; Hanley, Gregory; Caudle, Yi; LeSage, Gene; Zhang, Xiumei; Yin, Deling

    2015-01-01

    Emerging evidence implied that chronic stress has been exerting detrimental impact on immune system functions in both humans and animals. Toll-like receptors (TLRs) have been shown to play an essential role in modulating immune responses and cell survival. We have recently shown that TLR9 deficiency protects against lymphocyte apoptosis induced by chronic stress. However, the exact role of TLR9 in stress-mediated change of macrophage function remains unclear. The results of the current study showed that when BALB/c mice were treated with restraint stress (12 h daily for 2 days), the number of macrophages recruited to the peritoneal cavity was obviously increased. Results also demonstrated that the sustained effects of stress elevated cytokine IL-1β, TNF-α and IL-10 production yet diminished IFN-γ production from macrophage, which led to apoptotic cell death. However, TLR9 deficiency prevented the chronic stress-mediated accumulation of macrophages. In addition, knocking out TLR9 significantly abolished the chronic stress-induced imbalance of cytokine levels and apoptosis in macrophage. TLR9 deficiency was also found to reverse elevation of plasma IL-1β, IL-10 and IL-17 levels and decrease of plasma IFN-γ level under the condition of chronic stress. These results indicated that TLR9-mediated macrophage responses were required for chronic stress-induced immunosuppression. Further exploration showed that TLR9 deficiency prevented the increment of p38 MAPK phosphorylation and reduction of Akt/Gsk-3β phosphorylation; TLR9 deficiency also attenuated the release of mitochondrial cytochrome c into cytoplasm, caused upregulation of Bcl-2/Bax protein ratio, downregulation of cleavage of caspase-3 and PARP, as well as decreased TUNEL-positive cells in macrophage of stressed mice. Collectively, our studies demonstrated that deficiency of TLR9 maintained macrophage function by modulating macrophage accumulation and attenuating macrophage apoptosis, thus preventing

  19. Evidence of activation of the Toll-like receptor-4 proinflammatory pathway in patients with schizophrenia

    PubMed Central

    García-Bueno, Borja; Gassó, Patricia; MacDowell, Karina S.; Callado, Luis F.; Mas, Sergi; Bernardo, Miguel; Lafuente, Amalia; Meana, J. Javier; Leza, Juan C.

    2016-01-01

    Background Alterations in the innate immune/inflammatory system may underlie the pathophysiology of schizophrenia, but we do not understand the mechanisms involved. The main agents of innate immunity are the Toll-like receptors (TLRs), which detect molecular patterns associated with damage and pathogens. The TLR first reported was TLR4, and it is still the most studied one. Methods We aimed to describe putative modifications to the TLR4 proinflammatory pathway using 2 different strategies in 2 cohorts of patients with schizophrenia and matched controls: 1) quantification of protein and mRNA expression in postmortem prefrontal cortex samples from 30 patients with schizophrenia and 30 controls, and 2) identification of single nucleotide polymorphisms associated with the risk of schizophrenia using whole blood samples from 214 patients with schizophrenia and 216 controls. Results We found evidence of alterations in the expression of the initial elements of the TLR4 signalling pathway (TLR4, Myeloid differentiation primary response gene 88 [MyD88] and nuclear factor-κ B [NF-κB]) in the PFC of patients with schizophrenia. These alterations seem to depend on the presence/absence of antipsychotic treatment at death. Moreover, a polymorphism within the MyD88 gene was significantly associated with schizophrenia risk. Limitations The use of 2 different approaches in 2 different cohorts, the lack of a complementary neuropsychiatric group, the possible confounding effects of antipsychotic treatment and suicide are the main limitations of our study. Conclusion The evidence from this dual approach suggests there is an altered innate immune response in patients with chronic schizophrenia in which the TLR4 proinflammatory pathway could be affected. Improved understanding of the stimuli and mechanisms responsible for this response could lead to improved schizophrenia treatment and better control of the side effects of current antipsychotics. PMID:27070349

  20. Expression of Toll-Like Receptor 4 Contributes to Corneal Inflammation in Experimental Dry Eye Disease

    PubMed Central

    Lee, Hyun Soo; Hattori, Takaaki; Park, Eun Young; Stevenson, William; Chauhan, Sunil K.; Dana, Reza

    2012-01-01

    Purpose. To investigate the corneal expression of toll-like receptor (TLR) 4 and determine its contribution to the immunopathogenesis of dry eye disease (DED). Methods. Seven to 8-week-old female C57BL/6 mice were housed in a controlled environment chamber and administered scopolamine to induce experimental DED. Mice received intravenous TLR4 inhibitor (Eritoran) to block systemic TLR4-mediated activity. The expression of TLR4 by the corneal epithelium and stroma was evaluated using real-time polymerase chain reaction and flow cytometry. Corneal fluorescein staining (CFS) was performed to evaluate clinical disease severity. The corneal expression of proinflammatory cytokines (IL-1β, IL-6, TNF, and CCL2), corneal infiltration of CD11b+ antigen-presenting cells, and lymph node frequency of mature MHC-IIhi CD11b+ cells were assessed. Results. The epithelial cells of normal corneas expressed TLR4 intracellularly; however, DED significantly increased the cell surface expression of TLR4. Similarly, flow cytometric analysis of stromal cells revealed a significant increase in the expression of TLR4 proteins by DED-induced corneas as compared with normal corneas. DED increased the mRNA expression of TLR4 in corneal stromal cells, but not epithelial cells. TLR4 inhibition decreased the severity of CFS and significantly reduced the mRNA expression of IL-1β, IL-6, and TNF. Furthermore, TLR4 inhibition significantly reduced the corneal infiltration of CD11b+ cells and the lymph node frequency of MHC-IIhi CD11b+ cells. Conclusions. These results suggest that DED increases the corneal expression of TLR4 and that TLR4 participates in the inflammatory response to ocular surface desiccating stress. PMID:22789921

  1. TSLP expression induced via Toll-like receptor pathways in human keratinocytes.

    PubMed

    Takai, Toshiro; Chen, Xue; Xie, Yang; Vu, Anh Tuan; Le, Tuan Anh; Kinoshita, Hirokazu; Kawasaki, Junko; Kamijo, Seiji; Hara, Mutsuko; Ushio, Hiroko; Baba, Tadashi; Hiramatsu, Keiichi; Ikeda, Shigaku; Ogawa, Hideoki; Okumura, Ko

    2014-01-01

    The skin epidermis and mucosal epithelia (airway, ocular tissues, gut, and so on) are located at the interface between the body and environment and have critical roles in the response to various stimuli. Thymic stromal lymphopoietin (TSLP), a cytokine expressed mainly by epidermal keratinocytes (KCs) and mucosal epithelial cells, is a critical factor linking the innate response at barrier surfaces to Th2-skewed acquired immune response. TSLP is highly expressed in skin lesions of atopic dermatitis patients. Here, we describe on Toll-like receptor (TLR)-mediated induction of TSLP expression in primary cultured human KCs, placing emphasis on experimental methods used in our studies. Double-stranded RNA (TLR3 ligand), flagellin (TLR5 ligand), and diacylated lipopeptide (TLR2-TLR6 ligand) stimulated human KCs to express TSLP and Staphylococcus aureus membranes did so via the TLR2-TLR6 pathway. Atopic cytokine milieu upregulated the TLR-mediated induction of TSLP. Culturing in the absence of glucocorticoid before stimulation enhanced the TSLP expression. Extracellular double-stranded RNA induced TSLP via endosomal acidification- and NF-κB-dependent pathway. Specific measurement of the long TSLP transcript, which contributes to the production of the TSLP protein, rather than total or the short transcript is useful for accurate detection of functional human TSLP gene expression. The results suggest that environment-, infection-, and/or self-derived TLR ligands contribute to the initiation and/or amplification of Th2-type skin inflammation including atopic dermatitis and atopic march through the induction of TSLP expression in KCs and include information helpful for understanding the role of the gene-environment interaction relevant in allergic diseases. PMID:24377934

  2. Toll-Like Receptors Expression in Follicular Cells of Patients with Poor Ovarian Response

    PubMed Central

    Taghavi, Seyed Abdolvahab; Ashrafi, Mahnaz; Mehdizadeh, Mehdi; Karimian, Leili; Joghataie, Mohammad Taghi; Aflatoonian, Reza

    2014-01-01

    Background Poor ovarian response (POR) to gonadotropin stimulation has led to a significant decline in success rate of fertility treatment. The immune system may play an important role in pathophysiology of POR by dysfunctions of cytokines and the growth factor network, and the presence of ovarian auto-antibodies. The aim of this study is to investigate the expression of toll-like receptors (TLR) 1, 2, 4, 5, 6 and cyclooxygenase (COX) 2 genes in follicular cells and concentration of interleukin (IL)-6, IL-8 and macrophage migration inhibitory factor (MIF), as major parts of innate immunity, in follicular fluid (FF) obtained from POR women in comparison with normal women. Materials and Methods In this case-control study, 20 infertile POR patients and 20 normal women took part in this study and underwent controlled ovarian stimulation. The FF was obtained from the largest follicle (>18 mm). The FF was centrifuged and cellular pellet was then used for evaluation of expression of TLRs and COX2 genes by real-time PCR. FF was used for quantitative analysis for IL-6, IL-8 and MIF by enzyme-linked immunosorbent assay (ELISA). Results TLR1, 2, 4, 5, 6 and COX2 gene expression were significantly higher in POR (p<0.05). Concentration of IL-6, IL-8 and MIF proteins was significantly increased in POR compared with normal women (p<0.05). Conclusion These findings support the hypothesis that the immune system may be involved in pathophysiology of POR through TLRs. PMID:25083184

  3. Episodic Positive Selection in the Evolution of Avian Toll-Like Receptor Innate Immunity Genes

    PubMed Central

    Grueber, Catherine E.; Wallis, Graham P.; Jamieson, Ian G.

    2014-01-01

    Toll-like receptors (TLRs) are a family of conserved pattern-recognition molecules responsible for initiating innate and acquired immune responses. Because they play a key role in host defence, these genes have received increasing interest in the evolutionary and population genetics literature, as their variation represents a potential target of adaptive evolution. However, the role of pathogen-mediated selection (i.e. episodic positive selection) in the evolution of these genes remains poorly known and has not been examined outside of mammals. A recent increase in the number of bird species for which TLR sequences are available has enabled us to examine the selective processes that have influenced evolution of the 10 known avian TLR genes. Specifically, we tested for episodic positive selection to identify codons that experience purifying selection for the majority of their evolution, interspersed with bursts of positive selection that may occur only in restricted lineages. We included up to 23 species per gene (mean = 16.0) and observed that, although purifying selection was evident, an average of 4.5% of codons experienced episodic positive selection across all loci. For four genes in which sequence coverage traversed both the extracellular leucine-rich repeat region (LRR) and transmembrane/intracellular domains of the proteins, increased positive selection was observed at the extracellular domain, consistent with theoretical predictions. Our results provide evidence that episodic positive selection has played an important role in the evolution of most avian TLRs, consistent with the role of these loci in pathogen recognition and a mechanism of host-pathogen coevolution. PMID:24595315

  4. Lack of Association between Toll Like Receptor-2 and Toll Like Receptor-4 Gene Polymorphisms and Other Feature in Iranian Asthmatics Patients.

    PubMed

    Bahrami, Hamid; Daneshmandi, Saeed; Heidarnazhad, Hasan; Pourfathollah, Ali Akbar

    2015-02-01

    Asthma as a chronic inflammatory airway disease is considered to be the most common chronic disease that is involving genetic and environmental factors. Toll like receptors (TLRs) and other inflammatory mediators are important in modulation of inflammation. In this study, we evaluated the role of TLR2 Arg753Gln and TLR4 Asp299Gly polymorphisms in the asthma susceptibility, progress, control levels and lung functions in Iranian patients. On 99 asthmatic patients and 120 normal subjects, TLR2 Arg753Gln and TLR4 Asp299Gly polymorphisms were evaluated by PCR-RFLP method recruiting Msp1 and Nco1 restriction enzymes, respectively. IgE serum levels by ELISA technique were determined and asthma diagnosis, treatment and control levels were considered using standard schemes and criteria. Our results indicated that the genotype and allele frequencies of the TLR2 Arg753Gln and TLR4 Asp299Gly polymorphisms were not significantly different between control subjects and asthmatics and were not related to in asthma features such as IgE levels, asthma history and pulmonary factors. Wherease some previous studies indicated TLRs and their polymorphisms might have some role in asthma incidence and features, our data demonstrated that TLR2 Arg753Gln and TLR4 Asp299Gly gene variants were not risk factors for asthma or its features in Iranian patients. Genetic complexity, ethnicity, influence of other genes or polymorphisms may overcome these polymorphisms in our asthmatics. PMID:25530138

  5. Patents for Toll-like receptor ligands as radiation countermeasures for acute radiation syndrome.

    PubMed

    Singh, Vijay K; Pollard, Harvey B

    2015-01-01

    Acute radiation exposure induces apoptosis of tissues in the hematopoietic, digestive, cutaneous, cardiovascular and nervous systems; extensive apoptosis of these tissues ultimately leads to acute radiation syndrome. A novel strategy for developing radiation countermeasures has been to imitate the genetic mechanisms acquired by radiation-resistant tumors. Two mechanisms that underlie this ability of tumor cells are the p53 and NF-κB pathways. The loss of p53 function results in the inactivation of pro-apoptotic control mechanisms, while constitutive activation of NF-κB results in the up-regulation of anti-apoptotic genes. Various Toll-like receptor ligands are capable of up regulating the NF-κB pathway, which increases radio-resistance and reduces radiation-induced apoptosis in various tissues. Several Toll-like receptor ligands have been patented and are currently under development as radiation countermeasures for acute radiation syndrome. Ongoing studies suggest that a few of these attractive agents are progressing well along the US FDA approval pathway to become radiation countermeasures. PMID:26135043

  6. The role of toll-like receptors 2 and 4 in the pathogenesis of feline pyometra.

    PubMed

    Jursza, E; Kowalewski, M P; Boos, A; Skarzynski, D J; Socha, P; Siemieniuch, M J

    2015-03-01

    Pyometra is the most common uterine disease in queens. To protect itself from infection, the female reproductive tract possesses several immune mechanisms that are based on germline-encoded pattern recognition receptors (toll-like receptors [TLRs]). The aim of our study was to examine endometrial immunolocalization of TLR2/4, study the influence of lipopolysaccharide (LPS) and tumor necrosis factor (TNF) α on messenger RNA expression of both receptors in pyometric queens, and compare these patterns between estrous cycling queens and those hormonally treated with medroxyprogesterone acetate (MPA). Thirty-six queens, ranging in age from 7 months to 11 years, were allocated into seven groups (anestrus, estrus, mid-diestrus and late diestrus, short-term and long-term hormonally treated queens, and pyometric queens). At the messenger RNA level, the real-time polymerase chain reaction was applied, whereas at the TLR2/4 protein level, the expression was tested by immunohistochemistry. In queens at estrus, gene expression of TLR2 was upregulated after stimulation of endometrial explants by TNF (P < 0.001) and by TNF together with the LPS (P < 0.01). Moreover, gene expression of TLR2 was significantly upregulated after stimulation by TNF (P < 0.001) and LPS (P < 0.01) explants derived from queens that had been long-term hormonally treated with MPA. Endometrial gene expression of TLR4 was significantly upregulated after incubation of explants with TNF (P < 0.001) in queens at estrus and with LPS (P < 0.05) in queens short-term hormonally treated with MPA. Immunolocalization reported that TLR2/4 receptors are mainly localized in the surface and glandular epithelia. These data show that short-term and especially long-term administration of progesterone derivatives impairs TLRs in the endometrial epithelium, presumably enabling pathogens to break through this first natural barrier and thereby increase the risk of pyometra development. PMID:25481489

  7. Toll-like receptors and chronic inflammation in rheumatic diseases: new developments.

    PubMed

    Joosten, Leo A B; Abdollahi-Roodsaz, Shahla; Dinarello, Charles A; O'Neill, Luke; Netea, Mihai G

    2016-06-01

    In the past few years, new developments have been reported on the role of Toll-like receptors (TLRs) in chronic inflammation in rheumatic diseases. The inhibitory function of TLR10 has been demonstrated. Receptors that enhance the function of TLRs, and several TLR inhibitors, have been identified. In addition, the role of the microbiome and TLRs in the onset of rheumatic diseases has been reported. We review novel insights on the role of TLRs in several inflammatory joint diseases, including rheumatoid arthritis, systemic lupus erythematosus, gout and Lyme arthritis, with a focus on the signalling mechanisms mediated by the Toll-IL-1 receptor (TIR) domain, the exogenous and endogenous ligands of TLRs, and the current and future therapeutic strategies to target TLR signalling in rheumatic diseases. PMID:27170508

  8. Toll-like receptor signaling in colorectal cancer: Carcinogenesis to cancer therapy

    PubMed Central

    Li, Ting-Ting; Ogino, Shuji; Qian, Zhi Rong

    2014-01-01

    Toll-like receptors (TLRs) are germ line encoded innate immune sensors that recognize conserved microbial structures and host alarmins, and signal expression of major histocompatibility complex proteins, costimulatory molecules, and inflammatory mediators by macrophages, neutrophils, dendritic cells, and other cell types. These protein receptors are characterized by their ability to respond to invading pathogens promptly by recognizing particular TLR ligands, including flagellin and lipopolysaccharide of bacteria, nucleic acids derived from viruses, and zymosan of fungi. There are 2 major TLR pathways; one is mediated by myeloid differentiation factor 88 (MYD88) adaptor proteins, and the other is independent of MYD88. The MYD88-dependent pathway involves early-phase activation of nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NF-κB1) and all the TLRs, except TLR3, have been shown to activate this pathway. TLR3 and TLR4 act via MYD88-independent pathways with delayed activation of NF-κB signaling. TLRs play a vital role in activating immune responses. TLRs have been shown to mediate inflammatory responses and maintain epithelial barrier homeostasis, and are highly likely to be involved in the activation of a number of pathways following cancer therapy. Colorectal cancer (CRC) is one of the most common cancers, and accounts for almost half a million deaths annually worldwide. Inflammation is considered a risk factor for many common malignancies including cancers of the colorectum. The key molecules involved in inflammation-driven carcinogenesis include TLRs. As sensors of cell death and tissue remodeling, TLRs may have a universal role in cancer; stimulation of TLRs to activate the innate immune system has been a legitimate therapeutic strategy for some years. TLRs 3/4/7/8/9 are all validated targets for cancer therapy, and a number of companies are developing agonists and vaccine adjuvants. On the other hand, antagonists may favor inhibition

  9. Innate immune receptor Toll-like receptor 4 signalling in neuropsychiatric diseases.

    PubMed

    García Bueno, B; Caso, J R; Madrigal, J L M; Leza, J C

    2016-05-01

    The innate immunity is a stereotyped first line of defense against pathogens and unspecified damage signals. One of main actors of innate immunity are the Toll-like receptors (TLRs), and one of the better characterized members of this family is TLR-4, that it is mainly activated by Gram-negative bacteria lipopolysaccharide. In brain, TLR-4 organizes innate immune responses against infections or cellular damage, but also possesses other physiological functions. In the last years, some evidences suggest a role of TLR-4 in stress and stress-related neuropsychiatric diseases. Peripheral and brain TLR-4 activation triggers sickness behavior, and its expression is a risk factor of depression. Some elements of the TLR-4 signaling pathway are up-regulated in peripheral samples and brain post-mortem tissue from depressed and suicidal patients. The "leaky gut" hypothesis of neuropsychiatric diseases is based on the existence of an increase of the intestinal permeability which results in bacterial translocation able to activate TLR-4. Enhanced peripheral TLR-4 expression/activity has been described in subjects diagnosed with schizophrenia, bipolar disorder and in autistic children. A role for TLR-4 in drugs abuse has been also proposed. The therapeutic potential of pharmacological/genetic modulation of TLRs signaling pathways in neuropsychiatry is promising, but a great preclinical/clinical scientific effort is still needed. PMID:26905767

  10. Effects of human parvovirus B19 on expression of defensins and Toll-like receptors.

    PubMed

    Hsu, Gwo-Jong; Tzang, Bor-Show; Tsai, Chun-Chou; Chiu, Chun-Ching; Huang, Chih-Yang; Hsu, Tsai-Ching

    2011-10-31

    Both cell-mediated and humoral immunity have been widely investigated for the roles in pathogenesis of human parvovirus B19 (B19) infection. However, little is known about the effects of B19 infection on innate immunity. In the current study, expression of alpha-human neutrophil peptides (HNP) 1-3, alpha-human defensin (HD) 5, HD6, beta-human defensin (hBD)-1, hBD-3, toll-like receptor (TLR) 4, TLR5, TLR7 and TLR9 in B19-nonstructural protein (NS)-1 or B19-viral protein (VP)-2 transfected COS-7 cells was investigated by reverse transcription (RT)-PCR or by western blots. Significantly increased HNP1-3, HD5, HD6, hBD1 and hBD3 mRNA levels were detected at both 24 h and 20 days post-transfection in COS-7 cells transfected with pEGFP-NS1. In pEGFP-VP2-transfected COS-7 cells, significantly increased HNP1-3, HD5, HD6, hBD-1 and hBD-3 mRNA expression levels were observed on day 20, albeit only hBD3 mRNA increased significantly at 24 h post-transfection. Additionally, TLR4, TLR5 and TLR7 proteins decreased significantly in COS-7 cells transfected with pEGFP-NS1 or pEGFP-VP2 at 48 h but significantly increased on day 20. Notably, only TLR9 protein increased significantly in the cells transfected with pEGFP-NS1 on day 20. No significant variation of TLRs was observed in cells transfected with pEGFP-NS1K334E, a single substitution mutantation of B19-NS1 protein without original cytotoxicity, at both 48 h and on day 20. These novel findings revealed the different effects of B19-NS1 and VP2 on the stimulation of defensins and TLRs and could provide a clue in understanding the roles of B19-NS1 and VP2 on innate immunity. PMID:22135916

  11. Counteracting Interactions between Lipopolysaccharide Molecules with Differential Activation of Toll-Like Receptors

    PubMed Central

    Hajishengallis, George; Martin, Michael; Schifferle, Robert E.; Genco, Robert J.

    2002-01-01

    We investigated counteracting interactions between the lipopolysaccharides (LPS) from Escherichia coli (Ec-LPS) and Porphyromonas gingivalis (Pg-LPS), which induce cellular activation through Toll-like receptor 4 (TLR4) and TLR2, respectively. We found that Ec-LPS induced tolerance in THP-1 cells to subsequent tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) induction by Pg-LPS, though the reverse was not true, and looked for explanatory differential effects on the signal transduction pathway. Cells exposed to Pg-LPS, but not to Ec-LPS, displayed persisting expression of IL-1 receptor-associated kinase without apparent degradation, presumably allowing prolonged relay of downstream signals. Accordingly, cells pretreated with Pg-LPS, but not with Ec-LPS, were effectively activated in response to subsequent exposure to either LPS molecule, as evidenced by assessing nuclear factor (NF)-κB activity. In fact, Pg-LPS primed THP-1 cells for enhanced NF-κB activation and TNF-α release upon restimulation with the same LPS. This was a dose-dependent effect and correlated with upregulation of surface TLR2 expression. Furthermore, we observed inhibition of NF-κB-dependent transcription in a reporter cell line pretreated with Ec-LPS and restimulated with Pg-LPS (compared to cells pretreated with medium only and restimulated with Pg-LPS), but not when the reverse treatment was made. Although Pg-LPS could not make cells tolerant to subsequent activation by Ec-LPS, Pg-LPS inhibited Ec-LPS-induced TNF-α and IL-6 release when the two molecules were added simultaneously into THP-1 cell cultures. Pg-LPS also suppressed P. gingivalis FimA protein-induced NF-κB-dependent transcription in the 3E10/huTLR4 reporter cell line, which does not express TLR2. This rules out competition for common signaling intermediates, suggesting that Pg-LPS may block component(s) of the TLR4 receptor complex. Interactions between TLR2 and TLR4 agonists may be important in the

  12. Toll-like receptor 2 ligands regulate monocyte Fcγ receptor expression and function.

    PubMed

    Shah, Prexy; Fatehchand, Kavin; Patel, Hemal; Fang, Huiqing; Justiniano, Steven E; Mo, Xiaokui; Jarjoura, David; Tridandapani, Susheela; Butchar, Jonathan P

    2013-04-26

    Fcγ receptor (FcγR) clustering on monocytes/macrophages results in phagocytosis and inflammatory cytokine production, which serve to eliminate antibody-opsonized targets and activate neighboring immune cells. Toll-like receptor 2 (TLR2), which recognizes a range of both bacterial and fungal components, elicits strong proinflammatory responses in these cells when stimulated by ligands, either natural or synthetic. Thus, we explored the possibility that TLR2 agonists could strengthen FcγR activity within the context of antibody therapy. Human peripheral blood monocytes treated with the TLR2 agonist Pam2CSK4 showed significantly enhanced FcγR-mediated cytokine production as well as phagocytic ability. An examination of the molecular mechanism behind this enhancement revealed increased expression of both FcγRIIa and the common γ subunit following Pam2CSK4 treatment. Interestingly however, expression of the inhibitory receptor FcγRIIb was also modestly increased. Further investigation revealed that Pam2CSK4 also dramatically decreased the expression of SHIP, the major mediator of FcγRIIb inhibitory activity. Using a murine Her2/neu solid tumor model of antibody therapy, we found that Pam2CSK4 significantly enhanced the ability of anti-Her2 antibody to reduce the rate of tumor growth. To verify that the FcγR enhancement was not unique to the diacylated Pam2CSK4, we also tested Pam3CSK4, a related triacylated TLR2 agonist. Results showed significant enhancement in FcγR function and expression. Taken together, these findings indicate that TLR2 activation can positively modulate FcγR and suggest that TLR2 agonists should be considered for testing as adjuvants for antitumor antibody therapy. PMID:23504312

  13. MyD88-dependent Toll-like receptor 4 signal pathway in intervertebral disc degeneration

    PubMed Central

    Qin, Chuqiang; Zhang, Bo; Zhang, Liang; Zhang, Zhi; Wang, Le; Tang, Long; Li, Shuangqing; Yang, Yixi; Yang, Fuguo; Zhang, Ping; Yang, Bo

    2016-01-01

    Lower back pain (LBP) is a common and remitting problem. One of the primary causes of LBP is thought to be degeneration of the intervertebral disc (IVD). The aim of the present study was to investigate the role of the myeloid differentiation primary-response protein 88 (MyD88)-dependent Toll-like receptor 4 (TLR4) signal pathway in the mechanism of IVD degeneration. IVD nucleus pulposus cells isolated and cultured from the lumbar vertebrae of Wistar rats were stimulated by various doses of lipopolysaccharide (LPS; 0.1, 1, 10 and 100 µg/ml) to simulate IVD degeneration. Cells were rinsed and cultured in serum-free Dulbecco's modified Eagle's medium/F12. Reverse transcription-quantitative polymerase chain reaction was used to determine the levels of TLR4, MyD88, tumor necrosis factor α (TNFα), and interleukin-1β (IL-1β) mRNA expression after 1, 3, 6, 9 and 12 h of incubation. Additionally, western blot and enzyme-linked immunosorbent assay analyses were used to determine the levels of TLR4, MyD88, TNFα, and IL-1β protein expression after 24, 48 and 72 h of incubation. The levels of TLR4, MyD88, TNFα and IL-1β mRNA all increased in the cells stimulated by 10 µg/ml LPS at 3, 6 and 9 h (all P<0.001). Furthermore, the levels of TLR4, MyD88, TNFα and IL-1β protein all increased at 24, 48 and 72 h (all P<0.001). Additionally, the mRNA and protein levels of TLR4, MyD88, TNFα and IL-1β increased significantly in the cells stimulated by 1, 10 and 100 µg/ml LPS compared with the control group, and reached a peak in the 10 µg/ml LPS group (all P<0.001). These results suggest that the MyD88-dependent TLR4 signal pathway is a target pathway in IVD degeneration. This pathway is time phase- and dose-dependent, and when activated can lead to the release of inflammatory factors that participate in IVD degeneration. PMID:27446251

  14. DAT isn’t all that: cocaine reward and reinforcement requires Toll Like Receptor 4 signaling

    PubMed Central

    Northcutt, A.L.; Hutchinson, M.R.; Wang, X.; Baratta, M.V.; Hiranita, T.; Cochran, T.A.; Pomrenze, M.B.; Galer, E.L.; Kopajtic, T.A.; Li, C.M.; Amat, J.; Larson, G.; Cooper, D.C.; Huang, Y.; O’Neill, C.E.; Yin, H.; Zahniser, N.R.; Katz, J.L.; Rice, K.C.; Maier, S.F.; Bachtell, R.K.; Watkins, L.R.

    2014-01-01

    The initial reinforcing properties of drugs of abuse, such as cocaine, are largely attributed to their ability to activate the mesolimbic dopamine system. Resulting increases in extracellular dopamine in the nucleus accumbens (NAc) are traditionally thought to result from cocaine’s ability to block dopamine transporters (DATs). Here we demonstrate that cocaine also interacts with the immunosurveillance receptor complex, Toll-Like Receptor 4 (TLR4), on microglial cells to initiate central innate immune signaling. Disruption of cocaine signaling at TLR4 suppresses cocaine-induced extracellular dopamine in the NAc, as well as cocaine conditioned place preference and cocaine self-administration. These results provide a novel understanding of the neurobiological mechanisms underlying cocaine reward/reinforcement that includes a critical role for central immune signaling, and offer a new target for medication development for cocaine abuse treatment. PMID:25644383

  15. Immunomodulation by Gut Microbiota: Role of Toll-Like Receptor Expressed by T Cells

    PubMed Central

    Valentini, Mariagrazia; Piermattei, Alessia; Di Sante, Gabriele; Delogu, Giovanni; Ria, Francesco

    2014-01-01

    A close relationship exists between gut microbiota and immune responses. An imbalance of this relationship can determine local and systemic immune diseases. In fact the immune system plays an essential role in maintaining the homeostasis with the microbiota that normally resides in the gut, while, at the same time, the gut microbiota influences the immune system, modulating number and function of effector and regulatory T cells. To achieve this aim, mutual regulation between immune system and microbiota is achieved through several mechanisms, including the engagement of toll-like receptors (TLRs), pathogen-specific receptors expressed on numerous cell types. TLRs are able to recognize ligands from commensal or pathogen microbiota to maintain the tolerance or trigger the immune response. In this review, we summarize the latest evidences about the role of TLRs expressed in adaptive T cells, to understand how the immune system promotes intestinal homeostasis, fights invasion by pathogens, and is modulated by the intestinal microbiota. PMID:25147831

  16. The emerging role of Toll-like receptor 4 in myocardial inflammation

    PubMed Central

    Yang, Y; Lv, J; Jiang, S; Ma, Z; Wang, D; Hu, W; Deng, C; Fan, C; Di, S; Sun, Y; Yi, W

    2016-01-01

    Toll-like receptors (TLRs) are a family of pattern recognition receptors involved in cardiovascular diseases. Notably, numerous studies have demonstrated that TLR4 activates the expression of several of pro-inflammatory cytokine genes that play pivotal roles in myocardial inflammation, particularly myocarditis, myocardial infarction, ischemia-reperfusion injury, and heart failure. In addition, TLR4 is an emerging target for anti-inflammatory therapies. Given the significance of TLR4, it would be useful to summarize the current literature on the molecular mechanisms and roles of TLR4 in myocardial inflammation. Thus, in this review, we first introduce the basic knowledge of the TLR4 gene and describe the activation and signaling pathways of TLR4 in myocardial inflammation. Moreover, we highlight the recent progress of research on the involvement of TLR4 in myocardial inflammation. The information reviewed here may be useful to further experimental research and to increase the potential of TLR4 as a therapeutic target. PMID:27228349

  17. Recent insights into the role of Toll-like receptors in viral infection

    PubMed Central

    Carty, M; Bowie, A G

    2010-01-01

    Toll-like receptors (TLRs) have a central role in innate immunity as they detect conserved pathogen-associated molecular patterns (PAMPs) on a range of microbes, including viruses, leading to innate immune activation and orchestration of the adaptive immune response. To date, a large number of viruses have been shown to trigger innate immunity via TLRs, suggesting that these receptors are likely to be important in the outcome to viral infection. This suggestion is supported by the observation that many viruses have evolved mechanisms not only to evade the innate immune system, but also to subvert it for the benefit of the virus. In this review we will discuss earlier evidence, mainly from knock-out mice studies, implicating TLRs in the innate immune response to viruses, in light of more recent clinical data demonstrating that TLRs are important for anti-viral immunity in humans. PMID:20560984

  18. Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury

    PubMed Central

    2013-01-01

    Intracerebral hemorrhage (ICH) is a common type of fatal stroke, accounting for about 15% to 20% of all strokes. Hemorrhagic strokes are associated with high mortality and morbidity, and increasing evidence shows that innate immune responses and inflammatory injury play a critical role in ICH-induced neurological deficits. However, the signaling pathways involved in ICH-induced inflammatory responses remain elusive. Toll-like receptor 4 (TLR4) belongs to a large family of pattern recognition receptors that play a key role in innate immunity and inflammatory responses. In this review, we summarize recent findings concerning the involvement of TLR4 signaling in ICH-induced inflammation and brain injury. We discuss the key mechanisms associated with TLR4 signaling in ICH and explore the potential for therapeutic intervention by targeting TLR4 signaling. PMID:23414417

  19. Toll-Like Receptor 9 Contributes to Defense against Acinetobacter baumannii Infection

    PubMed Central

    Noto, Michael J.; Boyd, Kelli L.; Burns, William J.; Varga, Matthew G.; Peek, Richard M.

    2015-01-01

    Acinetobacter baumannii is a common nosocomial pathogen capable of causing severe diseases associated with significant morbidity and mortality in impaired hosts. Pattern recognition receptors, such as the Toll-like receptors (TLRs), play a key role in pathogen detection and function to alert the immune system to infection. Here, we examine the role for TLR9 signaling in response to A. baumannii infection. In a murine model of A. baumannii pneumonia, TLR9−/− mice exhibit significantly increased bacterial burdens in the lungs, increased extrapulmonary bacterial dissemination, and more severe lung pathology compared with those in wild-type mice. Following systemic A. baumannii infection, TLR9−/− mice have significantly increased bacterial burdens in the lungs, as well as decreased proinflammatory cytokine and chemokine production. These results demonstrate that TLR9-mediated pathogen detection is important for host defense against the opportunistic pathogen Acinetobacter baumannii. PMID:26238713

  20. Application potential of toll-like receptors in cancer immunotherapy: Systematic review.

    PubMed

    Shi, Ming; Chen, Xi; Ye, Kangruo; Yao, Yuanfei; Li, Yu

    2016-06-01

    Toll-like receptors (TLRs), as the most important pattern recognition receptors in innate immunity, play a pivotal role in inducing immune response through recognition of microbial invaders or specific agonists. Recent studies have suggested that TLRs could serve as important regulators in the development of a variety of cancer. However, increasing evidences have shown that TLRs may display quite opposite outcomes in cancer development. Although several potential therapeutic Toll-like receptor ligands have been found, the mechanism and therapy prospect of TLRs in cancer development has to be further elucidated to accelerate the clinical application. By performing a systematic review of the present findings on TLRs in cancer immunology, we attempted to evaluate the therapeutic potential of TLRs in cancer therapy and elucidate the potential mechanism of cancer progress regulated by TLR signaling and the reported targets on TLRs for clinical application. An electronic databases search was conducted in PubMed, Chinese Scientific Journal Database, and Chinese Biomedical Literature Database from their inception to February 1, 2016. The following keywords were used to search the databases: Toll-like receptors, cancer therapy, therapeutic target, innate immunity. Of 244 studies that were identified, 97 nonrelevant studies were excluded. In total, 147 full-text articles were assessed, and from these, 54 were excluded as they did not provide complete key information. Thus, 93 studies were considered eligible and included in the analysis. According to the data from the included trials, 14 TLR ligands (77.8%) from 82 studies have been demonstrated to display antitumor property in various cancers, whereas 4 ligands (22.2%) from 11 studies promote tumors. Among them, only 3 TLR ligands have been approved for cancer therapy, and 9 ligands were in clinical trials. In addition, the potential mechanism of recently reported targets on TLRs for clinical application was also evaluated

  1. Role of Toll-like receptors in diabetic renal lesions in a miniature pig model.

    PubMed

    Feng, Yuanyuan; Yang, Shulin; Ma, Yuxiang; Bai, Xue-Yuan; Chen, Xiangmei

    2015-06-01

    The mechanisms of diabetic renal injury remain unclear. Recent studies have shown that immunological and inflammatory elements play important roles in the initiation and development of diabetic nephropathy (DN). Toll-like receptors (TLRs) comprise a superfamily of innate immune system receptors. The roles and mechanisms of TLRs in the pathogenesis of diabetic renal lesions are mostly unknown. Compared with rodents, miniature pigs are more similar to humans with respect to metabolism, kidney structure, and immune system, and therefore represent an ideal large-animal model for DN mechanistic studies. A diabetes model was established by feeding miniature pigs with high-sugar and high-fat diets. Functional and pathological markers, expression and activation of endogenous TLR ligands [HSP70 (heat shock protein 70) and HMGB1], TLR1 to TLR11 and their downstream signaling pathway molecules (MyD88, IRAK-1, and IRF-3), nuclear factor κB (NF-κB) signaling pathway molecules (IKKβ, IκBα, and NF-κBp65), inflammatory cytokines [IL-6 (interleukin-6), MIP-2, MCP-1, CCL5, and VCAM-1 (vascular cell adhesion molecule-1)], and infiltration of inflammatory cells were systematically evaluated. The expression of HSP70 was significantly increased in diabetic pig kidneys. The expression of MyD88-dependent TLR2, TLR4, TLR5, TLR7, TLR8, and TLR11 and their downstream signaling molecules MyD88 and phospho-IRAK-1 (activated IRAK-1), as well as that of MyD88-independent TLR3 and TLR4 and their downstream signaling molecule phospho-IRF-3 (activated IRF-3), was significantly up-regulated. The expression and activation of NF-κB pathway molecules phospho-IKKβ, phospho-IκBα, NF-κBp65, and phospho-NF-κBp65 were significantly increased. Levels of IL-6, MIP-2, MCP-1, CCL5, VCAM-1, and macrophage marker CD68 were significantly increased in diabetic pig kidneys. These results suggested that the metabolic inflammation activated by TLRs might play an important role in diabetic renal injuries

  2. Cellular Specific Role of Toll-Like Receptor 4 in Hepatic Ischemia-Reperfusion Injury

    PubMed Central

    Nace, Gary W; Huang, Hai; Klune, John R; Eid, Raymond E; Rosborough, Brian R; Korff, Sebastian; Li, Shen; Shapiro, Richard A; Stolz, Donna B; Sodhi, Chhinder P; Hackam, David J; Geller, David A; Billiar, Timothy R; Tsung, Allan

    2013-01-01

    Ischemia-reperfusion (I/R) injury is a process whereby an initial hypoxic insult and subsequent return of blood flow leads to the propagation of innate immune responses and organ injury. The necessity of the pattern recognition receptor, toll-like receptor (TLR)-4, for this innate immune response has been previously shown. However, TLR4 is present on various cell types of the liver, both immune and non-immune cells. Therefore, we sought to determine the role of TLR4 in individual cell populations, specifically parenchymal hepatocytes, myeloid cells including Kupffer cells, and dendritic cells following hepatic I/R. When hepatocyte specific (Alb-TLR4-/-) and myeloid cell specific (Lyz-TLR4-/-) TLR4 knockout mice were subjected to warm hepatic ischemia there was significant protection in these mice compared to wild-type (WT). However, the protection afforded in these two strains was significantly less than global TLR4 specific TLR4 knockout (TLR4-/-) mice. Dendritic cell specific TLR4-/- (CD11c-TLR4-/-) mice had significantly increased hepatocellular damage compared to WT mice. Circulating levels of high mobility group box-1 (HMGB1) were significantly reduced in the Alb-TLR4-/- mice compared to WT, Lyz-TLR4-/-, CD11c-TLR4-/- mice and equivalent to global TLR4-/- mice, suggesting that TLR4 mediated HMGB1 release from hepatocytes may be a source of HMGB1 after I/R. Hepatocytes exposed to hypoxia responded by rapidly phosphorylating the mitogen-activated protein kinases JNK and p38 in a TLR4-dependent manner; inhibition of JNK decreased the release of HMGB1 after both hypoxia in vitro and I/R in vivo. Conclusion These results provide insight into the individual cellular response of TLR4. It was found that the parenchymal hepatocyte is an active participant in the sterile inflammatory response after I/R through TLR4-mediated activation of pro-inflammatory signaling and release of danger signals such as HMGB1. PMID:23460269

  3. Activation of toll-like receptor signaling pathways leading to nitric oxide-mediated antiviral responses.

    PubMed

    Abdul-Cader, Mohamed Sarjoon; Amarasinghe, Aruna; Abdul-Careem, Mohamed Faizal

    2016-08-01

    Toll-like receptors (TLRs), well-characterized pattern-recognizing receptors of the innate arm of the immune system, are vital in detecting pathogen-associated molecular patterns (PAMPs). The TLR-PAMP interaction initiates an intracellular signaling cascade, predominantly culminating in upregulation of antiviral components, including inducible nitric oxide synthase (iNOS). After activation, various TLR pathways can promote iNOS production via the myeloid differentiation primary response-88 (MyD-88) adapter protein. Subsequently, iNOS facilitates production of nitric oxide (NO), a highly reactive and potent antiviral molecule that can inhibit replication of RNA and DNA viruses. Furthermore, NO can diffuse freely across cell membranes and elicit antiviral mechanisms in various ways, including direct and indirect damage to viral genomes. This review emphasizes current knowledge of NO-mediated antiviral responses elicited after activation of TLR signaling pathways. PMID:27233799

  4. Toll-like receptor ligands sensitize B-cell receptor signalling by reducing actin-dependent spatial confinement of the receptor

    PubMed Central

    Freeman, Spencer A.; Jaumouillé, Valentin; Choi, Kate; Hsu, Brian E.; Wong, Harikesh S.; Abraham, Libin; Graves, Marcia L.; Coombs, Daniel; Roskelley, Calvin D.; Das, Raibatak; Grinstein, Sergio; Gold, Michael R.

    2015-01-01

    Integrating signals from multiple receptors allows cells to interpret the physiological context in which a signal is received. Here we describe a mechanism for receptor crosstalk in which receptor-induced increases in actin dynamics lower the threshold for signalling by another receptor. We show that the Toll-like receptor ligands lipopolysaccharide and CpG DNA, which are conserved microbial molecules, enhance signalling by the B-cell antigen receptor (BCR) by activating the actin-severing protein cofilin. Single-particle tracking reveals that increased severing of actin filaments reduces the spatial confinement of the BCR within the plasma membrane and increases BCR mobility. This allows more frequent collisions between BCRs and greater signalling in response to low densities of membrane-bound antigen. These findings implicate actin dynamics as a means of tuning receptor signalling and as a mechanism by which B cells distinguish inert antigens from those that are accompanied by indicators of microbial infection. PMID:25644899

  5. Toll-like receptor 8 deletion accelerates autoimmunity in a mouse model of lupus through a Toll-like receptor 7-dependent mechanism

    PubMed Central

    Tran, Ngoc Lan; Manzin-Lorenzi, Céline; Santiago-Raber, Marie-Laure

    2015-01-01

    Systemic lupus erythematosus is an autoimmune disorder characterized by increased levels of lymphocyte activation, antigen presentation by dendritic cells, and the formation of autoantibodies. This leads to immune complex-mediated glomerulonephritis. Toll-like receptor 7 (T7) and TLR9 localize to the endosomal compartment and play important roles in the generation of autoantibodies against nuclear components, as they recognize RNA and DNA, respectively. In contrast, very little is known about endogenous TLR8 activation in mice. We therefore tested whether TLR8 could affect autoimmune responses in a murine model of lupus. We introduced a Tlr8 null mutation into C57BL/6 mice congenic for the Nba2 (NZB autoimmunity 2) locus and bearing the Yaa (Y-linked autoimmune acceleration) mutation containing a tlr8 duplicated gene, and monitored disease development, autoantibody production, and glomerulonephritis-associated mortality. Cellular responses were investigated in female Nba2.TLR8−/− mice bearing no copy of tlr8. The TLR8 deficiency accelerated disease progression and mortality, increased the number of circulating antibodies and activated monocytes, and heightened cellular responses to TLR7 ligation. TLR8-deficient antigen-presenting cells exhibited increased levels of MHC class II expression. The ability of dendritic cells to present antigens to allogeneic T cells after TLR7 ligation was also improved by TLR8 deficiency. TLR8 deletion accelerated autoimmunity in lupus-prone mice in response to TLR7 activation. Antigen-presenting cell function seemed to play a key role in mediating the effects of TLR8 deficiency. PMID:25424423

  6. Lipopolysaccharides belonging to different Salmonella serovars are differentially capable of activating Toll-like receptor 4.

    PubMed

    Chessa, Daniela; Spiga, Luisella; De Riu, Nicola; Delaconi, Paola; Mazzarello, Vittorio; Ganau, Giulia; Rubino, Salvatore

    2014-11-01

    Salmonella enterica subsp. enterica serovar (serotype) Abortusovis is a member of the Enterobacteriaceae. This serotype is naturally restricted to ovine species and does not infect humans. Limited information is available about the immune response of sheep to S. Abortusovis. S. Abortusovis, like Salmonella enterica subsp. enterica serovar Typhi, causes a systemic infection in which, under natural conditions, animals are not able to raise a rapid immune response. Failure to induce the appropriate response allows pathogens to reach the placenta and results in an abortion. Lipopolysaccharides (LPSs) are pathogen-associated molecular patterns (PAMPs) that are specific to bacteria and are not synthesized by the host. Toll-like receptors (TLRs) are a family of receptors that specifically recognize PAMPs. As a first step, we were able to identify the presence of Toll-like receptor 4 (TLR4) on the ovine placenta by using an immunohistochemistry technique. To our knowledge, this is the first work describing the interaction between S. Abortusovis LPS and TLR4. Experiments using an embryonic cell line (HEK293) transfected with human and ovine TLR4s showed a reduction of interleukin 8 (IL-8) production by S. Abortusovis and Salmonella enterica subsp. enterica serovar Paratyphi upon LPS stimulation compared to Salmonella enterica subsp. enterica serovar Typhimurium. Identical results were observed using heat-killed bacteria instead of LPS. Based on data obtained with TLR4 in vitro stimulation, we demonstrated that the serotype S. Abortusovis is able to successfully evade the immune system whereas S. Typhimurium and other serovars fail to do so. PMID:25135686

  7. Toll-like receptor activation of XBP1 regulates innate immune responses in macrophages

    PubMed Central

    Martinon, Fabio; Chen, Xi; Lee, Ann-Hwee; Glimcher, Laurie H.

    2011-01-01

    Sensors of pathogens, such as Toll-like receptors (TLRs), detect microbes to activate transcriptional programs that orchestrate adaptive responses to specific insults. Here we report that TLR4 and TLR2 specifically activated the endoplasmic reticulum (ER)-stress sensor kinase IRE1α and its downstream target, the transcription factor XBP1. Previously described XBP1 ER stress target genes were not induced by TLR signaling. Instead, TLR-activated XBP1 was required for optimal and sustained production of proinflammatory cytokines in macrophages. Consistent with this finding, IRE1α activation by ER-stress synergized with TLR activation for cytokine production. Moreover, XBP1 deficiency markedly increased bacterial burden in animals infected with the TLR2-activating human pathogen Francisella tularensis. Our findings uncover an unsuspected critical new function for the XBP1 transcription factor in mammalian host defenses. PMID:20351694

  8. Innate Immune Sensing by Toll-like Receptors in Newborns and the Elderly

    PubMed Central

    Kollmann, Tobias R.; Levy, Ofer; Montgomery, Ruth R.; Goriely, Stanislas

    2012-01-01

    Summary Given the "inborn" nature of the innate immune system, it is surprising to find that innate immune function does in fact change with age. Similar patterns of distinct Toll-like receptor (TLR)-mediated immune responses come to light when one contrasts innate immune development at the beginning of life with that toward the end of life. Importantly, these developmental patterns of innate cytokine responses correlate with clinical patterns of susceptibility to disease: A heightened risk of suffering from excessive inflammation is often detected in prematurely born infants, disappears over the first few months of life, and reappears toward the end of life. In addition, risk periods for particular infections in early life reemerge in older adults. The near-mirror-image patterns that emerge in contrasts of early versus late innate immune ontogeny emphasize changes in host-environment interactions as the underlying molecular and teleologic drivers. PMID:23159225

  9. Toll-like receptor-mediated anti-inflammatory action of glaucine and oxoglaucine.

    PubMed

    Remichkova, Mimi; Dimitrova, Petya; Philipov, Stefan; Ivanovska, Nina

    2009-10-01

    Two isochinoline alkaloids, glaucine and oxoglaucine were investigated for their suggested anti-inflammatory influence concerning nitric oxide and cytokine production. Mouse peritoneal macrophages were stimulated with different Toll-like receptor (TLR) ligands such as LPS for TLR4, zymosan for TLR2 and CpG for TLR9. The alkaloids inhibited TNF-alpha and IL-6 production induced by these ligands. In regard to IL-12 suppressive effect was registered in the case of CpG stimulation. Glaucine succeeded to enhance LPS and zymosan-induced IL-10 production. The reduction of pro-inflammatory cytokines and increase of anti-inflammatory IL-10 are indicative for their use in different acute and chronic inflammatory diseases. PMID:19481591

  10. Modulation of Toll-like receptor signaling in innate immunity by natural products.

    PubMed

    Chen, Luxi; Yu, Jianhua

    2016-08-01

    For centuries, natural products and their derivatives have provided a rich source of compounds for the development of new immunotherapies in the treatment of human disease. Many of these compounds are currently undergoing clinical trials, particularly as anti-oxidative, anti-microbial, and anti-cancer agents. However, the function and mechanism of natural products in how they interact with our immune system has yet to be extensively explored. Natural immune modulators may provide the key to control and ultimately defeat disorders affecting the immune system. They can either up- or down-regulate the immune response with few undesired adverse effects. In this review, we summarize the recent advancements made in utilizing natural products for immunomodulation and their important molecular targets, members of the Toll-like receptor (TLR) family, in the innate immune system. PMID:26899347