Sample records for proteins regulate asymmetry

  1. A Cul-3-BTB ubiquitylation pathway regulates junctional levels and asymmetry of core planar polarity proteins

    PubMed Central

    Strutt, Helen; Searle, Elizabeth; Thomas-MacArthur, Victoria; Brookfield, Rosalind; Strutt, David

    2013-01-01

    The asymmetric localisation of core planar polarity proteins at apicolateral junctions is required to specify cell polarity in the plane of epithelia. This asymmetric distribution of the core proteins is proposed to require amplification of an initial asymmetry by feedback loops. In addition, generation of asymmetry appears to require the regulation of core protein levels, but the importance of such regulation and the underlying mechanisms is unknown. Here we show that ubiquitylation acts through more than one mechanism to control core protein levels in Drosophila, and that without this regulation cellular asymmetry is compromised. Levels of Dishevelled at junctions are regulated by a Cullin-3-Diablo/Kelch ubiquitin ligase complex, the activity of which is most likely controlled by neddylation. Furthermore, activity of the deubiquitylating enzyme Fat facets is required to maintain Flamingo levels at junctions. Notably, ubiquitylation does not alter the total cellular levels of Dishevelled or Flamingo, but only that of the junctional population. When junctional core protein levels are either increased or decreased by disruption of the ubiquitylation machinery, their asymmetric localisation is reduced and this leads to disruption of planar polarity at the tissue level. Loss of asymmetry by altered core protein levels can be explained by reference to feedback models for amplification of asymmetry. PMID:23487316

  2. Functional asymmetry of posture and body system regulation

    NASA Technical Reports Server (NTRS)

    Boloban, V. N.; Otsupok, A. P.

    1980-01-01

    The manifestation of functional asymmetry during the regulation of an athlete's posture and a system of bodies and its effect on the execution of individual and group acrobatic exercises were studied. Functional asymmetry of posture regulation was recorded in acrobats during the execution of individual and group exercises. It was shown that stability is maintained at the expense of bending and twisting motions. It is important to consider whether the functional asymmetry of posture regulation is left or right sided in making up pairs and groups of acrobats.

  3. Autotaxin/Lpar3 signaling regulates Kupffer's vesicle formation and left-right asymmetry in zebrafish.

    PubMed

    Lai, Shih-Lei; Yao, Wan-Ling; Tsao, Ku-Chi; Houben, Anna J S; Albers, Harald M H G; Ovaa, Huib; Moolenaar, Wouter H; Lee, Shyh-Jye

    2012-12-01

    Left-right (L-R) patterning is essential for proper organ morphogenesis and function. Calcium fluxes in dorsal forerunner cells (DFCs) are known to regulate the formation of Kupffer's vesicle (KV), a central organ for establishing L-R asymmetry in zebrafish. Here, we identify the lipid mediator lysophosphatidic acid (LPA) as a regulator of L-R asymmetry in zebrafish embryos. LPA is produced by Autotaxin (Atx), a secreted lysophospholipase D, and triggers various cellular responses through activation of specific G protein-coupled receptors (Lpar1-6). Knockdown of Atx or LPA receptor 3 (Lpar3) by morpholino oligonucleotides perturbed asymmetric gene expression in lateral plate mesoderm and disrupted organ L-R asymmetries, whereas overexpression of lpar3 partially rescued those defects in both atx and lpar3 morphants. Similar defects were observed in embryos treated with the Atx inhibitor HA130 and the Lpar1-3 inhibitor Ki16425. Knockdown of either Atx or Lpar3 impaired calcium fluxes in DFCs during mid-epiboly stage and compromised DFC cohesive migration, KV formation and ciliogenesis. Application of LPA to DFCs rescued the calcium signal and laterality defects in atx morphants. This LPA-dependent L-R asymmetry is mediated via Wnt signaling, as shown by the accumulation of β-catenin in nuclei at the dorsal side of both atx and lpar3 morphants. Our results suggest a major role for the Atx/Lpar3 signaling axis in regulating KV formation, ciliogenesis and L-R asymmetry via a Wnt-dependent pathway.

  4. Pegasus, the 'atypical' Ikaros family member, influences left-right asymmetry and regulates pitx2 expression.

    PubMed

    John, Liza B; Trengove, Monique C; Fraser, Fiona W; Yoong, Simon H; Ward, Alister C

    2013-05-01

    Members of the Ikaros family of zinc-finger transcription factors have been shown to be critical for immune and blood cell development. However, the role of the most divergent family member, Pegasus, has remained elusive, although it shows conservation to invertebrate Hunchback proteins that influence embryonic patterning through regulation of homeodomain genes. Zebrafish was employed as a relevant model to investigate the function of Pegasus since it possesses a single pegasus orthologue with high homology to its mammalian counterparts. During zebrafish embryogenesis pegasus transcripts were initially maternally-derived and later replaced by zygotic expression in the diencephalon, tectum, hindbrain, thymus, eye, and ultimately the exocrine pancreas and intestine. Morpholino-mediated knockdown of the zebrafish pegasus gene resulted in disrupted left-right asymmetry of the gut and pancreas. Molecular analysis indicated that zebrafish Pegasus localised to the nucleus in discrete non-nucleolar structures and bound the 'atypical' DNA sequence GN3GN2G, confirming its presumed role as a transcriptional regulator. In vivo transcriptome analysis identified candidate target genes, several of which encoded homeodomain transcription factors. One of these, pitx2, implicated in left-right asymmetry, possessed appropriate 'atypical' Pegasus binding sites in its promoter. Knockdown of Pegasus affected both the level and asymmetry of pitx2 expression, as well as disrupting the asymmetry of the lefty2 and spaw genes, explaining the perturbed left-right patterning in pegasus morphants. Collectively these results provide the first definitive insights into the in vivo role of Pegasus, supporting the notion that it acts as a broader regulator of development, with potential parallels to the related invertebrate Hunchback proteins. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. A nodal signaling pathway regulates the laterality of neuroanatomical asymmetries in the zebrafish forebrain.

    PubMed

    Concha, M L; Burdine, R D; Russell, C; Schier, A F; Wilson, S W

    2000-11-01

    Animals show behavioral asymmetries that are mediated by differences between the left and right sides of the brain. We report that the laterality of asymmetric development of the diencephalic habenular nuclei and the photoreceptive pineal complex is regulated by the Nodal signaling pathway and by midline tissue. Analysis of zebrafish embryos with compromised Nodal signaling reveals an early role for this pathway in the repression of asymmetrically expressed genes in the diencephalon. Later signaling mediated by the EGF-CFC protein One-eyed pinhead and the forkhead transcription factor Schmalspur is required to overcome this repression. When expression of Nodal pathway genes is either absent or symmetrical, neuroanatomical asymmetries are still established but are randomized. This indicates that Nodal signaling is not required for asymmetric development per se but is essential to determine the laterality of the asymmetry.

  6. Substrate Stiffness Regulates the Development of Left-Right Asymmetry in Cell Orientation.

    PubMed

    Bao, Yuanye; Huang, Yaozhun; Lam, Miu Ling; Xu, Ting; Zhu, Ninghao; Guo, Zhaobin; Cui, Xin; Lam, Raymond H W; Chen, Ting-Hsuan

    2016-07-20

    Left-right (LR) asymmetry of tissue/organ structure is a morphological feature essential for many tissue functions. The ability to incorporate the LR formation in constructing tissue/organ replacement is important for recapturing the inherent tissue structure and functions. However, how LR asymmetry is formed remains largely underdetermined, which creates significant hurdles to reproduce and regulate the formation of LR asymmetry in an engineering context. Here, we report substrate rigidity functioning as an effective switch that turns on the development of LR asymmetry. Using micropatterned cell-adherent stripes on rigid substrates, we found that cells collectively oriented at a LR-biased angle relative to the stripe boundary. This LR asymmetry was initiated by a LR-biased migration of cells at stripe boundary, which later generated a velocity gradient propagating from stripe boundary to the center. After a series of cell translocations and rotations, ultimately, an LR-biased cell orientation within the micropatterned stripe was formed. Importantly, this initiation and propagation of LR asymmetry was observed only on rigid but not on soft substrates, suggesting that the LR asymmetry was regulated by rigid substrate probably through the organization of actin cytoskeleton. Together, we demonstrated substrate rigidity as a determinant factor that mediates the self-organizing LR asymmetry being unfolded from single cells to multicellular organization. More broadly, we anticipate that our findings would pave the way for rebuilding artificial tissue constructs with inherent LR asymmetry in the future.

  7. Myosin1D is an evolutionarily conserved regulator of animal left-right asymmetry.

    PubMed

    Juan, Thomas; Géminard, Charles; Coutelis, Jean-Baptiste; Cerezo, Delphine; Polès, Sophie; Noselli, Stéphane; Fürthauer, Maximilian

    2018-05-16

    The establishment of left-right (LR) asymmetry is fundamental to animal development, but the identification of a unifying mechanism establishing laterality across different phyla has remained elusive. A cilia-driven, directional fluid flow is important for symmetry breaking in numerous vertebrates, including zebrafish. Alternatively, LR asymmetry can be established independently of cilia, notably through the intrinsic chirality of the acto-myosin cytoskeleton. Here, we show that Myosin1D (Myo1D), a previously identified regulator of Drosophila LR asymmetry, is essential for the formation and function of the zebrafish LR organizer (LRO), Kupffer's vesicle (KV). Myo1D controls the orientation of LRO cilia and interacts functionally with the planar cell polarity (PCP) pathway component VanGogh-like2 (Vangl2), to shape a productive LRO flow. Our findings identify Myo1D as an evolutionarily conserved regulator of animal LR asymmetry, and show that functional interactions between Myo1D and PCP are central to the establishment of animal LR asymmetry.

  8. The 14-3-3 protein PAR-5 regulates the asymmetric localization of the LET-99 spindle positioning protein.

    PubMed

    Wu, Jui-Ching; Espiritu, Eugenel B; Rose, Lesilee S

    2016-04-15

    PAR proteins play important roles in establishing cytoplasmic polarity as well as regulating spindle positioning during asymmetric division. However, the molecular mechanisms by which the PAR proteins generate asymmetry in different cell types are still being elucidated. Previous studies in Caenorhabditis elegans revealed that PAR-3 and PAR-1 regulate the asymmetric localization of LET-99, which in turn controls spindle positioning by affecting the distribution of the conserved force generating complex. In wild-type embryos, LET-99 is localized in a lateral cortical band pattern, via inhibition at the anterior by PAR-3 and at the posterior by PAR-1. In this report, we show that the 14-3-3 protein PAR-5 is also required for cortical LET-99 asymmetry. PAR-5 associated with LET-99 in pull-down assays, and two PAR-5 binding sites were identified in LET-99 using the yeast two-hybrid assay. Mutation of these sites abolished binding in yeast and altered LET-99 localization in vivo: LET-99 was present at the highest levels at the posterior pole of the embryo instead of a band in par-5 embryos. Together the results indicate that PAR-5 acts in a mechanism with PAR-1 to regulate LET-99 cortical localization. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The 14-3-3 Protein PAR-5 Regulates the Asymmetric localization of the LET-99 Spindle Positioning Protein

    PubMed Central

    Rose, Lesilee S.

    2016-01-01

    PAR proteins play important roles in establishing cytoplasmic polarity as well as regulating spindle positioning during asymmetric division. However, the molecular mechanisms by which the PAR proteins generate asymmetry in different cell types are still being elucidated. Previous studies in C. elegans revealed that PAR-3 and PAR-1 regulate the asymmetric localization of LET-99, which in turn controls spindle positioning by affecting the distribution of the conserved force generating complex. In wild-type embryos, LET-99 is localized in a lateral cortical band pattern, via inhibition at the anterior by PAR-3 and at the posterior by PAR-1. In this report, we show that the 14-3-3 protein PAR-5 is also required for cortical LET-99 asymmetry. PAR-5 associated with LET-99 in pull-down assays, and two PAR-5 binding sites were identified in LET-99 using the yeast two-hybrid assay. Mutation of these sites abolished binding in yeast and altered LET-99 localization in vivo: LET-99 was present at the highest levels at the posterior pole of the embryo instead of a band in par-5 embryos. Together the results indicate that PAR-5 acts in a mechanism with PAR-1 to regulate LET-99 cortical localization. PMID:26921457

  10. Calmodulin binds to inv protein: implication for the regulation of inv function.

    PubMed

    Yasuhiko, Y; Imai, F; Ookubo, K; Takakuwa, Y; Shiokawa, K; Yokoyama, T

    2001-12-01

    Establishment of the left-right asymmetry of internal organs is essential for the normal development of vertebrates. The inv mutant in mice shows a constant reversal of left-right asymmetry and although the inv gene has been cloned, its biochemical and cell biological functions have not been defined. Here, we show that calmodulin binds to mouse inv protein at two sites (IQ1 and IQ2). The binding of calmodulin to the IQ2 site occurs in the absence of Ca(2+) and is not observed in the presence of Ca(2+). Injection of mouse inv mRNA into the right blastomere of Xenopus embryos at the two-cell stage randomized the left-right asymmetry of the embryo and altered the patterns of Xnr-1 and Pitx2 expression. Importantly, inv mRNA that lacked the region encoding the IQ2 site was unable to randomize left-right asymmetry in Xenopus embryos, implying that the IQ2 site is essential for inv to randomize left-right asymmetry in Xenopus. These results suggest that calmodulin binding may regulate inv function. Based on our findings, we propose a model for the regulation of inv function by calcium-calmodulin and discuss its implications.

  11. TGFβ signaling in establishing left-right asymmetry.

    PubMed

    Shiratori, Hidetaka; Hamada, Hiroshi

    2014-08-01

    Two TGFβ-related proteins, Nodal and Lefty, are asymmetrically expressed and play central roles in establishing left-right (L-R) asymmetry of our body. Nodal acts as a left-side determinant whereas Lefty restricts Nodal activity to the left side by acting as a feedback inhibitor of Nodal. While the mechanism for symmetry breaking is variable among animals, the pair of Nodal and Lefty has a conserved role in the L-R asymmetry pathway. Function and regulation of Nodal and Lefty have been revealed in the last decades, but in this review we summarize the role of TGFβ-related proteins together with more recent findings. We mainly discuss observations made with mouse embryos, unless indicated otherwise. Copyright © 2014. Published by Elsevier Ltd.

  12. Cholesterol asymmetry in synaptic plasma membranes.

    PubMed

    Wood, W Gibson; Igbavboa, Urule; Müller, Walter E; Eckert, Gunter P

    2011-03-01

    Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: (i) chronic ethanol consumption; (ii) statins; (iii) aging; and (iv) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, P-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  13. Individual differences in automatic emotion regulation affect the asymmetry of the LPP component.

    PubMed

    Zhang, Jing; Zhou, Renlai

    2014-01-01

    The main goal of this study was to investigate how automatic emotion regulation altered the hemispheric asymmetry of ERPs elicited by emotion processing. We examined the effect of individual differences in automatic emotion regulation on the late positive potential (LPP) when participants were viewing blocks of positive high arousal, positive low arousal, negative high arousal and negative low arousal pictures from International affect picture system (IAPS). Two participant groups were categorized by the Emotion Regulation-Implicit Association Test which has been used in previous research to identify two groups of participants with automatic emotion control and with automatic emotion express. The main finding was that automatic emotion express group showed a right dominance of the LPP component at posterior electrodes, especially in high arousal conditions. But no right dominance of the LPP component was observed for automatic emotion control group. We also found the group with automatic emotion control showed no differences in the right posterior LPP amplitude between high- and low-arousal emotion conditions, while the participants with automatic emotion express showed larger LPP amplitude in the right posterior in high-arousal conditions compared to low-arousal conditions. This result suggested that AER (Automatic emotion regulation) modulated the hemispheric asymmetry of LPP on posterior electrodes and supported the right hemisphere hypothesis.

  14. The V-ATPase accessory protein Atp6ap1b mediates dorsal forerunner cell proliferation and left-right asymmetry in zebrafish.

    PubMed

    Gokey, Jason J; Dasgupta, Agnik; Amack, Jeffrey D

    2015-11-01

    Asymmetric fluid flows generated by motile cilia in a transient 'organ of asymmetry' are involved in establishing the left-right (LR) body axis during embryonic development. The vacuolar-type H(+)-ATPase (V-ATPase) proton pump has been identified as an early factor in the LR pathway that functions prior to cilia, but the role(s) for V-ATPase activity are not fully understood. In the zebrafish embryo, the V-ATPase accessory protein Atp6ap1b is maternally supplied and expressed in dorsal forerunner cells (DFCs) that give rise to the ciliated organ of asymmetry called Kupffer's vesicle (KV). V-ATPase accessory proteins modulate V-ATPase activity, but little is known about their functions in development. We investigated Atp6ap1b and V-ATPase in KV development using morpholinos, mutants and pharmacological inhibitors. Depletion of both maternal and zygotic atp6ap1b expression reduced KV organ size, altered cilia length and disrupted LR patterning of the embryo. Defects in other ciliated structures-neuromasts and olfactory placodes-suggested a broad role for Atp6ap1b during development of ciliated organs. V-ATPase inhibitor treatments reduced KV size and identified a window of development in which V-ATPase activity is required for proper LR asymmetry. Interfering with Atp6ap1b or V-ATPase function reduced the rate of DFC proliferation, which resulted in fewer ciliated cells incorporating into the KV organ. Analyses of pH and subcellular V-ATPase localizations suggested Atp6ap1b functions to localize the V-ATPase to the plasma membrane where it regulates proton flux and cytoplasmic pH. These results uncover a new role for the V-ATPase accessory protein Atp6ap1b in early development to maintain the proliferation rate of precursor cells needed to construct a ciliated KV organ capable of generating LR asymmetry. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Emotion and resilience: a multilevel investigation of hemispheric electroencephalogram asymmetry and emotion regulation in maltreated and nonmaltreated children.

    PubMed

    Curtis, W John; Cicchetti, Dante

    2007-01-01

    The current study was a multilevel investigation of resilience, emotion regulation, and hemispheric electroencephalogram (EEG) asymmetry in a sample of maltreated and nonmaltreated school age children. It was predicted that the positive emotionality and increased emotion regulatory ability associated with resilient functioning would be associated with relatively greater left frontal EEG activity. The study also investigated differences in pathways to resilience between maltreated and nonmaltreated children. The findings indicated that EEG asymmetry across central cortical regions distinguished between resilient and nonresilient children, with greater left hemisphere activity characterizing those who were resilient. In addition, nonmaltreated children showed greater left hemisphere EEG activity across parietal cortical regions. There was also a significant interaction between resilience, maltreatment status, and gender for asymmetry at anterior frontal electrodes, where nonmaltreated resilient females had greater relative left frontal activity compared to more right frontal activity exhibited by resilient maltreated females. An observational measure of emotion regulation significantly contributed to the prediction of resilience in the maltreated and nonmaltreated children, but EEG asymmetry in central cortical regions independently predicted resilience only in the maltreated group. The findings are discussed in terms of their meaning for the development of resilient functioning.

  16. Left‐right asymmetry in the light of TOR: An update on what we know so far

    PubMed Central

    Casar Tena, Teresa

    2015-01-01

    The internal left‐right (LR) asymmetry is a characteristic that exists throughout the animal kingdom from roundworms over flies and fish to mammals. Cilia, which are antenna‐like structures protruding into the extracellular space, are involved in establishing LR asymmetry during early development. Humans who suffer from dysfunctional cilia often develop conditions such as heterotaxy, where internal organs appear to be placed randomly. As a consequence to this failure in asymmetry development, serious complications such as congenital heart defects (CHD) occur. The mammalian (or mechanistic) target of rapamycin (mTOR) pathway has recently emerged as an important regulator regarding symmetry breaking. The mTOR pathway governs fundamental processes such as protein translation or metabolism. Its activity can be transduced by two complexes, which are called TORC1 and TORC2, respectively. So far, only TORC1 has been implicated with asymmetry development and appears to require very precise regulation. A number of recent papers provided evidence that dysregulated TORC1 results in alterations of motile cilia and asymmetry defects. In here, we give an update on what we know so far of mTORC1 in LR asymmetry development. PMID:25943139

  17. A longitudinal study of emotion regulation and anxiety in middle childhood: Associations with frontal EEG asymmetry in early childhood.

    PubMed

    Hannesdóttir, Dagmar Kr; Doxie, Jacquelyn; Bell, Martha Ann; Ollendick, Thomas H; Wolfe, Christy D

    2010-03-01

    We investigated whether brain electrical activity during early childhood was associated with anxiety symptoms and emotion regulation during a stressful situation during middle childhood. Frontal electroencephalogram (EEG) asymmetries were measured during baseline and during a cognitive control task at 4 1/2 years. Anxiety and emotion regulation were assessed during a stressful situation at age 9 (speech task), along with measures of heart rate (HR) and heart rate variability (HRV). Questionnaires were also used to assess anxiety and emotion regulation at age 9. Results from this longitudinal study indicated that children who exhibited right frontal asymmetry in early childhood experienced more physiological arousal (increased HR, decreased HRV) during the speech task at age 9 and less ability to regulate their emotions as reported by their parents. Findings are discussed in light of the associations between temperament and development of anxiety disorders.

  18. Asymmetry in the epithalamus of vertebrates

    PubMed Central

    L. CONCHA, MIGUEL; W. WILSON, STEPHEN

    2001-01-01

    The epithalamus is a major subdivision of the diencephalon constituted by the habenular nuclei and pineal complex. Structural asymmetries in this region are widespread amongst vertebrates and involve differences in size, neuronal organisation, neurochemistry and connectivity. In species that possess a photoreceptive parapineal organ, this structure projects asymmetrically to the left habenula, and in teleosts it is also situated on the left side of the brain. Asymmetries in size between the left and right sides of the habenula are often associated with asymmetries in neuronal organisation, although these two types of asymmetry follow different evolutionary courses. While the former is more conspicuous in fishes (with the exception of teleosts), asymmetries in neuronal organisation are more robust in amphibia and reptiles. Connectivity of the parapineal organ with the left habenula is not always coupled with asymmetries in habenular size and/or neuronal organisation suggesting that, at least in some species, assignment of parapineal and habenular asymmetries may be independent events. The evolutionary origins of epithalamic structures are uncertain but asymmetry in this region is likely to have existed at the origin of the vertebrate, perhaps even the chordate, lineage. In at least some extant vertebrate species, epithalamic asymmetries are established early in development, suggesting a genetic regulation of asymmetry. In some cases, epigenetic factors such as hormones also influence the development of sexually dimorphic habenular asymmetries. Although the genetic and developmental mechanisms by which neuroanatomical asymmetries are established remain obscure, some clues regarding the mechanisms underlying laterality decisions have recently come from studies in zebrafish. The Nodal signalling pathway regulates laterality by biasing an otherwise stochastic laterality decision to the left side of the epithalamus. This genetic mechanism ensures a consistency of

  19. The V-ATPase accessory protein Atp6ap1b mediates dorsal forerunner cell proliferation and left-right asymmetry in zebrafish

    PubMed Central

    Gokey, Jason J.; Dasgupta, Agnik; Amack, Jeffrey D.

    2015-01-01

    Asymmetric fluid flows generated by motile cilia in a transient ‘organ of asymmetry’ are involved in establishing the left-right (LR) body axis during embryonic development. The vacuolar-type H+-ATPase (V-ATPase) proton pump has been identified as an early factor in the LR pathway that functions prior to cilia, but the role(s) for V-ATPase activity are not fully understood. In the zebrafish embryo, the V-ATPase accessory protein Atp6ap1b is maternally supplied and expressed in dorsal forerunner cells (DFCs) that give rise to the ciliated organ of asymmetry called Kupffer’s vesicle (KV). V-ATPase accessory proteins modulate V-ATPase activity, but little is known about their functions in development. We investigated Atp6ap1b and V-ATPase in KV development using morpholinos, mutants and pharmacological inhibitors. Depletion of both maternal and zygotic atp6ap1b expression reduced KV organ size, altered cilia length and disrupted LR patterning of the embryo. Defects in other ciliated structures—neuromasts and olfactory placodes—suggested a broad role for Atp6ap1b during development of ciliated organs. V-ATPase inhibitor treatments reduced KV size and identified a window of development in which V-ATPase activity is required for proper LR asymmetry. Interfering with Atp6ap1b or V-ATPase function reduced the rate of DFC proliferation, which resulted in fewer ciliated cells incorporating into the KV organ. Analyses of pH and subcellular V-ATPase localizations suggested Atp6ap1b functions to localize the V-ATPase to the plasma membrane where it regulates proton flux and cytoplasmic pH. These results uncover a new role for the V-ATPase accessory protein Atp6ap1b in early development to maintain the proliferation rate of precursor cells needed to construct a ciliated KV organ capable of generating LR asymmetry. PMID:26254189

  20. From cytoskeletal dynamics to organ asymmetry: a nonlinear, regulative pathway underlies left-right patterning.

    PubMed

    McDowell, Gary; Rajadurai, Suvithan; Levin, Michael

    2016-12-19

    Consistent left-right (LR) asymmetry is a fundamental aspect of the bodyplan across phyla, and errors of laterality form an important class of human birth defects. Its molecular underpinning was first discovered as a sequential pathway of left- and right-sided gene expression that controlled positioning of the heart and visceral organs. Recent data have revised this picture in two important ways. First, the physical origin of chirality has been identified; cytoskeletal dynamics underlie the asymmetry of single-cell behaviour and patterning of the LR axis. Second, the pathway is not linear: early disruptions that alter the normal sidedness of upstream asymmetric genes do not necessarily induce defects in the laterality of the downstream genes or in organ situs Thus, the LR pathway is a unique example of two fascinating aspects of biology: the interplay of physics and genetics in establishing large-scale anatomy, and regulative (shape-homeostatic) pathways that correct molecular and anatomical errors over time. Here, we review aspects of asymmetry from its intracellular, cytoplasmic origins to the recently uncovered ability of the LR control circuitry to achieve correct gene expression and morphology despite reversals of key 'determinant' genes. We provide novel functional data, in Xenopus laevis, on conserved elements of the cytoskeleton that drive asymmetry, and comparatively analyse it together with previously published results in the field. Our new observations and meta-analysis demonstrate that despite aberrant expression of upstream regulatory genes, embryos can progressively normalize transcriptional cascades and anatomical outcomes. LR patterning can thus serve as a paradigm of how subcellular physics and gene expression cooperate to achieve developmental robustness of a body axis.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Author(s).

  1. Left-right asymmetry in the light of TOR: An update on what we know so far.

    PubMed

    Casar Tena, Teresa; Burkhalter, Martin D; Philipp, Melanie

    2015-09-01

    The internal left-right (LR) asymmetry is a characteristic that exists throughout the animal kingdom from roundworms over flies and fish to mammals. Cilia, which are antenna-like structures protruding into the extracellular space, are involved in establishing LR asymmetry during early development. Humans who suffer from dysfunctional cilia often develop conditions such as heterotaxy, where internal organs appear to be placed randomly. As a consequence to this failure in asymmetry development, serious complications such as congenital heart defects (CHD) occur. The mammalian (or mechanistic) target of rapamycin (mTOR) pathway has recently emerged as an important regulator regarding symmetry breaking. The mTOR pathway governs fundamental processes such as protein translation or metabolism. Its activity can be transduced by two complexes, which are called TORC1 and TORC2, respectively. So far, only TORC1 has been implicated with asymmetry development and appears to require very precise regulation. A number of recent papers provided evidence that dysregulated TORC1 results in alterations of motile cilia and asymmetry defects. In here, we give an update on what we know so far of mTORC1 in LR asymmetry development. © 2015 The Authors. Biology of the Cell published by John Wiley & Sons Ltd on behalf of Société Française des Microscopies and Société de Biologie Cellulaire de France.

  2. Regulation of branching dynamics by axon-intrinsic asymmetries in Tyrosine Kinase Receptor signaling

    PubMed Central

    Zschätzsch, Marlen; Oliva, Carlos; Langen, Marion; De Geest, Natalie; Özel, Mehmet Neset; Williamson, W Ryan; Lemon, William C; Soldano, Alessia; Munck, Sebastian; Hiesinger, P Robin; Sanchez-Soriano, Natalia; Hassan, Bassem A

    2014-01-01

    Axonal branching allows a neuron to connect to several targets, increasing neuronal circuit complexity. While axonal branching is well described, the mechanisms that control it remain largely unknown. We find that in the Drosophila CNS branches develop through a process of excessive growth followed by pruning. In vivo high-resolution live imaging of developing brains as well as loss and gain of function experiments show that activation of Epidermal Growth Factor Receptor (EGFR) is necessary for branch dynamics and the final branching pattern. Live imaging also reveals that intrinsic asymmetry in EGFR localization regulates the balance between dynamic and static filopodia. Elimination of signaling asymmetry by either loss or gain of EGFR function results in reduced dynamics leading to excessive branch formation. In summary, we propose that the dynamic process of axon branch development is mediated by differential local distribution of signaling receptors. DOI: http://dx.doi.org/10.7554/eLife.01699.001 PMID:24755286

  3. From cytoskeletal dynamics to organ asymmetry: a nonlinear, regulative pathway underlies left–right patterning

    PubMed Central

    Rajadurai, Suvithan

    2016-01-01

    Consistent left–right (LR) asymmetry is a fundamental aspect of the bodyplan across phyla, and errors of laterality form an important class of human birth defects. Its molecular underpinning was first discovered as a sequential pathway of left- and right-sided gene expression that controlled positioning of the heart and visceral organs. Recent data have revised this picture in two important ways. First, the physical origin of chirality has been identified; cytoskeletal dynamics underlie the asymmetry of single-cell behaviour and patterning of the LR axis. Second, the pathway is not linear: early disruptions that alter the normal sidedness of upstream asymmetric genes do not necessarily induce defects in the laterality of the downstream genes or in organ situs. Thus, the LR pathway is a unique example of two fascinating aspects of biology: the interplay of physics and genetics in establishing large-scale anatomy, and regulative (shape-homeostatic) pathways that correct molecular and anatomical errors over time. Here, we review aspects of asymmetry from its intracellular, cytoplasmic origins to the recently uncovered ability of the LR control circuitry to achieve correct gene expression and morphology despite reversals of key ‘determinant’ genes. We provide novel functional data, in Xenopus laevis, on conserved elements of the cytoskeleton that drive asymmetry, and comparatively analyse it together with previously published results in the field. Our new observations and meta-analysis demonstrate that despite aberrant expression of upstream regulatory genes, embryos can progressively normalize transcriptional cascades and anatomical outcomes. LR patterning can thus serve as a paradigm of how subcellular physics and gene expression cooperate to achieve developmental robustness of a body axis. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821521

  4. Regulation of endoderm formation and left-right asymmetry by miR-92 during early zebrafish development

    PubMed Central

    Li, Nan; Wei, Chunyao; Olena, Abigail F.; Patton, James G.

    2011-01-01

    microRNAs (miRNAs) are a family of 21-23 nucleotide endogenous non-coding RNAs that post-transcriptionally regulate gene expression in a sequence-specific manner. Typically, miRNAs downregulate target genes by recognizing and recruiting protein complexes to 3′UTRs, followed by translation repression or mRNA degradation. miR-92 is a well-studied oncogene in mammalian systems. Here, using zebrafish as a model system, we uncovered a novel tissue-inductive role for miR-92 during early vertebrate development. Overexpression resulted in reduced endoderm formation during gastrulation with consequent cardia and viscera bifida. By contrast, depletion of miR-92 increased endoderm formation, which led to abnormal Kupffer's vesicle development and left-right patterning defects. Using target prediction algorithms and reporter constructs, we show that gata5 is a target of miR-92. Alteration of gata5 levels reciprocally mirrored the effects of gain and loss of function of miR-92. Moreover, genetic epistasis experiments showed that miR-92-mediated defects could be substantially suppressed by modulating gata5 levels. We propose that miR-92 is a critical regulator of endoderm formation and left-right asymmetry during early zebrafish development and provide the first evidence for a regulatory function for gata5 in the formation of Kupffer's vesicle and left-right patterning. PMID:21447552

  5. The Bmp signaling pathway regulates development of left-right asymmetry in amphioxus.

    PubMed

    Soukup, Vladimir; Kozmik, Zbynek

    2018-02-01

    Establishment of asymmetry along the left-right (LR) body axis in vertebrates requires interplay between Nodal and Bmp signaling pathways. In the basal chordate amphioxus, the left-sided activity of the Nodal signaling has been attributed to the asymmetric morphogenesis of paraxial structures and pharyngeal organs, however the role of Bmp signaling in LR asymmetry establishment has not been addressed to date. Here, we show that Bmp signaling is necessary for the development of LR asymmetric morphogenesis of amphioxus larvae through regulation of Nodal signaling. Loss of Bmp signaling results in loss of the left-sided expression of Nodal, Gdf1/3, Lefty and Pitx and in gain of ectopic expression of Cerberus on the left side. As a consequence, the larvae display loss of the offset arrangement of axial structures, loss of the left-sided pharyngeal organs including the mouth, and ectopic development of the right-sided organs on the left side. Bmp inhibition thus phenocopies inhibition of Nodal signaling and results in the right isomerism. We conclude that Bmp and Nodal pathways act in concert to specify the left side and that Bmp signaling plays a fundamental role during LR development in amphioxus. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The N- or C-terminal domains of DSH-2 can activate the C. elegans Wnt/β-catenin asymmetry pathway

    PubMed Central

    King, Ryan S.; Maiden, Stephanie L.; Hawkins, Nancy C.; Kidd, Ambrose R.; Kimble, Judith; Hardin, Jeff; Walston, Timothy D.

    2015-01-01

    Dishevelleds are modular proteins that lie at the crossroads of divergent Wnt signaling pathways. The DIX domain of dishevelleds modulates a β-catenin destruction complex, and thereby mediates cell fate decisions through differential activation of Tcf transcription factors. The DEP domain of dishevelleds mediates planar polarity of cells within a sheet through regulation of actin modulators. In Caenorhabditis elegans asymmetric cell fate decisions are regulated by asymmetric localization of signaling components in a pathway termed the Wnt/β-catenin asymmetry pathway. Which domain(s) of Disheveled regulate this pathway is unknown. We show that C. elegans embryos from dsh-2(or302) mutant mothers fail to successfully undergo morphogenesis, but transgenes containing either the DIX or the DEP domain of DSH-2 are sufficient to rescue the mutant phenotype. Embryos lacking zygotic function of SYS-1/β-catenin, WRM-1/β-catenin, or POP-1/Tcf show defects similar to dsh-2 mutants, including a loss of asymmetry in some cell fate decisions. Removal of two dishevelleds (dsh-2 and mig-5) leads to a global loss of POP-1 asymmetry, which can be rescued by addition of transgenes containing either the DIX or DEP domain of DSH-2. These results indicate that either the DIX or DEP domain of DSH-2 is capable of activating the Wnt/β-catenin asymmetry pathway and regulating anterior–posterior fate decisions required for proper morphogenesis. PMID:19298786

  7. PDB-NMA of a protein homodimer reproduces distinct experimental motility asymmetry.

    PubMed

    Tirion, Monique M; Ben-Avraham, Daniel

    2018-01-16

    We have extended our analytically derived PDB-NMA formulation, Atomic Torsional Modal Analysis or ATMAN (Tirion and ben-Avraham 2015 Phys. Rev. E 91 032712), to include protein dimers using mixed internal and Cartesian coordinates. A test case on a 1.3 [Formula: see text] resolution model of a small homodimer, ActVA-ORF6, consisting of two 112-residue subunits identically folded in a compact 50 [Formula: see text] sphere, reproduces the distinct experimental Debye-Waller motility asymmetry for the two chains, demonstrating that structure sensitively selects vibrational signatures. The vibrational analysis of this PDB entry, together with biochemical and crystallographic data, demonstrates the cooperative nature of the dimeric interaction of the two subunits and suggests a mechanical model for subunit interconversion during the catalytic cycle.

  8. PDB-NMA of a protein homodimer reproduces distinct experimental motility asymmetry

    NASA Astrophysics Data System (ADS)

    Tirion, Monique M.; ben-Avraham, Daniel

    2018-03-01

    We have extended our analytically derived PDB-NMA formulation, Atomic Torsional Modal Analysis or ATMAN (Tirion and ben-Avraham 2015 Phys. Rev. E 91 032712), to include protein dimers using mixed internal and Cartesian coordinates. A test case on a 1.3 {\\mathringA} resolution model of a small homodimer, ActVA-ORF6, consisting of two 112-residue subunits identically folded in a compact 50 {\\mathringA} sphere, reproduces the distinct experimental Debye-Waller motility asymmetry for the two chains, demonstrating that structure sensitively selects vibrational signatures. The vibrational analysis of this PDB entry, together with biochemical and crystallographic data, demonstrates the cooperative nature of the dimeric interaction of the two subunits and suggests a mechanical model for subunit interconversion during the catalytic cycle.

  9. Ccdc11 is a novel centriolar satellite protein essential for ciliogenesis and establishment of left-right asymmetry.

    PubMed

    Silva, Erica; Betleja, Ewelina; John, Emily; Spear, Philip; Moresco, James J; Zhang, Siwei; Yates, John R; Mitchell, Brian J; Mahjoub, Moe R

    2016-01-01

    The establishment of left-right (L-R) asymmetry in vertebrates is dependent on the sensory and motile functions of cilia during embryogenesis. Mutations in CCDC11 disrupt L-R asymmetry and cause congenital heart disease in humans, yet the molecular and cellular functions of the protein remain unknown. Here we demonstrate that Ccdc11 is a novel component of centriolar satellites-cytoplasmic granules that serve as recruitment sites for proteins destined for the centrosome and cilium. Ccdc11 interacts with core components of satellites, and its loss disrupts the subcellular organization of satellite proteins and perturbs primary cilium assembly. Ccdc11 colocalizes with satellite proteins in human multiciliated tracheal epithelia, and its loss inhibits motile ciliogenesis. Similarly, depletion of CCDC11 in Xenopus embryos causes defective assembly and motility of cilia in multiciliated epidermal cells. To determine the role of CCDC11 during vertebrate development, we generated mutant alleles in zebrafish. Loss of CCDC11 leads to defective ciliogenesis in the pronephros and within the Kupffer's vesicle and results in aberrant L-R axis determination. Our results highlight a critical role for Ccdc11 in the assembly and function of motile cilia and implicate centriolar satellite-associated proteins as a new class of proteins in the pathology of L-R patterning and congenital heart disease. © 2016 Silva, Betleja, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Structural symmetry and protein function.

    PubMed

    Goodsell, D S; Olson, A J

    2000-01-01

    The majority of soluble and membrane-bound proteins in modern cells are symmetrical oligomeric complexes with two or more subunits. The evolutionary selection of symmetrical oligomeric complexes is driven by functional, genetic, and physicochemical needs. Large proteins are selected for specific morphological functions, such as formation of rings, containers, and filaments, and for cooperative functions, such as allosteric regulation and multivalent binding. Large proteins are also more stable against denaturation and have a reduced surface area exposed to solvent when compared with many individual, smaller proteins. Large proteins are constructed as oligomers for reasons of error control in synthesis, coding efficiency, and regulation of assembly. Symmetrical oligomers are favored because of stability and finite control of assembly. Several functions limit symmetry, such as interaction with DNA or membranes, and directional motion. Symmetry is broken or modified in many forms: quasisymmetry, in which identical subunits adopt similar but different conformations; pleomorphism, in which identical subunits form different complexes; pseudosymmetry, in which different molecules form approximately symmetrical complexes; and symmetry mismatch, in which oligomers of different symmetries interact along their respective symmetry axes. Asymmetry is also observed at several levels. Nearly all complexes show local asymmetry at the level of side chain conformation. Several complexes have reciprocating mechanisms in which the complex is asymmetric, but, over time, all subunits cycle through the same set of conformations. Global asymmetry is only rarely observed. Evolution of oligomeric complexes may favor the formation of dimers over complexes with higher cyclic symmetry, through a mechanism of prepositioned pairs of interacting residues. However, examples have been found for all of the crystallographic point groups, demonstrating that functional need can drive the evolution of

  11. Light-regulated root gravitropism: a role for, and characterization of, a calcium/calmodulin-dependent protein kinase homolog

    NASA Technical Reports Server (NTRS)

    Lu, Y. T.; Feldman, L. J.

    1997-01-01

    Roots of many species grow downward (orthogravitropism) only when illuminated. Previous work suggests that this is a calcium-regulated response and that both calmodulin and calcium/calmodulin-dependent kinases participate in transducing gravity and light stimuli. A genomic sequence has been obtained for a calcium/calmodulin-dependent kinase homolog (MCK1) expressed in root caps, the site of perception for both light and gravity. This homolog consists of 7265 base pairs and contains 11 exons and 10 introns. Since MCK1 is expressed constitutively in both light and dark, it is unlikely that the light directly affects MCK1 expression, though the activity of the protein may be affected by light. In cultivars showing light-regulated gravitropism, we hypothesize that MCK1, or a homolog, functions in establishing the auxin asymmetry necessary for orthogravitropism.

  12. The protocadherin 11X/Y (PCDH11X/Y) gene pair as determinant of cerebral asymmetry in modern Homo sapiens.

    PubMed

    Priddle, Thomas H; Crow, Timothy J

    2013-06-01

    Annett's right-shift theory proposes that human cerebral dominance (the functional and anatomical asymmetry or torque along the antero-posterior axis) and handedness are determined by a single "right-shift" gene. Familial transmission of handedness and specific deviations of cerebral dominance in sex chromosome aneuploidies implicate a locus within an X-Y homologous region of the sex chromosomes. The Xq21.3/Yp11.2 human-specific region of homology includes the protocadherin 11X/Y (PCDH11X/Y) gene pair, which encode cell adhesion molecules subject to accelerated evolution following the separation of the human and chimpanzee lineages six million years ago. PCDH11X and PCDH11Y, differentially regulated by retinoic acid, are highly expressed in the ventricular zone, subplate, and cortical plate of the developing cerebral cortex. Both proteins interact with β-catenin, a protein that plays a role in determining axis formation and regulating cortical size. In this way, the PCDH11X/Y gene pair determines cerebral asymmetry by initiating the right shift in Homo sapiens. © 2013 New York Academy of Sciences.

  13. BAR domain proteins regulate Rho GTPase signaling.

    PubMed

    Aspenström, Pontus

    2014-01-01

    BAR proteins comprise a heterogeneous group of multi-domain proteins with diverse biological functions. The common denominator is the Bin-Amphiphysin-Rvs (BAR) domain that not only confers targeting to lipid bilayers, but also provides scaffolding to mold lipid membranes into concave or convex surfaces. This function of BAR proteins is an important determinant in the dynamic reconstruction of membrane vesicles, as well as of the plasma membrane. Several BAR proteins function as linkers between cytoskeletal regulation and membrane dynamics. These links are provided by direct interactions between BAR proteins and actin-nucleation-promoting factors of the Wiskott-Aldrich syndrome protein family and the Diaphanous-related formins. The Rho GTPases are key factors for orchestration of this intricate interplay. This review describes how BAR proteins regulate the activity of Rho GTPases, as well as how Rho GTPases regulate the function of BAR proteins. This mutual collaboration is a central factor in the regulation of vital cellular processes, such as cell migration, cytokinesis, intracellular transport, endocytosis, and exocytosis.

  14. Left-right asymmetry specification in amphioxus: review and prospects.

    PubMed

    Soukup, Vladimir

    2017-01-01

    Extant bilaterally symmetrical animals usually show asymmetry in the arrangement of their inner organs. However, the exaggerated left-right (LR) asymmetry in amphioxus represents a true peculiarity among them. The amphioxus larva shows completely disparate fates of left and right body sides, so that organs associated with pharynx are either positioned exclusively on the left or on the right side. Moreover, segmented paraxial structures such as muscle blocks and their neuronal innervation show offset arrangement between the sides making it difficult to propose any explanation or adaptivity to larval and adult life. First LR asymmetries can be traced back to an early embryonic period when morphological asymmetries are preceded by molecular asymmetries driven by the action of the Nodal signaling pathway. This review sums up recent advances in understanding LR asymmetry specification in amphioxus and proposes upstream events that may regulate asymmetric Nodal signaling. These events include the presence of the vertebrate-like LR organizer and a cilia-driven fluid flow that may be involved in the breaking of bilateral symmetry. The upstream pathways comprising the ion flux, Delta/Notch, Wnt/β-catenin and Wnt/PCP are hypothesized to regulate both formation of the LR organizer and expression of the downstream Nodal signaling pathway genes. These suggestions are in line with what we know from vertebrate and ambulacrarian LR axis specification and are directly testable by experimental manipulations. Thanks to the phylogenetic position of amphioxus, the proposed mechanisms may be helpful in understanding the evolution of LR axis specification across deuterostomes.

  15. Regulation, Signaling, and Physiological Functions of G-Proteins.

    PubMed

    Syrovatkina, Viktoriya; Alegre, Kamela O; Dey, Raja; Huang, Xin-Yun

    2016-09-25

    Heterotrimeric guanine-nucleotide-binding regulatory proteins (G-proteins) mainly relay the information from G-protein-coupled receptors (GPCRs) on the plasma membrane to the inside of cells to regulate various biochemical functions. Depending on the targeted cell types, tissues, and organs, these signals modulate diverse physiological functions. The basic schemes of heterotrimeric G-proteins have been outlined. In this review, we briefly summarize what is known about the regulation, signaling, and physiological functions of G-proteins. We then focus on a few less explored areas such as the regulation of G-proteins by non-GPCRs and the physiological functions of G-proteins that cannot be easily explained by the known G-protein signaling pathways. There are new signaling pathways and physiological functions for G-proteins to be discovered and further interrogated. With the advancements in structural and computational biological techniques, we are closer to having a better understanding of how G-proteins are regulated and of the specificity of G-protein interactions with their regulators. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Thioredoxin-interacting protein regulates protein disulfide isomerases and endoplasmic reticulum stress.

    PubMed

    Lee, Samuel; Min Kim, Soo; Dotimas, James; Li, Letitia; Feener, Edward P; Baldus, Stephan; Myers, Ronald B; Chutkow, William A; Patwari, Parth; Yoshioka, Jun; Lee, Richard T

    2014-06-01

    The endoplasmic reticulum (ER) is responsible for protein folding, modification, and trafficking. Accumulation of unfolded or misfolded proteins represents the condition of ER stress and triggers the unfolded protein response (UPR), a key mechanism linking supply of excess nutrients to insulin resistance and type 2 diabetes in obesity. The ER harbors proteins that participate in protein folding including protein disulfide isomerases (PDIs). Changes in PDI activity are associated with protein misfolding and ER stress. Here, we show that thioredoxin-interacting protein (Txnip), a member of the arrestin protein superfamily and one of the most strongly induced proteins in diabetic patients, regulates PDI activity and UPR signaling. We found that Txnip binds to PDIs and increases their enzymatic activity. Genetic deletion of Txnip in cells and mice led to increased protein ubiquitination and splicing of the UPR regulated transcription factor X-box-binding protein 1 (Xbp1s) at baseline as well as under ER stress. Our results reveal Txnip as a novel direct regulator of PDI activity and a feedback mechanism of UPR signaling to decrease ER stress. © 2014 Brigham and Women's Hospital. Published under the terms of the CC BY 4.0 license.

  17. Wrecked regulation of intrinsically disordered proteins in diseases: pathogenicity of deregulated regulators

    PubMed Central

    Uversky, Vladimir N.

    2014-01-01

    Biologically active proteins without stable tertiary structure are common in all known proteomes. Functions of these intrinsically disordered proteins (IDPs) are typically related to regulation, signaling, and control. Cellular levels of these important regulators are tightly regulated by a variety mechanisms ranging from firmly controlled expression to precisely targeted degradation. Functions of IDPs are controlled by binding to specific partners, alternative splicing, and posttranslational modifications among other means. In the norm, right amounts of precisely activated IDPs have to be present in right time at right places. Wrecked regulation brings havoc to the ordered world of disordered proteins, leading to protein misfolding, misidentification, and missignaling that give rise to numerous human diseases, such as cancer, cardiovascular disease, neurodegenerative diseases, and diabetes. Among factors inducing pathogenic transformations of IDPs are various cellular mechanisms, such as chromosomal translocations, damaged splicing, altered expression, frustrated posttranslational modifications, aberrant proteolytic degradation, and defective trafficking. This review presents some of the aspects of deregulated regulation of IDPs leading to human diseases. PMID:25988147

  18. microRNA function in left-right neuronal asymmetry: perspectives from C. elegans.

    PubMed

    Alqadah, Amel; Hsieh, Yi-Wen; Chuang, Chiou-Fen

    2013-09-23

    Left-right asymmetry in anatomical structures and functions of the nervous system is present throughout the animal kingdom. For example, language centers are localized in the left side of the human brain, while spatial recognition functions are found in the right hemisphere in the majority of the population. Disruption of asymmetry in the nervous system is correlated with neurological disorders. Although anatomical and functional asymmetries are observed in mammalian nervous systems, it has been a challenge to identify the molecular basis of these asymmetries. C. elegans has emerged as a prime model organism to investigate molecular asymmetries in the nervous system, as it has been shown to display functional asymmetries clearly correlated to asymmetric distribution and regulation of biologically relevant molecules. Small non-coding RNAs have been recently implicated in various aspects of neural development. Here, we review cases in which microRNAs are crucial for establishing left-right asymmetries in the C. elegans nervous system. These studies may provide insight into how molecular and functional asymmetries are established in the human brain.

  19. Micropatterned mammalian cells exhibit phenotype-specific left-right asymmetry.

    PubMed

    Wan, Leo Q; Ronaldson, Kacey; Park, Miri; Taylor, Grace; Zhang, Yue; Gimble, Jeffrey M; Vunjak-Novakovic, Gordana

    2011-07-26

    Left-right (LR) asymmetry (handedness, chirality) is a well-conserved biological property of critical importance to normal development. Changes in orientation of the LR axis due to genetic or environmental factors can lead to malformations and disease. While the LR asymmetry of organs and whole organisms has been extensively studied, little is known about the LR asymmetry at cellular and multicellular levels. Here we show that the cultivation of cell populations on micropatterns with defined boundaries reveals intrinsic cell chirality that can be readily determined by image analysis of cell alignment and directional motion. By patterning 11 different types of cells on ring-shaped micropatterns of various sizes, we found that each cell type exhibited definite LR asymmetry (p value down to 10(-185)) that was different between normal and cancer cells of the same type, and not dependent on surface chemistry, protein coating, or the orientation of the gravitational field. Interestingly, drugs interfering with actin but not microtubule function reversed the LR asymmetry in some cell types. Our results show that micropatterned cell populations exhibit phenotype-specific LR asymmetry that is dependent on the functionality of the actin cytoskeleton. We propose that micropatterning could potentially be used as an effective in vitro tool to study the initiation of LR asymmetry in cell populations, to diagnose disease, and to study factors involved with birth defects in laterality.

  20. Lean Mass Asymmetry Influences Force and Power Asymmetry During Jumping in Collegiate Athletes

    PubMed Central

    Bell, David R.; Sanfilippo, Jennifer L.; Binkley, Neil; Heiderscheit, Bryan C.

    2015-01-01

    The purpose of this investigation was to: (1) examine how asymmetry in lower extremity lean mass influenced force and power asymmetry during jumping, (2) determine how power and force asymmetry affected jump height, and (3) report normative values in collegiate athletes. Force and power were assessed from each limb using bilateral force plates during a countermovement jump in 167 Division 1 athletes (mass=85.7±20.3kg, age=20.0±1.2years, 103M/64F). Lean mass of the pelvis, thigh, and shank was assessed via dual-energy X-ray absorptiometry. Percent asymmetry was calculated for lean mass at each region (pelvis, thigh, and shank) as well as force and power. Forward stepwise regressions were performed to determine the influence of lean mass asymmetry on force and power asymmetry. Thigh and shank lean mass asymmetry explained 20% of the variance in force asymmetry (R2=0.20, P<0.001), while lean mass asymmetry of the pelvis, thigh and shank explained 25% of the variance in power asymmetry (R2=0.25, P<0.001). Jump height was compared across level of force and power asymmetry (P>0.05) and greater than 10% asymmetry in power tended to decrease performance (effect size>1.0). Ninety-five percent of this population (2.5th to 97.5th percentile) displayed force asymmetry between −11.8 to 16.8% and a power asymmetry between −9.9 to 11.5%. A small percentage (<4%) of these athletes displayed more than 15% asymmetry between limbs. These results demonstrate that lean mass asymmetry in the lower extremity is at least partially responsible for asymmetries in force and power. However, a large percentage remains unexplained by lean mass asymmetry. PMID:24402449

  1. Lean mass asymmetry influences force and power asymmetry during jumping in collegiate athletes.

    PubMed

    Bell, David R; Sanfilippo, Jennifer L; Binkley, Neil; Heiderscheit, Bryan C

    2014-04-01

    The purpose of this investigation was to (a) examine how asymmetry in lower extremity lean mass influenced force and power asymmetry during jumping, (b) determine how power and force asymmetry affected jump height, and (c) report normative values in collegiate athletes. Force and power were assessed from each limb using bilateral force plates during a countermovement jump in 167 division 1 athletes (mass = 85.7 ± 20.3 kg, age = 20.0 ± 1.2 years; 103 men and 64 women). Lean mass of the pelvis, thigh, and shank was assessed using dual-energy x-ray absorptiometry. Percent asymmetry was calculated for lean mass at each region (pelvis, thigh, and shank) as well as force and power. Forward stepwise regressions were performed to determine the influence of lean mass asymmetry on force and power asymmetry. Thigh and shank lean mass asymmetry explained 20% of the variance in force asymmetry (R = 0.20, p < 0.001), whereas lean mass asymmetry of the pelvis, thigh, and shank explained 25% of the variance in power asymmetry (R = 0.25, p < 0.001). Jump height was compared across level of force and power asymmetry (p > 0.05) and greater than 10% asymmetry in power tended to decrease the performance (effect size >1.0). Ninety-five percent of this population (2.5th to 97.5th percentile) displayed force asymmetry between -11.8 and 16.8% and a power asymmetry between -9.9 and 11.5%. A small percentage (<4%) of these athletes displayed more than 15% asymmetry between limbs. These results demonstrate that lean mass asymmetry in the lower extremity is at least partially responsible for asymmetries in force and power. However, a large percentage remains unexplained by lean mass asymmetry.

  2. Bbs8, together with the planar cell polarity protein Vangl2, is required to establish left-right asymmetry in zebrafish.

    PubMed

    May-Simera, Helen L; Kai, Masatake; Hernandez, Victor; Osborn, Daniel P S; Tada, Masazumi; Beales, Philip L

    2010-09-15

    Laterality defects such as situs inversus are not uncommonly encountered in humans, either in isolation or as part of another syndrome, but can have devastating developmental consequences. The events that break symmetry during early embryogenesis are highly conserved amongst vertebrates and involve the establishment of unidirectional flow by cilia within an organising centre such as the node in mammals or Kupffer's vesicle (KV) in teleosts. Disruption of this flow can lead to the failure to successfully establish left-right asymmetry. The correct apical-posterior cellular position of each node/KV cilium is critical for its optimal radial movement which serves to sweep fluid (and morphogens) in the same direction as its neighbours. Planar cell polarity (PCP) is an important conserved process that governs ciliary position and posterior tilt; however the underlying mechanism by which this occurs remains unclear. Here we show that Bbs8, a ciliary/basal body protein important for intraciliary/flagellar transport and the core PCP protein Vangl2 interact and are required for establishment and maintenance of left-right asymmetry during early embryogenesis in zebrafish. We discovered that loss of bbs8 and vangl2 results in laterality defects due to cilia disruption at the KV. We showed that perturbation of cell polarity following abrogation of vangl2 causes nuclear mislocalisation, implying defective centrosome/basal body migration and apical docking. Moreover, upon loss of bbs8 and vangl2, we observed defective actin organisation. These data suggest that bbs8 and vangl2 act synergistically on cell polarization to establish and maintain the appropriate length and number of cilia in the KV and thereby facilitate correct LR asymmetry. (c) 2010. Published by Elsevier Inc.

  3. Nasopupillary asymmetry.

    PubMed

    Arenas, Eduardo; Muñoz, Diana; Matheus, Evelyn; Morales, Diana

    2014-01-01

    To establish the prevalence of nasopupillary asymmetry (difference in nasopupillary distances) in the population and its relation with the interpupillary distance. A retrospective descriptive study was conducted by reviewing of 1262 medical records. The values of nasopupillary asymmetry and the interpupillary distance were obtained. A statistical analysis was made and the correlation between these variables was established. Seventy-nine percent of the population presented some degree of nasopupillary asymmetry. The interpupillary distance had a very low correlation with the nasopupillary asymmetry (r = 0.074, P = 0.0). It is advisable to use the nasopupillary distance of each eye as a standard measurement.

  4. Elements of functional genital asymmetry in the cow.

    PubMed

    Trigal, B; Díez, C; Muñoz, M; Caamaño, J N; Goyache, F; Correia-Alvarez, E; Corrales, F J; Mora, M I; Carrocera, S; Martin, D; Gómez, E

    2014-01-01

    Asymmetry in the cow affects ovarian function and pregnancy. In this work we studied ovarian and uterine asymmetry. Synchronised animals, in which in vitro-produced embryos (n=30-60) had been transferred on Day 5 to the uterine horn ipsilateral to the corpus luteum (CL), were flushed on Day 8. Ovulatory follicle diameter, oestrus response and total protein flushed did not differ between sides. However, a corpus luteum in the right ovary led to plasma progesterone concentrations that were higher than when it was present in the left ovary. Fewer embryos were recovered from the left than the right horn. Among 60 uterine proteins identified by difference gel electrophoresis, relative abundance of nine (acyl-CoA dehydrogenase, very long chain; twinfilin, actin-binding protein, homologue 1; enolase 1; pyruvate kinase isozymes M1/M2 (rabbit); complement factor B Bb fragment ; albumin; fibrinogen gamma-B chain; and ezrin differed (P<0.05) between horns. Glucose concentration was higher, and fructose concentration lower, in the left horn. In a subsequent field trial, pregnancy rates after embryo transfer did not differ between horns (51.0±3.6, right vs 53.2±4.7, left). However, Day 7 blood progesterone concentrations differed (P=0.018) between pregnant and open animals in the left (15.9±1.7 vs 8.3±1.2) but not in the right horn (12.4±1.3 vs 12.4±1.2). Progesterone effects were independent of CL quality (P=0.55). Bilateral genital tract asymmetry in the cow affects progesterone, proteins and hexoses without altering pregnancy rates.

  5. Regulation of protease-activated receptor 1 signaling by the adaptor protein complex 2 and R4 subfamily of regulator of G protein signaling proteins.

    PubMed

    Chen, Buxin; Siderovski, David P; Neubig, Richard R; Lawson, Mark A; Trejo, Joann

    2014-01-17

    The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of "regulator of G protein signaling" (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 (420)AKKAA(424) mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins.

  6. From symmetry to asymmetry: Phylogenetic patterns of asymmetry variation in animals and their evolutionary significance

    PubMed Central

    Palmer, A. Richard

    1996-01-01

    Phylogenetic analyses of asymmetry variation offer a powerful tool for exploring the interplay between ontogeny and evolution because (i) conspicuous asymmetries exist in many higher metazoans with widely varying modes of development, (ii) patterns of bilateral variation within species may identify genetically and environmentally triggered asymmetries, and (iii) asymmetries arising at different times during development may be more sensitive to internal cytoplasmic inhomogeneities compared to external environmental stimuli. Using four broadly comparable asymmetry states (symmetry, antisymmetry, dextral, and sinistral), and two stages at which asymmetry appears developmentally (larval and postlarval), I evaluated relations between ontogenetic and phylogenetic patterns of asymmetry variation. Among 140 inferred phylogenetic transitions between asymmetry states, recorded from 11 classes in five phyla, directional asymmetry (dextral or sinistral) evolved directly from symmetrical ancestors proportionally more frequently among larval asymmetries. In contrast, antisymmetry, either as an end state or as a transitional stage preceding directional asymmetry, was confined primarily to postlarval asymmetries. The ontogenetic origin of asymmetry thus significantly influences its subsequent evolution. Furthermore, because antisymmetry typically signals an environmentally triggered asymmetry, the phylogenetic transition from antisymmetry to directional asymmetry suggests that many cases of laterally fixed asymmetries evolved via genetic assimilation. PMID:8962039

  7. Structural white matter asymmetries in relation to functional asymmetries during speech perception and production.

    PubMed

    Ocklenburg, Sebastian; Hugdahl, Kenneth; Westerhausen, René

    2013-12-01

    Functional hemispheric asymmetries of speech production and perception are a key feature of the human language system, but their neurophysiological basis is still poorly understood. Using a combined fMRI and tract-based spatial statistics approach, we investigated the relation of microstructural asymmetries in language-relevant white matter pathways and functional activation asymmetries during silent verb generation and passive listening to spoken words. Tract-based spatial statistics revealed several leftward asymmetric clusters in the arcuate fasciculus and uncinate fasciculus that were differentially related to activation asymmetries in the two functional tasks. Frontal and temporal activation asymmetries during silent verb generation were positively related to the strength of specific microstructural white matter asymmetries in the arcuate fasciculus. In contrast, microstructural uncinate fasciculus asymmetries were related to temporal activation asymmetries during passive listening. These findings suggest that white matter asymmetries may indeed be one of the factors underlying functional hemispheric asymmetries. Moreover, they also show that specific localized white matter asymmetries might be of greater relevance for functional activation asymmetries than microstructural features of whole pathways. © 2013.

  8. Regulation of protein turnover by heat shock proteins.

    PubMed

    Bozaykut, Perinur; Ozer, Nesrin Kartal; Karademir, Betul

    2014-12-01

    Protein turnover reflects the balance between synthesis and degradation of proteins, and it is a crucial process for the maintenance of the cellular protein pool. The folding of proteins, refolding of misfolded proteins, and also degradation of misfolded and damaged proteins are involved in the protein quality control (PQC) system. Correct protein folding and degradation are controlled by many different factors, one of the most important of which is the heat shock protein family. Heat shock proteins (HSPs) are in the class of molecular chaperones, which may prevent the inappropriate interaction of proteins and induce correct folding. On the other hand, these proteins play significant roles in the degradation pathways, including endoplasmic reticulum-associated degradation (ERAD), the ubiquitin-proteasome system, and autophagy. This review focuses on the emerging role of HSPs in the regulation of protein turnover; the effects of HSPs on the degradation machineries ERAD, autophagy, and proteasome; as well as the role of posttranslational modifications in the PQC system. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Mitosis-Specific Mechanosensing and Contractile Protein Redistribution Control Cell Shape

    PubMed Central

    Effler, Janet C.; Kee, Yee-Seir; Berk, Jason M.; Tran, Minhchau N.; Iglesias, Pablo A.; Robinson, Douglas N.

    2008-01-01

    Summary Because cell division failure is deleterious, promoting tumorigenesis in mammals [1], cells utilize numerous mechanisms to control their cell-cycle progression [2–4]. Though cell division is considered a well-ordered sequence of biochemical events [5], cytokinesis, an inherently mechanical process, must also be mechanically controlled to ensure that two equivalent daughter cells are produced with high fidelity. Since cells respond to their mechanical environment [6, 7], we hypothesized that cells utilize mechanosensing and mechanical feedback to sense and correct shape asymmetries during cytokinesis. Because the mitotic spindle and myosin-II are vital to cell division [8, 9], we explored their roles in responding to shape perturbations during cell division. We demonstrate that the contractile proteins, myosin-II and cortexillin-I, redistribute in response to intrinsic and externally induced shape asymmetries. In early cytokinesis, mechanical load overrides spindle cues and slows cytokinesis progression while contractile proteins accumulate and correct shape asymmetries. In late cytokinesis, mechanical perturbation also directs contractile proteins but without apparently disrupting cytokinesis. Significantly, this response only occurs during anaphase through cytokinesis, does not require microtubules, is independent of spindle orientation, but is dependent on myosin-II. Our data provide evidence for a mechanosensory system that directs contractile proteins to regulate cell shape during mitosis. PMID:17027494

  10. Contribution of Hedgehog signaling to the establishment of left-right asymmetry in the sea urchin

    PubMed Central

    Warner, Jacob F.; Miranda, Esther L.; McClay, David R.

    2016-01-01

    Summary Most bilaterians exhibit a left-right asymmetric distribution of their internal organs. The sea urchin larva is notable in this regard since most adult structures are generated from left sided embryonic structures. The gene regulatory network governing this larval asymmetry is still a work in progress but involves several conserved signaling pathways including Nodal, and BMP. Here we provide a comprehensive analysis of Hedgehog signaling and it’s contribution to left-right asymmetry. We report that Hh signaling plays a conserved role to regulate late asymmetric expression of Nodal and that this regulation occurs after Nodal breaks left-right symmetry in the mesoderm. Thus, while Hh functions to maintain late Nodal expression, the molecular asymmetry of the future coelomic pouches is locked in. Furthermore we report that cilia play a role only insofar as to transduce Hh signaling and do not have an independent effect on the asymmetry of the mesoderm. From this, we are able to construct a more complete regulatory network governing the establishment of left-right asymmetry in the sea urchin. PMID:26872875

  11. Contribution of hedgehog signaling to the establishment of left-right asymmetry in the sea urchin.

    PubMed

    Warner, Jacob F; Miranda, Esther L; McClay, David R

    2016-03-15

    Most bilaterians exhibit a left-right asymmetric distribution of their internal organs. The sea urchin larva is notable in this regard since most adult structures are generated from left sided embryonic structures. The gene regulatory network governing this larval asymmetry is still a work in progress but involves several conserved signaling pathways including Nodal, and BMP. Here we provide a comprehensive analysis of Hedgehog signaling and it's contribution to left-right asymmetry. We report that Hh signaling plays a conserved role to regulate late asymmetric expression of Nodal and that this regulation occurs after Nodal breaks left-right symmetry in the mesoderm. Thus, while Hh functions to maintain late Nodal expression, the molecular asymmetry of the future coelomic pouches is locked in. Furthermore we report that cilia play a role only insofar as to transduce Hh signaling and do not have an independent effect on the asymmetry of the mesoderm. From this, we are able to construct a more complete regulatory network governing the establishment of left-right asymmetry in the sea urchin. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Cardiotonic Steroids Stabilize Regulator of G Protein Signaling 2 Protein Levels

    PubMed Central

    Sjögren, Benita; Parra, Sergio; Heath, Lauren J.; Atkins, Kevin B.; Xie, Zie-Jian

    2012-01-01

    Regulator of G protein signaling 2 (RGS2), a Gq-specific GTPase-activating protein, is strongly implicated in cardiovascular function. RGS2(−/−) mice are hypertensive and prone to heart failure, and several rare human mutations that accelerate RGS2 degradation have been identified among patients with hypertension. Therefore, pharmacological up-regulation of RGS2 protein levels might be beneficial. We used a β-galactosidase complementation method to screen several thousand compounds with known pharmacological functions for those that increased RGS2 protein levels. Several cardiotonic steroids (CTSs), including ouabain and digoxin, increased RGS2 but not RGS4 protein levels. CTSs increased RGS2 protein levels through a post-transcriptional mechanism, by slowing protein degradation. RGS2 mRNA levels in primary vascular smooth muscle cells were unaffected by CTS treatment, whereas protein levels were increased 2- to 3-fold. Na+/K+-ATPase was required for the increase in RGS2 protein levels, because the effect was lost in Na+/K+-ATPase-knockdown cells. Furthermore, we demonstrated that CTS-induced increases in RGS2 levels were functional and reduced receptor-stimulated, Gq-dependent, extracellular signal-regulated kinase phosphorylation. Finally, we showed that in vivo treatment with digoxin led to increased RGS2 protein levels in heart and kidney. CTS-induced increases in RGS2 protein levels and function might modify several deleterious mechanisms in hypertension and heart failure. This novel CTS mechanism might contribute to the beneficial actions of low-dose digoxin treatment in heart failure. Our results support the concept of small-molecule modulation of RGS2 protein levels as a new strategy for cardiovascular therapy. PMID:22695717

  13. Regulation of PXR and CAR by protein-protein interaction and signaling crosstalk

    PubMed Central

    Oladimeji, Peter; Cui, Hongmei; Zhang, Chen; Chen, Taosheng

    2016-01-01

    Introduction Protein-protein interaction and signaling crosstalk contribute to the regulation of pregnane X receptor (PXR) and constitutive androstane receptor (CAR) and broaden their cellular function. Area covered This review covers key historic discoveries and recent advances in our understanding of the broad function of PXR and CAR and their regulation by protein-protein interaction and signaling crosstalk. Expert opinion PXR and CAR were first discovered as xenobiotic receptors. However, it is clear that PXR and CAR perform a much broader range of cellular functions through protein-protein interaction and signaling crosstalk, which typically mutually affect the function of all the partners involved. Future research on PXR and CAR should, therefore, look beyond their xenobiotic function. PMID:27295009

  14. Role of Regulators of G Protein Signaling Proteins in Bone Physiology and Pathophysiology.

    PubMed

    Jules, Joel; Yang, Shuying; Chen, Wei; Li, Yi-Ping

    2015-01-01

    Regulators of G protein signaling (RGS) proteins enhance the intrinsic GTPase activity of α subunits of the heterotrimeric G protein complex of G protein-coupled receptors (GPCRs) and thereby inactivate signal transduction initiated by GPCRs. The RGS family consists of nearly 37 members with a conserved RGS homology domain which is critical for their GTPase accelerating activity. RGS proteins are expressed in most tissues, including heart, lung, brain, kidney, and bone and play essential roles in many physiological and pathological processes. In skeletal development and bone homeostasis as well as in many bone disorders, RGS proteins control the functions of various GPCRs, including the parathyroid hormone receptor type 1 and calcium-sensing receptor and also regulate various critical signaling pathways, such as Wnt and calcium oscillations. This chapter will discuss the current findings on the roles of RGS proteins in regulating signaling of key GPCRs in skeletal development and bone homeostasis. We also will examine the current updates of RGS proteins' regulation of calcium oscillations in bone physiology and highlight the roles of RGS proteins in selected bone pathological disorders. Despite the recent advances in bone and mineral research, RGS proteins remain understudied in the skeletal system. Further understanding of the roles of RGS proteins in bone should not only provide great insights into the molecular basis of various bone diseases but also generate great therapeutic drug targets for many bone diseases. © 2015 Elsevier Inc. All rights reserved.

  15. Differential regulation of oligodendrocyte markers by glucocorticoids: Post-transcriptional regulation of both proteolipid protein and myelin basic protein and transcriptional regulation of glycerol phosphate dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S.; Cole, R.; Chiappelli, F.

    During neonatal development glucocorticoids potentiate oligodendrocyte differentiation and myelinogenesis by regulating the expression of myelin basic protein, proteolipid protein, and glycerol phosphate dehydrogenase. The actual locus at which hydrocortisone exerts its developmental influence on glial physiology is, however, not well understood. Gycerol phosphate dehydrogenase is glucocorticoid-inducible in oligodendrocytes at all stages of development both in vivo and in vitro. In newborn rat cerebral cultures, between 9 and 15 days in vitro, a 2- to 3-fold increase in myelin basic protein and proteolipid protein mRNA levels occurs in oligodendrocytes within 12 hr of hydrocortisone treatment. Immunostaining demonstrates that this increase inmore » mRNAs is followed by a 2- to 3-fold increase in the protein levels within 24 hr. In vitro transcription assays performed with oligodendrocyte nuclei show an 11-fold increase in the transcriptional activity of glycerol phosphate dehydrogenase in response to hydrocortisone but no increase in transcription of myelin basic protein or proteolipid protein. These results indicate that during early myelinogeneis, glucocorticoids influence the expression of key oligodendroglial markers by different processes: The expression of glycerol phosphate dehydrogenase is regulated at the transcriptional level, whereas the expression of myelin basic protein and proteolipid protein is modulated via a different, yet uncharacterized, mechanism involving post-transcriptional regulation.« less

  16. Regulation of intestinal protein metabolism by amino acids.

    PubMed

    Bertrand, Julien; Goichon, Alexis; Déchelotte, Pierre; Coëffier, Moïse

    2013-09-01

    Gut homeostasis plays a major role in health and may be regulated by quantitative and qualitative food intake. In the intestinal mucosa, an intense renewal of proteins occurs, at approximately 50% per day in humans. In some pathophysiological conditions, protein turnover is altered and may contribute to intestinal or systemic diseases. Amino acids are key effectors of gut protein turnover, both as constituents of proteins and as regulatory molecules limiting intestinal injury and maintaining intestinal functions. Many studies have focused on two amino acids: glutamine, known as the preferential substrate of rapidly dividing cells, and arginine, another conditionally essential amino acid. The effects of glutamine and arginine on protein synthesis appear to be model and condition dependent, as are the involved signaling pathways. The regulation of gut protein degradation by amino acids has been minimally documented until now. This review will examine recent data, helping to better understand how amino acids regulate intestinal protein metabolism, and will explore perspectives for future studies.

  17. Regulation of SMN Protein Stability▿ †

    PubMed Central

    Burnett, Barrington G.; Muñoz, Eric; Tandon, Animesh; Kwon, Deborah Y.; Sumner, Charlotte J.; Fischbeck, Kenneth H.

    2009-01-01

    Spinal muscular atrophy (SMA) is caused by mutations of the survival of motor neuron (SMN1) gene and deficiency of full-length SMN protein (FL-SMN). All SMA patients retain one or more copies of the SMN2 gene, but the principal protein product of SMN2 lacks exon 7 (SMNΔ7) and is unable to compensate for a deficiency of FL-SMN. SMN is known to oligomerize and form a multimeric protein complex; however, the mechanisms regulating stability and degradation of FL-SMN and SMNΔ7 proteins have been largely unexplored. Using pulse-chase analysis, we characterized SMN protein turnover and confirmed that SMN was ubiquitinated and degraded by the ubiquitin proteasome system (UPS). The SMNΔ7 protein had a twofold shorter half-life than FL-SMN in cells despite similar intrinsic rates of turnover by the UPS in a cell-free assay. Mutations that inhibited SMN oligomerization and complex formation reduced the FL-SMN half-life. Furthermore, recruitment of SMN into large macromolecular complexes as well as increased association with several Gemin proteins was regulated in part by protein kinase A. Together, our data indicate that SMN protein stability is modulated by complex formation. Promotion of the SMN complex formation may be an important novel therapeutic strategy for SMA. PMID:19103745

  18. Role of Regulators of G Protein Signaling Proteins in Bone Physiology and Pathophysiology

    PubMed Central

    Jules, Joel; Yang, Shuying; Chen, Wei; Li, Yi-Ping

    2016-01-01

    Regulators of G protein signaling (RGS) proteins enhance the intrinsic GTPase activity of α subunits of the heterotrimeric G protein complex of G protein-coupled receptors (GPCRs) and thereby inactivate signal transduction initiated by GPCRs. The RGS family consists of nearly 37 members with a conserved RGS homology domain which is critical for their GTPase accelerating activity. RGS proteins are expressed in most tissues, including heart, lung, brain, kidney, and bone and play essential roles in many physiological and pathological processes. In skeletal development and bone homeostasis as well as in many bone disorders, RGS proteins control the functions of various GPCRs, including the parathyroid hormone receptor type 1 and calcium-sensing receptor and also regulate various critical signaling pathways, such as Wnt and calcium oscillations. This chapter will discuss the current findings on the roles of RGS proteins in regulating signaling of key GPCRs in skeletal development and bone homeostasis. We also will examine the current updates of RGS proteins’ regulation of calcium oscillations in bone physiology and highlight the roles of RGS proteins in selected bone pathological disorders. Despite the recent advances in bone and mineral research, RGS proteins remain understudied in the skeletal system. Further understanding of the roles of RGS proteins in bone should not only provide great insights into the molecular basis of various bone diseases but also generate great therapeutic drug targets for many bone diseases. PMID:26123302

  19. HnRNP-like proteins as post-transcriptional regulators.

    PubMed

    Yeap, Wan-Chin; Namasivayam, Parameswari; Ho, Chai-Ling

    2014-10-01

    Plant cells contain a diverse repertoire of RNA-binding proteins (RBPs) that coordinate a network of post-transcriptional regulation. RBPs govern diverse developmental processes by modulating the gene expression of specific transcripts. Recent gene annotation and RNA sequencing clearly showed that heterogeneous nuclear ribonucleoprotein (hnRNP)-like proteins which form a family of RBPs, are also expressed in higher plants and serve specific plant functions. In addition to their involvement in post-transcriptional regulation from mRNA capping to translation, they are also involved in telomere regulation, gene silencing and regulation in chloroplast. Here, we review the involvement of plant hnRNP-like proteins in post-transcription regulation of RNA processes and their functional roles in control of plant developmental processes especially plant-specific functions including flowering, chloroplastic-specific mRNA regulation, long-distance phloem transportation and plant responses to environmental stresses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Nodal signalling determines biradial asymmetry in Hydra.

    PubMed

    Watanabe, Hiroshi; Schmidt, Heiko A; Kuhn, Anne; Höger, Stefanie K; Kocagöz, Yigit; Laumann-Lipp, Nico; Ozbek, Suat; Holstein, Thomas W

    2014-11-06

    In bilaterians, three orthogonal body axes define the animal form, with distinct anterior-posterior, dorsal-ventral and left-right asymmetries. The key signalling factors are Wnt family proteins for the anterior-posterior axis, Bmp family proteins for the dorsal-ventral axis and Nodal for the left-right axis. Cnidarians, the sister group to bilaterians, are characterized by one oral-aboral body axis, which exhibits a distinct biradiality of unknown molecular nature. Here we analysed the biradial growth pattern in the radially symmetrical cnidarian polyp Hydra, and we report evidence of Nodal in a pre-bilaterian clade. We identified a Nodal-related gene (Ndr) in Hydra magnipapillata, and this gene is essential for setting up an axial asymmetry along the main body axis. This asymmetry defines a lateral signalling centre, inducing a new body axis of a budding polyp orthogonal to the mother polyp's axis. Ndr is expressed exclusively in the lateral bud anlage and induces Pitx, which encodes an evolutionarily conserved transcription factor that functions downstream of Nodal. Reminiscent of its function in vertebrates, Nodal acts downstream of β-Catenin signalling. Our data support an evolutionary scenario in which a 'core-signalling cassette' consisting of β-Catenin, Nodal and Pitx pre-dated the cnidarian-bilaterian split. We presume that this cassette was co-opted for various modes of axial patterning: for example, for lateral branching in cnidarians and left-right patterning in bilaterians.

  1. Two Chimeric Regulators of G-protein Signaling (RGS) Proteins Differentially Modulate Soybean Heterotrimeric G-protein Cycle*

    PubMed Central

    Roy Choudhury, Swarup; Westfall, Corey S.; Laborde, John P.; Bisht, Naveen C.; Jez, Joseph M.; Pandey, Sona

    2012-01-01

    Heterotrimeric G-proteins and the regulator of G-protein signaling (RGS) proteins, which accelerate the inherent GTPase activity of Gα proteins, are common in animals and encoded by large gene families; however, in plants G-protein signaling is thought to be more limited in scope. For example, Arabidopsis thaliana contains one Gα, one Gβ, three Gγ, and one RGS protein. Recent examination of the Glycine max (soybean) genome reveals a larger set of G-protein-related genes and raises the possibility of more intricate G-protein networks than previously observed in plants. Stopped-flow analysis of GTP-binding and GDP/GTP exchange for the four soybean Gα proteins (GmGα1–4) reveals differences in their kinetic properties. The soybean genome encodes two chimeric RGS proteins with an N-terminal seven transmembrane domain and a C-terminal RGS box. Both GmRGS interact with each of the four GmGα and regulate their GTPase activity. The GTPase-accelerating activities of GmRGS1 and -2 differ for each GmGα, suggesting more than one possible rate of the G-protein cycle initiated by each of the Gα proteins. The differential effects of GmRGS1 and GmRGS2 on GmGα1–4 result from a single valine versus alanine difference. The emerging picture suggests complex regulation of the G-protein cycle in soybean and in other plants with expanded G-protein networks. PMID:22474294

  2. Cortical Polarity of the RING Protein PAR-2 Is Maintained by Exchange Rate Kinetics at the Cortical-Cytoplasmic Boundary.

    PubMed

    Arata, Yukinobu; Hiroshima, Michio; Pack, Chan-Gi; Ramanujam, Ravikrishna; Motegi, Fumio; Nakazato, Kenichi; Shindo, Yuki; Wiseman, Paul W; Sawa, Hitoshi; Kobayashi, Tetsuya J; Brandão, Hugo B; Shibata, Tatsuo; Sako, Yasushi

    2016-08-23

    Cell polarity arises through the spatial segregation of polarity regulators. PAR proteins are polarity regulators that localize asymmetrically to two opposing cortical domains. However, it is unclear how the spatially segregated PAR proteins interact to maintain their mutually exclusive partitioning. Here, single-molecule detection analysis in Caenorhabditis elegans embryos reveals that cortical PAR-2 diffuses only short distances, and, as a result, most PAR-2 molecules associate and dissociate from the cortex without crossing into the opposing domain. Our results show that cortical PAR-2 asymmetry is maintained by the local exchange reactions that occur at the cortical-cytoplasmic boundary. Additionally, we demonstrate that local exchange reactions are sufficient to maintain cortical asymmetry in a parameter-free mathematical model. These findings suggest that anterior and posterior PAR proteins primarily interact through the cytoplasmic pool and not via cortical diffusion. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. A conserved NAD+ binding pocket that regulates protein-protein interactions during aging

    PubMed Central

    Li, Jun; Bonkowski, Michael S.; Moniot, Sébastien; Zhang, Dapeng; Hubbard, Basil P.; Ling, Alvin J. Y.; Rajman, Luis A.; Qin, Bo; Lou, Zhenkun; Gorbunova, Vera; Aravind, L.; Steegborn, Clemens; Sinclair, David A.

    2017-01-01

    DNA repair is essential for life, yet its efficiency declines with age for reasons that are unclear. Numerous proteins possess Nudix homology domains (NHDs) that have no known function. We show that NHDs are NAD+ (oxidized form of nicotinamide adenine dinucleotide) binding domains that regulate protein-protein interactions. The binding of NAD+ to the NHD domain of DBC1 (deleted in breast cancer 1) prevents it from inhibiting PARP1 [poly(adenosine diphosphate–ribose) polymerase], a critical DNA repair protein. As mice age and NAD+ concentrations decline, DBC1 is increasingly bound to PARP1, causing DNA damage to accumulate, a process rapidly reversed by restoring the abundance of NAD+. Thus, NAD+ directly regulates protein-protein interactions, the modulation of which may protect against cancer, radiation, and aging. PMID:28336669

  4. Fluorescence-based assay probing regulator of G protein signaling partner proteins.

    PubMed

    Huang, Po-Shiun; Yeh, Hsin-Sung; Yi, Hsiu-Ping; Lin, Chain-Jia; Yang, Chii-Shen

    2012-04-01

    The regulator of G protein signaling (RGS) proteins are one of the essential modulators for the G protein system. Besides regulating G protein signaling by accelerating the GTPase activity of Gα subunits, RGS proteins are implicated in exerting other functions; they are also known to be involved in several diseases. Moreover, the existence of a single RGS protein in plants and its seven-transmembrane domain found in 2003 triggered efforts to unveil detailed structural and functional information of RGS proteins. We present a method for real-time examination of the protein-protein interactions between RGS and Gα subunits. AtRGS1 from plants and RGS4 from mammals were site-directedly labeled with the fluorescent probe Lucifer yellow on engineered cysteine residues and used to interact with different Gα subunits. The physical interactions can be revealed by monitoring the real-time fluorescence changes (8.6% fluorescence increase in mammals and 27.6% in plants); their correlations to functional exertion were shown with a GTPase accelerating activity assay and further confirmed by measurement of K(d). We validate the effectiveness of this method and suggest its application to the exploration of more RGS signaling partner proteins in physiological and pathological studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. DE-Cadherin regulates unconventional Myosin ID and Myosin IC in Drosophila left-right asymmetry establishment.

    PubMed

    Petzoldt, Astrid G; Coutelis, Jean-Baptiste; Géminard, Charles; Spéder, Pauline; Suzanne, Magali; Cerezo, Delphine; Noselli, Stéphane

    2012-05-01

    In bilateria, positioning and looping of visceral organs requires proper left-right (L/R) asymmetry establishment. Recent work in Drosophila has identified a novel situs inversus gene encoding the unconventional type ID myosin (MyoID). In myoID mutant flies, the L/R axis is inverted, causing reversed looping of organs, such as the gut, spermiduct and genitalia. We have previously shown that MyoID interacts physically with β-Catenin, suggesting a role of the adherens junction in Drosophila L/R asymmetry. Here, we show that DE-Cadherin co-immunoprecipitates with MyoID and is required for MyoID L/R activity. We further demonstrate that MyoIC, a closely related unconventional type I myosin, can antagonize MyoID L/R activity by preventing its binding to adherens junction components, both in vitro and in vivo. Interestingly, DE-Cadherin inhibits MyoIC, providing a protective mechanism to MyoID function. Conditional genetic experiments indicate that DE-Cadherin, MyoIC and MyoID show temporal synchronicity for their function in L/R asymmetry. These data suggest that following MyoID recruitment by β-Catenin at the adherens junction, DE-Cadherin has a twofold effect on Drosophila L/R asymmetry by promoting MyoID activity and repressing that of MyoIC. Interestingly, the product of the vertebrate situs inversus gene inversin also physically interacts with β-Catenin, suggesting that the adherens junction might serve as a conserved platform for determinants to establish L/R asymmetry both in vertebrates and invertebrates.

  6. PDZ Protein Regulation of G Protein-Coupled Receptor Trafficking and Signaling Pathways.

    PubMed

    Dunn, Henry A; Ferguson, Stephen S G

    2015-10-01

    G protein-coupled receptors (GPCRs) contribute to the regulation of every aspect of human physiology and are therapeutic targets for the treatment of numerous diseases. As a consequence, understanding the myriad of mechanisms controlling GPCR signaling and trafficking is essential for the development of new pharmacological strategies for the treatment of human pathologies. Of the many GPCR-interacting proteins, postsynaptic density protein of 95 kilodaltons, disc large, zona occludens-1 (PDZ) domain-containing proteins appear most abundant and have similarly been implicated in disease mechanisms. PDZ proteins play an important role in regulating receptor and channel protein localization within synapses and tight junctions and function to scaffold intracellular signaling protein complexes. In the current study, we review the known functional interactions between PDZ domain-containing proteins and GPCRs and provide insight into the potential mechanisms of action. These PDZ domain-containing proteins include the membrane-associated guanylate-like kinases [postsynaptic density protein of 95 kilodaltons; synapse-associated protein of 97 kilodaltons; postsynaptic density protein of 93 kilodaltons; synapse-associated protein of 102 kilodaltons; discs, large homolog 5; caspase activation and recruitment domain and membrane-associated guanylate-like kinase domain-containing protein 3; membrane protein, palmitoylated 3; calcium/calmodulin-dependent serine protein kinase; membrane-associated guanylate kinase protein (MAGI)-1, MAGI-2, and MAGI-3], Na(+)/H(+) exchanger regulatory factor proteins (NHERFs) (NHERF1, NHERF2, PDZ domain-containing kidney protein 1, and PDZ domain-containing kidney protein 2), Golgi-associated PDZ proteins (Gα-binding protein interacting protein, C-terminus and CFTR-associated ligand), PDZ domain-containing guanine nucleotide exchange factors (GEFs) 1 and 2, regulator of G protein signaling (RGS)-homology-RhoGEFs (PDZ domain-containing RhoGEF and

  7. A conserved NAD+ binding pocket that regulates protein-protein interactions during aging.

    PubMed

    Li, Jun; Bonkowski, Michael S; Moniot, Sébastien; Zhang, Dapeng; Hubbard, Basil P; Ling, Alvin J Y; Rajman, Luis A; Qin, Bo; Lou, Zhenkun; Gorbunova, Vera; Aravind, L; Steegborn, Clemens; Sinclair, David A

    2017-03-24

    DNA repair is essential for life, yet its efficiency declines with age for reasons that are unclear. Numerous proteins possess Nudix homology domains (NHDs) that have no known function. We show that NHDs are NAD + (oxidized form of nicotinamide adenine dinucleotide) binding domains that regulate protein-protein interactions. The binding of NAD + to the NHD domain of DBC1 (deleted in breast cancer 1) prevents it from inhibiting PARP1 [poly(adenosine diphosphate-ribose) polymerase], a critical DNA repair protein. As mice age and NAD + concentrations decline, DBC1 is increasingly bound to PARP1, causing DNA damage to accumulate, a process rapidly reversed by restoring the abundance of NAD + Thus, NAD + directly regulates protein-protein interactions, the modulation of which may protect against cancer, radiation, and aging. Copyright © 2017, American Association for the Advancement of Science.

  8. Right across the tree of life: the evolution of left-right asymmetry in the Bilateria.

    PubMed

    Namigai, Erica K O; Kenny, Nathan J; Shimeld, Sebastian M

    2014-06-01

    Directional left/right (LR) asymmetries, in which there are consistent, heritable differences in morphology between the left and right sides of bilaterally symmetrical organisms, are found in animals across the Bilateria. For many years, we have lacked evidence for shared mechanisms underlying their development. This led to the supposition that the mechanisms driving establishment of LR asymmetries, and consequently the asymmetries themselves, had evolved separately in the three major Superphyla that constitute the Bilateria. The recent discovery that the transforming growth factor-beta (TGF-B) ligand Nodal plays a role in the regulation of LR asymmetry in both Deuterostomia and Lophotrochozoa has reignited debate in this field, as it suggests that at least this aspect of the development of the LR axis is conserved. In this review, we discuss evidence for shared mechanisms of LR asymmetry establishment across the bilaterian tree of life and consider how these mechanisms might have diverged across the Metazoa over the last 500 million years or so of evolution. As well as the likelihood that Nodal is an ancestral mechanism for regulating LR asymmetry, we reemphasize cytoskeletal architecture as a potential shared mechanism underlying symmetry breaking. However, convergent evolution remains a distinct possibility and study of a wider diversity of species will be needed to distinguish between conserved and lineage-specific mechanisms. © 2014 Wiley Periodicals, Inc.

  9. Regulation of alternative splicing in Drosophila by 56 RNA binding proteins

    DOE PAGES

    Brooks, Angela N.; Duff, Michael O.; May, Gemma; ...

    2015-08-20

    Alternative splicing is regulated by RNA binding proteins (RBPs) that recognize pre-mRNA sequence elements and activate or repress adjacent exons. Here, we used RNA interference and RNA-seq to identify splicing events regulated by 56 Drosophila proteins, some previously unknown to regulate splicing. Nearly all proteins affected alternative first exons, suggesting that RBPs play important roles in first exon choice. Half of the splicing events were regulated by multiple proteins, demonstrating extensive combinatorial regulation. We observed that SR and hnRNP proteins tend to act coordinately with each other, not antagonistically. We also identified a cross-regulatory network where splicing regulators affected themore » splicing of pre-mRNAs encoding other splicing regulators. In conclusion, this large-scale study substantially enhances our understanding of recent models of splicing regulation and provides a resource of thousands of exons that are regulated by 56 diverse RBPs.« less

  10. Cerebellar asymmetry and its relation to cerebral asymmetry estimated by intrinsic functional connectivity

    PubMed Central

    Wang, Danhong; Buckner, Randy L.

    2013-01-01

    Asymmetry of the human cerebellum was investigated using intrinsic functional connectivity. Regions of functional asymmetry within the cerebellum were identified during resting-state functional MRI (n = 500 subjects) and replicated in an independent cohort (n = 500 subjects). The most strongly right lateralized cerebellar regions fell within the posterior lobe, including crus I and crus II, in regions estimated to link to the cerebral association cortex. The most strongly left lateralized cerebellar regions were located in lobules VI and VIII in regions linked to distinct cerebral association networks. Comparison of cerebellar asymmetry with independently estimated cerebral asymmetry revealed that the lateralized regions of the cerebellum belong to the same networks that are strongly lateralized in the cerebrum. The degree of functional asymmetry of the cerebellum across individuals was significantly correlated with cerebral asymmetry and varied with handedness. In addition, cerebellar asymmetry estimated at rest predicted cerebral lateralization during an active language task. These results demonstrate that functional lateralization is likely a unitary feature of large-scale cerebrocerebellar networks, consistent with the hypothesis that the cerebellum possesses a roughly homotopic map of the cerebral cortex including the prominent asymmetries of the association cortex. PMID:23076113

  11. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships

    PubMed Central

    Zeke, András; Misheva, Mariya

    2016-01-01

    SUMMARY The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states. PMID:27466283

  12. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships.

    PubMed

    Zeke, András; Misheva, Mariya; Reményi, Attila; Bogoyevitch, Marie A

    2016-09-01

    The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Distinct mechanisms determine organ left-right asymmetry patterning in an uncoupled way.

    PubMed

    Huang, Sizhou; Xu, Wenming; Su, Bingyin; Luo, Lingfei

    2014-03-01

    Disruption of Nodal in the lateral plate mesoderm (LPM) usually leads to left-right (LR) patterning defects in multiple organs. However, whether the LR patterning of organs is always regulated in a coupled way has largely not yet been elucidated. In addition, whether other crucial regulators exist in the LPM that coordinate with Nodal in regulating organ LR patterning is also undetermined. In this paper, after briefly summarizing the common process of LR patterning, the most puzzling question regarding the initiation of asymmetry is considered and the divergent mechanisms underlying the uncoupled LR patterning in different organs are discussed. On the basis of cases in which different organ LR patterning is determined in an uncoupled way via an independent mechanism or at a different time, we propose that there are other critical factors in the LPM that coordinate with Nodal to regulate heart LR asymmetry patterning during early LR patterning. © 2014 WILEY Periodicals, Inc.

  14. Protein Kinase A Regulates Molecular Chaperone Transcription and Protein Aggregation

    PubMed Central

    Prince, Thomas; Calderwood, Stuart K.

    2011-01-01

    Heat shock factor 1 (HSF1) regulates one of the major pathways of protein quality control and is essential for deterrence of protein-folding disorders, particularly in neuronal cells. However, HSF1 activity declines with age, a change that may open the door to progression of neurodegenerative disorders such as Huntington's disease. We have investigated mechanisms of HSF1 regulation that may become compromised with age. HSF1 binds stably to the catalytic domain of protein kinase A (PKAcα) and becomes phosphorylated on at least one regulatory serine residue (S320). We show here that PKA is essential for effective transcription of HSP genes by HSF1. PKA triggers a cascade involving HSF1 binding to the histone acetylase p300 and positive translation elongation factor 1 (p-TEFb) and phosphorylation of the c-terminal domain of RNA polymerase II, a key mechanism in the downstream steps of HSF1-mediated transcription. This cascade appears to play a key role in protein quality control in neuronal cells expressing aggregation-prone proteins with long poly-glutamine (poly-Q) tracts. Such proteins formed inclusion bodies that could be resolved by HSF1 activation during heat shock. Resolution of the inclusions was inhibited by knockdown of HSF1, PKAcα, or the pTEFb component CDK9, indicating a key role for the HSF1-PKA cascade in protein quality control. PMID:22216146

  15. Trafficking regulation of proteins in Alzheimer’s disease

    PubMed Central

    2014-01-01

    The β-amyloid (Aβ) peptide has been postulated to be a key determinant in the pathogenesis of Alzheimer’s disease (AD). Aβ is produced through sequential cleavage of the β-amyloid precursor protein (APP) by β- and γ-secretases. APP and relevant secretases are transmembrane proteins and traffic through the secretory pathway in a highly regulated fashion. Perturbation of their intracellular trafficking may affect dynamic interactions among these proteins, thus altering Aβ generation and accelerating disease pathogenesis. Herein, we review recent progress elucidating the regulation of intracellular trafficking of these essential protein components in AD. PMID:24410826

  16. Isolation and identification of peanut leaf proteins regulated by water stress.

    PubMed

    Akkasaeng, Chutipong; Tantisuwichwong, Napaporn; Chairam, Issariya; Prakrongrak, Narumon; Jogloy, Sanun; Pathanothai, Aran

    2007-05-15

    Water deficits trigger signaling cascades leading to modulation of protein expression in plant tissues. Identification of peanut leaf proteins regulated by water stress provides some insights of cellular and molecular response of peanut plants to drought stress. Peanut variety Khon Kaen 4, a water-stress sensitive variety, was grown in a growth chamber under controlled environment. Water stress was imposed on day 30 after seedling emergence by withholding watering peanut plants for 6 days as compared to plants adequately supplied with water. Total protein were prepared from a leaflet of fully expanded leaf on the main stem. Proteins were separated in duplicated gels using two-dimensional gel electrophoresis and visualized by silver nitrate staining. Image analysis was performed using ImageMaster 2D Platinum 5.0 to determine proteins regulated by water stress. Molecular mass and isoelectric point of each regulated protein were used in database queries for protein identification. One protein was induced under water stress and the homologous protein was identified as Serine/threonine-protein phosphatase PP 1. Five proteins were down-regulated by water deficit. The homologous proteins were chaperone protein DNAJ, auxin-responsive protein IAA29, peroxidase 43, caffeoyl-CoA O-methyltransferase and SNF1-related protein kinase regulatory subunit beta-2. Down-regulated proteins may be associated with sensitivity of the peanut variety to water stress.

  17. Claudins, dietary milk proteins, and intestinal barrier regulation.

    PubMed

    Kotler, Belinda M; Kerstetter, Jane E; Insogna, Karl L

    2013-01-01

    The family of claudin proteins plays an important role in regulating the intestinal barrier by modulating the permeability of tight junctions. The impact of dietary protein on claudin biology has not been studied extensively. Whey proteins have been reported to improve intestinal barrier function, but their mechanism of action is not clear. Recent studies, however, have demonstrated increased intestinal claudin expression in response to milk protein components. Reviewed here are new findings suggesting that whey-protein-derived transforming growth factor β transcriptionally upregulates claudin-4 expression via a Smad-4-dependent pathway. These and other data, including limited clinical studies, are summarized below and, in the aggregate, suggest a therapeutic role for whey protein in diseases of intestinal barrier dysfunction, perhaps, in part, by regulating claudin expression. © 2013 International Life Sciences Institute.

  18. A mechanism regulating G protein-coupled receptor signaling that requires cycles of protein palmitoylation and depalmitoylation.

    PubMed

    Jia, Lixia; Chisari, Mariangela; Maktabi, Mohammad H; Sobieski, Courtney; Zhou, Hao; Konopko, Aaron M; Martin, Brent R; Mennerick, Steven J; Blumer, Kendall J

    2014-02-28

    Reversible attachment and removal of palmitate or other long-chain fatty acids on proteins has been hypothesized, like phosphorylation, to control diverse biological processes. Indeed, palmitate turnover regulates Ras trafficking and signaling. Beyond this example, however, the functions of palmitate turnover on specific proteins remain poorly understood. Here, we show that a mechanism regulating G protein-coupled receptor signaling in neuronal cells requires palmitate turnover. We used hexadecyl fluorophosphonate or palmostatin B to inhibit enzymes in the serine hydrolase family that depalmitoylate proteins, and we studied R7 regulator of G protein signaling (RGS)-binding protein (R7BP), a palmitoylated allosteric modulator of R7 RGS proteins that accelerate deactivation of Gi/o class G proteins. Depalmitoylation inhibition caused R7BP to redistribute from the plasma membrane to endomembrane compartments, dissociated R7BP-bound R7 RGS complexes from Gi/o-gated G protein-regulated inwardly rectifying K(+) (GIRK) channels and delayed GIRK channel closure. In contrast, targeting R7BP to the plasma membrane with a polybasic domain and an irreversibly attached lipid instead of palmitate rendered GIRK channel closure insensitive to depalmitoylation inhibitors. Palmitate turnover therefore is required for localizing R7BP to the plasma membrane and facilitating Gi/o deactivation by R7 RGS proteins on GIRK channels. Our findings broaden the scope of biological processes regulated by palmitate turnover on specific target proteins. Inhibiting R7BP depalmitoylation may provide a means of enhancing GIRK activity in neurological disorders.

  19. Attachment classification, psychophysiology and frontal EEG asymmetry across the lifespan: a review

    PubMed Central

    Gander, Manuela; Buchheim, Anna

    2015-01-01

    In recent years research on physiological response and frontal electroencephalographic (EEG) asymmetry in different patterns of infant and adult attachment has increased. We review research findings regarding associations between attachment classifications and frontal EEG asymmetry, the autonomic nervous system (ANS) and the hypothalamic-pituitary-adrenocortical axis (HPA). Studies indicate that insecure attachment is related to a heightened adrenocortical activity, heart rate and skin conductance in response to stress, which is consistent with the hypothesis that attachment insecurity leads to impaired emotion regulation. Research on frontal EEG asymmetry also shows a clear difference in the emotional arousal between the attachment groups evidenced by specific frontal asymmetry changes. Furthermore, we discuss neurophysiological evidence of attachment organization and present up-to-date findings of EEG-research with adults. Based on the overall patterns of results presented in this article we identify some major areas of interest and directions for future research. PMID:25745393

  20. Redox Regulation of Protein Kinases

    PubMed Central

    Truong, Thu H.; Carroll, Kate S.

    2015-01-01

    Protein kinases represent one of the largest families of genes found in eukaryotes. Kinases mediate distinct cellular processes ranging from proliferation, differentiation, survival, and apoptosis. Ligand-mediated activation of receptor kinases can lead to the production of endogenous H2O2 by membrane-bound NADPH oxidases. In turn, H2O2 can be utilized as a secondary messenger in signal transduction pathways. This review presents an overview of the molecular mechanisms involved in redox regulation of protein kinases and its effects on signaling cascades. In the first half, we will focus primarily on receptor tyrosine kinases (RTKs), whereas the latter will concentrate on downstream non-receptor kinases involved in relaying stimulant response. Select examples from the literature are used to highlight the functional role of H2O2 regarding kinase activity, as well as the components involved in H2O2 production and regulation during cellular signaling. In addition, studies demonstrating direct modulation of protein kinases by H2O2 through cysteine oxidation will be emphasized. Identification of these redox-sensitive residues may help uncover signaling mechanisms conserved within kinase subfamilies. In some cases, these residues can even be exploited as targets for the development of new therapeutics. Continued efforts in this field will further basic understanding of kinase redox regulation, and delineate the mechanisms involved in physiologic and pathological H2O2 responses. PMID:23639002

  1. Rab proteins: The key regulators of intracellular vesicle transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuin, Tanmay; Roy, Jagat Kumar, E-mail: jkroy@bhu.ac.in

    2014-10-15

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied bymore » cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future.« less

  2. Zyflamend Sensitizes Tumor Cells to TRAIL-Induced Apoptosis Through Up-Regulation of Death Receptors and Down-Regulation of Survival Proteins: Role of ROS-Dependent CCAAT/Enhancer-Binding Protein-Homologous Protein Pathway

    PubMed Central

    Kim, Ji Hye; Park, Byoungduck; Gupta, Subash C.; Kannappan, Ramaswamy; Sung, Bokyung

    2012-01-01

    Abstract Aim: TNF (tumor necrosis factor)-related apoptosis-inducing ligand (TRAIL), is a selective killer of tumor cells, although its potential is limited by the development of resistance. In this article, we investigated whether the polyherbal preparation Zyflamend® can sensitize tumor cells to TRAIL. Results: We found that Zyflamend potentiated TRAIL-induced apoptosis in human cancer cells. Zyflamend manifested its effects through several mechanisms. First, it down-regulated the expression of cell survival proteins known to be linked to resistance to TRAIL. Second, Zyflamend up-regulated the expression of pro-apoptotic protein, Bax. Third, Zyflamend up-regulated the expression of death receptors (DRs) for TRAIL. Up-regulation of DRs was critical as gene-silencing of these receptors significantly reduced the effect of Zyflamend on TRAIL-induced apoptosis. The up-regulation of DRs was dependent on CCAAT/enhancer-binding protein-homologous protein (CHOP), as Zyflamend induced CHOP, its gene-silencing abolished the induction of receptors, and mutation of the CHOP binding site on DR5 promoter abolished Zyflamend-mediated DR5 transactivation. Zyflamend mediated its effects through reactive oxygen species (ROS), as ROS quenching reduced its effect. Further, Zyflamend induced DR5 and CHOP and down-regulated the expression of cell survival proteins in nude mice bearing human pancreatic cancer cells. Innovation: Zyflamend can sensitize tumor cells to TRAIL through modulation of multiple cell signaling mechanisms that are linked to ROS. Conclusion: Zyflamend potentiates TRAIL-induced apoptosis through the ROS-CHOP-mediated up-regulation of DRs, increase in pro-apoptotic protein and down-regulation of cell survival proteins. Antioxid. Redox Signal. 16, 413–427. PMID:22004570

  3. Left-Right Asymmetry: Myosin 1D at the Center.

    PubMed

    Yuan, Shiaulou; Brueckner, Martina

    2018-05-07

    While a ciliated organizer generates vertebrate left-right asymmetry, most invertebrates lack an organizer and instead utilize a myosin-based mechanism. A recent study now reveals that this myosin mechanism is conserved in the vertebrate organizer and functions to regulate cilia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. A variant of fibroblast growth factor receptor 2 (Fgfr2) regulates left-right asymmetry in zebrafish.

    PubMed

    Liu, Da-Wei; Hsu, Chia-Hao; Tsai, Su-Mei; Hsiao, Chung-Der; Wang, Wen-Pin

    2011-01-01

    Many organs in vertebrates are left-right asymmetrical located. For example, liver is at the right side and stomach is at the left side in human. Fibroblast growth factor (Fgf) signaling is important for left-right asymmetry. To investigate the roles of Fgfr2 signaling in zebrafish left-right asymmetry, we used splicing blocking morpholinos to specifically block the splicing of fgfr2b and fgfr2c variants, respectively. We found that the relative position of the liver and the pancreas were disrupted in fgfr2c morphants. Furthermore, the left-right asymmetry of the heart became random. Expression pattern of the laterality controlling genes, spaw and pitx2c, also became random in the morphants. Furthermore, lefty1 was not expressed in the posterior notochord, indicating that the molecular midline barrier had been disrupted. It was also not expressed in the brain diencephalon. Kupffer's vesicle (KV) size became smaller in fgfr2c morphants. Furthermore, KV cilia were shorter in fgfr2c morphants. We conclude that the fgfr2c isoform plays an important role in the left-right asymmetry during zebrafish development.

  5. A Variant of Fibroblast Growth Factor Receptor 2 (Fgfr2) Regulates Left-Right Asymmetry in Zebrafish

    PubMed Central

    Liu, Da-Wei; Hsu, Chia-Hao; Tsai, Su-Mei; Hsiao, Chung-Der; Wang, Wen-Pin

    2011-01-01

    Many organs in vertebrates are left-right asymmetrical located. For example, liver is at the right side and stomach is at the left side in human. Fibroblast growth factor (Fgf) signaling is important for left-right asymmetry. To investigate the roles of Fgfr2 signaling in zebrafish left-right asymmetry, we used splicing blocking morpholinos to specifically block the splicing of fgfr2b and fgfr2c variants, respectively. We found that the relative position of the liver and the pancreas were disrupted in fgfr2c morphants. Furthermore, the left-right asymmetry of the heart became random. Expression pattern of the laterality controlling genes, spaw and pitx2c, also became random in the morphants. Furthermore, lefty1 was not expressed in the posterior notochord, indicating that the molecular midline barrier had been disrupted. It was also not expressed in the brain diencephalon. Kupffer's vesicle (KV) size became smaller in fgfr2c morphants. Furthermore, KV cilia were shorter in fgfr2c morphants. We conclude that the fgfr2c isoform plays an important role in the left-right asymmetry during zebrafish development. PMID:21747958

  6. Attachment Representations and Brain Asymmetry during the Processing of Autobiographical Emotional Memories in Late Adolescence

    PubMed Central

    Kungl, Melanie T.; Leyh, Rainer; Spangler, Gottfried

    2016-01-01

    Frontal and parietal asymmetries have repeatedly been shown to be related to specific functional mechanisms involved in emotion regulation. From a developmental perspective, attachment representations based on experiences with the caregiver are theorized to serve regulatory functions and influence how individuals deal with emotionally challenging situations throughout the life span. This study aimed to investigate neural substrates of emotion regulation by assessing state- and trait dependent EEG asymmetries in secure, insecure-dismissing and insecure-preoccupied subjects. The sample consisted of 40 late adolescents. The Adult Attachment Interview was administered and they were asked to report upon personally highly salient emotional memories related to anger, happiness and sadness. EEG was recorded at rest and during the retrieval of each of these emotional memories, and frontal and parietal hemispheric asymmetry were analyzed. We found attachment representations to differentially affect both the frontal and parietal organization of hemispheric asymmetry at rest and (for parietal region only) during the retrieval of emotional memories. During rest, insecure-dismissing subjects showed an elevated right-frontal brain activity and a reduced right-parietal brain activity. We interpret this finding in light of a disposition to use withdrawal strategies and low trait arousal in insecure-dismissing subjects. Emotional memory retrieval did not affect frontal asymmetry. However, both insecure groups showed an increase in right-sided parietal activity indicating increased arousal during the emotional task as compared to the resting state suggesting that their emotion regulation capability was especially challenged by the retrieval of emotional memories while securely attached subjects maintained a state of moderate arousal. The specific neurophysiological pattern of insecure-dismissing subjects is discussed with regard to a vulnerability to affective disorders. PMID

  7. Tor1 regulates protein solubility in Saccharomyces cerevisiae

    PubMed Central

    Peters, Theodore W.; Rardin, Matthew J.; Czerwieniec, Gregg; Evani, Uday S.; Reis-Rodrigues, Pedro; Lithgow, Gordon J.; Mooney, Sean D.; Gibson, Bradford W.; Hughes, Robert E.

    2012-01-01

    Accumulation of insoluble protein in cells is associated with aging and aging-related diseases; however, the roles of insoluble protein in these processes are uncertain. The nature and impact of changes to protein solubility during normal aging are less well understood. Using quantitative mass spectrometry, we identify 480 proteins that become insoluble during postmitotic aging in Saccharomyces cerevisiae and show that this ensemble of insoluble proteins is similar to those that accumulate in aging nematodes. SDS-insoluble protein is present exclusively in a nonquiescent subpopulation of postmitotic cells, indicating an asymmetrical distribution of this protein. In addition, we show that nitrogen starvation of young cells is sufficient to cause accumulation of a similar group of insoluble proteins. Although many of the insoluble proteins identified are known to be autophagic substrates, induction of macroautophagy is not required for insoluble protein formation. However, genetic or chemical inhibition of the Tor1 kinase is sufficient to promote accumulation of insoluble protein. We conclude that target of rapamycin complex 1 regulates accumulation of insoluble proteins via mechanisms acting upstream of macroautophagy. Our data indicate that the accumulation of proteins in an SDS-insoluble state in postmitotic cells represents a novel autophagic cargo preparation process that is regulated by the Tor1 kinase. PMID:23097491

  8. Molecular switch-like regulation in motor proteins.

    PubMed

    Tafoya, Sara; Bustamante, Carlos

    2018-06-19

    Motor proteins are powered by nucleotide hydrolysis and exert mechanical work to carry out many fundamental biological tasks. To ensure their correct and efficient performance, the motors' activities are allosterically regulated by additional factors that enhance or suppress their NTPase activity. Here, we review two highly conserved mechanisms of ATP hydrolysis activation and repression operating in motor proteins-the glutamate switch and the arginine finger-and their associated regulatory factors. We examine the implications of these regulatory mechanisms in proteins that are formed by multiple ATPase subunits. We argue that the regulatory mechanisms employed by motor proteins display features similar to those described in small GTPases, which require external regulatory elements, such as dissociation inhibitors, exchange factors and activating proteins, to switch the protein's function 'on' and 'off'. Likewise, similar regulatory roles are taken on by the motor's substrate, additional binding factors, and even adjacent subunits in multimeric complexes. However, in motor proteins, more than one regulatory factor and the two mechanisms described here often underlie the machine's operation. Furthermore, ATPase regulation takes place throughout the motor's cycle, which enables a more complex function than the binary 'active' and 'inactive' states.This article is part of a discussion meeting issue 'Allostery and molecular machines'. © 2018 The Author(s).

  9. Photoreactive synthetic regulator of protein function and methods of use thereof

    DOEpatents

    Trauner, Dirk; Isacoff, Ehud Y; Kramer, Richard H; Banghart, Matthew R; Fortin, Doris L; Mourot, Alexandre

    2015-03-31

    The present disclosure provides a photoreactive synthetic regulator of protein function. The present disclosure further provides a light-regulated polypeptide that includes a subject synthetic regulator. Also provided are cells and membranes comprising a subject light-regulated polypeptide. The present disclosure further provides methods of modulating protein function, involving use of light.

  10. Animal left-right asymmetry.

    PubMed

    Blum, Martin; Ott, Tim

    2018-04-02

    Symmetry is appealing, be it in architecture, art or facial expression, where symmetry is a key feature to finding someone attractive or not. Yet, asymmetries are widespread in nature, not as an erroneous deviation from the norm but as a way to adapt to the prevailing environmental conditions at a time. Asymmetries in many cases are actively selected for: they might well have increased the evolutionary fitness of a species. Even many single-celled organisms are built asymmetrically, such as the pear-shaped ciliate Paramecium, which may depend on its asymmetry to navigate towards the oxygen-richer surface of turbid waters, at least based on modeling. Everybody knows the lobster with its asymmetric pair of claws, the large crusher usually on the left and the smaller cutter on the right. Snail shells coil asymmetrically, as do the organs they house. Organ asymmetries are found throughout the animal kingdom, referring to asymmetric positioning, asymmetric morphology or both, with the vertebrate heart being an example for the latter. Functional asymmetries, such as that of the human brain with its localization of the language center in one hemisphere, add to the complexity of organ asymmetries and presumably played a decisive role for sociocultural evolution. The evolutionary origin of organ asymmetries may have been a longer than body length gut, which allows efficient retrieval of nutrients, and the need to stow a long gut in the body cavity in an orderly manner that ensures optimal functioning. Vertebrate organ asymmetries (situs solitus) are quite sophisticated: in humans, the apex of the asymmetrically built heart points to the left; the lung in turn, due to space restrictions, has fewer lobes on the left than on the right side (two versus three in humans), stomach and spleen are found on the left, the liver on the right, and small and large intestine coil in a chiral manner (Figure 1A). In very rare cases (1:10,000), the organ situs is inverted (situs inversus

  11. Current opinion in Microbiology Roles of adaptor proteins in regulation of bacterial proteolysis

    PubMed Central

    Battesti, Aurelia; Gottesman, Susan

    2013-01-01

    Elimination of non-functional or unwanted proteins is critical for cell growth and regulation. In bacteria, ATP-dependent proteases target cytoplasmic proteins for degradation, contributing to both protein quality control and regulation of specific proteins, thus playing roles parallel to that of the proteasome in eukaryotic cells. Adaptor proteins provide a way to modulate the substrate specificity of the proteases and allow regulated proteolysis. Advances over the past few years have provided new insight into how adaptor proteins interact with both substrates and proteases and how adaptor functions are regulated. An important advance has come with the recognition of the critical roles of anti-adaptor proteins in regulating adaptor availability. PMID:23375660

  12. Left-right asymmetry in the level of active Nodal protein produced in the node is translated into left-right asymmetry in the lateral plate of mouse embryos.

    PubMed

    Kawasumi, Aiko; Nakamura, Tetsuya; Iwai, Naomi; Yashiro, Kenta; Saijoh, Yukio; Belo, Jose Antonio; Shiratori, Hidetaka; Hamada, Hiroshi

    2011-05-15

    Left-right (L-R) asymmetry in the mouse embryo is generated in the node and is dependent on cilia-driven fluid flow, but how the initial asymmetry is transmitted from the node to the lateral plate has remained unknown. We have now identified a transcriptional enhancer (ANE) in the human LEFTY1 gene that exhibits marked L>R asymmetric activity in perinodal cells of the mouse embryo. Dissection of ANE revealed that it is activated in the perinodal cells on the left side by Nodal signaling, suggesting that Nodal activity in the node is asymmetric at a time when Nodal expression is symmetric. Phosphorylated Smad2/3 (pSmad2) indeed manifested an L-R asymmetric distribution at the node, being detected in perinodal cells preferentially on the left side. This asymmetry in pSmad2 distribution was found to be generated not by unidirectional transport of Nodal but rather as a result of Lasymmetry in pSmad2 distribution among the perinodal cells closely matched that in lateral plate mesoderm (LPM). However, autocrine-paracrine Nodal signaling in perinodal cells is dispensable for L-R patterning of LPM, given that its inhibition by expression of dominant negative forms of Smad3 or ALK4 was still associated with normal (left-sided) Nodal expression in LPM. Our results suggest that LPM is the direct target of Nodal secreted by the perinodal cells, and that an L>R distribution of active Nodal in the node is translated into the asymmetry in LPM. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI neurofeedback training in patients with depression

    PubMed Central

    Zotev, Vadim; Yuan, Han; Misaki, Masaya; Phillips, Raquel; Young, Kymberly D.; Feldner, Matthew T.; Bodurka, Jerzy

    2016-01-01

    Real-time fMRI neurofeedback (rtfMRI-nf) is an emerging approach for studies and novel treatments of major depressive disorder (MDD). EEG performed simultaneously with an rtfMRI-nf procedure allows an independent evaluation of rtfMRI-nf brain modulation effects. Frontal EEG asymmetry in the alpha band is a widely used measure of emotion and motivation that shows profound changes in depression. However, it has never been directly related to simultaneously acquired fMRI data. We report the first study investigating electrophysiological correlates of the rtfMRI-nf procedure, by combining the rtfMRI-nf with simultaneous and passive EEG recordings. In this pilot study, MDD patients in the experimental group (n = 13) learned to upregulate BOLD activity of the left amygdala using an rtfMRI-nf during a happy emotion induction task. MDD patients in the control group (n = 11) were provided with a sham rtfMRI-nf. Correlations between frontal EEG asymmetry in the upper alpha band and BOLD activity across the brain were examined. Average individual changes in frontal EEG asymmetry during the rtfMRI-nf task for the experimental group showed a significant positive correlation with the MDD patients' depression severity ratings, consistent with an inverse correlation between the depression severity and frontal EEG asymmetry at rest. The average asymmetry changes also significantly correlated with the amygdala BOLD laterality. Temporal correlations between frontal EEG asymmetry and BOLD activity were significantly enhanced, during the rtfMRI-nf task, for the amygdala and many regions associated with emotion regulation. Our findings demonstrate an important link between amygdala BOLD activity and frontal EEG asymmetry during emotion regulation. Our EEG asymmetry results indicate that the rtfMRI-nf training targeting the amygdala is beneficial to MDD patients. They further suggest that EEG-nf based on frontal EEG asymmetry in the alpha band would be compatible with the amygdala

  14. Hormonal regulation of platypus Beta-lactoglobulin and monotreme lactation protein genes.

    PubMed

    Enjapoori, Ashwantha Kumar; Lefèvre, Christophe M; Nicholas, Kevin R; Sharp, Julie A

    2017-02-01

    Endocrine regulation of milk protein gene expression in marsupials and eutherians is well studied. However, the evolution of this complex regulation that began with monotremes is unknown. Monotremes represent the oldest lineage of extant mammals and the endocrine regulation of lactation in these mammals has not been investigated. Here we characterised the proximal promoter and hormonal regulation of two platypus milk protein genes, Beta-lactoglobulin (BLG), a whey protein and monotreme lactation protein (MLP), a monotreme specific milk protein, using in vitro reporter assays and a bovine mammary epithelial cell line (BME-UV1). Insulin and dexamethasone alone provided partial induction of MLP, while the combination of insulin, dexamethasone and prolactin was required for maximal induction. Partial induction of BLG was achieved by insulin, dexamethasone and prolactin alone, with maximal induction using all three hormones. Platypus MLP and BLG core promoter regions comprised transcription factor binding sites (e.g. STAT5, NF-1 and C/EBPα) that were conserved in marsupial and eutherian lineages that regulate caseins and whey protein gene expression. Our analysis suggests that insulin, dexamethasone and/or prolactin alone can regulate the platypus MLP and BLG gene expression, unlike those of therian lineage. The induction of platypus milk protein genes by lactogenic hormones suggests they originated before the divergence of marsupial and eutherians. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Quantifying asymmetry: ratios and alternatives.

    PubMed

    Franks, Erin M; Cabo, Luis L

    2014-08-01

    Traditionally, the study of metric skeletal asymmetry has relied largely on univariate analyses, utilizing ratio transformations when the goal is comparing asymmetries in skeletal elements or populations of dissimilar dimensions. Under this approach, raw asymmetries are divided by a size marker, such as a bilateral average, in an attempt to produce size-free asymmetry indices. Henceforth, this will be referred to as "controlling for size" (see Smith: Curr Anthropol 46 (2005) 249-273). Ratios obtained in this manner often require further transformations to interpret the meaning and sources of asymmetry. This model frequently ignores the fundamental assumption of ratios: the relationship between the variables entered in the ratio must be isometric. Violations of this assumption can obscure existing asymmetries and render spurious results. In this study, we examined the performance of the classic indices in detecting and portraying the asymmetry patterns in four human appendicular bones and explored potential methodological alternatives. Examination of the ratio model revealed that it does not fulfill its intended goals in the bones examined, as the numerator and denominator are independent in all cases. The ratios also introduced strong biases in the comparisons between different elements and variables, generating spurious asymmetry patterns. Multivariate analyses strongly suggest that any transformation to control for overall size or variable range must be conducted before, rather than after, calculating the asymmetries. A combination of exploratory multivariate techniques, such as Principal Components Analysis, and confirmatory linear methods, such as regression and analysis of covariance, appear as a promising and powerful alternative to the use of ratios. © 2014 Wiley Periodicals, Inc.

  16. Asymmetry and coherence weight of quantum states

    NASA Astrophysics Data System (ADS)

    Bu, Kaifeng; Anand, Namit; Singh, Uttam

    2018-03-01

    The asymmetry of quantum states is an important resource in quantum information processing tasks such as quantum metrology and quantum communication. In this paper, we introduce the notion of asymmetry weight—an operationally motivated asymmetry quantifier in the resource theory of asymmetry. We study the convexity and monotonicity properties of asymmetry weight and focus on its interplay with the corresponding semidefinite programming (SDP) forms along with its connection to other asymmetry measures. Since the SDP form of asymmetry weight is closely related to asymmetry witnesses, we find that the asymmetry weight can be regarded as a (state-dependent) asymmetry witness. Moreover, some specific entanglement witnesses can be viewed as a special case of an asymmetry witness—which indicates a potential connection between asymmetry and entanglement. We also provide an operationally meaningful coherence measure, which we term coherence weight, and investigate its relationship to other coherence measures like the robustness of coherence and the l1 norm of coherence. In particular, we show that for Werner states in any dimension d all three coherence quantifiers, namely, the coherence weight, the robustness of coherence, and the l1 norm of coherence, are equal and are given by a single letter formula.

  17. R4 RGS Proteins: Regulation of G Protein Signaling and Beyond

    PubMed Central

    Bansal, Geetanjali; Druey, Kirk M.; Xie, Zhihui

    2007-01-01

    The Regulators of G protein Signaling (RGS) proteins were initially characterized as inhibitors of signal transduction cascades initiated by G-protein-coupled receptors (GPCRs) because of their ability to increase the intrinsic GTPase activity of heterotrimeric G proteins. This GTPase accelerating (GAP) activity enhances G protein deactivation and promotes desensitization. However, in addition to this signature trait, emerging data have revealed an expanding network of proteins, lipids, and ions that interact with RGS proteins and confer additional regulatory functions. This review highlights recent advances in our understanding of the physiological functions of one subfamily of RGS proteins with a high degree of homology (B/R4) gleaned from recent studies of knockout mice or cells with reduced RGS expression. We also discuss some of the newly-appreciated interactions of RGS proteins with cellular factors that suggest RGS control of several components of G-protein-mediated pathways as well as a diverse array of non-GPCR-mediated biological responses. PMID:18006065

  18. Spatial patterning of P granules by RNA-induced phase separation of the intrinsically-disordered protein MEG-3

    PubMed Central

    Smith, Jarrett; Calidas, Deepika; Schmidt, Helen; Lu, Tu; Rasoloson, Dominique; Seydoux, Geraldine

    2016-01-01

    RNA granules are non-membrane bound cellular compartments that contain RNA and RNA binding proteins. The molecular mechanisms that regulate the spatial distribution of RNA granules in cells are poorly understood. During polarization of the C. elegans zygote, germline RNA granules, called P granules, assemble preferentially in the posterior cytoplasm. We present evidence that P granule asymmetry depends on RNA-induced phase separation of the granule scaffold MEG-3. MEG-3 is an intrinsically disordered protein that binds and phase separates with RNA in vitro. In vivo, MEG-3 forms a posterior-rich concentration gradient that is anti-correlated with a gradient in the RNA-binding protein MEX-5. MEX-5 is necessary and sufficient to suppress MEG-3 granule formation in vivo, and suppresses RNA-induced MEG-3 phase separation in vitro. Our findings suggest that MEX-5 interferes with MEG-3’s access to RNA, thus locally suppressing MEG-3 phase separation to drive P granule asymmetry. Regulated access to RNA, combined with RNA-induced phase separation of key scaffolding proteins, may be a general mechanism for controlling the formation of RNA granules in space and time. DOI: http://dx.doi.org/10.7554/eLife.21337.001 PMID:27914198

  19. SLC7 family transporters control the establishment of left-right asymmetry during organogenesis in medaka by activating mTOR signaling.

    PubMed

    Asaoka, Yoichi; Nagai, Yoko; Namae, Misako; Furutani-Seiki, Makoto; Nishina, Hiroshi

    2016-05-20

    The precise government of the left-right (LR) specification of an organ is an essential aspect of its morphogenesis. Multiple signaling cascades have been implicated in the establishment of vertebrate LR asymmetry. Recently, mTOR signaling was found to critically regulate the development of LR asymmetry in zebrafish. However, the upstream factor(s) that activate mTOR signaling in the context of LR specification are as yet unknown. In this study, we identify the SLC7 amino acid transporters Slc7a7 and Slc7a8 as novel regulators of LR asymmetry development in the small fish medaka. Knockdown of Slc7a7 and/or Slc7a8 in medaka embryos disrupted LR organ asymmetries. Depletion of Slc7a7 hindered left-sided expression of the southpaw (spaw) gene, which is responsible for LR axis determination. Work at the cellular level revealed that Slc7a7 coordinates ciliogenesis in the epithelium of Kupffer's vesicle and thereby the generation of the nodal fluid flow required for LR asymmetry. Interestingly, knockdown of Slc7a7 depressed mTOR signaling activity in medaka embryos. Treatment with rapamycin, an inhibitor of mTOR signaling, together with Slc7a7 knockdown synergistically perturbed spaw expression, indicating an interaction between Slc7a7 and mTOR signaling affecting gene expression required for LR specification. Taken together, our results demonstrate that Slc7a7 governs the regulation of LR asymmetry development via the activation of mTOR signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Comparative proteomic analyses reveal that the regulators of G-protein signaling proteins regulate amino acid metabolism of the rice blast fungus Magnaporthe oryzae.

    PubMed

    Zhang, Haifeng; Ma, Hongyu; Xie, Xin; Ji, Jun; Dong, Yanhan; Du, Yan; Tang, Wei; Zheng, Xiaobo; Wang, Ping; Zhang, Zhengguang

    2014-11-01

    The rice blast fungus Magnaporthe oryzae encodes eight regulators of G-protein (GTP-binding protein) signaling (RGS) proteins MoRgs1-MoRgs8 that orchestrate the growth, asexual/sexual production, appressorium differentiation, and pathogenicity. To address the mechanisms by which MoRgs proteins function, we conducted a 2DE proteome study and identified 82 differentially expressed proteins by comparing five ∆Morgs mutants with wild-type Guy11 strain. We found that the abundances of eight amino acid (AA) biosynthesis or degradation associated proteins were markedly altered in five ∆Morgs mutants, indicating one of the main collective roles for the MoRgs proteins is to influence AA metabolism. We showed that MoRgs proteins have distinct roles in AA metabolism and nutrient responses from growth assays. In addition, we characterized MoLys20 (Lys is lysine), a homocitrate synthase, whose abundance was significantly decreased in the ∆Morgs mutants. The ∆Molys20 mutant is auxotrophic for lys and exogenous lys could partially rescue its auxotrophic defects. Deletion of MoLYS20 resulted in defects in conidiation and infection, as well as pathogenicity on rice. Overall, our results indicate that one of the critical roles for MoRgs proteins is to regulate AA metabolism, and that MoLys20 may be directly or indirectly regulated by MoRgs and participated in lys biosynthesis, thereby affecting fungal development and pathogenicity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Genetic Code Optimization for Cotranslational Protein Folding: Codon Directional Asymmetry Correlates with Antiparallel Betasheets, tRNA Synthetase Classes.

    PubMed

    Seligmann, Hervé; Warthi, Ganesh

    2017-01-01

    A new codon property, codon directional asymmetry in nucleotide content (CDA), reveals a biologically meaningful genetic code dimension: palindromic codons (first and last nucleotides identical, codon structure XZX) are symmetric (CDA = 0), codons with structures ZXX/XXZ are 5'/3' asymmetric (CDA = - 1/1; CDA = - 0.5/0.5 if Z and X are both purines or both pyrimidines, assigning negative/positive (-/+) signs is an arbitrary convention). Negative/positive CDAs associate with (a) Fujimoto's tetrahedral codon stereo-table; (b) tRNA synthetase class I/II (aminoacylate the 2'/3' hydroxyl group of the tRNA's last ribose, respectively); and (c) high/low antiparallel (not parallel) betasheet conformation parameters. Preliminary results suggest CDA-whole organism associations (body temperature, developmental stability, lifespan). Presumably, CDA impacts spatial kinetics of codon-anticodon interactions, affecting cotranslational protein folding. Some synonymous codons have opposite CDA sign (alanine, leucine, serine, and valine), putatively explaining how synonymous mutations sometimes affect protein function. Correlations between CDA and tRNA synthetase classes are weaker than between CDA and antiparallel betasheet conformation parameters. This effect is stronger for mitochondrial genetic codes, and potentially drives mitochondrial codon-amino acid reassignments. CDA reveals information ruling nucleotide-protein relations embedded in reversed (not reverse-complement) sequences (5'-ZXX-3'/5'-XXZ-3').

  2. Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae

    PubMed Central

    Dever, Thomas E.; Kinzy, Terri Goss; Pavitt, Graham D.

    2016-01-01

    In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae. The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs. PMID:27183566

  3. Ligand-Induced Asymmetry in Histidine Sensor Kinase Complex Regulates Quorum Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neiditch,M.; Federle, M.; Pompeani, A.

    2006-01-01

    Bacteria sense their environment using receptors of the histidine sensor kinase family, but how kinase activity is regulated by ligand binding is not well understood. Autoinducer-2 (AI-2), a secreted signaling molecule originally identified in studies of the marine bacterium Vibrio harveyi, regulates quorum-sensing responses and allows communication between different bacterial species. AI-2 signal transduction in V. harveyi requires the integral membrane receptor LuxPQ, comprised of periplasmic binding protein (LuxP) and histidine sensor kinase (LuxQ) subunits. Combined X-ray crystallographic and functional studies show that AI-2 binding causes a major conformational change within LuxP, which in turn stabilizes a quaternary arrangement inmore » which two LuxPQ monomers are asymmetrically associated. We propose that formation of this asymmetric quaternary structure is responsible for repressing the kinase activity of both LuxQ subunits and triggering the transition of V. harveyi into quorum-sensing mode.« less

  4. Piezo Proteins: Regulators of Mechanosensation and Other Cellular Processes*

    PubMed Central

    Bagriantsev, Sviatoslav N.; Gracheva, Elena O.; Gallagher, Patrick G.

    2014-01-01

    Piezo proteins have recently been identified as ion channels mediating mechanosensory transduction in mammalian cells. Characterization of these channels has yielded important insights into mechanisms of somatosensation, as well as other mechano-associated biologic processes such as sensing of shear stress, particularly in the vasculature, and regulation of urine flow and bladder distention. Other roles for Piezo proteins have emerged, some unexpected, including participation in cellular development, volume regulation, cellular migration, proliferation, and elongation. Mutations in human Piezo proteins have been associated with a variety of disorders including hereditary xerocytosis and several syndromes with muscular contracture as a prominent feature. PMID:25305018

  5. Regulation of bone morphogenetic proteins in early embryonic development

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yukiyo; Oelgeschläger, Michael

    2004-11-01

    Bone morphogenetic proteins (BMPs), a large subgroup of the TGF-β family of secreted growth factors, control fundamental events in early embryonic development, organogenesis and adult tissue homeostasis. The plethora of dose-dependent cellular processes regulated by BMP signalling demand a tight regulation of BMP activity. Over the last decade, a number of proteins have been identified that bind BMPs in the extracellular space and regulate the interaction of BMPs with their cognate receptors, including the secreted BMP antagonist Chordin. In the early vertebrate embryo, the localized secretion of BMP antagonists from the dorsal blastopore lip establishes a functional BMP signalling gradient that is required for the determination of the dorsoventral or back to belly body axis. In particular, inhibition of BMP activity is essential for the formation of neural tissue in the development of vertebrate and invertebrate embryos. Here we review recent studies that have provided new insight into the regulation of BMP signalling in the extracellular space. In particular, we discuss the recently identified Twisted gastrulation protein that modulates, in concert with metalloproteinases of the Tolloid family, the interaction of Chordin with BMP and a family of proteins that share structural similarities with Chordin in the respective BMP binding domains. In addition, genetic and functional studies in zebrafish and frog provide compelling evidence that the secreted protein Sizzled functionally interacts with the Chd BMP pathway, despite being expressed ventrally in the early gastrula-stage embryo. These intriguing discoveries may have important implications, not only for our current concept of early embryonic patterning, but also for the regulation of BMP activity at later developmental stages and tissue homeostasis in the adult.

  6. Early embryonic programming of neuronal left/right asymmetry in C. elegans.

    PubMed

    Poole, Richard J; Hobert, Oliver

    2006-12-05

    Nervous systems are largely bilaterally symmetric on a morphological level but often display striking degrees of functional left/right (L/R) asymmetry. How L/R asymmetric functional features are superimposed onto an essentially bilaterally symmetric structure and how nervous-system laterality relates to the L/R asymmetry of internal organs are poorly understood. We address these questions here by using the establishment of L/R asymmetry in the ASE chemosensory neurons of C. elegans as a paradigm. This bilaterally symmetric neuron pair is functionally lateralized in that it senses a distinct class of chemosensory cues and expresses a putative chemoreceptor family in a L/R asymmetric manner. We show that the directionality of the asymmetry of the two postmitotic ASE neurons ASE left (ASEL) and ASE right (ASER) in adults is dependent on a L-/R-symmetry-breaking event at a very early embryonic stage, the six-cell stage, which also establishes the L/R asymmetric placement of internal organs. However, the L/R asymmetry of the ASE neurons per se is dependent on an even earlier anterior-posterior (A/P) Notch signal that specifies embryonic ABa/ABp blastomere identities at the four-cell stage. This Notch signal, which functions through two T box genes, acts genetically upstream of a miRNA-controlled bistable feedback loop that regulates the L/R asymmetric gene-expression program in the postmitotic ASE cells. Our results link adult neuronal laterality to the generation of the A/P axis at the two-cell stage and raise the possibility that neural asymmetries observed across the animal kingdom are similarly established by very early embryonic interactions.

  7. Abiotic regulation: a common way for proteins to modulate their functions.

    PubMed

    Zou, Zhi; Fu, Xinmiao

    2015-01-01

    Modulation of protein intrinsic activity in cells is generally carried out via a combination of four common ways, i.e., allosteric regulation, covalent modification, proteolytic cleavage and association of other regulatory proteins. Accumulated evidence indicate that changes of certain abiotic factors (e.g., temperature, pH, light and mechanical force) within or outside the cells directly influence protein structure and thus profoundly modulate the functions of a wide range of proteins, termed as abiotic regulatory proteins (e.g., heat shock factor, small heat shock protein, hemoglobin, zymogen, integrin, rhodopsin). Such abiotic regulation apparently differs from the four classic ways in perceiving and response to the signals. Importantly, it enables cells to directly and also immediately response to extracellular stimuli, thus facilitating the ability of organisms to resist against and adapt to the abiotic stress and thereby playing crucial roles in life evolution. Altogether, abiotic regulation may be considered as a common way for proteins to modulate their functions.

  8. Intrachromosomal karyotype asymmetry in Orchidaceae.

    PubMed

    Medeiros-Neto, Enoque; Nollet, Felipe; Moraes, Ana Paula; Felix, Leonardo P

    2017-01-01

    The asymmetry indexes have helped cytotaxonomists to interpret and classify plant karyotypes for species delimitation efforts. However, there is no consensus about the best method to calculate the intrachromosomal asymmetry. The present study aimed to compare different intrachromosomal asymmetry indexes in order to indicate which are more efficient for the estimation of asymmetry in different groups of orchids. Besides, we aimed to compare our results with the Orchidaceae phylogenetic proposal to test the hypothesis of Stebbins (1971). Through a literature review, karyotypes were selected and analyzed comparatively with ideal karyotypes in a cluster analysis. All karyotypes showed some level of interchromosomal asymmetry, ranging from slightly asymmetric to moderately asymmetric. The five tested intrachromosomal asymmetry indexes indicated Sarcoglottis grandiflora as the species with the most symmetrical karyotype and Christensonella pachyphylla with the most asymmetrical karyotype. In the cluster analysis, the largest number of species were grouped with the intermediary ideal karyotypes B or C. Considering our results, we recommend the combined use of at least two indexes, especially Ask% or A1 with Syi, for cytotaxonomic analysis in groups of orchids. In an evolutionary perspective, our results support Stebbins' hypothesis that asymmetric karyotypes derive from a symmetric karyotypes.

  9. [Diagnosis of facial and craniofacial asymmetry].

    PubMed

    Arnaud, E; Marchac, D; Renier, D

    2001-10-01

    Craniofacial asymmetry is caused by various aetiologies but clinical examination remains the most important criteria since minor asymmetry is always present. The diagnosis can be confirmed by anthropometric measurements and radiological examinations but only severe asymmetries or asymmetries with an associated functional impairment should be treated. The treatment depends on the cause, and on the time of appearance. Congenital asymmetries might be treated early, during the first year of life if a craniosynostosis is present. Hemifacial microsomia are treated later if there is no breathing impairment. Since the pediatricians have recommended the dorsal position for infant sleeping, an increasing number of posterior flattening of the skull has been appearing, and could be prevented by adequate nursing. Other causes of craniofacial asymmetries are rare and should be adapted to the cause (tumors, atrophies, neurological paralysis, hypertrophies) by a specialized multidisciplinar team.

  10. Disruption of Epithalamic Left-Right Asymmetry Increases Anxiety in Zebrafish.

    PubMed

    Facchin, Lucilla; Duboué, Erik R; Halpern, Marnie E

    2015-12-02

    Differences between the left and right sides of the brain are found throughout the animal kingdom, but the consequences of altered neural asymmetry are not well understood. In the zebrafish epithalamus, the parapineal is located on the left side of the brain where it influences development of the adjacent dorsal habenular (dHb) nucleus, causing the left and right dHb to differ in their organization, gene expression, and connectivity. Left-right (L-R) reversal of parapineal position and dHb asymmetry occurs spontaneously in a small percentage of the population, whereas the dHb develop symmetrically following experimental ablation of the parapineal. The habenular region was previously implicated in modulating fear in both mice and zebrafish, but the relevance of its L-R asymmetry is unclear. We now demonstrate that disrupting directionality of the zebrafish epithalamus causes reduced exploratory behavior and increased cortisol levels, indicative of enhanced anxiety. Accordingly, exposure to buspirone, an anxiolytic agent, significantly suppresses atypical behavior. Axonal projections from the parapineal to the dHb are more variable when it is located on the right side of the brain, revealing that L-R reversals do not necessarily represent a neuroanatomical mirror image. The results highlight the importance of directional asymmetry of the epithalamus in the regulation of stress responses in zebrafish. Copyright © 2015 the authors 0270-6474/15/3515847-13$15.00/0.

  11. Wnt/PCP Instructions for Cilia in Left-Right Asymmetry.

    PubMed

    Wu, Jun; Mlodzik, Marek

    2017-03-13

    Wnt-Frizzled/planar cell polarity (PCP) signaling establishes cell orientation within the epithelial plane, but whether Wnts are instructive or permissive is debated. Reporting in Developmental Cell, Minegishi et al. (2017) uncover an instructive link from Wnt5a/b gradients to PCP-factor-regulated polarized cilia positioning that is essential to mouse embryo left-right asymmetry establishment. Copyright © 2017. Published by Elsevier Inc.

  12. Assessing and conceptualizing frontal EEG asymmetry: An updated primer on recording, processing, analyzing, and interpreting frontal alpha asymmetry.

    PubMed

    Smith, Ezra E; Reznik, Samantha J; Stewart, Jennifer L; Allen, John J B

    2017-01-01

    Frontal electroencephalographic (EEG) alpha asymmetry is widely researched in studies of emotion, motivation, and psychopathology, yet it is a metric that has been quantified and analyzed using diverse procedures, and diversity in procedures muddles cross-study interpretation. The aim of this article is to provide an updated tutorial for EEG alpha asymmetry recording, processing, analysis, and interpretation, with an eye towards improving consistency of results across studies. First, a brief background in alpha asymmetry findings is provided. Then, some guidelines for recording, processing, and analyzing alpha asymmetry are presented with an emphasis on the creation of asymmetry scores, referencing choices, and artifact removal. Processing steps are explained in detail, and references to MATLAB-based toolboxes that are helpful for creating and investigating alpha asymmetry are noted. Then, conceptual challenges and interpretative issues are reviewed, including a discussion of alpha asymmetry as a mediator/moderator of emotion and psychopathology. Finally, the effects of two automated component-based artifact correction algorithms-MARA and ADJUST-on frontal alpha asymmetry are evaluated. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Fe-S Proteins that Regulate Gene Expression

    PubMed Central

    Mettert, Erin L.; Kiley, Patricia J.

    2014-01-01

    Iron-sulfur (Fe-S) cluster containing proteins that regulate gene expression are present in most organisms. The innate chemistry of their Fe-S cofactors makes these regulatory proteins ideal for sensing environmental signals, such as gases (e.g. O2 and NO), levels of Fe and Fe-S clusters, reactive oxygen species, and redox cycling compounds, to subsequently mediate an adaptive response. Here we review the recent findings that have provided invaluable insight into the mechanism and function of these highly significant Fe-S regulatory proteins. PMID:25450978

  14. Dichotic listening in patients with situs inversus: brain asymmetry and situs asymmetry.

    PubMed

    Tanaka, S; Kanzaki, R; Yoshibayashi, M; Kamiya, T; Sugishita, M

    1999-06-01

    In order to investigate the relation between situs asymmetry and functional asymmetry of the human brain, a consonant-vowel syllable dichotic listening test known as the Standard Dichotic Listening Test (SDLT) was administered to nine subjects with situs inversus (SI) that ranged in age from 6 to 46 years old (mean of 21.8 years old, S.D. = 15.6); the four males and five females all exhibited strong right-handedness. The SDLT was also used to study twenty four age-matched normal subjects that were from 6 to 48 years old (mean 21.7 years old, S.D. = 15.3); the twelve males and twelve females were all strongly right-handed and served as a control group. Eight out of the nine subjects (88.9%) with SI more often reproduced the sounds from the right ear than sounds from the left ear; this is called right ear advantage (REA). The ratio of REA in the control group was almost the same, i.e., nineteen out of the twenty-four subjects (79.1%) showed REA. Results of the present study suggest that the left-right reversal in situs inversus does not involve functional asymmetry of the brain. As such, the system that produces functional asymmetry in the human brain must independently recognize laterality from situs asymmetry.

  15. Split luciferase complementation assay to detect regulated protein-protein interactions in rice protoplasts in a large-scale format

    PubMed Central

    2014-01-01

    Background The rice interactome, in which a network of protein-protein interactions has been elucidated in rice, is a useful resource to identify functional modules of rice signal transduction pathways. Protein-protein interactions occur in cells in two ways, constitutive and regulative. While a yeast-based high-throughput method has been widely used to identify the constitutive interactions, a method to detect the regulated interactions is rarely developed for a large-scale analysis. Results A split luciferase complementation assay was applied to detect the regulated interactions in rice. A transformation method of rice protoplasts in a 96-well plate was first established for a large-scale analysis. In addition, an antibody that specifically recognizes a carboxyl-terminal fragment of Renilla luciferase was newly developed. A pair of antibodies that recognize amino- and carboxyl- terminal fragments of Renilla luciferase, respectively, was then used to monitor quality and quantity of interacting recombinant-proteins accumulated in the cells. For a proof-of-concept, the method was applied to detect the gibberellin-dependent interaction between GIBBERELLIN INSENSITIVE DWARF1 and SLENDER RICE 1. Conclusions A method to detect regulated protein-protein interactions was developed towards establishment of the rice interactome. PMID:24987490

  16. Light-Inducible Gene Regulation with Engineered Zinc Finger Proteins

    PubMed Central

    Polstein, Lauren R.; Gersbach, Charles A.

    2014-01-01

    The coupling of light-inducible protein-protein interactions with gene regulation systems has enabled the control of gene expression with light. In particular, heterodimer protein pairs from plants can be used to engineer a gene regulation system in mammalian cells that is reversible, repeatable, tunable, controllable in a spatiotemporal manner, and targetable to any DNA sequence. This system, Light-Inducible Transcription using Engineered Zinc finger proteins (LITEZ), is based on the blue light-induced interaction of GIGANTEA and the LOV domain of FKF1 that drives the localization of a transcriptional activator to the DNA-binding site of a highly customizable engineered zinc finger protein. This chapter provides methods for modifying LITEZ to target new DNA sequences, engineering a programmable LED array to illuminate cell cultures, and using the modified LITEZ system to achieve spatiotemporal control of transgene expression in mammalian cells. PMID:24718797

  17. Whey proteins in the regulation of food intake and satiety.

    PubMed

    Luhovyy, Bohdan L; Akhavan, Tina; Anderson, G Harvey

    2007-12-01

    Whey protein has potential as a functional food component to contribute to the regulation of body weight by providing satiety signals that affect both short-term and long-term food intake regulation. Because whey is an inexpensive source of high nutritional quality protein, the utilization of whey as a physiologically functional food ingredient for weight management is of current interest. At present, the role of individual whey proteins and peptides in contributing to food intake regulation has not been fully defined. However, Whey protein reduces short-term food intake relative to placebo, carbohydrate and other proteins. Whey protein affects satiation and satiety by the actions of: (1) whey protein fractions per se; (2) bioactive peptides; (3) amino-acids released after digestion; (4) combined action of whey protein and/or peptides and/or amino acids with other milk constituents. Whey ingestion activates many components of the food intake regulatory system. Whey protein is insulinotropic, and whey-born peptides affect the renin-angiotensin system. Therefore whey protein has potential as physiologically functional food component for persons with obesity and its co-morbidities (hypertension, type II diabetes, hyper- and dislipidemia). It remains unclear, however, if the favourable effects of whey on food intake, subjective satiety and intake regulatory mechanisms in humans are obtained from usual serving sizes of dairy products. The effects described have been observed in short-term experiments and when whey is consumed in much higher amounts.

  18. Protein-protein interactions in the regulation of WRKY transcription factors.

    PubMed

    Chi, Yingjun; Yang, Yan; Zhou, Yuan; Zhou, Jie; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2013-03-01

    It has been almost 20 years since the first report of a WRKY transcription factor, SPF1, from sweet potato. Great progress has been made since then in establishing the diverse biological roles of WRKY transcription factors in plant growth, development, and responses to biotic and abiotic stress. Despite the functional diversity, almost all analyzed WRKY proteins recognize the TTGACC/T W-box sequences and, therefore, mechanisms other than mere recognition of the core W-box promoter elements are necessary to achieve the regulatory specificity of WRKY transcription factors. Research over the past several years has revealed that WRKY transcription factors physically interact with a wide range of proteins with roles in signaling, transcription, and chromatin remodeling. Studies of WRKY-interacting proteins have provided important insights into the regulation and mode of action of members of the important family of transcription factors. It has also emerged that the slightly varied WRKY domains and other protein motifs conserved within each of the seven WRKY subfamilies participate in protein-protein interactions and mediate complex functional interactions between WRKY proteins and between WRKY and other regulatory proteins in the modulation of important biological processes. In this review, we summarize studies of protein-protein interactions for WRKY transcription factors and discuss how the interacting partners contribute, at different levels, to the establishment of the complex regulatory and functional network of WRKY transcription factors.

  19. A-Kinase Anchoring Proteins That Regulate Cardiac Remodeling

    PubMed Central

    Carnegie, Graeme K.; Burmeister, Brian T.

    2012-01-01

    In response to injury or stress, the adult heart undergoes maladaptive changes, collectively defined as pathological cardiac remodeling. Here, we focus on the role of A-kinase anchoring proteins (AKAPs) in 3 main areas associated with cardiac remodeling and the progression of heart failure: excitation–contraction coupling, sarcomeric regulation, and induction of pathological hypertrophy. AKAPs are a diverse family of scaffold proteins that form multi-protein complexes, integrating cAMP signaling with protein kinases, phosphatases, and other effector proteins. Many AKAPs have been characterized in the heart, where they play a critical role in modulating cardiac function. PMID:22075671

  20. LDL receptor-related protein 1 regulates the abundance of diverse cell-signaling proteins in the plasma membrane proteome.

    PubMed

    Gaultier, Alban; Simon, Gabriel; Niessen, Sherry; Dix, Melissa; Takimoto, Shinako; Cravatt, Benjamin F; Gonias, Steven L

    2010-12-03

    LDL receptor-related protein 1 (LRP1) is an endocytic receptor, reported to regulate the abundance of other receptors in the plasma membrane, including uPAR and tissue factor. The goal of this study was to identify novel plasma membrane proteins, involved in cell-signaling, that are regulated by LRP1. Membrane protein ectodomains were prepared from RAW 264.7 cells in which LRP1 was silenced and control cells using protease K. Peptides were identified by LC-MS/MS. By analysis of spectral counts, 31 transmembrane and secreted proteins were regulated in abundance at least 2-fold when LRP1 was silenced. Validation studies confirmed that semaphorin4D (Sema4D), plexin domain-containing protein-1 (Plxdc1), and neuropilin-1 were more abundant in the membranes of LRP1 gene-silenced cells. Regulation of Plxdc1 by LRP1 was confirmed in CHO cells, as a second model system. Plxdc1 coimmunoprecipitated with LRP1 from extracts of RAW 264.7 cells and mouse liver. Although Sema4D did not coimmunoprecipitate with LRP1, the cell-surface level of Sema4D was increased by RAP, which binds to LRP1 and inhibits binding of other ligands. These studies identify Plxdc1, Sema4D, and neuropilin-1 as novel LRP1-regulated cell-signaling proteins. Overall, LRP1 emerges as a generalized regulator of the plasma membrane proteome.

  1. Black–white asymmetry in visual perception

    PubMed Central

    Lu, Zhong-Lin; Sperling, George

    2012-01-01

    With eleven different types of stimuli that exercise a wide gamut of spatial and temporal visual processes, negative perturbations from mean luminance are found to be typically 25% more effective visually than positive perturbations of the same magnitude (range 8–67%). In Experiment 12, the magnitude of the black–white asymmetry is shown to be a saturating function of stimulus contrast. Experiment 13 shows black–white asymmetry primarily involves a nonlinearity in the visual representation of decrements. Black–white asymmetry in early visual processing produces even-harmonic distortion frequencies in all ordinary stimuli and in illusions such as the perceived asymmetry of optically perfect sine wave gratings. In stimuli intended to stimulate exclusively second-order processing in which motion or shape are defined not by luminance differences but by differences in texture contrast, the black–white asymmetry typically generates artifactual luminance (first-order) motion and shape components. Because black–white asymmetry pervades psychophysical and neurophysiological procedures that utilize spatial or temporal variations of luminance, it frequently needs to be considered in the design and evaluation of experiments that involve visual stimuli. Simple procedures to compensate for black–white asymmetry are proposed. PMID:22984221

  2. Intrachromosomal karyotype asymmetry in Orchidaceae

    PubMed Central

    Medeiros-Neto, Enoque; Nollet, Felipe; Moraes, Ana Paula; Felix, Leonardo P.

    2017-01-01

    Abstract The asymmetry indexes have helped cytotaxonomists to interpret and classify plant karyotypes for species delimitation efforts. However, there is no consensus about the best method to calculate the intrachromosomal asymmetry. The present study aimed to compare different intrachromosomal asymmetry indexes in order to indicate which are more efficient for the estimation of asymmetry in different groups of orchids. Besides, we aimed to compare our results with the Orchidaceae phylogenetic proposal to test the hypothesis of Stebbins (1971). Through a literature review, karyotypes were selected and analyzed comparatively with ideal karyotypes in a cluster analysis. All karyotypes showed some level of interchromosomal asymmetry, ranging from slightly asymmetric to moderately asymmetric. The five tested intrachromosomal asymmetry indexes indicated Sarcoglottis grandiflora as the species with the most symmetrical karyotype and Christensonella pachyphylla with the most asymmetrical karyotype. In the cluster analysis, the largest number of species were grouped with the intermediary ideal karyotypes B or C. Considering our results, we recommend the combined use of at least two indexes, especially Ask% or A1 with Syi, for cytotaxonomic analysis in groups of orchids. In an evolutionary perspective, our results support Stebbins’ hypothesis that asymmetric karyotypes derive from a symmetric karyotypes. PMID:28644507

  3. MicroRNA regulation of F-box proteins and its role in cancer.

    PubMed

    Wu, Zhao-Hui; Pfeffer, Lawrence M

    2016-02-01

    MicroRNAs (miRNAs) are small endogenous non-coding RNAs, which play critical roles in cancer development by suppressing gene expression at the post-transcriptional level. In general, oncogenic miRNAs are upregulated in cancer, while miRNAs that act as tumor suppressors are downregulated, leading to decreased expression of tumor suppressors and upregulated oncogene expression, respectively. F-box proteins function as the substrate-recognition components of the SKP1-CUL1-F-box (SCF)-ubiquitin ligase complex for the degradation of their protein targets by the ubiquitin-proteasome system. Therefore F-box proteins and miRNAs both negatively regulate target gene expression post-transcriptionally. Since each miRNA is capable of fine-tuning the expression of multiple target genes, multiple F-box proteins may be suppressed by the same miRNA. Meanwhile, one F-box proteins could be regulated by several miRNAs in different cancer types. In this review, we will focus on miRNA-mediated downregulation of various F-box proteins, the resulting stabilization of F-box protein substrates and the impact of these processes on human malignancies. We provide insight into how the miRNA: F-box protein axis may regulate cancer progression and metastasis. We also consider the broader role of F-box proteins in the regulation of pathways that are independent of the ubiquitin ligase complex and how that impacts on oncogenesis. The area of miRNAs and the F-box proteins that they regulate in cancer is an emerging field and will inform new strategies in cancer treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Indispensable roles of mammalian Cbl family proteins as negative regulators of protein tyrosine kinase signaling

    PubMed Central

    Band, Vimla

    2011-01-01

    All higher eukaryotes utilize protein tyrosine kinases (PTKs) as molecular switches to control a variety of cellular signals. Notably, many PTKs have been identified as proto-oncogenes whose aberrant expression, mutations or co-option by pathogens can lead to human malignancies. Thus, it is obvious that PTK functions must be precisely regulated in order to maintain homeostasis of an organism. Investigations over the past fifteen years have revealed that members of the Cbl family proteins can serve as negative regulators of PTK signaling, and biochemical and cell biological studies have unraveled the mechanistic basis of this regulation. Yet, it is only recently that the field has begun to appreciate the real significance of this novel regulatory apparatus in shaping PTK-mediated signaling in organismic contexts and in human diseases. Here, we discuss recent progress in murine models that are beginning to provide insights into the critical roles of Cbl proteins in physiological pathways, with important implications in understanding how aberrations of Cbl proteins contribute to oncogenesis. PMID:21655429

  5. Minireview: Role of Intracellular Scaffolding Proteins in the Regulation of Endocrine G Protein-Coupled Receptor Signaling

    PubMed Central

    Walther, Cornelia

    2015-01-01

    The majority of hormones stimulates and mediates their signal transduction via G protein-coupled receptors (GPCRs). The signal is transmitted into the cell due to the association of the GPCRs with heterotrimeric G proteins, which in turn activates an extensive array of signaling pathways to regulate cell physiology. However, GPCRs also function as scaffolds for the recruitment of a variety of cytoplasmic protein-interacting proteins that bind to both the intracellular face and protein interaction motifs encoded by GPCRs. The structural scaffolding of these proteins allows GPCRs to recruit large functional complexes that serve to modulate both G protein-dependent and -independent cellular signaling pathways and modulate GPCR intracellular trafficking. This review focuses on GPCR interacting PSD95-disc large-zona occludens domain containing scaffolds in the regulation of endocrine receptor signaling as well as their potential role as therapeutic targets for the treatment of endocrinopathies. PMID:25942107

  6. Bilateral asymmetry prediction.

    PubMed

    Kostoff, Ronald Neil

    2003-08-01

    This study predicts asymmetries in lateral organ cancer incidence from text mining of the Medline database. Lung, kidney, teste, and ovary cancers were examined. For each cancer, Medline case report articles focused solely on (1) cancer of the right organ and (2) cancer of the left organ were retrieved. The ratio of right organ to left organ articles was compared to actual patient incidence data obtained from the National Cancer Institute's (NCI) SEER database for the period 1979-1998. The agreement between the Medline record ratios and the NCI's patient incidence data ratios ranged from within 3% for lung cancer to within 1% for teste and ovary cancer. This is the first known study to generate cancer lateral incidence asymmetries from the Medline database. The technique should be applicable to other diseases and other types of system asymmetries.

  7. Identifying cooperative transcriptional regulations using protein–protein interactions

    PubMed Central

    Nagamine, Nobuyoshi; Kawada, Yuji; Sakakibara, Yasubumi

    2005-01-01

    Cooperative transcriptional activations among multiple transcription factors (TFs) are important to understand the mechanisms of complex transcriptional regulations in eukaryotes. Previous studies have attempted to find cooperative TFs based on gene expression data with gene expression profiles as a measure of similarity of gene regulations. In this paper, we use protein–protein interaction data to infer synergistic binding of cooperative TFs. Our fundamental idea is based on the assumption that genes contributing to a similar biological process are regulated under the same control mechanism. First, the protein–protein interaction networks are used to calculate the similarity of biological processes among genes. Second, we integrate this similarity and the chromatin immuno-precipitation data to identify cooperative TFs. Our computational experiments in yeast show that predictions made by our method have successfully identified eight pairs of cooperative TFs that have literature evidences but could not be identified by the previous method. Further, 12 new possible pairs have been inferred and we have examined the biological relevances for them. However, since a typical problem using protein–protein interaction data is that many false-positive data are contained, we propose a method combining various biological data to increase the prediction accuracy. PMID:16126847

  8. Piezo proteins: regulators of mechanosensation and other cellular processes.

    PubMed

    Bagriantsev, Sviatoslav N; Gracheva, Elena O; Gallagher, Patrick G

    2014-11-14

    Piezo proteins have recently been identified as ion channels mediating mechanosensory transduction in mammalian cells. Characterization of these channels has yielded important insights into mechanisms of somatosensation, as well as other mechano-associated biologic processes such as sensing of shear stress, particularly in the vasculature, and regulation of urine flow and bladder distention. Other roles for Piezo proteins have emerged, some unexpected, including participation in cellular development, volume regulation, cellular migration, proliferation, and elongation. Mutations in human Piezo proteins have been associated with a variety of disorders including hereditary xerocytosis and several syndromes with muscular contracture as a prominent feature. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Regulation of neurite morphogenesis by interaction between R7 regulator of G protein signaling complexes and G protein subunit Gα13.

    PubMed

    Scherer, Stephanie L; Cain, Matthew D; Kanai, Stanley M; Kaltenbronn, Kevin M; Blumer, Kendall J

    2017-06-16

    The R7 regulator of G protein signaling family (R7-RGS) critically regulates nervous system development and function. Mice lacking all R7-RGS subtypes exhibit diverse neurological phenotypes, and humans bearing mutations in the retinal R7-RGS isoform RGS9-1 have vision deficits. Although each R7-RGS subtype forms heterotrimeric complexes with Gβ 5 and R7-RGS-binding protein (R7BP) that regulate G protein-coupled receptor signaling by accelerating deactivation of G i/o α-subunits, several neurological phenotypes of R7-RGS knock-out mice are not readily explained by dysregulated G i/o signaling. Accordingly, we used tandem affinity purification and LC-MS/MS to search for novel proteins that interact with R7-RGS heterotrimers in the mouse brain. Among several proteins detected, we focused on Gα 13 because it had not been linked to R7-RGS complexes before. Split-luciferase complementation assays indicated that Gα 13 in its active or inactive state interacts with R7-RGS heterotrimers containing any R7-RGS isoform. LARG (leukemia-associated Rho guanine nucleotide exchange factor (GEF)), PDZ-RhoGEF, and p115RhoGEF augmented interaction between activated Gα 13 and R7-RGS heterotrimers, indicating that these effector RhoGEFs can engage Gα 13 ·R7-RGS complexes. Because Gα 13 /R7-RGS interaction required R7BP, we analyzed phenotypes of neuronal cell lines expressing RGS7 and Gβ 5 with or without R7BP. We found that neurite retraction evoked by Gα 12/13 -dependent lysophosphatidic acid receptors was augmented in R7BP-expressing cells. R7BP expression blunted neurite formation evoked by serum starvation by signaling mechanisms involving Gα 12/13 but not Gα i/o These findings provide the first evidence that R7-RGS heterotrimers interact with Gα 13 to augment signaling pathways that regulate neurite morphogenesis. This mechanism expands the diversity of functions whereby R7-RGS complexes regulate critical aspects of nervous system development and function. © 2017 by

  10. Fluctuating Asymmetry and Intelligence

    ERIC Educational Resources Information Center

    Bates, Timothy C.

    2007-01-01

    The general factor of mental ability ("g") may reflect general biological fitness. If so, "g"-loaded measures such as Raven's progressive matrices should be related to morphological measures of fitness such as fluctuating asymmetry (FA: left-right asymmetry of a set of typically left-right symmetrical body traits such as finger…

  11. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    PubMed

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M

    2013-01-01

    N-MYC down-regulated-like (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  12. N-MYC DOWN-REGULATED-LIKE Proteins Regulate Meristem Initiation by Modulating Auxin Transport and MAX2 Expression

    PubMed Central

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M.

    2013-01-01

    Background N-MYC DOWN-REGULATED-LIKE (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Methodology/Principal Findings Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. Conclusion/Significance NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients. PMID:24223735

  13. A role for AT1 receptor-associated proteins in blood pressure regulation.

    PubMed

    Castrop, Hayo

    2015-04-01

    The renin angiotensin-system is one of the most important humoral regulators of blood pressure. The recently discovered angiotensin receptor-associated proteins serve as local modulators of the renin angiotensin-system. These proteins interact with the AT1 receptor in a tissue-specific manner and regulate the sensitivity of the target cell for angiotensin II. The predominant effect of the AT1 receptor-associated proteins on angiotensin II-induced signaling is the modulation of the surface expression of the AT1 receptor. This review provides an overview of our current knowledge with respect to the relevance of AT1 receptor-associated proteins for blood pressure regulation. Two aspects of blood pressure regulation will be discussed in detail: angiotensin II-dependent volume homoeostasis and vascular resistance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The RNA binding protein CsrA controls c-di-GMP metabolism by directly regulating the expression of GGDEF proteins

    PubMed Central

    Jonas, Kristina; Edwards, Adrianne N.; Simm, Roger; Romeo, Tony; Römling, Ute; Melefors, Öjar

    2009-01-01

    Summary The carbon storage regulator CsrA is an RNA binding protein that controls carbon metabolism, biofilm formation and motility in various eubacteria. Nevertheless, in Escherichia coli only five target mRNAs have been shown to be directly regulated by CsrA at the post-transcriptional level. Here we identified two new direct targets for CsrA, ycdT and ydeH, both of which encode proteins with GGDEF domains. A csrA mutation caused mRNA levels of ycdT and ydeH to increase more than 10-fold. RNA mobility shift assays confirmed the direct and specific binding of CsrA to the mRNA leaders of ydeH and ycdT. Overexpression of ycdT and ydeH resulted in a more than 20-fold increase in the cellular concentration of the second messenger c-di-GMP, implying that both proteins possess diguanylate cyclase activity. Phenotypic characterization revealed that both proteins are involved in the regulation of motility in a c-di-GMP dependent manner. CsrA was also found to regulate the expression of five additional GGDEF/EAL proteins and a csrA mutation led to modestly increased cellular levels of c-di-GMP. All together, these data demonstrate a global role for CsrA in the regulation of c-di-GMP metabolism by regulating the expression of GGDEF proteins at the post-transcriptional level. PMID:18713317

  15. Asymmetries of solar oscillation line profiles

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Jefferies, S. M.; Harvey, J. W.; Osaki, Y.; Pomerantz, M. A.

    1993-01-01

    Asymmetries of the power spectral line profiles of solar global p-modes are detected in full-disk intensity observations of the Ca II K Fraunhofer line. The asymmetry is a strong function of temporal frequency being strongest at the lowest frequencies observed and vanishing near the peak of the power distribution. The variation with spherical harmonic degree is small. The asymmetry is interpreted in terms of a model in which the solar oscillation cavity is compared to a Fabry-Perot interferometer with the source slightly outside the cavity. A phase difference between an outward direct wave and a corresponding inward wave that passes through the cavity gives rise to the asymmetry. The asymmetry is different in velocity and intensity observations. Neglecting the asymmetry when modeling the power spectrum can lead to systematic errors in the measurement of mode frequencies of as much as 10 exp -4 of the mode frequency. The present observations and interpretation locate the source of the oscillations to be approximately 60 km beneath the photosphere, the shallowest position suggested to date.

  16. ``Green's function'' approach & low-mode asymmetries

    NASA Astrophysics Data System (ADS)

    Masse, Laurent; Clark, Dan; Salmonson, Jay; MacLaren, Steve; Ma, Tammy; Khan, Shahab; Pino, Jesse; Ralph, Jo; Czajka, C.; Tipton, Robert; Landen, Otto; Kyrala, Georges; 2 Team; 1 Team

    2017-10-01

    Long wavelength, low mode asymmetries are believed to play a leading role in limiting the performance of current ICF implosions on NIF. These long wavelength modes are initiated and driven by asymmetries in the x-ray flux from the hohlraum; however, the underlying hydrodynamics of the implosion also act to amplify these asymmetries. The work presented here aim to deepen our understanding of the interplay of the drive asymmetries and the underlying implosion hydrodynamics in determining the final imploded configuration. This is accomplished through a synthesis of numerical modeling, analytic theory, and experimental data. In detail, we use a Green's function approach to connect the drive asymmetry seen by the capsule to the measured inflight and hot spot symmetries. The approach has been validated against a suite of numerical simulations. Ultimately, we hope this work will identify additional measurements to further constrain the asymmetries and increase hohlraum illumination design flexibility on the NIF. The technique and derivation of associated error bars will be presented. LLC, (LLNS) Contract No. DE-AC52-07NA27344.

  17. Regulation of gene transcription by Polycomb proteins

    PubMed Central

    Aranda, Sergi; Mas, Gloria; Di Croce, Luciano

    2015-01-01

    The Polycomb group (PcG) of proteins defines a subset of factors that physically associate and function to maintain the positional identity of cells from the embryo to adult stages. PcG has long been considered a paradigmatic model for epigenetic maintenance of gene transcription programs. Despite intensive research efforts to unveil the molecular mechanisms of action of PcG proteins, several fundamental questions remain unresolved: How many different PcG complexes exist in mammalian cells? How are PcG complexes targeted to specific loci? How does PcG regulate transcription? In this review, we discuss the diversity of PcG complexes in mammalian cells, examine newly identified modes of recruitment to chromatin, and highlight the latest insights into the molecular mechanisms underlying the function of PcGs in transcription regulation and three-dimensional chromatin conformation. PMID:26665172

  18. Acute myotube protein synthesis regulation by IL-6-related cytokines.

    PubMed

    Gao, Song; Durstine, J Larry; Koh, Ho-Jin; Carver, Wayne E; Frizzell, Norma; Carson, James A

    2017-11-01

    IL-6 and leukemia inhibitory factor (LIF), members of the IL-6 family of cytokines, play recognized paradoxical roles in skeletal muscle mass regulation, being associated with both growth and atrophy. Overload or muscle contractions can induce a transient increase in muscle IL-6 and LIF expression, which has a regulatory role in muscle hypertrophy. However, the cellular mechanisms involved in this regulation have not been completely identified. The induction of mammalian target of rapamycin complex 1 (mTORC1)-dependent myofiber protein synthesis is an established regulator of muscle hypertrophy, but the involvement of the IL-6 family of cytokines in this process is poorly understood. Therefore, we investigated the acute effects of IL-6 and LIF administration on mTORC1 signaling and protein synthesis in C2C12 myotubes. The role of glycoprotein 130 (gp130) receptor and downstream signaling pathways, including phosphoinositide 3-kinase (PI3K)-Akt-mTORC1 and signal transducer and activator of transcription 3 (STAT3)-suppressor of cytokine signaling 3 (SOCS3), was investigated by administration of specific siRNA or pharmaceutical inhibitors. Acute administration of IL-6 and LIF induced protein synthesis, which was accompanied by STAT3 activation, Akt-mTORC1 activation, and increased SOCS3 expression. This induction of protein synthesis was blocked by both gp130 siRNA knockdown and Akt inhibition. Interestingly, STAT3 inhibition or Akt downstream mTORC1 signaling inhibition did not fully block the IL-6 or LIF induction of protein synthesis. SOCS3 siRNA knockdown increased basal protein synthesis and extended the duration of the protein synthesis induction by IL-6 and LIF. These results demonstrate that either IL-6 or LIF can activate gp130-Akt signaling axis, which induces protein synthesis via mTORC1-independent mechanisms in cultured myotubes. However, IL-6- or LIF-induced SOCS3 negatively regulates the activation of myotube protein synthesis. Copyright © 2017 the

  19. Bilateral Asymmetry in the Human Pelvis.

    PubMed

    Kurki, Helen K

    2017-04-01

    Asymmetry of the human axial skeleton has received much less attention that of the limb skeleton. Pelvic morphology is subject to multiple selective factors, including bipedal locomotion and obstetrics, among others, as well as environmental factors such as biomechanical loading. How these various factors influence or restrict asymmetry of the pelvis is unknown and few studies have investigated levels and patterns of pelvic asymmetry. This study examines percentage directional (%DA) and absolute (%AA) asymmetry in 14 bilaterally paired dimensions of the pelvic canal, non-canal pelvis, and femur in female (n = 111) and male (n = 126) skeletons from nine geographically dispersed skeletal samples. Directional asymmetries were uniformly low for all measures and lacked any consistent patterning across the variables, while %AA was highest in the pelvic canal, particularly the posterior aspects. Few sex differences and no population differences were found for %DA and %AA; however the latter was correlated with coefficients of variation across the 14 variables in both sexes. While sample mean %DA were low, standard deviations of the canal variables were high and the majority of individuals in both sexes displayed %DA values >±0.5, suggesting asymmetry is common, if not directionally consistent. Biomechanical loading of the pelvic girdle may influence asymmetry of both the canal and non-canal aspects of the pelvis; however it is unlikely that these asymmetries negatively affect obstetric function, given the prevalence for %DA found in this study. Anat Rec, 300:653-665, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. A-kinase anchoring proteins that regulate cardiac remodeling.

    PubMed

    Carnegie, Graeme K; Burmeister, Brian T

    2011-11-01

    In response to injury or stress, the adult heart undergoes maladaptive changes, collectively defined as pathological cardiac remodeling. Here, we focus on the role of A-kinase anchoring proteins (AKAPs) in 3 main areas associated with cardiac remodeling and the progression of heart failure: excitation-contraction coupling, sarcomeric regulation, and induction of pathological hypertrophy. AKAPs are a diverse family of scaffold proteins that form multiprotein complexes, integrating cAMP signaling with protein kinases, phosphatases, and other effector proteins. Many AKAPs have been characterized in the heart, where they play a critical role in modulating cardiac function.

  1. 14-3-3 proteins regulate desmosomal adhesion via plakophilins.

    PubMed

    Rietscher, Katrin; Keil, René; Jordan, Annemarie; Hatzfeld, Mechthild

    2018-05-22

    Desmosomes are essential for strong intercellular adhesion and are abundant in tissues exposed to mechanical strain. At the same time, desmosomes need to be dynamic to allow for remodeling of epithelia during differentiation or wound healing. Phosphorylation of desmosomal plaque proteins appears to be essential for desmosome dynamics. However, the mechanisms of how context-dependent post-translational modifications regulate desmosome formation, dynamics or stability are incompletely understood. Here, we show that growth factor signaling regulates the phosphorylation-dependent association of plakophilins 1 and 3 (PKP1 and PKP3) with 14-3-3 protein isoforms, and uncover unique and partially antagonistic functions of members of the 14-3-3 family in the regulation of desmosomes. 14-3-3γ associated primarily with cytoplasmic PKP1 phosphorylated at S155 and destabilized intercellular cohesion of keratinocytes by reducing its incorporation into desmosomes. In contrast, 14-3-3σ (also known as stratifin, encoded by SFN ) interacted preferentially with S285-phosphorylated PKP3 to promote its accumulation at tricellular contact sites, leading to stable desmosomes. Taken together, our study identifies a new layer of regulation of intercellular adhesion by 14-3-3 proteins. © 2018. Published by The Company of Biologists Ltd.

  2. The evolution and genetics of cerebral asymmetry

    PubMed Central

    Corballis, Michael C.

    2008-01-01

    Handedness and cerebral asymmetry are commonly assumed to be uniquely human, and even defining characteristics of our species. This is increasingly refuted by the evidence of behavioural asymmetries in non-human species. Although complex manual skill and language are indeed unique to our species and are represented asymmetrically in the brain, some non-human asymmetries appear to be precursors, and others are shared between humans and non-humans. In all behavioural and cerebral asymmetries so far investigated, a minority of individuals reverse or negate the dominant asymmetry, suggesting that such asymmetries are best understood in the context of the overriding bilateral symmetry of the brain and body, and a trade-off between the relative advantages and disadvantages of symmetry and asymmetry. Genetic models of handedness, for example, typically postulate a gene with two alleles, one disposing towards right-handedness and the other imposing no directional influence. There is as yet no convincing evidence as to the location of this putative gene, suggesting that several genes may be involved, or that the gene may be monomorphic with variations due to environmental or epigenetic influences. Nevertheless, it is suggested that, in behavioural, neurological and evolutionary terms, it may be more profitable to examine the degree rather than the direction of asymmetry. PMID:19064358

  3. Negative regulation of multifunctional Ca2+/calmodulin-dependent protein kinases: physiological and pharmacological significance of protein phosphatases

    PubMed Central

    Ishida, A; Sueyoshi, N; Shigeri, Y; Kameshita, I

    2008-01-01

    Multifunctional Ca2+/calmodulin-dependent protein kinases (CaMKs) play pivotal roles in intracellular Ca2+ signaling pathways. There is growing evidence that CaMKs are involved in the pathogenic mechanisms underlying various human diseases. In this review, we begin by briefly summarizing our knowledge of the involvement of CaMKs in the pathogenesis of various diseases suggested to be caused by the dysfunction/dysregulation or aberrant expression of CaMKs. It is widely known that the activities of CaMKs are strictly regulated by protein phosphorylation/dephosphorylation of specific phosphorylation sites. Since phosphorylation status is balanced by protein kinases and protein phosphatases, the mechanism of dephosphorylation/deactivation of CaMKs, corresponding to their ‘switching off', is extremely important, as is the mechanism of phosphorylation/activation corresponding to their ‘switching on'. Therefore, we focus on the regulation of multifunctional CaMKs by protein phosphatases. We summarize the current understanding of negative regulation of CaMKs by protein phosphatases. We also discuss the biochemical properties and physiological significance of a protein phosphatase that we designated as Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP), and those of its homologue CaMKP-N. Pharmacological applications of CaMKP inhibitors are also discussed. These compounds may be useful not only for exploring the physiological functions of CaMKP/CaMKP-N, but also as novel chemotherapies for various diseases. PMID:18454172

  4. Compensation procedures for facial asymmetries.

    PubMed

    Kozol, F

    1995-01-01

    Why would a patient complain of "fuzzy and uncomfortable" vision with a variety of glasses? Perhaps because the practitioner has failed to take facial asymmetry into account. Methods of measuring facial asymmetry and optically correcting for it are discussed.

  5. Coordinated roles of motivation and perception in the regulation of intergroup responses: frontal cortical asymmetry effects on the P2 event-related potential and behavior.

    PubMed

    Amodio, David M

    2010-11-01

    Self-regulation is believed to involve changes in motivation and perception that function to promote goal-driven behavior. However, little is known about the way these processes interact during the on-line engagement of self-regulation. The present study examined the coordination of motivation, perception, and action control in White American participants as they regulated responses on a racial stereotyping task. Electroencephalographic indices of approach motivation (left frontal cortical asymmetry) and perceptual attention to Black versus White faces (the P2 event-related potential) were assessed during task performance. Action control was modeled from task behavior using the process-dissociation procedure. A pattern of moderated mediation emerged, such that stronger left frontal activity predicted larger P2 responses to race, which in turn predicted better action control, especially for participants holding positive racial attitudes. Results supported the hypothesis that motivation tunes perception to facilitate goal-directed action. Implications for theoretical models of intergroup response regulation, the P2 component, and the relation between motivation and perception are discussed.

  6. Regulation of blood-testis barrier by actin binding proteins and protein kinases

    PubMed Central

    Li, Nan; Tang, Elizabeth I.; Cheng, C. Yan

    2016-01-01

    The blood-testis barrier (BTB) is an important ultrastructure in the testis since the onset of spermatogenesis coincides with the establishment of a functional barrier in rodents and humans. It is also noted that a delay in the assembly of a functional BTB following treatment of neonatal rats with drugs such as diethylstilbestrol or adjudin also delays the first wave of spermiation. While the BTB is one of the tightest blood-tissue barriers, it undergoes extensive remodeling, in particular at stage VIII of the epithelial cycle to facilitate the transport of preleptotene spermatocytes connected in clones across the immunological barrier. Without this timely transport of preleptotene spermatocytes derived from type B spermatogonia, meiosis will be arrested, causing aspermatogenesis. Yet the biology and regulation of the BTB remains largely unexplored since the morphological studies in the 1970s. Recent studies, however, have shed new light on the biology of the BTB. Herein, we critically evaluate some of these findings, illustrating that the Sertoli cell BTB is regulated by actin binding proteins (ABPs), likely supported by non-receptor protein kinases, to modulate the organization of actin microfilament bundles at the site. Furthermore, microtubule (MT)-based cytoskeleton is also working in concert with the actin-based cytoskeleton to confer BTB dynamics. This timely review provides an update on the unique biology and regulation of the BTB based on the latest findings in the field, focusing on the role of ABPs and non-receptor protein kinases. PMID:26628556

  7. The β-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors*

    PubMed Central

    Smith, Jeffrey S.; Rajagopal, Sudarshan

    2016-01-01

    The β-arrestins (βarrs) are versatile, multifunctional adapter proteins that are best known for their ability to desensitize G protein-coupled receptors (GPCRs), but also regulate a diverse array of cellular functions. To signal in such a complex fashion, βarrs adopt multiple conformations and are regulated at multiple levels to differentially activate downstream pathways. Recent structural studies have demonstrated that βarrs have a conserved structure and activation mechanism, with plasticity of their structural fold, allowing them to adopt a wide array of conformations. Novel roles for βarrs continue to be identified, demonstrating the importance of these dynamic regulators of cellular signaling. PMID:26984408

  8. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases

    NASA Technical Reports Server (NTRS)

    Boo, Yong Chool; Jo, Hanjoong

    2003-01-01

    Vascular endothelial cells are directly and continuously exposed to fluid shear stress generated by blood flow. Shear stress regulates endothelial structure and function by controlling expression of mechanosensitive genes and production of vasoactive factors such as nitric oxide (NO). Though it is well known that shear stress stimulates NO production from endothelial nitric oxide synthase (eNOS), the underlying molecular mechanisms remain unclear and controversial. Shear-induced production of NO involves Ca2+/calmodulin-independent mechanisms, including phosphorylation of eNOS at several sites and its interaction with other proteins, including caveolin and heat shock protein-90. There have been conflicting results as to which protein kinases-protein kinase A, protein kinase B (Akt), other Ser/Thr protein kinases, or tyrosine kinases-are responsible for shear-dependent eNOS regulation. The functional significance of each phosphorylation site is still unclear. We have attempted to summarize the current status of understanding in shear-dependent eNOS regulation.

  9. Analytical formulation of lunar cratering asymmetries

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Zhou, Ji-Lin

    2016-10-01

    Context. The cratering asymmetry of a bombarded satellite is related to both its orbit and impactors. The inner solar system impactor populations, that is, the main-belt asteroids (MBAs) and the near-Earth objects (NEOs), have dominated during the late heavy bombardment (LHB) and ever since, respectively. Aims: We formulate the lunar cratering distribution and verify the cratering asymmetries generated by the MBAs as well as the NEOs. Methods: Based on a planar model that excludes the terrestrial and lunar gravitations on the impactors and assuming the impactor encounter speed with Earth venc is higher than the lunar orbital speed vM, we rigorously integrated the lunar cratering distribution, and derived its approximation to the first order of vM/venc. Numerical simulations of lunar bombardment by the MBAs during the LHB were performed with an Earth-Moon distance aM = 20-60 Earth radii in five cases. Results: The analytical model directly proves the existence of a leading/trailing asymmetry and the absence of near/far asymmetry. The approximate form of the leading/trailing asymmetry is (1 + A1cosβ), which decreases as the apex distance β increases. The numerical simulations show evidence of a pole/equator asymmetry as well as the leading/trailing asymmetry, and the former is empirically described as (1 + A2cos2ϕ), which decreases as the latitude modulus | ϕ | increases. The amplitudes A1,2 are reliable measurements of asymmetries. Our analysis explicitly indicates the quantitative relations between cratering distribution and bombardment conditions (impactor properties and the lunar orbital status) like A1 ∝ vM/venc, resulting in a method for reproducing the bombardment conditions through measuring the asymmetry. Mutual confirmation between analytical model and numerical simulations is found in terms of the cratering distribution and its variation with aM. Estimates of A1 for crater density distributions generated by the MBAs and the NEOs are 0.101-0.159 and 0

  10. Homeostatic regulation of protein intake: in search of a mechanism

    PubMed Central

    Reed, Scott D.; Henagan, Tara M.

    2012-01-01

    Free-living organisms must procure adequate nutrition by negotiating an environment in which both the quality and quantity of food vary markedly. Recent decades have seen marked progress in our understanding of neural regulation of feeding behavior. However, this progress has occurred largely in the context of energy intake, despite the fact that food intake is influenced by more than just the energy content of the diet. A large number of behavioral studies indicate that both the quantity and quality of dietary protein can markedly influence food intake. High-protein diets tend to reduce intake, low-protein diets tend to increase intake, and rodent models seem to self-select between diets in order to meet protein requirements and avoid diets that are imbalanced in amino acids. Recent work suggests that the amino acid leucine regulates food intake by altering mTOR and AMPK signaling in the hypothalamus, while activation of GCN2 within the anterior piriform cortex contributes to the detection and avoidance of amino acid-imbalanced diets. This review focuses on the role that these and other signaling systems may play in mediating the homeostatic regulation of protein balance, and in doing so, highlights our lack of knowledge regarding the physiological and neurobiological mechanisms that might underpin such a regulatory phenomenon. PMID:22319049

  11. Regulation of Protein Secretion Through Controlled Aggregation in the Endoplasmic Reticulum

    NASA Astrophysics Data System (ADS)

    Rivera, Victor M.; Wang, Xiurong; Wardwell, Scott; Courage, Nancy L.; Volchuk, Allen; Keenan, Terence; Holt, Dennis A.; Gilman, Michael; Orci, Lelio; Cerasoli, Frank; Rothman, James E.; Clackson, Tim

    2000-02-01

    A system for direct pharmacologic control of protein secretion was developed to allow rapid and pulsatile delivery of therapeutic proteins. A protein was engineered so that it accumulated as aggregates in the endoplasmic reticulum. Secretion was then stimulated by a synthetic small-molecule drug that induces protein disaggregation. Rapid and transient secretion of growth hormone and insulin was achieved in vitro and in vivo. A regulated pulse of insulin secretion resulted in a transient correction of serum glucose concentrations in a mouse model of hyperglycemia. This approach may make gene therapy a viable method for delivery of polypeptides that require rapid and regulated delivery.

  12. HypoxiaDB: a database of hypoxia-regulated proteins

    PubMed Central

    Khurana, Pankaj; Sugadev, Ragumani; Jain, Jaspreet; Singh, Shashi Bala

    2013-01-01

    There has been intense interest in the cellular response to hypoxia, and a large number of differentially expressed proteins have been identified through various high-throughput experiments. These valuable data are scattered, and there have been no systematic attempts to document the various proteins regulated by hypoxia. Compilation, curation and annotation of these data are important in deciphering their role in hypoxia and hypoxia-related disorders. Therefore, we have compiled HypoxiaDB, a database of hypoxia-regulated proteins. It is a comprehensive, manually-curated, non-redundant catalog of proteins whose expressions are shown experimentally to be altered at different levels and durations of hypoxia. The database currently contains 72 000 manually curated entries taken on 3500 proteins extracted from 73 peer-reviewed publications selected from PubMed. HypoxiaDB is distinctive from other generalized databases: (i) it compiles tissue-specific protein expression changes under different levels and duration of hypoxia. Also, it provides manually curated literature references to support the inclusion of the protein in the database and establish its association with hypoxia. (ii) For each protein, HypoxiaDB integrates data on gene ontology, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway, protein–protein interactions, protein family (Pfam), OMIM (Online Mendelian Inheritance in Man), PDB (Protein Data Bank) structures and homology to other sequenced genomes. (iii) It also provides pre-compiled information on hypoxia-proteins, which otherwise requires tedious computational analysis. This includes information like chromosomal location, identifiers like Entrez, HGNC, Unigene, Uniprot, Ensembl, Vega, GI numbers and Genbank accession numbers associated with the protein. These are further cross-linked to respective public databases augmenting HypoxiaDB to the external repositories. (iv) In addition, HypoxiaDB provides an online sequence-similarity search tool for

  13. Toroidal current asymmetry in tokamak disruptions

    NASA Astrophysics Data System (ADS)

    Strauss, H. R.

    2014-10-01

    It was discovered on JET that disruptions were accompanied by toroidal asymmetry of the toroidal plasma current I ϕ. It was found that the toroidal current asymmetry was proportional to the vertical current moment asymmetry with positive sign for an upward vertical displacement event (VDE) and negative sign for a downward VDE. It was observed that greater displacement leads to greater measured I ϕ asymmetry. Here, it is shown that this is essentially a kinematic effect produced by a VDE interacting with three dimensional MHD perturbations. The relation of toroidal current asymmetry and vertical current moment is calculated analytically and is verified by numerical simulations. It is shown analytically that the toroidal variation of the toroidal plasma current is accompanied by an equal and opposite variation of the toroidal current flowing in a thin wall surrounding the plasma. These currents are connected by 3D halo current, which is π/2 radians out of phase with the n = 1 toroidal current variations.

  14. Stochastic left-right neuronal asymmetry in Caenorhabditis elegans.

    PubMed

    Alqadah, Amel; Hsieh, Yi-Wen; Xiong, Rui; Chuang, Chiou-Fen

    2016-12-19

    Left-right asymmetry in the nervous system is observed across species. Defects in left-right cerebral asymmetry are linked to several neurological diseases, but the molecular mechanisms underlying brain asymmetry in vertebrates are still not very well understood. The Caenorhabditis elegans left and right amphid wing 'C' (AWC) olfactory neurons communicate through intercellular calcium signalling in a transient embryonic gap junction neural network to specify two asymmetric subtypes, AWC OFF (default) and AWC ON (induced), in a stochastic manner. Here, we highlight the molecular mechanisms that establish and maintain stochastic AWC asymmetry. As the components of the AWC asymmetry pathway are highly conserved, insights from the model organism C. elegans may provide a window onto how brain asymmetry develops in humans.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Author(s).

  15. Regulation of neuronal communication by G protein-coupled receptors.

    PubMed

    Huang, Yunhong; Thathiah, Amantha

    2015-06-22

    Neuronal communication plays an essential role in the propagation of information in the brain and requires a precisely orchestrated connectivity between neurons. Synaptic transmission is the mechanism through which neurons communicate with each other. It is a strictly regulated process which involves membrane depolarization, the cellular exocytosis machinery, neurotransmitter release from synaptic vesicles into the synaptic cleft, and the interaction between ion channels, G protein-coupled receptors (GPCRs), and downstream effector molecules. The focus of this review is to explore the role of GPCRs and G protein-signaling in neurotransmission, to highlight the function of GPCRs, which are localized in both presynaptic and postsynaptic membrane terminals, in regulation of intrasynaptic and intersynaptic communication, and to discuss the involvement of astrocytic GPCRs in the regulation of neuronal communication. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Ubiquitin-Dependent Degradation of Mitochondrial Proteins Regulates Energy Metabolism.

    PubMed

    Lavie, Julie; De Belvalet, Harmony; Sonon, Sessinou; Ion, Ana Madalina; Dumon, Elodie; Melser, Su; Lacombe, Didier; Dupuy, Jean-William; Lalou, Claude; Bénard, Giovanni

    2018-06-05

    The ubiquitin proteasome system (UPS) regulates many cellular functions by degrading key proteins. Notably, the role of UPS in regulating mitochondrial metabolic functions is unclear. Here, we show that ubiquitination occurs in different mitochondrial compartments, including the inner mitochondrial membrane, and that turnover of several metabolic proteins is UPS dependent. We specifically detailed mitochondrial ubiquitination and subsequent UPS-dependent degradation of succinate dehydrogenase subunit A (SDHA), which occurred when SDHA was minimally involved in mitochondrial energy metabolism. We demonstrate that SDHA ubiquitination occurs inside the organelle. In addition, we show that the specific inhibition of SDHA degradation by UPS promotes SDHA-dependent oxygen consumption and increases ATP, malate, and citrate levels. These findings suggest that the mitochondrial metabolic machinery is also regulated by the UPS. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Down-regulation of adenosine monophosphate-activated protein kinase activity: A driver of cancer.

    PubMed

    He, Xiaoling; Li, Cong; Ke, Rong; Luo, Lingyu; Huang, Deqiang

    2017-04-01

    Adenosine monophosphate-activated protein kinase (AMPK), a serine/threonine protein kinase, is known as "intracellular energy sensor and regulator." AMPK regulates multiple cellular processes including protein and lipid synthesis, cell proliferation, invasion, migration, and apoptosis. Moreover, AMPK plays a key role in the regulation of "Warburg effect" in cancer cells. AMPK activity is down-regulated in most tumor tissues compared with the corresponding adjacent paracancerous or normal tissues, indicating that the decline in AMPK activity is closely associated with the development and progression of cancer. Therefore, understanding the mechanism of AMPK deactivation during cancer progression is of pivotal importance as it may identify AMPK as a valid therapeutic target for cancer treatment. Here, we review the mechanisms by which AMPK is down-regulated in cancer.

  18. A voxel-based asymmetry study of the relationship between hemispheric asymmetry and language dominance in Wada tested patients.

    PubMed

    Keller, Simon S; Roberts, Neil; Baker, Gus; Sluming, Vanessa; Cezayirli, Enis; Mayes, Andrew; Eldridge, Paul; Marson, Anthony G; Wieshmann, Udo C

    2018-03-23

    Determining the anatomical basis of hemispheric language dominance (HLD) remains an important scientific endeavor. The Wada test remains the gold standard test for HLD and provides a unique opportunity to determine the relationship between HLD and hemispheric structural asymmetries on MRI. In this study, we applied a whole-brain voxel-based asymmetry (VBA) approach to determine the relationship between interhemispheric structural asymmetries and HLD in a large consecutive sample of Wada tested patients. Of 135 patients, 114 (84.4%) had left HLD, 10 (7.4%) right HLD, and 11 (8.2%) bilateral language representation. Fifty-four controls were also studied. Right-handed controls and right-handed patients with left HLD had comparable structural brain asymmetries in cortical, subcortical, and cerebellar regions that have previously been documented in healthy people. However, these patients and controls differed in structural asymmetry of the mesial temporal lobe and a circumscribed region in the superior temporal gyrus, suggesting that only asymmetries of these regions were due to brain alterations caused by epilepsy. Additional comparisons between patients with left and right HLD, matched for type and location of epilepsy, revealed that structural asymmetries of insula, pars triangularis, inferior temporal gyrus, orbitofrontal cortex, ventral temporo-occipital cortex, mesial somatosensory cortex, and mesial cerebellum were significantly associated with the side of HLD. Patients with right HLD and bilateral language representation were significantly less right-handed. These results suggest that structural asymmetries of an insular-fronto-temporal network may be related to HLD. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  19. Regulation of GABAA receptors by fragile X mental retardation protein

    PubMed Central

    Liu, Baosong; Li, Lijun; Chen, Juan; Wang, Zefen; Li, Zhiqiang; Wan, Qi

    2013-01-01

    Fragile X syndrome (FXS) is caused by the loss of fragile X mental retardation protein (FMRP). The deficiency of GABAA receptors (GABAARs) is implicated in FXS. However, the underlying mechanisms remain unclear. To investigate the effect of FMRP on GABAARs, we transfected FMRP cDNAs in rat cortical neurons. We measured the protein expression of GABAARs and phosphatase PTEN, and recorded GABAAR-mediated whole-cell currents in the transfected neurons. We show that the transfection of FMRP cDNAs causes increased protein expression of GABAARs in cortical neurons, but GABAAR-mediated whole-cell currents are not potentiated by FMRP transfection. These results suggest the possibility that intracellular signaling antagonizing GABAAR activity may play a role in inhibiting GABAAR function in FMRP-transfected neurons. We further show that FMRP transfection results in an enhanced protein expression of PTEN, which contributes to the inhibition of GABAAR function in FMRP-transfected neurons. These results indicate that GABAARs are regulated by FMRP through both an up-regulation of GABAAR expression and a PTEN enhancement-induced inhibition of GABAAR function, suggesting that an abnormal regulation of GABAAR and PTEN by the loss of FMRP underlies the pathogenesis of FXS. PMID:24044036

  20. The β-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors.

    PubMed

    Smith, Jeffrey S; Rajagopal, Sudarshan

    2016-04-22

    The β-arrestins (βarrs) are versatile, multifunctional adapter proteins that are best known for their ability to desensitize G protein-coupled receptors (GPCRs), but also regulate a diverse array of cellular functions. To signal in such a complex fashion, βarrs adopt multiple conformations and are regulated at multiple levels to differentially activate downstream pathways. Recent structural studies have demonstrated that βarrs have a conserved structure and activation mechanism, with plasticity of their structural fold, allowing them to adopt a wide array of conformations. Novel roles for βarrs continue to be identified, demonstrating the importance of these dynamic regulators of cellular signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. FGF signaling is required for brain left-right asymmetry and brain midline formation.

    PubMed

    Neugebauer, Judith M; Yost, H Joseph

    2014-02-01

    Early disruption of FGF signaling alters left-right (LR) asymmetry throughout the embryo. Here we uncover a role for FGF signaling that specifically disrupts brain asymmetry, independent of normal lateral plate mesoderm (LPM) asymmetry. When FGF signaling is inhibited during mid-somitogenesis, asymmetrically expressed LPM markers southpaw and lefty2 are not affected. However, asymmetrically expressed brain markers lefty1 and cyclops become bilateral. We show that FGF signaling controls expression of six3b and six7, two transcription factors required for repression of asymmetric lefty1 in the brain. We found that Z0-1, atypical PKC (aPKC) and β-catenin protein distribution revealed a midline structure in the forebrain that is dependent on a balance of FGF signaling. Ectopic activation of FGF signaling leads to overexpression of six3b, loss of organized midline adherins junctions and bilateral loss of lefty1 expression. Reducing FGF signaling leads to a reduction in six3b and six7 expression, an increase in cell boundary formation in the brain midline, and bilateral expression of lefty1. Together, these results suggest a novel role for FGF signaling in the brain to control LR asymmetry, six transcription factor expressions, and a midline barrier structure. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. FGF Signaling is Required for Brain Left-Right Asymmetry and Brain Midline Formation

    PubMed Central

    Neugebauer, Judith M.; Yost, H. Joseph

    2014-01-01

    Early disruption of FGF signaling alters left-right (LR) asymmetry throughout the embryo. Here we uncover a role for FGF signaling that specifically disrupts brain asymmetry, independent of normal lateral plate mesoderm (LPM) asymmetry. When FGF signaling is inhibited during mid-somitogenesis, asymmetrically expressed LPM markers southpaw and lefty2 are not affected. However, asymmetrically expressed brain markers lefty1 and cyclops become bilateral. We show that FGF signaling controls expression of six3b and six7, two transcription factors required for repression of asymmetric lefty1 in the brain. We found that Z0-1, atypical PKC (aPKC) and β-catenin protein distribution revealed a midline structure in the forebrain that is dependent on a balance of FGF signaling. Ectopic activation of FGF signaling leads to overexpression of six3b, loss of organized midline adherins junctions and bilateral loss of lefty1 expression. Reducing FGF signaling leads to a reduction in six3b and six7 expression, an increase in cell boundary formation in the brain midline, and bilateral expression of lefty1. Together, these results suggest a novel role for FGF signaling in the brain to control LR asymmetry, six transcription factor expression, and a midline barrier structure. PMID:24333178

  3. Beyond apoptosis: the mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells.

    PubMed

    Rysavy, Noel M; Shimoda, Lori M N; Dixon, Alyssa M; Speck, Mark; Stokes, Alexander J; Turner, Helen; Umemoto, Eric Y

    2014-01-01

    Loss of plasma membrane asymmetry is a hallmark of apoptosis, but lipid bilayer asymmetry and loss of asymmetry can contribute to numerous cellular functions and responses that are independent of programmed cell death. Exofacial exposure of phosphatidylserine occurs in lymphocytes and mast cells after antigenic stimulation and in the absence of apoptosis, suggesting that there is a functional requirement for phosphatidylserine exposure in immunocytes. In this review we examine current ideas as to the nature of this functional role in mast cell activation. Mechanistically, there is controversy as to the candidate proteins responsible for phosphatidylserine translocation from the internal to external leaflet, and here we review the candidacies of mast cell PLSCR1 and TMEM16F. Finally we examine the potential relationship between functionally important mast cell membrane perturbations and phosphatidylserine exposure during activation.

  4. Dexamethasone Regulates Cochlear Expression of Deafness-associated Proteins Myelin Protein Zero and Heat Shock Protein 70, as Revealed by iTRAQ Proteomics.

    PubMed

    Maeda, Yukihide; Fukushima, Kunihiro; Kariya, Shin; Orita, Yorihisa; Nishizaki, Kazunori

    2015-08-01

    Using proteomics, we aimed to identify the proteins differentially regulated by dexamethasone in the mouse cochlea based on mass-spectrometry data. Glucocorticoid therapy is widely used for many forms of sensorineural hearing loss; however, the molecular mechanism of its action in the cochlea remains poorly understood. Dexamethasone or control saline was intratympanically applied to the cochleae of mice. Twelve hours after application, proteins differentially regulated by dexamethasone in the cochlea were analyzed by isobaric Tag for Relative and Absolute Quantitation (iTRAQ)-mass spectrometry. Next, dexamethasone-dependent regulation of these proteins was verified in the cochleae of mice with noise-induced hearing loss (NIHL) and systemic administration of dexamethasone by western blotting. Immunolocalizations of these proteins were examined in cochleae with NIHL. A total of 247 proteins with a greater than 95% confidence interval of protein identification were found, and 11 differentially expressed proteins by dexamethasone were identified by the iTRAQ-mass spectrometry. One protein, myelin protein zero (Mpz), was upregulated (1.870 ± 0.201-fold change, p < 0.01) at 6 hours post-systemic dexamethasone and noise exposure in a mouse model of NIHL. Heat shock protein 70 (Hsp70) was downregulated (0.511 ± 0.274-fold change, p < 0.05) at 12 hours post-systemic dexamethasone. Immunohistochemistry confirmed Mpz localization to the efferent and afferent processes of the spiral neurons, whereas Hsp70 showed a more ubiquitous expression pattern in the cochlea. Both Mpz and Hsp70 have been reported to be closely associated with sensorineural hearing loss in humans. Dexamethasone significantly modulated the expression levels of these proteins in the cochleae of mice.

  5. Asymmetry in search.

    PubMed

    Kaindl, H; Kainz, G; Radda, K

    2001-01-01

    Most of the work on search in artificial intelligence (AI) deals with one search direction only-mostly forward search-although it is known that a structural asymmetry of the search graph causes differences in the efficiency of searching in the forward or the backward direction, respectively. In the case of symmetrical graph structure, however, current theory would not predict such differences in efficiency. In several classes of job sequencing problems, we observed a phenomenon of asymmetry in search that relates to the distribution of the are costs in the search graph. This phenomenon can be utilized for improving the search efficiency by a new algorithm that automatically selects the search direction. We demonstrate fur a class of job sequencing problems that, through the utilization of this phenomenon, much more difficult problems can be solved-according to our best knowledge-than by the best published approach, and on the same problems, the running time is much reduced. As a consequence, we propose to check given problems for asymmetrical distribution of are costs that may cause asymmetry in search.

  6. Mapping hemispheric symmetries, relative asymmetries, and absolute asymmetries underlying the auditory laterality effect.

    PubMed

    Westerhausen, René; Kompus, Kristiina; Hugdahl, Kenneth

    2014-01-01

    Functional hemispheric differences for speech and language processing have been traditionally studied by using verbal dichotic-listening paradigms. The commonly observed right-ear preference for the report of dichotically presented syllables is taken to reflect the left hemispheric dominance for speech processing. However, the results of recent functional imaging studies also show that both hemispheres - not only the left - are engaged by dichotic listening, suggesting a more complex relationship between behavioral laterality and functional hemispheric activation asymmetries. In order to more closely examine the hemispheric differences underlying dichotic-listening performance, we report an analysis of functional magnetic resonance imaging (fMRI) data of 104 right-handed subjects, for the first time combining an interhemispheric difference and conjunction analysis. This approach allowed for a distinction of homotopic brain regions which showed symmetrical (i.e., brain region significantly activated in both hemispheres and no activation difference between the hemispheres), relative asymmetrical (i.e., activated in both hemispheres but significantly stronger in one than the other hemisphere), and absolute asymmetrical activation patterns (i.e., activated only in one hemisphere and this activation is significantly stronger than in the other hemisphere). Symmetrical activation was found in large clusters encompassing temporal, parietal, inferior frontal, and medial superior frontal regions. Relative and absolute left-ward asymmetries were found in the posterior superior temporal gyrus, located adjacent to symmetrically activated areas, and creating a lateral-medial gradient from symmetrical towards absolute asymmetrical activation within the peri-Sylvian region. Absolute leftward asymmetry was also found in the post-central and medial superior frontal gyri, while rightward asymmetries were found in middle temporal and middle frontal gyri. We conclude that dichotic

  7. Movement asymmetry in working polo horses.

    PubMed

    Pfau, T; Parkes, R S; Burden, E R; Bell, N; Fairhurst, H; Witte, T H

    2016-07-01

    The high, repetitive demands imposed on polo horses in training and competition may predispose them to musculoskeletal injuries and lameness. To quantify movement symmetry and lameness in a population of polo horses, and to investigate the existence of a relationship with age. Convenience sampled cross-sectional study. Sixty polo horses were equipped with inertial measurement units (IMUs) attached to the poll, and between the tubera sacrale. Six movement symmetry measures were calculated for vertical head and pelvic displacement during in-hand trot and compared with values for perfect symmetry, compared between left and right limb lame horses, and compared with published thresholds for lameness. Regression lines were calculated as a function of age of horse. Based on 2 different sets of published asymmetry thresholds 52-53% of the horses were quantified with head movement asymmetry and 27-50% with pelvic movement asymmetry resulting in 60-67% of horses being classified with movement asymmetry outside published guideline values for either the forelimbs, hindlimbs or both. Neither forelimb nor hindlimb asymmetries were preferentially left or right sided, with directional asymmetry values across all horses not different from perfect symmetry and absolute values not different between left and right lame horses (P values >0.6 for all forelimb symmetry measures and >0.2 for all hindlimb symmetry measures). None of the symmetry parameters increased or decreased significantly with age. A large proportion of polo horses show gait asymmetries consistent with previously defined thresholds for lameness. These do not appear to be lateralised or associated with age. © 2015 EVJ Ltd.

  8. [Orthodontic treatment of Class III patients with mandibular asymmetry].

    PubMed

    Duan, Yin-Zhong; Huo, Na; Chen, Lei; Chen, Xue-Peng; Lin, Yang

    2008-12-01

    To investigate the treatment outcome of Class III patients with dental, functional and mild skeletal mandibular asymmetry. Thirty-five patients (14 males and 21 females) with dental, functional and mild skeletal mandibular asymmetry were selected. The age range of the patients was 7 - 22 years with a mean age of 16.5 years. Dental mandibular asymmetry was treated with expansion of maxillary arch to help the mandible returning to normal position. Functional mandibular asymmetry was treated with activator or asymmetrical protraction and Class III elastics. Mild skeletal mandibular asymmetry was treated with camouflage treatment. Good occlusal relationships were achieved and facial esthetics was greatly improved after orthodontic treatment in patients with dental and functional mandibular asymmetry. However, patients with skeletal mandibular asymmetry should be treated with both extraction and genioplasty. Orthodontic treatment was suitable for patients with dental and functional mandibular asymmetry, while combined orthodontics and surgery could get good results in patients with skeletal mandibular asymmetry.

  9. Rightward dominance in temporal high-frequency electrical asymmetry corresponds to higher resting heart rate and lower baroreflex sensitivity in a heterogeneous population.

    PubMed

    Tegeler, Charles H; Shaltout, Hossam A; Tegeler, Catherine L; Gerdes, Lee; Lee, Sung W

    2015-06-01

    Explore potential use of a temporal lobe electrical asymmetry score to discriminate between sympathetic and parasympathetic tendencies in autonomic cardiovascular regulation. 131 individuals (82 women, mean age 43.1, range 13-83) with diverse clinical conditions completed inventories for depressive (CES-D or BDI-II) and insomnia-related (ISI) symptomatology, and underwent five-minute recordings of heart rate and blood pressure, allowing calculation of heart rate variability and baroreflex sensitivity (BRS), followed by one-minute, two-channel, eyes-closed scalp recordings of brain electrical activity. A temporal lobe high-frequency (23-36 Hz) electrical asymmetry score was calculated for each subject by subtracting the average amplitude in the left temporal region from amplitude in the right temporal region, and dividing by the lesser of the two. Depressive and insomnia-related symptomatology exceeding clinical threshold levels were reported by 48% and 50% of subjects, respectively. Using a cutoff value of 5% or greater to define temporal high-frequency asymmetry, subjects with leftward compared to rightward asymmetry were more likely to report use of a sedative-hypnotic medication (42% vs. 22%, P = 0.02). Among subjects with asymmetry of 5% or greater to 30% or greater, those with rightward compared to leftward temporal high-frequency asymmetry had higher resting heart rate (≥5% asymmetry, 72.3 vs. 63.8, P = 0.004; ≥10%, 71.5 vs. 63.0, P = 0.01; ≥20%, 72.2 vs. 64.2, P = 0.05; ≥30%, 71.4 vs. 64.6, P = 0.05). Subjects with larger degrees of rightward compared to leftward temporal high-frequency asymmetry had lower baroreflex sensitivity (≥40% asymmetry, 10.6 vs. 16.4, P = 0.03; ≥50% asymmetry, 10.4 vs. 16.7, P = 0.05). In a heterogeneous population, individuals with rightward compared to leftward temporal high-frequency electrical asymmetry had higher resting heart rate and lower BRS. Two-channel recording of brain electrical activity from

  10. PRAK, a novel protein kinase regulated by the p38 MAP kinase.

    PubMed Central

    New, L; Jiang, Y; Zhao, M; Liu, K; Zhu, W; Flood, L J; Kato, Y; Parry, G C; Han, J

    1998-01-01

    We have identified and cloned a novel serine/ threonine kinase, p38-regulated/activated protein kinase (PRAK). PRAK is a 471 amino acid protein with 20-30% sequence identity to the known MAP kinase-regulated protein kinases RSK1/2/3, MNK1/2 and MAPKAP-K2/3. PRAK was found to be expressed in all human tissues and cell lines examined. In HeLa cells, PRAK was activated in response to cellular stress and proinflammatory cytokines. PRAK activity was regulated by p38alpha and p38beta both in vitro and in vivo and Thr182 was shown to be the regulatory phosphorylation site. Activated PRAK in turn phosphorylated small heat shock protein 27 (HSP27) at the physiologically relevant sites. An in-gel kinase assay demonstrated that PRAK is a major stress-activated kinase that can phosphorylate small heat shock protein, suggesting a potential role for PRAK in mediating stress-induced HSP27 phosphorylation in vivo. PMID:9628874

  11. The FASTK family of proteins: emerging regulators of mitochondrial RNA biology

    PubMed Central

    Jourdain, Alexis A.; Popow, Johannes; de la Fuente, Miguel A.; Martinou, Jean-Claude

    2017-01-01

    Abstract The FASTK family proteins have recently emerged as key post-transcriptional regulators of mitochondrial gene expression. FASTK, the founding member and its homologs FASTKD1–5 are architecturally related RNA-binding proteins, each having a different function in the regulation of mitochondrial RNA biology, from mRNA processing and maturation to ribosome assembly and translation. In this review, we outline the structure, evolution and function of these FASTK proteins and discuss the individual role that each has in mitochondrial RNA biology. In addition, we highlight the aspects of FASTK research that still require more attention. PMID:29036396

  12. The Inherent Asymmetry of DNA Replication.

    PubMed

    Snedeker, Jonathan; Wooten, Matthew; Chen, Xin

    2017-10-06

    Semiconservative DNA replication has provided an elegant solution to the fundamental problem of how life is able to proliferate in a way that allows cells, organisms, and populations to survive and replicate many times over. Somewhat lost, however, in our admiration for this mechanism is an appreciation for the asymmetries that occur in the process of DNA replication. As we discuss in this review, these asymmetries arise as a consequence of the structure of the DNA molecule and the enzymatic mechanism of DNA synthesis. Increasing evidence suggests that asymmetries in DNA replication are able to play a central role in the processes of adaptation and evolution by shaping the mutagenic landscape of cells. Additionally, in eukaryotes, recent work has demonstrated that the inherent asymmetries in DNA replication may play an important role in the process of chromatin replication. As chromatin plays an essential role in defining cell identity, asymmetries generated during the process of DNA replication may play critical roles in cell fate decisions related to patterning and development.

  13. Protein CoAlation: a redox-regulated protein modification by coenzyme A in mammalian cells

    PubMed Central

    Tsuchiya, Yugo; Peak-Chew, Sew Yeu; Newell, Clare; Miller-Aidoo, Sheritta; Mangal, Sriyash; Zhyvoloup, Alexander; Bakovic´, Jovana; Malanchuk, Oksana; Pereira, Gonçalo C.; Kotiadis, Vassilios; Szabadkai, Gyorgy; Duchen, Michael R.; Campbell, Mark; Cuenca, Sergio Rodriguez; Vidal-Puig, Antonio; James, Andrew M.; Murphy, Michael P.; Filonenko, Valeriy; Skehel, Mark

    2017-01-01

    Coenzyme A (CoA) is an obligatory cofactor in all branches of life. CoA and its derivatives are involved in major metabolic pathways, allosteric interactions and the regulation of gene expression. Abnormal biosynthesis and homeostasis of CoA and its derivatives have been associated with various human pathologies, including cancer, diabetes and neurodegeneration. Using an anti-CoA monoclonal antibody and mass spectrometry, we identified a wide range of cellular proteins which are modified by covalent attachment of CoA to cysteine thiols (CoAlation). We show that protein CoAlation is a reversible post-translational modification that is induced in mammalian cells and tissues by oxidising agents and metabolic stress. Many key cellular enzymes were found to be CoAlated in vitro and in vivo in ways that modified their activities. Our study reveals that protein CoAlation is a widespread post-translational modification which may play an important role in redox regulation under physiological and pathophysiological conditions. PMID:28341808

  14. Poloidal asymmetries in edge transport barriersa)

    NASA Astrophysics Data System (ADS)

    Churchill, R. M.; Theiler, C.; Lipschultz, B.; Hutchinson, I. H.; Reinke, M. L.; Whyte, D.; Hughes, J. W.; Catto, P.; Landreman, M.; Ernst, D.; Chang, C. S.; Hager, R.; Hubbard, A.; Ennever, P.; Walk, J. R.

    2015-05-01

    Measurements of impurities in Alcator C-Mod indicate that in the pedestal region, significant poloidal asymmetries can exist in the impurity density, ion temperature, and main ion density. In light of the observation that ion temperature and electrostatic potential are not constant on a flux surface [Theiler et al., Nucl. Fusion 54, 083017 (2014)], a technique based on total pressure conservation to align profiles measured at separate poloidal locations is presented and applied. Gyrokinetic neoclassical simulations with XGCa support the observed large poloidal variations in ion temperature and density, and that the total pressure is approximately constant on a flux surface. With the updated alignment technique, the observed in-out asymmetry in impurity density is reduced from previous publishing [Churchill et al., Nucl. Fusion 53, 122002 (2013)], but remains substantial ( n z , H / n z , L ˜ 6 ). Candidate asymmetry drivers are explored, showing that neither non-uniform impurity sources nor localized fluctuation-driven transport are able to explain satisfactorily the impurity density asymmetry. Since impurity density asymmetries are only present in plasmas with strong electron density gradients, and radial transport timescales become comparable to parallel transport timescales in the pedestal region, it is suggested that global transport effects relating to the strong electron density gradients in the pedestal are the main driver for the pedestal in-out impurity density asymmetry.

  15. TMD evolution of the Sivers asymmetry

    NASA Astrophysics Data System (ADS)

    Boer, Daniël

    2013-09-01

    The energy scale dependence of the Sivers asymmetry in semi-inclusive deep inelastic scattering is studied numerically within the framework of TMD factorization that was put forward in 2011. The comparison to previous results in the literature shows that the treatment of next-to-leading logarithmic effects is important for the fall-off of the Sivers asymmetry with energy in the measurable regime. The TMD factorization based approach indicates that the peak of the Sivers asymmetry falls off with energy scale Q to good approximation as 1/Q0.7, somewhat faster than found previously based on the first TMD factorization expressions by Collins and Soper in 1981. It is found that the peak of the asymmetry moves rather slowly towards higher transverse momentum values as Q increases, which may be due to the absence of perturbative tails of the TMDs in the presented treatments. We conclude that the behavior of the peak of the asymmetry as a function of energy and transverse momentum allows for valuable tests of the TMD formalism and the considered approximations. To confront the TMD approach with experiment, high energy experimental data from an Electron-Ion Collider is required. Note that in B01/B09 the Gaussian width of the Sivers TMD appears in the asymmetry expressions, because of the derivative in f1T⊥ ' a(x;Q0).

  16. Transmembrane proteins UNC-40/DCC, PTP-3/LAR, and MIG-21 control anterior-posterior neuroblast migration with left-right functional asymmetry in Caenorhabditis elegans.

    PubMed

    Sundararajan, Lakshmi; Lundquist, Erik A

    2012-12-01

    Migration of neurons and neural crest cells is of central importance to the development of nervous systems. In Caenorhabditis elegans, the QL neuroblast on the left migrates posteriorly, and QR on the right migrates anteriorly, despite similar lineages and birth positions with regard to the left-right axis. Initial migration is independent of a Wnt signal that controls later anterior-posterior Q descendant migration. Previous studies showed that the transmembrane proteins UNC-40/DCC and MIG-21, a novel thrombospondin type I repeat containing protein, act redundantly in left-side QL posterior migration. Here we show that the LAR receptor protein tyrosine phosphatase PTP-3 acts with MIG-21 in parallel to UNC-40 in QL posterior migration. We also show that in right-side QR, the UNC-40 and PTP-3/MIG-21 pathways mutually inhibit each other's role in posterior migration, allowing anterior QR migration. Finally, we present evidence that these proteins act autonomously in the Q neuroblasts. These studies indicate an inherent left-right asymmetry in the Q neuroblasts with regard to UNC-40, PTP-3, and MIG-21 function that results in posterior vs. anterior migration.

  17. Transmembrane Proteins UNC-40/DCC, PTP-3/LAR, and MIG-21 Control Anterior–Posterior Neuroblast Migration with Left–Right Functional Asymmetry in Caenorhabditis elegans

    PubMed Central

    Sundararajan, Lakshmi; Lundquist, Erik A.

    2012-01-01

    Migration of neurons and neural crest cells is of central importance to the development of nervous systems. In Caenorhabditis elegans, the QL neuroblast on the left migrates posteriorly, and QR on the right migrates anteriorly, despite similar lineages and birth positions with regard to the left–right axis. Initial migration is independent of a Wnt signal that controls later anterior–posterior Q descendant migration. Previous studies showed that the transmembrane proteins UNC-40/DCC and MIG-21, a novel thrombospondin type I repeat containing protein, act redundantly in left-side QL posterior migration. Here we show that the LAR receptor protein tyrosine phosphatase PTP-3 acts with MIG-21 in parallel to UNC-40 in QL posterior migration. We also show that in right-side QR, the UNC-40 and PTP-3/MIG-21 pathways mutually inhibit each other’s role in posterior migration, allowing anterior QR migration. Finally, we present evidence that these proteins act autonomously in the Q neuroblasts. These studies indicate an inherent left–right asymmetry in the Q neuroblasts with regard to UNC-40, PTP-3, and MIG-21 function that results in posterior vs. anterior migration. PMID:23051647

  18. Unfolded protein response regulation in keloid cells.

    PubMed

    Butler, Paris D; Wang, Zhen; Ly, Daphne P; Longaker, Michael T; Koong, Albert C; Yang, George P

    2011-05-01

    Keloids are a common form of pathologic wound healing characterized by excessive production of extracellular matrix. The unfolded protein response (UPR) is a cellular response to hypoxia, a component of the wound microenvironment, capable of protecting cells from the effects of over-accumulation of misfolded proteins. Since keloids have hypersecretion of extracellular matrix, we hypothesized that keloid fibroblasts (KFs) may have enhanced activation of the UPR compared with normal fibroblasts (NFs). KFs and NFs were placed in a hypoxia chamber for 0, 24, and 48h. We also used tunicamycin to specifically up-regulate the UPR. UPR activation was assayed by PCR for xbp-1 splicing and by immunoblotting with specific antibodies for the three UPR transducers. Nuclear localization of XBP-1 protein in KFs was confirmed by immunofluorescence. There is increased activation of XBP-1 protein in KFs compared with NFs following exposure to hypoxia. Pancreatic ER kinase (PERK) and ATF-6, two other pathways activated by the UPR, show comparable activation between KFs and NFs. We confirmed that there is enhanced activation of XBP-1 by demonstrating increased nuclear localization of XBP-1 using immunofluorescence. In contrast to our initial hypothesis that keloids would have broad activation of the UPR, we demonstrate here that there is a specific up-regulation of one facet of the UPR response. This may represent a specific molecular defect in KFs compared with NFs, and also suggests modulation of the UPR can be used in wound healing therapy. Published by Elsevier Inc.

  19. Targeting pH regulating proteins for cancer therapy-Progress and limitations.

    PubMed

    Parks, Scott K; Pouysségur, Jacques

    2017-04-01

    Tumour acidity induced by metabolic alterations and incomplete vascularisation sets cancer cells apart from normal cellular physiology. This distinguishing tumour characteristic has been an area of intense study, as cellular pH (pH i ) disturbances disrupt protein function and therefore multiple cellular processes. Tumour cells effectively utilise pH i regulating machinery present in normal cells with enhancements provided by additional oncogenic or hypoxia induced protein modifications. This overall improvement of pH regulation enables maintenance of an alkaline pH i in the continued presence of external acidification (pH e ). Considerable experimentation has revealed targets that successfully disrupt tumour pH i regulation in efforts to develop novel means to weaken or kill tumour cells. However, redundancy in these pH-regulating proteins, which include Na + /H + exchangers (NHEs), carbonic anhydrases (CAs), Na + /HCO 3 - co-transporters (NBCs) and monocarboxylate transporters (MCTs) has prevented effective disruption of tumour pH i when individual protein targeting is performed. Here we synthesise recent advances in understanding both normoxic and hypoxic pH regulating mechanisms in tumour cells with an ultimate focus on the disruption of tumour growth, survival and metastasis. Interactions between tumour acidity and other cell types are also proving to be important in understanding therapeutic applications such as immune therapy. Promising therapeutic developments regarding pH manipulation along with current limitations are highlighted to provide a framework for future research directives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Exchange asymmetry in experimental settings

    Treesearch

    Thomas C. Brown; Mark D. Morrison; Jacob A. Benfield; Gretchen Nurse Rainbolt; Paul A. Bell

    2015-01-01

    We review past trading experiments and present 11 new experiments designed to show how the trading rate responds to alterations of the experimental procedure. In agreement with earlier studies, results show that if the trade decision is converted to one resembling a choice between goods the exchange asymmetry disappears, but otherwise the asymmetry is...

  1. Ethylene Rapidly Up-Regulates the Activities of Both Monomeric GTP-Binding Proteins and Protein Kinase(s) in Epicotyls of Pea1

    PubMed Central

    Moshkov, Igor E.; Novikova, Galina V.; Mur, Luis A.J.; Smith, Aileen R.; Hall, Michael A.

    2003-01-01

    It is demonstrated that, in etiolated pea (Pisum sativum) epicotyls, ethylene affects the activation of both monomeric GTP-binding proteins (monomeric G-proteins) and protein kinases. For monomeric G-proteins, the effect may be a rapid (2 min) and bimodal up-regulation, a transiently unimodal activation, or a transient down-regulation. Pretreatment with 1-methylcyclopropene abolishes the response to ethylene overall. Immunoprecipitation studies indicate that some of the monomeric G-proteins affected may be of the Rab class. Protein kinase activity is rapidly up-regulated by ethylene, the effect is inhibited by 1-methylcyclopropene, and the activation is bimodal. Immunoprecipitation indicates that the kinase(s) are of the MAP kinase ERK1 group. It is proposed that the data support the hypothesis that a transduction chain exists that is separate and antagonistic to that currently revealed by studies on Arabidopsis mutants. PMID:12692330

  2. Alternate reading strategies and variable asymmetry of the planum temporale in adult resilient readers.

    PubMed

    Welcome, Suzanne E; Leonard, Christiana M; Chiarello, Christine

    2010-05-01

    Resilient readers are characterized by impaired phonological processing despite skilled text comprehension. We investigated orthographic and semantic processing in resilient readers to examine mechanisms of compensation for poor phonological decoding. Performance on phonological (phoneme deletion, pseudoword reading), orthographic (orthographic choice, orthographic analogy), and semantic (semantic priming, homograph resolution) tasks was compared between resilient, poor and proficient readers. Asymmetry of the planum temporale was investigated in order to determine whether atypical readers showed unusual morphology in this language-relevant region. Resilient readers showed deficits on phonological tasks similar to those shown by poor readers. We obtained no evidence that resilient readers compensate via superior orthographic processing, as they showed neither exceptional orthographic skill nor increased reliance on orthography to guide pronunciation. Resilient readers benefited more than poor or proficient readers from semantic relationships between words and experienced greater difficulty when such relationships were not present. We suggest, therefore, that resilient readers compensate for poor phonological decoding via greater reliance on word meaning relationships. The reading groups did not differ in mean asymmetry of the planum temporale. However, resilient readers showed greater variability in planar asymmetry than proficient readers. Poor readers also showed a trend towards greater variability in planar asymmetry, with more poor readers than proficient readers showing extreme asymmetry. Such increased variability suggests that university students with less reading skill display less well regulated brain anatomy than proficient readers. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Beyond apoptosis: The mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells

    PubMed Central

    Rysavy, Noel M.; Shimoda, Lori M. N.; Dixon, Alyssa M.; Speck, Mark; Stokes, Alexander J.; Turner, Helen; Umemoto, Eric Y.

    2014-01-01

    Loss of plasma membrane asymmetry is a hallmark of apoptosis, but lipid bilayer asymmetry and loss of asymmetry can contribute to numerous cellular functions and responses that are independent of programmed cell death. Exofacial exposure of phosphatidylserine occurs in lymphocytes and mast cells after antigenic stimulation and in the absence of apoptosis, suggesting that there is a functional requirement for phosphatidylserine exposure in immunocytes. In this review we examine current ideas as to the nature of this functional role in mast cell activation. Mechanistically, there is controversy as to the candidate proteins responsible for phosphatidylserine translocation from the internal to external leaflet, and here we review the candidacies of mast cell PLSCR1 and TMEM16F. Finally we examine the potential relationship between functionally important mast cell membrane perturbations and phosphatidylserine exposure during activation. PMID:25759911

  4. Nodal signalling and asymmetry of the nervous system

    PubMed Central

    Signore, Iskra A.; Palma, Karina

    2016-01-01

    The role of Nodal signalling in nervous system asymmetry is still poorly understood. Here, we review and discuss how asymmetric Nodal signalling controls the ontogeny of nervous system asymmetry using a comparative developmental perspective. A detailed analysis of asymmetry in ascidians and fishes reveals a critical context-dependency of Nodal function and emphasizes that bilaterally paired and midline-unpaired structures/organs behave as different entities. We propose a conceptual framework to dissect the developmental function of Nodal as asymmetry inducer and laterality modulator in the nervous system, which can be used to study other types of body and visceral organ asymmetries. Using insights from developmental biology, we also present novel evolutionary hypotheses on how Nodal led the evolution of directional asymmetry in the brain, with a particular focus on the epithalamus. We intend this paper to provide a synthesis on how Nodal signalling controls left–right asymmetry of the nervous system. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821531

  5. FBXW10 is negatively regulated in transcription and expression level by protein O-GlcNAcylation.

    PubMed

    Feng, Zhou; Hui, Yan; Ling, Li; Xiaoyan, Liu; Yuqiu, Wang; Peng, Wang; Lianwen, Zhang

    2013-08-23

    Intricate cross-talks exist among multiple post-translational modifications that play critical roles in various cellular events, such as the control of gene expression and regulation of protein function. Here, the cross-talk between O-GlcNAcylation and ubiquitination was investigated in HEK293T cells. By PCR array, 84 ubiquitination-related genes were explored in transcription level in response to the elevation of total protein O-GlcNAcylation due to over-expression of OGT, inhibition of OGA or GlcN treatment. Varied genes were transcriptionally regulated by using different method. But FBXW10, an F-box protein targeting specific proteins for ubiquitination, could be negatively regulated in all ways, suggesting its regulation by protein O-GlcNAcylation. By RT-PCR and Western blot analysis, it was found that FBXW10 could be sharply down-regulated in mRNA and protein level in GlcN-treated cells in a time-dependent way, in line with the enhancement of protein O-GlcNAcylation. It was also found that endogenous FBXW10 was modified by O-GlcNAc in HEK293T cells, implying O-GlcNAcylation might regulate FBXW10 in multiple levels. These findings indicate that O-GlcNAcylation is involved in the regulation of ubiquitination-related genes, and help us understand the cross-talk between O-GlcNAcylation and ubiquitination. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Stochastic left–right neuronal asymmetry in Caenorhabditis elegans

    PubMed Central

    Alqadah, Amel; Hsieh, Yi-Wen; Xiong, Rui

    2016-01-01

    Left–right asymmetry in the nervous system is observed across species. Defects in left–right cerebral asymmetry are linked to several neurological diseases, but the molecular mechanisms underlying brain asymmetry in vertebrates are still not very well understood. The Caenorhabditis elegans left and right amphid wing ‘C’ (AWC) olfactory neurons communicate through intercellular calcium signalling in a transient embryonic gap junction neural network to specify two asymmetric subtypes, AWCOFF (default) and AWCON (induced), in a stochastic manner. Here, we highlight the molecular mechanisms that establish and maintain stochastic AWC asymmetry. As the components of the AWC asymmetry pathway are highly conserved, insights from the model organism C. elegans may provide a window onto how brain asymmetry develops in humans. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821536

  7. Permeability Asymmetry in Composite Porous Ceramic Membranes

    NASA Astrophysics Data System (ADS)

    Kurcharov, I. M.; Laguntsov, N. I.; Uvarov, V. I.; Kurchatova, O. V.

    The results from the investigation of transport characteristics and gas transport asymmetry in bilayer composite membranes are submitted. These membranes are produced by SHS method. Asymmetric effect and hysteresis of permeability in nanoporous membranes are detected. It's shown, that permeability ratio (asymmetry value of permeability) increases up to several times. The asymmetry of permeability usually decreases monotonically with the pressure decrease.

  8. Bessel Weighted Asymmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avakian, Harut; Gamberg, Leonard; Rossi, Patrizia

    We review the concept of Bessel weighted asymmetries for semi-inclusive deep inelastic scattering and focus on the cross section in Fourier space, conjugate to the outgoing hadron’s transverse momentum, where convolutions of transverse momentum dependent parton distribution functions and fragmentation functions become simple products. Individual asymmetric terms in the cross section can be projected out by means of a generalized set of weights involving Bessel functions. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized partonmore » model. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy and hard scale Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.« less

  9. The nuclear import of ribosomal proteins is regulated by mTOR

    PubMed Central

    Kazyken, Dubek; Kaz, Yelimbek; Kiyan, Vladimir; Zhylkibayev, Assylbek A.; Chen, Chien-Hung; Agarwal, Nitin K.; Sarbassov, Dos D.

    2014-01-01

    Mechanistic target of rapamycin (mTOR) is a central component of the essential signaling pathway that regulates cell growth and proliferation by controlling anabolic processes in cells. mTOR exists in two distinct mTOR complexes known as mTORC1 and mTORC2 that reside mostly in cytoplasm. In our study, the biochemical characterization of mTOR led to discovery of its novel localization on nuclear envelope where it associates with a critical regulator of nuclear import Ran Binding Protein 2 (RanBP2). We show that association of mTOR with RanBP2 is dependent on the mTOR kinase activity that regulates the nuclear import of ribosomal proteins. The mTOR kinase inhibitors within thirty minutes caused a substantial decrease of ribosomal proteins in the nuclear but not cytoplasmic fraction. Detection of a nuclear accumulation of the GFP-tagged ribosomal protein rpL7a also indicated its dependence on the mTOR kinase activity. The nuclear abundance of ribosomal proteins was not affected by inhibition of mTOR Complex 1 (mTORC1) by rapamycin or deficiency of mTORC2, suggesting a distinctive role of the nuclear envelope mTOR complex in the nuclear import. Thus, we identified that mTOR in association with RanBP2 mediates the active nuclear import of ribosomal proteins. PMID:25294810

  10. Validity and sensitivity of the longitudinal asymmetry index to detect gait asymmetry using Microsoft Kinect data.

    PubMed

    Auvinet, E; Multon, F; Manning, V; Meunier, J; Cobb, J P

    2017-01-01

    Gait asymmetry information is a key point in disease screening and follow-up. Constant Relative Phase (CRP) has been used to quantify within-stride asymmetry index, which requires noise-free and accurate motion capture, which is difficult to obtain in clinical settings. This study explores a new index, the Longitudinal Asymmetry Index (ILong) which is derived using data from a low-cost depth camera (Kinect). ILong is based on depth images averaged over several gait cycles, rather than derived joint positions or angles. This study aims to evaluate (1) the validity of CRP computed with Kinect, (2) the validity and sensitivity of ILong for measuring gait asymmetry based solely on data provided by a depth camera, (3) the clinical applicability of a posteriorly mounted camera system to avoid occlusion caused by the standard front-fitted treadmill consoles and (4) the number of strides needed to reliably calculate ILong. The gait of 15 subjects was recorded concurrently with a marker-based system (MBS) and Kinect, and asymmetry was artificially reproduced by introducing a 5cm sole attached to one foot. CRP computed with Kinect was not reliable. ILong detected this disturbed gait reliably and could be computed from a posteriorly placed Kinect without loss of validity. A minimum of five strides was needed to achieve a correlation coefficient of 0.9 between standard MBS and low-cost depth camera based ILong. ILong provides a clinically pragmatic method for measuring gait asymmetry, with application for improved patient care through enhanced disease, screening, diagnosis and monitoring. Copyright © 2016. Published by Elsevier B.V.

  11. Structural basis for maintenance of bacterial outer membrane lipid asymmetry.

    PubMed

    Abellón-Ruiz, Javier; Kaptan, Shreyas S; Baslé, Arnaud; Claudi, Beatrice; Bumann, Dirk; Kleinekathöfer, Ulrich; van den Berg, Bert

    2017-12-01

    The Gram-negative bacterial outer membrane (OM) is a unique bilayer that forms an efficient permeation barrier to protect the cell from noxious compounds 1 , 2 . The defining characteristic of the OM is lipid asymmetry, with phospholipids comprising the inner leaflet and lipopolysaccharides comprising the outer leaflet 1-3 . This asymmetry is maintained by the Mla pathway, a six-component system that is widespread in Gram-negative bacteria and is thought to mediate retrograde transport of misplaced phospholipids from the outer leaflet of the OM to the cytoplasmic membrane 4 . The OM lipoprotein MlaA performs the first step in this process via an unknown mechanism that does not require external energy input. Here we show, using X-ray crystallography, molecular dynamics simulations and in vitro and in vivo functional assays, that MlaA is a monomeric α-helical OM protein that functions as a phospholipid translocation channel, forming a ~20-Å-thick doughnut embedded in the inner leaflet of the OM with a central, amphipathic pore. This architecture prevents access of inner leaflet phospholipids to the pore, but allows outer leaflet phospholipids to bind to a pronounced ridge surrounding the channel, followed by diffusion towards the periplasmic space. Enterobacterial MlaA proteins form stable complexes with OmpF/C 5,6 , but the porins do not appear to play an active role in phospholipid transport. MlaA represents a lipid transport protein that selectively removes outer leaflet phospholipids to help maintain the essential barrier function of the bacterial OM.

  12. The Fanconi Anemia C Protein Binds to and Regulates Stathmin-1 Phosphorylation

    PubMed Central

    Magron, Audrey; Elowe, Sabine; Carreau, Madeleine

    2015-01-01

    The Fanconi anemia (FA) proteins are involved in a signaling network that assures the safeguard of chromosomes. To understand the function of FA proteins in cellular division events, we investigated the interaction between Stathmin-1 (STMN1) and the FA group C (FANCC) protein. STMN1 is a ubiquitous cytosolic protein that regulates microtubule dynamics. STMN1 activities are regulated through phosphorylation-dephosphorylation mechanisms that control assembly of the mitotic spindle, and dysregulation of STMN1 phosphorylation is associated with mitotic aberrancies leading to chromosome instability and cancer progression. Using different biochemical approaches, we showed that FANCC interacts and co-localizes with STMN1 at centrosomes during mitosis. We also showed that FANCC is required for STMN1 phosphorylation, as mutations in FANCC reduced serine 16- and 38-phosphorylated forms of STMN1. Phosphorylation of STMN1 at serine 16 is likely an event dependent on a functional FA pathway, as it is reduced in FANCA- and FANCD2-mutant cells. Furthermore, FA-mutant cells exhibited mitotic spindle anomalies such as supernumerary centrosomes and shorter mitotic spindles. These results suggest that FA proteins participate in the regulation of cellular division via the microtubule-associated protein STMN1. PMID:26466335

  13. Regulated Eukaryotic DNA Replication Origin Firing with Purified Proteins

    PubMed Central

    Yeeles, Joseph T.P.; Deegan, Tom D.; Janska, Agnieszka; Early, Anne; Diffley, John F. X.

    2016-01-01

    Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric MCM complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45, MCM, GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4 dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication. PMID:25739503

  14. Regulated eukaryotic DNA replication origin firing with purified proteins.

    PubMed

    Yeeles, Joseph T P; Deegan, Tom D; Janska, Agnieszka; Early, Anne; Diffley, John F X

    2015-03-26

    Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric minichromosome maintenance (MCM) complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45-MCM-GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin-dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4-dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication.

  15. The heat-shock protein Apg-2 binds to the tight junction protein ZO-1 and regulates transcriptional activity of ZONAB.

    PubMed

    Tsapara, Anna; Matter, Karl; Balda, Maria S

    2006-03-01

    The tight junction adaptor protein ZO-1 regulates intracellular signaling and cell proliferation. Its Src homology 3 (SH3) domain is required for the regulation of proliferation and binds to the Y-box transcription factor ZO-1-associated nucleic acid binding protein (ZONAB). Binding of ZO-1 to ZONAB results in cytoplasmic sequestration and hence inhibition of ZONAB's transcriptional activity. Here, we identify a new binding partner of the SH3 domain that modulates ZO-1-ZONAB signaling. Expression screening of a cDNA library with a fusion protein containing the SH3 domain yielded a cDNA coding for Apg-2, a member of the heat-shock protein 110 (Hsp 110) subfamily of Hsp70 heat-shock proteins, which is overexpressed in carcinomas. Regulated depletion of Apg-2 in Madin-Darby canine kidney cells inhibits G(1)/S phase progression. Apg-2 coimmunoprecipitates with ZO-1 and partially localizes to intercellular junctions. Junctional recruitment and coimmunoprecipitation with ZO-1 are stimulated by heat shock. Apg-2 competes with ZONAB for binding to the SH3 domain in vitro and regulates ZONAB's transcriptional activity in reporter gene assays. Our data hence support a model in which Apg-2 regulates ZONAB function by competing for binding to the SH3 domain of ZO-1 and suggest that Apg-2 functions as a regulator of ZO-1-ZONAB signaling in epithelial cells in response to cellular stress.

  16. The Heat-Shock Protein Apg-2 Binds to the Tight Junction Protein ZO-1 and Regulates Transcriptional Activity of ZONAB

    PubMed Central

    Tsapara, Anna; Matter, Karl; Balda, Maria S.

    2006-01-01

    The tight junction adaptor protein ZO-1 regulates intracellular signaling and cell proliferation. Its Src homology 3 (SH3) domain is required for the regulation of proliferation and binds to the Y-box transcription factor ZO-1-associated nucleic acid binding protein (ZONAB). Binding of ZO-1 to ZONAB results in cytoplasmic sequestration and hence inhibition of ZONAB's transcriptional activity. Here, we identify a new binding partner of the SH3 domain that modulates ZO-1–ZONAB signaling. Expression screening of a cDNA library with a fusion protein containing the SH3 domain yielded a cDNA coding for Apg-2, a member of the heat-shock protein 110 (Hsp 110) subfamily of Hsp70 heat-shock proteins, which is overexpressed in carcinomas. Regulated depletion of Apg-2 in Madin-Darby canine kidney cells inhibits G1/S phase progression. Apg-2 coimmunoprecipitates with ZO-1 and partially localizes to intercellular junctions. Junctional recruitment and coimmunoprecipitation with ZO-1 are stimulated by heat shock. Apg-2 competes with ZONAB for binding to the SH3 domain in vitro and regulates ZONAB's transcriptional activity in reporter gene assays. Our data hence support a model in which Apg-2 regulates ZONAB function by competing for binding to the SH3 domain of ZO-1 and suggest that Apg-2 functions as a regulator of ZO-1–ZONAB signaling in epithelial cells in response to cellular stress. PMID:16407410

  17. Regulators of G-protein signaling 4 in adrenal gland: localization, regulation, and role in aldosterone secretion.

    PubMed

    Romero, Damian G; Zhou, Ming Yi; Yanes, Licy L; Plonczynski, Maria W; Washington, Tanganika R; Gomez-Sanchez, Celso E; Gomez-Sanchez, Elise P

    2007-08-01

    Regulators of G-protein signaling (RGS proteins) interact with Galpha subunits of heterotrimeric G-proteins, accelerating the rate of GTP hydrolysis and finalizing the intracellular signaling triggered by the G-protein-coupled receptor (GPCR)-ligand interaction. Angiotensin II (Ang II) interacts with its GPCR in adrenal zona glomerulosa cells and triggers a cascade of intracellular signals that regulates steroidogenesis and proliferation. On screening for adrenal zona glomerulosa-specific genes, we found that RGS4 was exclusively localized in the zona glomerulosa of the rat adrenal cortex. We studied RGS4 expression and regulation in the rat adrenal gland, including the signaling pathways involved, as well as the role of RGS4 in steroidogenesis in human adrenocortical H295R cells. We reported that RGS4 mRNA expression in the rat adrenal gland was restricted to the adrenal zonal glomerulosa and upregulated by low-salt diet and Ang II infusion in rat adrenal glands in vivo. In H295R cells, Ang II caused a rapid and transient increase in RGS4 mRNA levels mediated by the calcium/calmodulin/calmodulin-dependent protein kinase and protein kinase C pathways. RGS4 overexpression by retroviral infection in H295R cells decreased Ang II-stimulated aldosterone secretion. In reporter assays, RGS4 decreased Ang II-mediated aldosterone synthase upregulation. In summary, RGS4 is an adrenal gland zona glomerulosa-specific gene that is upregulated by aldosterone secretagogues, in vivo and in vitro, and functions as a negative feedback of Ang II-triggered intracellular signaling. Alterations in RGS4 expression levels or functions may be involved in deregulations of Ang II signaling and abnormal aldosterone secretion.

  18. Facial Asymmetry: Brow and Ear Position.

    PubMed

    Perumal, Balaji; Meyer, Dale R

    2018-04-01

    The purpose of the current study was to analyze brow and ear position, and examine the relationship between these structures in patients presenting for blepharoplasty evaluation. A retrospective chart review was performed, which included all patients presenting to one oculoplastic physician for a blepharoplasty evaluation from November, 2012 to March, 2014. The prevalence of brow ptosis and brow and ear asymmetry was calculated; the proportional distribution was determined, and chi-square analysis and the z-test of proportions were used to calculate the significance. Institutional Review Board approval was obtained for this study. A total of 133 patients met the inclusion criteria. Some degree of brow ptosis was noted in 83% of patients. Brow asymmetry was found in 88% of patients, and ear asymmetry in 77%. Of those patients who had asymmetry, 61% had the right brow lower and 75% had the right ear lower; 73% of all patients had the brow and ear lower on the same side ( p  < 0.001). In this study, brow ptosis and asymmetry were quite common. In addition, the side of the lower brow correlated strongly with the side of the lower ear, and the right side structures were lower more often than the left. Patients presenting for blepharoplasty evaluation may have an element of generalized facial asymmetry which includes the brows and ears. These observations can be important for preoperative planning and patient counseling. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  19. Asymmetry identification in rigid rotating bodies—Theory and experiment

    NASA Astrophysics Data System (ADS)

    Bucher, Izhak; Shomer, Ofer

    2013-12-01

    Asymmetry and anisotropy are important parameters in rotating devices that can cause instability; indicate a manufacturing defect or a developing fault. The present paper discusses an identification method capable of detecting minute levels of asymmetry by exploiting the unique dynamics of parametric excitation caused by asymmetry and rotation. The detection relies on rigid body dynamics without resorting to nonlinear vibration analysis, and the natural dynamics of elastically supported systems is exploited in order to increase the sensitivity to asymmetry. It is possible to isolate asymmetry from other rotation-induced phenomena like unbalance. An asymmetry detection machine which was built in the laboratory demonstrates the method alongside theoretical analysis.

  20. Charging-induced asymmetry in molecular conductors

    NASA Astrophysics Data System (ADS)

    Zahid, F.; Ghosh, A. W.; Paulsson, M.; Polizzi, E.; Datta, S.

    2004-12-01

    We investigate the origin of asymmetry in various measured current-voltage (I-V) characteristics of molecules with no inherent spatial asymmetry, with particular focus on a recent break junction measurement. We argue that such asymmetry arises due to unequal coupling with the contacts and a consequent difference in charging effects, which can only be captured in a self-consistent model for molecular conduction. The direction of the asymmetry depends on the sign of the majority carriers in the molecule. For conduction through highest occupied molecular orbitals (i.e., HOMO or p -type conduction), the current is smaller for positive voltage on the stronger contact, while for conduction through lowest unoccupied molecular orbitals (i.e., LUMO or n -type conduction), the sense of the asymmetry is reversed. Within an extended Hückel description of the molecular chemistry and the contact microstructure (with two adjustable parameters, the position of the Fermi energy and the sulphur-gold bond length), an appropriate description of Poisson’s equation, and a self-consistently coupled nonequilibrium Green’s function description of transport, we achieve good agreement between theoretical and experimental I-V characteristics, both in shape as well as overall magnitude.

  1. Changes in tissue protein synthesis are involved in regulating urea synthesis in rats given proteins of different quality.

    PubMed

    Tujioka, Kazuyo; Lyou, Sunok; Sano, Atushi; Hayase, Kazutoshi; Yokogoshi, Hidehiko

    2004-10-01

    The purpose of present study was to determine whether the regulation of urea synthesis is mediated through changes in supply of amino acids by protein synthesis and whether the concentration of ammonia, or activities of amino acid catabolizing enzymes, regulate urea synthesis when the dietary protein quality is manipulated. Experiments were done on three groups of rats given diets containing 10 g gluten, 10 g casein or 10 g whole egg protein/100 g for 10 d. The urinary excretion of urea, and the liver concentrations of glutamate, serine and alanine increased with a decrease in quality of dietary protein. The fractional and absolute rates of protein synthesis in tissues declined with the decrease in quality of dietary protein quality. The ammonia concentration in plasma and liver, and activities of hepatic amino acid catabolizing enzymes was not related to urea excretion under these conditions. These results suggest that the lower protein synthesis seen in tissues of rats given the lower quality of protein is likely to be one of the factors to increasing the supply of amino acids and stimulating urea synthesis.

  2. Periplasmic Acid Stress Increases Cell Division Asymmetry (Polar Aging) of Escherichia coli

    PubMed Central

    Clark, Michelle W.; Yie, Anna M.; Eder, Elizabeth K.; Dennis, Richard G.; Basting, Preston J.; Martinez, Keith A.; Jones, Brian D.; Slonczewski, Joan L.

    2015-01-01

    Under certain kinds of cytoplasmic stress, Escherichia coli selectively reproduce by distributing the newer cytoplasmic components to new-pole cells while sequestering older, damaged components in cells inheriting the old pole. This phenomenon is termed polar aging or cell division asymmetry. It is unknown whether cell division asymmetry can arise from a periplasmic stress, such as the stress of extracellular acid, which is mediated by the periplasm. We tested the effect of periplasmic acid stress on growth and division of adherent single cells. We tracked individual cell lineages over five or more generations, using fluorescence microscopy with ratiometric pHluorin to measure cytoplasmic pH. Adherent colonies were perfused continually with LBK medium buffered at pH 6.00 or at pH 7.50; the external pH determines periplasmic pH. In each experiment, cell lineages were mapped to correlate division time, pole age and cell generation number. In colonies perfused at pH 6.0, the cells inheriting the oldest pole divided significantly more slowly than the cells inheriting the newest pole. In colonies perfused at pH 7.50 (near or above cytoplasmic pH), no significant cell division asymmetry was observed. Under both conditions (periplasmic pH 6.0 or pH 7.5) the cells maintained cytoplasmic pH values at 7.2–7.3. No evidence of cytoplasmic protein aggregation was seen. Thus, periplasmic acid stress leads to cell division asymmetry with minimal cytoplasmic stress. PMID:26713733

  3. Novel Regulation of Ski Protein Stability and Endosomal Sorting by Actin Cytoskeleton Dynamics in Hepatocytes*

    PubMed Central

    Vázquez-Victorio, Genaro; Caligaris, Cassandre; Del Valle-Espinosa, Eugenio; Sosa-Garrocho, Marcela; González-Arenas, Nelly R.; Reyes-Cruz, Guadalupe; Briones-Orta, Marco A.; Macías-Silva, Marina

    2015-01-01

    TGF-β-induced antimitotic signals are highly regulated during cell proliferation under normal and pathological conditions, such as liver regeneration and cancer. Up-regulation of the transcriptional cofactors Ski and SnoN during liver regeneration may favor hepatocyte proliferation by inhibiting TGF-β signals. In this study, we found a novel mechanism that regulates Ski protein stability through TGF-β and G protein-coupled receptor (GPCR) signaling. Ski protein is distributed between the nucleus and cytoplasm of normal hepatocytes, and the molecular mechanisms controlling Ski protein stability involve the participation of actin cytoskeleton dynamics. Cytoplasmic Ski is partially associated with actin and localized in cholesterol-rich vesicles. Ski protein stability is decreased by TGF-β/Smads, GPCR/Rho signals, and actin polymerization, whereas GPCR/cAMP signals and actin depolymerization promote Ski protein stability. In conclusion, TGF-β and GPCR signals differentially regulate Ski protein stability and sorting in hepatocytes, and this cross-talk may occur during liver regeneration. PMID:25561741

  4. The Temporal Regulation of S Phase Proteins During G1

    PubMed Central

    Grant, Gavin D.; Cook, Jeanette G.

    2018-01-01

    Successful DNA replication requires intimate coordination with cell cycle progression. Prior to DNA replication initiation in S phase, a series of essential preparatory events in G1 phase ensures timely, complete, and precise genome duplication. Among the essential molecular processes are regulated transcriptional upregulation of genes that encode replication proteins, appropriate post-transcriptional control of replication factor abundance and activity, and the assembly of DNA-loaded protein complexes to license replication origins. In this chapter we describe these critical G1 events necessary for DNA replication and their regulation in the context of both cell cycle entry and cell cycle progression. PMID:29357066

  5. Induced static asymmetry of the pelvis is associated with functional asymmetry of the lumbo-pelvo-hip complex.

    PubMed

    Gnat, Rafał; Saulicz, Edward

    2008-03-01

    This study evaluates the hypothesis that triggering and eliminating induced static pelvic asymmetry (SPA) may be followed by immediate change in functional asymmetry of the lumbo-pelvo-hip complex. Repeated measures experimental design with 2 levels of independent variable, that is, induced SPA triggered and induced SPA eliminated, was implemented. Three series of measurements were performed, that is, baseline, after triggering SPA, and after eliminating SPA. A group of 84 subjects with no initial symptoms of SPA was studied. Different forms of mechanical stimulation were applied aiming to induce SPA, and the 2 manual stretching-manipulating techniques were performed aiming to eliminate it. A hand inclinometer was used to measure SPA in standing posture. Selected ranges of motion of the hip joints and lumbar spine were used to depict functional asymmetry of the lumbo-pelvo-hip complex. The functional asymmetry indices for individual movements were calculated. Repeated measures design of analysis of variance, dependent data Student t test, and linear Pearson's correlation test were used. Assessment of the SPA showed its significant increase between baseline and series 2 measurements, with a subsequent significant decrease between series 2 and series 3 measurements. Values of the functional asymmetry indices changed accordingly, that is, they increased significantly between series 1 and series 2 and had returned to their initial level in series 3 measurements. Induced SPA shows considerable association with functional asymmetry of the lumbo-pelvo-hip complex.

  6. rbm47, a novel RNA binding protein, regulates zebrafish head development.

    PubMed

    Guan, Rui; El-Rass, Suzan; Spillane, David; Lam, Simon; Wang, Yuodong; Wu, Jing; Chen, Zhuchu; Wang, Anan; Jia, Zhengping; Keating, Armand; Hu, Jim; Wen, Xiao-Yan

    2013-12-01

    Vertebrate trunk induction requires inhibition of bone morphogenetic protein (BMP) signaling, whereas vertebrate head induction requires concerted inhibition of both Wnt and BMP signaling. RNA binding proteins play diverse roles in embryonic development and their roles in vertebrate head development remain to be elucidated. We first characterized the human RBM47 as an RNA binding protein that specifically binds RNA but not single-stranded DNA. Next, we knocked down rbm47 gene function in zebrafish using morpholinos targeting the start codon and exon-1/intron-1 splice junction. Down-regulation of rbm47 resulted in headless and small head phenotypes, which can be rescued by a wnt8a blocking morpholino. To further reveal the mechanism of rbm47's role in head development, microarrays were performed to screen genes differentially expressed in normal and knockdown embryos. epcam and a2ml were identified as the most significantly up- and down-regulated genes, respectively. The microarrays also confirmed up-regulation of several genes involved in head development, including gsk3a, otx2, and chordin, which are important regulators of Wnt signaling. Altogether, our findings reveal that Rbm47 is a novel RNA-binding protein critical for head formation and embryonic patterning during zebrafish embryogenesis which may act through a Wnt8a signaling pathway. Copyright © 2013 Wiley Periodicals, Inc.

  7. The regulation of smooth muscle contractility by zipper-interacting protein kinase.

    PubMed

    Ihara, Eikichi; MacDonald, Justin A

    2007-01-01

    Smooth muscle contractility is mainly regulated by phosphorylation of the 20 kDa myosin light chains (LC20), a process that is controlled by the opposing activities of myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP). Recently, intensive research has revealed that various protein kinase networks including Rho-kinase, integrin-linked kinase, zipper-interacting protein kinase (ZIPK), and protein kinase C (PKC) are involved in the regulation of LC20 phosphorylation and have important roles in modulating smooth muscle contractile responses to Ca2+ (i.e., Ca2+ sensitization and Ca2+ desensitization). Here, we review the general background and structure of ZIPK and summarize our current understanding of its involvement in a number of cell processes including cell death (apoptosis), cell motility, and smooth muscle contraction. ZIPK has been found to induce the diphosphorylation of LC20 at Ser-19 and Thr-18 in a Ca2+-independent manner and to regulate MLCP activity directly through its phosphorylation of the myosin-targeting subunit of MLCP or indirectly through its phosphorylation of the PKC-potentiated inhibitory protein of MLCP. Future investigations of ZIPK function in smooth muscle will undoubtably focus on determining the mechanisms that regulate its cellular activity, including the identification of upstream signaling pathways, the characterization of autoinhibitory domains and regulatory phosphorylation sites, and the development of specific inhibitor compounds.

  8. Double-bromo and extraterminal (BET) domain proteins regulate dendrite morphology and mechanosensory function

    PubMed Central

    Bagley, Joshua A.; Yan, Zhiqiang; Zhang, Wei; Wildonger, Jill

    2014-01-01

    A complex array of genetic factors regulates neuronal dendrite morphology. Epigenetic regulation of gene expression represents a plausible mechanism to control pathways responsible for specific dendritic arbor shapes. By studying the Drosophila dendritic arborization (da) neurons, we discovered a role of the double-bromodomain and extraterminal (BET) family proteins in regulating dendrite arbor complexity. A loss-of-function mutation in the single Drosophila BET protein encoded by female sterile 1 homeotic [fs(1)h] causes loss of fine, terminal dendritic branches. Moreover, fs(1)h is necessary for the induction of branching caused by a previously identified transcription factor, Cut (Ct), which regulates subtype-specific dendrite morphology. Finally, disrupting fs(1)h function impairs the mechanosensory response of class III da sensory neurons without compromising the expression of the ion channel NompC, which mediates the mechanosensitive response. Thus, our results identify a novel role for BET family proteins in regulating dendrite morphology and a possible separation of developmental pathways specifying neural cell morphology and ion channel expression. Since the BET proteins are known to bind acetylated histone tails, these results also suggest a role of epigenetic histone modifications and the “histone code,” in regulating dendrite morphology. PMID:25184680

  9. Double-bromo and extraterminal (BET) domain proteins regulate dendrite morphology and mechanosensory function.

    PubMed

    Bagley, Joshua A; Yan, Zhiqiang; Zhang, Wei; Wildonger, Jill; Jan, Lily Yeh; Jan, Yuh Nung

    2014-09-01

    A complex array of genetic factors regulates neuronal dendrite morphology. Epigenetic regulation of gene expression represents a plausible mechanism to control pathways responsible for specific dendritic arbor shapes. By studying the Drosophila dendritic arborization (da) neurons, we discovered a role of the double-bromodomain and extraterminal (BET) family proteins in regulating dendrite arbor complexity. A loss-of-function mutation in the single Drosophila BET protein encoded by female sterile 1 homeotic [fs(1)h] causes loss of fine, terminal dendritic branches. Moreover, fs(1)h is necessary for the induction of branching caused by a previously identified transcription factor, Cut (Ct), which regulates subtype-specific dendrite morphology. Finally, disrupting fs(1)h function impairs the mechanosensory response of class III da sensory neurons without compromising the expression of the ion channel NompC, which mediates the mechanosensitive response. Thus, our results identify a novel role for BET family proteins in regulating dendrite morphology and a possible separation of developmental pathways specifying neural cell morphology and ion channel expression. Since the BET proteins are known to bind acetylated histone tails, these results also suggest a role of epigenetic histone modifications and the "histone code," in regulating dendrite morphology. © 2014 Bagley et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Small G proteins Rac1 and Ras regulate serine/threonine protein phosphatase 5 (PP5)·extracellular signal-regulated kinase (ERK) complexes involved in the feedback regulation of Raf1.

    PubMed

    Mazalouskas, Matthew D; Godoy-Ruiz, Raquel; Weber, David J; Zimmer, Danna B; Honkanen, Richard E; Wadzinski, Brian E

    2014-02-14

    Serine/threonine protein phosphatase 5 (PP5, PPP5C) is known to interact with the chaperonin heat shock protein 90 (HSP90) and is involved in the regulation of multiple cellular signaling cascades that control diverse cellular processes, such as cell growth, differentiation, proliferation, motility, and apoptosis. Here, we identify PP5 in stable complexes with extracellular signal-regulated kinases (ERKs). Studies using mutant proteins reveal that the formation of PP5·ERK1 and PP5·ERK2 complexes partially depends on HSP90 binding to PP5 but does not require PP5 or ERK1/2 activity. However, PP5 and ERK activity regulates the phosphorylation state of Raf1 kinase, an upstream activator of ERK signaling. Whereas expression of constitutively active Rac1 promotes the assembly of PP5·ERK1/2 complexes, acute activation of ERK1/2 fails to influence the phosphatase-kinase interaction. Introduction of oncogenic HRas (HRas(V12)) has no effect on PP5-ERK1 binding but selectively decreases the interaction of PP5 with ERK2, in a manner that is independent of PP5 and MAPK/ERK kinase (MEK) activity, yet paradoxically requires ERK2 activity. Additional studies conducted with oncogenic variants of KRas4B reveal that KRas(L61), but not KRas(V12), also decreases the PP5-ERK2 interaction. The expression of wild type HRas or KRas proteins fails to reduce PP5-ERK2 binding, indicating that the effect is specific to HRas(V12) and KRas(L61) gain-of-function mutations. These findings reveal a novel, differential responsiveness of PP5-ERK1 and PP5-ERK2 interactions to select oncogenic Ras variants and also support a role for PP5·ERK complexes in regulating the feedback phosphorylation of PP5-associated Raf1.

  11. Hemispheric asymmetries and gender influence Rembrandt's portrait orientations.

    PubMed

    Schirillo, J A

    2000-01-01

    For centuries painters have predominantly painted portraits with the model's left-cheek facing the viewer. This has been even more prevalent with females ( approximately 68%) than males ( approximately 56%). Numerous portraits painted by Rembrandt typify this unexplained phenomenon. In a preliminary experiment, subjects judged 24 emotional and social character traits in 20 portraits by Rembrandt. A factor analysis revealed that females with their left cheek exposed were judged to be much less socially appealing than less commonly painted right-cheeked females. Conversely, the more commonly painted right-cheeked males were judged to be more socially appealing than either left-cheeked males or females facing either direction. It is hypothesized that hemispheric asymmetries regulating emotional facial displays of approach and avoidance influenced the side of the face Rembrandt's models exposed due to prevailing social norms. A second experiment had different subjects judge a different collection of 20 portraits by Rembrandt and their mirror images. Mirror-reversed images produced the same pattern of results as their original orientation counterparts. Consequently, hemispheric asymmetries that specify the emotional expression on each side of the face are posited to account for the obtained results.

  12. Autophoretic locomotion from geometric asymmetry.

    PubMed

    Michelin, Sébastien; Lauga, Eric

    2015-02-01

    Among the few methods which have been proposed to create small-scale swimmers, those relying on self-phoretic mechanisms present an interesting design challenge in that chemical gradients are required to generate net propulsion. Building on recent work, we propose that asymmetries in geometry are sufficient to induce chemical gradients and swimming. We illustrate this idea using two different calculations. We first calculate exactly the self-propulsion speed of a system composed of two spheres of unequal sizes but identically chemically homogeneous. We then consider arbitrary, small-amplitude, shape deformations of a chemically homogeneous sphere, and calculate asymptotically the self-propulsion velocity induced by the shape asymmetries. Our results demonstrate how geometric asymmetries can be tuned to induce large locomotion speeds without the need of chemical patterning.

  13. RNA regulators responding to ribosomal protein S15 are frequent in sequence space

    PubMed Central

    Slinger, Betty L.; Meyer, Michelle M.

    2016-01-01

    There are several natural examples of distinct RNA structures that interact with the same ligand to regulate the expression of homologous genes in different organisms. One essential question regarding this phenomenon is whether such RNA regulators are the result of convergent or divergent evolution. Are the RNAs derived from some common ancestor and diverged to the point where we cannot identify the similarity, or have multiple solutions to the same biological problem arisen independently? A key variable in assessing these alternatives is how frequently such regulators arise within sequence space. Ribosomal protein S15 is autogenously regulated via an RNA regulator in many bacterial species; four apparently distinct regulators have been functionally validated in different bacterial phyla. Here, we explore how frequently such regulators arise within a partially randomized sequence population. We find many RNAs that interact specifically with ribosomal protein S15 from Geobacillus kaustophilus with biologically relevant dissociation constants. Furthermore, of the six sequences we characterize, four show regulatory activity in an Escherichia coli reporter assay. Subsequent footprinting and mutagenesis analysis indicates that protein binding proximal to regulatory features such as the Shine–Dalgarno sequence is sufficient to enable regulation, suggesting that regulation in response to S15 is relatively easily acquired. PMID:27580716

  14. Deleted in breast cancer 1 (DBC1) protein regulates hepatic gluconeogenesis.

    PubMed

    Nin, Veronica; Chini, Claudia C S; Escande, Carlos; Capellini, Verena; Chini, Eduardo N

    2014-02-28

    Liver gluconeogenesis is essential to provide energy to glycolytic tissues during fasting periods. However, aberrant up-regulation of this metabolic pathway contributes to the progression of glucose intolerance in individuals with diabetes. Phosphoenolpyruvate carboxykinase (PEPCK) expression plays a critical role in the modulation of gluconeogenesis. Several pathways contribute to the regulation of PEPCK, including the nuclear receptor Rev-erbα and the histone deacetylase SIRT1. Deleted in breast cancer 1 (DBC1) is a nuclear protein that binds to and regulates both Rev-erbα and SIRT1 and, therefore, is a candidate to participate in the regulation of PEPCK. In this work, we provide evidence that DBC1 regulates glucose metabolism and the expression of PEPCK. We show that DBC1 levels decrease early in the fasting state. Also, DBC1 KO mice display higher gluconeogenesis in a normal and a high-fat diet. DBC1 absence leads to an increase in PEPCK mRNA and protein expression. Conversely, overexpression of DBC1 results in a decrease in PEPCK mRNA and protein levels. DBC1 regulates the levels of Rev-erbα, and manipulation of Rev-erbα activity or levels prevents the effect of DBC1 on PEPCK. In addition, Rev-erbα levels decrease in the first hours of fasting. Finally, knockdown of the deacetylase SIRT1 eliminates the effect of DBC1 knockdown on Rev-erbα levels and PEPCK expression, suggesting that the mechanism of PEPCK regulation is, at least in part, dependent on the activity of this enzyme. Our results point to DBC1 as a novel regulator of gluconeogenesis.

  15. Prevalence of arytenoid asymmetry in relation to vocal symptoms.

    PubMed

    Hamdan, A-L; Nassar, J; Ashkar, J; Sibai, A

    2011-03-01

    (1) To assess the prevalence of arytenoid asymmetry during adduction, and (2) to correlate arytenoid asymmetry with vocal symptoms. The medical records and video recordings of 116 patients who presented to the voice clinic were reviewed for the presence of arytenoid asymmetry, as regards sharpening of the aryepiglottic fold angle and altered positioning of the cuneiform and corniculate cartilages. There were 61 males and 55 females, with a mean age of 39 years and a standard deviation of 15 years. Almost one-third had a history of reflux, 25 per cent had a history of smoking and 9.6 per cent had a history of allergy. Hoarseness was the most common symptom, occurring in 42.2 per cent of patients, followed by vocal fatigue (25 per cent) and inability to project the voice. The most common type of asymmetry was corniculate asymmetry, present in 27.6 per cent of the cases and accounting for 74.39 per cent of cases. This was followed by cuneiform cartilage asymmetry, present in 15.5 per cent of cases. There was no correlation between arytenoid asymmetry and vocal symptoms, except for vocal fatigue (p = 0.038). The prevalence of arytenoid asymmetry during adduction is common. The presence of vocal symptoms such as hoarseness, breathiness, inability to project the voice and straining does not generally seem to correlate with the prevalence of arytenoid asymmetry. However, subjects with vocal fatigue are more likely to have cuneiform asymmetry.

  16. Regulator of G Protein Signaling 7 (RGS7) Can Exist in a Homo-oligomeric Form That Is Regulated by Gαo and R7-binding Protein.

    PubMed

    Tayou, Junior; Wang, Qiang; Jang, Geeng-Fu; Pronin, Alexey N; Orlandi, Cesare; Martemyanov, Kirill A; Crabb, John W; Slepak, Vladlen Z

    2016-04-22

    RGS (regulator of G protein signaling) proteins of the R7 subfamily (RGS6, -7, -9, and -11) are highly expressed in neurons where they regulate many physiological processes. R7 RGS proteins contain several distinct domains and form obligatory dimers with the atypical Gβ subunit, Gβ5 They also interact with other proteins such as R7-binding protein, R9-anchoring protein, and the orphan receptors GPR158 and GPR179. These interactions facilitate plasma membrane targeting and stability of R7 proteins and modulate their activity. Here, we investigated RGS7 complexes using in situ chemical cross-linking. We found that in mouse brain and transfected cells cross-linking causes formation of distinct RGS7 complexes. One of the products had the apparent molecular mass of ∼150 kDa on SDS-PAGE and did not contain Gβ5 Mass spectrometry analysis showed no other proteins to be present within the 150-kDa complex in the amount close to stoichiometric with RGS7. This finding suggested that RGS7 could form a homo-oligomer. Indeed, co-immunoprecipitation of differentially tagged RGS7 constructs, with or without chemical cross-linking, demonstrated RGS7 self-association. RGS7-RGS7 interaction required the DEP domain but not the RGS and DHEX domains or the Gβ5 subunit. Using transfected cells and knock-out mice, we demonstrated that R7-binding protein had a strong inhibitory effect on homo-oligomerization of RGS7. In contrast, our data indicated that GPR158 could bind to the RGS7 homo-oligomer without causing its dissociation. Co-expression of constitutively active Gαo prevented the RGS7-RGS7 interaction. These results reveal the existence of RGS protein homo-oligomers and show regulation of their assembly by R7 RGS-binding partners. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Myostatin inhibits eEF2K-eEF2 by regulating AMPK to suppress protein synthesis.

    PubMed

    Deng, Zhao; Luo, Pei; Lai, Wen; Song, Tongxing; Peng, Jian; Wei, Hong-Kui

    2017-12-09

    Growth of skeletal muscle is dependent on the protein synthesis, and the rate of protein synthesis is mainly regulated in the stage of translation initiation and elongation. Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is a negative regulator of protein synthesis. C2C12 myotubes was incubated with 0, 0.01, 0.1, 1, 2, 3 μg/mL myostatin recombinant protein, and then we detected the rates of protein synthesis by the method of SUnSET. We found that high concentrations of myostatin (2 and 3 μg/mL) inhibited protein synthesis by blocking mTOR and eEF2K-eEF2 pathway, while low concentration of myostatin (0.01, 0.1 and 1 μg/mL) regulated eEF2K-eEF2 pathway activity to block protein synthesis without affected mTOR pathway, and myostatin inhibited eEF2K-eEF2 pathway through regulating AMPK pathway to suppress protein synthesis. It provided a new mechanism for myostatin regulating protein synthesis and treating muscle atrophy. Copyright © 2017. Published by Elsevier Inc.

  18. Regulation of thrombosis and vascular function by protein methionine oxidation

    PubMed Central

    Gu, Sean X.; Stevens, Jeff W.

    2015-01-01

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. PMID:25900980

  19. Regulation of thrombosis and vascular function by protein methionine oxidation.

    PubMed

    Gu, Sean X; Stevens, Jeff W; Lentz, Steven R

    2015-06-18

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. © 2015 by The American Society of Hematology.

  20. Conserved salt-bridge competition triggered by phosphorylation regulates the protein interactome

    PubMed Central

    Skinner, John J.; Wang, Sheng; Lee, Jiyoung; Ong, Colin; Sommese, Ruth; Koelmel, Wolfgang; Hirschbeck, Maria; Kisker, Caroline; Lorenz, Kristina; Sosnick, Tobin R.; Rosner, Marsha Rich

    2017-01-01

    Phosphorylation is a major regulator of protein interactions; however, the mechanisms by which regulation occurs are not well understood. Here we identify a salt-bridge competition or “theft” mechanism that enables a phospho-triggered swap of protein partners by Raf Kinase Inhibitory Protein (RKIP). RKIP transitions from inhibiting Raf-1 to inhibiting G-protein–coupled receptor kinase 2 upon phosphorylation, thereby bridging MAP kinase and G-Protein–Coupled Receptor signaling. NMR and crystallography indicate that a phosphoserine, but not a phosphomimetic, competes for a lysine from a preexisting salt bridge, initiating a partial unfolding event and promoting new protein interactions. Structural elements underlying the theft occurred early in evolution and are found in 10% of homo-oligomers and 30% of hetero-oligomers including Bax, Troponin C, and Early Endosome Antigen 1. In contrast to a direct recognition of phosphorylated residues by binding partners, the salt-bridge theft mechanism represents a facile strategy for promoting or disrupting protein interactions using solvent-accessible residues, and it can provide additional specificity at protein interfaces through local unfolding or conformational change. PMID:29208709

  1. Cleavage of transmembrane junction proteins and their role in regulating epithelial homeostasis

    PubMed Central

    Nava, Porfirio; Kamekura, Ryuta; Nusrat, Asma

    2013-01-01

    Epithelial tissues form a selective barrier that separates the external environment from the internal tissue milieu. Single epithelial cells are densely packed and associate via distinct intercellular junctions. Intercellular junction proteins not only control barrier properties of the epithelium but also play an important role in regulating epithelial homeostasis that encompasses cell proliferation, migration, differentiation and regulated shedding. Recent studies have revealed that several proteases target epithelial junction proteins during physiological maturation as well as in pathologic states such as inflammation and cancer. This review discusses mechanisms and biological consequences of transmembrane junction protein cleavage. The influence of junction protein cleavage products on pathogenesis of inflammation and cancer is discussed. PMID:24665393

  2. Regulation of CD93 cell surface expression by protein kinase C isoenzymes.

    PubMed

    Ikewaki, Nobunao; Kulski, Jerzy K; Inoko, Hidetoshi

    2006-01-01

    Human CD93, also known as complement protein 1, q subcomponent, receptor (C1qRp), is selectively expressed by cells with a myeloid lineage, endothelial cells, platelets, and microglia and was originally reported to be involved in the complement protein 1, q subcomponent (C1q)-mediated enhancement of phagocytosis. The intracellular molecular events responsible for the regulation of its expression on the cell surface, however, have not been determined. In this study, the effect of protein kinases in the regulation of CD93 expression on the cell surface of a human monocyte-like cell line (U937), a human NK-like cell line (KHYG-1), and a human umbilical vein endothelial cell line (HUV-EC-C) was investigated using four types of protein kinase inhibitors, the classical protein kinase C (cPKC) inhibitor Go6976, the novel PKC (nPKC) inhibitor Rottlerin, the protein kinase A (PKA) inhibitor H-89 and the protein tyrosine kinase (PTK) inhibitor herbimycin A at their optimum concentrations for 24 hr. CD93 expression was analyzed using flow cytometry and glutaraldehyde-fixed cellular enzyme-linked immunoassay (EIA) techniques utilizing a CD93 monoclonal antibody (mAb), mNI-11, that was originally established in our laboratory as a CD93 detection probe. The nPKC inhibitor Rottlerin strongly down-regulated CD93 expression on the U937 cells in a dose-dependent manner, whereas the other inhibitors had little or no effect. CD93 expression was down-regulated by Go6976, but not by Rottlerin, in the KHYG-1 cells and by both Rottlerin and Go6976 in the HUV-EC-C cells. The PKC stimulator, phorbol myristate acetate (PMA), strongly up-regulated CD93 expression on the cell surface of all three cell-lines and induced interleukin-8 (IL-8) production by the U937 cells and interferon-gamma (IFN-gamma) production by the KHYG-1 cells. In addition, both Go6976 and Rottlerin inhibited the up-regulation of CD93 expression induced by PMA and IL-8 or IFN-gamma production in the respective cell

  3. Submembraneous microtubule cytoskeleton: regulation of microtubule assembly by heterotrimeric G proteins

    PubMed Central

    Roychowdhury, Sukla; Rasenick, Mark. M

    2009-01-01

    Heterotrimeric G proteins participate in signal transduction by transferring signals from cell surface receptors to intracellular effector molecules. G proteins also interact with microtubules and participate in microtubule-dependent centrosome/chromosome movement during cell division, as well as neuronal differentiation. In recent years, significant progress has been made in our understanding of the biochemical/functional interactions between G protein subunits (α and βγ) and microtubules, and the molecular details emerging from these studies suggest that α and βγ subunits of G proteins interact with tubulin/microtubules to regulate assembly/dynamics of microtubules, providing a novel mechanism for hormone or neurotransmitter induced rapid remodeling of cytoskeleton, regulation of mitotic spindle for centrosome/chromosome movements in cell division, and neuronal differentiation where structural plasticity mediated by microtubules is important for appropriate synaptic connections and signal transmission. PMID:18754776

  4. Regulator of G-protein signalling and GoLoco proteins suppress TRPC4 channel function via acting at Gαi/o.

    PubMed

    Jeon, Jae-Pyo; Thakur, Dhananjay P; Tian, Jin-Bin; So, Insuk; Zhu, Michael X

    2016-05-15

    Transient receptor potential canonical 4 (TRPC4) forms non-selective cation channels implicated in the regulation of diverse physiological functions. Previously, TRPC4 was shown to be activated by the Gi/o subgroup of heterotrimeric G-proteins involving Gαi/o, rather than Gβγ, subunits. Because the lifetime and availability of Gα-GTP are regulated by regulators of G-protein signalling (RGS) and Gαi/o-Loco (GoLoco) domain-containing proteins via their GTPase-activating protein (GAP) and guanine-nucleotide-dissociation inhibitor (GDI) functions respectively, we tested how RGS and GoLoco domain proteins affect TRPC4 currents activated via Gi/o-coupled receptors. Using whole-cell patch-clamp recordings, we show that both RGS and GoLoco proteins [RGS4, RGS6, RGS12, RGS14, LGN or activator of G-protein signalling 3 (AGS3)] suppress receptor-mediated TRPC4 activation without causing detectable basal current or altering surface expression of the channel protein. The inhibitory effects are dependent on the GAP and GoLoco domains and facilitated by enhancing membrane targeting of the GoLoco protein AGS3. In addition, RGS, but not GoLoco, proteins accelerate desensitization of receptor-activation evoked TRPC4 currents. The inhibitory effects of RGS and GoLoco domains are additive and are most prominent with RGS12 and RGS14, which contain both RGS and GoLoco domains. Our data support the notion that the Gα, but not Gβγ, arm of the Gi/o signalling is involved in TRPC4 activation and unveil new roles for RGS and GoLoco domain proteins in fine-tuning TRPC4 activities. The versatile and diverse functions of RGS and GoLoco proteins in regulating G-protein signalling may underlie the complexity of receptor-operated TRPC4 activation in various cell types under different conditions. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  5. Quantum asymmetry between time and space

    PubMed Central

    2016-01-01

    An asymmetry exists between time and space in the sense that physical systems inevitably evolve over time, whereas there is no corresponding ubiquitous translation over space. The asymmetry, which is presumed to be elemental, is represented by equations of motion and conservation laws that operate differently over time and space. If, however, the asymmetry was found to be due to deeper causes, this conventional view of time evolution would need reworking. Here we show, using a sum-over-paths formalism, that a violation of time reversal (T) symmetry might be such a cause. If T symmetry is obeyed, then the formalism treats time and space symmetrically such that states of matter are localized both in space and in time. In this case, equations of motion and conservation laws are undefined or inapplicable. However, if T symmetry is violated, then the same sum over paths formalism yields states that are localized in space and distributed without bound over time, creating an asymmetry between time and space. Moreover, the states satisfy an equation of motion (the Schrödinger equation) and conservation laws apply. This suggests that the time–space asymmetry is not elemental as currently presumed, and that T violation may have a deep connection with time evolution. PMID:26997899

  6. Anomalies and asymmetries in quark-gluon matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teryaev, O. V., E-mail: teryaev@theor.jinr.ru

    The manifestations of axial anomaly and related effects in heavy-ion collisions are considered. Special role is played by various asymmetries. The azimuthal correlational asymmetries of neutron pairs at NICA/FAIR energy range may probe the global rotation of strongly interacting matter. The conductivity is related to the angular asymmetries of dilepton pairs. The strong magnetic field generated in heavy-ion collisions leads to the excess of soft dileptons flying predominantly in the scattering plane.

  7. Geometric asymmetry driven Janus micromotors

    NASA Astrophysics Data System (ADS)

    Zhao, Guanjia; Pumera, Martin

    2014-09-01

    The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a ``coconut'' micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors.The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a ``coconut'' micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors. Electronic supplementary information (ESI) available: Additional SEM images, data analysis, Videos S

  8. A ryanodine receptor-dependent Ca(i)(2+) asymmetry at Hensen's node mediates avian lateral identity.

    PubMed

    Garic-Stankovic, Ana; Hernandez, Marcos; Flentke, George R; Zile, Maija H; Smith, Susan M

    2008-10-01

    In mouse, the establishment of left-right (LR) asymmetry requires intracellular calcium (Ca(i)(2+)) enrichment on the left of the node. The use of Ca(i)(2+) asymmetry by other vertebrates, and its origins and relationship to other laterality effectors are largely unknown. Additionally, the architecture of Hensen's node raises doubts as to whether Ca(i)(2+) asymmetry is a broadly conserved mechanism to achieve laterality. We report here that the avian embryo uses a left-side enriched Ca(i)(2+) asymmetry across Hensen's node to govern its lateral identity. Elevated Ca(i)(2+) was first detected along the anterior node at early HH4, and its emergence and left-side enrichment by HH5 required both ryanodine receptor (RyR) activity and extracellular calcium, implicating calcium-induced calcium release (CICR) as the novel source of the Ca(i)(2+). Targeted manipulation of node Ca(i)(2+) randomized heart laterality and affected nodal expression. Bifurcation of the Ca(i)(2+) field by the emerging prechordal plate may permit the independent regulation of LR Ca(i)(2+) levels. To the left of the node, RyR/CICR and H(+)V-ATPase activity sustained elevated Ca(i)(2+). On the right, Ca(i)(2+) levels were actively repressed through the activities of H(+)K(+) ATPase and serotonin-dependent signaling, thus identifying a novel mechanism for the known effects of serotonin on laterality. Vitamin A-deficient quail have a high incidence of situs inversus hearts and had a reversed calcium asymmetry. Thus, Ca(i)(2+) asymmetry across the node represents a more broadly conserved mechanism for laterality among amniotes than had been previously believed.

  9. Protein Phosphatase 2A Isoforms Utilizing Aβ Scaffolds Regulate Differentiation through Control of Akt Protein*

    PubMed Central

    Hwang, Justin H.; Jiang, Tao; Kulkarni, Shreya; Faure, Nathalie; Schaffhausen, Brian S.

    2013-01-01

    Protein phosphatase 2A (PP2A) regulates almost all cell signaling pathways. It consists of a scaffolding A subunit to which a catalytic C subunit and one of many regulatory B subunits bind. Of the more than 80 PP2A isoforms, 10% use Aβ as a scaffold. This study demonstrates the isoform-specific function of the A scaffold subunits. Polyomaviruses have shown the importance of phosphotyrosine, PI3K, and p53 in transformation. Comparisons of polyoma and SV40 small T antigens implicate Aβ in the control of differentiation. Knockdown of Aβ enhanced differentiation. Akt signaling regulated differentiation; its activation or inhibition promoted or blocked it, respectively. Aβ bound Akt. Enhancement of PP2A Aβ/Akt interaction by polyoma small T antigen increased turnover of Akt Ser-473 phosphorylation. Conversely, knockdown of Aβ promoted Akt activity and reduced turnover of phosphate at Ser-473 of Akt. These data provide new insight into the regulation of Akt, a protein of extreme importance in cancer. Furthermore, our results suggest that the role for Aβ in differentiation and perhaps tumor suppression may lie partly in its ability to negatively regulate Akt. PMID:24052256

  10. Polarity Proteins as Regulators of Cell Junction Complexes: Implications for Breast Cancer

    PubMed Central

    Bazzoun, Dana; Lelièvre, Sophie; Talhouk, Rabih

    2013-01-01

    The epithelium of multicellular organisms possesses a well-defined architecture, referred to as polarity that coordinates the regulation of essential cell features. Polarity proteins are intimately linked to the protein complexes that make the tight, adherens and gap junctions; they contribute to the proper localization and assembly of these cell-cell junctions within cells and consequently to functional tissue organization. The establishment of cell-cell junctions and polarity are both implicated in the regulation of epithelial modifications in normal and cancer situations. Uncovering the mechanisms through which cell-cell junctions and epithelial polarization are established and how their interaction with the microenvironment direct cell and tissue organization has opened new venues for the development of cancer therapies. In this review, we focus on the breast epithelium to highlight how polarity and cell-cell junction proteins interact together in normal and cancerous contexts to regulate major cellular mechanisms such as migration. The impact of these proteins on epigenetic mechanisms responsible for resetting cells towards oncogenesis is discussed in light of increasing evidence that tissue polarity modulates chromatin function. Finally, we give an overview of recent breast cancer therapies that target proteins involved in cell-cell junctions. PMID:23458609

  11. Introduction to provocative questions in left-right asymmetry.

    PubMed

    Levin, Michael; Klar, Amar J S; Ramsdell, Ann F

    2016-12-19

    Left-right asymmetry is a phenomenon that has a broad appeal-to anatomists, developmental biologists and evolutionary biologists-because it is a morphological feature of organisms that spans scales of size and levels of organization, from unicellular protists, to vertebrate organs, to social behaviour. Here, we highlight a number of important aspects of asymmetry that encompass several areas of biology-cell-level, physiological, genetic, anatomical and evolutionary components-and that are based on research conducted in diverse model systems, ranging from single cells to invertebrates to human developmental disorders. Together, the contributions in this issue reveal a heretofore-unsuspected variety in asymmetry mechanisms, including ancient chirality elements that could underlie a much more universal basis to asymmetry development, and provide much fodder for thought with far reaching implications in biomedical, developmental, evolutionary and synthetic biology. The new emerging theme of binary cell-fate choice, promoted by asymmetric cell division of a deterministic cell, has focused on investigating asymmetry mechanisms functioning at the single cell level. These include cytoskeleton and DNA chain asymmetry-mechanisms that are amplified and coordinated with those employed for the determination of the anterior-posterior and dorsal-ventral axes of the embryo.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Author(s).

  12. Autogenous Regulation of Splicing of the Transcript of a Yeast Ribosomal Protein Gene

    NASA Astrophysics Data System (ADS)

    Dabeva, Mariana D.; Post-Beittenmiller, Martha A.; Warner, Jonathan R.

    1986-08-01

    The gene for a yeast ribosomal protein, RPL32, contains a single intron. The product of this gene appears to participate in feedback control of the splicing of the intron from the transcript. This autogenous regulation of splicing provides a striking analogy to the autogenous regulation of translation of ribosomal proteins in Escherichia coli.

  13. COP1, a negative regulator of photomorphogenesis, positively regulates plant disease resistance via double-stranded RNA binding proteins

    PubMed Central

    Lim, Gah-Hyun; Zhu, Shifeng; Clavel, Marion; Yu, Keshun; Navarre, Duroy; Kachroo, Aardra; Deragon, Jean-Marc

    2018-01-01

    The E3 ubiquitin ligase COP1 (Constitutive Photomorphogenesis 1) is a well known component of the light-mediated plant development that acts as a repressor of photomorphogenesis. Here we show that COP1 positively regulates defense against turnip crinkle virus (TCV) and avrRPM1 bacteria by contributing to stability of resistance (R) protein HRT and RPM1, respectively. HRT and RPM1 levels and thereby pathogen resistance is significantly reduced in the cop1 mutant background. Notably, the levels of at least two double-stranded RNA binding (DRB) proteins DRB1 and DRB4 are reduced in the cop1 mutant background suggesting that COP1 affects HRT stability via its effect on the DRB proteins. Indeed, a mutation in either drb1 or drb4 resulted in degradation of HRT. In contrast to COP1, a multi-subunit E3 ligase encoded by anaphase-promoting complex (APC) 10 negatively regulates DRB4 and TCV resistance but had no effect on DRB1 levels. We propose that COP1-mediated positive regulation of HRT is dependent on a balance between COP1 and negative regulators that target DRB1 and DRB4. PMID:29513740

  14. EML proteins in microtubule regulation and human disease.

    PubMed

    Fry, Andrew M; O'Regan, Laura; Montgomery, Jessica; Adib, Rozita; Bayliss, Richard

    2016-10-15

    The EMLs are a conserved family of microtubule-associated proteins (MAPs). The founding member was discovered in sea urchins as a 77-kDa polypeptide that co-purified with microtubules. This protein, termed EMAP for echinoderm MAP, was the major non-tubulin component present in purified microtubule preparations made from unfertilized sea urchin eggs [J. Cell Sci. (1993) 104: , 445-450; J. Cell Sci. (1987) 87: (Pt 1), 71-84]. Orthologues of EMAP were subsequently identified in other echinoderms, such as starfish and sand dollar, and then in more distant eukaryotes, including flies, worms and vertebrates, where the name of ELP or EML (both for EMAP-like protein) has been adopted [BMC Dev. Biol. (2008) 8: , 110; Dev. Genes Evol. (2000) 210: , 2-10]. The common property of these proteins is their ability to decorate microtubules. However, whether they are associated with particular microtubule populations or exercise specific functions in different microtubule-dependent processes remains unknown. Furthermore, although there is limited evidence that they regulate microtubule dynamics, the biochemical mechanisms of their molecular activity have yet to be explored. Nevertheless, interest in these proteins has grown substantially because of the identification of EML mutations in neuronal disorders and oncogenic fusions in human cancers. Here, we summarize our current knowledge of the expression, localization and structure of what is proving to be an interesting and important class of MAPs. We also speculate about their function in microtubule regulation and highlight how the studies of EMLs in human diseases may open up novel avenues for patient therapy. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  15. Proteomic and functional analyses reveal MAPK1 regulates milk protein synthesis.

    PubMed

    Lu, Li-Min; Li, Qing-Zhang; Huang, Jian-Guo; Gao, Xue-Jun

    2012-12-27

    L-Lysine (L-Lys) is an essential amino acid that plays fundamental roles in protein synthesis. Many nuclear phosphorylated proteins such as Stat5 and mTOR regulate milk protein synthesis. However, the details of milk protein synthesis control at the transcript and translational levels are not well known. In this current study, a two-dimensional gel electrophoresis (2-DE)/MS-based proteomic technology was used to identify phosphoproteins responsible for milk protein synthesis in dairy cow mammary epithelial cells (DCMECs). The effect of L-Lys on DCMECs was analyzed by CASY technology and reversed phase high performance liquid chromatography (RP-HPLC). The results showed that cell proliferation ability and β-casein expression were enhanced in DCMECs treated with L-Lys. By phosphoproteomics analysis, six proteins, including MAPK1, were identified up-expressed in DCMECs treated with 1.2 mM L-Lys for 24 h, and were verified by quantitative real-time PCR (qRT-PCR) and western blot. Overexpression and siRNA inhibition of MAPK1 experiments showed that MAPK1 upregulated milk protein synthesis through Stat5 and mTOR pathway. These findings that MAPK1 involves in regulation of milk synthesis shed new insights for understanding the mechanisms of milk protein synthesis.

  16. Homeodomain-Interacting Protein Kinase (HPK-1) regulates stress responses and ageing in C. elegans.

    PubMed

    Berber, Slavica; Wood, Mallory; Llamosas, Estelle; Thaivalappil, Priya; Lee, Karen; Liao, Bing Mana; Chew, Yee Lian; Rhodes, Aaron; Yucel, Duygu; Crossley, Merlin; Nicholas, Hannah R

    2016-01-21

    Proteins of the Homeodomain-Interacting Protein Kinase (HIPK) family regulate an array of processes in mammalian systems, such as the DNA damage response, cellular proliferation and apoptosis. The nematode Caenorhabditis elegans has a single HIPK homologue called HPK-1. Previous studies have implicated HPK-1 in longevity control and suggested that this protein may be regulated in a stress-dependent manner. Here we set out to expand these observations by investigating the role of HPK-1 in longevity and in the response to heat and oxidative stress. We find that levels of HPK-1 are regulated by heat stress, and that HPK-1 contributes to survival following heat or oxidative stress. Additionally, we show that HPK-1 is required for normal longevity, with loss of HPK-1 function leading to a faster decline of physiological processes that reflect premature ageing. Through microarray analysis, we have found that HPK-1-regulated genes include those encoding proteins that serve important functions in stress responses such as Phase I and Phase II detoxification enzymes. Consistent with a role in longevity assurance, HPK-1 also regulates the expression of age-regulated genes. Lastly, we show that HPK-1 functions in the same pathway as DAF-16 to regulate longevity and reveal a new role for HPK-1 in development.

  17. Three-dimensional assessment of facial asymmetry: A systematic review.

    PubMed

    Akhil, Gopi; Senthil Kumar, Kullampalayam Palanisamy; Raja, Subramani; Janardhanan, Kumaresan

    2015-08-01

    For patients with facial asymmetry, complete and precise diagnosis, and surgical treatments to correct the underlying cause of the asymmetry are significant. Conventional diagnostic radiographs (submento-vertex projections, posteroanterior radiography) have limitations in asymmetry diagnosis due to two-dimensional assessments of three-dimensional (3D) images. The advent of 3D images has greatly reduced the magnification and projection errors that are common in conventional radiographs making it as a precise diagnostic aid for assessment of facial asymmetry. Thus, this article attempts to review the newly introduced 3D tools in the diagnosis of more complex facial asymmetries.

  18. Entanglement asymmetry for boosted black branes and the bound

    NASA Astrophysics Data System (ADS)

    Mishra, Rohit; Singh, Harvendra

    2017-06-01

    We study the effects of asymmetry in the entanglement thermodynamics of CFT subsystems. It is found that “boosted” Dp-brane backgrounds give rise to the first law of the entanglement thermodynamics where the CFT pressure asymmetry plays a decisive role in the entanglement. Two different strip like subsystems, one parallel to the boost and the other perpendicular, are studied in the perturbative regime Tthermal ≪ TE. We mainly seek to quantify this entanglement asymmetry as a ratio of the first-order entanglement entropies of the excitations. We discuss the AdS-wave backgrounds at zero temperature having maximum asymmetry from where a bound on entanglement asymmetry is obtained. The entanglement asymmetry reduces as we switch on finite temperature in the CFT while it is maximum at zero temperature.

  19. Replication-associated mutational asymmetry in the human genome.

    PubMed

    Chen, Chun-Long; Duquenne, Lauranne; Audit, Benjamin; Guilbaud, Guillaume; Rappailles, Aurélien; Baker, Antoine; Huvet, Maxime; d'Aubenton-Carafa, Yves; Hyrien, Olivier; Arneodo, Alain; Thermes, Claude

    2011-08-01

    During evolution, mutations occur at rates that can differ between the two DNA strands. In the human genome, nucleotide substitutions occur at different rates on the transcribed and non-transcribed strands that may result from transcription-coupled repair. These mutational asymmetries generate transcription-associated compositional skews. To date, the existence of such asymmetries associated with replication has not yet been established. Here, we compute the nucleotide substitution matrices around replication initiation zones identified as sharp peaks in replication timing profiles and associated with abrupt jumps in the compositional skew profile. We show that the substitution matrices computed in these regions fully explain the jumps in the compositional skew profile when crossing initiation zones. In intergenic regions, we observe mutational asymmetries measured as differences between complementary substitution rates; their sign changes when crossing initiation zones. These mutational asymmetries are unlikely to result from cryptic transcription but can be explained by a model based on replication errors and strand-biased repair. In transcribed regions, mutational asymmetries associated with replication superimpose on the previously described mutational asymmetries associated with transcription. We separate the substitution asymmetries associated with both mechanisms, which allows us to determine for the first time in eukaryotes, the mutational asymmetries associated with replication and to reevaluate those associated with transcription. Replication-associated mutational asymmetry may result from unequal rates of complementary base misincorporation by the DNA polymerases coupled with DNA mismatch repair (MMR) acting with different efficiencies on the leading and lagging strands. Replication, acting in germ line cells during long evolutionary times, contributed equally with transcription to produce the present abrupt jumps in the compositional skew. These results

  20. Regional facial asymmetries and attractiveness of the face.

    PubMed

    Kaipainen, Anu E; Sieber, Kevin R; Nada, Rania M; Maal, Thomas J; Katsaros, Christos; Fudalej, Piotr S

    2016-12-01

    Facial attractiveness is an important factor in our social interactions. It is still not entirely clear which factors influence the attractiveness of a face and facial asymmetry appears to play a certain role. The aim of the present study was to assess the association between facial attractiveness and regional facial asymmetries evaluated on three-dimensional (3D) images. 3D facial images of 59 (23 male, 36 female) young adult patients (age 16-25 years) before orthodontic treatment were evaluated for asymmetry. The same 3D images were presented to 12 lay judges who rated the attractiveness of each subject on a 100mm visual analogue scale. Reliability of the method was assessed with Bland-Altman plots and Cronbach's alpha coefficient. All subjects showed a certain amount of asymmetry in all regions of the face; most asymmetry was found in the chin and cheek areas and less in the lip, nose and forehead areas. No statistically significant differences in regional facial asymmetries were found between male and female subjects (P > 0.05). Regression analyses demonstrated that the judgement of facial attractiveness was not influenced by absolute regional facial asymmetries when gender, facial width-to-height ratio and type of malocclusion were controlled (P > 0.05). A potential limitation of the study could be that other biologic and cultural factors influencing the perception of facial attractiveness were not controlled for. A small amount of asymmetry was present in all subjects assessed in this study, and asymmetry of this magnitude may not influence the assessment of facial attractiveness. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Measurement of parity-violating asymmetry in electron-deuteron inelastic scattering

    DOE PAGES

    Wang, D.; Pan, K.; Subedi, R.; ...

    2015-04-01

    The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were publishedmore » earlier, but are presented here in more detail.« less

  2. Mercury exposure may influence fluctuating asymmetry in waterbirds

    USGS Publications Warehouse

    Herring, Garth; Eagles-Smith, Collin A.; Ackerman, Joshua T.

    2017-01-01

    Variation in avian bilateral symmetry can be an indicator of developmental instability in response to a variety of stressors, including environmental contaminants. The authors used composite measures of fluctuating asymmetry to examine the influence of mercury concentrations in 2 tissues on fluctuating asymmetry within 4 waterbird species. Fluctuating asymmetry increased with mercury concentrations in whole blood and breast feathers of Forster's terns (Sterna forsteri), a species with elevated mercury concentrations. Specifically, fluctuating asymmetry in rectrix feather 1 was the most strongly correlated structural variable of those tested (wing chord, tarsus, primary feather 10, rectrix feather 6) with mercury concentrations in Forster's terns. However, for American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), and Caspian terns (Hydroprogne caspia), the authors found no relationship between fluctuating asymmetry and either whole-blood or breast feather mercury concentrations, even though these species had moderate to elevated mercury exposure. The results indicate that mercury contamination may act as an environmental stressor during development and feather growth and contribute to fluctuating asymmetry of some species of highly contaminated waterbirds.

  3. Asymmetry of the Brain: Development and Implications.

    PubMed

    Duboc, Véronique; Dufourcq, Pascale; Blader, Patrick; Roussigné, Myriam

    2015-01-01

    Although the left and right hemispheres of our brains develop with a high degree of symmetry at both the anatomical and functional levels, it has become clear that subtle structural differences exist between the two sides and that each is dominant in processing specific cognitive tasks. As the result of evolutionary conservation or convergence, lateralization of the brain is found in both vertebrates and invertebrates, suggesting that it provides significant fitness for animal life. This widespread feature of hemispheric specialization has allowed the emergence of model systems to study its development and, in some cases, to link anatomical asymmetries to brain function and behavior. Here, we present some of what is known about brain asymmetry in humans and model organisms as well as what is known about the impact of environmental and genetic factors on brain asymmetry development. We specifically highlight the progress made in understanding the development of epithalamic asymmetries in zebrafish and how this model provides an exciting opportunity to address brain asymmetry at different levels of complexity.

  4. Roles of Transcriptional and Translational Control Mechanisms in Regulation of Ribosomal Protein Synthesis in Escherichia coli.

    PubMed

    Burgos, Hector L; O'Connor, Kevin; Sanchez-Vazquez, Patricia; Gourse, Richard L

    2017-11-01

    Bacterial ribosome biogenesis is tightly regulated to match nutritional conditions and to prevent formation of defective ribosomal particles. In Escherichia coli , most ribosomal protein (r-protein) synthesis is coordinated with rRNA synthesis by a translational feedback mechanism: when r-proteins exceed rRNAs, specific r-proteins bind to their own mRNAs and inhibit expression of the operon. It was recently discovered that the second messenger nucleotide guanosine tetra and pentaphosphate (ppGpp), which directly regulates rRNA promoters, is also capable of regulating many r-protein promoters. To examine the relative contributions of the translational and transcriptional control mechanisms to the regulation of r-protein synthesis, we devised a reporter system that enabled us to genetically separate the cis -acting sequences responsible for the two mechanisms and to quantify their relative contributions to regulation under the same conditions. We show that the synthesis of r-proteins from the S20 and S10 operons is regulated by ppGpp following shifts in nutritional conditions, but most of the effect of ppGpp required the 5' region of the r-protein mRNA containing the target site for translational feedback regulation and not the promoter. These results suggest that most regulation of the S20 and S10 operons by ppGpp following nutritional shifts is indirect and occurs in response to changes in rRNA synthesis. In contrast, we found that the promoters for the S20 operon were regulated during outgrowth, likely in response to increasing nucleoside triphosphate (NTP) levels. Thus, r-protein synthesis is dynamic, with different mechanisms acting at different times. IMPORTANCE Bacterial cells have evolved complex and seemingly redundant strategies to regulate many high-energy-consuming processes. In E. coli , synthesis of ribosomal components is tightly regulated with respect to nutritional conditions by mechanisms that act at both the transcription and translation steps. In

  5. Zebrafish Meis functions to stabilize Pbx proteins and regulate hindbrain patterning.

    PubMed

    Waskiewicz, A J; Rikhof, H A; Hernandez, R E; Moens, C B

    2001-11-01

    Homeodomain-containing Hox proteins regulate segmental identity in Drosophila in concert with two partners known as Extradenticle (Exd) and Homothorax (Hth). These partners are themselves DNA-binding, homeodomain proteins, and probably function by revealing the intrinsic specificity of Hox proteins. Vertebrate orthologs of Exd and Hth, known as Pbx and Meis (named for a myeloid ecotropic leukemia virus integration site), respectively, are encoded by multigene families and are present in multimeric complexes together with vertebrate Hox proteins. Previous results have demonstrated that the zygotically encoded Pbx4/Lazarus (Lzr) protein is required for segmentation of the zebrafish hindbrain and proper expression and function of Hox genes. We demonstrate that Meis functions in the same pathway as Pbx in zebrafish hindbrain development, as expression of a dominant-negative mutant Meis results in phenotypes that are remarkably similar to that of lzr mutants. Surprisingly, expression of Meis protein partially rescues the lzr(-) phenotype. Lzr protein levels are increased in embryos overexpressing Meis and are reduced for lzr mutants that cannot bind to Meis. This implies a mechanism whereby Meis rescues lzr mutants by stabilizing maternally encoded Lzr. Our results define two functions of Meis during zebrafish hindbrain segmentation: that of a DNA-binding partner of Pbx proteins, and that of a post-transcriptional regulator of Pbx protein levels.

  6. Regulation of Ubiquitination-Mediated Protein Degradation by Survival Kinases in Cancer

    PubMed Central

    Yamaguchi, Hirohito; Hsu, Jennifer L.; Hung, Mien-Chie

    2011-01-01

    The ubiquitin–proteasome system is essential for multiple physiological processes via selective degradation of target proteins and has been shown to plays a critical role in human cancer. Activation of oncogenic factors and inhibition of tumor suppressors have been shown to be essential for cancer development, and protein ubiquitination has been linked to the regulation of oncogenic factors and tumor suppressors. Three kinases, AKT, extracellular signal-regulated kinase, and IκB kinase, we refer to as oncokinases, are activated in multiple human cancers. We and others have identified several key downstream targets that are commonly regulated by these oncokinases, some of which are regulated directly or indirectly via ubiquitin-mediated proteasome degradation, including FOXO3, β-catenin, myeloid cell leukemia-1, and Snail. In this review, we summarize these findings from our and other groups and discuss potential future studies and applications in the clinic. PMID:22649777

  7. Fluctuating asymmetry and stress in a medieval Nubian population.

    PubMed

    Deleon, Valerie B

    2007-04-01

    Fluctuating asymmetry is commonly used as a bioindicator of developmental stress. This study addresses asymmetry under nutritional/systemic stress in the human craniofacial skeleton and its utility as an indicator of developmental instability. Crania from the diachronic Christian cemeteries at Kulubnarti (Sudanese Nubia) were chosen as a model for nutrition/systemic stress. Previous studies indicate that individuals from the Early Christian cemetery were subjected to greater developmental stress when compared with individuals from the Late Christian cemetery. Therefore, crania from the Early Christian cemetery should display a greater magnitude of fluctuating asymmetry than crania from the Late Christian cemetery. Thirty adult crania of comparable age and sex were selected from each population. Landmark coordinates were digitized in two separate trials and averaged to minimize error. Euclidean distance matrix analysis (EDMA) was used to measure and compare the magnitude of fluctuating asymmetry in each sample. Results indicate that crania from the Early Christian cemetery display greater amounts of fluctuating asymmetry than those from the Late Christian cemetery, as predicted. The degree of fluctuating asymmetry for each linear distance is highly correlated between the cemeteries, suggesting that all humans may share common patterns of fluctuating asymmetry in the skull. In contrast, there is little correlation between magnitude of fluctuating asymmetry and length of linear distance, between-subject variability, or measurement error. These results support the hypothesis that poor nutrition/systemic stress increases developmental instability in the human skull and that increased fluctuating asymmetry constitutes morphological evidence of this stress.

  8. RNA Binding Protein-Mediated Post-Transcriptional Gene Regulation in Medulloblastoma

    PubMed Central

    Bish, Rebecca; Vogel, Christine

    2014-01-01

    Medulloblastoma, the most common malignant brain tumor in children, is a disease whose mechanisms are now beginning to be uncovered by high-throughput studies of somatic mutations, mRNA expression patterns, and epigenetic profiles of patient tumors. One emerging theme from studies that sequenced the tumor genomes of large cohorts of medulloblastoma patients is frequent mutation of RNA binding proteins. Proteins which bind multiple RNA targets can act as master regulators of gene expression at the post-transcriptional level to co-ordinate cellular processes and alter the phenotype of the cell. Identification of the target genes of RNA binding proteins may highlight essential pathways of medulloblastomagenesis that cannot be detected by study of transcriptomics alone. Furthermore, a subset of RNA binding proteins are attractive drug targets. For example, compounds that are under development as anti-viral targets due to their ability to inhibit RNA helicases could also be tested in novel approaches to medulloblastoma therapy by targeting key RNA binding proteins. In this review, we discuss a number of RNA binding proteins, including Musashi1 (MSI1), DEAD (Asp-Glu-Ala-Asp) box helicase 3 X-linked (DDX3X), DDX31, and cell division cycle and apoptosis regulator 1 (CCAR1), which play potentially critical roles in the growth and/or maintenance of medulloblastoma. PMID:24608801

  9. Transverse single-spin asymmetries: Challenges and recent progress

    DOE PAGES

    Metz, Andreas; Pitonyak, Daniel; Schafer, Andreas; ...

    2014-11-25

    In this study, transverse single-spin asymmetries are among the most intriguing observables in hadronic physics. Though such asymmetries were already measured for the first time about four decades ago, their origin is still under debate. Here we consider transverse single-spin asymmetries in semi-inclusive lepton–nucleon scattering, in nucleon–nucleon scattering, and in inclusive lepton–nucleon scattering. It is argued that, according to recent work, the single-spin asymmetries for those three processes may be simultaneously described in perturbative QCD, where the re-scattering of the active partons plays a crucial role. A comparison of single-spin asymmetries in different reactions can also shed light on themore » universality of transverse momentum dependent parton correlation functions. In particular, we discuss what existing data may tell us about the predicted process dependence of the Sivers function.« less

  10. CHIP Regulates Osteoclast Formation through Promoting TRAF6 Protein Degradation

    PubMed Central

    Li, Shan; Shu, Bing; Zhang, Yanquan; Li, Jia; Guo, Junwei; Wang, Yinyin; Ren, Fangli; Xiao, Guozhi; Chang, Zhijie; Chen, Di

    2014-01-01

    Objective Carboxyl terminus of Hsp70-interacting protein (CHIP or STUB1) is an E3 ligase and regulates the stability of several proteins which are involved in tumor growth and metastasis. However, the role of CHIP in bone growth and bone remodeling in vivo has not been reported. The objective of this study is to investigate the role and mechanism of CHIP in regulation of bone mass and bone remodeling. Methods The bone phenotype of Chip−/− mice was examined by histology, histomorphometry and micro-CT analyses. The regulatory mechanism of CHIP on the degradation of TRAF6 and the inhibition of NF-κB signaling was examined by immunoprecipitation (IP), western blotting and luciferase reporter assays. Results In this study, we found that deletion of the Chip gene leads to osteopenic phenotype and increased osteoclast formation. We further found that TRAF6, as a novel substrate of CHIP, is up-regulated in Chip−/− osteoclasts. TRAF6 is critical for RANKL-induced osteoclastogenesis. TRAF6 is an adaptor protein which functions as an E3 ligase to regulate the activation of TAK1 and the I-κB kinase (IKK) and is a key regulator of NF-κB signaling. CHIP interacts with TRAF6 to promote TRAF6 ubiquitination and proteasome degradation. CHIP inhibits p65 nuclear translocation, leading to the repression of the TRAF6-mediated NF-κB transcription. Conclusion CHIP inhibits NF-κB signaling via promoting TRAF6 degradation and plays an important role in osteoclastogenesis and bone remodeling, suggesting that it may be a novel therapeutic target for the treatment of bone loss associated diseases. PMID:24578159

  11. Effects of longitudinal asymmetry in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Raniwala, Rashmi; Raniwala, Sudhir; Loizides, Constantin

    2018-02-01

    In collisions of identical nuclei at a given impact parameter, the number of nucleons participating in the overlap region of each nucleus can be unequal due to nuclear density fluctuations. The asymmetry due to the unequal number of participating nucleons, referred to as longitudinal asymmetry, causes a shift in the center-of-mass rapidity of the participant zone. The information of the event asymmetry allows us to isolate and study the effect of longitudinal asymmetry on rapidity distribution of final state particles. In a Monte Carlo Glauber model the average rapidity shift is found to be almost linearly related to the asymmetry. Using toy models, as well as Monte Carlo data for Pb-Pb collisions at 2.76 TeV generated with hijing, two different versions of ampt and dpmjet models, we demonstrate that the effect of asymmetry on final state rapidity distribution can be quantitatively related to the average rapidity shift via a third-order polynomial with a dominantly linear term. The coefficients of the polynomial are proportional to the rapidity shift with the dependence being sensitive to the details of the rapidity distribution. Experimental estimates of the spectator asymmetry through the measurement of spectator nucleons in a zero-degree calorimeter may hence be used to further constrain the initial conditions in ultra-relativistic heavy-ion collisions.

  12. Cysteine regulation of protein function--as exemplified by NMDA-receptor modulation.

    PubMed

    Lipton, Stuart A; Choi, Yun-Beom; Takahashi, Hiroto; Zhang, Dongxian; Li, Weizhong; Godzik, Adam; Bankston, Laurie A

    2002-09-01

    Until recently cysteine residues, especially those located extracellularly, were thought to be important for metal coordination, catalysis and protein structure by forming disulfide bonds - but they were not thought to regulate protein function. However, this is not the case. Crucial cysteine residues can be involved in modulation of protein activity and signaling events via other reactions of their thiol (sulfhydryl; -SH) groups. These reactions can take several forms, such as redox events (chemical reduction or oxidation), chelation of transition metals (chiefly Zn(2+), Mn(2+) and Cu(2+)) or S-nitrosylation [the catalyzed transfer of a nitric oxide (NO) group to a thiol group]. In several cases, these disparate reactions can compete with one another for the same thiol group on a single cysteine residue, forming a molecular switch composed of a latticework of possible redox, NO or Zn(2+) modifications to control protein function. Thiol-mediated regulation of protein function can also involve reactions of cysteine residues that affect ligand binding allosterically. This article reviews the basis for these molecular cysteine switches, drawing on the NMDA receptor as an exemplary protein, and proposes a molecular model for the action of S-nitrosylation based on recently derived crystal structures.

  13. Regulation of protein synthesis by amino acids in muscle of neonates

    PubMed Central

    Suryawan, Agus; Davis, Teresa A.

    2011-01-01

    The marked increase in skeletal muscle mass during the neonatal period is largely due to a high rate of postprandial protein synthesis that is modulated by an enhanced sensitivity to insulin and amino acids. The amino acid signaling pathway leading to the stimulation of protein synthesis has not been fully elucidated. Among the amino acids, leucine is considered to be a principal anabolic agent that regulates protein synthesis. mTORC1, which controls protein synthesis, has been implicated as a target for leucine. Until recently, there have been few studies exploring the role of amino acids in enhancing muscle protein synthesis in vivo. In this review, we discuss amino acid-induced protein synthesis in muscle in the neonate, focusing on current knowledge of the role of amino acids in the activation of mTORC1 leading to mRNA translation. The role of the amino acid transporters, SNAT2, LAT1, and PAT, in the modulation of mTORC1 activation and the role of amino acids in the activation of putative regulators of mTORC1, i.e., raptor, Rheb, MAP4K3, Vps34, and Rag GTPases, are discussed. PMID:21196241

  14. Nuclear localization signal regulates porcine circovirus type 2 capsid protein nuclear export through phosphorylation.

    PubMed

    Hou, Qiang; Hou, Shaohua; Chen, Qing; Jia, Hong; Xin, Ting; Jiang, Yitong; Guo, Xiaoyu; Zhu, Hongfei

    2018-02-15

    The open reading frame 2 (ORF2) of Porcine circovirus type 2 (PCV2) encodes the major Capsid (Cap) protein, which self-assembles into virus-like particle (VLP) of similar morphology to the PCV2 virion and accumulates in the nucleus through the N-terminal arginine-rich nuclear localization signal (NLS). In this study, PCV2 Cap protein and its derivates were expressed via the baculovirus expression system, and the cellular localization of the recombinant proteins were investigated using anti-Cap mAb by imaging flow cytometry. Analysis of subcellular localization of Cap protein and its variants demonstrated that NLS mediated Cap protein nuclear export as well as nuclear import, and a phosphorylation site (S17) was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the NLS domain to regulate Cap protein nuclear export. Phosphorylation of NLS regulating the PCV2 Cap protein nuclear export was also demonstrated in PK15 cells by fluorescence microscopy. Moreover, the influence of Rep and Rep' protein on Cap protein subcellular localization was investigated in PK15 cells. Phosphorylation of NLS regulating Cap protein nuclear export provides more detailed knowledge of the PCV2 viral life cycle. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. EEG asymmetry at 10 months of age: are temperament trait predictors different for boys and girls?

    PubMed

    Gartstein, Maria A; Bell, Martha Ann; Calkins, Susan D

    2014-09-01

    Frontal EEG asymmetry patterns represent markers of individual differences in emotion reactivity and regulation, with right hemisphere activation linked with withdrawal behaviors/emotions (e.g., fear), and activation of the left hemisphere associated with approach (e.g., joy, anger). In the present study, gender was examined as a potential moderator of links between infant temperament at 5 months, and frontal EEG asymmetry patterns recorded during an Arm Restraint procedure at 10 months of age. Positive Affectivity/Surgency (PAS), Negative Emotionality (NE), and Orienting/Regulatory Capacity (ORC) were considered as predictors, with PAS emerging as significant for males; higher levels translating into greater right-frontal activation later in infancy. For females, ORC accounted for a significant portion of the frontal asymmetry scores, with higher ORC being associated with greater right-frontal activation. The moderating influence of gender noted in this study is discussed in the context of implications for discrepancies in rates/symptoms of psychopathology later in childhood. © 2014 Wiley Periodicals, Inc.

  16. Genes for Drosophila small heat shock proteins are regulated differently by ecdysterone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amin, J.; Voellmy, R.; Mestril, R.

    Genes for small heat shock proteins (hsp27 to hsp22) are activated in late third-instar larvae of Drosophila melanogaster in the absence of heat stress. This regulation has been stimulated in cultured Drosophila cells in which the genes are activated by the addition of ecdysterone. Sequence elements (HERE) involved in ecdysterone regulation of the hsp27 and hsp23 genes have been defined by transfection studies and have recently been identified as binding sites for ecdysterone receptor. The authors report here that the shp27 and hsp23 genes are regulated differently by ecdysterone. The hsp27 gene is activated rapidly by ecdysterone, even in themore » absence of protein synthesis. In contrast, high-level expression of the hsp23 gene begins only after a lag of about 6 h, is dependent on the continuous presence of ecdysterone, and is sensitive to low concentrations of protein synthesis inhibitors. Transfection experiments with reported constructs show that this difference in regulation is at the transcriptional level. Synthetic hsp27 or hsp23 HERE sequences confer hsp27- or hsp23-type ecdysterone regulation on a basal promoter. These findings indicate that the hsp27 gene is primary, and the hsp23 gene is mainly a secondary, hormone-responsive gene. Ecdysterone receptor is implied to play a role in the regulation of both genes.« less

  17. The Caenorhabditis elegans gene ham-1 regulates daughter cell size asymmetry primarily in divisions that produce a small anterior daughter cell

    PubMed Central

    Kovacevic, Ismar; Bao, Zhirong

    2018-01-01

    C. elegans cell divisions that produce an apoptotic daughter cell exhibit Daughter Cell Size Asymmetry (DCSA), producing a larger surviving daughter cell and a smaller daughter cell fated to die. Genetic screens for mutants with defects in apoptosis identified several genes that are also required for the ability of these divisions to produce daughter cells that differ in size. One of these genes, ham-1, encodes a putative transcription factor that regulates a subset of the asymmetric cell divisions that produce an apoptotic daughter cell. In a survey of C. elegans divisions, we found that ham-1 mutations affect primarily anterior/posterior divisions that produce a small anterior daughter cell. The affected divisions include those that generate an apoptotic cell as well as those that generate two surviving cells. Our findings suggest that HAM-1 primarily promotes DCSA in a certain class of asymmetric divisions. PMID:29668718

  18. Dissection of brassinosteroid-regulated proteins in rice embryos during germination by quantitative proteomics

    PubMed Central

    Li, Qian-Feng; Xiong, Min; Xu, Peng; Huang, Li-Chun; Zhang, Chang-Quan; Liu, Qiao-Quan

    2016-01-01

    Brassinosteroids (BRs), essential plant-specific steroidal hormones, function in a wide spectrum of plant growth and development events, including seed germination. Rice is not only a monocotyledonous model plant but also one of the most important staple food crops of human beings. Rice seed germination is a decisive event for the next-generation of plant growth and successful seed germination is critical for rice yield. However, little is known about the molecular mechanisms on how BR modulates seed germination in rice. In the present study, we used isobaric tags for relative and absolute quantification (iTRAQ) based proteomic approach to study BR-regulated proteome during the early stage of seed germination. The results showed that more than 800 BR-responsive proteins were identified, including 88 reliable target proteins responsive to stimuli of both BR-deficiency and BR-insensitivity. Moreover, 90% of the 88 target proteins shared a similar expression change pattern. Gene ontology and string analysis indicated that ribosomal structural proteins, as well as proteins involved in protein biosynthesis and carbohydrate metabolisms were highly clustered. These findings not only enrich BR-regulated protein database in rice seeds, but also allow us to gain novel insights into the molecular mechanism of BR regulated seed germination. PMID:27703189

  19. Roles of NHERF Family of PDZ-Binding Proteins in Regulating GPCR Functions.

    PubMed

    Broadbent, David; Ahmadzai, Mohammad M; Kammala, Ananth K; Yang, Canchai; Occhiuto, Christopher; Das, Rupali; Subramanian, Hariharan

    2017-01-01

    Multicellular organisms are equipped with an array of G-protein-coupled receptors (GPCRs) that mediate cell-cell signaling allowing them to adapt to environmental cues and ultimately survive. This is mechanistically possible through complex intracellular GPCR machinery that encompasses a vast network of proteins. Within this network, there is a group called scaffolding proteins that facilitate proper localization of signaling proteins for a quick and robust GPCR response. One protein family within this scaffolding group is the PSD-95/Dlg/ZO-1 (PDZ) family which is important for GPCR localization, internalization, recycling, and downstream signaling. Although the PDZ family of proteins regulate the functions of several receptors, this chapter focuses on a subfamily within the PDZ protein family called the Na + /H + exchanger regulatory factors (NHERFs). Here we extensively review the predominantly characterized roles of NHERFs in renal phosphate absorption, intestinal ion regulation, cancer progression, and immune cell functions. Finally, we discuss the future perspectives and possible clinical application of targeting NHERFs in several disorders. © 2017 Elsevier Inc. All rights reserved.

  20. Homeodomain-Interacting Protein Kinase (HPK-1) regulates stress responses and ageing in C. elegans

    PubMed Central

    Berber, Slavica; Wood, Mallory; Llamosas, Estelle; Thaivalappil, Priya; Lee, Karen; Liao, Bing Mana; Chew, Yee Lian; Rhodes, Aaron; Yucel, Duygu; Crossley, Merlin; Nicholas, Hannah R

    2016-01-01

    Proteins of the Homeodomain-Interacting Protein Kinase (HIPK) family regulate an array of processes in mammalian systems, such as the DNA damage response, cellular proliferation and apoptosis. The nematode Caenorhabditis elegans has a single HIPK homologue called HPK-1. Previous studies have implicated HPK-1 in longevity control and suggested that this protein may be regulated in a stress-dependent manner. Here we set out to expand these observations by investigating the role of HPK-1 in longevity and in the response to heat and oxidative stress. We find that levels of HPK-1 are regulated by heat stress, and that HPK-1 contributes to survival following heat or oxidative stress. Additionally, we show that HPK-1 is required for normal longevity, with loss of HPK-1 function leading to a faster decline of physiological processes that reflect premature ageing. Through microarray analysis, we have found that HPK-1-regulated genes include those encoding proteins that serve important functions in stress responses such as Phase I and Phase II detoxification enzymes. Consistent with a role in longevity assurance, HPK-1 also regulates the expression of age-regulated genes. Lastly, we show that HPK-1 functions in the same pathway as DAF-16 to regulate longevity and reveal a new role for HPK-1 in development. PMID:26791749

  1. Regulation of post-translational protein arginine methylation during HeLa cell cycle.

    PubMed

    Kim, Chongtae; Lim, Yongchul; Yoo, Byong Chul; Won, Nam Hee; Kim, Sangduk; Kim, Gieun

    2010-09-01

    Post-translational arginine methylation which modifies protein-arginyl residues by protein arginine methyltransferase (PRMT) was investigated during synchronized HeLa cell cycle. The lysates of cells synchronized at each stage were subjected to one and/or two dimensional electrophoresis followed by Western immunoblot using against anti-asymmetric-dimethyl-arginine (ASYM24), anti-symmetric-dimethyl-arginine (SYM10), and subclasses of PRMTs, including PRMT1, PRMT3, PRMT4 (CARM1), PRMT5, PRMT6, and PRMT7 antibodies. Proteins with approximate molecular masses of 80 kDa, 68 kDa, and 64 kDa, containing asymmetric-dimethyl-arginine (aDMA) were increased at G0/G1 to G1, which lasted until S phase. In addition, 25 kDa protein of symmetric-dimethyl-arginine (sDMA) was also markedly up-regulated from G0/G1 to G1. The levels of PRMT3, PRMT6 and PRMT7 were concurrently increased during the cell cycle. Two-dimensional gel electrophoresis followed by MALDI-TOF-MS was identified as aDMA-80 kDa and aDMA-68 kDa proteins as heterogeneous nuclear ribonucleoprotein R (hnRNPR), aDMA-64 kDa proteins as cleavage stimulation factor 64 kDa subunit (CstF-64), and sDMA-25 kDa protein as triosephosphate isomerase (TPI). The levels of increased aDMA of hnRNPR were reduced, when HeLa cells were transfected with siRNA for PRMT1, and the aDMA of CstF-64 with siRNA for PRMT3, while depletion of PRMT5 down-regulated sDMA of TPI. Protein arginine dimethylations of hnRNPR, CstF-64, and TPI were regulated during HeLa cell cycle by respective PRMTs. These results suggest that regulation of arginine dimethylation of hnRNPR, CstF-64, and TPI at G0/G1 to G1 are most likely to modulate the cellular growth and proliferation in HeLa cell cycle. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Engineered elastomeric proteins with dual elasticity can be controlled by a molecular regulator.

    PubMed

    Cao, Yi; Li, Hongbin

    2008-08-01

    Elastomeric proteins are molecular springs that confer excellent mechanical properties to many biological tissues and biomaterials. Depending on the role performed by the tissue or biomaterial, elastomeric proteins can behave as molecular springs or shock absorbers. Here we combine single-molecule atomic force microscopy and protein engineering techniques to create elastomeric proteins that can switch between two distinct types of mechanical behaviour in response to the binding of a molecular regulator. The proteins are mechanically labile by design and behave as entropic springs with an elasticity that is governed by their configurational entropy. However, when a molecular regulator binds to the protein, it switches into a mechanically stable state and can act as a shock absorber. These engineered proteins effectively mimic and combine the two extreme forms of elastic behaviour found in natural elastomeric proteins, and thus represent a new type of smart nanomaterial that will find potential applications in nanomechanics and material sciences.

  3. Gait asymmetry: composite scores for mechanical analyses of sprint running.

    PubMed

    Exell, T A; Gittoes, M J R; Irwin, G; Kerwin, D G

    2012-04-05

    Gait asymmetry analyses are beneficial from clinical, coaching and technology perspectives. Quantifying overall athlete asymmetry would be useful in allowing comparisons between participants, or between asymmetry and other factors, such as sprint running performance. The aim of this study was to develop composite kinematic and kinetic asymmetry scores to quantify athlete asymmetry during maximal speed sprint running. Eight male sprint trained athletes (age 22±5 years, mass 74.0±8.7 kg and stature 1.79±0.07 m) participated in this study. Synchronised sagittal plane kinematic and kinetic data were collected via a CODA motion analysis system, synchronised to two Kistler force plates. Bilateral, lower limb data were collected during the maximal velocity phase of sprint running (velocity=9.05±0.37 ms(-1)). Kinematic and kinetic composite asymmetry scores were developed using the previously established symmetry angle for discrete variables associated with successful sprint performance and comparisons of continuous joint power data. Unlike previous studies quantifying gait asymmetry, the scores incorporated intra-limb variability by excluding variables from the composite scores that did not display significantly larger (p<0.05) asymmetry than intra-limb variability. The variables that contributed to the composite scores and the magnitude of asymmetry observed for each measure varied on an individual participant basis. The new composite scores indicated the inter-participant differences that exist in asymmetry during sprint running and may serve to allow comparisons between overall athlete asymmetry with other important factors such as performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Precise discussion of time-reversal asymmetries in B-meson decays

    DOE PAGES

    Morozumi, Takuya; Okane, Hideaki; Umeeda, Hiroyuki

    2015-02-26

    BaBar collaboration announced that they observed time reversal (T) asymmetry through B meson system. In the experiment, time dependencies of two distinctive processes, B_ →B¯ 0 and B¯ 0 → B_ (– expresses CP value) are compared with each other. In our study, we examine event number difference of these two processes. In contrast to the BaBar asymmetry, the asymmetry of events number includes the overall normalization difference for rates. Time dependence of the asymmetry is more general and it includes terms absent in one used by BaBar collaboration. Both of the BaBar asymmetry and ours are naively thought tomore » be T-odd since two processes compared are related with flipping time direction. We investigate the time reversal transformation property of our asymmetry. Using our notation, one can see that the asymmetry is not precisely a T-odd quantity, taking into account indirect CP and CPT violation of K meson systems. The effect of ϵK is extracted and gives rise to O(10 –3) contribution. The introduced parameters are invariant under rephasing of quarks so that the coefficients of our asymmetry are expressed as phase convention independent quantities. Some combinations of the asymmetry enable us to extract parameters for wrong sign decays of B d meson, CPT violation, etc. As a result, we also study the reason why the T-even terms are allowed to contribute to the asymmetry, and find that several conditions are needed for the asymmetry to be a T-odd quantity.« less

  5. Subunits of the Drosophila Actin-Capping Protein Heterodimer Regulate Each Other at Multiple Levels

    PubMed Central

    Amândio, Ana Rita; Gaspar, Pedro; Whited, Jessica L.; Janody, Florence

    2014-01-01

    The actin-Capping Protein heterodimer, composed of the α and β subunits, is a master F-actin regulator. In addition to its role in many cellular processes, Capping Protein acts as a main tumor suppressor module in Drosophila and in humans, in part, by restricting the activity of Yorkie/YAP/TAZ oncogenes. We aimed in this report to understand how both subunits regulate each other in vivo. We show that the levels and capping activities of both subunits must be tightly regulated to control F-actin levels and consequently growth of the Drosophila wing. Overexpressing capping protein α and β decreases both F-actin levels and tissue growth, while expressing forms of Capping Protein that have dominant negative effects on F-actin promote tissue growth. Both subunits regulate each other's protein levels. In addition, overexpressing one of the subunit in tissues knocked-down for the other increases the mRNA and protein levels of the subunit knocked-down and compensates for its loss. We propose that the ability of the α and β subunits to control each other's levels assures that a pool of functional heterodimer is produced in sufficient quantities to restrict the development of tumor but not in excess to sustain normal tissue growth. PMID:24788460

  6. A voxel-based approach to gray matter asymmetries.

    PubMed

    Luders, E; Gaser, C; Jancke, L; Schlaug, G

    2004-06-01

    Voxel-based morphometry (VBM) was used to analyze gray matter (GM) asymmetries in a large sample (n = 60) of male and female professional musicians with and without absolute pitch (AP). We chose to examine these particular groups because previous studies using traditional region-of-interest (ROI) analyses have shown differences in hemispheric asymmetry related to AP and gender. Voxel-based methods may have advantages over traditional ROI-based methods since the analysis can be performed across the whole brain with minimal user bias. After determining that the VBM method was sufficiently sensitive for the detection of differences in GM asymmetries between groups, we found that male AP musicians were more leftward lateralized in the anterior region of the planum temporale (PT) than male non-AP musicians. This confirmed the results of previous studies using ROI-based methods that showed an association between PT asymmetry and the AP phenotype. We further observed that male non-AP musicians revealed an increased leftward GM asymmetry in the postcentral gyrus compared to female non-AP musicians, again corroborating results of a previously published study using ROI-based methods. By analyzing hemispheric GM differences across our entire sample, we were able to partially confirm findings of previous studies using traditional morphometric techniques, as well as more recent, voxel-based analyses. In addition, we found some unusually pronounced GM asymmetries in our musician sample not previously detected in subjects unselected for musical training. Since we were able to validate gender- and AP-related brain asymmetries previously described using traditional ROI-based morphometric techniques, the results of our analyses support the use of VBM for examinations of GM asymmetries.

  7. Transcriptional regulation of the Borrelia burgdorferi antigenically variable VlsE surface protein.

    PubMed

    Bykowski, Tomasz; Babb, Kelly; von Lackum, Kate; Riley, Sean P; Norris, Steven J; Stevenson, Brian

    2006-07-01

    The Lyme disease agent Borrelia burgdorferi can persistently infect humans and other animals despite host active immune responses. This is facilitated, in part, by the vls locus, a complex system consisting of the vlsE expression site and an adjacent set of 11 to 15 silent vls cassettes. Segments of nonexpressed cassettes recombine with the vlsE region during infection of mammalian hosts, resulting in combinatorial antigenic variation of the VlsE outer surface protein. We now demonstrate that synthesis of VlsE is regulated during the natural mammal-tick infectious cycle, being activated in mammals but repressed during tick colonization. Examination of cultured B. burgdorferi cells indicated that the spirochete controls vlsE transcription levels in response to environmental cues. Analysis of PvlsE::gfp fusions in B. burgdorferi indicated that VlsE production is controlled at the level of transcriptional initiation, and regions of 5' DNA involved in the regulation were identified. Electrophoretic mobility shift assays detected qualitative and quantitative changes in patterns of protein-DNA complexes formed between the vlsE promoter and cytoplasmic proteins, suggesting the involvement of DNA-binding proteins in the regulation of vlsE, with at least one protein acting as a transcriptional activator.

  8. Glutathione S-transferase class mu regulation of apoptosis signal-regulating kinase 1 protein during VCD-induced ovotoxicity in neonatal rat ovaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Poulomi; Madden, Jill A.; Sen, Nivedita

    2013-02-15

    4-Vinylcyclohexene diepoxide (VCD) destroys ovarian primordial and small primary follicles via apoptosis. In mice, VCD exposure induces ovarian mRNA expression of glutathione S-transferase (GST) family members, including isoform mu (Gstm). Extra-ovarian GSTM negatively regulates pro-apoptotic apoptosis signal-regulating kinase 1 (ASK1) through protein complex formation, which dissociates during stress, thereby initiating ASK1-induced apoptosis. The present study investigated the ovarian response of Gstm mRNA and protein to VCD. Induction of Ask1 mRNA at VCD-induced follicle loss onset was determined. Ovarian GSTM:ASK1 protein complex formation was investigated and VCD exposure effects thereon evaluated. Phosphatidylinositol-3 kinase (PI3K) regulation of GSTM protein was also studied.more » Postnatal day (PND) 4 rat ovaries were cultured in control media ± 1) VCD (30 μM) for 2–8 days; 2) VCD (30 μM) for 2 days, followed by incubation in control media for 4 days (acute VCD exposure); or 3) LY294002 (20 μM) for 6 days. VCD exposure did not alter Gstm mRNA expression, however, GSTM protein increased (P < 0.05) after 6 days of both the acute and chronic treatments. Ask1 mRNA increased (0.33-fold; P < 0.05) relative to control after 6 days of VCD exposure. Ovarian GSTM:ASK1 protein complex formation was confirmed and, relative to control, the amount of GSTM bound to ASK1 increased 33% (P < 0.05) by chronic but with no effect of acute VCD exposure. PI3K inhibition increased (P < 0.05) GSTM protein by 40% and 71% on d4 and d6, respectively. These findings support involvement of GSTM in the ovarian response to VCD exposure, through regulation of pro-apoptotic ASK1. - Highlights: ► GSTM protein increases in response to ovarian VCD exposure. ► VCD increases Ask1 mRNA at the onset of follicle loss. ► Ovarian GSTM binds more ASK1 protein during VCD-induced ovotoxicity. ► PI3K regulates ovarian GSTM protein.« less

  9. Stating asymmetry in neural pathways: methodological trends in autonomic neuroscience.

    PubMed

    Xavier, Carlos Henrique; Mendonça, Michelle Mendanha; Marins, Fernanda Ribeiro; da Silva, Elder Sales; Ianzer, Danielle; Colugnati, Diego Basile; Pedrino, Gustavo Rodrigues; Fontes, Marco Antonio Peliky

    2018-05-22

    Many particularities concerning interhemispheric differences still need to be explored and unveiled. Functional and anatomical differential features found between left and right brain sides are best known as asymmetries and are consequence of the unilateral neuronal recruitment or predominance that is set to organize some function. The outflow from different neural pathways involved in the autonomic control of the cardiovascular system may route through asymmetrically relayed efferences (ipsilateral/lateralized and/or contralateral). In spite of this, the literature reporting on the role of central nuclei involved in the autonomic control is not always dedicated on these interhemispheric comparisons. Considering the recent reports demonstrating that asymmetries may set differential functional responses, it is worth checking differences between right and left sides of central regions. This review aims to inspire neuroscientists with the idea that studying the interhemispheric differences may deepen the understanding on several centrally controlled responses, with special regard to the autonomic functions underlying the cardiovascular regulation. Thus, an avenue of knowledge may unfold from a field of research that requires further exploration.

  10. The calcium-binding protein ALG-2 regulates protein secretion and trafficking via interactions with MISSL and MAP1B proteins.

    PubMed

    Takahara, Terunao; Inoue, Kuniko; Arai, Yumika; Kuwata, Keiko; Shibata, Hideki; Maki, Masatoshi

    2017-10-13

    Mobilization of intracellular calcium is essential for a wide range of cellular processes, including signal transduction, apoptosis, and vesicular trafficking. Several lines of evidence have suggested that apoptosis-linked gene 2 (ALG-2, also known as PDCD6 ), a calcium-binding protein, acts as a calcium sensor linking calcium levels with efficient vesicular trafficking, especially at the endoplasmic reticulum (ER)-to-Golgi transport step. However, how ALG-2 regulates these processes remains largely unclear. Here, we report that M APK1- i nteracting and s pindle- s tabilizing (MISS)- l ike (MISSL), a previously uncharacterized protein, interacts with ALG-2 in a calcium-dependent manner. Live-cell imaging revealed that upon a rise in intracellular calcium levels, GFP-tagged MISSL (GFP-MISSL) dynamically relocalizes in a punctate pattern and colocalizes with ALG-2. MISSL knockdown caused disorganization of the components of the ER exit site, the ER-Golgi intermediate compartment, and Golgi. Importantly, knockdown of either MISSL or ALG-2 attenuated the secretion of se creted a lkaline p hosphatase (SEAP), a model secreted cargo protein, with similar reductions in secretion by single- and double-protein knockdowns, suggesting that MISSL and ALG-2 act in the same pathway to regulate the secretion process. Furthermore, ALG-2 or MISSL knockdown delayed ER-to-Golgi transport of procollagen type I. We also found that ALG-2 and MISSL interact with microtubule-associated protein 1B (MAP1B) and that MAP1B knockdown reverts the reduced secretion of SEAP caused by MISSL or ALG-2 depletion. These results suggest that a change in the intracellular calcium level plays a role in regulation of the secretory pathway via interaction of ALG-2 with MISSL and MAP1B. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Asymmetry in power-law magnitude correlations.

    PubMed

    Podobnik, Boris; Horvatić, Davor; Tenenbaum, Joel N; Stanley, H Eugene

    2009-07-01

    Time series of increments can be created in a number of different ways from a variety of physical phenomena. For example, in the phenomenon of volatility clustering-well-known in finance-magnitudes of adjacent increments are correlated. Moreover, in some time series, magnitude correlations display asymmetry with respect to an increment's sign: the magnitude of |x_{i}| depends on the sign of the previous increment x_{i-1} . Here we define a model-independent test to measure the statistical significance of any observed asymmetry. We propose a simple stochastic process characterized by a an asymmetry parameter lambda and a method for estimating lambda . We illustrate both the test and process by analyzing physiological data.

  12. Facial asymmetry quantitative evaluation in oculoauriculovertebral spectrum.

    PubMed

    Manara, Renzo; Schifano, Giovanni; Brotto, Davide; Mardari, Rodica; Ghiselli, Sara; Gerunda, Antonio; Ghirotto, Cristina; Fusetti, Stefano; Piacentile, Katherine; Scienza, Renato; Ermani, Mario; Martini, Alessandro

    2016-03-01

    Facial asymmetries in oculoauriculovertebral spectrum (OAVS) patients might require surgical corrections that are mostly based on qualitative approach and surgeon's experience. The present study aimed to develop a quantitative 3D CT imaging-based procedure suitable for maxillo-facial surgery planning in OAVS patients. Thirteen OAVS patients (mean age 3.5 ± 4.0 years; range 0.2-14.2, 6 females) and 13 controls (mean age 7.1 ± 5.3 years; range 0.6-15.7, 5 females) who underwent head CT examination were retrospectively enrolled. Eight bilateral anatomical facial landmarks were defined on 3D CT images (porion, orbitale, most anterior point of frontozygomatic suture, most superior point of temporozygomatic suture, most posterior-lateral point of the maxilla, gonion, condylion, mental foramen) and distance from orthogonal planes (in millimeters) was used to evaluate the asymmetry on each axis and to calculate a global asymmetry index of each anatomical landmark. Mean asymmetry values and relative confidence intervals were obtained from the control group. OAVS patients showed 2.5 ± 1.8 landmarks above the confidence interval while considering the global asymmetry values; 12 patients (92%) showed at least one pathologically asymmetric landmark. Considering each axis, the mean number of pathologically asymmetric landmarks increased to 5.5 ± 2.6 (p = 0.002) and all patients presented at least one significant landmark asymmetry. Modern CT-based 3D reconstructions allow accurate assessment of facial bone asymmetries in patients affected by OAVS. The evaluation as a global score and in different orthogonal axes provides precise quantitative data suitable for maxillo-facial surgical planning. CT-based 3D reconstruction might allow a quantitative approach for planning and following-up maxillo-facial surgery in OAVS patients.

  13. Computational evaluation of new homologous down regulators of Translationally Controlled Tumor Protein (TCTP) targeted for tumor reversion.

    PubMed

    Nayarisseri, Anuraj; Yadav, Mukesh; Wishard, Rohan

    2013-12-01

    The Translationally Controlled Tumor Protein (TCTP) has been investigated for tumor reversion and is a target of cancer therapy. Down regulators which suppress the expression of TCTP can trigger the process of tumor reversion leading to the transformation of tumor cells into revertant cells. The present investigation is a novel protein-protein docking approach to target TCTP by a set of proteins similar to the protein: sorting nexin 6 (SNX6) which is an established down regulator of TCTP. The established down regulator along with its set of most similar proteins were modeled using the PYTHON based software - MODELLER v9.9, followed by structure validation using the Procheck Package. Further TCTP was docked with its established and prospective down regulators using the flexible docking protocol suite HADDOCK. The results were evaluated and ranked according to the RMSD values of the complex and the HADDOCK score, which is a weighted sum of van der Waal's energy, electrostatic energy, restraints violation energy and desolvation energy. Results concluded the protein sorting nexin 6 of Mus musculus to be a better down regulator of TCTP, as compared to the suggested down regulator (Homo sapiens snx6).

  14. What determines direction of asymmetry: genes, environment or chance?

    PubMed Central

    2016-01-01

    Conspicuous asymmetries seen in many animals and plants offer diverse opportunities to test how the development of a similar morphological feature has evolved in wildly different types of organisms. One key question is: do common rules govern how direction of asymmetry is determined (symmetry is broken) during ontogeny to yield an asymmetrical individual? Examples from numerous organisms illustrate how diverse this process is. These examples also provide some surprising answers to related questions. Is direction of asymmetry in an individual determined by genes, environment or chance? Is direction of asymmetry determined locally (structure by structure) or globally (at the level of the whole body)? Does direction of asymmetry persist when an asymmetrical structure regenerates following autotomy? The answers vary greatly for asymmetries as diverse as gastropod coiling direction, flatfish eye side, crossbill finch bill crossing, asymmetrical claws in shrimp, lobsters and crabs, katydid sound-producing structures, earwig penises and various plant asymmetries. Several examples also reveal how stochastic asymmetry in mollusc and crustacean early cleavage, in Drosophila oogenesis, and in Caenorhabditis elegans epidermal blast cell movement, is a normal component of deterministic development. Collectively, these examples shed light on the role of genes as leaders or followers in evolution. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821528

  15. NFκB is a central regulator of protein quality control in response to protein aggregation stresses via autophagy modulation

    PubMed Central

    Nivon, Mathieu; Fort, Loïc; Muller, Pascale; Richet, Emma; Simon, Stéphanie; Guey, Baptiste; Fournier, Maëlenn; Arrigo, André-Patrick; Hetz, Claudio; Atkin, Julie D.; Kretz-Remy, Carole

    2016-01-01

    During cell life, proteins often misfold, depending on particular mutations or environmental changes, which may lead to protein aggregates that are toxic for the cell. Such protein aggregates are the root cause of numerous diseases called “protein conformational diseases,” such as myofibrillar myopathy and familial amyotrophic lateral sclerosis. To fight against aggregates, cells are equipped with protein quality control mechanisms. Here we report that NFκB transcription factor is activated by misincorporation of amino acid analogues into proteins, inhibition of proteasomal activity, expression of the R120G mutated form of HspB5 (associated with myofibrillar myopathy), or expression of the G985R and G93A mutated forms of superoxide dismutase 1 (linked to familial amyotrophic lateral sclerosis). This noncanonical stimulation of NFκB triggers the up-regulation of BAG3 and HspB8 expression, two activators of selective autophagy, which relocalize to protein aggregates. Then NFκB-dependent autophagy allows the clearance of protein aggregates. Thus NFκB appears as a central and major regulator of protein aggregate clearance by modulating autophagic activity. In this context, the pharmacological stimulation of this quality control pathway might represent a valuable strategy for therapies against protein conformational diseases. PMID:27075172

  16. Mef2c Regulates Transcription of the Extracellular Matrix Protein Cartilage Link Protein 1 in the Developing Murine Heart

    PubMed Central

    Phelps, Aimee L.; Ghatnekar, Angela V.; Barth, Jeremy L.; Norris, Russell A.; Wessels, Andy

    2013-01-01

    Cartilage Link Protein 1 (Crtl1) is an extracellular matrix (ECM) protein that stabilizes the interaction between hyaluronan and versican and is expressed in endocardial and endocardially-derived cells in the developing heart, including cells in the atrioventricular (AV) and outflow tract (OFT) cushions. Previous investigations into the transcriptional regulation of the Crtl1 gene have shown that Sox9 regulates Crtl1 expression in both cartilage and the AV valves. The cardiac transcription factor Mef2c is involved in the regulation of gene expression in cardiac and skeletal muscle cell lineages. In this study we have investigated the potential role of Mef2c in the regulation of ECM production in the endocardial and mesenchymal cell lineages of the developing heart. We demonstrate that the Crtl1 5′ flanking region contains two highly conserved Mef2 binding sites and that Mef2c is able to bind to these sites in vivo during cardiovascular development. Additionally, we show that Crtl1 transcription is dependent on Mef2c expression in fetal mitral valve interstitial cells (VICs). Combined, these findings highlight a new role for Mef2c in cardiac development and the regulation of cardiac extracellular matrix protein expression. PMID:23468913

  17. Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration

    PubMed Central

    Musiek, Erik S.; Lim, Miranda M.; Yang, Guangrui; Bauer, Adam Q.; Qi, Laura; Lee, Yool; Roh, Jee Hoon; Ortiz-Gonzalez, Xilma; Dearborn, Joshua T.; Culver, Joseph P.; Herzog, Erik D.; Hogenesch, John B.; Wozniak, David F.; Dikranian, Krikor; Giasson, Benoit I.; Weaver, David R.; Holtzman, David M.; FitzGerald, Garret A.

    2013-01-01

    Brain aging is associated with diminished circadian clock output and decreased expression of the core clock proteins, which regulate many aspects of cellular biochemistry and metabolism. The genes encoding clock proteins are expressed throughout the brain, though it is unknown whether these proteins modulate brain homeostasis. We observed that deletion of circadian clock transcriptional activators aryl hydrocarbon receptor nuclear translocator–like (Bmal1) alone, or circadian locomotor output cycles kaput (Clock) in combination with neuronal PAS domain protein 2 (Npas2), induced severe age-dependent astrogliosis in the cortex and hippocampus. Mice lacking the clock gene repressors period circadian clock 1 (Per1) and period circadian clock 2 (Per2) had no observed astrogliosis. Bmal1 deletion caused the degeneration of synaptic terminals and impaired cortical functional connectivity, as well as neuronal oxidative damage and impaired expression of several redox defense genes. Targeted deletion of Bmal1 in neurons and glia caused similar neuropathology, despite the retention of intact circadian behavioral and sleep-wake rhythms. Reduction of Bmal1 expression promoted neuronal death in primary cultures and in mice treated with a chemical inducer of oxidative injury and striatal neurodegeneration. Our findings indicate that BMAL1 in a complex with CLOCK or NPAS2 regulates cerebral redox homeostasis and connects impaired clock gene function to neurodegeneration. PMID:24270424

  18. Extensive Use of RNA-Binding Proteins in Drosophila Sensory Neuron Dendrite Morphogenesis

    PubMed Central

    Olesnicky, Eugenia C.; Killian, Darrell J.; Garcia, Evelyn; Morton, Mary C.; Rathjen, Alan R.; Sola, Ismail E.; Gavis, Elizabeth R.

    2013-01-01

    The large number of RNA-binding proteins and translation factors encoded in the Drosophila and other metazoan genomes predicts widespread use of post-transcriptional regulation in cellular and developmental processes. Previous studies identified roles for several RNA-binding proteins in dendrite branching morphogenesis of Drosophila larval sensory neurons. To determine the larger contribution of post-transcriptional gene regulation to neuronal morphogenesis, we conducted an RNA interference screen to identify additional Drosophila proteins annotated as either RNA-binding proteins or translation factors that function in producing the complex dendritic trees of larval class IV dendritic arborization neurons. We identified 88 genes encoding such proteins whose knockdown resulted in aberrant dendritic morphology, including alterations in dendritic branch number, branch length, field size, and patterning of the dendritic tree. In particular, splicing and translation initiation factors were associated with distinct and characteristic phenotypes, suggesting that different morphogenetic events are best controlled at specific steps in post-transcriptional messenger RNA metabolism. Many of the factors identified in the screen have been implicated in controlling the subcellular distributions and translation of maternal messenger RNAs; thus, common post-transcriptional regulatory strategies may be used in neurogenesis and in the generation of asymmetry in the female germline and embryo. PMID:24347626

  19. Human protein Staufen-2 promotes HIV-1 proliferation by positively regulating RNA export activity of viral protein Rev.

    PubMed

    Banerjee, Atoshi; Benjamin, Ronald; Balakrishnan, Kannan; Ghosh, Payel; Banerjee, Sharmistha

    2014-02-13

    The export of intron containing viral RNAs from the nucleus to the cytoplasm is an essential step in the life cycle of Human Immunodeficiency Virus-1 (HIV-1). As the eukaryotic system does not permit the transport of intron containing RNA out of the nucleus, HIV-1 makes a regulatory protein, Rev, that mediates the transportation of unspliced and partially spliced viral mRNA from the nucleus to the cytoplasm, thereby playing a decisive role in the generation of new infectious virus particles. Therefore, the host factors modulating the RNA export activity of Rev can be major determinants of virus production in an infected cell. In this study, human Staufen-2 (hStau-2) was identified as a host factor interacting with HIV-1 Rev through affinity chromatography followed by MALDI analyses. Our experiments involving transient expressions, siRNA mediated knockdowns and infection assays conclusively established that hStau-2 is a positive regulator of HIV-1 pathogenesis. We demonstrated that Rev-hStau-2 interactions positively regulated the RNA export activity of Rev and promoted progeny virus synthesis. The Rev-hStau-2 interaction was independent of RNA despite both being RNA binding proteins. hStau-2 mutant, with mutations at Q314R-A318F-K319E, deficient of binding Rev, failed to promote hStau-2 dependent Rev activity and viral production, validating the essentiality of this protein-protein interaction. The expression of this positive regulator was elevated upon HIV-1 infection in both human T-lymphocyte and astrocyte cell lines. With this study, we establish that human Staufen-2, a host factor which is up-regulated upon HIV-1 infection, interacts with HIV-1 Rev, thereby promoting its RNA export activity and progeny virus formation. Altogether, our study provides new insights into the emerging role of the Staufen family of mRNA transporters in host-pathogen interaction and supports the notion that obliterating interactions between viral and host proteins that positively

  20. Regulating the ethylene response of a plant by modulation of F-box proteins

    DOEpatents

    Guo, Hongwei [Beijing, CN; Ecker, Joseph R [Carlsbad, CA

    2014-01-07

    The relationship between F-box proteins and proteins invovled in the ethylene response in plants is described. In particular, F-box proteins may bind to proteins involved in the ethylene response and target them for degradation by the ubiquitin/proteasome pathway. The transcription factor EIN3 is a key transcription factor mediating ethylne-regulated gene expression and morphological responses. EIN3 is degraded through a ubiquitin/proteasome pathway mediated by F-box proteins EBF1 and EBF2. The link between F-box proteins and the ethylene response is a key step in modulating or regulating the response of a plant to ethylene. Described herein are transgenic plants having an altered sensitivity to ethylene, and methods for making transgenic plant haing an althered sensitivity to ethylene by modulating the level of activity of F-box proteins. Methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein are described. Also described are methods of identifying compounds that modulate the ethylene response in plants by modulating the level of F-box protein expression or activity.

  1. Discriminating different Z{sup '}'s via asymmetries at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Zhongqiu; Xiao Bo; Wang Youkai

    2011-05-01

    In practice the asymmetry, which is defined based on the angular distribution of the final states in scattering or decay processes, can be utilized to scrutinize underlying dynamics in and/or beyond the standard model (BSM). As one of the possible BSM physics which might be discovered early at the LHC, extra neutral gauge bosons Z{sup '}'s are theoretically well motivated. Once Z{sup '}'s are discovered at the LHC, it is crucial to discriminate different Z{sup '}'s in various BSM. In principle such a task can be accomplished by measuring the angular distribution of the final states which are produced viamore » Z{sup '}-mediated processes. In the real data analysis, asymmetry is always adopted. In the literature several asymmetries have been proposed at the LHC. Based on these works, we stepped further on to study how to optimize the asymmetries in the left-right model and the sequential standard model, as the examples of BSM. In this paper, we examined four kinds of asymmetries, namely, rapidity-dependent forward-backward asymmetry, oneside forward-backward asymmetry, central charge asymmetry, and edge charge asymmetry (see text for details), with l{sup +}l{sup -} (l=e, {mu}), bb, and tt as the final states. In the calculations with bb and tt final states, the QCD-induced higher-order contributions to the asymmetric cross section were also included. For each kind of final state, we estimated the four kinds of asymmetries and especially the optimal cut usually associated with the definition of the asymmetry. Our numerical results indicated that the capacity to discriminate Z{sup '} models can be improved by imposing the optimal cuts.« less

  2. A conserved protein interaction interface on the type 5 G protein beta subunit controls proteolytic stability and activity of R7 family regulator of G protein signaling proteins.

    PubMed

    Porter, Morwenna Y; Xie, Keqiang; Pozharski, Edwin; Koelle, Michael R; Martemyanov, Kirill A

    2010-12-24

    Regulators of G protein signaling (RGS) proteins of the R7 subfamily limit signaling by neurotransmitters in the brain and by light in the retina. They form obligate complexes with the Gβ5 protein that are subject to proteolysis to control their abundance and alter signaling. The mechanisms that regulate this proteolysis, however, remain unclear. We used genetic screens to find mutations in Gβ5 that selectively destabilize one of the R7 RGS proteins in Caenorhabditis elegans. These mutations cluster at the binding interface between Gβ5 and the N terminus of R7 RGS proteins. Equivalent mutations within mammalian Gβ5 allowed the interface to still bind the N-terminal DEP domain of R7 RGS proteins, and mutant Gβ5-R7 RGS complexes initially formed in cells but were then rapidly degraded by proteolysis. Molecular dynamics simulations suggest the mutations weaken the Gβ5-DEP interface, thus promoting dynamic opening of the complex to expose determinants of proteolysis known to exist on the DEP domain. We propose that conformational rearrangements at the Gβ5-DEP interface are key to controlling the stability of R7 RGS protein complexes.

  3. Thioredoxin h regulates calcium dependent protein kinases in plasma membranes.

    PubMed

    Ueoka-Nakanishi, Hanayo; Sazuka, Takashi; Nakanishi, Yoichi; Maeshima, Masayoshi; Mori, Hitoshi; Hisabori, Toru

    2013-07-01

    Thioredoxin (Trx) is a key player in redox homeostasis in various cells, modulating the functions of target proteins by catalyzing a thiol-disulfide exchange reaction. Target proteins of cytosolic Trx-h of higher plants were studied, particularly in the plasma membrane, because plant plasma membranes include various functionally important protein molecules such as transporters and signal receptors. Plasma membrane proteins from Arabidopsis thaliana cell cultures were screened using a resin Trx-h1 mutant-immobilized, and a total of 48 candidate proteins obtained. These included two calcium-sensing proteins: a phosphoinositide-specific phospholipase 2 (AtPLC2) and a calcium-dependent protein kinase 21 (AtCPK21). A redox-dependent change in AtCPK21 kinase activity was demonstrated in vitro. Oxidation of AtCPK21 resulted in a decrease in kinase activity to 19% of that of untreated AtCPK21, but Trx-h1 effectively restored the activity to 90%. An intramolecular disulfide bond (Cys97-Cys108) that is responsible for this redox modulation was then identified. In addition, endogenous AtCPK21 was shown to be oxidized in vivo when the culture cells were treated with H2 O2 . These results suggest that redox regulation of AtCPK21 by Trx-h in response to external stimuli is important for appropriate cellular responses. The relationship between the redox regulation system and Ca(2+) signaling pathways is discussed. © 2013 The Authors. FEBS Journal published by John Wiley & Sons Ltd on behalf of FEBS.

  4. Translational regulation of ribosomal protein S15 drives characteristic patterns of protein-mRNA epistasis.

    PubMed

    Mallik, Saurav; Basu, Sudipto; Hait, Suman; Kundu, Sudip

    2018-04-21

    Do coding and regulatory segments of a gene co-evolve with each-other? Seeking answers to this question, here we analyze the case of Escherichia coli ribosomal protein S15, that represses its own translation by specifically binding its messenger RNA (rpsO mRNA) and stabilizing a pseudoknot structure at the upstream untranslated region, thus trapping the ribosome into an incomplete translation initiation complex. In the absence of S15, ribosomal protein S1 recognizes rpsO and promotes translation by melting this very pseudoknot. We employ a robust statistical method to detect signatures of positive epistasis between residue site pairs and find that biophysical constraints of translational regulation (S15-rpsO and S1-rpsO recognition, S15-mediated rpsO structural rearrangement, and S1-mediated melting) are strong predictors of positive epistasis. Transforming the epistatic pairs into a network, we find that signatures of two different, but interconnected regulatory cascades are imprinted in the sequence-space and can be captured in terms of two dense network modules that are sparsely connected to each other. This network topology further reflects a general principle of how functionally coupled components of biological networks are interconnected. These results depict a model case, where translational regulation drives characteristic residue-level epistasis-not only between a protein and its own mRNA but also between a protein and the mRNA of an entirely different protein. © 2018 Wiley Periodicals, Inc.

  5. Regulation of RE1 Protein Silencing Transcription Factor (REST) Expression by HIP1 Protein Interactor (HIPPI)*

    PubMed Central

    Datta, Moumita; Bhattacharyya, Nitai P.

    2011-01-01

    Earlier we have shown that the proapoptotic protein HIPPI (huntingtin interacting protein 1 (HIP1) protein interactor) along with its molecular partner HIP1 could regulate transcription of the caspase-1 gene. Here we report that RE1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a new transcriptional target of HIPPI. HIPPI could bind to the promoter of REST and increased its expression in neuronal as well as non-neuronal cells. Such activation of REST down-regulated expression of REST target genes, such as brain-derived neurotrophic factor (BDNF) or proenkephalin (PENK). The ability of HIPPI to activate REST gene transcription was dependent on HIP1, the nuclear transporter of HIPPI. Using a Huntington disease cell model, we have demonstrated that feeble interaction of HIP1 with mutant huntingtin protein resulted in increased nuclear accumulation of HIPPI and HIP1, leading to higher occupancy of HIPPI at the REST promoter, triggering its transcriptional activation and consequent repression of REST target genes. This novel transcription regulatory mechanism of REST by HIPPI may contribute to the deregulation of transcription observed in the cell model of Huntington disease. PMID:21832040

  6. Regulation of RE1 protein silencing transcription factor (REST) expression by HIP1 protein interactor (HIPPI).

    PubMed

    Datta, Moumita; Bhattacharyya, Nitai P

    2011-09-30

    Earlier we have shown that the proapoptotic protein HIPPI (huntingtin interacting protein 1 (HIP1) protein interactor) along with its molecular partner HIP1 could regulate transcription of the caspase-1 gene. Here we report that RE1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a new transcriptional target of HIPPI. HIPPI could bind to the promoter of REST and increased its expression in neuronal as well as non-neuronal cells. Such activation of REST down-regulated expression of REST target genes, such as brain-derived neurotrophic factor (BDNF) or proenkephalin (PENK). The ability of HIPPI to activate REST gene transcription was dependent on HIP1, the nuclear transporter of HIPPI. Using a Huntington disease cell model, we have demonstrated that feeble interaction of HIP1 with mutant huntingtin protein resulted in increased nuclear accumulation of HIPPI and HIP1, leading to higher occupancy of HIPPI at the REST promoter, triggering its transcriptional activation and consequent repression of REST target genes. This novel transcription regulatory mechanism of REST by HIPPI may contribute to the deregulation of transcription observed in the cell model of Huntington disease.

  7. Planar cell polarity proteins differentially regulate extracellular matrix organization and assembly during zebrafish gastrulation.

    PubMed

    Dohn, Michael R; Mundell, Nathan A; Sawyer, Leah M; Dunlap, Julie A; Jessen, Jason R

    2013-11-01

    Zebrafish gastrulation cell movements occur in the context of dynamic changes in extracellular matrix (ECM) organization and require the concerted action of planar cell polarity (PCP) proteins that regulate cell elongation and mediolateral alignment. Data obtained using Xenopus laevis gastrulae have shown that integrin-fibronectin interactions underlie the formation of polarized cell protrusions necessary for PCP and have implicated PCP proteins themselves as regulators of ECM. By contrast, the relationship between establishment of PCP and ECM assembly/remodeling during zebrafish gastrulation is unclear. We previously showed that zebrafish embryos carrying a null mutation in the four-pass transmembrane PCP protein vang-like 2 (vangl2) exhibit increased matrix metalloproteinase activity and decreased immunolabeling of fibronectin. These data implicated for the first time a core PCP protein in the regulation of pericellular proteolysis of ECM substrates and raised the question of whether other zebrafish PCP proteins also impact ECM organization. In Drosophila melanogaster, the cytoplasmic PCP protein Prickle binds Van Gogh and regulates its function. Here we report that similar to vangl2, loss of zebrafish prickle1a decreases fibronectin protein levels in gastrula embryos. We further show that Prickle1a physically binds Vangl2 and regulates both the subcellular distribution and total protein level of Vangl2. These data suggest that the ability of Prickle1a to impact fibronectin organization is at least partly due to effects on Vangl2. In contrast to loss of either Vangl2 or Prickle1a function, we find that glypican4 (a Wnt co-receptor) and frizzled7 mutant gastrula embryos with disrupted non-canonical Wnt signaling exhibit the opposite phenotype, namely increased fibronectin assembly. Our data show that glypican4 mutants do not have decreased proteolysis of ECM substrates, but instead have increased cell surface cadherin protein expression and increased intercellular

  8. Characterization of the heterotrimeric G-protein family and its transmembrane regulator from capsicum (Capsicum annuum L.).

    PubMed

    Romero-Castillo, Rafael A; Roy Choudhury, Swarup; León-Félix, Josefina; Pandey, Sona

    2015-05-01

    Throughout evolution, organisms have created numerous mechanisms to sense and respond to their environment. One such highly conserved mechanism involves regulation by heterotrimeric G-protein complex comprised of alpha (Gα), beta (Gβ) and gamma (Gγ) subunits. In plants, these proteins play important roles in signal transduction pathways related to growth and development including response to biotic and abiotic stresses and consequently affect yield. In this work, we have identified and characterized the complete heterotrimeric G-protein repertoire in the Capsicum annuum (Capsicum) genome which consists of one Gα, one Gβ and three Gγ genes. We have also identified one RGS gene in the Capsicum genome that acts as a regulator of the G-protein signaling. Biochemical activities of the proteins were confirmed by assessing the GTP-binding and GTPase activity of the recombinant Gα protein and its regulation by the GTPase acceleration activity of the RGS protein. Interaction between different subunits was established using yeast- and plant-based analyses. Gene and protein expression profiles of specific G-protein components revealed interesting spatial and temporal regulation patterns, especially during root development and during fruit development and maturation. This research thus details the characterization of the first heterotrimeric G-protein family from a domesticated, commercially important vegetable crop. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Forward-backward asymmetry in top quark-antiquark production

    DOE PAGES

    Abazov, Victor Mukhamedovich

    2011-12-12

    We present a measurement of forward-backward asymmetry in top quark-antiquark production in proton-antiproton collisions in the final state containing a lepton and at least four jets. Using a dataset corresponding to an integrated luminosity of 5.4 fb -1, collected by the D0 experiment at the Fermilab Tevatron Collider, we measure the t{bar t} forward-backward asymmetry to be (9.2 ± 3.7)% at the reconstruction level. When corrected for detector acceptance and resolution, the asymmetry is found to be (19.6 ± 6.5)%. We also measure a corrected asymmetry based on the lepton from a top quark decay, found to be (15.2 ±more » 4.0)%. The results are compared to predictions based on the next-to-leading-order QCD generator mc@nlo. The sensitivity of the measured and predicted asymmetries to the modeling of gluon radiation is discussed.« less

  10. Infant Positioning, Baby Gear Use, and Cranial Asymmetry.

    PubMed

    Zachry, Anne H; Nolan, Vikki G; Hand, Sarah B; Klemm, Susan A

    2017-12-01

    Objectives This study aimed to identify predictors of cranial asymmetry. We hypothesize that among infants diagnosed with cranial asymmetry in the sampled region, there is an association between exposure to more time in baby gear and less awake time in prone and side-lying than in infants who do not present with this condition. Methods The study employed a cross sectional survey of caregivers of typically developing infants and infants diagnosed with cranial asymmetry. Results A mutivariable model reveals that caregivers of children who are diagnosed with cranial asymmetry report their children spending significantly less time in prone play than those children without a diagnosis of cranial asymmetry. Side-lying and time spent in baby gear did not attain statistical significance. Conclusions for Practice Occupational therapists, physical therapists, pediatricians, nurses and other health care professionals must provide parents with early education about the importance of varying positions and prone play in infancy and address fears and concerns that may serve as barriers to providing prone playtime.

  11. Bottom-quark forward-backward asymmetry in the standard model and beyond.

    PubMed

    Grinstein, Benjamín; Murphy, Christopher W

    2013-08-09

    We computed the bottom-quark forward-backward asymmetry at the Tevatron in the standard model (SM) and for several new physics scenarios. Near the Z pole, the SM bottom asymmetry is dominated by tree level exchanges of electroweak gauge bosons. While above the Z pole, next-to-leading order QCD dominates the SM asymmetry as was the case with the top-quark forward-backward asymmetry. Light new physics, M(NP)≲150  GeV, can cause significant deviations from the SM prediction for the bottom asymmetry. The bottom asymmetry can be used to distinguish between competing new physics (NP) explanations of the top asymmetry based on how the NP interferes with s-channel gluon and Z exchange.

  12. Birth order and fluctuating asymmetry: a first look.

    PubMed Central

    Lalumière, M L; Harris, G T; Rice, M E

    1999-01-01

    We investigated the hypothesis that maternal immunoreactivity to male-specific features of the foetus can increase developmental instability. We predicted that the participants' number of older brothers would be positively related to the fluctuating asymmetry of ten bilateral morphological traits. The participants were 40 adult male psychiatric patients and 31 adult male hospital employees. Consistent with the hypothesis, the participants' number of older brothers--but not number of older sisters, younger brothers or younger sisters--was positively associated with fluctuating asymmetry. The patients had significantly larger fluctuating asymmetry scores and tended to have more older brothers than the employees, but the positive relationship between the number of older brothers and fluctuating asymmetry was observed in both groups. PMID:10643079

  13. Cerebral blood flow asymmetries in headache-free migraineurs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, S.R.; Welch, K.M.; Ewing, J.R.

    1987-11-01

    Regional cerebral blood flow (rCBF) asymmetries were studied in controls and patients with common and classic/complicated migraine using /sup 133/Xe inhalation with 8 homologously situated external collimators over each cerebral hemisphere. Migraine patients as a group more frequently had posterior rCBF asymmetries than controls (p less than 0.03). Although there were no differences in the number of anterior rCBF asymmetries, migraine patients had 2 or more asymmetric probe pairs more often than controls (p less than 0.02). The posterior rCBF asymmetries, consistent with the site of activation of many migraine attacks, may be related to more labile control of themore » cerebral circulation.« less

  14. Transmembrane protein OSTA-1 shapes sensory cilia morphology via regulation of intracellular membrane trafficking in C. elegans.

    PubMed

    Olivier-Mason, Anique; Wojtyniak, Martin; Bowie, Rachel V; Nechipurenko, Inna V; Blacque, Oliver E; Sengupta, Piali

    2013-04-01

    The structure and function of primary cilia are critically dependent on intracellular trafficking pathways that transport ciliary membrane and protein components. The mechanisms by which these trafficking pathways are regulated are not fully characterized. Here we identify the transmembrane protein OSTA-1 as a new regulator of the trafficking pathways that shape the morphology and protein composition of sensory cilia in C. elegans. osta-1 encodes an organic solute transporter alpha-like protein, mammalian homologs of which have been implicated in membrane trafficking and solute transport, although a role in regulating cilia structure has not previously been demonstrated. We show that mutations in osta-1 result in altered ciliary membrane volume, branch length and complexity, as well as defects in localization of a subset of ciliary transmembrane proteins in different sensory cilia types. OSTA-1 is associated with transport vesicles, localizes to a ciliary compartment shown to house trafficking proteins, and regulates both retrograde and anterograde flux of the endosome-associated RAB-5 small GTPase. Genetic epistasis experiments with sensory signaling, exocytic and endocytic proteins further implicate OSTA-1 as a crucial regulator of ciliary architecture via regulation of cilia-destined trafficking. Our findings suggest that regulation of transport pathways in a cell type-specific manner contributes to diversity in sensory cilia structure and might allow dynamic remodeling of ciliary architecture via multiple inputs.

  15. $${{\\bar{d}} - {\\bar{u}}}$$ Flavor Asymmetry in the Proton in Chiral Effective Field Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salamu, Y.; Ji, Cheung-Ryong; Melnitchouk, Wally

    2015-09-01

    Themore » $${\\bar d - \\bar u}$$ flavor asymmetry in the proton arising from pion loops is computed using chiral effective field theory. calculation includes both nucleon and Δ intermediate states, and uses both the fully relativistic and heavy baryon frameworks. x dependence of $${\\bar d - \\bar u}$$ extracted from the Fermilab E866 Drell–Yan data can be well reproduced in terms of a single transverse momentum cutoff parameter regulating the ultraviolet behavior of the loop integrals. In addition to the distribution at x > 0, corrections to the integrated asymmetry from zero momentum contributions are computed, which arise from pion rainbow and bubble diagrams at x = 0. These have not been accounted for in previous analyses, and can make important contributions to the lowest moment of $${\\bar d-\\bar u}$$ .« less

  16. The association between static pelvic asymmetry and low back pain.

    PubMed

    Levangie, P K

    1999-06-15

    A cross-sectional case-control approach was used to estimate the association between low back pain of less than 12 months' duration and pelvic asymmetry among 21-50-year-old patients seeking physical therapy services. To evaluate the premise that asymmetrical positioning of the innominates of the pelvis is a source of low back pain. No published studies have been conducted to evaluate systematically the association between low back pain and pelvic asymmetry in a clinic-based sample. Pelvic landmark data were obtained in 144 cases and 138 control subjects. The associations of low back pain with levels of pelvic asymmetry were estimated by use of odds ratios and 95% confidence intervals. Effect modification and confounding of the low back pain-pelvic asymmetry association by several factors was assessed and alternative asymmetry measures considered. Pelvic asymmetry was not positively associated with low back pain in any way that seemed clinically meaningful. Asymmetry of posterior superior iliac spine landmarks showed some evidence of a weak positive association with low back pain. In the absence of meaningful positive association between pelvic asymmetry and low back pain, evaluation and treatment strategies based on this premise should be questioned.

  17. Calcium/calmodulin and cAMP/protein kinase-A pathways regulate sperm motility in the stallion.

    PubMed

    Lasko, Jodi; Schlingmann, Karen; Klocke, Ann; Mengel, Grace Ann; Turner, Regina

    2012-06-01

    In spite of the importance of sperm motility to fertility in the stallion, little is known about the signaling pathways that regulate motility in this species. In other mammals, calcium/calmodulin signaling and the cyclic AMP/protein kinase-A pathway are involved in sperm motility regulation. We hypothesized that these pathways also were involved in the regulation of sperm motility in the stallion. Using immunoblotting, calmodulin and the calmodulin-dependent protein kinase II β were shown to be present in stallion sperm and with indirect immunofluorescence calmodulin was localized to the acrosome and flagellar principal piece. Additionally, inhibition of either calmodulin or protein kinase-A significantly reduced sperm motility without affecting viability. Following inhibition of calmodulin, motility was not restored with agonists of the cyclic AMP/protein kinase-A pathway. These data suggest that calcium/calmodulin and cyclic AMP/protein kinase-A pathways are involved in the regulation of stallion sperm motility. The failure of cyclic AMP/protein kinase-A agonists to restore motility of calmodulin inhibited sperm suggests that both pathways may be required to support normal motility. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Symmetry and asymmetry in the human brain

    NASA Astrophysics Data System (ADS)

    Hugdahl, Kenneth

    2005-10-01

    Structural and functional asymmetry in the human brain and nervous system is reviewed in a historical perspective, focusing on the pioneering work of Broca, Wernicke, Sperry, and Geschwind. Structural and functional asymmetry is exemplified from work done in our laboratory on auditory laterality using an empirical procedure called dichotic listening. This also involves different ways of validating the dichotic listening procedure against both invasive and non-invasive techniques, including PET and fMRI blood flow recordings. A major argument is that the human brain shows a substantial interaction between structurally, or "bottom-up" asymmetry and cognitively, or "top-down" modulation, through a focus of attention to the right or left side in auditory space. These results open up a more dynamic and interactive view of functional brain asymmetry than the traditional static view that the brain is lateralized, or asymmetric, only for specific stimuli and stimulus properties.

  19. Eukaryotic elongation factor 2 kinase regulates the synthesis of microtubule-related proteins in neurons.

    PubMed

    Kenney, Justin W; Genheden, Maja; Moon, Kyung-Mee; Wang, Xuemin; Foster, Leonard J; Proud, Christopher G

    2016-01-01

    Modulation of the elongation phase of protein synthesis is important for numerous physiological processes in both neurons and other cell types. Elongation is primarily regulated via eukaryotic elongation factor 2 kinase (eEF2K). However, the consequence of altering eEF2K activity on the synthesis of specific proteins is largely unknown. Using both pharmacological and genetic manipulations of eEF2K combined with two protein-labeling techniques, stable isotope labeling of amino acids in cell culture and bio-orthogonal non-canonical amino acid tagging, we identified a subset of proteins whose synthesis is sensitive to inhibition of eEF2K in murine primary cortical neurons. Gene ontology (GO) analyses indicated that processes related to microtubules are particularly sensitive to eEF2K inhibition. Our findings suggest that eEF2K likely contributes to neuronal function by regulating the synthesis of microtubule-related proteins. Modulation of the elongation phase of protein synthesis is important for numerous physiological processes in neurons. Here, using labeling of new proteins coupled with proteomic techniques in primary cortical neurons, we find that the synthesis of microtubule-related proteins is up-regulated by inhibition of elongation. This suggests that translation elongation is a key regulator of cytoskeletal dynamics in neurons. © 2015 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

  20. How Phosphotransferase System-Related Protein Phosphorylation Regulates Carbohydrate Metabolism in Bacteria†

    PubMed Central

    Deutscher, Josef; Francke, Christof; Postma, Pieter W.

    2006-01-01

    The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens. PMID:17158705

  1. TRIM24 protein promotes and TRIM32 protein inhibits cardiomyocyte hypertrophy via regulation of dysbindin protein levels

    PubMed Central

    Borlepawar, Ankush; Bernt, Alexander; Christen, Lynn; Sossalla, Samuel; Frank, Derk; Frey, Norbert

    2017-01-01

    We have previously shown that dysbindin is a potent inducer of cardiomyocyte hypertrophy via activation of Rho-dependent serum-response factor (SRF) signaling. We have now performed a yeast two-hybrid screen using dysbindin as bait against a cardiac cDNA library to identify the cardiac dysbindin interactome. Among several putative binding proteins, we identified tripartite motif-containing protein 24 (TRIM24) and confirmed this interaction by co-immunoprecipitation and co-immunostaining. Another tripartite motif (TRIM) family protein, TRIM32, has been reported earlier as an E3 ubiquitin ligase for dysbindin in skeletal muscle. Consistently, we found that TRIM32 also degraded dysbindin in neonatal rat ventricular cardiomyocytes as well. Surprisingly, however, TRIM24 did not promote dysbindin decay but rather protected dysbindin against degradation by TRIM32. Correspondingly, TRIM32 attenuated the activation of SRF signaling and hypertrophy due to dysbindin, whereas TRIM24 promoted these effects in neonatal rat ventricular cardiomyocytes. This study also implies that TRIM32 is a key regulator of cell viability and apoptosis in cardiomyocytes via simultaneous activation of p53 and caspase-3/-7 and inhibition of X-linked inhibitor of apoptosis. In conclusion, we provide here a novel mechanism of post-translational regulation of dysbindin and hypertrophy via TRIM24 and TRIM32 and show the importance of TRIM32 in cardiomyocyte apoptosis in vitro. PMID:28465353

  2. The Relationship Between Asymmetry and Athletic Performance: A Critical Review.

    PubMed

    Maloney, Sean J

    2018-05-08

    Maloney, SJ. The relationship between asymmetry and athletic performance: A critical review. J Strength Cond Res XX(X): 000-000, 2018-Symmetry may be defined as the quality to demonstrate an exact correspondence of size, shape, and form when split along a given axis. Although it has been widely asserted that the bilateral asymmetries are detrimental to athletic performance, research does not wholly support such an association. Moreover, the research rarely seeks to distinguish between different types of bilateral asymmetry. Fluctuating asymmetries describe bilateral differences in anthropometric attributes, such as nostril width and ear size, and are thought to represent the developmental stability of an organism. There is evidence to suggest that fluctuating asymmetries may be related to impaired athletic performance, although contradictory findings have been reported. Sporting asymmetries is a term that may better describe bilateral differences in parameters, such as force output or jump height. These asymmetries are likely to be a function of limb dominance and magnified by long-standing participation within sport. Sporting asymmetries do not seem to carry a clear influence on athletic performance measures. Given the vast discrepancy in the methodologies used by different investigations, further research is warranted. Recent investigations have demonstrated that training interventions can reduce sporting asymmetries and improve performance. However, studies have not sought to determine whether the influence of sporting asymmetry is independent of improvements in neuromuscular parameters. It may be hypothesized that the deficient (weaker) limb has a greater potential for adaptation in comparison to the strong limb and may demonstrate greater responsiveness to training.

  3. Geometric asymmetry driven Janus micromotors.

    PubMed

    Zhao, Guanjia; Pumera, Martin

    2014-10-07

    The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a "coconut" micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors.

  4. Proteolytic degradation of regulator of G protein signaling 2 facilitates temporal regulation of Gq/11 signaling and vascular contraction.

    PubMed

    Kanai, Stanley M; Edwards, Alethia J; Rurik, Joel G; Osei-Owusu, Patrick; Blumer, Kendall J

    2017-11-24

    Regulator of G protein signaling 2 (RGS2) controls signaling by receptors coupled to the G q/11 class heterotrimeric G proteins. RGS2 deficiency causes several phenotypes in mice and occurs in several diseases, including hypertension in which a proteolytically unstable RGS2 mutant has been reported. However, the mechanisms and functions of RGS2 proteolysis remain poorly understood. Here we addressed these questions by identifying degradation signals in RGS2, and studying dynamic regulation of G q/11 -evoked Ca 2+ signaling and vascular contraction. We identified a novel bipartite degradation signal in the N-terminal domain of RGS2. Mutations disrupting this signal blunted proteolytic degradation downstream of E3 ubiquitin ligase binding to RGS2. Analysis of RGS2 mutants proteolyzed at various rates and the effects of proteasome inhibition indicated that proteolytic degradation controls agonist efficacy by setting RGS2 protein expression levels, and affecting the rate at which cells regain agonist responsiveness as synthesis of RGS2 stops. Analyzing contraction of mesenteric resistance arteries supported the biological relevance of this mechanism. Because RGS2 mRNA expression often is strikingly and transiently up-regulated and then down-regulated upon cell stimulation, our findings indicate that proteolytic degradation tightly couples RGS2 transcription, protein levels, and function. Together these mechanisms provide tight temporal control of G q/11 -coupled receptor signaling in the cardiovascular, immune, and nervous systems. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Ionotropic glutamate receptors: regulation by G-protein-coupled receptors.

    PubMed

    Rojas, Asheebo; Dingledine, Raymond

    2013-04-01

    The function of many ion channels is under dynamic control by coincident activation of G-protein-coupled receptors (GPCRs), particularly those coupled to the Gαs and Gαq family members. Such regulation is typically dependent on the subunit composition of the ionotropic receptor or channel as well as the GPCR subtype and the cell-specific panoply of signaling pathways available. Because GPCRs and ion channels are so highly represented among targets of U.S. Food and Drug Administration-approved drugs, functional cross-talk between these drug target classes is likely to underlie many therapeutic and adverse effects of marketed drugs. GPCRs engage a myriad of signaling pathways that involve protein kinases A and C (PKC) and, through PKC and interaction with β-arrestin, Src kinase, and hence the mitogen-activated-protein-kinase cascades. We focus here on the control of ionotropic glutamate receptor function by GPCR signaling because this form of regulation can influence the strength of synaptic plasticity. The amino acid residues phosphorylated by specific kinases have been securely identified in many ionotropic glutamate (iGlu) receptor subunits, but which of these sites are GPCR targets is less well known even when the kinase has been identified. N-methyl-d-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and heteromeric kainate receptors are all downstream targets of GPCR signaling pathways. The details of GPCR-iGlu receptor cross-talk should inform a better understanding of how synaptic transmission is regulated and lead to new therapeutic strategies for neuropsychiatric disorders.

  6. Regulation of the p73 protein stability and degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberst, Andrew; Rossi, Mario; Salomoni, Paolo

    2005-06-10

    p73, a homologue to the tumor suppressor gene p53, is involved in tumorigenesis, though its specific role remains unclear. The gene has two distinct promoters which allow the formation of two protein isoforms with opposite effects: full-length transactivating (TA) p73 shows pro-apoptotic effects, while the shorter {delta}Np73, which lacks the N-terminal transactivating domain, has an evident anti-apoptotic function. Unlike p53, the p73 gene is rarely mutated in human cancers. However, alterations in the relative levels of TA and {delta}Np73 have been shown to correlate with prognosis in several human cancers, suggesting that the fine regulation of these two isoforms ismore » of pivotal importance in controlling proliferation and cell death. Much effort is currently focused on the elucidation of the mechanisms that differentially control TA and {delta}Np73 activity and protein stability, a process complicated by the finding that both proteins are regulated by a similar suite of complex post-translational modifications that include ubiquitination, sequential phosphorylation, prolyl-isomerization, recruitment into the PML-nuclear body (PML-NB), and acetylation. Here we shall consider the main regulatory partners of p73, with particular attention to the recently discovered Itch- and Nedd8-mediated degradation pathways, along with the emerging roles of PML, p38 MAP kinase, Pin1, and p300 in p73 transcriptional activation, and possible mechanisms for the differential regulation of the TAp73 and {delta}Np73 isoforms.« less

  7. Asymmetry dependence of the caloric curve for mononuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoel, C.; Sobotka, L. G.; Charity, R. J.

    2007-01-15

    The asymmetry dependence of the caloric curve, for mononuclear configurations, is studied as a function of neutron-to-proton asymmetry with a model that allows for independent variation of the neutron and proton surface diffusenesses. The evolution of the effective mass with density and excitation is included in a schematic fashion and the entropies are extracted in a local density approximation. The plateau in the caloric curve displays only a slight sensitivity to the asymmetry.

  8. Identification of proteins regulated by curcumin in cerebral ischemia.

    PubMed

    Shah, Fawad-Ali; Gim, Sang-Ah; Sung, Jin-Hee; Jeon, Seong-Jun; Kim, Myeong-Ok; Koh, Phil-Ok

    2016-03-01

    Curcumin is known to have a neuroprotective effect against cerebral ischemia. The objective of this study was to identify various proteins that are differentially expressed by curcumin treatment in focal cerebral ischemia using a proteomic approach. Adult male rats were treated with vehicle or curcumin 1 h after middle cerebral artery occlusion. Brain tissues were collected 24 h after the onset of middle cerebral artery occlusion, and cerebral cortices proteins were identified by two-dimensional gel electrophoresis and mass spectrometry. We detected several proteins with altered expression levels between vehicle- and curcumin-treated animals. Among these proteins, ubiquitin carboxy-terminal hydrolase L1, isocitrate dehydrogenase, adenosylhomocysteinase, and eukaryotic initiation factor 4A were decreased in the vehicle-treated animal, and curcumin treatment attenuated the injury-induced decreases of these proteins. Conversely, pyridoxal phosphate phosphatase was increased in the vehicle-treated animal, and curcumin treatment prevented decreases in this protein. The identified altered proteins are associated with cellular metabolism and differentiation. The results of this study suggest that curcumin exerts a neuroprotective effect by regulating the expression of various proteins in focal cerebral ischemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. It's never too early to get it Right: A conserved role for the cytoskeleton in left-right asymmetry.

    PubMed

    Vandenberg, Laura N; Lemire, Joan M; Levin, Michael

    2013-11-01

    For centuries, scientists and physicians have been captivated by the consistent left-right (LR) asymmetry of the heart, viscera, and brain. A recent study implicated tubulin proteins in establishing laterality in several experimental models, including asymmetric chemosensory receptor expression in C. elegans neurons, polarization of HL-60 human neutrophil-like cells in culture, and asymmetric organ placement in Xenopus. The same mutations that randomized asymmetry in these diverse systems also affect chirality in Arabidopsis, revealing a remarkable conservation of symmetry-breaking mechanisms among kingdoms. In Xenopus, tubulin mutants only affected LR patterning very early, suggesting that this axis is established shortly after fertilization. This addendum summarizes and extends the knowledge of the cytoskeleton's role in the patterning of the LR axis. Results from many species suggest a conserved role for the cytoskeleton as the initiator of asymmetry, and indicate that symmetry is first broken during early embryogenesis by an intracellular process.

  10. Robust co-regulation of tyrosine phosphorylation sites on proteins reveals novel protein interactions†

    PubMed Central

    Naegle, Kristen M.; White, Forest M.; Lauffenburger, Douglas A.; Yaffe, Michael B.

    2012-01-01

    Cell signaling networks propagate information from extracellular cues via dynamic modulation of protein–protein interactions in a context-dependent manner. Networks based on receptor tyrosine kinases (RTKs), for example, phosphorylate intracellular proteins in response to extracellular ligands, resulting in dynamic protein–protein interactions that drive phenotypic changes. Most commonly used methods for discovering these protein–protein interactions, however, are optimized for detecting stable, longer-lived complexes, rather than the type of transient interactions that are essential components of dynamic signaling networks such as those mediated by RTKs. Substrate phosphorylation downstream of RTK activation modifies substrate activity and induces phospho-specific binding interactions, resulting in the formation of large transient macromolecular signaling complexes. Since protein complex formation should follow the trajectory of events that drive it, we reasoned that mining phosphoproteomic datasets for highly similar dynamic behavior of measured phosphorylation sites on different proteins could be used to predict novel, transient protein–protein interactions that had not been previously identified. We applied this method to explore signaling events downstream of EGFR stimulation. Our computational analysis of robustly co-regulated phosphorylation sites, based on multiple clustering analysis of quantitative time-resolved mass-spectrometry phosphoproteomic data, not only identified known sitewise-specific recruitment of proteins to EGFR, but also predicted novel, a priori interactions. A particularly intriguing prediction of EGFR interaction with the cytoskeleton-associated protein PDLIM1 was verified within cells using co-immunoprecipitation and in situ proximity ligation assays. Our approach thus offers a new way to discover protein–protein interactions in a dynamic context- and phosphorylation site-specific manner. PMID:22851037

  11. SNARE proteins underpin insulin-regulated GLUT4 traffic.

    PubMed

    Bryant, Nia J; Gould, Gwyn W

    2011-06-01

    Delivery of the glucose transporter type 4 (GLUT4) from an intracellular location to the cell surface in response to insulin represents a specialized form of membrane traffic, known to be impaired in the disease states of insulin resistance and type 2 diabetes. Like all membrane trafficking events, this translocation of GLUT4 requires members of the SNARE family of proteins. Here, we discuss two SNARE complexes that have been implicated in insulin-regulated GLUT4 traffic: one regulating the final delivery of GLUT4 to the cell surface in response to insulin and the other controlling GLUT4's intracellular trafficking. © 2011 John Wiley & Sons A/S.

  12. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation

    PubMed Central

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-01-01

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders. PMID:26984393

  13. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation.

    PubMed

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-03-17

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders.

  14. Feeding and fasting controls liver expression of a regulator of G protein signaling (Rgs16) in periportal hepatocytes

    PubMed Central

    Huang, Jie; Pashkov, Victor; Kurrasch, Deborah M; Yu, Kan; Gold, Stephen J; Wilkie, Thomas M

    2006-01-01

    Background Heterotrimeric G protein signaling in liver helps maintain carbohydrate and lipid homeostasis. G protein signaling is activated by binding of extracellular ligands to G protein coupled receptors and inhibited inside cells by regulators of G protein signaling (RGS) proteins. RGS proteins are GTPase activating proteins, and thereby regulate Gi and/or Gq class G proteins. RGS gene expression can be induced by the ligands they feedback regulate, and RGS gene expression can be used to mark tissues and cell-types when and where Gi/q signaling occurs. We characterized the expression of mouse RGS genes in liver during fasting and refeeding to identify novel signaling pathways controlling changes in liver metabolism. Results Rgs16 is the only RGS gene that is diurnally regulated in liver of ad libitum fed mice. Rgs16 transcription, mRNA and protein are up regulated during fasting and rapidly down regulated after refeeding. Rgs16 is expressed in periportal hepatocytes, the oxygen-rich zone of the liver where lipolysis and gluconeogenesis predominates. Restricting feeding to 4 hr of the light phase entrained Rgs16 expression in liver but did not affect circadian regulation of Rgs16 expression in the suprachiasmatic nuclei (SCN). Conclusion Rgs16 is one of a subset of genes that is circadian regulated both in SCN and liver. Rgs16 mRNA expression in liver responds rapidly to changes in feeding schedule, coincident with key transcription factors controlling the circadian clock. Rgs16 expression can be used as a marker to identify and investigate novel G-protein mediated metabolic and circadian pathways, in specific zones within the liver. PMID:17123436

  15. Integrated regulation of motor-driven organelle transport by scaffolding proteins.

    PubMed

    Fu, Meng-meng; Holzbaur, Erika L F

    2014-10-01

    Intracellular trafficking pathways, including endocytosis, autophagy, and secretion, rely on directed organelle transport driven by the opposing microtubule motor proteins kinesin and dynein. Precise spatial and temporal targeting of vesicles and organelles requires the integrated regulation of these opposing motors, which are often bound simultaneously to the same cargo. Recent progress demonstrates that organelle-associated scaffolding proteins, including Milton/TRAKs (trafficking kinesin-binding protein), JIP1, JIP3 (JNK-interacting proteins), huntingtin, and Hook1, interact with molecular motors to coordinate activity and sustain unidirectional transport. Scaffolding proteins also bind to upstream regulatory proteins, including kinases and GTPases, to modulate transport in the cell. This integration of regulatory control with motor activity allows for cargo-specific changes in the transport or targeting of organelles in response to cues from the complex cellular environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Motility screen identifies Drosophila IGF-II mRNA-binding protein--zipcode-binding protein acting in oogenesis and synaptogenesis.

    PubMed

    Boylan, Kristin L M; Mische, Sarah; Li, Mingang; Marqués, Guillermo; Morin, Xavier; Chia, William; Hays, Thomas S

    2008-02-01

    The localization of specific mRNAs can establish local protein gradients that generate and control the development of cellular asymmetries. While all evidence underscores the importance of the cytoskeleton in the transport and localization of RNAs, we have limited knowledge of how these events are regulated. Using a visual screen for motile proteins in a collection of GFP protein trap lines, we identified the Drosophila IGF-II mRNA-binding protein (Imp), an ortholog of Xenopus Vg1 RNA binding protein and chicken zipcode-binding protein. In Drosophila, Imp is part of a large, RNase-sensitive complex that is enriched in two polarized cell types, the developing oocyte and the neuron. Using time-lapse confocal microscopy, we establish that both dynein and kinesin contribute to the transport of GFP-Imp particles, and that regulation of transport in egg chambers appears to differ from that in neurons. In Drosophila, loss-of-function Imp mutations are zygotic lethal, and mutants die late as pharate adults. Imp has a function in Drosophila oogenesis that is not essential, as well as functions that are essential during embryogenesis and later development. Germline clones of Imp mutations do not block maternal mRNA localization or oocyte development, but overexpression of a specific Imp isoform disrupts dorsal/ventral polarity. We report here that loss-of-function Imp mutations, as well as Imp overexpression, can alter synaptic terminal growth. Our data show that Imp is transported to the neuromuscular junction, where it may modulate the translation of mRNA targets. In oocytes, where Imp function is not essential, we implicate a specific Imp domain in the establishment of dorsoventral polarity.

  17. Predicting network modules of cell cycle regulators using relative protein abundance statistics.

    PubMed

    Oguz, Cihan; Watson, Layne T; Baumann, William T; Tyson, John J

    2017-02-28

    Parameter estimation in systems biology is typically done by enforcing experimental observations through an objective function as the parameter space of a model is explored by numerical simulations. Past studies have shown that one usually finds a set of "feasible" parameter vectors that fit the available experimental data equally well, and that these alternative vectors can make different predictions under novel experimental conditions. In this study, we characterize the feasible region of a complex model of the budding yeast cell cycle under a large set of discrete experimental constraints in order to test whether the statistical features of relative protein abundance predictions are influenced by the topology of the cell cycle regulatory network. Using differential evolution, we generate an ensemble of feasible parameter vectors that reproduce the phenotypes (viable or inviable) of wild-type yeast cells and 110 mutant strains. We use this ensemble to predict the phenotypes of 129 mutant strains for which experimental data is not available. We identify 86 novel mutants that are predicted to be viable and then rank the cell cycle proteins in terms of their contributions to cumulative variability of relative protein abundance predictions. Proteins involved in "regulation of cell size" and "regulation of G1/S transition" contribute most to predictive variability, whereas proteins involved in "positive regulation of transcription involved in exit from mitosis," "mitotic spindle assembly checkpoint" and "negative regulation of cyclin-dependent protein kinase by cyclin degradation" contribute the least. These results suggest that the statistics of these predictions may be generating patterns specific to individual network modules (START, S/G2/M, and EXIT). To test this hypothesis, we develop random forest models for predicting the network modules of cell cycle regulators using relative abundance statistics as model inputs. Predictive performance is assessed by the

  18. Rapid corticosteroid-dependent regulation of mineralocorticoid receptor protein expression in rat brain.

    PubMed

    Kalman, Brian A; Spencer, Robert L

    2002-11-01

    Corticosteroid hormones regulate many aspects of neural function via mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). Although GR expression is negatively regulated by endogenous corticosteroids, the autologous regulation of MR expression has been less well studied, partly due to limitations of receptor binding assays that cannot measure the ligand-activated form of MR. Using MR-reactive antibodies and Western blot, we examined relative MR protein expression in rat brain and its potential autoregulation by corticosteroids. We found that MR protein expression is autoregulated in a negative fashion by adrenal steroids. Compared with GR, we see a more rapid regulation of MR, such that there is a substantial increase in MR protein within 12 h after adrenalectomy, whereas GR levels show very little increase until more than 24 h after adrenalectomy. Also, in contrast to GR, which has been found to be regulated by both MR and GR, adrenalectomy-induced increase in MR was prevented by treatment with the MR selective agonist, aldosterone, but not the GR selective agonist, RU28362. Interestingly, acute treatment of adrenalectomized rats with corticosterone produced a significant decrease in whole-cell MR protein within 45 min, suggesting ligand-induced rapid degradation of MR. Chronic high levels of corticosterone also produced a significant decrease in MR protein levels below adrenal-intact rat levels. These results have important implications for previous studies that estimated the proportion of MR that are occupied in vivo by various circulating levels of corticosterone. Those studies compared available MR binding levels in adrenal-intact rats with 24-h adrenalectomized rats, with the assumption that there were no differences between the various conditions in total receptor expression. Those studies concluded that MR is nearly fully occupied by even the lowest circulating corticosterone levels. Given the 2- to 3-fold increase in MR protein that we have

  19. Regulation of protein activity with small-molecule-controlled inteins

    PubMed Central

    Skretas, Georgios; Wood, David W.

    2005-01-01

    Inteins are the protein analogs of self-splicing RNA introns, as they post-translationally excise themselves from a variety of protein hosts. Intein insertion abolishes, in general, the activity of its host protein, which is subsequently restored upon intein excision. These protein elements therefore have the potential to be used as general molecular “switches” for the control of arbitrary target proteins. Based on rational design, an intein-based protein switch has been constructed whose splicing activity is conditionally triggered in vivo by the presence of thyroid hormone or synthetic analogs. This modified intein was used in Escherichia coli to demonstrate that a number of different proteins can be inactivated by intein insertion and then reactivated by the addition of thyroid hormone via ligand-induced splicing. This conditional activation was also found to occur in a dose-dependent manner. Rational protein engineering was then combined with genetic selection to evolve an additional intein whose activity is controlled by the presence of synthetic estrogen ligands. The ability to regulate protein function post-translationally through the use of ligand-controlled intein splicing will most likely find applications in metabolic engineering, drug discovery and delivery, biosensing, molecular computation, as well as many additional areas of biotechnology. PMID:15632292

  20. CP asymmetry in charged Higgs decays to chargino-neutralino pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Mariana; Turan, Ismail

    2007-10-01

    We analyze the charge-parity (CP) asymmetry in the charged Higgs boson decays to chargino-neutralino pairs, H{sup {+-}}{yields}{chi}{sub i}{sup {+-}}{chi}{sub j}{sup 0}, i=1, 2, j=1,...,4. We show first that these modes have a large branching ratio for m{sub H{sup {+-}}} > or approx. 600 GeV. We use Cutkosky rules to obtain the analytical formulas needed for the evaluation of the asymmetry under consideration. We then calculate the CP asymmetry in chargino-neutralino decays by including supersymmetric mass bounds, as well as constraints from b{yields}s{gamma} (g-2){sub {mu}}, {delta}{rho} and electric dipole moments. Finally, we discuss observability of the asymmetry at the LHC bymore » calculating the number of required charged Higgs events to observe the asymmetry for each decay channel. We show that the inclusion of constraints considerably reduces the projected CP asymmetry, and that the optimal channel for observing the asymmetry is H{sup {+-}}{yields}{chi}{sub 1}{sup {+-}}{chi}{sub 2}{sup 0}.« less

  1. Subcycle dynamics of Coulomb asymmetry in strong elliptical laser fields.

    PubMed

    Li, Min; Liu, Yunquan; Liu, Hong; Ning, Qicheng; Fu, Libin; Liu, Jie; Deng, Yongkai; Wu, Chengyin; Peng, Liang-You; Peng, Liangyou; Gong, Qihuang

    2013-07-12

    We measure photoelectron angular distributions of noble gases in intense elliptically polarized laser fields, which indicate strong structure-dependent Coulomb asymmetry. Using a dedicated semiclassical model, we have disentangled the contribution of direct ionization and multiple forward scattering on Coulomb asymmetry in elliptical laser fields. Our theory quantifies the roles of the ionic potential and initial transverse momentum on Coulomb asymmetry, proving that the small lobes of asymmetry are induced by direct ionization and the strong asymmetry is induced by multiple forward scattering in the ionic potential. Both processes are distorted by the Coulomb force acting on the electrons after tunneling. Lowering the ionization potential, the relative contribution of direct ionization on Coulomb asymmetry substantially decreases and Coulomb focusing on multiple rescattering is more important. We do not observe evident initial longitudinal momentum spread at the tunnel exit according to our simulation.

  2. Regulation of the Proteasome by Neuronal Activity and Calcium/Calmodulin-dependent Protein Kinase II*

    PubMed Central

    Djakovic, Stevan N.; Schwarz, Lindsay A.; Barylko, Barbara; DeMartino, George N.; Patrick, Gentry N.

    2009-01-01

    Protein degradation via the ubiquitin proteasome system has been shown to regulate changes in synaptic strength that underlie multiple forms of synaptic plasticity. It is plausible, therefore, that the ubiquitin proteasome system is itself regulated by synaptic activity. By utilizing live-cell imaging strategies we report the rapid and dynamic regulation of the proteasome in hippocampal neurons by synaptic activity. We find that the blockade of action potentials (APs) with tetrodotoxin inhibited the activity of the proteasome, whereas the up-regulation of APs with bicuculline dramatically increased the activity of the proteasome. In addition, the regulation of the proteasome is dependent upon external calcium entry in part through N-methyl-d-aspartate receptors and L-type voltage-gated calcium channels and requires the activity of calcium/calmodulin-dependent protein kinase II (CaMKII). Using in vitro and in vivo assays we find that CaMKII stimulates proteasome activity and directly phosphorylates Rpt6, a subunit of the 19 S (PA700) subcomplex of the 26 S proteasome. Our data provide a novel mechanism whereby CaMKII may regulate the proteasome in neurons to facilitate remodeling of synaptic connections through protein degradation. PMID:19638347

  3. Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II.

    PubMed

    Djakovic, Stevan N; Schwarz, Lindsay A; Barylko, Barbara; DeMartino, George N; Patrick, Gentry N

    2009-09-25

    Protein degradation via the ubiquitin proteasome system has been shown to regulate changes in synaptic strength that underlie multiple forms of synaptic plasticity. It is plausible, therefore, that the ubiquitin proteasome system is itself regulated by synaptic activity. By utilizing live-cell imaging strategies we report the rapid and dynamic regulation of the proteasome in hippocampal neurons by synaptic activity. We find that the blockade of action potentials (APs) with tetrodotoxin inhibited the activity of the proteasome, whereas the up-regulation of APs with bicuculline dramatically increased the activity of the proteasome. In addition, the regulation of the proteasome is dependent upon external calcium entry in part through N-methyl-D-aspartate receptors and L-type voltage-gated calcium channels and requires the activity of calcium/calmodulin-dependent protein kinase II (CaMKII). Using in vitro and in vivo assays we find that CaMKII stimulates proteasome activity and directly phosphorylates Rpt6, a subunit of the 19 S (PA700) subcomplex of the 26 S proteasome. Our data provide a novel mechanism whereby CaMKII may regulate the proteasome in neurons to facilitate remodeling of synaptic connections through protein degradation.

  4. Regulation of Cellular Redox Signaling by Matricellular Proteins in Vascular Biology, Immunology, and Cancer.

    PubMed

    Roberts, David D; Kaur, Sukhbir; Isenberg, Jeffrey S

    2017-10-20

    In contrast to structural elements of the extracellular matrix, matricellular proteins appear transiently during development and injury responses, but their sustained expression can contribute to chronic disease. Through interactions with other matrix components and specific cell surface receptors, matricellular proteins regulate multiple signaling pathways, including those mediated by reactive oxygen and nitrogen species and H 2 S. Dysregulation of matricellular proteins contributes to the pathogenesis of vascular diseases and cancer. Defining the molecular mechanisms and receptors involved is revealing new therapeutic opportunities. Recent Advances: Thrombospondin-1 (TSP1) regulates NO, H 2 S, and superoxide production and signaling in several cell types. The TSP1 receptor CD47 plays a central role in inhibition of NO signaling, but other TSP1 receptors also modulate redox signaling. The matricellular protein CCN1 engages some of the same receptors to regulate redox signaling, and ADAMTS1 regulates NO signaling in Marfan syndrome. In addition to mediating matricellular protein signaling, redox signaling is emerging as an important pathway that controls the expression of several matricellular proteins. Redox signaling remains unexplored for many matricellular proteins. Their interactions with multiple cellular receptors remains an obstacle to defining signaling mechanisms, but improved transgenic models could overcome this barrier. Therapeutics targeting the TSP1 receptor CD47 may have beneficial effects for treating cardiovascular disease and cancer and have recently entered clinical trials. Biomarkers are needed to assess their effects on redox signaling in patients and to evaluate how these contribute to their therapeutic efficacy and potential side effects. Antioxid. Redox Signal. 27, 874-911.

  5. Ethylene Regulates Monomeric GTP-Binding Protein Gene Expression and Activity in Arabidopsis1

    PubMed Central

    Moshkov, Igor E.; Mur, Luis A.J.; Novikova, Galina V.; Smith, Aileen R.; Hall, Michael A.

    2003-01-01

    Ethylene rapidly and transiently up-regulates the activity of several monomeric GTP-binding proteins (monomeric G proteins) in leaves of Arabidopsis as determined by two-dimensional gel electrophoresis and autoradiographic analyses. The activation is suppressed by the receptor-directed inhibitor 1-methylcyclopropene. In the etr1-1 mutant, constitutive activity of all the monomeric G proteins activated by ethylene is down-regulated relative to wild type, and ethylene treatment has no effect on the levels of activity. Conversely, in the ctr1-1 mutant, several of the monomeric G proteins activated by ethylene are constitutively up-regulated. However, the activation profile of ctr1-1 does not exactly mimic that of ethylene-treated wild type. Biochemical and molecular evidence suggested that some of these monomeric G proteins are of the Rab class. Expression of the genes for a number of monomeric G proteins in response to ethylene was investigated by reverse transcriptase-PCR. Rab8 and Ara3 expression was increased within 10 min of ethylene treatment, although levels fell back significantly by 40 min. In the etr1-1 mutant, expression of Rab8 was lower than wild type and unaffected by ethylene; in ctr1-1, expression of Rab8 was much higher than wild type and comparable with that seen in ethylene treatments. Expression in ctr1-1 was also unaffected by ethylene. Thus, the data indicate a role for monomeric G proteins in ethylene signal transduction. PMID:12692329

  6. CMB hemispherical asymmetry from non-linear isocurvature perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assadullahi, Hooshyar; Wands, David; Firouzjahi, Hassan

    2015-04-01

    We investigate whether non-adiabatic perturbations from inflation could produce an asymmetric distribution of temperature anisotropies on large angular scales in the cosmic microwave background (CMB). We use a generalised non-linear δ N formalism to calculate the non-Gaussianity of the primordial density and isocurvature perturbations due to the presence of non-adiabatic, but approximately scale-invariant field fluctuations during multi-field inflation. This local-type non-Gaussianity leads to a correlation between very long wavelength inhomogeneities, larger than our observable horizon, and smaller scale fluctuations in the radiation and matter density. Matter isocurvature perturbations contribute primarily to low CMB multipoles and hence can lead to a hemisphericalmore » asymmetry on large angular scales, with negligible asymmetry on smaller scales. In curvaton models, where the matter isocurvature perturbation is partly correlated with the primordial density perturbation, we are unable to obtain a significant asymmetry on large angular scales while respecting current observational constraints on the observed quadrupole. However in the axion model, where the matter isocurvature and primordial density perturbations are uncorrelated, we find it may be possible to obtain a significant asymmetry due to isocurvature modes on large angular scales. Such an isocurvature origin for the hemispherical asymmetry would naturally give rise to a distinctive asymmetry in the CMB polarisation on large scales.« less

  7. Investigation of Pokemon-regulated proteins in hepatocellular carcinoma using mass spectrometry-based multiplex quantitative proteomics.

    PubMed

    Bi, Xin; Jin, Yibao; Gao, Xiang; Liu, Feng; Gao, Dan; Jiang, Yuyang; Liu, Hongxia

    2013-01-01

    Pokemon is a transcription regulator involved in embryonic development, cellular differentiation and oncogenesis. It is aberrantly overexpressed in multiple human cancers including Hepatocellular carcinoma (HCC) and is considered as a promising biomarker for HCC. In this work, the isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics strategy was used to investigate the proteomic profile associated with Pokemon in human HCC cell line QGY7703 and human hepatocyte line HL7702. Samples were labeled with four-plex iTRAQ reagents followed by two-dimensional liquid chromatography coupled with tandem mass spectrometry analysis. A total of 24 differentially expressed proteins were selected as significant. Nine proteins were potentially up-regulated by Pokemon while 15 proteins were potentially down-regulated and many proteins were previously identified as potential biomarkers for HCC. Gene ontology (GO) term enrichment revealed that the listed proteins were mainly involved in DNA metabolism and biosynthesis process. The changes of glucose-6-phosphate 1-dehydrogenase (G6PD, up-regulated) and ribonucleoside-diphosphate reductase large sub-unit (RIM1, down-regulated) were validated by Western blotting analysis and denoted as Pokemon's function of oncogenesis. We also found that Pokemon potentially repressed the expression of highly clustered proteins (MCM3, MCM5, MCM6, MCM7) which played key roles in promoting DNA replication. Altogether, our results may help better understand the role of Pokemon in HCC and promote the clinical applications.

  8. Evidence against Stable Protein S-Nitrosylation as a Widespread Mechanism of Post-translational Regulation.

    PubMed

    Wolhuter, Kathryn; Whitwell, Harry J; Switzer, Christopher H; Burgoyne, Joseph R; Timms, John F; Eaton, Philip

    2018-02-01

    S-nitrosation, commonly referred to as S-nitrosylation, is widely regarded as a ubiquitous, stable post-translational modification that directly regulates many proteins. Such a widespread role would appear to be incompatible with the inherent lability of the S-nitroso bond, especially its propensity to rapidly react with thiols to generate disulfide bonds. As anticipated, we observed robust and widespread protein S-nitrosation after exposing cells to nitrosocysteine or lipopolysaccharide. Proteins detected using the ascorbate-dependent biotin switch method are typically interpreted to be directly regulated by S-nitrosation. However, these S-nitrosated proteins are shown to predominantly comprise transient intermediates leading to disulfide bond formation. These disulfides are likely to be the dominant end effectors resulting from elevations in nitrosating cellular nitric oxide species. We propose that S-nitrosation primarily serves as a transient intermediate leading to disulfide formation. Overall, we conclude that the current widely held perception that stable S-nitrosation directly regulates the function of many proteins is significantly incorrect. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Femoral head asymmetry and coxa magna: anatomic study.

    PubMed

    Young, Ernest Y; Gebhart, Jeremy J; Bajwa, Navkirat; Cooperman, Daniel R; Ahn, Nicholas U

    2014-06-01

    Coxa magna, the asymmetrical circumferential enlargement of the femoral head, is an important sequela of pediatric disorders such as Legg-Calvé-Perthes disease. Definitions vary because of lack of controls and a scarcity of research on the distribution of the femoral head asymmetry. This study aims at defining the normal distribution of asymmetry between the left and the right femoral head and neck in the population and how demographics affect these properties. The study also looked at the distribution of side dominance (left or right). This study measured 230 paired femurs from individuals (20 to 40 y old) distributed for sex and ethnicity. The height and weight of the individuals were also recorded. The femoral head diameter and minimal femoral neck diameter in the anteroposterior view were measured on each paired femurs. The absolute and percent differences were determined to define asymmetry. Most of the population fell within 3% of asymmetry for the femoral head and 4% for the femoral neck. The maximum head percent asymmetry was 7.4%. Absolute difference in millimeters to percent asymmetry showed a ratio of 2:1 for the femoral head and 3:1 for the femoral neck. African Americans showed greater femoral head symmetry and a bias toward left-sided femoral head and neck enlargement when compared with their white counterparts. There was a high degree of symmetry between the left and right femoral heads and necks, which supports definitions found in the literature that define coxa magna above 10%. This study defines asymmetry in the femoral head in the normal population, which will help to define a quantitative definition of coxa magna.

  10. The polarity protein Par3 regulates APP trafficking and processing through the endocytic adaptor protein Numb.

    PubMed

    Sun, Miao; Asghar, Suwaiba Z; Zhang, Huaye

    2016-09-01

    The processing of amyloid precursor protein (APP) into β-amyloid peptide (Aβ) is a key step in the pathogenesis of Alzheimer's disease (AD), and trafficking dysregulations of APP and its secretases contribute significantly to altered APP processing. Here we show that the cell polarity protein Par3 plays an important role in APP processing and trafficking. We found that the expression of full length Par3 is significantly decreased in AD patients. Overexpression of Par3 promotes non-amyloidogenic APP processing, while depletion of Par3 induces intracellular accumulation of Aβ. We further show that Par3 functions by regulating APP trafficking. Loss of Par3 decreases surface expression of APP by targeting APP to the late endosome/lysosome pathway. Finally, we show that the effects of Par3 are mediated through the endocytic adaptor protein Numb, and Par3 functions by interfering with the interaction between Numb and APP. Together, our studies show a novel role for Par3 in regulating APP processing and trafficking. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Developmental Regulation of Genes Encoding Universal Stress Proteins in Schistosoma mansoni

    PubMed Central

    Isokpehi, Raphael D.; Mahmud, Ousman; Mbah, Andreas N.; Simmons, Shaneka S.; Avelar, Lívia; Rajnarayanan, Rajendram V.; Udensi, Udensi K.; Ayensu, Wellington K.; Cohly, Hari H.; Brown, Shyretha D.; Dates, Centdrika R.; Hentz, Sonya D.; Hughes, Shawntae J.; Smith-McInnis, Dominique R.; Patterson, Carvey O.; Sims, Jennifer N.; Turner, Kelisha T.; Williams, Baraka S.; Johnson, Matilda O.; Adubi, Taiwo; Mbuh, Judith V.; Anumudu, Chiaka I.; Adeoye, Grace O.; Thomas, Bolaji N.; Nashiru, Oyekanmi; Oliveira, Guilherme

    2011-01-01

    The draft nuclear genome sequence of the snail-transmitted, dimorphic, parasitic, platyhelminth Schistosoma mansoni revealed eight genes encoding proteins that contain the Universal Stress Protein (USP) domain. Schistosoma mansoni is a causative agent of human schistosomiasis, a severe and debilitating Neglected Tropical Disease (NTD) of poverty, which is endemic in at least 76 countries. The availability of the genome sequences of Schistosoma species presents opportunities for bioinformatics and genomics analyses of associated gene families that could be targets for understanding schistosomiasis ecology, intervention, prevention and control. Proteins with the USP domain are known to provide bacteria, archaea, fungi, protists and plants with the ability to respond to diverse environmental stresses. In this research investigation, the functional annotations of the USP genes and predicted nucleotide and protein sequences were initially verified. Subsequently, sequence clusters and distinctive features of the sequences were determined. A total of twelve ligand binding sites were predicted based on alignment to the ATP-binding universal stress protein from Methanocaldococcus jannaschii. In addition, six USP sequences showed the presence of ATP-binding motif residues indicating that they may be regulated by ATP. Public domain gene expression data and RT-PCR assays confirmed that all the S. mansoni USP genes were transcribed in at least one of the developmental life cycle stages of the helminth. Six of these genes were up-regulated in the miracidium, a free-swimming stage that is critical for transmission to the snail intermediate host. It is possible that during the intra-snail stages, S. mansoni gene transcripts for universal stress proteins are low abundant and are induced to perform specialized functions triggered by environmental stressors such as oxidative stress due to hydrogen peroxide that is present in the snail hemocytes. This report serves to catalyze the

  12. The cardiac copper chaperone proteins Sco1 and CCS are up-regulated, but Cox 1 and Cox4 are down-regulated, by copper deficiency.

    PubMed

    Getz, Jean; Lin, Dingbo; Medeiros, Denis M

    2011-10-01

    Copper is ferried in a cell complexed to chaperone proteins, and in the heart much copper is required for cytochrome c oxidase (Cox). It is not completely understood how copper status affects the levels of these proteins. Here we determined if dietary copper deficiency could up- or down-regulate select copper chaperone proteins and Cox subunits 1 and 4 in cardiac tissue of rats. Sixteen weanling male Long-Evans rats were randomized into treatment groups, one group receiving a copper-deficient diet (<1 mg Cu/kg diet) and one group receiving a diet containing adequate copper (6 mg Cu/kg diet) for 5 weeks. Hearts were removed, weighed, and non-myofibrillar proteins separated to analyze for levels of CCS, Sco1, Ctr1, Cox17, Cox1, and Cox4 by SDS-PAGE and Western blotting. No changes were observed in the concentrations of CTR1 and Cox17 between copper-adequate and copper-deficient rats. CCS and Sco1 were up-regulated and Cox1 and Cox4 were both down-regulated as a result of copper deficiency. These data suggest that select chaperone proteins and may be up-regulated, and Cox1 and 4 down-regulated, by a dietary copper deficiency, whereas others appear not to be affected by copper status.

  13. Arabidopsis Protein Phosphatase DBP1 Nucleates a Protein Network with a Role in Regulating Plant Defense

    PubMed Central

    Naumann, Kai; Lassowskat, Ines; Navarrete-Gómez, Marisa; Scheel, Dierk; Vera, Pablo

    2014-01-01

    Arabidopsis thaliana DBP1 belongs to the plant-specific family of DNA-binding protein phosphatases. Although recently identified as a novel host factor mediating susceptibility to potyvirus, little is known about DBP1 targets and partners and the molecular mechanisms underlying its function. Analyzing changes in the phosphoproteome of a loss-of-function dbp1 mutant enabled the identification of 14-3-3λ isoform (GRF6), a previously reported DBP1 interactor, and MAP kinase (MAPK) MPK11 as components of a small protein network nucleated by DBP1, in which GRF6 stability is modulated by MPK11 through phosphorylation, while DBP1 in turn negatively regulates MPK11 activity. Interestingly, grf6 and mpk11 loss-of-function mutants showed altered response to infection by the potyvirus Plum pox virus (PPV), and the described molecular mechanism controlling GRF6 stability was recapitulated upon PPV infection. These results not only contribute to a better knowledge of the biology of DBP factors, but also of MAPK signalling in plants, with the identification of GRF6 as a likely MPK11 substrate and of DBP1 as a protein phosphatase regulating MPK11 activity, and unveils the implication of this protein module in the response to PPV infection in Arabidopsis. PMID:24595057

  14. Comparative vesicle proteomics reveals selective regulation of protein expression in chestnut blight fungus by a hypovirus.

    PubMed

    Wang, Jinzi; Wang, Fangzhen; Feng, Youjun; Mi, Ke; Chen, Qi; Shang, Jinjie; Chen, Baoshan

    2013-01-14

    The chestnut blight fungus (Cryphonectria parasitica) and hypovirus constitute a model system to study fungal pathogenesis and mycovirus-host interaction. Knowledge in this field has been gained largely from investigations at gene transcription level so far. Here we report a systematic analysis of the vesicle proteins of the host fungus with/without hypovirus infection. Thirty-three differentially expressed protein spots were identified in the purified vesicle protein samples by two-dimensional electrophoresis and mass spectrometry. Down-regulated proteins were mostly cargo proteins involved in primary metabolism and energy generation and up-regulated proteins were mostly vesicle associated proteins and ABC transporter. A virus-encoded protein p48 was found to have four forms with different molecular mass in vesicles from the virus-infected strain. While a few of the randomly selected differentially expressed proteins were in accordance with their transcription profiles, majority were not in agreement with their mRNA accumulation patterns, suggesting that an extensive post-transcriptional regulation may have occurred in the host fungus upon a hypovirus infection. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Mapping the stability of human brain asymmetry across five sex-chromosome aneuploidies.

    PubMed

    Lin, Amy; Clasen, Liv; Lee, Nancy Raitano; Wallace, Gregory L; Lalonde, Francois; Blumenthal, Jonathan; Giedd, Jay N; Raznahan, Armin

    2015-01-07

    The human brain displays stereotyped and early emerging patterns of cortical asymmetry in health. It is unclear if these asymmetries are highly sensitive to genetic and environmental variation or fundamental features of the brain that can survive severe developmental perturbations. To address this question, we mapped cortical thickness (CT) asymmetry in a group of genetically defined disorders known to impact CT development. Participants included 137 youth with one of five sex-chromosome aneuploidies [SCAs; XXX (n = 28), XXY (n = 58), XYY (n = 26), XXYY (n = 20), and XXXXY (n = 5)], and 169 age-matched typically developing controls (80 female). In controls, we replicated previously reported rightward inferior frontal and leftward lateral parietal CT asymmetry. These opposing frontoparietal CT asymmetries were broadly preserved in all five SCA groups. However, we also detected foci of shifting CT asymmetry with aneuploidy, which fell almost exclusively within regions of significant CT asymmetry in controls. Specifically, X-chromosome aneuploidy accentuated normative rightward inferior frontal asymmetries, while Y-chromosome aneuploidy reversed normative rightward medial prefrontal and lateral temporal asymmetries. These findings indicate that (1) the stereotyped normative pattern of opposing frontoparietal CT asymmetry arises from developmental mechanisms that can withstand gross chromosomal aneuploidy and (2) X and Y chromosomes can exert focal, nonoverlapping and directionally opposed influences on CT asymmetry within cortical regions of significant asymmetry in health. Our study attests to the resilience of developmental mechanisms that support the global patterning of CT asymmetry in humans, and motivates future research into the molecular bases and functional consequences of sex chromosome dosage effects on CT asymmetry. Copyright © 2015 the authors 0270-6474/15/350140-06$15.00/0.

  16. Dietary proteins in the regulation of food intake and body weight in humans.

    PubMed

    Anderson, G Harvey; Moore, Shannon E

    2004-04-01

    This review presents 4 lines of evidence supporting a role for proteins in the regulation of food intake and maintenance of healthy body weights. It is concluded that the protein content of food, and perhaps its source, is a strong determinant of short-term satiety and of how much food is eaten. Although the role of protein in the regulation of long-term food intake and body weight is less clear, the evidence reviewed suggests that further research to define its role is merited. Such research has the potential to lead to new functional foods, food formulations, and dietary recommendations for achieving healthy body weights.

  17. Regulation of multispanning membrane protein topology via post-translational annealing.

    PubMed

    Van Lehn, Reid C; Zhang, Bin; Miller, Thomas F

    2015-09-26

    The canonical mechanism for multispanning membrane protein topogenesis suggests that protein topology is established during cotranslational membrane integration. However, this mechanism is inconsistent with the behavior of EmrE, a dual-topology protein for which the mutation of positively charged loop residues, even close to the C-terminus, leads to dramatic shifts in its topology. We use coarse-grained simulations to investigate the Sec-facilitated membrane integration of EmrE and its mutants on realistic biological timescales. This work reveals a mechanism for regulating membrane-protein topogenesis, in which initially misintegrated configurations of the proteins undergo post-translational annealing to reach fully integrated multispanning topologies. The energetic barriers associated with this post-translational annealing process enforce kinetic pathways that dictate the topology of the fully integrated proteins. The proposed mechanism agrees well with the experimentally observed features of EmrE topogenesis and provides a range of experimentally testable predictions regarding the effect of translocon mutations on membrane protein topogenesis.

  18. Regulators and effectors of bone morphogenetic protein signalling in the cardiovascular system.

    PubMed

    Luo, Jiang-Yun; Zhang, Yang; Wang, Li; Huang, Yu

    2015-07-15

    Bone morphogenetic proteins (BMPs) play key roles in the regulation of cell proliferation, differentiation and apoptosis in various tissues and organs, including the cardiovascular system. BMPs signal through both Smad-dependent and -independent cascades to exert a wide spectrum of biological activities. Cardiovascular disorders such as abnormal angiogenesis, atherosclerosis, pulmonary hypertension and cardiac hypertrophy have been linked to aberrant BMP signalling. To correct the dysregulated BMP signalling in cardiovascular pathogenesis, it is essential to get a better understanding of how the regulators and effectors of BMP signalling control cardiovascular function and how the dysregulated BMP signalling contributes to cardiovascular dysfunction. We hence highlight several key regulators of BMP signalling such as extracellular regulators of ligands, mechanical forces, microRNAs and small molecule drugs as well as typical BMP effectors like direct downstream target genes, mitogen-activated protein kinases, reactive oxygen species and microRNAs. The insights into these molecular processes will help target both the regulators and important effectors to reverse BMP-associated cardiovascular pathogenesis. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  19. Ligand-regulated peptides: a general approach for modulating protein-peptide interactions with small molecules.

    PubMed

    Binkowski, Brock F; Miller, Russell A; Belshaw, Peter J

    2005-07-01

    We engineered a novel ligand-regulated peptide (LiRP) system where the binding activity of intracellular peptides is controlled by a cell-permeable small molecule. In the absence of ligand, peptides expressed as fusions in an FKBP-peptide-FRB-GST LiRP scaffold protein are free to interact with target proteins. In the presence of the ligand rapamycin, or the nonimmunosuppressive rapamycin derivative AP23102, the scaffold protein undergoes a conformational change that prevents the interaction of the peptide with the target protein. The modular design of the scaffold enables the creation of LiRPs through rational design or selection from combinatorial peptide libraries. Using these methods, we identified LiRPs that interact with three independent targets: retinoblastoma protein, c-Src, and the AMP-activated protein kinase. The LiRP system should provide a general method to temporally and spatially regulate protein function in cells and organisms.

  20. Atypical Alpha Asymmetry in Adults with ADHD

    ERIC Educational Resources Information Center

    Hale, T. Sigi; Smalley, Susan L.; Hanada, Grant; Macion, James; McCracken, James T.; McGough, James J.; Loo, Sandra K.

    2009-01-01

    Introduction: A growing body of literature suggests atypical cerebral asymmetry and interhemispheric interaction in ADHD. A common means of assessing lateralized brain function in clinical populations has been to examine the relative proportion of EEG alpha activity (8-12 Hz) in each hemisphere (i.e., alpha asymmetry). Increased rightward alpha…

  1. FK506 binding proteins: cellular regulators of intracellular Ca2+ signalling.

    PubMed

    MacMillan, Debbi

    2013-01-30

    In many cell types the intracellular Ca(2+) store performs a central role in the regulation of the cytosolic Ca(2+) concentration ([Ca(2+)](c)), the elevation of which triggers diverse and fundamental activities from reproduction to apoptosis, as well as being the major trigger for contraction. Two distinct classes of Ca(2+) release channels, which mobilize Ca(2+) from the store, exist; the inositol 1,4,5-trisphosphate (IP(3)) receptor and the ryanodine receptor. Considerable attention has been directed towards the importance of modulatory proteins that interact with these channels including, FK506 binding proteins (FKBPs), FKBP12 and its isoform, FKBP12.6. Although FKBP12 was first identified as the principal intracellular target for the immunosuppressive drugs, FK506 and rapamycin, new insights into the role of FKBPs have since emerged. These regulatory proteins are reportedly important modulators of intracellular Ca(2+) release. FKBPs may regulate ryanodine and IP(3) receptors either directly, by binding to the cytoplasmic aspect of the channel, or indirectly via modulation of two targets, the phosphatase, calcineurin or the kinase, mammalian target of rapamycin (mTOR). Dissociation of FKBP12 or FKBP12.6 from either Ca(2+) release channel may increase, decrease or have no effect on ryanodine receptor- or IP(3) receptor-mediated Ca(2+) release. These important controversies may be attributed to FKBPs' ability to regulate the receptor indirectly via the kinase and phosphatase pathways modulated by the accessory proteins. This brief review discusses the regulation of intracellular ryanodine and IP(3) receptor Ca(2+) release channels by accessory FKBPs, with important implications for the role of FKBPs in the pathophysiology of a number of diseases. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Manduca Contactin Regulates Amyloid Precursor Protein-Dependent Neuronal Migration

    PubMed Central

    Ramaker, Jenna M.; Swanson, Tracy L.

    2016-01-01

    Amyloid precursor protein (APP) was originally identified as the source of β-amyloid peptides that accumulate in Alzheimer's disease (AD), but it also has been implicated in the control of multiple aspects of neuronal motility. APP belongs to an evolutionarily conserved family of transmembrane proteins that can interact with a variety of adapter and signaling molecules. Recently, we showed that both APP and its insect ortholog [APPL (APP-Like)] directly bind the heterotrimeric G-protein Goα, supporting the model that APP can function as an unconventional Goα-coupled receptor. We also adapted a well characterized assay of neuronal migration in the hawkmoth, Manduca sexta, to show that APPL–Goα signaling restricts ectopic growth within the developing nervous system, analogous to the role postulated for APP family proteins in controlling migration within the mammalian cortex. Using this assay, we have now identified Manduca Contactin (MsContactin) as an endogenous ligand for APPL, consistent with previous work showing that Contactins interact with APP family proteins in other systems. Using antisense-based knockdown protocols and fusion proteins targeting both proteins, we have shown that MsContactin is selectively expressed by glial cells that ensheath the migratory neurons (expressing APPL), and that MsContactin–APPL interactions normally prevent inappropriate migration and outgrowth. These results provide new evidence that Contactins can function as authentic ligands for APP family proteins that regulate APP-dependent responses in the developing nervous system. They also support the model that misregulated Contactin–APP interactions might provoke aberrant activation of Goα and its effectors, thereby contributing to the neurodegenerative sequelae that typify AD. SIGNIFICANCE STATEMENT Members of the amyloid precursor protein (APP) family participate in many aspects of neuronal development, but the ligands that normally activate APP signaling have remained

  3. Common Genetic Variant in VIT Is Associated with Human Brain Asymmetry.

    PubMed

    Tadayon, Sayed H; Vaziri-Pashkam, Maryam; Kahali, Pegah; Ansari Dezfouli, Mitra; Abbassian, Abdolhossein

    2016-01-01

    Brain asymmetry varies across individuals. However, genetic factors contributing to this normal variation are largely unknown. Here we studied variation of cortical surface area asymmetry in a large sample of subjects. We performed principal component analysis (PCA) to capture correlated asymmetry variation across cortical regions. We found that caudal and rostral anterior cingulate together account for a substantial part of asymmetry variation among individuals. To find SNPs associated with this subset of brain asymmetry variation we performed a genome-wide association study followed by replication in an independent cohort. We identified one SNP (rs11691187) that had genome-wide significant association (P Combined = 2.40e-08). The rs11691187 is in the first intron of VIT. In a follow-up analysis, we found that VIT gene expression is associated with brain asymmetry in six donors of the Allen Human Brain Atlas. Based on these findings we suggest that VIT contributes to normal brain asymmetry variation. Our results can shed light on disorders associated with altered brain asymmetry.

  4. A peptide export-import control circuit modulating bacterial development regulates protein phosphatases of the phosphorelay.

    PubMed

    Perego, M

    1997-08-05

    The phosphorelay signal transduction system activates developmental transcription in sporulation of Bacillus subtilis by phosphorylation of aspartyl residues of the Spo0F and Spo0A response regulators. The phosphorylation level of these response regulators is determined by the opposing activities of protein kinases and protein aspartate phosphatases that interpret positive and negative signals for development in a signal integration circuit. The RapA protein aspartate phosphatase of the phosphorelay is regulated by a peptide that directly inhibits its activity. This peptide is proteolytically processed from an inactive pre-inhibitor protein encoded in the phrA gene. The pre-inhibitor is cleaved by the protein export apparatus to a putative pro-inhibitor that is further processed to the active inhibitor peptide and internalized by the oligopeptide permease. This export-import circuit is postulated to be a mechanism for timing phosphatase activity where the processing enzymes regulate the rate of formation of the active inhibitor. The processing events may, in turn, be controlled by a regulatory hierarchy. Chromosome sequencing has revealed several other phosphatase-prepeptide gene pairs in B. subtilis, suggesting that the use of this mechanism may be widespread in signal transduction.

  5. A peptide export–import control circuit modulating bacterial development regulates protein phosphatases of the phosphorelay

    PubMed Central

    Perego, Marta

    1997-01-01

    The phosphorelay signal transduction system activates developmental transcription in sporulation of Bacillus subtilis by phosphorylation of aspartyl residues of the Spo0F and Spo0A response regulators. The phosphorylation level of these response regulators is determined by the opposing activities of protein kinases and protein aspartate phosphatases that interpret positive and negative signals for development in a signal integration circuit. The RapA protein aspartate phosphatase of the phosphorelay is regulated by a peptide that directly inhibits its activity. This peptide is proteolytically processed from an inactive pre-inhibitor protein encoded in the phrA gene. The pre-inhibitor is cleaved by the protein export apparatus to a putative pro-inhibitor that is further processed to the active inhibitor peptide and internalized by the oligopeptide permease. This export–import circuit is postulated to be a mechanism for timing phosphatase activity where the processing enzymes regulate the rate of formation of the active inhibitor. The processing events may, in turn, be controlled by a regulatory hierarchy. Chromosome sequencing has revealed several other phosphatase–prepeptide gene pairs in B. subtilis, suggesting that the use of this mechanism may be widespread in signal transduction. PMID:9238025

  6. Coordination of genomic structure and transcription by the main bacterial nucleoid-associated protein HU

    PubMed Central

    Berger, Michael; Farcas, Anca; Geertz, Marcel; Zhelyazkova, Petya; Brix, Klaudia; Travers, Andrew; Muskhelishvili, Georgi

    2010-01-01

    The histone-like protein HU is a highly abundant DNA architectural protein that is involved in compacting the DNA of the bacterial nucleoid and in regulating the main DNA transactions, including gene transcription. However, the coordination of the genomic structure and function by HU is poorly understood. Here, we address this question by comparing transcript patterns and spatial distributions of RNA polymerase in Escherichia coli wild-type and hupA/B mutant cells. We demonstrate that, in mutant cells, upregulated genes are preferentially clustered in a large chromosomal domain comprising the ribosomal RNA operons organized on both sides of OriC. Furthermore, we show that, in parallel to this transcription asymmetry, mutant cells are also impaired in forming the transcription foci—spatially confined aggregations of RNA polymerase molecules transcribing strong ribosomal RNA operons. Our data thus implicate HU in coordinating the global genomic structure and function by regulating the spatial distribution of RNA polymerase in the nucleoid. PMID:20010798

  7. Frontal EEG asymmetry as a moderator and mediator of emotion.

    PubMed

    Coan, James A; Allen, John J B

    2004-10-01

    Frontal EEG asymmetry appears to serve as (1) an individual difference variable related to emotional responding and emotional disorders, and (2) a state-dependent concomitant of emotional responding. Such findings, highlighted in this review, suggest that frontal EEG asymmetry may serve as both a moderator and a mediator of emotion- and motivation-related constructs. Unequivocal evidence supporting frontal EEG asymmetry as a moderator and/or mediator of emotion is lacking, as insufficient attention has been given to analyzing the frontal EEG asymmetries in terms of moderators and mediators. The present report reviews the frontal EEG asymmetry literature from the framework of moderators and mediators, and overviews data analytic strategies that would support claims of moderation and mediation.

  8. A theoretical explanation for the Central Molecular Zone asymmetry

    NASA Astrophysics Data System (ADS)

    Sormani, Mattia C.; Treß, Robin G.; Ridley, Matthew; Glover, Simon C. O.; Klessen, Ralf S.; Binney, James; Magorrian, John; Smith, Rowan

    2018-04-01

    It has been known for more than 30 yr that the distribution of molecular gas in the innermost 300 parsecs of the Milky Way, the Central Molecular Zone, is strongly asymmetric. Indeed, approximately three quarters of molecular emission come from positive longitudes, and only one quarter from negative longitudes. However, despite much theoretical effort, the origin of this asymmetry has remained a mystery. Here, we show that the asymmetry can be neatly explained by unsteady flow of gas in a barred potential. We use high-resolution 3D hydrodynamical simulations coupled to a state-of-the-art chemical network. Despite the initial conditions and the bar potential being point symmetric with respect to the Galactic Centre, asymmetries develop spontaneously due to the combination of a hydrodynamical instability known as the `wiggle instability' and the thermal instability. The observed asymmetry must be transient: observations made tens of megayears in the past or in the future would often show an asymmetry in the opposite sense. Fluctuations of amplitude comparable to the observed asymmetry occur for a large fraction of time in our simulations, and suggest that the present is not an exceptional moment in the life of our Galaxy.

  9. Antagonistic Regulation of Cystic Fibrosis Transmembrane Conductance Regulator Cell Surface Expression by Protein Kinases WNK4 and Spleen Tyrosine Kinase ▿

    PubMed Central

    Mendes, Ana Isabel; Matos, Paulo; Moniz, Sónia; Luz, Simão; Amaral, Margarida D.; Farinha, Carlos M.; Jordan, Peter

    2011-01-01

    Members of the WNK (with-no-lysine [K]) subfamily of protein kinases regulate various ion channels involved in sodium, potassium, and chloride homeostasis by either inducing their phosphorylation or regulating the number of channel proteins expressed at the cell surface. Here, we describe findings demonstrating that the cell surface expression of the cystic fibrosis transmembrane conductance regulator (CFTR) is also regulated by WNK4 in mammalian cells. This effect of WNK4 is independent of the presence of kinase and involves interaction with and inhibition of spleen tyrosine kinase (Syk), which phosphorylates Tyr512 in the first nucleotide-binding domain 1 (NBD1) of CFTR. Transfection of catalytically active Syk into CFTR-expressing baby hamster kidney cells reduces the cell surface expression of CFTR, whereas that of WNK4 promotes it. This is shown by biotinylation of cell surface proteins, immunofluorescence microscopy, and functional efflux assays. Mutation of Tyr512 to either glutamic acid or phenylalanine is sufficient to alter CFTR surface levels. In human airway epithelial cells, downregulation of endogenous Syk and WNK4 confirms their roles as physiologic regulators of CFTR surface expression. Together, our results show that Tyr512 phosphorylation is a novel signal regulating the prevalence of CFTR at the cell surface and that WNK4 and Syk perform an antagonistic role in this process. PMID:21807898

  10. Hotspots for allosteric regulation on protein surfaces

    PubMed Central

    Reynolds, Kimberly A.; McLaughlin, Richard N.; Ranganathan, Rama

    2012-01-01

    Recent work indicates a general architecture for proteins in which sparse networks of physically contiguous and co-evolving amino acids underlie basic aspects of structure and function. These networks, termed sectors, are spatially organized such that active sites are linked to many surface sites distributed throughout the structure. Using the metabolic enzyme dihydrofolate reductase as a model system, we show that (1) the sector is strongly correlated to a network of residues undergoing millisecond conformational fluctuations associated with enzyme catalysis and (2) sector-connected surface sites are statistically preferred locations for the emergence of allosteric control in vivo. Thus, sectors represent an evolutionarily conserved “wiring” mechanism that can enable perturbations at specific surface positions to rapidly initiate conformational control over protein function. These findings suggest that sectors enable the evolution of intermolecular communication and regulation. PMID:22196731

  11. Soft tissue nasal asymmetry as an indicator of orofacial cleft predisposition.

    PubMed

    Zhang, Charles; Miller, Steven F; Roosenboom, Jasmien; Wehby, George L; Moreno Uribe, Lina M; Hecht, Jacqueline T; Deleyiannis, Frederic W B; Christensen, Kaare; Marazita, Mary L; Weinberg, Seth M

    2018-06-01

    The biological relatives of offspring with nonsyndromic orofacial clefts have been shown to exhibit distinctive facial features, including excess asymmetry, which are hypothesized to indicate the presence of genetic risk factors. The significance of excess soft tissue nasal asymmetry in at-risk relatives is unclear and was examined in the present study. Our sample included 164 unaffected parents from families with a history of orofacial clefting and 243 adult controls. Geometric morphometric methods were used to analyze the coordinates of 15 nasal landmarks collected from three-dimensional facial surface images. Following generalized Procrustes analysis, Procrustes ANOVA and MANOVA tests were applied to determine the type and magnitude of nasal asymmetry present in each group. Group differences in mean nasal asymmetry were also assessed via permutation testing. We found that nasal asymmetry in both parents and controls was directional in nature, although the magnitude of the asymmetry was greater in parents. This was confirmed with permutation testing, where the mean nasal asymmetry was significantly different (p < .0001) between parents and controls. The asymmetry was greatest for midline structures and the nostrils. When subsets of parents were subsequently analyzed and compared (parents with bilateral vs. unilateral offspring; parents with left vs. right unilateral offspring), each group showed a similar pattern of asymmetry and could not be distinguished statistically. Thus, the side of the unilateral cleft (right vs. left) in offspring was not associated with the direction of the nasal asymmetry in parents. © 2018 Wiley Periodicals, Inc.

  12. Post-transcriptional regulation of Pabpn1 by the RNA binding protein HuR.

    PubMed

    Phillips, Brittany L; Banerjee, Ayan; Sanchez, Brenda J; Di Marco, Sergio; Gallouzi, Imed-Eddine; Pavlath, Grace K; Corbett, Anita H

    2018-06-25

    RNA processing is critical for proper spatial and temporal control of gene expression. The ubiquitous nuclear polyadenosine RNA binding protein, PABPN1, post-transcriptionally regulates multiple steps of gene expression. Mutations in the PABPN1 gene expanding an N-terminal alanine tract in the PABPN1 protein from 10 alanines to 11-18 alanines cause the muscle-specific disease oculopharyngeal muscular dystrophy (OPMD), which affects eyelid, pharynx, and proximal limb muscles. Previous work revealed that the Pabpn1 transcript is unstable, contributing to low steady-state Pabpn1 mRNA and protein levels in vivo, specifically in skeletal muscle, with even lower levels in muscles affected in OPMD. Thus, low levels of PABPN1 protein could predispose specific tissues to pathology in OPMD. However, no studies have defined the mechanisms that regulate Pabpn1 expression. Here, we define multiple cis-regulatory elements and a trans-acting factor, HuR, which regulate Pabpn1 expression specifically in mature muscle in vitro and in vivo. We exploit multiple models including C2C12 myotubes, primary muscle cells, and mice to determine that HuR decreases Pabpn1 expression. Overall, we have uncovered a mechanism in mature muscle that negatively regulates Pabpn1 expression in vitro and in vivo, which could provide insight to future studies investigating therapeutic strategies for OPMD treatment.

  13. Assessment of postural asymmetry in mild to moderate Parkinson's disease.

    PubMed

    Geurts, A C H; Boonstra, T A; Voermans, N C; Diender, M G; Weerdesteyn, V; Bloem, B R

    2011-01-01

    Asymmetry of symptoms of Parkinson's disease is clinically most evident for appendicular impairments. For axial impairments such as freezing of gait, asymmetry is less obvious. To date, asymmetries in balance control in PD patients have seldom been studied. Therefore, in this study we investigated whether postural control can be asymmetrically affected in mild to moderate PD patients. Seventeen PD patients were instructed to stand as still and symmetrically as possible on a dual force-plate during two trials. Dynamic postural asymmetry was assessed by comparing the centre-of-pressure velocities between both legs. Results showed that four patients (24%) had dynamic postural asymmetry, even after correcting for weight-bearing asymmetry. Hence, this study suggests that postural control can be asymmetrical in early PD. However, future studies should investigate the prevalence of dynamic postural asymmetry, in a larger group of PD patients. It should also be further investigated whether this approach can be used as a tool to support the initial diagnosis or monitor disease progression, or as an outcome measure for interventions aimed at improving balance in PD. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. PREFACE: Physics approaches to protein interactions and gene regulation Physics approaches to protein interactions and gene regulation

    NASA Astrophysics Data System (ADS)

    Nussinov, Ruth; Panchenko, Anna R.; Przytycka, Teresa

    2011-06-01

    networks have been identified, including scale free distribution of the vertex degree, network motifs, and modularity, to name a few. These studies of network organization require the network to be as complete as possible, which given the limitations of experimental techniques is not currently the case. Therefore, experimental procedures for detecting biomolecular interactions should be complemented by computational approaches. The paper by Lees et al provides a review of computational methods, integrating multiple independent sources of data to infer physical and functional protein-protein interaction networks. One of the important aspects of protein interactions that should be accounted for in the prediction of protein interaction networks is that many proteins are composed of distinct domains. Protein domains may mediate protein interactions while proteins and their interaction networks may gain complexity through gene duplication and expansion of existing domain architectures via domain rearrangements. The latter mechanisms have been explored in detail in the paper by Cohen-Gihon et al. Protein-protein interactions are not the only component of the cell's interactome. Regulation of cell activity can be achieved at the level of transcription and involve a transcription factor—DNA binding which typically requires recognition of a specific DNA sequence motif. Chip-Chip and the more recent Chip-Seq technologies allow in vivo identification of DNA binding sites and, together with novel in vitro approaches, provide data necessary for deciphering the corresponding binding motifs. Such information, complemented by structures of protein-DNA complexes and knowledge of the differences in binding sites among homologs, opens the door to constructing predictive binding models. The paper by Persikov and Singh provides an example of such a model in the Cys2His2 zinc finger family. Recent studies have indicated that the presence of such binding motifs is, however, neither necessary

  15. Protein Tyrosine Phosphatases: From Housekeeping Enzymes to Master-Regulators of Signal Transduction

    PubMed Central

    Tonks, Nicholas K.

    2013-01-01

    There are many misconceptions surrounding the roles of protein phosphatases in the regulation of signal transduction, perhaps the most damaging of which is the erroneous view that these enzymes exert their effects merely as constitutively active housekeeping enzymes. On the contrary, the phosphatases are critical, specific regulators of signaling in their own right and serve an essential function, in a coordinated manner with the kinases, to determine the response to a physiological stimulus. This review is a personal perspective on the development of our understanding of the protein tyrosine phosphatase (PTP) family of enzymes. I have discussed various aspects of the structure, regulation and function of the PTP family, which I hope will illustrate the fundamental importance of these enzymes to the control of signal transduction. PMID:23176256

  16. Protein S-Nitrosylation Regulates Xylem Vessel Cell Differentiation in Arabidopsis.

    PubMed

    Kawabe, Harunori; Ohtani, Misato; Kurata, Tetsuya; Sakamoto, Tomoaki; Demura, Taku

    2018-01-01

    Post-translational modifications of proteins have important roles in the regulation of protein activity. One such modification, S-nitrosylation, involves the covalent binding of nitric oxide (NO)-related species to a cysteine residue. Recent work showed that protein S-nitrosylation has crucial functions in plant development and environmental responses. In the present study, we investigated the importance of protein S-nitrosylation for xylem vessel cell differentiation using a forward genetics approach. We performed ethyl methanesulfonate mutagenesis of a transgenic Arabidopsis 35S::VND7-VP16-GR line in which the activity of VASCULAR-RELATED NAC-DOMAIN7 (VND7), a key transcription factor involved in xylem vessel cell differentiation, can be induced post-translationally by glucocorticoid treatment, with the goal of obtaining suppressor mutants that failed to differentiate ectopic xylem vessel cells; we named these mutants suppressor of ectopic vessel cell differentiation induced by VND7 (seiv) mutants. We found the seiv1 mutant to be a recessive mutant in which ectopic xylem cell differentiation was inhibited, especially in aboveground organs. In seiv1 mutants, a single nucleic acid substitution (G to A) leading to an amino acid substitution (E36K) was present in the gene encoding S-NITROSOGLUTATHIONE REDUCTASE 1 (GSNOR1), which regulates the turnover of the natural NO donor, S-nitrosoglutathione. An in vitro S-nitrosylation assay revealed that VND7 can be S-nitrosylated at Cys264 and Cys320 located near the transactivation activity-related domains, which were shown to be important for transactivation activity of VND7 by transient reporter assay. Our results suggest crucial roles for GSNOR1-regulated protein S-nitrosylation in xylem vessel cell differentiation, partly through the post-translational modification of VND7. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions

  17. Between-subject variability in asymmetry analysis of macular thickness.

    PubMed

    Alluwimi, Muhammed S; Swanson, William H; Malinovsky, Victor E

    2014-05-01

    To investigate the use of asymmetry analysis to reduce between-subject variability of macular thickness measurements using spectral domain optical coherence tomography. Sixty-three volunteers (33 young subjects [aged 21 to 35 years] and 30 older subjects [aged 45 to 85 years]) free of eye disease were recruited. Macular images were gathered with the Spectralis optical coherence tomography. An overlay 24- by 24-degree grid was divided into five zones per hemifield, and asymmetry analysis was computed as the difference between superior and inferior zone thicknesses. We hypothesized that the lowest variation and the highest density of ganglion cells will be found approximately 3 to 6 degrees from the foveola, corresponding to zones 1 and 2. For each zone and age group, between-subject SDs were compared for retinal thickness versus asymmetry analysis using an F test. To account for repeated comparisons, p < 0.0125 was required for statistical significance. Axial length and corneal curvature were measured with an IOLMaster. For OD, asymmetry analysis reduced between-subject variability in zones 1 and 2 in both groups (F > 3.2, p < 0.001). Standard deviation for zone 1 dropped from 12.0 to 3.0 μm in the young group and from 11.7 to 2.6 μm in the older group. Standard deviation for zone 2 dropped from 13.6 to 5.3 μm in the young group and from 11.1 to 5.8 μm in the older group. Combining all subjects, neither retinal thickness nor asymmetry analysis showed a strong correlation with axial length or corneal curvature (R² < 0.01). Analysis for OS yielded the same pattern of results, as did asymmetry analyses between eyes (F > 3.8, p < 0.0001). Asymmetry analysis reduced between-subject variability in zones 1 and 2. Combining the five zones together produced a higher between-subject variation of the retinal thickness asymmetry analysis; thus, we encourage clinicians to be cautious when interpreting the asymmetry analysis printouts.

  18. Tension-compression asymmetry of a rolled Mg-Y-Nd alloy

    NASA Astrophysics Data System (ADS)

    Song, Bo; Pan, Hucheng; Ren, Weijie; Guo, Ning; Wu, Zehong; Xin, Renlong

    2017-07-01

    In this work, tension and compression deformation behaviors of rolled and aged Mg-Y-Nd alloys were investigated. The microstructure evolution and plastic deformation mechanism during tension and compression were analyzed by combined use of electron backscatter diffraction and a visco-plastic self-consistent crystal plasticity model. The results show that both rolled and aged Mg-Y-Nd sheets show an extremely low yield asymmetry. Elimination of yield asymmetry can be ascribed to the tilted basal texture and suppression of {10-12} twinning. The rolled sheet has almost no yield asymmetry, however exhibits a remarkable strain-hardening behavior asymmetry. Compressed sample shows lower initial strain hardening rate and keeps higher strain hardening rate at the later stage compared with tension. The strain-hardening asymmetry can be aggravated by aging at 280 C. It is considered the limited amount of twins in compression plays the critical role in the strain hardening asymmetry. Finally, the relevant mechanism was analyzed and discussed.

  19. Differential regulation of the androgen receptor by protein phosphatase regulatory subunits

    PubMed Central

    Grey, James; Jones, Dominic; Wilson, Laura; Nakjang, Sirintra; Clayton, Jake; Temperley, Richard; Clark, Emma; Gaughan, Luke; Robson, Craig

    2018-01-01

    The Androgen Receptor (AR) is a key molecule in the development, maintenance and progression of prostate cancer (PC). However, the relationship between the AR and co-regulatory proteins that facilitate AR activity in castrate resistant settings remain understudied. Here we show that protein phosphatase 1 regulatory subunits, identified from a phosphatase RNAi screen, direct PP1 catalytic subunits to a varied yet significant response in AR function. As such, we have characterised the PP1β holoenzyme, myosin phosphatase (MLCP), as a novel ligand independent regulator of the AR. Sustained MLCP activity through down-regulation of the MLCP inhibitory subunit, PPP1R14C, results in impaired AR nuclear translocation, protein stability and transcriptional activity in distinct models of PC progression, culminating in restoration of a non-malignant prostate genotype. Phenotypically, a marked reduction in cell proliferation and migration, characterised by G1 cell cycle arrest is observed, confirming PP1 holoenzyme disruption as a novel treatment approach in PC. PMID:29423094

  20. Mercury exposure may influence fluctuating asymmetry in waterbirds.

    PubMed

    Herring, Garth; Eagles-Smith, Collin A; Ackerman, Joshua T

    2017-06-01

    Variation in avian bilateral symmetry can be an indicator of developmental instability in response to a variety of stressors, including environmental contaminants. The authors used composite measures of fluctuating asymmetry to examine the influence of mercury concentrations in 2 tissues on fluctuating asymmetry within 4 waterbird species. Fluctuating asymmetry increased with mercury concentrations in whole blood and breast feathers of Forster's terns (Sterna forsteri), a species with elevated mercury concentrations. Specifically, fluctuating asymmetry in rectrix feather 1 was the most strongly correlated structural variable of those tested (wing chord, tarsus, primary feather 10, rectrix feather 6) with mercury concentrations in Forster's terns. However, for American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), and Caspian terns (Hydroprogne caspia), the authors found no relationship between fluctuating asymmetry and either whole-blood or breast feather mercury concentrations, even though these species had moderate to elevated mercury exposure. The results indicate that mercury contamination may act as an environmental stressor during development and feather growth and contribute to fluctuating asymmetry of some species of highly contaminated waterbirds. Environ Toxicol Chem 2017;36:1599-1605. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  1. Regulation of Cellular Redox Signaling by Matricellular Proteins in Vascular Biology, Immunology, and Cancer

    PubMed Central

    Kaur, Sukhbir

    2017-01-01

    Abstract Significance: In contrast to structural elements of the extracellular matrix, matricellular proteins appear transiently during development and injury responses, but their sustained expression can contribute to chronic disease. Through interactions with other matrix components and specific cell surface receptors, matricellular proteins regulate multiple signaling pathways, including those mediated by reactive oxygen and nitrogen species and H2S. Dysregulation of matricellular proteins contributes to the pathogenesis of vascular diseases and cancer. Defining the molecular mechanisms and receptors involved is revealing new therapeutic opportunities. Recent Advances: Thrombospondin-1 (TSP1) regulates NO, H2S, and superoxide production and signaling in several cell types. The TSP1 receptor CD47 plays a central role in inhibition of NO signaling, but other TSP1 receptors also modulate redox signaling. The matricellular protein CCN1 engages some of the same receptors to regulate redox signaling, and ADAMTS1 regulates NO signaling in Marfan syndrome. In addition to mediating matricellular protein signaling, redox signaling is emerging as an important pathway that controls the expression of several matricellular proteins. Critical Issues: Redox signaling remains unexplored for many matricellular proteins. Their interactions with multiple cellular receptors remains an obstacle to defining signaling mechanisms, but improved transgenic models could overcome this barrier. Future Directions: Therapeutics targeting the TSP1 receptor CD47 may have beneficial effects for treating cardiovascular disease and cancer and have recently entered clinical trials. Biomarkers are needed to assess their effects on redox signaling in patients and to evaluate how these contribute to their therapeutic efficacy and potential side effects. Antioxid. Redox Signal. 27, 874–911. PMID:28712304

  2. Audiometric asymmetry and tinnitus laterality.

    PubMed

    Tsai, Betty S; Sweetow, Robert W; Cheung, Steven W

    2012-05-01

    To identify an optimal audiometric asymmetry index for predicting tinnitus laterality. Retrospective medical record review. Data from adult tinnitus patients (80 men and 44 women) were extracted for demographic, audiometric, tinnitus laterality, and related information. The main measures were sensitivity, specificity, positive predictive value (PPV), and receiver operating characteristic (ROC) curves. Three audiometric asymmetry indices were constructed using one, two, or three frequency elements to compute the average interaural threshold difference (aITD). Tinnitus laterality predictive performance of a particular index was assessed by increasing the cutoff or minimum magnitude of the aITD from 10 to 35 dB in 5-dB steps to determine its ROC curve. Single frequency index performance was inferior to the other two (P < .05). Double and triple frequency indices were indistinguishable (P > .05). Two adjoining frequency elements with aITD ≥ 15 dB performed optimally for predicting tinnitus laterality (sensitivity = 0.59, specificity = 0.71, and PPV = 0.76). Absolute and relative magnitudes of hearing loss in the poorer ear were uncorrelated with tinnitus distress. An optimal audiometric asymmetry index to predict tinnitus laterality is one whereby 15 dB is the minimum aITD of two adjoining frequencies, inclusive of the maximal ITD. Tinnitus laterality dependency on magnitude of interaural asymmetry may inform design and interpretation of neuroimaging studies. Monaural acoustic tinnitus therapy may be an initial consideration for asymmetric hearing loss meeting the criterion of aITD ≥ 15 dB. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  3. Hemispheric and facial asymmetry: faces of academe.

    PubMed

    Smith, W M

    1998-11-01

    Facial asymmetry (facedness) of selected academic faculty members was studied in relation to brain asymmetry and cognitive specialization. Comparisons of facedness were made among humanities faculty (H), faculty members of mathematics and physics (M-P), psychologists (P), and a group of randomly selected individuals (R). Facedness was defined in terms of the relative sizes (in square centimeters) of the two hemifaces. It was predicted that the four groups would show differences in facedness, namely, H, right face bias; M-P, left face bias; P, no bias; and R, no bias. The predictions were confirmed, and the results interpreted in terms of known differences in hemispheric specialization of cognitive functions as they relate to the dominant cognitive activity of each of the different groups. In view of the contralateral control of the two hemifaces (below the eyes) by the two hemispheres of the brain, the two sides of the face undergo differential muscular development, thus creating facial asymmetry. Other factors, such as gender, also may affect facial asymmetry. Suggestions for further research on facedness are discussed.

  4. Frontal Brain Asymmetry and Willingness to Pay.

    PubMed

    Ramsøy, Thomas Z; Skov, Martin; Christensen, Maiken K; Stahlhut, Carsten

    2018-01-01

    Consumers frequently make decisions about how much they are willing to pay (WTP) for specific products and services, but little is known about the neural mechanisms underlying such calculations. In this study, we were interested in testing whether specific brain activation-the asymmetry in engagement of the prefrontal cortex-would be related to consumer choice. Subjects saw products and subsequently decided how much they were willing to pay for each product, while undergoing neuroimaging using electroencephalography. Our results demonstrate that prefrontal asymmetry in the gamma frequency band, and a trend in the beta frequency band that was recorded during product viewing was significantly related to subsequent WTP responses. Frontal asymmetry in the alpha band was not related to WTP decisions. Besides suggesting separate neuropsychological mechanisms of consumer choice, we find that one specific measure-the prefrontal gamma asymmetry-was most strongly related to WTP responses, and was most coupled to the actual decision phase. These findings are discussed in light of the psychology of WTP calculations, and in relation to the recent emergence of consumer neuroscience and neuromarketing.

  5. Versatile function of the circadian protein CIPC as a regulator of Erk activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsunaga, Ryota; Nishino, Tasuku; Yokoyama, Atsushi

    2016-01-15

    The CLOCK-interacting protein, Circadian (CIPC), has been identified as an additional negative-feedback regulator of the circadian clock. However, recent study on CIPC knockout mice has shown that CIPC is not critically required for basic circadian clock function, suggesting other unknown biological roles for CIPC. In this study, we focused on the cell cycle dependent nuclear-cytoplasmic shuttling function of CIPC and on identifying its binding proteins. Lys186 and 187 were identified as the essential amino acid residues within the nuclear localization signal (NLS) of CIPC. We identified CIPC-binding proteins such as the multifunctional enzyme CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase,more » and dihydroorotase), which is a key enzyme for de novo pyrimidine synthesis. Compared to control cells, HEK293 cells overexpressing wild-type CIPC showed suppressed cell proliferation and retardation of cell cycle. We also found that PMA-induced Erk activation was inhibited with expression of wild-type CIPC. In contrast, the NLS mutant of CIPC, which reduced the ability of CIPC to translocate into the nucleus, did not exhibit these biological effects. Since CAD and Erk have significant roles in cell proliferation and cell cycle, CIPC may work as a cell cycle regulator by interacting with these binding proteins. - Highlights: • CIPC is a cell cycle dependent nuclear-cytoplasmic shuttling protein. • K186 and 187are the essential amino acid residues within the NLS of CIPC. • CAD was identified as a novel CIPC-binding protein. • CIPC might regulate the activity and translocation of CAD in the cells.« less

  6. Abiotic stress responses in plants: roles of calmodulin-regulated proteins.

    PubMed

    Virdi, Amardeep S; Singh, Supreet; Singh, Prabhjeet

    2015-01-01

    Intracellular changes in calcium ions (Ca(2+)) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca(2+)-sensing proteins and has been shown to be involved in transduction of Ca(2+) signals. After interacting with Ca(2+), CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants.

  7. NF-κB and enhancer-binding CREB protein scaffolded by CREB-binding protein (CBP)/p300 proteins regulate CD59 protein expression to protect cells from complement attack.

    PubMed

    Du, Yiqun; Teng, Xiaoyan; Wang, Na; Zhang, Xin; Chen, Jianfeng; Ding, Peipei; Qiao, Qian; Wang, Qingkai; Zhang, Long; Yang, Chaoqun; Yang, Zhangmin; Chu, Yiwei; Du, Xiang; Zhou, Xuhui; Hu, Weiguo

    2014-01-31

    The complement system can be activated spontaneously for immune surveillance or induced to clear invading pathogens, in which the membrane attack complex (MAC, C5b-9) plays a critical role. CD59 is the sole membrane complement regulatory protein (mCRP) that restricts MAC assembly. CD59, therefore, protects innocent host cells from attacks by the complement system, and host cells require the constitutive and inducible expression of CD59 to protect themselves from deleterious destruction by complement. However, the mechanisms that underlie CD59 regulation remain largely unknown. In this study we demonstrate that the widely expressed transcription factor Sp1 may regulate the constitutive expression of CD59, whereas CREB-binding protein (CBP)/p300 bridge NF-κB and CREB, which surprisingly functions as an enhancer-binding protein to induce the up-regulation of CD59 during in lipopolysaccharide (LPS)-triggered complement activation, thus conferring host defense against further MAC-mediated destruction. Moreover, individual treatment with LPS, TNF-α, and the complement activation products (sublytic MAC (SC5b-9) and C5a) could increase the expression of CD59 mainly by activating NF-κB and CREB signaling pathways. Together, our findings identify a novel gene regulation mechanism involving CBP/p300, NF-κB, and CREB; this mechanism suggests potential drug targets for controlling various complement-related human diseases.

  8. Asymmetries in visual search for conjunctive targets.

    PubMed

    Cohen, A

    1993-08-01

    Asymmetry is demonstrated between conjunctive targets in visual search with no detectable asymmetries between the individual features that compose these targets. Experiment 1 demonstrated this phenomenon for targets composed of color and shape. Experiment 2 and 4 demonstrate this asymmetry for targets composed of size and orientation and for targets composed of contrast level and orientation, respectively. Experiment 3 demonstrates that search rate of individual features cannot predict search rate for conjunctive targets. These results demonstrate the need for 2 levels of representations: one of features and one of conjunction of features. A model related to the modified feature integration theory is proposed to account for these results. The proposed model and other models of visual search are discussed.

  9. PTPRT regulates the interaction of Syntaxin-binding protein 1 with Syntaxin 1 through dephosphorylation of specific tyrosine residue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, So-Hee; Moon, Jeonghee; Lee, Myungkyu

    2013-09-13

    Highlights: •PTPRT is a brain-specific, expressed, protein tyrosine phosphatase. •PTPRT regulated the interaction of Syntaxin-binding protein 1 with Syntaxin 1. •PTPRT dephosphorylated the specific tyrosine residue of Syntaxin-binding protein 1. •Dephosphorylation of Syntaxin-binding protein 1 enhanced the interaction with Syntaxin 1. •PTPRT appears to regulate the fusion of synaptic vesicle through dephosphorylation. -- Abstract: PTPRT (protein tyrosine phosphatase receptor T), a brain-specific tyrosine phosphatase, has been found to regulate synaptic formation and development of hippocampal neurons, but its regulation mechanism is not yet fully understood. Here, Syntaxin-binding protein 1, a key component of synaptic vesicle fusion machinery, was identified asmore » a possible interaction partner and an endogenous substrate of PTPRT. PTPRT interacted with Syntaxin-binding protein 1 in rat synaptosome, and co-localized with Syntaxin-binding protein 1 in cultured hippocampal neurons. PTPRT dephosphorylated tyrosine 145 located around the linker between domain 1 and 2 of Syntaxin-binding protein 1. Syntaxin-binding protein 1 directly binds to Syntaxin 1, a t-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein, and plays a role as catalysts of SNARE complex formation. Syntaxin-binding protein 1 mutant mimicking non-phosphorylation (Y145F) enhanced the interaction with Syntaxin 1 compared to wild type, and therefore, dephosphorylation of Syntaxin-binding protein 1 appeared to be important for SNARE-complex formation. In conclusion, PTPRT could regulate the interaction of Syntaxin-binding protein 1 with Syntaxin 1, and as a result, the synaptic vesicle fusion appeared to be controlled through dephosphorylation of Syntaxin-binding protein 1.« less

  10. Regulation of contractile protein gene expression in unloaded mouse skeletal muscle

    NASA Technical Reports Server (NTRS)

    Criswell, D. S.; Carson, J. A.; Booth, F. W.

    1996-01-01

    Hindlimb unloading was performed on mice in an effort to study the regulation of contractile protein genes. In particular, the regulation of myosin heavy chain IIb was examined. During unloading, muscle fibers undergo a type conversion. Preliminary data from this study does not support the hypothesis that the fiber type conversion is due to an increase in promoter activity of fast isoform genes, such as myosin heavy chain IIb. The consequences of this finding are examined, with particular focus on other factors controlling gene regulation.

  11. Asymmetries of the arcuate fasciculus in monozygotic twins: genetic and nongenetic influences.

    PubMed

    Häberling, Isabelle S; Badzakova-Trajkov, Gjurgjica; Corballis, Michael C

    2013-01-01

    We assessed cerebral asymmetry for language in 35 monozygotic twin pairs. Using DTI, we reconstructed the arcuate fasciculus in each twin. Among the male twins, right-handed pairs showed greater left-sided asymmetry of connectivity in the arcuate fasciculus than did those with discordant handedness, and within the discordant group the right-handers had greater left-sided volume asymmetry of the arcuate fasciculus than did their left-handed co-twins. There were no such effects in the female twins. Cerebral asymmetry for language showed more consistent results, with the more left-cerebrally dominant twins also showing more leftward asymmetry of high anisotropic fibers in the arcuate fasciculus, a result applying equally to female as to male twins. Reversals of arcuate fasciculus asymmetry were restricted to pairs discordant for language dominance, with the left-cerebrally dominant twins showing leftward and the right-cerebrally dominant twins rightward asymmetry of anisotropic diffusion in the arcuate fasciculus. Because monozygotic twin pairs share the same genotype, our results indicate a strong nongenetic component in arcuate fasciculus asymmetry, particularly in those discordant for cerebral asymmetry.

  12. Challenge to Unity: Relationship Between Hemispheric Asymmetry of the Default Mode Network and Mind Wandering.

    PubMed

    Kajimura, Shogo; Kochiyama, Takanori; Abe, Nobuhito; Nomura, Michio

    2018-04-21

    The default mode network (DMN) is considered a unified core brain function for generating subjective mental experiences, such as mind wandering. We propose a novel cognitive framework for understanding the unity of the DMN from the perspective of hemispheric asymmetry. Using transcranial direct current stimulation (tDCS), effective connectivity estimation, and machine learning, we show that the bilateral angular gyri (AG), which are core regions of the DMN, exhibit heterogeneity in both inherent network organization and mind wandering regulation. Inherent heterogeneities are present between the right and left AG regarding not only effective connectivity, but also mind wandering regulation; the right AG is related to mind-wandering reduction, whereas the left AG is related to mind-wandering generation. Further supporting this observation, we found that only anodal tDCS of the right AG induced machine learning-detectable changes in effective connectivity and regional amplitude, which could possibly be linked to reduced mind wandering. Our findings highlight the importance of hemispheric asymmetry to further understand the function of the DMN and contribute to the emerging neural model of mind wandering, which is necessary to understand the nature of the human mind.

  13. Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues.

    PubMed

    Schulz, Timothy A; Choi, Mal-Gi; Raychaudhuri, Sumana; Mears, Jason A; Ghirlando, Rodolfo; Hinshaw, Jenny E; Prinz, William A

    2009-12-14

    Sterols are transferred between cellular membranes by vesicular and poorly understood nonvesicular pathways. Oxysterol-binding protein-related proteins (ORPs) have been implicated in sterol sensing and nonvesicular transport. In this study, we show that yeast ORPs use a novel mechanism that allows regulated sterol transfer between closely apposed membranes, such as organelle contact sites. We find that the core lipid-binding domain found in all ORPs can simultaneously bind two membranes. Using Osh4p/Kes1p as a representative ORP, we show that ORPs have at least two membrane-binding surfaces; one near the mouth of the sterol-binding pocket and a distal site that can bind a second membrane. The distal site is required for the protein to function in cells and, remarkably, regulates the rate at which Osh4p extracts and delivers sterols in a phosphoinositide-dependent manner. Together, these findings suggest a new model of how ORPs could sense and regulate the lipid composition of adjacent membranes.

  14. PARylation of the forkhead-associated domain protein DAWDLE regulates plant immunity.

    PubMed

    Feng, Baomin; Ma, Shisong; Chen, Sixue; Zhu, Ning; Zhang, Shuxin; Yu, Bin; Yu, Yu; Le, Brandon; Chen, Xuemei; Dinesh-Kumar, Savithramma P; Shan, Libo; He, Ping

    2016-12-01

    Protein poly(ADP-ribosyl)ation (PARylation) primarily catalyzed by poly(ADP-ribose) polymerases (PARPs) plays a crucial role in controlling various cellular responses. However, PARylation targets and their functions remain largely elusive. Here, we deployed an Arabidopsis protein microarray coupled with in vitro PARylation assays to globally identify PARylation targets in plants. Consistent with the essential role of PARylation in plant immunity, the forkhead-associated (FHA) domain protein DAWDLE (DDL), one of PARP2 targets, positively regulates plant defense to both adapted and non-adapted pathogens. Arabidopsis PARP2 interacts with and PARylates DDL, which was enhanced upon treatment of bacterial flagellin. Mass spectrometry and mutagenesis analysis identified multiple PARylation sites of DDL by PARP2. Genetic complementation assays indicate that DDL PARylation is required for its function in plant immunity. In contrast, DDL PARylation appears to be dispensable for its previously reported function in plant development partially mediated by the regulation of microRNA biogenesis. Our study uncovers many previously unknown PARylation targets and points to the distinct functions of DDL in plant immunity and development mediated by protein PARylation and small RNA biogenesis, respectively. © 2016 The Authors.

  15. Dietary fat mediates hyperglycemia and the glucogenic response to increased protein consumption in an insect, Manduca sexta L.

    PubMed

    Thompson, S N

    2004-08-04

    Many insects display non-homeostatic regulation over blood sugar level. The concentration of trehalose varies dramatically depending on physiological and nutritional state. In the absence of dietary carbohydrate, blood trehalose in larvae of the lepidopteran insect Manduca sexta is maintained by gluconeogenesis and is dependent on dietary protein consumption. In the present study, the effect of dietary fat on the glucogenic response of insects to increased dietary protein was examined by NMR analysis of (2-13C)pyruvate metabolism. Last instar larvae were maintained on a carbohydrate-free chemically defined artificial diet having variable levels of casein with and without corn oil. Gluconeogenic flux, the ratio of the rate of gluconeogenesis to the rate of glycolysis, was estimated from the 13C distribution in trehalose arising by gluconeogenesis and the 13C enrichment of alanine due to pyruvate cycling. Insects grew well on carbohydrate-free diets and growth increased with increasing dietary protein level. At all dietary protein levels, larvae grew better on diets with fat. Without dietary fat, larvae were glucogenic but displayed low blood trehalose concentrations, <30 mM, regardless of protein consumption. When fat was included in the diet, however, gluconeogenic flux and blood trehalose level increased sharply in response to increased dietary protein level, with trehalose concentrations >50 mM at higher levels of protein consumption. When offered a choice of a high carbohydrate and a high protein diet, larvae maintained on diets with fat displayed a food preference related to blood sugar level. Those with low blood sugar fed on carbohydrate, while those with high blood sugar preferred protein. Trehalose synthesized from (2-13C)pyruvate exhibited asymmetry in the 13C distribution in individual glucose molecules, indicating a disequilibrium at the triose phosphate isomerase-catalyzed step of the gluconeogenic pathway. In trehalose from larvae on diets with fat

  16. Approaches to Optimizing Animal Cell Culture Process: Substrate Metabolism Regulation and Protein Expression Improvement

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanxing

    Some high value proteins and vaccines for medical and veterinary applications by animal cell culture have an increasing market in China. In order to meet the demands of large-scale productions of proteins and vaccines, animal cell culture technology has been widely developed. In general, an animal cell culture process can be divided into two stages in a batch culture. In cell growth stage a high specific growth rate is expected to achieve a high cell density. In production stage a high specific production rate is stressed for the expression and secretion of qualified protein or replication of virus. It is always critical to maintain high cell viability in fed-batch and perfusion cultures. More concern has been focused on two points by the researchers in China. First, the cell metabolism of substrates is analyzed and the accumulation of toxic by-products is decreased through regulating cell metabolism in the culture process. Second, some important factors effecting protein expression are understood at the molecular level and the production ability of protein is improved. In pace with the rapid development of large-scale cell culture for the production of vaccines, antibodies and other recombinant proteins in China, the medium design and process optimization based on cell metabolism regulation and protein expression improvement will play an important role. The chapter outlines the main advances in metabolic regulation of cell and expression improvement of protein in animal cell culture in recent years.

  17. Gα and regulator of G-protein signaling (RGS) protein pairs maintain functional compatibility and conserved interaction interfaces throughout evolution despite frequent loss of RGS proteins in plants.

    PubMed

    Hackenberg, Dieter; McKain, Michael R; Lee, Soon Goo; Roy Choudhury, Swarup; McCann, Tyler; Schreier, Spencer; Harkess, Alex; Pires, J Chris; Wong, Gane Ka-Shu; Jez, Joseph M; Kellogg, Elizabeth A; Pandey, Sona

    2017-10-01

    Signaling pathways regulated by heterotrimeric G-proteins exist in all eukaryotes. The regulator of G-protein signaling (RGS) proteins are key interactors and critical modulators of the Gα protein of the heterotrimer. However, while G-proteins are widespread in plants, RGS proteins have been reported to be missing from the entire monocot lineage, with two exceptions. A single amino acid substitution-based adaptive coevolution of the Gα:RGS proteins was proposed to enable the loss of RGS in monocots. We used a combination of evolutionary and biochemical analyses and homology modeling of the Gα and RGS proteins to address their expansion and its potential effects on the G-protein cycle in plants. Our results show that RGS proteins are widely distributed in the monocot lineage, despite their frequent loss. There is no support for the adaptive coevolution of the Gα:RGS protein pair based on single amino acid substitutions. RGS proteins interact with, and affect the activity of, Gα proteins from species with or without endogenous RGS. This cross-functional compatibility expands between the metazoan and plant kingdoms, illustrating striking conservation of their interaction interface. We propose that additional proteins or alternative mechanisms may exist which compensate for the loss of RGS in certain plant species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  18. SIRT5 Regulates both Cytosolic and Mitochondrial Protein Malonylation with Glycolysis as a Major Target.

    PubMed

    Nishida, Yuya; Rardin, Matthew J; Carrico, Chris; He, Wenjuan; Sahu, Alexandria K; Gut, Philipp; Najjar, Rami; Fitch, Mark; Hellerstein, Marc; Gibson, Bradford W; Verdin, Eric

    2015-07-16

    Protein acylation links energetic substrate flux with cellular adaptive responses. SIRT5 is a NAD(+)-dependent lysine deacylase and removes both succinyl and malonyl groups. Using affinity enrichment and label free quantitative proteomics, we characterized the SIRT5-regulated lysine malonylome in wild-type (WT) and Sirt5(-/-) mice. 1,137 malonyllysine sites were identified across 430 proteins, with 183 sites (from 120 proteins) significantly increased in Sirt5(-/-) animals. Pathway analysis identified glycolysis as the top SIRT5-regulated pathway. Importantly, glycolytic flux was diminished in primary hepatocytes from Sirt5(-/-) compared to WT mice. Substitution of malonylated lysine residue 184 in glyceraldehyde 3-phosphate dehydrogenase with glutamic acid, a malonyllysine mimic, suppressed its enzymatic activity. Comparison with our previous reports on acylation reveals that malonylation targets a different set of proteins than acetylation and succinylation. These data demonstrate that SIRT5 is a global regulator of lysine malonylation and provide a mechanism for regulation of energetic flux through glycolysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A mechanism regulating proteolysis of specific proteins during renal tubular cell growth.

    PubMed

    Franch, H A; Sooparb, S; Du, J; Brown, N S

    2001-06-01

    Growth factors suppress the degradation of cellular proteins in lysosomes in renal epithelial cells. Whether this process also involves specific classes of proteins that influence growth processes is unknown. We investigated chaperone-mediated autophagy, a lysosomal import pathway that depends on the 73-kDa heat shock cognate protein and allows the degradation of proteins containing a specific lysosomal import consensus sequence (KFERQ motif). Epidermal growth factor (EGF) or ammonia, but not transforming growth factor beta1, suppresses total protein breakdown in cultured NRK-52E renal epithelial cells. EGF or ammonia prolonged the half-life of glyceraldehyde-3-phosphate dehydrogenase, a classic substrate for chaperone-mediated autophagy, by more than 90%, whereas transforming growth factor beta1 did not. EGF caused a similar increase in the half-life of the KFERQ-containing paired box-related transcription factor, Pax2. The increase in half-life was accompanied by an increased accumulation of proteins with a KFERQ motif including glyceraldehyde-3-phosphate dehydrogenase and Pax2. Ammonia also increased the level of the Pax2 protein. Lysosomal import of KFERQ proteins depends on the abundance of the 96-kDa lysosomal glycoprotein protein (lgp96), and we found that EGF caused a significant decrease in lgp96 in cellular homogenates and associated with lysosomes. We conclude that EGF in cultured renal cells regulates the breakdown of proteins targeted for destruction by chaperone-mediated autophagy. Because suppression of this pathway results in an increase in Pax2, these results suggest a novel mechanism for the regulation of cell growth.

  20. Regulation of Urea Transporters by Tonicity-responsive Enhancer Binding Protein

    PubMed Central

    Kwon, H. Moo; Kim, Jim

    2007-01-01

    Urea accumulation in the renal inner medulla plays a key role in the maintenance of maximal urinary concentrating ability. Urea transport in the kidney is mediated by transporter proteins that include renal urea transporter (UT-A) and erythrocyte urea transporter (UT-B). UT-A1 and UT-A2 are produced from the same gene. There is an active tonicity-responsive enhancer (TonE) in the promoter of UT-A1, and the UT-A1 promoter is stimulated by hypertonicity via tonicity-responsive enhancer binding protein (TonEBP). The downregulation of UT-A2 raises the possibility that TonEBP also regulates its promoter. There is some evidence that TonEBP regulates expression of UT-A in vivo; (1) during the renal development of the urinary concentrating ability, expression of TonEBP precedes that of UT-A1; (2) in transgenic mice expressing a dominant negative form of TonEBP, expression of UT-A1 and UT-A2 is severely impaired; (3) in treatment with cyclosporine A, TonEBP was significantly downregulated after 28 days. This downregulation involves mRNA levels of UT-A2; (4) in hypokalemic animals, downregulation of TonEBP contributed to the down regulation of UT-A in the inner medulla. These data support that TonEBP directly contributes to the urinary concentration and renal urea recycling by the regulation of urea transporters. PMID:24459497

  1. Hand preference and magnetic resonance imaging asymmetries of the central sulcus.

    PubMed

    Foundas, A L; Hong, K; Leonard, C M; Heilman, K M

    1998-04-01

    Hand preference is perhaps the most evident behavioral asymmetry observed in humans. Anatomic brain asymmetries that may be associated with hand preference have not been extensively studied, and no clear relationship between asymmetries of the motor system and hand preference have been established. Therefore, using volumetric magnetic resonance imaging methodologies, the surface area of the hand representation was measured along the length of the central sulcus in 15 consistent right- and 15 left-handers matched for age and gender. There was a significant leftward asymmetry of the motor hand area of the precentral gyrus in the right-handers, but no directional asymmetry was found in the left-handers. When asymmetry quotients were computed to determine the distribution of interhemispheric asymmetries, the left motor bank was greater than the right motor bank in 9 of 15 right-handers, the right motor bank was greater than the left motor bank in 3 of 15 right-handers, and the motor banks were equal in 3 of 15 right-handers. In contrast, among left-handers, the left motor bank was greater than the right motor bank in 5 of 15, the right motor bank was greater than the left motor bank in 5 of 15, and the motor banks were equal in 5 of 15. Although no direct measure of motor dexterity and skill was performed, these data suggest that anatomic asymmetries of the motor hand area may be related to hand preference because of the differences in right-handers and left-handers. Furthermore, the predominant leftward asymmetry in right-handers and the random distribution of asymmetries in the left-handers support Annett's right-shift theory. It is unclear, however, whether these asymmetries are the result of preferential hand use or are a reflection of a biologic preference to use one limb over the other.

  2. The association between infantile postural asymmetry and unsettled behaviour in babies.

    PubMed

    Ellwood, Julie; Ford, Michael; Nicholson, Alf

    2017-12-01

    Unsettled infant behaviour is a common problem of infancy without known aetiology or clearly effective management. Some manual therapists propose that musculoskeletal dysfunction contributes to unsettled infant behaviour, yet reported improvement following treatment is anecdotal. The infantile postural asymmetry measurement scale is a tool which measures infantile asymmetry, a form of musculoskeletal dysfunction. The first part of the study aimed to investigate its reliability and validity for measuring infantile postural asymmetry. This study also aimed to investigate whether there was an association between infantile postural asymmetry and unsettled infant behaviour and whether an association was mediated by, or confounded with, the demographic variables of age, sex, parity, birth weight and weight gain in 12- to 16-week-old infants. Fifty-eight infants were recruited and a quantitative cross-sectional observational design was used. An association between unsettled behaviour and infantile postural asymmetry was not found. A significant difference between high and low cervical rotation deficit groups for surgency was detected in female babies and needs further examination. Questions remain regarding the construct validity of the infantile postural asymmetry scale. No association between unsettled infant behaviour and infantile postural asymmetry was found in 12- to 16-week-old infants. The influence of sex on the interaction between infantile postural asymmetry and infant behaviour needs further examination. An association between unsettled infant behaviour and infantile postural asymmetry is still unproven. What is known: • Unsettled infant behaviour has a considerable impact on many family situations. • Identifying a definitive cause has been a source of much examination and research. Many different hypotheses have been suggested yet much is still unknown. What is new: • The association between unsettled infant behaviour and infantile postural asymmetry is

  3. Pelvic bone asymmetry in 323 study participants receiving abdominal CT scans.

    PubMed

    Badii, Maziar; Shin, Sonya; Torreggiani, William C; Jankovic, Bojana; Gustafson, Paul; Munk, Peter L; Esdaile, John M

    2003-06-15

    Retrospective review of all CT scans of pelvis and abdomen performed at our institution in October and November 2000. To determine the prevalence and extent of radiographic pelvic asymmetry in a population of patients not preselected for having low back pain. Pelvic asymmetry refers to asymmetric positioning of landmarks on the two sides of the pelvis and may have a structural or functional etiology. Pelvic asymmetry can be associated with the presence of true leg length discrepancy, lead to false diagnosis or inaccurate measurement of leg length discrepancy, or itself be independently associated with back pain. Although the prevalence of pelvic asymmetry has been reported in patients with back pain to be 24-91%, its prevalence in the general population is not known. A total of 323 consecutive CT scans of the pelvis/abdomen were assessed for pelvic asymmetry by one of three examiners. Pelvic asymmetry was defined as an unequal distance from the iliac crests to the acetabuli bilaterally, measured on the anteroposterior scout view of the CT scan. Measurements made on 30 randomly selected scans by the three examiners were used to assess interrater reliability of the measurement method. Pelvic asymmetry ranged in magnitude from -11 mm to 7 mm [right pelvis (mm) - left pelvis (mm)]. Pelvic asymmetry was >5 mm in 17 of 323 (5.3%) and >10 mm in 2 of 323 (0.6%) of the subjects; 172 of 323 (53.3%) had a smaller right hemipelvis (mean asymmetry = -3.0 mm). A total of 95 of 323 (29.4%) had a smaller left hemipelvis (mean asymmetry = 2.1 mm). The intraclass correlation coefficient [ICC(2,1)] between the three observers was high (0.91). Pelvic asymmetry of >5 mm was uncommon, with a prevalence of approximately 5% in the population studied. CT scanography was found to be a practical and reliable method for the assessment of suspected pelvic asymmetry.

  4. Quantitative Proteomics Reveal Distinct Protein Regulations Caused by Aggregatibacter actinomycetemcomitans within Subgingival Biofilms

    PubMed Central

    Bao, Kai; Bostanci, Nagihan; Selevsek, Nathalie; Thurnheer, Thomas; Belibasakis, Georgios N.

    2015-01-01

    Periodontitis is an infectious disease that causes the inflammatory destruction of the tooth-supporting (periodontal) tissues, caused by polymicrobial biofilm communities growing on the tooth surface. Aggressive periodontitis is strongly associated with the presence of Aggregatibacter actinomycetemcomitans in the subgingival biofilms. Nevertheless, whether and how A. actinomycetemcomitans orchestrates molecular changes within the biofilm is unclear. The aim of this work was to decipher the interactions between A. actinomycetemcomitans and other bacterial species in a multi-species biofilm using proteomic analysis. An in vitro 10-species “subgingival” biofilm model, or its derivative that included additionally A. actinomycetemcomitans, were anaerobically cultivated on hydroxyapatite discs for 64 h. When present, A. actinomycetemcomitans formed dense intra-species clumps within the biofilm mass, and did not affect the numbers of the other species in the biofilm. Liquid chromatography-tandem mass spectrometry was used to identify the proteomic content of the biofilm lysate. A total of 3225 and 3352 proteins were identified in the biofilm, in presence or absence of A. actinomycetemcomitans, respectively. Label-free quantitative proteomics revealed that 483 out of the 728 quantified bacterial proteins (excluding those of A. actinomycetemcomitans) were accordingly regulated. Interestingly, all quantified proteins from Prevotella intermedia were up-regulated, and most quantified proteins from Campylobacter rectus, Streptococcus anginosus, and Porphyromonas gingivalis were down-regulated in presence of A. actinomycetemcomitans. Enrichment of Gene Ontology pathway analysis showed that the regulated groups of proteins were responsible primarily for changes in the metabolic rate, the ferric iron-binding, and the 5S RNA binding capacities, on the universal biofilm level. While the presence of A. actinomycetemcomitans did not affect the numeric composition or absolute

  5. Ubiquitin-specific Protease 7 Regulates Nucleotide Excision Repair through Deubiquitinating XPC Protein and Preventing XPC Protein from Undergoing Ultraviolet Light-induced and VCP/p97 Protein-regulated Proteolysis*

    PubMed Central

    He, Jinshan; Zhu, Qianzheng; Wani, Gulzar; Sharma, Nidhi; Han, Chunhua; Qian, Jiang; Pentz, Kyle; Wang, Qi-en; Wani, Altaf A.

    2014-01-01

    Ubiquitin specific protease 7 (USP7) is a known deubiquitinating enzyme for tumor suppressor p53 and its downstream regulator, E3 ubiquitin ligase Mdm2. Here we report that USP7 regulates nucleotide excision repair (NER) via deubiquitinating xeroderma pigmentosum complementation group C (XPC) protein, a critical damage recognition factor that binds to helix-distorting DNA lesions and initiates NER. XPC is ubiquitinated during the early stage of NER of UV light-induced DNA lesions. We demonstrate that transiently compromising cellular USP7 by siRNA and chemical inhibition leads to accumulation of ubiquitinated forms of XPC, whereas complete USP7 deficiency leads to rapid ubiquitin-mediated XPC degradation upon UV irradiation. We show that USP7 physically interacts with XPC in vitro and in vivo. Overexpression of wild-type USP7, but not its catalytically inactive or interaction-defective mutants, reduces the ubiquitinated forms of XPC. Importantly, USP7 efficiently deubiquitinates XPC-ubiquitin conjugates in deubiquitination assays in vitro. We further show that valosin-containing protein (VCP)/p97 is involved in UV light-induced XPC degradation in USP7-deficient cells. VCP/p97 is readily recruited to DNA damage sites and colocalizes with XPC. Chemical inhibition of the activity of VCP/p97 ATPase causes an increase in ubiquitinated XPC on DNA-damaged chromatin. Moreover, USP7 deficiency severely impairs the repair of cyclobutane pyrimidine dimers and, to a lesser extent, affects the repair of 6-4 photoproducts. Taken together, our findings uncovered an important role of USP7 in regulating NER via deubiquitinating XPC and by preventing its VCP/p97-regulated proteolysis. PMID:25118285

  6. Identification of differentially regulated maize proteins conditioning Sugarcane mosaic virus systemic infection.

    PubMed

    Chen, Hui; Cao, Yanyong; Li, Yiqing; Xia, Zihao; Xie, Jipeng; Carr, John P; Wu, Boming; Fan, Zaifeng; Zhou, Tao

    2017-08-01

    Sugarcane mosaic virus (SCMV) is the most important cause of maize dwarf mosaic disease. To identify maize genes responsive to SCMV infection and that may be involved in pathogenesis, a comparative proteomic analysis was performed using the first and second systemically infected leaves (termed 1 SL and 2 SL, respectively). Seventy-one differentially expressed proteins were identified in 1 SL and 2 SL upon SCMV infection. Among them, eight proteins showed the same changing patterns in both 1 SL and 2 SL. Functional annotations of regulated proteins and measurement of photosynthetic activity revealed that photosynthesis was more inhibited and defensive gene expression more pronounced in 1 SL than in 2 SL. Knockdown of regulated proteins in both 1 SL and 2 SL by a brome mosaic virus-based gene silencing vector in maize indicated that protein disulfide isomerase-like and phosphoglycerate kinase were required for optimal SCMV replication. By contrast, knockdown of polyamine oxidase (ZmPAO) significantly increased SCMV accumulation, implying that ZmPAO activity might contribute to resistance or tolerance. The results suggest that combining comparative proteomic analyses of different tissues and virus-induced gene silencing is an efficient way to identify host proteins supporting virus replication or enhancing resistance to virus infection. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  7. Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, Erica M.; Niu, MengMeng; Bergholz, Johann

    The p53 tumor suppressor gene plays a critical role in regulation of proliferation, cell death and differentiation. The MDM2 oncoprotein is a major negative regulator for p53 by binding to and targeting p53 for proteasome-mediated degradation. The small molecule inhibitor, nutlin-3, disrupts MDM2-p53 interaction resulting in stabilization and activation of p53 protein. We have previously shown that nutlin-3 activates p53, leading to MDM2 accumulation as concomitant of reduced retinoblastoma (Rb) protein stability. It is well known that Rb is important in muscle development and myoblast differentiation and that rhabdomyosarcoma (RMS), or cancer of the skeletal muscle, typically harbors MDM2 amplification.more » In this study, we show that nutlin-3 inhibited myoblast proliferation and effectively prevented myoblast differentiation, as evidenced by lack of expression of muscle differentiation markers including myogenin and myosin heavy chain (MyHC), as well as a failure to form multinucleated myotubes, which were associated with dramatic increases in MDM2 expression and decrease in Rb protein levels. These results indicate that nutlin-3 can effectively inhibit muscle cell differentiation. - Highlights: • Nutlin-3 inhibits myoblast proliferation and prevents differentiation into myotubes. • Nutlin-3 increases MDM2 expression and down-regulates Rb protein levels. • This study has implication in nutlin-3 treatment of rhabdomyosarcomas.« less

  8. Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in Drosophila neuroblasts.

    PubMed

    Conduit, Paul T; Raff, Jordan W

    2010-12-21

    Centrosomes comprise a pair of centrioles surrounded by an amorphous network of pericentriolar material (PCM). In certain stem cells, the two centrosomes differ in size, and this appears to be important for asymmetric cell division [1, 2]. In some cases, centrosome asymmetry is linked to centriole age because the older, mother centriole always organizes more PCM than the daughter centriole, thus ensuring that the mother centriole is always retained in the stem cell after cell division [3]. This has raised the possibility that an "immortal" mother centriole may help maintain stem cell fate [4, 5]. It is unclear, however, how centrosome size asymmetry is generated in stem cells. Here we provide compelling evidence that centrosome size asymmetry in Drosophila neuroblasts is generated by the differential regulation of Cnn incorporation into the PCM at mother and daughter centrioles. Shortly after centriole separation, mother and daughter centrioles organize similar amounts of PCM, but Cnn incorporation is then rapidly downregulated at the mother centriole, while it is maintained at the daughter centriole. This ensures that the daughter centriole maintains its PCM and so its position at the apical cortex. Thus, the daughter centriole, rather than an "immortal" mother centriole, is ultimately retained in these stem cells.

  9. Relationship Between Muscle Strength Asymmetry and Body Sway in Older Adults.

    PubMed

    Koda, Hitoshi; Kai, Yoshihiro; Murata, Shin; Osugi, Hironori; Anami, Kunihiko; Fukumoto, Takahiko; Imagita, Hidetaka

    2018-05-31

    The purpose of this study was to investigate the relationship between muscle strength asymmetry and body sway while walking. We studied 63 older adult women. Strong side and weak side of knee extension strength, toe grip strength, hand grip strength, and body sway while walking were measured. The relationship between muscle strength asymmetry for each muscle and body sway while walking was evaluated using Pearson's correlation coefficient. Regarding the muscles recognized to have significant correlation with body sway, the asymmetry cutoff value causing an increased sway was calculated. Toe grip strength asymmetry was significantly correlated with body sway. Toe grip strength asymmetry causing an increased body sway had a cutoff value of 23.5%. Our findings suggest toe grip strength asymmetry may be a target for improving gait stability.

  10. Nitric Oxide Regulates Protein Methylation during Stress Responses in Plants.

    PubMed

    Hu, Jiliang; Yang, Huanjie; Mu, Jinye; Lu, Tiancong; Peng, Juli; Deng, Xian; Kong, Zhaosheng; Bao, Shilai; Cao, Xiaofeng; Zuo, Jianru

    2017-08-17

    Methylation and nitric oxide (NO)-based S-nitrosylation are highly conserved protein posttranslational modifications that regulate diverse biological processes. In higher eukaryotes, PRMT5 catalyzes Arg symmetric dimethylation, including key components of the spliceosome. The Arabidopsis prmt5 mutant shows severe developmental defects and impaired stress responses. However, little is known about the mechanisms regulating the PRMT5 activity. Here, we report that NO positively regulates the PRMT5 activity through S-nitrosylation at Cys-125 during stress responses. In prmt5-1 plants, a PRMT5 C125S transgene, carrying a non-nitrosylatable mutation at Cys-125, fully rescues the developmental defects, but not the stress hypersensitive phenotype and the responsiveness to NO during stress responses. Moreover, the salt-induced Arg symmetric dimethylation is abolished in PRMT5 C125S /prmt5-1 plants, correlated to aberrant splicing of pre-mRNA derived from a stress-related gene. These findings define a mechanism by which plants transduce stress-triggered NO signal to protein methylation machinery through S-nitrosylation of PRMT5 in response to environmental alterations. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The validity of individual frontal alpha asymmetry EEG neurofeedback

    PubMed Central

    Quaedflieg, C. W. E. M.; Smulders, F. T. Y.; Meyer, T.; Peeters, F.; Merckelbach, H.; Smeets, T.

    2016-01-01

    Frontal asymmetry in alpha oscillations is assumed to be associated with psychopathology and individual differences in emotional responding. Brain-activity-based feedback is a promising tool for the modulation of cortical activity. Here, we validated a neurofeedback protocol designed to change relative frontal asymmetry based on individual alpha peak frequencies, including real-time average referencing and eye-correction. Participants (N = 60) were randomly assigned to a right, left or placebo neurofeedback group. Results show a difference in trainability between groups, with a linear change in frontal alpha asymmetry over time for the right neurofeedback group during rest. Moreover, the asymmetry changes in the right group were frequency and location specific, even though trainability did not persist at 1 week and 1 month follow-ups. On the behavioral level, subjective stress on the second test day was reduced in the left and placebo neurofeedback groups, but not in the right neurofeedback group. We found individual differences in trainability that were dependent on training group, with participants in the right neurofeedback group being more likely to change their frontal asymmetry in the desired direction. Individual differences in trainability were also reflected in the ability to change frontal asymmetry during the feedback. PMID:26163671

  12. Gaussian quantum steering and its asymmetry in curved spacetime

    NASA Astrophysics Data System (ADS)

    Wang, Jieci; Cao, Haixin; Jing, Jiliang; Fan, Heng

    2016-06-01

    We study Gaussian quantum steering and its asymmetry in the background of a Schwarzschild black hole. We present a Gaussian channel description of quantum state evolution under the influence of Hawking radiation. We find that thermal noise introduced by the Hawking effect will destroy the steerability between an inertial observer Alice and an accelerated observer Bob who hovers outside the event horizon, while it generates steerability between Bob and a hypothetical observer anti-Bob inside the event horizon. Unlike entanglement behaviors in curved spacetime, here the steering from Alice to Bob suffers from a "sudden death" and the steering from anti-Bob to Bob experiences a "sudden birth" with increasing Hawking temperature. We also find that the Gaussian steering is always asymmetric and the maximum steering asymmetry cannot exceed ln 2 , which means the state never evolves to an extremal asymmetry state. Furthermore, we obtain the parameter settings that maximize steering asymmetry and find that (i) s =arccosh cosh/2r 1 -sinh2r is the critical point of steering asymmetry and (ii) the attainment of maximal steering asymmetry indicates the transition between one-way steerability and both-way steerability for the two-mode Gaussian state under the influence of Hawking radiation.

  13. [Dextrals and sinistrals (right-handers and left-handers): specificity of interhemispheric brain asymmetry and EEG coherence parameters].

    PubMed

    Zhavoronkova, L A

    2007-01-01

    Data of literature about morphological, functional and biochemical specificity of the brain interhemispheric asymmetry of healthy right-handers and left-handers and about peculiarity of dynamics of cerebral pathology in patients with different individual asymmetry profiles are presented at the present article. Results of our investigation by using coherence parameters of electroencephalogram (EEG) in healthy right-handers and left-handers in state of rest, during functional tests and sleeping and in patients with different forms of the brain organic damage were analyzed too. EEG coherence analysis revealed the reciprocal changing of alpha-beta and theta-delta spectral bands in right-handers whilein left-handers synchronous changing of all EEG spectral bands were observed. Data about regional-frequent specificity of EEG coherence, peculiarity of EEG asymmetry in right-handers and left-handers, aslo about specificity of EEG spectral band genesis and point of view about a role of the brain regulator systems in forming of interhemispheric asymmetry in different functional states allowed to propose the conception about principle of interhermispheric brain asymmetry formation in left-handers and left-handers. Following this conception in dextrals elements of concurrent (summary-reciprocal) cooperation are predominant at the character of interhemispheric and cortical-subcortical interaction while in sinistrals a principle of concordance (supplementary) is preferable. These peculiarities the brain organization determine, from the first side, the quicker revovery of functions damaged after cranio-cerebral trauma in left-handers in comparison right-handers and from the other side - they determine the forming of the more expressed pathology in the remote terms after exposure the low dose of radiation.

  14. Regulation of Protein Degradation by O-GlcNAcylation: Crosstalk with Ubiquitination*

    PubMed Central

    Ruan, Hai-Bin; Nie, Yongzhan; Yang, Xiaoyong

    2013-01-01

    The post-translational modification of intracellular proteins by O-linked N-acetylglucosamine (O-GlcNAc) regulates essential cellular processes such as signal transduction, transcription, translation, and protein degradation. Misfolded, damaged, and unwanted proteins are tagged with a chain of ubiquitin moieties for degradation by the proteasome, which is critical for cellular homeostasis. In this review, we summarize the current knowledge of the interplay between O-GlcNAcylation and ubiquitination in the control of protein degradation. Understanding the mechanisms of action of O-GlcNAcylation in the ubiquitin-proteosome system shall facilitate the development of therapeutics for human diseases such as cancer, metabolic syndrome, and neurodegenerative diseases. PMID:23824911

  15. Evaluation of Limb Load Asymmetry Using Two New Mathematical Models

    PubMed Central

    Kumar, Senthil NS; Omar, Baharudin; Joseph, Leonard H.; Htwe, Ohnmar; Jagannathan, K.; Hamdan, Nor M Y; Rajalakshmi, D.

    2015-01-01

    Quantitative measurement of limb loading is important in orthopedic and neurological rehabilitation. In current practice, mathematical models such as Symmetry index (SI), Symmetry ratio (SR), and Symmetry angle (SA) are used to quantify limb loading asymmetry. Literatures have identified certain limitations with the above mathematical models. Hence this study presents two new mathematical models Modified symmetry index (MSI) and Limb loading error (LLE) that would address these limitations. Furthermore, the current mathematical models were compared against the new model with the goal of achieving a better model. This study uses hypothetical data to simulate an algorithmic preliminary computational measure to perform with all numerical possibilities of even and uneven limb loading that can occur in human legs. Descriptive statistics are used to interpret the limb loading patterns: symmetry, asymmetry and maximum asymmetry. The five mathematical models were similar in analyzing symmetry between limbs. However, for asymmetry and maximum asymmetry data, the SA and SR values do not give any meaningful interpretation, and SI gives an inflated value. The MSI and LLE are direct, easy to interpret and identify the loading patterns with the side of asymmetry. The new models are notable as they quantify the amount and side of asymmetry under different loading patterns. PMID:25716372

  16. Shifting brain asymmetry: the link between meditation and structural lateralization

    PubMed Central

    Kurth, Florian; MacKenzie-Graham, Allan; Toga, Arthur W.

    2015-01-01

    Previous studies have revealed an increased fractional anisotropy and greater thickness in the anterior parts of the corpus callosum in meditation practitioners compared with control subjects. Altered callosal features may be associated with an altered inter-hemispheric integration and the degree of brain asymmetry may also be shifted in meditation practitioners. Therefore, we investigated differences in gray matter asymmetry as well as correlations between gray matter asymmetry and years of meditation practice in 50 long-term meditators and 50 controls. We detected a decreased rightward asymmetry in the precuneus in meditators compared with controls. In addition, we observed that a stronger leftward asymmetry near the posterior intraparietal sulcus was positively associated with the number of meditation practice years. In a further exploratory analysis, we observed that a stronger rightward asymmetry in the pregenual cingulate cortex was negatively associated with the number of practice years. The group difference within the precuneus, as well as the positive correlations with meditation years in the pregenual cingulate cortex, suggests an adaptation of the default mode network in meditators. The positive correlation between meditation practice years and asymmetry near the posterior intraparietal sulcus may suggest that meditation is accompanied by changes in attention processing. PMID:24643652

  17. Replicative Functions of Minute Virus of Mice NS1 Protein Are Regulated In Vitro by Phosphorylation through Protein Kinase C

    PubMed Central

    Nüesch, Jürg P. F.; Dettwiler, Sabine; Corbau, Romuald; Rommelaere, Jean

    1998-01-01

    NS1, the major nonstructural protein of the parvovirus minute virus of mice, is a multifunctional phosphoprotein which is involved in cytotoxicity, transcriptional regulation, and initiation of viral DNA replication. For coordination of these various functions during virus propagation, NS1 has been proposed to be regulated by posttranslational modifications, in particular phosphorylation. Recent in vitro studies (J. P. F. Nüesch, R. Corbau, P. Tattersall, and J. Rommelaere, J. Virol. 72:8002–8012, 1998) provided evidence that distinct NS1 activities, notably the intrinsic helicase function, are modulated by the phosphorylation state of the protein. In order to study the dependence of the initiation of viral DNA replication on NS1 phosphorylation and to identify the protein kinases involved, we established an in vitro replication system that is devoid of endogenous protein kinases and is based on plasmid substrates containing the minimal left-end origins of replication. Cellular components necessary to drive NS1-dependent rolling-circle replication (RCR) were freed from endogenous serine/threonine protein kinases by affinity chromatography, and the eukaryotic DNA polymerases were replaced by the bacteriophage T4 DNA polymerase. While native NS1 (NS1P) supported RCR under these conditions, dephosphorylated NS1 (NS1O) was impaired. Using fractionated HeLa cell extracts, we identified two essential protein components which are able to phosphorylate NS1O, are enriched in protein kinase C (PKC), and, when present together, reactivate NS1O for replication. One of these components, containing atypical PKC, was sufficient to restore NS1O helicase activity. The requirement of NS1O reactivation for characteristic PKC cofactors such as Ca2+/phosphatidylserine or phorbol esters strongly suggests the involvement of this protein kinase family in regulation of NS1 replicative functions in vitro. PMID:9811734

  18. Amplitude and polarization asymmetries in a ring laser

    NASA Technical Reports Server (NTRS)

    Campbell, L. L.; Buholz, N. E.

    1971-01-01

    Asymmetric amplitude effects between the oppositely directed traveling waves in a He-Ne ring laser are analyzed both theoretically and experimentally. These effects make it possible to detect angular orientations of an inner-cavity bar with respect to the plane of the ring cavity. The amplitude asymmetries occur when a birefringent bar is placed in the three-mirror ring cavity, and an axial magnetic field is applied to the active medium. A simplified theoretical analysis is performed by using a first order perturbation theory to derive an expression for the polarization of the active medium, and a set of self-consistent equations are derived to predict threshold conditions. Polarization asymmetries between the oppositely directed waves are also predicted. Amplitude asymmetries similar in nature to those predicted at threshold occur when the laser is operating in 12-15 free-running modes, and polarization asymmetry occurs simultaneously.

  19. Regulation of the autophagy protein LC3 by phosphorylation

    PubMed Central

    Cherra, Salvatore J.; Kulich, Scott M.; Uechi, Guy; Balasubramani, Manimalha; Mountzouris, John; Day, Billy W.

    2010-01-01

    Macroautophagy is a major catabolic pathway that impacts cell survival, differentiation, tumorigenesis, and neurodegeneration. Although bulk degradation sustains carbon sources during starvation, autophagy contributes to shrinkage of differentiated neuronal processes. Identification of autophagy-related genes has spurred rapid advances in understanding the recruitment of microtubule-associated protein 1 light chain 3 (LC3) in autophagy induction, although braking mechanisms remain less understood. Using mass spectrometry, we identified a direct protein kinase A (PKA) phosphorylation site on LC3 that regulates its participation in autophagy. Both metabolic (rapamycin) and pathological (MPP+) inducers of autophagy caused dephosphorylation of endogenous LC3. The pseudophosphorylated LC3 mutant showed reduced recruitment to autophagosomes, whereas the nonphosphorylatable mutant exhibited enhanced puncta formation. Finally, autophagy-dependent neurite shortening induced by expression of a Parkinson disease–associated G2019S mutation in leucine-rich repeat kinase 2 was inhibited by dibutyryl–cyclic adenosine monophosphate, cytoplasmic expression of the PKA catalytic subunit, or the LC3 phosphorylation mimic. These data demonstrate a role for phosphorylation in regulating LC3 activity. PMID:20713600

  20. Specific interaction between hnRNP H and HPV16 L1 proteins: Implications for late gene auto-regulation enabling rapid viral capsid protein production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Zi-Zheng; Sun, Yuan-Yuan; Zhao, Min

    2013-01-18

    Highlights: ► The RNA-binding hnRNP H regulates late viral gene expression. ► hnRNP H activity was inhibited by a late viral protein. ► Specific interaction between HPV L1 and hnRNP H was demonstrated. ► Co-localization of HPV L1 and hnRNP H inside cells was observed. ► Viral capsid protein production, enabling rapid capsid assembly, was implicated. -- Abstract: Heterogeneous nuclear ribonucleoproteins (hnRNPs), including hnRNP H, are RNA-binding proteins that function as splicing factors and are involved in downstream gene regulation. hnRNP H, which binds to G triplet regions in RNA, has been shown to play an important role in regulatingmore » the staged expression of late proteins in viral systems. Here, we report that the specific association between hnRNP H and a late viral capsid protein, human papillomavirus (HPV) L1 protein, leads to the suppressed function of hnRNP H in the presence of the L1 protein. The direct interaction between the L1 protein and hnRNP H was demonstrated by complex formation in solution and intracellularly using a variety of biochemical and immunochemical methods, including peptide mapping, specific co-immunoprecipitation and confocal fluorescence microscopy. These results support a working hypothesis that a late viral protein HPV16 L1, which is down regulated by hnRNP H early in the viral life cycle may provide an auto-regulatory positive feedback loop that allows the rapid production of HPV capsid proteins through suppression of the function of hnRNP H at the late stage of the viral life cycle. In this positive feedback loop, the late viral gene products that were down regulated earlier themselves disable their suppressors, and this feedback mechanism could facilitate the rapid production of capsid proteins, allowing staged and efficient viral capsid assembly.« less

  1. Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas.

    PubMed

    Wykoff, D D; Grossman, A R; Weeks, D P; Usuda, H; Shimogawara, K

    1999-12-21

    Understanding the ways in which phosphorus metabolism is regulated in photosynthetic eukaryotes is critical for optimizing crop productivity and managing aquatic ecosystems in which phosphorus can be a major source of pollution. Here we describe a gene encoding a regulator of phosphorus metabolism, designated Psr1 (phosphorus starvation response), from a photosynthetic eukaryote. The Psr1 protein is critical for acclimation of the unicellular green alga Chlamydomonas reinhardtii to phosphorus starvation. The N-terminal half of Psr1 contains a region similar to myb DNA-binding domains and the C-terminal half possesses glutamine-rich sequences characteristic of transcriptional activators. The level of Psr1 increases at least 10-fold upon phosphate starvation, and immunocytochemical studies demonstrate that this protein is nuclear-localized under both nutrient-replete and phosphorus-starvation conditions. Finally, Psr1 and angiosperm proteins have domains that are similar, suggesting a possible role for Psr1 homologs in the control of phosphorus metabolism in vascular plants. With the identification of regulators such as Psr1 it may become possible to engineer photosynthetic organisms for more efficient utilization of phosphorus and to establish better practices for the management of agricultural lands and natural ecosystems.

  2. Redox-mediated regulation of connexin proteins; focus on nitric oxide.

    PubMed

    García, Isaac E; Sánchez, Helmuth A; Martínez, Agustín D; Retamal, Mauricio A

    2018-01-01

    Connexins are membrane proteins that form hemichannels and gap junction channels at the plasma membrane. Through these channels connexins participate in autocrine and paracrine intercellular communication. Connexin-based channels are tightly regulated by membrane potential, phosphorylation, pH, redox potential, and divalent cations, among others, and the imbalance of this regulation have been linked to many acquired and genetic diseases. Concerning the redox potential regulation, the nitric oxide (NO) has been described as a modulator of the hemichannels and gap junction channels properties. However, how NO regulates these channels is not well understood. In this mini-review, we summarize the current knowledge about the effects of redox potential focused in NO on the trafficking, formation and functional properties of hemichannels and gap junction channels. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Translation Stress Positively Regulates MscL-Dependent Excretion of Cytoplasmic Proteins

    PubMed Central

    Morra, Rosa; Del Carratore, Francesco; Muhamadali, Howbeer; Horga, Luminita Gabriela; Halliwell, Samantha

    2018-01-01

    ABSTRACT The apparent mislocalization or excretion of cytoplasmic proteins is a commonly observed phenomenon in both bacteria and eukaryotes. However, reports on the mechanistic basis and the cellular function of this so-called “nonclassical protein secretion” are limited. Here we report that protein overexpression in recombinant cells and antibiotic-induced translation stress in wild-type Escherichia coli cells both lead to excretion of cytoplasmic protein (ECP). Condition-specific metabolomic and proteomic analyses, combined with genetic knockouts, indicate a role for both the large mechanosensitive channel (MscL) and the alternative ribosome rescue factor A (ArfA) in ECP. Collectively, the findings indicate that MscL-dependent protein excretion is positively regulated in response to both osmotic stress and arfA-mediated translational stress. PMID:29382730

  4. Characterization of Asymmetry in Magnetoacoustic Emission Burst by Numerical Processes

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Fulton, J. P.; Wincheski, B.; DeNale, R.

    1991-01-01

    It has been well known that the pattern of the magnetoacoustic emission (MAE) burst observed during the sweep over one half-cycle of the hysteresis loop becomes asymmetric depending on the strength of the magnetic domain wall-defect interaction and the state of residual stresses in a ferromagnet. The ascending asymmetry due to the former has been observed at a very low frequency (.7 Hz) of applied AC magnetic field at a given amplitude. The descending asymmetry due to uniaxial compressive stress has been typically observed at the AC applied magnetic field frequency of 20 Hz. The physical interpretation of both types of asymmetry has been well established. It is, however, necessary to perform investigations of the dependence of asymmetry on externally controlled parameters such as the amplitude and frequency of the AC applied magnetic fields. The purpose of the present study is therefore to devise a mathematical means that describes the degree of asymmetry of the MAE burst and apply this scheme to investigate the AC magnetic field amplitude dependence of the asymmetry.

  5. Cortical asymmetries in unaffected siblings of patients with obsessive-compulsive disorder.

    PubMed

    Peng, Ziwen; Li, Gang; Shi, Feng; Shi, Changzheng; Yang, Qiong; Chan, Raymond C K; Shen, Dinggang

    2015-12-30

    Obsessive-compulsive disorder (OCD) is considered to be associated with atypical brain asymmetry. However, no study has examined the asymmetry in OCD from the perspective of cortical morphometry. This study is aimed to describe the characteristics of cortical asymmetry in OCD patients, and to investigate whether these features exist in their unaffected siblings - a vital step in identifying putative endophenotypes for OCD. A total of 48 subjects (16 OCD patients, 16 unaffected siblings, and 16 matched controls) were recruited who had complete magnetic resonance imaging scans. Left-right hemispheric asymmetries of cortical thickness were measured using a surface-based threshold-free cluster enhancement method. OCD patients and siblings both showed leftward asymmetries of cortical thickness in the anterior cingulate cortex (ACC), which showed a significant positive correlation with compulsive subscale scores. In addition, siblings and healthy controls showed significantly decreased leftward asymmetries in the orbitofrontal cortex (OFC), and the decreased leftward bias in the OFC was accompanied by lower scales on the Yale-Brown Obsessive-Compulsive Scale. To sum up, leftward asymmetries of cortical thickness in the ACC may represent an endophenotype of increased hereditary risk for OCD, while decreased leftward asymmetries of cortical thickness in the OFC may represent a protective factor. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. The role of frontal EEG asymmetry in post-traumatic stress disorder.

    PubMed

    Meyer, Thomas; Smeets, Tom; Giesbrecht, Timo; Quaedflieg, Conny W E M; Smulders, Fren T Y; Meijer, Ewout H; Merckelbach, Harald L G J

    2015-05-01

    Frontal alpha asymmetry, a biomarker derived from electroencephalography (EEG) recordings, has often been associated with psychological adjustment, with more left-sided frontal activity predicting approach motivation and lower levels of depression and anxiety. This suggests high relevance to post-traumatic stress disorder (PTSD), a disorder comprising anxiety and dysphoria symptoms. We review this relationship and show that frontal asymmetry can be plausibly linked to neuropsychological abnormalities seen in PTSD. However, surprisingly few studies (k = 8) have directly addressed frontal asymmetry in PTSD, mostly reporting that trait frontal asymmetry has little (if any) predictive value. Meanwhile, preliminary evidence suggest that state-dependent asymmetry during trauma-relevant stimulation distinguishes PTSD patients from resilient individuals. Thus, exploring links between provocation-induced EEG asymmetry and PTSD appears particularly promising. Additionally, we recommend more fine-grained analyses into PTSD symptom clusters in relation to frontal asymmetry. Finally, we highlight hypotheses that may guide future research and help to fully apprehend the practical and theoretical relevance of this biological marker. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A Dynamic Response Regulator Protein Modulates G-Protein–Dependent Polarity in the Bacterium Myxococcus xanthus

    PubMed Central

    Zhang, Yong; Guzzo, Mathilde; Ducret, Adrien; Li, Yue-Zhong; Mignot, Tâm

    2012-01-01

    Migrating cells employ sophisticated signal transduction systems to respond to their environment and polarize towards attractant sources. Bacterial cells also regulate their polarity dynamically to reverse their direction of movement. In Myxococcus xanthus, a GTP-bound Ras-like G-protein, MglA, activates the motility machineries at the leading cell pole. Reversals are provoked by pole-to-pole switching of MglA, which is under the control of a chemosensory-like signal transduction cascade (Frz). It was previously known that the asymmetric localization of MglA at one cell pole is regulated by MglB, a GTPase Activating Protein (GAP). In this process, MglB specifically localizes at the opposite lagging cell pole and blocks MglA localization at that pole. However, how MglA is targeted to the leading pole and how Frz activity switches the localizations of MglA and MglB synchronously remained unknown. Here, we show that MglA requires RomR, a previously known response regulator protein, to localize to the leading cell pole efficiently. Specifically, RomR-MglA and RomR-MglB complexes are formed and act complementarily to establish the polarity axis, segregating MglA and MglB to opposite cell poles. Finally, we present evidence that Frz signaling may regulate MglA localization through RomR, suggesting that RomR constitutes a link between the Frz-signaling and MglAB polarity modules. Thus, in Myxococcus xanthus, a response regulator protein governs the localization of a small G-protein, adding further insight to the polarization mechanism and suggesting that motility regulation evolved by recruiting and combining existing signaling modules of diverse origins. PMID:22916026

  8. A physiologically required G protein-coupled receptor (GPCR)-regulator of G protein signaling (RGS) interaction that compartmentalizes RGS activity.

    PubMed

    Croft, Wayne; Hill, Claire; McCann, Eilish; Bond, Michael; Esparza-Franco, Manuel; Bennett, Jeannette; Rand, David; Davey, John; Ladds, Graham

    2013-09-20

    G protein-coupled receptors (GPCRs) can interact with regulator of G protein signaling (RGS) proteins. However, the effects of such interactions on signal transduction and their physiological relevance have been largely undetermined. Ligand-bound GPCRs initiate by promoting exchange of GDP for GTP on the Gα subunit of heterotrimeric G proteins. Signaling is terminated by hydrolysis of GTP to GDP through intrinsic GTPase activity of the Gα subunit, a reaction catalyzed by RGS proteins. Using yeast as a tool to study GPCR signaling in isolation, we define an interaction between the cognate GPCR (Mam2) and RGS (Rgs1), mapping the interaction domains. This reaction tethers Rgs1 at the plasma membrane and is essential for physiological signaling response. In vivo quantitative data inform the development of a kinetic model of the GTPase cycle, which extends previous attempts by including GPCR-RGS interactions. In vivo and in silico data confirm that GPCR-RGS interactions can impose an additional layer of regulation through mediating RGS subcellular localization to compartmentalize RGS activity within a cell, thus highlighting their importance as potential targets to modulate GPCR signaling pathways.

  9. Nucleoplasmic Nup98 controls gene expression by regulating a DExH/D-box protein.

    PubMed

    Capitanio, Juliana S; Montpetit, Ben; Wozniak, Richard W

    2018-01-01

    The nucleoporin Nup98 has been linked to the regulation of transcription and RNA metabolism, 1-3 but the mechanisms by which Nup98 contributes to these processes remains largely undefined. Recently, we uncovered interactions between Nup98 and several DExH/D-box proteins (DBPs), a protein family well-known for modulating gene expression and RNA metabolism. 4-6 Analysis of Nup98 and one of these DBPs, DHX9, showed that they directly interact, their association is facilitated by RNA, and Nup98 binding stimulates DHX9 ATPase activity. 7 Furthermore, these proteins were dependent on one another for their proper association with a subset of gene loci to control transcription and modulate mRNA splicing. 7 On the basis of these observations, we proposed that Nup98 functions to regulate DHX9 activity within the nucleoplasm. 7 Since Nup98 is associated with several DBPs, regulation of DHX9 by Nup98 may represent a paradigm for understanding how Nup98, and possibly other FG-Nup proteins, could direct the diverse cellular activities of multiple DBPs.

  10. New tuning method of the low-mode asymmetry for ignition capsule implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jianfa, E-mail: gu-jianfa@iapcm.ac.cn; Dai, Zhensheng; Zou, Shiyang

    2015-12-15

    In the deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility, the hot spot and the surrounding main fuel layer show obvious P2 asymmetries. This may be caused by the large positive P2 radiation flux asymmetry during the peak pulse resulting form the poor propagation of the inner laser beam in the gas-filled hohlraum. The symmetry evolution of ignition capsule implosions is investigated by applying P2 radiation flux asymmetries during different time intervals. A series of two-dimensional simulation results show that a positive P2 flux asymmetry during the peak pulse results in a positive P2 shell ρR asymmetry;more » while an early time positive P2 flux asymmetry causes a negative P2 in the fuel ρR shape. The opposite evolution behavior of shell ρR asymmetry is used to develop a new tuning method to correct the radiation flux asymmetry during the peak pulse by adding a compensating same-phased P2 drive asymmetry during the early time. The significant improvements of the shell ρR symmetry, hot spot shape, hot spot internal energy, and neutron yield indicate that the tuning method is quite effective. The similar tuning method can also be used to control the early time drive asymmetries.« less

  11. Thioredoxin-independent regulation of metabolism by the alpha-arrestin proteins.

    PubMed

    Patwari, Parth; Chutkow, William A; Cummings, Kiersten; Verstraeten, Valerie L R M; Lammerding, Jan; Schreiter, Eric R; Lee, Richard T

    2009-09-11

    Thioredoxin-interacting protein (Txnip), originally characterized as an inhibitor of thioredoxin, is now known to be a critical regulator of glucose metabolism in vivo. Txnip is a member of the alpha-arrestin protein family; the alpha-arrestins are related to the classical beta-arrestins and visual arrestins. Txnip is the only alpha-arrestin known to bind thioredoxin, and it is not known whether the metabolic effects of Txnip are related to its ability to bind thioredoxin or related to conserved alpha-arrestin function. Here we show that wild type Txnip and Txnip C247S, a Txnip mutant that does not bind thioredoxin in vitro, both inhibit glucose uptake in mature adipocytes and in primary skin fibroblasts. Furthermore, we show that Txnip C247S does not bind thioredoxin in cells, using thiol alkylation to trap the Txnip-thioredoxin complex. Because Txnip function was independent of thioredoxin binding, we tested whether inhibition of glucose uptake was conserved in the related alpha-arrestins Arrdc4 and Arrdc3. Both Txnip and Arrdc4 inhibited glucose uptake and lactate output, while Arrdc3 had no effect. Structure-function analysis indicated that Txnip and Arrdc4 inhibit glucose uptake independent of the C-terminal WW-domain binding motifs, recently identified as important in yeast alpha-arrestins. Instead, regulation of glucose uptake was intrinsic to the arrestin domains themselves. These data demonstrate that Txnip regulates cellular metabolism independent of its binding to thioredoxin and reveal the arrestin domains as crucial structural elements in metabolic functions of alpha-arrestin proteins.

  12. The functional and structural asymmetries of the superior temporal sulcus.

    PubMed

    Specht, Karsten; Wigglesworth, Philip

    2018-02-01

    The superior temporal sulcus (STS) is an anatomical structure that increasingly interests researchers. This structure appears to receive multisensory input and is involved in several perceptual and cognitive core functions, such as speech perception, audiovisual integration, (biological) motion processing and theory of mind capacities. In addition, the superior temporal sulcus is not only one of the longest sulci of the brain, but it also shows marked functional and structural asymmetries, some of which have only been found in humans. To explore the functional-structural relationships of these asymmetries in more detail, this study combines functional and structural magnetic resonance imaging. Using a speech perception task, an audiovisual integration task, and a theory of mind task, this study again demonstrated an involvement of the STS in these processes, with an expected strong leftward asymmetry for the speech perception task. Furthermore, this study confirmed the earlier described, human-specific asymmetries, namely that the left STS is longer than the right STS and that the right STS is deeper than the left STS. However, this study did not find any relationship between these structural asymmetries and the detected brain activations or their functional asymmetries. This can, on the other hand, give further support to the notion that the structural asymmetry of the STS is not directly related to the functional asymmetry of the speech perception and the language system as a whole, but that it may have other causes and functions. © 2018 The Authors. Scandinavian Journal of Psychology published by Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  13. Abiotic stress responses in plants: roles of calmodulin-regulated proteins

    PubMed Central

    Virdi, Amardeep S.; Singh, Supreet; Singh, Prabhjeet

    2015-01-01

    Intracellular changes in calcium ions (Ca2+) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca2+-sensing proteins and has been shown to be involved in transduction of Ca2+ signals. After interacting with Ca2+, CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants. PMID:26528296

  14. [Regulation on EGFR function via its interacting proteins and its potential application].

    PubMed

    Zheng, Jun-Fang; Chen, Hui-Min; He, Jun-Qi

    2013-12-01

    Epidermal growth factor receptor (EGFR) is imptortant for cell activities, oncogenesis and cell migration, and EGFR inhibitor can treat cancer efficiently, but its side effects, for example, in skin, limited its usage. On the other hand, EGFR interacting proteins may also lead to oncogenesis and its interacting protein as drug targets can avoid cutaneous side effect, which implies possibly a better outcome and life quality of cancer patients. For the multiple EGFR interaction proteins, B1R enhances Erk/MAPK signaling, while PTPN12, Kek1, CEACAM1 and NHERF repress Erk/MAPK signaling. CaM may alter charge of EGFR juxamembrane domain and regulate activation of PI3K/Akt and PLC-gamma/PKC. STAT1, STAT5b are widely thought to be activated by EGFR, while there is unexpectedly inhibiting sequence within EGFR to repress the activity of STATs. LRIG1 and ACK1 enhance the internalization and degration of EGFR, while NHERF and HIP1 repress it. In this article, proteins interacting with EGFR, their interacting sites and their regulation on EGFR signal transduction will be reviewed.

  15. Auxin asymmetry during gravitropism by tomato hypocotyls

    NASA Technical Reports Server (NTRS)

    Harrison, M. A.; Pickard, B. G.

    1989-01-01

    Gravitropic asymmetry of auxin was observed in hypocotyls of tomato (Lycopersicon esculentum Mill.) soon after horizontal placement: the ratio of apically supplied [3H]IAA collected from the lower sides to that from the upper sides was about 1.4 between 5 and 10 minutes. This was adequately early to account for the beginning of curvature. The auxin asymmetry ratio rose to about 2.5 between 20 and 25 minutes, and to 3.5 during the main phase of curvature. This compares reasonably well with the roughly 3.9 ratio for elongation on the lower side to elongation on the upper side that is the basis for the curvature. These data extend evidence that the Went-Cholodny theory for the mediation of tropisms is valid for dicot stems. Also consistent with the theory, an auxin asymmetry ratio of 2.5 was observed when wrong-way gravitropic curvature developed following application of a high level of auxin. In addition to reversing the asymmetry of elongation, the large supplement of auxin resulted in lower net elongation. Previous data established that ethylene is not involved in this decrease of growth as a function of increasing level of auxin.

  16. [Presurgical orthodontics for facial asymmetry].

    PubMed

    Labarrère, H

    2003-03-01

    As with the treatment of all facial deformities, orthodontic pre-surgical preparation for facial asymmetry should aim at correcting severe occlusal discrepancies not solely on the basis of a narrow occlusal analysis but also in a way that will not disturb the proposed surgical protocol. In addition, facial asymmetries require specific adjustments, difficult to derive and to apply because of their inherent atypical morphological orientation of both alveolar and basal bony support. Three treated cases illustrate different solutions to problems posed by pathological torque: this torque must be considered with respect to proposed surgical changes, within the framework of their limitations and their possible contra-indications.

  17. Prefrontal brain asymmetry and aggression in imprisoned violent offenders.

    PubMed

    Keune, Philipp M; van der Heiden, Linda; Várkuti, Bálint; Konicar, Lilian; Veit, Ralf; Birbaumer, Niels

    2012-05-02

    Anterior brain asymmetry, assessed through the alpha and beta band in resting-state electroencephalogram (EEG) is associated with approach-related behavioral dispositions, particularly with aggression in the general population. To date, the association between frontal asymmetry and aggression has not been examined in highly aggressive groups. We examined the topographic characteristics of alpha and beta activity, the relation of both asymmetry metrics to trait aggression, and whether alpha asymmetry was extreme in anterior regions according to clinical standards in a group of imprisoned violent offenders. As expected, these individuals were characterized by stronger right than left-hemispheric alpha activity, which was putatively extreme in anterior regions in one third of the cases. We also report that in line with observations made in the general population, aggression was associated with stronger right-frontal alpha activity in these violent individuals. This suggests that frontal alpha asymmetry, as a correlate of trait aggression, might be utilizable as an outcome measure in studies which assess the effects of anti-aggressiveness training in violent offenders. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Frobenius-norm-based measures of quantum coherence and asymmetry

    PubMed Central

    Yao, Yao; Dong, G. H.; Xiao, Xing; Sun, C. P.

    2016-01-01

    We formulate the Frobenius-norm-based measures for quantum coherence and asymmetry respectively. In contrast to the resource theory of coherence and asymmetry, we construct a natural measure of quantum coherence inspired from optical coherence theory while the group theoretical approach is employed to quantify the asymmetry of quantum states. Besides their simple structures and explicit physical meanings, we observe that these quantities are intimately related to the purity (or linear entropy) of the corresponding quantum states. Remarkably, we demonstrate that the proposed coherence quantifier is not only a measure of mixedness, but also an intrinsic (basis-independent) quantification of quantum coherence contained in quantum states, which can also be viewed as a normalized version of Brukner-Zeilinger invariant information. In our context, the asymmetry of N-qubit quantum systems is considered under local independent and collective transformations. In- triguingly, it is illustrated that the collective effect has a significant impact on the asymmetry measure, and quantum correlation between subsystems plays a non-negligible role in this circumstance. PMID:27558009

  19. Parity-violating electroweak asymmetry in e→ p scattering

    NASA Astrophysics Data System (ADS)

    Aniol, K. A.; Armstrong, D. S.; Averett, T.; Baylac, M.; Burtin, E.; Calarco, J.; Cates, G. D.; Cavata, C.; Chai, Z.; Chang, C. C.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Coman, M.; Dale, D.; Deur, A.; Djawotho, P.; Epstein, M. B.; Escoffier, S.; Ewell, L.; Falletto, N.; Finn, J. M.; Fissum, K.; Fleck, A.; Frois, B.; Frullani, S.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gerstner, G. M.; Gilman, R.; Glamazdin, A.; Gomez, J.; Gorbenko, V.; Hansen, O.; Hersman, F.; Higinbotham, D. W.; Holmes, R.; Holtrop, M.; Humensky, T. B.; Incerti, S.; Iodice, M.; de Jager, C. W.; Jardillier, J.; Jiang, X.; Jones, M. K.; Jorda, J.; Jutier, C.; Kahl, W.; Kelly, J. J.; Kim, D. H.; Kim, M.-J.; Kim, M. S.; Kominis, I.; Kooijman, E.; Kramer, K.; Kumar, K. S.; Kuss, M.; Lerose, J.; de Leo, R.; Leuschner, M.; Lhuillier, D.; Liang, M.; Liyanage, N.; Lourie, R.; Madey, R.; Malov, S.; Margaziotis, D. J.; Marie, F.; Markowitz, P.; Martino, J.; Mastromarino, P.; McCormick, K.; McIntyre, J.; Meziani, Z.-E.; Michaels, R.; Milbrath, B.; Miller, G. W.; Mitchell, J.; Morand, L.; Neyret, D.; Pedrisat, C.; Petratos, G. G.; Pomatsalyuk, R.; Price, J. S.; Prout, D.; Punjabi, V.; Pussieux, T.; Quéméner, G.; Ransome, R. D.; Relyea, D.; Roblin, Y.; Roche, J.; Rutledge, G. A.; Rutt, P. M.; Rvachev, M.; Sabatie, F.; Saha, A.; Souder, P. A.; Spradlin, M.; Strauch, S.; Suleiman, R.; Templon, J.; Teresawa, T.; Thompson, J.; Tieulent, R.; Todor, L.; Tonguc, B. T.; Ulmer, P. E.; Urciuoli, G. M.; Vlahovic, B.; Wijesooriya, K.; Wilson, R.; Wojtsekhowski, B.; Woo, R.; Xu, W.; Younus, I.; Zhang, C.

    2004-06-01

    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from protons. Significant contributions to this asymmetry could arise from the contributions of strange form factors in the nucleon. The measured asymmetry is A= -15.05±0.98 (stat) ±0.56 (syst) ppm at the kinematic point < θlab > =12.3° and < Q2 > =0.477 (GeV/c)2 . Based on these data as well as data on electromagnetic form factors, we extract the linear combination of strange form factors GsE +0.392 GsM = 0.014±0.020±0.010 , where the first error arises from this experiment and the second arises from the electromagnetic form factor data. This paper provides a full description of the special experimental techniques employed for precisely measuring the small asymmetry, including the first use of a strained GaAs crystal and a laser-Compton polarimeter in a fixed target parity-violation experiment.

  20. Using ground reaction force to predict knee kinetic asymmetry following anterior cruciate ligament reconstruction.

    PubMed

    Dai, B; Butler, R J; Garrett, W E; Queen, R M

    2014-12-01

    Asymmetries in sagittal plane knee kinetics have been identified as a risk factor for anterior cruciate ligament (ACL) re-injury. Clinical tools are needed to identify the asymmetries. This study examined the relationships between knee kinetic asymmetries and ground reaction force (GRF) asymmetries during athletic tasks in adolescent patients following ACL reconstruction (ACL-R). Kinematic and GRF data were collected during a stop-jump task and a side-cutting task for 23 patients. Asymmetry indices between the surgical and non-surgical limbs were calculated for GRF and knee kinetic variables. For the stop-jump task, knee kinetics asymmetry indices were correlated with all GRF asymmetry indices (P < 0.05), except for loading rate. Vertical GRF impulse asymmetry index predicted peak knee moment, average knee moment, and knee work (R(2)  ≥ 0.78, P < 0.01) asymmetry indices. For the side-cutting tasks, knee kinetic asymmetry indices were correlated with the peak propulsion vertical GRF and vertical GRF impulse asymmetry indices (P < 0.05). Vertical GRF impulse asymmetry index predicted peak knee moment, average knee moment, and knee work (R(2)  ≥ 0.55, P < 0.01) asymmetry indices. The vertical GRF asymmetries may be a viable surrogate for knee kinetic asymmetries and therefore may assist in optimizing rehabilitation outcomes and minimizing re-injury rates. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Regulation of protein degradation in muscle by calcium

    NASA Technical Reports Server (NTRS)

    Zeman, Richard J.; Kameyama, Tsuneo; Matsumoto, Kazue; Bernstein, Paul; Etlinger, Joseph D.

    1985-01-01

    Calcium-dependent regulation of intracellular protein degradation was studied in isolated rat skeletal muscles incubated in vitro in the presence of a large variety of agents known to affect calcium movement and distribution. The effect of different classes of protease inhibitors was tested to determine the responsible proteolytic systems involved in calcium-dependent degradation. The results suggest that nonlysosomal leupetin- and E-64-c-sensitive proteases are resposible for calcium-dependent proteolysis in muscle.

  2. Left-right leaf asymmetry in decussate and distichous phyllotactic systems.

    PubMed

    Martinez, Ciera C; Chitwood, Daniel H; Smith, Richard S; Sinha, Neelima R

    2016-12-19

    Leaves in plants with spiral phyllotaxy exhibit directional asymmetries, such that all the leaves originating from a meristem of a particular chirality are similarly asymmetric relative to each other. Models of auxin flux capable of recapitulating spiral phyllotaxis predict handed auxin asymmetries in initiating leaf primordia with empirically verifiable effects on superficially bilaterally symmetric leaves. Here, we extend a similar analysis of leaf asymmetry to decussate and distichous phyllotaxy. We found that our simulation models of these two patterns predicted mirrored asymmetries in auxin distribution in leaf primordia pairs. To empirically verify the morphological consequences of asymmetric auxin distribution, we analysed the morphology of a tomato sister-of-pin-formed1a (sopin1a) mutant, entire-2, in which spiral phyllotaxy consistently transitions to a decussate state. Shifts in the displacement of leaflets on the left and right sides of entire-2 leaf pairs mirror each other, corroborating predicted model results. We then analyse the shape of more than 800 common ivy (Hedera helix) and more than 3000 grapevine (Vitis and Ampelopsis spp.) leaf pairs and find statistical enrichment of predicted mirrored asymmetries. Our results demonstrate that left-right auxin asymmetries in models of decussate and distichous phyllotaxy successfully predict mirrored asymmetric leaf morphologies in superficially symmetric leaves.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Author(s).

  3. Magnetic fields and chiral asymmetry in the early hot universe

    NASA Astrophysics Data System (ADS)

    Sydorenko, Maksym; Tomalak, Oleksandr; Shtanov, Yuri

    2016-10-01

    In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of `inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.

  4. Subtasks affecting step-length asymmetry in post-stroke hemiparetic walking.

    PubMed

    Kim, Woo-Sub

    2016-10-01

    This study was performed to investigate whether components from trunk progression (TP) and step length were related to step length asymmetry in walking in patients with hemiparesis. Gait analysis was performed for participants with hemiparesis and healthy controls. The distance between the pelvis and foot in the anterior-posterior axis was calculated at initial-contact. Step length was partitioned into anterior foot placement (AFP) and posterior foot placement (PFP). TP was partitioned into anterior trunk progression (ATP) and posterior trunk progression (PTP). The TP pattern and step length pattern were defined to represent intra-TP and intra-step spatial balance, respectively. Of 29 participants with hemiparesis, nine participants showed longer paretic step length, eight participants showed symmetric step length, and 12 participants showed shorter paretic step length. For the hemiparesis group, linear regression analysis showed that ATP asymmetry, AFP asymmetry, and TP patterns had significant predictability regarding step length asymmetry. Prolonged paretic ATP and shortened paretic AFP was the predominant pattern in the hemiparesis group, even in participants with symmetric step length. However, some participants showed same direction of ATP and AFP asymmetry. These findings indicate the following: (1) ATP asymmetries should be observed to determine individual characteristics of step length asymmetry, and (2) TP patterns can provide complementary information for non-paretic limb compensation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Visual search asymmetries within color-coded and intensity-coded displays.

    PubMed

    Yamani, Yusuke; McCarley, Jason S

    2010-06-01

    Color and intensity coding provide perceptual cues to segregate categories of objects within a visual display, allowing operators to search more efficiently for needed information. Even within a perceptually distinct subset of display elements, however, it may often be useful to prioritize items representing urgent or task-critical information. The design of symbology to produce search asymmetries (Treisman & Souther, 1985) offers a potential technique for doing this, but it is not obvious from existing models of search that an asymmetry observed in the absence of extraneous visual stimuli will persist within a complex color- or intensity-coded display. To address this issue, in the current study we measured the strength of a visual search asymmetry within displays containing color- or intensity-coded extraneous items. The asymmetry persisted strongly in the presence of extraneous items that were drawn in a different color (Experiment 1) or a lower contrast (Experiment 2) than the search-relevant items, with the targets favored by the search asymmetry producing highly efficient search. The asymmetry was attenuated but not eliminated when extraneous items were drawn in a higher contrast than search-relevant items (Experiment 3). Results imply that the coding of symbology to exploit visual search asymmetries can facilitate visual search for high-priority items even within color- or intensity-coded displays. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  6. Shifting brain asymmetry: the link between meditation and structural lateralization.

    PubMed

    Kurth, Florian; MacKenzie-Graham, Allan; Toga, Arthur W; Luders, Eileen

    2015-01-01

    Previous studies have revealed an increased fractional anisotropy and greater thickness in the anterior parts of the corpus callosum in meditation practitioners compared with control subjects. Altered callosal features may be associated with an altered inter-hemispheric integration and the degree of brain asymmetry may also be shifted in meditation practitioners. Therefore, we investigated differences in gray matter asymmetry as well as correlations between gray matter asymmetry and years of meditation practice in 50 long-term meditators and 50 controls. We detected a decreased rightward asymmetry in the precuneus in meditators compared with controls. In addition, we observed that a stronger leftward asymmetry near the posterior intraparietal sulcus was positively associated with the number of meditation practice years. In a further exploratory analysis, we observed that a stronger rightward asymmetry in the pregenual cingulate cortex was negatively associated with the number of practice years. The group difference within the precuneus, as well as the positive correlations with meditation years in the pregenual cingulate cortex, suggests an adaptation of the default mode network in meditators. The positive correlation between meditation practice years and asymmetry near the posterior intraparietal sulcus may suggest that meditation is accompanied by changes in attention processing. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. Short-term tidal asymmetry inversion in a macrotidal estuary (Beira, Mozambique)

    NASA Astrophysics Data System (ADS)

    Nzualo, Teodósio N. M.; Gallo, Marcos N.; Vinzon, Susana B.

    2018-05-01

    The distortion of the tide in estuaries, bays and coastal areas is the result of the generation of overtides due to the non-linear effects associated with friction, advection, and the finite effects of the tidal amplitude in shallow waters. The Beira estuary is classified as macrotidal, with a large ratio of S2/M2. Typical tides ranges from 6 m and 0.8 m, during springs and neaps tides, respectively. As a consequence of this large fortnightly tidal amplitude difference and the estuarine morphology, asymmetry inversions occur. Two types of tidal asymmetries were investigated in this paper, one considering tidal duration asymmetry (time difference between rising and falling tide) and the other, related to tidal velocity asymmetry (unequal magnitudes of flood and ebb peaks currents). In the Beira estuary when we examine the tidal duration asymmetry, flood dominance is observed during spring tide periods (negative time difference between rising and falling tide), while ebb dominance appears during neap tides (positive time difference between rising and falling tide). A 2DH hydrodynamic model was implemented to analyze this asymmetry inversion. The model was calibrated with water-level data measured at the Port of Beira and current data measured along the estuary. The model was run for different scenarios considering tidal constituents at the ocean boundary, river discharge and the morphology of the estuary. River discharge did not show significant effects on the tidal duration asymmetry. Through comparison of the scenarios, it was shown that the incoming ocean tide at the boundary has an ebb-dominant asymmetry, changing to flood-dominant only during spring tides due to the effect of shoaling and friction within the estuary. During neap tides, the propagation occurs mainly in the channels, and ebb dominance remains. The interplay between the estuary morphodynamics was thus identified and the relation between tidal duration asymmetry and tidal velocity asymmetry was

  8. The validity of individual frontal alpha asymmetry EEG neurofeedback.

    PubMed

    Quaedflieg, C W E M; Smulders, F T Y; Meyer, T; Peeters, F; Merckelbach, H; Smeets, T

    2016-01-01

    Frontal asymmetry in alpha oscillations is assumed to be associated with psychopathology and individual differences in emotional responding. Brain-activity-based feedback is a promising tool for the modulation of cortical activity. Here, we validated a neurofeedback protocol designed to change relative frontal asymmetry based on individual alpha peak frequencies, including real-time average referencing and eye-correction. Participants (N = 60) were randomly assigned to a right, left or placebo neurofeedback group. Results show a difference in trainability between groups, with a linear change in frontal alpha asymmetry over time for the right neurofeedback group during rest. Moreover, the asymmetry changes in the right group were frequency and location specific, even though trainability did not persist at 1 week and 1 month follow-ups. On the behavioral level, subjective stress on the second test day was reduced in the left and placebo neurofeedback groups, but not in the right neurofeedback group. We found individual differences in trainability that were dependent on training group, with participants in the right neurofeedback group being more likely to change their frontal asymmetry in the desired direction. Individual differences in trainability were also reflected in the ability to change frontal asymmetry during the feedback. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  9. Asymmetry-defective oligodendrocyte progenitors are glioma precursors

    PubMed Central

    Sugiarto, Sista; Persson, Anders I.; Munoz, Elena Gonzalez; Waldhuber, Markus; Lamagna, Chrystelle; Andor, Noemi; Hanecker, Patrizia; Ayers-Ringler, Jennifer; Phillips, Joanna; Siu, Jason; Lim, Daniel; Vandenberg, Scott; Stallcup, William; Berger, Mitchel S.; Bergers, Gabriele; Weiss, William A.; Petritsch, Claudia

    2012-01-01

    Summary Postnatal oligodendrocyte progenitor cells (OPC) self-renew, generate mature oligodendrocytes, and are a cellular origin of oligodendrogliomas. We show that the proteoglycan NG2 segregates asymmetrically during mitosis to generate OPC cells of distinct fate. NG2 is required for asymmetric segregation of EGFR to the NG2+ progeny, which consequently activates EGFR and undergoes EGF-dependent proliferation and self-renewal. In contrast, the NG2− progeny differentiates. In a mouse model, decreased NG2 asymmetry coincides with premalignant, abnormal self-renewal rather than differentiation and with tumor-initiating potential. Asymmetric division of human NG2+ cells is prevalent in non-neoplastic tissue but is decreased in oligodendrogliomas. Regulators of asymmetric cell division are misexpressed in low-grade oligodendrogliomas. Our results identify loss of asymmetric division associated with the neoplastic transformation of OPC. PMID:21907924

  10. Hedgehog participates in the establishment of left-right asymmetry during amphioxus development by controlling Cerberus expression.

    PubMed

    Hu, Guangwei; Li, Guang; Wang, Hui; Wang, Yiquan

    2017-12-15

    Correct patterning of left-right (LR) asymmetry is essential during the embryonic development of bilaterians. Hedgehog (Hh) signaling is known to play a role in LR asymmetry development of mouse, chicken and sea urchin embryos by regulating Nodal expression. In this study, we report a novel regulatory mechanism for Hh in LR asymmetry development of amphioxus embryos. Our results revealed that Hh -/- embryos abolish Cerberus ( Cer ) transcription, with bilaterally symmetric expression of Nodal , Lefty and Pitx In consequence, Hh -/- mutants duplicated left-side structures and lost right-side characters, displaying an abnormal bilaterally symmetric body plan. These LR defects in morphology and gene expression could be rescued by Hh mRNA injection. Our results indicate that Hh participates in amphioxus LR patterning by controlling Cer gene expression. Curiously, however, upregulation of Hh signaling failed to alter the Cer expression pattern or LR morphology in amphioxus embryos, indicating that Hh might not provide an asymmetric cue for Cer expression. In addition, Hh is required for mouth opening in amphioxus, hinting at a homologous relationship between amphioxus and vertebrate mouth development. © 2017. Published by The Company of Biologists Ltd.

  11. G protein-coupled receptor kinase 2 positively regulates epithelial cell migration

    PubMed Central

    Penela, Petronila; Ribas, Catalina; Aymerich, Ivette; Eijkelkamp, Niels; Barreiro, Olga; Heijnen, Cobi J; Kavelaars, Annemieke; Sánchez-Madrid, Francisco; Mayor, Federico

    2008-01-01

    Cell migration requires integration of signals arising from both the extracellular matrix and messengers acting through G protein-coupled receptors (GPCRs). We find that increased levels of G protein-coupled receptor kinase 2 (GRK2), a key player in GPCR regulation, potentiate migration of epithelial cells towards fibronectin, whereas such process is decreased in embryonic fibroblasts from hemizygous GRK2 mice or upon knockdown of GRK2 expression. Interestingly, the GRK2 effect on fibronectin-mediated cell migration involves the paracrine/autocrine activation of a sphingosine-1-phosphate (S1P) Gi-coupled GPCR. GRK2 positively modulates the activity of the Rac/PAK/MEK/ERK pathway in response to adhesion and S1P by a mechanism involving the phosphorylation-dependent, dynamic interaction of GRK2 with GIT1, a key scaffolding protein in cell migration processes. Furthermore, decreased GRK2 levels in hemizygous mice result in delayed wound healing rate in vivo, consistent with a physiological role of GRK2 as a regulator of coordinated integrin and GPCR-directed epithelial cell migration. PMID:18369319

  12. Automated measurement of vocal fold vibratory asymmetry from high-speed videoendoscopy recordings.

    PubMed

    Mehta, Daryush D; Deliyski, Dimitar D; Quatieri, Thomas F; Hillman, Robert E

    2011-02-01

    In prior work, a manually derived measure of vocal fold vibratory phase asymmetry correlated to varying degrees with visual judgments made from laryngeal high-speed videoendoscopy (HSV) recordings. This investigation extended this work by establishing an automated HSV-based framework to quantify 3 categories of vocal fold vibratory asymmetry. HSV-based analysis provided for cycle-to-cycle estimates of left-right phase asymmetry, left-right amplitude asymmetry, and axis shift during glottal closure for 52 speakers with no vocal pathology producing comfortable and pressed phonation. An initial cross-validation of the automated left-right phase asymmetry measure was performed by correlating the measure with other objective and subjective assessments of phase asymmetry. Vocal fold vibratory asymmetry was exhibited to a similar extent in both comfortable and pressed phonations. The automated measure of left-right phase asymmetry strongly correlated with manually derived measures and moderately correlated with visual-perceptual ratings. Correlations with the visual-perceptual ratings remained relatively consistent as the automated measure was derived from kymograms taken at different glottal locations. An automated HSV-based framework for the quantification of vocal fold vibratory asymmetry was developed and initially validated. This framework serves as a platform for investigating relationships between vocal fold tissue motion and acoustic measures of voice function.

  13. Ear asymmetries in middle-ear, cochlear, and brainstem responses in human infants

    PubMed Central

    Keefe, Douglas H.; Gorga, Michael P.; Jesteadt, Walt; Smith, Lynette M.

    2008-01-01

    In 2004, Sininger and Cone-Wesson examined asymmetries in the signal-to-noise ratio (SNR) of otoacoustic emissions (OAE) in infants, reporting that distortion-product (DP)OAE SNR was larger in the left ear, whereas transient-evoked (TE)OAE SNR was larger in the right. They proposed that cochlear and brainstem asymmetries facilitate development of brain-hemispheric specialization for sound processing. Similarly, in 2006 Sininger and Cone-Wesson described ear asymmetries mainly favoring the right ear in infant auditory brainstem responses (ABRs). The present study analyzed 2640 infant responses to further explore these effects. Ear differences in OAE SNR, signal, and noise were evaluated separately and across frequencies (1.5, 2, 3, and 4 kHz), and ABR asymmetries were compared with cochlear asymmetries. Analyses of ear-canal reflectance and admittance showed that asymmetries in middle-ear functioning did not explain cochlear and brainstem asymmetries. Current results are consistent with earlier studies showing right-ear dominance for TEOAE and ABR. Noise levels were higher in the right ear for OAEs and ABRs, causing ear asymmetries in SNR to differ from those in signal level. No left-ear dominance for DPOAE signal was observed. These results do not support a theory that ear asymmetries in cochlear processing mimic hemispheric brain specialization for auditory processing. PMID:18345839

  14. Crossed asymmetry in Russell-Silver syndrome.

    PubMed Central

    Qazi, Q H; Kassner, E G; Ganapathy, C

    1977-01-01

    Since the initial report by Silver et al (1953), more than 50 examples of the Russell-Silver syndrome have been reported. Unilateral congenital asymmetry of the extremities has been considered one of the major features of this disorder (Silver, 1964). We recently observed a child with otherwise typical features of the Russell-Silver syndrome who had enlargement of the right hand and of the left lower extremity. We know of no other recorded example of crossed asymmetry in this clinical entity. Images PMID:839508

  15. Profiling Synaptic Proteins Identifies Regulators of Insulin Secretion and Lifespan

    PubMed Central

    Kaplan, Joshua M.

    2008-01-01

    Cells are organized into distinct compartments to perform specific tasks with spatial precision. In neurons, presynaptic specializations are biochemically complex subcellular structures dedicated to neurotransmitter secretion. Activity-dependent changes in the abundance of presynaptic proteins are thought to endow synapses with different functional states; however, relatively little is known about the rules that govern changes in the composition of presynaptic terminals. We describe a genetic strategy to systematically analyze protein localization at Caenorhabditis elegans presynaptic specializations. Nine presynaptic proteins were GFP-tagged, allowing visualization of multiple presynaptic structures. Changes in the distribution and abundance of these proteins were quantified in 25 mutants that alter different aspects of neurotransmission. Global analysis of these data identified novel relationships between particular presynaptic components and provides a new method to compare gene functions by identifying shared protein localization phenotypes. Using this strategy, we identified several genes that regulate secretion of insulin-like growth factors (IGFs) and influence lifespan in a manner dependent on insulin/IGF signaling. PMID:19043554

  16. Motor activity of centromere-associated protein-E contributes to its localization at the center of the midbody to regulate cytokinetic abscission

    PubMed Central

    Ohashi, Akihiro; Ohori, Momoko; Iwai, Kenichi

    2016-01-01

    Accurate control of cytokinesis is critical for genomic stability to complete high-fidelity transmission of genetic material to the next generation. A number of proteins accumulate in the intercellular bridge (midbody) during cytokinesis, and the dynamics of these proteins are temporally and spatially orchestrated to complete the process. In this study, we demonstrated that localization of centromere-associated protein-E (CENP-E) at the midbody is involved in cytokinetic abscission. The motor activity of CENP-E and the C-terminal midbody localization domain, which includes amino acids 2659–2666 (RYFDNSSL), are involved in the anchoring of CENP-E to the center of the midbody. Furthermore, CENP-E motor activity contributes to the accumulation of protein regulator of cytokinesis 1 (PRC1) in the midbody during cytokinesis. Midbody localization of PRC1 is critical to the antiparallel microtubule structure and recruitment of other midbody-associated proteins. Therefore, CENP-E motor activity appears to play important roles in the organization of these proteins to complete cytokinetic abscission. Our findings will be helpful for understanding how each step of cytokinesis is regulated to complete cytokinetic abscission. PMID:27835888

  17. Symmetry and asymmetry in aesthetics and the arts

    NASA Astrophysics Data System (ADS)

    McManus, I. C.

    2005-10-01

    Symmetry and beauty are often claimed to be linked, particularly by mathematicians and scientists. However philosophers and art historians seem generally agreed that although symmetry is indeed attractive, there is also a somewhat sterile rigidity about it, which can make it less attractive than the more dynamic, less predictable beauty associated with asymmetry. Although a little asymmetry can be beautiful, an excess merely results in chaos. As Adorno suggested, asymmetry probably results most effectively in beauty when the underlying symmetry upon which it is built is still apparent. This paper examines the ways in which asymmetries, particularly left-right asymmetries, were used by painters in the Italian Renaissance. Polyptychs often show occasional asymmetries, which are more likely to involve the substitution of a left cheek for a right cheek, than vice-versa. A hypothesis is developed that the left and right cheeks have symbolic meanings, with the right cheek meaning "like self" and the left cheek meaning "unlike self". This principle is evaluated in pictures such as the Crucifixion, the Annunciation and, the Madonna and Child. The latter is particularly useful because the theological status of the Madonna changed during the Renaissance, and her left-right portrayal also changed at the same time in a comprehensible way. Some brief experimental tests of the hypothesis are also described. Finally the paper ends by considering why it is that the left rather than the right cheek is associated with "unlike self", and puts that result in the context of the universal "dual symbolic classification" of right and left, which was first described by the anthropologist Robert Hertz.

  18. Heat shock protein 70 regulates Tcl1 expression in leukemia and lymphomas

    PubMed Central

    Gaudio, Eugenio; Paduano, Francesco; Ngankeu, Apollinaire; Lovat, Francesca; Fabbri, Muller; Sun, Hui-Lung; Gasparini, Pierluigi; Efanov, Alexey; Peng, Yong; Zanesi, Nicola; Shuaib, Mohammed A.; Rassenti, Laura Z.; Kipps, Thomas J.; Li, Chenglong; Aqeilan, Rami I.; Lesinski, Gregory B.; Trapasso, Francesco

    2013-01-01

    T-cell leukemia/lymphoma 1 (TCL1) is an oncogene overexpressed in T-cell prolymphocytic leukemia and in B-cell malignancies including B-cell chronic lymphocytic leukemia and lymphomas. To date, only a limited number of Tcl1-interacting proteins that regulate its oncogenic function have been identified. Prior studies used a proteomic approach to identify a novel interaction between Tcl1 with Ataxia Telangiectasia Mutated. The association of Tcl1 and Ataxia Telangiectasia Mutated leads to activation of the NF-κB pathway. Here, we demonstrate that Tcl1 also interacts with heat shock protein (Hsp) 70. The Tcl1-Hsp70 complex was validated by coimmunoprecipitation experiments. In addition, we report that Hsp70, a protein that plays a critical role in the folding and maturation of several oncogenic proteins, associates with Tcl1 protein and stabilizes its expression. The inhibition of the ATPase activity of Hsp70 results in ubiquitination and proteasome-dependent degradation of Tcl1. The inhibition of Hsp70 significantly reduced the growth of lymphoma xenografts in vivo and down-regulated the expression of Tcl1 protein. Our findings reveal a functional interaction between Tcl1 and Hsp70 and identify Tcl1 as a novel Hsp70 client protein. These findings suggest that inhibition of Hsp70 may represent an alternative effective therapy for chronic lymphocytic leukemia and lymphomas via its ability to inhibit the oncogenic functions of Tcl1. PMID:23160471

  19. Integrated regulation of PIKK-mediated stress responses by AAA+ proteins RUVBL1 and RUVBL2

    PubMed Central

    Izumi, Natsuko; Yamashita, Akio; Ohno, Shigeo

    2012-01-01

    Proteins of the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family are activated by various cellular stresses, including DNA damage, premature termination codon and nutritional status, and induce appropriate cellular responses. The importance of PIKK functions in the maintenance of genome integrity, accurate gene expression and the proper control of cell growth/proliferation is established. Recently, ATPase associated diverse cellular activities (AAA+) proteins RUVBL1 and RUVBL2 (RUVBL1/2) have been shown to be common regulators of PIKKs. The RUVBL1/2 complex regulates PIKK-mediated stress responses through physical interactions with PIKKs and by controlling PIKK mRNA levels. In this review, the functions of PIKKs in stress responses are outlined and the physiological significance of the integrated regulation of PIKKs by the RUVBL1/2 complex is presented. We also discuss a putative “PIKK regulatory chaperone complex” including other PIKK regulators, Hsp90 and the Tel2 complex. PMID:22540023

  20. Microtubule-dependent regulation of mitotic protein degradation

    PubMed Central

    Song, Ling; Craney, Allison; Rape, Michael

    2014-01-01

    Accurate cell division depends on tightly regulated ubiquitylation events catalyzed by the anaphase-promoting complex. Among its many substrates, the APC/C triggers the degradation of proteins that stabilize the mitotic spindle, and loss or accumulation of such spindle assembly factors can result in aneuploidy and cancer. Although critical for cell division, it has remained poorly understood how the timing of spindle assembly factor degradation is established during mitosis. Here, we report that active spindle assembly factors are protected from APC/C-dependent degradation by microtubules. In contrast, those molecules that are not bound to microtubules are highly susceptible to proteolysis and turned over immediately after APC/C-activation. The correct timing of spindle assembly factor degradation, as achieved by this regulatory circuit, is required for accurate spindle structure and function. We propose that the localized stabilization of APC/C-substrates provides a mechanism for the selective disposal of cell cycle regulators that have fulfilled their mitotic roles. PMID:24462202

  1. Autocrine class 3 semaphorin system regulates slit diaphragm proteins and podocyte survival.

    PubMed

    Guan, F; Villegas, G; Teichman, J; Mundel, P; Tufro, A

    2006-05-01

    Class 3 semaphorins are guidance proteins that play crucial roles during development. Semaphorins 3A (sema 3A) and 3F are expressed by podocytes in vivo throughout ontogeny and their function is unknown. Here we examined the expression of class 3 semaphorins (3A, 3B, 3C, 3D, 3E, and 3F) and their receptors (neuropilins 1 and 2, plexins A1, A2, A3, B2, and D1) in undifferentiated and differentiated mouse podocytes using reverse transcriptase-polymerase chain reaction (RT-PCR). All class 3 semaphorins, neuropilins 1 and 2 are expressed by undifferentiated and differentiated podocytes at similar levels. Differentiated podocytes expressed 2-4-fold higher plexin A1, A2, and A3 mRNA levels than undifferentiated podocytes. To examine semaphorin regulation, we exposed podocytes to recombinant sema 3A. Sema 3A decreased semaphorin 3B, plexin A1, A3, and D1 >/=50% and reduced plexin A2 mRNA to undetectable levels. To identify sema 3A function in podocytes, we examined whether sema 3A regulates slit diaphragm proteins and podocyte survival. Sema 3A induced a dose-response podocin downregulation and decreased its interaction with CD2-associated protein and nephrin, as determined by Western analysis and co-immunoprecipitation. To evaluate sema 3A role in podocyte survival, we quantified podocyte apoptosis using a caspase 3 activity marker. Sema 3A induced a 10-fold increase in podocyte apoptosis and significantly decreased the activity of the Akt survival pathway. Our data indicate that (1) immortalized podocytes in culture have a functional autocrine semaphorin system that is regulated by differentiation and ligand availability; (2) sema 3A signaling regulates the expression and interactions of slit-diaphragm proteins and decreases podocyte survival.

  2. Baryogenesis and dark matter through a Higgs asymmetry.

    PubMed

    Servant, Géraldine; Tulin, Sean

    2013-10-11

    In addition to explaining the masses of elementary particles, the Higgs boson may have far-reaching implications for the generation of the matter content in the Universe. For instance, the Higgs boson plays a key role in two main theories of baryogenesis, namely, electroweak baryogenesis and leptogenesis. In this Letter, we propose a new cosmological scenario where the Higgs chemical potential mediates asymmetries between visible and dark matter sectors, either generating a baryon asymmetry from a dark matter asymmetry or vice versa. We illustrate this mechanism with a simple model with two new fermions coupled to the Higgs boson and discuss the associated signatures.

  3. Mitochondrial Fusion and ERK Activity Regulate Steroidogenic Acute Regulatory Protein Localization in Mitochondria

    PubMed Central

    Duarte, Alejandra; Castillo, Ana Fernanda; Podestá, Ernesto J.; Poderoso, Cecilia

    2014-01-01

    The rate-limiting step in the biosynthesis of steroid hormones, known as the transfer of cholesterol from the outer to the inner mitochondrial membrane, is facilitated by StAR, the Steroidogenic Acute Regulatory protein. We have described that mitochondrial ERK1/2 phosphorylates StAR and that mitochondrial fusion, through the up-regulation of a fusion protein Mitofusin 2, is essential during steroidogenesis. Here, we demonstrate that mitochondrial StAR together with mitochondrial active ERK and PKA are necessary for maximal steroid production. Phosphorylation of StAR by ERK is required for the maintenance of this protein in mitochondria, observed by means of over-expression of a StAR variant lacking the ERK phosphorylation residue. Mitochondrial fusion regulates StAR levels in mitochondria after hormone stimulation. In this study, Mitofusin 2 knockdown and mitochondrial fusion inhibition in MA-10 Leydig cells diminished StAR mRNA levels and concomitantly mitochondrial StAR protein. Together our results unveil the requirement of mitochondrial fusion in the regulation of the localization and mRNA abundance of StAR. We here establish the relevance of mitochondrial phosphorylation events in the correct localization of this key protein to exert its action in specialized cells. These discoveries highlight the importance of mitochondrial fusion and ERK phosphorylation in cholesterol transport by means of directing StAR to the outer mitochondrial membrane to achieve a large number of steroid molecules per unit of StAR. PMID:24945345

  4. Perisylvian sulcal morphology and cerebral asymmetry patterns in adults who stutter.

    PubMed

    Cykowski, Matthew D; Kochunov, Peter V; Ingham, Roger J; Ingham, Janis C; Mangin, Jean-François; Rivière, Denis; Lancaster, Jack L; Fox, Peter T

    2008-03-01

    Previous investigations of cerebral anatomy in persistent developmental stutterers have reported bilateral anomalies in the perisylvian region and atypical patterns of cerebral asymmetry. In this study, perisylvian sulcal patterns were analyzed to compare subjects with persistent developmental stuttering (PDS) and an age-, hand-, and gender-matched control group. This analysis was accomplished using software designed for 3-dimensional sulcal identification and extraction. Patterns of cerebral asymmetry were also investigated with standard planimetric measurements. PDS subjects showed a small but significant increase in both the number of sulci connecting with the second segment of the right Sylvian fissure and in the number of suprasylvian gyral banks (of sulci) along this segment. No differences were seen in the left perisylvian region for either sulcal number or gyral bank number. Measurements of asymmetry revealed typical patterns of cerebral asymmetry in both groups with no significant differences in frontal and occipital width asymmetry, frontal and occipital pole asymmetry, or planum temporale and Sylvian fissure asymmetries. The subtle difference in cortical folding of the right perisylvian region observed in PDS subjects may correlate with functional imaging studies that have reported increased right-hemisphere activity during stuttered speech.

  5. Decision making in noisy bistable systems with time-dependent asymmetry

    NASA Astrophysics Data System (ADS)

    Nené, Nuno R.; Zaikin, Alexey

    2013-01-01

    Our work draws special attention to the importance of the effects of time-dependent parameters on decision making in bistable systems. Here, we extend previous studies of the mechanism known as speed-dependent cellular decision making in genetic circuits by performing an analytical treatment of the canonical supercritical pitchfork bifurcation problem with an additional time-dependent asymmetry and control parameter. This model has an analogous behavior to the genetic switch. In the presence of transient asymmetries and fluctuations, slow passage through the critical region in both systems increases substantially the probability of specific decision outcomes. We also study the relevance for attractor selection of reaching maximum values for the external asymmetry before and after the critical region. Overall, maximum asymmetries should be reached at an instant where the position of the critical point allows for compensation of the detrimental effects of noise in retaining memory of the transient asymmetries.

  6. Nitric oxide synthase generates nitric oxide locally to regulate compartmentalized protein S-nitrosylation and protein trafficking

    PubMed Central

    Iwakiri, Yasuko; Satoh, Ayano; Chatterjee, Suvro; Toomre, Derek K.; Chalouni, Cecile M.; Fulton, David; Groszmann, Roberto J.; Shah, Vijay H.; Sessa, William C.

    2006-01-01

    Nitric oxide (NO) is a highly diffusible and short-lived physiological messenger. Despite its diffusible nature, NO modifies thiol groups of specific cysteine residues in target proteins and alters protein function via S-nitrosylation. Although intracellular S-nitrosylation is a specific posttranslational modification, the defined localization of an NO source (nitric oxide synthase, NOS) with protein S-nitrosylation has never been directly demonstrated. Endothelial NOS (eNOS) is localized mainly on the Golgi apparatus and in plasma membrane caveolae. Here, we show by using eNOS targeted to either the Golgi or the nucleus that S-nitrosylation is concentrated at the primary site of eNOS localization. Furthermore, localization of eNOS on the Golgi enhances overall Golgi protein S-nitrosylation, the specific S-nitrosylation of N-ethylmaleimide-sensitive factor and reduces the speed of protein transport from the endoplasmic reticulum to the plasma membrane in a reversible manner. These data indicate that local NOS action generates organelle-specific protein S-nitrosylation reactions that can regulate intracellular transport processes. PMID:17170139

  7. Cell cycle regulation by the intrinsically disordered proteins p21 and p27.

    PubMed

    Yoon, Mi-Kyung; Mitrea, Diana M; Ou, Li; Kriwacki, Richard W

    2012-10-01

    Today, it is widely accepted that proteins that lack highly defined globular three-dimensional structures, termed IDPs (intrinsically disordered proteins), play key roles in myriad biological processes. Our understanding of how intrinsic disorder mediates biological function is, however, incomplete. In the present paper, we review disorder-mediated cell cycle regulation by two intrinsically disordered proteins, p21 and p27. A structural adaptation mechanism involving a stretchable dynamic linker helix allows p21 to promiscuously recognize the various Cdk (cyclin-dependent kinase)-cyclin complexes that regulate cell division. Disorder within p27 mediates transmission of an N-terminal tyrosine phosphorylation signal to a C-terminal threonine phosphorylation, constituting a signalling conduit. These mechanisms are mediated by folding upon binding p21/p27's regulatory targets. However, residual disorder within the bound state contributes critically to these functional mechanisms. Our studies provide insights into how intrinsic protein disorder mediates regulatory processes and opportunities for designing drugs that target cancer-associated IDPs.

  8. The effect of maternal undernutrition on the rat placental transcriptome: protein restriction up-regulates cholesterol transport.

    PubMed

    Daniel, Zoe; Swali, Angelina; Emes, Richard; Langley-Evans, Simon C

    2016-01-01

    Fetal exposure to a maternal low protein diet during rat pregnancy is associated with hypertension, renal dysfunction and metabolic disturbance in adult life. These effects are present when dietary manipulations target only the first half of pregnancy. It was hypothesised that early gestation protein restriction would impact upon placental gene expression and that this may give clues to the mechanism which links maternal diet to later consequences. Pregnant rats were fed control or a low protein diet from conception to day 13 gestation. Placentas were collected and RNA sequencing performed using the Illumina platform. Protein restriction down-regulated 67 genes and up-regulated 24 genes in the placenta. Ingenuity pathway analysis showed significant enrichment in pathways related to cholesterol and lipoprotein transport and metabolism, including atherosclerosis signalling, clathrin-mediated endocytosis, LXR/RXR and FXR/RXR activation. Genes at the centre of these processes included the apolipoproteins ApoB, ApoA2 and ApoC2, microsomal triglyceride transfer protein (Mttp), the clathrin-endocytosis receptor cubilin, the transcription factor retinol binding protein 4 (Rbp4) and transerythrin (Ttr; a retinol and thyroid hormone transporter). Real-time PCR measurements largely confirmed the findings of RNASeq and indicated that the impact of protein restriction was often striking (cubilin up-regulated 32-fold, apoC2 up-regulated 17.6-fold). The findings show that gene expression in specific pathways is modulated by maternal protein restriction in the day-13 rat placenta. Changes in cholesterol transport may contribute to altered tissue development in the fetus and hence programme risk of disease in later life.

  9. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing

    DOEpatents

    Church, George M.; Esvelt, Kevin; Mali, Prashant

    2017-03-07

    Methods of modulating expression of a target nucleic acid in a cell are provided including use of multiple orthogonal Cas9 proteins to simultaneously and independently regulate corresponding genes or simultaneously and independently edit corresponding genes.

  10. Site-Specific Phosphorylation of PSD-95 PDZ Domains Reveals Fine-Tuned Regulation of Protein-Protein Interactions.

    PubMed

    Pedersen, Søren W; Albertsen, Louise; Moran, Griffin E; Levesque, Brié; Pedersen, Stine B; Bartels, Lina; Wapenaar, Hannah; Ye, Fei; Zhang, Mingjie; Bowen, Mark E; Strømgaard, Kristian

    2017-09-15

    The postsynaptic density protein of 95 kDa (PSD-95) is a key scaffolding protein that controls signaling at synapses in the brain through interactions of its PDZ domains with the C-termini of receptors, ion channels, and enzymes. PSD-95 is highly regulated by phosphorylation. To explore the effect of phosphorylation on PSD-95, we used semisynthetic strategies to introduce phosphorylated amino acids at four positions within the PDZ domains and examined the effects on interactions with a large set of binding partners. We observed complex effects on affinity. Most notably, phosphorylation at Y397 induced a significant increase in affinity for stargazin, as confirmed by NMR and single molecule FRET. Additionally, we compared the effects of phosphorylation to phosphomimetic mutations, which revealed that phosphomimetics are ineffective substitutes for tyrosine phosphorylation. Our strategy to generate site-specifically phosphorylated PDZ domains provides a detailed understanding of the role of phosphorylation in the regulation of PSD-95 interactions.

  11. Protein phosphorylation in plant immunity: insights into the regulation of pattern recognition receptor-mediated signaling

    PubMed Central

    Park, Chang-Jin; Caddell, Daniel F.; Ronald, Pamela C.

    2012-01-01

    Plants are continuously challenged by pathogens including viruses, bacteria, and fungi. The plant immune system recognizes invading pathogens and responds by activating an immune response. These responses occur rapidly and often involve post-translational modifications (PTMs) within the proteome. Protein phosphorylation is a common and intensively studied form of these PTMs and regulates many plant processes including plant growth, development, and immunity. Most well-characterized pattern recognition receptors (PRRs), including Xanthomonas resistance 21, flagellin sensitive 2, and elongation factor-Tu receptor, possess intrinsic protein kinase activity and regulate downstream signaling through phosphorylation events. Here, we focus on the phosphorylation events of plant PRRs that play important roles in the immune response. We also discuss the role of phosphorylation in regulating mitogen-associated protein kinase cascades and transcription factors in plant immune signaling. PMID:22876255

  12. Systematic VCP-UBXD Adaptor Network Proteomics Identifies a Role for UBXN10 in Regulating Ciliogenesis

    PubMed Central

    Raman, Malavika; Sergeev, Mikhail; Garnaas, Maija; Lydeard, John R.; Huttlin, Edward L.; Goessling, Wolfram; Shah, Jagesh V.; Harper, J. Wade

    2015-01-01

    The AAA-ATPase VCP (also known as p97 or CDC48) uses ATP hydrolysis to “segregate” ubiquitinated proteins from their binding partners. VCP acts via UBX-domain containing adaptors that provide target specificity, but targets and functions of UBXD proteins remain poorly understood. Through systematic proteomic analysis of UBXD proteins in human cells, we reveal a network of over 195 interacting proteins, implicating VCP in diverse cellular pathways. We have explored one such complex between an unstudied adaptor UBXN10 and the intraflagellar transport B (IFT-B) complex, which regulates anterograde transport into cilia. UBXN10 localizes to cilia in a VCP-dependent manner and both VCP and UBXN10 are required for ciliogenesis. Pharmacological inhibition of VCP destabilized the IFT-B complex and increased trafficking rates. Depletion of UBXN10 in zebrafish embryos causes defects in left-right asymmetry, which depends on functional cilia. This study provides a resource for exploring the landscape of UBXD proteins in biology and identifies an unexpected requirement for VCP-UBXN10 in ciliogenesis. PMID:26389662

  13. Lewis lung carcinoma regulation of mechanical stretch-induced protein synthesis in cultured myotubes.

    PubMed

    Gao, Song; Carson, James A

    2016-01-01

    Mechanical stretch can activate muscle and myotube protein synthesis through mammalian target of rapamycin complex 1 (mTORC1) signaling. While it has been established that tumor-derived cachectic factors can induce myotube wasting, the effect of this catabolic environment on myotube mechanical signaling has not been determined. We investigated whether media containing cachectic factors derived from Lewis lung carcinoma (LLC) can regulate the stretch induction of myotube protein synthesis. C2C12 myotubes preincubated in control or LLC-derived media were chronically stretched. Protein synthesis regulation by anabolic and catabolic signaling was then examined. In the control condition, stretch increased mTORC1 activity and protein synthesis. The LLC treatment decreased basal mTORC1 activity and protein synthesis and attenuated the stretch induction of protein synthesis. LLC media increased STAT3 and AMP-activated protein kinase phosphorylation in myotubes, independent of stretch. Both stretch and LLC independently increased ERK1/2, p38, and NF-κB phosphorylation. In LLC-treated myotubes, the inhibition of ERK1/2 and p38 rescued the stretch induction of protein synthesis. Interestingly, either leukemia inhibitory factor or glycoprotein 130 antibody administration caused further inhibition of mTORC1 signaling and protein synthesis in stretched myotubes. AMP-activated protein kinase inhibition increased basal mTORC1 signaling activity and protein synthesis in LLC-treated myotubes, but did not restore the stretch induction of protein synthesis. These results demonstrate that LLC-derived cachectic factors can dissociate stretch-induced signaling from protein synthesis through ERK1/2 and p38 signaling, and that glycoprotein 130 signaling is associated with the basal stretch response in myotubes. Copyright © 2016 the American Physiological Society.

  14. Function and regulation of primary cilia and intraflagellar transport proteins in the skeleton.

    PubMed

    Yuan, Xue; Serra, Rosa A; Yang, Shuying

    2015-01-01

    Primary cilia are microtubule-based organelles that project from the cell surface to enable transduction of various developmental signaling pathways. The process of intraflagellar transport (IFT) is crucial for the building and maintenance of primary cilia. Ciliary dysfunction has been found in a range of disorders called ciliopathies, some of which display severe skeletal dysplasias. In recent years, interest has grown in uncovering the function of primary cilia/IFT proteins in bone development, mechanotransduction, and cellular regulation. We summarize recent advances in understanding the function of cilia and IFT proteins in the regulation of cell differentiation in osteoblasts, osteocytes, chondrocytes, and mesenchymal stem cells (MSCs). We also discuss the mechanosensory function of cilia and IFT proteins in bone cells, cilia orientation, and other functions of cilia in chondrocytes. © 2014 New York Academy of Sciences.

  15. Lipid droplet meets a mitochondrial protein to regulate adipocyte lipolysis

    USDA-ARS?s Scientific Manuscript database

    In response to adrenergic stimulation, adipocytes undergo protein kinase A (PKA)-stimulated lipolysis. A key PKA target in this context is perilipin 1, a major regulator of lipolysis on lipid droplets (LDs). A study published in this issue of The EMBO Journal (Pidoux et al, 2011) identifies optic at...

  16. Identification and characterization of a gibberellin-regulated protein, which is ASR5, in the basal region of rice leaf sheaths.

    PubMed

    Takasaki, Hironori; Mahmood, Tariq; Matsuoka, Makoto; Matsumoto, Hiroshi; Komatsu, Setsuko

    2008-04-01

    Gibberellins (GAs) regulate growth and development in higher plants. To identify GA-regulated proteins during rice leaf sheath elongation, a proteomic approach was used. Proteins from the basal region of leaf sheath in rice seedling treated with GA(3) were analyzed by fluorescence two-dimensional difference gel electrophoresis. The levels of abscisic acid-stress-ripening-inducible 5 protein (ASR5), elongation factor-1 beta, translationally controlled tumor protein, fructose-bisphosphate aldolase and a novel protein increased; whereas the level of RuBisCO subunit binding-protein decreased by GA(3) treatment. ASR5 out of these six proteins was significantly regulated by GA(3) at the protein level but not at the mRNA level in the basal region of leaf sheaths. Since this protein is regulated not only by abscisic acid but also by GA(3), these results indicate that ASR5 might be involved in plant growth in addition to stress in the basal regions of leaf sheaths.

  17. Hemispheric Asymmetry in the Efficiency of Attentional Networks

    ERIC Educational Resources Information Center

    Asanowicz, Dariusz; Marzecova, Anna; Jaskowski, Piotr; Wolski, Piotr

    2012-01-01

    Despite the fact that hemispheric asymmetry of attention has been widely studied, a clear picture of this complex phenomenon is still lacking. The aim of the present study was to provide an efficient and reliable measurement of potential hemispheric asymmetries of three attentional networks, i.e. alerting, orienting and executive attention.…

  18. Magnetic fields and chiral asymmetry in the early hot universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sydorenko, Maksym; Shtanov, Yuri; Tomalak, Oleksandr, E-mail: maxsydorenko@gmail.com, E-mail: tomalak@uni-mainz.de, E-mail: shtanov@bitp.kiev.ua

    In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field andmore » lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of 'inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.« less

  19. Regulation of Exocytotic Fusion Pores by SNARE Protein Transmembrane Domains

    PubMed Central

    Wu, Zhenyong; Thiyagarajan, Sathish; O’Shaughnessy, Ben; Karatekin, Erdem

    2017-01-01

    Calcium-triggered exocytotic release of neurotransmitters and hormones from neurons and neuroendocrine cells underlies neuronal communication, motor activity and endocrine functions. The core of the neuronal exocytotic machinery is composed of soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs). Formation of complexes between vesicle-attached v- and plasma-membrane anchored t-SNAREs in a highly regulated fashion brings the membranes into close apposition. Small, soluble proteins called Complexins (Cpx) and calcium-sensing Synaptotagmins cooperate to block fusion at low resting calcium concentrations, but trigger release upon calcium increase. A growing body of evidence suggests that the transmembrane domains (TMDs) of SNARE proteins play important roles in regulating the processes of fusion and release, but the mechanisms involved are only starting to be uncovered. Here we review recent evidence that SNARE TMDs exert influence by regulating the dynamics of the fusion pore, the initial aqueous connection between the vesicular lumen and the extracellular space. Even after the fusion pore is established, hormone release by neuroendocrine cells is tightly controlled, and the same may be true of neurotransmitter release by neurons. The dynamics of the fusion pore can regulate the kinetics of cargo release and the net amount released, and can determine the mode of vesicle recycling. Manipulations of SNARE TMDs were found to affect fusion pore properties profoundly, both during exocytosis and in biochemical reconstitutions. To explain these effects, TMD flexibility, and interactions among TMDs or between TMDs and lipids have been invoked. Exocytosis has provided the best setting in which to unravel the underlying mechanisms, being unique among membrane fusion reactions in that single fusion pores can be probed using high-resolution methods. An important role will likely be played by methods that can probe single fusion pores in a biochemically

  20. Significance of postshunt ventricular asymmetries.

    PubMed

    Linder, M; Diehl, J T; Sklar, F H

    1981-08-01

    Ventricular asymmetries after shunt surgery were studied. Right and left ventricular areas from pre-and postoperative computerized tomography scans were measured with a computer digitizing technique, and the respective areas were expressed as a ratio. Measurements were made from the scans of 15 hydrocephalic children selected at random. Ages at surgery ranged from 1 to 101 weeks. The results indicate a significantly greater decrease in ventricular size on the side of the ventricular shunt catheter. Multiple regression analysis showed no relationship between the magnitude of change in ventricular size and either the patients' age orn the time intervals between surgery and follow-up scans. Possible mechanisms for these postshunt ventricular asymmetries are discussed.

  1. Ocular adnexal asymmetry in models: a magazine photograph analysis.

    PubMed

    Ing, Edsel; Safarpour, Azien; Ing, Tom; Ing, Sabrina

    2006-04-01

    Symmetry of facial features often correlates with a perception of physical attractiveness, and ophthalmologists are sometimes consulted by patients for eyelid, eyebrow, or orbital asymmetry. Our objective was to determine the prevalence of ocular adnexal asymmetry among people generally regarded as attractive. The mean width of the horizontal palpebral fissure (MHPF) for both men and women was determined in 40 adult volunteers. Then unobscured, head-on photographs of models looking in the primary position were digitally scanned from popular magazines. Eyelid height, eyelid folds, eyebrow height, medial canthus to midline distance, pupil to midline distance, and orbital dystopia measurements were made. After the measurements from the models were scaled to size by factoring with the MHPF obtained from the volunteers, the results were analyzed by paired samples t test for right-left asymmetry of the ocular adnexal measurements. We also examined for antimongoloid slant in the models. The MHPF of the volunteers was 27+/-1.3 mm for women and 29.6+/-2.0 mm for men. Of 102 magazine photographs analyzed, 55 were women and 47 men. As a group, the models showed a statistically significant asymmetry (p<0.05) in the horizontal fissure width, upper central lid fold, upper temporal lid fold, central eyebrow height, temporal eyebrow height, medial canthal to midline distance, pupil to midline distance, and orbital dystopia. The female models had more eyebrow asymmetry. The male models had more asymmetry at the horizontal fissure and with orbital dystopia. Two male models also had a unilateral antimongoloid slant. Small to moderate amounts of eyelid, eyebrow, and orbital asymmetry were observed in faces generally perceived as attractive. This fact should be considered during preoperative discussions with patients considering oculoplastic surgery.

  2. Proteomic Analysis Reveals Differentially Regulated Protein Acetylation in Human Amyotrophic Lateral Sclerosis Spinal Cord

    PubMed Central

    Azadzoi, Kazem; Yang, Yun; Fei, Zhou; Dou, Kefeng; Kowall, Neil W.; Choi, Han-Pil; Vieira, Fernando; Yang, Jing-Hua

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive fatal neurodegenerative disease that primarily affects motor neurons in the brain and spinal cord. Histone deacetylase (HDAC) inhibitors have neuroprotective effects potentially useful for the treatment of neurodegenerative diseases including ALS; however, the molecular mechanisms underlying their potential efficacy is not well understood. Here we report that protein acetylation in urea-soluble proteins is differently regulated in post-mortem ALS spinal cord. Two-dimensional electrophoresis (2-DE) analysis reveals several protein clusters with similar molecular weight but different charge status. Liquid chromatography and tandem mass spectrometry (LC-MS/MS) identifies glial fibrillary acidic protein (GFAP) as the dominant component in the protein clusters. Further analysis indicates six heavily acetylated lysine residues at positions 89, 153, 189, 218, 259 and 331 of GFAP. Immunoprecipitation followed by Western blotting confirms that the larger form of GFAP fragments are acetylated and upregulated in ALS spinal cord. Further studies demonstrate that acetylation of the proteins additional to GFAP is differently regulated, suggesting that acetylation and/or deacetylation play an important role in pathogenesis of ALS. PMID:24312501

  3. The intricate Galaxy disk: velocity asymmetries in Gaia-TGAS

    NASA Astrophysics Data System (ADS)

    Antoja, T.; de Bruijne, J.; Figueras, F.; Mor, R.; Prusti, T.; Roca-Fàbrega, S.

    2017-06-01

    We use Gaia-TGAS data to compare the transverse velocities in Galactic longitude (coming from proper motions and parallaxes) in the Milky Way disk for negative and positive longitudes as a function of distance. The transverse velocities are strongly asymmetric and deviate significantly from the expectations for an axisymmetric galaxy. The value and sign of the asymmetry changes at spatial scales of several tens of degrees in Galactic longitude and about 0.5 kpc in distance. The asymmetry is statistically significant at 95% confidence level for 57% of the region probed, which extends up to 1.2 kpc. A percentage of 24% of the region shows absolute differences at this confidence level larger than 5 km s-1 and 7% larger than 10 km s-1. The asymmetry pattern shows mild variations in the vertical direction and with stellar type. A first qualitative comparison with spiral arm models indicates that the arms are probably not the main source of the asymmetry. We briefly discuss alternative origins. This is the first time that global all-sky asymmetries are detected in the Milky Way kinematics beyond the local neighbourhood and with a purely astrometric sample.

  4. Developmental and light regulation of tumor suppressor protein PP2A in the retina

    PubMed Central

    Rajala, Ammaji; Wang, Yuhong; Abcouwer, Steven F.; Gardner, Thomas W.; Rajala, Raju V.S.

    2018-01-01

    Protein phosphatases are a group of universal enzymes that are responsible for the dephosphorylation of various proteins and enzymes in cells. Cellular signal transduction events are largely governed by the phosphorylation of key proteins. The length of cellular response depends on the activation of protein phosphatase that dephosphorylates the phosphate groups to halt a biological response, and fine-tune the defined cellular outcome. Dysregulation of these phosphatase(s) results in various disease phenotypes. The retina is a post-mitotic tissue, and oncogenic tyrosine and serine/ threonine kinase activities are important for retinal neuron survival. Aberrant activation of protein phosphatase(s) may have a negative effect on retinal neurons. In the current study, we characterized tumor suppressor protein phosphatase 2 (PP2A), a major serine/ threonine kinase with a broad substrate specificity. Our data suggest that PP2A is developmentally regulated in the retina, localized predominantly in the inner retina, and expressed in photoreceptor inner segments. Our findings indicate that PKCα and mTOR may serve as PP2A substrates. We found that light regulates PP2A activity. Our studies also suggest that rhodopsin regulates PP2A and its substrate(s) dephosphorylation. PP2A substrate phosphorylation is increased in mice lacking the A-subunit of PP2A. However, there is no accompanying effect on retina structure and function. Together, our findings suggest that controlling the activity of PP2A in the retina may be neuroprotective. PMID:29416710

  5. PRDM14 directly interacts with heat shock proteins HSP90α and glucose-regulated protein 78.

    PubMed

    Moriya, Chiharu; Taniguchi, Hiroaki; Nagatoishi, Satoru; Igarashi, Hisayoshi; Tsumoto, Kouhei; Imai, Kohzoh

    2018-02-01

    PRDM14 is overexpressed in various cancers and can regulate cancer phenotype under certain conditions. Inhibiting PRDM14 expression in breast and pancreatic cancers has been reported to reduce cancer stem-like phenotypes, which are associated with aggressive tumor properties. Therefore, PRDM14 is considered a promising target for cancer therapy. To develop a pharmaceutical treatment, the mechanism and interacting partners of PRDM14 need to be clarified. Here, we identified the proteins interacting with PRDM14 in triple-negative breast cancer (TNBC) cells, which do not express the three most common types of receptor (estrogen receptors, progesterone receptors, and HER2). We obtained 13 candidates that were pulled down with PRDM14 in TNBC HCC1937 cells and identified them by mass spectrometry. Two candidates-glucose-regulated protein 78 (GRP78) and heat shock protein 90-α (HSP90α)-were confirmed in immunoprecipitation assay in two TNBC cell lines (HCC1937 and MDA-MB231). Surface plasmon resonance analysis using GST-PRDM14 showed that these two proteins directly interacted with PRDM14 and that the interactions required the C-terminal region of PRDM14, which includes zinc finger motifs. We also confirmed the interactions in living cells by NanoLuc luciferase-based bioluminescence resonance energy transfer (NanoBRET) assay. Moreover, HSP90 inhibitors (17DMAG and HSP990) significantly decreased breast cancer stem-like CD24 -  CD44 + and side population (SP) cells in HCC1937 cells, but not in PRDM14 knockdown HCC1937 cells. The combination of the GRP78 inhibitor HA15 and PRDM14 knockdown significantly decreased cell proliferation and SP cell number in HCC1937 cells. These results suggest that HSP90α and GRP78 interact with PRDM14 and participate in cancer regulation. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  6. Mining disease genes using integrated protein-protein interaction and gene-gene co-regulation information.

    PubMed

    Li, Jin; Wang, Limei; Guo, Maozu; Zhang, Ruijie; Dai, Qiguo; Liu, Xiaoyan; Wang, Chunyu; Teng, Zhixia; Xuan, Ping; Zhang, Mingming

    2015-01-01

    In humans, despite the rapid increase in disease-associated gene discovery, a large proportion of disease-associated genes are still unknown. Many network-based approaches have been used to prioritize disease genes. Many networks, such as the protein-protein interaction (PPI), KEGG, and gene co-expression networks, have been used. Expression quantitative trait loci (eQTLs) have been successfully applied for the determination of genes associated with several diseases. In this study, we constructed an eQTL-based gene-gene co-regulation network (GGCRN) and used it to mine for disease genes. We adopted the random walk with restart (RWR) algorithm to mine for genes associated with Alzheimer disease. Compared to the Human Protein Reference Database (HPRD) PPI network alone, the integrated HPRD PPI and GGCRN networks provided faster convergence and revealed new disease-related genes. Therefore, using the RWR algorithm for integrated PPI and GGCRN is an effective method for disease-associated gene mining.

  7. DISCOVERY OF NOVEL GLUCOSE-REGULATED PROTEINS IN ISOLATED HUMAN PANCREATIC ISLETS USING LC-MS/MS-BASED PROTEOMICS

    PubMed Central

    Schrimpe-Rutledge, Alexandra C.; Fontès, Ghislaine; Gritsenko, Marina A.; Norbeck, Angela D.; Anderson, David J.; Waters, Katrina M.; Adkins, Joshua N.; Smith, Richard D.; Poitout, Vincent; Metz, Thomas O.

    2012-01-01

    The prevalence of diabetes mellitus is increasing dramatically throughout the world, and the disease has become a major public health issue. The most common form of the disease, type 2 diabetes, is characterized by insulin resistance and insufficient insulin production from the pancreatic beta-cell. Since glucose is the most potent regulator of beta-cell function under physiological conditions, identification of the insulin secretory defect underlying type 2 diabetes requires a better understanding of glucose regulation of human beta-cell function. To this aim, a bottom-up LC-MS/MS-based proteomics approach was used to profile pooled islets from multiple donors under basal (5 mM) or high (15 mM) glucose conditions. Our analysis discovered 256 differentially abundant proteins (~p<0.05) after 24 h of high glucose exposure from more than 4500 identified in total. Several novel glucose-regulated proteins were elevated under high glucose conditions, including regulators of mRNA splicing (Pleiotropic regulator 1), processing (Retinoblastoma binding protein 6), and function (Nuclear RNA export factor 1), in addition to Neuron navigator 1 and Plasminogen activator inhibitor 1. Proteins whose abundances markedly decreased during incubation at 15 mM glucose included Bax inhibitor 1 and Synaptotagmin-17. Up-regulation of Dicer 1 and SLC27A2 and down-regulation of Phospholipase Cβ4 were confirmed by Western blots. Many proteins found to be differentially abundant after high glucose stimulation are annotated as uncharacterized or hypothetical. These findings expand our knowledge of glucose regulation of the human islet proteome and suggest many hitherto unknown responses to glucose that require additional studies to explore novel functional roles. PMID:22578083

  8. Co-clustering directed graphs to discover asymmetries and directional communities

    PubMed Central

    Rohe, Karl; Qin, Tai; Yu, Bin

    2016-01-01

    In directed graphs, relationships are asymmetric and these asymmetries contain essential structural information about the graph. Directed relationships lead to a new type of clustering that is not feasible in undirected graphs. We propose a spectral co-clustering algorithm called di-sim for asymmetry discovery and directional clustering. A Stochastic co-Blockmodel is introduced to show favorable properties of di-sim. To account for the sparse and highly heterogeneous nature of directed networks, di-sim uses the regularized graph Laplacian and projects the rows of the eigenvector matrix onto the sphere. A nodewise asymmetry score and di-sim are used to analyze the clustering asymmetries in the networks of Enron emails, political blogs, and the Caenorhabditis elegans chemical connectome. In each example, a subset of nodes have clustering asymmetries; these nodes send edges to one cluster, but receive edges from another cluster. Such nodes yield insightful information (e.g., communication bottlenecks) about directed networks, but are missed if the analysis ignores edge direction. PMID:27791058

  9. Co-clustering directed graphs to discover asymmetries and directional communities.

    PubMed

    Rohe, Karl; Qin, Tai; Yu, Bin

    2016-10-21

    In directed graphs, relationships are asymmetric and these asymmetries contain essential structural information about the graph. Directed relationships lead to a new type of clustering that is not feasible in undirected graphs. We propose a spectral co-clustering algorithm called di-sim for asymmetry discovery and directional clustering. A Stochastic co-Blockmodel is introduced to show favorable properties of di-sim To account for the sparse and highly heterogeneous nature of directed networks, di-sim uses the regularized graph Laplacian and projects the rows of the eigenvector matrix onto the sphere. A nodewise asymmetry score and di-sim are used to analyze the clustering asymmetries in the networks of Enron emails, political blogs, and the Caenorhabditis elegans chemical connectome. In each example, a subset of nodes have clustering asymmetries; these nodes send edges to one cluster, but receive edges from another cluster. Such nodes yield insightful information (e.g., communication bottlenecks) about directed networks, but are missed if the analysis ignores edge direction.

  10. Communication Apprehension and Resting Alpha Range Asymmetry in the Anterior Cortex

    ERIC Educational Resources Information Center

    Beatty, Michael J.; Heisel, Alan D.; Lewis, Robert J.; Pence, Michelle E.; Reinhart, Amber; Tian, Yan

    2011-01-01

    In this study, we examined the relationship between trait-like communication apprehension (CA) and resting alpha range asymmetry in the anterior cortex (AC). Although theory and research in cognitive neuroscience suggest that asymmetry in the AC constitutes a relatively stable, inborn, substrate of emotion, some studies indicate that asymmetry can…

  11. Challenging Postural Tasks Increase Asymmetry in Patients with Parkinson’s Disease

    PubMed Central

    Beretta, Victor Spiandor; Gobbi, Lilian Teresa Bucken; Lirani-Silva, Ellen; Simieli, Lucas; Orcioli-Silva, Diego; Barbieri, Fabio Augusto

    2015-01-01

    The unilateral predominance of Parkinson’s disease (PD) symptoms suggests that balance control could be asymmetrical during static tasks. Although studies have shown that balance control asymmetries exist in patients with PD, these analyses were performed using only simple bipedal standing tasks. Challenging postural tasks, such as unipedal or tandem standing, could exacerbate balance control asymmetries. To address this, we studied the impact of challenging standing tasks on postural control asymmetry in patients with PD. Twenty patients with PD and twenty neurologically healthy individuals (control group) participated in this study. Participants performed three 30s trials for each postural task: bipedal, tandem adapted and unipedal standing. The center of pressure parameter was calculated for both limbs in each of these conditions, and the asymmetry between limbs was assessed using the symmetric index. A significant effect of condition was observed, with unipedal standing and tandem standing showing greater asymmetry than bipedal standing for the mediolateral root mean square (RMS) and area of sway parameters, respectively. In addition, a group*condition interaction indicated that, only for patients with PD, the unipedal condition showed greater asymmetry in the mediolateral RMS and area of sway than the bipedal condition and the tandem condition showed greater asymmetry in the area of sway than the bipedal condition. Patients with PD exhibited greater asymmetry while performing tasks requiring postural control when compared to neurologically healthy individuals, especially for challenging tasks such as tandem and unipedal standing. PMID:26367032

  12. Frontal alpha asymmetry and sexually motivated states.

    PubMed

    Prause, Nicole; Staley, Cameron; Roberts, Verena

    2014-03-01

    Anterior alpha asymmetry of electroencephalographic (EEG) signals has been suggested to index state approach (or avoidance) motivation. This model has not yet been extended to high approach-motivation sexual stimuli, which may represent an important model of reward system function. Sixty-five participants viewed a neutral and a sexually motivating film while their EEG was recorded, and reported their sexual feelings after each film. Greater alpha power in the left hemisphere during sexually motivated states was evident. A positive relationship between self-reported mental sexual arousal and alpha asymmetry was identified, where coherence between these indicators was higher in women. Notably, coherence was stronger when mental versus physical sexual arousal was rated. Alpha asymmetry appears to offer a new method for further examining this novel coherence pattern across men and women. Copyright © 2014 Society for Psychophysiological Research.

  13. Regulation of prostate cancer by hormone-responsive G protein-coupled receptors.

    PubMed

    Wang, Wei; Chen, Zhao-Xia; Guo, Dong-Yu; Tao, Ya-Xiong

    2018-06-15

    Regulation of prostate cancer by androgen and androgen receptor (AR), and blockade of AR signaling by AR antagonists and steroidogenic enzyme inhibitors have been extensively studied. G protein-coupled receptors (GPCRs) are a family of membrane receptors that regulate almost all physiological processes. Nearly 40% of FDA-approved drugs in the market target GPCRs. A variety of GPCRs that mediate reproductive function have been demonstrated to be involved in the regulation of prostate cancer. These GPCRs include gonadotropin-releasing hormone receptor, luteinizing hormone receptor, follicle-stimulating hormone receptor, relaxin receptor, ghrelin receptor, and kisspeptin receptor. We highlight here GPCR regulation of prostate cancer by these GPCRs. Further therapeutic approaches targeting these GPCRs for the treatment of prostate cancer are summarized. Copyright © 2018. Published by Elsevier Inc.

  14. Topology and Oligomerization of Mono- and Oligomeric Proteins Regulate Their Half-Lives in the Cell.

    PubMed

    Mallik, Saurav; Kundu, Sudip

    2018-06-05

    To find additional structural constraints (besides disordered segments) that regulate protein half-life in the cell, we herein assess the influence of native topology of monomeric and sequestration of oligomeric proteins into multimeric complexes in yeast, human, and mouse. Native topology acts as a molecular marker of globular protein's mechanical resistance and consequently captures their half-life variations on genome scale. Sequestration into multimeric complexes elongates oligomeric protein half-life in the cell, presumably by burying ubiquitinoylation sites and disordered segments required for proteasomal recognition. The latter effect is stronger for proteins associated with multiple complexes and for those binding early during complex self-assembly, including proteins that oligomerize with large proportions of surface buried. After gene duplication, diversification of topology and sequestration into non-identical sets of complexes alter half-lives of paralogous proteins during the course of evolution. Thus, native topology and sequestration into multimeric complexes reflect designing principles of proteins to regulate their half-lives. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Hemispheric asymmetry in the efficiency of attentional networks.

    PubMed

    Asanowicz, Dariusz; Marzecová, Anna; Jaśkowski, Piotr; Wolski, Piotr

    2012-07-01

    Despite the fact that hemispheric asymmetry of attention has been widely studied, a clear picture of this complex phenomenon is still lacking. The aim of the present study was to provide an efficient and reliable measurement of potential hemispheric asymmetries of three attentional networks, i.e. alerting, orienting and executive attention. Participants (N=125) were tested with the Lateralized Attention Network Test (LANT) that allowed us to investigate the efficiency of the networks in both visual fields (VF). We found a LVF advantage when a target occurred in an unattended location, which seems to reflect right hemisphere superiority in control of the reorienting of attention. Furthermore, a LVF advantage in conflict resolution was observed, which may indicate hemispheric asymmetry of the executive network. No VF effect for alerting was found. The results, consistent with the common notion of general right hemisphere dominance for attention, provide a more detailed account of hemispheric asymmetries of the attentional networks than previous studies using the LANT task. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Search asymmetries: parallel processing of uncertain sensory information.

    PubMed

    Vincent, Benjamin T

    2011-08-01

    What is the mechanism underlying search phenomena such as search asymmetry? Two-stage models such as Feature Integration Theory and Guided Search propose parallel pre-attentive processing followed by serial post-attentive processing. They claim search asymmetry effects are indicative of finding pairs of features, one processed in parallel, the other in serial. An alternative proposal is that a 1-stage parallel process is responsible, and search asymmetries occur when one stimulus has greater internal uncertainty associated with it than another. While the latter account is simpler, only a few studies have set out to empirically test its quantitative predictions, and many researchers still subscribe to the 2-stage account. This paper examines three separate parallel models (Bayesian optimal observer, max rule, and a heuristic decision rule). All three parallel models can account for search asymmetry effects and I conclude that either people can optimally utilise the uncertain sensory data available to them, or are able to select heuristic decision rules which approximate optimal performance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Critical asymmetry in renormalization group theory for fluids.

    PubMed

    Zhao, Wei; Wu, Liang; Wang, Long; Li, Liyan; Cai, Jun

    2013-06-21

    The renormalization-group (RG) approaches for fluids are employed to investigate critical asymmetry of vapour-liquid equilibrium (VLE) of fluids. Three different approaches based on RG theory for fluids are reviewed and compared. RG approaches are applied to various fluid systems: hard-core square-well fluids of variable ranges, hard-core Yukawa fluids, and square-well dimer fluids and modelling VLE of n-alkane molecules. Phase diagrams of simple model fluids and alkanes described by RG approaches are analyzed to assess the capability of describing the VLE critical asymmetry which is suggested in complete scaling theory. Results of thermodynamic properties obtained by RG theory for fluids agree with the simulation and experimental data. Coexistence diameters, which are smaller than the critical densities, are found in the RG descriptions of critical asymmetries of several fluids. Our calculation and analysis show that the approach coupling local free energy with White's RG iteration which aims to incorporate density fluctuations into free energy is not adequate for VLE critical asymmetry due to the inadequate order parameter and the local free energy functional used in the partition function.

  18. Creation and Evolution of Particle Number Asymmetry in an Expanding Universe

    NASA Astrophysics Data System (ADS)

    Morozumi, T.; Nagao, K. I.; Adam, A. S.; Takata, H.

    2017-03-01

    We introduce a model which may generate particle number asymmetry in an expanding Universe. The model includes charge parity (CP) violating and particle number violating interactions. The model consists of a real scalar field and a complex scalar field. Starting with an initial condition specified by a density matrix, we show how the asymmetry is created through the interaction and how it evolves at later time. We compute the asymmetry using non-equilibrium quantum field theory and as a first test of the model, we study how the asymmetry evolves in the flat limit.

  19. Fitness advantages conferred by the L20-interacting RNA cis-regulator of ribosomal protein synthesis in Bacillus subtilis.

    PubMed

    Babina, Arianne M; Parker, Darren J; Li, Gene-Wei; Meyer, Michelle M

    2018-06-20

    In many bacteria, ribosomal proteins autogenously repress their own expression by interacting with RNA structures typically located in the 5'-UTRs of their mRNA transcripts. This regulation is necessary to maintain a balance between ribosomal proteins and rRNA to ensure proper ribosome production. Despite advances in non-coding RNA discovery and validation of RNA-protein regulatory interactions, the selective pressures that govern the formation and maintenance of such RNA cis-regulators in the context of an organism remain largely undetermined. To examine the impact disruptions to this regulation have on bacterial fitness, we introduced point mutations that abolish ribosomal protein binding and regulation into the RNA structure that controls expression of ribosomal proteins L20 and L35 within the Bacillus subtilis genome. Our studies indicate that removing this regulation results in reduced log phase growth, improper rRNA maturation, and the accumulation of a kinetically trapped or mis-assembled ribosomal particle at low temperatures, suggesting defects in ribosome synthesis. Such work emphasizes the important role regulatory RNAs play in the stoichiometric production of ribosomal components for proper ribosome composition and overall organism viability and reinforces the potential of targeting ribosomal protein production and ribosome assembly with novel antimicrobials. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  20. Line asymmetry in the Seyfert Galaxy NGC 3783

    NASA Technical Reports Server (NTRS)

    Ramirez, J. M.; Bautista, Manuel; Kallman, Timothy

    2005-01-01

    We have reanalyzed the 900 ks Chandra X-ray spectrum of NGC 3783, finding evidence on the asymmetry of the spectral absorption lines. The lines are fitted with a parametric expression that results from an analytical treatment of radiatively driven winds. The line asymmetry distribution derived from the spectrum is consistent with a non-spherical outflow with a finite optical depth. Within this scenario, our model explains the observed correlations between the line velocity shifts and the ionization parameter and between the line velocity shift and the line asymmetry. The present results may provide a framework for detailed testing of models for the dynamic and physical properties of warm absorber in Seyfert galaxies.

  1. Yield Asymmetry Design of Magnesium Alloys by Integrated Computational Materials Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Joshi, Vineet V.; Lavender, Curt A.

    2013-11-01

    Deformation asymmetry of magnesium alloys is an important factor on machine design in automobile industry. Represented by the ratio of compressive yield stress (CYS) against tensile yield stress (TYS), deformation asymmetry is strongly related to microstructure, characterized by texture and grain size. Modified intermediate phi-model, a polycrystalline viscoplasticity model, is used to predict the deformation behavior of magnesium alloys with different grain sizes. Validated with experimental results, integrated computational materials engineering is applied to find out the route in achieving desired asymmetry by thermomechanical processing. In some texture, for example, rolled texture, CYS/TYS is smaller than 1 under different loadingmore » directions. In some texture, for example, extruded texture, asymmetry is large along normal direction. Starting from rolled texture, the asymmetry will increased to close to 1 along rolling direction after compressed to a strain of 0.2. Our model shows that grain refinement increases CYS/TYS. Besides texture control, grain refinement can also optimize the yield asymmetry. After the grain size decreased to a critical value, CYS/TYS reaches to 1 since CYS increases much faster than TYS. By tailoring the microstructure using texture control and grain refinement, it is achievable to optimize yield asymmetry in wrought magnesium alloys.« less

  2. Targeted presurgical decompensation in patients with yaw-dependent facial asymmetry

    PubMed Central

    Kim, Kyung-A; Lee, Ji-Won; Park, Jeong-Ho; Kim, Byoung-Ho; Ahn, Hyo-Won

    2017-01-01

    Facial asymmetry can be classified into the rolling-dominant type (R-type), translation-dominant type (T-type), yawing-dominant type (Y-type), and atypical type (A-type) based on the distorted skeletal components that cause canting, translation, and yawing of the maxilla and/or mandible. Each facial asymmetry type represents dentoalveolar compensations in three dimensions that correspond to the main skeletal discrepancies. To obtain sufficient surgical correction, it is necessary to analyze the main skeletal discrepancies contributing to the facial asymmetry and then the skeletal-dental relationships in the maxilla and mandible separately. Particularly in cases of facial asymmetry accompanied by mandibular yawing, it is not simple to establish pre-surgical goals of tooth movement since chin deviation and posterior gonial prominence can be either aggravated or compromised according to the direction of mandibular yawing. Thus, strategic dentoalveolar decompensations targeting the real basal skeletal discrepancies should be performed during presurgical orthodontic treatment to allow for sufficient skeletal correction with stability. In this report, we document targeted decompensation of two asymmetry patients focusing on more complicated yaw-dependent types than others: Y-type and A-type. This may suggest a clinical guideline on the targeted decompensation in patient with different types of facial asymmetries. PMID:28523246

  3. Targeted presurgical decompensation in patients with yaw-dependent facial asymmetry.

    PubMed

    Kim, Kyung-A; Lee, Ji-Won; Park, Jeong-Ho; Kim, Byoung-Ho; Ahn, Hyo-Won; Kim, Su-Jung

    2017-05-01

    Facial asymmetry can be classified into the rolling-dominant type (R-type), translation-dominant type (T-type), yawing-dominant type (Y-type), and atypical type (A-type) based on the distorted skeletal components that cause canting, translation, and yawing of the maxilla and/or mandible. Each facial asymmetry type represents dentoalveolar compensations in three dimensions that correspond to the main skeletal discrepancies. To obtain sufficient surgical correction, it is necessary to analyze the main skeletal discrepancies contributing to the facial asymmetry and then the skeletal-dental relationships in the maxilla and mandible separately. Particularly in cases of facial asymmetry accompanied by mandibular yawing, it is not simple to establish pre-surgical goals of tooth movement since chin deviation and posterior gonial prominence can be either aggravated or compromised according to the direction of mandibular yawing. Thus, strategic dentoalveolar decompensations targeting the real basal skeletal discrepancies should be performed during presurgical orthodontic treatment to allow for sufficient skeletal correction with stability. In this report, we document targeted decompensation of two asymmetry patients focusing on more complicated yaw-dependent types than others: Y-type and A-type. This may suggest a clinical guideline on the targeted decompensation in patient with different types of facial asymmetries.

  4. Effects of Convective Asymmetries on Hurricane Intensity: A Numerical Study

    NASA Technical Reports Server (NTRS)

    Wu, Liguang; Braun, Scott A.

    2003-01-01

    The influence of the uniform large-scale flow, beta effect, and vertical shear of the environmental flow on hurricane intensity is investigated in the context of the induced convective or potential vorticity asymmetries with a hydrostatic primitive equation hurricane model. In agreement with the previous studies, imposing of one of these environmental effects can substantially weaken the simulated tropical cyclones. In response t o the environmental influence, significant asymmetries develop with a structure similar to the spiral bands in real hurricanes, which are dominated by wavenumber-one components. The tendencies of the mean radial, azimuthal winds and temperature associated with the environment-induced convective asymmetries are evaluated respectively. The resulting asymmetries can effectively reduce hurricane intensity by directly producing the negative tendency of the mean tangential wind in the vicinity of the radius of maximum wind, and by weakening the mean radial circulation. The reduction effects are closely associated with the spiral structure of the induced asymmetries. The time lag observed between the imposition of the environmental influence and the resulting rise in the minimum central pressure is the time required for developing the spiral structure. This study also confirms the axisymmetrization process associated with the induced wavenumber-one components of potential vorticity asymmetries, but it exists only within the radius of maximum wind.

  5. Intestinal Alkaline Phosphatase Regulates Tight Junction Protein Levels

    PubMed Central

    Liu, Wei; Hu, Dong; Huo, Haizhong; Zhang, Weifeng; Adiliaghdam, Fatemeh; Morrison, Sarah; Ramirez, Juan M; Gul, Sarah S; Hamarneh, Sulaiman R; Hodin, Richard A

    2017-01-01

    BACKGROUND Intestinal alkaline phosphatase (IAP) plays a pivotal role in maintaining gut health and well-being. Oral supplementation with IAP in mice improves gut barrier function and prevents luminal proinflammatory factors from gaining access to the circulation. In this study, we sought to explore the relationship between IAP and tight junction protein (TJP) expression and function. STUDY DESIGN The effect of IAP deletion on TJP levels was studied in mouse embryonic fibroblasts (MEFs) generated from IAP-knockout and wild type mice. Regulation of TJPs by IAP was assayed in the human colon cancer Caco-2 and T84 cells by overexpressing the human IAP gene. Tight junction protein levels and localization were measured by using RT q-PCR and antibodies targeting the specific TJPs. Finally, the effect of IAP on inflammation-induced intestinal permeability was measured by in vitro trans-well epithelial electrical resistance (TEER). RESULTS Intestinal alkaline phosphatase gene deletion in MEFs resulted in significantly lower levels of ZO-1, ZO-2, and Occludin compared with levels in wild-type control cells; IAP over-expression in Caco-2 and T84 cells resulted in approximate 2-fold increases in the mRNA levels of ZO-1 and ZO-2. The IAP treatment ameliorated lipopolysaccharide-induced increased permeability in the Caco-2 trans-well system. Furthermore, IAP treatment preserved the localization of the ZO-1 and Occludin proteins during inflammation and was also associated with improved epithelial barrier function. CONCLUSIONS Intestinal alkaline phosphatase is a major regulator of gut mucosal permeability and appears to work at least partly through improving TJP levels and localization. These data provide a strong foundation to develop IAP as a novel therapy to maintain gut barrier function. PMID:27106638

  6. Intestinal Alkaline Phosphatase Regulates Tight Junction Protein Levels.

    PubMed

    Liu, Wei; Hu, Dong; Huo, Haizhong; Zhang, Weifeng; Adiliaghdam, Fatemeh; Morrison, Sarah; Ramirez, Juan M; Gul, Sarah S; Hamarneh, Sulaiman R; Hodin, Richard A

    2016-06-01

    Intestinal alkaline phosphatase (IAP) plays a pivotal role in maintaining gut health and well-being. Oral supplementation with IAP in mice improves gut barrier function and prevents luminal proinflammatory factors from gaining access to the circulation. In this study, we sought to explore the relationship between IAP and tight junction protein (TJP) expression and function. The effect of IAP deletion on TJP levels was studied in mouse embryonic fibroblasts (MEFs) generated from IAP-knockout and wild type mice. Regulation of TJPs by IAP was assayed in the human colon cancer Caco-2 and T84 cells by overexpressing the human IAP gene. Tight junction protein levels and localization were measured by using RT q-PCR and antibodies targeting the specific TJPs. Finally, the effect of IAP on inflammation-induced intestinal permeability was measured by in vitro trans-well epithelial electrical resistance (TEER). Intestinal alkaline phosphatase gene deletion in MEFs resulted in significantly lower levels of ZO-1, ZO-2, and Occludin compared with levels in wild-type control cells; IAP overexpression in Caco-2 and T84 cells resulted in approximate 2-fold increases in the mRNA levels of ZO-1 and ZO-2. The IAP treatment ameliorated lipopolysaccharide-induced increased permeability in the Caco-2 trans-well system. Furthermore, IAP treatment preserved the localization of the ZO-1 and Occludin proteins during inflammation and was also associated with improved epithelial barrier function. Intestinal alkaline phosphatase is a major regulator of gut mucosal permeability and appears to work at least partly through improving TJP levels and localization. These data provide a strong foundation to develop IAP as a novel therapy to maintain gut barrier function. Copyright © 2016. Published by Elsevier Inc.

  7. An asymmetric structure of the Bacillus subtilis replication terminator protein in complex with DNA.

    PubMed

    Vivian, J P; Porter, C J; Wilce, J A; Wilce, M C J

    2007-07-13

    In Bacillus subtilis, the termination of DNA replication via polar fork arrest is effected by a specific protein:DNA complex formed between the replication terminator protein (RTP) and DNA terminator sites. We report the crystal structure of a replication terminator protein homologue (RTP.C110S) of B. subtilis in complex with the high affinity component of one of its cognate DNA termination sites, known as the TerI B-site, refined at 2.5 A resolution. The 21 bp RTP:DNA complex displays marked structural asymmetry in both the homodimeric protein and the DNA. This is in contrast to the previously reported complex formed with a symmetrical TerI B-site homologue. The induced asymmetry is consistent with the complex's solution properties as determined using NMR spectroscopy. Concomitant with this asymmetry is variation in the protein:DNA binding pattern for each of the subunits of the RTP homodimer. It is proposed that the asymmetric "wing" positions, as well as other asymmetrical features of the RTP:DNA complex, are critical for the cooperative binding that underlies the mechanism of polar fork arrest at the complete terminator site.

  8. ZO proteins redundantly regulate the transcription factor DbpA/ZONAB.

    PubMed

    Spadaro, Domenica; Tapia, Rocio; Jond, Lionel; Sudol, Marius; Fanning, Alan S; Citi, Sandra

    2014-08-08

    The localization and activities of DbpA/ZONAB and YAP transcription factors are in part regulated by the density-dependent assembly of epithelial junctions. DbpA activity and cell proliferation are inhibited by exogenous overexpression of the tight junction (TJ) protein ZO-1, leading to a model whereby ZO-1 acts by sequestering DbpA at the TJ. However, mammary epithelial cells and mouse tissues knock-out for ZO-1 do not show increased proliferation, as predicted by this model. To address this discrepancy, we examined the localization and activity of DbpA and YAP in Madin-Darby canine kidney cells depleted either of ZO-1, or one of the related proteins ZO-2 and ZO-3 (ZO proteins), or all three together. Depletion of only one ZO protein had no effect on DbpA localization and activity, whereas depletion of ZO-1 and ZO-2, which is associated with reduced ZO-3 expression, resulted in increased DbpA localization in the cytoplasm. Only depletion of ZO-2 reduced the nuclear import of YAP. Mammary epithelial (Eph4) cells KO for ZO-1 showed junctional DbpA, demonstrating that ZO-1 is not required to sequester DbpA at junctions. However, further depletion of ZO-2 in Eph4 ZO-1KO cells, which do not express ZO-3, caused decreased junctional localization and expression of DbpA, which were rescued by the proteasome inhibitor MG132. In vitro binding assays showed that full-length ZO-1 does not interact with DbpA. These results show that ZO-2 is implicated in regulating the nuclear shuttling of YAP, whereas ZO proteins redundantly control the junctional retention and stability of DbpA, without affecting its shuttling to the nucleus. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Down-Regulation of Glucose-Regulated Protein (GRP) 78 Potentiates Cytotoxic Effect of Celecoxib in Human Urothelial Carcinoma Cells

    PubMed Central

    Huang, Kuo-How; Kuo, Kuan-Lin; Chen, Shyh-Chyan; Weng, Te-I; Chuang, Yuan-Ting; Tsai, Yu-Chieh; Pu, Yeong-Shiau; Chiang, Chih-Kang; Liu, Shing-Hwa

    2012-01-01

    Celecoxib is a selective cyclooxygenase-2 (COX-2) inhibitor that has been reported to elicit anti-proliferative response in various tumors. In this study, we aim to investigate the antitumor effect of celecoxib on urothelial carcinoma (UC) cells and the role endoplasmic reticulum (ER) stress plays in celecoxib-induced cytotoxicity. The cytotoxic effects were measured by MTT assay and flow cytometry. The cell cycle progression and ER stress-associated molecules were examined by Western blot and flow cytometry. Moreover, the cytotoxic effects of celecoxib combined with glucose-regulated protein (GRP) 78 knockdown (siRNA), (−)-epigallocatechin gallate (EGCG) or MG132 were assessed. We demonstrated that celecoxib markedly reduces the cell viability and causes apoptosis in human UC cells through cell cycle G1 arrest. Celecoxib possessed the ability to activate ER stress-related chaperones (IRE-1α and GRP78), caspase-4, and CCAAT/enhancer binding protein homologous protein (CHOP), which were involved in UC cell apoptosis. Down-regulation of GRP78 by siRNA, co-treatment with EGCG (a GRP78 inhibitor) or with MG132 (a proteasome inhibitor) could enhance celecoxib-induced apoptosis. We concluded that celecoxib induces cell cycle G1 arrest, ER stress, and eventually apoptosis in human UC cells. The down-regulation of ER chaperone GRP78 by siRNA, EGCG, or proteosome inhibitor potentiated the cytotoxicity of celecoxib in UC cells. These findings provide a new treatment strategy against UC. PMID:22438966

  10. 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase.

    PubMed

    Bunney, T D; van Walraven, H S; de Boer, A H

    2001-03-27

    Mitochondrial and chloroplast ATP synthases are key enzymes in plant metabolism, providing cells with ATP, the universal energy currency. ATP synthases use a transmembrane electrochemical proton gradient to drive synthesis of ATP. The enzyme complexes function as miniature rotary engines, ensuring energy coupling with very high efficiency. Although our understanding of the structure and functioning of the synthase has made enormous progress in recent years, our understanding of regulatory mechanisms is still rather preliminary. Here we report a role for 14-3-3 proteins in the regulation of ATP synthases. These 14-3-3 proteins are highly conserved phosphoserine/phosphothreonine-binding proteins that regulate a wide range of enzymes in plants, animals, and yeast. Recently, the presence of 14-3-3 proteins in chloroplasts was illustrated, and we show here that plant mitochondria harbor 14-3-3s within the inner mitochondrial-membrane compartment. There, the 14-3-3 proteins were found to be associated with the ATP synthases, in a phosphorylation-dependent manner, through direct interaction with the F(1) beta-subunit. The activity of the ATP synthases in both organelles is drastically reduced by recombinant 14-3-3. The rapid reduction in chloroplast ATPase activity during dark adaptation was prevented by a phosphopeptide containing the 14-3-3 interaction motif, demonstrating a role for endogenous 14-3-3 in the down-regulation of the CF(o)F(1) activity. We conclude that regulation of the ATP synthases by 14-3-3 represents a mechanism for plant adaptation to environmental changes such as light/dark transitions, anoxia in roots, and fluctuations in nutrient supply.

  11. Genome-wide Analysis Reveals SR Protein Cooperation and Competition in Regulated Splicing

    PubMed Central

    Pandit, Shatakshi; Zhou, Yu; Shiue, Lily; Coutinho-Mansfield, Gabriela; Li, Hairi; Qiu, Jinsong; Huang, Jie; Yeo, Gene W.; Ares, Manuel; Fu, Xiang-Dong

    2013-01-01

    Summary SR proteins are well-characterized RNA binding proteins that promote exon inclusion by binding to exonic splicing enhancers (ESEs). However, it has been unclear whether regulatory rules deduced on model genes apply generally to activities of SR proteins in the cell. Here, we report global analyses of two prototypical SR proteins SRSF1 (SF2/ASF) and SRSF2 (SC35) using splicing-sensitive arrays and CLIP-seq on mouse embryo fibroblasts (MEFs). Unexpectedly, we find that these SR proteins promote both inclusion and skipping of exons in vivo, but their binding patterns do not explain such opposite responses. Further analyses reveal that loss of one SR protein is accompanied by coordinated loss or compensatory gain in the interaction of other SR proteins at the affected exons. Therefore, specific effects on regulated splicing by one SR protein actually depend on a complex set of relationships with multiple other SR proteins in mammalian genomes. PMID:23562324

  12. Mandibular asymmetry and the fourth dimension.

    PubMed

    Kaban, Leonard B

    2009-03-01

    This paper represents more than 30 years of discussion and collaboration with Drs Joseph Murray and John Mulliken in an attempt to understand growth patterns over time (ie, fourth dimension) in patients with hemifacial microsomia (HFM). This is essential for the development of rational treatment protocols for children and adults with jaw asymmetry. Traditionally, HFM was thought of as a unilateral deformity, but it was recognized that 20% to 30% of patients had bilateral abnormalities. However, early descriptions of skeletal correction addressed almost exclusively lengthening of the short (affected) side of the face. Based on longitudinal clinical observations of unoperated HFM patients, we hypothesized that abnormal mandibular growth is the earliest skeletal manifestation and that restricted growth of the mandible plays a pivotal role in progressive distortion of both the ipsilateral and contralateral facial skeleton. This hypothesis explains the progressive nature of the asymmetry in patients with HFM and provides the rationale for surgical lengthening of the mandible in children to prevent end-stage deformity. During the past 30 years, we have learned that this phenomenon of progressive distortion of the adjacent and contralateral facial skeleton occurs with other asymmetric mandibular undergrowth (tumor resection, radiation therapy, or posttraumatic defects) and overgrowth (mandibular condylar hyperplasia) conditions. In this paper, I describe the progression of deformity with time in patients with mandibular asymmetry as a result of undergrowth and overgrowth. Understanding these concepts is critical for the development of rational treatment protocols for adults with end-stage asymmetry and for children to minimize secondary deformity.

  13. Epigenetic regulation of RGS2 (Regulator of G-protein signaling 2) in chemoresistant ovarian cancer cells.

    PubMed

    Cacan, Ercan

    2017-06-01

    Regulator of G-protein signaling 2 (RGS2) is a GTPase-activating protein functioning as an inhibitor of G-protein coupled receptors (GPCRs). RGS2 dysregulation was implicated in solid tumour development and RGS2 downregulation has been reported in prostate and ovarian cancer progression. However, the molecular mechanism by which RGS2 expression is suppressed in ovarian cancer remains unknown. The expression and epigenetic regulation of RGS2 in chemosensitive and chemoresistant ovarian cancer cells were determined by qRT-PCR and chromatin immunoprecipitation assays, respectively. In the present study, the molecular mechanisms contributing to the loss of RGS2 expression were determined in ovarian cancer. The data indicated that suppression of RGS2 gene in chemoresistant ovarian cancer cells, in part, due to accumulation of histone deacetylases (HDACs) and DNA methyltransferase I (DNMT1) at the promoter region of RGS2. Inhibition of HDACs or DNMTs significantly increases RGS2 expression. These results suggest that epigenetic changes in histone modifications and DNA methylation may contribute to the loss of RGS2 expression in chemoresistant ovarian cancer cells. The results further suggest that class I HDACs and DNMT1 contribute to the suppression of RGS2 during acquired chemoresistance and support growing evidence that inhibition of HDACs/DNMTs represents novel therapeutic approaches to overcome ovarian cancer chemoresistance.

  14. SNF1-related protein kinases 2 are negatively regulated by a plant-specific calcium sensor.

    PubMed

    Bucholc, Maria; Ciesielski, Arkadiusz; Goch, Grażyna; Anielska-Mazur, Anna; Kulik, Anna; Krzywińska, Ewa; Dobrowolska, Grażyna

    2011-02-04

    SNF1-related protein kinases 2 (SnRK2s) are plant-specific enzymes involved in environmental stress signaling and abscisic acid-regulated plant development. Here, we report that SnRK2s interact with and are regulated by a plant-specific calcium-binding protein. We screened a Nicotiana plumbaginifolia Matchmaker cDNA library for proteins interacting with Nicotiana tabacum osmotic stress-activated protein kinase (NtOSAK), a member of the SnRK2 family. A putative EF-hand calcium-binding protein was identified as a molecular partner of NtOSAK. To determine whether the identified protein interacts only with NtOSAK or with other SnRK2s as well, we studied the interaction of an Arabidopsis thaliana orthologue of the calcium-binding protein with selected Arabidopsis SnRK2s using a two-hybrid system. All kinases studied interacted with the protein. The interactions were confirmed by bimolecular fluorescence complementation assay, indicating that the binding occurs in planta, exclusively in the cytoplasm. Calcium binding properties of the protein were analyzed by fluorescence spectroscopy using Tb(3+) as a spectroscopic probe. The calcium binding constant, determined by the protein fluorescence titration, was 2.5 ± 0.9 × 10(5) M(-1). The CD spectrum indicated that the secondary structure of the protein changes significantly in the presence of calcium, suggesting its possible function as a calcium sensor in plant cells. In vitro studies revealed that the activity of SnRK2 kinases analyzed is inhibited in a calcium-dependent manner by the identified calcium sensor, which we named SCS (SnRK2-interacting calcium sensor). Our results suggest that SCS is involved in response to abscisic acid during seed germination most probably by negative regulation of SnRK2s activity.

  15. Left-right asymmetries and shape analysis on Ceroglossus chilensis (Coleoptera: Carabidae)

    NASA Astrophysics Data System (ADS)

    Bravi, Raffaella; Benítez, Hugo A.

    2013-10-01

    Bilateral symmetry is widespread in animal kingdom, however most animal can deviate from expected symmetry and manifest some kind of asymmetries. Fluctuating asymmetry is considered as a tool for valuating developmental instability, whereas directional asymmetry is inherited and could be used for evaluating evolutionary development. We use the method of geometric morphometrics to analyze left/right asymmetries in the whole body, in two sites and totally six populations of Ceroglossus chilensis with the aim to infer and explain morphological disparities between populations and sexes in this species. In all individuals analyzed we found both fluctuating asymmetry and directional asymmetry for size and shape variation components, and a high sexual dimorphism. Moreover a high morphological variability between the two sites emerged as well. Differences in diet could influence the expression of morphological variation and simultaneously affect body sides, and therefore contribute to the symmetric component of variation. Moreover differences emerged between two sites could be a consequence of isolation and fragmentation, rather than a response to local environmental differences between sampling sites.

  16. Prefrontal Asymmetry and Parent-Rated Temperament in Infants

    PubMed Central

    LoBue, Vanessa; Coan, James A.; Thrasher, Cat; DeLoache, Judy S.

    2011-01-01

    Indicators of temperament appear early in infancy and remain relatively stable over time. Despite a great deal of interest in biological indices of temperament, most studies of infant temperament rely on parental reports or behavioral tasks. Thus, the extent to which commonly used temperament measures relate to potential biological indicators of infant temperament is still relatively unknown. The current experiment examines the relationship between a common parental report measure of temperament – the Infant Behavior Questionnaire – Revised (IBQ-R) – and measures of frontal EEG asymmetry in infants. We examined associations between the subscales of the IBQ-R and frontal EEG asymmetry scores recorded during a combined series of neutral attentional and putatively emotional recording conditions in infants between 7 and 9 months of age. We predicted that approach-related subscales of the IBQ-R (e.g., Approach, Soothability) would be related to greater left prefrontal asymmetry, while withdrawal-related subscales (e.g., Distress to Limitations, Fear, Falling Reactivity, Perceptual Sensitivity) would be related to greater right prefrontal asymmetry. In the mid- and lateral-frontal regions, Approach, Distress to Limitations, Fear, Soothability, and Perceptual Sensitivity were generally associated with greater left frontal activation (rs≥.23, ps<0.05), while only Falling Reactivity was associated with greater right frontal activation (rs≤−.44, ps<0.05). Results suggest that variability in frontal EEG asymmetry is robustly associated with parental report measures of temperament in infancy. PMID:21829482

  17. Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium.

    PubMed

    Kong, Xiang-Zhen; Mathias, Samuel R; Guadalupe, Tulio; Glahn, David C; Franke, Barbara; Crivello, Fabrice; Tzourio-Mazoyer, Nathalie; Fisher, Simon E; Thompson, Paul M; Francks, Clyde

    2018-05-29

    Hemispheric asymmetry is a cardinal feature of human brain organization. Altered brain asymmetry has also been linked to some cognitive and neuropsychiatric disorders. Here, the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium presents the largest-ever analysis of cerebral cortical asymmetry and its variability across individuals. Cortical thickness and surface area were assessed in MRI scans of 17,141 healthy individuals from 99 datasets worldwide. Results revealed widespread asymmetries at both hemispheric and regional levels, with a generally thicker cortex but smaller surface area in the left hemisphere relative to the right. Regionally, asymmetries of cortical thickness and/or surface area were found in the inferior frontal gyrus, transverse temporal gyrus, parahippocampal gyrus, and entorhinal cortex. These regions are involved in lateralized functions, including language and visuospatial processing. In addition to population-level asymmetries, variability in brain asymmetry was related to sex, age, and intracranial volume. Interestingly, we did not find significant associations between asymmetries and handedness. Finally, with two independent pedigree datasets ( n = 1,443 and 1,113, respectively), we found several asymmetries showing significant, replicable heritability. The structural asymmetries identified and their variabilities and heritability provide a reference resource for future studies on the genetic basis of brain asymmetry and altered laterality in cognitive, neurological, and psychiatric disorders.

  18. The Golgi apparatus regulates cGMP-dependent protein kinase I compartmentation and proteolysis.

    PubMed

    Kato, Shin; Chen, Jingsi; Cornog, Katherine H; Zhang, Huili; Roberts, Jesse D

    2015-06-01

    cGMP-dependent protein kinase I (PKGI) is an important effector of cGMP signaling that regulates vascular smooth muscle cell (SMC) phenotype and proliferation. PKGI has been detected in the perinuclear region of cells, and recent data indicate that proprotein convertases (PCs) typically resident in the Golgi apparatus (GA) can stimulate PKGI proteolysis and generate a kinase fragment that localizes to the nucleus and regulates gene expression. However, the role of the endomembrane system in PKGI compartmentation and processing is unknown. Here, we demonstrate that PKGI colocalizes with endoplasmic reticulum (ER), ER-Golgi intermediate compartment, GA cisterna, and trans-Golgi network proteins in pulmonary artery SMC and cell lines. Moreover, PKGI localizes with furin, a trans-Golgi network-resident PC known to cleave PKGI. ER protein transport influences PKGI localization because overexpression of a constitutively inactive Sar1 transgene caused PKGI retention in the ER. Additionally, PKGI appears to reside within the GA because PKGI immunoreactivity was determined to be resistant to cytosolic proteinase K treatment in live cells. The GA appears to play a role in PKGI proteolysis because overexpression of inositol 1,4,5-trisphosphate receptor-associated cGMP kinase substrate, not only tethered heterologous PKGI-β to the ER and decreased its localization to the GA, but also diminished PKGI proteolysis and nuclear translocation. Also, inhibiting intra-GA protein transport with monensin was observed to decrease PKGI cleavage. These studies detail a role for the endomembrane system in regulating PKGI compartmentation and proteolysis. Moreover, they support the investigation of mechanisms regulating PKGI-dependent nuclear cGMP signaling in the pulmonary vasculature with Golgi dysfunction. Copyright © 2015 the American Physiological Society.

  19. Multiple structure-intrinsic disorder interactions regulate and coordinate Hox protein function

    NASA Astrophysics Data System (ADS)

    Bondos, Sarah

    During animal development, Hox transcription factors determine fate of developing tissues to generate diverse organs and appendages. Hox proteins are famous for their bizarre mutant phenotypes, such as replacing antennae with legs. Clearly, the functions of individual Hox proteins must be distinct and reliable in vivo, or the organism risks malformation or death. However, within the Hox protein family, the DNA-binding homeodomains are highly conserved and the amino acids that contact DNA are nearly invariant. These observations raise the question: How do different Hox proteins correctly identify their distinct target genes using a common DNA binding domain? One possible means to modulate DNA binding is through the influence of the non-homeodomain protein regions, which differ significantly among Hox proteins. However genetic approaches never detected intra-protein interactions, and early biochemical attempts were hindered because the special features of ``intrinsically disordered'' sequences were not appreciated. We propose the first-ever structural model of a Hox protein to explain how specific contacts between distant, intrinsically disordered regions of the protein and the homeodomain regulate DNA binding and coordinate this activity with other Hox molecular functions.

  20. Role of the PDZ-scaffold protein NHERF1/EBP50 in cancer biology: from signaling regulation to clinical relevance.

    PubMed

    Vaquero, J; Nguyen Ho-Bouldoires, T H; Clapéron, A; Fouassier, L

    2017-06-01

    The transmission of cellular information requires fine and subtle regulation of proteins that need to interact in a coordinated and specific way to form efficient signaling networks. The spatial and temporal coordination relies on scaffold proteins. Thanks to protein interaction domains such as PDZ domains, scaffold proteins organize multiprotein complexes enabling the proper transmission of cellular information through intracellular networks. NHERF1/EBP50 is a PDZ-scaffold protein that was initially identified as an organizer and regulator of transporters and channels at the apical side of epithelia through actin-binding ezrin-moesin-radixin proteins. Since, NHERF1/EBP50 has emerged as a major regulator of cancer signaling network by assembling cancer-related proteins. The PDZ-scaffold EBP50 carries either anti-tumor or pro-tumor functions, two antinomic functions dictated by EBP50 expression or subcellular localization. The dual function of NHERF1/EBP50 encompasses the regulation of several major signaling pathways engaged in cancer, including the receptor tyrosine kinases PDGFR and EGFR, PI3K/PTEN/AKT and Wnt-β-catenin pathways.