Science.gov

Sample records for proteomic analysis identifies

  1. Proteomic Analysis of the Soybean Symbiosome Identifies New Symbiotic Proteins*

    PubMed Central

    Clarke, Victoria C.; Loughlin, Patrick C.; Gavrin, Aleksandr; Chen, Chi; Brear, Ella M.; Day, David A.; Smith, Penelope M.C.

    2015-01-01

    Legumes form a symbiosis with rhizobia in which the plant provides an energy source to the rhizobia bacteria that it uses to fix atmospheric nitrogen. This nitrogen is provided to the legume plant, allowing it to grow without the addition of nitrogen fertilizer. As part of the symbiosis, the bacteria in the infected cells of a new root organ, the nodule, are surrounded by a plant-derived membrane, the symbiosome membrane, which becomes the interface between the symbionts. Fractions containing the symbiosome membrane (SM) and material from the lumen of the symbiosome (peribacteroid space or PBS) were isolated from soybean root nodules and analyzed using nongel proteomic techniques. Bicarbonate stripping and chloroform-methanol extraction of isolated SM were used to reduce complexity of the samples and enrich for hydrophobic integral membrane proteins. One hundred and ninety-seven proteins were identified as components of the SM, with an additional fifteen proteins identified from peripheral membrane and PBS protein fractions. Proteins involved in a range of cellular processes such as metabolism, protein folding and degradation, membrane trafficking, and solute transport were identified. These included a number of proteins previously localized to the SM, such as aquaglyceroporin nodulin 26, sulfate transporters, remorin, and Rab7 homologs. Among the proteome were a number of putative transporters for compounds such as sulfate, calcium, hydrogen ions, peptide/dicarboxylate, and nitrate, as well as transporters for which the substrate is not easy to predict. Analysis of the promoter activity for six genes encoding putative SM proteins showed nodule specific expression, with five showing expression only in infected cells. Localization of two proteins was confirmed using GFP-fusion experiments. The data have been deposited to the ProteomeXchange with identifier PXD001132. This proteome will provide a rich resource for the study of the legume-rhizobium symbiosis. PMID

  2. Proteomic analysis of the soybean symbiosome identifies new symbiotic proteins.

    PubMed

    Clarke, Victoria C; Loughlin, Patrick C; Gavrin, Aleksandr; Chen, Chi; Brear, Ella M; Day, David A; Smith, Penelope M C

    2015-05-01

    Legumes form a symbiosis with rhizobia in which the plant provides an energy source to the rhizobia bacteria that it uses to fix atmospheric nitrogen. This nitrogen is provided to the legume plant, allowing it to grow without the addition of nitrogen fertilizer. As part of the symbiosis, the bacteria in the infected cells of a new root organ, the nodule, are surrounded by a plant-derived membrane, the symbiosome membrane, which becomes the interface between the symbionts. Fractions containing the symbiosome membrane (SM) and material from the lumen of the symbiosome (peribacteroid space or PBS) were isolated from soybean root nodules and analyzed using nongel proteomic techniques. Bicarbonate stripping and chloroform-methanol extraction of isolated SM were used to reduce complexity of the samples and enrich for hydrophobic integral membrane proteins. One hundred and ninety-seven proteins were identified as components of the SM, with an additional fifteen proteins identified from peripheral membrane and PBS protein fractions. Proteins involved in a range of cellular processes such as metabolism, protein folding and degradation, membrane trafficking, and solute transport were identified. These included a number of proteins previously localized to the SM, such as aquaglyceroporin nodulin 26, sulfate transporters, remorin, and Rab7 homologs. Among the proteome were a number of putative transporters for compounds such as sulfate, calcium, hydrogen ions, peptide/dicarboxylate, and nitrate, as well as transporters for which the substrate is not easy to predict. Analysis of the promoter activity for six genes encoding putative SM proteins showed nodule specific expression, with five showing expression only in infected cells. Localization of two proteins was confirmed using GFP-fusion experiments. The data have been deposited to the ProteomeXchange with identifier PXD001132. This proteome will provide a rich resource for the study of the legume-rhizobium symbiosis. PMID

  3. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli

    PubMed Central

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J.; Kim, Jae-Yean

    2015-01-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins. PMID:26194822

  4. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli.

    PubMed

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J; Kim, Jae-Yean

    2015-08-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins. PMID:26194822

  5. 2D-DIGE proteomic analysis identifies new potential therapeutic targets for adrenocortical carcinoma

    PubMed Central

    Armignacco, Roberta; Ercolino, Tonino; Canu, Letizia; Baroni, Gianna; Nesi, Gabriella; Galli, Andrea; Mannelli, Massimo; Luconi, Michaela

    2015-01-01

    Adrenocortical carcinoma (ACC) is a rare aggressive tumor with poor prognosis when metastatic at diagnosis. The tumor biology is still mostly unclear, justifying the limited specificity and efficacy of the anti-cancer drugs currently available. This study reports the first proteomic analysis of ACC by using two-dimensional-differential-in-gel-electrophoresis (2D-DIGE) to evaluate a differential protein expression profile between adrenocortical carcinoma and normal adrenal. Mass spectrometry, associated with 2D-DIGE analysis of carcinomas and normal adrenals, identified 22 proteins in 27 differentially expressed 2D spots, mostly overexpressed in ACC. Gene ontology analysis revealed that most of the proteins concurs towards a metabolic shift, called the Warburg effect, in adrenocortical cancer. The differential expression was validated by Western blot for Aldehyde-dehydrogenase-6-A1,Transferrin, Fascin-1,Lamin A/C,Adenylate-cyclase-associated-protein-1 and Ferredoxin-reductase. Moreover, immunohistochemistry performed on paraffin-embedded ACC and normal adrenal specimens confirmed marked positive staining for all 6 proteins diffusely expressed by neoplastic cells, compared with normal adrenal cortex. In conclusion, our preliminary findings reveal a different proteomic profile in adrenocortical carcinoma compared with normal adrenal cortex characterized by overexpression of mainly metabolic enzymes, thus suggesting the Warburg effect also occurs in ACC. These proteins may represent promising novel ACC biomarkers and potential therapeutic targets if validated in larger cohorts of patients. PMID:25691058

  6. Deep Proteome Analysis Identifies Age-Related Processes in C. elegans.

    PubMed

    Narayan, Vikram; Ly, Tony; Pourkarimi, Ehsan; Murillo, Alejandro Brenes; Gartner, Anton; Lamond, Angus I; Kenyon, Cynthia

    2016-08-01

    Effective network analysis of protein data requires high-quality proteomic datasets. Here, we report a near doubling in coverage of the C. elegans adult proteome, identifying >11,000 proteins in total with ∼9,400 proteins reproducibly detected in three biological replicates. Using quantitative mass spectrometry, we identify proteins whose abundances vary with age, revealing a concerted downregulation of proteins involved in specific metabolic pathways and upregulation of cellular stress responses with advancing age. Among these are ∼30 peroxisomal proteins, including the PRX-5/PEX5 import protein. Functional experiments confirm that protein import into the peroxisome is compromised in vivo in old animals. We also studied the behavior of the set of age-variant proteins in chronologically age-matched, long-lived daf-2 insulin/IGF-1-pathway mutants. Unexpectedly, the levels of many of these age-variant proteins did not scale with extended lifespan. This indicates that, despite their youthful appearance and extended lifespans, not all aspects of aging are reset in these long-lived mutants. PMID:27453442

  7. Quantitative Proteomics Analysis of Camelina sativa Seeds Overexpressing the AGG3 Gene to Identify the Proteomic Basis of Increased Yield and Stress Tolerance.

    PubMed

    Alvarez, Sophie; Roy Choudhury, Swarup; Sivagnanam, Kumaran; Hicks, Leslie M; Pandey, Sona

    2015-06-01

    Camelina sativa, a close relative of Arabidopsis, is an oilseed plant that is emerging as an important biofuel resource. The genome and transcriptome maps of Camelina have become available recently, but its proteome composition remained unexplored. A labeling LC-based quantitative proteomics approach was applied to decipher the Camelina seed proteome, which led to the identification of 1532 proteins. In addition, the effect of overexpression of the Arabidopsis G-protein γ subunit 3 (AGG3) on the Camelina seed proteome was elucidated to identify the proteomic basis of its increased seed size and improved stress tolerance. The comparative analysis showed a significantly higher expression of proteins involved in primary and secondary metabolism, nucleic acid and protein metabolism, and abscisic acid related responses, corroborating the physiological effects of AGG3 overexpression. More importantly, the proteomic data suggested involvement of the AGG3 protein in the regulation of oxidative stress and heavy metal stress tolerance. These observations were confirmed by the physiological and biochemical characterization of AGG3-overexpressing seeds, which exhibit a higher tolerance to exogenous cadmium in a glutathione-dependent manner. The activity of multiple redox-regulating enzymes is higher in seeds expressing enhanced levels of AGG3. Overall, these data provide critical evidence for the role of redox regulation by the AGG3 protein in mediating important seed-related traits. PMID:25944359

  8. Proteome Analysis. Novel Proteins Identified at the Peribacteroid Membrane from Lotus japonicus Root Nodules1

    PubMed Central

    Wienkoop, Stefanie; Saalbach, Gerhard

    2003-01-01

    The peribacteroid membrane (PBM) forms the structural and functional interface between the legume plant and the rhizobia. The model legume Lotus japonicus was chosen to study the proteins present at the PBM by proteome analysis. PBM was purified from root nodules by an aqueous polymer two-phase system. Extracted proteins were subjected to a global trypsin digest. The peptides were separated by nanoscale liquid chromatography and analyzed by tandem mass spectrometry. Searching the nonredundant protein database and the green plant expressed sequence tag database using the tandem mass spectrometry data identified approximately 94 proteins, a number far exceeding the number of proteins reported for the PBM hitherto. In particular, a number of membrane proteins like transporters for sugars and sulfate; endomembrane-associated proteins such as GTP-binding proteins and vesicle receptors; and proteins involved in signaling, for example, receptor kinases, calmodulin, 14-3-3 proteins, and pathogen response-related proteins, including a so-called HIR protein, were detected. Several ATPases and aquaporins were present, indicating a more complex situation than previously thought. In addition, the unexpected presence of a number of proteins known to be located in other compartments was observed. Two characteristic protein complexes obtained from native gel electrophoresis of total PBM proteins were also analyzed. Together, the results identified specific proteins at the PBM involved in important physiological processes and localized proteins known from nodule-specific expressed sequence tag databases to the PBM. PMID:12644660

  9. Proteomic analysis of cerebrospinal fluid in California sea lions (Zalophus californianus) with domoic acid toxicosis identifies proteins associated with neurodegeneration.

    PubMed

    Neely, Benjamin A; Soper, Jennifer L; Gulland, Frances M D; Bell, P Darwin; Kindy, Mark; Arthur, John M; Janech, Michael G

    2015-12-01

    Proteomic studies including marine mammals are rare, largely due to the lack of fully sequenced genomes. This has hampered the application of these techniques toward biomarker discovery efforts for monitoring of health and disease in these animals. We conducted a pilot label-free LC-MS/MS study to profile and compare the cerebrospinal fluid from California sea lions with domoic acid toxicosis (DAT) and without DAT. Across 11 samples, a total of 206 proteins were identified (FDR<0.1) using a composite mammalian database. Several peptide identifications were validated using stable isotope labeled peptides. Comparison of spectral counts revealed seven proteins that were elevated in the cerebrospinal fluid from sea lions with DAT: complement C3, complement factor B, dickkopf-3, malate dehydrogenase 1, neuron cell adhesion molecule 1, gelsolin, and neuronal cell adhesion molecule. Immunoblot analysis found reelin to be depressed in the cerebrospinal fluid from California sea lions with DAT. Mice administered domoic acid also had lower hippocampal reelin protein levels suggesting that domoic acid depresses reelin similar to kainic acid. In summary, proteomic analysis of cerebrospinal fluid in marine mammals is a useful tool to characterize the underlying molecular pathology of neurodegenerative disease. All MS data have been deposited in the ProteomeXchange with identifier PXD002105 (http://proteomecentral.proteomexchange.org/dataset/PXD002105). PMID:26364553

  10. Proteomic analysis from haploid and diploid embryos of Quercus suber L. identifies qualitative and quantitative differential expression patterns.

    PubMed

    Gómez, Aranzazu; López, Juan Antonio; Pintos, Beatriz; Camafeita, Emilio; Bueno, Ma Angeles

    2009-09-01

    Quercus suber L. is a Mediterranean forest species with ecological, social and economic value. Clonal propagation of Q. suber elite trees has been successfully obtained from in vitro-derived somatic and gametic embryos. These clonal lines play a main role in breeding and genetic studies of Q. suber. To aid in unravelling diverse genetic and biological unknowns, a proteomic approach is proposed. The proteomic analysis of Q. suber somatic and gametic in vitro culture-derived embryos, based on DIGE and MALDI-MS, has produced for the first time proteomic data on this species. Seventeen differentially expressed proteins have been identified which display significantly altered levels between gametic and somatic embryos. These proteins are involved in a variety of cellular processes, most of which had been neither previously associated with embryo development nor identified in the genus Quercus. Some of these proteins are involved in stress and pollen development and others play a role in the metabolism of tannins and phenylpropanoids, which represent two of the major pathways for the synthesis of cork chemical components. Furthermore, the augmented expression levels found for specific proteins are probably related to the homozygous state of a doubled-haploid sample. Proteins involved in synthesis of cork components can be detected at such early stages of development, showing the potential of the method to be useful in searching for biomarkers related to cork quality. PMID:19662628

  11. Identifying novel protein interactions: Proteomic methods, optimisation approaches and data analysis pipelines.

    PubMed

    Carneiro, Daniel Gonçalves; Clarke, Thomas; Davies, Clare C; Bailey, Dalan

    2016-02-15

    The technological revolution in high-throughput nucleic acid and protein analysis in the last 15 years has launched the field of 'omics' and led to great advances in our understanding of cell biology. Consequently the study of the cellular proteome and protein dynamics, in particular interactomics, has been a matter of intense investigation, specifically the determination and description of complex protein interaction networks in the cell, not only with other proteins but also with RNA and DNA. The analysis of these interactions, beginning with their identification and ultimately resulting in structural level examination, is one of the cornerstones of modern biological science underpinning basic research and impacting on applied biology, biomedicine and drug discovery. In this review we summarise a selection of emerging and established techniques currently being applied in this field with a particular focus on affinity-based purification systems and their optimisation, including tandem affinity purification (TAP) tagging, isolation of proteins on nascent DNA (IPOND) and RNA-protein immunoprecipitation in tandem (RIPiT). The recent application of quantitative proteomics to improve stringency and specificity is also discussed, including the use of metabolic labelling by stable isotope labelling by amino acids in cell culture (SILAC), localization of organelle proteins by isotope tagging (LOPIT) and proximity-dependent biotin identification (BioID). Finally, we describe a range of software resources that can be applied to interactomics, both to handle raw data and also to scrutinise its broader biological context. In this section we focus especially on open-access online interactomic databases such as Reactome and IntAct. PMID:26320829

  12. Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells

    PubMed Central

    Stangeland, Biljana; Mughal, Awais A.; Grieg, Zanina; Sandberg, Cecilie Jonsgar; Joel, Mrinal; Nygård, Ståle; Meling, Torstein; Murrell, Wayne; Vik Mo, Einar O.; Langmoen, Iver A.

    2015-01-01

    Glioblastoma (GBM) is both the most common and the most lethal primary brain tumor. It is thought that GBM stem cells (GSCs) are critically important in resistance to therapy. Therefore, there is a strong rationale to target these cells in order to develop new molecular therapies. To identify molecular targets in GSCs, we compared gene expression in GSCs to that in neural stem cells (NSCs) from the adult human brain, using microarrays. Bioinformatic filtering identified 20 genes (PBK/TOPK, CENPA, KIF15, DEPDC1, CDC6, DLG7/DLGAP5/HURP, KIF18A, EZH2, HMMR/RHAMM/CD168, NOL4, MPP6, MDM1, RAPGEF4, RHBDD1, FNDC3B, FILIP1L, MCC, ATXN7L4/ATXN7L1, P2RY5/LPAR6 and FAM118A) that were consistently expressed in GSC cultures and consistently not expressed in NSC cultures. The expression of these genes was confirmed in clinical samples (TCGA and REMBRANDT). The first nine genes were highly co-expressed in all GBM subtypes and were part of the same protein-protein interaction network. Furthermore, their combined up-regulation correlated negatively with patient survival in the mesenchymal GBM subtype. Using targeted proteomics and the COGNOSCENTE database we linked these genes to GBM signalling pathways. Nine genes: PBK, CENPA, KIF15, DEPDC1, CDC6, DLG7, KIF18A, EZH2 and HMMR should be further explored as targets for treatment of GBM. PMID:26295306

  13. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins.

    PubMed

    Chan, Yuk-Kit; Zhang, Huoming; Liu, Pei; Tsao, Sai-Wah; Lung, Maria Li; Mak, Nai-Ki; Ngok-Shun Wong, Ricky; Ying-Kit Yue, Patrick

    2015-10-15

    Exosomes, a group of secreted extracellular nanovesicles containing genetic materials and signaling molecules, play a critical role in intercellular communication. During tumorigenesis, exosomes have been demonstrated to promote tumor angiogenesis and metastasis while their biological functions in nasopharyngeal carcinoma (NPC) are poorly understood. In this study, we focused on the role of NPC-derived exosomes on angiogenesis. Exosomes derived from the NPC C666-1 cells and immortalized nasopharyngeal epithelial cells (NP69 and NP460) were isolated using ultracentrifugation. The molecular profile and biophysical characteristics of exosomes were verified by Western blotting, sucrose density gradient and electron microscopy. We showed that the C666-1 exosomes (10 and 20 μg/ml) could significantly increase the tubulogenesis, migration and invasion of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. Subsequently, an iTRAQ-based quantitative proteomics was used to identify the differentially expressed proteins in C666-1 exosomes. Among the 640 identified proteins, 51 and 89 proteins were considered as up- and down-regulated (≥ 1.5-fold variations) in C666-1 exosomes compared to the normal counterparts, respectively. As expected, pro-angiogenic proteins including intercellular adhesion molecule-1 (ICAM-1) and CD44 variant isoform 5 (CD44v5) are among the up-regulated proteins, whereas angio-suppressive protein, thrombospondin-1 (TSP-1) was down-regulated in C666-1 exosomes. Further confocal microscopic study and Western blotting clearly demonstrated that the alteration of ICAM-1 and TSP-1 expressions in recipient HUVECs are due to internalization of exosomes. Taken together, these data strongly indicated the critical roles of identified angiogenic proteins in the involvement of exosomes-induced angiogenesis, which could potentially be developed as therapeutic targets in future. PMID:25857718

  14. Proteomic Analysis of Rhizoctonia solani Identifies Infection-specific, Redox Associated Proteins and Insight into Adaptation to Different Plant Hosts.

    PubMed

    Anderson, Jonathan P; Hane, James K; Stoll, Thomas; Pain, Nicholas; Hastie, Marcus L; Kaur, Parwinder; Hoogland, Christine; Gorman, Jeffrey J; Singh, Karam B

    2016-04-01

    Rhizoctonia solaniis an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about howR. solanicauses disease. This study capitalizes on recent genomic studies by applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Many of the proteins found in the culture filtrate had predicted functions relating to modification of the plant cell wall, a major activity required for pathogenesis on the plant host, including a number found only under infection conditions. Other infection related proteins included a high proportion of proteins with redox associated functions and many novel proteins without functional classification. The majority of infection only proteins tested were confirmed to show transcript up-regulation during infection including a thaumatin which increased susceptibility toR. solaniwhen expressed inNicotiana benthamiana In addition, analysis of expression during infection of different plant hosts highlighted how the infection strategy of this broad host range pathogen can be adapted to the particular host being encountered. Data are available via ProteomeXchange with identifier PXD002806. PMID:26811357

  15. Proteomic Analysis of Rhizoctonia solani Identifies Infection-specific, Redox Associated Proteins and Insight into Adaptation to Different Plant Hosts*

    PubMed Central

    Anderson, Jonathan P.; Hane, James K.; Stoll, Thomas; Pain, Nicholas; Hastie, Marcus L.; Kaur, Parwinder; Hoogland, Christine; Gorman, Jeffrey J.; Singh, Karam B.

    2016-01-01

    Rhizoctonia solani is an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about how R. solani causes disease. This study capitalizes on recent genomic studies by applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Many of the proteins found in the culture filtrate had predicted functions relating to modification of the plant cell wall, a major activity required for pathogenesis on the plant host, including a number found only under infection conditions. Other infection related proteins included a high proportion of proteins with redox associated functions and many novel proteins without functional classification. The majority of infection only proteins tested were confirmed to show transcript up-regulation during infection including a thaumatin which increased susceptibility to R. solani when expressed in Nicotiana benthamiana. In addition, analysis of expression during infection of different plant hosts highlighted how the infection strategy of this broad host range pathogen can be adapted to the particular host being encountered. Data are available via ProteomeXchange with identifier PXD002806. PMID:26811357

  16. Quantitative proteomics analysis to identify diffuse axonal injury biomarkers in rats using iTRAQ coupled LC-MS/MS.

    PubMed

    Zhang, Peng; Zhu, Shisheng; Li, Yongguo; Zhao, Minzhu; Liu, Meng; Gao, Jun; Ding, Shijia; Li, Jianbo

    2016-02-01

    Diffuse axonal injury (DAI) is fairly common during a traumatic brain injury (TBI) and is associated with high mortality. Making an early diagnosis, appropriate therapeutic decisions, and an accurate prognostic evaluation of patients with DAI still pose difficulties for clinicians. The detailed mechanisms of axonal injury after head trauma have yet to be clearly defined and no reliable biomarkers are available for early DAI diagnosis. Therefore, this study employed an established DAI animal model in conjunction with an isobaric tag for relative and absolute quantification (iTRAQ)-based protein identification/quantification approach. Alterations in rat cerebral protein expression were quantified using iTRAQ coupled LC-MS/MS, with differentially expressed proteins between the control groups, sham and sham-injured, and the injury groups, animals that died immediately post-injury and those sacrificed at 1h, 6h, 1d, 3d and 7d post-injury, identified. A total of 1858 proteins were identified and quantified and comparative analysis identified ten candidate proteins that warranted further examination. Of the ten candidate DAI biomarkers, four proteins, citrate synthase (CS), synaptosomal-associated protein 25 (Snap25), microtubule-associated protein 1B (MAP1B) and Rho-associated protein kinase 2 (Rock2), were validated by subsequent Western blot and immunohistochemistry analyses. Our studies not only identified several novel biomarkers that may provide insight into the pathophysiological mechanisms of DAI, but also demonstrated the feasibility of iTRAQ-based quantitative proteomic analysis in cerebral tissue research. PMID:26710722

  17. Proteomic Analysis of Urine to Identify Breast Cancer Biomarker Candidates Using a Label-Free LC-MS/MS Approach

    PubMed Central

    Beretov, Julia; Wasinger, Valerie C.; Millar, Ewan K. A.; Schwartz, Peter; Graham, Peter H.; Li, Yong

    2015-01-01

    Introduction Breast cancer is a complex heterogeneous disease and is a leading cause of death in women. Early diagnosis and monitoring progression of breast cancer are important for improving prognosis. The aim of this study was to identify protein biomarkers in urine for early screening detection and monitoring invasive breast cancer progression. Method We performed a comparative proteomic analysis using ion count relative quantification label free LC-MS/MS analysis of urine from breast cancer patients (n = 20) and healthy control women (n = 20). Results Unbiased label free LC-MS/MS-based proteomics was used to provide a profile of abundant proteins in the biological system of breast cancer patients. Data analysis revealed 59 urinary proteins that were significantly different in breast cancer patients compared to the normal control subjects (p<0.05, fold change >3). Thirty-six urinary proteins were exclusively found in specific breast cancer stages, with 24 increasing and 12 decreasing in their abundance. Amongst the 59 significant urinary proteins identified, a list of 13 novel up-regulated proteins were revealed that may be used to detect breast cancer. These include stage specific markers associated with pre-invasive breast cancer in the ductal carcinoma in-situ (DCIS) samples (Leucine LRC36, MAST4 and Uncharacterized protein CI131), early invasive breast cancer (DYH8, HBA, PEPA, uncharacterized protein C4orf14 (CD014), filaggrin and MMRN2) and metastatic breast cancer (AGRIN, NEGR1, FIBA and Keratin KIC10). Preliminary validation of 3 potential markers (ECM1, MAST4 and filaggrin) identified was performed in breast cancer cell lines by Western blotting. One potential marker MAST4 was further validated in human breast cancer tissues as well as individual human breast cancer urine samples with immunohistochemistry and Western blotting, respectively. Conclusions Our results indicate that urine is a useful non-invasive source of biomarkers and the profile patterns

  18. Metabolism-related enzyme alterations identified by proteomic analysis in human renal cell carcinoma.

    PubMed

    Lu, Zejun; Yao, Yuqin; Song, Qi; Yang, Jinliang; Zhao, Xiangfei; Yang, Ping; Kang, Jingbo

    2016-01-01

    The renal cell carcinoma (RCC) is one of the most common types of kidney neoplasia in Western countries; it is relatively resistant to conventional chemotherapy and radiotherapy. Metabolic disorders have a profound effect on the degree of malignancy and treatment resistance of the tumor. However, the molecular characteristics related to impaired metabolism leading to the initiation of RCC are still not very clear. In this study, two-dimensional electrophoresis (2-DE) and mass spectra (MS) technologies were utilized to identify the proteins involved in energy metabolism of RCC. A total of 73 proteins that were differentially expressed in conventional RCC, in comparison with the corresponding normal kidney tissues, were identified. Bioinformatics analysis has shown that these proteins are involved in glycolysis, urea cycle, and the metabolic pathways of pyruvate, propanoate, and arginine/proline. In addition, some were also involved in the signaling network of p53 and FAS. These results provide some clues for new therapeutic targets and treatment strategies of RCC. PMID:27022288

  19. Metabolism-related enzyme alterations identified by proteomic analysis in human renal cell carcinoma

    PubMed Central

    Lu, Zejun; Yao, Yuqin; Song, Qi; Yang, Jinliang; Zhao, Xiangfei; Yang, Ping; Kang, Jingbo

    2016-01-01

    The renal cell carcinoma (RCC) is one of the most common types of kidney neoplasia in Western countries; it is relatively resistant to conventional chemotherapy and radiotherapy. Metabolic disorders have a profound effect on the degree of malignancy and treatment resistance of the tumor. However, the molecular characteristics related to impaired metabolism leading to the initiation of RCC are still not very clear. In this study, two-dimensional electrophoresis (2-DE) and mass spectra (MS) technologies were utilized to identify the proteins involved in energy metabolism of RCC. A total of 73 proteins that were differentially expressed in conventional RCC, in comparison with the corresponding normal kidney tissues, were identified. Bioinformatics analysis has shown that these proteins are involved in glycolysis, urea cycle, and the metabolic pathways of pyruvate, propanoate, and arginine/proline. In addition, some were also involved in the signaling network of p53 and FAS. These results provide some clues for new therapeutic targets and treatment strategies of RCC. PMID:27022288

  20. Coronin-1C is a novel biomarker for hepatocellular carcinoma invasive progression identified by proteomics analysis and clinical validation

    PubMed Central

    2010-01-01

    Background To better search for potential markers for hepatocellular carcinoma (HCC) invasion and metastasis, proteomic approach was applied to identify potential metastasis biomarkers associated with HCC. Methods Membrane proteins were extracted from MHCC97L and HCCLM9 cells, with a similar genetic background and remarkably different metastasis potential, and compared by SDS-PAGE and identified by ESI-MS/MS. The results were further validated by western blot analysis, immunohistochemistry (IHC) of tumor tissues from HCCLM9- and MHCC97L-nude mice, and clinical specimens. Results Membrane proteins were extracted from MHCC97L and HCCLM9 cell and compared by SDS-PAGE analyses. A total of 14 differentially expressed proteins were identified by ESI-MS/MS. Coronin-1C, a promising candidate, was found to be overexpressed in HCCLM9 cells as compared with MHCC97L cells, and validated by western blot and IHC from both nude mice tumor tissues and clinical specimens. Coronin-1C level showed an abrupt upsurge when pulmonary metastasis occurred. Increasing coronin-1C expression was found in liver cancer tissues of HCCLM9-nude mice with spontaneous pulmonary metastasis. IHC study on human HCC specimens revealed that more patients in the higher coronin-1C group had overt larger tumor and more advanced stage. Conclusions Coronin-1C could be a candidate biomarker to predict HCC invasive behavior. PMID:20181269

  1. Nanoscaled Proteomic Analysis

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Jia, Lee

    2013-09-01

    Global proteomics research is currently hampered by the extremely complexity of the proteome and the absence of techniques like the polymerase chain reaction in genomics which enables multiplication of a single protein molecule. Since all the existing analytical technologies cannot overcome the detection limit and the dynamic concentration barrier, development of improved analytical technologies at nanoscale, ideally those that could recognize single protein molecule in the presence of high abundant of others, is a high priority for proteomics. In this chapter, we will show the state-of-the-art of nanoproteomics, i.e., the application of nanotechnologies to proteomics. Various nanomaterials including carbon nanomaterials, magnetic nanoparticles, silica nanoparticles, polymer and copolymer nanoparticles, metal and metal oxide nanoparticles have been used to improve sensitivity, specificity, and repeatability of proteomic analysis especially when the multidimensional separation system coupled with MALDI-TOF-MS is used. Among them, gold nanoparticles (GNPs) and carbon nanotubes (CNTs) are the two most important nanomaterials: while GNPs are frequently utilized for enzyme immobilization, high throughput bioassay, selection of target-peptides and target-protein, CNTs including single-walled carbon nanotubes (SWCNTs) and mutiple-walled carbon nanotubes (MWCNTs) have wide applications to electronic sensor, sensitive immunodetection, nanobiocatalysis, affinity probes, MALDI matrices, protein digestion, peptides enrichment and analysis. In perspectives, a deep understanding of the structures and property of nanomaterials and interdisciplinary applications of nanotechnology to proteomics will certainly be revolutionary and intellectually rewarding.

  2. iTRAQ-Based Quantitative Proteomic Analysis Identified HSC71 as a Novel Serum Biomarker for Renal Cell Carcinoma

    PubMed Central

    Zhang, Yushi; Cai, Yi; Yu, Hongyan; Li, Hanzhong

    2015-01-01

    Renal cell carcinoma (RCC) is one of the most lethal urologic cancers and about 80% of RCC are of the clear-cell type (ccRCC). However, there are no serum biomarkers for the accurate diagnosis of RCC. In this study, we performed a quantitative proteomic analysis on serum samples from ccRCC patients and control group by using isobaric tag for relative and absolute quantitation (iTRAQ) labeling and LC-MS/MS analysis to access differentially expressed proteins. Overall, 16 proteins were significantly upregulated (ratio > 1.5) and 14 proteins were significantly downregulated (ratio < 0.67) in early-stage ccRCC compared to control group. HSC71 was selected and subsequently validated by Western blot in six independent sets of patients. ELISA subsequently confirmed HSC71 as a potential serum biomarker for distinguishing RCC from benign urologic disease with an operating characteristic curve (ROC) area under the curve (AUC) of 0.86 (95% confidence interval (CI), 0.76~0.96), achieving sensitivity of 87% (95% CI 69%~96%) at a specificity of 80% (95% CI 61~92%) with a threshold of 15 ng/mL. iTRAQ-based quantitative proteomic analysis led to identification of serum HSC71 as a novel serum biomarker of RCC, particularly useful in early diagnosis of ccRCC. PMID:26425554

  3. Spermatogenesis-associated proteins at different developmental stages of buffalo testicular seminiferous tubules identified by comparative proteomic analysis.

    PubMed

    Huang, Yu-Lin; Fu, Qiang; Pan, Hong; Chen, Fu-Mei; Zhao, Xiu-Ling; Wang, Huan-Jing; Zhang, Peng-Fei; Huang, Feng-Ling; Lu, Yang-Qing; Zhang, Ming

    2016-07-01

    The testicular seminiferous tubules contain Sertoli cells and different types of spermatogenic cells. They provide the microenvironment for spermatogenesis, but the precise molecular mechanism of spermatogenesis is still not well known. Here, we have employed tandem mass tag coupled to LC-MS/MS with the high-throughput quantitative proteomics technology to explore the protein expression from buffalo testicular seminiferous tubules at three different developmental stages (prepuberty, puberty, and postpuberty). The results show 304 differentially expressed proteins with a ≥2-fold change, and bioinformatics analysis indicates that 27 of these may be associated with spermatogenesis. Expression patterns of seven selected proteins were verified via Western blot and quantitative RT-PCR analysis, and further cellular localizations of these proteins by immunohistochemical or immunofluorescence analysis. Taken together, the results provide potential molecular markers of spermatogenesis and provide a rich resource for further studies on male reproduction regulation. PMID:27173832

  4. Quantitative Proteomic Analysis of the Human Nucleolus.

    PubMed

    Bensaddek, Dalila; Nicolas, Armel; Lamond, Angus I

    2016-01-01

    Recent years have witnessed spectacular progress in the field of mass spectrometry (MS)-based quantitative proteomics, including advances in instrumentation, chromatography, sample preparation methods, and experimental design for multidimensional analyses. It is now possible not only to identify most of the protein components of a cell proteome in a single experiment, but also to describe additional proteome dimensions, such as protein turnover rates, posttranslational modifications, and subcellular localization. Furthermore, by comparing the proteome at different time points, it is possible to create a "time-lapse" view of proteome dynamics. By combining high-throughput quantitative proteomics with detailed subcellular fractionation protocols and data analysis techniques it is also now possible to characterize in detail the proteomes of specific subcellular organelles, providing important insights into cell regulatory mechanisms and physiological responses. In this chapter we present a reliable workflow and protocol for MS-based analysis and quantitation of the proteome of nucleoli isolated from human cells. The protocol presented is based on a SILAC analysis of human MCF10A-Src-ER cells with analysis performed on a Q-Exactive Plus Orbitrap MS instrument (Thermo Fisher Scientific). The subsequent chapter describes how to process the resulting raw MS files from this experiment using MaxQuant software and data analysis procedures to evaluate the nucleolar proteome using customized R scripts. PMID:27576725

  5. Plasma Proteomic Analysis May Identify New Markers for Radiation-Induced Lung Toxicity in Patients With Non-Small-Cell Lung Cancer

    SciTech Connect

    Cai Xuwi; Shedden, Kerby; Ao Xiaoping; Davis, Mary

    2010-07-01

    Purpose: To study whether radiation induces differential changes in plasma proteomics in patients with and without radiation-induced lung toxicity (RILT) of Grade {>=}2 (RILT2). Methods and Materials: A total of 57 patients with NSCLC received radiation therapy (RT) were eligible. Twenty patients, 6 with RILT2 with tumor stage matched to 14 without RILT2, were enrolled for this analysis. Platelet-poor plasma was obtained before RT, at 2, 4, 6 weeks during RT, and 1 and 3 months after RT. Plasma proteomes were compared using a multiplexed quantitative proteomics approach involving ExacTag labeling, reverse-phase high-performance liquid chromatography and nano-LC electrospray tandem mass spectrometry. Variance components models were used to identify the differential protein expression between patients with and without RILT2. Results: More than 100 proteins were identified and quantified. After excluding proteins for which there were not at least 2 subjects with data for at least two time points, 76 proteins remained for this preliminary analysis. C4b-binding protein alpha chain, Complement C3, and Vitronectin had significantly higher expression levels in patients with RILT2 compared with patients without RILT2, based on both the data sets of RT start to 3 months post-RT (p < 0.01) and RT start to the end of RT (p < 0.01). The expression ratios of patients with RILT2 vs. without RILT2 were 1.60, 1.36, 1.46, and 1.66, 1.34, 1.46, for the above three proteins, respectively. Conclusions: This proteomic approach identified new plasma protein markers for future studies on RILT prediction.

  6. A proteomic and genetic analysis of the Neurospora crassa conidia cell wall proteins identifies two glycosyl hydrolases involved in cell wall remodeling.

    PubMed

    Ao, Jie; Aldabbous, Mash'el; Notaro, Marysa J; Lojacono, Mark; Free, Stephen J

    2016-09-01

    A proteomic analysis of the conidial cell wall identified 35 cell wall proteins. A comparison with the proteome of the vegetative hyphae showed that 16 cell wall proteins were shared, and that these shared cell wall proteins were cell wall biosynthetic proteins or cell wall structural proteins. Deletion mutants for 34 of the genes were analyzed for phenotypes indicative of conidial cell wall defects. Mutants for two cell wall glycosyl hydrolases, the CGL-1 β-1,3-glucanase (NCU07523) and the NAG-1 exochitinase (NCU10852), were found to have a conidial separation phenotype. These two enzymes function in remodeling the cell wall between adjacent conidia to facilitate conidia formation and dissemination. Using promoter::RFP and promoter::GFP constructs, we demonstrated that the promoters for 15 of the conidia-specific cell wall genes, including cgl-1 and nag-1, provided for conidia-specific gene expression or for a significant increase in their expression during conidiation. PMID:27381444

  7. Proteomic Analysis of Lipid Droplets from Caco-2/TC7 Enterocytes Identifies Novel Modulators of Lipid Secretion

    PubMed Central

    Beilstein, Frauke; Bouchoux, Julien; Rousset, Monique; Demignot, Sylvie

    2013-01-01

    In enterocytes, the dynamic accumulation and depletion of triacylglycerol (TAG) in lipid droplets (LD) during fat absorption suggests that cytosolic LD-associated TAG contribute to TAG-rich lipoprotein (TRL) production. To get insight into the mechanisms controlling the storage/secretion balance of TAG, we used as a tool hepatitis C virus core protein, which localizes onto LDs, and thus may modify their protein coat and decrease TRL secretion. We compared the proteome of LD fractions isolated from Caco-2/TC7 enterocytes expressing or not hepatitis C virus core protein by a differential proteomic approach (isobaric tag for relative and absolute quantitation (iTRAQ) labeling coupled with liquid chromatography and tandem mass spectrometry). We identified 42 proteins, 21 being involved in lipid metabolism. Perilipin-2/ADRP, which is suggested to stabilize long term-stored TAG, was enriched in LD fractions isolated from Caco-2/TC7 expressing core protein while perilipin-3/TIP47, which is involved in LD synthesis from newly synthesized TAG, was decreased. Endoplasmic reticulum-associated proteins were strongly decreased, suggesting reduced interactions between LD and endoplasmic reticulum, where TRL assembly occurs. For the first time, we show that 17β-hydroxysteroid dehydrogenase 2 (DHB2), which catalyzes the conversion of 17-keto to 17 β-hydroxysteroids and which was the most highly enriched protein in core expressing cells, is localized to LD and interferes with TAG secretion, probably through its capacity to inactivate testosterone. Overall, we identified potential new players of lipid droplet dynamics, which may be involved in the balance between lipid storage and secretion, and may be altered in enterocytes in pathological conditions such as insulin resistance, type II diabetes and obesity. PMID:23301014

  8. Proteomic analysis of Plasmodium falciparum induced alterations in humans from different endemic regions of India to decipher malaria pathogenesis and identify surrogate markers of severity.

    PubMed

    Ray, Sandipan; Kumar, Vipin; Bhave, Amruta; Singh, Vaidhvi; Gogtay, Nithya J; Thatte, Urmila M; Talukdar, Arunansu; Kochar, Sanjay K; Patankar, Swati; Srivastava, Sanjeeva

    2015-09-01

    India significantly contributes to the global malaria burden and has the largest population in the world at risk of malaria. This study aims to analyze alterations in the human serum proteome as a consequence of non-severe and severe infections by the malaria parasite Plasmodium falciparum to identify markers related to disease severity and to obtain mechanistic insights about disease pathogenesis and host immune responses. In discovery phase of the study, a comprehensive quantitative proteomic analysis was performed using gel-based (2D-DIGE) and gel-free (iTRAQ) techniques on two independent mass spectrometry platforms (ESI-Q-TOF and Q-Exactive mass spectrometry), and selected targets were validated by ELISA. Proteins showing altered serum abundance in falciparum malaria patients revealed the modulation of different physiological pathways including chemokine and cytokine signaling, IL-12 signaling and production in macrophages, complement cascades, blood coagulation, and protein ubiquitination pathways. Some muscle related and cytoskeletal proteins such as titin and galectin-3-binding protein were found to be up-regulated in severe malaria patients. Hemoglobin levels and platelet counts were also found to be drastically lower in severe malaria patients. Identified proteins including serum amyloid A, C-reactive protein, apolipoprotein E and haptoglobin, which exhibited sequential alterations in their serum abundance in different severity levels of malaria, could serve as potential predictive markers for disease severity. To the best of our information, we report here the first comprehensive analysis describing the serum proteomic alterations observed in severe P. falciparum infected patients from different malaria endemic regions of India. This article is part of a Special Issue entitled: Proteomics in India. PMID:25982387

  9. Proteomics Analysis to Identify and Characterize the Molecular Signatures of Hepatic Steatosis in Ovariectomized Rats as a Model of Postmenopausal Status

    PubMed Central

    Liao, Chen-Chung; Chiu, Yen-Shuo; Chiu, Wan-Chun; Tung, Yu-Tang; Chuang, Hsiao-Li; Wu, Jyh-Horng; Huang, Chi-Chang

    2015-01-01

    Postmenopausal women are particularly at increased risk of developing non-alcoholic fatty liver disease (NAFLD). Here we aimed to determine the impact of postmenopausal-induced NAFLD (PM-NAFLD) in an ovariectomized rat model. Sixteen six-week-old Sprague-Dawley female rats were randomly divided into two groups (eight per group), for sham-operation (Sham) or bilateral ovariectomy (Ovx). Four months after surgery, indices of liver damage and liver histomorphometry were measured. Both serum aspartate aminotransferase (AST) and alanine aminotranferease (ALT) levels were significantly higher in the Ovx than Sham group. We performed quantitative LC-MS/MS-based proteomic profiling of livers from rats with PM-NAFLD to provide baseline knowledge of the PM-NAFLD proteome and to investigate proteins involved in PM-NAFLD by ingenuity pathways analysis (IPA) to provide corroborative evidence for differential regulation of molecular and cellular functions affecting metabolic processes. Of the 586 identified proteins, the levels of 59 (10.0%) and 48 (8.2%) were significantly higher and lower, respectively, in the Ovx group compared to the Sham group. In conclusion, the changes in regulation of proteins implicated in PM-NAFLD may affect other vital biological processes in the body apart from causing postmenopause-mediated liver dysfunction. Our quantitative proteomics analysis may also suggest potential biomarkers and further clinical applications for PM-NAFLD. PMID:26506382

  10. Proteomic Analysis of Chinese Hamster Ovary Cells

    PubMed Central

    Baycin-Hizal, Deniz; Tabb, David L.; Chaerkady, Raghothama; Chen, Lily; Lewis, Nathan E.; Nagarajan, Harish; Sarkaria, Vishaldeep; Kumar, Amit; Wolozny, Daniel; Colao, Joe; Jacobson, Elena; Tian, Yuan; O'Meally, Robert N.; Krag, Sharon S.; Cole, Robert N.; Palsson, Bernhard O.; Zhang, Hui; Betenbaugh, Michael

    2013-01-01

    In order to complement the recent genomic sequencing of Chinese hamster ovary (CHO) cells, proteomic analysis was performed on CHO including the cellular proteome, secretome, and glycoproteome using tandem mass spectrometry (MS/MS) of multiple fractions obtained from gel electrophoresis, multi-dimensional liquid chromatography, and solid phase extraction of glycopeptides (SPEG). From the 120 different mass spectrometry analyses generating 682,097 MS/MS spectra, 93,548 unique peptide sequences were identified with at most a 0.02 false discovery rate (FDR). A total of 6164 grouped proteins were identified from both glycoproteome and proteome analysis, representing an 8-fold increase in the number of proteins currently identified in the CHO proteome. Furthermore, this is the first proteomic study done using CHO genome exclusively which provides for more accurate identification of proteins. From this analysis, the CHO codon frequency was determined and found to be distinct from humans, which will facilitate expression of human proteins in CHO cells. Analysis of the combined proteomic and mRNA data sets indicated the enrichment of a number of pathways including protein processing and apoptosis but depletion of proteins involved in steroid hormone and glycosphingolipid metabolism. 504 of the detected proteins included N-acetylation modifications and 1292 different proteins were observed to be N-glycosylated. This first large-scale proteomic analysis will enhance the knowledge base about CHO capabilities for recombinant expression and provide information useful in cell engineering efforts aimed at modifying CHO cellular functions. PMID:22971049

  11. Proteomic analysis of Chinese hamster ovary cells.

    PubMed

    Baycin-Hizal, Deniz; Tabb, David L; Chaerkady, Raghothama; Chen, Lily; Lewis, Nathan E; Nagarajan, Harish; Sarkaria, Vishaldeep; Kumar, Amit; Wolozny, Daniel; Colao, Joe; Jacobson, Elena; Tian, Yuan; O'Meally, Robert N; Krag, Sharon S; Cole, Robert N; Palsson, Bernhard O; Zhang, Hui; Betenbaugh, Michael

    2012-11-01

    To complement the recent genomic sequencing of Chinese hamster ovary (CHO) cells, proteomic analysis was performed on CHO cells including the cellular proteome, secretome, and glycoproteome using tandem mass spectrometry (MS/MS) of multiple fractions obtained from gel electrophoresis, multidimensional liquid chromatography, and solid phase extraction of glycopeptides (SPEG). From the 120 different mass spectrometry analyses generating 682,097 MS/MS spectra, 93,548 unique peptide sequences were identified with at most 0.02 false discovery rate (FDR). A total of 6164 grouped proteins were identified from both glycoproteome and proteome analysis, representing an 8-fold increase in the number of proteins currently identified in the CHO proteome. Furthermore, this is the first proteomic study done using the CHO genome exclusively, which provides for more accurate identification of proteins. From this analysis, the CHO codon frequency was determined and found to be distinct from humans, which will facilitate expression of human proteins in CHO cells. Analysis of the combined proteomic and mRNA data sets indicated the enrichment of a number of pathways including protein processing and apoptosis but depletion of proteins involved in steroid hormone and glycosphingolipid metabolism. Five-hundred four of the detected proteins included N-acetylation modifications, and 1292 different proteins were observed to be N-glycosylated. This first large-scale proteomic analysis will enhance the knowledge base about CHO capabilities for recombinant expression and provide information useful in cell engineering efforts aimed at modifying CHO cellular functions. PMID:22971049

  12. In-Depth, Label-Free Analysis of the Erythrocyte Cytoplasmic Proteome in Diamond Blackfan Anemia Identifies a Unique Inflammatory Signature.

    PubMed

    Pesciotta, Esther N; Lam, Ho-Sun; Kossenkov, Andrew; Ge, Jingping; Showe, Louise C; Mason, Philip J; Bessler, Monica; Speicher, David W

    2015-01-01

    Diamond Blackfan Anemia (DBA) is a rare, congenital erythrocyte aplasia that is usually caused by haploinsufficiency of ribosomal proteins due to diverse mutations in one of several ribosomal genes. A striking feature of this disease is that a range of different mutations in ribosomal proteins results in similar disease phenotypes primarily characterized by erythrocyte abnormalities and macrocytic anemia, while most other cell types in the body are minimally affected. Previously, we analyzed the erythrocyte membrane proteomes of several DBA patients and identified several proteins that are not typically associated with this cell type and that suggested inflammatory mechanisms contribute to the pathogenesis of DBA. In this study, we evaluated the erythrocyte cytosolic proteome of DBA patients through in-depth analysis of hemoglobin-depleted erythrocyte cytosols. Simple, reproducible, hemoglobin depletion using nickel columns enabled in-depth analysis of over 1000 cytosolic erythrocyte proteins with only moderate total analysis time per proteome. Label-free quantitation and statistical analysis identified 29 proteins with significantly altered abundance levels in DBA patients compared to matched healthy control donors. Proteins that were significantly increased in DBA erythrocyte cytoplasms included three proteasome subunit beta proteins that make up the immunoproteasome and proteins induced by interferon-γ such as n-myc interactor and interferon-induced 35 kDa protein [NMI and IFI35 respectively]. Pathway analysis confirmed the presence of an inflammatory signature in erythrocytes of DBA patients and predicted key upstream regulators including mitogen activated kinase 1, interferon-γ, tumor suppressor p53, and tumor necrosis factor. These results show that erythrocytes in DBA patients are intrinsically different from those in healthy controls which may be due to an inflammatory response resulting from the inherent molecular defect of ribosomal protein

  13. In-Depth, Label-Free Analysis of the Erythrocyte Cytoplasmic Proteome in Diamond Blackfan Anemia Identifies a Unique Inflammatory Signature

    PubMed Central

    Pesciotta, Esther N.; Lam, Ho-Sun; Kossenkov, Andrew; Ge, Jingping; Showe, Louise C.; Mason, Philip J.; Bessler, Monica; Speicher, David W.

    2015-01-01

    Diamond Blackfan Anemia (DBA) is a rare, congenital erythrocyte aplasia that is usually caused by haploinsufficiency of ribosomal proteins due to diverse mutations in one of several ribosomal genes. A striking feature of this disease is that a range of different mutations in ribosomal proteins results in similar disease phenotypes primarily characterized by erythrocyte abnormalities and macrocytic anemia, while most other cell types in the body are minimally affected. Previously, we analyzed the erythrocyte membrane proteomes of several DBA patients and identified several proteins that are not typically associated with this cell type and that suggested inflammatory mechanisms contribute to the pathogenesis of DBA. In this study, we evaluated the erythrocyte cytosolic proteome of DBA patients through in-depth analysis of hemoglobin-depleted erythrocyte cytosols. Simple, reproducible, hemoglobin depletion using nickel columns enabled in-depth analysis of over 1000 cytosolic erythrocyte proteins with only moderate total analysis time per proteome. Label-free quantitation and statistical analysis identified 29 proteins with significantly altered abundance levels in DBA patients compared to matched healthy control donors. Proteins that were significantly increased in DBA erythrocyte cytoplasms included three proteasome subunit beta proteins that make up the immunoproteasome and proteins induced by interferon-γ such as n-myc interactor and interferon-induced 35 kDa protein [NMI and IFI35 respectively]. Pathway analysis confirmed the presence of an inflammatory signature in erythrocytes of DBA patients and predicted key upstream regulators including mitogen activated kinase 1, interferon-γ, tumor suppressor p53, and tumor necrosis factor. These results show that erythrocytes in DBA patients are intrinsically different from those in healthy controls which may be due to an inflammatory response resulting from the inherent molecular defect of ribosomal protein

  14. Gel-based and gel-free proteomic analysis of Nicotiana tabacum trichomes identifies proteins involved in secondary metabolism and in the (a)biotic stress response.

    PubMed

    Van Cutsem, Emmanuel; Simonart, Géraldine; Degand, Hervé; Faber, Anne-Marie; Morsomme, Pierre; Boutry, Marc

    2011-02-01

    Nicotiana tabacum leaves are covered by trichomes involved in the secretion of large amounts of secondary metabolites, some of which play a major role in plant defense. However, little is known about the metabolic pathways that operate in these structures. We undertook a proteomic analysis of N. tabacum trichomes in order to identify their protein complement. Efficient trichome isolation was obtained by abrading frozen leaves. After homogenization, soluble proteins and a microsomal fraction were prepared by centrifugation. Gel-based and gel-free proteomic analyses were then performed. 2-DE analysis of soluble proteins led to the identification of 1373 protein spots, which were digested and analyzed by MS/MS, leading to 680 unique identifications. Both soluble proteins and microsomal fraction were analyzed by LC MALDI-MS/MS after trypsin digestion, leading to 858 identifications, many of which had not been identified after 2-DE, indicating that the two methods complement each other. Many enzymes putatively involved in secondary metabolism were identified, including enzymes involved in the synthesis of terpenoid precursors and in acyl sugar production. Several transporters were also identified, some of which might be involved in secondary metabolite transport. Various (a)biotic stress response proteins were also detected, supporting the role of trichomes in plant defense. PMID:21268273

  15. Proteomics analysis of human oligodendroglioma proteome.

    PubMed

    Khaghani-Razi-Abad, Solmaz; Hashemi, Mehrdad; Pooladi, Mehdi; Entezari, Maliheh; Kazemi, Elham

    2015-09-10

    Proteomics analyses enable the identification and quantitation of proteins. From a purely clinical perspective, the application of proteomics based on innovations, may greatly affect the future management of malignant brain tumors. This optimism is based on four main reasons: diagnosis, prognosis, selection of targeted therapy based on molecular profile of the brain tumor and monitoring therapeutic response, or resistance. We extracted the proteins of tumor and normal brain tissues, and then evaluated the protein purity by Bradford test. In this study, we separated the proteins by two-dimensional (2DG) gel electrophoresis methods. Then spots were analyzed, compared using statistical data and specific software and were identified by pH isoelectric, molecular weights and data banks. The protein profiles were determined using 2D gel electrophoresis and MALDI TOF/TOF mass spectrometry approaches. Simple statistical tests were used to establish a putative hierarchy in which the change in protein level was ranked according to a cut-off point with p<0.05. The 2D gel showed a total of 1328 spots among which 157 spots were under-expressed and 276 spots were overexpressed. Most proteins are subjects to post-translational modifications, where amino acid residues may be chemically modified or conjugated by small proteins like ubiquitin. Proteomics is a powerful way to identifying multiple proteins which are altered following a neuropharmacological intervention in a CNS disease. PMID:26002447

  16. Total Proteome Analysis Identifies Migration Defects as a Major Pathogenetic Factor in Immunoglobulin Heavy Chain Variable Region (IGHV)-unmutated Chronic Lymphocytic Leukemia*

    PubMed Central

    Eagle, Gina L.; Zhuang, Jianguo; Jenkins, Rosalind E.; Till, Kathleen J.; Jithesh, Puthen V.; Lin, Ke; Johnson, Gillian G.; Oates, Melanie; Park, Kevin; Kitteringham, Neil R.; Pettitt, Andrew R.

    2015-01-01

    The mutational status of the immunoglobulin heavy chain variable region defines two clinically distinct forms of chronic lymphocytic leukemia (CLL) known as mutated (M-CLL) and unmutated (UM-CLL). To elucidate the molecular mechanisms underlying the adverse clinical outcome associated with UM-CLL, total proteomes from nine UM-CLL and nine M-CLL samples were analyzed by isobaric tags for relative and absolute quantification (iTRAQ)-based mass spectrometry. Based on the expression of 3521 identified proteins, principal component analysis separated CLL samples into two groups corresponding to immunoglobulin heavy chain variable region mutational status. Computational analysis showed that 43 cell migration/adhesion pathways were significantly enriched by 39 differentially expressed proteins, 35 of which were expressed at significantly lower levels in UM-CLL samples. Furthermore, UM-CLL cells underexpressed proteins associated with cytoskeletal remodeling and overexpressed proteins associated with transcriptional and translational activity. Taken together, our findings indicate that UM-CLL cells are less migratory and more adhesive than M-CLL cells, resulting in their retention in lymph nodes, where they are exposed to proliferative stimuli. In keeping with this hypothesis, analysis of an extended cohort of 120 CLL patients revealed a strong and specific association between UM-CLL and lymphadenopathy. Our study illustrates the potential of total proteome analysis to elucidate pathogenetic mechanisms in cancer. PMID:25645933

  17. Total proteome analysis identifies migration defects as a major pathogenetic factor in immunoglobulin heavy chain variable region (IGHV)-unmutated chronic lymphocytic leukemia.

    PubMed

    Eagle, Gina L; Zhuang, Jianguo; Jenkins, Rosalind E; Till, Kathleen J; Jithesh, Puthen V; Lin, Ke; Johnson, Gillian G; Oates, Melanie; Park, Kevin; Kitteringham, Neil R; Pettitt, Andrew R

    2015-04-01

    The mutational status of the immunoglobulin heavy chain variable region defines two clinically distinct forms of chronic lymphocytic leukemia (CLL) known as mutated (M-CLL) and unmutated (UM-CLL). To elucidate the molecular mechanisms underlying the adverse clinical outcome associated with UM-CLL, total proteomes from nine UM-CLL and nine M-CLL samples were analyzed by isobaric tags for relative and absolute quantification (iTRAQ)-based mass spectrometry. Based on the expression of 3521 identified proteins, principal component analysis separated CLL samples into two groups corresponding to immunoglobulin heavy chain variable region mutational status. Computational analysis showed that 43 cell migration/adhesion pathways were significantly enriched by 39 differentially expressed proteins, 35 of which were expressed at significantly lower levels in UM-CLL samples. Furthermore, UM-CLL cells underexpressed proteins associated with cytoskeletal remodeling and overexpressed proteins associated with transcriptional and translational activity. Taken together, our findings indicate that UM-CLL cells are less migratory and more adhesive than M-CLL cells, resulting in their retention in lymph nodes, where they are exposed to proliferative stimuli. In keeping with this hypothesis, analysis of an extended cohort of 120 CLL patients revealed a strong and specific association between UM-CLL and lymphadenopathy. Our study illustrates the potential of total proteome analysis to elucidate pathogenetic mechanisms in cancer. PMID:25645933

  18. Directed Shotgun Proteomics Guided by Saturated RNA-seq Identifies a Complete Expressed Prokaryotic Proteome

    SciTech Connect

    Omasits, U.; Quebatte, Maxime; Stekhoven, Daniel J.; Fortes, Claudia; Roschitzki, Bernd; Robinson, Mark D.; Dehio, Christoph; Ahrens, Christian H.

    2013-11-01

    Prokaryotes, due to their moderate complexity, are particularly amenable to the comprehensive identification of the protein repertoire expressed under different conditions. We applied a generic strategy to identify a complete expressed prokaryotic proteome, which is based on the analysis of RNA and proteins extracted from matched samples. Saturated transcriptome profiling by RNA-seq provided an endpoint estimate of the protein-coding genes expressed under two conditions which mimic the interaction of Bartonella henselae with its mammalian host. Directed shotgun proteomics experiments were carried out on four subcellular fractions. By specifically targeting proteins which are short, basic, low abundant, and membrane localized, we could eliminate their initial underrepresentation compared to the estimated endpoint. A total of 1250 proteins were identified with an estimated false discovery rate below 1%. This represents 85% of all distinct annotated proteins and ~90% of the expressed protein-coding genes. Genes that were detected at the transcript but not protein level, were found to be highly enriched in several genomic islands. Furthermore, genes that lacked an ortholog and a functional annotation were not detected at the protein level; these may represent examples of overprediction in genome annotations. A dramatic membrane proteome reorganization was observed, including differential regulation of autotransporters, adhesins, and hemin binding proteins. Particularly noteworthy was the complete membrane proteome coverage, which included expression of all members of the VirB/D4 type IV secretion system, a key virulence factor.

  19. Differential expression of proteins in naïve and IL-2 stimulated primary human NK cells identified by global proteomic analysis

    PubMed Central

    Ma, Di; Felder, Mildred; Scarlett, Cameron O.; Patankar, Manish S.; Li, Lingjun

    2015-01-01

    Natural killer (NK) cells efficiently cytolyse tumors and virally infected cells. Despite the important role that interleukin (IL)-2 plays in stimulating the proliferation of NK cells and increasing NK cell activity, little is known about the alterations in the global NK cell proteome following IL-2 activation. To compare the proteomes of naïve and IL-2-activated primary NK cells and identify key cellular pathways involved in IL-2 signaling, we isolated proteins from naïve and IL-2-activated NK cells from healthy donors, the proteins were trypsinized and the resulting peptides were analyzed by 2D LC ESI-MS/MS followed by label-free quantification. In total, more than 2000 proteins were identified from naïve and IL-2-activated NK cells where 383 proteins were found to be differentially expressed following IL-2 activation. Functional annotation of IL-2 regulated proteins revealed potential targets for future investigation of IL-2 signaling in human primary NK cells. A pathway analysis was performed and revealed several pathways that were not previously known to be involved in IL-2 response, including ubiquitin proteasome pathway, integrin signaling pathway, platelet derived growth factor (PDGF) signaling pathway, epidermal growth factor receptor (EGFR) signaling pathway and Wnt signaling pathway. PMID:23806757

  20. Proteomic Analysis of Mouse Oocytes Identifies PRMT7 as a Reprogramming Factor that Replaces SOX2 in the Induction of Pluripotent Stem Cells.

    PubMed

    Wang, Bingyuan; Pfeiffer, Martin J; Drexler, Hannes C A; Fuellen, Georg; Boiani, Michele

    2016-08-01

    The reprogramming process that leads to induced pluripotent stem cells (iPSCs) may benefit from adding oocyte factors to Yamanaka's reprogramming cocktail (OCT4, SOX2, KLF4, with or without MYC; OSK(M)). We previously searched for such facilitators of reprogramming (the reprogrammome) by applying label-free LC-MS/MS analysis to mouse oocytes, producing a catalog of 28 candidates that are (i) able to robustly access the cell nucleus and (ii) shared between mature mouse oocytes and pluripotent embryonic stem cells. In the present study, we hypothesized that our 28 reprogrammome candidates would also be (iii) abundant in mature oocytes, (iv) depleted after the oocyte-to-embryo transition, and (v) able to potentiate or replace the OSKM factors. Using LC-MS/MS and isotopic labeling methods, we found that the abundance profiles of the 28 proteins were below those of known oocyte-specific and housekeeping proteins. Of the 28 proteins, only arginine methyltransferase 7 (PRMT7) changed substantially during mouse embryogenesis and promoted the conversion of mouse fibroblasts into iPSCs. Specifically, PRMT7 replaced SOX2 in a factor-substitution assay, yielding iPSCs. These findings exemplify how proteomics can be used to prioritize the functional analysis of reprogrammome candidates. The LC-MS/MS data are available via ProteomeXchange with identifier PXD003093. PMID:27225728

  1. Proteomic analysis of Caenorhabditis elegans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteomic studies of the free-living nematode Caenorhabditis elegans have recently received great attention because this animal is a useful model platform for the in vivo study of various biological problems relevant to human disease. In general, proteomic analysis is performed in order to address a...

  2. Transcriptome and proteome analysis of tyrosine kinase inhibitor treated canine mast cell tumour cells identifies potentially kit signaling-dependent genes

    PubMed Central

    2012-01-01

    Background Canine mast cell tumour proliferation depends to a large extent on the activity of KIT, a tyrosine kinase receptor. Inhibitors of the KIT tyrosine kinase have recently been introduced and successfully applied as a therapeutic agent for this tumour type. However, little is known on the downstream target genes of this signaling pathway and molecular changes after inhibition. Results Transcriptome analysis of the canine mast cell tumour cell line C2 treated for up to 72 hours with the tyrosine kinase inhibitor masitinib identified significant changes in the expression levels of approximately 3500 genes or 16% of the canine genome. Approximately 40% of these genes had increased mRNA expression levels including genes associated with the pro-proliferative pathways of B- and T-cell receptors, chemokine receptors, steroid hormone receptors and EPO-, RAS and MAP kinase signaling. Proteome analysis of C2 cells treated for 72 hours identified 24 proteins with changed expression levels, most of which being involved in gene transcription, e.g. EIA3, EIA4, TARDBP, protein folding, e.g. HSP90, UCHL3, PDIA3 and protection from oxidative stress, GSTT3, SELENBP1. Conclusions Transcriptome and proteome analysis of neoplastic canine mast cells treated with masitinib confirmed the strong important and complex role of KIT in these cells. Approximately 16% of the total canine genome and thus the majority of the active genes were significantly transcriptionally regulated. Most of these changes were associated with reduced proliferation and metabolism of treated cells. Interestingly, several pro-proliferative pathways were up-regulated, which may represent attempts of masitinib treated cells to activate alternative pro-proliferative pathways. These pathways may contain hypothetical targets for a combination therapy with masitinib to further improve its therapeutic effect. PMID:22747577

  3. S100A8 is identified as a biomarker of HPV18-infected oral squamous cell carcinomas by suppression subtraction hybridization, clinical proteomics analysis, and immunohistochemistry staining.

    PubMed

    Lo, Wan-Yu; Lai, Chien-Chen; Hua, Chun-Hung; Tsai, Ming-Hsui; Huang, Shiuan-Yi; Tsai, Chang-Hai; Tsai, Fuu-Jen

    2007-06-01

    The purpose of this work is to differentiate between the Human papillomaviruses 18 positive (HPV18+) and negative (HPV18-) oral squamous cell carcinomas (OSCC) in oral cancer patients with cancer-associated oral habits (betel quid chewing, cigarette smoking, and alcohol drinking). Both gene and protein expression profiles of HPV18+ and HPV18- OSCC were compared: we then further explored the biological effect of HPV in oral cancer. Suppression subtraction hybridization (SSH), clinical proteomics analysis, and immunohistochemistry (IHC) staining were carried out in the HPV18+ and HPV18- OSCC groups. HPV typing detection revealed that 11 OSCC tissues from 82 patients were positive for HPV18. The SSH experiment showed that 4 cancer-associated genes were highly transcribed within 11 cDNA libraries of HPV18+ OSCC, including poly(ADP-ribose)polymerase I (PARP1), replication protein A2 (RPA2), S100A8, and S100A2. Clinical proteomics analysis indicated that there was over 10-fold overexpression of Stratifin, F-actin capping protein alpha-1 subunit (CapZ alpha-1), Apolipoprotein A-1 (ApoA-1), Heat-shock protein 27 (HSP27), Arginase-1, p16INK4A, and S100 calcium-binding protein A8 (S100A8) in HPV18+ OSCC. Interestingly, the results from SSH and protemics analysis showed that S100A8 was overexpressed in HPV18+ OSCC. Moreover, IHC staining demonstrated that S100A8 was up-regulated in HPV18+ OSCC tissues. Our results suggest that S100A8 plays an important role in oral carcinogenesis following HPV18 infection; therefore, S100A8 may be a powerful biomarker of HPV18 as well as a potential therapeutic target for HPV18+ OSCC patients. The study is the first to identify S100A8 as a biomarker in HPV-associated cancer. Furthermore, this is also the first study to discover a biomarker by combining SSH, clinical proteomics, and IHC stain analysis in oral cancer-associated research. PMID:17451265

  4. New Molecular Features of Colorectal Cancer Identified - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Investigators from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) who comprehensively analyzed 95 human colorectal tumor samples, have determined how gene alterations identified in previous analyses of the same samples

  5. Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles

    PubMed Central

    Antrobus, Robin; Hirst, Jennifer; Bhumbra, Gary S.; Kozik, Patrycja; Jackson, Lauren P.; Sahlender, Daniela A.

    2012-01-01

    Despite recent advances in mass spectrometry, proteomic characterization of transport vesicles remains challenging. Here, we describe a multivariate proteomics approach to analyzing clathrin-coated vesicles (CCVs) from HeLa cells. siRNA knockdown of coat components and different fractionation protocols were used to obtain modified coated vesicle-enriched fractions, which were compared by stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative mass spectrometry. 10 datasets were combined through principal component analysis into a “profiling” cluster analysis. Overall, 136 CCV-associated proteins were predicted, including 36 new proteins. The method identified >93% of established CCV coat proteins and assigned >91% correctly to intracellular or endocytic CCVs. Furthermore, the profiling analysis extends to less well characterized types of coated vesicles, and we identify and characterize the first AP-4 accessory protein, which we have named tepsin. Finally, our data explain how sequestration of TACC3 in cytosolic clathrin cages causes the severe mitotic defects observed in auxilin-depleted cells. The profiling approach can be adapted to address related cell and systems biological questions. PMID:22472443

  6. Data from proteomic characterization and comparison of mammalian milk fat globule proteomes by iTRAQ analysis.

    PubMed

    Yang, Yongxin; Zheng, Nan; Zhao, Xiaowei; Zhang, Yangdong; Han, Rongwei; Ma, Lu; Zhao, Shengguo; Li, Songli; Guo, Tongjun; Wang, Jiaqi

    2015-06-01

    Milk fat globules memebrane (MFGM)-enriched proteomes from Holstein, Jersey, yak, buffalo, goat, camel, horse, and human were extracted and identified by an iTRAQ quantification proteomic approach. Proteomes data were analyzed by bioinformatic and multivariate statistical analysis and used to present the characteristic traits of the MFGM proteins among the studied mammals. The data of this study are also related to the research article "Proteomic characterization and comparison of mammalian milk fat globule proteomes by iTRAQ analysis" in the Journal of Proteomics [1]. PMID:26217709

  7. Data in support of quantitative proteomics to identify potential virulence regulators in Paracoccidioides brasiliensis isolates

    PubMed Central

    Tashima, Alexandre Keiji; Castilho, Daniele Gonçalves; Chaves, Alison Felipe Alencar; Xander, Patricia; Zelanis, André; Batista, Wagner Luiz

    2015-01-01

    Paracoccidioides genus are the etiologic agents of paracoccidioidomycosis (PCM), a systemic mycosis endemic in Latin America. Few virulence factors have been identified in these fungi. This paper describes support data from the quantitative proteomics of Paracoccidioides brasiliensis attenuated and virulent isolates [1]. The protein compositions of two isolates of the Pb18 strain showing distinct infection profiles were quantitatively assessed by stable isotopic dimethyl labeling and proteomic analysis. The mass spectrometry and the analysis dataset have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with identifier PXD000804. PMID:26501084

  8. Database independent proteomics analysis of the ostrich and human proteome.

    PubMed

    Altelaar, A F Maarten; Navarro, Danny; Boekhorst, Jos; van Breukelen, Bas; Snel, Berend; Mohammed, Shabaz; Heck, Albert J R

    2012-01-10

    Mass spectrometry (MS)-based proteome analysis relies heavily on the presence of complete protein databases. Such a strategy is extremely powerful, albeit not adequate in the analysis of unpredicted postgenome events, such as posttranslational modifications, which exponentially increase the search space. Therefore, it is of interest to explore "database-free" approaches. Here, we sampled the ostrich and human proteomes with a method facilitating de novo sequencing, utilizing the protease Lys-N in combination with electron transfer dissociation. By implementing several validation steps, including the combined use of collision-induced dissociation/electron transfer dissociation data and a cross-validation with conventional database search strategies, we identified approximately 2,500 unique de novo peptide sequences from the ostrich sample with over 900 peptides generating full backbone sequence coverage. This dataset allowed the appropriate positioning of ostrich in the evolutionary tree. The described database-free sequencing approach is generically applicable and has great potential in important proteomics applications such as in the analysis of variable parts of endogenous antibodies or proteins modified by a plethora of complex posttranslational modifications. PMID:22198768

  9. Integrated transcriptomic and proteomic analysis identifies protein kinase CK2 as a key signaling node in an inflammatory cytokine network in ovarian cancer cells

    PubMed Central

    Kulbe, Hagen; Iorio, Francesco; Chakravarty, Probir; Milagre, Carla S.; Moore, Robert; Thompson, Richard G.; Everitt, Gemma; Canosa, Monica; Montoya, Alexander; Drygin, Denis; Braicu, Ioana; Sehouli, Jalid; Saez-Rodriguez, Julio; Cutillas, Pedro R.; Balkwill, Frances R.

    2016-01-01

    We previously showed how key pathways in cancer-related inflammation and Notch signaling are part of an autocrine malignant cell network in ovarian cancer. This network, which we named the “TNF network”, has paracrine actions within the tumor microenvironment, influencing angiogenesis and the immune cell infiltrate. The aim of this study was to identify critical regulators in the signaling pathways of the TNF network in ovarian cancer cells that might be therapeutic targets. To achieve our aim, we used a systems biology approach, combining data from phospho-proteomic mass spectrometry and gene expression array analysis. Among the potential therapeutic kinase targets identified was the protein kinase Casein kinase II (CK2). Knockdown of CK2 expression in malignant cells by siRNA or treatment with the specific CK2 inhibitor CX-4945 significantly decreased Notch signaling and reduced constitutive cytokine release in ovarian cancer cell lines that expressed the TNF network as well as malignant cells isolated from high grade serous ovarian cancer ascites. The expression of the same cytokines was also inhibited after treatment with CX-4945 in a 3D organotypic model. CK2 inhibition was associated with concomitant inhibition of proliferative activity, reduced angiogenesis and experimental peritoneal ovarian tumor growth. In conclusion, we have identified kinases, particularly CK2, associated with the TNF network that may play a central role in sustaining the cytokine network and/or mediating its effects in ovarian cancer. PMID:26871292

  10. Differential proteomics analysis of synaptic proteins identifies potential cellular targets and protein mediators of synaptic neuroprotection conferred by the slow Wallerian degeneration (Wlds) gene

    PubMed Central

    Wishart, Thomas M.; Paterson, Janet M.; Short, Duncan M.; Meredith, Sara; Robertson, Kevin A.; Sutherland, Calum; Cousin, Michael A.; Dutia, Mayank B.; Gillingwater, Thomas H.

    2007-01-01

    SUMMARY Non-somatic synaptic and axonal compartments of neurons are primary pathological targets in many neurodegenerative conditions, ranging from Alzheimer's disease through to motor neuron disease. Axons and synapses are protected from degeneration by the slow Wallerian degeneration (Wlds) gene. Significantly, the molecular mechanisms through which this spontaneous genetic mutation delays degeneration remain controversial and the downstream protein targets of Wlds resident in non-somatic compartments remain unknown. Here we have used differential proteomic analysis to identify proteins whose expression levels were significantly altered in isolated synaptic preparations from the striatum of Wlds mice. 8 of the 16 proteins we identified as having modified expression levels in Wlds synapses are known regulators of mitochondrial stability and degeneration (including VDAC1, Aralar1 and mitofilin). Subsequent analyses demonstrated that other key mitochondrial proteins, not identified in our initial screen, are also modified in Wlds synapses. Of the non-mitochondrial proteins identified, several have been implicated in neurodegenerative diseases where synapses and axons are primary pathological targets (including DRP-2 and Rab GDI beta). In addition, we show that downstream protein changes can be identified in pathways corresponding to both Ube4b (including UBE1) and Nmnat1 (including VDAC1 and Aralar1) components of the chimeric Wlds gene, suggesting that full-length Wlds protein is required to elicit maximal changes in synaptic proteins. We conclude that altered mitochondrial responses to degenerative stimuli are likely to play an important role in the neuroprotective Wlds phenotype and that targeting proteins identified in the current study may lead to novel therapies for the treatment of neurodegenerative diseases in humans. PMID:17470424

  11. Proteomic Approach to Identify Nuclear Proteins in Wheat Grain.

    PubMed

    Bancel, Emmanuelle; Bonnot, Titouan; Davanture, Marlène; Branlard, Gérard; Zivy, Michel; Martre, Pierre

    2015-10-01

    The nuclear proteome of the grain of the two cultivated wheat species Triticum aestivum (hexaploid wheat; genomes A, B, and D) and T. monococcum (diploid wheat; genome A) was analyzed in two early stages of development using shotgun-based proteomics. A procedure was optimized to purify nuclei, and an improved protein sample preparation was developed to efficiently remove nonprotein substances (starch and nucleic acids). A total of 797 proteins corresponding to 528 unique proteins were identified, 36% of which were classified in functional groups related to DNA and RNA metabolism. A large number (107 proteins) of unknown functions and hypothetical proteins were also found. Some identified proteins may be multifunctional and may present multiple localizations. On the basis of the MS/MS analysis, 368 proteins were present in the two species, and in two stages of development, some qualitative differences between species and stages of development were also found. All of these data illustrate the dynamic function of the grain nucleus in the early stages of development. PMID:26228564

  12. Multi-Scale Genomic, Transcriptomic and Proteomic Analysis of Colorectal Cancer Cell Lines to Identify Novel Biomarkers

    PubMed Central

    Briffa, Romina; Um, Inhwa; Faratian, Dana; Zhou, Ying; Turnbull, Arran K.; Langdon, Simon P.; Harrison, David J.

    2015-01-01

    Selecting colorectal cancer (CRC) patients likely to respond to therapy remains a clinical challenge. The objectives of this study were to establish which genes were differentially expressed with respect to treatment sensitivity and relate this to copy number in a panel of 15 CRC cell lines. Copy number variations of the identified genes were assessed in a cohort of CRCs. IC50’s were measured for 5-fluorouracil, oxaliplatin, and BEZ-235, a PI3K/mTOR inhibitor. Cell lines were profiled using array comparative genomic hybridisation, Illumina gene expression analysis, reverse phase protein arrays, and targeted sequencing of KRAS hotspot mutations. Frequent gains were observed at 2p, 3q, 5p, 7p, 7q, 8q, 12p, 13q, 14q, and 17q and losses at 2q, 3p, 5q, 8p, 9p, 9q, 14q, 18q, and 20p. Frequently gained regions contained EGFR, PIK3CA, MYC, SMO, TRIB1, FZD1, and BRCA2, while frequently lost regions contained FHIT and MACROD2. TRIB1 was selected for further study. Gene enrichment analysis showed that differentially expressed genes with respect to treatment response were involved in Wnt signalling, EGF receptor signalling, apoptosis, cell cycle, and angiogenesis. Stepwise integration of copy number and gene expression data yielded 47 candidate genes that were significantly correlated. PDCD6 was differentially expressed in all three treatment responses. Tissue microarrays were constructed for a cohort of 118 CRC patients and TRIB1 and MYC amplifications were measured using fluorescence in situ hybridisation. TRIB1 and MYC were amplified in 14.5% and 7.4% of the cohort, respectively, and these amplifications were significantly correlated (p≤0.0001). TRIB1 protein expression in the patient cohort was significantly correlated with pERK, Akt, and Caspase 3 expression. In conclusion, a set of candidate predictive biomarkers for 5-fluorouracil, oxaliplatin, and BEZ235 are described that warrant further study. Amplification of the putative oncogene TRIB1 has been described for

  13. Proteomic analysis of engineered cartilage

    PubMed Central

    Pu, Xinzhu; Oxford, Julia Thom

    2016-01-01

    Summary Tissue engineering holds promise for the treatment of damaged and diseased tissues, especially for those tissues that do not undergo repair and regeneration readily in situ. Many techniques are available for cell and tissue culturing and differentiation of chondrocytes using a variety of cell types, differentiation methods, and scaffolds. In each case, it is critical to demonstrate the cellular phenotype and tissue composition, with particular attention to the extracellular matrix molecules that play a structural role and that contribute to the mechanical properties of the resulting tissue construct. Mass spectrometry provides an ideal analytical method with which to characterize the full spectrum of proteins produced by tissue engineered cartilage. Using normal cartilage tissue as a standard, tissue engineered cartilage can be optimized according to the entire proteome. Proteomic analysis is a complementary approach to biochemical, immunohistochemical, and mechanical testing of cartilage constructs. Proteomics is applicable as an analysis approach to most cartilage constructs generated from a variety of cellular sources including primary chondrocytes, mesenchymal stem cells from bone marrow, adipose tissue, induced pluripotent stem cells, and embryonic stem cells. Additionally, proteomics can be used to optimize novel scaffolds and bioreactor applications, yielding cartilage tissue with the proteomic profile of natural cartilage. PMID:26445845

  14. Proteome Analysis of Peroxisomes from Etiolated Arabidopsis Seedlings Identifies a Peroxisomal Protease Involved in β-Oxidation and Development1[C][W][OPEN

    PubMed Central

    Quan, Sheng; Yang, Pingfang; Cassin-Ross, Gaëlle; Kaur, Navneet; Switzenberg, Robert; Aung, Kyaw; Li, Jiying; Hu, Jianping

    2013-01-01

    Plant peroxisomes are highly dynamic organelles that mediate a suite of metabolic processes crucial to development. Peroxisomes in seeds/dark-grown seedlings and in photosynthetic tissues constitute two major subtypes of plant peroxisomes, which had been postulated to contain distinct primary biochemical properties. Multiple in-depth proteomic analyses had been performed on leaf peroxisomes, yet the major makeup of peroxisomes in seeds or dark-grown seedlings remained unclear. To compare the metabolic pathways of the two dominant plant peroxisomal subtypes and discover new peroxisomal proteins that function specifically during seed germination, we performed proteomic analysis of peroxisomes from etiolated Arabidopsis (Arabidopsis thaliana) seedlings. The detection of 77 peroxisomal proteins allowed us to perform comparative analysis with the peroxisomal proteome of green leaves, which revealed a large overlap between these two primary peroxisomal variants. Subcellular targeting analysis by fluorescence microscopy validated around 10 new peroxisomal proteins in Arabidopsis. Mutant analysis suggested the role of the cysteine protease RESPONSE TO DROUGHT21A-LIKE1 in β-oxidation, seed germination, and growth. This work provides a much-needed road map of a major type of plant peroxisome and has established a basis for future investigations of peroxisomal proteolytic processes to understand their roles in development and in plant interaction with the environment. PMID:24130194

  15. Combined Transcriptome and Proteome Analysis Identifies Pathways and Markers Associated with the Establishment of Rapeseed Microspore-Derived Embryo Development1[W

    PubMed Central

    Joosen, Ronny; Cordewener, Jan; Supena, Ence Darmo Jaya; Vorst, Oscar; Lammers, Michiel; Maliepaard, Chris; Zeilmaker, Tieme; Miki, Brian; America, Twan; Custers, Jan; Boutilier, Kim

    2007-01-01

    Microspore-derived embryo (MDE) cultures are used as a model system to study plant cell totipotency and as an in vitro system to study embryo development. We characterized and compared the transcriptome and proteome of rapeseed (Brassica napus) MDEs from the few-celled stage to the globular/heart stage using two MDE culture systems: conventional cultures in which MDEs initially develop as unorganized clusters that usually lack a suspensor, and a novel suspensor-bearing embryo culture system in which the embryo proper originates from the distal cell of a suspensor-like structure and undergoes the same ordered cell divisions as the zygotic embryo. Improved histodifferentiation of suspensor-bearing MDEs suggests a new role for the suspensor in driving embryo cell identity and patterning. An MDE culture cDNA array and two-dimensional gel electrophoresis and protein sequencing were used to compile global and specific expression profiles for the two types of MDE cultures. Analysis of the identities of 220 candidate embryo markers, as well as the identities of 32 sequenced embryo up-regulated protein spots, indicate general roles for protein synthesis, glycolysis, and ascorbate metabolism in the establishment of MDE development. A collection of 135 robust markers for the transition to MDE development was identified, a number of which may be coregulated at the gene and protein expression level. Comparison of the expression profiles of preglobular-stage conventional MDEs and suspensor-bearing MDEs identified genes whose differential expression may reflect improved histodifferentiation of suspensor-bearing embryos. This collection of early embryo-expressed genes and proteins serves as a starting point for future marker development and gene function studies aimed at understanding the molecular regulation of cell totipotency and early embryo development in plants. PMID:17384159

  16. Comparative proteomic analysis of Salmonella enterica serovar Typhimurium ppGpp-deficient mutant to identify a novel virulence protein required for intracellular survival in macrophages

    PubMed Central

    2010-01-01

    Background The global ppGpp-mediated stringent response in pathogenic bacteria plays an important role in the pathogenesis of bacterial infections. In Salmonella enterica serovar Typhimurium (S. Typhimurium), several genes, including virulence genes, are regulated by ppGpp when bacteria are under the stringent response. To understand the control of virulence genes by ppGpp in S. Typhimurium, agarose 2-dimensional electrophoresis (2-DE) combined with mass spectrometry was used and a comprehensive 2-DE reference map of amino acid-starved S. Typhimurium strain SH100, a derivative of ATCC 14028, was established. Results Of the 366 examined spots, 269 proteins were successfully identified. The comparative analysis of the wild-type and ppGpp0 mutant strains revealed 55 proteins, the expression patterns of which were affected by ppGpp. Using a mouse infection model, we further identified a novel virulence-associated factor, STM3169, from the ppGpp-regulated and Salmonella-specific proteins. In addition, Salmonella strains carrying mutations in the gene encoding STM3169 showed growth defects and impaired growth within macrophage-like RAW264.7 cells. Furthermore, we found that expression of stm3169 was controlled by ppGpp and SsrB, a response regulator of the two-component system located on Salmonella pathogenicity island 2. Conclusions A proteomic approach using a 2-DE reference map can prove a powerful tool for analyzing virulence factors and the regulatory network involved in Salmonella pathogenesis. Our results also provide evidence of a global response mediated by ppGpp in S. enterica. PMID:21176126

  17. Proteomic analysis of serum proteins in triple transgenic Alzheimer's disease mice: implications for identifying biomarkers for use to screen potential candidate therapeutic drugs for early Alzheimer's disease.

    PubMed

    Sui, Xiaojing; Ren, Xiaohu; Huang, Peiwu; Li, Shuiming; Ma, Quan; Ying, Ming; Ni, Jiazuan; Liu, Jianjun; Yang, Xifei

    2014-01-01

    Alzheimer's disease (AD) is the most common fatal neurodegenerative disease affecting the elderly worldwide. There is an urgent need to identify novel biomarkers of early AD. This study aims to search for potential early protein biomarkers in serum from a triple transgenic (PS1M146V/APPSwe/TauP301L) mouse model. Proteomic analysis via two-dimensional fluorescence difference gel electrophoresis was performed on serum samples from wild-type (WT) and triple transgenic mice that were treated with or without coenzyme Q10 (CoQ10) (800 mg/kg body weight/day), a powerful endogenous antioxidant displaying therapeutic benefits against AD pathology and cognitive impairment in multiple AD mouse models, for a period of three months beginning at two months of age. A total of 15 differentially expressed serum proteins were identified between the WT and AD transgenic mice. The administration of CoQ10 was found to alter the changes in the differentially expressed serum proteins by upregulating 10 proteins and down-regulating 10 proteins. Among the proteins modulated by CoQ10, clusterin and α-2-macroglobulin were validated via ELISA assay. These findings revealed significant changes in serum proteins in the AD mouse model at an early pathological stage and demonstrated that administration of CoQ10 could modulate these changes in serum proteins. Our study suggested that these differentially expressed serum proteins could serve as potential protein biomarkers of early AD and that screening for potential candidate AD therapeutic drugs and monitoring of therapeutic effects could be performed via measurement of the changes in these differentially expressed serum proteins. PMID:24496070

  18. A Novel Hydrolase Identified by Genomic-Proteomic Analysis of Phenylurea Herbicide Mineralization by Variovorax sp. Strain SRS16▿†

    PubMed Central

    Bers, Karolien; Leroy, Baptiste; Breugelmans, Philip; Albers, Pieter; Lavigne, Rob; Sørensen, Sebastian R.; Aamand, Jens; De Mot, René; Wattiez, Ruddy; Springael, Dirk

    2011-01-01

    The soil bacterial isolate Variovorax sp. strain SRS16 mineralizes the phenylurea herbicide linuron. The proposed pathway initiates with hydrolysis of linuron to 3,4-dichloroaniline (DCA) and N,O-dimethylhydroxylamine, followed by conversion of DCA to Krebs cycle intermediates. Differential proteomic analysis showed a linuron-dependent upregulation of several enzymes that fit into this pathway, including an amidase (LibA), a multicomponent chloroaniline dioxygenase, and enzymes associated with a modified chlorocatechol ortho-cleavage pathway. Purified LibA is a monomeric linuron hydrolase of ∼55 kDa with a Km and a Vmax for linuron of 5.8 μM and 0.16 nmol min−1, respectively. This novel member of the amidase signature family is unrelated to phenylurea-hydrolyzing enzymes from Gram-positive bacteria and lacks activity toward other tested phenylurea herbicides. Orthologues of libA are present in all other tested linuron-degrading Variovorax strains with the exception of Variovorax strains WDL1 and PBS-H4, suggesting divergent evolution of the linuron catabolic pathway in different Variovorax strains. The organization of the linuron degradation genes identified in the draft SRS16 genome sequence indicates that gene patchwork assembly is at the origin of the pathway. Transcription analysis suggests that a catabolic intermediate, rather than linuron itself, acts as effector in activation of the pathway. Our study provides the first report on the genetic organization of a bacterial pathway for complete mineralization of a phenylurea herbicide and the first report on a linuron hydrolase in Gram-negative bacteria. PMID:22003008

  19. Analysis of the Protein Kinase A-Regulated Proteome of Cryptococcus neoformans Identifies a Role for the Ubiquitin-Proteasome Pathway in Capsule Formation

    PubMed Central

    Geddes, J. M. H.; Caza, M.; Croll, D.; Stoynov, N.; Foster, L. J.

    2016-01-01

    ABSTRACT The opportunistic fungal pathogen Cryptococcus neoformans causes life-threatening meningitis in immunocompromised individuals. The expression of virulence factors, including capsule and melanin, is in part regulated by the cyclic-AMP/protein kinase A (cAMP/PKA) signal transduction pathway. In this study, we investigated the influence of PKA on the composition of the intracellular proteome to obtain a comprehensive understanding of the regulation that underpins virulence. Through quantitative proteomics, enrichment and bioinformatic analyses, and an interactome study, we uncovered a pattern of PKA regulation for proteins associated with translation, the proteasome, metabolism, amino acid biosynthesis, and virulence-related functions. PKA regulation of the ubiquitin-proteasome pathway in C. neoformans showed a striking parallel with connections between PKA and protein degradation in chronic neurodegenerative disorders and other human diseases. Further investigation of proteasome function with the inhibitor bortezomib revealed an impact on capsule production as well as hypersusceptibility for strains with altered expression or activity of PKA. Parallel studies with tunicamycin also linked endoplasmic reticulum stress with capsule production and PKA. Taken together, the data suggest a model whereby expression of PKA regulatory and catalytic subunits and the activation of PKA influence proteostasis and the function of the endoplasmic reticulum to control the elaboration of the polysaccharide capsule. Overall, this study revealed both broad and conserved influences of the cAMP/PKA pathway on the proteome and identified proteostasis as a potential therapeutic target for the treatment of cryptococcosis. PMID:26758180

  20. Proteomic analysis of human osteoarthritis synovial fluid

    PubMed Central

    2014-01-01

    Background Osteoarthritis is a chronic musculoskeletal disorder characterized mainly by progressive degradation of the hyaline cartilage. Patients with osteoarthritis often postpone seeking medical help, which results in the diagnosis being made at an advanced stage of cartilage destruction. Sustained efforts are needed to identify specific markers that might help in early diagnosis, monitoring disease progression and in improving therapeutic outcomes. We employed a multipronged proteomic approach, which included multiple fractionation strategies followed by high resolution mass spectrometry analysis to explore the proteome of synovial fluid obtained from osteoarthritis patients. In addition to the total proteome, we also enriched glycoproteins from synovial fluid using lectin affinity chromatography. Results We identified 677 proteins from synovial fluid of patients with osteoarthritis of which 545 proteins have not been previously reported. These novel proteins included ADAM-like decysin 1 (ADAMDEC1), alanyl (membrane) aminopeptidase (ANPEP), CD84, fibulin 1 (FBLN1), matrix remodelling associated 5 (MXRA5), secreted phosphoprotein 2 (SPP2) and spondin 2 (SPON2). We identified 300 proteins using lectin affinity chromatography, including the glycoproteins afamin (AFM), attractin (ATRN), fibrillin 1 (FBN1), transferrin (TF), tissue inhibitor of metalloproteinase 1 (TIMP1) and vasorin (VSN). Gene ontology analysis confirmed that a majority of the identified proteins were extracellular and are mostly involved in cell communication and signaling. We also confirmed the expression of ANPEP, dickkopf WNT signaling pathway inhibitor 3 (DKK3) and osteoglycin (OGN) by multiple reaction monitoring (MRM) analysis of osteoarthritis synovial fluid samples. Conclusions We present an in-depth analysis of the synovial fluid proteome from patients with osteoarthritis. We believe that the catalog of proteins generated in this study will further enhance our knowledge regarding the

  1. Quantitative proteomics for identifying biomarkers for tuberculous meningitis

    PubMed Central

    2012-01-01

    Introduction Tuberculous meningitis is a frequent extrapulmonary disease caused by Mycobacterium tuberculosis and is associated with high mortality rates and severe neurological sequelae. In an earlier study employing DNA microarrays, we had identified genes that were differentially expressed at the transcript level in human brain tissue from cases of tuberculous meningitis. In the current study, we used a quantitative proteomics approach to discover protein biomarkers for tuberculous meningitis. Methods To compare brain tissues from confirmed cased of tuberculous meningitis with uninfected brain tissue, we carried out quantitative protein expression profiling using iTRAQ labeling and LC-MS/MS analysis of SCX fractionated peptides on Agilent’s accurate mass QTOF mass spectrometer. Results and conclusions Through this approach, we identified both known and novel differentially regulated molecules. Those described previously included signal-regulatory protein alpha (SIRPA) and protein disulfide isomerase family A, member 6 (PDIA6), which have been shown to be overexpressed at the mRNA level in tuberculous meningitis. The novel overexpressed proteins identified in our study included amphiphysin (AMPH) and neurofascin (NFASC) while ferritin light chain (FTL) was found to be downregulated in TBM. We validated amphiphysin, neurofascin and ferritin light chain using immunohistochemistry which confirmed their differential expression in tuberculous meningitis. Overall, our data provides insights into the host response in tuberculous meningitis at the molecular level in addition to providing candidate diagnostic biomarkers for tuberculous meningitis. PMID:23198679

  2. Proteomics Analysis of Bladder Cancer Exosomes*

    PubMed Central

    Welton, Joanne L.; Khanna, Sanjay; Giles, Peter J.; Brennan, Paul; Brewis, Ian A.; Staffurth, John; Mason, Malcolm D.; Clayton, Aled

    2010-01-01

    Exosomes are nanometer-sized vesicles, secreted by various cell types, present in biological fluids that are particularly rich in membrane proteins. Ex vivo analysis of exosomes may provide biomarker discovery platforms and form non-invasive tools for disease diagnosis and monitoring. These vesicles have never before been studied in the context of bladder cancer, a major malignancy of the urological tract. We present the first proteomics analysis of bladder cancer cell exosomes. Using ultracentrifugation on a sucrose cushion, exosomes were highly purified from cultured HT1376 bladder cancer cells and verified as low in contaminants by Western blotting and flow cytometry of exosome-coated beads. Solubilization in a buffer containing SDS and DTT was essential for achieving proteomics analysis using an LC-MALDI-TOF/TOF MS approach. We report 353 high quality identifications with 72 proteins not previously identified by other human exosome proteomics studies. Overrepresentation analysis to compare this data set with previous exosome proteomics studies (using the ExoCarta database) revealed that the proteome was consistent with that of various exosomes with particular overlap with exosomes of carcinoma origin. Interrogating the Gene Ontology database highlighted a strong association of this proteome with carcinoma of bladder and other sites. The data also highlighted how homology among human leukocyte antigen haplotypes may confound MASCOT designation of major histocompatability complex Class I nomenclature, requiring data from PCR-based human leukocyte antigen haplotyping to clarify anomalous identifications. Validation of 18 MS protein identifications (including basigin, galectin-3, trophoblast glycoprotein (5T4), and others) was performed by a combination of Western blotting, flotation on linear sucrose gradients, and flow cytometry, confirming their exosomal expression. Some were confirmed positive on urinary exosomes from a bladder cancer patient. In summary, the

  3. Proteomic and Genetic Approaches Identify Syk as an AML Target

    PubMed Central

    Hahn, Cynthia K.; Berchuck, Jacob E.; Ross, Kenneth N.; Kakoza, Rose M.; Clauser, Karl; Schinzel, Anna C.; Ross, Linda; Galinsky, Ilene; Davis, Tina N.; Silver, Serena J.; Root, David E.; Stone, Richard M.; DeAngelo, Daniel J.; Carroll, Martin; Hahn, William C.; Carr, Steven A.; Golub, Todd R.; Kung, Andrew L.; Stegmaier, Kimberly

    2009-01-01

    SUMMARY Cell-based screening can facilitate rapid identification of compounds inducing complex cellular phenotypes. Advancing a compound toward the clinic, however, generally requires identification of precise mechanisms of action. We previously found that epidermal growth factor receptor (EGFR) inhibitors induce acute myeloid leukemia (AML) differentiation via a non-EGFR mechanism. In this report, we integrated proteomic and RNAi-based strategies to identify their off-target anti-AML mechanism. These orthogonal approaches identified Syk as a target in AML. Genetic and pharmacological inactivation of Syk with a drug in clinical trial for other indications promoted differentiation of AML cells and attenuated leukemia growth in vivo. These results demonstrate the power of integrating diverse chemical, proteomic, and genomic screening approaches to identify therapeutic strategies for cancer. PMID:19800574

  4. Proteome analysis for rat saliva.

    PubMed

    Inenaga, Kiyotoshi; Yamada, Naoyuki; Yuji, Reiko; Kawai, Misako; Uneyama, Hisayuki; Ono, Kentaro; Suzuki, Ei-ichiro; Torii, Kunio

    2009-01-01

    Proteome analysis is a popular method to discover biomarkers for the prevention and diagnosis of diseases. Since saliva is a non-invasively available body fluid, gathering of saliva causes minimal harm to patients. Therefore, detection of proteins for the prevention and diagnosis from the saliva sample may be the preferred method, especially for children and elderly people. However, the abundance of salivary proteins and contaminant proteins from food and mouth bacteria obscure identification of proteins present in the saliva at low concentrations. To address this problem, we developed a shotgun proteomic method using two-dimensional nano-flow LC tandem mass spectrometry. We report here that our method is able to detect proteins quantitatively even in small sample volumes of saliva. PMID:20224185

  5. DIGE-based proteomic analysis identifies nucleophosmin/B23 and nucleolin C23 as over-expressed proteins in relapsed/refractory acute leukemia.

    PubMed

    Hu, Jianda; Lin, Minhui; Liu, Tingbo; Li, Jing; Chen, Buyuan; Chen, Yingyu

    2011-08-01

    Drug resistance is a challenge in treatment of acute leukemia. To investigate novel protein changes involved in resistance, protein expression profiles between leukemia cell line HL-60 and adriamycin-resistant HL-60 (HL-60/ADR) were compared based on a proteomic approach-2D-DIGE followed by MALDI-TOF/MS. 13 protein spots were identified as up-regulated and 3 down-regulated in HL-60/ADR. Nucleophosmin/B23 (NPM B23) and nucleolin C23 (C23) were selected and verified by western blot, which showed an obvious up-regulation in leukemia cells, especially in 3 resistant leukemia cell lines and in relapsed/refractory patients. To a conclusion, B23 and C23 may be involved in drug resistance and be useful in assessing the prognosis of leukemia. PMID:21310483

  6. Characterization of the Mouse Brain Proteome Using Global Proteomic Analysis Complemented with Cysteinyl-Peptide Enrichment

    SciTech Connect

    Wang, Haixing H.; Qian, Weijun; Chin, Mark H.; Petyuk, Vladislav A.; Barry, Richard C.; Liu, Tao; Gritsenko, Marina A.; Mottaz, Heather M.; Moore, Ronald J.; Camp, David G.; Khan, Arshad H.; Smith, Desmond; Smith, Richard D.

    2006-02-01

    Given the growing interest in applying genomic and proteomic approaches for studying the mammalian brain using mouse models, we hereby present for the first time a comprehensive characterization of the mouse brain proteome. Preparation of the whole brain sample incorporated a highly efficient cysteinyl-peptide enrichment (CPE) technique to complement a global enzymatic digestion method. Both the global and the cysteinyl-enriched peptide samples were analyzed by SCX fractionation coupled with reversed phase LC-MS/MS analysis. A total of 48,328 different peptides were confidently identified (>98% confidence level), covering 7792 non-redundant proteins (~34% of the predicted mouse proteome). 1564 and 1859 proteins were identified exclusively from the cysteinyl-peptide and the global peptide samples, respectively, corresponding to 25% and 31% improvements in proteome coverage compared to analysis of only the global peptide or cysteinyl-peptide samples. The identified proteins provide a broad representation of the mouse proteome with little bias evident due to protein pI, molecular weight, and/or cellular localization. Approximately 26% of the identified proteins with gene ontology (GO) annotations were membrane proteins, with 1447 proteins predicted to have transmembrane domains, and many of the membrane proteins were found to be involved in transport and cell signaling. The MS/MS spectrum count information for the identified proteins was used to provide a measure of relative protein abundances. The mouse brain peptide/protein database generated from this study represents the most comprehensive proteome coverage for the mammalian brain to date, and the basis for future quantitative brain proteomic studies using mouse models.

  7. Quantitative proteomic profiling identifies protein correlates to EGFR kinase inhibition.

    PubMed

    Kani, Kian; Faca, Vitor M; Hughes, Lindsey D; Zhang, Wenxuan; Fang, Qiaojun; Shahbaba, Babak; Luethy, Roland; Erde, Jonathan; Schmidt, Joanna; Pitteri, Sharon J; Zhang, Qing; Katz, Jonathan E; Gross, Mitchell E; Plevritis, Sylvia K; McIntosh, Martin W; Jain, Anjali; Hanash, Samir; Agus, David B; Mallick, Parag

    2012-05-01

    Clinical oncology is hampered by lack of tools to accurately assess a patient's response to pathway-targeted therapies. Serum and tumor cell surface proteins whose abundance, or change in abundance in response to therapy, differentiates patients responding to a therapy from patients not responding to a therapy could be usefully incorporated into tools for monitoring response. Here, we posit and then verify that proteomic discovery in in vitro tissue culture models can identify proteins with concordant in vivo behavior and further, can be a valuable approach for identifying tumor-derived serum proteins. In this study, we use stable isotope labeling of amino acids in culture (SILAC) with proteomic technologies to quantitatively analyze the gefitinib-related protein changes in a model system for sensitivity to EGF receptor (EGFR)-targeted tyrosine kinase inhibitors. We identified 3,707 intracellular proteins, 1,276 cell surface proteins, and 879 shed proteins. More than 75% of the proteins identified had quantitative information, and a subset consisting of 400 proteins showed a statistically significant change in abundance following gefitinib treatment. We validated the change in expression profile in vitro and screened our panel of response markers in an in vivo isogenic resistant model and showed that these were markers of gefitinib response and not simply markers of phospho-EGFR downregulation. In doing so, we also were able to identify which proteins might be useful as markers for monitoring response and which proteins might be useful as markers for a priori prediction of response. PMID:22411897

  8. Quantitative Proteomic profiling identifies protein correlates to EGFR kinase inhibition

    PubMed Central

    Kani, Kian; Faca, Vitor M.; Hughes, Lindsey D.; Zhang, Wenxuan; Fang, Qiaojun; Shahbaba, Babak; Luethy, Roland; Erde, Jonathan; Schmidt, Joanna; Pitteri, Sharon J.; Zhang, Qing; Katz, Jonathan E.; Gross, Mitchell E.; Plevritis, Sylvia K.; McIntosh, Martin W.; Jain, Anjali; Hanash, Sam; Agus, David B.; Mallick, Parag

    2014-01-01

    Clinical oncology is hampered by a lack of tools to accurately assess a patient’s response to pathway-targeted therapies. Serum and tumor cell surface proteins whose abundance, or change in abundance in response to therapy, differentiates patients responding to a therapy from patients not-responding to a therapy could be usefully incorporated into tools for monitoring response. Here we posit and then verify that proteomic discovery in in vitro tissue culture models can identify proteins with concordant in vivo behavior and further, can be a valuable approach for identifying tumor-derived serum proteins. In this study we use Stable Isotope Labeling of Amino acids in Culture (SILAC) with proteomic technologies to quantitatively analyze the gefitinib-related protein changes in a model system for sensitivity to EGFR targeted tyrosine kinase inhibitors. We identified 3,707 intracellular proteins, 1,276 cell surface proteins, and 879 shed proteins. More than 75% of the proteins identified had quantitative information and a subset consisting of [400] proteins showed a statistically significant change in abundance following gefitinib treatment. We validated the change in expression profile in vitro and screened our panel of response markers in an in vivo isogenic resistant model and demonstrated that these were markers of gefitinib response and not simply markers of phospho-EGFR downregulation. In doing so, we also were able to identify which proteins might be useful as markers for monitoring response and which proteins might be useful as markers for a priori prediction of response. PMID:22411897

  9. Proteomic analysis of cap-dependent translation identifies LARP1 as a key regulator of 5'TOP mRNA translation.

    PubMed

    Tcherkezian, Joseph; Cargnello, Marie; Romeo, Yves; Huttlin, Edward L; Lavoie, Genevieve; Gygi, Steven P; Roux, Philippe P

    2014-02-15

    The mammalian target of rapamycin (mTOR) promotes cell growth and proliferation by promoting mRNA translation and increasing the protein synthetic capacity of the cell. Although mTOR globally promotes translation by regulating the mRNA 5' cap-binding protein eIF4E (eukaryotic initiation factor 4E), it also preferentially regulates the translation of certain classes of mRNA via unclear mechanisms. To help fill this gap in knowledge, we performed a quantitative proteomic screen to identify proteins that associate with the mRNA 5' cap in an mTOR-dependent manner. Using this approach, we identified many potential regulatory factors, including the putative RNA-binding protein LARP1 (La-related protein 1). Our results indicate that LARP1 associates with actively translating ribosomes via PABP and that LARP1 stimulates the translation of mRNAs containing a 5' terminal oligopyrimidine (TOP) motif, encoding for components of the translational machinery. We found that LARP1 associates with the mTOR complex 1 (mTORC1) and is required for global protein synthesis as well as cell growth and proliferation. Together, these data reveal important molecular mechanisms involved in TOP mRNA translation and implicate LARP1 as an important regulator of cell growth and proliferation. PMID:24532714

  10. Analysis of the Human Prostate-Specific Proteome Defined by Transcriptomics and Antibody-Based Profiling Identifies TMEM79 and ACOXL as Two Putative, Diagnostic Markers in Prostate Cancer

    PubMed Central

    O'Hurley, Gillian; Busch, Christer; Fagerberg, Linn; Hallström, Björn M.; Stadler, Charlotte; Tolf, Anna; Lundberg, Emma; Schwenk, Jochen M.; Jirström, Karin; Bjartell, Anders; Gallagher, William M.; Uhlén, Mathias; Pontén, Fredrik

    2015-01-01

    To better understand prostate function and disease, it is important to define and explore the molecular constituents that signify the prostate gland. The aim of this study was to define the prostate specific transcriptome and proteome, in comparison to 26 other human tissues. Deep sequencing of mRNA (RNA-seq) and immunohistochemistry-based protein profiling were combined to identify prostate specific gene expression patterns and to explore tissue biomarkers for potential clinical use in prostate cancer diagnostics. We identified 203 genes with elevated expression in the prostate, 22 of which showed more than five-fold higher expression levels compared to all other tissue types. In addition to previously well-known proteins we identified two poorly characterized proteins, TMEM79 and ACOXL, with potential to differentiate between benign and cancerous prostatic glands in tissue biopsies. In conclusion, we have applied a genome-wide analysis to identify the prostate specific proteome using transcriptomics and antibody-based protein profiling to identify genes with elevated expression in the prostate. Our data provides a starting point for further functional studies to explore the molecular repertoire of normal and diseased prostate including potential prostate cancer markers such as TMEM79 and ACOXL. PMID:26237329

  11. Extensive dataset of boar seminal plasma proteome displaying putative reproductive functions of identified proteins.

    PubMed

    Perez-Patiño, Cristina; Barranco, Isabel; Parrilla, Inmaculada; Martinez, Emilio A; Rodriguez-Martinez, Heriberto; Roca, Jordi

    2016-09-01

    A complete proteomic profile of seminal plasma (SP) remains challenging, particularly in porcine. The data reports on the analysis of boar SP-proteins by using a combination of SEC, 1-D SDS PAGE and NanoLC-ESI-MS/MS from 33 pooled SP-samples (11 boars, 3 ejaculates/boar). A complete dataset of the 536 SP-proteins identified and validated with confidence ≥95% (Unused Score >1.3) and a false discovery rate (FDR) ≤1%, is provided. In addition, the relative abundance of 432 of them is also shown. Gene ontology annotation of the complete SP-proteome complemented by an extensive description of the putative reproductive role of SP-proteins, providing a valuable source for a better understanding of SP role in the reproductive success. This data article refers to the article entitled "Characterization of the porcine seminal plasma proteome comparing ejaculate portions" (Perez-Patiño et al., 2016) [1]. PMID:27583342

  12. Shotgun Proteomics Identifies Proteins Specific for Acute Renal Transplant Rejection

    SciTech Connect

    Sigdel, Tara K.; Kaushal, Amit; Gritsenko, Marina A.; Norbeck, Angela D.; Qian, Weijun; Xiao, Wenzhong; Camp, David G.; Smith, Richard D.; Sarwal, Minnie M.

    2010-01-04

    Acute rejection (AR) remains the primary risk factor for renal transplant outcome; development of non-invasive diagnostic biomarkers for AR is an unmet need. We used shotgun proteomics using LC-MS/MS and ELISA to analyze a set of 92 urine samples, from patients with AR, stable grafts (STA), proteinuria (NS), and healthy controls (HC). A total of 1446 urinary proteins were identified along with a number of NS specific, renal transplantation specific and AR specific proteins. Relative abundance of identified urinary proteins was measured by protein-level spectral counts adopting a weighted fold-change statistic, assigning increased weight for more frequently observed proteins. We have identified alterations in a number of specific urinary proteins in AR, primarily relating to MHC antigens, the complement cascade and extra-cellular matrix proteins. A subset of proteins (UMOD, SERPINF1 and CD44), have been further cross-validated by ELISA in an independent set of urine samples, for significant differences in the abundance of these urinary proteins in AR. This label-free, semi-quantitative approach for sampling the urinary proteome in normal and disease states provides a robust and sensitive method for detection of urinary proteins for serial, non-invasive clinical monitoring for graft rejection after

  13. Proteome analysis in the assessment of ageing.

    PubMed

    Nkuipou-Kenfack, Esther; Koeck, Thomas; Mischak, Harald; Pich, Andreas; Schanstra, Joost P; Zürbig, Petra; Schumacher, Björn

    2014-11-01

    Based on demographic trends, the societies in many developed countries are facing an increasing number and proportion of people over the age of 65. The raise in elderly populations along with improved health-care will be concomitant with an increased prevalence of ageing-associated chronic conditions like cardiovascular, renal, and respiratory diseases, arthritis, dementia, and diabetes mellitus. This is expected to pose unprecedented challenges both for individuals and societies and their health care systems. An ultimate goal of ageing research is therefore the understanding of physiological ageing and the achievement of 'healthy' ageing by decreasing age-related pathologies. However, on a molecular level, ageing is a complex multi-mechanistic process whose contributing factors may vary individually, partly overlap with pathological alterations, and are often poorly understood. Proteome analysis potentially allows modelling of these multifactorial processes. This review summarises recent proteomic research on age-related changes identified in animal models and human studies. We combined this information with pathway analysis to identify molecular mechanisms associated with ageing. We identified some molecular pathways that are affected in most or even all organs and others that are organ-specific. However, appropriately powered studies are needed to confirm these findings based in in silico evaluation. PMID:25257180

  14. Proteome Analysis Identified the PPARγ Ligand 15d-PGJ2 as a Novel Drug Inhibiting Melanoma Progression and Interfering with Tumor-Stroma Interaction

    PubMed Central

    Paulitschke, Verena; Gruber, Silke; Hofstätter, Elisabeth; Haudek-Prinz, Verena; Klepeisz, Philipp; Schicher, Nikolaus; Jonak, Constanze; Petzelbauer, Peter; Pehamberger, Hubert; Gerner, Christopher; Kunstfeld, Rainer

    2012-01-01

    Peroxisome proliferator-activated receptors (PPARs) have been originally thought to be restricted to lipid metabolism or glucose homeostasis. Recently, evidence is growing that PPARγ ligands have inhibitory effects on tumor growth. To shed light on the potential therapeutic effects on melanoma we tested a panel of PPAR agonists on their ability to block tumor proliferation in vitro. Whereas ciglitazone, troglitazone and WY14643 showed moderate effects on proliferation, 15d-PGJ2 displayed profound anti-tumor activity on four different melanoma cell lines tested. Additionally, 15d-PGJ2 inhibited proliferation of tumor-associated fibroblasts and tube formation of endothelial cells. 15d-PGJ2 induced the tumor suppressor gene p21, a G2/M arrest and inhibited tumor cell migration. Shot gun proteome analysis in addition to 2D-gel electrophoresis and immunoprecipitation of A375 melanoma cells suggested that 15d-PGJ2 might exert its effects via modification and/or downregulation of Hsp-90 (heat shock protein 90) and several chaperones. Applying the recently established CPL/MUW database with a panel of defined classification signatures, we demonstrated a regulation of proteins involved in metastasis, transport or protein synthesis including paxillin, angio-associated migratory cell protein or matrix metalloproteinase-2 as confirmed by zymography. Our data revealed for the first time a profound effect of the single compound 15d-PGJ2 on melanoma cells in addition to the tumor-associated microenvironment suggesting synergistic therapeutic efficiency. PMID:23049949

  15. Proteome analysis identified the PPARγ ligand 15d-PGJ2 as a novel drug inhibiting melanoma progression and interfering with tumor-stroma interaction.

    PubMed

    Paulitschke, Verena; Gruber, Silke; Hofstätter, Elisabeth; Haudek-Prinz, Verena; Klepeisz, Philipp; Schicher, Nikolaus; Jonak, Constanze; Petzelbauer, Peter; Pehamberger, Hubert; Gerner, Christopher; Kunstfeld, Rainer

    2012-01-01

    Peroxisome proliferator-activated receptors (PPARs) have been originally thought to be restricted to lipid metabolism or glucose homeostasis. Recently, evidence is growing that PPARγ ligands have inhibitory effects on tumor growth. To shed light on the potential therapeutic effects on melanoma we tested a panel of PPAR agonists on their ability to block tumor proliferation in vitro. Whereas ciglitazone, troglitazone and WY14643 showed moderate effects on proliferation, 15d-PGJ2 displayed profound anti-tumor activity on four different melanoma cell lines tested. Additionally, 15d-PGJ2 inhibited proliferation of tumor-associated fibroblasts and tube formation of endothelial cells. 15d-PGJ2 induced the tumor suppressor gene p21, a G(2)/M arrest and inhibited tumor cell migration. Shot gun proteome analysis in addition to 2D-gel electrophoresis and immunoprecipitation of A375 melanoma cells suggested that 15d-PGJ2 might exert its effects via modification and/or downregulation of Hsp-90 (heat shock protein 90) and several chaperones. Applying the recently established CPL/MUW database with a panel of defined classification signatures, we demonstrated a regulation of proteins involved in metastasis, transport or protein synthesis including paxillin, angio-associated migratory cell protein or matrix metalloproteinase-2 as confirmed by zymography. Our data revealed for the first time a profound effect of the single compound 15d-PGJ2 on melanoma cells in addition to the tumor-associated microenvironment suggesting synergistic therapeutic efficiency. PMID:23049949

  16. Deep transcriptome-sequencing and proteome analysis of the hydrothermal vent annelid Alvinella pompejana identifies the CvP-bias as a robust measure of eukaryotic thermostability

    PubMed Central

    2013-01-01

    Background Alvinella pompejana is an annelid worm that inhabits deep-sea hydrothermal vent sites in the Pacific Ocean. Living at a depth of approximately 2500 meters, these worms experience extreme environmental conditions, including high temperature and pressure as well as high levels of sulfide and heavy metals. A. pompejana is one of the most thermotolerant metazoans, making this animal a subject of great interest for studies of eukaryotic thermoadaptation. Results In order to complement existing EST resources we performed deep sequencing of the A. pompejana transcriptome. We identified several thousand novel protein-coding transcripts, nearly doubling the sequence data for this annelid. We then performed an extensive survey of previously established prokaryotic thermoadaptation measures to search for global signals of thermoadaptation in A. pompejana in comparison with mesophilic eukaryotes. In an orthologous set of 457 proteins, we found that the best indicator of thermoadaptation was the difference in frequency of charged versus polar residues (CvP-bias), which was highest in A. pompejana. CvP-bias robustly distinguished prokaryotic thermophiles from prokaryotic mesophiles, as well as the thermophilic fungus Chaetomium thermophilum from mesophilic eukaryotes. Experimental values for thermophilic proteins supported higher CvP-bias as a measure of thermal stability when compared to their mesophilic orthologs. Proteome-wide mean CvP-bias also correlated with the body temperatures of homeothermic birds and mammals. Conclusions Our work extends the transcriptome resources for A. pompejana and identifies the CvP-bias as a robust and widely applicable measure of eukaryotic thermoadaptation. Reviewer This article was reviewed by Sándor Pongor, L. Aravind and Anthony M. Poole. PMID:23324115

  17. An Integrative Proteomic Approach Identifies Novel Cellular SMYD2 Substrates.

    PubMed

    Ahmed, Hazem; Duan, Shili; Arrowsmith, Cheryl H; Barsyte-Lovejoy, Dalia; Schapira, Matthieu

    2016-06-01

    Protein methylation is a post-translational modification with important roles in transcriptional regulation and other biological processes, but the enzyme-substrate relationship between the 68 known human protein methyltransferases and the thousands of reported methylation sites is poorly understood. Here, we propose a bioinformatic approach that integrates structural, biochemical, cellular, and proteomic data to identify novel cellular substrates of the lysine methyltransferase SMYD2. Of the 14 novel putative SMYD2 substrates identified by our approach, six were confirmed in cells by immunoprecipitation: MAPT, CCAR2, EEF2, NCOA3, STUB1, and UTP14A. Treatment with the selective SMYD2 inhibitor BAY-598 abrogated the methylation signal, indicating that methylation of these novel substrates was dependent on the catalytic activity of the enzyme. We believe that our integrative approach can be applied to other protein lysine methyltransferases, and help understand how lysine methylation participates in wider signaling processes. PMID:27163177

  18. HydroCalc Proteome: a tool to identify distinct characteristics of effector proteins.

    PubMed

    da Silva, G J; da Silva, R G T M; Silva, V A; C Caritá, E; Fachin, A L; Marins, M

    2016-01-01

    Bacterial pathogenicity is associated with secretion of effector proteins into intra- and extracellular spaces. These proteins interfere with cellular processes such as inhibition of phagosome-lysosome fusion, induction of apoptosis and autophagy, activation and suppression of kinases, regulation of receptor activity, and modulation of transcription factors. Knowledge regarding the characteristics of these proteins would assist in pathogenicity studies, and help to identify possible and novel targets for antibacterial drugs. Amino acid hydropathy is a property that can affect behavior patterns in effector proteins. The HydroCalc Proteome tool analyzes total hydropathy, average hydropathy, C-terminal hydropathy, C-terminal load, and basic polar amino acids at the C-terminus. These five properties could contribute to the identification of proteins with an effector potential. HydroCalc Proteome is a web tool that provides a simple interface for the analysis of hydropathy properties in proteins. This tool permits the analysis of a single protein or even the complete proteome, which cannot be achieved by using other hydropathy tools. The tool displays the result of five properties related to effector proteins in a single table. The HydroCalc Proteome (www.gmb.bio.br/hydrocalc) is a powerful tool for protein analysis, and can contribute to the study of effector proteins. PMID:27525880

  19. Proteomic analysis of human vitreous humor

    PubMed Central

    2014-01-01

    Background The vitreous humor is a transparent, gelatinous mass whose main constituent is water. It plays an important role in providing metabolic nutrient requirements of the lens, coordinating eye growth and providing support to the retina. It is in close proximity to the retina and reflects many of the changes occurring in this tissue. The biochemical changes occurring in the vitreous could provide a better understanding about the pathophysiological processes that occur in vitreoretinopathy. In this study, we investigated the proteome of normal human vitreous humor using high resolution Fourier transform mass spectrometry. Results The vitreous humor was subjected to multiple fractionation techniques followed by LC-MS/MS analysis. We identified 1,205 proteins, 682 of which have not been described previously in the vitreous humor. Most proteins were localized to the extracellular space (24%), cytoplasm (20%) or plasma membrane (14%). Classification based on molecular function showed that 27% had catalytic activity, 10% structural activity, 10% binding activity, 4% cell and 4% transporter activity. Categorization for biological processes showed 28% participate in metabolism, 20% in cell communication and 13% in cell growth. The data have been deposited to the ProteomeXchange with identifier PXD000957. Conclusion This large catalog of vitreous proteins should facilitate biomedical research into pathological conditions of the eye including diabetic retinopathy, retinal detachment and cataract. PMID:25097467

  20. Derivative component analysis for mass spectral serum proteomic profiles

    PubMed Central

    2014-01-01

    Background As a promising way to transform medicine, mass spectrometry based proteomics technologies have seen a great progress in identifying disease biomarkers for clinical diagnosis and prognosis. However, there is a lack of effective feature selection methods that are able to capture essential data behaviors to achieve clinical level disease diagnosis. Moreover, it faces a challenge from data reproducibility, which means that no two independent studies have been found to produce same proteomic patterns. Such reproducibility issue causes the identified biomarker patterns to lose repeatability and prevents it from real clinical usage. Methods In this work, we propose a novel machine-learning algorithm: derivative component analysis (DCA) for high-dimensional mass spectral proteomic profiles. As an implicit feature selection algorithm, derivative component analysis examines input proteomics data in a multi-resolution approach by seeking its derivatives to capture latent data characteristics and conduct de-noising. We further demonstrate DCA's advantages in disease diagnosis by viewing input proteomics data as a profile biomarker via integrating it with support vector machines to tackle the reproducibility issue, besides comparing it with state-of-the-art peers. Results Our results show that high-dimensional proteomics data are actually linearly separable under proposed derivative component analysis (DCA). As a novel multi-resolution feature selection algorithm, DCA not only overcomes the weakness of the traditional methods in subtle data behavior discovery, but also suggests an effective resolution to overcoming proteomics data's reproducibility problem and provides new techniques and insights in translational bioinformatics and machine learning. The DCA-based profile biomarker diagnosis makes clinical level diagnostic performances reproducible across different proteomic data, which is more robust and systematic than the existing biomarker discovery based

  1. A Quantitative Proteomics Analysis of Subcellular Proteome Localization and Changes Induced by DNA Damage*

    PubMed Central

    Boisvert, François-Michel; Lam, Yun Wah; Lamont, Douglas; Lamond, Angus I.

    2010-01-01

    A major challenge in cell biology is to identify the subcellular distribution of proteins within cells and to characterize how protein localization changes under different cell growth conditions and in response to stress and other external signals. Protein localization is usually determined either by microscopy or by using cell fractionation combined with protein blotting techniques. Both these approaches are intrinsically low throughput and limited to the analysis of known components. Here we use mass spectrometry-based proteomics to provide an unbiased, quantitative, and high throughput approach for measuring the subcellular distribution of the proteome, termed “spatial proteomics.” The spatial proteomics method analyzes a whole cell extract created by recombining differentially labeled subcellular fractions derived from cells in which proteins have been mass-labeled with heavy isotopes. This was used here to measure the relative distribution between cytoplasm, nucleus, and nucleolus of over 2,000 proteins in HCT116 cells. The data show that, at steady state, the proteome is predominantly partitioned into specific subcellular locations with only a minor subset of proteins equally distributed between two or more compartments. Spatial proteomics also facilitates a proteome-wide comparison of changes in protein localization in response to a wide range of physiological and experimental perturbations, shown here by characterizing dynamic changes in protein localization elicited during the cellular response to DNA damage following treatment of HCT116 cells with etoposide. DNA damage was found to cause dissociation of the proteasome from inhibitory proteins and assembly chaperones in the cytoplasm and relocation to associate with proteasome activators in the nucleus. PMID:20026476

  2. Proteomic Analysis of Hair Follicles

    NASA Astrophysics Data System (ADS)

    Ishioka, Noriaki; Terada, Masahiro; Yamada, Shin; Seki, Masaya; Takahashi, Rika; Majima, Hideyuki J.; Higashibata, Akira; Mukai, Chiaki

    2013-02-01

    Hair root cells actively divide in a hair follicle, and they sensitively reflect physical conditions. By analyzing the human hair, we can know stress levels on the human body and metabolic conditions caused by microgravity environment and cosmic radiation. The Japan Aerospace Exploration Agency (JAXA) has initiated a human research study to investigate the effects of long-term space flight on gene expression and mineral metabolism by analyzing hair samples of astronauts who stayed in the International Space Station (ISS) for 6 months. During long-term flights, the physiological effects on astronauts include muscle atrophy and bone calcium loss. Furthermore, radiation and psychological effects are important issue to consider. Therefore, an understanding of the effects of the space environment is important for developing countermeasures against the effects experienced by astronauts. In this experiment, we identify functionally important target proteins that integrate transcriptome, mineral metabolism and proteome profiles from human hair. To compare the protein expression data with the gene expression data from hair roots, we developed the protein processing method. We extracted the protein from five strands of hair using ISOGEN reagents. Then, these extracted proteins were analyzed by LC-MS/MS. These collected profiles will give us useful physiological information to examine the effect of space flight.

  3. Ultrasensitive proteome analysis using paramagnetic bead technology

    PubMed Central

    Hughes, Christopher S; Foehr, Sophia; Garfield, David A; Furlong, Eileen E; Steinmetz, Lars M; Krijgsveld, Jeroen

    2014-01-01

    In order to obtain a systems-level understanding of a complex biological system, detailed proteome information is essential. Despite great progress in proteomics technologies, thorough interrogation of the proteome from quantity-limited biological samples is hampered by inefficiencies during processing. To address these challenges, here we introduce a novel protocol using paramagnetic beads, termed Single-Pot Solid-Phase-enhanced Sample Preparation (SP3). SP3 provides a rapid and unbiased means of proteomic sample preparation in a single tube that facilitates ultrasensitive analysis by outperforming existing protocols in terms of efficiency, scalability, speed, throughput, and flexibility. To illustrate these benefits, characterization of 1,000 HeLa cells and single Drosophila embryos is used to establish that SP3 provides an enhanced platform for profiling proteomes derived from sub-microgram amounts of material. These data present a first view of developmental stage-specific proteome dynamics in Drosophila at a single-embryo resolution, permitting characterization of inter-individual expression variation. Together, the findings of this work position SP3 as a superior protocol that facilitates exciting new directions in multiple areas of proteomics ranging from developmental biology to clinical applications. PMID:25358341

  4. Proteomic Analysis of Mesenchymal Stem Cells.

    PubMed

    Faça, Vitor Marcel; Orellana, Maristela Delgado; Greene, Lewis Joel; Covas, Dimas Tadeu

    2016-01-01

    Mesenchymal stem or stromal cells (MSCs) are of great interest in biomedical sciences and disease treatment because of their multipotency and wide range of applications for tissue repair and suppression of the immune system. Proteomic analysis of these unique cells has contributed to the identification of important pathways utilized by MSCs to differentiate into distinct tissues as well as important proteins responsible for their special function in vivo and in vitro. However, comparison of proteomic studies in MSCs still suffers from the heterogeneity of MSC preparations. In addition, as proteomics technology advances, several studies can be revisited in order to increase the depth of analysis and, therefore, elucidate more refined mechanisms involved in MSC functionalities. Here, we present detailed protocols to obtain MSCs, as well as protocols to perform in-depth profiling and quantification of alterations in MSC proteomes. PMID:27236693

  5. Cardiovascular-related proteins identified in human plasma by the HUPO Plasma Proteome Project pilot phase.

    PubMed

    Berhane, Beniam T; Zong, Chenggong; Liem, David A; Huang, Aaron; Le, Steven; Edmondson, Ricky D; Jones, Richard C; Qiao, Xin; Whitelegge, Julian P; Ping, Peipei; Vondriska, Thomas M

    2005-08-01

    Proteomic profiling of accessible bodily fluids, such as plasma, has the potential to accelerate biomarker/biosignature development for human diseases. The HUPO Plasma Proteome Project pilot phase examined human plasma with distinct proteomic approaches across multiple laboratories worldwide. Through this effort, we confidently identified 3020 proteins, each requiring a minimum of two high-scoring MS/MS spectra. A critical step subsequent to protein identification is functional annotation, in particular with regard to organ systems and disease. Performing exhaustive literature searches, we have manually annotated a subset of these 3020 proteins that have cardiovascular-related functions on the basis of an existing body of published information. These cardiovascular-related proteins can be organized into eight groups: markers of inflammation and/or cardiovascular disease, vascular and coagulation, signaling, growth and differentiation, cytoskeletal, transcription factors, channels/receptors and heart failure and remodeling. In addition, analysis of the peptide per protein ratio for MS/MS identification reveals group-specific trends. These findings serve as a resource to interrogate the functions of plasma proteins, and moreover, the list of cardiovascular-related proteins in plasma constitutes a baseline proteomic blueprint for the future development of biosignatures for diseases such as myocardial ischemia and atherosclerosis. PMID:16052623

  6. Proteomic Analysis of Vitreous Biopsy Techniques

    PubMed Central

    Skeie, Jessica M.; Brown, Eric N.; Martinez, Harryl D.; Russell, Stephen R.; Birkholz, Emily S.; Folk, James C.; Boldt, H. Culver; Gehrs, Karen M.; Stone, Edwin M.; Wright, Michael E.; Mahajan, Vinit B.

    2013-01-01

    Purpose To compare vitreous biopsy methods using analysis platforms employed in proteomics biomarker discovery. Methods Vitreous biopsies from 10 eyes were collected sequentially using a 23-gauge needle and a 23-gauge vitreous cutter instrument. Paired specimens were evaluated by UV absorbance spectroscopy, SDS-PAGE, and mass-spectrometry (LC-MS/MS). Results The total protein concentration obtained with a needle and vitrectomy instrument biopsy averaged 1.10 mg/ml (SEM = 0.35) and 1.13 mg/ml (SEM = 0.25), respectively. In eight eyes with low or medium viscidity, there was a very high correlation (R2 = 0.934) between the biopsy methods. When data from two eyes with high viscidity vitreous were included, the correlation was reduced (R2 = 0.704). The molecular weight protein SDS-PAGE profiles of paired needle and vitreous cutter samples were similar, except for a minority of pairs with single band intensity variance. Using LC-MS/MS, equivalent peptides were identified with similar frequencies (R2 ≥ 0.90) in paired samples. Conclusion Proteins and peptides collected from vitreous needle biopsies are nearly equivalent to those obtained from a vitreous cutter instrument. This study suggests both techniques may be used for most proteomic and biomarker discovery studies of vitreoretinal diseases, although a minority of proteins and peptides may differ in concentration. PMID:23095728

  7. Proteomic analysis of mature Lagenaria siceraria seed.

    PubMed

    Kumari, Neha; Tajmul, Md; Yadav, Savita

    2015-04-01

    Lagenaria siceraria (bottle gourd) class belongs to Magnoliopsida family curcurbitaceae that is a traditionally used medicinal plant. Fruit of this plant are widely used as a therapeutic vegetable in various diseases, all over the Asia and Africa. Various parts of this plant like fruit, seed, leaf and root are used as alternative medicine. In the present study, primarily, we have focused on proteomic analysis of L. siceraria seed using phenol extraction method for protein isolation. Twenty-four colloidal coomassie blue stained protein spots were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) after resolving on two-dimensional gel electrophoresis. Out of 24 identified protein spots, four were grouped as unidentified proteins which clearly suggest that less work has been done in the direction of plant seed proteomics. These proteins have been found to implicate in various functions such as biosynthesis of plant cell wall polysaccharides and glycoproteins, serine/threonine kinase activity, plant disease resistance and transferase activity against insects by means of insecticidal and larval growth inhibitory, anti-HIV, antihelmintic and antimicrobial properties. By Blast2GO annotation analysis, amongst the identified proteins of L. siceraria, molecular function for majority of proteins has indispensable role in catalytic activity, few in binding activity and antioxidant activity; it is mostly distributed in cell, organelle, membrane and macromolecular complex. Most of them involved in biological process such as metabolic process, cellular process, response to stimulus, single organism process, signalling, biological recognition, cellular component organization or biogenesis and localization. PMID:25672325

  8. Quantitative Proteomics Identifies Activation of Hallmark Pathways of Cancer in Patient Melanoma

    PubMed Central

    Byrum, Stephanie D.; Larson, Signe K.; Avaritt, Nathan L.; Moreland, Linley E.; Mackintosh, Samuel G.; Cheung, Wang L.; Tackett, Alan J.

    2013-01-01

    Molecular pathways regulating melanoma initiation and progression are potential targets of therapeutic development for this aggressive cancer. Identification and molecular analysis of these pathways in patients has been primarily restricted to targeted studies on individual proteins. Here, we report the most comprehensive analysis of formalin-fixed paraffin-embedded human melanoma tissues using quantitative proteomics. From 61 patient samples, we identified 171 proteins varying in abundance among benign nevi, primary melanoma, and metastatic melanoma. Seventy-three percent of these proteins were validated by immunohistochemistry staining of malignant melanoma tissues from the Human Protein Atlas database. Our results reveal that molecular pathways involved with tumor cell proliferation, motility, and apoptosis are mis-regulated in melanoma. These data provide the most comprehensive proteome resource on patient melanoma and reveal insight into the molecular mechanisms driving melanoma progression. PMID:23976835

  9. Integrated Analysis of Transcriptomic and Proteomic Data

    PubMed Central

    Haider, Saad; Pal, Ranadip

    2013-01-01

    Until recently, understanding the regulatory behavior of cells has been pursued through independent analysis of the transcriptome or the proteome. Based on the central dogma, it was generally assumed that there exist a direct correspondence between mRNA transcripts and generated protein expressions. However, recent studies have shown that the correlation between mRNA and Protein expressions can be low due to various factors such as different half lives and post transcription machinery. Thus, a joint analysis of the transcriptomic and proteomic data can provide useful insights that may not be deciphered from individual analysis of mRNA or protein expressions. This article reviews the existing major approaches for joint analysis of transcriptomic and proteomic data. We categorize the different approaches into eight main categories based on the initial algorithm and final analysis goal. We further present analogies with other domains and discuss the existing research problems in this area. PMID:24082820

  10. Large-scale proteomic analysis of membrane proteins

    SciTech Connect

    Ahram, Mamoun; Springer, David L.

    2004-10-01

    Proteomic analysis of membrane proteins is promising in identification of novel candidates as drug targets and/or disease biomarkers. Despite notable technological developments, obstacles related to extraction and solubilization of membrane proteins are frequently encountered. A critical discussion of the different preparative methods of membrane proteins is offered in relation to downstream proteomic applications, mainly gel-based analyses and mass spectrometry. Unknown proteins are often identified by high-throughput profiling of membrane proteins. In search for novel membrane proteins, analysis of protein sequences using computational tools is performed to predict for the presence of transmembrane domains. Here, we also present these bioinformatic tools with the human proteome as a case study. Along with technological innovations, advancements in the areas of sample preparation and computational prediction of membrane proteins will lead to exciting discoveries.

  11. Dog Tear Film Proteome In-Depth Analysis

    PubMed Central

    Winiarczyk, Mateusz; Winiarczyk, Dagmara; Banach, Tomasz; Adaszek, Lukasz; Madany, Jacek; Mackiewicz, Jerzy; Pietras-Ozga, Dorota; Winiarczyk, Stanislaw

    2015-01-01

    In this study, mass spectrometry was used to explore the canine tear proteome. Tear samples were obtained from six healthy dogs, and one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (1D SDS-PAGE) was used as a first step to separate intact proteins into 17 bands. Each fraction was then trypsin digested and analysed by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS) to characterize the protein components in each fraction. In total, 125 tear proteins were identified, with MCA (Major Canine Allergen), Serum albumin, UPF0557 protein C10orf119 homolog, Collagen alpha-2(I) chain, Tyrosine -protein kinase Fer, Keratine type II cytoskeletal, Beta-crystallin B2, Interleukin-6 and Desmin occuring as the most confident ones with the highest scores. The results showed that the proteomic strategy used in this study was successful in the analysis of the dog tear proteome. To the best of our knowledge, this study is the first to report the comprehensive proteome profile of tears from healthy dogs by 1D SDS PAGE and MALDI-TOF. Data are available via ProteomeXchange with identifier PXD003124. PMID:26701646

  12. Proteomic Analysis of Anoxia Tolerance in the Developing Zebrafish Embryo

    PubMed Central

    Mendelsohn, Bryce A.; Malone, James P.; Townsend, R. Reid; Gitlin, Jonathan D.

    2009-01-01

    While some species and tissue types are injured by oxygen deprivation, anoxia tolerant organisms display a protective response that has not been fully elucidated and is well-suited to genomic and proteomic analysis. However, such methodologies have focused on transcriptional responses, prolonged anoxia, or have used cultured cells or isolated tissues. In this study of intact zebrafish embryos, a species capable of >24 h survival in anoxia, we have utilized 2D difference in gel electrophoresis to identify changes in the proteomic profile caused by near-lethal anoxic durations as well as acute anoxia (1 h), a timeframe relevant to ischemic events in human disease when response mechanisms are largely limited to post-transcriptional and post-translational processes. We observed a general stabilization of the proteome in anoxia. Proteins involved in oxidative phosphorylation, antioxidant defense, transcription, and translation changed over this time period. Among the largest proteomic alterations was that of muscle cofilin 2, implicating the regulation of the cytoskeleton and actin assembly in the adaptation to acute anoxia. These studies in an intact embryo highlight proteomic components of an adaptive response to anoxia in a model organism amenable to genetic analysis to permit further mechanistic insight into the phenomenon of anoxia tolerance. PMID:20403745

  13. Pathway and Network Analysis in Proteomics

    PubMed Central

    Wu, Xiaogang; Hasan, Mohammad Al; Chen, Jake Yue

    2014-01-01

    Proteomics is inherently a systems science that studies not only measured protein and their expressions in a cell, but also the interplay of proteins, protein complexes, signaling pathways, and network modules. There is a rapid accumulation of Proteomics data in recent years. However, Proteomics data are highly variable, with results being sensitive to data preparation methods, sample condition, instrument types, and analytical method. To address this challenge in Proteomics data analysis, we review common approaches developed to incorporate biological function and network topological information. We categorize existing tools into four categories: tools with basic functional information and little topological features (e.g., GO category analysis), tools with rich functional information and little topological features (e.g., GSEA), tools with basic functional information and rich topological features (e.g., Cytoscape), and tools with rich functional information and rich topological features (e.g., PathwayExpress). We review the general application potential of these tools to Proteomics. In addition, we also review tools that can achieve automated learning of pathway modules and features, and tools that help perform integrated network visual analytics. PMID:24911777

  14. Pathway and network analysis in proteomics.

    PubMed

    Wu, Xiaogang; Hasan, Mohammad Al; Chen, Jake Yue

    2014-12-01

    Proteomics is inherently a systems science that studies not only measured protein and their expressions in a cell, but also the interplay of proteins, protein complexes, signaling pathways, and network modules. There is a rapid accumulation of Proteomics data in recent years. However, Proteomics data are highly variable, with results sensitive to data preparation methods, sample condition, instrument types, and analytical methods. To address the challenge in Proteomics data analysis, we review current tools being developed to incorporate biological function and network topological information. We categorize these tools into four types: tools with basic functional information and little topological features (e.g., GO category analysis), tools with rich functional information and little topological features (e.g., GSEA), tools with basic functional information and rich topological features (e.g., Cytoscape), and tools with rich functional information and rich topological features (e.g., PathwayExpress). We first review the potential application of these tools to Proteomics; then we review tools that can achieve automated learning of pathway modules and features, and tools that help perform integrated network visual analytics. PMID:24911777

  15. Shotgun Proteomic Analysis of Arabidopsis thaliana Leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two shotgun tandem mass spectrometry proteomics approaches, Multidimensional Protein Identification Technology (MudPIT) and 1D-Gel-LC-MS/MS, were used to identify Arabidopsis thaliana leaf proteins. These methods utilize different protein/peptide separation strategies. Detergents not compatible wit...

  16. Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis

    PubMed Central

    Ranganathan, Srikanth; Williams, Eric; Ganchev, Philip; Gopalakrishnan, Vanathi; Lacomis, David; Urbinelli, Leo; Newhall, Kristyn; Cudkowicz, Merit E.; Brown, Robert H.; Bowser, Robert

    2006-01-01

    Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motor neurons. We tested the hypothesis that proteomic analysis will identify protein biomarkers that provide insight into disease pathogenesis and are diagnostically useful. To identify ALS specific biomarkers, we compared the proteomic profile of cerebrospinal fluid (CSF) from ALS and control subjects using surface-enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF-MS). We identified 30 mass ion peaks with statistically significant (p < 0.01) differences between control and ALS subjects. Initial analysis with a rule-learning algorithm yielded biomarker panels with diagnostic predictive value as subsequently assessed using an independent set of coded test subjects. Three biomarkers were identified that are either decreased (transthyretin, cystatin C) or increased (carboxy-terminal fragment of neuroendocrine protein 7B2) in ALS CSF. We validated the SELDI-TOF-MS results for transthyretin and cystatin C by immunoblot and immunohistochemistry using commercially available antibodies. These findings identify a panel of CSF protein biomarkers for ALS. PMID:16313519

  17. Utilizing Yeast Surface Human Proteome Display Libraries to Identify Small Molecule-Protein Interactions

    PubMed Central

    Bidlingmaier, Scott; Liu, Bin

    2016-01-01

    The identification of proteins that interact with small bioactive molecules is a critical but often difficult and time-consuming step in understanding cellular signaling pathways or molecular mechanisms of drug action. Numerous methods for identifying small molecule-interacting proteins have been developed and utilized, including affinity-based purification followed by mass spectrometry analysis, protein microarrays, phage display, and three-hybrid approaches. Although all these methods have been used successfully, there remains a need for additional techniques for analyzing small molecule-protein interactions. A promising method for identifying small molecule-protein interactions is affinity-based selection of yeast surface-displayed human proteome libraries. Large and diverse libraries displaying human protein fragments on the surface of yeast cells have been constructed and subjected to FACS-based enrichment followed by comprehensive exon microarray-based output analysis to identify protein fragments with affinity for small molecule ligands. In a recent example, a proteome-wide search has been successfully carried out to identify cellular proteins binding to the signaling lipids PtdIns(4,5)P2 and PtdIns(3,4,5)P3. Known phosphatidylinositide-binding proteins such as pleckstrin homology domains were identified, as well as many novel interactions. Intriguingly, many novel nuclear phosphatidylinositide-binding proteins were discovered. Although the existence of an independent pool of nuclear phosphatidylinositides has been known about for some time, their functions and mechanism of action remain obscure. Thus, the identification and subsequent study of nuclear phosphatidylinositide-binding proteins is expected to bring new insights to this important biological question. Based on the success with phosphatidylinositides, it is expected that the screening of yeast surface-displayed human proteome libraries will be of general use for the discovery of novel small

  18. Utilizing Yeast Surface Human Proteome Display Libraries to Identify Small Molecule-Protein Interactions.

    PubMed

    Bidlingmaier, Scott; Liu, Bin

    2015-01-01

    The identification of proteins that interact with small bioactive molecules is a critical but often difficult and time-consuming step in understanding cellular signaling pathways or molecular mechanisms of drug action. Numerous methods for identifying small molecule-interacting proteins have been developed and utilized, including affinity-based purification followed by mass spectrometry analysis, protein microarrays, phage display, and three-hybrid approaches. Although all these methods have been used successfully, there remains a need for additional techniques for analyzing small molecule-protein interactions. A promising method for identifying small molecule-protein interactions is affinity-based selection of yeast surface-displayed human proteome libraries. Large and diverse libraries displaying human protein fragments on the surface of yeast cells have been constructed and subjected to FACS-based enrichment followed by comprehensive exon microarray-based output analysis to identify protein fragments with affinity for small molecule ligands. In a recent example, a proteome-wide search has been successfully carried out to identify cellular proteins binding to the signaling lipids PtdIns(4,5)P2 and PtdIns(3,4,5)P3. Known phosphatidylinositide-binding proteins such as pleckstrin homology domains were identified, as well as many novel interactions. Intriguingly, many novel nuclear phosphatidylinositide-binding proteins were discovered. Although the existence of an independent pool of nuclear phosphatidylinositides has been known about for some time, their functions and mechanism of action remain obscure. Thus, the identification and subsequent study of nuclear phosphatidylinositide-binding proteins is expected to bring new insights to this important biological question. Based on the success with phosphatidylinositides, it is expected that the screening of yeast surface-displayed human proteome libraries will be of general use for the discovery of novel small

  19. Comparative proteomic analysis of four Bacillus clausii strains: proteomic expression signature distinguishes protein profile of the strains.

    PubMed

    Lippolis, Rosa; Gnoni, Antonio; Abbrescia, Anna; Panelli, Damiano; Maiorano, Stefania; Paternoster, Maria Stefania; Sardanelli, Anna Maria; Papa, Sergio; Gaballo, Antonio

    2011-11-18

    A comparative proteomic approach, using two dimensional gel electrophoresis and mass spectrometry, has been developed to compare and elucidate the differences among the cellular proteomes of four closely related isogenic O/C, SIN, N/R and T, B. clausii strains during both exponential and stationary phases of growth. Image analysis of the electropherograms reveals a high degree of concordance among the four proteomes, some proteins result, however, differently expressed. The proteins spots exhibiting high different expression level were identified, by mass-spectrometry analysis, as alcohol dehydrogenase (ADHA, EC1.2.1.3; ABC0046 isoform) aldehyde dehydrogenase (DHAS, EC 1.2.1.3; ABC0047 isoform) and flagellin-protein of B. clausii KSM-k16. The different expression levels of the two dehydrogenases were confirmed by quantitative RT-PCR and dehydrogenases enzymatic activity. The different patterns of protein expression can be considered as cell proteome signatures of the different strains. PMID:21810490

  20. Proteomic Analysis of Wild-type and Mutant Huntingtin-associated Proteins in Mouse Brains Identifies Unique Interactions and Involvement in Protein Synthesis*

    PubMed Central

    Culver, Brady P.; Savas, Jeffrey N.; Park, Sung K.; Choi, Jeong H.; Zheng, Shuqiu; Zeitlin, Scott O.; Yates, John R.; Tanese, Naoko

    2012-01-01

    Huntington disease is a neurodegenerative disorder caused by a CAG repeat amplification in the gene huntingtin (HTT) that is reflected by a polyglutamine expansion in the Htt protein. Nearly 20 years of research have uncovered roles for Htt in a wide range of cellular processes, and many of these discoveries stemmed from the identification of Htt-interacting proteins. However, no study has employed an impartial and comprehensive strategy to identify proteins that differentially associate with full-length wild-type and mutant Htt in brain tissue, the most relevant sample source to the disease condition. We analyzed Htt affinity-purified complexes from wild-type and HTT mutant juvenile mouse brain from two different biochemical fractions by tandem mass spectrometry. We compared variations in protein spectral counts relative to Htt to identify those proteins that are the most significantly contrasted between wild-type and mutant Htt purifications. Previously unreported Htt interactions with Myo5a, Prkra (PACT), Gnb2l1 (RACK1), Rps6, and Syt2 were confirmed by Western blot analysis. Gene Ontology analysis of these and other Htt-associated proteins revealed a statistically significant enrichment for proteins involved in translation among other categories. Furthermore, Htt co-sedimentation with polysomes in cytoplasmic mouse brain extracts is dependent upon the presence of intact ribosomes. Finally, wild-type or mutant Htt overexpression inhibits cap-dependent translation of a reporter mRNA in an in vitro system. Cumulatively, these data support a new role for Htt in translation and provide impetus for further study into the link between protein synthesis and Huntington disease pathogenesis. PMID:22556411

  1. Proteome Profile and Quantitative Proteomic Analysis of Buffalo (Bubalusbubalis) Follicular Fluid during Follicle Development.

    PubMed

    Fu, Qiang; Huang, Yulin; Wang, Zhiqiang; Chen, Fumei; Huang, Delun; Lu, Yangqing; Liang, Xianwei; Zhang, Ming

    2016-01-01

    Follicular fluid (FF) accumulates in the antrum of the ovarian follicle and provides the microenvironment for oocyte development. FF plays an important role in follicle growth and oocyte maturation. The FF provides a unique window to investigate the processes occurring during buffalo follicular development. The observed low quality of buffalo oocytes may arise from the poor follicular microenvironment. Investigating proteins found in buffalo FF (BFF) should provide insight into follicular development processes and provide further understanding of intra-follicular maturation and oocytes quality. Here, a proteomic-based approach was used to analyze the proteome of BFF. SDS-PAGE separation combined with mass spectrometry was used to generate the proteomic dataset. In total, 363 proteins were identified and classified by Gene Ontology terms. The proteins were assigned to 153 pathways, including signaling pathways. To evaluate difference in proteins expressed between BFF with different follicle size (small, <4 mm; and large, >8 mm), a quantitative proteomic analysis based on multi-dimensional liquid chromatography pre-fractionation tandem Orbitrap mass spectrometry identification was performed. Eleven differentially expressed proteins (six downregulated and five upregulated in large BFF) were identified and assigned to a variety of functional processes, including serine protease inhibition, oxidation protection and the complement cascade system. Three differentially expressed proteins, Vimentin, Peroxiredoxin-1 and SERPIND1, were verified by Western blotting, consistent with the quantitative proteomics results. Our datasets offers new information about proteins present in BFF and should facilitate the development of new biomarkers. These differentially expressed proteins illuminate the size-dependent protein changes in follicle microenvironment. PMID:27136540

  2. Proteome Profile and Quantitative Proteomic Analysis of Buffalo (Bubalusbubalis) Follicular Fluid during Follicle Development

    PubMed Central

    Fu, Qiang; Huang, Yulin; Wang, Zhiqiang; Chen, Fumei; Huang, Delun; Lu, Yangqing; Liang, Xianwei; Zhang, Ming

    2016-01-01

    Follicular fluid (FF) accumulates in the antrum of the ovarian follicle and provides the microenvironment for oocyte development. FF plays an important role in follicle growth and oocyte maturation. The FF provides a unique window to investigate the processes occurring during buffalo follicular development. The observed low quality of buffalo oocytes may arise from the poor follicular microenvironment. Investigating proteins found in buffalo FF (BFF) should provide insight into follicular development processes and provide further understanding of intra-follicular maturation and oocytes quality. Here, a proteomic-based approach was used to analyze the proteome of BFF. SDS-PAGE separation combined with mass spectrometry was used to generate the proteomic dataset. In total, 363 proteins were identified and classified by Gene Ontology terms. The proteins were assigned to 153 pathways, including signaling pathways. To evaluate difference in proteins expressed between BFF with different follicle size (small, <4 mm; and large, >8 mm), a quantitative proteomic analysis based on multi-dimensional liquid chromatography pre-fractionation tandem Orbitrap mass spectrometry identification was performed. Eleven differentially expressed proteins (six downregulated and five upregulated in large BFF) were identified and assigned to a variety of functional processes, including serine protease inhibition, oxidation protection and the complement cascade system. Three differentially expressed proteins, Vimentin, Peroxiredoxin-1 and SERPIND1, were verified by Western blotting, consistent with the quantitative proteomics results. Our datasets offers new information about proteins present in BFF and should facilitate the development of new biomarkers. These differentially expressed proteins illuminate the size-dependent protein changes in follicle microenvironment. PMID:27136540

  3. Proteomics beyond large-scale protein expression analysis.

    PubMed

    Boersema, Paul J; Kahraman, Abdullah; Picotti, Paola

    2015-08-01

    Proteomics is commonly referred to as the application of high-throughput approaches to protein expression analysis. Typical results of proteomics studies are inventories of the protein content of a sample or lists of differentially expressed proteins across multiple conditions. Recently, however, an explosion of novel proteomics workflows has significantly expanded proteomics beyond the analysis of protein expression. Targeted proteomics methods, for example, enable the analysis of the fine dynamics of protein systems, such as a specific pathway or a network of interacting proteins, and the determination of protein complex stoichiometries. Structural proteomics tools allow extraction of restraints for structural modeling and identification of structurally altered proteins on a proteome-wide scale. Other variations of the proteomic workflow can be applied to the large-scale analysis of protein activity, location, degradation and turnover. These exciting developments provide new tools for multi-level 'omics' analysis and for the modeling of biological networks in the context of systems biology studies. PMID:25636126

  4. A panel of tumor markers, calreticulin, annexin A2, and annexin A3 in upper tract urothelial carcinoma identified by proteomic and immunological analysis

    PubMed Central

    2014-01-01

    Background Upper tract urothelial carcinoma (UTUC) is a tumor with sizable metastases and local recurrence. It has a worse prognosis than bladder cancer. This study was designed to investigate the urinary potential tumor markers of UTUC. Methods Between January 2008 and January 2009, urine was sampled from 13 patients with UTUC and 20 healthy adults. The current study identified biomarkers for UTUC using non-fixed volume stepwise weak anion exchange chromatography for fractionation of urine protein prior to two-dimensional gel electrophoresis. Results Fifty five differential proteins have been determined by comparing with the 2-DE maps of the urine of UTUC patients and those of healthy people. Western blotting analysis and immunohistochemistry of tumor tissues and normal tissues from patients with UTUC were carried out to further verify five possible UTUC biomarkers, including zinc-alpha-2-glycoprotein, calreticulin, annexin A2, annexin A3 and haptoglobin. The data of western blot and immunohistochemical analysis are consistent with the 2-DE data. Combined the experimental data in the urine and in tumor tissues collected from patients with UTUC, the crucial over-expressed proteins are calreticulin, annexin A2, and annexin A3. Conclusions Calreticulin, annexin A2, and annexin A3 are very likely a panel of biomarkers with potential value for UTUC diagnosis. PMID:24884814

  5. One-hour proteome analysis in yeast.

    PubMed

    Richards, Alicia L; Hebert, Alexander S; Ulbrich, Arne; Bailey, Derek J; Coughlin, Emma E; Westphall, Michael S; Coon, Joshua J

    2015-05-01

    Recent advances in chromatography and mass spectrometry (MS) have made rapid and deep proteomic profiling possible. To maximize the performance of the recently produced Orbitrap hybrid mass spectrometer, we have developed a protocol that combines improved sample preparation (including optimized cellular lysis by extensive bead beating) and chromatographic conditions (specifically, 30-cm capillary columns packed with 1.7-μm bridged ethylene hybrid material) and the manufacture of a column heater (to accommodate flow rates of 350-375 nl/min) that increases the number of proteins identified across a single liquid chromatography-tandem MS (LC-MS/MS) separation, thereby reducing the need for extensive sample fractionation. This strategy allowed the identification of up to 4,002 proteins (at a 1% false discovery rate (FDR)) in yeast (Saccharomyces cerevisiae strain BY4741) over 70 min of LC-MS/MS analysis. Quintuplicate analysis of technical replicates reveals 83% overlap at the protein level, thus demonstrating the reproducibility of this procedure. This protocol, which includes cell lysis, overnight tryptic digestion, sample analysis and database searching, takes ∼24 h to complete. Aspects of this protocol, including chromatographic separation and instrument parameters, can be adapted for the optimal analysis of other organisms. PMID:25855955

  6. Proteomic Analysis of Human Mesenteric Lymph

    PubMed Central

    Dzieciatkowska, Monika; Wohlauer, Max V.; Moore, Ernest E.; Damle, Sagar; Peltz, Erik; Campsen, Jeffrey; Kelher, Marguerite; Silliman, Christopher; Banerjee, Anirban; Hansen, Kirk C.

    2011-01-01

    Extensive animal work has established mesenteric lymph as the mechanistic link between gut ischemia/reperfusion (I/R) and distant organ injury. Our trauma and transplant services provide a unique opportunity to assess the relevance of our animal data to human mesenteric lymph under conditions that simulate those used in the laboratory. Mesenteric lymph was collected from eleven patients; with lymphatic injuries, during semi-elective spine reconstruction, or immediately before organ donation. The lymph was tested for its ability to activate human neutrophils in vitro, and was analyzed by label-free proteomic analysis. Human mesenteric lymph primed human PMNs in a pattern similar to that observed in previous rodent, swine, and primate studies. A total of 477 proteins were identified from the 11 subject’s lymph samples with greater than 99% confidence. In addition to classical serum proteins, markers of hemolysis, extracellular matrix components, and general tissue damage were identified. Both tissue injury and shock correlate strongly with production of bioactive lymph. Products of red blood cell hemolysis correlate strongly with human lymph bioactivity and immunoglobulins have a negative correlation with the pro-inflammatory lymph. These human data corroborate the current body of research implicating post shock mesenteric lymph in the development of systemic inflammation and multiple organ failure. Further studies will be required to determine if the proteins identified participate in the pathogenesis of multiple organ failure and if they can be used as diagnostic markers. PMID:21192285

  7. Proteomic Analysis of Intact Flagella of Procyclic Trypanosoma brucei Cells Identifies Novel Flagellar Proteins with Unique Sub-localization and Dynamics*

    PubMed Central

    Subota, Ines; Julkowska, Daria; Vincensini, Laetitia; Reeg, Nele; Buisson, Johanna; Blisnick, Thierry; Huet, Diego; Perrot, Sylvie; Santi-Rocca, Julien; Duchateau, Magalie; Hourdel, Véronique; Rousselle, Jean-Claude; Cayet, Nadège; Namane, Abdelkader; Chamot-Rooke, Julia; Bastin, Philippe

    2014-01-01

    Cilia and flagella are complex organelles made of hundreds of proteins of highly variable structures and functions. Here we report the purification of intact flagella from the procyclic stage of Trypanosoma brucei using mechanical shearing. Structural preservation was confirmed by transmission electron microscopy that showed that flagella still contained typical elements such as the membrane, the axoneme, the paraflagellar rod, and the intraflagellar transport particles. It also revealed that flagella severed below the basal body, and were not contaminated by other cytoskeletal structures such as the flagellar pocket collar or the adhesion zone filament. Mass spectrometry analysis identified a total of 751 proteins with high confidence, including 88% of known flagellar components. Comparison with the cell debris fraction revealed that more than half of the flagellum markers were enriched in flagella and this enrichment criterion was taken into account to identify 212 proteins not previously reported to be associated to flagella. Nine of these were experimentally validated including a 14-3-3 protein not yet reported to be associated to flagella and eight novel proteins termed FLAM (FLAgellar Member). Remarkably, they localized to five different subdomains of the flagellum. For example, FLAM6 is restricted to the proximal half of the axoneme, no matter its length. In contrast, FLAM8 is progressively accumulating at the distal tip of growing flagella and half of it still needs to be added after cell division. A combination of RNA interference and Fluorescence Recovery After Photobleaching approaches demonstrated very different dynamics from one protein to the other, but also according to the stage of construction and the age of the flagellum. Structural proteins are added to the distal tip of the elongating flagellum and exhibit slow turnover whereas membrane proteins such as the arginine kinase show rapid turnover without a detectible polarity. PMID:24741115

  8. A Foundation for Reliable Spatial Proteomics Data Analysis*

    PubMed Central

    Gatto, Laurent; Breckels, Lisa M.; Burger, Thomas; Nightingale, Daniel J. H.; Groen, Arnoud J.; Campbell, Callum; Nikolovski, Nino; Mulvey, Claire M.; Christoforou, Andy; Ferro, Myriam; Lilley, Kathryn S.

    2014-01-01

    Quantitative mass-spectrometry-based spatial proteomics involves elaborate, expensive, and time-consuming experimental procedures, and considerable effort is invested in the generation of such data. Multiple research groups have described a variety of approaches for establishing high-quality proteome-wide datasets. However, data analysis is as critical as data production for reliable and insightful biological interpretation, and no consistent and robust solutions have been offered to the community so far. Here, we introduce the requirements for rigorous spatial proteomics data analysis, as well as the statistical machine learning methodologies needed to address them, including supervised and semi-supervised machine learning, clustering, and novelty detection. We present freely available software solutions that implement innovative state-of-the-art analysis pipelines and illustrate the use of these tools through several case studies involving multiple organisms, experimental designs, mass spectrometry platforms, and quantitation techniques. We also propose sound analysis strategies for identifying dynamic changes in subcellular localization by comparing and contrasting data describing different biological conditions. We conclude by discussing future needs and developments in spatial proteomics data analysis. PMID:24846987

  9. Quantitative proteomic analysis of single pancreatic islets

    PubMed Central

    Waanders, Leonie F.; Chwalek, Karolina; Monetti, Mara; Kumar, Chanchal; Lammert, Eckhard; Mann, Matthias

    2009-01-01

    Technological developments make mass spectrometry (MS)-based proteomics a central pillar of biochemical research. MS has been very successful in cell culture systems, where sample amounts are not limiting. To extend its capabilities to extremely small, physiologically distinct cell types isolated from tissue, we developed a high sensitivity chromatographic system that measures nanogram protein mixtures for 8 h with very high resolution. This technology is based on splitting gradient effluents into a capture capillary and provides an inherent technical replicate. In a single analysis, this allowed us to characterize kidney glomeruli isolated by laser capture microdissection to a depth of more than 2,400 proteins. From pooled pancreatic islets of Langerhans, another type of “miniorgan,” we obtained an in-depth proteome of 6,873 proteins, many of them involved in diabetes. We quantitatively compared the proteome of single islets, containing 2,000–4,000 cells, treated with high or low glucose levels, and covered most of the characteristic functions of beta cells. Our ultrasensitive analysis recapitulated known hyperglycemic changes but we also find components up-regulated such as the mitochondrial stress regulator Park7. Direct proteomic analysis of functionally distinct cellular structures opens up perspectives in physiology and pathology. PMID:19846766

  10. Proteome Analysis Identifies the Dpr Protein of Streptococcus mutans as an Important Factor in the Presence of Early Streptococcal Colonizers of Tooth Surfaces

    PubMed Central

    Yoshida, Akihiro; Niki, Mamiko; Yamamoto, Yuji; Yasunaga, Ai; Ansai, Toshihiro

    2015-01-01

    Oral streptococci are primary colonizers of tooth surfaces and Streptococcus mutans is the principal causative agent of dental caries in humans. A number of proteins are involved in the formation of monospecies biofilms by S. mutans. This study analyzed the protein expression profiles of S. mutans biofilms formed in the presence or absence of S. gordonii, a pioneer colonizer of the tooth surface, by two-dimensional gel electrophoresis (2-DE). After identifying S. mutans proteins by Mass spectrometric analysis, their expression in the presence of S. gordonii was analyzed. S. mutans was inoculated with or without S. gordonii DL1. The two species were compartmentalized using 0.2-μl Anopore membranes. The biofilms on polystyrene plates were harvested, and the solubilized proteins were separated by 2-DE. When S. mutans biofilms were formed in the presence of S. gordonii, the peroxide resistance protein Dpr of the former showed 4.3-fold increased expression compared to biofilms that developed in the absence of the pioneer colonizer. In addition, we performed a competition assay using S. mutans antioxidant protein mutants together with S. gordonii and other initial colonizers. Growth of the dpr-knockout S. mutans mutant was significantly inhibited by S. gordonii, as well as by S. sanguinis. Furthermore, a cell viability assay revealed that the viability of the dpr-defective mutant was significantly attenuated compared to the wild-type strain when co-cultured with S. gordonii. Therefore, these results suggest that Dpr might be one of the essential proteins for S. mutans survival on teeth in the presence of early colonizing oral streptococci. PMID:25816242

  11. Proteomics Analysis of Helicoverpa armigera Single Nucleocapsid Nucleopolyhedrovirus Identified Two New Occlusion-Derived Virus-Associated Proteins, HA44 and HA100▿

    PubMed Central

    Deng, Fei; Wang, Ranran; Fang, Minggang; Jiang, Yue; Xu, Xushi; Wang, Hanzhong; Chen, Xinwen; Arif, Basil M.; Guo, Lin; Wang, Hualin; Hu, Zhihong

    2007-01-01

    Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry were used to analyze the structural proteins of the occlusion-derived virus (ODV) of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HearNPV), a group II NPV. Twenty-three structural proteins of HearNPV ODV were identified, 21 of which have been reported previously as structural proteins or ODV-associated proteins in other baculoviruses. These include polyhedrin, P78/83, P49, ODV-E18, ODV-EC27, ODV-E56, P74, LEF-3, HA66 (AC66), DNA polymerase, GP41, VP39, P33, ODV-E25, helicase, P6.9, ODV/BV-C42, VP80, ODV-EC43, ODV-E66, and PIF-1. Two proteins encoded by HearNPV ORF44 (ha44) and ORF100 (ha100) were discovered as ODV-associated proteins for the first time. ha44 encodes a protein of 378 aa with a predicted mass of 42.8 kDa. ha100 encodes a protein of 510 aa with a predicted mass of 58.1 kDa and is a homologue of the gene for poly(ADP-ribose) glycohydrolase (parg). Western blot analysis and immunoelectron microscopy confirmed that HA44 is associated with the nucleocapsid and HA100 is associated with both the nucleocapsid and the envelope of HearNPV ODV. HA44 is conserved in group II NPVs and granuloviruses but does not exist in group I NPVs, while HA100 is conserved only in group II NPVs. PMID:17581982

  12. Multivariate data analysis of proteome data.

    PubMed

    Engkilde, Kåre; Jacobsen, Susanne; Søndergaard, Ib

    2007-01-01

    We present the background for multivariate data analysis on proteomics data with a hands-on section on how to transfer data between different software packages. The techniques can also be used for other biological and biochemical problems in which structures have to be found in a large amount of data. Digitalization of the 2D gels, analysis using image processing software, transfer of data, multivariate data analysis, interpretation of the results, and finally we return to biology. PMID:17093312

  13. Data from quantitative label free proteomics analysis of rat spleen.

    PubMed

    Dudekula, Khadar; Le Bihan, Thierry

    2016-09-01

    The dataset presented in this work has been obtained using a label-free quantitative proteomic analysis of rat spleen. A robust method for extraction of proteins from rat spleen tissue and LC-MS-MS analysis was developed using a urea and SDS-based buffer. Different fractionation methods were compared. A total of 3484 different proteins were identified from the pool of all experiments run in this study (a total of 2460 proteins with at least two peptides). A total of 1822 proteins were identified from nine non-fractionated pulse gels, 2288 proteins and 2864 proteins were identified by SDS-PAGE fractionation into three and five fractions respectively. The proteomics data are deposited in ProteomeXchange Consortium via PRIDE PXD003520, Progenesis and Maxquant output are presented in the supported information. The generated list of proteins under different regimes of fractionation allow assessing the nature of the identified proteins; variability in the quantitative analysis associated with the different sampling strategy and allow defining a proper number of replicates for future quantitative analysis. PMID:27358910

  14. Targeted proteomics identifies liquid-biopsy signatures for extracapsular prostate cancer.

    PubMed

    Kim, Yunee; Jeon, Jouhyun; Mejia, Salvador; Yao, Cindy Q; Ignatchenko, Vladimir; Nyalwidhe, Julius O; Gramolini, Anthony O; Lance, Raymond S; Troyer, Dean A; Drake, Richard R; Boutros, Paul C; Semmes, O John; Kislinger, Thomas

    2016-01-01

    Biomarkers are rapidly gaining importance in personalized medicine. Although numerous molecular signatures have been developed over the past decade, there is a lack of overlap and many biomarkers fail to validate in independent patient cohorts and hence are not useful for clinical application. For these reasons, identification of novel and robust biomarkers remains a formidable challenge. We combine targeted proteomics with computational biology to discover robust proteomic signatures for prostate cancer. Quantitative proteomics conducted in expressed prostatic secretions from men with extraprostatic and organ-confined prostate cancers identified 133 differentially expressed proteins. Using synthetic peptides, we evaluate them by targeted proteomics in a 74-patient cohort of expressed prostatic secretions in urine. We quantify a panel of 34 candidates in an independent 207-patient cohort. We apply machine-learning approaches to develop clinical predictive models for prostate cancer diagnosis and prognosis. Our results demonstrate that computationally guided proteomics can discover highly accurate non-invasive biomarkers. PMID:27350604

  15. Targeted proteomics identifies liquid-biopsy signatures for extracapsular prostate cancer

    PubMed Central

    Kim, Yunee; Jeon, Jouhyun; Mejia, Salvador; Yao, Cindy Q; Ignatchenko, Vladimir; Nyalwidhe, Julius O; Gramolini, Anthony O; Lance, Raymond S; Troyer, Dean A; Drake, Richard R; Boutros, Paul C; Semmes, O. John; Kislinger, Thomas

    2016-01-01

    Biomarkers are rapidly gaining importance in personalized medicine. Although numerous molecular signatures have been developed over the past decade, there is a lack of overlap and many biomarkers fail to validate in independent patient cohorts and hence are not useful for clinical application. For these reasons, identification of novel and robust biomarkers remains a formidable challenge. We combine targeted proteomics with computational biology to discover robust proteomic signatures for prostate cancer. Quantitative proteomics conducted in expressed prostatic secretions from men with extraprostatic and organ-confined prostate cancers identified 133 differentially expressed proteins. Using synthetic peptides, we evaluate them by targeted proteomics in a 74-patient cohort of expressed prostatic secretions in urine. We quantify a panel of 34 candidates in an independent 207-patient cohort. We apply machine-learning approaches to develop clinical predictive models for prostate cancer diagnosis and prognosis. Our results demonstrate that computationally guided proteomics can discover highly accurate non-invasive biomarkers. PMID:27350604

  16. Proteomic analysis of thylakoid membranes.

    PubMed

    Yadavalli, Venkateswarlu; Nellaepalli, Sreedhar; Subramanyam, Rajagopal

    2011-01-01

    Chlamydomonas is a model organism to study photosynthesis. Thylakoid membranes comprise several proteins belonging to photosystems I and II. In this chapter, we show the accurate proteomic measurements in thylakoid membranes. The chlorophyll-containing membrane protein complexes were precipitated using chloroform/methanol solution. These complexes were separated using two-dimensional gel electrophoresis, and the resolved spots were exercised from the gel matrix and digested with trypsin. These peptide fragments were separated by MALDI-TOF, and the isotopic masses were blasted to a MASCOT server to obtain the protein sequence. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF). The method discussed here would be a useful method for the separation and identification of thylakoid membrane proteins. PMID:20960129

  17. Proteomics Analysis of the Causative Agent of Typhoid Fever

    SciTech Connect

    Ansong, Charles; Yoon, Hyunjin; Norbeck, Angela D.; Gustin, Jean K.; McDermott, Jason E.; Mottaz, Heather M.; Rue, Joanne; Adkins, Joshua N.; Heffron, Fred; Smith, Richard D.

    2008-02-01

    Typhoid fever is a potentially fatal disease caused by the bacterial pathogen Salmonella enterica serovar Typhi (S. typhi). S. typhi infection is a complex process that involves numerous bacterially-encoded virulence determinants, and these are thought to confer both stringent human host specificity and a high mortality rate. In the present study we used a liquid chromatography-mass spectrometry (LC-MS) based proteomics strategy to investigate the proteome of logarithmic, stationary phase, and low pH/low magnesium (MgM) S. typhi cultures. This represents the first large scale comprehensive characterization of the S. typhi proteome. Our analysis identified a total of 2066 S. typhi proteins. In an effort to identify putative S. typhi-specific virulence factors, we then compared our S. typhi results to those obtained in a previously published study of the S. typhimurium proteome under similar conditions (Adkins J.N. et al (2006) Mol Cell Prot). Comparative proteomic analysis of S. typhi (strain Ty2) and S. typhimurium (strains LT2 and 14028) revealed a subset of highly expressed proteins unique to S. typhi that were exclusively detected under conditions that mimic the infective state in macrophage cells. These proteins included CdtB, HlyE, and a conserved protein encoded by t1476. The differential expression of selected proteins was confirmed by Western blot analysis. Taken together with the current literature, our observations suggest that this subset of proteins may play a role in S. typhi pathogenesis and human host specificity. In addition, we observed products of the biotin (bio) operon displayed a higher abundance in the more virulent strains S. typhi-Ty2 and S. typhimurium-14028 compared to the virulence attenuated S. typhimurium strain LT2, suggesting bio proteins may contribute to Salmonella pathogenesis.

  18. Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry

    PubMed Central

    Niehage, Christian; Karbanová, Jana; Steenblock, Charlotte

    2016-01-01

    Multipotent mesenchymal stromal cells (MSCs) are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2%) or high (10%) serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD) markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention. PMID:27490675

  19. Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry.

    PubMed

    Niehage, Christian; Karbanová, Jana; Steenblock, Charlotte; Corbeil, Denis; Hoflack, Bernard

    2016-01-01

    Multipotent mesenchymal stromal cells (MSCs) are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2%) or high (10%) serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD) markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention. PMID:27490675

  20. Comprehensive Proteomic Analysis of Human Erythropoiesis.

    PubMed

    Gautier, Emilie-Fleur; Ducamp, Sarah; Leduc, Marjorie; Salnot, Virginie; Guillonneau, François; Dussiot, Michael; Hale, John; Giarratana, Marie-Catherine; Raimbault, Anna; Douay, Luc; Lacombe, Catherine; Mohandas, Narla; Verdier, Frédérique; Zermati, Yael; Mayeux, Patrick

    2016-08-01

    Mass spectrometry-based proteomics now enables the absolute quantification of thousands of proteins in individual cell types. We used this technology to analyze the dynamic proteome changes occurring during human erythropoiesis. We quantified the absolute expression of 6,130 proteins during erythroid differentiation from late burst-forming units-erythroid (BFU-Es) to orthochromatic erythroblasts. A modest correlation between mRNA and protein expression was observed. We identified several proteins with unexpected expression patterns in erythroid cells, highlighting a breakpoint in the erythroid differentiation process at the basophilic stage. We also quantified the distribution of proteins between reticulocytes and pyrenocytes after enucleation. These analyses identified proteins that are actively sorted either with the reticulocyte or the pyrenocyte. Our study provides the absolute quantification of protein expression during a complex cellular differentiation process in humans, and it establishes a framework for future studies of disordered erythropoiesis. PMID:27452463

  1. Proteomic analysis of peptides tagged with dimedone and related probes.

    PubMed

    Martínez-Acedo, Pablo; Gupta, Vinayak; Carroll, Kate S

    2014-04-01

    Owing to its labile nature, a new role for cysteine sulfenic acid (-SOH) modification has emerged. This oxidative modification modulates protein function by acting as a redox switch during cellular signaling. The identification of proteins that undergo this modification represents a methodological challenge, and its resolution remains a matter of current interest. The development of strategies to chemically modify cysteinyl-containing peptides for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis has increased significantly within the past decade. The method of choice to selectively label sulfenic acid is based on the use of dimedone or its derivatives. For these chemical probes to be effective on a proteome-wide level, their reactivity toward -SOH must be high to ensure reaction completion. In addition, the presence of an adduct should not interfere with electrospray ionization, the efficiency of induced dissociation in MS/MS experiments or with the identification of Cys-modified peptides by automated database searching algorithms. Herein, we employ a targeted proteomics approach to study the electrospray ionization and fragmentation effects of different -SOH specific probes and compared them to commonly used alkylating agents. We then extend our study to a whole proteome extract using shotgun proteomic approaches. These experiments enable us to demonstrate that dimedone adducts do not interfere with electrospray by suppressing the ionization nor impede product ion assignment by automated search engines, which detect a + 138 Da increase from unmodified peptides. Collectively, these results suggest that dimedone can be a powerful tool to identify sulfenic acid modifications by high-throughput shotgun proteomics of a whole proteome. PMID:24719340

  2. Proteomic analysis of protein palmitoylation in adipocytes

    PubMed Central

    Ren, Wenying; Jhala, Ulupi S.; Du, Keyong

    2013-01-01

    Protein palmitoylation, by modulating the dynamic interaction between protein and cellular membrane, is involved in a wide range of biological processes, including protein trafficking, sorting, sub-membrane partitioning, protein-protein interaction and cell signaling. To explore the role of protein palmitoylation in adipocytes, we have performed proteomic analysis of palmitoylated proteins in adipose tissue and 3T3-L1 adipocytes and identified more than 800 putative palmitoylated proteins. These include various transporters, enzymes required for lipid and glucose metabolism, regulators of protein trafficking and signaling molecules. Of note, key proteins involved in membrane translocation of the glucose-transporter Glut4 including IRAP, Munc18c, AS160 and Glut4, and signaling proteins in the JAK-STAT pathway including JAK1 and 2, STAT1, 3 and 5A and SHP2 in JAK-STAT, were palmitoylated in cultured adipocytes and primary adipose tissue. Further characterization showed that palmitoylation of Glut4 and IRAP was altered in obesity, and palmitoylation of JAK1 played a regulatory role in JAK1 intracellular localization. Overall, our studies provide evidence to suggest a novel and potentially regulatory role for protein palmitoylation in adipocyte function. PMID:23599907

  3. Proteomic Analysis of the Schistosoma mansoni Miracidium.

    PubMed

    Wang, Tianfang; Zhao, Min; Rotgans, Bronwyn A; Strong, April; Liang, Di; Ni, Guoying; Limpanont, Yanin; Ramasoota, Pongrama; McManus, Donald P; Cummins, Scott F

    2016-01-01

    Despite extensive control efforts, schistosomiasis continues to be a major public health problem in developing nations in the tropics and sub-tropics. The miracidium, along with the cercaria, both of which are water-borne and free-living, are the only two stages in the life-cycle of Schistosoma mansoni which are involved in host invasion. Miracidia penetrate intermediate host snails and develop into sporocysts, which lead to cercariae that can infect humans. Infection of the snail host by the miracidium represents an ideal point at which to interrupt the parasite's life-cycle. This research focuses on an analysis of the miracidium proteome, including those proteins that are secreted. We have identified a repertoire of proteins in the S. mansoni miracidium at 2 hours post-hatch, including proteases, venom allergen-like proteins, receptors and HSP70, which might play roles in snail-parasite interplay. Proteins involved in energy production and conservation were prevalent, as were proteins predicted to be associated with defence. This study also provides a strong foundation for further understanding the roles that neurohormones play in host-seeking by schistosomes, with the potential for development of novel anthelmintics that interfere with its various life-cycle stages. PMID:26799066

  4. Proteomic Analysis of the Schistosoma mansoni Miracidium

    PubMed Central

    Wang, Tianfang; Zhao, Min; Rotgans, Bronwyn A.; Strong, April; Liang, Di; Ni, Guoying; Limpanont, Yanin; Ramasoota, Pongrama; McManus, Donald P.; Cummins, Scott F.

    2016-01-01

    Despite extensive control efforts, schistosomiasis continues to be a major public health problem in developing nations in the tropics and sub-tropics. The miracidium, along with the cercaria, both of which are water-borne and free-living, are the only two stages in the life-cycle of Schistosoma mansoni which are involved in host invasion. Miracidia penetrate intermediate host snails and develop into sporocysts, which lead to cercariae that can infect humans. Infection of the snail host by the miracidium represents an ideal point at which to interrupt the parasite’s life-cycle. This research focuses on an analysis of the miracidium proteome, including those proteins that are secreted. We have identified a repertoire of proteins in the S. mansoni miracidium at 2 hours post-hatch, including proteases, venom allergen-like proteins, receptors and HSP70, which might play roles in snail-parasite interplay. Proteins involved in energy production and conservation were prevalent, as were proteins predicted to be associated with defence. This study also provides a strong foundation for further understanding the roles that neurohormones play in host-seeking by schistosomes, with the potential for development of novel anthelmintics that interfere with its various life-cycle stages. PMID:26799066

  5. Integrated Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) Quantitative Proteomic Analysis Identifies Galectin-1 as a Potential Biomarker for Predicting Sorafenib Resistance in Liver Cancer*

    PubMed Central

    Yeh, Chao-Chi; Hsu, Chih-Hung; Shao, Yu-Yun; Ho, Wen-Ching; Tsai, Mong-Hsun; Feng, Wen-Chi; Chow, Lu-Ping

    2015-01-01

    Sorafenib has become the standard therapy for patients with advanced hepatocellular carcinoma (HCC). Unfortunately, most patients eventually develop acquired resistance. Therefore, it is important to identify potential biomarkers that could predict the efficacy of sorafenib. To identify target proteins associated with the development of sorafenib resistance, we applied stable isotope labelling with amino acids in cell culture (SILAC)-based quantitative proteomic approach to analyze differences in protein expression levels between parental HuH-7 and sorafenib-acquired resistance HuH-7 (HuH-7R) cells in vitro, combined with an isobaric tags for relative and absolute quantitation (iTRAQ) quantitative analysis of HuH-7 and HuH-7R tumors in vivo. In total, 2,450 quantified proteins were identified in common in SILAC and iTRAQ experiments, with 81 showing increased expression (>2.0-fold) with sorafenib resistance and 75 showing decreased expression (<0.5-fold). In silico analyses of these differentially expressed proteins predicted that 10 proteins were related to cancer with involvements in cell adhesion, migration, and invasion. Knockdown of one of these candidate proteins, galectin-1, decreased cell proliferation and metastasis in HuH-7R cells and restored sensitivity to sorafenib. We verified galectin-1 as a predictive marker of sorafenib resistance and a downstream target of the AKT/mTOR/HIF-1α signaling pathway. In addition, increased galectin-1 expression in HCC patients' serum was associated with poor tumor control and low response rate. We also found that a high serum galectin-1 level was an independent factor associated with poor progression-free survival and overall survival. In conclusion, these results suggest that galectin-1 is a possible biomarker for predicting the response of HCC patients to treatment with sorafenib. As such, it may assist in the stratification of HCC and help direct personalized therapy. PMID:25850433

  6. Comprehensive Proteomic Analysis of Membrane Proteins in Toxoplasma gondii*

    PubMed Central

    Che, Fa-Yun; Madrid-Aliste, Carlos; Burd, Berta; Zhang, Hongshan; Nieves, Edward; Kim, Kami; Fiser, Andras; Angeletti, Ruth Hogue; Weiss, Louis M.

    2011-01-01

    Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that is an important human and animal pathogen. Experimental information on T. gondii membrane proteins is limited, and the majority of gene predictions with predicted transmembrane motifs are of unknown function. A systematic analysis of the membrane proteome of T. gondii is important not only for understanding this parasite's invasion mechanism(s), but also for the discovery of potential drug targets and new preventative and therapeutic strategies. Here we report a comprehensive analysis of the membrane proteome of T. gondii, employing three proteomics strategies: one-dimensional gel liquid chromatography-tandem MS analysis (one-dimensional gel electrophoresis LC-MS/MS), biotin labeling in conjunction with one-dimensional gel LC-MS/MS analysis, and a novel strategy that combines three-layer “sandwich” gel electrophoresis with multidimensional protein identification technology. A total of 2241 T. gondii proteins with at least one predicted transmembrane segment were identified and grouped into 841 sequentially nonredundant protein clusters, which account for 21.8% of the predicted transmembrane protein clusters in the T. gondii genome. A large portion (42%) of the identified T. gondii membrane proteins are hypothetical proteins. Furthermore, many of the membrane proteins validated by mass spectrometry are unique to T. gondii or to the Apicomplexa, providing a set of gene predictions ripe for experimental investigation, and potentially suitable targets for the development of therapeutic strategies. PMID:20935347

  7. Comparative Proteomic Analysis of Advanced Ovarian Cancer Tissue to Identify Potential Biomarkers of Responders and Nonresponders to First-Line Chemotherapy of Carboplatin and Paclitaxel

    PubMed Central

    Sehrawat, Urmila; Pokhriyal, Ruchika; Gupta, Ashish Kumar; Hariprasad, Roopa; Khan, Mohd Imran; Gupta, Divya; Naru, Jasmine; Singh, Sundararajan Baskar; Mohanty, Ashok Kumar; Vanamail, Perumal; Kumar, Lalit; Kumar, Sunesh; Hariprasad, Gururao

    2016-01-01

    Conventional treatment for advanced ovarian cancer is an initial debulking surgery followed by chemotherapy combination of carboplatin and paclitaxel. Despite initial high response, three-fourths of these women experience disease recurrence with a dismal prognosis. Patients with advanced-stage ovarian cancer who underwent cytoreductive surgery were enrolled and tissue samples were collected. Post surgery, these patients were started on chemotherapy and followed up till the end of the cycle. Fluorescence-based differential in-gel expression coupled with mass spectrometric analysis was used for discovery phase of experiments, and real-time polymerase chain reaction, Western blotting, and pathway analysis were performed for expression and functional validation of differentially expressed proteins. While aldehyde reductase, hnRNP, cyclophilin A, heat shock protein-27, and actin are upregulated in responders, prohibitin, enoyl-coA hydratase, peroxiredoxin, and fibrin-β are upregulated in the nonresponders. The expressions of some of these proteins correlated with increased apoptotic activity in responders and decreased apoptotic activity in nonresponders. Therefore, the proteins qualify as potential biomarkers to predict chemotherapy response. PMID:26997873

  8. Proteomic Analysis of the Spatio-temporal Based Molecular Kinetics of Acute Spinal Cord Injury Identifies a Time- and Segment-specific Window for Effective Tissue Repair.

    PubMed

    Devaux, Stephanie; Cizkova, Dasa; Quanico, Jusal; Franck, Julien; Nataf, Serge; Pays, Laurent; Hauberg-Lotte, Lena; Maass, Peter; Kobarg, Jan H; Kobeissy, Firas; Mériaux, Céline; Wisztorski, Maxence; Slovinska, Lucia; Blasko, Juraj; Cigankova, Viera; Fournier, Isabelle; Salzet, Michel

    2016-08-01

    Spinal cord injury (SCI) represents a major debilitating health issue with a direct socioeconomic burden on the public and private sectors worldwide. Although several studies have been conducted to identify the molecular progression of injury sequel due from the lesion site, still the exact underlying mechanisms and pathways of injury development have not been fully elucidated. In this work, based on OMICs, 3D matrix-assisted laser desorption ionization (MALDI) imaging, cytokines arrays, confocal imaging we established for the first time that molecular and cellular processes occurring after SCI are altered between the lesion proximity, i.e. rostral and caudal segments nearby the lesion (R1-C1) whereas segments distant from R1-C1, i.e. R2-C2 and R3-C3 levels coexpressed factors implicated in neurogenesis. Delay in T regulators recruitment between R1 and C1 favor discrepancies between the two segments. This is also reinforced by presence of neurites outgrowth inhibitors in C1, absent in R1. Moreover, the presence of immunoglobulins (IgGs) in neurons at the lesion site at 3 days, validated by mass spectrometry, may present additional factor that contributes to limited regeneration. Treatment in vivo with anti-CD20 one hour after SCI did not improve locomotor function and decrease IgG expression. These results open the door of a novel view of the SCI treatment by considering the C1 as the therapeutic target. PMID:27250205

  9. Proteomic Analysis of Anticancer TCMs Targeted at Mitochondria

    PubMed Central

    Wang, Yang; Yu, Ru-Yuan; He, Qing-Yu

    2015-01-01

    Traditional Chinese medicine (TCM) is a rich resource of anticancer drugs. Increasing bioactive natural compounds extracted from TCMs are known to exert significant antitumor effects, but the action mechanisms of TCMs are far from clear. Proteomics, a powerful platform to comprehensively profile drug-regulated proteins, has been widely applied to the mechanistic investigation of TCMs and the identification of drug targets. In this paper, we discuss several bioactive TCM products including terpenoids, flavonoids, and glycosides that were extensively investigated by proteomics to illustrate their antitumor mechanisms in various cancers. Interestingly, many of these natural compounds isolated from TCMs mostly exert their tumor-suppressing functions by specifically targeting mitochondria in cancer cells. These TCM components induce the loss of mitochondrial membrane potential, the release of cytochrome c, and the accumulation of ROS, initiating apoptosis cascade signaling. Proteomics provides systematic views that help to understand the molecular mechanisms of the TCM in tumor cells; it bears the inherent limitations in uncovering the drug-protein interactions, however. Subcellular fractionation may be coupled with proteomics to capture and identify target proteins in mitochondria-enriched lysates. Furthermore, translating mRNA analysis, a new technology profiling the drug-regulated genes in translatome level, may be integrated into the systematic investigation, revealing global information valuable for understanding the action mechanism of TCMs. PMID:26568766

  10. Purification of specific loci for proteomic analysis

    PubMed Central

    Byrum, Stephanie D.; Taverna, Sean D.; Tackett, Alan J.

    2015-01-01

    Purification of small, native chromatin sections for proteomic identification of specifically bound proteins and histone posttranslational modifications is a powerful approach for studying mechanisms of chromosome metabolism. We detail a Chromatin Affinity Purification with Mass Spectrometry (ChAP-MS) approach for affinity purification of ~1 kb sections of chromatin for targeted proteomic analysis. This approach utilizes quantitative, high resolution mass spectrometry to categorize proteins and histone posttranslational modifications co-enriching with the given chromatin section as either “specific” to the targeted chromatin or “non-specific” contamination. In this way, the ChAP-MS approach can help define and re-define mechanisms of chromatin-templated activities. PMID:25311124

  11. Integrated Redox Proteomics and Metabolomics of Mitochondria to Identify Mechanisms of Cd Toxicity

    PubMed Central

    Go, Young-Mi; Roede, James R.; Orr, Michael; Liang, Yongliang; Jones, Dean P.

    2014-01-01

    Cadmium (Cd) exposure contributes to human diseases affecting liver, kidney, lung, and other organ systems, but mechanisms underlying the pleotropic nature of these toxicities are poorly understood. Cd accumulates in humans from dietary, environmental (including cigarette smoke), and occupational sources, and has a twenty-year biologic half-life. Our previous mouse and cell studies showed that environmental low-dose Cd exposure altered protein redox states resulting in stimulation of inflammatory signaling and disruption of the actin cytoskeleton system, suggesting that Cd could impact multiple mechanisms of disease. In the current study, we investigated the effects of acute Cd exposure on the redox proteome and metabolome of mouse liver mitochondria to gain insight into associated toxicological mechanisms and functions. We analyzed redox states of liver mitochondrial proteins by redox proteomics using isotope coded affinity tag (ICAT) combined mass spectrometry. Redox ICAT identified 2687 cysteine-containing peptides (peptidyl Cys) of which 1667 peptidyl Cys (657 proteins) were detected in both control and Cd-exposed samples. Of these, 46% (1247 peptidyl Cys, 547 proteins) were oxidized by Cd more than 1.5-fold relative to controls. Bioinformatics analysis using MetaCore software showed that Cd affected 86 pathways, including 24 Cys in proteins functioning in branched chain amino acid (BCAA) and 14 Cys in proteins functioning in fatty acid (acylcarnitine/carnitine) metabolism. Consistently, high-resolution metabolomics data showed that Cd treatment altered levels of BCAA and carnitine metabolites. Together, these results show that mitochondrial protein redox and metabolites are targets in Cd-induced hepatotoxicity. The results further indicate that redox proteomics and metabolomics can be used in an integrated systems approach to investigate complex disease mechanisms. PMID:24496640

  12. Integrative Analysis of the Mitochondrial Proteome in Yeast

    SciTech Connect

    Prokisch, Holger; Scharfe, Curt M.; Camp, David G.; Xiao, Wenzhong; David, Lior; Andreoli, Christophe; Monroe, Matthew E.; Moore, Ronald J.; Gritsenko, Marina A.; Kozany, Christian; Hixson, Kim K.; Mottaz, Heather M.; Zischka, Hans; Ueffing, Marius; Herman, Zelek S.; Davis, Ronald W.; Meitinger, Thomas; Oefner, Peter; Smith, Richard D.; Steinmetz, Lars M.

    2004-06-30

    In this study yeast mitochondria were used as a model system to apply, evaluate, and integrate different genomic approaches to define the proteins of an organelle. Liquid chromatography mass spectrometry applied to purified mitochondria identified 546 proteins. By expression analysis and comparison to other proteome studies, we demonstrate that the proteomic approach identifies primarily highly abundant proteins. By expanding our evaluation to other types of genomic approaches, including systematic deletion phenotype screening, expression profiling, subcellular localization studies, protein interaction analyses, and computational predictions, we show that an integration of approaches moves beyond the limitations of any single approach. We report the success of each approach by benchmarking it against a reference set of known mitochondrial proteins, and predict approximately 700 proteins associated with the mitochondrial organelle from the integration of 22 datasets. We show that a combination of complementary approaches like deletion phenotype screening and mass spectrometry can identify over 75% of the known mitochondrial proteome. These findings have implications for choosing optimal genome-wide approaches for the study of other cellular systems, including organelles and pathways in various species. Furthermore, our systematic identification of genes involved in mitochondrial function and biogenesis in yeast expands the candidates genes available for mapping Mendelian and complex mitochondrial disorders in humans.

  13. Identifying Predictors of Taxane-Induced Peripheral Neuropathy Using Mass Spectrometry-Based Proteomics Technology

    PubMed Central

    Chen, Emily I.; Crew, Katherine D.; Trivedi, Meghna; Awad, Danielle; Maurer, Mathew; Kalinsky, Kevin; Koller, Antonius; Patel, Purvi; Kim Kim, Jenny; Hershman, Dawn L.

    2015-01-01

    Major advances in early detection and therapy have significantly increased the survival of breast cancer patients. Unfortunately, most cancer therapies are known to carry a substantial risk of adverse long-term treatment-related effects. Little is known about patient susceptibility to severe side effects after chemotherapy. Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of taxanes. Recent advances in genome-wide genotyping and sequencing technologies have supported the discoveries of a number of pharmacogenetic markers that predict response to chemotherapy. However, effectively implementing these pharmacogenetic markers in the clinic remains a major challenge. On the other hand, recent advances in proteomic technologies incorporating mass spectrometry (MS) for biomarker discovery show great promise to provide clinically relevant protein biomarkers. In this study, we evaluated the association between protein content in serum exosomes and severity of CIPN. Women with early stage breast cancer receiving adjuvant taxane chemotherapy were assessed with the FACT-Ntx score and serum was collected before and after the taxane treatment. Based on the change in FACT-Ntx score from baseline to 12 month follow-up, we separated patients into two groups: those who had no change (Group 1, N = 9) and those who had a ≥20% worsening (Group 1, N = 8). MS-based proteomics technology was used to identify proteins present in serum exosomes to determine potential biomarkers. Mann–Whitney–Wilcoxon analysis was applied and maximum FDR was controlled at 20%. From the serum exosomes derived from this cohort, we identified over 700 proteins known to be in different subcellular locations and have different functions. Statistical analysis revealed a 12-protein signature that resulted in a distinct separation between baseline serum samples of both groups (q<0.2) suggesting that the baseline samples can predict subsequent neurotoxicity. These toxicity

  14. Identifying Predictors of Taxane-Induced Peripheral Neuropathy Using Mass Spectrometry-Based Proteomics Technology.

    PubMed

    Chen, Emily I; Crew, Katherine D; Trivedi, Meghna; Awad, Danielle; Maurer, Mathew; Kalinsky, Kevin; Koller, Antonius; Patel, Purvi; Kim Kim, Jenny; Hershman, Dawn L

    2015-01-01

    Major advances in early detection and therapy have significantly increased the survival of breast cancer patients. Unfortunately, most cancer therapies are known to carry a substantial risk of adverse long-term treatment-related effects. Little is known about patient susceptibility to severe side effects after chemotherapy. Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of taxanes. Recent advances in genome-wide genotyping and sequencing technologies have supported the discoveries of a number of pharmacogenetic markers that predict response to chemotherapy. However, effectively implementing these pharmacogenetic markers in the clinic remains a major challenge. On the other hand, recent advances in proteomic technologies incorporating mass spectrometry (MS) for biomarker discovery show great promise to provide clinically relevant protein biomarkers. In this study, we evaluated the association between protein content in serum exosomes and severity of CIPN. Women with early stage breast cancer receiving adjuvant taxane chemotherapy were assessed with the FACT-Ntx score and serum was collected before and after the taxane treatment. Based on the change in FACT-Ntx score from baseline to 12 month follow-up, we separated patients into two groups: those who had no change (Group 1, N = 9) and those who had a ≥20% worsening (Group 1, N = 8). MS-based proteomics technology was used to identify proteins present in serum exosomes to determine potential biomarkers. Mann-Whitney-Wilcoxon analysis was applied and maximum FDR was controlled at 20%. From the serum exosomes derived from this cohort, we identified over 700 proteins known to be in different subcellular locations and have different functions. Statistical analysis revealed a 12-protein signature that resulted in a distinct separation between baseline serum samples of both groups (q<0.2) suggesting that the baseline samples can predict subsequent neurotoxicity. These toxicity

  15. Lung tissue proteomics identifies elevated transglutaminase 2 levels in stable chronic obstructive pulmonary disease.

    PubMed

    Ohlmeier, Steffen; Nieminen, Pentti; Gao, Jing; Kanerva, Tinja; Rönty, Mikko; Toljamo, Tuula; Bergmann, Ulrich; Mazur, Witold; Pulkkinen, Ville

    2016-06-01

    Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by irreversible airflow limitation. Cigarette smoking represents the main risk factor, but the specific mechanisms of COPD are not completely understood. Our aim was to identify COPD-specific proteomic changes involved in disease onset and severity. A comparative proteomic analysis of 51 lung tissues from nonsmokers, smokers, smokers with mild to moderate (stage I-II) COPD, severe to very severe COPD (stage III-IV), and patients with α-1-antitrypsin deficiency (AATD) and idiopathic pulmonary fibrosis (IPF) was performed by cysteine-specific two-dimensional difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry. Selected COPD-specific changes were validated by immunoblotting and further by ELISA in 120 induced sputum and plasma samples from nonsmokers, smokers, and patients with COPD (stage I-III). Altogether 82 altered proteins were identified comprising COPD-, AATD-, and IPF-specific, overlapping, and unspecific changes. Cathepsin D (CTSD), dihydropyrimidinase-related protein 2 (DPYSL2), transglutaminase 2 (TGM2), and tripeptidyl-peptidase 1 (TPP1) were validated as COPD-specific. TGM2 was not associated with smoking and correlated with COPD severity in lung tissue. TGM2 levels in sputum and plasma were elevated in patients with COPD (stage II-III) and correlated with lung function. In conclusion, new proteins related to COPD onset and severity could be identified with TGM2 being a novel potential diagnostic and therapeutic target for COPD. Further studies in carefully characterized cohorts are required to validate the identified changes. PMID:27084846

  16. Quantitative Proteomics Identifies Host Factors Modulated during Acute Hepatitis E Virus Infection in the Swine Model

    PubMed Central

    Rogée, Sophie; Le Gall, Morgane; Chafey, Philippe; Bouquet, Jérôme; Cordonnier, Nathalie; Frederici, Christian

    2014-01-01

    ABSTRACT Hepatitis E virus (HEV) causes acute enterically transmitted hepatitis. In industrialized countries, it is a zoonotic disease, with swine being the major reservoir of human HEV contamination. The occurrence and severity of the disease are variable, with clinical symptoms ranging from asymptomatic to self-limiting acute hepatitis, chronic infection, or fulminant hepatitis. In the absence of a robust cell culture system or small-animal models, the HEV life cycle and pathological process remain unclear. To characterize HEV pathogenesis and virulence mechanisms, a quantitative proteomic analysis was carried out to identify cellular factors and pathways modulated during acute infection of swine. Three groups of pigs were inoculated with three different strains of swine HEV to evaluate the possible role of viral determinants in pathogenesis. Liver samples were analyzed by a differential proteomic approach, two-dimensional difference in gel electrophoresis, and 61 modulated proteins were identified by mass spectroscopy. The results obtained show that the three HEV strains replicate similarly in swine and that they modulate several cellular pathways, suggesting that HEV impairs several cellular processes, which can account for the various types of disease expression. Several proteins, such as heterogeneous nuclear ribonucleoprotein K, apolipoprotein E, and prohibitin, known to be involved in other viral life cycles, were upregulated in HEV-infected livers. Some differences were observed between the three strains, suggesting that HEV's genetic variability may induce variations in pathogenesis. This comparative analysis of the liver proteome modulated during infection with three different strains of HEV genotype 3 provides an important basis for further investigations on the factors involved in HEV replication and the mechanism of HEV pathogenesis. IMPORTANCE Hepatitis E virus (HEV) is responsible for acute hepatitis, with clinical symptoms ranging from asymptomatic

  17. Proteomics-driven analysis of ovine whey colostrum.

    PubMed

    Scumaci, Domenica; Trimboli, Francesca; Dell'Aquila, Ludovica; Concolino, Antonio; Pappaianni, Giusi; Tammè, Laura; Vignola, Giorgio; Luciani, Alessia; Morelli, Daniela; Cuda, Giovanni; Boari, Andrea; Britti, Domenico

    2015-01-01

    The aim of this study was to shed light in to the complexity of the ovine colostrum proteome, with a specific focus on the low abundance proteins. The ovine colostrum is characterized by a few dominating proteins, as the immunoglobulins, but it also contains less represented protein species, equally important for the correct development of neonates. Ovine colostrum, collected immediately after lambing, was separated by 1D SDS-PAGE. Proteins bands were digested with trypsin and the resulting peptides were analyzed by LC-MS/MS. On the basis of the Swiss-Prot database, a total of 343 unique proteins were identified. To our knowledge, this study represents the most comprehensive analysis of ovine colostrum proteome. PMID:25643159

  18. Proteomics-Driven Analysis of Ovine Whey Colostrum

    PubMed Central

    Scumaci, Domenica; Trimboli, Francesca; Dell’Aquila, Ludovica; Concolino, Antonio; Pappaianni, Giusi; Tammè, Laura; Vignola, Giorgio; Luciani, Alessia; Morelli, Daniela; Cuda, Giovanni; Boari, Andrea; Britti, Domenico

    2015-01-01

    The aim of this study was to shed light in to the complexity of the ovine colostrum proteome, with a specific focus on the low abundance proteins. The ovine colostrum is characterized by a few dominating proteins, as the immunoglobulins, but it also contains less represented protein species, equally important for the correct development of neonates. Ovine colostrum, collected immediately after lambing, was separated by 1D SDS-PAGE. Proteins bands were digested with trypsin and the resulting peptides were analyzed by LC-MS/MS. On the basis of the Swiss-Prot database, a total of 343 unique proteins were identified. To our knowledge, this study represents the most comprehensive analysis of ovine colostrum proteome. PMID:25643159

  19. SILAC-based proteome analysis of Starmerella bombicola sophorolipid production.

    PubMed

    Ciesielska, Katarzyna; Li, Bing; Groeneboer, Sara; Van Bogaert, Inge; Lin, Yao-Chen; Soetaert, Wim; Van de Peer, Yves; Devreese, Bart

    2013-10-01

    Starmerella (Candida) bombicola is the biosurfactant-producing species that caught the greatest deal of attention in the academic and industrial world due to its ability of producing large amounts of sophorolipids. Despite its high economic potential, the biochemistry behind the sophorolipid biosynthesis is still poorly understood. Here we present the first proteomic characterization of S. bombicola for which we created a lys1Δ mutant to allow the use of SILAC for quantitative analysis. To characterize the processes behind the production of these biosurfactants, we compared the proteome of sophorolipid producing (early stationary phase) and nonproducing cells (exponential phase). We report the simultaneous production of all known enzymes involved in sophorolipid biosynthesis including a predicted sophorolipid transporter. In addition, we identified the heme binding protein Dap1 as a possible regulator for Cyp52M1. Our results further indicate that ammonium and phosphate limitation are not the sole limiting factors inducing sophorolipid biosynthesis. PMID:23964782

  20. Proteomic analysis of the royal jelly and characterization of the functions of its derivation glands in the honeybee.

    PubMed

    Fujita, Toshiyuki; Kozuka-Hata, Hiroko; Ao-Kondo, Hiroko; Kunieda, Takekazu; Oyama, Masaaki; Kubo, Takeo

    2013-01-01

    To identify candidate royal jelly (RJ) proteins that might affect the physiologic status of honeybee colony members, we used shotgun proteomics to comprehensively identify the RJ proteome as well as proteomes of the hypopharyngeal gland (HpG), postcerebral gland (PcG), and thoracic gland (TG), from which RJ proteins are assumed to be derived. We identified a total of 38 nonredundant RJ proteins, including 22 putative secretory proteins and Insulin-like growth factor-binding protein complex acid labile subunit. Among them, 9 proteins were newly identified from RJ. Comparison of the RJ proteome with the HpG, PcG, and TG proteomes revealed that 17 of the 22 putative secretory RJ proteins were derived from some of these glands, suggesting that the RJ proteome is a cocktail of proteins from these three glands. Furthermore, pathway analysis suggested that the HpG proteome represents the molecular basis of the extremely high protein-synthesizing ability, whereas the PcG proteome suggests that the PcG functions as a reservoir for the volatile compounds and a primer pheromone. Finally, to further characterize the possible total RJ proteome, we identified putative secretory proteins in the proteomes of these three glands. This will be useful for predicting novel RJ protein components in future studies. PMID:23157659

  1. Identifying Biomarkers and Mechanisms of Toxic Metal Stress with Global Proteomics

    SciTech Connect

    Miller, Susan M.

    2012-04-16

    Hg is a wide-spread contaminant in the environment and is toxic in all of its various forms. Data suggest that RHg+ and Hg2+ are toxic in two ways. At low levels, Hg species appear to disrupt membrane-bound respiration causing a burst of reactive oxygen species (ROS) that further damage the cell. At higher Hg concentrations, RHg+ and Hg2+ may form adducts with cysteine- and selenocysteine-containing proteins in all cellular compartments resulting in their inactivation. Although these mechansims for toxicity are generally accepted, the most sensitive targets associated with these mechanisms are not well understood. In this collaborative project involving three laboratories at three institutions, the overall goal was to develop of a mass spectrometry-based global proteomics methodology that could be used to identify Hg-adducted (and ideally, ROS-damaged) proteins in order to address these types of questions. The two objectives of this overall collaborative project were (1) to identify, quantify, and compare ROS- and Hg-damaged proteins in cells treated with various Hg species and concentrations to test this model for two mechanisms of Hg toxicity, and (2) to define the cellular roles of the ubiquitous bacterial mercury resistance (mer) locus with regards to how the proteins of this pathway interact to protect other cell proteins from Hg damage. The specific objectives and accomplishments of the Miller lab in this project included: (1) Development of algorithms for analysis of the Hg-proteomic mass spectrometry data to identify mercury adducted peptides and other trends in the data. (2) Investigation of the role of mer operon proteins in scavenging Hg(II) from other mer pathway proteins as a means of protecting cellular proteins from damage.

  2. Comprehensive Proteomics Analysis of Glycosomes from Leishmania donovani

    PubMed Central

    Jamdhade, Mahendra D.; Pawar, Harsh; Chavan, Sandip; Sathe, Gajanan; Umasankar, P.K.; Mahale, Kiran N.; Dixit, Tanwi; Madugundu, Anil K.; Prasad, T.S. Keshava; Gowda, Harsha

    2015-01-01

    Abstract Leishmania donovani is a kinetoplastid protozoan that causes a severe and fatal disease kala-azar, or visceral leishmaniasis. L. donovani infects human host after the phlebotomine sandfly takes a blood meal and resides within the phagolysosome of infected macrophages. Previous studies on host–parasite interactions have not focused on Leishmania organelles and the role that they play in the survival of this parasite within macrophages. Leishmania possess glycosomes that are unique and specialized subcellular microbody organelles. Glycosomes are known to harbor most peroxisomal enzymes and, in addition, they also possess nine glycolytic enzymes. In the present study, we have carried out proteomic profiling using high resolution mass spectrometry of a sucrose density gradient-enriched glycosomal fraction isolated from L. donovani promastigotes. This study resulted in the identification of 4022 unique peptides, leading to the identification of 1355 unique proteins from a preparation enriched in L. donovani glycosomes. Based on protein annotation, 566 (41.8%) were identified as hypothetical proteins with no known function. A majority of the identified proteins are involved in metabolic processes such as carbohydrate, lipid, and nucleic acid metabolism. Our present proteomic analysis is the most comprehensive study to date to map the proteome of L. donovani glycosomes. PMID:25748437

  3. Proteomic analysis of antigens from Leishmania infantum promastigotes.

    PubMed

    Dea-Ayuela, María Auxiliadora; Rama-Iñiguez, Sara; Bolás-Fernández, Francisco

    2006-07-01

    Leishmaniasis is a zoonotic disease caused by the species of the genus Leishmania, flagellated protozoa that multiply inside mammalian macrophages and are transmitted by the bite of the sandfly. The disease is widespread and due to the lack of fully effective treatment and vaccination the search for new drugs and immune targets is needed. Proteomics seems to be a suitable strategy because the annotated sequenced genome of L. major is available. Here, we present a high-resolution proteome for L. infantum promastigotes comprising of around 700 spots. Western blot with rabbit hyperimmune serum raised against L. infantum promastiogote extracts and further analysis by MALDI-TOF and MALDI-TOF/TOF MS allowed the identification of various relevant functional antigenic proteins. Major antigenic proteins were identified as propionil carboxilasa, ATPase beta subunit, transketolase, proteasome subunit, succinyl-diaminopimelate desuccinylase, a probable tubulin alpha chain, the full-size heat shock protein 70, and several proteins of unknown function. In addition, one enzyme from the ergosterol biosynthesis pathway (adrenodoxin reductase) and the structural paraflagellar rod protein 3 (PAR3) were found among non-antigenic proteins. This study corroborates the usefulness of proteomics in identifying new proteins with crucial biological functions in Leishmania parasites. PMID:16791830

  4. Improving reproducibility and sensitivity in identifying human proteins by shotgun proteomics.

    PubMed

    Resing, Katheryn A; Meyer-Arendt, Karen; Mendoza, Alex M; Aveline-Wolf, Lauren D; Jonscher, Karen R; Pierce, Kevin G; Old, William M; Cheung, Hiu T; Russell, Steven; Wattawa, Joy L; Goehle, Geoff R; Knight, Robin D; Ahn, Natalie G

    2004-07-01

    Identifying proteins in cell extracts by shotgun proteomics involves digesting the proteins, sequencing the resulting peptides by data-dependent mass spectrometry (MS/MS), and searching protein databases to identify the proteins from which the peptides are derived. Manual analysis and direct spectral comparison reveal that scores from two commonly used search programs (Sequest and Mascot) validate less than half of potentially identifiable MS/MS spectra (class positive) from shotgun analyses of the human erythroleukemia K562 cell line. Here we demonstrate increased sensitivity and accuracy using a focused search strategy along with a peptide sequence validation script that does not rely exclusively on XCorr or Mowse scores generated by Sequest or Mascot, but uses consensus between the search programs, along with chemical properties and scores describing the nature of the fragmentation spectrum (ion score and RSP). The approach yielded 4.2% false positive and 8% false negative frequencies in peptide assignments. The protein profile is then assembled from peptide assignments using a novel peptide-centric protein nomenclature that more accurately reports protein variants that contain identical peptide sequences. An Isoform Resolver algorithm ensures that the protein count is not inflated by variants in the protein database, eliminating approximately 25% of redundant proteins. Analysis of soluble proteins from a human K562 cells identified 5130 unique proteins, with approximately 100 false positive protein assignments. PMID:15228325

  5. Quantitative Proteomics Analysis of Leukemia Cells.

    PubMed

    Halbach, Sebastian; Dengjel, Jörn; Brummer, Tilman

    2016-01-01

    Chronic myeloid leukemia (CML) is driven by the oncogenic fusion kinase Bcr-Abl, which organizes its own signaling network with various proteins. These proteins, their interactions, and their role in relevant signaling pathways can be analyzed by quantitative mass spectrometry (MS) approaches in various models systems, e.g., in cell culture models. In this chapter, we describe in detail immunoprecipitations and quantitative proteomics analysis using stable isotope labeling by amino acids in cell culture (SILAC) of components of the Bcr-Abl signaling pathway in the human CML cell line K562. PMID:27581145

  6. Proteome analysis of chick embryonic cerebrospinal fluid.

    PubMed

    Parada, Carolina; Gato, Angel; Aparicio, Mariano; Bueno, David

    2006-01-01

    During early stages of embryo development, the brain cavity is filled with embryonic cerebrospinal fluid (E-CSF), a complex fluid containing different protein fractions that contributes to the regulation of the survival, proliferation and neurogenesis of the neuroectodermal stem cells. Using 2-DE, protein sequencing and database searches, we identified and analyzed the proteome of the E-CSF from chick embryos (Gallus gallus). We identified 26 different gene products, including proteins related to the extracellular matrix, proteins associated with the regulation of osmotic pressure and metal transport, proteins related to cell survival, MAP kinase activators, proteins involved in the transport of retinol and vitamin D, antioxidant and antimicrobial proteins, intracellular proteins and some unknown proteins. Most of these gene products are involved in the regulation of developmental processes during embryogenesis in systems other than E-CSF. Interestingly, 14 of them are also present in adult human CSF proteome, and it has been reported that they are altered in the CSF of patients suffering neurodegenerative diseases and/or neurological disorders. Understanding these molecules and the mechanisms they control during embryonic neurogenesis is a key contribution to the general understanding of CNS development, and may also contribute to greater knowledge of these human diseases. PMID:16287170

  7. Analysis of Mass Spectrometry Data for Nucleolar Proteomics Experiments.

    PubMed

    Nicolas, Armel; Bensaddek, Dalila; Lamond, Angus I

    2016-01-01

    With recent advances in experiment design, sample preparation, separation and instruments, mass spectrometry (MS)-based quantitative proteomics is becoming increasingly more popular. This has the potential to usher a new revolution in biology, in which the protein complement of cell populations can be described not only with increasing coverage, but also in all of its dimensions with unprecedented precision. Indeed, while earlier proteomics studies aimed solely at identifying as many as possible of the proteins present in the sample, newer, so-called Next Generation Proteomics studies add to this the aim of determining and quantifying the protein variants present in the sample, their mutual associations within complexes, their posttranslational modifications, their variation across the cell-cycle or in response to stimuli or perturbations, and their subcellular distribution. This has the potential to make MS proteomics much more useful for researchers, but will also mean that researchers with no background in MS will increasingly be confronted with the less-than trivial challenges of preparing samples for MS analysis, then processing and interpreting the results. In Chapter 20 , we described a workflow for isolating the protein contents of a specific SILAC-labeled organelle sample (the nucleolus) and processing it into peptides suitable for bottom-up MS analysis. Here, we complete this workflow by describing how to use the freely available MaxQuant software to convert the spectra stored in the Raw files into peptide- and protein-level information. We also briefly describe how to visualize the data using the free R scripting language. PMID:27576726

  8. EBprot: Statistical analysis of labeling-based quantitative proteomics data.

    PubMed

    Koh, Hiromi W L; Swa, Hannah L F; Fermin, Damian; Ler, Siok Ghee; Gunaratne, Jayantha; Choi, Hyungwon

    2015-08-01

    Labeling-based proteomics is a powerful method for detection of differentially expressed proteins (DEPs). The current data analysis platform typically relies on protein-level ratios, which is obtained by summarizing peptide-level ratios for each protein. In shotgun proteomics, however, some proteins are quantified with more peptides than others, and this reproducibility information is not incorporated into the differential expression (DE) analysis. Here, we propose a novel probabilistic framework EBprot that directly models the peptide-protein hierarchy and rewards the proteins with reproducible evidence of DE over multiple peptides. To evaluate its performance with known DE states, we conducted a simulation study to show that the peptide-level analysis of EBprot provides better receiver-operating characteristic and more accurate estimation of the false discovery rates than the methods based on protein-level ratios. We also demonstrate superior classification performance of peptide-level EBprot analysis in a spike-in dataset. To illustrate the wide applicability of EBprot in different experimental designs, we applied EBprot to a dataset for lung cancer subtype analysis with biological replicates and another dataset for time course phosphoproteome analysis of EGF-stimulated HeLa cells with multiplexed labeling. Through these examples, we show that the peptide-level analysis of EBprot is a robust alternative to the existing statistical methods for the DE analysis of labeling-based quantitative datasets. The software suite is freely available on the Sourceforge website http://ebprot.sourceforge.net/. All MS data have been deposited in the ProteomeXchange with identifier PXD001426 (http://proteomecentral.proteomexchange.org/dataset/PXD001426/). PMID:25913743

  9. A Comparative Quantitative Proteomic Study Identifies New Proteins Relevant for Sulfur Oxidation in the Purple Sulfur Bacterium Allochromatium vinosum

    PubMed Central

    Weissgerber, Thomas; Sylvester, Marc; Kröninger, Lena

    2014-01-01

    In the present study, we compared the proteome response of Allochromatium vinosum when growing photoautotrophically in the presence of sulfide, thiosulfate, and elemental sulfur with the proteome response when the organism was growing photoheterotrophically on malate. Applying tandem mass tag analysis as well as two-dimensional (2D) PAGE, we detected 1,955 of the 3,302 predicted proteins by identification of at least two peptides (59.2%) and quantified 1,848 of the identified proteins. Altered relative protein amounts (≥1.5-fold) were observed for 385 proteins, corresponding to 20.8% of the quantified A. vinosum proteome. A significant number of the proteins exhibiting strongly enhanced relative protein levels in the presence of reduced sulfur compounds are well documented essential players during oxidative sulfur metabolism, e.g., the dissimilatory sulfite reductase DsrAB. Changes in protein levels generally matched those observed for the respective relative mRNA levels in a previous study and allowed identification of new genes/proteins participating in oxidative sulfur metabolism. One gene cluster (hyd; Alvin_2036-Alvin_2040) and one hypothetical protein (Alvin_2107) exhibiting strong responses on both the transcriptome and proteome levels were chosen for gene inactivation and phenotypic analyses of the respective mutant strains, which verified the importance of the so-called Isp hydrogenase supercomplex for efficient oxidation of sulfide and a crucial role of Alvin_2107 for the oxidation of sulfur stored in sulfur globules to sulfite. In addition, we analyzed the sulfur globule proteome and identified a new sulfur globule protein (SgpD; Alvin_2515). PMID:24487535

  10. Advances in Proteomics Data Analysis and Display Using an Accurate Mass and Time Tag Approach

    PubMed Central

    Zimmer, Jennifer S.D.; Monroe, Matthew E.; Qian, Wei-Jun; Smith, Richard D.

    2007-01-01

    Proteomics has recently demonstrated utility in understanding cellular processes on the molecular level as a component of systems biology approaches and for identifying potential biomarkers of various disease states. The large amount of data generated by utilizing high efficiency (e.g., chromatographic) separations coupled to high mass accuracy mass spectrometry for high-throughput proteomics analyses presents challenges related to data processing, analysis, and display. This review focuses on recent advances in nanoLC-FTICR-MS-based proteomics approaches and the accompanying data processing tools that have been developed to display and interpret the large volumes of data being produced. PMID:16429408

  11. Proteomic analysis of seminal fluid from men exhibiting oxidative stress

    PubMed Central

    2013-01-01

    Background Seminal plasma serves as a natural reservoir of antioxidants. It helps to remove excessive formation of reactive oxygen species (ROS) and consequently, reduce oxidative stress. Proteomic profiling of seminal plasma proteins is important to understand the molecular mechanisms underlying oxidative stress and sperm dysfunction in infertile men. Methods This prospective study consisted of 52 subjects: 32 infertile men and 20 healthy donors. Once semen and oxidative stress parameters were assessed (ROS, antioxidant concentration and DNA damage), the subjects were categorized into ROS positive (ROS+) or ROS negative (ROS-). Seminal plasma from each group was pooled and subjected to proteomics analysis. In-solution digestion and protein identification with liquid chromatography tandem mass spectrometry (LC-MS/MS), followed by bioinformatics analyses was used to identify and characterize potential biomarker proteins. Results A total of 14 proteins were identified in this analysis with 7 of these common and unique proteins were identified in both the ROS+ and ROS- groups through MASCOT and SEQUEST analyses, respectively. Prolactin-induced protein was found to be more abundantly present in men with increased levels of ROS. Gene ontology annotations showed extracellular distribution of proteins with a major role in antioxidative activity and regulatory processes. Conclusions We have identified proteins that help protect against oxidative stress and are uniquely present in the seminal plasma of the ROS- men. Men exhibiting high levels of ROS in their seminal ejaculate are likely to exhibit proteins that are either downregulated or oxidatively modified, and these could potentially contribute to male infertility. PMID:24004880

  12. Layer-by-Layer Proteomic Analysis of Mytilus galloprovincialis Shell

    PubMed Central

    Wang, Xin-xing; Bao, Lin-fei; Fan, Mei-hua; Li, Xiao-min; Wu, Chang-wen; Xia, Shu-wei

    2015-01-01

    Bivalve shell is a biomineralized tissue with various layers/microstructures and excellent mechanical properties. Shell matrix proteins (SMPs) pervade and envelop the mineral crystals and play essential roles in biomineralization. Despite that Mytilus is an economically important bivalve, only few proteomic studies have been performed for the shell, and current knowledge of the SMP set responsible for different shell layers of Mytilus remains largely patchy. In this study, we observed that Mytilus galloprovincialis shell contained three layers, including nacre, fibrous prism, and myostracum that is involved in shell-muscle attachment. A parallel proteomic analysis was performed for these three layers. By combining LC-MS/MS analysis with Mytilus EST database interrogations, a whole set of 113 proteins was identified, and the distribution of these proteins in different shell layers followed a mosaic pattern. For each layer, about a half of identified proteins are unique and the others are shared by two or all of three layers. This is the first description of the protein set exclusive to nacre, myostracum, and fibrous prism in Mytilus shell. Moreover, most of identified proteins in the present study are novel SMPs, which greatly extended biomineralization-related protein data of Mytilus. These results are useful, on one hand, for understanding the roles of SMPs in the deposition of different shell layers. On the other hand, the identified protein set of myostracum provides candidates for further exploring the mechanism of adductor muscle-shell attachment. PMID:26218932

  13. Proteome Analysis of the Plasma Membrane of Mycobacterium Tuberculosis

    PubMed Central

    Arora, Shalini; Kosalai, K.; Namane, Abdelkader; Pym, Alex S.; Cole, Stewart T.

    2002-01-01

    The plasma membrane of Mycobacterium tuberculosis is likely to contain proteins that could serve as novel drug targets, diagnostic probes or even components of a vaccine against tuberculosis. With this in mind, we have undertaken proteome analysis of the membrane of M. tuberculosis H37Rv. Isolated membrane vesicles were extracted with either a detergent (Triton X114) or an alkaline buffer (carbonate) following two of the protocols recommended for membrane protein enrichment. Proteins were resolved by 2D-GE using immobilized pH gradient (IPG) strips, and identified by peptide mass mapping utilizing the M. tuberculosis genome database. The two extraction procedures yielded patterns with minimal overlap. Only two proteins, both HSPs, showed a common presence. MALDI–MS analysis of 61 spots led to the identification of 32 proteins, 17 of which were new to the M. tuberculosis proteome database. We classified 19 of the identified proteins as ‘membrane-associated’; 14 of these were further classified as ‘membrane-bound’, three of which were lipoproteins. The remaining proteins included four heat-shock proteins and several enzymes involved in energy or lipid metabolism. Extraction with Triton X114 was found to be more effective than carbonate for detecting ‘putative’ M. tuberculosis membrane proteins. The protocol was also found to be suitable for comparing BCG and M. tuberculosis membranes, identifying ESAT-6 as being expressed selectively in M. tuberculosis. While this study demonstrates for the first time some of the membrane proteins of M. tuberculosis, it also underscores the problems associated with proteomic analysis of a complex membrane such as that of a mycobacterium. PMID:18629250

  14. Breast tumor metastasis: analysis via proteomic profiling

    PubMed Central

    Goodison, Steve; Urquidi, Virginia

    2012-01-01

    The ability to predict the metastatic behavior of a patient’s cancer, as well as to detect and eradicate such recurrences, remain major clinical challenges in oncology. While many potential molecular biomarkers have been identified and tested previously, none have greatly improved the accuracy of specimen evaluation over routine histopathological criteria and, to date, they predict individual outcomes poorly. The ongoing development of high-throughput proteomic profiling technologies is opening new avenues for the investigation of cancer and, through application in tissue-based studies and animal models, will facilitate the identification of molecular signatures that are associated with breast tumor cell phenotype. The appropriate use of these approaches has the potential to provide efficient biomarkers, and to improve our knowledge of tumor biology. This, in turn, will enable the development of targeted therapeutics aimed at ameliorating the lethal dissemination of breast cancer. In this review, we focus on the accumulating proteomic signatures of breast tumor progression, particularly those that correlate with the occurrence of distant metastases, and discuss some of the expected future developments in the field. PMID:18532913

  15. Proteomics and the Analysis of Proteomic Data: 2013 Overview of Current Protein-Profiling Technologies

    PubMed Central

    Bruce, Can; Stone, Kathryn; Gulcicek, Erol; Williams, Kenneth

    2013-01-01

    Mass spectrometry has become a major tool in the study of proteomes. The analysis of proteolytic peptides and their fragment ions by this technique enables the identification and quantitation of the precursor proteins in a mixture. However, deducing chemical structures and then protein sequences from mass-to-charge ratios is a challenging computational task. Software tools incorporating powerful algorithms and statistical methods improved our ability to process the large quantities of proteomics data. Repositories of spectral data make both data analysis and experimental design more efficient. New approaches in quantitative and statistical proteomics make possible a greater coverage of the proteome, the identification of more post-translational modifications and a greater sensitivity in the quantitation of targeted proteins. PMID:23504934

  16. A Systematic Analysis of a Deep Mouse Epididymal Sperm Proteome

    SciTech Connect

    Chauvin, Theodore; Xie, Fang; Liu, Tao; Nicora, Carrie D.; Yang, Feng; Camp, David G.; Smith, Richard D.; Roberts, Kenneth P.

    2012-12-21

    Spermatozoa are highly specialized cells that, when mature, are capable of navigating the female reproductive tract and fertilizing an oocyte. The sperm cell is thought to be largely quiescent in terms of transcriptional and translational activity. As a result, once it has left the male reproductive tract, the sperm cell is essentially operating with a static population of proteins. It is therefore theoretically possible to understand the protein networks contained in a sperm cell and to deduce its cellular function capabilities. To this end we have performed a proteomic analysis of mouse sperm isolated from the cauda epididymis and have confidently identified 2,850 proteins, which is the most comprehensive sperm proteome for any species reported to date. These proteins comprise many complete cellular pathways, including those for energy production via glycolysis, β-oxidation and oxidative phosphorylation, protein folding and transport, and cell signaling systems. This proteome should prove a useful tool for assembly and testing of protein networks important for sperm function.

  17. Proteomic analysis of Plasmodium in the mosquito: progress and pitfalls

    PubMed Central

    WASS, M. N.; STANWAY, R.; BLAGBOROUGH, A. M.; LAL, K.; PRIETO, J. H.; RAINE, D.; STERNBERG, M. J. E.; TALMAN, A. M.; TOMLEY, F.; YATES, J.; SINDEN, R. E.

    2012-01-01

    SUMMARY Here we discuss proteomic analyses of whole cell preparations of the mosquito stages of malaria parasite development (i.e. gametocytes, microgamete, ookinete, oocyst and sporozoite) of Plasmodium berghei. We also include critiques of the proteomes of two cell fractions from the purified ookinete, namely the micronemes and cell surface. Whereas we summarise key biological interpretations of the data, we also try to identify key methodological constraints we have met, only some of which we were able to resolve. Recognising the need to translate the potential of current genome sequencing into functional understanding, we report our efforts to develop more powerful combinations of methods for the in silico prediction of protein function and location. We have applied this analysis to the proteome of the male gamete, a cell whose very simple structural organisation facilitated interpretation of data. Some of the in silico predictions made have now been supported by ongoing protein tagging and genetic knockout studies. We hope this discussion may assist future studies. PMID:22336136

  18. Analyses of the Xylem Sap Proteomes Identified Candidate Fusarium virguliforme Proteinacious Toxins

    PubMed Central

    Abeysekara, Nilwala S.; Bhattacharyya, Madan K.

    2014-01-01

    Background Sudden death syndrome (SDS) caused by the ascomycete fungus, Fusarium virguliforme, exhibits root necrosis and leaf scorch or foliar SDS. The pathogen has never been identified from the above ground diseased foliar tissues. Foliar SDS is believed to be caused by host selective toxins, including FvTox1, secreted by the fungus. This study investigated if the xylem sap of F. virguliforme-infected soybean plants contains secreted F. virguliforme-proteins, some of which could cause foliar SDS development. Results Xylem sap samples were collected from five biological replications of F. virguliforme-infected and uninfected soybean plants under controlled conditions. We identified five F. virguliforme proteins from the xylem sap of the F. virguliforme-infected soybean plants by conducting LC-ESI-MS/MS analysis. These five proteins were also present in the excreted proteome of the pathogen in culture filtrates. One of these proteins showed high sequence identity to cerato-platanin, a phytotoxin produced by Ceratocystis fimbriata f. sp. platani to cause canker stain disease in the plane tree. Of over 500 soybean proteins identified in this study, 112 were present in at least 80% of the sap samples collected from F. virguliforme-infected and -uninfected control plants. We have identified four soybean defense proteins from the xylem sap of F. virguliforme-infected soybean plants. The data have been deposited to the ProteomeXchange with identifier PXD000873. Conclusion This study confirms that a few F. virguliforme proteins travel through the xylem, some of which could be involved in foliar SDS development. We have identified five candidate proteinaceous toxins, one of which showed high similarity to a previously characterized phytotoxin. We have also shown the presence of four soybean defense proteins in the xylem sap of F. virguliforme-infected soybean plants. This study laid the foundation for studying the molecular basis of foliar SDS development in soybean and

  19. Evaluation of sample extraction methods for proteomics analysis of green algae Chlorella vulgaris.

    PubMed

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-05-01

    Many protein extraction methods have been developed for plant proteome analysis but information is limited on the optimal protein extraction method from algae species. This study evaluated four protein extraction methods, i.e. direct lysis buffer method, TCA-acetone method, phenol method, and phenol/TCA-acetone method, using green algae Chlorella vulgaris for proteome analysis. The data presented showed that phenol/TCA-acetone method was superior to the other three tested methods with regards to shotgun proteomics. Proteins identified using shotgun proteomics were validated using sequential window acquisition of all theoretical fragment-ion spectra (SWATH) technique. Additionally, SWATH provides protein quantitation information from different methods and protein abundance using different protein extraction methods was evaluated. These results highlight the importance of green algae protein extraction method for subsequent MS analysis and identification. PMID:26935773

  20. The use of Saccharomyces cerevisiae proteomic libraries to identify RNA-modifying proteins.

    PubMed

    Jackman, Jane E; Grayhack, Elizabeth J; Phizicky, Eric M

    2008-01-01

    Biochemical assay of proteomic libraries derived from the Saccharomyces cerevisiae genome provides a powerful new tool for the assignment of activities to proteins. Particular advantages of this approach include the speed with which a protein can be identified and the generality for any biological activity for which an assay can be developed. We discuss the utility of this approach for the identification of RNA-modifying enzymes using a yeast proteomic library derived from a genomic set of strains expressing GST-ORF fusion proteins. This technique is also broadly applicable to other classes of RNA-protein interactions, including RNA binding and RNA degradation, and can be used with any of the proteomic libraries that are available. PMID:18982304

  1. Using R and Bioconductor for proteomics data analysis.

    PubMed

    Gatto, Laurent; Christoforou, Andy

    2014-01-01

    This review presents how R, the popular statistical environment and programming language, can be used in the frame of proteomics data analysis. A short introduction to R is given, with special emphasis on some of the features that make R and its add-on packages premium software for sound and reproducible data analysis. The reader is also advised on how to find relevant R software for proteomics. Several use cases are then presented, illustrating data input/output, quality control, quantitative proteomics and data analysis. Detailed code and additional links to extensive documentation are available in the freely available companion package RforProteomics. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. PMID:23692960

  2. Comparative plasma proteome analysis of lymphoma-bearing SJL mice.

    PubMed

    Bhat, Vadiraja B; Choi, Man Ho; Wishnok, John S; Tannenbaum, Steven R

    2005-01-01

    In SJL mice, growth of RcsX lymphoma cells induces an inflammatory response by stimulating V(beta)16+ T cells. During inflammation, various serum protein levels can increase (e.g., acute phase reactants) or decrease (e.g., albumin), and most of these altered proteins are thus potential biomarkers. Although blood plasma is a valuable and promising sample for biomarker discovery for diseases or for novel drug targets, its proteome is complex. To address this, we have focused on a comprehensive comparison of the plasma proteomes from normal and RcsX-tumor-bearing SJL mice using the 1D-Gel-LC-MS/MS method after removing albumin and immunoglobulins. This analysis resulted in the identification of a total of 1079 nonredundant mouse plasma proteins; more than 480 in normal and 790 in RcsX-tumor-bearing SJL mouse plasma. Of these, only 191 proteins were found in common. The molecular weights ranged from 2 to 876 kDa, covering the pI values between 4.22 and 12.09, and included proteins with predicted transmembrane domains. By comparing the plasma proteomic profile of normal and RcsX-tumor-bearing SJL mice, we found significant changes in the levels of many proteins in RcsX-tumor-bearing mouse plasma. Most of the up-regulated proteins were identified as acute-phase proteins (APPs). Also, several unique proteins i.e., haptoglobin, proteosome subunits, fetuin-B, 14-3-3 zeta, MAGE-B4 antigen, etc, were found only in the tumor-bearing mouse plasma; either secreted, shed by membrane vesicles, or externalized due to cell death. These results affirm the effectiveness of this approach for protein identification from small samples, and for comparative proteomics in potential animal models of human disorders. PMID:16212437

  3. N-terminome analysis of the human mitochondrial proteome.

    PubMed

    Vaca Jacome, Alvaro Sebastian; Rabilloud, Thierry; Schaeffer-Reiss, Christine; Rompais, Magali; Ayoub, Daniel; Lane, Lydie; Bairoch, Amos; Van Dorsselaer, Alain; Carapito, Christine

    2015-07-01

    The high throughput characterization of protein N-termini is becoming an emerging challenge in the proteomics and proteogenomics fields. The present study describes the free N-terminome analysis of human mitochondria-enriched samples using trimethoxyphenyl phosphonium (TMPP) labelling approaches. Owing to the extent of protein import and cleavage for mitochondrial proteins, determining the new N-termini generated after translocation/processing events for mitochondrial proteins is crucial to understand the transformation of precursors to mature proteins. The doublet N-terminal oriented proteomics (dN-TOP) strategy based on a double light/heavy TMPP labelling has been optimized in order to improve and automate the workflow for efficient, fast and reliable high throughput N-terminome analysis. A total of 2714 proteins were identified and 897 N-terminal peptides were characterized (424 N-α-acetylated and 473 TMPP-labelled peptides). These results allowed the precise identification of the N-terminus of 693 unique proteins corresponding to 26% of all identified proteins. Overall, 120 already annotated processing cleavage sites were confirmed while 302 new cleavage sites were characterized. The accumulation of experimental evidence of mature N-termini should allow increasing the knowledge of processing mechanisms and consequently also enhance cleavage sites prediction algorithms. Complete datasets have been deposited to the ProteomeXchange Consortium with identifiers PXD001521, PXD001522 and PXD001523 (http://proteomecentral.proteomexchange.org/dataset/PXD001521, http://proteomecentral.proteomexchange.org/dataset/PXD0001522 and http://proteomecentral.proteomexchange.org/dataset/PXD001523, respectively). PMID:25944712

  4. Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources.

    PubMed

    Zhao, Shaohui; Zhao, Xinrui; Zou, Huijun; Fu, Jianwei; Du, Guocheng; Zhou, Jingwen; Chen, Jian

    2014-04-14

    In cultures containing multiple sources of nitrogen, Saccharomyces cerevisiae exhibits a sequential use of nitrogen sources through a mechanism known as nitrogen catabolite repression (NCR). To identify proteins differentially expressed due to NCR, proteomic analysis of S. cerevisiae S288C under different nitrogen source conditions was performed using two-dimensional gel electrophoresis (2-DE), revealing 169 candidate protein spots. Among these 169 protein spots, 121 were identified by matrix assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF). The identified proteins were closely associated with four main biological processes through Gene Ontology (GO) categorical analysis. The identification of the potential proteins and cellular processes related to NCR offer a global overview of changes elicited by different nitrogen sources, providing clues into how yeast adapt to different nutritional conditions. Moreover, by comparing our proteomic data with corresponding mRNA data, proteins regulated at the transcriptional and post-transcriptional level could be distinguished. Biological significance In S. cerevisiae, different nitrogen sources provide different growth characteristics and generate different metabolites. The nitrogen catabolite repression (NCR) process plays an important role for S. cerevisiae in the ordinal utilization of different nitrogen sources. NCR process can result in significant shift of global metabolic networks. Previous works on NCR primarily focused on transcriptomic level. The results obtained in this study provided a global atlas of the proteome changes triggered by different nitrogen sources and would facilitate the understanding of mechanisms for how yeast could adapt to different nutritional conditions. PMID:24530623

  5. Functional Module Search in Protein Networks based on Semantic Similarity Improves the Analysis of Proteomics Data*

    PubMed Central

    Boyanova, Desislava; Nilla, Santosh; Klau, Gunnar W.; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus

    2014-01-01

    The continuously evolving field of proteomics produces increasing amounts of data while improving the quality of protein identifications. Albeit quantitative measurements are becoming more popular, many proteomic studies are still based on non-quantitative methods for protein identification. These studies result in potentially large sets of identified proteins, where the biological interpretation of proteins can be challenging. Systems biology develops innovative network-based methods, which allow an integrated analysis of these data. Here we present a novel approach, which combines prior knowledge of protein-protein interactions (PPI) with proteomics data using functional similarity measurements of interacting proteins. This integrated network analysis exactly identifies network modules with a maximal consistent functional similarity reflecting biological processes of the investigated cells. We validated our approach on small (H9N2 virus-infected gastric cells) and large (blood constituents) proteomic data sets. Using this novel algorithm, we identified characteristic functional modules in virus-infected cells, comprising key signaling proteins (e.g. the stress-related kinase RAF1) and demonstrate that this method allows a module-based functional characterization of cell types. Analysis of a large proteome data set of blood constituents resulted in clear separation of blood cells according to their developmental origin. A detailed investigation of the T-cell proteome further illustrates how the algorithm partitions large networks into functional subnetworks each representing specific cellular functions. These results demonstrate that the integrated network approach not only allows a detailed analysis of proteome networks but also yields a functional decomposition of complex proteomic data sets and thereby provides deeper insights into the underlying cellular processes of the investigated system. PMID:24807868

  6. iTRAQ-Based Quantitative Proteomic Analysis of Nasopharyngeal Carcinoma.

    PubMed

    Cai, Xin-Zhang; Zeng, Wei-Qun; Xiang, Yi; Liu, Yi; Zhang, Hong-Min; Li, Hong; She, Sha; Yang, Min; Xia, Kun; Peng, Shi-Fang

    2015-07-01

    Nasopharyngeal carcinoma (NPC) is a common disease in the southern provinces of China with a poor prognosis. To better understand the pathogenesis of NPC and identify proteins involved in NPC carcinogenesis, we applied iTRAQ coupled with two-dimensional LC-MS/MS to compare the proteome profiles of NPC tissues and the adjacent non-tumor tissues. We identified 54 proteins with differential expression in NPC and the adjacent non-tumor tissues. The differentially expressed proteins were further determined by RT-PCR and Western blot analysis. In addition, the up-regulation of HSPB1, NPM1 and NCL were determined by immunohistochemistry using tissue microarray. Functionally, we found that siRNA mediated knockdown of NPM1 inhibited the migration and invasion of human NPC CNE1 cell line. In summary, this is the first study on proteome analysis of NPC tissues using an iTRAQ method, and we identified many new differentially expressed proteins which are potential targets for the diagnosis and therapy of NPC. PMID:25648846

  7. Proteomic analysis of the carotenogenic yeast Xanthophyllomyces dendrorhous

    PubMed Central

    2011-01-01

    Background The yeast Xanthophyllomyces dendrorhous is used for the microbiological production of the antioxidant carotenoid astaxanthin. In this study, we established an optimal protocol for protein extraction and performed the first proteomic analysis of the strain ATCC 24230. Protein profiles before and during the induction of carotenogenesis were determined by two-dimensional polyacrylamide gel electrophoresis and proteins were identified by mass spectrometry. Results Among the approximately 600 observed protein spots, 131 non-redundant proteins were identified. Proteomic analyses allowed us to identify 50 differentially expressed proteins that fall into several classes with distinct expression patterns. These analyses demonstrated that enzymes related to acetyl-CoA synthesis were more abundant prior to carotenogenesis. Later, redox- and stress-related proteins were up-regulated during the induction of carotenogenesis. For the carotenoid biosynthetic enzymes mevalonate kinase and phytoene/squalene synthase, we observed higher abundance during induction and/or accumulation of carotenoids. In addition, classical antioxidant enzymes, such as catalase, glutathione peroxidase and the cytosolic superoxide dismutases, were not identified. Conclusions Our results provide an overview of potentially important carotenogenesis-related proteins, among which are proteins involved in carbohydrate and lipid biosynthetic pathways as well as several redox- and stress-related proteins. In addition, these results might indicate that X. dendrorhous accumulates astaxanthin under aerobic conditions to scavenge the reactive oxygen species (ROS) generated during metabolism. PMID:21669001

  8. Insights into immune responses in oral cancer through proteomic analysis of saliva and salivary extracellular vesicles

    PubMed Central

    Winck, Flavia V.; Prado Ribeiro, Ana Carolina; Ramos Domingues, Romênia; Ling, Liu Yi; Riaño-Pachón, Diego Mauricio; Rivera, César; Brandão, Thaís Bianca; Gouvea, Adriele Ferreira; Santos-Silva, Alan Roger; Coletta, Ricardo D.; Paes Leme, Adriana F.

    2015-01-01

    The development and progression of oral cavity squamous cell carcinoma (OSCC) involves complex cellular mechanisms that contribute to the low five-year survival rate of approximately 20% among diagnosed patients. However, the biological processes essential to tumor progression are not completely understood. Therefore, detecting alterations in the salivary proteome may assist in elucidating the cellular mechanisms modulated in OSCC and improve the clinical prognosis of the disease. The proteome of whole saliva and salivary extracellular vesicles (EVs) from patients with OSCC and healthy individuals were analyzed by LC-MS/MS and label-free protein quantification. Proteome data analysis was performed using statistical, machine learning and feature selection methods with additional functional annotation. Biological processes related to immune responses, peptidase inhibitor activity, iron coordination and protease binding were overrepresented in the group of differentially expressed proteins. Proteins related to the inflammatory system, transport of metals and cellular growth and proliferation were identified in the proteome of salivary EVs. The proteomics data were robust and could classify OSCC with 90% accuracy. The saliva proteome analysis revealed that immune processes are related to the presence of OSCC and indicate that proteomics data can contribute to determining OSCC prognosis. PMID:26538482

  9. Insights into immune responses in oral cancer through proteomic analysis of saliva and salivary extracellular vesicles.

    PubMed

    Winck, Flavia V; Prado Ribeiro, Ana Carolina; Ramos Domingues, Romênia; Ling, Liu Yi; Riaño-Pachón, Diego Mauricio; Rivera, César; Brandão, Thaís Bianca; Gouvea, Adriele Ferreira; Santos-Silva, Alan Roger; Coletta, Ricardo D; Paes Leme, Adriana F

    2015-01-01

    The development and progression of oral cavity squamous cell carcinoma (OSCC) involves complex cellular mechanisms that contribute to the low five-year survival rate of approximately 20% among diagnosed patients. However, the biological processes essential to tumor progression are not completely understood. Therefore, detecting alterations in the salivary proteome may assist in elucidating the cellular mechanisms modulated in OSCC and improve the clinical prognosis of the disease. The proteome of whole saliva and salivary extracellular vesicles (EVs) from patients with OSCC and healthy individuals were analyzed by LC-MS/MS and label-free protein quantification. Proteome data analysis was performed using statistical, machine learning and feature selection methods with additional functional annotation. Biological processes related to immune responses, peptidase inhibitor activity, iron coordination and protease binding were overrepresented in the group of differentially expressed proteins. Proteins related to the inflammatory system, transport of metals and cellular growth and proliferation were identified in the proteome of salivary EVs. The proteomics data were robust and could classify OSCC with 90% accuracy. The saliva proteome analysis revealed that immune processes are related to the presence of OSCC and indicate that proteomics data can contribute to determining OSCC prognosis. PMID:26538482

  10. Representative proteomes: a stable, scalable and unbiased proteome set for sequence analysis and functional annotation.

    PubMed

    Chen, Chuming; Natale, Darren A; Finn, Robert D; Huang, Hongzhan; Zhang, Jian; Wu, Cathy H; Mazumder, Raja

    2011-01-01

    The accelerating growth in the number of protein sequences taxes both the computational and manual resources needed to analyze them. One approach to dealing with this problem is to minimize the number of proteins subjected to such analysis in a way that minimizes loss of information. To this end we have developed a set of Representative Proteomes (RPs), each selected from a Representative Proteome Group (RPG) containing similar proteomes calculated based on co-membership in UniRef50 clusters. A Representative Proteome is the proteome that can best represent all the proteomes in its group in terms of the majority of the sequence space and information. RPs at 75%, 55%, 35% and 15% co-membership threshold (CMT) are provided to allow users to decrease or increase the granularity of the sequence space based on their requirements. We find that a CMT of 55% (RP55) most closely follows standard taxonomic classifications. Further analysis of this set reveals that sequence space is reduced by more than 80% relative to UniProtKB, while retaining both sequence diversity (over 95% of InterPro domains) and annotation information (93% of experimentally characterized proteins). All sets can be browsed and are available for sequence similarity searches and download at http://www.proteininformationresource.org/rps, while the set of 637 RPs determined using a 55% CMT are also available for text searches. Potential applications include sequence similarity searches, protein classification and targeted protein annotation and characterization. PMID:21556138

  11. Identification and proteomic analysis of osteoblast-derived exosomes.

    PubMed

    Ge, Min; Ke, Ronghu; Cai, Tianyi; Yang, Junyi; Mu, Xiongzheng

    2015-11-01

    Exosomes are nanometer-sized vesicles with the function of intercellular communication, and they are released by various cell types. To reveal the knowledge about the exosomes from osteoblast, and explore the potential functions of osteogenesis, we isolated microvesicles from supernatants of mouse Mc3t3 by ultracentrifugation, characterized exosomes by electron microscopy and immunoblotting and presented the protein profile by proteomic analysis. The result demonstrated that microvesicles were between 30 and 100 nm in diameter, round shape with cup-like concavity and expressed exosomal marker tumor susceptibility gene (TSG) 101 and flotillin (Flot) 1. We identified a total number of 1069 proteins among which 786 proteins overlap with ExoCarta database. Gene Oncology analysis indicated that exosomes mostly derived from plasma membrane and mainly involved in protein localization and intracellular signaling. The Ingenuity Pathway Analysis showed pathways are mostly involved in exosome biogenesis, formation, uptake and osteogenesis. Among the pathways, eukaryotic initiation factor 2 pathways played an important role in osteogenesis. Our study identified osteoblast-derived exosomes, unveiled the content of them, presented potential osteogenesis-related proteins and pathways and provided a rich proteomics data resource that will be valuable for further studies of the functions of individual proteins in bone diseases. PMID:26420226

  12. Global Analysis of Protein Activities Using Proteome Chips

    NASA Astrophysics Data System (ADS)

    Zhu, Heng; Bilgin, Metin; Bangham, Rhonda; Hall, David; Casamayor, Antonio; Bertone, Paul; Lan, Ning; Jansen, Ronald; Bidlingmaier, Scott; Houfek, Thomas; Mitchell, Tom; Miller, Perry; Dean, Ralph A.; Gerstein, Mark; Snyder, Michael

    2001-09-01

    To facilitate studies of the yeast proteome, we cloned 5800 open reading frames and overexpressed and purified their corresponding proteins. The proteins were printed onto slides at high spatial density to form a yeast proteome microarray and screened for their ability to interact with proteins and phospholipids. We identified many new calmodulin- and phospholipid-interacting proteins; a common potential binding motif was identified for many of the calmodulin-binding proteins. Thus, microarrays of an entire eukaryotic proteome can be prepared and screened for diverse biochemical activities. The microarrays can also be used to screen protein-drug interactions and to detect posttranslational modifications.

  13. Integrated proteomic and genomic analysis of colorectal cancer

    Cancer.gov

    Investigators who analyzed 95 human colorectal tumor samples have determined how gene alterations identified in previous analyses of the same samples are expressed at the protein level. The integration of proteomic and genomic data, or proteogenomics, pro

  14. Identifying active methane-oxidizers in thawed Arctic permafrost by proteomics

    NASA Astrophysics Data System (ADS)

    Lau, C. M.; Stackhouse, B. T.; Chourey, K.; Hettich, R. L.; Vishnivetskaya, T. A.; Pfiffner, S. M.; Layton, A. C.; Mykytczuk, N. C.; Whyte, L.; Onstott, T. C.

    2012-12-01

    The rate of CH4 release from thawing permafrost in the Arctic has been regarded as one of the determining factors on future global climate. It is uncertain how indigenous microorganisms would interact with such changing environmental conditions and hence their impact on the fate of carbon compounds that are sequestered in the cryosol. Multitudinous studies of pristine surface cryosol (top 5 cm) and microcosm experiments have provided growing evidence of effective methanotrophy. Cryosol samples corresponding to active layer were sampled from a sparsely vegetated, ice-wedge polygon at the McGill Arctic Research Station at Axel Heiberg Island, Nunavut, Canada (N79°24, W90°45) before the onset of annual thaw. Pyrosequencing of 16S rRNA gene indicated the occurrence of methanotroph-containing bacterial families as minor components (~5%) in pristine cryosol including Bradyrhizobiaceae, Methylobacteriaceae and Methylocystaceae within alpha-Proteobacteria, and Methylacidiphilaceae within Verrucomicrobia. The potential of methanotrophy is supported by preliminary analysis of metagenome data, which indicated putative methane monooxygenase gene sequences relating to Bradyrhizobium sp. and Pseudonocardia sp. are present. Proteome profiling in general yielded minute traces of proteins, which likely hints at dormant nature of the soil microbial consortia. The lack of specific protein database for permafrost posted additional challenge to protein identification. Only 35 proteins could be identified in the pristine cryosol and of which 60% belonged to Shewanella sp. Most of the identified proteins are known to be involved in energy metabolism or post-translational modification of proteins. Microcosms amended with sodium acetate exhibited a net methane consumption of ~65 ngC-CH4 per gram (fresh weight) of soil over 16 days of aerobic incubation at room temperature. The pH in microcosm materials remained acidic (decreased from initial 4.7 to 4.5). Protein extraction and

  15. Pneumococcal Neuraminidase Substrates Identified through Comparative Proteomics Enabled by Chemoselective Labeling.

    PubMed

    McCombs, Janet E; Kohler, Jennifer J

    2016-04-20

    Neuraminidases (sialidases) are enzymes that hydrolytically remove sialic acid from sialylated proteins and lipids. Neuraminidases are encoded by a range of human pathogens, including bacteria, viruses, fungi, and protozoa. Many pathogen neuraminidases are virulence factors, indicating that desialylation of host glycoconjugates can be a critical step in infection. Specifically, desialylation of host cell surface glycoproteins can enable these molecules to function as pathogen receptors or can alter signaling through the plasma membrane. Despite these critical effects, no unbiased approaches exist to identify glycoprotein substrates of neuraminidases. Here, we combine previously reported glycoproteomics methods with quantitative proteomics analysis to identify glycoproteins whose sialylation changes in response to neuraminidase treatment. The two glycoproteomics methods-periodate oxidation and aniline-catalyzed oxime ligation (PAL) and galactose oxidase and aniline-catalyzed oxime ligation (GAL)-rely on chemoselective labeling of sialylated and nonsialylated glycoproteins, respectively. We demonstrated the utility of the combined approaches by identifying substrates of two pneumococcal neuraminidases in a human cell line that models the blood-brain barrier. The methods deliver complementary lists of neuraminidase substrates, with GAL identifying a larger number of substrates than PAL (77 versus 17). Putative neuraminidase substrates were confirmed by other methods, establishing the validity of the approach. Among the identified substrates were host glycoproteins known to function in bacteria adherence and infection. Functional assays suggest that multiple desialylated cell surface glycoproteins may act together as pneumococcus receptors. Overall, this method will provide a powerful approach to identify glycoproteins that are desialylated by both purified neuraminidases and intact pathogens. PMID:26954852

  16. Label-free Quantitative Urinary Proteomics Identifies the Arginase Pathway as a New Player in Congenital Obstructive Nephropathy*

    PubMed Central

    Lacroix, Chrystelle; Caubet, Cécile; Gonzalez-de-Peredo, Anne; Breuil, Benjamin; Bouyssié, David; Stella, Alexandre; Garrigues, Luc; Le Gall, Caroline; Raevel, Anthony; Massoubre, Angelique; Klein, Julie; Decramer, Stéphane; Sabourdy, Frédérique; Bandin, Flavio; Burlet-Schiltz, Odile; Monsarrat, Bernard; Schanstra, Joost-Peter; Bascands, Jean-Loup

    2014-01-01

    Obstructive nephropathy is a frequently encountered situation in newborns. In previous studies, the urinary peptidome has been analyzed for the identification of clinically useful biomarkers of obstructive nephropathy. However, the urinary proteome has not been explored yet and should allow additional insight into the pathophysiology of the disease. We have analyzed the urinary proteome of newborns (n = 5/group) with obstructive nephropathy using label free quantitative nanoLC-MS/MS allowing the identification and quantification of 970 urinary proteins. We next focused on proteins exclusively regulated in severe obstructive nephropathy and identified Arginase 1 as a potential candidate molecule involved in the development of obstructive nephropathy, located at the crossroad of pro- and antifibrotic pathways. The reduced urinary abundance of Arginase 1 in obstructive nephropathy was verified in independent clinical samples using both Western blot and MRM analysis. These data were confirmed in situ in kidneys obtained from a mouse obstructive nephropathy model. In addition, we also observed increased expression of Arginase 2 and increased total arginase activity in obstructed mouse kidneys. mRNA expression analysis of the related arginase pathways indicated that the pro-fibrotic arginase-related pathway is activated during obstructive nephropathy. Taken together we have identified a new actor in the development of obstructive nephropathy in newborns using quantitative urinary proteomics and shown its involvement in an in vivo model of disease. The present study demonstrates the relevance of such a quantitative urinary proteomics approach with clinical samples for a better understanding of the pathophysiology and for the discovery of potential therapeutic targets. PMID:25205225

  17. In silico proteome analysis to facilitate proteomics experiments using mass spectrometry

    PubMed Central

    Cagney, Gerard; Amiri, Shiva; Premawaradena, Thanuja; Lindo, Micheal; Emili, Andrew

    2003-01-01

    Proteomics experiments typically involve protein or peptide separation steps coupled to the identification of many hundreds to thousands of peptides by mass spectrometry. Development of methodology and instrumentation in this field is proceeding rapidly, and effective software is needed to link the different stages of proteomic analysis. We have developed an application, proteogest, written in Perl that generates descriptive and statistical analyses of the biophysical properties of multiple (e.g. thousands) protein sequences submitted by the user, for instance protein sequences inferred from the complete genome sequence of a model organism. The application also carries out in silico proteolytic digestion of the submitted proteomes, or subsets thereof, and the distribution of biophysical properties of the resulting peptides is presented. proteogest is customizable, the user being able to select many options, for instance the cleavage pattern of the digestion treatment or the presence of modifications to specific amino acid residues. We show how proteogest can be used to compare the proteomes and digested proteome products of model organisms, to examine the added complexity generated by modification of residues, and to facilitate the design of proteomics experiments for optimal representation of component proteins. PMID:12946274

  18. MAS C-Terminal Tail Interacting Proteins Identified by Mass Spectrometry- Based Proteomic Approach

    PubMed Central

    Tirupula, Kalyan C.; Zhang, Dongmei; Osbourne, Appledene; Chatterjee, Arunachal; Desnoyer, Russ; Willard, Belinda; Karnik, Sadashiva S.

    2015-01-01

    Propagation of signals from G protein-coupled receptors (GPCRs) in cells is primarily mediated by protein-protein interactions. MAS is a GPCR that was initially discovered as an oncogene and is now known to play an important role in cardiovascular physiology. Current literature suggests that MAS interacts with common heterotrimeric G-proteins, but MAS interaction with proteins which might mediate G protein-independent or atypical signaling is unknown. In this study we hypothesized that MAS C-terminal tail (Ct) is a major determinant of receptor-scaffold protein interactions mediating MAS signaling. Mass-spectrometry based proteomic analysis was used to comprehensively identify the proteins that interact with MAS Ct comprising the PDZ-binding motif (PDZ-BM). We identified both PDZ and non-PDZ proteins from human embryonic kidney cell line, mouse atrial cardiomyocyte cell line and human heart tissue to interact specifically with MAS Ct. For the first time our study provides a panel of PDZ and other proteins that potentially interact with MAS with high significance. A ‘cardiac-specific finger print’ of MAS interacting PDZ proteins was identified which includes DLG1, MAGI1 and SNTA. Cell based experiments with wild-type and mutant MAS lacking the PDZ-BM validated MAS interaction with PDZ proteins DLG1 and TJP2. Bioinformatics analysis suggested well-known multi-protein scaffold complexes involved in nitric oxide signaling (NOS), cell-cell signaling of neuromuscular junctions, synapses and epithelial cells. Majority of these protein hits were predicted to be part of disease categories comprising cancers and malignant tumors. We propose a ‘MAS-signalosome’ model to stimulate further research in understanding the molecular mechanism of MAS function. Identifying hierarchy of interactions of ‘signalosome’ components with MAS will be a necessary step in future to fully understand the physiological and pathological functions of this enigmatic receptor. PMID

  19. Towards identifying Brassica proteins involved in mediating resistance to Leptosphaeria maculans: a proteomics-based approach.

    PubMed

    Sharma, Nidhi; Hotte, Naomi; Rahman, Muhammad H; Mohammadi, Mohsen; Deyholos, Michael K; Kav, Nat N V

    2008-09-01

    To better understand the pathogen-stress response of Brassica species against the ubiquitous hemi-biotroph fungus Leptosphaeria maculans, we conducted a comparative proteomic analysis between blackleg-susceptible Brassica napus and blackleg-resistant Brassica carinata following pathogen inoculation. We examined temporal changes (6, 12, 24, 48 and 72 h) in protein profiles of both species subjected to pathogen-challenge using two-dimensional gel electrophoresis. A total of 64 proteins were found to be significantly affected by the pathogen in the two species, out of which 51 protein spots were identified using tandem mass spectrometry. The proteins identified included antioxidant enzymes, photosynthetic and metabolic enzymes, and those involved in protein processing and signaling. Specifically, we observed that in the tolerant B. carinata, enzymes involved in the detoxification of free radicals increased in response to the pathogen whereas no such increase was observed in the susceptible B. napus. The expression of genes encoding four selected proteins was validated using quantitative real-time PCR and an additional one by Western blotting. Our findings are discussed with respect to tolerance or susceptibility of these species to the pathogen. PMID:18668695

  20. f-divergence cutoff index to simultaneously identify differential expression in the integrated transcriptome and proteome

    PubMed Central

    Tang, Shaojun; Hemberg, Martin; Cansizoglu, Ertugrul; Belin, Stephane; Kosik, Kenneth; Kreiman, Gabriel; Steen, Hanno; Steen, Judith

    2016-01-01

    The ability to integrate ‘omics’ (i.e. transcriptomics and proteomics) is becoming increasingly important to the understanding of regulatory mechanisms. There are currently no tools available to identify differentially expressed genes (DEGs) across different ‘omics’ data types or multi-dimensional data including time courses. We present fCI (f-divergence Cut-out Index), a model capable of simultaneously identifying DEGs from continuous and discrete transcriptomic, proteomic and integrated proteogenomic data. We show that fCI can be used across multiple diverse sets of data and can unambiguously find genes that show functional modulation, developmental changes or misregulation. Applying fCI to several proteogenomics datasets, we identified a number of important genes that showed distinctive regulation patterns. The package fCI is available at R Bioconductor and http://software.steenlab.org/fCI/. PMID:26980280

  1. f-divergence cutoff index to simultaneously identify differential expression in the integrated transcriptome and proteome.

    PubMed

    Tang, Shaojun; Hemberg, Martin; Cansizoglu, Ertugrul; Belin, Stephane; Kosik, Kenneth; Kreiman, Gabriel; Steen, Hanno; Steen, Judith

    2016-06-01

    The ability to integrate 'omics' (i.e. transcriptomics and proteomics) is becoming increasingly important to the understanding of regulatory mechanisms. There are currently no tools available to identify differentially expressed genes (DEGs) across different 'omics' data types or multi-dimensional data including time courses. We present fCI (f-divergence Cut-out Index), a model capable of simultaneously identifying DEGs from continuous and discrete transcriptomic, proteomic and integrated proteogenomic data. We show that fCI can be used across multiple diverse sets of data and can unambiguously find genes that show functional modulation, developmental changes or misregulation. Applying fCI to several proteogenomics datasets, we identified a number of important genes that showed distinctive regulation patterns. The package fCI is available at R Bioconductor and http://software.steenlab.org/fCI/. PMID:26980280

  2. Quantitative proteomic analysis of cold-responsive proteins in rice.

    PubMed

    Neilson, Karlie A; Mariani, Michael; Haynes, Paul A

    2011-05-01

    Rice is susceptible to cold stress and with a future of climatic instability we will be unable to produce enough rice to satisfy increasing demand. A thorough understanding of the molecular responses to thermal stress is imperative for engineering cultivars, which have greater resistance to low temperature stress. In this study we investigated the proteomic response of rice seedlings to 48, 72 and 96 h of cold stress at 12-14°C. The use of both label-free and iTRAQ approaches in the analysis of global protein expression enabled us to assess the complementarity of the two techniques for use in plant proteomics. The approaches yielded a similar biological response to cold stress despite a disparity in proteins identified. The label-free approach identified 236 cold-responsive proteins compared to 85 in iTRAQ results, with only 24 proteins in common. Functional analysis revealed differential expression of proteins involved in transport, photosynthesis, generation of precursor metabolites and energy; and, more specifically, histones and vitamin B biosynthetic proteins were observed to be affected by cold stress. PMID:21433000

  3. Proteomic Analysis of Neutrophil Priming by PAF.

    PubMed

    Aquino, Elaine N; Neves, Anne C D; Santos, Karina C; Uribe, Carlos E; Souza, Paulo E N; Correa, José R; Castro, Mariana S; Fontes, Wagner

    2016-01-01

    Polymorphonuclear neutrophils are the main cells of the innate immunity inflammatory response. Several factors can activate or stimulate neutrophils, including platelet-activating factor (PAF), a lipid mediator. Some authors consider the activation induced by PAF priming because it triggers limited production of reactive oxygen species (ROS) and it amplifies the response of the cell to a subsequent activator. The stimulation is reversible, which is critical for modulating the inflammatory response. Exacerbated inflammatory responses lead to serious diseases, such as systemic inflammatory response syndrome (SIRS), among others. Characterizing the stimulation of neutrophils during the possible reversion or prevention of an exaggerated inflammatory response is critical for the development of control strategies. In this study, a proteomic approach was used to identify 36 proteins that differ in abundance between quiescent neutrophils and PAFstimulated neutrophils. The identified proteins were associated with increased DNA repair processes, calcium flux, protein transcription, cytoskeleton alterations that facilitate migration and degranulation, and the release of proinflammatory cytokines and proteins that modulate the inflammatory response. Some of the identified proteins have not been previously reported in neutrophils. PMID:26631175

  4. Proteome Analysis of Poplar Seed Vigor.

    PubMed

    Zhang, Hong; Wang, Wei-Qing; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-01-01

    Seed vigor is a complex property that determines the seed's potential for rapid uniform emergence and subsequent growth. However, the mechanism for change in seed vigor is poorly understood. The seeds of poplar (Populus × Canadensis Moench), which are short-lived, were stored at 30 °C and 75 ± 5% relative humidity for different periods of time (0-90 days) to obtain different vigor seeds (from 95 to 0% germination). With decreasing seed vigor, the temperature range of seed germination became narrower; the respiration rate of the seeds decreased markedly, while the relative electrolyte leakage increased markedly, both levelling off after 45 days. A total of 81 protein spots showed a significant change in abundance (≥ 1.5-fold, P < 0.05) when comparing the proteomes among seeds with different vigor. Of the identified 65 proteins, most belonged to the groups involved in metabolism (23%), protein synthesis and destination (22%), energy (18%), cell defense and rescue (17%), and storage protein (15%). These proteins accounted for 95% of all the identified proteins. During seed aging, 53 and 6 identified proteins consistently increased and decreased in abundance, respectively, and they were associated with metabolism (22%), protein synthesis and destination (22%), energy (19%), cell defense and rescue (19%), storage proteins (15%), and cell growth and structure (3%). These data show that the decrease in seed vigor (aging) is an energy-dependent process, which requires protein synthesis and degradation as well as cellular defense and rescue. PMID:26172265

  5. Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva.

    PubMed

    Mudenda, Lwiindi; Pierlé, Sebastián Aguilar; Turse, Joshua E; Scoles, Glen A; Purvine, Samuel O; Nicora, Carrie D; Clauss, Therese R W; Ueti, Massaro W; Brown, Wendy C; Brayton, Kelly A

    2014-11-01

    Dermacentor andersoni, known as the Rocky Mountain wood tick, is found in the western United States and transmits pathogens that cause diseases of veterinary and public health importance including Rocky Mountain spotted fever, tularemia, Colorado tick fever and bovine anaplasmosis. Tick saliva is known to modulate both innate and acquired immune responses, enabling ticks to feed for several days without detection. During feeding ticks subvert host defences such as hemostasis and inflammation, which would otherwise result in coagulation, wound repair and rejection of the tick. Molecular characterization of the proteins and pharmacological molecules secreted in tick saliva offers an opportunity to develop tick vaccines as an alternative to the use of acaricides, as well as new anti-inflammatory drugs. We performed proteomics informed by transcriptomics to identify D. andersoni saliva proteins that are secreted during feeding. The transcript data generated a database of 21,797 consensus sequences, which we used to identify 677 proteins secreted in the saliva of D. andersoni ticks fed for 2 and 5days, following proteomic investigations of whole saliva using mass spectrometry. Salivary gland transcript levels of unfed ticks were compared with 2 and 5day fed ticks to identify genes upregulated early during tick feeding. We cross-referenced the proteomic data with the transcriptomic data to identify 157 proteins of interest for immunomodulation and blood feeding. Proteins of unknown function as well as known immunomodulators were identified. PMID:25110293

  6. Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva

    SciTech Connect

    Mudenda, Lwiindi; Aguilar Pierle, Sebastian; Turse, Joshua E.; Scoles, Glen A.; Purvine, Samuel O.; Nicora, Carrie D.; Clauss, Therese RW; Ueti, Massaro W.; Brown, Wendy C.; Brayton, Kelly A.

    2014-08-07

    Dermacentor andersoni, known as the Rocky Mountain wood tick, is found in the western United States and transmits pathogens that cause diseases of veterinary and public health importance including Rocky Mountain spotted fever, tularemia, Colorado tick fever and bovine anaplasmosis. Tick saliva is known to modulate both innate and acquired immune responses, enabling ticks to feed for several days without detection. During feeding ticks subvert host defences such as hemostasis and inflammation, which would otherwise result in coagulation, wound repair and rejection of the tick. Molecular characterization of the proteins and pharmacological molecules secreted in tick saliva offers an opportunity to develop tick vaccines as an alternative to the use of acaricides, as well as new anti-inflammatory drugs. We performed proteomics informed by transcriptomics to identify D. andersoni saliva proteins that are secreted during feeding. The transcript data generated a database of 21,797 consensus sequences, which we used to identify 677 proteins secreted in the saliva of D. andersoni ticks fed for 2 and 5 days, following proteomic investigations of whole saliva using mass spectrometry. Salivary gland transcript levels of unfed ticks were compared with 2 and 5 day fed ticks to identify genes upregulated early during tick feeding. We cross-referenced the proteomic data with the transcriptomic data to identify 157 proteins of interest for immunomodulation and blood feeding. Proteins of unknown function as well as known immunomodulators were identified.

  7. Brown recluse spider venom: proteomic analysis and proposal of a putative mechanism of action.

    PubMed

    dos Santos, Lucilene D; Dias, Nathalia B; Roberto, José; Pinto, A S; Palma, Mario S

    2009-01-01

    Loxosceles intermedia spider venom was subjected to proteomic analysis through a MudPIT shot-gun approach to identify the protein composition. Were identified 39 proteins which seem to responsible by the lesion of different types of tissues, to some physiopathological actions and by the prevention of structural damage to the toxin structures. PMID:19689420

  8. Global Proteome Analysis of Leptospira interrogans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comparative global proteome analyses were performed on Leptospira interrogans serovar Copenhageni grown under conventional in vitro conditions and those mimicking in vivo conditions (iron limitation and serum presence). Proteomic analyses were conducted using iTRAQ and LC-ESI-tandem mass spectrometr...

  9. Redox proteomic analysis of the gastrocnemius muscle from adult and old mice.

    PubMed

    McDonagh, Brian; Sakellariou, Giorgos K; Smith, Neil T; Brownridge, Philip; Jackson, Malcolm J

    2015-09-01

    The data provides information in support of the research article, "Differential Cysteine Labeling and Global Label-Free Proteomics Reveals an Altered Metabolic State in Skeletal Muscle Aging", Journal of Proteome Research, 2014, 13 (11), 2008-21 [1]. Raw data is available from ProteomeXchange [2] with identifier PDX001054. The proteome of gastrocnemius muscle from adult and old mice was analyzed by global label-free proteomics and the relative quantification of specific reduced and reversibly oxidized Cysteine (Cys) residues was performed using Skyline [3]. Briefly, reduced Cysteine (Cys) containing peptides was alkylated using N-ethylmalemide (d0-NEM). Samples were desalted and reversibly oxidized Cys residues were reduced using tris(2-carboxyethyl)phosphine (TCEP) and the newly formed reduced Cys residues were labeled with heavy NEM( d5-NEM). Label-free analysis of the global proteome of adult (n=5) and old (n=4) gastrocnemius muscles was performed using Peaks7™ mass spectrometry data analysis software [4]. Relative quantification of Cys containing peptides that were identified as reduced (d(0) NEM labeled) and reversibly oxidized d(5)-NEM labeled was performed using the intensity of their precursor ions in Skyline. Results indicate that muscles from old mice show reduced redox flexibility particularly in proteins involved in the generation of precursor metabolites and energy metabolism, indicating a loss in the flexibility of the redox energy response. PMID:26217813

  10. Characterization of a SILAC method for proteomic analysis of primary rat microglia

    PubMed Central

    Zhang, Ping; Culver-Cochran, Ashley E.; Stevens, Stanley M.; Liu, Bin

    2016-01-01

    Microglia play important and dynamic roles in mediating a variety of physiological and pathological processes during the development, normal function and degeneration of the central nervous system. Application of SILAC-based proteomic analysis would greatly facilitate the identification of cellular pathways regulating the multifaceted phenotypes of microglia. We and others have successfully SILAC-labeled immortalized murine microglial cell lines in previous studies. In this study, we report the development and evaluation of a SILAC-labeled primary rat microglia model. Although the isotope labeling scheme for primary microglia is drastically different from that of immortalized cell lines, our de novo and uninterrupted primary culture labeling protocol (DUP-SILAC) resulted in sufficient incorporation of SILAC labels for mass spectrometry-based proteomic profiling. In addition, label incorporation did not alter their morphology and response to endotoxin stimulation. Proteomic analysis of the endotoxin-stimulated SILAC-labeled primary microglia identified expected as well as potentially novel activation markers and pro-inflammatory pathways that could be quantified in a more physiologically relevant cellular model system compared to immortalized cell lines. The establishment of primary microglia SILAC model will further expand our capacity for global scale proteomic profiling of pathways under various physiological and pathological conditions. Proteomic data are available via ProteomeXchange with identifier PXD002759. PMID:26936193

  11. Proteomic analysis of mare follicular fluid during late follicle development

    PubMed Central

    2011-01-01

    Background Follicular fluid accumulates into the antrum of follicle from the early stage of follicle development. Studies on its components may contribute to a better understanding of the mechanisms underlying follicular development and oocyte quality. With this objective, we performed a proteomic analysis of mare follicular fluid. First, we hypothesized that proteins in follicular fluid may differ from those in the serum, and also may change during follicle development. Second, we used four different approaches of Immunodepletion and one enrichment method, in order to overcome the masking effect of high-abundance proteins present in the follicular fluid, and to identify those present in lower abundance. Finally, we compared our results with previous studies performed in mono-ovulant (human) and poly-ovulant (porcine and canine) species in an attempt to identify common and/or species-specific proteins. Methods Follicular fluid samples were collected from ovaries at three different stages of follicle development (early dominant, late dominant and preovulatory). Blood samples were also collected at each time. The proteomic analysis was carried out on crude, depleted and enriched follicular fluid by 2D-PAGE, 1D-PAGE and mass spectrometry. Results Total of 459 protein spots were visualized by 2D-PAGE of crude mare follicular fluid, with no difference among the three physiological stages. Thirty proteins were observed as differentially expressed between serum and follicular fluid. Enrichment method was found to be the most powerful method for detection and identification of low-abundance proteins from follicular fluid. Actually, we were able to identify 18 proteins in the crude follicular fluid, and as many as 113 in the enriched follicular fluid. Inhibins and a few other proteins involved in reproduction could only be identified after enrichment of follicular fluid, demonstrating the power of the method used. The comparison of proteins found in mare follicular fluid

  12. Proteomic Analysis of Vitreous Humor in Retinal Vein Occlusion

    PubMed Central

    Reich, Michael; Dacheva, Ivanka; Nobl, Matthias; Siwy, Justyna; Schanstra, Joost P.; Mullen, William; Koch, Frank H. J.; Kopitz, Jürgen; Kretz, Florian T. A.; Auffarth, Gerd U.; Koss, Michael J.

    2016-01-01

    Purpose To analyze the protein profile of human vitreous of untreated patients with retinal vein occlusion (RVO). Methods Sixty-eight vitreous humor (VH) samples (44 from patients with treatment naïve RVO, 24 controls with idiopathic floaters) were analyzed in this clinical-experimental study using capillary electrophoresis coupled to mass spectrometer and tandem mass spectrometry. To define potential candidate protein markers of RVO, proteomic analysis was performed on RVO patients (n = 30) and compared with controls (n = 16). To determine validity of potential biomarker candidates in RVO, receiver operating characteristic (ROC) was performed by using proteome data of independent RVO (n = 14) and control samples (n = 8). Results Ninety-four different proteins (736 tryptic peptides) could be identified. Sixteen proteins were found to be significant when comparing RVO and control samples (P = 1.43E-05 to 4.48E-02). Five proteins (Clusterin, Complement C3, Ig lambda-like polypeptide 5 (IGLL5), Opticin and Vitronectin), remained significant after using correction for multiple testing. These five proteins were also detected significant when comparing subgroups of RVO (central RVO, hemi-central RVO, branch RVO) to controls. Using independent samples ROC-Area under the curve was determined proving the validity of the results: Clusterin 0.884, Complement C3 0.955, IGLL5 1.000, Opticin 0.741, Vitronectin 0.786. In addition, validation through ELISA measurements was performed. Conclusion The results of the study reveal that the proteomic composition of VH differed significantly between the patients with RVO and the controls. The proteins identified may serve as potential biomarkers for pathogenesis induced by RVO. PMID:27362861

  13. Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags

    PubMed Central

    Lipton, Mary S.; Paša-Tolić, Ljiljana; Anderson, Gordon A.; Anderson, David J.; Auberry, Deanna L.; Battista, John R.; Daly, Michael J.; Fredrickson, Jim; Hixson, Kim K.; Kostandarithes, Heather; Masselon, Christophe; Markillie, Lye Meng; Moore, Ronald J.; Romine, Margaret F.; Shen, Yufeng; Stritmatter, Eric; Tolić, Nikola; Udseth, Harold R.; Venkateswaran, Amudhan; Wong, Kwong-Kwok; Zhao, Rui; Smith, Richard D.

    2002-01-01

    Understanding biological systems and the roles of their constituents is facilitated by the ability to make quantitative, sensitive, and comprehensive measurements of how their proteome changes, e.g., in response to environmental perturbations. To this end, we have developed a high-throughput methodology to characterize an organism's dynamic proteome based on the combination of global enzymatic digestion, high-resolution liquid chromatographic separations, and analysis by Fourier transform ion cyclotron resonance mass spectrometry. The peptides produced serve as accurate mass tags for the proteins and have been used to identify with high confidence >61% of the predicted proteome for the ionizing radiation-resistant bacterium Deinococcus radiodurans. This fraction represents the broadest proteome coverage for any organism to date and includes 715 proteins previously annotated as either hypothetical or conserved hypothetical. PMID:12177431

  14. Proteomic analysis of murine testes lipid droplets

    PubMed Central

    Wang, Weiyi; Wei, Suning; Li, Linghai; Su, Xueying; Du, Congkuo; Li, Fengjuan; Geng, Bin; Liu, Pingsheng; Xu, Guoheng

    2015-01-01

    Testicular Leydig cells contain abundant cytoplasmic lipid droplets (LDs) as a cholesteryl-ester store for releasing cholesterols as the precursor substrate for testosterone biosynthesis. Here, we identified the protein composition of testicular LDs purified from adult mice by using mass spectrometry and immunodetection. Among 337 proteins identified, 144 were previously detected in LD proteomes; 44 were confirmed by microscopy. Testicular LDs contained multiple Rab GTPases, chaperones, and proteins involved in glucuronidation, ubiquination and transport, many known to modulate LD formation and LD-related cellular functions. In particular, testicular LDs contained many members of both the perilipin family and classical lipase/esterase superfamily assembled predominately in adipocyte LDs. Thus, testicular LDs might be regulated similar to adipocyte LDs. Remarkably, testicular LDs contained a large number of classical enzymes for biosynthesis and metabolism of cholesterol and hormonal steroids, so steroidogenic reactions might occur on testicular LDs or the steroidogenic enzymes and products could be transferred through testicular LDs. These characteristics differ from the LDs in most other types of cells, so testicular LDs could be an active organelle functionally involved in steroidogenesis. PMID:26159641

  15. Micro-proteomics with iterative data analysis: Proteome analysis in C. elegans at the single worm level.

    PubMed

    Bensaddek, Dalila; Narayan, Vikram; Nicolas, Armel; Murillo, Alejandro Brenes; Gartner, Anton; Kenyon, Cynthia J; Lamond, Angus I

    2016-02-01

    Proteomics studies typically analyze proteins at a population level, using extracts prepared from tens of thousands to millions of cells. The resulting measurements correspond to average values across the cell population and can mask considerable variation in protein expression and function between individual cells or organisms. Here, we report the development of micro-proteomics for the analysis of Caenorhabditis elegans, a eukaryote composed of 959 somatic cells and ∼1500 germ cells, measuring the worm proteome at a single organism level to a depth of ∼3000 proteins. This includes detection of proteins across a wide dynamic range of expression levels (>6 orders of magnitude), including many chromatin-associated factors involved in chromosome structure and gene regulation. We apply the micro-proteomics workflow to measure the global proteome response to heat-shock in individual nematodes. This shows variation between individual animals in the magnitude of proteome response following heat-shock, including variable induction of heat-shock proteins. The micro-proteomics pipeline thus facilitates the investigation of stochastic variation in protein expression between individuals within an isogenic population of C. elegans. All data described in this study are available online via the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd), an open access, searchable database resource. PMID:26552604

  16. Micro‐proteomics with iterative data analysis: Proteome analysis in C. elegans at the single worm level

    PubMed Central

    Bensaddek, Dalila; Narayan, Vikram; Nicolas, Armel; Brenes Murillo, Alejandro; Gartner, Anton; Kenyon, Cynthia J.

    2016-01-01

    Proteomics studies typically analyze proteins at a population level, using extracts prepared from tens of thousands to millions of cells. The resulting measurements correspond to average values across the cell population and can mask considerable variation in protein expression and function between individual cells or organisms. Here, we report the development of micro‐proteomics for the analysis of Caenorhabditis elegans, a eukaryote composed of 959 somatic cells and ∼1500 germ cells, measuring the worm proteome at a single organism level to a depth of ∼3000 proteins. This includes detection of proteins across a wide dynamic range of expression levels (>6 orders of magnitude), including many chromatin‐associated factors involved in chromosome structure and gene regulation. We apply the micro‐proteomics workflow to measure the global proteome response to heat‐shock in individual nematodes. This shows variation between individual animals in the magnitude of proteome response following heat‐shock, including variable induction of heat‐shock proteins. The micro‐proteomics pipeline thus facilitates the investigation of stochastic variation in protein expression between individuals within an isogenic population of C. elegans. All data described in this study are available online via the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd), an open access, searchable database resource. PMID:26552604

  17. Global analysis of a 'simple' proteome : methanoccus jannaschii.

    SciTech Connect

    Giometti, C. S.; Reich, C.; Tollaksen, S.; Babnigg, G.; Lim, H.; Zhu, W.; Yates, J., III; Olsen, G.; Biosciences Division; Univ. of Illinois; The Scripps Inst.

    2002-12-25

    The completed genome of Methanococcus jannaschii, including the main chromosome and two extra-chromosomal elements, predicts a proteome comprised of 1783 proteins. How many of those proteins are expressed at any given time and the relative abundance of the expressed proteins, however, cannot be predicted solely from the genome sequence. Two-dimensional gel electrophoresis coupled with peptide mass spectrometry is being used to identify the proteins expressed by M. jannaschii cells grown under different conditions as part of an effort to correlate protein expression with regulatory mechanisms. Here we describe the identification of 170 of the most abundant proteins found in total lysates of M. jannaschii grown under optimal fermentation conditions. To optimize the number of proteins detected, two different protein specific stains (Coomassie Blue R250 or silver nitrate) and two different first dimension separation methods (isoelectric focusing or nonequilibrium pH gradient electrophoresis) were used. Thirty-two percent of the proteins identified are annotated as hypothetical (21% conserved hypothetical and 11% hypothetical), 21% are enzymes involved in energy metabolism, 12% are proteins required for protein synthesis, and the remainder include proteins necessary for intermediary metabolism, cell division, and cell structure. Evidence of post-translational modification of numerous M. jannaschii proteins has been found, as well as indications of incomplete dissociation of protein-protein complexes. These results demonstrate the complexity of proteome analysis even when dealing with a relatively simple genome.

  18. A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation

    PubMed Central

    Viader, Andreu; Ogasawara, Daisuke; Joslyn, Christopher M; Sanchez-Alavez, Manuel; Mori, Simone; Nguyen, William; Conti, Bruno; Cravatt, Benjamin F

    2016-01-01

    Metabolic specialization among major brain cell types is central to nervous system function and determined in large part by the cellular distribution of enzymes. Serine hydrolases are a diverse enzyme class that plays fundamental roles in CNS metabolism and signaling. Here, we perform an activity-based proteomic analysis of primary mouse neurons, astrocytes, and microglia to furnish a global portrait of the cellular anatomy of serine hydrolases in the brain. We uncover compelling evidence for the cellular compartmentalization of key chemical transmission pathways, including the functional segregation of endocannabinoid (eCB) biosynthetic enzymes diacylglycerol lipase-alpha (DAGLα) and –beta (DAGLβ) to neurons and microglia, respectively. Disruption of DAGLβ perturbed eCB-eicosanoid crosstalk specifically in microglia and suppressed neuroinflammatory events in vivo independently of broader effects on eCB content. Mapping the cellular distribution of metabolic enzymes thus identifies pathways for regulating specialized inflammatory responses in the brain while avoiding global alterations in CNS function. DOI: http://dx.doi.org/10.7554/eLife.12345.001 PMID:26779719

  19. Systematic VCP-UBXD Adaptor Network Proteomics Identifies a Role for UBXN10 in Regulating Ciliogenesis

    PubMed Central

    Raman, Malavika; Sergeev, Mikhail; Garnaas, Maija; Lydeard, John R.; Huttlin, Edward L.; Goessling, Wolfram; Shah, Jagesh V.; Harper, J. Wade

    2015-01-01

    The AAA-ATPase VCP (also known as p97 or CDC48) uses ATP hydrolysis to “segregate” ubiquitinated proteins from their binding partners. VCP acts via UBX-domain containing adaptors that provide target specificity, but targets and functions of UBXD proteins remain poorly understood. Through systematic proteomic analysis of UBXD proteins in human cells, we reveal a network of over 195 interacting proteins, implicating VCP in diverse cellular pathways. We have explored one such complex between an unstudied adaptor UBXN10 and the intraflagellar transport B (IFT-B) complex, which regulates anterograde transport into cilia. UBXN10 localizes to cilia in a VCP-dependent manner and both VCP and UBXN10 are required for ciliogenesis. Pharmacological inhibition of VCP destabilized the IFT-B complex and increased trafficking rates. Depletion of UBXN10 in zebrafish embryos causes defects in left-right asymmetry, which depends on functional cilia. This study provides a resource for exploring the landscape of UBXD proteins in biology and identifies an unexpected requirement for VCP-UBXN10 in ciliogenesis. PMID:26389662

  20. Proteomic analysis of endoplasmic reticulum stress responses in rice seeds

    PubMed Central

    Qian, Dandan; Tian, Lihong; Qu, Leqing

    2015-01-01

    The defects in storage proteins secretion in the endosperm of transgenic rice seeds often leads to endoplasmic reticulum (ER) stress, which produces floury and shrunken seeds, but the mechanism of this response remains unclear. We used an iTRAQ-based proteomics analysis of ER-stressed rice seeds due to the endosperm-specific suppression of OsSar1 to identify changes in the protein levels in response to ER stress. ER stress changed the expression of 405 proteins in rice seed by >2.0- fold compared with the wild-type control. Of these proteins, 140 were upregulated and 265 were downregulated. The upregulated proteins were mainly involved in protein modification, transport and degradation, and the downregulated proteins were mainly involved in metabolism and stress/defense responses. A KOBAS analysis revealed that protein-processing in the ER and degradation-related proteasome were the predominant upregulated pathways in the rice endosperm in response to ER stress. Trans-Golgi protein transport was also involved in the ER stress response. Combined with bioinformatic and molecular biology analyses, our proteomic data will facilitate our understanding of the systemic responses to ER stress in rice seeds. PMID:26395408

  1. Proteomic analysis of endoplasmic reticulum stress responses in rice seeds.

    PubMed

    Qian, Dandan; Tian, Lihong; Qu, Leqing

    2015-01-01

    The defects in storage proteins secretion in the endosperm of transgenic rice seeds often leads to endoplasmic reticulum (ER) stress, which produces floury and shrunken seeds, but the mechanism of this response remains unclear. We used an iTRAQ-based proteomics analysis of ER-stressed rice seeds due to the endosperm-specific suppression of OsSar1 to identify changes in the protein levels in response to ER stress. ER stress changed the expression of 405 proteins in rice seed by >2.0- fold compared with the wild-type control. Of these proteins, 140 were upregulated and 265 were downregulated. The upregulated proteins were mainly involved in protein modification, transport and degradation, and the downregulated proteins were mainly involved in metabolism and stress/defense responses. A KOBAS analysis revealed that protein-processing in the ER and degradation-related proteasome were the predominant upregulated pathways in the rice endosperm in response to ER stress. Trans-Golgi protein transport was also involved in the ER stress response. Combined with bioinformatic and molecular biology analyses, our proteomic data will facilitate our understanding of the systemic responses to ER stress in rice seeds. PMID:26395408

  2. Proteomic analysis of naturally-sourced biological scaffolds.

    PubMed

    Li, Qiyao; Uygun, Basak E; Geerts, Sharon; Ozer, Sinan; Scalf, Mark; Gilpin, Sarah E; Ott, Harald C; Yarmush, Martin L; Smith, Lloyd M; Welham, Nathan V; Frey, Brian L

    2016-01-01

    A key challenge to the clinical implementation of decellularized scaffold-based tissue engineering lies in understanding the process of removing cells and immunogenic material from a donor tissue/organ while maintaining the biochemical and biophysical properties of the scaffold that will promote growth of newly seeded cells. Current criteria for evaluating whole organ decellularization are primarily based on nucleic acids, as they are easy to quantify and have been directly correlated to adverse host responses. However, numerous proteins cause immunogenic responses and thus should be measured directly to further understand and quantify the efficacy of decellularization. In addition, there has been increasing appreciation for the role of the various protein components of the extracellular matrix (ECM) in directing cell growth and regulating organ function. We performed in-depth proteomic analysis on four types of biological scaffolds and identified a large number of both remnant cellular and ECM proteins. Measurements of individual protein abundances during the decellularization process revealed significant removal of numerous cellular proteins, but preservation of most structural matrix proteins. The observation that decellularized scaffolds still contain many cellular proteins, although at decreased abundance, indicates that elimination of DNA does not assure adequate removal of all cellular material. Thus, proteomic analysis provides crucial characterization of the decellularization process to create biological scaffolds for future tissue/organ replacement therapies. PMID:26476196

  3. Proteome analysis of Halobacterium sp. NRC-1 facilitated by the biomodule analysis tool BMSorter.

    PubMed

    Gan, Rueichi R; Yi, Eugene C; Chiu, Yulun; Lee, Hookeun; Kao, Yu-Chieh P; Wu, Timothy H; Aebersold, Ruedi; Goodlett, David R; Ng, Wailap Victor

    2006-06-01

    To better understand the extremely halophilic archaeon Halobacterium species NRC-1, we analyzed its soluble proteome by two-dimensional liquid chromatography coupled to electrospray ionization tandem mass spectrometry. A total of 888 unique proteins were identified with a ProteinProphet probability (P) between 0.9 and 1.0. To evaluate the biochemical activities of the organism, the proteomic data were subjected to a biological network analysis using our BMSorter software. This allowed us to examine the proteins expressed in different biomodules and study the interactions between pertinent biomodules. Interestingly an integrated analysis of the enzymes in the amino acid metabolism and citrate cycle networks suggested that up to eight amino acids may be converted to oxaloacetate, fumarate, or oxoglutarate in the citrate cycle for energy production. In addition, glutamate and aspartate may be interconverted from other amino acids or synthesized from citrate cycle intermediates to meet the high demand for the acidic amino acids that are required to build the highly acidic proteome of the organism. Thus this study demonstrated that proteome analysis can provide useful information and help systems analyses of organisms. PMID:16497792

  4. Analysis of soybean seed proteins using proteomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This editorial elaborates on investigations consisting of different proteomics technologies and their application to biological sciences. In addition, different classes of soybean seed proteins are discussed. This information will be useful to scientists in obtaining a greater understanding of the...

  5. Proteome-wide analysis and diel proteomic profiling of the cyanobacterium Arthrospira platensis PCC 8005.

    PubMed

    Matallana-Surget, Sabine; Derock, Jérémy; Leroy, Baptiste; Badri, Hanène; Deschoenmaeker, Frédéric; Wattiez, Ruddy

    2014-01-01

    The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation. PMID:24914774

  6. Proteome-Wide Analysis and Diel Proteomic Profiling of the Cyanobacterium Arthrospira platensis PCC 8005

    PubMed Central

    Matallana-Surget, Sabine; Derock, Jérémy; Leroy, Baptiste; Badri, Hanène; Deschoenmaeker, Frédéric; Wattiez, Ruddy

    2014-01-01

    The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation. PMID:24914774

  7. [Challenge to the Development of Molecular Targeted Therapy against a Novel Target Candidate Identified by Antibody Proteomics Technology].

    PubMed

    Nagano, Kazuya

    2016-01-01

    Disease proteomics that systemically analyzes and identifies differentially expressed proteins between healthy and diseased samples is a potentially useful approach for obtaining target proteins for drug development. To date, however, very few target proteins have been identified from this field. A key issue that remains to be resolved is how to correctly identify target proteins from a number of potential candidates. To circumvent this problem, we have developed "antibody proteomics technology" in which a single chain Fv phage antibody library is utilized for proteome analysis. Here, we describe the application of this technology by primarily focusing on Eph receptor A10 (EphA10), a novel breast cancer-related protein that is a promising target for antibody drugs. To establish an effective and safe targeted cancer therapy, it is important that the target is specifically expressed in cancer tissues. Therefore, we attempted to analyze the EphA10 expression profiles. Tissue microarray analysis showed that EphA10 was expressed in all subtypes of breast cancer containing triple negative breast cancer cases. On the other hand, EphA10 was only expressed in testis tissue among 36 kinds of normal tissues. Thus, EphA10 could be a highly cancer-specific protein, making it a promising target for female breast cancer patients. Finally, we examined the anti-tumor effect by anti-EphA10 antibody, aiming for the development of a novel EphA10 targeting therapy. Administration of the antibody showed that tumor volumes were significantly inhibited. Our results suggest that targeting EphA10 in breast cancer cases might be a promising new form of therapy. PMID:26831784

  8. Stressor-induced proteome alterations in zebrafish: a meta-analysis of response patterns.

    PubMed

    Groh, Ksenia J; Suter, Marc J-F

    2015-02-01

    Proteomics approaches are being increasingly applied in ecotoxicology on the premise that the identification of specific protein expression changes in response to a particular chemical would allow elucidation of the underlying molecular pathways leading to an adverse effect. This in turn is expected to promote the development of focused testing strategies for specific groups of toxicants. Although both gel-based and gel-free global characterization techniques provide limited proteome coverage, the conclusions regarding the cellular processes affected are still being drawn based on the few changes detected. To investigate how specific the detected responses are, we analyzed a set of studies that characterized proteome alterations induced by various physiological, chemical and biological stressors in zebrafish, a popular model organism. Our analysis highlights several proteins and protein groups, including heat shock and oxidative stress defense proteins, energy metabolism enzymes and cytoskeletal proteins, to be most frequently identified as responding to diverse stressors. In contrast, other potentially more specifically responding protein groups are detected much less frequently. Thus, zebrafish proteome responses to stress reported by different studies appear to depend mostly on the level of stress rather than on the specific stressor itself. This suggests that the most broadly used current proteomics technologies do not provide sufficient proteome coverage to allow in-depth investigation of specific mechanisms of toxicant action. We suggest that the results of any differential proteomics experiment performed with zebrafish should be interpreted keeping in mind the list of the most frequent responders that we have identified. Similar reservations should apply to any other species where proteome responses are analyzed by global proteomics methods. Careful consideration of the reliability and significance of observed changes is necessary in order not to over

  9. Connecting Genomic Alterations to Cancer Biology with Proteomics: The NCI Clinical Proteomic Tumor Analysis Consortium

    SciTech Connect

    Ellis, Matthew; Gillette, Michael; Carr, Steven A.; Paulovich, Amanda G.; Smith, Richard D.; Rodland, Karin D.; Townsend, Reid; Kinsinger, Christopher; Mesri, Mehdi; Rodriguez, Henry; Liebler, Daniel

    2013-10-03

    The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium is applying the latest generation of proteomic technologies to genomically annotated tumors from The Cancer Genome Atlas (TCGA) program, a joint initiative of the NCI and the National Human Genome Research Institute. By providing a fully integrated accounting of DNA, RNA, and protein abnormalities in individual tumors, these datasets will illuminate the complex relationship between genomic abnormalities and cancer phenotypes, thus producing biologic insights as well as a wave of novel candidate biomarkers and therapeutic targets amenable to verifi cation using targeted mass spectrometry methods.

  10. A Proteomic Analysis of Maize Chloroplast Biogenesis1

    PubMed Central

    Lonosky, Patricia M.; Zhang, Xiaosi; Honavar, Vasant G.; Dobbs, Drena L.; Fu, Aigen; Rodermel, Steve R.

    2004-01-01

    Proteomics studies to explore global patterns of protein expression in plant and green algal systems have proliferated within the past few years. Although most of these studies have involved mapping of the proteomes of various organs, tissues, cells, or organelles, comparative proteomics experiments have also led to the identification of proteins that change in abundance in various developmental or physiological contexts. Despite the growing use of proteomics in plant studies, questions of reproducibility have not generally been addressed, nor have quantitative methods been widely used, for example, to identify protein expression classes. In this report, we use the de-etiolation (“greening”) of maize (Zea mays) chloroplasts as a model system to explore these questions, and we outline a reproducible protocol to identify changes in the plastid proteome that occur during the greening process using techniques of two-dimensional gel electrophoresis and mass spectrometry. We also evaluate hierarchical and nonhierarchical statistical methods to analyze the patterns of expression of 526 “high-quality,” unique spots on the two-dimensional gels. We conclude that Adaptive Resonance Theory 2—a nonhierarchical, neural clustering technique that has not been previously applied to gene expression data—is a powerful technique for discriminating protein expression classes during greening. Our experiments provide a foundation for the use of proteomics in the design of experiments to address fundamental questions in plant physiology and molecular biology. PMID:14966246

  11. Nanobiocatalysis for protein digestion in proteomic analysis

    SciTech Connect

    Kim, Jungbae; Kim, Byoung Chan; Lopez-Ferrer, Daniel; Petritis, Konstantinos; Smith, Richard D.

    2010-02-01

    The process of protein digestion is a critical step for successful protein identification in the bottom-up proteomic analysis. To substitute the present practice of in-solution protein digestion, which is long, tedious, and difficult to automate, a lot of efforts have been dedicated for the development of a rapid, recyclable and automated digestion system. Recent advances of nanobiocatalytic approaches have improved the performance of protein digestion by using various nanomaterials such as nanoporous materials, magnetic nanoparticles, and polymer nanofibers. Especially, the unprecedented success of trypsin stabilization in the form of trypsin-coated nanofibers, showing no activity decrease under repeated uses for one year and retaining good resistance to proteolysis, has demonstrated its great potential to be employed in the development of automated, high-throughput, and on-line digestion systems. This review discusses recent developments of nanobiocatalytic approaches for the improved performance of protein digestion in speed, detection sensitivity, recyclability, and trypsin stability. In addition, we also introduce the protein digestions under unconventional energy inputs for protein denaturation and the development of microfluidic enzyme reactors that can benefit from recent successes of these nanobiocatalytic approaches.

  12. A Comprehensive Transcriptomic and Proteomic Analysis of Hydra Head Regeneration

    PubMed Central

    Petersen, Hendrik O.; Höger, Stefanie K.; Looso, Mario; Lengfeld, Tobias; Kuhn, Anne; Warnken, Uwe; Nishimiya-Fujisawa, Chiemi; Schnölzer, Martina; Krüger, Marcus; Özbek, Suat; Simakov, Oleg; Holstein, Thomas W.

    2015-01-01

    The cnidarian freshwater polyp Hydra sp. exhibits an unparalleled regeneration capacity in the animal kingdom. Using an integrative transcriptomic and stable isotope labeling by amino acids in cell culture proteomic/phosphoproteomic approach, we studied stem cell-based regeneration in Hydra polyps. As major contributors to head regeneration, we identified diverse signaling pathways adopted for the regeneration response as well as enriched novel genes. Our global analysis reveals two distinct molecular cascades: an early injury response and a subsequent, signaling driven patterning of the regenerating tissue. A key factor of the initial injury response is a general stabilization of proteins and a net upregulation of transcripts, which is followed by a subsequent activation cascade of signaling molecules including Wnts and transforming growth factor (TGF) beta-related factors. We observed moderate overlap between the factors contributing to proteomic and transcriptomic responses suggesting a decoupled regulation between the transcriptional and translational levels. Our data also indicate that interstitial stem cells and their derivatives (e.g., neurons) have no major role in Hydra head regeneration. Remarkably, we found an enrichment of evolutionarily more recent genes in the early regeneration response, whereas conserved genes are more enriched in the late phase. In addition, genes specific to the early injury response were enriched in transposon insertions. Genetic dynamicity and taxon-specific factors might therefore play a hitherto underestimated role in Hydra regeneration. PMID:25841488

  13. Comparative proteomic analysis of floral color variegation in peach.

    PubMed

    Zhou, Yong; Wu, Xinxin; Zhang, Zhen; Gao, Zhihong

    2015-09-01

    Variegation in flower is a special trait in ornamental peach (Prunus persica L.). To investigate the mechanism of color variegation, we used a combination of two dimensional gel electrophoresis and mass spectrometry to explore the proteomic profiles between variegated flower (VF) and red flower (RF) buds of the peach cultivar 'Sahong Tao'. More than 500 highly reproducible protein spots (P < 0.05) were detected and 72 protein spots showed a greater than two-fold difference in their values. We identified 70 proteins that may play roles in petal coloration. The mRNA levels of the corresponding genes were detected using quantitative RT-PCR. The results show that most of the proteins are involved in energy and metabolism, which provide energy and substrates. We found that LDOX, WD40, ACC, and PPO II are related to the pigment biosynthetic pathway. The activity of PPO enzyme was further validated and showed the higher with significant differences in RF compared with the VF ones. Moreover, the four UCH proteins are involved in protein fate and may be important in post-translational modifications in peach flowers. Our study is the first comparative proteomic analysis of floral variegation and will contribute to further investigations into the molecular mechanism of flower petal coloration in ornamental peach. PMID:26192118

  14. Proteomic Analysis Provides Insights on Venom Processing in Conus textile

    PubMed Central

    Tayo, Lemmuel L.; Lu, Bingwen; Cruz, Lourdes J.; Yates, John R.

    2010-01-01

    Conus species of marine snails deliver a potent collection of toxins from the venom duct via a long proboscis attached to a harpoon tooth. Conotoxins are known to possess powerful neurological effects and some have been developed for therapeutic uses. Using mass-spectrometry based proteomics, qualitative and quantitative differences in conotoxin components were found in the proximal, central and distal sections of the C. textile venom duct suggesting specialization of duct sections for biosynthesis of particular conotoxins. Reversed phase HPLC followed by Orbitrap mass spectrometry and data analysis using SEQUEST and ProLuCID identified 31 conotoxin sequences and 25 post-translational modification (PTM) variants with King-Kong 2 peptide being the most abundant. Several previously unreported variants of known conopeptides and were found and this is the first time that HyVal is reported for a disulfide rich Conus peptide. Differential expression along the venom duct, production of PTM variants, alternative proteolytic cleavage sites, and venom processing enroute to the proboscis all appear to contribute to enriching the combinatorial pool of conopeptides and producing the appropriate formulation for a particular hunting situation. The complimentary tools of mass spectrometry-based proteomics and molecular biology can greatly accelerate the discovery of Conus peptides and provide insights on envenomation and other biological strategies of cone snails. PMID:20334424

  15. A Comprehensive Transcriptomic and Proteomic Analysis of Hydra Head Regeneration.

    PubMed

    Petersen, Hendrik O; Höger, Stefanie K; Looso, Mario; Lengfeld, Tobias; Kuhn, Anne; Warnken, Uwe; Nishimiya-Fujisawa, Chiemi; Schnölzer, Martina; Krüger, Marcus; Özbek, Suat; Simakov, Oleg; Holstein, Thomas W

    2015-08-01

    The cnidarian freshwater polyp Hydra sp. exhibits an unparalleled regeneration capacity in the animal kingdom. Using an integrative transcriptomic and stable isotope labeling by amino acids in cell culture proteomic/phosphoproteomic approach, we studied stem cell-based regeneration in Hydra polyps. As major contributors to head regeneration, we identified diverse signaling pathways adopted for the regeneration response as well as enriched novel genes. Our global analysis reveals two distinct molecular cascades: an early injury response and a subsequent, signaling driven patterning of the regenerating tissue. A key factor of the initial injury response is a general stabilization of proteins and a net upregulation of transcripts, which is followed by a subsequent activation cascade of signaling molecules including Wnts and transforming growth factor (TGF) beta-related factors. We observed moderate overlap between the factors contributing to proteomic and transcriptomic responses suggesting a decoupled regulation between the transcriptional and translational levels. Our data also indicate that interstitial stem cells and their derivatives (e.g., neurons) have no major role in Hydra head regeneration. Remarkably, we found an enrichment of evolutionarily more recent genes in the early regeneration response, whereas conserved genes are more enriched in the late phase. In addition, genes specific to the early injury response were enriched in transposon insertions. Genetic dynamicity and taxon-specific factors might therefore play a hitherto underestimated role in Hydra regeneration. PMID:25841488

  16. Proteomic Analysis of Proton Beam Irradiated Human Melanoma Cells

    PubMed Central

    Kedracka-Krok, Sylwia; Jankowska, Urszula; Elas, Martyna; Sowa, Urszula; Swakon, Jan; Cierniak, Agnieszka; Olko, Pawel; Romanowska-Dixon, Bozena; Urbanska, Krystyna

    2014-01-01

    Proton beam irradiation is a form of advanced radiotherapy providing superior distributions of a low LET radiation dose relative to that of photon therapy for the treatment of cancer. Even though this clinical treatment has been developing for several decades, the proton radiobiology critical to the optimization of proton radiotherapy is far from being understood. Proteomic changes were analyzed in human melanoma cells treated with a sublethal dose (3 Gy) of proton beam irradiation. The results were compared with untreated cells. Two-dimensional electrophoresis was performed with mass spectrometry to identify the proteins. At the dose of 3 Gy a minimal slowdown in proliferation rate was seen, as well as some DNA damage. After allowing time for damage repair, the proteomic analysis was performed. In total 17 protein levels were found to significantly (more than 1.5 times) change: 4 downregulated and 13 upregulated. Functionally, they represent four categories: (i) DNA repair and RNA regulation (VCP, MVP, STRAP, FAB-2, Lamine A/C, GAPDH), (ii) cell survival and stress response (STRAP, MCM7, Annexin 7, MVP, Caprin-1, PDCD6, VCP, HSP70), (iii) cell metabolism (TIM, GAPDH, VCP), and (iv) cytoskeleton and motility (Moesin, Actinin 4, FAB-2, Vimentin, Annexin 7, Lamine A/C, Lamine B). A substantial decrease (2.3 x) was seen in the level of vimentin, a marker of epithelial to mesenchymal transition and the metastatic properties of melanoma. PMID:24392146

  17. Identification of Novel Amelogenin-Binding Proteins by Proteomics Analysis

    PubMed Central

    Fukuda, Takao; Sanui, Terukazu; Toyoda, Kyosuke; Tanaka, Urara; Taketomi, Takaharu; Uchiumi, Takeshi; Nishimura, Fusanori

    2013-01-01

    Emdogain (enamel matrix derivative, EMD) is well recognized in periodontology. It is used in periodontal surgery to regenerate cementum, periodontal ligament, and alveolar bone. However, the precise molecular mechanisms underlying periodontal regeneration are still unclear. In this study, we investigated the proteins bound to amelogenin, which are suggested to play a pivotal role in promoting periodontal tissue regeneration. To identify new molecules that interact with amelogenin and are involved in osteoblast activation, we employed coupling affinity chromatography with proteomic analysis in fractionated SaOS-2 osteoblastic cell lysate. In SaOS-2 cells, many of the amelogenin-interacting proteins in the cytoplasm were mainly cytoskeletal proteins and several chaperone molecules of heat shock protein 70 (HSP70) family. On the other hand, the proteomic profiles of amelogenin-interacting proteins in the membrane fraction of the cell extracts were quite different from those of the cytosolic-fraction. They were mainly endoplasmic reticulum (ER)-associated proteins, with lesser quantities of mitochondrial proteins and nucleoprotein. Among the identified amelogenin-interacting proteins, we validated the biological interaction of amelogenin with glucose-regulated protein 78 (Grp78/Bip), which was identified in both cytosolic and membrane-enriched fractions. Confocal co-localization experiment strongly suggested that Grp78/Bip could be an amelogenin receptor candidate. Further biological evaluations were examined by Grp78/Bip knockdown analysis with and without amelogenin. Within the limits of the present study, the interaction of amelogenin with Grp78/Bip contributed to cell proliferation, rather than correlate with the osteogenic differentiation in SaOS-2 cells. Although the biological significance of other interactions are not yet explored, these findings suggest that the differential effects of amelogenin-derived osteoblast activation could be of potential clinical

  18. Coupling protein complex analysis to peptide based proteomics.

    PubMed

    Gao, Qiang; Madian, Ashraf G; Liu, Xiuping; Adamec, Jiri; Regnier, Fred E

    2010-12-01

    Proteolysis is a central component of most proteomics methods. Unfortunately much of the information relating to the structural diversity of proteins is lost during digestion. This paper describes a method in which the native proteome of yeast was subjected to preliminary fractionation by size exclusion chromatography (SEC) prior to trypsin digestion of SEC fractions and reversed phase chromatography-mass spectral analysis to identify tryptic peptides thus generated. Through this approach proteins associated with other proteins in high molecular mass complexes were recognized and identified. A focus of this work was on the identification of Hub proteins that associate with multiple interaction partners. A critical component of this strategy is to choose methods and conditions that maximize retention of native structure during the various stages of analysis prior to proteolysis, especially during cell lysis. Maximum survival of protein complexes during lysis was obtained with the French press and bead-beater methods of cell disruption at approximately pH 8 with 200 mM NaCl in the lysis buffer. Structure retention was favored by higher ionic strength, suggesting that hydrophobic effects are important in maintaining the structure of protein complexes. Recovery of protein complexes declined substantially with storage at any temperature, but storage at -20°C was best when low temperature storage was necessary. Slightly lower recovery was obtained with storage at -80°C while lowest recovery was achieved at 4°C. It was concluded that initial fractionation of native proteins in cell lysates by SEC prior to RPC-MS/MS of tryptic digests can be used to recognize and identify proteins in complexes along with their interaction partners in known protein complexes. PMID:21036361

  19. Analysis of Drosophila melanogaster proteome dynamics during embryonic development by a combination of label-free proteomics approaches.

    PubMed

    Fabre, Bertrand; Korona, Dagmara; Groen, Arnoud; Vowinckel, Jakob; Gatto, Laurent; Deery, Michael J; Ralser, Markus; Russell, Steven; Lilley, Kathryn S

    2016-08-01

    During embryogenesis, organisms undergo considerable cellular remodelling requiring the combined action of thousands of proteins. In case of the well-studied model Drosophila melanogaster, transcriptomic studies, most notably from the modENCODE project, have described in detail changes in gene expression at the mRNA level across development. Although such data are clearly very useful to understand how the genome is regulated during embryogenesis, it is important to understand how changes in gene expression are reflected at the level of the proteome. In this study, we describe a combination of two quantitative label-free approaches, SWATH and data-dependent acquisition, to monitor changes in protein expression across a timecourse of D. melanogaster embryonic development. We demonstrate that both approaches provide robust and reproducible methods for the analysis of proteome changes. In a preliminary analysis of Drosophila embryogenesis, we identified several pathways, including the heat-shock response, nuclear protein import and energy production that are regulated during embryo development. In some cases changes in protein expression mirrored transcript levels across development, whereas other proteins showed signatures of post-transcriptional regulation. Taken together, our pilot study provides a solid platform for a more detailed exploration of the embryonic proteome. PMID:27029218

  20. Transcriptomic and Proteomic Analysis of Arion vulgaris—Proteins for Probably Successful Survival Strategies?

    PubMed Central

    Bulat, Tanja; Smidak, Roman; Sialana, Fernando J.; Jung, Gangsoo; Rattei, Thomas; Bilban, Martin; Sattmann, Helmut; Lubec, Gert; Aradska, Jana

    2016-01-01

    The Spanish slug, Arion vulgaris, is considered one of the hundred most invasive species in Central Europe. The immense and very successful adaptation and spreading of A. vulgaris suggest that it developed highly effective mechanisms to deal with infections and natural predators. Current transcriptomic and proteomic studies on gastropods have been restricted mainly to marine and freshwater gastropods. No transcriptomic or proteomic study on A. vulgaris has been carried out so far, and in the current study, the first transcriptomic database from adult specimen of A. vulgaris is reported. To facilitate and enable proteomics in this non-model organism, a mRNA-derived protein database was constructed for protein identification. A gel-based proteomic approach was used to obtain the first generation of a comprehensive slug mantle proteome. A total of 2128 proteins were unambiguously identified; 48 proteins represent novel proteins with no significant homology in NCBI non-redundant database. Combined transcriptomic and proteomic analysis revealed an extensive repertoire of novel proteins with a role in innate immunity including many associated pattern recognition, effector proteins and cytokine-like proteins. The number and diversity in gene families encoding lectins point to a complex defense system, probably as a result of adaptation to a pathogen-rich environment. These results are providing a fundamental and important resource for subsequent studies on molluscs as well as for putative antimicrobial compounds for drug discovery and biomedical applications. PMID:26986963

  1. Transcriptomic and Proteomic Analysis of Arion vulgaris--Proteins for Probably Successful Survival Strategies?

    PubMed

    Bulat, Tanja; Smidak, Roman; Sialana, Fernando J; Jung, Gangsoo; Rattei, Thomas; Bilban, Martin; Sattmann, Helmut; Lubec, Gert; Aradska, Jana

    2016-01-01

    The Spanish slug, Arion vulgaris, is considered one of the hundred most invasive species in Central Europe. The immense and very successful adaptation and spreading of A. vulgaris suggest that it developed highly effective mechanisms to deal with infections and natural predators. Current transcriptomic and proteomic studies on gastropods have been restricted mainly to marine and freshwater gastropods. No transcriptomic or proteomic study on A. vulgaris has been carried out so far, and in the current study, the first transcriptomic database from adult specimen of A. vulgaris is reported. To facilitate and enable proteomics in this non-model organism, a mRNA-derived protein database was constructed for protein identification. A gel-based proteomic approach was used to obtain the first generation of a comprehensive slug mantle proteome. A total of 2128 proteins were unambiguously identified; 48 proteins represent novel proteins with no significant homology in NCBI non-redundant database. Combined transcriptomic and proteomic analysis revealed an extensive repertoire of novel proteins with a role in innate immunity including many associated pattern recognition, effector proteins and cytokine-like proteins. The number and diversity in gene families encoding lectins point to a complex defense system, probably as a result of adaptation to a pathogen-rich environment. These results are providing a fundamental and important resource for subsequent studies on molluscs as well as for putative antimicrobial compounds for drug discovery and biomedical applications. PMID:26986963

  2. Annotation of the zebrafish genome through an integrated transcriptomic and proteomic analysis.

    PubMed

    Kelkar, Dhanashree S; Provost, Elayne; Chaerkady, Raghothama; Muthusamy, Babylakshmi; Manda, Srikanth S; Subbannayya, Tejaswini; Selvan, Lakshmi Dhevi N; Wang, Chieh-Huei; Datta, Keshava K; Woo, Sunghee; Dwivedi, Sutopa B; Renuse, Santosh; Getnet, Derese; Huang, Tai-Chung; Kim, Min-Sik; Pinto, Sneha M; Mitchell, Christopher J; Madugundu, Anil K; Kumar, Praveen; Sharma, Jyoti; Advani, Jayshree; Dey, Gourav; Balakrishnan, Lavanya; Syed, Nazia; Nanjappa, Vishalakshi; Subbannayya, Yashwanth; Goel, Renu; Prasad, T S Keshava; Bafna, Vineet; Sirdeshmukh, Ravi; Gowda, Harsha; Wang, Charles; Leach, Steven D; Pandey, Akhilesh

    2014-11-01

    Accurate annotation of protein-coding genes is one of the primary tasks upon the completion of whole genome sequencing of any organism. In this study, we used an integrated transcriptomic and proteomic strategy to validate and improve the existing zebrafish genome annotation. We undertook high-resolution mass-spectrometry-based proteomic profiling of 10 adult organs, whole adult fish body, and two developmental stages of zebrafish (SAT line), in addition to transcriptomic profiling of six organs. More than 7,000 proteins were identified from proteomic analyses, and ∼ 69,000 high-confidence transcripts were assembled from the RNA sequencing data. Approximately 15% of the transcripts mapped to intergenic regions, the majority of which are likely long non-coding RNAs. These high-quality transcriptomic and proteomic data were used to manually reannotate the zebrafish genome. We report the identification of 157 novel protein-coding genes. In addition, our data led to modification of existing gene structures including novel exons, changes in exon coordinates, changes in frame of translation, translation in annotated UTRs, and joining of genes. Finally, we discovered four instances of genome assembly errors that were supported by both proteomic and transcriptomic data. Our study shows how an integrative analysis of the transcriptome and the proteome can extend our understanding of even well-annotated genomes. PMID:25060758

  3. Comparative proteomic analysis of human lung telocytes with fibroblasts

    PubMed Central

    Zheng, Yonghua; Cretoiu, Dragos; Yan, Guoquan; Cretoiu, Sanda Maria; Popescu, Laurentiu M; Wang, Xiangdong

    2014-01-01

    Telocytes (TCs) were recently described as interstitial cells with very long prolongations named telopodes (Tps; http://www.telocytes.com). Establishing the TC proteome is a priority to show that TCs are a distinct type of cells. Therefore, we examined the molecular aspects of lung TCs by comparison with fibroblasts (FBs). Proteins extracted from primary cultures of these cells were analysed by automated 2-dimensional nano-electrospray ionization liquid chromatography tandem mass spectrometry (2D Nano-ESI LC-MS/MS). Differentially expressed proteins were screened by two-sample t-test (P < 0.05) and fold change (>2), based on the bioinformatics analysis. We identified hundreds of proteins up- or down-regulated, respectively, in TCs as compared with FBs. TC proteins with known identities are localized in the cytoskeleton (87%) and plasma membrane (13%), while FB up-regulated proteins are in the cytoskeleton (75%) and destined to extracellular matrix (25%). These identified proteins were classified into different categories based on their molecular functions and biological processes. While the proteins identified in TCs are mainly involved in catalytic activity (43%) and as structural molecular activity (25%), the proteins in FBs are involved in catalytic activity (24%) and in structural molecular activity, particularly synthesis of collagen and other extracellular matrix components (25%). Anyway, our data show that TCs are completely different from FBs. In conclusion, we report here the first extensive identification of proteins from TCs using a quantitative proteomics approach. Protein expression profile shows many up-regulated proteins e.g. myosin-14, periplakin, suggesting that TCs might play specific roles in mechanical sensing and mechanochemical conversion task, tissue homoeostasis and remodelling/renewal. Furthermore, up-regulated proteins matching those found in extracellular vesicles emphasize TCs roles in intercellular signalling and stem cell niche

  4. Shotgun proteomics analysis on maize chloroplast thylakoid membrane.

    PubMed

    Liu, Xiao-Yu; Wu, Ya-Dan; Shen, Zhi-Ying; Shen, Zhuo; Li, Hua-Hua; Yu, Xiao-Mei; Yan, Xiu-Feng; Guo, Chang-Hong; Wang, Bai-Chen

    2011-01-01

    In this study we initiated a proteomic investigation of the maize thylakoid membrane by using a shotgun proteomic approach based on LC-MS(E). A total of 34 maize thylakoid membrane proteins were identified, the majority of which are primarily involved in photosynthesis, including the light-reaction and carbon assimilation. It is noteworthy that all of the core subunits of the Photosystem II were identified in our search. Proteins involved in other processes, such as iron storage, were also detected in our study. The quantity of each identified protein was also determined. Of interest, we discovered that the amount of the three ATP synthase subunits were not equivalent, suggesting that these proteins perform other functions in addition to ATP synthesis. To our knowledge this is the first extensive proteomic investigation of the maize thylakoid membrane, and will likely enable further study of maize photosynthesis and chloroplast development. PMID:21196305

  5. CPTAC Releases Largest-Ever Breast Cancer Proteome Dataset - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have released a dataset of proteins and phophorylated phosphopeptides identified through deep proteomic and phosphoproteomic analysis of breast tumor samples, previously genomically analyzed by The Cancer Genome Atlas (TCGA).

  6. Breast Cancer Proteomic and Phosphoproteomic Data Released - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have released a dataset of proteins and phophorylated phosphopeptides identified through deep proteomic and phosphoproteomic analysis of breast tumor samples, previously genomically analyzed by The Cancer Genome Atlas (TCGA).

  7. Exome-based proteogenomics of HEK-293 human cell line: Coding genomic variants identified at the level of shotgun proteome.

    PubMed

    Lobas, Anna A; Karpov, Dmitry S; Kopylov, Arthur T; Solovyeva, Elizaveta M; Ivanov, Mark V; Ilina, Irina Y; Lazarev, Vassily N; Kuznetsova, Ksenia G; Ilgisonis, Ekaterina V; Zgoda, Victor G; Gorshkov, Mikhail V; Moshkovskii, Sergei A

    2016-07-01

    Genomic and proteomic data were integrated into the proteogenomic workflow to identify coding genomic variants of Human Embryonic Kidney 293 (HEK-293) cell line at the proteome level. Shotgun proteome data published by Geiger et al. (2012), Chick et al. (2015), and obtained in this work for HEK-293 were searched against the customized genomic database generated using exome data published by Lin et al. (2014). Overall, 112 unique variants were identified at the proteome level out of ∼1200 coding variants annotated in the exome. Seven identified variants were shared between all the three considered proteomic datasets, and 27 variants were found in any two datasets. Some of the found variants belonged to widely known genomic polymorphisms originated from the germline, while the others were more likely resulting from somatic mutations. At least, eight of the proteins bearing amino acid variants were annotated as cancer-related ones, including p53 tumor suppressor. In all the considered shotgun datasets, the variant peptides were at the ratio of 1:2.5 less likely being identified than the wild-type ones compared with the corresponding theoretical peptides. This can be explained by the presence of the so-called "passenger" mutations in the genes, which were never expressed in HEK-293 cells. All MS data have been deposited in the ProteomeXchange with the dataset identifier PXD002613 (http://proteomecentral.proteomexchange.org/dataset/PXD002613). PMID:27233776

  8. ProteomeScout: a repository and analysis resource for post-translational modifications and proteins.

    PubMed

    Matlock, Matthew K; Holehouse, Alex S; Naegle, Kristen M

    2015-01-01

    ProteomeScout (https://proteomescout.wustl.edu) is a resource for the study of proteins and their post-translational modifications (PTMs) consisting of a database of PTMs, a repository for experimental data, an analysis suite for PTM experiments, and a tool for visualizing the relationships between complex protein annotations. The PTM database is a compendium of public PTM data, coupled with user-uploaded experimental data. ProteomeScout provides analysis tools for experimental datasets, including summary views and subset selection, which can identify relationships within subsets of data by testing for statistically significant enrichment of protein annotations. Protein annotations are incorporated in the ProteomeScout database from external resources and include terms such as Gene Ontology annotations, domains, secondary structure and non-synonymous polymorphisms. These annotations are available in the database download, in the analysis tools and in the protein viewer. The protein viewer allows for the simultaneous visualization of annotations in an interactive web graphic, which can be exported in Scalable Vector Graphics (SVG) format. Finally, quantitative data measurements associated with public experiments are also easily viewable within protein records, allowing researchers to see how PTMs change across different contexts. ProteomeScout should prove useful for protein researchers and should benefit the proteomics community by providing a stable repository for PTM experiments. PMID:25414335

  9. ProteomeScout: a repository and analysis resource for post-translational modifications and proteins

    PubMed Central

    Matlock, Matthew K.; Holehouse, Alex S.; Naegle, Kristen M.

    2015-01-01

    ProteomeScout (https://proteomescout.wustl.edu) is a resource for the study of proteins and their post-translational modifications (PTMs) consisting of a database of PTMs, a repository for experimental data, an analysis suite for PTM experiments, and a tool for visualizing the relationships between complex protein annotations. The PTM database is a compendium of public PTM data, coupled with user-uploaded experimental data. ProteomeScout provides analysis tools for experimental datasets, including summary views and subset selection, which can identify relationships within subsets of data by testing for statistically significant enrichment of protein annotations. Protein annotations are incorporated in the ProteomeScout database from external resources and include terms such as Gene Ontology annotations, domains, secondary structure and non-synonymous polymorphisms. These annotations are available in the database download, in the analysis tools and in the protein viewer. The protein viewer allows for the simultaneous visualization of annotations in an interactive web graphic, which can be exported in Scalable Vector Graphics (SVG) format. Finally, quantitative data measurements associated with public experiments are also easily viewable within protein records, allowing researchers to see how PTMs change across different contexts. ProteomeScout should prove useful for protein researchers and should benefit the proteomics community by providing a stable repository for PTM experiments. PMID:25414335

  10. Integration of monolithic frit into the particulate capillary (IMFPC) column in shotgun proteome analysis.

    PubMed

    Wang, Fangjun; Dong, Jing; Ye, Mingliang; Wu, Ren'an; Zou, Hanfa

    2009-10-12

    Capillary column plays an important role in nano-flow liquid chromatography coupled with tandem mass spectrometry for dealing with the high dynamic range and complexity of protein samples in shotgun proteome analysis. In this study, the integrated monolithic frit into the particulate capillary (IMFPC) column was prepared. By comparing the prepared IMFPC column with conventionally fritless capillary column, smaller size of packing materials could be easily packed into the capillary to achieve higher average peak capacity and proteome coverage. As the monolithic emitter was integrated onto this type of column, the void volume between packing particles and electrospray emitter was eliminated and the electrospray quality was improved. The prepared IMFPC column was applied to proteome analysis of mouse liver extracts, and it was observed that the number of identified proteins and peptides increased 14.9 and 12.9% as well as the peak capacity increased 11.6% by using IMFPC column over conventionally fritless capillary column. PMID:19786199

  11. Proteomic analysis uncovers a metabolic phenotype in C. elegans after nhr-40 reduction of function

    SciTech Connect

    Pohludka, Michal; Simeckova, Katerina; Vohanka, Jaroslav; Yilma, Petr; Novak, Petr; Krause, Michael W.; Kostrouchova, Marta; Kostrouch, Zdenek

    2008-09-12

    Caenorhabditis elegans has an unexpectedly large number (284) of genes encoding nuclear hormone receptors, most of which are nematode-specific and are of unknown function. We have exploited comparative two-dimensional chromatography of synchronized cultures of wild type C. elegans larvae and a mutant in nhr-40 to determine if proteomic approaches will provide additional insight into gene function. Chromatofocusing, followed by reversed-phase chromatography and mass spectrometry, identified altered chromatographic patterns for a set of proteins, many of which function in muscle and metabolism. Prompted by the proteomic analysis, we find that the penetrance of the developmental phenotypes in the mutant is enhanced at low temperatures and by food restriction. The combination of our phenotypic and proteomic analysis strongly suggests that NHR-40 provides a link between metabolism and muscle development. Our results highlight the utility of comparative two-dimensional chromatography to provide a relatively rapid method to gain insight into gene function.

  12. Prefractionation methods for individual adult fruit fly hemolymph proteomic analysis.

    PubMed

    Zeng, Qi; Avilov, Vitaly; Shippy, Scott A

    2016-03-15

    The analysis of blood provides in depth chemical information of physiological states of organisms. Hemolymph (blood) is the fluid in the open circulatory system of Drosophila melanogaster that is the medium for molecules regulating a wide variety of physiological activities and signaling between tissues. Adult Drosophila is typically less than 3mm in length and, as a consequence, the available volume of hemolymph is usually less than 50nL from individual flies. Proteomic analysis of volume-limited hemolymph is a great challenge for both sample handling and subsequent mass spectrometry characterization of this chemically diverse biological fluid with a wide dynamic range of proteins in concentrations. Less abundant proteins, in particular, could be easily lost during sample preparation or missed by current mass spectrometry methods. This article describes simple and customized RPLC column and IEX columns to prefractionate volume-limited hemolymph without excessive dilution. Step-gradient elution methods were developed and optimized to enhance the identification of novel proteins from an individual fruit fly hemolymph sample. Fractions from each step gradient was analyzed by an Agilent nano-RPLC chip column and then characterized by high mass resolution and high mass accuracy orbitrap mass spectrometry. As a result, both RPLC (11 proteins) and IEX fractionation approaches (9 proteins) identified more proteins than an unfractionated control approach with higher protein scores, emPAI values and coverage. Furthermore, a significant number of novel proteins were revealed by both RPLC and IEX fractionation methods, which were missed by unfractionated controls. The demonstration of this method establishes a means to deepen proteomic analysis to this commonly used, important biological model system. PMID:26901848

  13. Proteomics Analysis Reveals Overlapping Functions of Clustered Protocadherins*

    PubMed Central

    Han, Meng-Hsuan; Lin, Chengyi; Meng, Shuxia; Wang, Xiaozhong

    2010-01-01

    The three tandem-arrayed protocadherin (Pcdh) gene clusters, namely Pcdh-α, Pcdh-β, and Pcdh-γ, play important roles in the development of the vertebrate central nervous system. To gain insight into the molecular action of PCDHs, we performed a systematic proteomics analysis of PCDH-γ-associated protein complexes. We identified a list of 154 non-redundant proteins in the PCDH-γ complexes. This list includes nearly 30 members of clustered Pcdh-α, -β, and -γ families as core components of the complexes and additionally over 120 putative PCDH-associated proteins. We validated a selected subset of PCDH-γ-associated proteins using specific antibodies. Analysis of the identities of PCDH-associated proteins showed that the majority of them overlap with the proteomic profile of postsynaptic density preparations. Further analysis of membrane protein complexes revealed that several validated PCDH-γ-associated proteins exhibit reduced levels in Pcdh-γ-deficient brain tissues. Therefore, PCDH-γs are required for the integrity of the complexes. However, the size of the overall complexes and the abundance of many other proteins remained unchanged, raising a possibility that PCDH-αs and PCDH-βs might compensate for PCDH-γ function in complex formation. As a test of this idea, RNA interference knockdown of both PCDH-αs and PCDH-γs showed that PCDHs have redundant functions in regulating neuronal survival in the chicken spinal cord. Taken together, our data provide evidence that clustered PCDHs coexist in large protein complexes and have overlapping functions during vertebrate neural development. PMID:19843561

  14. Transgenic, Fluorescent Leishmania mexicana Allow Direct Analysis of the Proteome of Intracellular Amastigotes*S⃞

    PubMed Central

    Paape, Daniel; Lippuner, Christoph; Schmid, Monika; Ackermann, Renate; Barrios-Llerena, Martin E.; Zimny-Arndt, Ursula; Brinkmann, Volker; Arndt, Benjamin; Pleissner, Klaus Peter; Jungblut, Peter R.; Aebischer, Toni

    2008-01-01

    Investigating the proteome of intracellular pathogens is often hampered by inadequate methodologies to purify the pathogen free of host cell material. This has also precluded direct proteome analysis of the intracellular, amastigote form of Leishmania spp., protozoan parasites that cause a spectrum of diseases that affect some 12 million patients worldwide. Here a method is presented that combines classic, isopycnic density centrifugation with fluorescent particle sorting for purification by exploiting transgenic, fluorescent parasites to allow direct proteome analysis of the purified organisms. By this approach the proteome of intracellular Leishmania mexicana amastigotes was compared with that of extracellular promastigotes that are transmitted by insect vectors. In total, 509 different proteins were identified by mass spectrometry and database search. This number corresponds to ∼6% of gene products predicted from the reference genome of Leishmania major. Intracellular amastigotes synthesized significantly more proteins with basic pI and showed a greater abundance of enzymes of fatty acid catabolism, which may reflect their living in acidic habitats and metabolic adaptation to nutrient availability, respectively. Bioinformatics analyses of the genes corresponding to the protein data sets produced clear evidence for skewed codon usage and translational bias in these organisms. Moreover analysis of the subset of genes whose products were more abundant in amastigotes revealed characteristic sequence motifs in 3′-untranslated regions that have been linked to translational control elements. This suggests that proteome data sets may be used to identify regulatory elements in mRNAs. Last but not least, at 6% coverage the proteome identified all vaccine antigens tested to date. Thus, the present data set provides a valuable resource for selection of candidate vaccine antigens. PMID:18474515

  15. Proteomics Analysis of Alfalfa Response to Heat Stress

    PubMed Central

    Li, Weimin; Wei, Zhenwu; Qiao, Zhihong; Wu, Zinian; Cheng, Lixiang; Wang, Yuyang

    2013-01-01

    The proteome responses to heat stress have not been well understood. In this study, alfalfa (Medicago sativa L. cv. Huaiyin) seedlings were exposed to 25°C (control) and 40°C (heat stress) in growth chambers, and leaves were collected at 24, 48 and 72 h after treatment, respectively. The morphological, physiological and proteomic processes were negatively affected under heat stress. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE), and differentially expressed protein spots were identified by mass spectrometry (MS). Totally, 81 differentially expressed proteins were identified successfully by MALDI-TOF/TOF. These proteins were categorized into nine classes: including metabolism, energy, protein synthesis, protein destination/storage, transporters, intracellular traffic, cell structure, signal transduction and disease/defence. Five proteins were further analyzed for mRNA levels. The results of the proteomics analyses provide a better understanding of the molecular basis of heat-stress responses in alfalfa. PMID:24324825

  16. Proteomic analysis of soybean cyst nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean cyst nematode (Heterodera glycines, SCN) is the most destructive pathogen of soybean (Glycine max (L.) Merr.) worldwide causing an estimated $2 billion in losses annually. Proteomic technologies are powerful tools to examine protein expression profiles as well as modification of proteins. W...

  17. Proteomic analysis of the asthmatic airway.

    PubMed

    Wiktorowicz, John E; Jamaluddin, Mohammad

    2014-01-01

    Proteomic investigations in general utilize varied technologies for sample preparation, separations, quantification, protein identification, and biological rationalization. Their applications range from pure discovery and mechanistic studies to biomarker discovery/verification/validation. In each specific case, the analytical strategy to be implemented is tailored to the type of sample that serves as the target of the investigations. Proteomic investigations take into consideration sample complexity, the cellular heterogeneity (particularly from tissues), the potential dynamic range of the protein and peptide abundance within the sample, the likelihood of posttranslational modifications (PTM), and other important factors that might influence the final output of the study. We describe the sample types typically used for proteomic investigations into the biology of asthma and review the most recent related publications with special attention to those that deal with the unique airway samples such as bronchoalveolar lavage fluids (BALF), epithelial lining fluid and cells (ELF), induced sputum (IS), and exhaled breath condensate (EBC). Finally, we describe the newest proteomics approaches to sample preparation of the unique airway samples, BALF and IS. PMID:24162912

  18. RegStatGel: proteomic software for identifying differentially expressed proteins based on 2D gel images

    PubMed Central

    Li, Feng; Seillier-Moiseiwitsch, Françoise

    2011-01-01

    Image analysis of two-dimensional gel electrophoresis is a key step in proteomic workflow for identifying proteins that change under different experimental conditions. Since there are usually large amount of proteins and variations shown in the gel images, the use of software for analysis of 2D gel images is inevitable. We developed open-source software with graphical user interface for differential analysis of 2D gel images. The user-friendly software, RegStatGel, contains fully automated as well as interactive procedures. It was developed and has been tested under Matlab 7.01. Availability The database is available for free at http://www.mediafire.com/FengLi/2DGelsoftware PMID:21904427

  19. Evaluation of Proteomic Search Engines for the Analysis of Histone Modifications

    PubMed Central

    2015-01-01

    Identification of histone post-translational modifications (PTMs) is challenging for proteomics search engines. Including many histone PTMs in one search increases the number of candidate peptides dramatically, leading to low search speed and fewer identified spectra. To evaluate database search engines on identifying histone PTMs, we present a method in which one kind of modification is searched each time, for example, unmodified, individually modified, and multimodified, each search result is filtered with false discovery rate less than 1%, and the identifications of multiple search engines are combined to obtain confident results. We apply this method for eight search engines on histone data sets. We find that two search engines, pFind and Mascot, identify most of the confident results at a reasonable speed, so we recommend using them to identify histone modifications. During the evaluation, we also find some important aspects for the analysis of histone modifications. Our evaluation of different search engines on identifying histone modifications will hopefully help those who are hoping to enter the histone proteomics field. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD001118. PMID:25167464

  20. Evaluation of proteomic search engines for the analysis of histone modifications.

    PubMed

    Yuan, Zuo-Fei; Lin, Shu; Molden, Rosalynn C; Garcia, Benjamin A

    2014-10-01

    Identification of histone post-translational modifications (PTMs) is challenging for proteomics search engines. Including many histone PTMs in one search increases the number of candidate peptides dramatically, leading to low search speed and fewer identified spectra. To evaluate database search engines on identifying histone PTMs, we present a method in which one kind of modification is searched each time, for example, unmodified, individually modified, and multimodified, each search result is filtered with false discovery rate less than 1%, and the identifications of multiple search engines are combined to obtain confident results. We apply this method for eight search engines on histone data sets. We find that two search engines, pFind and Mascot, identify most of the confident results at a reasonable speed, so we recommend using them to identify histone modifications. During the evaluation, we also find some important aspects for the analysis of histone modifications. Our evaluation of different search engines on identifying histone modifications will hopefully help those who are hoping to enter the histone proteomics field. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD001118. PMID:25167464

  1. Comparative Proteomics Analysis of Gastric Cancer Stem Cells

    PubMed Central

    Morisaki, Tamami; Yashiro, Masakazu; Kakehashi, Anna; Inagaki, Azusa; Kinoshita, Haruhito; Fukuoka, Tatsunari; Kasashima, Hiroaki; Masuda, Go; Sakurai, Katsunobu; Kubo, Naoshi; Muguruma, Kazuya; Ohira, Masaichi; Wanibuchi, Hideki; Hirakawa, Kosei

    2014-01-01

    Cancer stem cells (CSCs) are responsible for cancer progression, metastasis, and recurrence. To date, the specific markers of CSCs remain undiscovered. The aim of this study was to identify novel biomarkers of gastric CSCs for clinical diagnosis using proteomics technology. CSC-like SP cells, OCUM-12/SP cells, OCUM-2MD3/SP cells, and their parent OCUM-12 cells and OCUM-2MD3 cells were used in this study. Protein lysates from each cell line were analyzed using QSTAR Elite Liquid Chromatography with Tandem Mass Spectrometry, coupled with isobaric tags for relative and absolute quantitation technology. Candidate proteins detected by proteomics technology were validated by immunohistochemical analysis of 300 gastric cancers. Based on the results of LC-MS/MS, eight proteins, including RBBP6, GLG1, VPS13A, DCTPP1, HSPA9, HSPA4, ALDOA, and KRT18, were up-regulated in both OCUM-12/SP cells and OCUM-2MD3/SP cells when compared to their corresponding parent cells. RT-PCR analysis indicated that the expression level of RBBP6, HSPA4, DCTPP1, HSPA9, VPS13A, ALDOA, GLG1, and CK18 was high in OCUM-12/SP and OCUM-2MD3/SP, in compared with the control of parent OCUM-12 and OCUM-2MD3. These proteins were significantly associated with advanced invasion depth, lymph node metastasis, distant metastasis, or advanced clinical stage. RBBP6, DCTPP1, HSPA4, and ALDOA expression in particular were significantly associated with a poor prognosis in the 300 gastric cancer patients. RBBP6 was determined to be an independent prognostic factor. The motility-stimulating ability of OCUM-12/SP cells and OCUM-2MD3/SP cells was inhibited by RBBP6 siRNA. These findings might suggest that the eight proteins, RBBP6, GLG1, VPS13A, DCTPP1, HSPA9, HSPA4, ALDOA, and KRT18, utilizing comparative proteomics analysis, were perceived to be potential CSC markers of gastric cancer. Of the eight candidate proteins, RBBP6 was suggested to be a promising prognostic biomarker and a therapeutic target for gastric cancer

  2. Analysis of high accuracy, quantitative proteomics data in the MaxQB database.

    PubMed

    Schaab, Christoph; Geiger, Tamar; Stoehr, Gabriele; Cox, Juergen; Mann, Matthias

    2012-03-01

    MS-based proteomics generates rapidly increasing amounts of precise and quantitative information. Analysis of individual proteomic experiments has made great strides, but the crucial ability to compare and store information across different proteome measurements still presents many challenges. For example, it has been difficult to avoid contamination of databases with low quality peptide identifications, to control for the inflation in false positive identifications when combining data sets, and to integrate quantitative data. Although, for example, the contamination with low quality identifications has been addressed by joint analysis of deposited raw data in some public repositories, we reasoned that there should be a role for a database specifically designed for high resolution and quantitative data. Here we describe a novel database termed MaxQB that stores and displays collections of large proteomics projects and allows joint analysis and comparison. We demonstrate the analysis tools of MaxQB using proteome data of 11 different human cell lines and 28 mouse tissues. The database-wide false discovery rate is controlled by adjusting the project specific cutoff scores for the combined data sets. The 11 cell line proteomes together identify proteins expressed from more than half of all human genes. For each protein of interest, expression levels estimated by label-free quantification can be visualized across the cell lines. Similarly, the expression rank order and estimated amount of each protein within each proteome are plotted. We used MaxQB to calculate the signal reproducibility of the detected peptides for the same proteins across different proteomes. Spearman rank correlation between peptide intensity and detection probability of identified proteins was greater than 0.8 for 64% of the proteome, whereas a minority of proteins have negative correlation. This information can be used to pinpoint false protein identifications, independently of peptide database

  3. A Novel Proteomics Approach to Identify SUMOylated Proteins and Their Modification Sites in Human Cells*

    PubMed Central

    Galisson, Frederic; Mahrouche, Louiza; Courcelles, Mathieu; Bonneil, Eric; Meloche, Sylvain; Chelbi-Alix, Mounira K.; Thibault, Pierre

    2011-01-01

    The small ubiquitin-related modifier (SUMO) is a small group of proteins that are reversibly attached to protein substrates to modify their functions. The large scale identification of protein SUMOylation and their modification sites in mammalian cells represents a significant challenge because of the relatively small number of in vivo substrates and the dynamic nature of this modification. We report here a novel proteomics approach to selectively enrich and identify SUMO conjugates from human cells. We stably expressed different SUMO paralogs in HEK293 cells, each containing a His6 tag and a strategically located tryptic cleavage site at the C terminus to facilitate the recovery and identification of SUMOylated peptides by affinity enrichment and mass spectrometry. Tryptic peptides with short SUMO remnants offer significant advantages in large scale SUMOylome experiments including the generation of paralog-specific fragment ions following CID and ETD activation, and the identification of modified peptides using conventional database search engines such as Mascot. We identified 205 unique protein substrates together with 17 precise SUMOylation sites present in 12 SUMO protein conjugates including three new sites (Lys-380, Lys-400, and Lys-497) on the protein promyelocytic leukemia. Label-free quantitative proteomics analyses on purified nuclear extracts from untreated and arsenic trioxide-treated cells revealed that all identified SUMOylated sites of promyelocytic leukemia were differentially SUMOylated upon stimulation. PMID:21098080

  4. A Proteomic Strategy Identifies Lysine Methylation of Splicing Factor snRNP70 by the SETMAR Enzyme*

    PubMed Central

    Carlson, Scott M.; Moore, Kaitlyn E.; Sankaran, Saumya M.; Reynoird, Nicolas; Elias, Joshua E.; Gozani, Or

    2015-01-01

    The lysine methyltransferase (KMT) SETMAR is implicated in the response to and repair of DNA damage, but its molecular function is not clear. SETMAR has been associated with dimethylation of histone H3 lysine 36 (H3K36) at sites of DNA damage. However, SETMAR does not methylate H3K36 in vitro. This and the observation that SETMAR is not active on nucleosomes suggest that H3K36 methylation is not a physiologically relevant activity. To identify potential non-histone substrates, we utilized a strategy on the basis of quantitative proteomic analysis of methylated lysine. Our approach identified lysine 130 of the mRNA splicing factor snRNP70 as a SETMAR substrate in vitro, and we show that the enzyme primarily generates monomethylation at this position. Furthermore, we show that SETMAR methylates snRNP70 Lys-130 in cells. Because snRNP70 is a key early regulator of 5′ splice site selection, our results suggest a model in which methylation of snRNP70 by SETMAR regulates constitutive and/or alternative splicing. In addition, the proteomic strategy described here is broadly applicable and is a promising route for large-scale mapping of KMT substrates. PMID:25795785

  5. Comparative Analysis of Genomics and Proteomics in Bacillus thuringiensis 4.0718

    PubMed Central

    Rang, Jie; He, Hao; Wang, Ting; Ding, Xuezhi; Zuo, Mingxing; Quan, Meifang; Sun, Yunjun; Yu, Ziquan; Hu, Shengbiao; Xia, Liqiu

    2015-01-01

    Bacillus thuringiensis is a widely used biopesticide that produced various insecticidal active substances during its life cycle. Separation and purification of numerous insecticide active substances have been difficult because of the relatively short half-life of such substances. On the other hand, substances can be synthetized at different times during development, so samples at different stages have to be studied, further complicating the analysis. A dual genomic and proteomic approach would enhance our ability to identify such substances, and particularily using mass spectrometry-based proteomic methods. The comparative analysis for genomic and proteomic data have showed that not all of the products deduced from the annotated genome could be identified among the proteomic data. For instance, genome annotation results showed that 39 coding sequences in the whole genome were related to insect pathogenicity, including five cry genes. However, Cry2Ab, Cry1Ia, Cytotoxin K, Bacteriocin, Exoenzyme C3 and Alveolysin could not be detected in the proteomic data obtained. The sporulation-related proteins were also compared analysis, results showed that the great majority sporulation-related proteins can be detected by mass spectrometry. This analysis revealed Spo0A~P, SigF, SigE(+), SigK(+) and SigG(+), all known to play an important role in the process of spore formation regulatory network, also were displayed in the proteomic data. Through the comparison of the two data sets, it was possible to infer that some genes were silenced or were expressed at very low levels. For instance, found that cry2Ab seems to lack a functional promoter while cry1Ia may not be expressed due to the presence of transposons. With this comparative study a relatively complete database can be constructed and used to transform hereditary material, thereby prompting the high expression of toxic proteins. A theoretical basis is provided for constructing highly virulent engineered bacteria and for

  6. Proteomic analysis of pollination-induced corolla senescence in petunia

    PubMed Central

    Bai, Shuangyi; Willard, Belinda; Chapin, Laura J.; Kinter, Michael T.; Francis, David M.; Stead, Anthony D.; Jones, Michelle L.

    2010-01-01

    Senescence represents the last phase of petal development during which macromolecules and organelles are degraded and nutrients are recycled to developing tissues. To understand better the post-transcriptional changes regulating petal senescence, a proteomic approach was used to profile protein changes during the senescence of Petunia×hybrida ‘Mitchell Diploid’ corollas. Total soluble proteins were extracted from unpollinated petunia corollas at 0, 24, 48, and 72 h after flower opening and at 24, 48, and 72 h after pollination. Two-dimensional gel electrophoresis (2-DE) was used to identify proteins that were differentially expressed in non-senescing (unpollinated) and senescing (pollinated) corollas, and image analysis was used to determine which proteins were up- or down-regulated by the experimentally determined cut-off of 2.1-fold for P <0.05. One hundred and thirty-three differentially expressed protein spots were selected for sequencing. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the identity of these proteins. Searching translated EST databases and the NCBI non-redundant protein database, it was possible to assign a putative identification to greater than 90% of these proteins. Many of the senescence up-regulated proteins were putatively involved in defence and stress responses or macromolecule catabolism. Some proteins, not previously characterized during flower senescence, were identified, including an orthologue of the tomato abscisic acid stress ripening protein 4 (ASR4). Gene expression patterns did not always correlate with protein expression, confirming that both proteomic and genomic approaches will be required to obtain a detailed understanding of the regulation of petal senescence. PMID:20110265

  7. Targets for cystic fibrosis therapy: proteomic analysis and correction of mutant cystic fibrosis transmembrane conductance regulator

    PubMed Central

    Collawn, James F; Fu, Lianwu; Bebok, Zsuzsa

    2010-01-01

    Proteomic analysis has proved to be an important tool for understanding the complex nature of genetic disorders, such as cystic fibrosis (CF), by defining the cellular protein environment (proteome) associated with wild-type and mutant proteins. Proteomic screens identified the proteome of CF transmembrane conductance regulator (CFTR), and provided fundamental information to studies designed for understanding the crucial components of physiological CFTR function. Simultaneously, high-throughput screens for small-molecular correctors of CFTR mutants provided promising candidates for therapy. The majority of CF cases are caused by nucleotide deletions (ΔF508 CFTR; >75%), resulting in CFTR misfolding, or insertion of premature termination codons (~10%), leading to unstable mRNA and reduced levels of truncated dysfunctional CFTR. In this article, we review recent results of proteomic screens, developments in identifying correctors for the most frequent CFTR mutants, and comment on how integration of the knowledge gained from these studies may aid in finding a cure for CF and a number of other genetic disorders. PMID:20653506

  8. A Quantitative Proteomic Analysis of Urine from Gamma-Irradiated Non-Human Primates

    PubMed Central

    Byrum, Stephanie D; Burdine, Marie S; Orr, Lisa; Moreland, Linley; Mackintosh, Samuel G; Authier, Simon; Pouliot, Mylene; Hauer-Jensen, Martin; Tackett, Alan J

    2016-01-01

    The molecular effects of total body gamma-irradiation exposure are of critical importance as large populations of people could be exposed either by terrorists, nuclear blast, or medical therapy. In this study, we aimed to identify changes in the urine proteome using a non-human primate model system, Rhesus macaque, in order to characterize effects of acute radiation syndrome following whole body irradiation (Co-60) at 6.7 Gy and 7.4 Gy with a twelve day observation period. The urine proteome is potentially a valuable and non-invasive diagnostic for radiation exposure. Using high-resolution mass spectrometry, we identified 2346 proteins in the urine proteome. We show proteins involved in disease, cell adhesion, and metabolic pathway were significantly changed upon exposure to differing levels and durations of radiation exposure. Cell damage increased at a faster rate at 7.4 Gy compared with 6.7 Gy exposures. We report sets of proteins that are putative biomarkers of time- and dose-dependent radiation exposure. The proteomic study presented here is a comprehensive analysis of the urine proteome following radiation exposure. PMID:26962295

  9. Sense and nonsense of pathway analysis software in proteomics.

    PubMed

    Müller, Thorsten; Schrötter, Andreas; Loosse, Christina; Helling, Stefan; Stephan, Christian; Ahrens, Maike; Uszkoreit, Julian; Eisenacher, Martin; Meyer, Helmut E; Marcus, Katrin

    2011-12-01

    New developments in proteomics enable scientists to examine hundreds to thousands of proteins in parallel. Quantitative proteomics allows the comparison of different proteomes of cells, tissues, or body fluids with each other. Analyzing and especially organizing these data sets is often a Herculean task. Pathway Analysis software tools aim to take over this task based on present knowledge. Companies promise that their algorithms help to understand the significance of scientist's data, but the benefit remains questionable, and a fundamental systematic evaluation of the potential of such tools has not been performed until now. Here, we tested the commercial Ingenuity Pathway Analysis tool as well as the freely available software STRING using a well-defined study design in regard to the applicability and value of their results for proteome studies. It was our goal to cover a wide range of scientific issues by simulating different established pathways including mitochondrial apoptosis, tau phosphorylation, and Insulin-, App-, and Wnt-signaling. Next to a general assessment and comparison of the pathway analysis tools, we provide recommendations for users as well as for software developers to improve the added value of a pathway study implementation in proteomic pipelines. PMID:21978018

  10. Comparative proteomic analysis of ductal and lobular invasive breast carcinoma.

    PubMed

    Oliveira, N C S; Gomig, T H B; Milioli, H H; Cordeiro, F; Costa, G G; Urban, C A; Lima, R S; Cavalli, I J; Ribeiro, E M S F

    2016-01-01

    Breast cancer is the second most common cancer worldwide and the first among women. Invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) are the two major histological subtypes, and the clinical and molecular differences between them justify the search for new markers to distinguish them. As proteomic analysis allows for a powerful and analytical approach to identify potential biomarkers, we performed a comparative analysis of IDC and ILC samples by using two-dimensional electrophoresis and mass spectrometry. Twenty-three spots were identified corresponding to 10 proteins differentially expressed between the two subtypes. ACTB, ACTG, TPM3, TBA1A, TBA1B, VIME, TPIS, PDIA3, PDIA6, and VTDB were upregulated in ductal carcinoma compared to in lobular carcinoma samples. Overall, these 10 proteins have a key role in oncogenesis. Their specific functions and relevance in cancer initiation and progression are further discussed in this study. The identified peptides represent promising biomarkers for the differentiation of ductal and lobular breast cancer subtypes, and for future interventions based on tailored therapy. PMID:27173185