Science.gov

Sample records for proteomic robotic workcell

  1. High-Throughput Fully Automated Construction of a Multiplex Library of Mutagenized Open Reading Frames for an Insecticidal Peptide Using a Plasmid-Based Functional Proteomic Robotic Workcell with Improved Vacuum System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Robotic platforms are essential for the production and screening of large numbers of expression-ready plasmid sets used to develop optimized clones and improved microbial strains. Here we demonstrate a plasmid-based integrated workcell that was used to automate the molecular biology protocols inclu...

  2. Measuring worst-case errors in a robot workcell

    SciTech Connect

    Simon, R.W.; Brost, R.C.; Kholwadwala, D.K.

    1997-10-01

    Errors in model parameters, sensing, and control are inevitably present in real robot systems. These errors must be considered in order to automatically plan robust solutions to many manipulation tasks. Lozano-Perez, Mason, and Taylor proposed a formal method for synthesizing robust actions in the presence of uncertainty; this method has been extended by several subsequent researchers. All of these results presume the existence of worst-case error bounds that describe the maximum possible deviation between the robot`s model of the world and reality. This paper examines the problem of measuring these error bounds for a real robot workcell. These measurements are difficult, because of the desire to completely contain all possible deviations while avoiding bounds that are overly conservative. The authors present a detailed description of a series of experiments that characterize and quantify the possible errors in visual sensing and motion control for a robot workcell equipped with standard industrial robot hardware. In addition to providing a means for measuring these specific errors, these experiments shed light on the general problem of measuring worst-case errors.

  3. Multisensor based robotic manipulation in an uncalibrated manufacturing workcell

    SciTech Connect

    Ghosh, B.K.; Xiao, Di; Xi, Ning; Tarn, Tzyh-Jong

    1997-12-31

    The main problem that we address in this paper is how a robot manipulator is able to track and grasp a part placed arbitrarily on a moving disc conveyor aided by a single CCD camera and fusing information from encoders placed on the conveyor and also from encoders on the robot manipulator. The important assumption that distinguishes our work from what has been previously reported in the literature is that the position and orientation of the camera and the base frame of the robot is apriori assumed to be unknown and is `visually calibrated` during the operation of the manipulator. Moreover the part placed on the conveyor is assumed to be non-planar, i.e. the feature points observed on the part is assumed to be located arbitrarily in IR{sup 3}. The novelties of the proposed approach in this paper includes a (i) multisensor fusion scheme based on complementary data for the purpose of part localization, and (ii) self-calibration between the turntable and the robot manipulator using visual data and feature points on the end-effector. The principle advantages of the proposed scheme are the following. (i) It renders possible to reconfigure a manufacturing workcell without recalibrating the relation between the turntable and the robot. This significantly shortens the setup time of the workcell. (ii) It greatly weakens the requirement on the image processing speed.

  4. Integration of vision and robotic workcell

    NASA Technical Reports Server (NTRS)

    Bossieux, T. A.

    1994-01-01

    The paper discusses the incorporation of vision into a robotic cell to obtain cell status information and use this information to influence the robot operation. It discusses both mechanical and informational solutions to the operational issues which are present. The cell uses a machine vision system to determine information about part presence in the shipping tray, part location in the tray, and tray orientation. The vision system's edge detector algorithm is used to identify the orientation of the packing trays. In addition, different vision tools are used to determine if parts are present in the trays based on the unique configuration of the individual parts. The mechanical solutions discuss the handling of medium weight (10 - 25 lb.) parts at an average cycle time of 3.1 seconds per part. The robot gripper must handle 33 different models, three identical parts at a time. This is accomplished by using stacks of rotary actuators and slides between the stacks.

  5. Use of voice recognition for control of a robotic welding workcell

    NASA Technical Reports Server (NTRS)

    Watson, J. Kevin; Todd, Douglas M.; Jones, Clyde S., III

    1987-01-01

    This paper describes work underway to evaluate the effectiveness of voice recognition systems as an element in the control of a robotic welding workcell. Factors being considered for control include program editor access security, preoperation checklist requirements, welding process variable control, and robot manipulator motion overrides. In the latter two categories, manual vocal control is being compared against manual tactile control and fully automatic control in terms of speed of response, accuracy, stability, reliability, and safety.

  6. Artificial awareness for robots using artificial neural nets to monitor robotic workcells

    SciTech Connect

    Tucker, S.D.; Ray, L.P.

    1997-04-01

    Current robotic systems are unable to recognize most unexpected changes in the work environment, such as tool breakage, workpiece motion, or sensor failure. Unless halted by a human operator, they are likely to continue actions that are at best inappropriate, and at worst may cause damage to the workpiece or robot. This project investigated use of Artificial Neural Networks (ANNs) to learn the expected characteristics of sensor data during normal operations, recognize when data no longer is consistent with normal operation, suspend operations and alert a human operator. Data on force and torque applied at the robot tool tip were collected from two workcells: a robotic deburring system and a robot material-handling system. Data were collected for normal operations and for operations in which a fault condition was introduced. Data simulating sensor failure and excessive sensor noise were generated. Artificial Neural Networks (ANN) were trained to classify operating conditions; several ANN architectures were tested. The selected ANNs were able to correctly classify all valid operating conditions and the majority of fault conditions over the entire range of operating conditions, having {open_quotes}learned{close_quotes} the expected force/torque data. Most faults introduced appreciable error in the data; these were correctly classified. However, a small minority of faults did not give rise to a detectable difference in force and torque data. It is believed that these faults could be detected using other sensors. The computational workload varies with the implementation, but is moderate: up to 2.3 megaflops. This makes implementation of a real-time workcell monitor feasible.

  7. The modular design of robotic workcells in a flexible production line

    NASA Astrophysics Data System (ADS)

    Banas, W.; Sekala, A.; Gwiazda, A.; Foit, K.; Hryniewicz, P.; Kost, G.

    2015-11-01

    In the case of large-scale and mass production lines often the same model of an industrial robot is used in various places of the line and is intended to various task. However, the replacement of one industrial robot to another is a long lasting and arduous process. It requires stopping all the production line and sometimes even dismantling the whole workcell. Such situations are not frequent in production lines that are not flexible. They are related the most often with the failure on an industrial robot. However, during the designing of a flexible production line the ability to replace any robot, which is unrestricted, fast and trouble-free, greatly increase the flexibility level of such line. It could be realized by modular design of the proposed production line. In this way it could be possible to change any elements of such production system. But this approach needs to apply the specialized informatics system. This paper presents the obtained design of several versions of the same production workcell. Each, succeeding version of the designed production workcell contains more and more modular elements. Thereby it would be presented the evolution of a workcell design beginning from the typical design and ending with the fully modular one. One of tools needed to realize this task is the elaboration of a base of modules and typical joint and mounting elements that could be utilised in the described designing process. It is also presented the guidance information about the designing and programming processes useful at each stage of analysed process.

  8. Development of a small gantry robotic workcell for deoxyribonucleic acid (DNA) filter array construction

    SciTech Connect

    Beugelsdijk, T.J.; Hollen, R.M.; Snider, K.T.

    1990-01-01

    At Los Alamos National Laboratory, we have constructed a primary cosmid library of human chromosome 16. This library consists of an 11-fold representation of the chromosome and is arrayed in microtiter plate format. A need has arisen in the large scale physical mapping of this chromosome, to array spots of DNA from each of these colonies onto filter media for hybridization studies. We are currently developing a small gantry robot-based workcell to array small spots of DNA in an interleaved format. This allows for the construction of a high spot density format filter array. This paper will discuss the features incorporated into this workcell for the handling of thousands of colonies and their automatic tracking and positioning onto the filter. 7 refs., 3 figs., 1 tab.

  9. Object positioning in storages of robotized workcells using LabVIEW Vision

    NASA Astrophysics Data System (ADS)

    Hryniewicz, P.; Banaś, W.; Sękala, A.; Gwiazda, A.; Foit, K.; Kost, G.

    2015-11-01

    During the manufacturing process, each performed task is previously developed and adapted to the conditions and the possibilities of the manufacturing plant. The production process is supervised by a team of specialists because any downtime causes great loss of time and hence financial loss. Sensors used in industry for tracking and supervision various stages of a production process make it much easier to maintain it continuous. One of groups of sensors used in industrial applications are non-contact sensors. This group includes: light barriers, optical sensors, rangefinders, vision systems, and ultrasonic sensors. Through to the rapid development of electronics the vision systems were widespread as the most flexible type of non-contact sensors. These systems consist of cameras, devices for data acquisition, devices for data analysis and specialized software. Vision systems work well as sensors that control the production process itself as well as the sensors that control the product quality level. The LabVIEW program as well as the LabVIEW Vision and LabVIEW Builder represent the application that enables program the informatics system intended to process and product quality control. The paper presents elaborated application for positioning elements in a robotized workcell. Basing on geometric parameters of manipulated object or on the basis of previously developed graphical pattern it is possible to determine the position of particular manipulated elements. This application could work in an automatic mode and in real time cooperating with the robot control system. It allows making the workcell functioning more autonomous.

  10. Task sequence planning in a robot workcell using AND/OR nets

    NASA Technical Reports Server (NTRS)

    Cao, Tiehua; Sanderson, Arthur C.

    1991-01-01

    An approach to task sequence planning for a generalized robotic manufacturing or material handling workcell is described. Given the descriptions of the objects in this system and all feasible geometric relationships among these objects, an AND/OR net which describes the relationships of all feasible geometric states and associated feasibility criteria for net transitions is generated. This AND/OR net is mapped into a Petri net which incorporates all feasible sequences of operations. The resulting Petri net is shown to be bounded and have guaranteed properties of liveness, safeness, and reversibility. Sequences are found from the reachability tree of the Petri net. Feasibility criteria for net transitions may be used to generate an extended Petri net representation of lower level command sequences. The resulting Petri net representation may be used for on-line scheduling and control of the system of feasible sequences. A simulation example of the sequences is described.

  11. An Industrial Perspective of CAM/ROB Fuzzy Integrated Postprocessing Implementation for Redundant Robotic Workcells Applicability for Big Volume Prototyping

    NASA Astrophysics Data System (ADS)

    Andrés, J.; Gracia, L.; Tornero, J.; García, J. A.; González, F.

    2009-11-01

    The implementation of a postprocessor for the NX™ platform (Siemens Corp.) is described in this paper. It is focused on a milling redundant robotic milling workcell consisting of one KUKA KR 15/2 manipulator (6 rotary joints, KRC2 controller) mounted on a linear axis and synchronized with a rotary table (i.e., two additional joints). For carrying out a milling task, a choice among a set of possible configurations is required, taking into account the ability to avoid singular configurations by using both additional joints. Usually, experience and knowledge of the workman allow an efficient control in these cases, but being it a tedious job. Similarly to this expert knowledge, a stand-alone fuzzy controller has been programmed with Matlab's Fuzzy Logic Toolbox (The MathWorks, Inc.). Two C++ programs complement the translation of the toolpath tracking (expressed in the Cartesian space) from the NX™-CAM module into KRL (KUKA Robot Language). In order to avoid singularities or joint limits, the location of the robot and the workpiece during the execution of the task is fit after an inverse kinematics position analysis and a fuzzy inference (i.e., fuzzy criterion in the Joint Space). Additionally, the applicability of robot arms for the manufacture of big volume prototypes with this technique is proven by means of one case studied. It consists of a big orographic model to simulate floodways, return flows and retention storage of a reservoir in the Mijares river (Puebla de Arenoso, Spain). This article deals with the problem for a constant tool orientation milling process and sets the technological basis for future research at five axis milling operations.

  12. Determination of the robot location in a workcell of a flexible production line

    NASA Astrophysics Data System (ADS)

    Banas, W.; Sekala, A.; Gwiazda, A.; Foit, K.; Hryniewicz, P.; Kost, G.

    2015-11-01

    Location of components of a manufacturing cell is apparently an easy task but even during the constructing of a manufacturing cell, in which is planned a production of one, simple component it is necessary, among others, to check access to all required points. The robot in a manufacturing cell must handle both machine tools located in a manufacturing cell and parts store (input and output one). It handles also transport equipment and auxiliary stands. Sometimes, during the design phase, the changes of robot location are necessary due to the limitation of access to its required working positions. Often succeeding changes of a manufacturing cell configuration are realized. They occur at the stages of visualization and simulation of robot program functioning. In special cases, it is even necessary to replace the planned robot with a robot of greater range or of a different configuration type. This article presents and describes the parameters and components which should be taken into consideration during designing robotised manufacturing cells. The main idea bases on application of advanced engineering programs to adding the designing process. Using this approach it could be possible to present the designing process of an exemplar flexible manufacturing cell intended to manufacture two similar components. The proposed model of such designed manufacturing cell could be easily extended to the manufacturing cell model in which it is possible to produce components belonging the one technological group of chosen similarity level. In particular, during the design process, one should take into consideration components which limit the ability of robot foundation. It is also important to show the method of determining the best location of robot foundation. The presented design method could also support the designing process of other robotised manufacturing cells.

  13. Production of Candida antaractica Lipase B Gene Open Reading Frame using Automated PCR Gene Assembly Protocol on Robotic Workcell & Expression in Ethanologenic Yeast for use as Resin-Bound Biocatalyst in Biodiesel Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A synthetic Candida antarctica lipase B (CALB) gene open reading frame (ORF) for expression in yeast was produced using an automated PCR assembly and DNA purification protocol on an integrated robotic workcell. The lycotoxin-1 (Lyt-1) C3 variant gene ORF was added in-frame with the CALB ORF to pote...

  14. Automated design synthesis of robotic/human workcells for improved manufacturing system design in hazardous environments

    SciTech Connect

    Williams, Joshua M.

    2012-06-12

    Manufacturing tasks that are deemed too hazardous for workers require the use of automation, robotics, and/or other remote handling tools. The associated hazards may be radiological or nonradiological, and based on the characteristics of the environment and processing, a design may necessitate robotic labor, human labor, or both. There are also other factors such as cost, ergonomics, maintenance, and efficiency that also effect task allocation and other design choices. Handling the tradeoffs of these factors can be complex, and lack of experience can be an issue when trying to determine if and what feasible automation/robotics options exist. To address this problem, we utilize common engineering design approaches adapted more for manufacturing system design in hazardous environments. We limit our scope to the conceptual and embodiment design stages, specifically a computational algorithm for concept generation and early design evaluation. In regard to concept generation, we first develop the functional model or function structure for the process, using the common 'verb-noun' format for describing function. A common language or functional basis for manufacturing was developed and utilized to formalize function descriptions and guide rules for function decomposition. Potential components for embodiment are also grouped in terms of this functional language and are stored in a database. The properties of each component are given as quantitative and qualitative criteria. Operators are also rated for task-relevant criteria which are used to address task compatibility. Through the gathering of process requirements/constraints, construction of the component database, and development of the manufacturing basis and rule set, design knowledge is stored and available for computer use. Thus, once the higher level process functions are defined, the computer can automate the synthesis of new design concepts through alternating steps of embodiment and function structure updates

  15. Automation, parallelism, and robotics for proteomics.

    PubMed

    Alterovitz, Gil; Liu, Jonathan; Chow, Jijun; Ramoni, Marco F

    2006-07-01

    The speed of the human genome project (Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C. et al., Nature 2001, 409, 860-921) was made possible, in part, by developments in automation of sequencing technologies. Before these technologies, sequencing was a laborious, expensive, and personnel-intensive task. Similarly, automation and robotics are changing the field of proteomics today. Proteomics is defined as the effort to understand and characterize proteins in the categories of structure, function and interaction (Englbrecht, C. C., Facius, A., Comb. Chem. High Throughput Screen. 2005, 8, 705-715). As such, this field nicely lends itself to automation technologies since these methods often require large economies of scale in order to achieve cost and time-saving benefits. This article describes some of the technologies and methods being applied in proteomics in order to facilitate automation within the field as well as in linking proteomics-based information with other related research areas. PMID:16786489

  16. Workcell calibration for effective offline programming

    NASA Technical Reports Server (NTRS)

    Stiles, Roger D.; Jones, Clyde S.

    1989-01-01

    In the application of graphics systems for off-line programming (OLP) of robotic systems, the inevitability of errors in the model representation of real-world situations requires that a method to map these differences is incorporated as an integral part of the overall system progamming procedures. This paper discusses several proven robot-to-positioner calibration techniques necessary to reflect real-world parameters in a work-cell model. Particular attention is given to the procedures used to adjust a graphics model to an acceptable degree of accuracy for integration of OLP for the Space Shuttle Main Engine welding automation. Consideration is given to the levels of calibration, requirements, special considerations for coordinated motion, and calibration procedures.

  17. Production of Candida antarctica lipase B gene open reading frame using automated PCR gene assembly protocol on robotic workcell and expression in an ethanologenic yeast for use as resin-bound biocatalyst in biodiesel production.

    PubMed

    Hughes, Stephen R; Moser, Bryan R; Harmsen, Amanda J; Bischoff, Kenneth M; Jones, Marjorie A; Pinkelman, Rebecca; Bang, Sookie S; Tasaki, Ken; Doll, Kenneth M; Qureshi, Nasib; Saha, Badal C; Liu, Siqing; Jackson, John S; Robinson, Samantha; Cotta, Michael C; Rich, Joseph O; Caimi, Paolo

    2011-02-01

    A synthetic Candida antarctica lipase B (CALB) gene open reading frame (ORF) for expression in yeast was constructed, and the lycotoxin-1 (Lyt-1) C3 variant gene ORF, potentially to improve the availability of the active enzyme at the surface of the yeast cell, was added in frame with the CALB ORF using an automated PCR assembly and DNA purification protocol on an integrated robotic workcell. Saccharomyces cerevisiae strains expressing CALB protein or CALB Lyt-1 fusion protein were first grown on 2% (w/v) glucose, producing 9.3 g/L ethanol during fermentation. The carbon source was switched to galactose for GAL1-driven expression, and the CALB and CALB Lyt-1 enzymes expressed were tested for fatty acid ethyl ester (biodiesel) production. The synthetic enzymes catalyzed the formation of fatty acid ethyl esters from ethanol and either corn or soybean oil. It was further demonstrated that a one-step-charging resin, specifically selected for binding to lipase, was capable of covalent attachment of the CALB Lyt-1 enzyme, and that the resin-bound enzyme catalyzed the production of biodiesel. High-level expression of lipase in an ethanologenic yeast strain has the potential to increase the profitability of an integrated biorefinery by combining bioethanol production with coproduction of a low-cost biocatalyst that converts corn oil to biodiesel. PMID:21609683

  18. Industrial robots and robotics

    SciTech Connect

    Kafrissen, S.; Stephens, M.

    1984-01-01

    This book discusses the study of robotics. It provides information of hardware, software, applications and economics. Eleven chapters examine the following: Minicomputers, Microcomputers, and Microprocessors; The Servo-Control System; The Activators; Robot Vision Systems; and Robot Workcell Environments. Twelve appendices supplement the data.

  19. An REU Experience with Micro Assembly Workcell Research

    ERIC Educational Resources Information Center

    Stapleton, William; Asiabanpour, Bahram; Jimenez, Jesus; Um, Dugan

    2010-01-01

    Under an NSF REU center grant REU-0755355 entitled "Micro/Nano Assembly Workcell Via Micro Visual Sensing and Haptic Feedback", Texas A&M University-Corpus Christi and Texas State University-San Marcos collaboratively hosted two groups of 10 students from different backgrounds for 10 weeks each in Summer 2008 and 2009 respectively.…

  20. Robotic component preparation

    SciTech Connect

    Dokos, J.R.

    1986-04-01

    This report provides information on the preparation of robotic components. Component preparation includes pretinning or solder dipping, preforming, and pretrimming of component leads. Since about 70% of all components are axial-leaded resistor-type components, it was decided to begin with them and then later develop capabilities to handle other types. The first workcell is the first phase of an overall system to pretin, preform, and pretrim all components and to feed them to an automatic insertion system. Before use of the robot, a Unimation PUMA Modal 260, pretinning and preforming was done by first hand with a shield and vented booth.

  1. Robotics.

    ERIC Educational Resources Information Center

    Waddell, Steve; Doty, Keith L.

    1999-01-01

    "Why Teach Robotics?" (Waddell) suggests that the United States lags behind Europe and Japan in use of robotics in industry and teaching. "Creating a Course in Mobile Robotics" (Doty) outlines course elements of the Intelligent Machines Design Lab. (SK)

  2. Intelligent robotics research at Waterloo

    NASA Astrophysics Data System (ADS)

    Wong, Andrew K. C.

    1993-01-01

    The paper presents the recent intelligent robotics research being carried out at the PAMI Lab of the University of Waterloo, Waterloo, Ontario. The intelligence control of manipulators is directed and guided by 3-D vision. It is implemented for a mobile robot and robot manipulators in a workcell. The intelligent robotic system is capable of: (1) real-time recognition and location of 3-D objects and obstacles with a single camera system mounted on the robot arm; (2) optimal trajectory planning for a robotic manipulator with obstacle and singularity avoidance capability; and (3) vision directed navigation of a mobile robot. Application of this technology to industrial and space station projects is included in the discussion.

  3. Robot dynamics in reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Grisham, Tollie; Hinman, Elaine; Coker, Cindy

    1990-01-01

    Robot dynamics and control will become an important issue for productive platforms in space. Robotic operations will be necessary for both man tended stations and for the efficient performance of routine operations in a manned platform. The current constraints on the use of robotic devices in a microgravity environment appears to be due to safety concerns and an anticipated increase in acceleration levels due to manipulator motion. The robot used for the initial studies was a UMI RTX robot, which was adapted to operate in a materials processing workcell to simulate sample changing in a microgravity environment. The robotic cell was flown several times on the KC-135 aircraft at Ellington Field. The primary objective of the initial flights was to determine operating characteristics of both the robot and the operator in the variable gravity of the KC-135 during parabolic maneuvers. It was demonstrated that the KC-135 aircraft can be used for observing dynamics of robotic manipulators. The difficulties associated with humans performing teleoperation tasks during varying G levels were also observed and can provide insight into some areas in which the use of artificial techniques would provide improved system performance. Additionally a graphic simulation of the workcell was developed on a Silicon Graphics Workstation using the IGRIP simulation language from Deneb Robotics. The simulation is intended to be used for predictive displays of the robot operating on the aircraft. It is also anticipated that this simulation can be useful for off-line programming of tasks in the future.

  4. Software development to support sensor control of robot arc welding

    NASA Technical Reports Server (NTRS)

    Silas, F. R., Jr.

    1986-01-01

    The development of software for a Digital Equipment Corporation MINC-23 Laboratory Computer to provide functions of a workcell host computer for Space Shuttle Main Engine (SSME) robotic welding is documented. Routines were written to transfer robot programs between the MINC and an Advanced Robotic Cyro 750 welding robot. Other routines provide advanced program editing features while additional software allows communicatin with a remote computer aided design system. Access to special robot functions were provided to allow advanced control of weld seam tracking and process control for future development programs.

  5. Construction typification as the tool for optimizing the functioning of a robotized manufacturing system

    NASA Astrophysics Data System (ADS)

    Gwiazda, A.; Banas, W.; Sekala, A.; Foit, K.; Hryniewicz, P.; Kost, G.

    2015-11-01

    Process of workcell designing is limited by different constructional requirements. They are related to technological parameters of manufactured element, to specifications of purchased elements of a workcell and to technical characteristics of a workcell scene. This shows the complexity of the design-constructional process itself. The results of such approach are individually designed workcell suitable to the specific location and specific production cycle. Changing this parameters one must rebuild the whole configuration of a workcell. Taking into consideration this it is important to elaborate the base of typical elements of a robot kinematic chain that could be used as the tool for building Virtual modelling of kinematic chains of industrial robots requires several preparatory phase. Firstly, it is important to create a database element, which will be models of industrial robot arms. These models could be described as functional primitives that represent elements between components of the kinematic pairs and structural members of industrial robots. A database with following elements is created: the base kinematic pairs, the base robot structural elements, the base of the robot work scenes. The first of these databases includes kinematic pairs being the key component of the manipulator actuator modules. Accordingly, as mentioned previously, it includes the first stage rotary pair of fifth stage. This type of kinematic pairs was chosen due to the fact that it occurs most frequently in the structures of industrial robots. Second base consists of structural robot elements therefore it allows for the conversion of schematic structures of kinematic chains in the structural elements of the arm of industrial robots. It contains, inter alia, the structural elements such as base, stiff members - simple or angular units. They allow converting recorded schematic three-dimensional elements. Last database is a database of scenes. It includes elements of both simple and complex

  6. Robot positioning based on point-to-point motion capability

    SciTech Connect

    Park, Y. S.; Cho, H. S.; Koh, K. C.

    2000-03-20

    This paper presents an optimal search method for determining the base location of a robot manipulator so that the robot can have a designated point-to-point (PTP) motion capabilities. Based on the topological characterization of the manipulator workspace and the definitions of various p-connectivity, a computational method is developed for enumerating various PTP motion capabilities into quantitative cost functions. Then an unconstrained search by minimizing the cost function yields the task feasible location of the robot base. This methodology is useful for placement of mobile manipulators and robotic workcell layout design.

  7. Off-line programming motion and process commands for robotic welding of Space Shuttle main engines

    NASA Technical Reports Server (NTRS)

    Ruokangas, C. C.; Guthmiller, W. A.; Pierson, B. L.; Sliwinski, K. E.; Lee, J. M. F.

    1987-01-01

    The off-line-programming software and hardware being developed for robotic welding of the Space Shuttle main engine are described and illustrated with diagrams, drawings, graphs, and photographs. The menu-driven workstation-based interactive programming system is designed to permit generation of both motion and process commands for the robotic workcell by weld engineers (with only limited knowledge of programming or CAD systems) on the production floor. Consideration is given to the user interface, geometric-sources interfaces, overall menu structure, weld-parameter data base, and displays of run time and archived data. Ongoing efforts to address limitations related to automatic-downhand-configuration coordinated motion, a lack of source codes for the motion-control software, CAD data incompatibility, interfacing with the robotic workcell, and definition of the welding data base are discussed.

  8. GMAX-L Saccharomyces Cerevisiae Strains for Profitable Sustainable Cellulosic Ethanol and Biodiesel Production Concurrently using Engineered Workcell

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A stable GMAX-L strain of Saccharomyces cerevisiae is being constructed using pSUMO expression cassettes that are extremely high expression level plasmids designed for use on automated workcell. This strain expresses xylose isomerase, xylulokinase, XIB1, and XIG1 for anaerobic cellulosic ethanol pr...

  9. Graphics modelling of non-contact thickness measuring robotics work cell

    NASA Technical Reports Server (NTRS)

    Warren, Charles W.

    1990-01-01

    A system was developed for measuring, in real time, the thickness of a sprayable insulation during its application. The system was graphically modelled, off-line, using a state-of-the-art graphics workstation and associated software. This model was to contain a 3D color model of a workcell containing a robot and an air bearing turntable. A communication link was established between the graphics workstations and the robot's controller. Sequences of robot motion generated by the computer simulation are transmitted to the robot for execution.

  10. Cooperative intelligent robotics in space III; Proceedings of the Meeting, Boston, MA, Nov. 16-18, 1992

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D. (Editor)

    1992-01-01

    The present volume on cooperative intelligent robotics in space discusses sensing and perception, Space Station Freedom robotics, cooperative human/intelligent robot teams, and intelligent space robotics. Attention is given to space robotics reasoning and control, ground-based space applications, intelligent space robotics architectures, free-flying orbital space robotics, and cooperative intelligent robotics in space exploration. Topics addressed include proportional proximity sensing for telerobots using coherent lasar radar, ground operation of the mobile servicing system on Space Station Freedom, teleprogramming a cooperative space robotic workcell for space stations, and knowledge-based task planning for the special-purpose dextrous manipulator. Also discussed are dimensions of complexity in learning from interactive instruction, an overview of the dynamic predictive architecture for robotic assistants, recent developments at the Goddard engineering testbed, and parallel fault-tolerant robot control.

  11. Robotics

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O.

    2007-01-01

    Lunar robotic functions include: 1. Transport of crew and payloads on the surface of the moon; 2. Offloading payloads from a lunar lander; 3. Handling the deployment of surface systems; with 4. Human commanding of these functions from inside a lunar vehicle, habitat, or extravehicular (space walk), with Earth-based supervision. The systems that will perform these functions may not look like robots from science fiction. In fact, robotic functions may be automated trucks, cranes and winches. Use of this equipment prior to the crew s arrival or in the potentially long periods without crews on the surface, will require that these systems be computer controlled machines. The public release of NASA's Exploration plans at the 2nd Space Exploration Conference (Houston, December 2006) included a lunar outpost with as many as four unique mobility chassis designs. The sequence of lander offloading tasks involved as many as ten payloads, each with a unique set of geometry, mass and interface requirements. This plan was refined during a second phase study concluded in August 2007. Among the many improvements to the exploration plan were a reduction in the number of unique mobility chassis designs and a reduction in unique payload specifications. As the lunar surface system payloads have matured, so have the mobility and offloading functional requirements. While the architecture work continues, the community can expect to see functional requirements in the areas of surface mobility, surface handling, and human-systems interaction as follows: Surface Mobility 1. Transport crew on the lunar surface, accelerating construction tasks, expanding the crew s sphere of influence for scientific exploration, and providing a rapid return to an ascent module in an emergency. The crew transport can be with an un-pressurized rover, a small pressurized rover, or a larger mobile habitat. 2. Transport Extra-Vehicular Activity (EVA) equipment and construction payloads. 3. Transport habitats and

  12. Advanced robotics technology applied to mixed waste characterization, sorting and treatment

    SciTech Connect

    Wilhelmsen, K.; Hurd, R.; Grasz, E.

    1994-04-01

    There are over one million cubic meters of radioactively contaminated hazardous waste, known as mixed waste, stored at Department of Energy facilities. Researchers at Lawrence Livermore National Laboratory (LLNL) are developing methods to safely and efficiently treat this type of waste. LLNL has automated and demonstrated a means of segregating items in a mixed waste stream. This capability incorporates robotics and automation with advanced multi-sensor information for autonomous and teleoperational handling of mixed waste items with previously unknown characteristics. The first phase of remote waste stream handling was item singulation; the ability to remove individual items of heterogeneous waste directly from a drum, box, bin, or pile. Once objects were singulated, additional multi-sensory information was used for object classification and segregation. In addition, autonomous and teleoperational surface cleaning and decontamination of homogeneous metals has been demonstrated in processing mixed waste streams. The LLNL waste stream demonstration includes advanced technology such as object classification algorithms, identification of various metal types using active and passive gamma scans and RF signatures, and improved teleoperational and autonomous grasping of waste objects. The workcell control program used an off-line programming system as a server to perform both simulation control as well as actual hardware control of the workcell. This paper will discuss the motivation for remote mixed waste stream handling, the overall workcell layout, sensor specifications, workcell supervisory control, 3D vision based automated grasp planning and object classification algorithms.

  13. Robotics

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2012-01-01

    Earth's upper atmosphere is an extreme environment: dry, cold, and irradiated. It is unknown whether our aerobiosphere is limited to the transport of life, or there exist organisms that grow and reproduce while airborne (aerophiles); the microenvironments of suspended particles may harbor life at otherwise uninhabited altitudes[2]. The existence of aerophiles would significantly expand the range of planets considered candidates for life by, for example, including the cooler clouds of a hot Venus-like planet. The X project is an effort to engineer a robotic exploration and biosampling payload for a comprehensive survey of Earth's aerobiology. While many one-shot samples have been retrieved from above 15 km, their results are primarily qualitative; variations in method confound comparisons, leaving such major gaps in our knowledge of aerobiology as quantification of populations at different strata and relative species counts[1]. These challenges and X's preliminary solutions are explicated below. X's primary balloon payload is undergoing a series of calibrations before beginning flights in Spring 2012. A suborbital launch is currently planned for Summer 2012. A series of ground samples taken in Winter 2011 is being used to establish baseline counts and identify likely background contaminants.

  14. An intelligent approach to welding robot selection

    NASA Astrophysics Data System (ADS)

    Milano, J.; Mauk, S. D.; Flitter, L.; Morris, R.

    1993-10-01

    In a shipyard where multiple stationary and mobile workcells are employed in the fabrication of components of complex sub-assemblies,efficient operation requires an intelligent method of scheduling jobs and selecting workcells based on optimum throughput and cost. The achievement of this global solution requires the successful organization of resource availability,process requirements,and process constraints. The Off-line Planner (OLP) of the Programmable Automated Weld Systemd (PAWS) is capable of advanced modeling of weld processes and environments as well as the generation of complete weld procedures. These capabilities involve the integration of advanced Computer Aided Design (CAD), path planning, and obstacle detection and avoidance techniques as well as the synthesis of complex design and process information. These existing capabilities provide the basis of the functionality required for the successful implementation of an intelligent weld robot selector and material flow planner. Current efforts are focused on robot selection via the dynamic routing of components to the appropriate work cells. It is proposed that this problem is a variant of the “Traveling Salesman Problem” (TSP) that has been proven to belong to a larger set of optimization problems termed nondeterministic polynomial complete (NP complete). In this paper, a heuristic approach utilizing recurrent neural networks is explored as a rapid means of producing a near optimal, if not optimal, bdweld robot selection.

  15. IC handling robot

    SciTech Connect

    Law, D.O.

    1986-09-01

    Allied Corporation, Bendix Kansas City Division uses many integrated circuits (ICs) which are 100% tested by receiving inspection prior to installation into the next assemblies. Testing includes functional testing followed by a burn-in cycle then additional functional testing. Before an IC can be functionally tested, it must be inserted into a custom plastic carrier which is placed into a metal magazine that fits the functional tester. The ICs are removed from both tester magazines and carriers prior to being placed into connectors mounted on a printed wiring board for burn-in. Then they are removed from the burn-in board and re-inserted into carriers and magazines for additional functional testing. Each device is handled manually a minimum of 12 times before it is accepted. This project established a robotic workcell which automatically prepares a dual in-line packaged (DIP) integrated circuit for several types of inspection operations performed by Receiving Inspection. Specific activities required to accomplish this goal included definition of the work cell, preparation of the robot and other equipment specifications, installation planning, establishment of programming routines and logic, design of operator safeguards, and development of the work cell concept into an operational unit capable of supporting production.

  16. Exploratorium: Robots.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  17. Robotic surgery

    MedlinePlus

    Robot-assisted surgery; Robotic-assisted laparoscopic surgery; Laparoscopic surgery with robotic assistance ... computer station and directs the movements of a robot. Small surgical tools are attached to the robot's ...

  18. Intelligent tools and process development for robotic edge finishing: LDRD project final report

    SciTech Connect

    Lewis, C.L.

    1997-08-01

    This report describes a project undertaken to develop an agile automated, high-precision edge finishing system, for fabricating precision parts. The project involved re-designing and adding additional capabilities to an existing finishing work-cell. The resulting work-cell may serve as prototype for production systems to be integrated in highly flexible automated production lines. The system removes burrs formed in the machining process and produces precision chamfers. The system uses an expert system to predict the burr size from the machining history. Within the CAD system, tool paths are generated for burr removal and chamfer formation. Then, the optimal grinding process is automatically selected from a database of processes. The tool trajectory and the selected process definition is then downloaded to a robotic control system to execute the operation. The robotic control system implements a hybrid fuzzy logic-classical control scheme to achieve the desired performance goals regardless of tolerance and fixturing errors. This report describes the system architecture and the system`s performance.

  19. Robotic NDE inspection of advanced solid rocket motor casings

    NASA Technical Reports Server (NTRS)

    Mcneelege, Glenn E.; Sarantos, Chris

    1994-01-01

    The Advanced Solid Rocket Motor program determined the need to inspect ASRM forgings and segments for potentially catastrophic defects. To minimize costs, an automated eddy current inspection system was designed and manufactured for inspection of ASRM forgings in the initial phases of production. This system utilizes custom manipulators and motion control algorithms and integrated six channel eddy current data acquisition and analysis hardware and software. Total system integration is through a personal computer based workcell controller. Segment inspection demands the use of a gantry robot for the EMAT/ET inspection system. The EMAT/ET system utilized similar mechanical compliancy and software logic to accommodate complex part geometries. EMAT provides volumetric inspection capability while eddy current is limited to surface and near surface inspection. Each aspect of the systems are applicable to other industries, such as, inspection of pressure vessels, weld inspection, and traditional ultrasonic inspection applications.

  20. Robotic surgery

    MedlinePlus

    Robot-assisted surgery; Robotic-assisted laparoscopic surgery; Laparoscopic surgery with robotic assistance ... Robotic surgery is similar to laparoscopic surgery. It can be performed through smaller cuts than open surgery. ...

  1. Performance characterization of precision micro robot using a machine vision system over the Internet for guaranteed positioning accuracy

    NASA Astrophysics Data System (ADS)

    Kwon, Yongjin; Chiou, Richard; Rauniar, Shreepud; Sosa, Horacio

    2005-11-01

    There is a missing link between a virtual development environment (e.g., a CAD/CAM driven offline robotic programming) and production requirements of the actual robotic workcell. Simulated robot path planning and generation of pick-and-place coordinate points will not exactly coincide with the robot performance due to lack of consideration in variations in individual robot repeatability and thermal expansion of robot linkages. This is especially important when robots are controlled and programmed remotely (e.g., through Internet or Ethernet) since remote users have no physical contact with robotic systems. Using the current technology in Internet-based manufacturing that is limited to a web camera for live image transfer has been a significant challenge for the robot task performance. Consequently, the calibration and accuracy quantification of robot critical to precision assembly have to be performed on-site and the verification of robot positioning accuracy cannot be ascertained remotely. In worst case, the remote users have to assume the robot performance envelope provided by the manufacturers, which may causes a potentially serious hazard for system crash and damage to the parts and robot arms. Currently, there is no reliable methodology for remotely calibrating the robot performance. The objective of this research is, therefore, to advance the current state-of-the-art in Internet-based control and monitoring technology, with a specific aim in the accuracy calibration of micro precision robotic system for the development of a novel methodology utilizing Ethernet-based smart image sensors and other advanced precision sensory control network.

  2. A concept for ubiquitous robotics in industrial environment

    NASA Astrophysics Data System (ADS)

    Sallinen, Mikko; Heilala, Juhani; Kivikunnas, Sauli

    2007-09-01

    In this paper a concept for industrial ubiquitous robotics is presented. The concept combines two different approaches to manage agile, adaptable production: firstly the human operator is strongly in the production loop and secondly, the robot workcell will be more autonomous and smarter to manage production. This kind of autonomous robot cell can be called production island. Communication to the human operator working in this kind of smart industrial environment can be divided into two levels: body area communication and operator-infrastructure communication including devices, machines and infra. Body area communication can be supportive in two directions: data is recorded by means of measuring physical actions, such as hand movements, body gestures or supportive when it will provide information to user such as guides or manuals for operation. Body area communication can be carried out using short range communication technologies such as NFC (Near Field communication) which is RFID type of communication. In the operator-infrastructure communication, WLAN or Bluetooth -communication can be used. Beyond the current Human Machine interaction HMI systems, the presented system concept is designed to fulfill the requirements for hybrid, knowledge intensive manufacturing in the future, where humans and robots operate in close co-operation.

  3. Modelling of cooperating robotized systems with the use of object-based approach

    NASA Astrophysics Data System (ADS)

    Foit, K.; Gwiazda, A.; Banas, W.; Sekala, A.; Hryniewicz, P.

    2015-11-01

    Today's robotized manufacturing systems are characterized by high efficiency. The emphasis is placed mainly on the simultaneous work of machines. It could manifest in many ways, where the most spectacular one is the cooperation of several robots, during work on the same detail. What's more, recently a dual-arm robots are used that could mimic the manipulative skills of human hands. As a result, it is often hard to deal with the situation, when it is necessary not only to maintain sufficient precision, but also the coordination and proper sequence of movements of individual robots’ arms. The successful completion of this task depends on the individual robot control systems and their respective programmed, but also on the well-functioning communication between robot controllers. A major problem in case of cooperating robots is the possibility of collision between particular links of robots’ kinematic chains. This is not a simple case, because the manufacturers of robotic systems do not disclose the details of the control algorithms, then it is hard to determine such situation. Another problem with cooperation of robots is how to inform the other units about start or completion of part of the task, so that other robots can take further actions. This paper focuses on communication between cooperating robotic units, assuming that every robot is represented by object-based model. This problem requires developing a form of communication protocol that the objects can use for collecting the information about its environment. The approach presented in the paper is not limited to the robots and could be used in a wider range, for example during modelling of the complete workcell or production line.

  4. Robot and robot system

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E. (Inventor); Marzwell, Neville I. (Inventor); Wall, Jonathan N. (Inventor); Poole, Michael D. (Inventor)

    2011-01-01

    A robot and robot system that are capable of functioning in a zero-gravity environment are provided. The robot can include a body having a longitudinal axis and having a control unit and a power source. The robot can include a first leg pair including a first leg and a second leg. Each leg of the first leg pair can be pivotally attached to the body and constrained to pivot in a first leg pair plane that is substantially perpendicular to the longitudinal axis of the body.

  5. Nanoscale Proteomics

    SciTech Connect

    Shen, Yufeng; Tolic, Nikola; Masselon, Christophe D.; Pasa-Tolic, Liljiana; Camp, David G.; Anderson, Gordon A.; Smith, Richard D.; Lipton, Mary S.

    2004-02-01

    This paper describes efforts to develop a liquid chromatography (LC)/mass spectrometry (MS) technology for ultra-sensitive proteomics studies, i.e. nanoscale proteomics. The approach combines high-efficiency nano-scale LC with advanced MS, including high sensitivity and high resolution Fourier transform ion cyclotron resonance (FTICR) MS, to perform both single-stage MS and tandem MS (MS/MS) proteomic analyses. The technology developed enables large-scale protein identification from nanogram size proteomic samples and characterization of more abundant proteins from sub-picogram size complex samples. Protein identification in such studies using MS is feasible from <75 zeptomole of a protein, and the average proteome measurement throughput is >200 proteins/h and ~3 h/sample. Higher throughput (>1000 proteins/h) and more sensitive detection limits can be obtained using a “accurate mass and time” tag approach developed at our laboratory. These capabilities lay the foundation for studies from single or limited numbers of cells.

  6. Fully automated molecular biology: Plasmid-Based Functional Proteomic Workcell Evaluation and Characterization of Yeast Strains with Optimized "Trojan Horse" Amino Acid Scanning Mutational Inserts.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The optimization of various genes is important in cellulosic fuel ethanol production from S. cerevisiae to meet the rapidly expanding need for ethanol derived from hemicellulosic materials. The United States Department of Agriculture has developed a fully automated platform for molecular biology ro...

  7. Fully automated molecular biology routines on a plasmid-based functional proteomic workcell: Evaluation and Characterization of Yeast Strains Optimized for Growth on Xylose Expressing "Stealth" Insecticidal Peptides.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimization of genes important to production of fuel ethanol from hemicellulosic biomass for use in developing improved commercial yeast strains is necessary to meet the rapidly expanding need for ethanol. The United States Department of Agriculture has developed a fully automated platform for mol...

  8. CASSY Robot

    NASA Astrophysics Data System (ADS)

    Pittman, Anna; Wright, Ann; Rice, Aaron; Shyaka, Claude

    2014-03-01

    The CASSY Robot project involved two square robots coded in RobotC. The goal was to code a robot to do a certain set of tasks autonomously. To begin with, our task was to code the robot so that it would roam a certain area, marked off by black tape. When the robot hit the black tape, it knew to back up and turn around. It was able to do this thanks to the light sensor that was attached to the bottom of the robot. Also, whenever the robot hit an obstacle, it knew to stop, back up, and turn around. This was primarily to prevent the robot from hurting itself if it hit an obstacle. This was accomplished by using touch sensors set up as bumpers. Once that was accomplished, we attached sonar sensors and created code so that one robot was able to find and track the other robot in a sort of intruder/police scenario. The overall goal of this project was to code the robot so that we can test it against a robot coded exactly the same, but using Layered Mode Selection Logic. Professor.

  9. Basic Robotics.

    ERIC Educational Resources Information Center

    Mullen, Frank

    This curriculum outline consists of instructional materials and information concerning resources for use in teaching a course in robotics. Addressed in the individual sections of the outline are the following topics: the nature of an industrial robot; the parts of an industrial robot (the manipulator, the power structure, and the control system);…

  10. Industrial Robots.

    ERIC Educational Resources Information Center

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  11. HepatoProteomics: Applying Proteomic Technologies to the Study of Liver Function and Disease

    SciTech Connect

    Diamond, Deborah L.; Proll, Sean; Jacobs, Jon M.; Chan, Eric Y.; Camp, David G.; Smith, Richard D.; Katze, Michael G.

    2006-08-01

    The wealth of human genome sequence information now available, coupled with technological advances in robotics, nanotechnology, mass spectrometry, and information systems, has given rise to a method of scientific inquiry known as functional genomics. By using these technologies to survey gene expression and protein production on a near global scale, the goal of functional genomics is to assign biological function to genes with currently unknown roles in physiology. This approach carries particular appeal in disease research, where it can uncover the function of previously unknown genes and molecular pathways that are directly involved in disease progression. With this knowledge may come improved diagnostic techniques, prognostic capabilities, and novel therapeutic approaches. In this regard, the continuing evolution of proteomic technologies has resulted in an increasingly greater impact of proteome studies in many areas of research and hepatology is no exception. Our laboratory has been extremely active in this area, applying both genomic and proteomic technologies to the analysis of virus-host interactions in several systems, including the study of hepatitis C virus (HCV) infection and HCV-associated liver disease. Since proteomic technologies are foreign to many hepatologists (and to almost everyone else), this article will provide an overview of proteomic methods and technologies and describe how they're being used to study liver function and disease. We use our studies of HCV infection and HCV-associated liver disease to present an operational framework for performing high throughput proteome analysis and extracting biologically meaningful information.

  12. The role of targeted chemical proteomics in pharmacology

    PubMed Central

    Sutton, Chris W

    2012-01-01

    Traditionally, proteomics is the high-throughput characterization of the global complement of proteins in a biological system using cutting-edge technologies (robotics and mass spectrometry) and bioinformatics tools (Internet-based search engines and databases). As the field of proteomics has matured, a diverse range of strategies have evolved to answer specific problems. Chemical proteomics is one such direction that provides the means to enrich and detect less abundant proteins (the ‘hidden’ proteome) from complex mixtures of wide dynamic range (the ‘deep’ proteome). In pharmacology, chemical proteomics has been utilized to determine the specificity of drugs and their analogues, for anticipated known targets, only to discover other proteins that bind and could account for side effects observed in preclinical and clinical trials. As a consequence, chemical proteomics provides a valuable accessory in refinement of second- and third-generation drug design for treatment of many diseases. However, determining definitive affinity capture of proteins by a drug immobilized on soft gel chromatography matrices has highlighted some of the challenges that remain to be addressed. Examples of the different strategies that have emerged using well-established drugs against pharmaceutically important enzymes, such as protein kinases, metalloproteases, PDEs, cytochrome P450s, etc., indicate the potential opportunity to employ chemical proteomics as an early-stage screening approach in the identification of new targets. PMID:22074351

  13. Robotics research

    SciTech Connect

    Brady, M.; Paul, R.

    1984-01-01

    Organized around a view of robotics as ''the intelligent connection of perception to action,'' the fifty-three contributions collected in this book present leading current research in one of the fastest moving fields of artificial intelligence. Readings Include: Hand-Eye Coordination in Rope Handling; 3-D Balance Using 2-D algorithms. A Model Driven Visual Inspection Module: Stereo Vision: Complexity and Constraints; Interpretation of Contact Geometers from Force Measurement; The Utah MIT Dextrous Hand: Work in Progress; Hierarchical Nonlinear Control for Robots; VAL-11; A Robot Programming Language and Control System; Technological Barriers in Robotics: A Perspective from Industry.

  14. Robotic Surgery

    PubMed Central

    Lanfranco, Anthony R.; Castellanos, Andres E.; Desai, Jaydev P.; Meyers, William C.

    2004-01-01

    Objective: To review the history, development, and current applications of robotics in surgery. Background: Surgical robotics is a new technology that holds significant promise. Robotic surgery is often heralded as the new revolution, and it is one of the most talked about subjects in surgery today. Up to this point in time, however, the drive to develop and obtain robotic devices has been largely driven by the market. There is no doubt that they will become an important tool in the surgical armamentarium, but the extent of their use is still evolving. Methods: A review of the literature was undertaken using Medline. Articles describing the history and development of surgical robots were identified as were articles reporting data on applications. Results: Several centers are currently using surgical robots and publishing data. Most of these early studies report that robotic surgery is feasible. There is, however, a paucity of data regarding costs and benefits of robotics versus conventional techniques. Conclusions: Robotic surgery is still in its infancy and its niche has not yet been well defined. Its current practical uses are mostly confined to smaller surgical procedures. PMID:14685095

  15. Hopping robot

    DOEpatents

    Spletzer, Barry L.; Fischer, Gary J.; Marron, Lisa C.; Martinez, Michael A.; Kuehl, Michael A.; Feddema, John T.

    2001-01-01

    The present invention provides a hopping robot that includes a misfire tolerant linear actuator suitable for long trips, low energy steering and control, reliable low energy righting, miniature low energy fuel control. The present invention provides a robot with hopping mobility, capable of traversing obstacles significant in size relative to the robot and capable of operation on unpredictable terrain over long range. The present invention further provides a hopping robot with misfire-tolerant combustion actuation, and with combustion actuation suitable for use in oxygen-poor environments.

  16. Polyploidy and the proteome.

    PubMed

    Soltis, Douglas E; Misra, Biswapriya B; Shan, Shengchen; Chen, Sixue; Soltis, Pamela S

    2016-08-01

    Although major advances have been made during the past 20 years in our understanding of the genetic and genomic consequences of polyploidy, our knowledge of polyploidy and the proteome is in its infancy. One of our goals is to stimulate additional study, particularly broad-scale proteomic analyses of polyploids and their progenitors. Although it may be too early to generalize regarding the extent to which transcriptomic data are predictive of the proteome of polyploids, it is clear that the proteome does not always reflect the transcriptome. Despite limited data, important observations on the proteomes of polyploids are emerging. In some cases, proteomic profiles show qualitatively and/or quantitatively non-additive patterns, and proteomic novelty has been observed. Allopolyploids generally combine the parental contributions, but there is evidence of parental dominance of one contributing genome in some allopolyploids. Autopolyploids are typically qualitatively identical to but quantitatively different from their parents. There is also evidence of parental legacy at the proteomic level. Proteomes clearly provide insights into the consequences of genomic merger and doubling beyond what is obtained from genomic and/or transcriptomic data. Translating proteomic changes in polyploids to differences in morphology and physiology remains the holy grail of polyploidy--this daunting task of linking genotype to proteome to phenotype should emerge as a focus of polyploidy research in the next decade. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. PMID:26993527

  17. Robotics 101

    ERIC Educational Resources Information Center

    Sultan, Alan

    2011-01-01

    Robots are used in all kinds of industrial settings. They are used to rivet bolts to cars, to move items from one conveyor belt to another, to gather information from other planets, and even to perform some very delicate types of surgery. Anyone who has watched a robot perform its tasks cannot help but be impressed by how it works. This article…

  18. Robotic system

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O. (Inventor)

    2003-01-01

    A robot having a plurality of interconnected sections is disclosed. Each of the sections includes components which are moveable relative to components of an adjacent section. A plurality of electric motors are operably connected to at least two of said relatively moveable components to effect relative movement. A fitted, removable protective covering surrounds the sections to protect the robot.

  19. Robotic Surgery

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Automated Endoscopic System for Optimal Positioning, or AESOP, was developed by Computer Motion, Inc. under a SBIR contract from the Jet Propulsion Lab. AESOP is a robotic endoscopic positioning system used to control the motion of a camera during endoscopic surgery. The camera, which is mounted at the end of a robotic arm, previously had to be held in place by the surgical staff. With AESOP the robotic arm can make more precise and consistent movements. AESOP is also voice controlled by the surgeon. It is hoped that this technology can be used in space repair missions which require precision beyond human dexterity. A new generation of the same technology entitled the ZEUS Robotic Surgical System can make endoscopic procedures even more successful. ZEUS allows the surgeon control various instruments in its robotic arms, allowing for the precision the procedure requires.

  20. The Staphylococcus aureus proteome.

    PubMed

    Otto, Andreas; van Dijl, Jan Maarten; Hecker, Michael; Becher, Dörte

    2014-03-01

    Staphylococcus aureus is a Gram-positive commensal bacterium that is regarded as a major threat for modern health care systems. This relates both to the ability of S. aureus to overcome antibiotic therapy by developing high-level resistance against multiple antibiotics and this bacterium's extensive arsenal of virulence factors. Understanding the mechanisms of resistance and functional studies on stress and starvation responses are the main goals of proteomics in staphylococcal research. This review high-lights recent advances in gel-based and gel-free proteomics analyses of S. aureus and pinpoints the importance of location-specific proteomics studies targeting the cytosol, the membrane, the cell surface and the extracellular milieu in combination with integrated global proteome studies. Emerging hot topics in staphylococcal proteomics are discussed with special focus on in vivo proteomics, membrane vesicles, biofilm formation and the acquisition of absolute proteome data for systems biological modeling approaches. PMID:24439828

  1. Robotic transportation.

    PubMed

    Lob, W S

    1990-09-01

    Mobile robots perform fetch-and-carry tasks autonomously. An intelligent, sensor-equipped mobile robot does not require dedicated pathways or extensive facility modification. In the hospital, mobile robots can be used to carry specimens, pharmaceuticals, meals, etc. between supply centers, patient areas, and laboratories. The HelpMate (Transitions Research Corp.) mobile robot was developed specifically for hospital environments. To reach a desired destination, Help-Mate navigates with an on-board computer that continuously polls a suite of sensors, matches the sensor data against a pre-programmed map of the environment, and issues drive commands and path corrections. A sender operates the robot with a user-friendly menu that prompts for payload insertion and desired destination(s). Upon arrival at its selected destination, the robot prompts the recipient for a security code or physical key and awaits acknowledgement of payload removal. In the future, the integration of HelpMate with robot manipulators, test equipment, and central institutional information systems will open new applications in more localized areas and should help overcome difficulties in filling transport staff positions. PMID:2208684

  2. [Robotic surgery].

    PubMed

    Sándor, József; Haidegger, Tamás; Kormos, Katalin; Ferencz, Andrea; Csukás, Domokos; Bráth, Endre; Szabó, Györgyi; Wéber, György

    2013-10-01

    Due to the fast spread of laparoscopic cholecystectomy, surgical procedures have been changed essentially. The new techniques applied for both abdominal and thoracic procedures provided the possibility for minimally invasive access with all its advantages. Robots - originally developed for industrial applications - were retrofitted for laparoscopic procedures. The currently prevailing robot-assisted surgery is ergonomically more advantageous for the surgeon, as well as for the patient through the more precise preparative activity thanks to the regained 3D vision. The gradual decrease of costs of robotic surgical systems and development of new generations of minimally invasive devices may lead to substantial changes in routine surgical procedures. PMID:24144815

  3. Robotic vehicle

    DOEpatents

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  4. Robotic vehicle

    DOEpatents

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  5. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  6. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  7. Robotic arm

    SciTech Connect

    Kwech, H.

    1989-04-18

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube is disclosed. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel. 23 figs.

  8. Robotic arm

    SciTech Connect

    Kwech, Horst

    1989-04-18

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel.

  9. Robot Rescue

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2004-01-01

    Tests with robots and the high-fidelity Hubble Space Telescope mockup astronauts use to train for servicing missions have convinced NASA managers it may be possible to maintain and upgrade the orbiting observatory without sending a space shuttle to do the job. In a formal request last week, the agency gave bidders until July 16 to sub-mit proposals for a robotic mission to the space telescope before the end of 2007. At a minimum, the mission would attach a rocket motor to deorbit the telescope safely when its service life ends. In the best case, it would use state-of-the- art robotics to prolong its life on orbit and install new instruments. With the space shuttle off-limits for the job under strict post-Columbia safety policies set by Administrator Sean O'Keefe, NASA has designed a "straw- man" robotic mission that would use an Atlas V or Delta N to launch a 20,ooO-lb. "Hubble Robotic Vehicle" to service the telescope. There, a robotic arm would grapple it, much as the shuttle does.

  10. Robotic sampling system for an unmanned Mars mission

    NASA Technical Reports Server (NTRS)

    Chun, Wendell

    1989-01-01

    A major robotics opportunity for NASA will be the Mars Rover/Sample Return Mission which could be launched as early as the 1990s. The exploratory portion of this mission will include two autonomous subsystems: the rover vehicle and a sample handling system. The sample handling system is the key to the process of collecting Martian soils. This system could include a core drill, a general-purpose manipulator, tools, containers, a return canister, certification hardware and a labeling system. Integrated into a functional package, the sample handling system is analogous to a complex robotic workcell. Discussed here are the different components of the system, their interfaces, forseeable problem areas and many options based on the scientific goals of the mission. The various interfaces in the sample handling process (component to component and handling system to rover) will be a major engineering effort. Two critical evaluation criteria that will be imposed on the system are flexibility and reliability. It needs to be flexible enough to adapt to different scenarios and environments and acquire the most desirable specimens for return to Earth. Scientists may decide to change the distribution and ratio of core samples to rock samples in the canister. The long distance and duration of this planetary mission places a reliability burden on the hardware. The communication time delay between Earth and Mars minimizes operator interaction (teleoperation, supervisory modes) with the sample handler. An intelligent system will be required to plan the actions, make sample choices, interpret sensor inputs, and query unknown surroundings. A combination of autonomous functions and supervised movements will be integrated into the sample handling system.

  11. Rehabilitation robotics

    PubMed Central

    KREBS, H.I.; VOLPE, B.T.

    2015-01-01

    This chapter focuses on rehabilitation robotics which can be used to augment the clinician’s toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual’s functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We will provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we will then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We will present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost. PMID:23312648

  12. Medical robotics.

    PubMed

    Ferrigno, Giancarlo; Baroni, Guido; Casolo, Federico; De Momi, Elena; Gini, Giuseppina; Matteucci, Matteo; Pedrocchi, Alessandra

    2011-01-01

    Information and communication technology (ICT) and mechatronics play a basic role in medical robotics and computer-aided therapy. In the last three decades, in fact, ICT technology has strongly entered the health-care field, bringing in new techniques to support therapy and rehabilitation. In this frame, medical robotics is an expansion of the service and professional robotics as well as other technologies, as surgical navigation has been introduced especially in minimally invasive surgery. Localization systems also provide treatments in radiotherapy and radiosurgery with high precision. Virtual or augmented reality plays a role for both surgical training and planning and for safe rehabilitation in the first stage of the recovery from neurological diseases. Also, in the chronic phase of motor diseases, robotics helps with special assistive devices and prostheses. Although, in the past, the actual need and advantage of navigation, localization, and robotics in surgery and therapy has been in doubt, today, the availability of better hardware (e.g., microrobots) and more sophisticated algorithms(e.g., machine learning and other cognitive approaches)has largely increased the field of applications of these technologies,making it more likely that, in the near future, their presence will be dramatically increased, taking advantage of the generational change of the end users and the increasing request of quality in health-care delivery and management. PMID:21642033

  13. Advanced proteomic liquid chromatography

    SciTech Connect

    Xie, Fang; Smith, Richard D.; Shen, Yufeng

    2012-10-26

    Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput.

  14. Generic robot architecture

    SciTech Connect

    Bruemmer, David J; Few, Douglas A

    2010-09-21

    The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.

  15. Robotic Therapy

    PubMed Central

    Krebs, H. I.; Hogan, N.

    2012-01-01

    The last two decades have seen a remarkable shift in the neuro-rehabilitation paradigm. Neuroscientists and clinicians moved away from the perception that the brain is static and hardwired, to a new dynamic understanding that plasticity is a fundamental property of the adult human brain and might be harnessed to remap or create new neural pathways. Capitalizing on this innovative understanding, we introduced a paradigm shift in the clinical practice in 1989 when we initiated the development of the MIT-Manus robot for neuro-rehabilitation and deployed it in the clinic in 1994 10. Since then, we and others have developed and tested a multitude of robotic devices for stroke, spinal cord injury, cerebral palsy, multiple sclerosis, and Parkinson’s disease. Here we discuss whether robotic therapy has achieved a level of maturity to justify its broad adoption in the clinical realm as a tool for motor recovery. PMID:23080044

  16. Robot Swarms

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2005-01-01

    Engineers and interns at this NASA field center are building the prototype of a robotic rover that could go where no wheeled rover has gone before-into the dark cold craters at the lunar poles and across the Moon s rugged highlands-like a walking tetrahedron. With NASA pushing to meet President Bush's new exploration objectives, the robots taking shape here today could be on the Moon in a decade. In the longer term, the concept could lead to shape-shifting robot swarms designed to explore distant planetary surfaces in advance of humans. "If you look at all of NASA s projections of the future, anyone s projections of the space program, they re all rigid-body architecture," says Steven Curtis, principal investigator on the effort. "This is not rigid-body. The whole key here is flexibility and reconfigurability with a capital R."

  17. Robot Manipulators

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Space Shuttle's Remote Manipulator System (Canadarm) is a 50 foot robot arm used to deploy, retrieve or repair satellites in orbit. Initial spinoff version is designed to remove, inspect and replace large components of Ontario Hydro's CANDU nuclear reactors, which supply 50 percent of Ontario Hydro's total power reduction. CANDU robot is the first of SPAR's Remote Manipulator Systems intended for remote materials handling operations in nuclear servicing, chemical processing, smelting and manufacturing. Inco Limited used remote manipulator for remote control mining equipment to enhance safety and productivity of Inco's hardrock mining operations. System not only improves safety in a hazardous operation that costs more than a score of lives annually, it also increases productivity fourfold. Remote Manipulator System Division is also manufacturing a line of industrial robots and developing additional system for nuclear servicing, mining, defense and space operations.

  18. Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A commercially available ANDROS Mark V-A robot was used by Jet Propulsion Laboratory (JPL) as the departure point in the development of the HAZBOT III, a prototype teleoperated mobile robot designed for response to emergencies. Teleoperated robots contribute significantly to reducing human injury levels by performing tasks too hazardous for humans. ANDROS' manufacturer, REMOTEC, Inc., in turn, adopted some of the JPL concepts, particularly the control panel. HAZBOT III has exceptional mobility, employs solid state electronics and brushless DC motors for safer operation, and is designed so combustible gases cannot penetrate areas containing electronics and motors. Other features include the six-degree-of-freedom manipulator, the 30-pound squeeze force parallel jaw gripper and two video cameras, one for general viewing and navigation and the other for manipulation/grasping.

  19. Cooperating mobile robots

    DOEpatents

    Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.; Byrne, Raymond H.

    2004-02-03

    A miniature mobile robot provides a relatively inexpensive mobile robot. A mobile robot for searching an area provides a way for multiple mobile robots in cooperating teams. A robotic system with a team of mobile robots communicating information among each other provides a way to locate a source in cooperation. A mobile robot with a sensor, a communication system, and a processor, provides a way to execute a strategy for searching an area.

  20. Robot Tools

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Mecanotron, now division of Robotics and Automation Corporation, developed a quick-change welding method called the Automatic Robotics Tool-change System (ARTS) under Marshall Space Flight Center and Rockwell International contracts. The ARTS system has six tool positions ranging from coarse sanding disks and abrasive wheels to cloth polishing wheels with motors of various horsepower. The system is used by fabricators of plastic body parts for the auto industry, by Texas Instruments for making radar domes, and for advanced composites at Aerospatiale in France.

  1. Proteomics for systems toxicology

    PubMed Central

    Titz, Bjoern; Elamin, Ashraf; Martin, Florian; Schneider, Thomas; Dijon, Sophie; Ivanov, Nikolai V.; Hoeng, Julia; Peitsch, Manuel C.

    2014-01-01

    Current toxicology studies frequently lack measurements at molecular resolution to enable a more mechanism-based and predictive toxicological assessment. Recently, a systems toxicology assessment framework has been proposed, which combines conventional toxicological assessment strategies with system-wide measurement methods and computational analysis approaches from the field of systems biology. Proteomic measurements are an integral component of this integrative strategy because protein alterations closely mirror biological effects, such as biological stress responses or global tissue alterations. Here, we provide an overview of the technical foundations and highlight select applications of proteomics for systems toxicology studies. With a focus on mass spectrometry-based proteomics, we summarize the experimental methods for quantitative proteomics and describe the computational approaches used to derive biological/mechanistic insights from these datasets. To illustrate how proteomics has been successfully employed to address mechanistic questions in toxicology, we summarized several case studies. Overall, we provide the technical and conceptual foundation for the integration of proteomic measurements in a more comprehensive systems toxicology assessment framework. We conclude that, owing to the critical importance of protein-level measurements and recent technological advances, proteomics will be an integral part of integrative systems toxicology approaches in the future. PMID:25379146

  2. Beyond Robotics

    ERIC Educational Resources Information Center

    Tally, Beth; Laverdure, Nate

    2006-01-01

    Chantilly High School Academy Robotics Team Number 612 from Chantilly, Virginia, is an award-winning team of high school students actively involved with FIRST (For Inspiration and Recognition of Science and Technology), a multinational nonprofit organization that inspires students to transform culture--making science, math, engineering and…

  3. Robotic Surgery

    ERIC Educational Resources Information Center

    Childress, Vincent W.

    2007-01-01

    The medical field has many uses for automated and remote-controlled technology. For example, if a tissue sample is only handled in the laboratory by a robotic handling system, then it will never come into contact with a human. Such a system not only helps to automate the medical testing process, but it also helps to reduce the chances of…

  4. Proteomic Findings in Melanoma

    PubMed Central

    Sengupta, Deepanwita; Tackett, Alan J

    2016-01-01

    Although the emergence of proteomics as an independent branch of science is fairly recent, within a short period of time it has contributed substantially in various disciplines. The tool of mass spectrometry has become indispensable in the analysis of complex biological samples. Clinical applications of proteomics include detection of predictive and diagnostic markers, understanding mechanism of action of drugs as well as resistance mechanisms against them and assessment of therapeutic efficacy and toxicity of drugs in patients. Here, we have summarized the major contributions of proteomics towards the study of melanoma, which is a deadly variety of skin cancer with a high mortality rate. PMID:27274624

  5. A proteomic glimpse into human ureter proteome

    PubMed Central

    Hirao, Yoshitoshi; Elguoshy, Amr; Xu, Bo; Zhang, Ying; Fujinaka, Hidehiko; Yamamoto, Keiko; Yates, John R.; Yamamoto, Tadashi

    2015-01-01

    Urine has evolved as one of the most important biofluids in clinical proteomics due to its noninvasive sampling and its stability. Yet, it is used in clinical diagnostics of several disorders by detecting changes in its components including urinary protein/polypeptide profile. Despite the fact that majority of proteins detected in urine are primarily originated from the urogenital (UG) tract, determining its precise source within the UG tract remains elusive. In this article, we performed a comprehensive analysis of ureter proteome to assemble the first unbiased ureter dataset. Next, we compared these data to urine, urinary exosome, and kidney mass spectrometric datasets. Our result concluded that among 2217 nonredundant ureter proteins, 751 protein candidates (33.8%) were detected in urine as urinary protein/polypeptide or exosomal protein. On the other hand, comparing ureter protein hits (48) that are not shown in corresponding databases to urinary bladder and prostate human protein atlas databases pinpointed 21 proteins that might be unique to ureter tissue. In conclusion, this finding offers future perspectives for possible identification of ureter disease‐associated biomarkers such as ureter carcinoma. In addition, the ureter proteomic dataset published in this article will provide a valuable resource for researchers working in the field of urology and urine biomarker discovery. All MS data have been deposited in the ProteomeXchange with identifier PXD002620 (http://proteomecentral.proteomexchange.org/dataset/PXD002620). PMID:26442468

  6. Proteome Characterization Centers - TCGA

    Cancer.gov

    The centers, a component of NCI’s Clinical Proteomic Tumor Analysis Consortium, will analyze a subset of TCGA samples to define proteins translated from cancer genomes and their related biological processes.

  7. Robotics Education and Employment.

    ERIC Educational Resources Information Center

    Linnell, Charles C.

    1993-01-01

    Describes characteristics of robots, provides a glossary of related terms, and discusses available careers in the field of robotics. Includes a list of postsecondary institutions with robotics programs. (JOW)

  8. Tandem mobile robot system

    DOEpatents

    Buttz, James H.; Shirey, David L.; Hayward, David R.

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  9. Agile robotic edge finishing

    SciTech Connect

    Powell, M.

    1996-08-01

    Edge finishing processes have seemed like ideal candidates for automation. Most edge finishing processes are unpleasant, dangerous, tedious, expensive, not repeatable and labor intensive. Estimates place the cost of manual edge finishing processes at 12% of the total cost of fabricating precision parts. For small, high precision parts, the cost of hand finishing may be as high as 305 of the total part cost. Up to 50% of this cost could be saved through automation. This cost estimate includes the direct costs of edge finishing: the machining hours required and the 30% scrap and rework rate after manual finishing. Not included in these estimates are the indirect costs resulting from cumulative trauma disorders and retraining costs caused by the high turnover rate for finishing jobs.. Despite the apparent economic advantages, edge finishing has proven difficult to automate except in low precision and/or high volume production environments. Finishing automation systems have not been deployed successfully in Department of Energy defense programs (DOE/DP) production, A few systems have been attempted but have been subsequently abandoned for traditional edge finishing approaches: scraping, grinding, and filing the edges using modified dental tools and hand held power tools. Edge finishing automation has been an elusive but potentially lucrative production enhancement. The amount of time required for reconfiguring workcells for new parts, the time required to reprogram the workcells to finish new parts, and automation equipment to respond to fixturing errors and part tolerances are the most common reasons cited for eliminating automation as an option for DOE/DP edge finishing applications. Existing automated finishing systems have proven to be economically viable only where setup and reprogramming costs are a negligible fraction of overall production costs.

  10. Proteomics Research in Schizophrenia

    PubMed Central

    Davalieva, Katarina; Maleva Kostovska, Ivana; Dwork, Andrew J.

    2016-01-01

    Despite intense scientific efforts, the neuropathology and pathophysiology of schizophrenia are poorly understood. Proteomic studies, by testing large numbers of proteins for associations with disease, may contribute to the understanding of the molecular mechanisms of schizophrenia. They may also indicate the types and locations of cells most likely to harbor pathological alterations. Investigations using proteomic approaches have already provided much information on quantitative and qualitative protein patterns in postmortem brain tissue, peripheral tissues and body fluids. Different proteomic technologies such as 2-D PAGE, 2-D DIGE, SELDI-TOF, shotgun proteomics with label-based (ICAT), and label-free (MSE) quantification have been applied to the study of schizophrenia for the past 15 years. This review summarizes the results, mostly from brain but also from other tissues and bodily fluids, of proteomics studies in schizophrenia. Emphasis is given to proteomics platforms, varying sources of material, proposed candidate biomarkers emerging from comparative proteomics studies, and the specificity of the putative markers in terms of other mental illnesses. We also compare proteins altered in schizophrenia with reports of protein or mRNA sequences that are relatively enriched in specific cell types. While proteomic studies of schizophrenia find abnormalities in the expression of many proteins that are not cell type-specific, there appears to be a disproportionate representation of proteins whose synthesis and localization are highly enriched in one or more brain cell type compared with other types of brain cells. Two of the three proteins most commonly altered in schizophrenia are aldolase C and glial fibrillary acidic protein, astrocytic proteins with entirely different functions, but the studies are approximately evenly divided with regard to the direction of the differences and the concordance or discordance between the two proteins. Alterations of common myelin

  11. Proteomics Research in Schizophrenia.

    PubMed

    Davalieva, Katarina; Maleva Kostovska, Ivana; Dwork, Andrew J

    2016-01-01

    Despite intense scientific efforts, the neuropathology and pathophysiology of schizophrenia are poorly understood. Proteomic studies, by testing large numbers of proteins for associations with disease, may contribute to the understanding of the molecular mechanisms of schizophrenia. They may also indicate the types and locations of cells most likely to harbor pathological alterations. Investigations using proteomic approaches have already provided much information on quantitative and qualitative protein patterns in postmortem brain tissue, peripheral tissues and body fluids. Different proteomic technologies such as 2-D PAGE, 2-D DIGE, SELDI-TOF, shotgun proteomics with label-based (ICAT), and label-free (MS(E)) quantification have been applied to the study of schizophrenia for the past 15 years. This review summarizes the results, mostly from brain but also from other tissues and bodily fluids, of proteomics studies in schizophrenia. Emphasis is given to proteomics platforms, varying sources of material, proposed candidate biomarkers emerging from comparative proteomics studies, and the specificity of the putative markers in terms of other mental illnesses. We also compare proteins altered in schizophrenia with reports of protein or mRNA sequences that are relatively enriched in specific cell types. While proteomic studies of schizophrenia find abnormalities in the expression of many proteins that are not cell type-specific, there appears to be a disproportionate representation of proteins whose synthesis and localization are highly enriched in one or more brain cell type compared with other types of brain cells. Two of the three proteins most commonly altered in schizophrenia are aldolase C and glial fibrillary acidic protein, astrocytic proteins with entirely different functions, but the studies are approximately evenly divided with regard to the direction of the differences and the concordance or discordance between the two proteins. Alterations of common myelin

  12. Nanoscaled Proteomic Analysis

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Jia, Lee

    2013-09-01

    Global proteomics research is currently hampered by the extremely complexity of the proteome and the absence of techniques like the polymerase chain reaction in genomics which enables multiplication of a single protein molecule. Since all the existing analytical technologies cannot overcome the detection limit and the dynamic concentration barrier, development of improved analytical technologies at nanoscale, ideally those that could recognize single protein molecule in the presence of high abundant of others, is a high priority for proteomics. In this chapter, we will show the state-of-the-art of nanoproteomics, i.e., the application of nanotechnologies to proteomics. Various nanomaterials including carbon nanomaterials, magnetic nanoparticles, silica nanoparticles, polymer and copolymer nanoparticles, metal and metal oxide nanoparticles have been used to improve sensitivity, specificity, and repeatability of proteomic analysis especially when the multidimensional separation system coupled with MALDI-TOF-MS is used. Among them, gold nanoparticles (GNPs) and carbon nanotubes (CNTs) are the two most important nanomaterials: while GNPs are frequently utilized for enzyme immobilization, high throughput bioassay, selection of target-peptides and target-protein, CNTs including single-walled carbon nanotubes (SWCNTs) and mutiple-walled carbon nanotubes (MWCNTs) have wide applications to electronic sensor, sensitive immunodetection, nanobiocatalysis, affinity probes, MALDI matrices, protein digestion, peptides enrichment and analysis. In perspectives, a deep understanding of the structures and property of nanomaterials and interdisciplinary applications of nanotechnology to proteomics will certainly be revolutionary and intellectually rewarding.

  13. Robotic gas metal arc welding of small diameter saddle type joints using multi-stripe structured light

    NASA Astrophysics Data System (ADS)

    Bonser, Gary R.; Parker, Graham A.

    1999-11-01

    Single-stripe structured light sensors are widely used in conjunction with arc welding robots for seam-tracking purposes. The interaction of the projected light with the weld joint and component surfaces produces characteristic line shapes with feature points that can be recognized at high speed by an underlying vision system. Unfortunately they are suitable only for the major classes of weld joint typically encountered within industry--long, straight, or gently curving fillet or butt joints. We present a multistripe structured light sensor that detects and measures the position of the saddle type weld joint formed by two small (< 50-mm)-diameter intersecting tubes. The underlying image processing algorithms detect the weld feature points from each stripe along with four calibration points to generate the entire weld path in the robot workcell base coordinate system before welding commences. The system is validated within an existing welding application; detecting 93% of the weld feature points within +/- 0.4 mm when used on 30-mm-diam tubes.

  14. Collaborations in Proteomics Research - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute (NCI), through the Office of Cancer Clinical Proteomics Research (OCCPR), has signed two Memorandums of Understanding (MOUs) in the sharing of proteomics reagents and protocols

  15. FY94 Office of Technology Development Mixed Waste Operations Robotics Demonstration

    SciTech Connect

    Kriikku, E.M.

    1994-08-30

    The Department of Energy (DOE) Office of Technology Development (OTD) develops technologies to help solve waste management and environmental problems at DOE sites. The OTD includes the Robotics Technology Development Program (RTDP) and the Mixed Waste Integrated Program (MWIP). Together these programs will provide technologies for DOE mixed waste cleanup projects. Mixed waste contains both radioactive and hazardous constituents. DOE sites currently store over 240,000 cubic meters of low level mixed waste and cleanup activities will generate several hundred thousand more cubic meters. Federal and state regulations require that this waste must be processed before final disposal. The OTD RTDP Mixed Waste Operations (MWO) team held several robotic demonstrations at the Savannah River Site (SRS) during November of 1993. Over 330 representatives from DOE, Government Contractors, industry, and universities attended. The MWO team includes: Fernald Environmental Management Project (FEMP), Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Engineering Laboratory (ORNL), Sandia National Laboratory (SNL), and Savannah River Technology Center (SRTC). SRTC is the lead site for MWO and provides the technical coordinator. The primary demonstration objective was to show that robotic technologies can make DOE waste facilities run better, faster, more cost effective, and safer. To meet the primary objective, the demonstrations successfully showed the following remote waste drum processing activities: non-destructive drum examination, drum transportation, drum opening, removing waste from a drum, characterize and sort waste items, scarify metal waste, and inspect stored drums. To further meet the primary objective, the demonstrations successfully showed the following remote waste box processing activities: swing free crane control, workcell modeling, and torch standoff control.

  16. Proteomics analysis of human oligodendroglioma proteome.

    PubMed

    Khaghani-Razi-Abad, Solmaz; Hashemi, Mehrdad; Pooladi, Mehdi; Entezari, Maliheh; Kazemi, Elham

    2015-09-10

    Proteomics analyses enable the identification and quantitation of proteins. From a purely clinical perspective, the application of proteomics based on innovations, may greatly affect the future management of malignant brain tumors. This optimism is based on four main reasons: diagnosis, prognosis, selection of targeted therapy based on molecular profile of the brain tumor and monitoring therapeutic response, or resistance. We extracted the proteins of tumor and normal brain tissues, and then evaluated the protein purity by Bradford test. In this study, we separated the proteins by two-dimensional (2DG) gel electrophoresis methods. Then spots were analyzed, compared using statistical data and specific software and were identified by pH isoelectric, molecular weights and data banks. The protein profiles were determined using 2D gel electrophoresis and MALDI TOF/TOF mass spectrometry approaches. Simple statistical tests were used to establish a putative hierarchy in which the change in protein level was ranked according to a cut-off point with p<0.05. The 2D gel showed a total of 1328 spots among which 157 spots were under-expressed and 276 spots were overexpressed. Most proteins are subjects to post-translational modifications, where amino acid residues may be chemically modified or conjugated by small proteins like ubiquitin. Proteomics is a powerful way to identifying multiple proteins which are altered following a neuropharmacological intervention in a CNS disease. PMID:26002447

  17. Fully Automated Molecular Biology Routines on a Plasmid-Based Functional Proteomic Workcell: Evaluation and Characterization of Yeast Strains Optimized for Growth on Xylose and Engineered to Express an Insecticidal Peptide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimization of genes important to production of fuel ethanol from hemicellulosic biomass for use in engineering improved commercial yeast strains is necessary to meet the United States' rapidly expanding need for ethanol. United States Department of Agriculture, Agricultural Research Service, Nati...

  18. Plasmid-Based Functional Proteomic Workcell Evaluation and Characterization of Yeast Strains with Improved Growth on Xylose Expressing Xylanase A(Xyn A) and Celulase F(Cel F) from Anaerobic Fungi Orpinomyces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The optimization of various genes is important in cellulosic fuel ethanol production from S. cerevisiae to meet the rapidly expanding need for ethanol derived from hemicellulosic materials. The United States Department of Agriculture, Agricultural Research Service, has developed a fully automated p...

  19. Proteomics of Foodborne Bacterial Pathogens

    NASA Astrophysics Data System (ADS)

    Fagerquist, Clifton K.

    This chapter is intended to be a relatively brief overview of proteomic techniques currently in use for the identification and analysis of microorganisms with a special emphasis on foodborne pathogens. The chapter is organized as follows. First, proteomic techniques are introduced and discussed. Second, proteomic applications are presented specifically as they relate to the identification and qualitative/quantitative analysis of foodborne pathogens.

  20. Proteomic Assessment of Poultry Spermatozoa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fully characterizing the protein composition of spermatozoa is the first step in utilizing proteomics to delineate the function of sperm proteins. To date, sperm proteome maps have been partially developed for the human, mouse, rat, bull and several invertebrates. Here we report the first proteomic...

  1. Mining Proteomes Using Bioorthogonal Probes.

    PubMed

    Wu, Haoxing; Devaraj, Neal K

    2016-07-21

    The definition of proteomes in cells and animals at particular stages facilitates an understanding of protein function. In this issue of Cell Chemical Biology, Elliott et al. (2016) report an elegant approach of bioorthogonal labeling and enrichment of proteomes from stochastic orthogonal recoding of translation. With this method, low abundance proteomes can be identified in a multicellular system. PMID:27447043

  2. The Cysteine Proteome

    PubMed Central

    Go, Young-Mi; Chandler, Joshua D.; Jones, Dean P.

    2015-01-01

    The cysteine (Cys) proteome is a major component of the adaptive interface between the genome and the exposome. The thiol moiety of Cys undergoes a range of biologic modifications enabling biological switching of structure and reactivity. These biological modifications include sulfenylation and disulfide formation, formation of higher oxidation states, S-nitrosylation, persulfidation, metallation, and other modifications. Extensive knowledge about these systems and their compartmentalization now provides a foundation to develop advanced integrative models of Cys proteome regulation. In particular, detailed understanding of redox signaling pathways and sensing networks is becoming available to discriminate network structures. This research focuses attention on the need for atlases of Cys modifications to develop systems biology models. Such atlases will be especially useful for integrative studies linking the Cys proteome to imaging and other omics platforms, providing a basis for improved redox-based therapeutics. Thus, a framework is emerging to place the Cys proteome as a complement to the quantitative proteome in the omics continuum connecting the genome to the exposome. PMID:25843657

  3. Robotic Stripping

    NASA Technical Reports Server (NTRS)

    2000-01-01

    UltraStrip Systems, Inc.'s M-200 removes paint from the hulls of ships faster than traditional grit-blasting methods. And, it does so without producing toxic airborne particles common to traditional methods. The M-2000 magnetically attaches itself to the hull of the ship. Its water jets generate 40,000 pounds of pressure per square inch, blasting away paint down to the ships steel substrate. The only by product is water and dried paint chips and these are captured by a vacuum system so no toxic residue can escape. It was built out of a partnership between the Jet Propulsion Laboratory and the National Robotics Engineering Consortium.

  4. Robotic Hand

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Omni-Hand was developed by Ross-Hime Designs, Inc. for Marshall Space Flight Center (MSFC) under a Small Business Innovation Research (SBIR) contract. The multiple digit hand has an opposable thumb and a flexible wrist. Electric muscles called Minnacs power wrist joints and the interchangeable digits. Two hands have been delivered to NASA for evaluation for potential use on space missions and the unit is commercially available for applications like hazardous materials handling and manufacturing automation. Previous SBIR contracts resulted in the Omni-Wrist and Omni-Wrist II robotic systems, which are commercially available for spray painting, sealing, ultrasonic testing, as well as other uses.

  5. Robots and manipulators

    NASA Astrophysics Data System (ADS)

    Heer, E.

    1981-11-01

    Robots are defined and described for various applications. The key feature of robots is programmability, which allows teleoperation, repair work in hazardous situations, and unsupervised operation in industrial functions. Two types of robots now exist: special purpose, with equipment for a specific task; and general purpose, which include nonservo-controlled robots, servo-controlled robots, and sensory control robots. Sensory robots are the most sophisticated, and are equipped with both internal control sensors and external sensors such as TV cameras, pressure detectors, laser range finders, etc. Sensory feedback to a central computer enables the robots to make appropriate modifications to the control program to adapt to new situations. Pattern recognition and scans for size are features of the TV sensors, and programs to develop a universal effector (hand) are outlined. Finally, robot programming in terms of manual, walkthrough, and textual methods are described, and the potential uses of robots for space and undersea construction and repair are discussed.

  6. Establishing Substantial Equivalence: Proteomics

    NASA Astrophysics Data System (ADS)

    Lovegrove, Alison; Salt, Louise; Shewry, Peter R.

    Wheat is a major crop in world agriculture and is consumed after processing into a range of food products. It is therefore of great importance to determine the consequences (intended and unintended) of transgenesis in wheat and whether genetically modified lines are substantially equivalent to those produced by conventional plant breeding. Proteomic analysis is one of several approaches which can be used to address these questions. Two-dimensional PAGE (2D PAGE) remains the most widely available method for proteomic analysis, but is notoriously difficult to reproduce between laboratories. We therefore describe methods which have been developed as standard operating procedures in our laboratory to ensure the reproducibility of proteomic analyses of wheat using 2D PAGE analysis of grain proteins.

  7. High-Throughput Proteomics

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaorui; Wu, Si; Stenoien, David L.; Paša-Tolić, Ljiljana

    2014-06-01

    Mass spectrometry (MS)-based high-throughput proteomics is the core technique for large-scale protein characterization. Due to the extreme complexity of proteomes, sophisticated separation techniques and advanced MS instrumentation have been developed to extend coverage and enhance dynamic range and sensitivity. In this review, we discuss the separation and prefractionation techniques applied for large-scale analysis in both bottom-up (i.e., peptide-level) and top-down (i.e., protein-level) proteomics. Different approaches for quantifying peptides or intact proteins, including label-free and stable-isotope-labeling strategies, are also discussed. In addition, we present a brief overview of different types of mass analyzers and fragmentation techniques as well as selected emerging techniques.

  8. Robotic Vision for Welding

    NASA Technical Reports Server (NTRS)

    Richardson, R. W.

    1986-01-01

    Vision system for robotic welder looks at weld along axis of welding electrode. Gives robot view of most of weld area, including yet-unwelded joint, weld pool, and completed weld bead. Protected within welding-torch body, lens and fiber bundle give robot closeup view of weld in progress. Relayed to video camera on robot manipulator frame, weld image provides data for automatic control of robot motion and welding parameters.

  9. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1996-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  10. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1994-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  11. Robotic vehicle

    DOEpatents

    Box, W.D.

    1994-03-15

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  12. Robotic vehicle

    DOEpatents

    Box, W.D.

    1996-03-12

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  13. Robotic sacrocolpopexy

    PubMed Central

    Danforth, Teresa L.; Aron, Monish; Ginsberg, David A.

    2014-01-01

    Pelvic organ prolapse (POP) is a prevalent condition with 1 in 9 women seeking surgical treatment by the age of 80 years. Goals of treatment are relief and prevention of symptoms, and restoration of pelvic floor support. The gold standard for surgical treatment of POP has been abdominal sacrocolpopexy (ASC). However, emerging technologies have allowed for more minimally invasive approach including the use of laparoscopic assisted sacrocolpopexy and robotic assisted sacrocolpopexy (RASC). We performed a PubMed literature search for sacrocolpopexy, “robotic sacrocolpopexy” and “RASC” and reviewed all retrospective, prospective and randomized controlled trials. The techniques, objective and subjective outcomes and complications are discussed. The most frequent technique involves a polypropylene Y mesh attached to the anterior and posterior walls of the vagina with the single arm attached to the sacrum. Multiple concomitant procedures have been described including hysterectomy, anti-incontinence procedures and concomitant vaginal prolapse repairs. There are few studies comparing RASC to ASC, with the longest follow-up data showing no difference in subjective and objective outcomes. Anatomic success rates have been reported at 79-100% with up to 9% of patients requiring successive surgery for recurrence. Subjective success is poorly defined, but has been reported at 88-97%. Most common complications are urinary retention, urinary tract infection, bladder injury and vaginal mucosal injury. Mesh exposure is reported in up to 10% of patients. RASC allows for a minimally invasive approach to treatment of POP with comparable outcomes and low complication rates. PMID:25097320

  14. Hexapod Robot

    NASA Technical Reports Server (NTRS)

    Begody, Ericka

    2016-01-01

    The project I am working on at NASA-Johnson Space Center in Houston, TX is a hexapod robot. This project was started by various engineers at the Trick Lab. The goal of this project is to have the hexapod track a yellow ball or possibly another object from left to right and up/down. The purpose is to have it track an object like a real creature. The project will consist of using software and hardware. This project started with a hexapod robot which uses a senor bar to track a yellow ball but with a limited field of vision. The sensor bar acts as the robots "head." Two servos will be added to the hexapod to create flexion and extension of the head. The neck and head servos will have to be programmed to be added to the original memory map of the existing servos. I will be using preexisting code. The main programming language that will be used to add to the preexisting code is C++. The trick modeling and simulation software will also be used in the process to improve its tracking and movement. This project will use a trial and error approach, basically seeing what works and what does not. The first step is to initially understand how the hexapod works. To get a general understanding of how the hexapod maneuvers and plan on how to had a neck and head servo which works with the rest of the body. The second step would be configuring the head and neck servos with the leg servos. During this step, limits will be programmed specifically for the each servo. By doing this, the servo is limited to how far it can rotate both clockwise and counterclockwise and this is to prevent hardware damage. The hexapod will have two modes in which it works in. The first mode will be if the sensor bar does not detect an object. If the object it is programmed to look for is not in its view it will automatically scan from left to right 3 times then up and down once. The second mode will be if the sensor bar does detect the object. In this mode the hexapod will track the object from left to

  15. Pressurized Pepsin Digestion in Proteomics

    PubMed Central

    López-Ferrer, Daniel; Petritis, Konstantinos; Robinson, Errol W.; Hixson, Kim K.; Tian, Zhixin; Lee, Jung Hwa; Lee, Sang-Won; Tolić, Nikola; Weitz, Karl K.; Belov, Mikhail E.; Smith, Richard D.; Paša-Tolić, Ljiljana

    2011-01-01

    Integrated top-down bottom-up proteomics combined with on-line digestion has great potential to improve the characterization of protein isoforms in biological systems and is amendable to high throughput proteomics experiments. Bottom-up proteomics ultimately provides the peptide sequences derived from the tandem MS analyses of peptides after the proteome has been digested. Top-down proteomics conversely entails the MS analyses of intact proteins for more effective characterization of genetic variations and/or post-translational modifications. Herein, we describe recent efforts toward efficient integration of bottom-up and top-down LC-MS-based proteomics strategies. Since most proteomics separations utilize acidic conditions, we exploited the compatibility of pepsin (where the optimal digestion conditions are at low pH) for integration into bottom-up and top-down proteomics work flows. Pressure-enhanced pepsin digestions were successfully performed and characterized with several standard proteins in either an off-line mode using a Barocycler or an on-line mode using a modified high pressure LC system referred to as a fast on-line digestion system (FOLDS). FOLDS was tested using pepsin and a whole microbial proteome, and the results were compared against traditional trypsin digestions on the same platform. Additionally, FOLDS was integrated with a RePlay configuration to demonstrate an ultrarapid integrated bottom-up top-down proteomics strategy using a standard mixture of proteins and a monkey pox virus proteome. PMID:20627868

  16. Multiple robot systems in space

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.

    1987-01-01

    Viewgraphs from a presentation on multiple robot systems in space are included. Topics covered include categories of robots in space; scenarios of robot applications in space; some characteristics of robots in space; and some interesting problems and issues.

  17. Robotic intelligence kernel

    SciTech Connect

    Bruemmer, David J.

    2009-11-17

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.

  18. Developing the wool proteome.

    PubMed

    Clerens, Stefan; Cornellison, Charisa D; Deb-Choudhury, Santanu; Thomas, Ancy; Plowman, Jeffrey E; Dyer, Jolon M

    2010-08-01

    The wool proteome has been largely uncharted due to a lack of database coverage, poor protein extractability and dynamic range issues. Yet, investigating correlations between wool physical properties and protein content, or characterising UV-, heat- or processing-induced protein damage requires the availability of an identifiable and identified proteome. In this study we have achieved unprecedented wool proteome identification through a strategy of comprehensive data acquisition, iterative protein identification/validation and concurrent augmentation of the sequence database. Data acquisition comprised a range of different hyphenated MS techniques including LC-MS/MS, LC-MALDI, 2D-LC-MS/MS and SDS-PAGE LC-MS. Using iterative searching of databases and search result combination using ProteinScape, a systematic expansion of identifiable proteins in the sequence database was achieved. This was followed by extensive validation and rationalisation of the protein identifications. In total, 72 complete and 30 partial ovine-specific protein sequences were added to the database, and 113 wool proteins were identified. Enhanced access to ovine-specific protein identification and characterisation will facilitate all wool fibre protein chemistry and proteomics research. PMID:20478423

  19. A Sydney proteome story.

    PubMed

    Williams, Keith L; Gooley, Andrew A; Wilkins, Marc R; Packer, Nicolle H

    2014-07-31

    This is the story of the experience of a multidisciplinary group at Macquarie University in Sydney as we participated in, and impacted upon, major currents that washed through protein science as the field of Proteomics emerged. The large scale analysis of proteins became possible. This is not a history of the field. Instead we have tried to encapsulate the stimulating personal ride we had transiting from conventional academe, to a Major National Research Facility, to the formation of Proteomics company Proteome Systems Ltd. There were lots of blind alleys, wrong directions, but we also got some things right and our efforts, along with those of many other groups around the world, did change the face of protein science. While the transformation is by no means yet complete, protein science is very different from the field in the 1990s. This article is part of a Special Issue entitled: 20years of Proteomics in memory of Viatliano Pallini. Guest Editors: Luca Bini, Juan J. Calvete, Natacha Turck, Denis Hochstrasser and Jean-Charles Sanchez. PMID:24735915

  20. “Seed Proteomics"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteomic analysis of seeds encounters some specific problems that do not impinge on analyses of other plant cells, tissues, or organs. There are anatomic considerations. Seeds comprise the seed coat, the storage organ(s), and the embryonic axis. Are these to be studied individually or as a compo...

  1. Arabidopsis peroxisome proteomics

    PubMed Central

    Bussell, John D.; Behrens, Christof; Ecke, Wiebke; Eubel, Holger

    2013-01-01

    The analytical depth of investigation of the peroxisomal proteome of the model plant Arabidopsis thaliana has not yet reached that of other major cellular organelles such as chloroplasts or mitochondria. This is primarily due to the difficulties associated with isolating and obtaining purified samples of peroxisomes from Arabidopsis. So far only a handful of research groups have been successful in obtaining such fractions. To make things worse, enriched peroxisome fractions frequently suffer from significant organellar contamination, lowering confidence in localization assignment of the identified proteins. As with other cellular compartments, identification of peroxisomal proteins forms the basis for investigations of the dynamics of the peroxisomal proteome. It is therefore not surprising that, in terms of functional analyses by proteomic means, peroxisomes are lagging considerably behind chloroplasts or mitochondria. Alternative strategies are needed to overcome the obstacle of hard-to-obtain organellar fractions. This will help to close the knowledge gap between peroxisomes and other organelles and provide a full picture of the physiological pathways shared between organelles. In this review, we briefly summarize the status quo and discuss some of the methodological alternatives to classic organelle proteomic approaches. PMID:23630535

  2. Humanoid Robot

    NASA Technical Reports Server (NTRS)

    Linn, Douglas M. (Inventor); Ambrose, Robert O. (Inventor); Diftler, Myron A. (Inventor); Askew, Scott R. (Inventor); Platt, Robert (Inventor); Mehling, Joshua S. (Inventor); Radford, Nicolaus A. (Inventor); Strawser, Phillip A. (Inventor); Bridgwater, Lyndon (Inventor); Wampler, II, Charles W. (Inventor); Abdallah, Muhammad E. (Inventor); Ihrke, Chris A. (Inventor); Reiland, Matthew J. (Inventor); Sanders, Adam M. (Inventor); Reich, David M. (Inventor); Hargrave, Brian (Inventor); Parsons, Adam H. (Inventor); Permenter, Frank N. (Inventor); Davis, Donald R. (Inventor)

    2013-01-01

    A humanoid robot includes a torso, a pair of arms, two hands, a neck, and a head. The torso extends along a primary axis and presents a pair of shoulders. The pair of arms movably extend from a respective one of the pair of shoulders. Each of the arms has a plurality of arm joints. The neck movably extends from the torso along the primary axis. The neck has at least one neck joint. The head movably extends from the neck along the primary axis. The head has at least one head joint. The shoulders are canted toward one another at a shrug angle that is defined between each of the shoulders such that a workspace is defined between the shoulders.

  3. Genomes to Proteomes

    SciTech Connect

    Panisko, Ellen A.; Grigoriev, Igor; Daly, Don S.; Webb-Robertson, Bobbie-Jo; Baker, Scott E.

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  4. Intelligent robots and computer vision

    SciTech Connect

    Casasent, D.P.

    1985-01-01

    This book presents the papers given at a conference which examined artificial intelligence and image processing in relation to robotics. Topics considered at the conference included feature extraction and pattern recognition for computer vision, image processing for intelligent robotics, robot sensors, image understanding and artificial intelligence, optical processing techniques in robotic applications, robot languages and programming, processor architectures for computer vision, mobile robots, multisensor fusion, three-dimensional modeling and recognition, intelligent robots applications, and intelligent robot systems.

  5. Modeling robot contour processes

    NASA Astrophysics Data System (ADS)

    Whitney, D. E.; Edsall, A. C.

    Robot contour processes include those with contact force like car body grinding or deburring of complex castings, as well as those with little or no contact force like inspection. This paper describes ways of characterizing, identifying, and estimating contours and robot trajectories. Contour and robot are modeled as stochastic processes in order to emphasize that both successive robot cycles and successive industrial workpieces are similar but not exactly the same. The stochastic models can be used to identify the state of a workpiece or process, or to design a filter to estimate workpiece, shape and robot position from robot-based measurements.

  6. Robotic technology in urology.

    PubMed

    Murphy, D; Challacombe, B; Khan, M S; Dasgupta, P

    2006-11-01

    Urology has increasingly become a technology-driven specialty. The advent of robotic surgical systems in the past 10 years has led to urologists becoming the world leaders in the use of such technology. In this paper, we review the history and current status of robotic technology in urology. From the earliest uses of robots for transurethral resection of the prostate, to robotic devices for manipulating laparoscopes and to the current crop of master-slave devices for robotic-assisted laparoscopic surgery, the evolution of robotics in the urology operating theatre is presented. Future possibilities, including the prospects for nanotechnology in urology, are awaited. PMID:17099094

  7. Robotics for Human Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Deans, Mathew; Bualat, Maria

    2013-01-01

    Robots can do a variety of work to increase the productivity of human explorers. Robots can perform tasks that are tedious, highly repetitive or long-duration. Robots can perform precursor tasks, such as reconnaissance, which help prepare for future human activity. Robots can work in support of astronauts, assisting or performing tasks in parallel. Robots can also perform "follow-up" work, completing tasks designated or started by humans. In this paper, we summarize the development and testing of robots designed to improve future human exploration of space.

  8. Soft robotics: a bioinspired evolution in robotics.

    PubMed

    Kim, Sangbae; Laschi, Cecilia; Trimmer, Barry

    2013-05-01

    Animals exploit soft structures to move effectively in complex natural environments. These capabilities have inspired robotic engineers to incorporate soft technologies into their designs. The goal is to endow robots with new, bioinspired capabilities that permit adaptive, flexible interactions with unpredictable environments. Here, we review emerging soft-bodied robotic systems, and in particular recent developments inspired by soft-bodied animals. Incorporating soft technologies can potentially reduce the mechanical and algorithmic complexity involved in robot design. Incorporating soft technologies will also expedite the evolution of robots that can safely interact with humans and natural environments. Finally, soft robotics technology can be combined with tissue engineering to create hybrid systems for medical applications. PMID:23582470

  9. Competencies Identification for Robotics Training.

    ERIC Educational Resources Information Center

    Tang, Le D.

    A study focused on the task of identifying competencies for robotics training. The level of robotics training was limited to that of robot technicians. Study objectives were to obtain a list of occupational competencies; to rank their order of importance; and to compare opinions from robot manufacturers, robot users, and robotics educators…

  10. Robotic Surveying

    SciTech Connect

    Suzy Cantor-McKinney; Michael Kruzic

    2007-03-01

    ZAPATA ENGINEERING challenged our engineers and scientists, which included robotics expertise from Carnegie Mellon University, to design a solution to meet our client's requirements for rapid digital geophysical and radiological data collection of a munitions test range with no down-range personnel. A prime concern of the project was to minimize exposure of personnel to unexploded ordnance and radiation. The field season was limited by extreme heat, cold and snow. Geographical Information System (GIS) tools were used throughout this project to accurately define the limits of mapped areas, build a common mapping platform from various client products, track production progress, allocate resources and relate subsurface geophysical information to geographical features for use in rapidly reacquiring targets for investigation. We were hopeful that our platform could meet the proposed 35 acres per day, towing both a geophysical package and a radiological monitoring trailer. We held our breath and crossed our fingers as the autonomous Speedrower began to crawl across the playa lakebed. We met our proposed production rate, and we averaged just less than 50 acres per 12-hour day using the autonomous platform with a path tracking error of less than +/- 4 inches. Our project team mapped over 1,800 acres in an 8-week (4 days per week) timeframe. The expertise of our partner, Carnegie Mellon University, was recently demonstrated when their two autonomous vehicle entries finished second and third at the 2005 Defense Advanced Research Projects Agency (DARPA) Grand Challenge. 'The Grand Challenge program was established to help foster the development of autonomous vehicle technology that will some day help save the lives of Americans who are protecting our country on the battlefield', said DARPA Grand Challenge Program Manager, Ron Kurjanowicz. Our autonomous remote-controlled vehicle (ARCV) was a modified New Holland 2550 Speedrower retrofitted to allow the machine

  11. Robotic space colonies

    NASA Technical Reports Server (NTRS)

    Schenker, P.; Easter, R.; Rodriguez, G.

    2001-01-01

    This paper reviews recent advances in these technologies, with a particular focus on experimental state-of-the-art robot work crew system demonstrations at JPL, that are being conducted now to begin to realize the futuristic robotic colony vision.

  12. Robotic Intelligence Kernel: Communications

    SciTech Connect

    Walton, Mike C.

    2009-09-16

    The INL Robotic Intelligence Kernel-Comms is the communication server that transmits information between one or more robots using the RIK and one or more user interfaces. It supports event handling and multiple hardware communication protocols.

  13. Robots and the Economy.

    ERIC Educational Resources Information Center

    Albus, James S.

    1984-01-01

    Spectacular advances in microcomputers are forging new technological frontiers in robotics. For example, many factories will be totally automated. Economic implications of the new technology of robotics for the future are examined. (RM)

  14. Robotic Lander Prototype

    NASA Video Gallery

    NASA engineers successfully integrated and completed system testing on a new robotic lander recently at Teledyne Brown Engineering’s facility in Huntsville in support of the Robotic Lunar Lander ...

  15. Robotic Lander Development Project

    NASA Video Gallery

    The Robotic Lander Development Project at the Marshall Center is testing a prototype lander that will aid in the design and development of a new generation of small, smart, versatile robotic lander...

  16. Proteome Analyses of Hepatocellular Carcinoma

    PubMed Central

    Megger, Dominik A.; Naboulsi, Wael; Meyer, Helmut E.; Sitek, Barbara

    2014-01-01

    Proteomics has evolved into a powerful and widely used bioanalytical technique in the study of cancer, especially hepatocellular carcinoma (HCC). In this review, we provide an up to date overview of feasible proteome-analytical techniques for clinical questions. In addition, we present a broad summary of proteomic studies of HCC utilizing various technical approaches for the analysis of samples derived from diverse sources like HCC cell lines, animal models, human tissue and body fluids. PMID:26357614

  17. RHOBOT: Radiation hardened robotics

    SciTech Connect

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  18. Robotics research projects report

    SciTech Connect

    Hsia, T.C.

    1983-06-01

    The research results of the Robotics Research Laboratory are summarized. Areas of research include robotic control, a stand-alone vision system for industrial robots, and sensors other than vision that would be useful for image ranging, including ultrasonic and infra-red devices. One particular project involves RHINO, a 6-axis robotic arm that can be manipulated by serial transmission of ASCII command strings to its interfaced controller. (LEW)

  19. Modular robot

    DOEpatents

    Ferrante, T.A.

    1997-11-11

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs.

  20. Modular robot

    DOEpatents

    Ferrante, Todd A.

    1997-01-01

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold.

  1. Robotic Follow Algorithm

    Energy Science and Technology Software Center (ESTSC)

    2005-03-30

    The Robotic Follow Algorithm enables allows any robotic vehicle to follow a moving target while reactively choosing a route around nearby obstacles. The robotic follow behavior can be used with different camera systems and can be used with thermal or visual tracking as well as other tracking methods such as radio frequency tags.

  2. Building a Better Robot

    ERIC Educational Resources Information Center

    Navah, Jan

    2012-01-01

    Kids love to build robots, letting their imaginations run wild with thoughts of what they might look like and what they could be programmed to do. Yet when students use cereal boxes and found objects to make robots, often the projects look too similar and tend to fall apart. This alternative allows students to "build" robots in a different way,…

  3. Robotic Intelligence Kernel: Visualization

    Energy Science and Technology Software Center (ESTSC)

    2009-09-16

    The INL Robotic Intelligence Kernel-Visualization is the software that supports the user interface. It uses the RIK-C software to communicate information to and from the robot. The RIK-V illustrates the data in a 3D display and provides an operating picture wherein the user can task the robot.

  4. Robotics development programs overview

    SciTech Connect

    Heckendorn, F.M.

    1990-11-01

    This paper discusses the applications of robotics at the Westinghouse Savannah River Site. The Savannah River Laboratory (SRL) continues to provide support to the Savannah River Site (SRS) in many areas of Robotics and Remote Vision. An overview of the current and near term future developments are presented. The driving forces for Robotics and Vision developments at SRS include the classic reasons for industrial robotics installation (i.e. repetitive and undesirable jobs) and those reasons related to radioactive environments. Protection of personnel from both radiation and radioactive contamination benefit greatly from both Robotics and Telerobotics. Additionally, the quality of information available from remote locations benefits greatly from the ability to visually monitor and remotely sense. The systems discussed include a glovebox waste handling and bagout robot, a shielded cells robot for radioactive waste sample transfer, waste handling gantry robots, a two armed master/slave manipulator as an attachment to a gantry robot, navigation robot research/testing, demonstration of the mobile underwater remote cleaning and inspection device, a camera deployment robot to support remote crane operations and for deployment of radiation sensors directly over a hazardous site, and demonstration of a large mobile robot for high radiation environments. Development of specialized and limited life vision/viewing systems for hazardous environments is also discussed.

  5. Proteomics in bone research.

    PubMed

    Zhang, Hengwei; Recker, Robert; Lee, Wai-Nang Paul; Xiao, Gary Guishan

    2010-02-01

    Osteoporosis is prevalent among the elderly and is a major cause of bone fracture in this population. Bone integrity is maintained by the dynamic processes of bone resorption and bone formation (bone remodeling). Osteoporosis results when there is an imbalance of the two counteracting processes. Bone mineral density, measured by dual-energy x-ray absorptiometry has been the primary method to assess fracture risk for decades. Recent studies demonstrated that measurement of bone turnover markers allows for a dynamic assessment of bone remodeling, while imaging techniques, such as dual-energy x-ray absorptiometry, do not. The application of proteomics has permitted discoveries of new, sensitive, bone turnover markers, which provide unique information for clinical diagnosis and treatment of patients with bone diseases. This review summarizes the recent findings of proteomic studies on bone diseases, properties of mesenchymal stem cells with high expansion rates and osteoblast and osteoclast differentiation, with emphasis on the role of quantitative proteomics in the study of signaling dynamics, biomarkers and discovery of therapeutic targets. PMID:20121480

  6. The proteome of schizophrenia

    PubMed Central

    Nascimento, Juliana M; Martins-de-Souza, Daniel

    2015-01-01

    On observing schizophrenia from a clinical point of view up to its molecular basis, one may conclude that this is likely to be one of the most complex human disorders to be characterized in all aspects. Such complexity is the reflex of an intricate combination of genetic and environmental components that influence brain functions since pre-natal neurodevelopment, passing by brain maturation, up to the onset of disease and disease establishment. The perfect function of tissues, organs, systems, and finally the organism depends heavily on the proper functioning of cells. Several lines of evidence, including genetics, genomics, transcriptomics, neuropathology, and pharmacology, have supported the idea that dysfunctional cells are causative to schizophrenia. Together with the above-mentioned techniques, proteomics have been contributing to understanding the biochemical basis of schizophrenia at the cellular and tissue level through the identification of differentially expressed proteins and consequently their biochemical pathways, mostly in the brain tissue but also in other cells. In addition, mass spectrometry-based proteomics have identified and precisely quantified proteins that may serve as biomarker candidates to prognosis, diagnosis, and medication monitoring in peripheral tissue. Here, we review all data produced by proteomic investigation in the last 5 years using tissue and/or cells from schizophrenic patients, focusing on postmortem brain tissue and peripheral blood serum and plasma. This information has provided integrated pictures of the biochemical systems involved in the pathobiology, and has suggested potential biomarkers, and warrant potential targets to alternative treatment therapies to schizophrenia. PMID:27336025

  7. Intelligent robots and computer vision

    SciTech Connect

    Casasent, D.P.

    1986-01-01

    This book presents the papers given at a conference on artificial intelligence and robot vision. Topics considered at the conference included pattern recognition, image processing for intelligent robotics, three-dimensional vision (depth and motion), vision modeling and shape estimation, spatial reasoning, the symbolic processing visual information, robotic sensors and applications, intelligent control architectures for robot systems, robot languages and programming, human-machine interfaces, robotics applications, and architectures of robotics.

  8. Proteomics. Tissue-based map of the human proteome.

    PubMed

    Uhlén, Mathias; Fagerberg, Linn; Hallström, Björn M; Lindskog, Cecilia; Oksvold, Per; Mardinoglu, Adil; Sivertsson, Åsa; Kampf, Caroline; Sjöstedt, Evelina; Asplund, Anna; Olsson, IngMarie; Edlund, Karolina; Lundberg, Emma; Navani, Sanjay; Szigyarto, Cristina Al-Khalili; Odeberg, Jacob; Djureinovic, Dijana; Takanen, Jenny Ottosson; Hober, Sophia; Alm, Tove; Edqvist, Per-Henrik; Berling, Holger; Tegel, Hanna; Mulder, Jan; Rockberg, Johan; Nilsson, Peter; Schwenk, Jochen M; Hamsten, Marica; von Feilitzen, Kalle; Forsberg, Mattias; Persson, Lukas; Johansson, Fredric; Zwahlen, Martin; von Heijne, Gunnar; Nielsen, Jens; Pontén, Fredrik

    2015-01-23

    Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body. PMID:25613900

  9. Impacts of industrial robots

    SciTech Connect

    Ayres, R.; Miller, S.

    1981-11-01

    This report briefly describes robot technology and goes into more depth about where robots are used, and some of the anticipated social and economic impacts of their use. A number of short term transitional issues, including problems of potential displacement, are discussed. The ways in which robots may impact the economics of batch production are described. A framework for analyzing the impacts of robotics on economywide economic growth and employment is presented. Human resource policy issues are discussed. A chronology of robotics technology is also given.

  10. Microgravity robotics technology program

    NASA Technical Reports Server (NTRS)

    Rohn, Douglas A.; Lawrence, Charles; Brush, Andrew S.

    1988-01-01

    A research program to develop technology for robots operating in the microgravity environment of the space station laboratory is described. These robots must be capable of manipulating payloads without causing them to experience harmful levels of acceleration, and the motion of these robots must not disturb adjacent experiments and operations by transmitting reactions that translate into damaging effects throughout the laboratory. Solutions to these problems, based on both mechanism technology and control strategies, are discussed. Methods are presented for reduction of robot base reactions through the use of redundant degrees of freedom, and the development of smoothly operating roller-driven robot joints for microgravity manipulators is discussed.

  11. Walking control of small size humanoid robot: HAJIME ROBOT 18

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hajime; Nakatsu, Ryohei

    2007-12-01

    HAJIME ROBOT 18 is a fully autonomous biped robot. It has been developed for RoboCup which is a worldwide soccer competition of robots. It is necessary for a robot to have high mobility to play soccer. High speed walking and all directional walking are important to approach and to locate in front of a ball. HAJIME ROBOT achieved these walking. This paper describes walking control of a small size humanoid robot 'HAJIME ROBOT 18' and shows the measurement result of ZMP (Zero Moment Point). HAJIME ROBOT won the Robotics Society of Japan Award in RoboCup 2005 and in RoboCup 2006 Japan Open.

  12. Space robotics in Japan

    NASA Technical Reports Server (NTRS)

    Whittaker, William; Lowrie, James W.; Mccain, Harry; Bejczy, Antal; Sheridan, Tom; Kanade, Takeo; Allen, Peter

    1994-01-01

    Japan has been one of the most successful countries in the world in the realm of terrestrial robot applications. The panel found that Japan has in place a broad base of robotics research and development, ranging from components to working systems for manufacturing, construction, and human service industries. From this base, Japan looks to the use of robotics in space applications and has funded work in space robotics since the mid-1980's. The Japanese are focusing on a clear image of what they hope to achieve through three objectives for the 1990's: developing long-reach manipulation for tending experiments on Space Station Freedom, capturing satellites using a free-flying manipulator, and surveying part of the moon with a mobile robot. This focus and a sound robotics infrastructure is enabling the young Japanese space program to develop relevant systems for extraterrestrial robotics applications.

  13. Space robotics in Japan

    NASA Astrophysics Data System (ADS)

    Whittaker, William; Lowrie, James W.; McCain, Harry; Bejczy, Antal; Sheridan, Tom; Kanade, Takeo; Allen, Peter

    1994-03-01

    Japan has been one of the most successful countries in the world in the realm of terrestrial robot applications. The panel found that Japan has in place a broad base of robotics research and development, ranging from components to working systems for manufacturing, construction, and human service industries. From this base, Japan looks to the use of robotics in space applications and has funded work in space robotics since the mid-1980's. The Japanese are focusing on a clear image of what they hope to achieve through three objectives for the 1990's: developing long-reach manipulation for tending experiments on Space Station Freedom, capturing satellites using a free-flying manipulator, and surveying part of the moon with a mobile robot. This focus and a sound robotics infrastructure is enabling the young Japanese space program to develop relevant systems for extraterrestrial robotics applications.

  14. Proteomic analysis of Caenorhabditis elegans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteomic studies of the free-living nematode Caenorhabditis elegans have recently received great attention because this animal is a useful model platform for the in vivo study of various biological problems relevant to human disease. In general, proteomic analysis is performed in order to address a...

  15. Molecular Biologist's Guide to Proteomics

    PubMed Central

    Graves, Paul R.; Haystead, Timothy A. J.

    2002-01-01

    The emergence of proteomics, the large-scale analysis of proteins, has been inspired by the realization that the final product of a gene is inherently more complex and closer to function than the gene itself. Shortfalls in the ability of bioinformatics to predict both the existence and function of genes have also illustrated the need for protein analysis. Moreover, only through the study of proteins can posttranslational modifications be determined, which can profoundly affect protein function. Proteomics has been enabled by the accumulation of both DNA and protein sequence databases, improvements in mass spectrometry, and the development of computer algorithms for database searching. In this review, we describe why proteomics is important, how it is conducted, and how it can be applied to complement other existing technologies. We conclude that currently, the most practical application of proteomics is the analysis of target proteins as opposed to entire proteomes. This type of proteomics, referred to as functional proteomics, is always driven by a specific biological question. In this way, protein identification and characterization has a meaningful outcome. We discuss some of the advantages of a functional proteomics approach and provide examples of how different methodologies can be utilized to address a wide variety of biological problems. PMID:11875127

  16. Proteome Studies of Filamentous Fungi

    SciTech Connect

    Baker, Scott E.; Panisko, Ellen A.

    2011-04-20

    The continued fast pace of fungal genome sequence generation has enabled proteomic analysis of a wide breadth of organisms that span the breadth of the Kingdom Fungi. There is some phylogenetic bias to the current catalog of fungi with reasonable DNA sequence databases (genomic or EST) that could be analyzed at a global proteomic level. However, the rapid development of next generation sequencing platforms has lowered the cost of genome sequencing such that in the near future, having a genome sequence will no longer be a time or cost bottleneck for downstream proteomic (and transcriptomic) analyses. High throughput, non-gel based proteomics offers a snapshot of proteins present in a given sample at a single point in time. There are a number of different variations on the general method and technologies for identifying peptides in a given sample. We present a method that can serve as a “baseline” for proteomic studies of fungi.

  17. Proteomics research in India: an update.

    PubMed

    Reddy, Panga Jaipal; Atak, Apurva; Ghantasala, Saicharan; Kumar, Saurabh; Gupta, Shabarni; Prasad, T S Keshava; Zingde, Surekha M; Srivastava, Sanjeeva

    2015-09-01

    After a successful completion of the Human Genome Project, deciphering the mystery surrounding the human proteome posed a major challenge. Despite not being largely involved in the Human Genome Project, the Indian scientific community contributed towards proteomic research along with the global community. Currently, more than 76 research/academic institutes and nearly 145 research labs are involved in core proteomic research across India. The Indian researchers have been major contributors in drafting the "human proteome map" along with international efforts. In addition to this, virtual proteomics labs, proteomics courses and remote triggered proteomics labs have helped to overcome the limitations of proteomics education posed due to expensive lab infrastructure. The establishment of Proteomics Society, India (PSI) has created a platform for the Indian proteomic researchers to share ideas, research collaborations and conduct annual conferences and workshops. Indian proteomic research is really moving forward with the global proteomics community in a quest to solve the mysteries of proteomics. A draft map of the human proteome enhances the enthusiasm among intellectuals to promote proteomic research in India to the world.This article is part of a Special Issue entitled: Proteomics in India. PMID:25868663

  18. Marsupial robots for law enforcement

    NASA Astrophysics Data System (ADS)

    Murphy, Robin R.

    2001-02-01

    Marsupial robots are a type of heterogeneous mobile robot team. A mother robot transports, supports, and recovers one or more daughter robots. This paper will cover the marsupial robot concept, the application of law enforcement, and recent results in collaborative teleoperation for the related task of urban search and rescue.

  19. Humanlike Robots - The Upcoming Revolution in Robotics

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2009-01-01

    Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.

  20. [Robotics and laparoscopic surgery].

    PubMed

    Martínez Ramos, Carlos

    2006-10-01

    Laparoscopic surgery has completely revolutionized modern surgery. In addition to its advantages, however, this approach also presents significant limitations. The most important are loss of the sense of depth, tactile sensation and resistance, as well as loss of natural hand-eye coordination and manual dexterity. The main motivation for the development of surgical robots is the possibility of eliminating all these limitations. Robots have acquired great potential to improve the operative possibilities of surgeons. Given the continual increase in the use of surgical robots, in the near future the structure and appearance of current operating rooms will change. The present article analyzes the origin and development of robotic systems, as well as the characteristics of the latest generation of robots. Because of the strong interest in robotic surgery and its future prospects, surgeons should be familiar with these emerging and innovative techniques. PMID:17040667

  1. Applying robotics to HAZMAT

    NASA Technical Reports Server (NTRS)

    Welch, Richard V.; Edmonds, Gary O.

    1994-01-01

    The use of robotics in situations involving hazardous materials can significantly reduce the risk of human injuries. The Emergency Response Robotics Project, which began in October 1990 at the Jet Propulsion Laboratory, is developing a teleoperated mobile robot allowing HAZMAT (hazardous materials) teams to remotely respond to incidents involving hazardous materials. The current robot, called HAZBOT III, can assist in locating characterizing, identifying, and mitigating hazardous material incidents without risking entry team personnel. The active involvement of the JPL Fire Department HAZMAT team has been vital in developing a robotic system which enables them to perform remote reconnaissance of a HAZMAT incident site. This paper provides a brief review of the history of the project, discusses the current system in detail, and presents other areas in which robotics can be applied removing people from hazardous environments/operations.

  2. Applying robotics to HAZMAT

    NASA Astrophysics Data System (ADS)

    Welch, Richard V.; Edmonds, Gary O.

    1994-02-01

    The use of robotics in situations involving hazardous materials can significantly reduce the risk of human injuries. The Emergency Response Robotics Project, which began in October 1990 at the Jet Propulsion Laboratory, is developing a teleoperated mobile robot allowing HAZMAT (hazardous materials) teams to remotely respond to incidents involving hazardous materials. The current robot, called HAZBOT III, can assist in locating characterizing, identifying, and mitigating hazardous material incidents without risking entry team personnel. The active involvement of the JPL Fire Department HAZMAT team has been vital in developing a robotic system which enables them to perform remote reconnaissance of a HAZMAT incident site. This paper provides a brief review of the history of the project, discusses the current system in detail, and presents other areas in which robotics can be applied removing people from hazardous environments/operations.

  3. Survival of falling robots

    NASA Technical Reports Server (NTRS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-01-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  4. Survival of falling robots

    NASA Astrophysics Data System (ADS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-02-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  5. Robotics and industrial inspection

    SciTech Connect

    Casasent, D.P.

    1983-01-01

    Image processing algorithms are discussed, taking into account hidden information in early visual processing, three-dimensional shape recognition by moirecorrelation, spatial-frequency representations of images with scale invariant properties, image-based focusing, the computational structure for the Walsh-Hadamard transform, a hybrid optical/digital moment-based robotic pattern recognition system, affordable implementations of image processing algorithms, and an analysis of low-level computer vision algorithms for implementation on a very large scale integrated processor array. Other topics considered are related to government programs and needs in robotics, DoD research and applications in robotics, time-varying image processing and control, industrial robotics, industrial applications of computer vision, and object perception and mensuration for robotics. Attention is given to laser scanning techniques for automatic inspection of heat-sealed film packages, computer software for robotic vision, and computerized tomography on a logarithmic polar grid.

  6. INL Multi-Robot Control Interface

    Energy Science and Technology Software Center (ESTSC)

    2005-03-30

    The INL Multi-Robot Control Interface controls many robots through a single user interface. The interface includes a robot display window for each robot showing the robot’s condition. More than one window can be used depending on the number of robots. The user interface also includes a robot control window configured to receive commands for sending to the respective robot and a multi-robot common window showing information received from each robot.

  7. NASA Robot Brain Surgeon

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mechanical Engineer Michael Guerrero works on the Robot Brain Surgeon testbed in the NeuroEngineering Group at the Ames Research Center, Moffett Field, California. Principal investigator Dr. Robert W. Mah states that potentially the simple robot will be able to feel brain structures better than any human surgeon, making slow, very precise movements during an operation. The brain surgery robot that may give surgeons finer control of surgical instruments during delicate brain operations is still under development.

  8. Robotic liver surgery

    PubMed Central

    Leung, Universe

    2014-01-01

    Robotic surgery is an evolving technology that has been successfully applied to a number of surgical specialties, but its use in liver surgery has so far been limited. In this review article we discuss the challenges of minimally invasive liver surgery, the pros and cons of robotics, the evolution of medical robots, and the potentials in applying this technology to liver surgery. The current data in the literature are also presented. PMID:25392840

  9. Ovarian Cancer Proteomic, Phosphoproteomic, and Glycoproteomic Data Released - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have just released a comprehensive dataset of the proteomic analysis of high grade serous ovarian tumor samples,

  10. Immunocapture strategies in translational proteomics

    PubMed Central

    Fredolini, Claudia; Byström, Sanna; Pin, Elisa; Edfors, Fredrik; Tamburro, Davide; Iglesias, Maria Jesus; Häggmark, Anna; Hong, Mun-Gwan; Uhlen, Mathias; Nilsson, Peter; Schwenk, Jochen M

    2016-01-01

    Aiming at clinical studies of human diseases, antibody-assisted assays have been applied to biomarker discovery and toward a streamlined translation from patient profiling to assays supporting personalized treatments. In recent years, integrated strategies to couple and combine antibodies with mass spectrometry-based proteomic efforts have emerged, allowing for novel possibilities in basic and clinical research. Described in this review are some of the field’s current and emerging immunocapture approaches from an affinity proteomics perspective. Discussed are some of their advantages, pitfalls and opportunities for the next phase in clinical and translational proteomics. PMID:26558424

  11. Plant proteomics methods and protocols.

    PubMed

    Jorrin-Novo, Jesus V

    2014-01-01

    In this first, introductory chapter, it is intended to summarize from a methodological point of view the state of the art in plant proteomics, focusing on mass spectrometry-based strategies. Thus, this chapter is mainly directed at beginners or at those trying to get into the field, rather than at those with real experience or a long trajectory in plant proteomics research. The different alternative workflows, methods, techniques, and protocols from the experimental design to the data analysis will be briefly commented, with cross references to previous monographs and reviews, as well as to the rest of the book chapters. The difficulty of working with proteins, together with the power, limitations, and challenges of the approach will also be briefly discussed.Proteins, as molecular entities, and the cell proteome, as a whole, are much more complex than what we thought in the past and can be studied in a single experiment. Because of that, fractionation and complementary strategies are required for its study. The MS analysis of complex samples may result in up to 100,000-peptide spectra that cannot be easily analyzed with standard procedures. Therefore, proteomics, more than other -omics, needs a dry lab, time, and an effort in data mining.As main conclusion, it can be stated that proteomics is in its beginnings. It is starting to make important contributions to a proper gene annotation, identification, and characterization of gene products or protein species and to the knowledge of living organisms, having also an enormous application potential to translational research. However, and despite its great potential, and as in any other experimental approach, it is far from being a Pandora's Box. In the case of plant research, the full potential of proteomics is quite far from being totally exploited, and second-, third-, and fourth-generation proteomics techniques are still of very limited use. Most of the plant proteomics papers so far published belong to the

  12. Vitreous Proteomics and Diabetic Retinopathy

    PubMed Central

    Walia, Saloni; Clermont, Allen C.; Gao, Ben-Bo; Aiello, Lloyd Paul; Feener, Edward P.

    2016-01-01

    Diabetic retinopathy is the major cause of acquired blindness in working age adults. Studies of the vitreous proteome have provided insights into the etiology of diabetic retinopathy and suggested potential molecular targets for treatments. Further characterization of the protein changes associated with the progression of this disease may suggest additional therapeutic approaches as well as reveal novel factors that may be useful in predicting risk and functional outcomes of interventional therapies. This article provides an overview of the various techniques used for proteomic analysis of the vitreous and details results from studies evaluating vitreous of diabetic patients using the proteomic approach. PMID:21091014

  13. Human-Robot Interaction

    NASA Technical Reports Server (NTRS)

    Sandor, Aniko; Cross, E. Vincent, II; Chang, Mai Lee

    2015-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces affect the human's ability to perform tasks effectively and efficiently when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. For efficient and effective remote navigation of a rover, a human operator needs to be aware of the robot's environment. However, during teleoperation, operators may get information about the environment only through a robot's front-mounted camera causing a keyhole effect. The keyhole effect reduces situation awareness which may manifest in navigation issues such as higher number of collisions, missing critical aspects of the environment, or reduced speed. One way to compensate for the keyhole effect and the ambiguities operators experience when they teleoperate a robot is adding multiple cameras and including the robot chassis in the camera view. Augmented reality, such as overlays, can also enhance the way a person sees objects in the environment or in camera views by making them more visible. Scenes can be augmented with integrated telemetry, procedures, or map information. Furthermore, the addition of an exocentric (i.e., third-person) field of view from a camera placed in the robot's environment may provide operators with the additional information needed to gain spatial awareness of the robot. Two research studies investigated possible mitigation approaches to address the keyhole effect: 1) combining the inclusion of the robot chassis in the camera view with augmented reality overlays, and 2) modifying the camera

  14. [Robotic surgery in gynecology].

    PubMed

    Csorba, Roland

    2012-06-24

    Minimally invasive surgery has revolutionized gynecological interventions over the past 30 years. The introduction of the da Vinci robotic surgery in 2005 has resulted in large changes in surgical management. The robotic platform allows less experienced laparoscopic surgeons to perform more complex procedures. It can be utilized mainly in general gynecology and reproductive gynecology. The robot is being increasingly used for procedures such as hysterectomy, myomectomy, adnexal surgery, and tubal anastomosis. In urogynecology, the robot is being utilized for sacrocolopexy as well. In the field of gynecologic oncology, the robot is being increasingly used for hysterectomy and lymphadenectomy in oncologic diseases. Despite the rapid and widespread adaption of robotic surgery in gynecology, there are no randomized trials comparing its efficacy and safety to other traditional surgical approaches. This article presents the development, technical aspects and indications of robotic surgery in gynecology, based on the previously published reviews. Robotic surgery can be highly advantageous with the right amount of training, along with appropriate patient selection. Patients will have less blood loss, less post-operative pain, faster recovery, and fewer complications compared to open surgery and laparoscopy. However, until larger randomized control trials are completed which report long-term outcomes, robotic surgery cannot be stated to have priority over other surgical methods. PMID:22714030

  15. Hopping Robot with Wheels

    NASA Technical Reports Server (NTRS)

    Barlow, Edward; Marzwell, Nevellie; Fuller, Sawyer; Fionni, Paolo; Tretton, Andy; Burdick, Joel; Schell, Steve

    2003-01-01

    A small prototype mobile robot is capable of (1) hopping to move rapidly or avoid obstacles and then (2) moving relatively slowly and precisely on the ground by use of wheels in the manner of previously reported exploratory robots of the "rover" type. This robot is a descendant of a more primitive hopping robot described in "Minimally Actuated Hopping Robot" (NPO- 20911), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 50. There are many potential applications for robots with hopping and wheeled-locomotion (roving) capabilities in diverse fields of endeavor, including agriculture, search-and-rescue operations, general military operations, removal or safe detonation of land mines, inspection, law enforcement, and scientific exploration on Earth and remote planets. The combination of hopping and roving enables this robot to move rapidly over very rugged terrain, to overcome obstacles several times its height, and then to position itself precisely next to a desired target. Before a long hop, the robot aims itself in the desired hopping azimuth and at a desired takeoff angle above horizontal. The robot approaches the target through a series of hops and short driving operations utilizing the steering wheels for precise positioning.

  16. Advanced robot locomotion.

    SciTech Connect

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  17. [Robots and intellectual property].

    PubMed

    Larrieu, Jacques

    2013-12-01

    This topic is part of the global issue concerning the necessity to adapt intellectual property law to constant changes in technology. The relationship between robots and IP is dual. On one hand, the robots may be regarded as objects of intellectual property. A robot, like any new machine, could qualify for a protection by a patent. A copyright may protect its appearance if it is original. Its memory, like a database, could be covered by a sui generis right. On the other hand, the question of the protection of the outputs of the robot must be raised. The robots, as the physical embodiment of artificial intelligence, are becoming more and more autonomous. Robot-generated works include less and less human inputs. Are these objects created or invented by a robot copyrightable or patentable? To whom the ownership of these IP rights will be allocated? To the person who manufactured the machine ? To the user of the robot? To the robot itself? All these questions are worth discussing. PMID:24558740

  18. Robotics for welding research

    SciTech Connect

    Braun, G.; Jones, J.

    1984-09-01

    The welding metallurgy research and education program at Colorado School of Mines (CSM) is helping industries make the transition toward automation by training students in robotics. Industry's interest is primarily in pick and place operations, although robotics can increase efficiency in areas other than production. Training students to develop fully automated robotic welding systems will usher in new curriculum requirements in the area of computers and microprocessors. The Puma 560 robot is CSM's newest acquisition for welding research 5 references, 2 figures, 1 table.

  19. The robotics review 1

    SciTech Connect

    Khatib, O.; Craig, J.J.; Lozano-Perez, T.

    1989-01-01

    Theoretical and implementation issues in robotics are discussed in reviews of recent investigations. Sections are devoted to programming, planning, and learning; sensing and perception; kinematics, dynamics, and design; and motion and force control. Particular attention is given to a robust layered control system for a mobile robot, camera calibration for three-dimensional machine vision, walking vehicles, design and control of direct-drive vehicles, an efficient parallel algorithm for robot inverse dynamics, stability problems in contact tasks, and kinematics and reaction-moment compensation for satellite-mounted robot manipulators.

  20. Robotic hair restoration.

    PubMed

    Rose, Paul T; Nusbaum, Bernard

    2014-01-01

    The latest innovation to hair restoration surgery has been the introduction of a robotic system for harvesting grafts. This system uses the follicular unit extraction/follicular isolation technique method for harvesting follicular units, which is particularly well suited to the abilities of a robotic technology. The ARTAS system analyzes images of the donor area and then a dual-chamber needle and blunt dissecting punch are used to harvest the follicular units. The robotic technology is now being used in various locations around the world. This article discusses the use of the robotic system, its capabilities, and the advantages and disadvantages of the system. PMID:24267426

  1. Hazardous Environment Robotics

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Jet Propulsion Laboratory (JPL) developed video overlay calibration and demonstration techniques for ground-based telerobotics. Through a technology sharing agreement with JPL, Deneb Robotics added this as an option to its robotics software, TELEGRIP. The software is used for remotely operating robots in nuclear and hazardous environments in industries including automotive and medical. The option allows the operator to utilize video to calibrate 3-D computer models with the actual environment, and thus plan and optimize robot trajectories before the program is automatically generated.

  2. Robotic Thumb Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor); Goza, S. Michael (Inventor)

    2013-01-01

    An improved robotic thumb for a robotic hand assembly is provided. According to one aspect of the disclosure, improved tendon routing in the robotic thumb provides control of four degrees of freedom with only five tendons. According to another aspect of the disclosure, one of the five degrees of freedom of a human thumb is replaced in the robotic thumb with a permanent twist in the shape of a phalange. According to yet another aspect of the disclosure, a position sensor includes a magnet having two portions shaped as circle segments with different center points. The magnet provides a linearized output from a Hall effect sensor.

  3. Asteroid Redirect Mission: Robotic Segment

    NASA Video Gallery

    This concept animation illustrates the robotic segment of NASA's Asteroid Redirect Mission. The Asteroid Redirect Vehicle, powered by solar electric propulsion, travels to a large asteroid to robot...

  4. Quantitative Proteome Mapping of Nitrotyrosines

    SciTech Connect

    Bigelow, Diana J.; Qian, Weijun

    2008-02-10

    An essential first step in the understanding disease and environmental perturbations is the early and quantitative detection of the increased levels of the inflammatory marker nitrotyrosine, as compared with its endogenous levels within the tissue or cellular proteome. Thus, methods that successfully address a proteome-wide quantitation of nitrotyrosine and related oxidative modifications can provide early biomarkers of risk and progression of disease as well as effective strategies for therapy. Multidimensional separations LC coupled with tandem mass spectrometry (LC-MS/MS) has, in recent years, significantly expanded our knowledge of human (and mammalian model system) proteomes including some nascent work in identification of post-translational modifications. In the following review, we discuss the application of LC-MS/MS for quantitation and identification of nitrotyrosine-modified proteins within the context of complex protein mixtures presented in mammalian proteomes.

  5. The human proteomics initiative (HPI).

    PubMed

    O'Donovan, C; Apweiler, R; Bairoch, A

    2001-05-01

    The availability of the human genome sequence has enabled the exploration and exploitation of the human genome and proteome to begin. Research has now focussed on the annotation of the genome and in particular of the proteome. With expert annotation extracted from the literature by biologists as the foundation, it has been possible to expand into the areas of data mining and automatic annotation. With further development and integration of pattern recognition methods and the application of alignments clustering, proteome analysis can now be provided in a meaningful way. These various approaches have been integrated to attach, extract and combine as much relevant information as possible to the proteome. This resource should be valuable to users from both research and industry. PMID:11301130

  6. Proteomics of Plant Pathogenic Fungi

    PubMed Central

    González-Fernández, Raquel; Prats, Elena; Jorrín-Novo, Jesús V.

    2010-01-01

    Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular) and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection. PMID:20589070

  7. Canadian space robotic activities

    NASA Astrophysics Data System (ADS)

    Sallaberger, Christian; Space Plan Task Force, Canadian Space Agency

    The Canadian Space Agency has chosen space robotics as one of its key niche areas, and is currently preparing to deliver the first flight elements for the main robotic system of the international space station. The Mobile Servicing System (MSS) is the Canadian contribution to the international space station. It consists of three main elements. The Space Station Remote Manipulator System (SSRMS) is a 7-metre, 7-dof, robotic arm. The Special Purpose Dextrous Manipulator (SPDM), a smaller 2-metre, 7-dof, robotic arm can be used independently, or attached to the end of the SSRMS. The Mobile Base System (MBS) will be used as a support platform and will also provide power and data links for both the SSRMS and the SPDM. A Space Vision System (SVS) has been tested on Shuttle flights, and is being further developed to enhance the autonomous capabilities of the MSS. The CSA also has a Strategic Technologies in Automation and Robotics Program which is developing new technologies to fulfill future robotic space mission needs. This program is currently developing in industry technological capabilities in the areas of automation of operations, autonomous robotics, vision systems, trajectory planning and object avoidance, tactile and proximity sensors, and ground control of space robots. Within the CSA, a robotic testbed and several research programs are also advancing technologies such as haptic devices, control via head-mounted displays, predictive and preview displays, and the dynamic characterization of robotic arms. Canada is also now developing its next Long Term Space Plan. In this context, a planetary exploration program is being considered, which would utilize Canadian space robotic technologies in this new arena.

  8. Multi-robot control interface

    DOEpatents

    Bruemmer, David J.; Walton, Miles C.

    2011-12-06

    Methods and systems for controlling a plurality of robots through a single user interface include at least one robot display window for each of the plurality of robots with the at least one robot display window illustrating one or more conditions of a respective one of the plurality of robots. The user interface further includes at least one robot control window for each of the plurality of robots with the at least one robot control window configured to receive one or more commands for sending to the respective one of the plurality of robots. The user interface further includes a multi-robot common window comprised of information received from each of the plurality of robots.

  9. Spectral library searching in proteomics.

    PubMed

    Griss, Johannes

    2016-03-01

    Spectral library searching has become a mature method to identify tandem mass spectra in proteomics data analysis. This review provides a comprehensive overview of available spectral library search engines and highlights their distinct features. Additionally, resources providing spectral libraries are summarized and tools presented that extend experimental spectral libraries by simulating spectra. Finally, spectrum clustering algorithms are discussed that utilize the same spectrum-to-spectrum matching algorithms as spectral library search engines and allow novel methods to analyse proteomics data. PMID:26616598

  10. The Succinated Proteome

    SciTech Connect

    Merkley, Eric D.; Metz, Thomas O.; Smith, Richard D.; Baynes, John; Frizell, Norma

    2014-03-30

    Succination is a chemical modification of cysteine in protein by the Krebs cycle intermediate, fumarate, yielding S-(2-succino)cysteine (2SC). Intracellular fumarate concentration and succination of proteins are increased by hyperpolarization of the inner mitochondrial membrane, in concert with mitochondrial, endoplasmic reticulum (ER) and oxidative stress in adipocytes grown in high glucose medium and in adipose tissue in obesity and diabetes. Increased succination of proteins is also detected in the kidney of a fumarase conditional knock-out mouse which develops renal tumors. Keap1, the gatekeeper of the antioxidant response, was identified as a major succinated protein in renal cancer cells, suggesting that succination may play a role in activation of the antioxidant response. A wide range of proteins is subject to succination, including enzymes, adipokines, cytoskeletal proteins and ER chaperones with functional cysteine residues. There is also significant overlap between succinated and glutathionylated proteins, and with proteins containing cysteine residues that are readily oxidized to the sulfenic (cysteic) acid. Succination of adipocyte proteins is inhibited by uncouplers, which discharge the mitochondrial membrane potential (Δψm) and by ER stress inhibitors. 2SC serves as a biomarker of mitochondrial stress or dysfunction in chronic diseases, such as obesity, diabetes and cancer, and recent studies suggest that succination is a mechanistic link between mitochondrial dysfunction, oxidative and ER stress, and cellular progression toward apoptosis. In this article, we review the history of the succinated proteome and the challenges associated with measuring this non-enzymatic post-translational modification of proteins by proteomics approaches.

  11. THE SUCCINATED PROTEOME

    PubMed Central

    Merkley, Eric D.; Metz, Thomas O.; Smith, Richard D.; Baynes, John W.; Frizzell, Norma

    2014-01-01

    The post-translational modifications (PTMs) of cysteine residues include oxidation, S-glutathionylation, S-nitrosylation, and succination, all of which modify protein function or turnover in response to a changing intracellular redox environment. Succination is a chemical modification of cysteine in proteins by the Krebs cycle intermediate, fumarate, yielding S-(2-succino) cysteine (2SC). Intracellular fumarate concentration and succination of proteins are increased by hyperpolarization of the inner mitochondrial membrane, in concert with mitochondrial, endoplasmic reticulum (ER) and oxidative stress in 3T3 adipocytes grown in high glucose medium and in adipose tissue in obesity and diabetes in mice. Increased succination of proteins is also detected in the kidney of a fumarase deficient conditional knock-out mouse which develops renal cysts. A wide range of proteins are subject to succination, including enzymes, adipokines, cytoskeletal proteins, and ER chaperones with functional cysteine residues. There is also some overlap between succinated and glutathionylated proteins, suggesting that the same low pKa thiols are targeted by both. Succination of adipocyte proteins in diabetes increases as a result of nutrient excess derived mitochondrial stress and this is inhibited by uncouplers, which discharge the mitochondrial membrane potential (ΔΨm) and relieve the electron transport chain. 2SC therefore serves as a biomarker of mitochondrial stress or dysfunction in chronic diseases, such as obesity, diabetes, and cancer, and recent studies suggest that succination is a mechanistic link between mitochondrial dysfunction, oxidative and ER stress, and cellular progression toward apoptosis. In this article, we review the history of the succinated proteome and the challenges associated with measuring this non-enzymatic PTM of proteins by proteomics approaches. PMID:24115015

  12. The proteome of human saliva

    NASA Astrophysics Data System (ADS)

    Griffin, Timothy J.

    2013-05-01

    Human saliva holds tremendous potential for transforming disease and health diagnostics given its richness of molecular information and non-invasive collection. Enumerating its molecular constituents is an important first step towards reaching this potential. Among the molecules in saliva, proteins and peptides arguably have the most value: they can directly indicate biochemical functions linked to a health condition/disease state, and they are attractive targets for biomarker assay development. However, cataloging and defining the human salivary proteome is challenging given the dynamic, chemically heterogeneous and complex nature of the system. In addition, the overall human saliva proteome is composed of several "sub-proteomes" which include: intact full length proteins, proteins carrying post-translational modifications (PTMs), low molecular weight peptides, and the metaproteome, derived from protein products from nonhuman organisms (e.g. microbes) present in the oral cavity. Presented here will be a summary of communal efforts to meet the challenge of characterizing the multifaceted saliva proteome, focusing on the use of mass spectrometry as the proteomic technology of choice. Implications of these efforts to characterize the salivary proteome in the context of disease diagnostics will also be discussed.

  13. Next generation space robot

    NASA Technical Reports Server (NTRS)

    Iwata, Tsutomu; Oda, Mitsushige; Imai, Ryoichi

    1989-01-01

    The recent research effort on the next generation space robots is presented. The goals of this research are to develop the fundamental technologies and to acquire the design parameters of the next generation space robot. Visual sensing and perception, dexterous manipulation, man machine interface and artificial intelligence techniques such as task planning are identified as the key technologies.

  14. The 50-Minute Robot.

    ERIC Educational Resources Information Center

    Buckland, Miram R.

    1985-01-01

    Sixth graders built working "robots" (or grasping bars) for remote control use during a unit on simple mechanics. Steps for making a robot are presented, including: cutting the wood, drilling and nailing, assembling the jaws, and making them work. The "jaws," used to pick up objects, illustrate principles of levers. (DH)

  15. Real World Robotics.

    ERIC Educational Resources Information Center

    Clark, Lisa J.

    2002-01-01

    Introduces a project for elementary school students in which students build a robot by following instructions and then write a computer program to run their robot by using LabView graphical development software. Uses ROBOLAB curriculum which is designed for grade levels K-12. (YDS)

  16. Education by Robot!

    ERIC Educational Resources Information Center

    Cobb, Cheryl

    2004-01-01

    This article describes BEST (Boosting Engineering, Science, and Technology), a hands-on robotics program founded by Texas Instruments engineers Ted Mahler and Steve Marum. BEST links educators with industry to provide middle and high school students with a peek into the exciting world of robotics, with the goal of inspiring and interesting…

  17. Randomization in robot tasks

    NASA Technical Reports Server (NTRS)

    Erdmann, Michael

    1992-01-01

    This paper investigates the role of randomization in the solution of robot manipulation tasks. One example of randomization is shown by the strategy of shaking a bin holding a part in order to orient the part in a desired stable state with some high probability. Randomization can be useful for mobile robot navigation and as a means of guiding the design process.

  18. Self-Reconfigurable Robots

    SciTech Connect

    HENSINGER, DAVID M.; JOHNSTON, GABRIEL A.; HINMAN-SWEENEY, ELAINE M.; FEDDEMA, JOHN T.; ESKRIDGE, STEVEN E.

    2002-10-01

    A distributed reconfigurable micro-robotic system is a collection of unlimited numbers of distributed small, homogeneous robots designed to autonomously organize and reorganize in order to achieve mission-specified geometric shapes and functions. This project investigated the design, control, and planning issues for self-configuring and self-organizing robots. In the 2D space a system consisting of two robots was prototyped and successfully displayed automatic docking/undocking to operate dependently or independently. Additional modules were constructed to display the usefulness of a self-configuring system in various situations. In 3D a self-reconfiguring robot system of 4 identical modules was built. Each module connects to its neighbors using rotating actuators. An individual component can move in three dimensions on its neighbors. We have also built a self-reconfiguring robot system consisting of 9-module Crystalline Robot. Each module in this robot is actuated by expansion/contraction. The system is fully distributed, has local communication (to neighbors) capabilities and it has global sensing capabilities.

  19. Robotics technology discipline

    NASA Technical Reports Server (NTRS)

    Montemerlo, Melvin D.

    1990-01-01

    Viewgraphs on robotics technology discipline for Space Station Freedom are presented. Topics covered include: mechanisms; sensors; systems engineering processes for integrated robotics; man/machine cooperative control; 3D-real-time machine perception; multiple arm redundancy control; manipulator control from a movable base; multi-agent reasoning; and surfacing evolution technologies.

  20. Robot Vision Library

    NASA Technical Reports Server (NTRS)

    Howard, Andrew B.; Ansar, Adnan I.; Litwin, Todd E.; Goldberg, Steven B.

    2009-01-01

    The JPL Robot Vision Library (JPLV) provides real-time robot vision algorithms for developers who are not vision specialists. The package includes algorithms for stereo ranging, visual odometry and unsurveyed camera calibration, and has unique support for very wideangle lenses

  1. Robotic Intelligence Kernel: Architecture

    Energy Science and Technology Software Center (ESTSC)

    2009-09-16

    The INL Robotic Intelligence Kernel Architecture (RIK-A) is a multi-level architecture that supports a dynamic autonomy structure. The RIK-A is used to coalesce hardware for sensing and action as well as software components for perception, communication, behavior and world modeling into a framework that can be used to create behaviors for humans to interact with the robot.

  2. Robotics in medicine

    NASA Astrophysics Data System (ADS)

    Kuznetsov, D. N.; Syryamkin, V. I.

    2015-11-01

    Modern technologies play a very important role in our lives. It is hard to imagine how people can get along without personal computers, and companies - without powerful computer centers. Nowadays, many devices make modern medicine more effective. Medicine is developing constantly, so introduction of robots in this sector is a very promising activity. Advances in technology have influenced medicine greatly. Robotic surgery is now actively developing worldwide. Scientists have been carrying out research and practical attempts to create robotic surgeons for more than 20 years, since the mid-80s of the last century. Robotic assistants play an important role in modern medicine. This industry is new enough and is at the early stage of development; despite this, some developments already have worldwide application; they function successfully and bring invaluable help to employees of medical institutions. Today, doctors can perform operations that seemed impossible a few years ago. Such progress in medicine is due to many factors. First, modern operating rooms are equipped with up-to-date equipment, allowing doctors to make operations more accurately and with less risk to the patient. Second, technology has enabled to improve the quality of doctors' training. Various types of robots exist now: assistants, military robots, space, household and medical, of course. Further, we should make a detailed analysis of existing types of robots and their application. The purpose of the article is to illustrate the most popular types of robots used in medicine.

  3. Robotics and Industrial Arts.

    ERIC Educational Resources Information Center

    Edmison, Glenn A.; And Others

    Robots are becoming increasingly common in American industry. By l990, they will revolutionize the way industry functions, replacing hundreds of workers and doing hot, dirty jobs better and more quickly than the workers could have done them. Robotics should be taught in high school industrial arts programs as a major curriculum component. The…

  4. Robots in the Classroom.

    ERIC Educational Resources Information Center

    Marsh, George; Spain, Tom

    1984-01-01

    Educational robots are defined, their essential characteristics and features are outlined, and their educational applications and what makes them run are discussed. Classroom experiences with five educational robots--Topo, Rhino XR-2, RB5X, Hero I and Tasman Turtle--are described. (MBR)

  5. Robot Rodeo 2013

    ScienceCinema

    Deuel, Jake

    2014-02-26

    Sandia National Laboratories hosted the seventh annual Western National Robot Rodeo and Capability Exercise in June 2013. The five-day event is a lively and challenging competition that draws civilian and military bomb squad teams from across the country to see who can most effectively defuse dangerous situations with the help of robots.

  6. INL Generic Robot Architecture

    Energy Science and Technology Software Center (ESTSC)

    2005-03-30

    The INL Generic Robot Architecture is a generic, extensible software framework that can be applied across a variety of different robot geometries, sensor suites and low-level proprietary control application programming interfaces (e.g. mobility, aria, aware, player, etc.).

  7. Going Green Robots

    ERIC Educational Resources Information Center

    Nelson, Jacqueline M.

    2011-01-01

    In looking at the interesting shapes and sizes of old computer parts, creating robots quickly came to the author's mind. In this article, she describes how computer parts can be used creatively. Students will surely enjoy creating their very own robots while learning about the importance of recycling in the society. (Contains 1 online resource.)

  8. Mechanochemically Active Soft Robots.

    PubMed

    Gossweiler, Gregory R; Brown, Cameron L; Hewage, Gihan B; Sapiro-Gheiler, Eitan; Trautman, William J; Welshofer, Garrett W; Craig, Stephen L

    2015-10-14

    The functions of soft robotics are intimately tied to their form-channels and voids defined by an elastomeric superstructure that reversibly stores and releases mechanical energy to change shape, grip objects, and achieve complex motions. Here, we demonstrate that covalent polymer mechanochemistry provides a viable mechanism to convert the same mechanical potential energy used for actuation in soft robots into a mechanochromic, covalent chemical response. A bis-alkene functionalized spiropyran (SP) mechanophore is cured into a molded poly(dimethylsiloxane) (PDMS) soft robot walker and gripper. The stresses and strains necessary for SP activation are compatible with soft robot function. The color change associated with actuation suggests opportunities for not only new color changing or camouflaging strategies, but also the possibility for simultaneous activation of latent chemistry (e.g., release of small molecules, change in mechanical properties, activation of catalysts, etc.) in soft robots. In addition, mechanochromic stress mapping in a functional robotic device might provide a useful design and optimization tool, revealing spatial and temporal force evolution within the robot in a way that might be coupled to autonomous feedback loops that allow the robot to regulate its own activity. The demonstration motivates the simultaneous development of new combinations of mechanophores, materials, and soft, active devices for enhanced functionality. PMID:26390078

  9. Robot Rodeo 2013

    SciTech Connect

    Deuel, Jake

    2013-08-27

    Sandia National Laboratories hosted the seventh annual Western National Robot Rodeo and Capability Exercise in June 2013. The five-day event is a lively and challenging competition that draws civilian and military bomb squad teams from across the country to see who can most effectively defuse dangerous situations with the help of robots.

  10. Motivating Students with Robotics

    ERIC Educational Resources Information Center

    Brand, Brenda; Collver, Michael; Kasarda, Mary

    2008-01-01

    In recent years, the need to advance the number of individuals pursuing science, technology, engineering, and mathematics fields has gained much attention. The Montgomery County/Virginia Tech Robotics Collaborative (MCVTRC), a yearlong high school robotics program housed in an educational shop facility in Montgomery County, Virginia, seeks to…

  11. Honda humanoid robots development.

    PubMed

    Hirose, Masato; Ogawa, Kenichi

    2007-01-15

    Honda has been doing research on robotics since 1986 with a focus upon bipedal walking technology. The research started with straight and static walking of the first prototype two-legged robot. Now, the continuous transition from walking in a straight line to making a turn has been achieved with the latest humanoid robot ASIMO. ASIMO is the most advanced robot of Honda so far in the mechanism and the control system. ASIMO's configuration allows it to operate freely in the human living space. It could be of practical help to humans with its ability of five-finger arms as well as its walking function. The target of further development of ASIMO is to develop a robot to improve life in human society. Much development work will be continued both mechanically and electronically, staying true to Honda's 'challenging spirit'. PMID:17148047

  12. Dictionary of robotics

    SciTech Connect

    Waldman, H.

    1985-01-01

    The idea of using robots to perform repetitious tasks quickly, cheaply and efficiently has intrigued humans since the Industrial Revolution. Growth has occurred geometrically from the introduction of the first industrial robot in 1955, and continues, unabated, as industry sales are expected to increase 20-fold with applications in both high technology and industry. The Dictionary defines not only those terms standard to robotics but also those used in areas that are just beginning to be involved. The book offers concise, readable descriptions of robot systems, actions, hardware (including applications), communications, computer control, dynamics, cost justification, feedback, kinematics, man-machine interface, sensors and software. There are references to all major robots and manufacturers in the US, Europe and Japan.

  13. Intelligent Articulated Robot

    NASA Astrophysics Data System (ADS)

    Nyein, Aung Kyaw; Thu, Theint Theint

    2008-10-01

    In this paper, an articulated type of industrial used robot is discussed. The robot is mainly intended to be used in pick and place operation. It will sense the object at the specified place and move it to a desired location. A peripheral interface controller (PIC16F84A) is used as the main controller of the robot. Infrared LED and IR receiver unit for object detection and 4-bit bidirectional universal shift registers (74LS194) and high current and high voltage Darlington transistors arrays (ULN2003) for driving the arms' motors are used in this robot. The amount of rotation for each arm is regulated by the limit switches. The operation of the robot is very simple but it has the ability of to overcome resetting position after power failure. It can continue its work from the last position before the power is failed without needing to come back to home position.

  14. Robots in Space -Psychological Aspects

    NASA Technical Reports Server (NTRS)

    Sipes, Walter E.

    2006-01-01

    A viewgraph presentation on the psychological aspects of developing robots to perform routine operations associated with monitoring, inspection, maintenance and repair in space is shown. The topics include: 1) Purpose; 2) Vision; 3) Current Robots in Space; 4) Ground Based Robots; 5) AERCam; 6) Rotating Bladder Robot (ROBLR); 7) DART; 8) Robonaut; 9) Full Immersion Telepresence Testbed; 10) ERA; and 11) Psychological Aspects

  15. A Survey of Space Robotics

    NASA Technical Reports Server (NTRS)

    Pedersen, L.; Kortenkamp, D.; Wettergreen, D.; Nourbakhsh, I.; Korsmeyer, David (Technical Monitor)

    2003-01-01

    In this paper we summarize a survey conducted by NASA to determine the state-of-the-art in space robotics and to predict future robotic capabilities under either nominal and intensive development effort. The space robotics assessment study examined both in-space operations including assembly, inspection, and maintenance and planetary surface operations like mobility and exploration. Applications of robotic autonomy and human-robot cooperation were considered. The study group devised a decomposition of robotic capabilities and then suggested metrics to specify the technical challenges associated with each. The conclusion of this paper identifies possible areas in which investment in space robotics could lead to significant advances of important technologies.

  16. Cell death proteomics database: consolidating proteomics data on cell death.

    PubMed

    Arntzen, Magnus Ø; Bull, Vibeke H; Thiede, Bernd

    2013-05-01

    Programmed cell death is a ubiquitous process of utmost importance for the development and maintenance of multicellular organisms. More than 10 different types of programmed cell death forms have been discovered. Several proteomics analyses have been performed to gain insight in proteins involved in the different forms of programmed cell death. To consolidate these studies, we have developed the cell death proteomics (CDP) database, which comprehends data from apoptosis, autophagy, cytotoxic granule-mediated cell death, excitotoxicity, mitotic catastrophe, paraptosis, pyroptosis, and Wallerian degeneration. The CDP database is available as a web-based database to compare protein identifications and quantitative information across different experimental setups. The proteomics data of 73 publications were integrated and unified with protein annotations from UniProt-KB and gene ontology (GO). Currently, more than 6,500 records of more than 3,700 proteins are included in the CDP. Comparing apoptosis and autophagy using overrepresentation analysis of GO terms, the majority of enriched processes were found in both, but also some clear differences were perceived. Furthermore, the analysis revealed differences and similarities of the proteome between autophagosomal and overall autophagy. The CDP database represents a useful tool to consolidate data from proteome analyses of programmed cell death and is available at http://celldeathproteomics.uio.no. PMID:23537399

  17. Partner Ballroom Dance Robot -PBDR-

    NASA Astrophysics Data System (ADS)

    Kosuge, Kazuhiro; Takeda, Takahiro; Hirata, Yasuhisa; Endo, Mitsuru; Nomura, Minoru; Sakai, Kazuhisa; Koizumi, Mizuo; Oconogi, Tatsuya

    In this research, we have developed a dance partner robot, which has been developed as a platform for realizing the effective human-robot coordination with physical interaction. The robot could estimate the next dance step intended by a human and dance the step with the human. This paper introduce the robot referred to as PBDR (Partner Ballroom Dance Robot), which has performed graceful dancing with the human in EXPO 2005, Aichi, Japan.

  18. Guarded Motion for Mobile Robots

    Energy Science and Technology Software Center (ESTSC)

    2005-03-30

    The Idaho National Laboratory (INL) has created codes that ensure that a robot will come to a stop at a precise, specified distance from any obstacle regardless of the robot's initial speed, its physical characteristics, and the responsiveness of the low-level motor control schema. This Guarded Motion for Mobile Robots system iteratively adjusts the robot's action in response to information about the robot's environment.

  19. Proteomics in evolutionary ecology.

    PubMed

    Baer, B; Millar, A H

    2016-03-01

    Evolutionary ecologists are traditionally gene-focused, as genes propagate phenotypic traits across generations and mutations and recombination in the DNA generate genetic diversity required for evolutionary processes. As a consequence, the inheritance of changed DNA provides a molecular explanation for the functional changes associated with natural selection. A direct focus on proteins on the other hand, the actual molecular agents responsible for the expression of a phenotypic trait, receives far less interest from ecologists and evolutionary biologists. This is partially due to the central dogma of molecular biology that appears to define proteins as the 'dead-end of molecular information flow' as well as technical limitations in identifying and studying proteins and their diversity in the field and in many of the more exotic genera often favored in ecological studies. Here we provide an overview of a newly forming field of research that we refer to as 'Evolutionary Proteomics'. We point out that the origins of cellular function are related to the properties of polypeptide and RNA and their interactions with the environment, rather than DNA descent, and that the critical role of horizontal gene transfer in evolution is more about coopting new proteins to impact cellular processes than it is about modifying gene function. Furthermore, post-transcriptional and post-translational processes generate a remarkable diversity of mature proteins from a single gene, and the properties of these mature proteins can also influence inheritance through genetic and perhaps epigenetic mechanisms. The influence of post-transcriptional diversification on evolutionary processes could provide a novel mechanistic underpinning for elements of rapid, directed evolutionary changes and adaptations as observed for a variety of evolutionary processes. Modern state-of the art technologies based on mass spectrometry are now available to identify and quantify peptides, proteins, protein

  20. Toward cognitive robotics

    NASA Astrophysics Data System (ADS)

    Laird, John E.

    2009-05-01

    Our long-term goal is to develop autonomous robotic systems that have the cognitive abilities of humans, including communication, coordination, adapting to novel situations, and learning through experience. Our approach rests on the recent integration of the Soar cognitive architecture with both virtual and physical robotic systems. Soar has been used to develop a wide variety of knowledge-rich agents for complex virtual environments, including distributed training environments and interactive computer games. For development and testing in robotic virtual environments, Soar interfaces to a variety of robotic simulators and a simple mobile robot. We have recently made significant extensions to Soar that add new memories and new non-symbolic reasoning to Soar's original symbolic processing, which should significantly improve Soar abilities for control of robots. These extensions include episodic memory, semantic memory, reinforcement learning, and mental imagery. Episodic memory and semantic memory support the learning and recalling of prior events and situations as well as facts about the world. Reinforcement learning provides the ability of the system to tune its procedural knowledge - knowledge about how to do things. Mental imagery supports the use of diagrammatic and visual representations that are critical to support spatial reasoning. We speculate on the future of unmanned systems and the need for cognitive robotics to support dynamic instruction and taskability.

  1. Future of robotic surgery.

    PubMed

    Lendvay, Thomas Sean; Hannaford, Blake; Satava, Richard M

    2013-01-01

    In just over a decade, robotic surgery has penetrated almost every surgical subspecialty and has even replaced some of the most commonly performed open oncologic procedures. The initial reports on patient outcomes yielded mixed results, but as more medical centers develop high-volume robotics programs, outcomes appear comparable if not improved for some applications. There are limitations to the current commercially available system, and new robotic platforms, some designed to compete in the current market and some to address niche surgical considerations, are being developed that will change the robotic landscape in the next decade. Adoption of these new systems will be dependent on overcoming barriers to true telesurgery that range from legal to logistical. As additional surgical disciplines embrace robotics and open surgery continues to be replaced by robotic approaches, it will be imperative that adequate education and training keep pace with technology. Methods to enhance surgical performance in robotics through the use of simulation and telementoring promise to accelerate learning curves and perhaps even improve surgical readiness through brief virtual-reality warm-ups and presurgical rehearsal. All these advances will need to be carefully and rigorously validated through not only patient outcomes, but also cost efficiency. PMID:23528717

  2. Door breaching robotic manipulator

    NASA Astrophysics Data System (ADS)

    Schoenfeld, Erik; Parrington, Lawrence; von Muehlen, Stephan

    2008-04-01

    As unmanned systems become more commonplace in military, police, and other security forces, they are tasked to perform missions that the original hardware was not designed for. Current military robots are built for rough outdoor conditions and have strong inflexible manipulators designed to handle a wide range of operations. However, these manipulators are not well suited for some essential indoor tasks, including opening doors. This is a complicated kinematic task that places prohibitively difficult control challenges on the robot and the operator. Honeybee and iRobot have designed a modular door-breaching manipulator that mechanically simplifies the demands upon operator and robot. The manipulator connects to the existing robotic arm of the iRobot PackBot EOD. The gripper is optimized for grasping a variety of door knobs, levers, and car-door handles. It works in conjunction with a compliant wrist and magnetic lock-out mechanism that allows the wrist to remain rigid until the gripper has a firm grasp of the handle and then bend with its rotation and the swing of the door. Once the door is unlatched, the operator simply drives the robot through the doorway while the wrist compensates for the complex, multiple degree-of-freedom motion of the door. Once in the doorway the operator releases the handle, the wrist pops back into place, and the robot is ready for the next door. The new manipulator dramatically improves a robot's ability to non-destructively breach doors and perform an inspection of a room's content, a capability that was previously out of reach of unmanned systems.

  3. Proteomic insights into floral biology.

    PubMed

    Li, Xiaobai; Jackson, Aaron; Xie, Ming; Wu, Dianxing; Tsai, Wen-Chieh; Zhang, Sheng

    2016-08-01

    The flower is the most important biological structure for ensuring angiosperms reproductive success. Not only does the flower contain critical reproductive organs, but the wide variation in morphology, color, and scent has evolved to entice specialized pollinators, and arguably mankind in many cases, to ensure the successful propagation of its species. Recent proteomic approaches have identified protein candidates related to these flower traits, which has shed light on a number of previously unknown mechanisms underlying these traits. This review article provides a comprehensive overview of the latest advances in proteomic research in floral biology according to the order of flower structure, from corolla to male and female reproductive organs. It summarizes mainstream proteomic methods for plant research and recent improvements on two dimensional gel electrophoresis and gel-free workflows for both peptide level and protein level analysis. The recent advances in sequencing technologies provide a new paradigm for the ever-increasing genome and transcriptome information on many organisms. It is now possible to integrate genomic and transcriptomic data with proteomic results for large-scale protein characterization, so that a global understanding of the complex molecular networks in flower biology can be readily achieved. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. PMID:26945514

  4. Proteomic analysis of engineered cartilage

    PubMed Central

    Pu, Xinzhu; Oxford, Julia Thom

    2016-01-01

    Summary Tissue engineering holds promise for the treatment of damaged and diseased tissues, especially for those tissues that do not undergo repair and regeneration readily in situ. Many techniques are available for cell and tissue culturing and differentiation of chondrocytes using a variety of cell types, differentiation methods, and scaffolds. In each case, it is critical to demonstrate the cellular phenotype and tissue composition, with particular attention to the extracellular matrix molecules that play a structural role and that contribute to the mechanical properties of the resulting tissue construct. Mass spectrometry provides an ideal analytical method with which to characterize the full spectrum of proteins produced by tissue engineered cartilage. Using normal cartilage tissue as a standard, tissue engineered cartilage can be optimized according to the entire proteome. Proteomic analysis is a complementary approach to biochemical, immunohistochemical, and mechanical testing of cartilage constructs. Proteomics is applicable as an analysis approach to most cartilage constructs generated from a variety of cellular sources including primary chondrocytes, mesenchymal stem cells from bone marrow, adipose tissue, induced pluripotent stem cells, and embryonic stem cells. Additionally, proteomics can be used to optimize novel scaffolds and bioreactor applications, yielding cartilage tissue with the proteomic profile of natural cartilage. PMID:26445845

  5. Advanced mechanisms for robotics

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1991-01-01

    An overview of applied research and development at the Goddard Space Flight Center (GSFC) on mechanisms and collision avoidance skin for robots is presented. The work on robot end effectors is outlined, followed by a brief discussion of robot-friendly payload latching mechanisms and compliant joints. This is followed by discussions of the collision avoidance/management skin and the GSFC research on magnetorestrictive direct drive motors. A new project, the artificial muscle, is introduced. Each of the devices is described sufficiently to permit a basic understanding of its purpose, capabilities, and operating fundamentals. The implications for commercialization are discussed.

  6. Autonomous mobile robot teams

    NASA Technical Reports Server (NTRS)

    Agah, Arvin; Bekey, George A.

    1994-01-01

    This paper describes autonomous mobile robot teams performing tasks in unstructured environments. The behavior and the intelligence of the group is distributed, and the system does not include a central command base or leader. The novel concept of the Tropism-Based Cognitive Architecture is introduced, which is used by the robots in order to produce behavior transforming their sensory information to proper action. The results of a number of simulation experiments are presented. These experiments include worlds where the robot teams must locate, decompose, and gather objects, and defend themselves against hostile predators, while navigating around stationary and mobile obstacles.

  7. Robotics in shoulder rehabilitation

    PubMed Central

    Sicuri, Chiara; Porcellini, Giuseppe; Merolla, Giovanni

    2014-01-01

    Summary In the last few decades, several researches have been conducted in the field of robotic rehabilitation to meet the intensive, repetitive and task-oriented training, with the goal to recover the motor function. Up to now, robotic rehabilitation studies of the upper extremity have generally focused on stroke survivors leaving less explored the field of orthopaedic shoulder rehabilitation. In this review we analyse the present status of robotic technologies, in order to understand which are the current indications and which may be the future perspective for their application in both neurological and orthopaedic shoulder rehabilitation. PMID:25332937

  8. Agile Walking Robot

    NASA Technical Reports Server (NTRS)

    Larimer, Stanley J.; Lisec, Thomas R.; Spiessbach, Andrew J.; Waldron, Kenneth J.

    1990-01-01

    Proposed agile walking robot operates over rocky, sandy, and sloping terrain. Offers stability and climbing ability superior to other conceptual mobile robots. Equipped with six articulated legs like those of insect, continually feels ground under leg before applying weight to it. If leg sensed unexpected object or failed to make contact with ground at expected point, seeks alternative position within radius of 20 cm. Failing that, robot halts, examines area around foot in detail with laser ranging imager, and replans entire cycle of steps for all legs before proceeding.

  9. Architecture for robot intelligence

    NASA Technical Reports Server (NTRS)

    Peters, II, Richard Alan (Inventor)

    2004-01-01

    An architecture for robot intelligence enables a robot to learn new behaviors and create new behavior sequences autonomously and interact with a dynamically changing environment. Sensory information is mapped onto a Sensory Ego-Sphere (SES) that rapidly identifies important changes in the environment and functions much like short term memory. Behaviors are stored in a DBAM that creates an active map from the robot's current state to a goal state and functions much like long term memory. A dream state converts recent activities stored in the SES and creates or modifies behaviors in the DBAM.

  10. MVACS Robotic Arm

    NASA Technical Reports Server (NTRS)

    Bonitz, R.; Slostad, J.; Bon, B.; Braun, D.; Brill, R.; Buck, C.; Fleischner, R.; Haldeman, A.; Herman, J.; Hertzel, M.; Noon, D.; Pixler, G.; Schenker, P.; Ton, T.; Tucker, C.; Zimmerman, W.

    2000-01-01

    The primary purpose of the Mars Volatiles and Climate Surveyor (MVACS) Robotic Arm is to support to the other MVACS science instruments by digging trenches in the Martian soil; acquiring and dumping soil samples into the thermal evolved gas analyzer (TEGA); positioning the Soil Temperature Probe (STP) in the soil: positioning the Robotic Arm Air Temperature Sensor (RAATS) at various heights above the surface, and positioning the Robotic Arm Camera (RAC) for taking images of the surface, trench, soil samples, magnetic targets and other objects of scientific interest within its workspace.

  11. Soft Robotics: New Perspectives for Robot Bodyware and Control.

    PubMed

    Laschi, Cecilia; Cianchetti, Matteo

    2014-01-01

    The remarkable advances of robotics in the last 50 years, which represent an incredible wealth of knowledge, are based on the fundamental assumption that robots are chains of rigid links. The use of soft materials in robotics, driven not only by new scientific paradigms (biomimetics, morphological computation, and others), but also by many applications (biomedical, service, rescue robots, and many more), is going to overcome these basic assumptions and makes the well-known theories and techniques poorly applicable, opening new perspectives for robot design and control. The current examples of soft robots represent a variety of solutions for actuation and control. Though very first steps, they have the potential for a radical technological change. Soft robotics is not just a new direction of technological development, but a novel approach to robotics, unhinging its fundamentals, with the potential to produce a new generation of robots, in the support of humans in our natural environments. PMID:25022259

  12. Soft Robotics: New Perspectives for Robot Bodyware and Control

    PubMed Central

    Laschi, Cecilia; Cianchetti, Matteo

    2014-01-01

    The remarkable advances of robotics in the last 50 years, which represent an incredible wealth of knowledge, are based on the fundamental assumption that robots are chains of rigid links. The use of soft materials in robotics, driven not only by new scientific paradigms (biomimetics, morphological computation, and others), but also by many applications (biomedical, service, rescue robots, and many more), is going to overcome these basic assumptions and makes the well-known theories and techniques poorly applicable, opening new perspectives for robot design and control. The current examples of soft robots represent a variety of solutions for actuation and control. Though very first steps, they have the potential for a radical technological change. Soft robotics is not just a new direction of technological development, but a novel approach to robotics, unhinging its fundamentals, with the potential to produce a new generation of robots, in the support of humans in our natural environments. PMID:25022259

  13. Structural Proteomics of Herpesviruses.

    PubMed

    Leroy, Baptiste; Gillet, Laurent; Vanderplasschen, Alain; Wattiez, Ruddy

    2016-02-01

    Herpesviruses are highly prevalent viruses associated with numerous pathologies both in animal and human populations. Until now, most of the strategies used to prevent or to cure these infections have been unsuccessful because these viruses have developed numerous immune evasion mechanisms. Therefore, a better understanding of their complex lifecycle is needed. In particular, while the genome of numerous herpesviruses has been sequenced, the exact composition of virions remains unknown for most of them. Mass spectrometry has recently emerged as a central method and has permitted fundamental discoveries in virology. Here, we review mass spectrometry-based approaches that have recently allowed a better understanding of the composition of the herpesvirus virion. In particular, we describe strategies commonly used for proper sample preparation and fractionation to allow protein localization inside the particle but also to avoid contamination by nonstructural proteins. A collection of other important data regarding post-translational modifications or the relative abundance of structural proteins is also described. This review also discusses the poorly studied importance of host proteins in herpesvirus structural proteins and the necessity to develop a quantitative workflow to better understand the dynamics of the structural proteome. In the future, we hope that this collaborative effort will assist in the development of new strategies to fight these infections. PMID:26907323

  14. Structural Proteomics of Herpesviruses

    PubMed Central

    Leroy, Baptiste; Gillet, Laurent; Vanderplasschen, Alain; Wattiez, Ruddy

    2016-01-01

    Herpesviruses are highly prevalent viruses associated with numerous pathologies both in animal and human populations. Until now, most of the strategies used to prevent or to cure these infections have been unsuccessful because these viruses have developed numerous immune evasion mechanisms. Therefore, a better understanding of their complex lifecycle is needed. In particular, while the genome of numerous herpesviruses has been sequenced, the exact composition of virions remains unknown for most of them. Mass spectrometry has recently emerged as a central method and has permitted fundamental discoveries in virology. Here, we review mass spectrometry-based approaches that have recently allowed a better understanding of the composition of the herpesvirus virion. In particular, we describe strategies commonly used for proper sample preparation and fractionation to allow protein localization inside the particle but also to avoid contamination by nonstructural proteins. A collection of other important data regarding post-translational modifications or the relative abundance of structural proteins is also described. This review also discusses the poorly studied importance of host proteins in herpesvirus structural proteins and the necessity to develop a quantitative workflow to better understand the dynamics of the structural proteome. In the future, we hope that this collaborative effort will assist in the development of new strategies to fight these infections. PMID:26907323

  15. Proteome of Hydra Nematocyst*

    PubMed Central

    Balasubramanian, Prakash G.; Beckmann, Anna; Warnken, Uwe; Schnölzer, Martina; Schüler, Andreas; Bornberg-Bauer, Erich; Holstein, Thomas W.; Özbek, Suat

    2012-01-01

    Stinging cells or nematocytes of jellyfish and other cnidarians represent one of the most poisonous and sophisticated cellular inventions in animal evolution. This ancient cell type is unique in containing a giant secretory vesicle derived from the Golgi apparatus. The organelle structure within the vesicle comprises an elastically stretched capsule (nematocyst) to which a long tubule is attached. During exocytosis, the barbed part of the tubule is accelerated with >5 million g in <700 ns, enabling a harpoon-like discharge (Nüchter, T., Benoit, M., Engel, U., Ozbek, S., and Holstein, T. W. (2006) Curr. Biol. 16, R316–R318). Hitherto, the molecular components responsible for the organelle's biomechanical properties were largely unknown. Here, we describe the proteome of nematocysts from the freshwater polyp Hydra magnipapillata. Our analysis revealed an unexpectedly complex secretome of 410 proteins with venomous and lytic but also adhesive or fibrous properties. In particular, the insoluble fraction of the nematocyst represents a functional extracellular matrix structure of collagenous and elastic nature. This finding suggests an evolutionary scenario in which exocytic vesicles harboring a venomous secretome assembled a sophisticated predatory structure from extracellular matrix motif proteins. PMID:22291027

  16. Nanotechnologies in proteomics.

    PubMed

    Ivanov, Yuri D; Govorun, Vadim M; Bykov, Victor A; Archakov, Alexander I

    2006-03-01

    Progress in proteomic researches is largely determined by development and implementation of new methods for the revelation and identification of proteins in biological material in a wide concentration range (from 10(-3) M to single molecules). The most perspective approaches to address this problem involve (i) nanotechnological physicochemical procedures for the separation of multicomponent protein mixtures; among these of particular interest are biospecific nanotechnological procedures for selection of proteins from multicomponent protein mixtures with their subsequent concentration on solid support; (ii) identification and counting of single molecules by use of molecular detectors. The prototypes of biospecific nanotechnological procedures, based on the capture of ligand biomolecules by biomolecules of immobilized ligate and the concentration of the captured ligands on appropriate surfaces, are well known; these are affinity chromatography, magnetic biobeads technology, different biosensor methods, etc. Here, we review the most promising nanotechnological approaches for selection of proteins and kinetic characterization of their complexes based on these biospecific methods with subsequent MS/MS identification of proteins and protein complexes. Two major groups of methods for the analysis and identification of individual molecules and their complexes by use of molecular detectors will be reviewed: scanning probe microscopy (SPM) (including atomic-force microscopy) and cryomassdetector technology. PMID:16447155

  17. Proteomics technology in systems biology.

    PubMed

    Smith, Jeffrey C; Figeys, Daniel

    2006-08-01

    It has now become apparent that a full understanding of a biological process (e.g. a disease state) is only possible if all biomolecular interactions are taken into account. Systems biology works towards understanding the intricacies of cellular life through the collaborative efforts of biologists, chemists, mathematicians and computer scientists and recently, a number of laboratories around the world have embarked upon such research agendas. The fields of genomics and proteomics are foundational in systems biology studies and a great deal of research is currently being conducted in each worldwide. Moreover, many technological advances (particularly in mass spectrometry) have led to a dramatic rise in the number of proteomic studies over the past two decades. This short review summarizes a selection of technological innovations in proteomics that contribute to systems biology studies. PMID:16880956

  18. Software Architecture for Planetary and Lunar Robotics

    NASA Technical Reports Server (NTRS)

    Utz, Hans; Fong, Teny; Nesnas, Iasa A. D.

    2006-01-01

    A viewgraph presentation on the role that software architecture plays in space and lunar robotics is shown. The topics include: 1) The Intelligent Robotics Group; 2) The Lunar Mission; 3) Lunar Robotics; and 4) Software Architecture for Space Robotics.

  19. Application of robotics in nuclear facilities

    SciTech Connect

    Byrd, J S; Fisher, J J

    1986-01-01

    Industrial robots and other robotic systems have been successfully applied at the Savannah River nuclear site. These applications, new robotic systems presently under development, general techniques for the employment of robots in nuclear facilities, and future systems are discussed.

  20. Robotics and remote systems applications

    SciTech Connect

    Rabold, D.E.

    1996-05-01

    This article is a review of numerous remote inspection techniques in use at the Savannah River (and other) facilities. These include: (1) reactor tank inspection robot, (2) californium waste removal robot, (3) fuel rod lubrication robot, (4) cesium source manipulation robot, (5) tank 13 survey and decontamination robots, (6) hot gang valve corridor decontamination and junction box removal robots, (7) lead removal from deionizer vessels robot, (8) HB line cleanup robot, (9) remote operation of a front end loader at WIPP, (10) remote overhead video extendible robot, (11) semi-intelligent mobile observing navigator, (12) remote camera systems in the SRS canyons, (13) cameras and borescope for the DWPF, (14) Hanford waste tank camera system, (15) in-tank precipitation camera system, (16) F-area retention basin pipe crawler, (17) waste tank wall crawler and annulus camera, (18) duct inspection, and (19) deionizer resin sampling.

  1. Robotic follow system and method

    SciTech Connect

    Bruemmer, David J; Anderson, Matthew O

    2007-05-01

    Robot platforms, methods, and computer media are disclosed. The robot platform includes perceptors, locomotors, and a system controller, which executes instructions for a robot to follow a target in its environment. The method includes receiving a target bearing and sensing whether the robot is blocked front. If the robot is blocked in front, then the robot's motion is adjusted to avoid the nearest obstacle in front. If the robot is not blocked in front, then the method senses whether the robot is blocked toward the target bearing and if so, sets the rotational direction opposite from the target bearing, and adjusts the rotational velocity and translational velocity. If the robot is not blocked toward the target bearing, then the rotational velocity is adjusted proportional to an angle of the target bearing and the translational velocity is adjusted proportional to a distance to the nearest obstacle in front.

  2. Robots in operating theatres.

    PubMed Central

    Buckingham, R. A.; Buckingham, R. O.

    1995-01-01

    Robots designed for surgery have three main advantages over humans. They have greater three dimensional spatial accuracy, are more reliable, and can achieve much greater precision. Although few surgical robots are yet in clinical trials one or two have advanced to the stage of seeking approval from the UK's Medical Devices Agency and the US Federal Drug Administration. Safety is a key concern. A robotic device can be designed in an intrinsically safe way by restricting its range of movement to an area where it can do no damage. Furthermore, safety can be increased by making it passive, guided at all times by a surgeon. Nevertheless, some of the most promising developments may come from robots that are active (monitored rather than controlled by the surgeon) and not limited to intrinsically safe motion. Images Fig 1 Fig 3 Fig 4 PMID:8520340

  3. FIRST Robotics Kickoff

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA engineers Scott Olive (left) and Bo Clarke answer questions during the 2007 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition regional kickoff event held Saturday, Jan. 6, 2007, at StenniSphere, the visitor center at NASA Stennis Space Center near Bay St. Louis, Miss. The SSC employees and FIRST Robotics volunteer mentors are standing near a mock-up of the playing field for the FIRST Robotics' 2007 `Rack n' Roll' challenge. Roughly 300 students and adult volunteers - representing 29 high schools from four states - attended the kickoff to hear the rules of `Rack n' Roll.' The teams will spend the next six weeks building and programming robots from parts kits they received Saturday, then battle their creations at regional spring competitions in New Orleans, Houston, Atlanta and other cities around the nation. FIRST aims to inspire students in the pursuit of engineering and technology studies and careers.

  4. Rolling friction robot fingers

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1992-01-01

    A low friction, object guidance, and gripping finger device for a robotic end effector on a robotic arm is disclosed, having a pair of robotic fingers each having a finger shaft slideably located on a gripper housing attached to the end effector. Each of the robotic fingers has a roller housing attached to the finger shaft. The roller housing has a ball bearing mounted centering roller located at the center, and a pair of ball bearing mounted clamping rollers located on either side of the centering roller. The object has a recess to engage the centering roller and a number of seating ramps for engaging the clamping rollers. The centering roller acts to position and hold the object symmetrically about the centering roller with respect to the X axis and the clamping rollers act to position and hold the object with respect to the Y and Z axis.

  5. Tank-automotive robotics

    NASA Astrophysics Data System (ADS)

    Lane, Gerald R.

    1999-07-01

    To provide an overview of Tank-Automotive Robotics. The briefing will contain program overviews & inter-relationships and technology challenges of TARDEC managed unmanned and robotic ground vehicle programs. Specific emphasis will focus on technology developments/approaches to achieve semi- autonomous operation and inherent chassis mobility features. Programs to be discussed include: DemoIII Experimental Unmanned Vehicle (XUV), Tactical Mobile Robotics (TMR), Intelligent Mobility, Commanders Driver Testbed, Collision Avoidance, International Ground Robotics Competition (ICGRC). Specifically, the paper will discuss unique exterior/outdoor challenges facing the IGRC competing teams and the synergy created between the IGRC and ongoing DoD semi-autonomous Unmanned Ground Vehicle and DoT Intelligent Transportation System programs. Sensor and chassis approaches to meet the IGRC challenges and obstacles will be shown and discussed. Shortfalls in performance to meet the IGRC challenges will be identified.

  6. K-10 Robots

    NASA Video Gallery

    Robots, scientists, engineers and flight controllers from NASA's Ames Research Center at Moffett Field, Calif., and NASA's Johnson Space Center in Houston, gathered at NASA Ames to perform a series...

  7. DOE Robotics Project

    SciTech Connect

    Not Available

    1991-01-01

    This document provide the bimonthly progress reports on the Department of Energy (DOE) Robotics Project by the University of Michigan. Reports are provided for the time periods of December 90/January 91 through June 91/July 91. (FI)

  8. Laser radar in robotics

    SciTech Connect

    Carmer, D.C.; Peterson, L.M.

    1996-02-01

    In this paper the authors describe the basic operating principles of laser radar sensors and the typical algorithms used to process laser radar imagery for robotic applications. The authors review 12 laser radar sensors to illustrate the variety of systems that have been applied to robotic applications wherein information extracted from the laser radar data is used to automatically control a mechanism or process. Next, they describe selected robotic applications in seven areas: autonomous vehicle navigation, walking machine foot placement, automated service vehicles, manufacturing and inspection, automotive, military, and agriculture. They conclude with a discussion of the status of laser radar technology and suggest trends seen in the application of laser radar sensors to robotics. Many new applications are expected as the maturity level progresses and system costs are reduced.

  9. Biological Soft Robotics.

    PubMed

    Feinberg, Adam W

    2015-01-01

    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed. PMID:26643022

  10. Lunar robotic maintenance module

    NASA Technical Reports Server (NTRS)

    Ayres, Michael L.

    1988-01-01

    A design for a robotic maintenance module that will assist a mobile 100-meter lunar drill is introduced. The design considers the following areas of interest: the atmospheric conditions, actuator systems, power supply, material selection, weight, cooling system and operation.