Science.gov

Sample records for proteus mirabilis pseudomonas

  1. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis.

    PubMed

    Shakibaie, Mojtaba; Forootanfar, Hamid; Golkari, Yaser; Mohammadi-Khorsand, Tayebe; Shakibaie, Mohammad Reza

    2015-01-01

    The aim of the present study was to investigate the anti-biofilm activity of biologically synthesized selenium nanoparticles (Se NPs) against the biofilm produced by clinically isolated bacterial strains compared to that of selenium dioxide. Thirty strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis were isolated from various specimens of the patients hospitalized in different hospitals (Kerman, Iran). Quantification of the biofilm using microtiter plate assay method introduced 30% of S. aureus, 13% of P. aeruginosa and 17% of P. mirabilis isolates as severely adherent strains. Transmission electron micrograph (TEM) of the purified Se NPs (produced by Bacillus sp. MSh-1) showed individual and spherical nano-structure in the size range of 80-220nm. Obtained results of the biofilm formation revealed that selenium nanoparticles inhibited the biofilm of S. aureus, P. aeruginosa, and P. mirabilis by 42%, 34.3%, and 53.4%, respectively, compared to that of the non-treated samples. Effect of temperature and pH on the biofilm formation in the presence of Se NPs and SeO2 was also evaluated. PMID:25175509

  2. Proteus mirabilis and Urinary Tract Infections

    PubMed Central

    Schaffer, Jessica N.; Pearson, Melanie M.

    2015-01-01

    Proteus mirabilis is a Gram-negative bacterium which is well-known for its ability to robustly swarm across surfaces in a striking bulls’-eye pattern. Clinically, this organism is most frequently a pathogen of the urinary tract, particularly in patients undergoing long-term catheterization. This review covers P. mirabilis with a focus on urinary tract infections (UTI), including disease models, vaccine development efforts, and clinical perspectives. Flagella-mediated motility, both swimming and swarming, is a central facet of this organism. The regulation of this complex process and its contribution to virulence is discussed, along with the type VI-secretion system-dependent intra-strain competition which occurs during swarming. P. mirabilis uses a diverse set of virulence factors to access and colonize the host urinary tract, including urease and stone formation, fimbriae and other adhesins, iron and zinc acquisition, proteases and toxins, biofilm formation, and regulation of pathogenesis. While significant advances in this field have been made, challenges remain to combatting complicated UTI and deciphering P. mirabilis pathogenesis. PMID:26542036

  3. Proteus mirabilis and Urinary Tract Infections.

    PubMed

    Schaffer, Jessica N; Pearson, Melanie M

    2015-10-01

    Proteus mirabilis is a Gram-negative bacterium and is well known for its ability to robustly swarm across surfaces in a striking bulls'-eye pattern. Clinically, this organism is most frequently a pathogen of the urinary tract, particularly in patients undergoing long-term catheterization. This review covers P. mirabilis with a focus on urinary tract infections (UTI), including disease models, vaccine development efforts, and clinical perspectives. Flagella-mediated motility, both swimming and swarming, is a central facet of this organism. The regulation of this complex process and its contribution to virulence is discussed, along with the type VI-secretion system-dependent intra-strain competition, which occurs during swarming. P. mirabilis uses a diverse set of virulence factors to access and colonize the host urinary tract, including urease and stone formation, fimbriae and other adhesins, iron and zinc acquisition, proteases and toxins, biofilm formation, and regulation of pathogenesis. While significant advances in this field have been made, challenges remain to combatting complicated UTI and deciphering P. mirabilis pathogenesis. PMID:26542036

  4. Collective motion in Proteus mirabilis swarms

    NASA Astrophysics Data System (ADS)

    Haoran, Xu

    Proteus mirabilisis a Gram-negative, rod-shaped bacterium. It is widely distributed in soil and water, and it is well known for exhibiting swarming motility on nutrient agar surfaces. In our study, we focused on the collective motility of P. mirabilis and uncovered a range of interesting phenomena. Here we will present our efforts to understand these phenomena through experiments and simulation. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail:xhrphx@gmail.com.

  5. Pathogenicity of Aeromonas hydrophila, Klebsiella pneumoniae, and Proteus mirabilis to Brown Tree Frogs (Litoria ewingii)

    PubMed Central

    Schadich, Ermin; Cole, Anthony LJ

    2010-01-01

    Bacterial dermatosepticemia, a systemic infectious bacterial disease of frogs, can be caused by several opportunistic gram-negative bacterial species including Aeromonas hydrophila, Chryseobacterium indologenes, Chryseobacterium meningosepticum, Citrobacter freundii, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, and Serratia liquifaciens. Here we determined the pathogenicity of 3 bacterial species (Aeromonas hydrophila, Klebsiella pneumoniae, and Proteus mirabilis) associated with an outbreak of fatal dermatosepticemia in New Zealand Litoria ewingii frogs. A bath challenge method was used to expose test frogs to individual bacterial species (2 × 107 cfu/mL in pond water); control frogs were exposed to uninfected pond water. None of the control frogs or those exposed to A. hydrophila or P. mirabilis showed any morbidity or mortality. Morbidity and mortality was 40% among frogs exposed to K. pneumonia, and the organism was reisolated from the hearts, spleens, and livers of affected animals. PMID:20412685

  6. Proteus morgani is less frequently associated with urinary tract infections than Proteus mirabilis--an explanation.

    PubMed

    Senior, B W

    1983-08-01

    The metabolic activities of faecal and urinary strains of Proteus morgani and P. mirabilis were compared. Regardless of origin, the generation time of P. morgani strains in urine was approximately twice as long as that of the P. mirabilis strains. Urease synthesis was constitutive in P. morgani strains but required induction with urea in the P. mirabilis strains. In the presence of urea, the P. mirabilis strains liberated ammonia more rapidly and produced alkaline conditions more quickly than P. morgani strains, although they synthesized much less urease. These characteristics may place P. morgani strains at a disadvantage in comparison with P. mirabilis strains in their ability to cause urinary tract infections. PMID:6348289

  7. Draft Genome Assemblies of Proteus mirabilis ATCC 7002 and Proteus vulgaris ATCC 49132.

    PubMed

    Minogue, T D; Daligault, H E; Davenport, K W; Bishop-Lilly, K A; Bruce, D C; Chain, P S; Coyne, S R; Chertkov, O; Freitas, T; Frey, K G; Jaissle, J; Koroleva, G I; Ladner, J T; Palacios, G F; Redden, C L; Xu, Y; Johnson, S L

    2014-01-01

    The pleomorphic swarming bacilli of the genus Proteus are common human gut commensal organisms but also the causative agents of recurrent urinary tract infections and bacteremia. We sequenced and assembled the 3.99-Mbp genome of Proteus mirabilis ATCC 7002 (accession no. JOVJ00000000) and the 3.97-Mbp genome of Proteus vulgaris ATCC 49132 (accession no. JPIX00000000), both of which are commonly used reference strains. PMID:25342681

  8. Vaccines for Proteus mirabilis in urinary tract infection.

    PubMed

    Li, Xin; Mobley, Harry L T

    2002-06-01

    Proteus mirabilis is a documented cause of urinary tract infection (UTI) in the complicated urinary tract. Urease-mediated urea hydrolysis is responsible for both virulence of the organism and the ability to cause urolithiasis. A urease-negative mutant of P. mirabilis is unable to initiate stone formation and colonizes the kidney at a significantly lower rate. The considerable pathology caused by P. mirabilis warrants the development of a vaccine. We have initiated the advancement of vaccine studies and have determined that the MR/P fimbria, a surface adhesin of P. mirabilis, is a promising vaccine candidate. Successful vaccination would be expected both to prevent colonization by P. mirabilis and urolithiasis. PMID:12135833

  9. Urinary Tract Infection Caused by a Capnophilic Proteus mirabilis Strain.

    PubMed

    Trapman, Maryse; van Ingen, Jakko; Keijman, Jeroen; Swanink, Caroline M

    2015-06-01

    From a urine sample from a patient with a urinary tract infection, a carbon dioxide-dependent Proteus mirabilis strain was isolated. It is important to perform urine cultures in 5% carbon dioxide and an anaerobic atmosphere if bacteria prominent in Gram stains do not grow on routine media in ambient air. PMID:25878339

  10. Proteus mirabilis interkingdom swarming signals attract blow flies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flies transport specific bacteria with their larvae which provides a wider range of nutrients for those bacteria. Our hypothesis was that this symbiotic interaction may depend on interkingdom signaling. We obtained Proteus mirabilis from the salivary glands of the blow fly Lucilia sericat. This s...

  11. Swarming and pathogenicity of Proteus mirabilis in the urinary tract.

    PubMed

    Mobley, H L; Belas, R

    1995-07-01

    Proteus mirabilis is best known for its pattern of swarming differentiation on agar plates, as well as for its association with the development of renal stones in patients with urinary tract infection. Urease and flagella appear to contribute most significantly to virulence, with fimbriae playing a more subtle role, whereas hemolysin does not appear to contribute significantly to pathogenesis. PMID:7551643

  12. Proteus mirabilis RMS 203 as a new representative of the O13 Proteus serogroup.

    PubMed

    Palusiak, Agata; Siwińska, Małgorzata; Zabłotni, Agnieszka

    2015-01-01

    The unique feature of some Proteus O-polysaccharides is occurrence of an amide of galacturonic acid with N(ε)-[(S/R)-1-Carboxyethyl]-L-lysine, GalA6(2S,8S/R-AlaLys). The results of the serological studies presented here, with reference to known O-antigens structures suggest that GalA6(2S,8S/R-AlaLys) or 2S,8R-AlaLys contribute to cross-reactions of O13 Proteus antisera, and Proteeae LPSs. It was also revealed that the Proteus mirabilis RMS 203 strain can be classified into the O13 serogroup, represented so far by two strains: Proteus mirabilis 26/57 and Proteus vulgaris 8344. The O13 LPS is a serologically important antigen with a fragment common to LPSs of different species in the Proteeae tribe. PMID:26645323

  13. Acidic environments induce differentiation of Proteus mirabilis into swarmer morphotypes.

    PubMed

    Fujihara, Masatoshi; Obara, Hisato; Watanabe, Yusaku; Ono, Hisaya K; Sasaki, Jun; Goryo, Masanobu; Harasawa, Ryô

    2011-07-01

    Although swarmer morphotypes of Proteus mirabilis have long been considered to result from surfaced-induced differentiation, the present findings show that, in broth medium containing urea, acidic conditions transform some swimmer cells into elongated swarmer cells. This study has also demonstrates that P. mirabilis cells grown in acidic broth medium containing urea enhance virulence factors such as flagella production and cytotoxicity to human bladder carcinoma cell line T24, though no significant difference in urease activity under different pH conditions was found. Since there is little published data on the behavior of P. mirabilis at various hydrogen-ion concentrations, the present study may clarify aspects of cellular differentiation of P. mirabilis in patients at risk of struvite formation due to infection with urease-producing bacteria, as well as in some animals with acidic or alkaline urine. PMID:21707738

  14. Some biological features of Proteus bacilli. 1. Comparison of Proteus mirabilis strains provided from various sources.

    PubMed

    Kotelko, K; Rozalski, A; Deka, M; Kaca, W; Sidorczyk, Z; Gromska, W; Zych, K

    1983-01-01

    Some properties which may contribute to the pathogenicity of Proteus mirabilis were compared in urinary isolates and in strains provided from soil and from culture collection. Clinical isolates revealed the higher expression of all the features examined in this report: swarming growth, haemagglutination, adherence to human uroepithelial cells, urease activity and haemolytic activity. Noteworthy is the higher mean value of adherence to the uroepithelial cells in clinical strains. Three P. mirabilis urinary isolates were detected which produce an as yet unreported filterable haemolysin. However, the loss of this ability within a few months seems to suggest the temporary presence of a plasmid rapidly eliminated by the Proteus strains. PMID:6202101

  15. Neonatal meningoventriculitis due to proteus mirabilis - a case report.

    PubMed

    Juyal, Deepak; Rathaur, Vyas Kumar; Sharma, Neelam

    2013-02-01

    A five day old full term born baby was admitted to our Neonatal Intensive Care Unit with seizures, opisthotonous posture and was icteric upto thigh. Baby had a three day history of poor feeding, lethargy and abnormal body movements. Mother was a 29 years old primigravida and had a normal vaginal delivery at home. Sepsis profile of the patient was requested, lumbar puncture and ventricular tap was performed. Patient was put on third generation cephalosporins, aminoglycosides and phenobarbitone. Culture and sensitivity report of blood, Cerebro spinal fluid and ventricular fluid showed Proteus mirabilis. Computerized Tomography scan showed a large parenchymal lesion in the right frontal lobe and diffuse ependymal enhancement along both the lateral ventricles suggestive of meningoventriculitis. We hereby present a fatal case of neonatal meningoventriculitis due to Proteus mirabilis. PMID:23543669

  16. Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis.

    PubMed

    Armbruster, Chelsie E; Mobley, Harry L T

    2012-11-01

    Proteus mirabilis, named for the Greek god who changed shape to avoid capture, has fascinated microbiologists for more than a century with its unique swarming differentiation, Dienes line formation and potent urease activity. Transcriptome profiling during both host infection and swarming motility, coupled with the availability of the complete genome sequence for P. mirabilis, has revealed the occurrence of interbacterial competition and killing through a type VI secretion system, and the reciprocal regulation of adhesion and motility, as well as the intimate connections between metabolism, swarming and virulence. This Review addresses some of the unique and recently described aspects of P. mirabilis biology and pathogenesis, and emphasizes the potential role of this bacterium in single-species and polymicrobial urinary tract infections. PMID:23042564

  17. Comparative Screening of Digestion Tract Toxic Genes in Proteus mirabilis

    PubMed Central

    Shi, Xiaolu; Lin, Yiman; Qiu, Yaqun; Li, Yinghui; Jiang, Min; Chen, Qiongcheng; Jiang, Yixiang; Yuan, Jianhui; Cao, Hong; Hu, Qinghua; Huang, Shenghe

    2016-01-01

    Proteus mirabilis is a common urinary tract pathogen, and may induce various inflammation symptoms. Its notorious ability to resist multiple antibiotics and to form urinary tract stones makes its treatment a long and painful process, which is further challenged by the frequent horizontal gene transferring events in P. mirabilis genomes. Three strains of P. mirabilis C02011/C04010/C04013 were isolated from a local outbreak of a food poisoning event in Shenzhen, China. Our hypothesis is that new genes may have been acquired horizontally to exert the digestion tract infection and toxicity. The functional characterization of these three genomes shows that each of them independently acquired dozens of virulent genes horizontally from the other microbial genomes. The representative strain C02011 induces the symptoms of both vomit and diarrhea, and has recently acquired a complete type IV secretion system and digestion tract toxic genes from the other bacteria. PMID:27010388

  18. Proteus mirabilis biofilms and the encrustation of urethral catheters.

    PubMed

    Stickler, D; Ganderton, L; King, J; Nettleton, J; Winters, C

    1993-01-01

    Bacterial biofilms were observed on 69 of 75 catheters taken from patients undergoing long-term bladder management. Ten catheters were colonized by pure cultures of Proteus mirabilis. In each of these cases the bacteria formed layers on the catheter surface, underlying encrustations of struvite and hydroxyapatite which partially or completely occluded the catheter lumen. Encrustation was also apparent on catheters colonized by P. mirabilis plus other species, but was rarely seen on catheters colonized by non-urease-producing species. These observations support the hypothesis that catheter encrustation is brought about by the activity of urease-producing biofilms and confirms that the main target in the control of catheter encrustation should be P. mirabilis. PMID:8171763

  19. An inducible tellurite-resistance operon in Proteus mirabilis.

    PubMed

    Toptchieva, Anna; Sisson, Gary; Bryden, Louis J; Taylor, Diane E; Hoffman, Paul S

    2003-05-01

    Tellurite resistance (Te(r)) is widespread in nature and it is shown here that the natural resistance of Proteus mirabilis to tellurite is due to a chromosomally located orthologue of plasmid-borne ter genes found in enteric bacteria. The P. mirabilis ter locus (terZABCDE) was identified in a screen of Tn5lacZ-generated mutants of which one contained an insertion in terC. The P. mirabilis terC mutant displayed increased susceptibility to tellurite (Te(s)) and complementation with terC carried on a multicopy plasmid restored high-level Te(r). Primer extension analysis revealed a single transcriptional start site upstream of terZ, but only with RNA harvested from bacteria grown in the presence of tellurite. Northern blotting and reverse transcriptase-PCR (RT-PCR) analyses confirmed that the ter operon was inducible by tellurite and to a lesser extent by oxidative stress inducers such as hydrogen peroxide and methyl viologen (paraquat). Direct and inverted repeat sequences were identified in the ter promoter region as well as motifs upstream of the -35 hexamer that resembled OxyR-binding sequences. Finally, the 390 bp intergenic promoter region located between orf3 and terZ showed no DNA sequence identity with any other published ter sequences, whereas terZABCDE genes exhibited 73-85 % DNA sequence identity. The ter operon was present in all clinical isolates of P. mirabilis and Proteus vulgaris tested and is inferred for Morganella and Providencia spp. based on screening for high level Te(r) and preliminary PCR analysis. Thus, a chromosomally located inducible tellurite resistance operon appears to be a common feature of the genus Proteus. PMID:12724390

  20. Fimbriae have distinguishable roles in Proteus mirabilis biofilm formation.

    PubMed

    Scavone, Paola; Iribarnegaray, Victoria; Caetano, Ana Laura; Schlapp, Geraldine; Härtel, Steffen; Zunino, Pablo

    2016-07-01

    Proteus mirabilis is one of the most common etiological agents of complicated urinary tract infections, especially those associated with catheterization. This is related to the ability of P. mirabilis to form biofilms on different surfaces. This pathogen encodes 17 putative fimbrial operons, the highest number found in any sequenced bacterial species so far. The present study analyzed the role of four P. mirabilis fimbriae (MR/P, UCA, ATF and PMF) in biofilm formation using isogenic mutants. Experimental approaches included migration over catheter, swimming and swarming motility, the semiquantitative assay based on adhesion and crystal violet staining, and biofilm development by immunofluorescence and confocal microscopy. Different assays were performed using LB or artificial urine. Results indicated that the different fimbriae contribute to the formation of a stable and functional biofilm. Fimbriae revealed particular associated roles. First, all the mutants showed a significantly reduced ability to migrate across urinary catheter sections but neither swimming nor swarming motility were affected. However, some mutants formed smaller biofilms compared with the wild type (MRP and ATF) while others formed significantly larger biofilms (UCA and PMF) showing different bioarchitecture features. It can be concluded that P. mirabilis fimbriae have distinguishable roles in the generation of biofilms, particularly in association with catheters. PMID:27091004

  1. Nickel availability and urease expression in Proteus mirabilis.

    PubMed

    Rando, D; Steglitz, U; Mörsdorf, G; Kaltwasser, H

    1990-01-01

    Cells of Proteus mirabilis, previously grown in nutrient broth (NB), exhibited an increase in urease activity during subsequent incubation in mineral medium even when protein biosynthesis was inhibited. During growth in NB, degradation of amino acids obviously led to the formation of nickel-complexing metabolites, and nickel ions were therefore unavailable for maximal expression of enzymatically active urease; this inhibition of urease biosynthesis was overcome by the addition of nickel to the growth medium, and also by added glucose. Experiments concerning the incorporation of radioactive nickel into urease finally indicated that the observed increase in urease activity was caused by posttranslational insertion of nickel into performed apo-urease. PMID:2256779

  2. Ureolytic Biomineralization Reduces Proteus mirabilis Biofilm Susceptibility to Ciprofloxacin.

    PubMed

    Li, Xiaobao; Lu, Nanxi; Brady, Hannah R; Packman, Aaron I

    2016-05-01

    Ureolytic biomineralization induced by urease-producing bacteria, particularly Proteus mirabilis, is responsible for the formation of urinary tract calculi and the encrustation of indwelling urinary catheters. Such microbial biofilms are challenging to eradicate and contribute to the persistence of catheter-associated urinary tract infections, but the mechanisms responsible for this recalcitrance remain obscure. In this study, we characterized the susceptibility of wild-type (ure+) and urease-negative (ure-) P. mirabilis biofilms to killing by ciprofloxacin. Ure+ biofilms produced fine biomineral precipitates that were homogeneously distributed within the biofilm biomass in artificial urine, while ure- biofilms did not produce biomineral deposits under identical growth conditions. Following exposure to ciprofloxacin, ure+ biofilms showed greater survival (less killing) than ure- biofilms, indicating that biomineralization protected biofilm-resident cells against the antimicrobial. To evaluate the mechanism responsible for this recalcitrance, we observed and quantified the transport of Cy5-conjugated ciprofloxacin into the biofilm by video confocal microscopy. These observations revealed that the reduced susceptibility of ure+ biofilms resulted from hindered delivery of ciprofloxacin into biomineralized regions of the biofilm. Further, biomineralization enhanced retention of viable cells on the surface following antimicrobial exposure. These findings together show that ureolytic biomineralization induced by P. mirabilis metabolism strongly regulates antimicrobial susceptibility by reducing internal solute transport and increasing biofilm stability. PMID:26953206

  3. Virulence determinants of uropathogenic Escherichia coli and Proteus mirabilis.

    PubMed

    Mobley, H L; Island, M D; Massad, G

    1994-11-01

    The urinary tract is among the most common sites of bacterial infection and E. coli is by far the most common infecting agent. In patients with urinary catheters in place or structural abnormalities of the urinary tract, Proteus mirabilis is also a frequent isolate. To study virulence of these bacterial species, we have isolated the genes that encode putative virulence factors, constructed specific mutations within these genes, introduced the mutation back into the wild type strain by allelic exchange, and analyzed these mutants for virulence in appropriate in vitro and in vivo models. Specific virulence markers have been identified for strains that cause urinary tract infection. For E. coli, these include P fimbriae, S fimbriae, hemolysin, aerobactin, serum resistance, and a small group of O-serotypes. Redundant virulence factors must be present in these organisms as mutation of the most clearly identified epidemiological marker, P fimbriae, does not result in attenuation of a virulent strain. For P. mirabilis, urease appears to contribute most significantly to virulence. Fimbriae play a significant but more subtle role in colonization. Hemolysin, although potently cytotoxic to renal cells in vitro, does not appear to contribute significantly to the pathogenesis of ascending urinary tract infection. We can conclude that the pathogenesis of urinary tract infection and acute pyelonephritis caused by uropathogenic E. coli and P. mirabilis are multifactorial, as mutation of single genes rarely causes significant attenuation of virulence. PMID:7869662

  4. New Aspects of RpoE in Uropathogenic Proteus mirabilis

    PubMed Central

    Liu, Ming-Che; Kuo, Kuan-Ting; Chien, Hsiung-Fei; Tsai, Yi-Lin

    2014-01-01

    Proteus mirabilis is a common human pathogen causing recurrent or persistent urinary tract infections (UTIs). The underlying mechanisms for P. mirabilis to establish UTIs are not fully elucidated. In this study, we showed that loss of the sigma factor E (RpoE), mediating extracytoplasmic stress responses, decreased fimbria expression, survival in macrophages, cell invasion, and colonization in mice but increased the interleukin-8 (IL-8) expression of urothelial cells and swarming motility. This is the first study to demonstrate that RpoE modulated expression of MR/P fimbriae by regulating mrpI, a gene encoding a recombinase controlling the orientation of MR/P fimbria promoter. By real-time reverse transcription-PCR, we found that the IL-8 mRNA amount of urothelial cells was induced significantly by lipopolysaccharides extracted from rpoE mutant but not from the wild type. These RpoE-associated virulence factors should be coordinately expressed to enhance the fitness of P. mirabilis in the host, including the avoidance of immune attacks. Accordingly, rpoE mutant-infected mice displayed more immune cell infiltration in bladders and kidneys during early stages of infection, and the rpoE mutant had a dramatically impaired ability of colonization. Moreover, it is noteworthy that urea (the major component in urine) and polymyxin B (a cationic antimicrobial peptide) can induce expression of rpoE by the reporter assay, suggesting that RpoE might be activated in the urinary tract. Altogether, our results indicate that RpoE is important in sensing environmental cues of the urinary tract and subsequently triggering the expression of virulence factors, which are associated with the fitness of P. mirabilis, to build up a UTI. PMID:25547796

  5. [Study on whorl swarming growth phenomenon of Proteus mirabilis].

    PubMed

    He, Xianyuan; Liao, Sixiang; Liu, Junkang; Li, Kun; Liu, Yanxia; Yu, Lurong

    2015-02-01

    The present paper is aimed to explore the origins of Proteus mirabilis (PM) whorl swarming growth phenomenon. The whorl swarming growth phenomenon of PM was observed by changed bacterial culture inoculation time, humidity, vaccination practices, cultured flat placement, magnetic field, pH and other factors. Bacterial ring spiral direction of rotation is counterclockwise and the volatile growth process of PM was whorl swarming growth phenomenon. Spiro fluctuation phenomenon was of high frequency in the sealing tanks by cultured anytime inoculation, wherever inoculation technique applied or not, the presence or absence of the magnetic field, and wherever the dish position was. The experimental results showed that the whorl swarming growth phenomenon of PM requires specific pH environment, in which the facts may be relative to its genetic characteristics and the Earths rotation. PMID:25997280

  6. Unique developmental characteristics of the swarm and short cells of Proteus vulgaris and Proteus mirabilis.

    PubMed

    Falkinham, J O; Hoffman, P S

    1984-06-01

    Swarming cells of Proteus mirabilis and Proteus vulgaris could be distinguished from their short-cell counterparts by virtue of their synthesis (or lack of synthesis) of certain enzymes and outer membrane proteins. Urease synthesis was constitutive in swarm cells and uninducible in short cells. In contrast, phenylalanine deaminase was inducible in both short and swarm cells, demonstrating that transcriptional and translational processes were functional. During swarm cell development, the amount of one outer membrane protein (45 kilodaltons) fell and the amounts of two others (50 and 28.3 kilodaltons) rose significantly, the level of cytochrome b decreased, and the synthesis of cytochromes a and d were repressed. Respiratory activities of swarm cells were greatly diminished, suggesting that energy for swarming came from fermentation rather than from respiration. Widespread changes in the pattern of enzyme activities, in cytochrome composition, and in the composition and type of outer membrane proteins suggest that they are due to transcriptional regulation. PMID:6427187

  7. Proteus mirabilis interkingdom swarming signals attract blow flies

    PubMed Central

    Ma, Qun; Fonseca, Alicia; Liu, Wenqi; Fields, Andrew T; Pimsler, Meaghan L; Spindola, Aline F; Tarone, Aaron M; Crippen, Tawni L; Tomberlin, Jeffery K; Wood, Thomas K

    2012-01-01

    Flies transport specific bacteria with their larvae that provide a wider range of nutrients for those bacteria. Our hypothesis was that this symbiotic interaction may depend on interkingdom signaling. We obtained Proteus mirabilis from the salivary glands of the blow fly Lucilia sericata; this strain swarmed significantly and produced a strong odor that attracts blow flies. To identify the putative interkingdom signals for the bacterium and flies, we reasoned that as swarming is used by this bacterium to cover the food resource and requires bacterial signaling, the same bacterial signals used for swarming may be used to communicate with blow flies. Using transposon mutagenesis, we identified six novel genes for swarming (ureR, fis, hybG, zapB, fadE and PROSTU_03490), then, confirming our hypothesis, we discovered that fly attractants, lactic acid, phenol, NaOH, KOH and ammonia, restore swarming for cells with the swarming mutations. Hence, compounds produced by the bacterium that attract flies also are utilized for swarming. In addition, bacteria with the swarming mutation rfaL attracted fewer blow flies and reduced the number of eggs laid by the flies. Therefore, we have identified several interkingdom signals between P. mirabilis and blow flies. PMID:22237540

  8. Proteus mirabilis viability after lithotripsy of struvite calculi

    NASA Astrophysics Data System (ADS)

    Prabakharan, Sabitha; Teichman, Joel M. H.; Spore, Scott S.; Sabanegh, Edmund; Glickman, Randolph D.; McLean, Robert J. C.

    2000-05-01

    Urinary calculi composed of struvite harbor urease-producing bacteria within the stone. The photothermal mechanism of holmium:YAG lithotripsy is uniquely different than other lithotripsy devices. We postulated that bacterial viability of struvite calculi would be less for calculi fragmented with holmium:YAG irradiation compared to other lithotripsy devices. Human calculi of known struvite composition (greater than 90% magnesium ammonium phosphate hexahydrate) were incubated with Proteus mirabilis. Calculi were fragmented with no lithotripsy (controls), or shock wave, intracorporeal ultrasonic, electrohydraulic, pneumatic, holmium:YAG or pulsed dye laser lithotripsy. After lithotripsy, stone fragments were sonicated and specimens were serially plated for 48 hours at 38 C. Bacterial counts and the rate of bacterial sterilization were compared. Median bacterial counts (colony forming units per ml) were 8 X 106 in controls and 3 X 106 in shock wave, 3 X 107 in ultrasonic, 4 X 105 in electrohydraulic, 8 X 106 in pneumatic, 5 X 104 in holmium:YAG and 1 X 106 in pulsed dye laser lithotripsy, p less than 0.001. The rate of bacterial sterilization was 50% for holmium:YAG lithotripsy treated stones versus 0% for each of the other cohorts, p less than 0.01. P. mirabilis viability is less after holmium:YAG irradiation compared to other lithotripsy devices.

  9. Effect of Curcumin Against Proteus mirabilis During Crystallization of Struvite from Artificial Urine.

    PubMed

    Prywer, Jolanta; Torzewska, Agnieszka

    2012-01-01

    We investigated the activity of curcumin against Proteus mirabilis and the struvite crystallization in relation to urinary stones formation. In order to evaluate an activity of curcumin we performed an in vitro experiment of struvite growth from artificial urine. The crystallization process was induced by Proteus mirabilis to mimic the real urinary tract infection, which usually leads to urinary stone formation. The results demonstrate that curcumin exhibits the effect against Proteus mirabilis inhibiting the activity of urease-an enzyme produced by these microorganisms. Addition of curcumin increases the induction time and decreases the efficiency of growth of struvite compared with the absence of curcumin. Interestingly, the addition of curcumin does not affect the crystal morphology and habit. In conclusion, curcumin has demonstrated its significant potential to be further investigated for its use in the case of struvite crystallization induced for the growth by Proteus mirabilis in relation to urinary stone formation. PMID:21808656

  10. Draft Genome Sequence and Gene Annotation of the Uropathogenic Bacterium Proteus mirabilis Pr2921

    PubMed Central

    Giorello, F. M.; Romero, V.; Farias, J.; Scavone, P.; Umpiérrez, A.; Zunino, P.

    2016-01-01

    Here, we report the genome sequence of Proteus mirabilis Pr2921, a uropathogenic bacterium that can cause severe complicated urinary tract infections. After gene annotation, we identified two additional copies of ucaA, one of the most studied fimbrial protein genes, and other fimbriae related-proteins that are not present in P. mirabilis HI4320. PMID:27340058

  11. Modulation of crystalline Proteus mirabilis biofilm development on urinary catheters.

    PubMed

    Stickler, David J; Morgan, Sheridan D

    2006-05-01

    The crystalline biofilms formed by Proteus mirabilis can seriously complicate the care of patients undergoing long-term bladder catheterization. The generation of alkaline urine by the bacterial urease causes calcium and magnesium phosphates to precipitate from urine and accumulate in the catheter biofilm, blocking the flow of urine from the bladder. The pH at which these salts crystallize from a urine sample, the nucleation pH (pH(n)), can be elevated by diluting the urine and by increasing its citrate content. The aim of this study was to examine whether manipulation of pH(n) in these ways modulated the rate at which crystalline biofilm developed. Experiments in laboratory models of the catheterized bladder infected with P. mirabilis showed that when the bladder was supplied with a concentrated urine (pH(n) 6.7) at a low fluid output (720 ml per 24 h), catheters blocked at 19-31 h. Diluting this urine 1:4 increased the pH(n) to 7.5 and models supplied with this urine at 2880 ml per 24 h took 110-137 h to block. When models were supplied with urine containing citrate at 1.5 mg ml(-1) or above (pH(n) 8.3-9.1), the catheters drained freely for the full 7 day experimental period. Scanning electron microscopy revealed that the catheter biofilms that developed in urine with high pH(n) values were devoid of crystalline formations. These observations should encourage a clinical trial to examine the effect of increasing a patient's fluid intake with citrate-containing drinks on the encrustation and blockage of catheters. PMID:16585633

  12. Proteus mirabilis urease: transcriptional regulation by UreR.

    PubMed

    Nicholson, E B; Concaugh, E A; Foxall, P A; Island, M D; Mobley, H L

    1993-01-01

    Proteus mirabilis urease catalyzes the hydrolysis of urea, initiating the formation of urinary stones. The enzyme is critical for kidney colonization and the development of acute pyelonephritis. Urease is induced by urea and is not controlled by the nitrogen regulatory system (ntr) or catabolite repression. Purified whole-cell RNA from induced and uninduced cultures of P. mirabilis and Escherichia coli harboring cloned urease sequences was probed with a 4.2-kb BglI fragment from within the urease operon. Autoradiographs of slot blots demonstrated 4.2- and 5.8-fold increases, respectively, in urease-specific RNA upon induction with urea. Structural and accessory genes necessary for urease activity, ureD, A, B, C, E, and F, were previously cloned and sequenced (B. D. Jones and H. L. T. Mobley, J. Bacteriol. 171:6414-6422, 1989). A 1.2-kb EcoRV-BamHI restriction fragment upstream of these sequences confers inducibility upon the operon in trans. Nucleotide sequencing of this fragment revealed a single open reading frame of 882 nucleotides, designated ureR, which is transcribed in the direction opposite that of the urease structural and accessory genes and encodes a 293-amino-acid polypeptide predicted to be 33,415 Da in size. Autoradiographs of sodium dodecyl sulfate-polyacrylamide gels of [35S]methionine-labeled polypeptides obtained by in vitro transcription-translation of the PCR fragments carrying only ureR yielded a single band with an apparent molecular size of 32 kDa. Fragments carrying an in-frame deletion within ureR synthesized a truncated product. The predicted UreR amino acid sequence contains a potential helix-turn-helix motif and an associated AraC family signature and is similar to that predicted for a number of DNA-binding proteins, including E. coli proteins that regulate acid phosphatase synthesis (AppY), porin synthesis (EnvY), and rhamnose utilization (RhaR). These data suggest that UreR governs the inducibility of P. mirabilis urease. PMID:7678244

  13. Radial and Spiral Stream Formation in Proteus mirabilis Colonies

    PubMed Central

    Xue, Chuan; Budrene, Elena O.; Othmer, Hans G.

    2011-01-01

    The enteric bacterium Proteus mirabilis, which is a pathogen that forms biofilms in vivo, can swarm over hard surfaces and form a variety of spatial patterns in colonies. Colony formation involves two distinct cell types: swarmer cells that dominate near the surface and the leading edge, and swimmer cells that prefer a less viscous medium, but the mechanisms underlying pattern formation are not understood. New experimental investigations reported here show that swimmer cells in the center of the colony stream inward toward the inoculation site and in the process form many complex patterns, including radial and spiral streams, in addition to previously-reported concentric rings. These new observations suggest that swimmers are motile and that indirect interactions between them are essential in the pattern formation. To explain these observations we develop a hybrid model comprising cell-based and continuum components that incorporates a chemotactic response of swimmers to a chemical they produce. The model predicts that formation of radial streams can be explained as the modulation of the local attractant concentration by the cells, and that the chirality of the spiral streams results from a swimming bias of the cells near the surface of the substrate. The spatial patterns generated from the model are in qualitative agreement with the experimental observations. PMID:22219724

  14. Multidrug-Resistant Proteus mirabilis Isolated From Newly Weaned Infant Rhesus Monkeys and Ferrets

    PubMed Central

    Yu, Wenhai; He, Zhanlong; Huang, Fen

    2015-01-01

    Background: Proteus mirabilis is an important uropathogen that causes complicated Urinary Tract Infection (UTI) and induces diarrhea in infants. Objectives: This study aimed to investigate P. mirabilis infection in newly weaned infant rhesus monkeys (Macaca mulatta) and ferrets (Mustela putorius furo) with diarrhea. Materials and Methods: Stool samples were collected from 74 rhesus monkeys and 12 ferrets with diarrhea. Proteus mirabilis was isolated from the samples through Polymerase Chain Reaction. The isolated P. mirabilis was subjected to antimicrobial susceptibility tests. Results: Seven (7/74, 9.5%) and four (4/12, 30%) P. mirabilis strains were detected in the stool samples collected from the monkeys and ferrets, respectively. Sequence analyses showed that the isolated P. mirabilis was closely related to P. mirabilis strain HI4320, which was isolated from the urine of a patient with a long-term indwelling urinary catheter. In addition, the isolates demonstrated multidrug resistance. Conclusions: Rhesus monkeys and ferrets are susceptible to P. mirabilis, making them useful as animal models for future studies on the mechanism of P. mirabilis-induced UTI and its corresponding treatment. PMID:26301055

  15. The expression of nonagglutinating fimbriae and its role in Proteus mirabilis adherence to epithelial cells.

    PubMed

    Tolson, D L; Harrison, B A; Latta, R K; Lee, K K; Altman, E

    1997-08-01

    Proteus mirabilis is a common causative agent of human urinary tract infections, especially in catheterized patients and in those patients with structural abnormalities of the urinary tract. In addition to the production of hemolysin and urease, fimbriae-mediated adherence to uroepithelial cells and kidney epithelium may be essential for virulence of P. mirabilis. A single P. mirabilis strain is capable of expressing several morphologically distinct fimbrial species, which can each be favoured by specific in vitro growth conditions. The fimbrial species reported to date include mannose-resistant/Proteus-like fimbriae, ambient temperature fimbriae, P. mirabilis fimbriae, and nonagglutinating fimbriae (NAF). Here, using intact bacteria or purified NAF as immunogens, we have generated the first reported NAF-specific monoclonal antibodies (mAbs). Bacteria expressing NAF as their only fimbrial species adhered strongly to a number of cell lines in vitro, including uroepithelial cell lines. Binding of P. mirabilis was markedly reduced following preincubation with NAF-specific mAbs and Fab fragments. The presence of NAF with highly conserved N-terminal sequences on all P. mirabilis strains so far examined, combined with the ability of both anti-NAF mAbs and purified NAF molecules to inhibit P. mirabilis adherence in vitro, suggests that NAF may contribute to the pathogenesis of P. mirabilis. PMID:9304781

  16. Genome Sequence of a Proteus mirabilis Strain Isolated from the Salivary Glands of Larval Lucilia sericata

    PubMed Central

    Yuan, Ye; Zhang, Yu; Fu, Shuhua; Crippen, Tawni L.; Visi, David K.; Benbow, M. Eric; Allen, Michael S.; Tomberlin, Jeffery K.; Sze, Sing-Hoi

    2016-01-01

    We announce a draft genome sequence of a Proteus mirabilis strain derived from Lucilia sericata salivary glands. This strain is demonstrated to attract and induce oviposition by L. sericata, a common blow fly important to medicine, agriculture, and forensics. The genome sequence will help dissect interkingdom communication between the species. PMID:27469950

  17. Genome sequence of a proteus mirabilis strain isolated from the salivary glands of larval lucilia sericata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We announced a draft genome sequence of a Proteus mirabilis strain derived from Lucilia sericata salivary glands. This strain is demonstrated to attract and induce oviposition by L. sericata, a common blow fly important to medicine, agriculture, and forensics. The genome will help to dissect inter...

  18. Inhibition of virulence factor expression and swarming differentiation in Proteus mirabilis by p-nitrophenylglycerol.

    PubMed

    Liaw, S J; Lai, H C; Ho, S W; Luh, K T; Wang, W B

    2000-08-01

    Proteus mirabilis is a common cause of upper urinary tract infections that can involve invasion of host urothelial cells. The ability to invade urothelial cells is coupled closely to swarming, a form of multicellular behaviour in which vegetative bacteria differentiate into hyperflagellate, filamentous swarming cells capable of co-ordinated and rapid population migration. Co-ordinate expression of virulence factors including urease, protease, haemolysin and flagellin during swarm-cell differentiation in P. mirabilis has been reported. To investigate the effects of p-nitrophenylglycerol (PNPG), a potent anti-swarming agent, on the various swarming-associated traits of P. mirabilis and to elucidate the relationships among them, P. mirabilis growth rate, swarming/swimming activity, cell invasion ability and the ability to express various virulence factors were monitored in the presence or absence of PNPG. It was found that PNPG could inhibit the growth rate, swarming differentiation and swarming/swimming activities of P. mirabilis. The expression of virulence factors such as protease, urease, haemolysin and flagellin in P. mirabilis was also inhibited by PNPG. The ability of P. mirabilis to invade human urothelial cells was reduced dramatically in the presence of PNPG. These results suggest that PNPG has the potential to be developed as an agent active against the effects of P. mirabilis infection. PMID:10933258

  19. [Dynamics of drug resistance in Proteus mirabilis cultures 1970-1985].

    PubMed

    Shvidenko, I G

    1988-04-01

    Resistance of 669 clinical strains of Proteus mirabilis to 18 chemotherapeutic drugs was studied in dynamics within 1970-1985. An increase in the number of cultures resistant to ampicillin and carbenicillin was noted while the number of cultures resistant to cephalosporines did not change. Within the period from 1970 to 1975 there was observed a marked increase in the number of Proteus strains resistant to aminoglycoside antibiotics. After that period their number gradually lowered and in 1985 reached the level of 1970. Beginning from 1973 there were observed a decrease in the number of Proteus chloramphenicol resistant strains and simultaneous occurrence of cultures sensitive to this antibiotic. The predominating number of the tested strains preserved during the whole observation period their resistance to tetracycline, doxycycline, rifampicin, novobiocin, furazolidone and furagin. No increase in the number of Proteus strains with multiple drug resistance including those resistant to 5-7 drugs was noted in the observation periods of 1970-1975, 1980 and 1985. The most frequent were Proteus strains resistant to 2-4 drugs. Among them cultures resistant to chloramphenicol and aminoglycoside antibiotics of the first generation predominated. Grouping of the strains by the same resistance spectra provided dividing the rested cultures of Proteus mirabilis into 69 variants. PMID:3291802

  20. Involvement of polyphosphate kinase in virulence and stress tolerance of uropathogenic Proteus mirabilis.

    PubMed

    Peng, Liang; Jiang, Qiao; Pan, Jia-Yun; Deng, Cong; Yu, Jing-Yi; Wu, Xiao-Man; Huang, Sheng-He; Deng, Xiao-Yan

    2016-04-01

    Proteus mirabilis (P. mirabilis), a gram-negative enteric bacterium, frequently causes urinary tract infections. Many virulence factors of uropathogenic P. mirabilis have been identified, including urease, flagella, hemolysin and fimbriae. However, the functions of polyphosphate kinase (PPK), which are related to the pathogenicity of many bacteria, remain entirely unknown in P. mirabilis. In this study, a ppk gene encoding the PPK insertional mutant in P. mirabilis strain HI4320 was constructed, and its biological functions were examined. The results of survival studies demonstrated that the ppk mutant was deficient in resistance to oxidative, hyperosmotic and heat stress. The swarming and biofilm formation abilities of P. mirabilis were also attenuated after the ppk interruption. In vitro and in vivo experiments suggested that ppk was required for P. mirabilis to invade the bladder. The negative phenotypes of the ppk mutant could be restored by ppk gene complementation. Furthermore, two-dimensional gel electrophoresis and liquid chromatography-mass spectrometry were used to analyze the proteomes of the wild-type strain and the ppk mutant. Compared with the wild-type strain, seven proteins including TonB-dependent receptor, universal stress protein G, major mannose-resistant/Proteus-like fimbrial protein (MR/P fimbriae), heat shock protein, flagellar capping protein, putative membrane protein and multidrug efflux protein were down-regulated, and four proteins including exported peptidase, repressor protein for FtsI, FKBP-type peptidyl-prolyl cis-trans isomerase and phosphotransferase were up-regulated in the ppk mutant. As a whole, these results indicate that PPK is an important regulator and plays a crucial role in stress tolerance and virulence in uropathogenic P. mirabilis. PMID:26233310

  1. Eugenol alters the integrity of cell membrane and acts against the nosocomial pathogen Proteus mirabilis.

    PubMed

    Devi, K Pandima; Sakthivel, R; Nisha, S Arif; Suganthy, N; Pandian, S Karutha

    2013-03-01

    Eugenol, a member of the phenylpropanoids class of chemical compounds, is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. The antibacterial activity of eugenol and its mechanism of bactericidal action against Proteus mirabilis were evaluated. Treatment with eugenol at their minimum inhibitory concentration [0.125 % (v/v)] and minimum bactericidal concentration [0.25 % (v/v)] reduced the viability and resulted in complete inhibition of P. mirabilis. A strong bactericidal effect on P. mirabilis was also evident, as eugenol inactivated the bacterial population within 30 min exposure. Chemo-attractant property and the observance of highest antibacterial activity at alkaline pH suggest that eugenol can work more effectively when given in vivo. Eugenol inhibits the virulence factors produced by P. mirabilis as observed by swimming motility, swarming behavior and urease activity. It interacts with cellular membrane of P. mirabilis and makes it highly permeable, forming nonspecific pores on plasma membrane, which in turn directs the release of 260 nm absorbing materials and uptake of more crystal violet from the medium into the cells. SDS-polyacrylamide gel, scanning electron microscopy and Fourier transform infrared analysis further proves the disruptive action of eugenol on the plasma membrane of P. mirabilis. The findings reveal that eugenol shows an excellent bactericidal activity against P. mirabilis by altering the integrity of cell membrane. PMID:23444040

  2. Proteus mirabilis fimbriae: identification, isolation, and characterization of a new ambient-temperature fimbria.

    PubMed Central

    Massad, G; Bahrani, F K; Mobley, H L

    1994-01-01

    Urinary tract infections involving Proteus mirabilis may lead to complications including bladder and kidney stones, acute pyelonephritis, and bacteremia. This bacterium produces a number of fimbriae, two of which, MR/P fimbria and P. mirabilis fimbria, have been shown to contribute to the ability of this pathogen to colonize the bladder and kidney. We have now purified and characterized a previously undescribed fimbria of P. mirabilis, named ambient-temperature fimbria (ATF). Electron microscopy of a pure preparation and immunogold labeling of cells demonstrated that ATF was fimbrial in nature. The major fimbrial subunit of ATF has an apparent molecular weight of 24,000. The N-terminal amino acid sequence, E-X-T-G-T-P-A-P-T-E-V-T-V-D-G-G-T-I-D-F, did not show significant similarity to that of any previously described fimbrial protein. ATF was expressed by all eight P. mirabilis strains examined. Culture conditions affected expression of ATF, with optimal expression observed in static broth cultures at 23 degrees C. This fimbria was not produced by cells grown at 42 degrees C or on solid medium. Expression of ATF did not correlate with mannose-resistant/Proteus-like (MR/P) or mannose-resistant/Klebsiella-like (MR/K) hemagglutination and represents a novel fimbria of P. mirabilis. Images PMID:7909538

  3. Transcriptome of Proteus mirabilis in the murine urinary tract: virulence and nitrogen assimilation gene expression.

    PubMed

    Pearson, Melanie M; Yep, Alejandra; Smith, Sara N; Mobley, Harry L T

    2011-07-01

    The enteric bacterium Proteus mirabilis is a common cause of complicated urinary tract infections. In this study, microarrays were used to analyze P. mirabilis gene expression in vivo from experimentally infected mice. Urine was collected at 1, 3, and 7 days postinfection, and RNA was isolated from bacteria in the urine for transcriptional analysis. Across nine microarrays, 471 genes were upregulated and 82 were downregulated in vivo compared to in vitro broth culture. Genes upregulated in vivo encoded mannose-resistant Proteus-like (MR/P) fimbriae, urease, iron uptake systems, amino acid and peptide transporters, pyruvate metabolism enzymes, and a portion of the tricarboxylic acid (TCA) cycle enzymes. Flagella were downregulated. Ammonia assimilation gene glnA (glutamine synthetase) was repressed in vivo, while gdhA (glutamate dehydrogenase) was upregulated in vivo. Contrary to our expectations, ammonia availability due to urease activity in P. mirabilis did not drive this gene expression. A gdhA mutant was growth deficient in minimal medium with citrate as the sole carbon source, and loss of gdhA resulted in a significant fitness defect in the mouse model of urinary tract infection. Unlike Escherichia coli, which represses gdhA and upregulates glnA in vivo and cannot utilize citrate, the data suggest that P. mirabilis uses glutamate dehydrogenase to monitor carbon-nitrogen balance, and this ability contributes to the pathogenic potential of P. mirabilis in the urinary tract. PMID:21505083

  4. Identification of emergent blaCMY-2-carrying Proteus mirabilis lineages by whole-genome sequencing

    PubMed Central

    Mac Aogáin, M.; Rogers, T.R.; Crowley, B.

    2015-01-01

    Whole-genome sequencing of 24 Proteus mirabilis isolates revealed the clonal expansion of two cefoxitin-resistant strains among patients with community-onset infection. These strains harboured blaCMY-2 within a chromosomally located integrative and conjugative element and exhibited multidrug resistance phenotypes. A predominant strain, identified in 18 patients, also harboured the PGI-1 genomic island and associated resistance genes, accounting for its broader antibiotic resistance profile. The identification of these novel multidrug-resistant strains among community-onset infections suggests that they are endemic to this region and represent emergent P. mirabilis lineages of clinical significance. PMID:26865983

  5. Loss of FliL Alters Proteus mirabilis Surface Sensing and Temperature-Dependent Swarming

    PubMed Central

    Lee, Yi-Ying

    2014-01-01

    Proteus mirabilis is a dimorphic motile bacterium well known for its flagellum-dependent swarming motility over surfaces. In liquid, P. mirabilis cells are 1.5- to 2.0-μm swimmer cells with 4 to 6 flagella. When P. mirabilis encounters a solid surface, where flagellar rotation is limited, swimmer cells differentiate into elongated (10- to 80-μm), highly flagellated swarmer cells. In order for P. mirabilis to swarm, it first needs to detect a surface. The ubiquitous but functionally enigmatic flagellar basal body protein FliL is involved in P. mirabilis surface sensing. Previous studies have suggested that FliL is essential for swarming through its involvement in viscosity-dependent monitoring of flagellar rotation. In this study, we constructed and characterized ΔfliL mutants of P. mirabilis and Escherichia coli. Unexpectedly and unlike other fliL mutants, both P. mirabilis and E. coli ΔfliL cells swarm (Swr+). Further analysis revealed that P. mirabilis ΔfliL cells also exhibit an alteration in their ability to sense a surface: e.g., ΔfliL P. mirabilis cells swarm precociously over surfaces with low viscosity that normally impede wild-type swarming. Precocious swarming is due to an increase in the number of elongated swarmer cells in the population. Loss of fliL also results in an inhibition of swarming at <30°C. E. coli ΔfliL cells also exhibit temperature-sensitive swarming. These results suggest an involvement of FliL in the energetics and function of the flagellar motor. PMID:25331431

  6. Proteus mirabilis urease. Partial purification and inhibition by boric acid and boronic acids.

    PubMed

    Breitenbach, J M; Hausinger, R P

    1988-03-15

    Urease was purified 800-fold and partially characterized from Proteus mirabilis, the predominant microorganism associated with urinary stones. Boric acid is a rapid reversible competitive inhibitor of urease. The pH-dependence of inhibition exhibited pKa values of 6.25 and 9.3, where the latter value is probably due to the inherent pKa of boric acid. Three boronic acids also were shown to inhibit urease competitively. PMID:3291857

  7. Histochemical and biochemical urease localization in the periplasm and outer membrane of two Proteus mirabilis strains.

    PubMed

    McLean, R J; Cheng, K J; Gould, W D; Nickel, J C; Costerton, J W

    1986-10-01

    Proteus mirabilis, a gram-negative bacillus, is often implicated in the formation of infectious kidney stones. As ureolytic activity of this organism is thought to play a major role in its pathogenesis, we adapted our recently described urease localization technique to visualize urease activity in vivo. Urease activity was ultrastructurally localized in two clinically isolated P. mirabilis strains by precipitating the enzymatic reaction product (ammonia) with sodium tetraphenylboron. Subsequent silver staining of the cells revealed urease activity to be predominantly associated with the periplasm and outer membranes of each strain. Biochemical measurements of urease activity in P. mirabilis cell fractions correlated well with histochemical observations in that the majority of urease activity was associated with the periplasm. Membrane-bound urease activity of these strains was associated mainly with the peptidoglycan in the detergent-insoluble (outer membrane) fraction. PMID:3539291

  8. Functional Identification of Proteus mirabilis eptC Gene Encoding a Core Lipopolysaccharide Phosphoethanolamine Transferase

    PubMed Central

    Aquilini, Eleonora; Merino, Susana; Knirel, Yuriy A.; Regué, Miguel; Tomás, Juan M.

    2014-01-01

    By comparison of the Proteus mirabilis HI4320 genome with known lipopolysaccharide (LPS) phosphoethanolamine transferases, three putative candidates (PMI3040, PMI3576, and PMI3104) were identified. One of them, eptC (PMI3104) was able to modify the LPS of two defined non-polar core LPS mutants of Klebsiella pneumoniae that we use as surrogate substrates. Mass spectrometry and nuclear magnetic resonance showed that eptC directs the incorporation of phosphoethanolamine to the O-6 of l-glycero-d-mano-heptose II. The eptC gene is found in all the P. mirabilis strains analyzed in this study. Putative eptC homologues were found for only two additional genera of the Enterobacteriaceae family, Photobacterium and Providencia. The data obtained in this work supports the role of the eptC (PMI3104) product in the transfer of PEtN to the O-6 of l,d-HepII in P. mirabilis strains. PMID:24756091

  9. Development of a Phage Cocktail to Control Proteus mirabilis Catheter-associated Urinary Tract Infections

    PubMed Central

    Melo, Luís D. R.; Veiga, Patrícia; Cerca, Nuno; Kropinski, Andrew M.; Almeida, Carina; Azeredo, Joana; Sillankorva, Sanna

    2016-01-01

    Proteus mirabilis is an enterobacterium that causes catheter-associated urinary tract infections (CAUTIs) due to its ability to colonize and form crystalline biofilms on the catheters surface. CAUTIs are very difficult to treat, since biofilm structures are highly tolerant to antibiotics. Phages have been used widely to control a diversity of bacterial species, however, a limited number of phages for P. mirabilis have been isolated and studied. Here we report the isolation of two novel virulent phages, the podovirus vB_PmiP_5460 and the myovirus vB_PmiM_5461, which are able to target, respectively, 16 of the 26 and all the Proteus strains tested in this study. Both phages have been characterized thoroughly and sequencing data revealed no traces of genes associated with lysogeny. To further evaluate the phages’ ability to prevent catheter’s colonization by Proteus, the phages adherence to silicone surfaces was assessed. Further tests in phage-coated catheters using a dynamic biofilm model simulating CAUTIs, have shown a significant reduction of P. mirabilis biofilm formation up to 168 h of catheterization. These results highlight the potential usefulness of the two isolated phages for the prevention of surface colonization by this bacterium. PMID:27446059

  10. Development of an intranasal vaccine to prevent urinary tract infection by Proteus mirabilis.

    PubMed

    Li, Xin; Lockatell, C Virginia; Johnson, David E; Lane, M Chelsea; Warren, John W; Mobley, Harry L T

    2004-01-01

    Proteus mirabilis commonly infects the complicated urinary tract and is associated with urolithiasis. Stone formation is caused by bacterial urease, which hydrolyzes urea to ammonia, causing local pH to rise, and leads to the subsequent precipitation of magnesium ammonium phosphate (struvite) and calcium phosphate (apatite) crystals. To prevent these infections, we vaccinated CBA mice with formalin-killed bacteria or purified mannose-resistant, Proteus-like (MR/P) fimbriae, a surface antigen expressed by P. mirabilis during experimental urinary tract infection, via four routes of immunization: subcutaneous, intranasal, transurethral, and oral. We assessed the efficacy of vaccination using the CBA mouse model of ascending urinary tract infection. Subcutaneous or intranasal immunization with formalin-killed bacteria and intranasal or transurethral immunization with purified MR/P fimbriae significantly protected CBA mice from ascending urinary tract infection by P. mirabilis (P < 0.05). To investigate the potential of MrpH, the MR/P fimbrial tip adhesin, as a vaccine, the mature MrpH peptide (residues 23 to 275, excluding the signal peptide), and the N-terminal receptor-binding domain of MrpH (residues 23 to 157) were overexpressed as C-terminal fusions to maltose-binding protein (MBP) and purified on amylose resins. Intranasal immunization of CBA mice with MBP-MrpH (residues 23 to 157) conferred effective protection against urinary tract infection by P. mirabilis (P < 0.002). PMID:14688082

  11. Molecular detection of HpmA and HlyA hemolysin of uropathogenic Proteus mirabilis.

    PubMed

    Cestari, Silvia Emanoele; Ludovico, Marilucia Santos; Martins, Fernando Henrique; da Rocha, Sérgio Paulo Dejato; Elias, Waldir Pereira; Pelayo, Jacinta Sanchez

    2013-12-01

    Urinary tract infection (UTI) is one of the bacterial infections frequently documented in humans. Proteus mirabilis is associated with UTI mainly in individuals with urinary tract abnormality or related with vesicular catheterism and it can be difficult to treat because of the formation of stones in the bladder and kidneys. These stones are formed due to the presence of urease synthesized by the bacteria. Another important factor is that P. mirabilis produces hemolysin HpmA, used by the bacteria to damage the kidney tissues. Proteus spp. samples can also express HlyA hemolysin, similar to that found in Escherichia coli. A total of 211 uropathogenic P. mirabilis isolates were analyzed to detect the presence of the hpmA and hpmB genes by the techniques of polymerase chain reaction (PCR) and dot blot and hlyA by PCR. The hpmA and hpmB genes were expressed by the RT-PCR technique and two P. mirabilis isolates were sequenced for the hpmA and hpmB genes. The presence of the hpmA and hpmB genes was confirmed by PCR in 205 (97.15 %) of the 211 isolates. The dot blot confirmed the presence of the hpmA and hpmB genes in the isolates that did not amplify in the PCR. None of the isolates studied presented the hlyA gene. The hpmA and hpmB genes that were sequenced presented 98 % identity with the same genes of the HI4320 P. mirabilis sample. This study showed that the PCR technique has good sensitivity for detecting the hpmA and hpmB genes of P. mirabilis. PMID:23884594

  12. Flagellum Density Regulates Proteus mirabilis Swarmer Cell Motility in Viscous Environments

    PubMed Central

    Tuson, Hannah H.; Copeland, Matthew F.; Carey, Sonia; Sacotte, Ryan

    2013-01-01

    Proteus mirabilis is an opportunistic pathogen that is frequently associated with urinary tract infections. In the lab, P. mirabilis cells become long and multinucleate and increase their number of flagella as they colonize agar surfaces during swarming. Swarming has been implicated in pathogenesis; however, it is unclear how energetically costly changes in P. mirabilis cell morphology translate into an advantage for adapting to environmental changes. We investigated two morphological changes that occur during swarming—increases in cell length and flagellum density—and discovered that an increase in the surface density of flagella enabled cells to translate rapidly through fluids of increasing viscosity; in contrast, cell length had a small effect on motility. We found that swarm cells had a surface density of flagella that was ∼5 times larger than that of vegetative cells and were motile in fluids with a viscosity that inhibits vegetative cell motility. To test the relationship between flagellum density and velocity, we overexpressed FlhD4C2, the master regulator of the flagellar operon, in vegetative cells of P. mirabilis and found that increased flagellum density produced an increase in cell velocity. Our results establish a relationship between P. mirabilis flagellum density and cell motility in viscous environments that may be relevant to its adaptation during the infection of mammalian urinary tracts and movement in contact with indwelling catheters. PMID:23144253

  13. Allicin from garlic inhibits the biofilm formation and urease activity of Proteus mirabilis in vitro.

    PubMed

    Ranjbar-Omid, Mahsa; Arzanlou, Mohsen; Amani, Mojtaba; Shokri Al-Hashem, Seyyedeh Khadijeh; Amir Mozafari, Nour; Peeri Doghaheh, Hadi

    2015-05-01

    Several virulence factors contribute to the pathogenesis of Proteus mirabilis. This study determined the inhibitory effects of allicin on urease, hemolysin and biofilm of P. mirabilis ATCC 12453 and its antimicrobial activity against 20 clinical isolates of P. mirabilis. Allicin did not inhibit hemolysin, whereas it did inhibit relative urease activity in both pre-lysed (half-maximum inhibitory concentration, IC50 = 4.15 μg) and intact cells (IC50 = 21 μg) in a concentration-dependent manner. Allicin at sub-minimum inhibitory concentrations (2-32 μg mL(-1)) showed no significant effects on the growth of the bacteria (P > 0.05), but it reduced biofilm development in a concentration-dependent manner (P < 0.001). A higher concentration of allicin was needed to inhibit the established biofilms. Using the microdilution technique, the MIC90 and MBC90 values of allicin against P. mirabilis isolates were determined to be 128 and 512 μg mL(-1), respectively. The results suggest that allicin could have clinical applications in controlling P. mirabilis infections. PMID:25837813

  14. Cranberry impairs selected behaviors essential for virulence in Proteus mirabilis HI4320.

    PubMed

    McCall, Jennifer; Hidalgo, Gabriela; Asadishad, Bahareh; Tufenkji, Nathalie

    2013-06-01

    Proteus mirabilis is an etiological agent of complicated urinary tract infections. North American cranberries (Vaccinium macrocarpon) have long been considered to have protective properties against urinary tract infections. This work reports the effects of cranberry powder (CP) on the motility of P. mirabilis HI4320 and its expression of flaA, flhD, and ureD. Our results show that swimming and swarming motilities and swarmer-cell differentiation were inhibited by CP. Additionally, transcription of the flagellin gene flaA and of flhD, the first gene of the flagellar master operon flhDC, decreased during exposure of P. mirabilis to various concentrations of CP. Moreover, using ureD-gfp, a fusion of the urease accessory gene ureD with gfp, we show that CP inhibits urease expression. Because we demonstrate that CP does not inhibit the growth of P. mirabilis, the observed effects are not attributable to toxicity. Taken together, our results demonstrate that CP hinders motility of P. mirabilis and reduces the expression of important virulence factors. PMID:23750959

  15. A novel autotransporter of uropathogenic Proteus mirabilis is both a cytotoxin and an agglutinin.

    PubMed

    Alamuri, Praveen; Mobley, Harry L T

    2008-05-01

    One of the six predicted Proteus mirabilis autotransporters (ATs), ORF c2341, is predicted to contain a serine protease motif and was earlier identified as an immunogenic outer membrane protein in P. mirabilis. The 3.2 kb gene encodes a 117 kDa protein with a 58-amino-acid-long signal peptide, a 75-kDa-long N-terminal passenger domain and a 30-kDa-long C-terminal translocator. Affinity-purified 110 kDa AT exhibited chymotrypsin-like activity and hydrolysed N-Suc-Ala-Ala-Pro-Phe-pNa and N-Suc-Ala-Ala-Pro-Leu-pNa with a K(M) of 22 muM and 31 muM, respectively, under optimal pH of 8.5-9.0 in a Ca(2+)-dependent manner. Activity was inhibited by subtilase-specific inhibitors leupeptin and chymostatin. Both the cell-associated and purified form elicited cytopathic effects on cultured kidney and bladder epithelial cells. Substrate hydrolysis as well as cytotoxicity was associated with the passenger domain and was compromised upon mutation of any of the catalytic residues (Ser366, His147 and Asp533). At alkaline pH and optimal cell density, the AT also promoted autoaggregation of P. mirabilis and this function was independent of its protease activity. Cytotoxicity, autoaggregation and virulence were significantly reduced in an isogenic pta mutant of P. mirabilis. Proteus toxic agglutinin (Pta) represents a novel autotransported cytotoxin with no bacterial homologues that works optimally in the alkalinized urinary tract, a characteristic of urease-mediated urea hydrolysis during P. mirabilis infection. PMID:18430084

  16. Proteus mirabilis ambient-temperature fimbriae: cloning and nucleotide sequence of the aft gene cluster.

    PubMed Central

    Massad, G; Fulkerson, J F; Watson, D C; Mobley, H L

    1996-01-01

    Uropathogenic Proteus mirabilis produces at least four types of fimbriae. Amino acid sequences from two peptides, derived by tryptic digestion of the structural subunit of one type of these fimbriae, the ambient-temperature fimbriae, were determined: NVVPGQPSSTQ and LIEGENQLNYNA. PCR primers, based on these sequences and that of the N terminus, were used to amplify a 359-bp fragment. A cosmid clone, isolated from a P. mirabilis genomic library by hybridization with the 359-bp PCR product, was used to determine the nucleotide sequence of the atf gene cluster. A 3,903-bp region encodes three polypeptides: AtfA, the structural subunit; AtfB, the chaperone; and AtfC, the outer membrane molecular usher. No fimbria-related genes are evident either 5' or 3' to the three contiguous genes. AtfA demonstrates significant amino acid sequence identity with type 1 major fimbrial subunits of several enteric species. The 359-bp PCR product hybridized strongly with all Proteus isolates (n = 9) and 25% of 355 Escherichia coli isolates but failed to hybridize with any of 26 isolates among nine other uropathogenic species. Ambient-temperature fimbriae of P. mirabilis may represent a novel type of fimbriae of enteric species. PMID:8926119

  17. Lytic bacteriophage PM16 specific for Proteus mirabilis: a novel member of the genus Phikmvvirus.

    PubMed

    Morozova, V; Kozlova, Yu; Shedko, E; Kurilshikov, A; Babkin, I; Tupikin, A; Yunusova, A; Chernonosov, A; Baykov, I; Кondratov, I; Kabilov, M; Ryabchikova, E; Vlassov, V; Tikunova, N

    2016-09-01

    Lytic Proteus phage PM16, isolated from human faeces, is a novel virus that is specific for Proteus mirabilis cells. Bacteriophage PM16 is characterized by high stability, a short latency period, large burst size and the occurrence of low phage resistance. Phage PM16 was classified as a member of the genus Phikmvvirus on the basis of genome organization, gene synteny, and protein sequences similarities. Within the genus Phikmvvirus, phage PM16 is grouped with Vibrio phage VP93, Pantoea phage LIMElight, Acinetobacter phage Petty, Enterobacter phage phiKDA1, and KP34-like bacteriophages. An investigation of the phage-cell interaction demonstrated that phage PM16 attached to the cell surface, not to the bacterial flagella. The study of P. mirabilis mutant cells obtained during the phage-resistant bacterial cell assay that were resistant to phage PM16 re-infection revealed a non-swarming phenotype, changes in membrane characteristics, and the absence of flagella. Presumably, the resistance of non-swarming P. mirabilis cells to phage PM16 re-infection is determined by changes in membrane macromolecular composition and is associated with the absence of flagella and a non-swarming phenotype. PMID:27350061

  18. Detection of KPC-2 in a Clinical Isolate of Proteus mirabilis and First Reported Description of Carbapenemase Resistance Caused by a KPC Beta-Lactamase in P. mirabilis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An isolate of Proteus mirabilis recovered from bacterial cultures was shown to be resistant to imipenem, meropenem, and ertapenem by disk diffusion susceptibility testing. Amplification of whole cell and/or plasmid DNA recovered from the isolate using primers specific for the blaKPC carbapenemase g...

  19. Characterization of 17 chaperone-usher fimbriae encoded by Proteus mirabilis reveals strong conservation

    PubMed Central

    Kuan, Lisa; Schaffer, Jessica N.; Zouzias, Christos D.

    2014-01-01

    Proteus mirabilis is a Gram-negative enteric bacterium that causes complicated urinary tract infections, particularly in patients with indwelling catheters. Sequencing of clinical isolate P. mirabilis HI4320 revealed the presence of 17 predicted chaperone-usher fimbrial operons. We classified these fimbriae into three groups by their genetic relationship to other chaperone-usher fimbriae. Sixteen of these fimbriae are encoded by all seven currently sequenced P. mirabilis genomes. The predicted protein sequence of the major structural subunit for 14 of these fimbriae was highly conserved (≥95 % identity), whereas three other structural subunits (Fim3A, UcaA and Fim6A) were variable. Further examination of 58 clinical isolates showed that 14 of the 17 predicted major structural subunit genes of the fimbriae were present in most strains (>85 %). Transcription of the predicted major structural subunit genes for all 17 fimbriae was measured under different culture conditions designed to mimic conditions in the urinary tract. The majority of the fimbrial genes were induced during stationary phase, static culture or colony growth when compared to exponential-phase aerated culture. Major structural subunit proteins for six of these fimbriae were detected using MS of proteins sheared from the surface of broth-cultured P. mirabilis, demonstrating that this organism may produce multiple fimbriae within a single culture. The high degree of conservation of P. mirabilis fimbriae stands in contrast to uropathogenic Escherichia coli and Salmonella enterica, which exhibit greater variability in their fimbrial repertoires. These findings suggest there may be evolutionary pressure for P. mirabilis to maintain a large fimbrial arsenal. PMID:24809384

  20. Requirement of MrpH for Mannose-Resistant Proteus-Like Fimbria-Mediated Hemagglutination by Proteus mirabilis

    PubMed Central

    Li, Xin; Johnson, David E.; Mobley, Harry L. T.

    1999-01-01

    Two new genes, mrpH and mrpJ, were identified downstream of mrpG in the mrp gene cluster encoding mannose-resistant Proteus-like (MR/P) fimbriae of uropathogenic Proteus mirabilis. Since the predicted MrpH has 30% amino acid sequence identity to PapG, the Galα(1-4)Gal-binding adhesin of Escherichia coli P fimbriae, we hypothesized that mrpH encodes the functional MR/P hemagglutinin. MR/P fimbriae, expressed in E. coli DH5α, conferred on bacteria both the ability to cause mannose-resistant hemagglutination and the ability to aggregate to form pellicles on the broth surface. Both a ΔmrpH mutant expressed in E. coli DH5α and an isogenic mrpH::aphA mutant of P. mirabilis were unable to produce normal MR/P fimbriae efficiently, suggesting that MrpH was involved in fimbrial assembly. Amino acid residue substitution of the N-terminal cysteine residues (C66S and C128S) of MrpH abolished the receptor-binding activity (hemagglutinating ability) of MrpH but allowed normal fimbrial assembly, supporting the notion that MrpH was the functional MR/P hemagglutinin. Immunogold electron microscopy of P. mirabilis HI4320 revealed that MrpH was located at the tip of MR/P fimbriae, also consistent with its role in receptor binding. The isogenic mrpH::aphA mutant of HI4320 was less able to colonize the urine, bladder, and kidneys in a mouse model of ascending urinary tract infection (P < 0.01), and therefore MR/P fimbriae contribute significantly to bacterial colonization in mice. While there are similarities between P. mirabilis MR/P and E. coli P fimbriae, there are more notable differences: (i) synthesis of the MrpH adhesin is required to initiate fimbrial assembly, (ii) MR/P fimbriae confer an aggregation phenotype, (iii) site-directed mutation of specific residues can abolish receptor binding but allows fimbrial assembly, and (iv) mutation of the adhesin gene abolishes virulence in a mouse model of ascending urinary tract infection. PMID:10338487

  1. Effects of Taishan Pinus massoniana pollen polysaccharide on the subunit vaccine of Proteus mirabilis in birds.

    PubMed

    Cui, Guolin; Zhong, Shixun; Yang, Shifa; Zuo, Xuemei; Liang, Manfei; Sun, Jing; Liu, Jingjing; Zhu, Ruiliang

    2013-05-01

    Three adjuvants, namely, Taishan Pinus massoniana pollen polysaccharide (TPPPS), white mineral oil (WO) and propolis (PP), were added to the outer membrane protein (OMP) of Proteus mirabilis (P. mirabilis) and their effects were compared. Three hundred 1-day-old chicks were randomly divided into five groups (I-V), with 60 chicks per group, and injected subcutaneously with WO-OMP vaccine (I), PP-OMP vaccine (II), TPPPS-OMP vaccine (III), OMP-only vaccine (IV) and physiological saline (V) at 3, 7 and 12 days old. On days 3, 7, 14, 21, 28, 35, 42 and 49 after the first vaccination, the antibody titers, interleukin-2 levels (IL-2) and T-lymphocyte proliferation rates in the peripheral blood as well as the secreting-type IgA levels (SIgA) in the duodenum were measured. On day 7 after the third vaccination, the chicks were challenged with P. mirabilis strain Q1 and the protective effects of each group were observed. The highest protective rate was observed in group III. Moreover, the antibody titers as well as IL-2, SIgA and T-lymphocyte proliferation rates in this group significantly increased and were significantly higher than those in the other groups at most time points. The results indicate that TPPPS could significantly enhance the effects of the subunit vaccine of P. mirabilis; induced stronger humoral, cellular and mucosal immunity as compared with WO and PP; and should be developed as a vaccine adjuvant. PMID:23403027

  2. Inhibition of swarming and virulence factor expression in Proteus mirabilis by resveratrol.

    PubMed

    Wang, Won-Bo; Lai, Hsin-Chih; Hsueh, Po-Ren; Chiou, Robin Y-Y; Lin, Shwu-Bin; Liaw, Shwu-Jen

    2006-10-01

    Resveratrol (3,5,4-trihydroxy-trans-stilbene) is a phytoalexin compound with anti-inflammatory and antioxidant activities. The effect of resveratrol on swarming and virulence factor expression of Proteus mirabilis, an important pathogen infecting the urinary tract, was determined on swarming agar plates with and without the compound. Bacteria harvested at different times were assayed for cell length and the production of flagella, haemolysin and urease. Resveratrol inhibited P. mirabilis swarming and virulence factor expression in a dose-dependent manner. Resveratrol significantly inhibited swarming at 15 microg ml(-1), and completely inhibited swarming at 60 microg ml(-1). Inhibition of swarming and virulence factor expression was mediated through RsbA, a His-containing phosphotransmitter of the bacterial two-component signalling system possibly involved in quorum sensing. Complementation of an rsbA-defective mutant with the rsbA gene restored its responsiveness to resveratrol. The compound also inhibited the ability of P. mirabilis to invade human urothelial cells. These findings suggest that resveratrol has potential to be developed as an antimicrobial agent against P. mirabilis infection. PMID:17005777

  3. Polymer surface properties and their effect on the adhesion of Proteus mirabilis.

    PubMed

    Downer, A; Morris, N; Feast, W J; Stickler, D

    2003-01-01

    A problem encountered in patients undergoing long-term catheterization of the urinary tract is that of encrustation and blockage of the catheter by crystalline bacterial biofilms. This is principally caused by the action of the urease-producing pathogen Proteus mirabilis. A major aim of this work is to develop materials resistant to encrustation. Here, the effects of polymer surface properties on the adhesion of P. mirabilis are examined. Spin-coated polymer films were characterized through contact angle measurements to give the Lifschitz-van der Waals, electron acceptor and electron donor terms of the surface free energy, gamma(s)LW, gamma(s)+ and gamma(s)- respectively. A parallel-plate flow cell was used to assess adhesion to these polymer films of P. mirabilis suspended in an aqueous phosphate buffer, pH 7.4, ionic strength 0.26 mol/kg. P. mirabilis was found to adhere significantly less (p < 0.02) to films of agarose, poly(2-hydroxyethylmethacrylate) and cross-linked poly(vinyl alcohol) than to more hydrophobic materials. These polymer films were found to be strongly electron donating, i.e. possessing large gamma(s)-. Films examined using scanning electron microscopy mostly showed no evidence of roughness down to a scale of 1-10 microm. The better performance is thought to be due to a repulsive interaction with the bacterial surface caused by acid/base-type interactions. PMID:12885198

  4. Proteobactin and a yersiniabactin-related siderophore mediate iron acquisition in Proteus mirabilis

    PubMed Central

    Himpsl, Stephanie D.; Pearson, Melanie M.; Arewång, Carl J.; Nusca, Tyler D.; Sherman, David H.; Mobley, Harry L. T.

    2010-01-01

    Proteus mirabilis causes complicated urinary tract infections (UTI). While the urinary tract is an iron-limiting environment, iron acquisition remains poorly characterized for this uropathogen. Microarray analysis of P. mirabilis HI4320 cultured under iron limitation identified 45 significantly up-regulated genes (P ≤ 0.05) that represent 21 putative iron-regulated systems. Two gene clusters, PMI0229-0239 and PMI2596–2605, encode putative siderophore systems. PMI0229-0239 encodes a nonribosomal peptide synthetase (NRPS)-independent siderophore (NIS) system for producing a novel siderophore, proteobactin. PMI2596-2605 are contained within the high-pathogenicity island, originally described in Yersinia pestis, and encodes proteins with apparent homology and organization to those involved in yersiniabactin production and uptake. Cross-feeding and biochemical analysis shows that P. mirabilis is unable to utilize or produce yersiniabactin, suggesting that this yersiniabactin-related locus is functionally distinct. Only disruption of both systems resulted in an in vitro iron-chelating defect; demonstrating production and iron-chelating activity for both siderophores. These findings clearly show that proteobactin and the yersiniabactin-related siderophore function as iron acquisition systems. Despite the activity of both siderophores, only mutants lacking the yersiniabactin-related siderophore reduce fitness in vivo. The fitness requirement for the yersiniabactin-related siderophore during UTI shows, for the first time, the importance of siderophore production in vivo for P. mirabilis. PMID:20923418

  5. Phenotypic and molecular characterization of antimicrobial resistance in Proteus mirabilis isolates from dogs.

    PubMed

    Harada, Kazuki; Niina, Ayaka; Shimizu, Takae; Mukai, Yujiro; Kuwajima, Ken; Miyamoto, Tadashi; Kataoka, Yasushi

    2014-11-01

    Large-scale monitoring of resistance to 14 antimicrobial agents was performed using 103 Proteus mirabilis strains isolated from dogs in Japan. Resistant strains were analysed to identify their resistance mechanisms. Rates of resistance to chloramphenicol, streptomycin, enrofloxacin, trimethoprim/sulfamethoxazole, kanamycin, ampicillin, ciprofloxacin, cephalothin, gentamicin, cefoxitin and cefotaxime were 20.4, 15.5, 12.6, 10.7, 9.7, 8.7, 5.8, 2.9, 2.9, 1.9 and 1.9%, respectively. No resistance to ceftazidime, aztreonam or imipenem was found. Class 1 and 2 integrases were detected in 2.9 and 11.7% of isolates, respectively. Class 1 integrons contained aadB or aadB-catB-like-blaOXA10-aadA1, whereas those of class 2 contained sat-aadA1, dhfr1-sat-aadA1 or none of the anticipated resistance genes. Of five distinct plasmid-mediated quinolone-resistance (PMQR) genes, only qnrD gene was detected in 1.9% of isolates. Quinolone-resistance determining regions (QRDRs) of gyrA and parC from 13 enrofloxacin-intermediate and -resistant isolates were sequenced. Seven strains had double mutations and three had single mutations. Three of nine ampicillin-resistant isolates harboured AmpC-type β-lactamases (i.e. blaCMY-2, blaCMY-4 and blaDHA-1). These results suggest that canine Proteus mirabilis deserves continued surveillance as an important reservoir of antimicrobial resistance determinants. This is the first report, to our knowledge, describing integrons, PMQRs and QRDR mutations in Proteus mirabilis isolates from companion animals. PMID:25187600

  6. First report of an OXA-48-producing multidrug-resistant Proteus mirabilis strain from Gaza, Palestine.

    PubMed

    Chen, Liang; Al Laham, Nahed; Chavda, Kalyan D; Mediavilla, Jose R; Jacobs, Michael R; Bonomo, Robert A; Kreiswirth, Barry N

    2015-07-01

    We report the first multidrug-resistant Proteus mirabilis strain producing the carbapenemase OXA-48 (Pm-OXA-48) isolated at Al-Shifa hospital in Gaza, Palestine. Draft genome sequencing of Pm-OXA-48 identified 16 antimicrobial resistance genes, encoding resistance to β-lactams, aminoglycosides, fluoroquinolones, phenicols, streptothricin, tetracycline, and trimethoprim-sulfamethoxazole. Complete sequencing of the bla(OXA-48)-harboring plasmid revealed that it is a 72 kb long IncL/M plasmid, harboring carbapenemase gene bla(OXA-48), extended spectrum β-lactamase gene bla(CTX-M-14), and aminoglycoside resistance genes strA, strB, and aph(3')-VIb. PMID:25896692

  7. Two novel Salmonella genomic island 1 variants in Proteus mirabilis isolates from swine farms in China.

    PubMed

    Lei, Chang-Wei; Zhang, An-Yun; Liu, Bi-Hui; Wang, Hong-Ning; Yang, Li-Qin; Guan, Zhong-Bin; Xu, Chang-Wen; Zhang, Dong-Dong; Yang, Yong-Qiang

    2015-07-01

    Four different Salmonella genomic island 1 (SGI1) variants, including two novel variants, were characterized in one Salmonella enterica serovar Rissen sequence type ST1917 isolate and three Proteus mirabilis isolates from swine farms in China. One novel variant was derived from SGI1-B with the backbone gene S021 disrupted by a 12.72-kb IS26 composite transposon containing the dfrA17-aadA5 cassettes and macrolide inactivation gene cluster mphA-mrx-mphR. The other one was an integron-free SGI1 and contained a 183-bp truncated S025 next to IS6100 and S044. PMID:25918148

  8. Computational study concerning the effect of some pesticides on the Proteus Mirabilis catalase activity

    NASA Astrophysics Data System (ADS)

    Isvoran, Adriana

    2016-03-01

    Assessment of the effects of the herbicides nicosulfuron and chlorsulfuron and the fungicides difenoconazole and drazoxlone upon catalase produced by soil microorganism Proteus mirabilis is performed using the molecular docking technique. The interactions of pesticides with the enzymes are predicted using SwissDock and PatchDock docking tools. There are correlations for predicted binding energy values for enzyme-pesticide complexes obtained using the two docking tools, all the considered pesticides revealing favorable binding to the enzyme, but only the herbicides bind to the catalytic site. These results suggest the inhibitory potential of chlorsulfuron and nicosulfuron on the catalase activity in soil.

  9. Sequence of the Proteus mirabilis urease accessory gene ureG.

    PubMed

    Sriwanthana, B; Island, M D; Mobley, H L

    1993-07-15

    We report the sequence of ureG, an accessory gene that is a part of the ure gene cluster of uropathogenic Proteus mirabilis and required for full enzymatic activity of urease. The 615-bp open reading frame predicts a M(r) 22,374 polypeptide, which contains a consensus amino acid (aa) sequence for ATP-binding. The polypeptide shares sequence homology with UreG of Escherichia coli (93% of identical aa), Klebsiella aerogenes (59%) and Helicobacter pylori (59%). PMID:8335248

  10. Molecular Characteristics of Salmonella Genomic Island 1 in Proteus mirabilis Isolates from Poultry Farms in China

    PubMed Central

    Lei, Chang-Wei; Zhang, An-Yun; Liu, Bi-Hui; Guan, Zhong-Bin; Xu, Chang-Wen; Xia, Qing-Qing; Cheng, Han; Zhang, Dong-Dong

    2014-01-01

    Six out of the 64 studied Proteus mirabilis isolates from 11 poultry farms in China contained Salmonella genomic island 1 (SGI1). PCR mapping showed that the complete nucleotide sequences of SGI1s ranged from 33.2 to 42.5 kb. Three novel variants, SGI1-W, SGI1-X, and SGI1-Y, have been characterized. Resistance genes lnuF, dfrA25, and qnrB2 were identified in SGI1 for the first time. PMID:25267683

  11. Two Novel Salmonella Genomic Island 1 Variants in Proteus mirabilis Isolates from Swine Farms in China

    PubMed Central

    Lei, Chang-Wei; Zhang, An-Yun; Liu, Bi-Hui; Yang, Li-Qin; Guan, Zhong-Bin; Xu, Chang-Wen; Zhang, Dong-Dong; Yang, Yong-Qiang

    2015-01-01

    Four different Salmonella genomic island 1 (SGI1) variants, including two novel variants, were characterized in one Salmonella enterica serovar Rissen sequence type ST1917 isolate and three Proteus mirabilis isolates from swine farms in China. One novel variant was derived from SGI1-B with the backbone gene S021 disrupted by a 12.72-kb IS26 composite transposon containing the dfrA17-aadA5 cassettes and macrolide inactivation gene cluster mphA-mrx-mphR. The other one was an integron-free SGI1 and contained a 183-bp truncated S025 next to IS6100 and S044. PMID:25918148

  12. Susceptibility to Polymyxin B of Penicillin G-induced Proteus mirabilis L Forms and Spheroplasts

    PubMed Central

    Teuber, Michael

    1969-01-01

    A polymyxin B-resistant strain of Proteus mirabilis was converted into L forms and spheroplasts in the presence of penicillin G. This treatment caused a 400-fold increase in polymyxin B susceptibility. The acquired susceptibility was in the range of the natural susceptibility reported for susceptible gram-negative bacteria (∼1 μg/ml). The high susceptibility to polymyxin B was lost as soon as the spheroplasts and L forms were allowed to reconvert into the bacillary form in penicillin-free media. This behavior is strong evidence that the natural resistance of Proteus strains to polymyxins is due to the impermeability of the outer cell wall structures to these antibiotic substances. PMID:4306537

  13. Effect of nutrient and stress factors on polysaccharides synthesis in Proteus mirabilis biofilm.

    PubMed

    Moryl, Magdalena; Kaleta, Aleksandra; Strzelecki, Kacper; Różalska, Sylwia; Różalski, Antoni

    2014-01-01

    The extracellular matrix in biofilm consists of water, proteins, polysaccharides, nucleic acids and phospholipids. Synthesis of these components is influenced by many factors, e.g. environment conditions or carbon source. The aim of the study was to analyse polysaccharides levels in Proteus mirabilis biofilms after exposure to stress and nutritional conditions. Biofilms of 22 P. mirabilis strains were cultivated for 24, 48, 72 hours, 1 and 2 weeks in tryptone soya broth or in modified media containing an additional amount of nutrients (glucose, albumin) or stress factors (cefotaxime, pH 4, nutrient depletion). Proteins and total polysaccharides levels were studied by Lowry and the phenol-sulphuric acid methods, respectively. Glycoproteins levels were calculated by ELLA with the use of selected lectins (WGA and HPA). For CLSM analysis dual fluorescent staining was applied with SYTO 13 and WGA-TRITC. In optimal conditions the levels of polysaccharides were from 0 to 442 μg/mg of protein and differed depending on the strains and cultivation time. The agents used in this study had a significant impact on the polysaccharides synthesis in the P. mirabilis biofilm. Among all studied components (depending on tested methods), glucose and cefotaxime stimulated the greatest production of polysaccharides by P. mirabilis strains (more than a twofold increase). For most tested strains the highest amounts of sugars were detected after one week of incubation. CLSM analysis confirmed the overproduction of N-acetyloglucosamine in biofilms after cultivation in nutrient and stress conditions, with the level 111-1134%, which varied depending on the P. mirabilis strain and the test factor. PMID:24644556

  14. Unique ability of the Proteus mirabilis capsule to enhance mineral growth in infectious urinary calculi.

    PubMed

    Dumanski, A J; Hedelin, H; Edin-Liljegren, A; Beauchemin, D; McLean, R J

    1994-07-01

    Struvite (MgNH4PO4.6H2O) calculi are a common complication of Proteus mirabilis urinary tract infections. Although urease is a major virulence factor in calculus formation, the polysaccharide capsule (CPS) of this organism also enhances struvite crystallization and growth in vitro (L. Clapham, R. J. C. McLean, J. C. Nickel, J. Downey, and J. W. Costerton, J. Crystal Growth 104:475-484, 1990). We obtained purified CPS, of known structure and varying anionic character, from P. mirabilis ATCC 49565 and several other organisms. Artificial urine was added to CPS, and the pH was elevated from 5.8 to 8.5 by the addition of urease or titration with 0.25 M NH4OH to induce struvite crystallization. Crystallization was measured by particle counting (Coulter counter), and the morphology (crystal habit) was examined by phase-contrast microscopy. In the presence of partially anionic P. mirabilis CPS, struvite formation occurred at a lower pH than in the absence of CPS or in the presence of other neutral, partially anionic, or anionic CPS. At pH 7.5 to 8.0, significantly more struvite crystals formed in the presence of P. mirabilis CPS than under other experimental conditions. With the exception of one polymer (curdlan) which did not bind Mg2+, enhancement of struvite formation by CPS polymers was inversely proportional to their Mg2+ binding ability. We speculate that the structure and partial anionic nature of P. mirabilis CPS enable it to enhance struvite formation by weakly concentrating Mg2+ ions during struvite crystal formation. This illustrates a new virulence aspect of bacterial CPS during infection. PMID:8005688

  15. Cytotoxicity of the HpmA hemolysin and urease of Proteus mirabilis and Proteus vulgaris against cultured human renal proximal tubular epithelial cells.

    PubMed

    Mobley, H L; Chippendale, G R; Swihart, K G; Welch, R A

    1991-06-01

    Proteus mirabilis, a common agent of nosocomially acquired and catheter-associated bacteriuria, can cause acute pyelonephritis. In ascending infections, bacteria colonize the bladder and ascend the ureters to the proximal tubules of the kidney. We postulate that Proteus species uses the HpmA hemolysin and urease to elicit tissue damage that allows entry of these bacteria into the kidney. To study this interaction, strains of Proteus mirabilis and P. vulgaris and their isogenic hemolysin-negative (hpmA) or isogenic urease-negative (ureC) constructs were overlaid onto cultures of human renal proximal tubular epithelial cells (HRPTEC) isolated from kidneys obtained by immediate autopsy. Cytotoxicity was measured by release of soluble lactate dehydrogenase (LDH). Two strains of P. mirabilis inoculated at 10(6) CFU caused a release of 80% of total LDH after 6 h, whereas pyelonephritogenic hemolytic Escherichia coli CFT073 released only 25% at 6 h (P less than 0.012). Ten P. mirabilis isolates and five P. vulgaris isolates were all hemolytic and cytotoxic and produced urease which was induced by urea. The HpmA hemolysin is apparently responsible for the majority of cytotoxicity in vitro since the hemolysin-negative (hpmA) mutants of P. mirabilis and P. vulgaris were significantly less cytotoxic than wild-type strains. P. mirabilis WPM111 (hemolysin negative) was used to test the effect of urease-catalyzed urea hydrolysis on HRPTEC viability. In the presence of 50 mM urea, WPM111 caused the release of 42% of LDH versus 1% at 6 h in the absence of substrate (P = 0.003). We conclude that the HpmA hemolysin of Proteus species acts as a potent cytotoxin against HRPTEC. In addition, urease apparently contributes to this process when substrate urea is available. PMID:2037363

  16. Tuberculous Otitis with Proteus mirabilis Co-Infection: An Unsuspected Presentation Encountered in Clinical Practice

    PubMed Central

    Sardar, Moumita; Jadhav, Savita Vivek; Vyawahare, Chanda; Misra, Rabindranath

    2014-01-01

    Tuberculosis, a contagious bacterial disease which is caused by Mycobacterium tuberculosis, primarily involves the lungs.Though Pulmonary tuberculosis (PTB) is the commonest clinical presentation, there is a need for alertness towards uncommon presentations which involve other organs. Tuberculous otitis media (TOM) is one such rare presentation seen in paediatric practice. It is characterized by painless otorrhoea which fails to respond to the routine antibacterial treatment. TOM usually occurs secondary to PTB. Here is a case of tuberculous otitis media with Proteus mirabilis co-infection, with no evidence of PTB. In the sample of ear discharge obtained from the patient, acid fast bacilli were demonstrated on direct microscopy after Ziehl-Neelsen staining. Culture done on Lowenstein-Jensen medium demonstrated slow-growing Mycobacterium. Bacteriological culture and identification helped in isolating Proteus mirabilis. PCR, followed by Line- Probe Assay for early identification and susceptibility testing to primary drugs, was done. Further, patient tested negative for the Mantoux test. Patient was enrolled in National Tuberculosis programme- RNTCP. This case emphasizes on one of the less common presentations of a common disease. A high clinical suspicion and laboratory confirmation are required for appropriate patient management. PMID:24995225

  17. The Ciprofloxacin Impact on Biofilm Formation by Proteus Mirabilis and P. Vulgaris Strains

    PubMed Central

    Kwiecinska-Pirog, Joanna; Skowron, Krzysztof; Bartczak, Wojciech; Gospodarek-Komkowska, Eugenia

    2016-01-01

    Background Proteus spp. bacilli belong to opportunistic human pathogens, which are primarily responsible for urinary tract and wound infections. An important virulence factor is their ability to form biofilms that greatly reduce the effectiveness of antibiotics in the site of infection. Objectives The aim of this study was to determine the value of the minimum concentration of ciprofloxacin that eradicates a biofilm of Proteus spp. strains. Materials and Methods A biofilm formation of 20 strains of P. mirabilis and 20 strains of P. vulgaris were evaluated by a spectrophotometric method using 0.1% 2, 3, 5-Triphenyl-tetrazolium chloride solution (TTC, AVANTORTM). On the basis of the results of the absorbance of the formazan, a degree of reduction of biofilm and minimum biofilm eradication (MBE) values of MBE50 and MBE90 were determined. Results All tested strains formed a biofilm. A value of 1.0 μg/mL ciprofloxacin is MBE50 for the strains of both tested species. An MBE90 value of ciprofloxacin for isolates of P. vulgaris was 2 μg/mL and for P. mirabilis was 512 μg/mL. Conclusions Minimum biofilm eradication values of ciprofloxacin obtained in the study are close to the values of the minimal inhibition concentration (MIC). PMID:27303616

  18. Hemagglutinin, urease, and hemolysin production by Proteus mirabilis from clinical sources.

    PubMed

    Mobley, H L; Chippendale, G R

    1990-03-01

    Proteus mirabilis, a common cause of urinary tract infection, can lead to serious complications including pyelonephritis. Adherence factors, urease, and hemolysin may be virulence determinants. These factors were compared for bacteria cultured from 16 patients with acute pyelonephritis and 35 with catheter-associated bacteriuria and for 20 fecal isolates. Pyelonephritis isolates were more likely (P less than .05) to express the mannose-resistant/Proteus-like (MR/P) hemagglutinin in the absence of mannose-resistant/Klebsiella-like (MR/K) hemagglutinin than were catheter-associated or fecal isolates. Pyelonephritis isolates produced urease activity of 63 +/- 27 (mean +/- SD) mumol of NH3/min/mg of protein, not significantly different from catheter-associated or fecal isolates. Hybridization of Southern blots of P. mirabilis chromosomal DNA with two urease gene probes demonstrated that urease gene sequences were conserved in all isolates. Geometric mean of reciprocal hemolytic titers for pyelonephritis isolates was 27.9; for urinary catheter isolates, 18.0; and for fecal isolates, 55.7 (not significantly different, P greater than .1). Although in vivo expression of urease and hemolysin may not be reliable indexes of virulence, MR/P hemagglutination in the absence of MR/K hemagglutination may be necessary for development of pyelonephritis. PMID:2179424

  19. Modified insulator semiconductor electrode with functionalized nanoparticles for Proteus mirabilis bacteria biosensor development.

    PubMed

    Braham, Yosra; Barhoumi, Houcine; Maaref, Abderrazak; Bakhrouf, Amina; Jaffrezic-Renault, Nicole

    2013-12-01

    The development of enzymatic sensors for biological purposes such as biomedicine, pharmacy, food industry, and environmental toxicity requires the purification step of the enzyme. To prevent the loss of the enzyme activity, a new strategy is held in order to immobilize the bacteria. It will constitute the biological sensing element leading to a high operational stability and multiple adaptations to various conditions such as temperature, pH and ionic strength changes. In this work we describe the development of a urea biosensor by immobilizing Proteus mirabilis bacteria onto an insulator-semiconductor electrode on functionalized Fe3O4 nanoparticles (NPs), using cationic, Poly (allylamine hydrochloride) then anionic, Poly (sodium 4-styrenesulfonate) polyelectrolytes, BSA (serum bovin albumin), and glutaraldehyde as a cross-linking agent. The response of P. mirabilis to urea addition is evaluated in homogeneous and heterogeneous phases. Before the immobilization step, the activity of urease produced from the P. mirabilis bacteria was attempted using the ion ammonium selective electrodes (ISEs). Adhesion of the bacteria cells on IS electrodes have been studied using contact angle measurements. After immobilization of the bacteria, on the (Si/SiO2/Si3N4) and (Si/SiO2) substrates, the relationship between the evolution of the flat band potential ∆VFB and the urea concentration is found to be linear for values ranging from 10(-2)M to 10(-5)M. PMID:24094152

  20. Role of swarming in the formation of crystalline Proteus mirabilis biofilms on urinary catheters.

    PubMed

    Jones, Brian V; Mahenthiralingam, E; Sabbuba, N A; Stickler, D J

    2005-09-01

    The care of many patients undergoing long-term bladder catheterization is frequently complicated by infection with Proteus mirabilis. These organisms colonize the catheter, forming surface biofilm communities, and their urease activity generates alkaline conditions under which crystals of magnesium ammonium phosphate and calcium phosphate are formed and become trapped in the biofilm. As the biofilm develops it obstructs the flow of urine through the catheter, causing either incontinence due to leakage of urine around the catheter or retention of urine in the bladder. The aim of this study was to investigate the role of the surface-associated swarming motility of P. mirabilis in the initiation and development of these crystalline catheter biofilms. A set of stable transposon mutants with a range of swimming and swarming abilities were tested for their ability to colonize silicone surfaces in a parallel-plate flow cell. A laboratory model of the catheterized bladder was then used to examine their ability to form crystalline, catheter-blocking biofilms. The results showed that neither swarming nor swimming motility was required for the attachment of P. mirabilis to silicone. Mutants deficient in swarming and swimming were also capable of forming crystalline biofilms and blocking catheters more rapidly than the wild-type strain. PMID:16091430

  1. A Sensor To Detect the Early Stages in the Development of Crystalline Proteus mirabilis Biofilm on Indwelling Bladder Catheters

    PubMed Central

    Stickler, D. J.; Jones, S. M.; Adusei, G. O.; Waters, M. G.

    2006-01-01

    A simple sensor has been developed to detect the early stages of urinary catheter encrustation and avoid the clinical crises induced by catheter blockage. In laboratory models of colonization by Proteus mirabilis, the sensor signaled encrustation at an average time of 43 h before catheters were blocked with crystalline biofilm. PMID:16597888

  2. The RNA Chaperone Hfq Is Involved in Stress Tolerance and Virulence in Uropathogenic Proteus mirabilis

    PubMed Central

    Wang, Min-Cheng; Liaw, Shwu-Jen

    2014-01-01

    Hfq is a bacterial RNA chaperone involved in the riboregulation of diverse genes via small noncoding RNAs. Here, we show that Hfq is critical for the uropathogenic Proteus mirabilis to effectively colonize the bladder and kidneys in a murine urinary tract infection (UTI) model and to establish burned wound infection of the rats. In this regard, we found the hfq mutant induced higher IL-8 and MIF levels of uroepithelial cells and displayed reduced intra-macrophage survival. The loss of hfq affected bacterial abilities to handle H2O2 and osmotic pressures and to grow at 50°C. Relative to wild-type, the hfq mutant had reduced motility, fewer flagella and less hemolysin expression and was less prone to form biofilm and to adhere to and invade uroepithelial cells. The MR/P fimbrial operon was almost switched to the off phase in the hfq mutant. In addition, we found the hfq mutant exhibited an altered outer membrane profile and had higher RpoE expression, which indicates the hfq mutant may encounter increased envelope stress. With the notion of envelope disturbance in the hfq mutant, we found increased membrane permeability and antibiotic susceptibilities in the hfq mutant. Finally, we showed that Hfq positively regulated the RpoS level and tolerance to H2O2 in the stationary phase seemed largely mediated through the Hfq-dependent RpoS expression. Together, our data indicate that Hfq plays a critical role in P. mirabilis to establish UTIs by modulating stress responses, surface structures and virulence factors. This study suggests Hfq may serve as a scaffold molecule for development of novel anti-P. mirabilis drugs and P. mirabilis hfq mutant is a vaccine candidate for preventing UTIs. PMID:24454905

  3. Elucidating the Genetic Basis of Crystalline Biofilm Formation in Proteus mirabilis

    PubMed Central

    Holling, N.; Lednor, D.; Tsang, S.; Bissell, A.; Campbell, L.; Nzakizwanayo, J.; Dedi, C.; Hawthorne, J. A.; Hanlon, G.; Ogilvie, L. A.; Salvage, J. P.; Patel, B. A.; Barnes, L. M.

    2014-01-01

    Proteus mirabilis forms extensive crystalline biofilms on urethral catheters that occlude urine flow and frequently complicate the management of long-term-catheterized patients. Here, using random transposon mutagenesis in conjunction with in vitro models of the catheterized urinary tract, we elucidate the mechanisms underpinning the formation of crystalline biofilms by P. mirabilis. Mutants identified as defective in blockage of urethral catheters had disruptions in genes involved in nitrogen metabolism and efflux systems but were unaffected in general growth, survival in bladder model systems, or the ability to elevate urinary pH. Imaging of biofilms directly on catheter surfaces, along with quantification of levels of encrustation and biomass, confirmed that the mutants were attenuated specifically in the ability to form crystalline biofilms compared with that of the wild type. However, the biofilm-deficient phenotype of these mutants was not due to deficiencies in attachment to catheter biomaterials, and defects in later stages of biofilm development were indicated. For one blocking-deficient mutant, the disrupted gene (encoding a putative multidrug efflux pump) was also found to be associated with susceptibility to fosfomycin, and loss of this system or general inhibition of efflux pumps increased sensitivity to this antibiotic. Furthermore, homologues of this system were found to be widely distributed among other common pathogens of the catheterized urinary tract. Overall, our findings provide fundamental new insight into crystalline biofilm formation by P. mirabilis, including the link between biofilm formation and antibiotic resistance in this organism, and indicate a potential role for efflux pump inhibitors in the treatment or prevention of P. mirabilis crystalline biofilms. PMID:24470471

  4. Complete genome sequence of uropathogenic Proteus mirabilis, a master of both adherence and motility.

    PubMed

    Pearson, Melanie M; Sebaihia, Mohammed; Churcher, Carol; Quail, Michael A; Seshasayee, Aswin S; Luscombe, Nicholas M; Abdellah, Zahra; Arrosmith, Claire; Atkin, Becky; Chillingworth, Tracey; Hauser, Heidi; Jagels, Kay; Moule, Sharon; Mungall, Karen; Norbertczak, Halina; Rabbinowitsch, Ester; Walker, Danielle; Whithead, Sally; Thomson, Nicholas R; Rather, Philip N; Parkhill, Julian; Mobley, Harry L T

    2008-06-01

    The gram-negative enteric bacterium Proteus mirabilis is a frequent cause of urinary tract infections in individuals with long-term indwelling catheters or with complicated urinary tracts (e.g., due to spinal cord injury or anatomic abnormality). P. mirabilis bacteriuria may lead to acute pyelonephritis, fever, and bacteremia. Most notoriously, this pathogen uses urease to catalyze the formation of kidney and bladder stones or to encrust or obstruct indwelling urinary catheters. Here we report the complete genome sequence of P. mirabilis HI4320, a representative strain cultured in our laboratory from the urine of a nursing home patient with a long-term (> or =30 days) indwelling urinary catheter. The genome is 4.063 Mb long and has a G+C content of 38.88%. There is a single plasmid consisting of 36,289 nucleotides. Annotation of the genome identified 3,685 coding sequences and seven rRNA loci. Analysis of the sequence confirmed the presence of previously identified virulence determinants, as well as a contiguous 54-kb flagellar regulon and 17 types of fimbriae. Genes encoding a potential type III secretion system were identified on a low-G+C-content genomic island containing 24 intact genes that appear to encode all components necessary to assemble a type III secretion system needle complex. In addition, the P. mirabilis HI4320 genome possesses four tandem copies of the zapE metalloprotease gene, genes encoding six putative autotransporters, an extension of the atf fimbrial operon to six genes, including an mrpJ homolog, and genes encoding at least five iron uptake mechanisms, two potential type IV secretion systems, and 16 two-component regulators. PMID:18375554

  5. Elucidating the genetic basis of crystalline biofilm formation in Proteus mirabilis.

    PubMed

    Holling, N; Lednor, D; Tsang, S; Bissell, A; Campbell, L; Nzakizwanayo, J; Dedi, C; Hawthorne, J A; Hanlon, G; Ogilvie, L A; Salvage, J P; Patel, B A; Barnes, L M; Jones, B V

    2014-04-01

    Proteus mirabilis forms extensive crystalline biofilms on urethral catheters that occlude urine flow and frequently complicate the management of long-term-catheterized patients. Here, using random transposon mutagenesis in conjunction with in vitro models of the catheterized urinary tract, we elucidate the mechanisms underpinning the formation of crystalline biofilms by P. mirabilis. Mutants identified as defective in blockage of urethral catheters had disruptions in genes involved in nitrogen metabolism and efflux systems but were unaffected in general growth, survival in bladder model systems, or the ability to elevate urinary pH. Imaging of biofilms directly on catheter surfaces, along with quantification of levels of encrustation and biomass, confirmed that the mutants were attenuated specifically in the ability to form crystalline biofilms compared with that of the wild type. However, the biofilm-deficient phenotype of these mutants was not due to deficiencies in attachment to catheter biomaterials, and defects in later stages of biofilm development were indicated. For one blocking-deficient mutant, the disrupted gene (encoding a putative multidrug efflux pump) was also found to be associated with susceptibility to fosfomycin, and loss of this system or general inhibition of efflux pumps increased sensitivity to this antibiotic. Furthermore, homologues of this system were found to be widely distributed among other common pathogens of the catheterized urinary tract. Overall, our findings provide fundamental new insight into crystalline biofilm formation by P. mirabilis, including the link between biofilm formation and antibiotic resistance in this organism, and indicate a potential role for efflux pump inhibitors in the treatment or prevention of P. mirabilis crystalline biofilms. PMID:24470471

  6. Novel Insights into the Proteus mirabilis Crystalline Biofilm Using Real-Time Imaging

    PubMed Central

    Wilks, Sandra A.; Fader, Mandy J.; Keevil, C. William

    2015-01-01

    The long-term use of indwelling catheters results in a high risk from urinary tract infections (UTI) and blockage. Blockages often occur from crystalline deposits, formed as the pH rises due to the action of urease-producing bacteria; the most commonly found species being Proteus mirabilis. These crystalline biofilms have been found to develop on all catheter materials with P. mirabilis attaching to all surfaces and forming encrustations. Previous studies have mainly relied on electron microscopy to describe this process but there remains a lack of understanding into the stages of biofilm formation. Using an advanced light microscopy technique, episcopic differential interference contrast (EDIC) microscopy combined with epifluorescence (EF), we describe a non-destructive, non-contact, real-time imaging method used to track all stages of biofilm development from initial single cell attachment to complex crystalline biofilm formation. Using a simple six-well plate system, attachment of P. mirabilis (in artificial urine) to sections of silicone and hydrogel latex catheters was tracked over time (up to 24 days). Using EDIC and EF we show how initial attachment occurred in less than 1 h following exposure to P. mirabilis. This was rapidly followed by an accumulation of an additional material (indicated to be carbohydrate based using lectin staining) and the presence of highly elongated, motile cells. After 24 h exposure, a layer developed above this conditioning film and within 4 days the entire surface (of both catheter materials) was covered with diffuse crystalline deposits with defined crystals embedded. Using three-dimensional image reconstruction software, cells of P. mirabilis were seen covering the crystal surfaces. EDIC microscopy could resolve these four components of the complex crystalline biofilm and the close relationship between P. mirabilis and the crystals. This real-time imaging technique permits study of this complex biofilm development with no risk

  7. Novel Insights into the Proteus mirabilis Crystalline Biofilm Using Real-Time Imaging.

    PubMed

    Wilks, Sandra A; Fader, Mandy J; Keevil, C William

    2015-01-01

    The long-term use of indwelling catheters results in a high risk from urinary tract infections (UTI) and blockage. Blockages often occur from crystalline deposits, formed as the pH rises due to the action of urease-producing bacteria; the most commonly found species being Proteus mirabilis. These crystalline biofilms have been found to develop on all catheter materials with P. mirabilis attaching to all surfaces and forming encrustations. Previous studies have mainly relied on electron microscopy to describe this process but there remains a lack of understanding into the stages of biofilm formation. Using an advanced light microscopy technique, episcopic differential interference contrast (EDIC) microscopy combined with epifluorescence (EF), we describe a non-destructive, non-contact, real-time imaging method used to track all stages of biofilm development from initial single cell attachment to complex crystalline biofilm formation. Using a simple six-well plate system, attachment of P. mirabilis (in artificial urine) to sections of silicone and hydrogel latex catheters was tracked over time (up to 24 days). Using EDIC and EF we show how initial attachment occurred in less than 1 h following exposure to P. mirabilis. This was rapidly followed by an accumulation of an additional material (indicated to be carbohydrate based using lectin staining) and the presence of highly elongated, motile cells. After 24 h exposure, a layer developed above this conditioning film and within 4 days the entire surface (of both catheter materials) was covered with diffuse crystalline deposits with defined crystals embedded. Using three-dimensional image reconstruction software, cells of P. mirabilis were seen covering the crystal surfaces. EDIC microscopy could resolve these four components of the complex crystalline biofilm and the close relationship between P. mirabilis and the crystals. This real-time imaging technique permits study of this complex biofilm development with no risk

  8. Visualization of Proteus mirabilis within the matrix of urease-induced bladder stones during experimental urinary tract infection.

    PubMed

    Li, Xin; Zhao, Hui; Lockatell, C Virginia; Drachenberg, Cinthia B; Johnson, David E; Mobley, Harry L T

    2002-01-01

    The virulence of a urease-negative mutant of uropathogenic Proteus mirabilis and its wild-type parent strain was assessed by using a CBA mouse model of catheterized urinary tract infection. Overall, catheterized mice were significantly more susceptible than uncatheterized mice to infection by wild-type P. mirabilis. At a high inoculum, the urease-negative mutant successfully colonized bladders of catheterized mice but did not cause urolithiasis and was still severely attenuated in its ability to ascend to kidneys. Using confocal laser scanning microscopy and scanning electron microscopy, we demonstrated the presence of P. mirabilis within the urease-induced stone matrix. Alizarin red S staining was used to detect calcium-containing deposits in bladder and kidney tissues of P. mirabilis-infected mice. PMID:11748205

  9. First Report of an OXA-48-Producing Multidrug-Resistant Proteus mirabilis Strain from Gaza, Palestine

    PubMed Central

    Chen, Liang; Chavda, Kalyan D.; Mediavilla, Jose R.; Jacobs, Michael R.; Bonomo, Robert A.

    2015-01-01

    We report the first multidrug-resistant Proteus mirabilis strain producing the carbapenemase OXA-48 (Pm-OXA-48) isolated at Al-Shifa hospital in Gaza, Palestine. Draft genome sequencing of Pm-OXA-48 identified 16 antimicrobial resistance genes, encoding resistance to β-lactams, aminoglycosides, fluoroquinolones, phenicols, streptothricin, tetracycline, and trimethoprim-sulfamethoxazole. Complete sequencing of the blaOXA-48-harboring plasmid revealed that it is a 72 kb long IncL/M plasmid, harboring carbapenemase gene blaOXA-48, extended spectrum β-lactamase gene blaCTX-M-14, and aminoglycoside resistance genes strA, strB, and aph(3′)-VIb. PMID:25896692

  10. Interferences in the Optimization of the MTT Assay for Viability Estimation of Proteus mirabilis

    PubMed Central

    Grela, Ewa; Ząbek, Adam; Grabowiecka, Agnieszka

    2015-01-01

    Background: The chromogenic assay based on MTT bioreduction was adapted to Proteus mirabilis viability estimations. We primarily intended to use the assay for the evaluation of novel antimicrobial compounds, including structures with possible permeabilizing activity. Therefore, the influence of basic permeabilizing agents like Triton X-100 and EDTA upon the MTT assay was studied. Methods: 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) was used as a substrate for the whole-cell dehydrogenase activity estimations. The amount of formazan product was evaluated in the end-point reactions terminated with acidic isopropanol or in the continuous reactions run in the presence of low detergent concentrations. Results: The generally established procedure of the end product dissolution with acidic isopropanol caused absorbance instability which strongly affected the results accuracy. The disadvantage was especially pronounced when the assay was conducted in Mueller-Hinton Broth. PBS with 0.01% Triton X-100 used as the reaction medium allowed to omit the formazan dissolution step and follow the microbial MTT reduction in a continuous mode. It was observed that in Proteus mirabilis with a compromised outer membrane the assay score was artificially increased above the untreated control. Conclusion: The dependence of the assay results on the cell integrity might be a major drawback of the MTT assay application for the evaluation of novel antimicrobials against Gram-negative microorganisms. On the other hand, the MTT reduction could be conveniently used to assay the permeabilization degree in biotechnological protocols. PMID:26605010

  11. Proteus mirabilis urease: genetic organization, regulation, and expression of structural genes.

    PubMed

    Jones, B D; Mobley, H L

    1988-08-01

    Proteus mirabilis, a cause of serious urinary tract infection, produces urease, an important virulence factor for this species. The enzyme hydrolyzes urea to CO2 and NH3, which initiates struvite or apatite stone formation. Genes encoding urease were localized on a P. mirabilis chromosomal DNA gene bank clone in Escherichia coli by deletion analysis, subcloning, Bal31 nuclease digestion, transposon Tn5 mutagenesis, and in vitro transcription-translation. A region of DNA between 4.0 and 5.4 kilobases (kb) in length was necessary for urease activity and was located within an 18.5-kb EcoRI fragment. The operon was induced by urea and encoded a multimeric, cytoplasmic enzyme comprising subunit polypeptides of 8,000, 10,000, and 73,000 daltons that were encoded by a single polycistronic mRNA and transcribed in that order. Seventeen urease-negative transposon insertions were isolated that synthesized either none of the structural subunit polypeptides, the 8,000-dalton polypeptide alone, or both the 8,000- and 10,000-dalton subunit polypeptides. The molecular weight of the native enzyme was estimated to be 212,000 by Superose-6 chromatography. Homologous sequences encoding the urease of Providencia stuartii synthesized subunit polypeptides of similar sizes and showed a similar genetic arrangement. However, restriction maps of the operons from the two species were distinct, indicating significant divergence. PMID:2841283

  12. Multiple proteins encoded within the urease gene complex of Proteus mirabilis.

    PubMed

    Walz, S E; Wray, S K; Hull, S I; Hull, R A

    1988-03-01

    Chromosomal DNA fragments from a uropathogenic isolate of Proteus mirabilis were inserted into the cosmid vector pHC79 to construct a genomic library in Escherichia coli HB101. A urease-positive recombinant cosmid, designated pSKW1, was recovered. Sequential recombinant manipulation of pSKW1 yielded a 10.2-kilobase plasmid, designated pSKW4, which encoded three urease isozymes with electrophoretic mobilities identical to those of the donor P. mirabilis strain. Plasmid pSKW4 gene sequences encode seven proteins designated 68K (apparent molecular weight, of 68,000), 28K, 25K, 22.5K, 18.5K, 7.5K, and 5.2K within the limits of the urease gene complex. Insertion mutations in genes encoding the 68K, 28K, 25K, 22.5K, 7.5K, and 5.2K proteins resulted in complete or partial (22.5K) loss of urease activity. There was no reduction in urease activity when the gene encoding the 18.5K protein was inactivated. PMID:2830226

  13. Interaction of Proteus mirabilis urease apoenzyme and accessory proteins identified with yeast two-hybrid technology.

    PubMed

    Heimer, S R; Mobley, H L

    2001-02-01

    Proteus mirabilis, a gram-negative bacterium associated with complicated urinary tract infections, produces a metalloenzyme urease which hydrolyzes urea to ammonia and carbon dioxide. The apourease is comprised of three structural subunits, UreA, UreB, and UreC, assembled as a homotrimer of individual UreABC heterotrimers (UreABC)(3). To become catalytically active, apourease acquires divalent nickel ions through a poorly understood process involving four accessory proteins, UreD, UreE, UreF, and UreG. While homologues of UreD, UreF, and UreG have been copurified with apourease, it remains unclear specifically how these polypeptides associate with the apourease or each other. To identify interactions among P. mirabilis accessory proteins, in vitro immunoprecipitation and in vivo yeast two-hybrid assays were employed. A complex containing accessory protein UreD and structural protein UreC was isolated by immunoprecipitation and characterized with immunoblots. This association occurs independently of coaccessory proteins UreE, UreF, and UreG and structural protein UreA. In a yeast two-hybrid screen, UreD was found to directly interact in vivo with coaccessory protein UreF. Unique homomultimeric interactions of UreD and UreF were also detected in vivo. To substantiate the study of urease proteins with a yeast two-hybrid assay, previously described UreE dimers and homomultimeric UreA interactions among apourease trimers were confirmed in vivo. Similarly, a known structural interaction involving UreA and UreC was also verified. This report suggests that in vivo, P. mirabilis UreD may be important for recruitment of UreF to the apourease and that crucial homomultimeric associations occur among these accessory proteins. PMID:11157956

  14. Pyrophosphate inhibition of Proteus mirabilis-induced struvite crystallization in vitro.

    PubMed

    McLean, R J; Downey, J; Clapham, L; Wilson, J W; Nickel, J C

    1991-08-30

    Struvite (MgNH4PO4.6H2O) crystals, the major mineral component of infectious urinary calculi, were produced in vitro by growth of a clinical isolate of Proteus mirabilis in artificial urine. P. mirabilis growth and urease-induced struvite production were monitored by phase contrast light microscopy and measurements of urease activity, pH, ammonia concentrations, turbidity, and culture viability. In the absence of pyrophosphate, struvite crystals appeared within 3-5 h due to the urease-induced elevation of pH and initially assumed a planar or 'X-shaped' crystal habit (morphology) characteristic of rapid growth. When pyrophosphate was present, initial precipitation and crystal appearance were significantly impaired and precipitates were largely amorphous. When crystals did appear (usually after 7 or 8 h) they were misshapen or octahedral in shape indicative of very slow growth. X-ray diffraction and Fourier transform infrared spectroscopy (FTIR) identified all crystals as struvite. Trace contaminates of carbonate-apatite (Ca10(PO4)6CO3) or newberyite (MgHPO4.H2O) were produced only in the absence of pyrophosphate. P. mirabilis viability and culture pH elevation were unaffected by the addition of pyrophosphate, whereas urease activity and ammonia concentrations were marginally reduced. Struvite could also be produced chemically by titration of the artificial urine with NH4OH. If pyrophosphate was present during titration, the same inhibitory effect on crystal growth occurred, so it is unlikely that urease inhibition is important. Lowering of pyrophosphate concentration from 13-0.45 mumol/l did not reduce its inhibitory activity so it is unlikely to act by chelating free Mg2+. We propose that pyrophosphate inhibits struvite growth principally through direct interference with the chemical mechanisms involved in crystal nucleation and growth, because of its effectiveness at very low concentrations. PMID:1663844

  15. Proteus mirabilis urease: nucleotide sequence determination and comparison with jack bean urease.

    PubMed

    Jones, B D; Mobley, H L

    1989-12-01

    Proteus mirabilis, a common cause of urinary tract infection, produces a potent urease that hydrolyzes urea to NH3 and CO2, initiating kidney stone formation. Urease genes, which were localized to a 7.6-kilobase-pair region of DNA, were sequenced by using the dideoxy method. Six open reading frames were found within a region of 4,952 base pairs which were predicted to encode polypeptides of 31.0 (ureD), 11.0 (ureA), 12.2 (ureB), 61.0 (ureC), 17.9 (ureE), and 23.0 (ureF) kilodaltons (kDa). Each open reading frame was preceded by a ribosome-binding site, with the exception of ureE. Putative promoterlike sequences were identified upstream of ureD, ureA, and ureF. Possible termination sites were found downstream of ureD, ureC, and ureF. Structural subunits of the enzyme were encoded by ureA, ureB, and ureC and were translated from a single transcript in the order of 11.0, 12.2, and 61.0 kDa. When the deduced amino acid sequences of the P. mirabilis urease subunits were compared with the amino acid sequence of the jack bean urease, significant amino acid similarity was observed (58% exact matches; 73% exact plus conservative replacements). The 11.0-kDa polypeptide aligned with the N-terminal residues of the plant enzyme, the 12.2-kDa polypeptide lined up with internal residues, and the 61.0-kDa polypeptide matched with the C-terminal residues, suggesting an evolutionary relationship of the urease genes of jack bean and P. mirabilis. PMID:2687233

  16. Proteus mirabilis biofilm protection against struvite crystal dissolution and its implications in struvite urolithiasis.

    PubMed

    McLean, R J; Lawrence, J R; Korber, D R; Caldwell, D E

    1991-10-01

    Proteus mirabilis biofilm formation, struvite (MgNH4PO4.6H2O) crystal formation and dissolution in an artificial urine mixture were monitored using computer-enhanced microscopy (CEM) and a 1 x 3 mm. glass flow cell. Image analysis showed that P. mirabilis biofilm formation did not occur to any extent at macroenvironment flow rates greater than two mL/h (equivalent to a microenvironment flow rate of less than 5 microns./sec). Essentially, cells attached to glass surfaces, grew slowly and divided. Daughter cells were generally released directly into the medium where they could then presumably colonize other regions. Microcolonies formed by the adhesion of aggregates of cells from the medium, and over time grew into biofilms. Struvite crystallization due to urease activity and pH elevation above neutrality, was preceded by the deposition of organic matter on the glass surface, followed by the appearance of a number of tiny (one to two microns.) crystals. Crystals forming within a biofilm at low dilution rates took on a characteristic twinned or "X-shaped" appearance (crystal habit) indicative of a rapid growth rate. Those forming outside the biofilm took on a more tabular appearance reflecting their slower growth. When the macroenvironment flow rate of artificial urine (initial pH 5.8) in the glass flow cell was increased from two mL/h to four mL/h, struvite crystals not associated with biofilms dissolved within five to 10 min. Crystals entrapped within the P. mirabilis biofilm withstood flow rates up to 200 mL/h presumably due to the maintenance of an alkaline Mg-saturated microenvironment within the biofilm. These observations may suggest a mechanism by which struvite calculi can grow in spite of neutral or acidic urine pH and resist mild acidification therapy. PMID:1895441

  17. Bacteriophage Can Prevent Encrustation and Blockage of Urinary Catheters by Proteus mirabilis.

    PubMed

    Nzakizwanayo, Jonathan; Hanin, Aurélie; Alves, Diana R; McCutcheon, Benjamin; Dedi, Cinzia; Salvage, Jonathan; Knox, Karen; Stewart, Bruce; Metcalfe, Anthony; Clark, Jason; Gilmore, Brendan F; Gahan, Cormac G M; Jenkins, A Toby A; Jones, Brian V

    2015-01-01

    Proteus mirabilis forms dense crystalline biofilms on catheter surfaces that occlude urine flow, leading to serious clinical complications in long-term catheterized patients, but there are presently no truly effective approaches to control catheter blockage by this organism. This study evaluated the potential for bacteriophage therapy to control P. mirabilis infection and prevent catheter blockage. Representative in vitro models of the catheterized urinary tract, simulating a complete closed drainage system as used in clinical practice, were employed to evaluate the performance of phage therapy in preventing blockage. Models mimicking either an established infection or early colonization of the catheterized urinary tract were treated with a single dose of a 3-phage cocktail, and the impact on time taken for catheters to block, as well as levels of crystalline biofilm formation, was measured. In models of established infection, phage treatment significantly increased time taken for catheters to block (∼3-fold) compared to untreated controls. However, in models simulating early-stage infection, phage treatment eradicated P. mirabilis and prevented blockage entirely. Analysis of catheters from models of established infection 10 h after phage application demonstrated that phage significantly reduced crystalline biofilm formation but did not significantly reduce the level of planktonic cells in the residual bladder urine. Taken together, these results show that bacteriophage constitute a promising strategy for the prevention of catheter blockage but that methods to deliver phage in sufficient numbers and within a key therapeutic window (early infection) will also be important to the successful application of phage to this problem. PMID:26711744

  18. Proteus mirabilis MR/P fimbrial operon: genetic organization, nucleotide sequence, and conditions for expression.

    PubMed Central

    Bahrani, F K; Mobley, H L

    1994-01-01

    Proteus mirabilis, an agent of urinary tract infection, expresses at least four fimbrial types. Among these are the MR/P (mannose-resistant/Proteus-like) fimbriae. MrpA, the structural subunit, is optimally expressed at 37 degrees C in Luria broth cultured statically for 48 h by each of seven strains examined. Genes encoding this fimbria were isolated, and the complete nucleotide sequence was determined. The mrp gene cluster encoded by 7,293 bp predicts eight polypeptides: MrpI (22,133 Da), MrpA (17,909 Da), MrpB (19,632 Da), MrpC (96,823 Da), MrpD (27,886 Da), MrpE (19,470 Da), MrpF (17,363 Da), and MrpG (13,169 Da). mrpI is upstream of the gene encoding the major structural subunit gene mrpA and is transcribed in the direction opposite to that of the rest of the operon. All predicted polypeptides share > or = 25% amino acid identity with at least one other enteric fimbrial gene product encoded by the pap, fim, smf, fan, or mrk gene clusters. Images PMID:7910820

  19. Regulation of the Min Cell Division Inhibition Complex by the Rcs Phosphorelay in Proteus mirabilis

    PubMed Central

    Howery, Kristen E.; Clemmer, Katy M.; Şimşek, Emrah; Kim, Minsu

    2015-01-01

    ABSTRACT A key regulator of swarming in Proteus mirabilis is the Rcs phosphorelay, which represses flhDC, encoding the master flagellar regulator FlhD4C2. Mutants in rcsB, the response regulator in the Rcs phosphorelay, hyperswarm on solid agar and differentiate into swarmer cells in liquid, demonstrating that this system also influences the expression of genes central to differentiation. To gain a further understanding of RcsB-regulated genes involved in swarmer cell differentiation, transcriptome sequencing (RNA-Seq) was used to examine the RcsB regulon. Among the 133 genes identified, minC and minD, encoding cell division inhibitors, were identified as RcsB-activated genes. A third gene, minE, was shown to be part of an operon with minCD. To examine minCDE regulation, the min promoter was identified by 5′ rapid amplification of cDNA ends (5′-RACE), and both transcriptional lacZ fusions and quantitative real-time reverse transcriptase (qRT) PCR were used to confirm that the minCDE operon was RcsB activated. Purified RcsB was capable of directly binding the minC promoter region. To determine the role of RcsB-mediated activation of minCDE in swarmer cell differentiation, a polar minC mutation was constructed. This mutant formed minicells during growth in liquid, produced shortened swarmer cells during differentiation, and exhibited decreased swarming motility. IMPORTANCE This work describes the regulation and role of the MinCDE cell division system in P. mirabilis swarming and swarmer cell elongation. Prior to this study, the mechanisms that inhibit cell division and allow swarmer cell elongation were unknown. In addition, this work outlines for the first time the RcsB regulon in P. mirabilis. Taken together, the data presented in this study begin to address how P. mirabilis elongates upon contact with a solid surface. PMID:25986901

  20. Complete Genome Sequence of the First KPC-Type Carbapenemase-Positive Proteus mirabilis Strain from a Bloodstream Infection

    PubMed Central

    Di Pilato, Vincenzo; Chiarelli, Adriana; Boinett, Christine J.; Riccobono, Eleonora; Harris, Simon R.; D’Andrea, Marco Maria; Thomson, Nicholas R.; Rossolini, Gian Maria

    2016-01-01

    Sequencing of the blaKPC-positive strain Proteus mirabilis AOUC-001 was performed using both the MiSeq and PacBio RS II platforms and yielded a single molecule of 4,272,433 bp, representing the complete chromosome. Genome analysis showed the presence of several acquired resistance determinants, including two copies of blaKPC-2 carried on a fragment of a KPC-producing plasmid previously described in Klebsiella pneumoniae. PMID:27340072

  1. Complete Genome Sequence of the First KPC-Type Carbapenemase-Positive Proteus mirabilis Strain from a Bloodstream Infection.

    PubMed

    Di Pilato, Vincenzo; Chiarelli, Adriana; Boinett, Christine J; Riccobono, Eleonora; Harris, Simon R; D'Andrea, Marco Maria; Thomson, Nicholas R; Rossolini, Gian Maria; Giani, Tommaso

    2016-01-01

    Sequencing of the blaKPC-positive strain Proteus mirabilis AOUC-001 was performed using both the MiSeq and PacBio RS II platforms and yielded a single molecule of 4,272,433 bp, representing the complete chromosome. Genome analysis showed the presence of several acquired resistance determinants, including two copies of blaKPC-2 carried on a fragment of a KPC-producing plasmid previously described in Klebsiella pneumoniae. PMID:27340072

  2. Morphological changes in Proteus mirabilis O18 biofilm under the influence of a urease inhibitor and a homoserine lactone derivative.

    PubMed

    Czerwonka, Grzegorz; Arabski, Michał; Wąsik, Sławomir; Jabłońska-Wawrzycka, Agnieszka; Rogala, Patrycja; Kaca, Wiesław

    2014-03-01

    Proteus mirabilis is a pathogenic gram-negative bacterium that frequently causes kidney infections, typically established by ascending colonization of the urinary tract. The present study is focused on ureolytic activity and urease inhibition in biofilms generated by P. mirabilis O18 cells. Confocal microscopy revealed morphological alterations in biofilms treated with urea and a urease inhibitor (acetohydroxamic acid, AHA), as some swarmer cells were found to protrude from the biofilm. The presence of a quorum-sensing molecule (N-butanoyl homoserine lactone, BHL) increased biofilm thickness and its ureolytic activity. Laser interferometric determination of diffusion showed that urea easily diffuses through P. mirabilis biofilm, while AHA is blocked. This may suggest that the use of urease inhibitors in CAUTIs may by less effective than in other urease-associated infections. Spectroscopic studies revealed differences between biofilm and planktonic cells indicating that polysaccharides and nucleic acids are involved in extracellular matrix and biofilm formation. PMID:24481535

  3. Identification of virulence determinants in uropathogenic Proteus mirabilis using signature-tagged mutagenesis.

    PubMed

    Himpsl, Stephanie D; Lockatell, C Virginia; Hebel, J Richard; Johnson, David E; Mobley, Harry L T

    2008-09-01

    The Gram-negative bacterium Proteus mirabilis causes urinary tract infections (UTIs) in individuals with long-term indwelling catheters or those with functional or structural abnormalities of the urinary tract. Known virulence factors include urease, haemolysin, fimbriae, flagella, DsbA, a phosphate transporter and genes involved in cell-wall synthesis and metabolism, many of which have been identified using the technique of signature-tagged mutagenesis (STM). To identify additional virulence determinants and to increase the theoretical coverage of the genome, this study generated and assessed 1880 P. mirabilis strain HI4320 mutants using this method. Mutants with disruptions in genes vital for colonization of the CBA mouse model of ascending UTI were identified after performing primary and secondary in vivo screens in approximately 315 CBA mice, primary and secondary in vitro screens in both Luria broth and minimal A medium to eliminate mutants with minor growth deficiencies, and co-challenge competition experiments in approximately 500 CBA mice. After completion of in vivo screening, a total of 217 transposon mutants were attenuated in the CBA mouse model of ascending UTI. Following in vitro screening, this number was reduced to 196 transposon mutants with a probable role in virulence. Co-challenge competition experiments confirmed significant attenuation for 37 of the 93 transposon mutants tested, being outcompeted by wild-type HI4320. Following sequence analysis of the 37 mutants, transposon insertions were identified in genes including the peptidyl-prolyl isomerases surA and ppiA, glycosyltransferase cpsF, biopolymer transport protein exbD, transcriptional regulator nhaR, one putative fimbrial protein, flagellar M-ring protein fliF and hook protein flgE, and multiple metabolic genes. PMID:18719175

  4. A novel biosorbent for dye removal: extracellular polymeric substance (EPS) of Proteus mirabilis TJ-1.

    PubMed

    Zhang, Zhiqiang; Xia, Siqing; Wang, Xuejiang; Yang, Aming; Xu, Bin; Chen, Ling; Zhu, Zhiliang; Zhao, Jianfu; Jaffrezic-Renault, Nicole; Leonard, Didier

    2009-04-15

    This paper deals with the extracellular polymeric substance (EPS) of Proteus mirabilis TJ-1 used as a novel biosorbent to remove dye from aqueous solution in batch systems. As a widely used and hazardous dye, basic blue 54 (BB54) was chosen as the model dye to examine the adsorption performance of the EPS. The effects of pH, initial dye concentration, contact time and temperature on the sorption of BB54 to the EPS were examined. At various initial dye concentrations (50-400 mg/L), the batch sorption equilibrium can be obtained in only 5 min. Kinetic studies suggested that the sorption followed the internal transport mechanism. According to the Langmuir model, the maximum BB54 uptake of 2.005 g/g was obtained. Chemical analysis of the EPS indicated the presence of protein (30.9%, w/w) and acid polysaccharide (63.1%, w/w). Scanning electron microscopy (SEM) images showed that the EPS with a crystal-linear structure was whole enwrapped by adsorbed dye molecules. FTIR spectrum result revealed the presence of adsorbing groups such as carboxyl, hydroxyl and amino groups in the EPS. High-molecular weight of the EPS with more binding-sites and stronger van der Waals forces together with its specific construct leads to the excellent performance of dye adsorption. The EPS shows potential board application as a biosorbent for both environmental protection and dye recovery. PMID:18718709

  5. Production of a High Efficiency Microbial Flocculant by Proteus mirabilis TJ-1 Using Compound Organic Wastewater

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiqiang; Xia, Siqing; Zhang, Jiao

    2010-11-01

    The production of a high efficiency microbial flocculant (MBF) by Proteus mirabilis TJ-1 using compound organic wastewater was investigated. To cut down the cost of the MBF production, several nutritive organic wastewaters were selected to replace glucose and peptone as the carbon source and the nitrogen source in the optimized medium of strain TJ-1, respectively. The compound wastewater of the milk candy and the soybean milk was found to be good carbon source and nitrogen source for this strain to produce MBF. The cost-effective culture medium consists of (per liter): 800 mL wastewater of milk candy, 200 mL wastewater of soybean milk, 0.3 g MgSO4ṡ7 H2O, 5 g K2HPO4, 2 g and KH2PO4, pH 7.0. The economic cost for the MBF production can be cut down over a half by using the developed culture medium. Furthermore, the utilization of the two wastewaters in the preparation of culture medium of strain TJ-1 can not only save their big treatment cost, but also realize their resource reuse.

  6. Complicated Catheter-Associated Urinary Tract Infections Due to Escherichia coli and Proteus mirabilis

    PubMed Central

    Jacobsen, S. M.; Stickler, D. J.; Mobley, H. L. T.; Shirtliff, M. E.

    2008-01-01

    Catheter-associated urinary tract infections (CAUTIs) represent the most common type of nosocomial infection and are a major health concern due to the complications and frequent recurrence. These infections are often caused by Escherichia coli and Proteus mirabilis. Gram-negative bacterial species that cause CAUTIs express a number of virulence factors associated with adhesion, motility, biofilm formation, immunoavoidance, and nutrient acquisition as well as factors that cause damage to the host. These infections can be reduced by limiting catheter usage and ensuring that health care professionals correctly use closed-system Foley catheters. A number of novel approaches such as condom and suprapubic catheters, intermittent catheterization, new surfaces, catheters with antimicrobial agents, and probiotics have thus far met with limited success. While the diagnosis of symptomatic versus asymptomatic CAUTIs may be a contentious issue, it is generally agreed that once a catheterized patient is believed to have a symptomatic urinary tract infection, the catheter is removed if possible due to the high rate of relapse. Research focusing on the pathogenesis of CAUTIs will lead to a better understanding of the disease process and will subsequently lead to the development of new diagnosis, prevention, and treatment options. PMID:18202436

  7. Urease activity related to the growth and differentiation of swarmer cells of Proteus mirabilis.

    PubMed

    Jin, T; Murray, R G

    1987-04-01

    Urease activity was measured using whole cells of both long (swarming) and short (nonswarming) populations of Proteus mirabilis from casein hydrolysate agar (CHA) and broth (CHB) cultures, and from brain heart infusion broth (BHIB) cultures. Urease is a constitutive enzyme for both long and short cells, but its activity was tremendously increased when urea was incorporated into the media. Urease production was also affected by culture age and media used. Before exponential phase, urease activity was very low, and it increased to its highest point after about 4 h in BHIB and 8 h in both CHA and CHB cultures at 37 degrees C. Long cells had higher urease activity than did short cells when grown on CHA, and was also expressed by two different strains cultured in BHIB. Strain PM23, in BHIB, was able to form long cells (swarming cells) to a maximum proportion after about 4 h, but strain IM47 could not differentiate in any of the liquid media. The former had more urease when swarming differentiation was initiated. PM23 grew relatively faster than IM47 when the former began to differentiate, but this fast growth could not be observed when nutrient broth or minimal medium was used. These observations suggest that long or swarming cells are "faster growing" rather than "nongrowing bacteria". PMID:3297270

  8. Use of green fluorescent protein to assess urease gene expression by uropathogenic Proteus mirabilis during experimental ascending urinary tract infection.

    PubMed

    Zhao, H; Thompson, R B; Lockatell, V; Johnson, D E; Mobley, H L

    1998-01-01

    Proteus mirabilis, a cause of complicated urinary tract infection, expresses urease when exposed to urea. While it is recognized that the positive transcriptional activator UreR induces gene expression, the levels of expression of the enzyme during experimental infection are not known. To investigate in vivo expression of P. mirabilis urease, the gene encoding green fluorescent protein (GFP) was used to construct reporter fusions. Translational fusions of urease accessory gene ureD, which is preceded by a urea-inducible promoter, were made with gfp (modified to express S65T/V68L/S72A [B. P. Cormack et al. Gene 173:33-38, 1996]). Constructs were confirmed by sequencing of the fusion junctions. UreD-GFP fusion protein was induced by urea in both Escherichia coli DH5alpha and P. mirabilis HI4320. By using Western blotting with antiserum raised against GFP, expression level was shown to correlate with urea concentration (tested from 0 to 500 mM), with highest induction at 200 to 500 mM urea. Fluorescent E. coli and P. mirabilis bacteria were observed by fluorescence microscopy following urea induction, and the fluorescence intensity of GFP in cell lysates was measured by spectrophotofluorimetry. P. mirabilis HI4320 carrying the UreD-GFP fusion plasmid was transurethrally inoculated into the bladders of CBA mice. One week postchallenge, fluorescent bacteria were detected in thin sections of both bladder and kidney samples; the fluorescence intensity of bacteria in bladder tissue was higher than that in the kidney. Kidneys were primarily infected with single-cell-form fluorescent bacteria, while aggregated bacterial clusters were observed in the bladder. Elongated swarmer cells were only rarely observed. These observations demonstrate that urease is expressed in vivo and that using GFP as a reporter protein is a viable approach to investigate in vivo expression of P. mirabilis virulence genes in experimental urinary tract infection. PMID:9423875

  9. Cranberry derivatives enhance biofilm formation and transiently impair swarming motility of the uropathogen Proteus mirabilis HI4320.

    PubMed

    O'May, Che; Amzallag, Olivier; Bechir, Karim; Tufenkji, Nathalie

    2016-06-01

    Proteus mirabilis is a major cause of catheter-associated urinary tract infection (CAUTI), emphasizing that novel strategies for targeting this bacterium are needed. Potential targets are P. mirabilis surface-associated swarming motility and the propensity of these bacteria to form biofilms that may lead to catheter blockage. We previously showed that the addition of cranberry powder (CP) to lysogeny broth (LB) medium resulted in impaired P. mirabilis swarming motility over short time periods (up to 16 h). Herein, we significantly expanded on those findings by exploring (i) the effects of cranberry derivatives on biofilm formation of P. mirabilis, (ii) whether swarming inhibition occurred transiently or over longer periods more relevant to real infections (∼3 days), (iii) whether swarming was also blocked by commercially available cranberry juices, (iv) whether CP or cranberry juices exhibited effects under natural urine conditions, and (v) the effects of cranberry on medium pH, which is an indirect indicator of urease activity. At short time scales (24 h), CP and commercially available pure cranberry juice impaired swarming motility and repelled actively swarming bacteria in LB medium. Over longer time periods more representative of infections (∼3 days), the capacity of the cranberry material to impair swarming diminished and bacteria would start to migrate across the surface, albeit by exhibiting a different motility phenotype to the regular "bull's-eye" swarming phenotype of P. mirabilis. This bacterium did not swarm on urine agar or LB agar supplemented with urea, suggesting that any potential application of anti-swarming compounds may be better suited to settings external to the urine environment. Anti-swarming effects were confounded by the ability of cranberry products to enhance biofilm formation in both LB and urine conditions. These findings provide key insights into the long-term strategy of targeting P. mirabilis CAUTIs. PMID:27090825

  10. Proteus mirabilis urease: operon fusion and linker insertion analysis of ure gene organization, regulation, and function.

    PubMed

    Island, M D; Mobley, H L

    1995-10-01

    Urease is an inducible virulence factor of uropathogenic Proteus mirabilis. Although eight contiguous genes necessary for urease activity have been cloned and sequenced, the transcriptional organization and regulation of specific genes within the Proteus gene cluster has not been investigated in detail. The first gene, ureR, is located 400 bp upstream and is oriented in the direction opposite the other seven genes, ureDABCEFG. The structural subunits of urease are encoded by ureABC. Previously, UreR was shown to contain a putative helix-turn-helix DNA-binding motif 30 residues upstream of a consensus sequence which is a signature for the AraC family of positive regulators; this polypeptide is homologous to other DNA-binding regulatory proteins. Nested deletions of ureR linked to either ureD-lacZ or ureA-lacZ operon fusions demonstrated that an intact ureR is required for urea-induced synthesis of LacZ from either ureA or ureD and identified a urea-regulated promoter in the ureR-ureD intergenic region. However, lacZ operon fusions to fragments encompassing putative promoter regions upstream of ureA and ureF demonstrated that no urea-regulated promoters occur upstream of these open reading frames; regions upstream of ureR, ureE, and ureG were not tested. These data suggest that UreR acts as a positive regulator in the presence of urea, activating transcription of urease structural and accessory genes via sequences upstream of ureD. To address the role of the nonstructural regulatory and accessory genes, we constructed deletion, cassette, and linker insertion mutations throughout the ure gene cluster and determined the effect of these mutations on production and regulation of urease activity in Escherichia coli. Mutations were obtained, with locations determine by DNA sequencing, in all genes except ureA and ureE. In each case, the mutation resulted in a urease-negative phenotype. PMID:7559355

  11. Inhibition of crystallization caused by Proteus mirabilis during the development of infectious urolithiasis by various phenolic substances.

    PubMed

    Torzewska, Agnieszka; Rozalski, Antoni

    2014-01-01

    Infectious urolithiasis is a consequence of persistent urinary tract infections caused by urease producing bacteria e.g. Proteus mirabilis. These stones are composed of struvite and carbonate apatite. Their rapid growth and high recurrence indicate that so far appropriate methods of treatment have not been found. In the present study, the inhibitory effect of phenolic compounds was investigated in vitro against formation of struvite/apatite crystals. The impact of these substances with different chemical structures on crystallization caused by clinical isolates of P. mirabilis was tested spectrophotometrically using a microdilution method. Among the 11 tested compounds resveratrol, epigallocatechin gallate, peralgonidin, vanillic and coffee acids at the concentrations 250-1000 μg/ml inhibited P. mirabilis urease activity and crystallization. However, only vanillic acid had such an effect on all tested strains of P. mirabilis. Therefore, using an in vitro model, bacterial growth, crystallization, urease activity and pH were examined for 24h in synthetic urine with vanillic acid. Effect of vanillic acid was compared with that of other known struvite/apatite crystallization inhibitors (acetohydroxamic acid, pyrophosphate) and it was shown that vanillic acid strongly inhibited bacterial growth and the formation of crystals. It can be assumed that this compound, after further studies, can be used in the treatment or prophylaxis of infectious urolithiasis. PMID:24239192

  12. Evidence for N----O acetyl migration as the mechanism for O acetylation of peptidoglycan in Proteus mirabilis.

    PubMed Central

    Dupont, C; Clarke, A J

    1991-01-01

    O-acetylated peptidoglycan was purified from Proteus mirabilis grown in the presence of specifically radiolabelled glucosamine derivatives, and the migration of the radiolabel was monitored. Mild-base hydrolysis of the isolated peptidoglycan (to release ester-linked acetate) from cells grown in the presence of 40 microM [acetyl-3H]N-acetyl-D-glucosamine resulted in the release of [3H]acetate, as detected by high-pressure liquid chromatography. The inclusion of either acetate, pyruvate, or acetyl phosphate, each at 1 mM final concentration, did not result in a diminution of mild-base-released [3H]acetate levels. No such release of [3H]acetate was observed with peptidoglycan isolated from either Escherichia coli incubated with the same radiolabel or P. mirabilis grown with [1,6-3H]N-acetyl-D-glucosamine or D-[1-14C]glucosamine. These observations support a hypothesis that O acetylation occurs by N----O acetyl transfer within the sacculus. A decrease in [3H]acetate release by mild-base hydrolysis was observed with the peptidoglycan of P. mirabilis cultures incubated in the presence of antagonists of peptidoglycan biosynthesis, penicillin G and D-cycloserine. The absence of free-amino sugars in the peptidoglycan of P. mirabilis but the detection of glucosamine in spent culture broths implies that N----O transacetylation is intimately associated with peptidoglycan turnover. PMID:2066331

  13. Modification biological activity of S and R forms of Proteus mirabilis and Burkholderia cepacia lipopolysaccharides by carrageenans.

    PubMed

    Arabski, Michał; Barabanova, Anna; Gałczyńska, Katarzyna; Węgierek-Ciuk, Aneta; Dzidowska, Kamila; Augustyniak, Daria; Drulis-Kawa, Zuzanna; Lankoff, Anna; Yermak, Irina; Molinaro, Antonio; Kaca, Wiesław

    2016-09-20

    The modification of biological features of S and R forms of Proteus mirabilis and Burkholderia cepacia LPS by kappa/iota and kappa/beta carrageenans was shown in Limulus activation test, ELISA, human complement activation and apoptotic assay. The role of positively charged substituent Ara4N in lipid A was evaluated as a suspected major domain for interactions with sulphate groups of carrageenans.The experiments obtained by three serological methods indicated that not only lipid A part of LPS but also polysaccharide elements such as core and O-specific chain are involved in interaction with carrageenes. Carrageenans turned out to be non-cytotoxic for A549 cells and were able to inhibit the apoptotic effect caused by lipid A of P. mirabilis and B. cepacia. PMID:27261765

  14. Pulmonary Pneumatocele in a Pneumonia Patient Infected with Extended-Spectrum β-Lactamase Producing Proteus mirabilis

    PubMed Central

    Ryou, Sung Hyeok; Bae, Jong Wook; Baek, Hyun Jin; Lee, Doo Hyuk; Lee, Sang Won; Choi, Gyu Ho; Han, Kyu Hyung; Kim, Se Weon; Kim, Hyunbeom

    2015-01-01

    Pulmonary pneumatoceles are air-filled thin-walled spaces within the lung and are rare in adult cases of pneumonia. We report the case of a 74-year-old male who was admitted with a cough and sputum production. He had been treated with oral dexamethasone since a brain tumorectomy 6 months prior. Contrast-enhanced computed tomography (CT) of the chest revealed a large pneumatocele in the right middle lobe and peripheral pneumonic consolidation. Bronchoalveolar lavage was performed; cultures identified extended-spectrum β-lactamase (ESBL) producing Proteus mirabilis. A 4-week course of intravenous ertapenem was administered, and the pneumatocele with pneumonia resolved on follow-up chest CT. To the best of our knowledge, this is the first reported case of pulmonary pneumatocele caused by ESBL-producing P. mirabilis associated with pneumonia. PMID:26508927

  15. Outbreak caused by Proteus mirabilis isolates producing weakly expressed TEM-derived extended-spectrum β-lactamase in spinal cord injury patients with recurrent bacteriuria.

    PubMed

    Cremet, Lise; Bemer, Pascale; Rome, Joanna; Juvin, Marie-Emmanuelle; Navas, Dominique; Bourigault, Celine; Guillouzouic, Aurelie; Caroff, Nathalie; Lepelletier, Didier; Asseray, Nathalie; Perrouin-Verbe, Brigitte; Corvec, Stephane

    2011-12-01

    We performed a retrospective extended-spectrum β-lactamase (ESBL) molecular characterization of Proteus mirabilis isolates recovered from urine of spinal cord injury patients. A incorrectly detected TEM-24-producing clone and a new weakly expressed TEM-derived ESBL were discovered. In such patients, ESBL detection in daily practice should be improved by systematic use of a synergy test in strains of P. mirabilis resistant to penicillins. PMID:21888562

  16. Cross-reactivity between the rheumatoid arthritis-associated motif EQKRAA and structurally related sequences found in Proteus mirabilis.

    PubMed

    Tiwana, H; Wilson, C; Alvarez, A; Abuknesha, R; Bansal, S; Ebringer, A

    1999-06-01

    Cross-reactivity or molecular mimicry may be one of the underlying mechanisms involved in the etiopathogenesis of rheumatoid arthritis (RA). Antiserum against the RA susceptibility sequence EQKRAA was shown to bind to a similar peptide ESRRAL present in the hemolysin of the gram-negative bacterium Proteus mirabilis, and an anti-ESRRAL serum reacted with EQKRAA. There was no reactivity with either anti-EQKRAA or anti-ESRRAL to a peptide containing the EDERAA sequence which is present in HLA-DRB1*0402, an allele not associated with RA. Furthermore, the EQKRAA and ESRRAL antisera bound to a mouse fibroblast transfectant cell line (Dap.3) expressing HLA-DRB1*0401 but not to DRB1*0402. However, peptide sequences structurally related to the RA susceptibility motif LEIEKDFTTYGEE (P. mirabilis urease), VEIRAEGNRFTY (collagen type II) and DELSPETSPYVKE (collagen type XI) did not bind significantly to cell lines expressing HLA-DRB1*0401 or HLA-DRB1*0402 compared to the control peptide YASGASGASGAS. It is suggested here that molecular mimicry between HLA alleles associated with RA and P. mirabilis may be relevant in the etiopathogenesis of the disease. PMID:10338479

  17. Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus mirabilis.

    PubMed

    Allison, C; Lai, H C; Hughes, C

    1992-06-01

    The uropathogenic Gram-negative bacterium Proteus mirabilis exhibits a form of multicellular behaviour termed swarming, which involves cyclical differentiation of typical vegetative cells into filamentous, multinucleate, hyperflagellate swarm cells capable of rapid and co-ordinated population migration across surfaces. We observed that differentiation into swarm cells was accompanied by substantial increases in the activities of intracellular urease and extracellular haemolysin and metalloprotease, which are believed to be central to the pathogenicity of P. mirabilis. In addition, the ability of P. mirabilis to invade human urothelial cells in vitro was primarily a characteristic of differentiated swarm cells, not vegetative cells. These virulence factor activities fell back as the cells underwent cyclical reversion to the vegetative form (consolidation), in parallel with the diagnostic modulation of flagellin levels on the cell surface. Control cellular alkaline phosphatase activities did not increase during differentiation or consolidation. Non-flagellated, nonmotile transposon insertion mutants were unable to invade urothelial cells and they generated only low-level activities of haemolysin, urease and protease (0-10% of wild type). Motile mutants unable to differentiate into swarm cells were comparably reduced in their haemolytic, ureolytic and invasive phenotypes and generated threefold less protease activity. Mutants that were able to form swarm cells but exhibited various aberrant patterns of swarming migration produced wild-type activities of haemolysin, urease and protease, but their ability to enter urothelial cells was three- to 10-fold lower.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1495387

  18. Evaluation of environmental scanning electron microscopy for analysis of Proteus mirabilis crystalline biofilms in situ on urinary catheters

    PubMed Central

    Holling, Nina; Dedi, Cinzia; Jones, Caroline E; Hawthorne, Joseph A; Hanlon, Geoffrey W; Salvage, Jonathan P; Patel, Bhavik A; Barnes, Lara M; Jones, Brian V

    2014-01-01

    Proteus mirabilis is a common cause of catheter-associated urinary tract infections and frequently leads to blockage of catheters due to crystalline biofilm formation. Scanning electron microscopy (SEM) has proven to be a valuable tool in the study of these unusual biofilms, but entails laborious sample preparation that can introduce artefacts, undermining the investigation of biofilm development. In contrast, environmental scanning electron microscopy (ESEM) permits imaging of unprocessed, fully hydrated samples, which may provide much insight into the development of P. mirabilis biofilms. Here, we evaluate the utility of ESEM for the study of P. mirabilis crystalline biofilms in situ, on urinary catheters. In doing so, we compare this to commonly used conventional SEM approaches for sample preparation and imaging. Overall, ESEM provided excellent resolution of biofilms formed on urinary catheters and revealed structures not observed in standard SEM imaging or previously described in other studies of these biofilms. In addition, we show that energy-dispersive X-ray spectroscopy (EDS) may be employed in conjunction with ESEM to provide information regarding the elemental composition of crystalline structures and demonstrate the potential for ESEM in combination with EDS to constitute a useful tool in exploring the mechanisms underpinning crystalline biofilm formation. PMID:24786314

  19. Zinc uptake contributes to motility and provides a competitive advantage to Proteus mirabilis during experimental urinary tract infection.

    PubMed

    Nielubowicz, Greta R; Smith, Sara N; Mobley, Harry L T

    2010-06-01

    Proteus mirabilis, a Gram-negative bacterium, represents a common cause of complicated urinary tract infections in catheterized patients or those with functional or anatomical abnormalities of the urinary tract. ZnuB, the membrane component of the high-affinity zinc (Zn(2+)) transport system ZnuACB, was previously shown to be recognized by sera from infected mice. Since this system has been shown to contribute to virulence in other pathogens, its role in Proteus mirabilis was investigated by constructing a strain with an insertionally interrupted copy of znuC. The znuC::Kan mutant was more sensitive to zinc limitation than the wild type, was outcompeted by the wild type in minimal medium, displayed reduced swimming and swarming motility, and produced less flaA transcript and flagellin protein. The production of flagellin and swarming motility were restored by complementation with znuCB in trans. Swarming motility was also restored by the addition of Zn(2+) to the agar prior to inoculation; the addition of Fe(2+) to the agar also partially restored the swarming motility of the znuC::Kan strain, but the addition of Co(2+), Cu(2+), or Ni(2+) did not. ZnuC contributes to but is not required for virulence in the urinary tract; the znuC::Kan strain was outcompeted by the wild type during a cochallenge experiment but was able to colonize mice to levels similar to the wild-type level during independent challenge. Since we demonstrated a role for ZnuC in zinc transport, we hypothesize that there is limited zinc present in the urinary tract and P. mirabilis must scavenge this ion to colonize and persist in the host. PMID:20385754

  20. Case-control study of the risk factors for acquisition of Pseudomonas and Proteus species during tigecycline therapy.

    PubMed

    Park, Ga Eun; Kang, Cheol-In; Wi, Yu Mi; Ko, Jae-Hoon; Lee, Woo Joo; Lee, Ji Yong; Cho, Sun Young; Ha, Young Eun; Chung, Doo Ryeon; Peck, Kyong Ran; Song, Jae-Hoon

    2015-09-01

    Tigecycline is an important agent in clinical practice because of its broad-spectrum activity. However, it has no activity against Pseudomonas or Proteus species. We conducted a case-control study to analyze risk factors for the acquisition of Pseudomonas or Proteus spp. during tigecycline therapy. Placement of suction drainage at infected wound sites, ICU stay, and neurologic disease were identified as independent risk factors for the acquisition of Pseudomonas and Proteus spp. PMID:26100705

  1. Case-Control Study of the Risk Factors for Acquisition of Pseudomonas and Proteus Species during Tigecycline Therapy

    PubMed Central

    Park, Ga Eun; Wi, Yu Mi; Ko, Jae-Hoon; Lee, Woo Joo; Lee, Ji Yong; Cho, Sun Young; Ha, Young Eun; Chung, Doo Ryeon; Peck, Kyong Ran; Song, Jae-Hoon

    2015-01-01

    Tigecycline is an important agent in clinical practice because of its broad-spectrum activity. However, it has no activity against Pseudomonas or Proteus species. We conducted a case-control study to analyze risk factors for the acquisition of Pseudomonas or Proteus spp. during tigecycline therapy. Placement of suction drainage at infected wound sites, ICU stay, and neurologic disease were identified as independent risk factors for the acquisition of Pseudomonas and Proteus spp. PMID:26100705

  2. In vivo phase variation of MR/P fimbrial gene expression in Proteus mirabilis infecting the urinary tract.

    PubMed

    Zhao, H; Li, X; Johnson, D E; Blomfield, I; Mobley, H L

    1997-03-01

    Proteus mirabilis, associated with complicated urinary tract infection, expresses mannose-resistant/Proteus-like (MR/P) fimbriae. Expression of these surface structures, which mediate haemagglutination and have a demonstrated role in virulence, undergoes phase variation. By DNA sequence analysis, a 252 bp invertible element was found in the intergenic region between mrpl, the putative site-specific recombinase gene, and mrpA, the primary structural subunit gene. The invertible segment is flanked by identical 21 bp inverted repeats and the presumptive half-sites for recombinase binding show homology to those recognized by FimB and FimE encoded by the Escherichia coli fim (Type 1 fimbriae) gene cluster. When amplified by the polymerase chain reaction (PCR) from static broth cultures expressing MR/P fimbriae, the switch region was found in both ON and OFF positions. When PCR was used to amplify agar cultures which do not express the fimbriae, the switch region was OFF only. A canonical sigma 70 promoter inside the invertible element drives the transcription of mrpA when in the ON position; in the OFF position it is directed away from mrpA but does not appear to drive expression of mrpI. The mrpI gene was able to confer inversion of the mrp switch region in trans from both ON to OFF and OFF to ON. To examine the position of the switch in vivo, urine, bladder, and kidneys from mice transurethrally infected with P. mirabilis were used to prepare template DNA for PCR amplification. In the absence of urolithiasis (urease-mediated stone formation), the switch was found 100% in the ON position, a condition never observed following in vitro culture. We conclude that MR/P phase variation is regulated at the transcriptional level by the action of MrpI on an invertible element and that there is strong selective pressure for the expression of MR/P fimbriae in vivo. PMID:9076737

  3. Secondary metabolites produced by marine streptomyces as antibiofilm and quorum-sensing inhibitor of uropathogen Proteus mirabilis.

    PubMed

    Younis, Khansa Mohammed; Usup, Gires; Ahmad, Asmat

    2016-03-01

    Quorum-sensing regulates bacterial biofilm formation and virulence factors, thereby making it an interesting target for attenuating pathogens. In this study, we investigated anti-biofilm and anti-quorum-sensing compounds from secondary metabolites of halophiles marine streptomyces against urinary catheter biofilm forming Proteus mirabilis without effect on growth viability. A total of 40 actinomycetes were isolated from samples collected from different places in Iraq including marine sediments and soil samples. Fifteen isolates identified as streptomyces and their supernatant screened as anti-quorum-sensing by inhibiting quorum-sensing regulated prodigiosin biosynthesis of Serratia marcescens strain Smj-11 as a reporter strain. Isolate Sediment Lake Iraq (sdLi) showed potential anti-quorum-sensing activity. Out of 35 clinical isolates obtained from Urinary catheter used by patient at the Universiti Kebangsaan Malaysia Medical Center, 22 isolates were characterized and identified as Proteus mirabilis. Isolate Urinary Catheter B4 (UCB4) showed the highest biofilm formation with highest resistance to used antibiotic and was chosen for further studies. Ethyl acetate secondary metabolites extract was produced from sdLi isolate. First, we determined the Minimum Inhibitory Concentration (MIC) of sdLi crude extract against UCB4 isolate, and all further experiments used concentrations below the MIC. Tests of subinhibitory concentrations of sdLi crude extract showed good inhibition against UCB4 isolate biofilm formation on urinary catheter and cover glass using Scanning electron microscopy and light microscopy respectively. The influence of sub-MIC of sdLi crude extract was also found to attenuate the quorum sensing (QS)-dependent factors such as hemolysin activity, urease activity, pH value, and motility of UCB4 isolate. Evidence is presented that these nontoxic secondary metabolites may act as antagonists of bacterial quorum sensing by competing with quorum-sensing signals

  4. A total internal reflection ellipsometry and atomic force microscopy study of interactions between Proteus mirabilis lipopolysaccharides and antibodies.

    PubMed

    Gleńska-Olender, J; Sęk, S; Dworecki, K; Kaca, W

    2015-07-01

    Specific antigen-antibody interactions play a central role in the human immune system. The objective of this paper is to detect immune complexes using label-free detection techniques, that is, total internal reflection ellipsometry (TIRE) and atomic force microscopy (AFM)-based topography and recognition imaging. Interactions of purified rabbit immunoglobulin G (IgG) antibodies with bacterial endotoxins (Proteus mirabilis S1959 O3 lipopolysaccharides) were studied. Lipopolysaccharide was adsorbed on gold surface for TIRE. In the AFM imaging experiments, LPS was attachment to the PEG linker (AFM tip modification). The mica surface was covered by IgG. In TIRE, the optical parameters Ψ and Δ change when a complex is formed. It was found that even highly structured molecules, such as IgG antibodies (anti-O3 LPS rabbit serum), preserve their specific affinity to their antigens (LPS O3). LPS P. mirabilis O3 response of rabbit serum anti-O3 was also tested by topography and recognition imaging. Both TIRE and AFM techniques were recruited to check for possible detection of antigen-antibody recognition event. The presented data allow for determination of interactions between a variety of biomolecules. In future research, this technique has considerable potential for studying a wide range of antigen-antibody interactions and its use may be extended to other biomacromolecular systems. PMID:25854960

  5. Various intensity of Proteus mirabilis-induced crystallization resulting from the changes in the mineral composition of urine.

    PubMed

    Torzewska, Agnieszka; Różalski, Antoni

    2015-01-01

    Infectious urolithiasis is a result of recurrent and chronic urinary tract infections caused by urease-positive bacteria, especially Proteus mirabilis. The main role in the development of this kind of stones is played by bacterial factors such as urease and extracellular polysaccharides, but urinary tract environment also contributes to this process. We used an in vitro model to establish how the changes in the basic minerals concentrations affect the intensity of crystallization which occurs in urine. In each experiment crystallization was induced by an addition of P. mirabilis to artificial urine with a precisely defined chemical composition. Crystallization intensity was determined using the spectrophotometric microdilution method and the chemical composition of formed crystals was established by atomic absorption spectroscopy and colorimetric methods. Increasing the concentration of all crystals forming ions such as Mg(2+), Ca(2+) and phosphate strongly intensified the process of crystallization, whereas reducing the amount of these components below the proper physiological concentration did not affect its intensity. The inhibitory influence of citrate on calcium and magnesium phosphate crystallization and competitive actions of calcium and oxalate ions on struvite crystals formation were not confirmed. In the case of infectious stones the chemical composition of urine plays an important role, which creates a necessity to support the treatment by developing a model of proper diet. PMID:25654361

  6. Arginine promotes Proteus mirabilis motility and fitness by contributing to conservation of the proton gradient and proton motive force

    PubMed Central

    Armbruster, Chelsie E; Hodges, Steven A; Smith, Sara N; Alteri, Christopher J; Mobley, Harry L T

    2014-01-01

    Swarming contributes to Proteus mirabilis pathogenicity by facilitating access to the catheterized urinary tract. We previously demonstrated that 0.1–20 mmol/L arginine promotes swarming on normally nonpermissive media and that putrescine biosynthesis is required for arginine-induced swarming. We also previously determined that arginine-induced swarming is pH dependent, indicating that the external proton concentration is critical for arginine-dependent effects on swarming. In this study, we utilized survival at pH 5 and motility as surrogates for measuring changes in the proton gradient (ΔpH) and proton motive force (μH+) in response to arginine. We determined that arginine primarily contributes to ΔpH (and therefore μH+) through the action of arginine decarboxylase (speA), independent of the role of this enzyme in putrescine biosynthesis. In addition to being required for motility, speA also contributed to fitness during infection. In conclusion, consumption of intracellular protons via arginine decarboxylase is one mechanism used by P. mirabilis to conserve ΔpH and μH+ for motility. PMID:25100003

  7. Influence of chondroitin sulfate, heparin sulfate, and citrate on Proteus mirabilis-induced struvite crystallization in vitro.

    PubMed

    McLean, R J; Downey, J; Clapham, L; Nickel, J C

    1990-11-01

    Struvite crystals were produced by Proteus mirabilis growth in artificial urine, in the presence of a number of naturally occurring crystallization inhibitors. The use of phase contrast light microscopy enabled the effects of added chondroitin sulfate A, chondroitin sulfate C, heparin sulfate, or sodium citrate, on struvite crystal growth rates to be rapidly monitored as changes in crystal habit. Struvite crystals formed as a consequence of the urease activity of P. mirabilis under all chemical conditions. In the absence of inhibitor, early crystal development was marked by large quantities of amorphous precipitate, followed immediately by the appearance of rapidly growing X-shaped or planar crystals. Addition of the glycosaminoglycans, chondroitin sulfate A, chondroitin sulfate C, or heparin sulfate to the artificial urine mixture had no effect on the rate of crystal growth or appearance. When sodium citrate was present in elevated concentrations, crystal appearance was generally slowed, and the crystals assumed an octahedral, slow growing appearance. None of the added compounds had any influence on bacterial viability, pH, or urease activity. It is therefore likely that the inhibitory activity displayed by sodium citrate might be related to its ability to complex magnesium or to interfere with the crystal structure during struvite formation. From these experiments it would appear that citrate may be a factor in the natural resistance of whole urine to struvite crystallization. PMID:2122009

  8. H-NS is a repressor of the Proteus mirabilis urease transcriptional activator gene ureR.

    PubMed

    Coker, C; Bakare, O O; Mobley, H L

    2000-05-01

    Expression of Proteus mirabilis urease is governed by UreR, an AraC-like positive transcriptional activator. A poly(A) tract nucleotide sequence, consisting of A(6)TA(2)CA(2)TGGTA(5)GA(6)TGA(5), is located 16 bp upstream of the sigma(70)-like ureR promoter P2. Since poly(A) tracts of DNA serve as binding sites for the gene repressor histone-like nucleoid structuring protein (H-NS), we measured beta-galactosidase activity of wild-type Escherichia coli MC4100 (H-NS(+)) and its isogenic derivative ATM121 (hns::Tn10) (H-NS(-)) harboring a ureR-lacZ operon fusion plasmid (pLC9801). beta-Galactosidase activity in the H-NS(-) host strain was constitutive and sevenfold greater (P < 0.0001) than that in the H-NS(+) host. A recombinant plasmid containing cloned P. mirabilis hns was able to complement and restore repression of the ureR promoter in the H-NS(-) host when provided in trans. Deletion of the poly(A) tract nucleotide sequence from pLC9801 resulted in an increase in beta-galactosidase activity in the H-NS(+) host to nearly the same levels as that observed for wild-type pLC9801 harbored by the H-NS(-) host. Urease activity in strains harboring the recombinant plasmid pMID1010 (encoding the entire urease gene cluster of P. mirabilis) was equivalent in both the H-NS(-) background and the H-NS(+) background in the presence of urea but was eightfold greater (P = 0.0001) in the H-NS(-) background in the absence of urea. We conclude that H-NS represses ureR expression in the absence of urea induction. PMID:10762273

  9. Proteus mirabilis urease: use of a ureA-lacZ fusion demonstrates that induction is highly specific for urea.

    PubMed

    Nicholson, E B; Concaugh, E A; Mobley, H L

    1991-10-01

    Proteus mirabilis, a common agent of nosocomially acquired and catheter-associated urinary tract infection, is the most frequent cause of infection-induced bladder and kidney stones. Urease-catalyzed urea hydrolysis initiates stone formation in urine and can be inhibited by acetohydroxamic acid and other structural analogs of urea. Since P. mirabilis urease is inducible with urea, there has been some concern that urease inhibitors actually induce urease during an active infection, thus compounding the problem of elevated enzyme activity. Quantitating induction by compounds that simultaneously inhibit urease activity has been difficult. Therefore, to study these problems, we constructed a fusion of ureA (a urease subunit gene) and lacZ (the beta-galactosidase gene) within plasmid pMID1010, which encodes an inducible urease of P. mirabilis expressed in E. coli JM103 (Lac-). The fusion protein, predicted to be 117 kDa, was induced by urea and detected on Western blots (immunoblots) with anti-beta-galactosidase antiserum. Peak beta-galactosidase activity of 9.9 mumol of ONPG (o-nitrophenyl-beta-D-galactopyranoside) hydrolyzed per min per mg of protein, quantitated spectrophotometrically, was induced at 200 mM urea. The uninduced rate was 0.2 mumol of ONPG hydrolyzed per min per mg of protein. Induction was specific for urea, as no structural analog of urea (including acetohydroxamic acid, hydroxyurea, thiourea, hippuric acid, flurofamide, or hydroxylamine) induced fusion protein activity. These data suggest that induction by inactivation of UreR, the urease repressor protein that governs regulation of the urease operon, is specific for urea and does not respond to closely related structural analogs. PMID:1894350

  10. Contribution of Proteus mirabilis urease to persistence, urolithiasis, and acute pyelonephritis in a mouse model of ascending urinary tract infection.

    PubMed

    Johnson, D E; Russell, R G; Lockatell, C V; Zulty, J C; Warren, J W; Mobley, H L

    1993-07-01

    Proteus mirabilis, a significant cause of bacteriuria and acute pyelonephritis in humans, produces urease. This high-molecular-weight, multimeric, cytoplasmic enzyme hydrolyzes urea to ammonia and carbon dioxide. To assess the role of urease in colonization, urolithiasis, and acute pyelonephritis in an animal model of ascending urinary tract infection, we compared a uropathogenic strain of P. mirabilis with its isogenic urease-negative mutant, containing an insertion mutation within ureC, the gene encoding the large subunit of the enzyme. Mice challenged transurethrally with the parent strain developed significant bacteriuria and urinary stones. The urease-negative mutant had a 50% infective dose of 2.7 x 10(9) CFU, a value more than 1,000-fold greater than that of the parent strain (2.2 x 10(6) CFU). The urease-positive parent strain reached significantly higher concentrations and persisted significantly longer in the bladder and kidney than did the mutant. Indeed, in the kidney, the parent strain increased in concentration while the mutant concentration fell so that, by 1 week, the parent strain concentration was 10(6) times that of the mutant. Similarly, the urease-positive parent produced significantly more severe renal pathology than the mutant. The initial abnormalities were in and around the pelvis and consisted of acute inflammation and epithelial necrosis. By 1 week, pyelitis was more severe, crystals were seen in the pelvis, and acute pyelonephritis, with acute interstitial inflammation, tubular epithelial cell necrosis, and in some cases abscesses, had developed. By 2 weeks, more animals had renal abscesses and radial bands of fibrosis. We conclude that the urease of P. mirabilis is a critical virulence determinant for colonization, urolithiasis, and severe acute pyelonephritis. PMID:8514376

  11. Proteus mirabilis urease: use of a ureA-lacZ fusion demonstrates that induction is highly specific for urea.

    PubMed Central

    Nicholson, E B; Concaugh, E A; Mobley, H L

    1991-01-01

    Proteus mirabilis, a common agent of nosocomially acquired and catheter-associated urinary tract infection, is the most frequent cause of infection-induced bladder and kidney stones. Urease-catalyzed urea hydrolysis initiates stone formation in urine and can be inhibited by acetohydroxamic acid and other structural analogs of urea. Since P. mirabilis urease is inducible with urea, there has been some concern that urease inhibitors actually induce urease during an active infection, thus compounding the problem of elevated enzyme activity. Quantitating induction by compounds that simultaneously inhibit urease activity has been difficult. Therefore, to study these problems, we constructed a fusion of ureA (a urease subunit gene) and lacZ (the beta-galactosidase gene) within plasmid pMID1010, which encodes an inducible urease of P. mirabilis expressed in E. coli JM103 (Lac-). The fusion protein, predicted to be 117 kDa, was induced by urea and detected on Western blots (immunoblots) with anti-beta-galactosidase antiserum. Peak beta-galactosidase activity of 9.9 mumol of ONPG (o-nitrophenyl-beta-D-galactopyranoside) hydrolyzed per min per mg of protein, quantitated spectrophotometrically, was induced at 200 mM urea. The uninduced rate was 0.2 mumol of ONPG hydrolyzed per min per mg of protein. Induction was specific for urea, as no structural analog of urea (including acetohydroxamic acid, hydroxyurea, thiourea, hippuric acid, flurofamide, or hydroxylamine) induced fusion protein activity. These data suggest that induction by inactivation of UreR, the urease repressor protein that governs regulation of the urease operon, is specific for urea and does not respond to closely related structural analogs. Images PMID:1894350

  12. High Prevalence of SXT/R391-Related Integrative and Conjugative Elements Carrying blaCMY-2 in Proteus mirabilis Isolates from Gulls in the South of France.

    PubMed

    Aberkane, Salim; Compain, Fabrice; Decré, Dominique; Dupont, Chloé; Laurens, Chrislène; Vittecoq, Marion; Pantel, Alix; Solassol, Jérôme; Carrière, Christian; Renaud, François; Brieu, Nathalie; Lavigne, Jean-Philippe; Bouzinbi, Nicolas; Ouédraogo, Abdoul-Salam; Jean-Pierre, Hélène; Godreuil, Sylvain

    2016-02-01

    The genetic structures involved in the dissemination of blaCMY-2 carried by Proteus mirabilis isolates recovered from different gull species in the South of France were characterized and compared to clinical isolates. blaCMY-2 was identified in P. mirabilis isolates from 27/93 yellow-legged gulls and from 37/65 slender-billed gulls. It was carried by a conjugative SXT/R391-like integrative and conjugative element (ICE) in all avian strains and in 3/7 human strains. Two clinical isolates had the same genetic background as six avian isolates. PMID:26643344

  13. Proteus mirabilis mannose-resistant, Proteus-like fimbriae: MrpG is located at the fimbrial tip and is required for fimbrial assembly.

    PubMed Central

    Li, X; Zhao, H; Geymonat, L; Bahrani, F; Johnson, D E; Mobley, H L

    1997-01-01

    The mannose-resistant, Proteus-like (MR/P) fimbria, responsible for mannose-resistant hemagglutination, is a virulence factor for uropathogenic Proteus mirabilis. Based on known fimbrial gene organization, we postulated that MrpG, a putative minor subunit of the MR/P fimbria, functions as an adhesin responsible for hemagglutination, while MrpA serves as the major structural subunit for the filamentous structure. To test this hypothesis, an mrpG mutant was constructed by allelic-exchange mutagenesis and verified by PCR and Southern blotting. The mrpG mutant was found to be negative for hemagglutination, while wild-type strain H14320 and the complemented mutant were positive. Western blots with antiserum raised against an overexpressed MrpG'-His6 fusion protein showed that MrpG was present in the fimbrial preparations of both the wild-type strain and the complemented mutant but absent in that of the mrpG mutant. The mrpG mutant was significantly less virulent in a CBA mouse model of ascending urinary tract infection. Western blots with antiserum to whole MR/P fimbriae showed that MrpA protein was also missing from the fimbrial preparation of the mrpG mutant. Using immunogold electron microscopy, we found that the normal MR/P-fimbrial structure was absent in the mrpG mutant, suggesting that MrpG is essential for initiation of normal fimbrial formation. In the wild-type strain, MrpG protein was localized to the tips of the fimbriae or at the surface of the cell when antiserum raised against overexpressed MrpG was used. Given the tip localization, MrpG may be required for initiation of assembly of MR/P fimbriae but does not appear to be the fimbrial adhesin. PMID:9119470

  14. Differential regulation of the Proteus mirabilis urease gene cluster by UreR and H-NS.

    PubMed

    Poore, Carrie A; Mobley, Harry L T

    2003-12-01

    Proteus mirabilis, a cause of catheter-associated urinary tract infection, relies on several virulence factors to colonize the urinary tract. Among these, urease contributes to the development of urinary stones resulting from the increase in local pH due to urease-mediated hydrolysis of urea to NH(3) and CO(2). UreR, an AraC-like transcriptional activator, activates transcription of the genes encoding the urease subunits and accessory proteins (ureDABCEFG) in the presence of urea. UreR also initiates transcription of its own gene in a urea-inducible manner by binding to the intergenic region between ureR and ureD. The intergenic region contains poly(A) tracts that appear to be the target of H-NS. It has been shown that Escherichia coli and P. mirabilis H-NS acts to repress transcription of ureR in an E. coli model system. It was hypothesized that H-NS represses urease gene expression in the absence of UreR and urea by binding to the intergenic region. To demonstrate this the P. mirabilis hns gene was cloned and the 15.6 kDa H-NS was overexpressed and purified as a myc-His tail fusion. Using a gel shift assay, purified H-NS-myc-His bound preferentially to a 609 bp DNA fragment containing the entire ureR-ureD intergenic region. H-NS and UreR were able to displace each other from the ureR-ureD intergenic region. Circular permutation analysis revealed that the intergenic region is bent. Moreover, H-NS recognizes this curvature, binds the DNA fragment and induces further bending of the DNA as shown by a circular ligation assay. The effects of H-NS, urea and temperature (25 vs 37 degrees C) on urease expression were shown in E. coli containing an hns knockout and P. mirabilis where expression was increased at 37 degrees C. Increased transcription from p(ureR) was seen in the E. coli hns knockout when temperature was increased from 25 to 37 degrees C. These findings suggest H-NS and UreR differentially regulate urease in a negative and positive manner, respectively. PMID

  15. Effects of the pH and the urine infected by Escherichia coli and Proteus mirabilis on chromic catgut, polyglycolic acid and polyglactin 910: study in vitro.

    PubMed

    Hering, F L; Rosenberg, D; Chade, J

    1989-01-01

    In order to study the effects of the pH and the urine infected by Escherichia coli and Proteus mirabilis on chromic catgut, polyglycolic acid (PGA) and polyglactin 910 (P910), we divided the experiment into three steps. In the first step, the behavior of suture material immersed in sterile urine, urine infected by E. coli and urine infected by P. mirabilis and in culture environment infected by P. mirabilis was studied. The physical features were observed continuously up to the 6th day. In the second step, every element of the urea-splitting reaction was isolatedly studied , without the presence of bacterial agents. And in the last step, that reaction was mimetized in sterile environments and in environments with acid and alkaline pH. While the chromic catgut was kept integral in all the environments, the PGA and the P910 dissolved in urine infected by Proteus, which was caused by the ammonia resulting from the urea-splitting reaction. This dissolution was also observed in sterile environment (mimetization of the urea-splitting reaction by urease, with no Proteus). The destruction of the sutures was not influenced by the pH variance. PMID:2552634

  16. Lipopolysaccharide interaction is decisive for the activity of the antimicrobial peptide NK-2 against Escherichia coli and Proteus mirabilis.

    PubMed

    Hammer, Malte U; Brauser, Annemarie; Olak, Claudia; Brezesinski, Gerald; Goldmann, Torsten; Gutsmann, Thomas; Andrä, Jörg

    2010-05-01

    Phosphatidylglycerol is a widely used mimetic to study the effects of AMPs (antimicrobial peptides) on the bacterial cytoplasmic membrane. However, the antibacterial activities of novel NK-2-derived AMPs could not be sufficiently explained by using this simple model system. Since the LPS (lipopolysaccharide)-containing outer membrane is the first barrier of Gram-negative bacteria, in the present study we investigated interactions of NK-2 and a shortened variant with viable Escherichia coli WBB01 and Proteus mirabilis R45, and with model membranes composed of LPS isolated from these two strains. Differences in net charge and charge distribution of the two LPS have been proposed to be responsible for the differential sensitivity of the respective bacteria to other AMPs. As imaged by TEM (transmission electron microscopy) and AFM (atomic force microscopy), NK-2-mediated killing of these bacteria was corroborated by structural alterations of the outer and inner membranes, the release of E. coli cytoplasma, and the formation of unique fibrous structures inside P. mirabilis, suggesting distinct and novel intracellular targets. NK-2 bound to and intercalated into LPS bilayers, and eventually induced the formation of transient heterogeneous lesions in planar lipid bilayers. However, the discriminative activity of NK-2 against the two bacterial strains was independent of membrane intercalation and lesion formation, which both were indistinguishable for the two LPS. Instead, differences in activity originated from the LPS-binding step, which could be demonstrated by NK-2 attachment to intact bacteria, and to solid-supported LPS bilayers on a surface acoustic wave biosensor. PMID:20187872

  17. Role of Proteus mirabilis MR/P fimbriae and flagella in adhesion, cytotoxicity and genotoxicity induction in T24 and Vero cells.

    PubMed

    Scavone, Paola; Villar, Silvia; Umpiérrez, Ana; Zunino, Pablo

    2015-06-01

    Proteus mirabilis is frequently associated with complicated urinary tract infections (UTI). It is proposed that several virulence factors are associated with P. mirabilis uropathogenicity. The aim of this work was to elucidate genotoxic and cytotoxic effects mediated by MR/P fimbriae and flagella in eukaryotic cells in vitro. Two cell lines (kidney- and bladder-derived) were infected with a clinical wild-type P. mirabilis strain and an MR/P and a flagellar mutant. We evaluated adhesion, genotoxicity and cytotoxicity by microscopy, comet assay and triple staining technique, respectively. Mutant strains displayed lower adhesion rates than the P. mirabilis wild-type strain and were significantly less effective to induce genotoxic and cytotoxic effects compared to the wild type. We report for the first time that P. mirabilis MR/P fimbriae and flagella mediate genotoxic and cytotoxic effects on eukaryotic cells, at least in in vitro conditions. These results could contribute to design new strategies for the control of UTI. PMID:25724892

  18. Cooccurrence of Multiple AmpC β-Lactamases in Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis in Tunisia

    PubMed Central

    Chérif, Thouraya; Saidani, Mabrouka; Decré, Dominique; Boutiba-Ben Boubaker, Ilhem

    2015-01-01

    Over a period of 40 months, plasmid-mediated AmpC β-lactamases were detected in Tunis, Tunisia, in 78 isolates (0.59%) of Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. In 67 isolates, only one ampC gene was detected, i.e., blaCMY-2-type (n = 33), blaACC (n = 23), blaDHA (n = 6) or blaEBC (n = 5). Multiple ampC genes were detected in 11 isolates, with the following distribution: blaMOX-2, blaFOX-3, and blaCMY-4/16 (n = 6), blaFOX-3 and blaMOX-2 (n = 3), and blaCMY-4 and blaMOX-2 (n = 2). A great variety of plasmids carrying these genes was found, independently of the species and the bla gene. If the genetic context of blaCMY-2-type is variable, that of blaMOX-2, reported in part previously, is unique and that of blaFOX-3 is unique and new. PMID:26459902

  19. Identification of UreR binding sites in the Enterobacteriaceae plasmid-encoded and Proteus mirabilis urease gene operons.

    PubMed

    Thomas, V J; Collins, C M

    1999-03-01

    The closely related Proteus mirabilis and Enterobacterlaceae plasmid-encoded urease genes are positively regulated by the AraC-like transcriptional activator UreR. In the presence of the effector molecule urea, UreR promotes transcription of ureD, the initial gene in the urease operon, and increases transcription of the divergently transcribed ureR. Here, we identify UreR-specific binding sites in the ureRp-ureDp intergenic regions. Recombinant UreR (rUreR) was expressed and purified, and gel shift and DNase I protection assays were performed with this protein. These analyses indicated that there are two distinct rUreR binding sites in both the plasmid-encoded and P. mirabilis ureRp-ureDp intergenic regions. A consensus binding site of TA/GT/CA/TT/GC/TTA/TT/AATTG was predicted from the DNase I protection assays. Although rUreR bound to the specific DNA binding site in both the presence and the absence of urea, the dissociation rate constant k-1 of the rUreR-DNA complex interaction was measurably different when urea was present. In the absence of urea, the dissociation of the protein-DNA complexes, for both ureRp and ureDp, was complete at the earliest time point, and it was not possible to determine a rate. In the presence of urea, dissociation was measurable with a k-1 for the rUreR-ureRp interaction of 1.2 +/- 0.2 x 10(-2) s-1 and a k-1 for the rUreR-ureDp interaction of 2.6 +/- 0.1 x 10(-3) s-1. This corresponds to a half-life of the ureRp-rUreR interaction of 58 s, and a half-life of the ureDp-rUreR interaction of 4 min 26 s. A model describing a potential role for urea in the activation of these promoters is proposed. PMID:10200962

  20. Construction of a urease-negative mutant of Proteus mirabilis: analysis of virulence in a mouse model of ascending urinary tract infection.

    PubMed

    Jones, B D; Lockatell, C V; Johnson, D E; Warren, J W; Mobley, H L

    1990-04-01

    Proteus mirabilis, a urease-producing uropathogen, causes serious urinary tract infections in humans. To specifically evaluate the contribution of urease to virulence, a mutation was introduced into P. mirabilis HI4320 by homologous recombination. Virulence was assessed in the CBA mouse model of ascending urinary tract infection. Twenty mice each were challenged transurethrally with P. mirabilis HI4320 and its urease-negative derivative (1 x 10(9) to 2 x 10(9) CFU). At 48 h animals were sacrificed and the mean log10 CFU per milliliter of urine (parent, 6.23; mutant, 4.19; P = 0.0014) or per gram of bladder (parent, 6.29; mutant, 4.28; P = 0.0002), left kidney (parent, 4.11; mutant, 1.02; P = 0.00009), and right kidney (parent, 4.11; mutant, 2.43; P = 0.036) were all shown to be significantly different. These data demonstrate a role for urease as a critical virulence determinant for uropathogenic P. mirabilis. PMID:2180821

  1. Lack of functional complementation between Bordetella pertussis filamentous hemagglutinin and Proteus mirabilis HpmA hemolysin secretion machineries.

    PubMed Central

    Jacob-Dubuisson, F; Buisine, C; Willery, E; Renauld-Mongénie, G; Locht, C

    1997-01-01

    The gram-negative bacterium Bordetella pertussis has adapted specific secretion machineries for each of its major secretory proteins. In particular, the highly efficient secretion of filamentous hemagglutinin (FHA) is mediated by the accessory protein FhaC. FhaC belongs to a family of outer membrane proteins which are involved in the secretion of large adhesins or in the activation and secretion of Ca2+-independent hemolysins by several gram-negative bacteria. FHA shares with these hemolysins a 115-residue-long amino-proximal region essential for its secretion. To compare the secretory pathways of these hemolysins and FHA, we attempted functional transcomplementation between FhaC and the Proteus mirabilis hemolysin accessory protein HpmB. HpmB could not promote the secretion of FHA derivatives. Likewise, FhaC proved to be unable to mediate secretion and activation of HpmA, the cognate secretory partner of HpmB. In contrast, ShlB, the accessory protein of the closely related Serratia marcescens hemolysin, was able to activate and secrete HpmA. Two invariant asparagine residues lying in the region of homology shared by secretory proteins and shown to be essential for the secretion and activation of the hemolysins were replaced in FHA by site-directed mutagenesis. Replacements of these residues indicated that both are involved in, but only the first one is crucial to, FHA secretion. This slight discrepancy together with the lack of functional complementation demonstrates major differences between the hemolysins and FHA secretion machineries. PMID:9006033

  2. Bloodstream infections caused by multi-drug resistant Proteus mirabilis: Epidemiology, risk factors and impact of multi-drug resistance.

    PubMed

    Korytny, Alexander; Riesenberg, Klaris; Saidel-Odes, Lisa; Schlaeffer, Fransisc; Borer, Abraham

    2016-06-01

    Background The prevalence of antimicrobial co-resistance among ESBL-producing Enterobactereaceae is extremely high in Israel. Multidrug-resistant Proteus mirabilis strains (MDR-PM), resistant to almost all antibiotic classes have been described. The aim was to determine the risk factors for bloodstream infections caused by MDR-PM and clinical outcomes. Methods A retrospective case-control study. Adult patients with PM bacteremia during 7 years were identified retrospectively and their files reviewed for demographics, underlying diseases, Charlson Comorbidity Index, treatment and outcome. Results One hundred and eighty patients with PM-bloodstream infection (BSI) were included; 90 cases with MDR-PM and 90 controls with sensitive PM (S-PM). Compared to controls, cases more frequently were from nursing homes, had recurrent hospital admissions in the past year and received antibiotic therapy in the previous 3 months, were bedridden and suffered from peripheral vascular disease and peptic ulcer disease (p < 0.001). Two-thirds of the MDR-PM isolates were ESBL-producers vs 4.4% of S-PM isolates (p < 0.001, OR = 47.6, 95% CI = 15.9-142.6). In-hospital crude mortality rate of patients with MDR-PM BSI was 37.7% vs 23.3% in those with S-PM BSI (p = 0.0359, OR = 2, 95% CI = 1.4-3.81). Conclusions PM bacteremia in elderly and functionally-dependent patients is likely to be caused by nearly pan-resistant PM strains in the institution; 51.8% of the patients received inappropriate empiric antibiotic treatment. The crude mortality rate of patients with MDR-PM BSI was significantly higher than that of patients with S-PM BSI. PMID:26763474

  3. Immunochemical characterization of the O antigens of two Proteus strains, O8-related antigen of Proteus mirabilis 12 B-r and O2-related antigen of Proteus genomospecies 5/6 12 B-k, infecting a hospitalized patient in Poland.

    PubMed

    Drzewiecka, Dominika; Shashkov, Alexander S; Arbatsky, Nikolay P; Knirel, Yuriy A

    2016-05-01

    A hospitalized 73-year-old woman was infected with a Proteus mirabilis strain, 12 B-r, isolated from the place of injection of a blood catheter. Another strain, 12 B-k, recognized as Proteus genomospecies 5 or 6, was isolated from the patient's faeces, which was an example of a nosocomial infection rather than an auto-infection. Serological investigation using ELISA and Western blotting showed that strain 12 B-k from faeces belonged to the Proteus O2 serogroup. Strain 12 B-r from the wound displayed cross-reactions with several Proteus O serogroups due to common epitopes on the core or O-specific parts of the lipopolysaccharide. Studies of the isolated 12 B-r O-specific polysaccharide by NMR spectroscopy revealed its close structural similarity to that of Proteus O8. The only difference in 12 B-r was the presence of an additional GlcNAc-linked phosphoethanolamine residue, which creates a putative epitope responsible for the cross-reactivity with Pt. mirabilis O16. The new O-antigen form could appear as a result of adaptation of the bacterium to a changing environment. On the basis of the data obtained, we suggest division of the O8 serogroup into two subgroups: O8a for strains of various Proteus species that have been previously classified into the O8 serogroup, and O8a,b for Pt. mirabilis 12 B-r, where 'a' is a common epitope and 'b' is a phosphoethanolamine-associated epitope. These findings further confirm serological and structural heterogeneity of O antigens of Proteus strains isolated lately from patients in Poland. PMID:26959528

  4. Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold.

    PubMed

    Burall, Laurel S; Harro, Janette M; Li, Xin; Lockatell, C Virginia; Himpsl, Stephanie D; Hebel, J Richard; Johnson, David E; Mobley, Harry L T

    2004-05-01

    Proteus mirabilis, a common cause of urinary tract infections (UTI) in individuals with functional or structural abnormalities or with long-term catheterization, forms bladder and kidney stones as a consequence of urease-mediated urea hydrolysis. Known virulence factors, besides urease, are hemolysin, fimbriae, metalloproteases, and flagella. In this study we utilized the CBA mouse model of ascending UTI to evaluate the colonization of mutants of P. mirabilis HI4320 that were generated by signature-tagged mutagenesis. By performing primary screening of 2088 P. mirabilis transposon mutants, we identified 502 mutants that ranged from slightly attenuated to unrecoverable. Secondary screening of these mutants revealed that 114 transposon mutants were reproducibly attenuated. Cochallenge of 84 of these single mutants with the parent strain in the mouse model resulted in identification of 37 consistently out-competed P. mirabilis transposon mutants, 25 of which were out-competed >100-fold for colonization of the bladder and/or kidneys by the parent strain. We determined the sequence flanking the site of transposon insertion in 29 attenuated mutants and identified genes affecting motility, iron acquisition, transcriptional regulation, phosphate transport, urease activity, cell surface structure, and key metabolic pathways as requirements for P. mirabilis infection of the urinary tract. Two mutations localized to a approximately 42-kb plasmid present in the parent strain, suggesting that the plasmid is important for colonization. Isolation of disrupted genes encoding proteins with homologies to known bacterial virulence factors, especially the urease accessory protein UreF and the disulfide formation protein DsbA, showed that the CBA mouse model and mutant pools are a reliable source of attenuated mutants with mutations in virulence genes. PMID:15102805

  5. Current status of extended spectrum β-lactamase-producing Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis in Okinawa prefecture, Japan.

    PubMed

    Nakama, Rika; Shingaki, Aoi; Miyazato, Hiroko; Higa, Rikako; Nagamoto, Chota; Hamamoto, Kouta; Ueda, Shuhei; Hachiman, Teruyuki; Touma, Yuki; Miyagi, Kazufumi; Kawahara, Ryuji; Toyosato, Takehiko; Hirai, Itaru

    2016-05-01

    Enterobacteriaceae producing extended spectrum β-lactamase (ESBL) are distributed worldwide. In this study, 114 ESBL-producing Enterobacteriaceae were isolated by analyzing 1672 clinical isolates of Enterobacteriaceae collected from an Okinawa prefectural hospital in Japan between June 2013 and July 2014. The overall prevalence of ESBL-producing Enterobacteriaceae was 6.8%; the prevalence of different bacterial species among the ESBL-producing isolates was as follows: 11.5% Escherichia coli (90 of 783 isolates), 6.2% Klebsiella pneumoniae (19 of 307 isolates), and 11.1% Proteus mirabilis (5 of 45 isolates). The ESBL types blaCTX-M-1, -3, -15, -2, -14, -27, and mutants of blaSHV-1 were detected. Among them, blaCTX-M-15 (33.3%), blaCTX-M-14 (27.8%) and blaCTX-M-27 (33.3%) were dominant in the E. coli isolates, whereas a blaSHV mutant which possessed four mutations (Tyr7Phe, Leu35Gln, Gly238Ser and Glu240Lys) in the amino acid sequence of SHV-1 dominated in the K. pneumoniae isolates (11 of 19, 57.9%). The pandemic E. coli ST131 clone was found to constitute 3.3% of the overall examined isolates and 62.2% of the ESBL-producing E. coli isolates. Our results suggest that the genetic combination of blaCTX-M, and blaSHV and antibiotics-resistant profile were different from that in other regions such as other areas of Japan, Asia, Europe, and North America, especially in the ESBL-producing K. pneumoniae isolates and in the E. coli B2-O25b-ST131 isolates possessing blaCTX-M-15 (40.7% of the E. coli B2-O25b-ST131 isolates). Taken together, our results indicate that the ESBL-producing Enterobacteriaceae in Okinawa, Japan, might be of a unique nature. PMID:26898665

  6. Comparative in vitro studies on disodium EDTA effect with and without Proteus mirabilis on the crystallization of carbonate apatite and struvite

    NASA Astrophysics Data System (ADS)

    Prywer, Jolanta; Olszynski, Marcin; Torzewska, Agnieszka; Mielniczek-Brzóska, Ewa

    2014-06-01

    Effect of disodium EDTA (salt of ethylenediamine tetraacetic acid) on the crystallization of struvite and carbonate apatite was studied. To evaluate such an effect we performed an experiment of struvite and carbonate apatite growth from artificial urine. The crystallization process was induced by Proteus mirabilis to mimic the real urinary tract infection, which usually leads to urinary stone formation. The results demonstrate that disodium EDTA exhibits the effect against P. mirabilis retarding the activity of urease - an enzyme produced by these microorganisms. The spectrophotometric results demonstrate that, with and without P. mirabilis, the addition of disodium EDTA increases the induction time and decreases the growth efficiency compared to the baseline (without disodium EDTA). These results are discussed from the standpoint of speciation of complexes formed in the solution of artificial urine in the presence of disodium EDTA. The size of struvite crystals was found to decrease in the presence of disodium EDTA. However, struvite crystals are larger in the presence of bacteria while the crystal morphology and habit remain unchanged.

  7. UreR, the transcriptional activator of the Proteus mirabilis urease gene cluster, is required for urease activity and virulence in experimental urinary tract infections.

    PubMed

    Dattelbaum, Jonathan D; Lockatell, C Virginia; Johnson, David E; Mobley, Harry L T

    2003-02-01

    Proteus mirabilis, a cause of complicated urinary tract infection, produces urease, an essential virulence factor for this species. UreR, a member of the AraC/XylS family of transcriptional regulators, positively activates expression of the ure gene cluster in the presence of urea. To specifically evaluate the contribution of UreR to urease activity and virulence in the urinary tract, a ureR mutation was introduced into P. mirabilis HI4320 by homologous recombination. The isogenic ureR::aphA mutant, deficient in UreR production, lacked measurable urease activity. Expression was not detected in the UreR-deficient strain by Western blotting with monoclonal antibodies raised against UreD. Urease activity and UreD expression were restored by complementation of the mutant strain with ureR expressed from a low-copy-number plasmid. Virulence was assessed by transurethral cochallenge of CBA mice with wild-type and mutant strains. The isogenic ureR::aphA mutant of HI4320 was outcompeted in the urine (P = 0.004), bladder (P = 0.016), and kidneys (P < or = 0.001) 7 days after inoculation. Thus, UreR is required for basal urease activity in the absence of urea, for induction of urease by urea, and for virulence of P. mirabilis in the urinary tract. PMID:12540589

  8. In silico design of fusion protein of FimH from uropathogenic Escherichia coli and MrpH from Proteus mirabilis against urinary tract infections

    PubMed Central

    Habibi, Mehri; Asadi Karam, Mohammad Reza; Bouzari, Saeid

    2015-01-01

    Background: Urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC) and Proteus mirabilis are the most important pathogens causing UTIs. The FimH from type 1 pili of UPEC and the MrpH from P. mirabilis play critical roles in the UTI process and have presented as ideal vaccine candidates against UTIs. There is no effective vaccine against UTI and the development of an ideal UTI vaccine is required. Materials and Methods: In this study, we planned to design a novel fusion protein of FimH from UPEC and MrpH from P. mirabilis. For this purpose, we modeled fusion protein forms computationally using the Iterative Threading Assembly Refinement (I-TASSER) server and evaluated their interactions with toll-like receptor 4 (TLR4). The best fusion protein was constructed using overlap extension polymerase chain reaction (OE-PCR) and the biological activity of fusion was evaluated by the induction of interleukin-8 (IL-8) in the HT-29 cell line. Results: Our study indicated that based on the Protein Structure Analysis (ProSA)-web and the docking results, MrpH.FimH showed better results than did FimH.MrpH, and it was selected for construction. The results of bioassay on the HT-29 showed that FimH and MrpH.FimH induced significantly higher IL-8 responses than untreated cells or MrpH alone in the cell line tested. Conclusions: In the present study, we designed and constructed the novel fusion protein MrpH.FimH from UPEC and P. mirabilis based on in silico methods. Our bioassay results indicate that the MrpH.FimH fusion protein is active and capable of inducing immune responses. PMID:26605246

  9. Proteus mirabilis isolates of different origins do not show correlation with virulence attributes and can colonize the urinary tract of mice.

    PubMed

    Sosa, Vanessa; Schlapp, Geraldine; Zunino, Pablo

    2006-07-01

    Proteus mirabilis has been described as an aetiological agent in a wide range of infections, playing an important role in urinary tract infections (UTIs). In this study, a collection of P. mirabilis isolates obtained from clinical and non-clinical sources was analysed in order to determine a possible correlation between origin, virulence factors and in vivo infectivity. Isolates were characterized in vitro, assessing several virulence properties that had been previously associated with P. mirabilis uropathogenicity. Swarming motility, urease production, growth in urine, outer-membrane protein patterns, ability to grow in the presence of different iron sources, haemolysin and haemagglutinin production, and the presence and expression of diverse fimbrial genes, were analysed. In order to evaluate the infectivity of the different isolates, the experimental ascending UTI model in mice was used. Additionally, the Dienes test and the enterobacterial repetitive intergenic consensus (ERIC)-PCR assay were performed to assess the genetic diversity of the isolates. The results of the present study did not show any correlation between distribution of the diverse potential urovirulence factors and isolate source. No significant correlation was observed between infectivity and the origin of the isolates, since they all similarly colonized the urinary tract of the challenged mice. Finally, all isolates showed unique ERIC-PCR patterns, indicating that the isolates were genetically diverse. The results obtained in this study suggest that the source of P. mirabilis strains cannot be correlated with pathogenic attributes, and that the distribution of virulence factors between isolates of different origins may correspond to the opportunistic nature of the organism. PMID:16804188

  10. Proteus mirabilis flagella and MR/P fimbriae: isolation, purification, N-terminal analysis, and serum antibody response following experimental urinary tract infection.

    PubMed

    Bahrani, F K; Johnson, D E; Robbins, D; Mobley, H L

    1991-10-01

    Urinary tract infection with Proteus mirabilis may lead to serious complications, including cystitis, acute pyelonephritis, fever, bacteremia, and death. In addition to the production of hemolysin and the enzyme urease, fimbriae and flagellum-mediated motility have been postulated as virulence factors for this species. We purified mannose-resistant/proteuslike (MR/P) fimbriae and flagella from strains CFT322 and HU2450, respectively. Electron microscopy revealed highly concentrated preparations of fimbriae and flagella. Fimbrial and flagellar structural subunits were estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be 18.5 and 41 kDa, respectively. N-terminal sequencing revealed that 10 of the first 20 amino acids of the major MR/P subunit matched the sequence of the P. mirabilis uroepithelial cell adhesin N terminus and 11 of 20 amino acids matched the predicted amino acid sequence of the Escherichia coli P fimbriae structural subunit, PapA. In addition, 90 and 80% homologies were found between the first 20 amino acids of P. mirabilis flagellin and those of Salmonella typhimurium phase-1 flagellin and the E. coli hag gene product, respectively. An enzyme-linked immunosorbent assay using purified antigens showed a strong reaction between the MR/P fimbriae or flagella and sera of CBA mice challenged transurethrally with P. mirabilis. A possible role for MR/P fimbriae in the pathogenesis of urinary tract infection is supported by (i) a strong immune response to the antigen in experimentally infected animals, (ii) amino acid sequence similarity to other enteric surface structure, and (iii) our previously reported observation that MR/P fimbriae are expressed preferentially as the sole fimbrial type in human pyelonephritis isolates. PMID:1680106

  11. Irrigation with N,N-dichloro-2,2-dimethyltaurine (NVC-422) in a citrate buffer maintains urinary catheter patency in vitro and prevents encrustation by Proteus mirabilis.

    PubMed

    Rani, Suriani Abdul; Celeri, Chris; Najafi, Ron; Bley, Keith; Debabov, Dmitri

    2016-06-01

    Long-term use of indwelling urinary catheters can lead to urinary tract infections and loss of catheter patency due to encrustation and blockage. Encrustation of urinary catheters is due to formation of crystalline biofilms by urease-producing microorganisms such as Proteus mirabilis. An in vitro catheter biofilm model (CBM) was used to evaluate current methods for maintaining urinary catheter patency. We compared antimicrobial-coated urinary Foley catheters, with both available catheter irrigation solutions and investigational solutions containing NVC-422 (N,N-dichloro-2,2-dimethyltaurine; a novel broad-spectrum antimicrobial). Inoculation of the CBM reactor with 10(8) colony-forming units of P. mirabilis resulted in crystalline biofilm formation in catheters by 48 h and blockage of catheters within 5 days. Silver hydrogel or nitrofurazone-coated catheters did not extend the duration of catheter patency. Catheters irrigated daily with commercially available solutions such as 0.25 % acetic acid and isotonic saline blocked at the same rate as untreated catheters. Daily irrigations of catheters with 0.2 % NVC-422 in 10 mM acetate-buffered saline pH 4 or Renacidin maintained catheter patency throughout 10-day studies, but P. mirabilis colonization of the CBM remained. In contrast, 0.2 % NVC-422 in citrate buffer (6.6 % citric acid at pH 3.8) resulted in an irrigation solution that not only maintained catheter patency for 10 days but also completely eradicated the P. mirabilis biofilm within one treatment day. These data suggest that an irrigation solution containing the rapidly bactericidal antimicrobial NVC-422 in combination with citric acid to permeabilize crystalline biofilm may significantly enhance catheter patency versus other approved irrigation solutions and antimicrobial-coated catheters. PMID:26282899

  12. The Helicobacter pylori flbA flagellar biosynthesis and regulatory gene is required for motility and virulence and modulates urease of H. pylori and Proteus mirabilis.

    PubMed

    McGee, David J; Coker, Christopher; Testerman, Traci L; Harro, Janette M; Gibson, Susan V; Mobley, Harry L T

    2002-11-01

    Helicobacter pylori and Proteus mirabilis ureases are nickel-requiring metallo-enzymes that hydrolyse urea to NH3 and CO2. In both H. pylori and in an Escherichia coli model of H. pylori urease activity, a high affinity nickel transporter, NixA, is required for optimal urease activity, whereas the urea-dependent UreR positive transcriptional activator governs optimal urease expression in P. mirabilis. The H. pylori flbA gene is a flagellar biosynthesis and regulatory gene that modulates urease activity in the E. coli model of H. pylori urease activity. All flbA mutants of eight strains of H. pylori were non-motile and five had a strain-dependent alteration in urease activity. The flbA gene decreased urease activity 15-fold when expressed in E. coli containing the H. pylori urease locus and the nixA gene; this was reversed by disruption of flbA. The flbA gene decreased nixA transcription. flbA also decreased urease activity three-fold in E. coli containing the P. mirabilis urease locus in a urea- and UreR-dependent fashion. Here the flbA gene repressed the P. mirabilis urease promoter. Thus, FlbA decreased urease activity of both H. pylori and P. mirabilis, but through distinct mechanisms. H. pylori wild-type strain SS1 colonised gerbils at a mean of 5.4 x 10(6) cfu/g of antrum and caused chronic gastritis and lesions in the antrum. In contrast, the flbA mutant did not colonise five of six gerbils and caused no lesions, indicating that motility mediated by flbA was required for colonisation. Because FlbA regulates flagellar biosynthesis and secretion, as well as forming a structural component of the flagellar secretion apparatus, two seemingly unrelated virulence attributes, motility and urease, may be coupled in H. pylori and P. mirabilis and possibly also in other motile, ureolytic bacteria. PMID:12448680

  13. Construction of an MR/P fimbrial mutant of Proteus mirabilis: role in virulence in a mouse model of ascending urinary tract infection.

    PubMed Central

    Bahrani, F K; Massad, G; Lockatell, C V; Johnson, D E; Russell, R G; Warren, J W; Mobley, H L

    1994-01-01

    Proteus mirabilis, a cause of acute pyelonephritis, produces at least four types of fimbriae, including MR/P (mannose-resistant/Proteus-like) fimbriae. To investigate the contribution of MR/P fimbriae to colonization of the urinary tract, we constructed an MR/P fimbrial mutant by allelic exchange. A 4.2-kb BamHI fragment carrying the mrpA gene was subcloned into a mobilizable plasmid, pSUP202. A 1.3-kb Kanr cassette was inserted into the mrpA open reading frame, and the construct was transferred to the parent P. mirabilis strain by conjugation. Following passage on nonselective medium, 1 of 500 transconjugants screened was found to have undergone allelic exchange as demonstrated by Southern blot. Colony immunoblot, Western immunoblot, and immunogold labeling with a monoclonal antibody to MR/P fimbriae revealed that MrpA was not expressed. Complementation with cloned mrpA restored MR/P expression as shown by hemagglutination, Western blot, and immunogold electron microscopy. To assess virulence, we challenged 40 CBA mice transurethrally with 10(7) CFU of wild-type or mutant strains. After 1 week, geometric means of log10 CFU per milliliter of urine or per gram of bladder or kidney for the wild-type and mutant strains were as follows: urine, 7.79 (wild type) versus 7.02 (mutant) (P = 0.035); bladder, 6.22 versus 4.78 (P = 0.019); left kidney, 5.02 versus 3.31 (P = 0.009); and right kidney, 5.28 versus 4.46 (P = 0.039). Mice challenged with the wild-type strain showed significantly more severe renal damage than did mice challenged with the MR/P-negative mutant (P = 0.007). We conclude that MR/P fimbriae contribute significantly to colonization of the urinary tract and increase the risk of development of acute pyelonephritis. Images PMID:7913698

  14. Modulation of effects of lipopolysaccharide on macrophages by a major outer membrane protein of Proteus mirabilis as measured in a chemiluminescence assay.

    PubMed Central

    Weber, G; Heck, D; Bartlett, R R; Nixdorff, K

    1992-01-01

    Our previous studies have shown that a major protein isolated from purified cell walls of Proteus mirabilis (39-kDa protein) is a strong modulator of the specific immune responses to lipopolysaccharide (LPS) from this bacterium. When the protein is mixed with LPS before immunization of mice, the responses of antibody-producing cells specific for LPS are greatly enhanced and converted predominantly to the immunoglobulin G isotype. In the present study, the immunomodulating effects of the 39-kDa protein were tested at the level of interaction of LPS with macrophages. Activation of macrophages was determined by measuring the production of oxygen radicals in a chemiluminescence assay with lucigenin as the amplifier. LPS from P. mirabilis induced strong oxidative metabolism in both peritoneal and bone marrow-derived murine macrophages. These responses were inhibited in a dose-dependent manner by mixing LPS with increasing amounts of the protein. In contrast, bovine serum albumin and methylated bovine serum albumin enhanced the response of macrophages dramatically when complexed with LPS. The inhibiting activity of the 39-kDa protein was also observed with LPS from Escherichia coli K-12. PMID:1541521

  15. Transurethral instillation with fusion protein MrpH.FimH induces protective innate immune responses against uropathogenic Escherichia coli and Proteus mirabilis.

    PubMed

    Habibi, Mehri; Asadi Karam, Mohammad Reza; Bouzari, Saeid

    2016-06-01

    Urinary tract infections (UTIs) are among the most common infections in human. Innate immunity recognizes pathogen-associated molecular patterns (PAMPs) by Toll-like receptors (TLRs) to activate responses against pathogens. Recently, we demonstrated that MrpH.FimH fusion protein consisting of MrpH from Proteus mirabilis and FimH from Uropathogenic Escherichia coli (UPEC) results in the higher immunogenicity and protection, as compared with FimH and MrpH alone. In this study, we evaluated the innate immunity and adjuvant properties induced by fusion MrpH.FimH through in vitro and in vivo methods. FimH and MrpH.FimH were able to induce significantly higher IL-8 and IL-6 responses than untreated or MrpH alone in cell lines tested. The neutrophil count was significantly higher in the fusion group than other groups. After 6 h, IL-8 and IL-6 production reached a peak, with a significant decline at 24 h post-instillation in both bladder and kidney tissues. Mice instilled with the fusion and challenged with UPEC or P. mirabilis showed a significant decrease in the number of bacteria in bladder and kidney compared to control mice. The results of these studies demonstrate that the use of recombinant fusion protein encoding TLR-4 ligand represents an effective vaccination strategy that does not require the use of a commercial adjuvant. Furthermore, MrpH.FimH was presented as a promising vaccine candidate against UTIs caused by UPEC and P. mirabilis. PMID:26918627

  16. Chemometric analysis of attenuated total reflectance infrared spectra of Proteus mirabilis strains with defined structures of LPS.

    PubMed

    Zarnowiec, Paulina; Mizera, Andrzej; Chrapek, Magdalena; Urbaniak, Mariusz; Kaca, Wieslaw

    2016-07-01

    Proteus spp. strains are some of the most important pathogens associated with complicated urinary tract infections and bacteremia affecting patients with immunodeficiency and long-term urinary catheterization. For epidemiological purposes, various molecular typing methods have been developed for this pathogen. However, these methods are labor intensive and time consuming. We evaluated a new method of differentiation between strains. A collection of Proteus spp. strains was analyzed by attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy in the mid-infrared region. ATR FT-IR spectroscopy used in conjunction with a diamond ATR accessory directly produced the biochemical profile of the surface chemistry of bacteria. We conclude that a combination of ATR FT-IR spectroscopy and mathematical modeling provides a fast and reliable alternative for discrimination between Proteus isolates, contributing to epidemiological research. PMID:27189426

  17. Proteus mirabilis fimbriae- and urease-dependent clusters assemble in an extracellular niche to initiate bladder stone formation.

    PubMed

    Schaffer, Jessica N; Norsworthy, Allison N; Sun, Tung-Tien; Pearson, Melanie M

    2016-04-19

    The catheter-associated uropathogenProteus mirabilisfrequently causes urinary stones, but little has been known about the initial stages of bladder colonization and stone formation. We found thatP. mirabilisrapidly invades the bladder urothelium, but generally fails to establish an intracellular niche. Instead, it forms extracellular clusters in the bladder lumen, which form foci of mineral deposition consistent with development of urinary stones. These clusters elicit a robust neutrophil response, and we present evidence of neutrophil extracellular trap generation during experimental urinary tract infection. We identified two virulence factors required for cluster development: urease, which is required for urolithiasis, and mannose-resistantProteus-like fimbriae. The extracellular cluster formation byP. mirabilisstands in direct contrast to uropathogenicEscherichia coli, which readily formed intracellular bacterial communities but not luminal clusters or urinary stones. We propose that extracellular clusters are a key mechanism ofP. mirabilissurvival and virulence in the bladder. PMID:27044107

  18. In vitro activity of flomoxef and comparators against Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis producing extended-spectrum β-lactamases in China.

    PubMed

    Yang, Qiwen; Zhang, Hui; Cheng, Jingwei; Xu, Zhipeng; Xu, Yingchun; Cao, Bin; Kong, Haishen; Ni, Yuxing; Yu, Yunsong; Sun, Ziyong; Hu, Bijie; Huang, Wenxiang; Wang, Yong; Wu, Anhua; Feng, Xianju; Liao, Kang; Shen, Dingxia; Hu, Zhidong; Chu, Yunzhuo; Lu, Juan; Su, Jianrong; Gui, Bingdong; Duan, Qiong; Zhang, Shufang; Shao, Haifeng

    2015-05-01

    The objective of this study was to better understand the in vitro activity of flomoxef against clinical extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. A total of 401 ESBL-producing isolates, including 196 Escherichia coli, 124 Klebsiella pneumoniae and 81 Proteus mirabilis, were collected consecutively from 21 hospitals in China in 2013. Minimum inhibitory concentrations (MICs) were determined by broth microdilution methods. Phenotypic identification of ESBL production was detected as recommended by the Clinical and Laboratory Standards Institute (CLSI). ESBL genes were detected by PCR and sequencing. Flomoxef, doripenem, meropenem, ertapenem, cefmetazole and piperacillin/tazobactam exhibited good activity against ESBL-producing isolates, with susceptibility rates >90%. Tigecycline showed good activity against E. coli and K. pneumoniae (100% and 97.6%, respectively). Cefotaxime and cefepime showed very low activities against ESBL-producing isolates, with susceptibility rates of 0-0.8% and 1.0-13.6%, respectively. blaCTX-M were the major ESBL genes, with occurrence in 99.5% of E. coli, 91.1% of K. pneumoniae and 97.5% of P. mirabilis. blaCTX-M-14 was the predominant ESBL gene, detected in 46.9% (188/401) of the isolates, followed by blaCTX-M-15 (21.4%), blaCTX-M-55 (17.2%), blaCTX-M-65 (12.7%) and blaCTX-M-3 (6.7%). Flomoxef exhibited excellent activity against the different CTX-M-type ESBL-producing isolates, with MIC50 and MIC90 values of 0.064-0.125μg/mL and 0.25-0.5μg/mL, respectively. Against the isolates solely producing CTX-M-14, -15, -55, -3 or -65, flomoxef showed susceptibility rates of 98.6%, 98.0%, 98.1%, 100.0% and 97.4%, respectively. In conclusion, flomoxef showed good activity against ESBL-producing Enterobacteriaceae and may be a choice to treat infections caused by these isolates in China. PMID:25600890

  19. Single-step purification of Proteus mirabilis urease accessory protein UreE, a protein with a naturally occurring histidine tail, by nickel chelate affinity chromatography.

    PubMed

    Sriwanthana, B; Island, M D; Maneval, D; Mobley, H L

    1994-11-01

    Proteus mirabilis urease, a nickel metalloenzyme, is essential for the virulence of this species in the urinary tract. Escherichia coli containing cloned structural genes ureA, ureB, and ureC and accessory genes ureD, ureE, ureF, and ureG displays urease activity when cultured in M9 minimal medium. To study the involvement of one of these accessory genes in the synthesis of active urease, deletion mutations were constructed. Cultures of a ureE deletion mutant did not produce an active urease in minimal medium. Urease activity, however, was partially restored by the addition of 5 microM NiCl2 to the medium. The predicted amino acid sequence of UreE, which concludes with seven histidine residues among the last eight C-terminal residues (His-His-His-His-Asp-His-His-His), suggested that UreE may act as a Ni2+ chelator for the urease operon. To exploit this potential metal-binding motif, we attempted to purify UreE from cytoplasmic extracts of E. coli containing cloned urease genes. Soluble protein was loaded onto a nickel-nitrilotriacetic acid column, a metal chelate resin with high affinity for polyhistidine tails, and bound protein was eluted with a 0 to 0.5 M imidazole gradient. A single polypeptide of 20-kDa apparent molecular size, as shown by sodium dodecyl sulfate-10 to 20% polyacrylamide gel electrophoresis, was eluted between 0.25 and 0.4 M imidazole. The N-terminal 10 amino acids of the eluted polypeptide exactly matched the deduced amino acid sequence of P. mirabilis UreE. The molecular size of the native protein was estimated on a Superdex 75 column to be 36 kDa, suggesting that the protein is a dimer. These data suggest that UreE is a Ni(2)+-binding protein that is necessary for synthesis of a catalytically active urease at low Ni(2+) concentrations. PMID:7961442

  20. Crystal Structure of the Dithiol Oxidase DsbA Enzyme from Proteus Mirabilis Bound Non-covalently to an Active Site Peptide Ligand

    PubMed Central

    Kurth, Fabian; Duprez, Wilko; Premkumar, Lakshmanane; Schembri, Mark A.; Fairlie, David P.; Martin, Jennifer L.

    2014-01-01

    The disulfide bond forming DsbA enzymes and their DsbB interaction partners are attractive targets for development of antivirulence drugs because both are essential for virulence factor assembly in Gram-negative pathogens. Here we characterize PmDsbA from Proteus mirabilis, a bacterial pathogen increasingly associated with multidrug resistance. PmDsbA exhibits the characteristic properties of a DsbA, including an oxidizing potential, destabilizing disulfide, acidic active site cysteine, and dithiol oxidase catalytic activity. We evaluated a peptide, PWATCDS, derived from the partner protein DsbB and showed by thermal shift and isothermal titration calorimetry that it binds to PmDsbA. The crystal structures of PmDsbA, and the active site variant PmDsbAC30S were determined to high resolution. Analysis of these structures allows categorization of PmDsbA into the DsbA class exemplified by the archetypal Escherichia coli DsbA enzyme. We also present a crystal structure of PmDsbAC30S in complex with the peptide PWATCDS. The structure shows that the peptide binds non-covalently to the active site CXXC motif, the cis-Pro loop, and the hydrophobic groove adjacent to the active site of the enzyme. This high-resolution structural data provides a critical advance for future structure-based design of non-covalent peptidomimetic inhibitors. Such inhibitors would represent an entirely new antibacterial class that work by switching off the DSB virulence assembly machinery. PMID:24831013

  1. Crystal structure of the dithiol oxidase DsbA enzyme from proteus mirabilis bound non-covalently to an active site peptide ligand.

    PubMed

    Kurth, Fabian; Duprez, Wilko; Premkumar, Lakshmanane; Schembri, Mark A; Fairlie, David P; Martin, Jennifer L

    2014-07-11

    The disulfide bond forming DsbA enzymes and their DsbB interaction partners are attractive targets for development of antivirulence drugs because both are essential for virulence factor assembly in Gram-negative pathogens. Here we characterize PmDsbA from Proteus mirabilis, a bacterial pathogen increasingly associated with multidrug resistance. PmDsbA exhibits the characteristic properties of a DsbA, including an oxidizing potential, destabilizing disulfide, acidic active site cysteine, and dithiol oxidase catalytic activity. We evaluated a peptide, PWATCDS, derived from the partner protein DsbB and showed by thermal shift and isothermal titration calorimetry that it binds to PmDsbA. The crystal structures of PmDsbA, and the active site variant PmDsbAC30S were determined to high resolution. Analysis of these structures allows categorization of PmDsbA into the DsbA class exemplified by the archetypal Escherichia coli DsbA enzyme. We also present a crystal structure of PmDsbAC30S in complex with the peptide PWATCDS. The structure shows that the peptide binds non-covalently to the active site CXXC motif, the cis-Pro loop, and the hydrophobic groove adjacent to the active site of the enzyme. This high-resolution structural data provides a critical advance for future structure-based design of non-covalent peptidomimetic inhibitors. Such inhibitors would represent an entirely new antibacterial class that work by switching off the DSB virulence assembly machinery. PMID:24831013

  2. Proteus mirabilis urease: histidine 320 of UreC is essential for urea hydrolysis and nickel ion binding within the native enzyme.

    PubMed

    Sriwanthana, B; Mobley, H L

    1993-06-01

    Proteus mirabilis urease, a nickel-containing enzyme, has been established as a critical virulence determinant in urinary tract infection. An amino acid sequence (residues 308 to 327: TVDEHLDMLMVCHHLDPSIP) within the large urease subunit, UreC, is highly conserved for every urease examined thus far and has been suggested to reside within the enzyme active site. Histidine residues have been postulated to play a role in catalysis by coordinating Ni2+ ions. To test this hypothesis, oligonucleotide-directed mutagenesis was used to change amino acid His-320 to Leu-320 within UreC. The base change (CAT for His-320 to CTT for Leu-320) was confirmed by DNA sequencing. The recombinant and mutant proteins were expressed at similar levels in Escherichia coli as detected by Western blotting (immunoblotting) of denaturing and nondenaturing gels. Specific activities of the enzymes were quantitated after partial purification. Strains expressing the mutant enzyme showed no detectable activity, whereas strains expressing the recombinant enzyme hydrolyzed urea at 149 mumol of NH3 per min per mg of protein. In addition, the mutant enzyme was able to incorporate only about one-half (58%) of the amount of 63Ni2+ incorporated by the active recombinant enzyme. While the mutation of His-320 to Leu-320 within UreC does not affect expression or assembly of urease polypeptide subunits UreA, UreB, and UreC His-320 of UreC is required for urea hydrolysis and proper incorporation of Ni2+ into apoenzyme. PMID:8500894

  3. Identification of protease and rpoN-associated genes of uropathogenic Proteus mirabilis by negative selection in a mouse model of ascending urinary tract infection.

    PubMed

    Zhao, H; Li, X; Johnson, D E; Mobley, H L

    1999-01-01

    Proteus mirabilis, a motile gram-negative bacterium, is a principal cause of urinary tract infections in patients with functional or anatomical abnormalities of the urinary tract or those with urinary catheters in place. Thus far, virulence factors including urease, flagella, haemolysin, various fimbriae, IgA protease and a deaminase have been characterized based on the phenotypic traits conferred by these proteins. In this study, an attempt was made to identify new virulence genes of P. mirabilis that may not have identifiable phenotypes using the recently described technique of signature-tagged mutagenesis. A pool of chromosomal transposon mutants was made through conjugation and kanamycin/tetracycline selection; random insertion was confirmed by Southern blotting of chromosomal DNA isolated from 16 mutants using the aphA gene as a probe. From the total pool, 2.3% (9/397) auxotrophic mutants and 3.5% (14/397) swarming mutants were identified by screening on minimal salts agar and Luria agar plates, respectively. Thirty per cent of the mutants, found to have either no tag or an unamplifiable tag, were removed from the input pool. Then 10(7) c.f.u. from a 96-mutant pool (approximately 10(5) c.f.u. of each mutant) were used as an input pool to transurethrally inoculate seven CBA mice. After 2 d infection, bacteria were recovered from the bladders and kidneys and yielded about 10(5) c.f.u. as an output pool. Dot blot analysis showed that two of the 96 mutants, designated B2 and B5, could not be hybridized by signature tags amplified from the bladder output pool. Interrupted genes from these two mutants were cloned and sequenced. The interrupted gene in B2 predicts a polypeptide of 37.3 kDa that shares amino acid similarity with a putative protease or collagenase precursor. The gene in B5 predicts a polypeptide of 32.6 kDa that is very similar to that encoded by ORF284 of the rpoN operon controlling expression of nitrogen-regulated genes from several bacterial species

  4. 10′(Z),13′(E)-Heptadecadienylhydroquinone Inhibits Swarming and Virulence Factors and Increases Polymyxin B Susceptibility in Proteus mirabilis

    PubMed Central

    Wang, Won-Bo; Yuan, Yu-Han; Hsueh, Po-Ren; Liaw, Shwu-Jen

    2012-01-01

    In this study, we demonstrated that 10′(Z), 13′(E)-heptadecadienylhydroquinone (HQ17-2), isolated from the lacquer tree, could decrease swarming motility and hemolysin activity but increase polymyxin B (PB) susceptibilityof Proteus mirabilis which is intrinsically highly-resistant to PB. The increased PB susceptibility induced by HQ17-2 was also observed in clinical isolates and biofilm-grown cells. HQ17-2 could inhibit swarming in the wild-type and rppA mutant but not in the rcsB mutant, indicating that HQ17-2 inhibits swarming through the RcsB-dependent pathway, a two-component signaling pathway negatively regulating swarming and virulence factor expression. The inhibition of hemolysin activity by HQ17-2 is also mediated through the RcsB-dependent pathway, because HQ17-2 could not inhibit hemolysin activity in the rcsB mutant. Moreover, the finding that HQ17-2 inhibits the expression of flhDC gene in the wild-type and rcsB-complemented strain but not in the rcsB mutant supports the notion. By contrast, HQ17-2 could increase PB susceptibility in the wild-type and rcsB mutant but not in the rppA mutant, indicating that HQ17-2 increases PB susceptibility through the RppA-dependent pathway, a signaling pathway positively regulating PB resistance. In addition, HQ17-2 could inhibit the promoter activities of rppA and pmrI, a gene positively regulated by RppA and involved in PB resistance, in the wild-type but not in the rppA mutant. The inhibition of rppA and pmrI expression caused lipopolysaccharide purified from HQ17-2-treated cells to have higher affinity for PB. Altogether, this study uncovers new biological effects of HQ17-2 and provides evidence for the potential of HQ17-2 in clinical applications. PMID:23029100

  5. Production of phenylpyruvic acid from L-phenylalanine using an L-amino acid deaminase from Proteus mirabilis: comparison of enzymatic and whole-cell biotransformation approaches.

    PubMed

    Hou, Ying; Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng

    2015-10-01

    Phenylpyruvic acid (PPA) is an important organic acid that has a wide range of applications. In this study, the membrane-bound L-amino acid deaminase (L-AAD) gene from Proteus mirabilis KCTC 2566 was expressed in Escherichia coli BL21(DE3) and then the L-AAD was purified. After that, we used the purified enzyme and the recombinant E. coli whole-cell biocatalyst to produce PPA via a one-step biotransformation from L-phenylalanine. L-AAD was solubilized from the membrane and purified 52-fold with an overall yield of 13 %, which corresponded to a specific activity of 0.94 ± 0.01 μmol PPA min(-1)·mg(-1). Then, the biotransformation conditions for the pure enzyme and the whole-cell biocatalyst were optimized. The maximal production was 2.6 ± 0.1 g·L(-1) (specific activity of 1.02 ± 0.02 μmol PPA min(-1)·mg(-1) protein, 86.7 ± 5 % mass conversion rate, and 1.04 g·L(-1)·h(-1) productivity) and 3.3 ± 0.2 g L(-1) (specific activity of 0.013 ± 0.003 μmol PPA min(-1)·mg(-1) protein, 82.5 ± 4 % mass conversion rate, and 0.55 g·L(-1)·h(-1) productivity) for the pure enzyme and whole-cell biocatalyst, respectively. Comparative studies of the enzymatic and whole-cell biotransformation were performed in terms of specific activity, production, conversion, productivity, stability, need of external cofactors, and recycling. We have developed two eco-friendly and efficient approaches for PPA production. The strategy described herein may aid the biotransformational synthesis of other α-keto acids from their corresponding amino acids. PMID:26109004

  6. Identification of the domains of UreR, an AraC-like transcriptional regulator of the urease gene cluster in Proteus mirabilis.

    PubMed

    Poore, C A; Coker, C; Dattelbaum, J D; Mobley, H L

    2001-08-01

    Proteus mirabilis urease catalyzes the hydrolysis of urea to CO(2) and NH(3), resulting in urinary stone formation in individuals with complicated urinary tract infections. UreR, a member of the AraC family, activates transcription of the genes encoding urease enzyme subunits and accessory proteins, ureDABCEFG, as well as its own transcription in the presence of urea. Based on sequence homology with AraC, we hypothesized that UreR contains both a dimerization domain and a DNA-binding domain. A translational fusion of the leucine zipper dimerization domain (amino acids 302 to 350) of C/EBP and the C-terminal half of UreR (amino acids 164 to 293) activated transcription from the ureD promoter (p(ureD)) and bound to a 60-bp fragment containing p(ureD), as analyzed by gel shift. These results were consistent with the DNA-binding specificity residing in the C-terminal half of UreR and dimerization being required for activity. To localize the dimerization domain of UreR, a translational fusion of the DNA-binding domain of the LexA repressor (amino acids 1 to 87) and the N-terminal half of UreR (amino acids 1 to 182) was constructed and found to repress transcription from p(sulA)-lacZ (sulA is repressed by LexA) and bind to the sulA operator site, as analyzed by gel shift. Since LexA binds this site only as a dimer, the UreR(1-182)-LexA(1-87) fusion also must dimerize to bind p(sulA). Indeed, purified UreR-Myc-His eluted from a gel filtration column as a dimer. Therefore, we conclude that the dimerization domain of UreR is located within the N-terminal half of UreR. UreR contains three leucines that mimic the leucines that contribute to dimerization of AraC. Mutagenesis of Leu147, Leu148, or L158 alone did not significantly affect UreR function. In contrast, mutagenesis of both Leu147 and Leu148 or all three Leu residues resulted in a 85 or 94% decrease, respectively, in UreR function in the presence of urea (P < 0.001). On the contrary, His102 and His175 mutations of Ure

  7. Identification of the Domains of UreR, an AraC-Like Transcriptional Regulator of the Urease Gene Cluster in Proteus mirabilis

    PubMed Central

    Poore, Carrie A.; Coker, Christopher; Dattelbaum, Jonathan D.; Mobley, Harry L. T.

    2001-01-01

    Proteus mirabilis urease catalyzes the hydrolysis of urea to CO2 and NH3, resulting in urinary stone formation in individuals with complicated urinary tract infections. UreR, a member of the AraC family, activates transcription of the genes encoding urease enzyme subunits and accessory proteins, ureDABCEFG, as well as its own transcription in the presence of urea. Based on sequence homology with AraC, we hypothesized that UreR contains both a dimerization domain and a DNA-binding domain. A translational fusion of the leucine zipper dimerization domain (amino acids 302 to 350) of C/EBP and the C-terminal half of UreR (amino acids 164 to 293) activated transcription from the ureD promoter (pureD) and bound to a 60-bp fragment containing pureD, as analyzed by gel shift. These results were consistent with the DNA-binding specificity residing in the C-terminal half of UreR and dimerization being required for activity. To localize the dimerization domain of UreR, a translational fusion of the DNA-binding domain of the LexA repressor (amino acids 1 to 87) and the N-terminal half of UreR (amino acids 1 to 182) was constructed and found to repress transcription from psulA-lacZ (sulA is repressed by LexA) and bind to the sulA operator site, as analyzed by gel shift. Since LexA binds this site only as a dimer, the UreR1–182-LexA1–87 fusion also must dimerize to bind psulA. Indeed, purified UreR-Myc-His eluted from a gel filtration column as a dimer. Therefore, we conclude that the dimerization domain of UreR is located within the N-terminal half of UreR. UreR contains three leucines that mimic the leucines that contribute to dimerization of AraC. Mutagenesis of Leu147, Leu148, or L158 alone did not significantly affect UreR function. In contrast, mutagenesis of both Leu147 and Leu148 or all three Leu residues resulted in a 85 or 94% decrease, respectively, in UreR function in the presence of urea (P < 0.001). On the contrary, His102 and His175 mutations of UreR resulted

  8. Draft Genome Sequence of Proteus mirabilis NO-051/03, Representative of a Multidrug-Resistant Clone Spreading in Europe and Expressing the CMY-16 AmpC-Type β-Lactamase.

    PubMed

    D'Andrea, Marco Maria; Giani, Tommaso; Henrici De Angelis, Lucia; Ciacci, Nagaia; Gniadkowski, Marek; Miriagou, Vivi; Torricelli, Francesca; Rossolini, Gian Maria

    2016-01-01

    Proteus mirabilis NO-051/03, representative of a multidrug-resistant clone expressing the CMY-16 AmpC-type β-lactamase and circulating in Europe since 2003, was sequenced by a MiSeq platform using a paired-end approach. The genome was assembled in 100 scaffolds with a total length of 4,197,318 bp. Analysis of the draft genome sequence revealed the presence of several acquired resistance determinants to β-lactams, aminoglycosides, phenicols, tetracyclines, trimethoprim, and sulfonamides, of one plasmid replicon, and of a type I-E clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein (Cas) adaptive immune system. PMID:26868393

  9. Transcriptional analysis of the MrpJ network: modulation of diverse virulence-associated genes and direct regulation of mrp fimbrial and flhDC flagellar operons in Proteus mirabilis.

    PubMed

    Bode, Nadine J; Debnath, Irina; Kuan, Lisa; Schulfer, Anjelique; Ty, Maureen; Pearson, Melanie M

    2015-06-01

    The enteric bacterium Proteus mirabilis is associated with a significant number of catheter-associated urinary tract infections (UTIs). Strict regulation of the antagonistic processes of adhesion and motility, mediated by fimbriae and flagella, respectively, is essential for disease progression. Previously, the transcriptional regulator MrpJ, which is encoded by the mrp fimbrial operon, has been shown to repress both swimming and swarming motility. Here we show that MrpJ affects an array of cellular processes beyond adherence and motility. Microarray analysis found that expression of mrpJ mimicking levels observed during UTIs leads to differential expression of 217 genes related to, among other functions, bacterial virulence, type VI secretion, and metabolism. We probed the molecular mechanism of transcriptional regulation by MrpJ using transcriptional reporters and chromatin immunoprecipitation (ChIP). Binding of MrpJ to two virulence-associated target gene promoters, the promoters of the flagellar master regulator flhDC and mrp itself, appears to be affected by the condensation state of the native chromosome, although both targets share a direct MrpJ binding site proximal to the transcriptional start. Furthermore, an mrpJ deletion mutant colonized the bladders of mice at significantly lower levels in a transurethral model of infection. Additionally, we observed that mrpJ is widely conserved in a collection of recent clinical isolates. Altogether, these findings support a role of MrpJ as a global regulator of P. mirabilis virulence. PMID:25847961

  10. Transcriptional Analysis of the MrpJ Network: Modulation of Diverse Virulence-Associated Genes and Direct Regulation of mrp Fimbrial and flhDC Flagellar Operons in Proteus mirabilis

    PubMed Central

    Bode, Nadine J.; Debnath, Irina; Kuan, Lisa; Schulfer, Anjelique; Ty, Maureen

    2015-01-01

    The enteric bacterium Proteus mirabilis is associated with a significant number of catheter-associated urinary tract infections (UTIs). Strict regulation of the antagonistic processes of adhesion and motility, mediated by fimbriae and flagella, respectively, is essential for disease progression. Previously, the transcriptional regulator MrpJ, which is encoded by the mrp fimbrial operon, has been shown to repress both swimming and swarming motility. Here we show that MrpJ affects an array of cellular processes beyond adherence and motility. Microarray analysis found that expression of mrpJ mimicking levels observed during UTIs leads to differential expression of 217 genes related to, among other functions, bacterial virulence, type VI secretion, and metabolism. We probed the molecular mechanism of transcriptional regulation by MrpJ using transcriptional reporters and chromatin immunoprecipitation (ChIP). Binding of MrpJ to two virulence-associated target gene promoters, the promoters of the flagellar master regulator flhDC and mrp itself, appears to be affected by the condensation state of the native chromosome, although both targets share a direct MrpJ binding site proximal to the transcriptional start. Furthermore, an mrpJ deletion mutant colonized the bladders of mice at significantly lower levels in a transurethral model of infection. Additionally, we observed that mrpJ is widely conserved in a collection of recent clinical isolates. Altogether, these findings support a role of MrpJ as a global regulator of P. mirabilis virulence. PMID:25847961

  11. Potential virulence factors of Proteus bacilli.

    PubMed Central

    Rózalski, A; Sidorczyk, Z; Kotełko, K

    1997-01-01

    The object of this review is the genus Proteus, which contains bacteria considered now to belong to the opportunistic pathogens. Widely distributed in nature (in soil, water, and sewage), Proteus species play a significant ecological role. When present in the niches of higher macroorganisms, these species are able to evoke pathological events in different regions of the human body. The invaders (Proteus mirabilis, P. vulgaris, and P. penneri) have numerous factors including fimbriae, flagella, outer membrane proteins, lipopolysaccharide, capsule antigen, urease, immunoglobulin A proteases, hemolysins, amino acid deaminases, and, finally, the most characteristic attribute of Proteus, swarming growth, enabling them to colonize and survive in higher organisms. All these features and factors are described and commented on in detail. The questions important for future investigation of these facultatively pathogenic microorganisms are also discussed. PMID:9106365

  12. Potential virulence factors of Proteus bacilli.

    PubMed

    Rózalski, A; Sidorczyk, Z; Kotełko, K

    1997-03-01

    The object of this review is the genus Proteus, which contains bacteria considered now to belong to the opportunistic pathogens. Widely distributed in nature (in soil, water, and sewage), Proteus species play a significant ecological role. When present in the niches of higher macroorganisms, these species are able to evoke pathological events in different regions of the human body. The invaders (Proteus mirabilis, P. vulgaris, and P. penneri) have numerous factors including fimbriae, flagella, outer membrane proteins, lipopolysaccharide, capsule antigen, urease, immunoglobulin A proteases, hemolysins, amino acid deaminases, and, finally, the most characteristic attribute of Proteus, swarming growth, enabling them to colonize and survive in higher organisms. All these features and factors are described and commented on in detail. The questions important for future investigation of these facultatively pathogenic microorganisms are also discussed. PMID:9106365

  13. Proteus Syndrome

    MedlinePlus

    Our Blog Newsletter Home About Us The PSF Provides Board of Directors Medical Advisory Board International Affiliates Proteus Syndrome Diagnostic Criteria & FAQs Medical Research Glossary Donate Cash Donation Life Insurance Gift ...

  14. Proteus syndrome.

    PubMed

    Dragieva, G; Stahel, H U; Meyer, M; Kempf, W; Häffner, A; Burg, G; Hafner, J

    2003-08-01

    A 34-year-old male patient was referred with a recalcitrant leg ulcer overlying an extensive vascular malformation, which had led several times to septic soft tissue infections. During his infancy he had been diagnosed to have Klippel-Trenaunay syndrome. Clinical examination revealed asymmetric hypertrophy of the lower extremities, an extensive portwine stain on the more severely affected left limb as well as prominent venous varicosities of both legs. Hands and feet showed striking cerebriform palmoplantar hypertrophy, and macrodactily with syndactily of several fingers. All toes had been amputated in early childhood due to extreme overgrowth and currently the patient walked on his forefeet in a prominent pes equinus deformity. Further symptoms consisted in several lipomas at both arms, another portwine stain at the left hemithorax and a single café-au-lait spot at the left scapula. Angio-magnetic resonance imaging scans of both legs showed an extensive venous-lymphatic vascular malformation involving the whole subcutis and infiltrating the muscle. The chronic wound was interpreted as venous stasis ulceration. Local percutaneous sclerotherapy of the dilated veins underneath the ulcer was discussed, but considered to carry a relevant risk of skin necrosis with consecutive progression of the wound. A conventional split-skin graft led to complete wound healing. Since, the patient consequently wears custom-made compression stockings and remained free from recurrences. The syndromatic constellation of palmoplantar overgrowth, multiple lipomas, giant fingers and toes, limb overgrowth, venous-lymphatic malformation and a café-au-lait spot led to the diagnosis of Proteus syndrome. The possible aetiology, clinical manifestations, differential diagnosis and management of this rare disorder are discussed. PMID:14524037

  15. [Joint action of aminoglycoside antibiotics and nitrofurans with bile on bacteria of the genus Proteus].

    PubMed

    Sytnik, I A; Puzakova, E V

    1980-06-01

    The combined effect of monomycin, kanamycin, neomycin and nitrofurans, such as furacillin, furagin, nitrofurantoin and furazolidone with bovine bile was studied on 36 strains of Proteus mirabilis and 14 strains of Proteus vulgaris. It was found that sub-bacteriostatic doses of the bile significantly increased the antiproteus activity of the aminoglycoside antibiotics and nitrofurans. The combinations of the bile with monomycin and kanamycin and the bile with furazolidone and nitrofurantoin proved to be most effective. Clinical trials of the drugs in treatment of inflammatory diseases of the biliferous system of the Proteus etiology are recommended. PMID:7396441

  16. Proteus mirabilis abscess involving the entire neural axis.

    PubMed

    Kamat, A S; Thango, N S; Husein, M Ben

    2016-08-01

    Intramedullary spinal cord abscesses are rare and potentially devastating lesions usually associated with other infective processes such as bacterial endocarditis, or pulmonary or urogenital infection. We describe a 2-year-old girl who presented with an infected dermal sinus leading to an intraspinal abscess. This abscess eventually spread and involved the entire neural axis leaving her quadriparetic. Drainage of the abscess resulted in recovery and the child regained normal function of her limbs. To our knowledge this is the first documented case of an intramedullary abscess involving the entire neural axis. PMID:26960264

  17. PROTEUS MIRABILIS VIABILITY AFTER LITHOTRIPSY OF STRUVITE CALCULI. (R825503)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. Rheumatoid arthritis, Proteus, anti-CCP antibodies and Karl Popper.

    PubMed

    Ebringer, Alan; Rashid, Taha; Wilson, Clyde

    2010-02-01

    Rheumatoid arthritis (RA) is a crippling joint disease affecting over 20 million people worldwide. The cause of RA is most probably linked to the triad of microbial trigger, genetic association and autoimmunity and can be explained using the philosophical method of Karl Popper or Popperian sequences. Ten "Popper sequences" have been identified which point to the urinary microbe Proteus mirabilis as the cause of RA: Popper sequence 1 establishes that HLA-DR4 lymphocytes injected into a rabbit evoke specific antibodies against Proteus bacteria. Popper sequence 2 establishes that antibodies to Proteus bacteria are present in RA patients from 14 different countries. Popper sequence 3 establishes that antibodies to Proteus bacteria in RA patients are disease specific since no such antibodies are found in other conditions. Popper sequence 4 establishes that when RA patients have high titres of antibodies to Proteus such bacteria are found in urinary cultures. Popper sequence 5 establishes that only Proteus bacteria and no other microbes evoke significantly elevated antibodies in RA patients. Popper sequence 6 establishes that the "shared epitope" EQR(K)RAA shows "molecular mimicry" with the sequence ESRRAL found in Proteus haemolysin. Popper sequence 7 establishes that Proteus urease contains a sequence IRRET which has "molecular mimicry" with LRREI found in collagen XI of hyaline cartilage. Popper sequence 8 establishes that sera obtained from RA patients have cytopathic properties against sheep red cells coated with the cross-reacting EQR(K)RAA and LRREI self-antigen peptides. Popper sequence 9 establishes that Proteus sequences in haemolysin and urease as well as the self antigens, HLA-DR1/4 and collagen XI, each contain an arginine doublet, thereby providing a substrate for peptidyl arginine deiminase (PAD) to give rise to citrulline, which is the main antigenic component of CCP, antibodies to which are found in early cases of RA. Popper sequence 10 establishes that

  19. Properties of a deep Proteus R mutant isolated from clinical material.

    PubMed

    Krajewska-Pietrasik, D; Rózalski, A; Bartodziejska, B; Radziejewska-Lebrecht, J; Mayer, H; Kotełko, K

    1991-06-01

    Some biological features of a deep P. mirabilis 17301 R mutant isolated from the urine of a patient with chronic UTI were studied and compared with similar features of P. mirabilis S forms and five induced Proteus R mutants of different chemotypes. There were no differences in lethal toxicity and adhesion to human uroepithelial cells. Of all the R mutants tested, two of them, 17301 and R4, exhibited strong cell-bound hemolytic activity. The P. mirabilis R 17301 was characterized as the most invasive (tested in L929 mouse fibroblasts) compared to the other Proteus S and R forms. The structure of PS from a clinical R mutant investigated and the results of serological studies prove that this mutant belongs to the Rc chemotype. PMID:2054167

  20. Esterase zymograms of Proteus and Providencia.

    PubMed

    Goullet, P

    1975-03-01

    The intracellular esterases of 80 strains of Proteus and Providencia were analysed by the acrylamide-agarose zymogram technique using several synthetic substrates. The esterase bands were classified in five main groups. The alphaA-esterase bands hydrolysed alpha-naphthyl acetate and were resistant or relatively insensitive to di-isofluoropropyl phosphate (DFP). The alphaB-esterase band hydrolysed both alpha-naphthyl acetate and alpha-naphthyl butyrate and were very sensitive to DFP. Both groups of esterase bands were inactivated by heat. The betaA- and betaB-esterase bands hydrolysed beta-naphthyl acetate and were sensitive to DFP; these were distinguishable by the difference in their relative activity towards beta-naphthyl butyrate and in their relative stability to heat. The alpha-beta-esterase bands hydrolysed alpha- and beta-naphthyl acetates and alpha- and beta-naphthyl butyrates; they were inactivated by heat and were sensitive to DFP. The distribution of these esterase bands among the strains of Proteus and Providencia and their electrophoretic patterns established esterase profile types which correlate with the classification based on traditional bacteriological tests. The degree of inter-strain similarity in esterase pattern varied highly among species. The homogeneity of Proteus mirabilis and especially of Providencia stuartii contrasted with the heterogeneity of other species. This disparity suggests that the bacteria of the tribe Proteae have not the same degree of intra-specific differentiation in physico-chemical properties of esterases. PMID:48538

  1. (1)H NMR spectroscopy in the diagnosis of Pseudomonas aeruginosa-induced urinary tract infection.

    PubMed

    Gupta, Ashish; Dwivedi, Mayank; Nagana Gowda, G A; Ayyagari, Archana; Mahdi, A A; Bhandari, M; Khetrapal, C L

    2005-08-01

    The utility of (1)H NMR spectroscopy is suggested and demonstrated for the diagnosis of Pseudomonas aeruginosa in urinary tract infection (UTI). The specific property of P. aeruginosa of metabolizing nicotinic acid to 6-hydroxynicotinic acid (6-OHNA) is exploited. The quantity of 6-OHNA produced correlates well with the viable bacterial count. Other common bacteria causing UTI such as Escherichia coli, Klebsiella pneumonia, Enterobacter aerogenes, Acinetobacter baumanii, Proteus mirabilis, Citrobacter frundii, Enterococcus faecalis, Streptococcus gp B and Staphylococcus aureus do not metabolize nicotinic acid under similar conditions. The method provides a single-step documentation of P. aeruginosa qualitatively as well as quantitatively. The NMR method is demonstrated on urine samples from 30 patients with UTI caused by P. aeruginosa. PMID:15759292

  2. Genetics Home Reference: Proteus syndrome

    MedlinePlus

    ... Proteus syndrome Additional NIH Resources (3 links) National Human Genome Research Institute: NIH Researchers Identify Gene Variant in Proteus Syndrome (July 27, 2011) National Human Genome Research Institute: Proteus Syndrome: Background Information National Human ...

  3. Haemagglutination, haemolysin production and serum resistance of proteus and related species isolated from clinical sources.

    PubMed

    Mishra, M; Thakar, Y S; Pathak, A A

    2001-01-01

    A total of 148 strains of Proteus and related species comprising of Proteus mirabilis (116), Proteus vulgaris (24), Providentia rettgeri (4), Providentia alcalifaciens (2), Providentia stuarti (1) and Morganella morganii (1), isolated from various sources, were examined for haemagglutination (HA), haemolysin production (HL) and serum resistance (SR). Maximum isolates were obtained from urine (47.30%) and pus (40.54%) and they were multidrug resistant. The sensitivity to Ciprofloxacin was 78.38%, Gentamicin: 62.84%, Cefotaxime: 29.73%, Norfloxacin: 22.97%, Tetracycline: 20.95% and Ampicillin: 6.76%. There were four commonest resistance patterns shown by 58.62% of Proteus mirabilis and 66.67% of Proteus vulgaris strains. Haemagglutination was shown by 91 (61.49%) strains, HL production in 126 (85.14%) strains and SR by 124 (83.78%) isolates. All the three i.e. HA, HL and SR were simultaneously present in 77 (52.27%) strains, any two were present in 40 (27.03%) strains and any one was positive in 30 (20.03%) strains. Thus in as many as 147 (98.32%) isolates, any one or more virulence factors were present. The virulence in commensal pathogen like Proteus is basically a multifactorial phenomenon. The presence of more virulence factors in one strain may increase its pathogenic ability. The evaluation of multiple virulence factors instead of one single parameter will be of greater help in assessing its pathogenic potential. PMID:17664798

  4. Proteus at Sunset

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The unique Proteus aircraft served as a test bed for NASA-sponsored flight tests designed to validate collision-avoidance technologies proposed for uninhabited aircraft. The tests, flown over southern New Mexico in March, 2002, used the Proteus as a surrogate uninhabited aerial vehicle (UAV) while three other aircraft flew toward the Proteus from various angles on simulated collision courses. Radio-based 'detect, see and avoid' equipment on the Proteus successfully detected the other aircraft and relayed that information to a remote pilot on the ground at Las Cruces Airport. The pilot then transmitted commands to the Proteus to maneuver it away from the potential collisions. The flight demonstration, sponsored by NASA Dryden Flight Research Center, New Mexico State University, Scaled Composites, the U.S. Navy and Modern Technology Solutions, Inc., were intended to demonstrate that UAVs can be flown safely and compatibly in the same skies as piloted aircraft.

  5. Proteus Syndrome Foundation

    MedlinePlus

    Our Blog Newsletter Home About Us The PSF Provides Board of Directors Medical Advisory Board International Affiliates Proteus Syndrome Diagnostic Criteria & FAQs Medical Research Glossary Donate Cash Donation Life Insurance Gift ...

  6. Proteus cibarius sp. nov., a swarming bacterium from Jeotgal, a traditional Korean fermented seafood, and emended description of the genus Proteus.

    PubMed

    Hyun, Dong-Wook; Jung, Mi-Ja; Kim, Min-Soo; Shin, Na-Ri; Kim, Pil Soo; Whon, Tae Woong; Bae, Jin-Woo

    2016-06-01

    A novel Proteus-like, Gram-stain-negative, facultatively anaerobic, rod-shaped bacterium, designated strain JS9T, was isolated from Korean fermented seafood, Jeotgal. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain JS9T belonged to the genus Proteus in the family Enterobacteriaceae. The highest 16S rRNA gene sequence similarity of strain JS9T was to Proteus vulgaris KCTC 2579T (98.98 %) and the genomic DNA G+C content is 39.0 mol%. DNA-DNA hybridization values were measured and strain JS9T showed <20.8 % genomic relatedness with closely-related members of the genus Proteus. The isolate showed bacterial motility and swarming activity similar to those of pathogenic Proteus mirabilis but distinct from those of other species of the genus Proteus. The isolate grows optimally at 30 °C, at pH 7, and in the presence of 2 % (w/v) NaCl. The main respiratory quinones are ubiquinone Q-8 and Q-10, and the major cellular fatty acids are C16 : 0, summed feature 3 and summed feature 8. The polar lipids comprise phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, an unidentified amino lipid, two unidentified amino-phospholipids, and three unidentified lipids. Based on phylogenetic, phenotypic, chemotaxonomic and genotypic analyses, strain JS9T represents a novel species of the genus Proteus, for which the name Proteus cibarius sp. nov. is proposed. The type strain is JS9T (=KACC 18404T=JCM 30699T). An emended description of the genus Proteus is also provided. PMID:26944634

  7. Anti-Proteus activity of some South African medicinal plants: their potential for the prevention of rheumatoid arthritis.

    PubMed

    Cock, I E; van Vuuren, S F

    2014-02-01

    A wide variety of herbal remedies are used in traditional African medicine to treat rheumatoid arthritis (RA) and inflammation. Thirty-four extracts from 13 South African plant species with a history of ethnobotanical usage in the treatment of inflammation were investigated for their ability to control two microbial triggers for RA (Proteus mirabilis and Proteus vulgaris). Twenty-nine of the extracts (85.3 %) inhibited the growth of P. mirabilis and 23 of them tested (67.7 %) inhibited the growth of P. vulgaris. Methanol and water extracts of Carpobrotus edulis, Lippia javanica, Pelargonium viridflorum, Ptaeroxylon obliquum, Syzygium cordatum leaf and bark, Terminalia pruinoides, Terminalia sericea, Warburgia salutaris bark and an aqueous extract of W. salutaris leaf were effective Proteus inhibitors, with MIC values <2,000 μg/ml. The most potent extracts were examined by Reverse phase high performance liquid chromatography and UV-Vis spectroscopy for the presence of resveratrol. Only extracts from T. pruinoides and T. sericea contained resveratrol, indicating that it was not responsible for the anti-Proteus properties reported here. All extracts with Proteus inhibitory activity were also either non-toxic, or of low toxicity in the Artemia nauplii bioassay. The low toxicity of these extracts and their inhibitory bioactivity against Proteus spp. indicate their potential for blocking the onset of rheumatoid arthritis. PMID:23877712

  8. Abolition of Swarming of Proteus by p-Nitrophenyl Glycerin: General Properties

    PubMed Central

    Williams, Fred D.

    1973-01-01

    Para-nitrophenyl glycerin (PNPG) was shown to be an effective agent to abolish the swarming of Proteus mirabilis and Proteus vulgaris on predried solid culture media. The level required to abolish swarming varied with the strain of Proteus, the components of the medium, and also with the conditions of incubation. Generally 0.1 to 0.2 mM PNPG effectively abolished swarming for at least 24 h with aerobic incubation. Levels of PNPG that abolished swarming showed no effect upon the growth of the cells, little or no effect upon the motility characteristics of the organisms, and no effect upon the cellular morphology. PNPG was found to be freely water soluble, stable to autoclaving, and to retain biological activity for at least one month in prepared culture media stored under refrigeration. PMID:4577177

  9. Isolation, purification, and characterization of the major autolysin from Pseudomonas aeruginosa.

    PubMed

    Watt, S R; Clarke, A J

    1997-11-01

    The major (26 kDa) autolysin from Pseudomonas aeruginosa was purified to apparent homogeneity by a combination of preparative electrophoresis, ion-exchange, and dye-ligand chromatographies. This purification was facilitated by the development of a spot-assay that involved the spotting and subsequent incubation of autolysin samples on polyacrylamide gels containing peptidoglycan. The pl of the 26-kDa autolysin was determined to be between 3.5 and 4 and disulfide bonds within the enzyme were essential for activity. The autolysin catalyzed the release of reducing sugars from the peptidoglycans of Pseudomonas aeruginosa and Escherichia coli indicating it to be a beta-glycosidase. It was ineffective at hydrolysing the peptidoglycan from Gram-positive bacteria and the O-acetylated peptidoglycans from either Proteus mirabilis or Staphylococcus aureus. The N-terminal sequence of the purified autolysin was determined to be His-Glu-Pro-Pro-Gly. The 26-kDa autolysin together with a 29-kDa autolysin was determined to be secreted into the medium by a mechanism that involves the production and release of surface membrane vesicles during normal growth, but the enzymes were not found free and active in culture broth supernatants. PMID:9436306

  10. [Prevalence of multidrug-resistant Proteus spp. strains in clinical specimens and their susceptibility to antibiotics].

    PubMed

    Reśliński, Adrian; Gospodarek, Eugenia; Mikucka, Agnieszka

    2005-01-01

    Proteus sp. are opportunistic microorganisms which cause urinary tract and wounds infections, bacteriaemia and sepsis. The aim of this study was analysis of prevalence of multidrug-resistant Proteus sp. strains in clinical specimens and evaluation of their susceptibility to selected antibiotics. The study was carried out of 1499 Proteus sp. strains were isolated in 2000-2003 from patients of departments and dispensaries of the University Hospital CM in Bydgoszcz UMK in Torun. The strains were identified on the basis of appearance of bacterial colonies on bloody and McConkey's agars, movement ability, indole and urease production and in questionable cases biochemical profile in ID GN or ID E (bio-Mérieux) tests was also included. Antibiotic susceptibility was tested by disk diffusion method. Isolated strains were regarded as multidrug-resistant when they were resistant to three kinds of antibiotics at least. Received Proteus sp. the most frequently belonged to P. mirabilis species (92.3%). Most of these bacteria were isolated from urine from patients of Rehabilitation Clinic. All of multidrug-resistant strains were resistant to penicillins and cephalosporins, 98.9% to co-trimoxazole, 77.7% to quinolones, 63.8% to tetracyclines, 38.5% to aminoglycosides, 19.3% to monobactams and 3.4% to carbapenems. Almost 25% multidrug-resistant Proteus sp. produced ESBL. PMID:16134389

  11. Proteus: Mythology to modern times

    PubMed Central

    Sellaturay, Senthy V.; Nair, Raj; Dickinson, Ian K.; Sriprasad, Seshadri

    2012-01-01

    Aims: It is common knowledge that proteus bacteria are associated with urinary tract infections and urinary stones. Far more interesting however, is the derivation of the word proteus. This study examines the origin of the word proteus, its mythological, historical and literary connections and evolution to present-day usage. Materials and Methods: A detailed search for primary and secondary sources was undertaken using the library and internet. Results: Greek mythology describes Proteus as an early sea-god, noted for being versatile and capable of assuming many different forms. In the 8th century BC, the ancient Greek poet, Homer, famous for his epic poems the Iliad and Odyssey, describes Proteus as a prophetic old sea-god, and herdsman of the seals of Poseidon, God of the Sea. Shakespeare re-introduced Proteus into English literature, in the 15th century AD, in the comedy The Two Gentleman of Verona, as one of his main characters who is inconstant with his affections. The ‘elephant man’ was afflicted by a severely disfiguring disease, described as ‘Proteus syndrome’. It is particularly difficult to distinguish from neurofibromatosis, due to its various forms in different individuals. The Oxford English Dictionary defines the word ‘protean’ as to mean changeable, variable, and existing in multiple forms. Proteus bacteria directly derive their name from the Sea God, due to their rapid swarming growth and motility on agar plates. They demonstrate versatility by secreting enzymes, which allow them to evade the host's defense systems. Conclusions: Thus proteus, true to its name, has had a myriad of connotations over the centuries. PMID:23450503

  12. Investigation of the types and characteristics of the proteolytic enzymes formed by diverse strains of Proteus species.

    PubMed

    Senior, B W

    1999-07-01

    Many diverse clinical isolates of Proteus mirabilis (48 strains), P. penneri (25), P. vulgaris biogroup 2 (48) and P. vulgaris biogroup 3 (21) from man were examined for their ability to produce proteolytic enzymes and the nature and characteristics of the proteases were studied. All the P. penneri isolates, most (94-90%) of the P. mirabilis and P. vulgaris biogroup 2 isolates, but only 71% of the P. vulgaris biogroup 3 isolates, secreted proteolytic enzymes. These were detected most readily at pH 8 with gelatin as substrate. A strong correlation was found between the ability of a strain to form swarming growth and its ability to secrete proteases. Non-swarming isolates invariably appeared to be non-proteolytic. However, some isolates, particularly of P. vulgaris biogroup 3, were non-proteolytic even when they formed swarming growth. Analysis of the secreted enzymes of the different Proteus spp. on polyacrylamide-gelatin gels under various constraints of pH and other factors showed that they were all EDTA-sensitive metalloproteinases. Analysis of the kinetics of production of the proteases revealed the formation of an additional protease of undefined type and function that was cell-associated and formed before the others were secreted. The secreted protease was subsequently modified to two isoforms whose mass (53-46 kDa) varied with the Proteus spp. and the strain. There was no evidence that the secreted proteases of strains of Proteus spp. were of types other than metalloproteinases. PMID:10403412

  13. Early Recognition of Proteus Syndrome.

    PubMed

    Rodenbeck, Dorothy L; Greyling, Laura A; Anderson, John H; Davis, Loretta S

    2016-09-01

    Proteus syndrome is an extremely rare mosaic condition characterized by progressive overgrowth of tissues due to a somatic activating mutation of the AKT1 gene. Distinct cutaneous features, including cerebriform connective tissue nevi, epidermal nevi, vascular malformations, and adipose abnormalities, can alert the dermatologist to the underlying condition before the onset of asymmetric skeletal overgrowth. We present a series of photographs documenting the skin and musculoskeletal changes in a patient with Proteus syndrome over the first 2 years of life to emphasize the key signs that a dermatologist can recognize to facilitate an earlier diagnosis in these patients. PMID:27378680

  14. [Pseudomonas aeruginosa colonisation in bronchiectatic patients and clinical reflections].

    PubMed

    Kömüs, Nuray; Tertemiz, Kemal Can; Akkoçlu, Atila; Gülay, Zeynep; Yilmaz, Erkan

    2006-01-01

    Bronchiectasis is characterized with irreversible dilatation according to destruction of epithelium, elastic and muscular layer. Most important cause of bronchiectasis is chronic bacterial infections. Pseudomonas aeruginosa colonisation is frequently seen in bronchiectatic patients. We aimed to find out P. aeruginosa colonisation frequency and clinical, radiological and spirometric reflections due to colonisation. We analysed 83 cases retrospectively. Mean age was 58.2 and 54.2% of them were female. Bronchiectasis were localised 19.3% in left lung, 19.3% right and 61.4% bilaterally. 29 (35.8%) normal, 28 (34.6%) obstructive, 7 (8.6%) restrictive, 17 (21%) mixed type disorders are detected in spirometric measures. Sputum culture performed in 50 cases. No microorganism colonisation determined in 30 (60%) cases, P. aeruginosa colonisation 16 (32%), Haemophilus influenzae 2 (4%), 1 (2%) Streptococcus pneumoniae and Proteus mirabilis 1 (2%) cases. P. aeruginosa colonisation determined more frequent in males (p<0.05). No significant correlation detected between colonisation and age or smoking habits (p>0.05). In cases with colonisation; clubbing and hemoptysis were significantly frequent (p<0.05). Only peribronchial thickening was significantly correlated with colonisation in radiological findings (p<0.05). In blood gase analysis PaO2, oxygen saturation were lower and PaCO2 higher in cases colonised with P. aeruginosa but it was not statisticaly significant (p>0.05). Hospitalization rate was higher in P. aeruginosa colonised cases (p>0.05). It is an important problem about mortality because of higher hemoptysis and hospitalisation requirement rate in P. aeruginosa colonised cases. PMID:17203422

  15. Genetic and biochemical diversity of ureases of Proteus, Providencia, and Morganella species isolated from urinary tract infection.

    PubMed

    Jones, B D; Mobley, H L

    1987-09-01

    Bacterial urease, particularly from Proteus mirabilis, has been implicated as a contributing factor in the formation of urinary and kidney stones, obstruction of urinary catheters, and pyelonephritis. Weekly urine specimens (n = 1,135) from 32 patients, residing at two chronic-care facilities, with urinary catheters in place for greater than or equal to 30 days yielded 5,088 phenotypically and serotypically diverse bacterial isolates at greater than or equal to 10(5) CFU/ml. A total of 86% of specimens contained at least one urease-positive species, and 46% of 3,939 gram-negative bacilli were urease positive. For investigation of genetic relatedness of urease determinants, whole-cell DNA from 50 urease-positive isolates each of Providencia stuartii, Providencia rettgeri, P. mirabilis, Proteus vulgaris, and Morganella morganii were hybridized with a urease gene probe derived from within the urease operon of Providencia stuartii BE2467. The percentage of strains hybridizing with the gene probe was 98 for Providencia stuartii, 100 for Providencia rettgeri, 70 for P. mirabilis, 2 for M. morganii, and 0 for P. vulgaris. Electrophoretic mobilities of ureases from representative isolates revealed nine different patterns among the five species. The urease gene probe hybridized with fragments of HindIII-digested chromosomal DNA from all isolates except M. morganii. Fragment sizes differed between species. Molecular sizes of the enzymes, determined by Sephacryl S-300 chromatography, were found to be 280 kilodaltons (kDa) (P. mirabilis), 323 to 337 kDa (Providencia stuartii, Providencia rettgeri, P. mirabilis, P. vulgaris), 620 kDa (providencia rettgeri), and greater than 700 kDa (M. morganii, Providencia rettgeri). Kms ranged from 0.7 mM urea for M. morganii to 60 mM urea for a P. mirabilis isolate. In general, P. mirabilis ureases demonstrated lower affinities for substrate but hydrolyzed urea at rates 6- to 25-fold faster than did enzymes from other species, which may

  16. Radiographic findings of Proteus Syndrome

    PubMed Central

    Gandhi, Nishant Mukesh; Davalos, Eric A.; Varma, Rajeev K.

    2015-01-01

    The extremely rare Proteus Syndrome is a hamartomatous congenital syndrome with substantial variability between clinical patient presentations. The diagnostic criteria consist of a multitude of clinical findings including hemihypertrophy, macrodactyly, epidermal nevi, subcutaneous hamartomatous tumors, and bony abnormalities. These clinical findings correlate with striking radiographic findings. PMID:27186241

  17. Silver Nanoparticles: Biosynthesis Using an ATCC Reference Strain of Pseudomonas aeruginosa and Activity as Broad Spectrum Clinical Antibacterial Agents

    PubMed Central

    Quinteros, Melisa A.; Aiassa Martínez, Ivana M.; Dalmasso, Pablo R.; Páez, Paulina L.

    2016-01-01

    Currently, the biosynthesis of silver-based nanomaterials attracts enormous attention owing to the documented antimicrobial properties of these ones. This study reports the extracellular biosynthesis of silver nanoparticles (Ag-NPs) using a Pseudomonas aeruginosa strain from a reference culture collection. A greenish culture supernatant of P. aeruginosa incubated at 37°C with a silver nitrate solution for 24 h changed to a yellowish brown color, indicating the formation of Ag-NPs, which was confirmed by UV-vis spectroscopy, transmission electron microscopy, and X-ray diffraction. TEM analysis showed spherical and pseudospherical nanoparticles with a distributed size mainly between 25 and 45 nm, and the XRD pattern revealed the crystalline nature of Ag-NPs. Also it provides an evaluation of the antimicrobial activity of the biosynthesized Ag-NPs against human pathogenic and opportunistic microorganisms, namely, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Proteus mirabilis, Acinetobacter baumannii, Escherichia coli, P. aeruginosa, and Klebsiella pneumonia. Ag-NPs were found to be bioactive at picomolar concentration levels showing bactericidal effects against both Gram-positive and Gram-negative bacterial strains. This work demonstrates the first helpful use of biosynthesized Ag-NPs as broad spectrum bactericidal agents for clinical strains of pathogenic multidrug-resistant bacteria such as methicillin-resistant S. aureus, A. baumannii, and E. coli. In addition, these Ag-NPs showed negligible cytotoxic effect in human neutrophils suggesting low toxicity to the host. PMID:27340405

  18. Silver Nanoparticles: Biosynthesis Using an ATCC Reference Strain of Pseudomonas aeruginosa and Activity as Broad Spectrum Clinical Antibacterial Agents.

    PubMed

    Quinteros, Melisa A; Aiassa Martínez, Ivana M; Dalmasso, Pablo R; Páez, Paulina L

    2016-01-01

    Currently, the biosynthesis of silver-based nanomaterials attracts enormous attention owing to the documented antimicrobial properties of these ones. This study reports the extracellular biosynthesis of silver nanoparticles (Ag-NPs) using a Pseudomonas aeruginosa strain from a reference culture collection. A greenish culture supernatant of P. aeruginosa incubated at 37°C with a silver nitrate solution for 24 h changed to a yellowish brown color, indicating the formation of Ag-NPs, which was confirmed by UV-vis spectroscopy, transmission electron microscopy, and X-ray diffraction. TEM analysis showed spherical and pseudospherical nanoparticles with a distributed size mainly between 25 and 45 nm, and the XRD pattern revealed the crystalline nature of Ag-NPs. Also it provides an evaluation of the antimicrobial activity of the biosynthesized Ag-NPs against human pathogenic and opportunistic microorganisms, namely, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Proteus mirabilis, Acinetobacter baumannii, Escherichia coli, P. aeruginosa, and Klebsiella pneumonia. Ag-NPs were found to be bioactive at picomolar concentration levels showing bactericidal effects against both Gram-positive and Gram-negative bacterial strains. This work demonstrates the first helpful use of biosynthesized Ag-NPs as broad spectrum bactericidal agents for clinical strains of pathogenic multidrug-resistant bacteria such as methicillin-resistant S. aureus, A. baumannii, and E. coli. In addition, these Ag-NPs showed negligible cytotoxic effect in human neutrophils suggesting low toxicity to the host. PMID:27340405

  19. Antibacterial action of combinations of oxytetracycline, dimethyl sulfoxide, and EDTA-tromethamine on Proteus, Salmonella, and Aeromonas.

    PubMed

    Wooley, R E; Gilbert, J P; Shotts, E B

    1982-01-01

    Antibacterial effects against Proteus mirabilis, Salmonella typhimurium, and Aeromonas hydrophila were obtained with subminimal inhibitory concentrations of oxytetracycline and EDTA-tromethamine. Antibacterial effects were not observed with subminimal inhibitory concentrations of dimethyl sulfoxide plus oxytetracycline or with dimethyl sulfoxide plus EDTA-tromethamine. Using a 2-dimensional Microtiter checkerboard technique, inhibitory activities of the various combinations of solutions were studied, and isobolograms were plotted. A synergistic effect was seen with combinations of oxytetracycline and EDTA-tromethamine. The greatest synergistic effect was observed when the mixture was caused to react with P mirabilis. These findings were confirmed by kinetic studies of microbial death, using one-fourth minimal inhibitory concentrations of these preparations. PMID:6807142

  20. Anti-Adhesion Activity of A2-type Proanthocyanidins (a Cranberry Major Component) on Uropathogenic E. coli and P. mirabilis Strains

    PubMed Central

    Nicolosi, Daria; Tempera, Gianna; Genovese, Carlo; Furneri, Pio M.

    2014-01-01

    Urinary tract infections (UTIs) are relatively common in women and may be classified as uncomplicated or complicated, depending upon the urinary tract anatomy and physiology. Acute uncomplicated cystitis (AUC) occurs when urinary pathogens from the bowel or vagina colonize the periurethral mucosa and reach the bladder. The vast majority of episodes in healthy women involving the same bacterial strain that caused the initial infection are thought to be reinfections. About 90% of AUC are caused by uropathogenic Escherichia coli (UPEC), but Proteus mirabilis also plays an important role. Several studies support the importance of cranberry (Vaccinium macrocarpon) proanthocyanidins in preventing adhesion of P-fimbriated UPEC to uroepithelial cells. In this study, we evaluated the in vitro anti-adhesion activity of A2-linked proanthocyanidins from cranberry on a UPEC and Proteus mirabilis strains and their possible influence on urease activity of the latter. A significant reduction of UPEC adhesion (up to 75%) on the HT1376 cell line was observed vs. control. For the strains of P. mirabilis there was also a reduction of adhesion (up to 75%) compared to controls, as well as a reduction in motility and urease activity. These results suggest that A2-type cranberry proanthocyanidins could aid in maintaining urinary tract health. PMID:27025740

  1. Anti-Adhesion Activity of A2-type Proanthocyanidins (a Cranberry Major Component) on Uropathogenic E. coli and P. mirabilis Strains.

    PubMed

    Nicolosi, Daria; Tempera, Gianna; Genovese, Carlo; Furneri, Pio M

    2014-01-01

    Urinary tract infections (UTIs) are relatively common in women and may be classified as uncomplicated or complicated, depending upon the urinary tract anatomy and physiology. Acute uncomplicated cystitis (AUC) occurs when urinary pathogens from the bowel or vagina colonize the periurethral mucosa and reach the bladder. The vast majority of episodes in healthy women involving the same bacterial strain that caused the initial infection are thought to be reinfections. About 90% of AUC are caused by uropathogenic Escherichia coli (UPEC), but Proteus mirabilis also plays an important role. Several studies support the importance of cranberry (Vaccinium macrocarpon) proanthocyanidins in preventing adhesion of P-fimbriated UPEC to uroepithelial cells. In this study, we evaluated the in vitro anti-adhesion activity of A2-linked proanthocyanidins from cranberry on a UPEC and Proteus mirabilis strains and their possible influence on urease activity of the latter. A significant reduction of UPEC adhesion (up to 75%) on the HT1376 cell line was observed vs. control. For the strains of P. mirabilis there was also a reduction of adhesion (up to 75%) compared to controls, as well as a reduction in motility and urease activity. These results suggest that A2-type cranberry proanthocyanidins could aid in maintaining urinary tract health. PMID:27025740

  2. Proteus - Geology, shape, and catastrophic destruction

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1992-01-01

    Least-squares fits to the two available limb profiles of Proteus yield a sphericity close to unity; the visual irregularity is due to a degree of surface roughness comparable to that of Hyperion and the smaller icy satellites. A network of streaks that can be interpreted as tectonic troughs cuts the surface of Proteus, and is organized concentrically around either one of the two nearly-coincident Proteus-Neptune of Pharos axes of symmetry. If the streaks are tectonic, they may be due to tidal stresses generated by a past change in Proteus' equilibrium orientation. The streaks may also be disruptive-stress fractures.

  3. Hemispherectomy Procedure in Proteus Syndrome.

    PubMed

    Gunawan, PrastiyaIndra; Lusiana, Lusiana; Saharso, Darto

    2016-01-01

    Objective Proteus syndrome is a rare overgrowth disorder including bone, soft tissue, and skin. Central nervous system manifestations were reported in about 40% of the patients including hemimegalencephaly and the resultant hemicranial hyperplasia, convulsions and mental deficiency. We report a 1-month-old male baby referred to Pediatric Neurology Clinic Soetomo Hospital, Surabaya, Indonesia in 2014 presented recurrent seizures since birth with asymmetric dysmorphic face with the right side larger than the left, subcutaneous mass and linear nevi. Craniocervical MRI revealed hemimegalencephaly right cerebral hemisphere. Triple antiepileptic drugs were already given as well as the ketogenic diet, but the seizures persisted. The seizure then was resolved after hemispherectomy procedure. PMID:27375761

  4. The potential of selected Australian medicinal plants with anti-Proteus activity for the treatment and prevention of rheumatoid arthritis

    PubMed Central

    Cock, I. E.; Winnett, V.; Sirdaarta, J.; Matthews, B.

    2015-01-01

    Background: A wide variety of herbal medicines are used in indigenous Australian traditional medicinal systems to treat rheumatoid arthritis (RA) and inflammation. The current study was undertaken to test the ability of a panel of Australian plants with a history of the ethnobotanical usage in the treatment of inflammation for the ability to block the microbial trigger of RA. Materials and Methods: One hundred and six extracts from 40 plant species were investigated for the ability to inhibit the growth of the bacterial trigger of RA (Proteus mirabilis). The extracts were tested for toxicity in the Artemia nauplii bioassay. The most potent inhibitor of P. mirabilis growth was further analyzed by reversed-phase high performance liquid chromatography (RP-HPLC) coupled to high accuracy time-of-flight (TOF) mass spectroscopy. Results: Sixty-five of the 106 extracts tested (61.3%) inhibited the growth of P. The Aleurites moluccanus, Datura leichardtii, Eucalyptus major, Leptospermum bracteata, L. juniperium, Macadamia integriflora nut, Melaleuca alternifolia, Melaleuca quinquenervia, Petalostigma pubescens, P. triloculorae, P. augustifolium, Scaevola spinescens, Syzygiumaustrale, and Tasmannia lanceolata extracts were determined to be the most effective inhibitors of P. mirabilis growth, with minimum inhibitory concentration (MIC) values generally significantly below 1000 μg/ml. T. lanceolata fruit extracts were the most effective P. mirabilis growth inhibitors, with a MIC values of 11 and 126 μg/ml for the methanolic and aqueous extracts, respectively. Subsequent analysis of the T. lanceolata fruit extracts by RP-HPLC coupled to high-resolution TOF mass spectroscopy failed to detect resveratrol in either T. lanceolata fruit extract. However, the resveratrol glycoside piceid and 2 combretastatin stilbenes (A-1 and A-4) were detected in both T. lanceolata fruit extracts. With the exception of the Eucalyptus and Syzygium extracts, all extracts exhibiting Proteus

  5. Proteus virulence: involvement of the pore forming alpha-hemolysin (a short review).

    PubMed

    Tóth, V; Emódy, L

    2000-01-01

    The genus Proteus belongs to the tribe of Proteae in the family of Enterobacteriaceae, and consists of five species: P. mirabilis, P. vulgaris, P. morganii, P. penneri and P. myxofaciens. They are distinguished from the rest of Enterobacteriaceae by their ability to deaminate phenylalanine and tryptophane. They hydrolyze urea and gelatin and fail to ferment lactose, mannose, dulcitol and malonate; and do not form lysine and arginine decarboxylase or beta-galactosidase [1]. Colonies produce distinct "burned chocolate" odor and frequently show the characteristics of swarming motility on solid media. P. mirabilis, P. vulgaris and P. morganii are widely recognized human pathogens. They have been isolated from urinary tract infections, wounds, ear, and nosocomial bacteremic infections, often in immuncompromised patients [2-6]. P. myxofaciens has no clinical interest to this time. P. penneri as species nova was nominated by the recommendation of Hickman and co-workers [7]. Formerly it was recognized as P. vulgaris biogroup 1 or indole negative P. vulgaris [8, 9]. Although it has been less commonly isolated from clinical samples than the other three human pathogenic Proteus species, it has nevertheless been connected with infections of the urinary tract, wounds and has been isolated from the feces of both healthy and diarrheic individuals [10-12]. Potential virulence factors responsible for virulence of Proteae are: IgA protease, urease, type3 fimbriae associated with MR/K haemagglutinins of at least two antigenic types, endotoxin, swarming motility and HlyA and/or HpmA type hemolysins [for review see ref. 13]. In the followings we give a survey of accumulated concepts about the position and characteristics of HlyA type alpha-hemolysins both in general and with emphasis on virulence functions in the tribe of Proteae. PMID:11056765

  6. Redescription of Heterokrohnia mirabilis Ritter-Záhony, 1911 (Chaetognatha)

    NASA Astrophysics Data System (ADS)

    Kapp, Helga

    1991-03-01

    The genus Heterokrohnia Ritter-Záhony, 1911 is redefined and the species H. mirabilis Ritter-Záhony, 1911 redescribed. The redescription is based upon the type specimens from Antarctic waters and additional specimens from Atlantic and Arctic waters. The species is compared to others of the genus. Furthermore, the identity of certain specimens reported as H. mirabilis is discussed.

  7. Hawkmoth pollination of Mirabilis longiflora (Nyctaginaceae)

    PubMed Central

    Grant, Verne; Grant, Karen A.

    1983-01-01

    A guild composed of very-long-tubed hawkmoth flowers (nectar tubes, 9 cm or more long), belonging to different genera and families, occurs in the American Southwest. Our knowledge of the hawkmoth associates of these flowers is fragmentary. Mirabilis longiflora, a member of the guild with a tube 10.0-10.5 cm long, was found to be visited and pollinated mainly by Manduca quinquemaculata with a proboscis 10.7-11.6 cm long in the Chiricahua Mountains of southeastern Arizona. This example fits in with four other previously reported cases. The long-tongued Man. quinquemaculata is now known to be associated with five species of very long-tongued hawkmoth flowers in the Southwest, and Man. rustica has been found on one of them. Images PMID:16593287

  8. The Proteus Navier-Stokes code

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Bui, Trong T.; Cavicchi, Richard H.; Conley, Julianne M.; Molls, Frank B.; Schwab, John R.

    1992-01-01

    An effort is currently underway at NASA Lewis to develop two- and three-dimensional Navier-Stokes codes, called Proteus, for aerospace propulsion applications. The emphasis in the development of Proteus is not algorithm development or research on numerical methods, but rather the development of the code itself. The objective is to develop codes that are user-oriented, easily-modified, and well-documented. Well-proven, state-of-the-art solution algorithms are being used. Code readability, documentation (both internal and external), and validation are being emphasized. This paper is a status report on the Proteus development effort. The analysis and solution procedure are described briefly, and the various features in the code are summarized. The results from some of the validation cases that have been run are presented for both the two- and three-dimensional codes.

  9. Proteus syndrome: evaluation of the immunological profile.

    PubMed

    Lougaris, Vassilios; Salpietro, Vincenzo; Cutrupi, Maricia; Baronio, Manuela; Moratto, Daniele; Pizzino, M R; Mankad, Kshitij; Briuglia, Silvana; Salpietro, Carmelo; Plebani, Alessandro

    2016-01-01

    Proteus syndrome (PS) is an extremely rare and complex disease characterized by malformations and overgrowth of different tissues. Prognosis of affected patients may be complicated by premature death, mostly due to pulmonary embolism and respiratory failure. To date, immunological data in Proteus syndrome are scarse.We report on the novel immunologic findings of a 15 years old girl affected with PS. Detailed T and B cell evaluation revealed maturational alterations for both subsets and functional hyperactivation for the latter. Such findings have not been reported previously in PS and may be the spy of more complex immune abnormalities in this syndrome. PMID:26758562

  10. Using optoelectronic sensors in the system PROTEUS

    NASA Astrophysics Data System (ADS)

    Zyczkowski, M.; Szustakowski, M.; Ciurapinski, W.; Piszczek, M.

    2010-10-01

    The paper presents the concept of optoelectronic devices for human protection in rescue activity. The system consists of an ground robots with predicted sensor. The multisensor construction of the system ensures significant improvement of security of using on-situ like chemical or explosive sensors. The article show a various scenario of use for individual sensor in system PROTEUS.

  11. Antibiotic resistance pattern among biofilm producing and non producing Proteus strains isolated from hospitalized patients; matter of hospital hygiene and antimicrobial stewardship.

    PubMed

    Shikh-Bardsiri, Houshang; Shakibaie, Mohammad Reza

    2013-11-15

    A retrospective study on antimicrobial susceptibility and biofilm production were carried out for eighty eight strains of Proteus strains isolated from UTI and other hospital samples during April 2011-April 2012. The antibiotic susceptibility was carried out by Kirby-Bauer disk diffusion and MIC by E-test. Biofilm production was measured by microtiter method and confirmed by Scanning electron microscopy. Plasmids from biofilm producing isolates were detected by alkaline lysis technique. From 88 patients infected by proteus species, 58% were female and 42% were mail. The most frequent age range was 20-29 (77.39%) and the least were 60-69 years old (3.4%) (p = 0.05). Eighty one isolates were identified as P. mirabilis while, 7 identified as P. vulgaris. 67.04% [n = 59] of the isolates showed MIC range (16-32 +/- 0.05 microg mL(-1)) to ceftriaxone, 46.59% [n = 41] exhibited least MIC range to chloramphenicol (8-64 +/- 0.08 microg mL(-1)). 31% [n = 28] of the isolates also exhibited MIC range 1-4 microg mL(-1) to ciprofloxacin. 17% [n = 15] of the isolates exhibited strong biofilm while, 6% [n = 6] did not show any biofilm (p < or = 0.05). Plasmid isolation from biofilm producing isolates revealed that stains number 19, 24 and 87' that produced strong biofilm carried similar high M. Wt. plasmid. From above results it can be concluded that the majority of Proteus isolated from UTI patients were belong to P. mirabilis. Ciprofloxacin was the most effective antibiotic for treatment of the infected patients. Limited number of the isolates could produce strong biofilm that were bearing plasmids. Majority of the biofilm producing isolates were also resistance at least to 4 antibiotics routinely prescribed in our hospital. PMID:24511691

  12. User Manual for the PROTEUS Mesh Tools

    SciTech Connect

    Smith, Micheal A.; Shemon, Emily R.

    2015-06-01

    This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT_MeshToMesh.x and the MT_RadialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a given mesh tool (such as .axial or .merge) can be used as “mesh” input for any of the mesh tools discussed in this manual.

  13. Beet western yellows virus infects the carnivorous plant Nepenthes mirabilis.

    PubMed

    Miguel, Sissi; Biteau, Flore; Mignard, Benoit; Marais, Armelle; Candresse, Thierry; Theil, Sébastien; Bourgaud, Frédéric; Hehn, Alain

    2016-08-01

    Although poleroviruses are known to infect a broad range of higher plants, carnivorous plants have not yet been reported as hosts. Here, we describe the first polerovirus naturally infecting the pitcher plant Nepenthes mirabilis. The virus was identified through bioinformatic analysis of NGS transcriptome data. The complete viral genome sequence was assembled from overlapping PCR fragments and shown to share 91.1 % nucleotide sequence identity with the US isolate of beet western yellows virus (BWYV). Further analysis of other N. mirabilis plants revealed the presence of additional BWYV isolates differing by several insertion/deletion mutations in ORF5. PMID:27180098

  14. ERAST Program Proteus Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The unusual design of the Proteus high-altitude aircraft, incorporating a gull-wing shape for its main wing and a long, slender forward canard, is clearly visible in this view of the aircraft in flight over the Mojave Desert in California. In the Proteus Project, NASA's Dryden Flight Research Center, Edwards, California, is assisting Scaled Composites, Inc., Mojave, California, in developing a sophisticated station-keeping autopilot system and a Satellite Communications (SATCOM)-based uplink-downlink data system for aircraft and payload data under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. The ERAST Project is sponsored by the Office of Aero-Space Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center. The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. The aircraft is designed to be flown by two pilots in a pressurized cabin, but also has the potential to perform its missions semiautonomously or be flown remotely from the ground. Flight testing of the Proteus, beginning in the summer of 1998 at Mojave Airport through the end of 1999, included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, had been installed and checked out in several flight tests. The systems performed flawlessly during the Proteus's deployment to the Paris Airshow in 1999. NASA's ERAST project funded development of an Airborne Real-Time Imaging System (ARTIS). Developed by HyperSpectral Sciences, Inc., the small ARTIS camera was demonstrated during the summer of 1999 when it took visual and near-infrared photos over the Experimental Aircraft Association's 'AirVenture 99' Airshow at Oshkosh, Wisconsin. The images were displayed on a computer

  15. Virulence factors in Proteus bacteria from biofilm communities of catheter-associated urinary tract infections.

    PubMed

    Hola, Veronika; Peroutkova, Tereza; Ruzicka, Filip

    2012-07-01

    More than 40% of nosocomial infections are those of the urinary tract, most of these occurring in catheterized patients. Bacterial colonization of the urinary tract and catheters results not only in infection, but also various complications, such as blockage of catheters with crystalline deposits of bacterial origin, generation of gravels and pyelonephritis. The diversity of the biofilm microbial community increases with duration of catheter emplacement. One of the most important pathogens in this regard is Proteus mirabilis. The aims of this study were to identify and assess particular virulence factors present in catheter-associated urinary tract infection (CAUTI) isolates, their correlation and linkages: three types of motility (swarming, swimming and twitching), the ability to swarm over urinary catheters, biofilm production in two types of media, urease production and adherence of bacterial cells to various types of urinary tract catheters. We examined 102 CAUTI isolates and 50 isolates taken from stool samples of healthy people. Among the microorganisms isolated from urinary catheters, significant differences were found in biofilm-forming ability and the swarming motility. In comparison with the control group, the microorganisms isolated from urinary catheters showed a wider spectrum of virulence factors. The virulence factors (twitching motility, swimming motility, swarming over various types of catheters and biofilm formation) were also more intensively expressed. PMID:22533980

  16. Development of an "early warning" sensor for encrustation of urinary catheters following Proteus infection.

    PubMed

    Malic, Sladjana; Waters, Mark G J; Basil, Leo; Stickler, David J; Williams, David W

    2012-01-01

    Biofilm formation in long-term urinary catheterized patients can lead to encrustation and blockage of urinary catheters with serious clinical complication. Catheter encrustation stems from infection with urease-producing bacteria, particularly Proteus mirabilis. Urease generates ammonia from urea, and the elevated pH of the urine results in crystallization of calcium and magnesium phosphates, which block the flow of urine. The aim of this research is to develop an "early warning" silicone sensor for catheter encrustation following bacterial infection of an in vitro bladder model system. The in vitro bladder model was infected with a range of urease positive and negative bacterial strains. Developed sensors enabled catheter blockage to be predicted ~17-24 h in advance of its occurrence. Signaling only occurred following infection with urease positive bacteria and only when catheter blockage followed. In summary, sensors were developed that could predict urinary catheter blockage in in vitro infection models. Translation of these sensors to a clinical environment will allow the timely and appropriate management of catheter blockage in long-term catheterized patients. PMID:21954120

  17. Characterization of Proteus vulgaris K80 lipase immobilized on amine-terminated magnetic microparticles.

    PubMed

    Natalia, Agnes; Kristiani, Lidya; Kim, Hyung Kwoun

    2014-10-01

    Proteus vulgaris K80 lipase was expressed in Escherichia coli BL21 (DE3) cells and immobilized on amine-terminated magnetic microparticles (Mag-MPs). The immobilization yield and activity retention were 84.15% and 7.87%, respectively. A homology model of lipase K80 was constructed using P. mirabilis lipase as the template. Many lysine residues were located on the protein surface, remote from active sites. The biochemical characteristics of immobilized lipase K80 were compared with the soluble free form of lipase K80. The optimum temperature of K80-Mag-MPs was 60°C, which was 20°C higher than that of the soluble form. K80-Mag-MPs also tended to be more stable than the soluble form at elevated temperatures and a broad range of pH. K80-Mag-MP maintained its stable form at up to 40°C and in a pH range of 5.0- 10.0, whereas soluble K80 maintained its activity up to 35°C and pH 6.0-10.0. K80-Mag-MPs had broader substrate specificity compared with that of soluble K80. K80-Mag-MPs showed about 80% residual relative activity after five recovery trials. These results indicate the potential benefit of K80-Mag-MPs as a biocatalyst in various industries. PMID:25001555

  18. GENES ASSOCIATED WITH OPENING AND SENESCENCE OF MIRABILIS JALAPA FLOWERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A modest ethylene climacteric accompanies flower senescence in Mirabilis jalapa L., and exogenous ethylene accelerates the process. However, inhibitors of ethylene action and synthesis have little effect on the life-span of these ephemeral flowers. Treatment with '-amanitin, an inhibitor of DNA-de...

  19. The Proteus Cabinet, or "We Are Here but Not Here"

    ERIC Educational Resources Information Center

    Nield, Sophie

    2008-01-01

    In the early nineteenth century, there were three stage illusions in which a magician could cause a person to disappear. In one of these, the Proteus Cabinet, participants would enter a box, and simply vanish. As the designers of the Proteus Cabinet said of them, they were "Here, but not Here." My essay explores this concept in relation to…

  20. Radiologic findings in the Proteus syndrome.

    PubMed

    Azouz, E M; Costa, T; Fitch, N

    1987-01-01

    The radiological findings in two patients with the Proteus syndrome are described. Features in our two cases not previously mentioned or stressed include vertebral dysplasia and enlargement (megaspondylodysplasia), bilateral genu valgum, recurrent after surgery and intraabdominal and mesenteric lipomatosis. Emergency laparotomy was performed on the first patient who had a twisted necrotic portion of mesenteric fat. Macrodactyly, skeletal muscle atrophy and subcutaneous fat accumulation in the abdominal wall were present in both. In addition the second patient was mentally retarded and had frontal bony prominence of skull. Computed tomography was used for the specific diagnosis of the lipomatous tissues in both patients. PMID:3684361

  1. Proteus in flight over mountains near Las Cruces, New Mexico.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The unique Proteus aircraft served as a test bed for NASA-sponsored flight tests designed to validate collision-avoidance technologies proposed for uninhabited aircraft. The tests, flown over southern New Mexico in March, 2002, used the Proteus as a surrogate uninhabited aerial vehicle (UAV) while three other aircraft flew toward the Proteus from various angles on simulated collision courses. Radio-based 'detect, see and avoid' equipment on the Proteus successfully detected the other aircraft and relayed that information to a remote pilot on the ground at Las Cruces Airport. The pilot then transmitted commands to the Proteus to maneuver it away from the potential collisions. The flight demonstration, sponsored by NASA Dryden Flight Research Center, New Mexico State University, Scaled Composites, the U.S. Navy and Modern Technology Solutions, Inc., were intended to demonstrate that UAVs can be flown safely and compatibly in the same skies as piloted aircraft.

  2. Proteus aircraft over Las Cruces International Airport in New Mexico.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The unique Proteus aircraft served as a test bed for NASA-sponsored flight tests designed to validate collision-avoidance technologies proposed for uninhabited aircraft. The tests, flown over southern New Mexico in March, 2002, used the Proteus as a surrogate uninhabited aerial vehicle (UAV) while three other aircraft flew toward the Proteus from various angles on simulated collision courses. Radio-based 'detect, see and avoid' equipment on the Proteus successfully detected the other aircraft and relayed that information to a remote pilot on the ground at Las Cruces Airport. The pilot then transmitted commands to the Proteus to maneuver it away from the potential collisions. The flight demonstration, sponsored by NASA Dryden Flight Research Center, New Mexico State University, Scaled Composites, the U.S. Navy and Modern Technology Solutions, Inc., were intended to demonstrate that UAVs can be flown safely and compatibly in the same skies as piloted aircraft.

  3. Proteus aircraft low-level flyby at Las Cruces Airport.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The unique Proteus aircraft served as a test bed for NASA-sponsored flight tests designed to validate collision-avoidance technologies proposed for uninhabited aircraft. The tests, flown over southern New Mexico in March, 2002, used the Proteus as a surrogate uninhabited aerial vehicle (UAV) while three other aircraft flew toward the Proteus from various angles on simulated collision courses. Radio-based 'detect, see and avoid' equipment on the Proteus successfully detected the other aircraft and relayed that information to a remote pilot on the ground at Las Cruces Airport. The pilot then transmitted commands to the Proteus to maneuver it away from the potential collisions. The flight demonstration, sponsored by NASA Dryden Flight Research Center, New Mexico State University, Scaled Composites, the U.S. Navy and Modern Technology Solutions, Inc., were intended to demonstrate that UAVs can be flown safely and compatibly in the same skies as piloted aircraft.

  4. Convergence acceleration of the Proteus computer code with multigrid methods

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.; Ibraheem, S. O.

    1992-01-01

    Presented here is the first part of a study to implement convergence acceleration techniques based on the multigrid concept in the Proteus computer code. A review is given of previous studies on the implementation of multigrid methods in computer codes for compressible flow analysis. Also presented is a detailed stability analysis of upwind and central-difference based numerical schemes for solving the Euler and Navier-Stokes equations. Results are given of a convergence study of the Proteus code on computational grids of different sizes. The results presented here form the foundation for the implementation of multigrid methods in the Proteus code.

  5. The Proteus syndrome: the Elephant Man diagnosed.

    PubMed Central

    Tibbles, J A; Cohen, M M

    1986-01-01

    Sir Frederick Treves first showed Joseph Merrick, the famous Elephant Man, to the Pathological Society of London in 1884. A diagnosis of neurofibromatosis was suggested in 1909 and was widely accepted. There is no evidence, however, of café au lait spots or histological proof of neurofibromas. It is also clear that Joseph Merrick's manifestations were much more bizarre than those commonly seen in neurofibromatosis. Evidence indicates that Merrick suffered from the Proteus syndrome and had the following features compatible with this diagnosis: macrocephaly; hyperostosis of the skull; hypertrophy of long bones; and thickened skin and subcutaneous tissues, particularly of the hands and feet, including plantar hyperplasia, lipomas, and other unspecified subcutaneous masses. Images FIG 1 FIG 2 FIG 3 FIG 4 PMID:3092979

  6. Mode of action of the protein, SP127, which enhances the activity of macrolide antibiotics against Pseudomonas aeruginosa.

    PubMed

    Kikuchi, M; Nakao, Y

    1977-03-01

    Antibiotics, the activity of which enhanced against Pseudomonas aeruginosa by SP127, were restricted to the basic macrolide antibiotics such as erythromycin, maridomycin and oleandomycin, the neutral macrolide antibiotics such as lankamycin and lankacidin C, vancomycin and enramycin. Synergistic activity of SP127 with the above antibiotics was found against Pseudomonas aeruginosa and several strains of Escherichia coli, but not against Proteus vulgaris and macrolide-resistant Staphylococcus aureus. SP127 had extremely weak proteolytic but no lytic activity. From the isotopic experiments, the action of SP127 was partially attributed to the promotion of antibiotic penetration to cells of Pseudomonas aeruginosa. PMID:405356

  7. 21 CFR 520.1618 - Orbifloxacin suspension.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... pseudintermedius, Proteus mirabilis, Escherichia coli, and Enterococcus faecalis and skin and soft tissue..., Staphylococcus aureus, coagulase-positive staphylococci, Pasteurella multocida, Proteus mirabilis,...

  8. Rare occurrence of Proteus vulgaris in faeces: a reason for its rare association with urinary tract infections.

    PubMed

    Senior, B W; Leslie, D L

    1986-03-01

    The faecal carriage rates of different species of Proteeae were assessed in studies with 220 faecal isolates from 219 individuals of whom approximately one-third were well and the remainder had gastro-enteritis. As a result of the development of new media that allowed replacement of the phenylalanine deaminase test with the tryptophan deaminase test and made it possible to combine tests for indole and urease production and for hydrogen sulphide and ornithine decarboxylase formation in two single-tube tests, all strains were speciated with speed, economy and accuracy. Most (96%) isolates were either Proteus mirabilis (62%) or Morganella morgani (34%). The significance of these findings in relation to urinary tract infection is discussed. P. vulgaris was found in only one (0.45%) faecal specimen and this rarity of carriage in faeces is believed to be the main reason for its rare association with urinary tract infections. The frequent association of M. morgani, in the absence of other enteropathogenic bacteria, with severe gastroenteritis was noted with interest. PMID:3512839

  9. Catharanthus mosaic virus: A potyvirus from a gymnosperm, Welwitschia mirabilis.

    PubMed

    Koh, Shu Hui; Li, Hua; Admiraal, Ryan; Jones, Michael G K; Wylie, Stephen J

    2015-05-01

    A virus from a symptomatic plant of the gymnosperm Welwitschia mirabilis Hook. growing as an ornamental plant in a domestic garden in Western Australia was inoculated to a plant of Nicotiana benthamiana where it established a systemic infection. The complete genome sequence of 9636 nucleotides was determined using high-throughput and Sanger sequencing technologies. The genome sequence shared greatest identity (83% nucleotides and 91% amino acids) with available partial sequences of catharanthus mosaic virus, indicating that the new isolate belonged to that taxon. Analysis of the phylogeny of the complete virus sequence placed it in a monotypic group in the genus Potyvirus. This is the first record of a virus from W. mirabilis, the first complete genome sequence of catharanthus mosaic virus determined, and the first record from Australia. This finding illustrates the risk to natural and managed systems posed by the international trade in live plants and propagules, which enables viruses to establish in new regions and infect new hosts. PMID:25804761

  10. Characterization of Two Novel Type I Ribosome-Inactivating Proteins from the Storage Roots of the Andean Crop Mirabilis expansa1

    PubMed Central

    Vivanco, Jorge M.; Savary, Brett J.; Flores, Hector E.

    1999-01-01

    Two novel type I ribosome-inactivating proteins (RIPs) were found in the storage roots of Mirabilis expansa, an underutilized Andean root crop. The two RIPs, named ME1 and ME2, were purified to homogeneity by ammonium sulfate precipitation, cation-exchange perfusion chromatography, and C4 reverse-phase chromatography. The two proteins were found to be similar in size (27 and 27.5 kD) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and their isoelectric points were determined to be greater than pH 10.0. Amino acid N-terminal sequencing revealed that both ME1 and ME2 had conserved residues characteristic of RIPs. Amino acid composition and western-blot analysis further suggested a structural similarity between ME1 and ME2. ME2 showed high similarity to the Mirabilis jalapa antiviral protein, a type I RIP. Depurination of yeast 26S rRNA by ME1 and ME2 demonstrated their ribosome-inactivating activity. Because these two proteins were isolated from roots, their antimicrobial activity was tested against root-rot microorganisms, among others. ME1 and ME2 were active against several fungi, including Pythium irregulare, Fusarium oxysporum solani, Alternaria solani, Trichoderma reesei, and Trichoderma harzianum, and an additive antifungal effect of ME1 and ME2 was observed. Antibacterial activity of both ME1 and ME2 was observed against Pseudomonas syringae, Agrobacterium tumefaciens, Agrobacterium radiobacter, and others. PMID:10198104

  11. The Location GNSS Modules for the Components of Proteus System

    NASA Astrophysics Data System (ADS)

    Brzostowski, K.; Darakchiev, R.; Foks-Ryznar, A.; Sitek, P.

    2012-01-01

    The Proteus system - the Integrated Mobile System for Counterterrorism and Rescue Operations is a complex innovative project. To assure the best possible localization of mobile components of the system, many different Global Navigation Satellite System (GNSS) modules were taken into account. In order to chose the best solution many types of tests were done. Full results and conclusions are presented in this paper. The idea of measurements was to test modules in GPS Standard Positioning Service (SPS) with EGNOS system specification according to certain algorithms. The tests had to answer the question: what type of GNSS modules should be used on different components with respect to specific usage of Proteus system. The second goal of tests was to check the solution quality of integrated GNSS/INS (Inertial Navigation System) and its possible usage in some Proteus system components.

  12. Subcutaneous infection by Ochroconis mirabilis in an immunocompetent patient

    PubMed Central

    Shi, Dongmei; Lu, Guixia; Mei, Huan; de Hoog, G. Sybren; Samerpitak, Kittipan; Deng, Shuwen; Shen, Yongnian; Liu, Weida

    2016-01-01

    Recently, the taxonomy of Ochroconis (Ascomycota, Pezizomycotina, Venturiales, Sympoventuriaceae) has been revised with the recognition of an additional genus, Verruconis. Ochroconis comprises mesophilic saprobes that occasionally infect vertebrates which mostly are cold-blooded, while Verruconis contains thermophilic species which is a neurotrope in humans and birds. On the basis of molecular data it is noted that only a single Ochroconis species regularly infects immunocompetent human hosts. Here we report a subcutaneous infection due to Ochroconis mirabilis in a 50-year-old immunocompetent female patient. In vitro antifungal susceptibility tests revealed that terbinafine was the most effective drug. The patient was successfully cured with oral administration of terbinafine 250 mg daily in combination with 3 times of topical ALA-photodynamic therapy for 9 months. PMID:27182484

  13. Subcutaneous infection by Ochroconis mirabilis in an immunocompetent patient.

    PubMed

    Shi, Dongmei; Lu, Guixia; Mei, Huan; de Hoog, G Sybren; Samerpitak, Kittipan; Deng, Shuwen; Shen, Yongnian; Liu, Weida

    2016-03-01

    Recently, the taxonomy of Ochroconis (Ascomycota, Pezizomycotina, Venturiales, Sympoventuriaceae) has been revised with the recognition of an additional genus, Verruconis. Ochroconis comprises mesophilic saprobes that occasionally infect vertebrates which mostly are cold-blooded, while Verruconis contains thermophilic species which is a neurotrope in humans and birds. On the basis of molecular data it is noted that only a single Ochroconis species regularly infects immunocompetent human hosts. Here we report a subcutaneous infection due to Ochroconis mirabilis in a 50-year-old immunocompetent female patient. In vitro antifungal susceptibility tests revealed that terbinafine was the most effective drug. The patient was successfully cured with oral administration of terbinafine 250 mg daily in combination with 3 times of topical ALA-photodynamic therapy for 9 months. PMID:27182484

  14. Proteus - An experimenter's view. [of spacecraft carrying exchangable Explorer scientific experiments

    NASA Technical Reports Server (NTRS)

    Hibbard, W. D.

    1984-01-01

    The scientific experiments package to be carried by the Proteus system takes the form of an Instrument Load carried into orbit by a Space Shuttle, and there mated to a Proteus spacecraft with the Shuttle's Remote Manipulator System. The Proteus system extends to ground support equipment, development tools, and communications, as well as the orbiting satellites. It is expected that Proteus will be able to triple the number of Explorer missions while staying within the current budgetary allocation for such missions. The Proteus spacecraft encompasses a system interface assembly plug, a data handling module, remote interface units, and a power distribution module.

  15. Pseudomonas 2007 Meeting Review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas is an important genus of bacteria. Pseudomonas aeruginosa is the third most common nosocomial pathogen in our society, associated with chronic and eventually fatal lung disease in cystic fibrosis patients, while Pseudomonas syringae species are prominent plant pathogens. The fluorescen...

  16. Wave Features of the Neptune's Satellites: Triton, Proteus, Nereid

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2014-07-01

    Fastly orbiting Triton shows Mars-like tectonic dichotomy and very fine granulation 18 km across. Observed Proteus' granules are due to wave modulation. Nereid's fr.is close to that of Earth, thus their relatively sized granules are quite similar.

  17. Abolition of Swarming of Proteus by p-Nitrophenyl Glycerin: Application to Blood Agar Media

    PubMed Central

    Williams, Fred D.

    1973-01-01

    Comparative plate counts were made of Staphylococcus aureus and Streptococcus pyogenes growing on blood agar supplemented with individual chemicals to abolish the swarming of Proteus. B-phenylethanol, sodium azide, and p-nitrophenyl glycerin (PNPG) were used as anti-swarm agents. Each anti-swarm agent effectively abolished swarming for 24 h, but azide failed to control swarming for longer periods of incubation. In addition, azide displayed growth inhibition towards the staphylococci and streptococci resulting in no hemolysis and reduced viable cell numbers with the streptococci. Phenylethanol showed reduced viable cell numbers with the streptococci and unreliable hemolytic reactions. At 0.1 to 0.3 mM, PNPG proved to be a superior anti-swarm agent in that it showed no growth inhibition and allowed normal hemolysis, but abolished swarming for extended periods of time. When laboratory strains of Streptococcus pneumoniae, Klebsiella pneumoniae, Pseudomonas aeruginosa. Listeria monocytogenes, and Vibrio cholerae were screened on a blood agar medium containing 0.1 mm PNPG, they displayed similar growth and hemolytic characteristics to the identical medium without PNPG. PMID:4715553

  18. [Increased antibacterial activity of antibiotics with etonium in vitro].

    PubMed

    Petrunyk, I O

    2000-01-01

    The activity of compositions of antibiotics cefasolin, benzylpenicillin and gentamycin with etonium in respect to museum strains Staphylococcus aureus 209, Escherichia coli K-12, Proteus vulgaris 410, P. mirabilis, Pseudomonas aeruginosa 19, Klebsiella pneumoniae 5054 and polyresistance strains S. aureus, E. coli, P. mirabilis in vitro was researched. The increase of the compositions activity as a result of synergy in the action of their component 4 up to 4496 times has been established. PMID:11421003

  19. Genes associated with opening and senescence of Mirabilis jalapa flowers.

    PubMed

    Xu, Xinjia; Gookin, Tim; Jiang, Cai-Zhong; Reid, Michael

    2007-01-01

    A modest ethylene climacteric accompanies flower senescence in Mirabilis jalapa L., and exogenous ethylene accelerates the process. However, inhibitors of ethylene action and synthesis have little effect on the life-span of these ephemeral flowers. Treatment with alpha-amanitin, an inhibitor of DNA-dependent RNA synthesis, substantially delays the onset of senescence. This effect falls linearly between 7 h and 8 h after the start of flower opening. Subtractive hybridization was used to isolate transcripts that were up- and down-regulated during this critical period. Eighty-two up-regulated and 65 down-regulated transcripts were isolated. The genes identified encode homologues of a range of transcription factors, and of proteins involved in protein turnover and degradation. Real-time quantitative RT-PCR was used to examine expression patterns of these genes during flower opening and senescence. Genes that were identified as being down-regulated during senescence showed a common pattern of very high expression during floral opening. These genes included a homologue of CCA1, a 'clock' gene identified in Arabidopsis thaliana and an aspartyl protease. Up-regulated genes commonly showed a pattern of increase during the critical period (4-9 h after opening), and some showed very strong up-regulation. For example, the abundance of transcripts encoding a RING zinc finger protein increased >40 000 fold during the critical period. PMID:17525082

  20. Spira Mirabilis: a shaped piezoelectric sensor for impact localization

    NASA Astrophysics Data System (ADS)

    De Marchi, L.; Testoni, N.; Marzani, A.

    2015-03-01

    In this work, a novel piezoelectric sensor for guided waves detection on laminate composite and metallic structures is presented. The sensor is composed by two electrodes (E1 and E2) on the top surface of the device, plus a common electrode (EC) on the bottom surface, which is bonded to the structure to be inspected. E1 has a circular shape, whereas E2 is shaped as a segment of a logarithmic spiral (or spira mirabilis). Because of this asymmetric shaping, the wavefront of a generic acoustic event (e.g. the one generated by an impact) hits the electrodes in two points whose distance D varies with the Direction of Arrival (DoA) of the wave itself. With a dedicated processing procedure, the information about the distance D first, and then about the DoA can be retrieved from the waveforms acquired and digitized at the two electrodes E1 and E2. In particular, the procedure computes the cross-correlation of the dispersion compensated signals, and extracts the distance D by looking at the position of the maximum of the cross-correlation envelope. Here, a first experimental test is performed to validate the effectiveness of the proposed technology.

  1. Mechanics and control of the cytoskeleton in Amoeba proteus.

    PubMed

    Dembo, M

    1989-06-01

    Many models of the cytoskeletal motility of Amoeba proteus can be formulated in terms of the theory of reactive interpenetrating flow (Dembo and Harlow, 1986). We have devised numerical methodology for testing such models against the phenomenon of steady axisymmetric fountain flow. The simplest workable scheme revealed by such tests (the minimal model) is the main preoccupation of this study. All parameters of the minimal model are determined from available data. Using these parameters the model quantitatively accounts for the self assembly of the cytoskeleton of A. proteus: for the formation and detailed morphology of the endoplasmic channel, the ectoplasmic tube, the uropod, the plasma gel sheet, and the hyaline cap. The model accounts for the kinematics of the cytoskeleton: the detailed velocity field of the forward flow of the endoplasm, the contraction of the ectoplasmic tube, and the inversion of the flow in the fountain zone. The model also gives a satisfactory account of measurements of pressure gradients, measurements of heat dissipation, and measurements of the output of useful work by amoeba. Finally, the model suggests a very promising (but still hypothetical) continuum formulation of the free boundary problem of amoeboid motion. by balancing normal forces on the plasma membrane as closely as possible, the minimal model is able to predict the turgor pressure and surface tension of A. proteus. Several dynamical factors are crucial to the success of the minimal model and are likely to be general features of cytoskeletal mechanics and control in amoeboid cells. These are: a constitutive law for the viscosity of the contractile network that includes an automatic process of gelation as the network density gets large; a very vigorous cycle of network polymerization and depolymerization (in the case of A. proteus, the time constant for this reaction is approximately 12 s); control of network contractility by a diffusible factor (probably calcium ion); and

  2. Genome sequencing and annotation of Proteus sp. SAS71

    PubMed Central

    Selim, Samy; Hassan, Sherif; Hagagy, Nashwa

    2015-01-01

    We report draft genome sequence of Proteus sp. strain SAS71, isolated from water spring in Aljouf region, Saudi Arabia. The draft genome size is 3,037,704 bp with a G + C content of 39.3% and contains 6 rRNA sequence (single copies of 5S, 16S & 23S rRNA). The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LDIU00000000. PMID:26697338

  3. [Sensitivity of clinical Proteus strains to antibiotics and their combinations].

    PubMed

    Sheina, E P; Arutcheva, A A

    1978-05-01

    In 1976 isolation of Proteus from wounds of patients with various purulent processes amounted to 14.5 per cent. Serotypes 0-10, 0-3 and H-3 predominated among the isolates. Sensitivity of 35 clinical strains of Proteus to 10 antibiotics, furagin and nevigramone was studied by the method of serial dilutions in liquid media. All the isolates were highly resistant to the antibiotics except gentamicin, furagin and nevigramone, the MIC of which for most of the strains was 3.12, 1.6-3.12 and 6.25-12.5 gamma/ml, respectively. The effect of 14 combinations of chemotherapeutics was also studied. The combinations of gentamicin with carbenicillin, gentamicin with ampicillin and monomycin with ampicillin proved to be most effective against the Proteus strains tested. The following combinations may be of practical value: monomycin + carbenicillin, kanamycin + ampicillin, kanamycin + carbenicillin, ampicillin + furagin, gentamicin + nevigramone. The combinations of carbenicillin with furagin and gentamicin with furagin were also rational. PMID:350143

  4. Proteus Syndrome: a difficult diagnosis and management plan

    PubMed Central

    Popescu, MD; Burnei, G; Draghici, L; Draghici, I

    2014-01-01

    Rationale. Proteus Syndrome (PS) is an extremely rare congenital pathology that causes overgrowth of multiple tissues, in particular bone and fat, following a mosaic pattern. The estimated incidence is of less than 1 per 1,000.000 live births and represents a significant challenge to the pediatric and orthopedic surgeons in order to establish a diagnosis and to elaborate a management plan. Objectives. We had the opportunity of treating many children who were afflicted by overgrowth syndromes and have been previously misdiagnosed as Proteus Syndrome in our department of pediatric and orthopedic surgery of “Maria Sklodowska Curie” Clinical Emergency Hospital for Children. This study helped us develop a diagnostic for these patients and report the first case of a confirmed PS in Romania. Methods and Results. We report the case of a 5-year-old white male who is in the attention of the clinic since birth. He presented with multiple overgrowth bone segments, fatty subcutaneous or intraabdominal tumors and other connective tissues abnormalities. All the tests performed confirmed the diagnosis of PS at the age of 4 and the management is still to be decided. Discussions. We followed the latest diagnostic indications and the patient fulfilled the general and specific criteria. The treatment is still in progress and it represents a challenge for the multidisciplinary medical team. Abbreviation Proteus Syndrome = PS PMID:25713623

  5. Pseudomonas kuykendallii sp. nov.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is a submission to the list of microorganisms with standing in nomenclature maintained by the International Journal of Systematic and Evolutionary Microbiology. We wish to have Pseudomonas kuykendallii sp. nov. added to the list as a valid species belonging to the genus Pseudomonas. Three str...

  6. Recombineering Pseudomonas syringae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we report the identification of functions that promote genomic recombination of linear DNA introduced into Pseudomonas cells by electroporation. The genes encoding these functions were identified in Pseudomonas syringae pv. syringae B728a based on similarity to the lambda Red Exo/Beta and RecE...

  7. Pseudomonas screening assay

    NASA Technical Reports Server (NTRS)

    Margalit, Ruth (Inventor)

    1993-01-01

    A method for the detection of Pseudomonas bacteria is described where an Azurin-specific antibody is employed for detecting the presence of Azurin in a test sample. The detection of the presence of Azurin in the sample is a conclusive indicator of the presence of the Pseudomonas bacteria since the Azurin protein is a specific marker for this bacterial strain.

  8. Negative feedback from a Proteus class II flagellum export defect to the flhDC master operon controlling cell division and flagellum assembly.

    PubMed Central

    Furness, R B; Fraser, G M; Hay, N A; Hughes, C

    1997-01-01

    The Proteus mirabilis flagellum class I flhDC operon was isolated, and its transcript was shown to originate from a sigma70 promoter 244 bp 5' of flhD and 29 bp 3' of a putative cyclic AMP receptor protein-binding site. Expression of this regulatory master operon increased strongly as cells differentiated into elongated hyperflagellated swarm filaments, and cell populations artificially overexpressing flhDC migrated sooner and faster. A class II flhA transposon mutant was reduced in flagellum class III gene expression, as would be expected from the FlgM anti-sigma28 accumulation demonstrated in Salmonella typhimurium, but was unexpectedly also reduced in cell elongation. Here, we show that levels of flhDC transcript were ca. 10-fold lower in this flagellum export mutant, indicating that in cells defective in flagellum assembly, there is additional negative feedback via flhDC. In support of this view, artificial overexpression of flhDC in the flhA mutant restored elongation but not class III flagellum gene transcription. PMID:9287017

  9. [Competence of Cd Phytoremediation in Cd-OCDF Co-contaminated Soil Using Mirabilis jalapa L].

    PubMed

    Zhang, Xing-li; Zou, Wei; Zhou, Qi-xing

    2015-08-01

    Soil contamination by heavy metals and persistent organic pollutants tends to be severe. Pot experiment was conducted to investigate the phytoremediation of cadmium (Cd) in Cd-OCDF Co-contaminated Soil by Mirabilis jalapa L., using OCDF and Cd as the model pollutants of persistent organic pollutants and heavy metals, to study. the growth responses of plant and OCDF effects on phytoremediation of Cd. The results showed that during three months of planting the height and dry biomass of Mirabilis jalapa L. decreased slightly when the Cd concentration was not higher than 200 mg x kg(-1), and the plant exhibited high tolerance to Cd and OCDF. Compared with the Cd single pollution, OCDF had no significant effect on the height and root biomass of Mirabilis jalapa L. When the concentration of Cd was 200 mg x kg(-1) and the concentration of OCDF was 500 microg x kg(-1), the shoot biomass was reduced by 22.19%. In other treatments, OCDF showed no significant inhibition to the shoot biomass of Mirabilis jalapa L., but increased the shoot biomass in some treatments. Compared with single Cd pollution, when the concentration of Cd was 200 mg x kg(-1) and the concentration of OCDF was 100 microg x kg(-1), the Cd accumulation of root was reduced by 34.44%. When the concentration of Cd was 400 mg x kg(-1) and the concentration of OCDF was 100 microg x kg(-1), the Cd accumulation in root and leaf was reduced by 7.93% and 18.09%, respectively. In other treatments, OCDF promoted the extraction and accumulation of Cd by root, stem and leaf of Mirabilis jalapa L. from soil to some degree. So using Mirabilis jalapa L. to remediate Cd from high Cd concentration and OCDF cocontaminated soil is feasible. PMID:26592039

  10. Mechanics and control of the cytoskeleton in Amoeba proteus.

    PubMed Central

    Dembo, M

    1989-01-01

    Many models of the cytoskeletal motility of Amoeba proteus can be formulated in terms of the theory of reactive interpenetrating flow (Dembo and Harlow, 1986). We have devised numerical methodology for testing such models against the phenomenon of steady axisymmetric fountain flow. The simplest workable scheme revealed by such tests (the minimal model) is the main preoccupation of this study. All parameters of the minimal model are determined from available data. Using these parameters the model quantitatively accounts for the self assembly of the cytoskeleton of A. proteus: for the formation and detailed morphology of the endoplasmic channel, the ectoplasmic tube, the uropod, the plasma gel sheet, and the hyaline cap. The model accounts for the kinematics of the cytoskeleton: the detailed velocity field of the forward flow of the endoplasm, the contraction of the ectoplasmic tube, and the inversion of the flow in the fountain zone. The model also gives a satisfactory account of measurements of pressure gradients, measurements of heat dissipation, and measurements of the output of useful work by amoeba. Finally, the model suggests a very promising (but still hypothetical) continuum formulation of the free boundary problem of amoeboid motion. by balancing normal forces on the plasma membrane as closely as possible, the minimal model is able to predict the turgor pressure and surface tension of A. proteus. Several dynamical factors are crucial to the success of the minimal model and are likely to be general features of cytoskeletal mechanics and control in amoeboid cells. These are: a constitutive law for the viscosity of the contractile network that includes an automatic process of gelation as the network density gets large; a very vigorous cycle of network polymerization and depolymerization (in the case of A. proteus, the time constant for this reaction is approximately 12 s); control of network contractility by a diffusible factor (probably calcium ion); and