Science.gov

Sample records for proton emission tomography

  1. FEASIBILITY OF POSITRON EMISSION TOMOGRAPHY OF DOSE DISTRIBUTION IN PROTON BEAM CANCER THERAPY.

    SciTech Connect

    BEEBE - WANG,J.J.; DILMANIAN,F.A.; PEGGS,S.G.; SCHLYEER,D.J.; VASKA,P.

    2002-06-03

    Proton therapy is a treatment modality of increasing utility in clinical radiation oncology mostly because its dose distribution conforms more tightly to the target volume than x-ray radiation therapy. One important feature of proton therapy is that it produces a small amount of positron-emitting isotopes along the beam-path through the non-elastic nuclear interaction of protons with target nuclei such as {sup 12}C, {sup 14}N, and {sup 16}O. These radioisotopes, mainly {sup 11}C, {sup 13}N and {sup 15}O, allow imaging the therapy dose distribution using positron emission tomography (PET). The resulting PET images provide a powerful tool for quality assurance of the treatment, especially when treating inhomogeneous organs such as the lungs or the head-and-neck, where the calculation of the dose distribution for treatment planning is more difficult. This paper uses Monte Carlo simulations to predict the yield of positron emitters produced by a 250 MeV proton beam, and to simulate the productions of the image in a clinical PET scanner.

  2. Fast simulation of Proton Induced X-Ray Emission Tomography using CUDA

    NASA Astrophysics Data System (ADS)

    Beasley, D. G.; Marques, A. C.; Alves, L. C.; da Silva, R. C.

    2013-07-01

    A new 3D Proton Induced X-Ray Emission Tomography (PIXE-T) and Scanning Transmission Ion Microscopy Tomography (STIM-T) simulation software has been developed in Java and uses NVIDIA™ Common Unified Device Architecture (CUDA) to calculate the X-ray attenuation for large detector areas. A challenge with PIXE-T is to get sufficient counts while retaining a small beam spot size. Therefore a high geometric efficiency is required. However, as the detector solid angle increases the calculations required for accurate reconstruction of the data increase substantially. To overcome this limitation, the CUDA parallel computing platform was used which enables general purpose programming of NVIDIA graphics processing units (GPUs) to perform computations traditionally handled by the central processing unit (CPU). For simulation performance evaluation, the results of a CPU- and a CUDA-based simulation of a phantom are presented. Furthermore, a comparison with the simulation code in the PIXE-Tomography reconstruction software DISRA (A. Sakellariou, D.N. Jamieson, G.J.F. Legge, 2001) is also shown. Compared to a CPU implementation, the CUDA based simulation is approximately 30× faster.

  3. Determination of elemental tissue composition following proton treatment using positron emission tomography

    PubMed Central

    Cho, Jongmin; Ibbott, Geoffrey; Gillin, Michael; Gonzalez-Lepera, Carlos; Min, Chul Hee; Paganetti, Harald; Zhu, Xuping; El Fakhri, Georges; Mawlawi, Osama

    2013-01-01

    Purpose Positron emission tomography (PET) has been suggested as an imaging technique for in vivo proton dose and range verification after proton induced-tissue activation. During proton treatment, irradiated tissue is activated and decays while emitting positrons. In this paper, we assessed the feasibility of using PET imaging after proton treatment to determine tissue elemental composition by evaluating the resultant composite decay curve of activated tissue. Methods A phantom consisting of sections composed of different combinations of 1H, 12C, 14N, and 16O was irradiated using a pristine Bragg peak and a 6-cm spread-out Bragg-peak (SOBP) proton beam. The beam ranges defined at 90% distal dose were 10 cm; the delivered dose was 1.6 Gy for the near monoenergetic beam and 2 Gy for the SOBP beam. After irradiation, activated phantom decay was measured using an in-room PET scanner for 30 minutes in list mode. Decay curves from the activated 12C and 16O sections were first decomposed into multiple simple exponential decay curves, each curve corresponding to a constituent radioisotope, using a least-squares method. The relative radioisotope fractions from each section were determined. These fractions were used to guide the decay curve decomposition from the section consisting mainly of 12C+16O and calculate the relative elemental composition of 12C and 16O. A Monte Carlo simulation was also used to determine the elemental composition of the 12C + 16O section. The calculated compositions of the 12C + 16O section using both approaches (PET and Monte Carlo) were compared with the true known phantom composition. Finally, 2 patients were imaged using an in-room PET scanner after proton therapy of the head. Their PET data and the technique described above were used to construct elemental composition (12C and 16O) maps that corresponded to the proton-activated regions. We compared the 12C and 16O compositions of 7 ROIs that corresponded to the vitreous humor, adipose

  4. Determination of elemental tissue composition following proton treatment using positron emission tomography

    NASA Astrophysics Data System (ADS)

    Cho, Jongmin; Ibbott, Geoffrey; Gillin, Michael; Gonzalez-Lepera, Carlos; Min, Chul Hee; Zhu, Xuping; El Fakhri, Georges; Paganetti, Harald; Mawlawi, Osama

    2013-06-01

    Positron emission tomography (PET) has been suggested as an imaging technique for in vivo proton dose and range verification after proton induced-tissue activation. During proton treatment, irradiated tissue is activated and decays while emitting positrons. In this paper, we assessed the feasibility of using PET imaging after proton treatment to determine tissue elemental composition by evaluating the resultant composite decay curve of activated tissue. A phantom consisting of sections composed of different combinations of 1H, 12C, 14N, and 16O was irradiated using a pristine Bragg peak and a 6 cm spread-out Bragg-peak (SOBP) proton beam. The beam ranges defined at 90% distal dose were 10 cm the delivered dose was 1.6 Gy for the near monoenergetic beam and 2 Gy for the SOBP beam. After irradiation, activated phantom decay was measured using an in-room PET scanner for 30 min in list mode. Decay curves from the activated 12C and 16O sections were first decomposed into multiple simple exponential decay curves, each curve corresponding to a constituent radioisotope, using a least-squares method. The relative radioisotope fractions from each section were determined. These fractions were used to guide the decay curve decomposition from the section consisting mainly of 12C + 16O and calculate the relative elemental composition of 12C and 16O. A Monte Carlo simulation was also used to determine the elemental composition of the 12C + 16O section. The calculated compositions of the 12C + 16O section using both approaches (PET and Monte Carlo) were compared with the true known phantom composition. Finally, two patients were imaged using an in-room PET scanner after proton therapy of the head. Their PET data and the technique described above were used to construct elemental composition (12C and 16O) maps that corresponded to the proton-activated regions. We compared the 12C and 16O compositions of seven ROIs that corresponded to the vitreous humor, adipose/face mask, adipose

  5. Clinical Application of In-Room Positron Emission Tomography for In Vivo Treatment Monitoring in Proton Radiation Therapy

    SciTech Connect

    Min, Chul Hee; Zhu, Xuping; Winey, Brian A.; Grogg, Kira; Testa, Mauro; El Fakhri, Georges; Bortfeld, Thomas R.; Paganetti, Harald; Shih, Helen A.

    2013-05-01

    Purpose: The purpose of this study is to evaluate the potential of using in-room positron emission tomography (PET) for treatment verification in proton therapy and for deriving suitable PET scan times. Methods and Materials: Nine patients undergoing passive scattering proton therapy underwent scanning immediately after treatment with an in-room PET scanner. The scanner was positioned next to the treatment head after treatment. The Monte Carlo (MC) method was used to reproduce PET activities for each patient. To assess the proton beam range uncertainty, we designed a novel concept in which the measured PET activity surface distal to the target at the end of range was compared with MC predictions. The repositioning of patients for the PET scan took, on average, approximately 2 minutes. The PET images were reconstructed considering varying scan times to test the scan time dependency of the method. Results: The measured PET images show overall good spatial correlations with MC predictions. Some discrepancies could be attributed to uncertainties in the local elemental composition and biological washout. For 8 patients treated with a single field, the average range differences between PET measurements and computed tomography (CT) image-based MC results were <5 mm (<3 mm for 6 of 8 patients) and root-mean-square deviations were 4 to 11 mm with PET-CT image co-registration errors of approximately 2 mm. Our results also show that a short-length PET scan of 5 minutes can yield results similar to those of a 20-minute PET scan. Conclusions: Our first clinical trials in 9 patients using an in-room PET system demonstrated its potential for in vivo treatment monitoring in proton therapy. For a quantitative range prediction with arbitrary shape of target volume, we suggest using the distal PET activity surface.

  6. Patient Study of In Vivo Verification of Beam Delivery and Range, Using Positron Emission Tomography and Computed Tomography Imaging After Proton Therapy

    SciTech Connect

    Parodi, Katia . E-mail: Katia.Parodi@med.uni-heidelberg.de; Paganetti, Harald; Shih, Helen A.; Michaud, Susan; Loeffler, Jay S.; DeLaney, Thomas F.; Liebsch, Norbert J.; Munzenrider, John E.; Fischman, Alan J.; Knopf, Antje; Bortfeld, Thomas

    2007-07-01

    Purpose: To investigate the feasibility and value of positron emission tomography and computed tomography (PET/CT) for treatment verification after proton radiotherapy. Methods and Materials: This study included 9 patients with tumors in the cranial base, spine, orbit, and eye. Total doses of 1.8-3 GyE and 10 GyE (for an ocular melanoma) per fraction were delivered in 1 or 2 fields. Imaging was performed with a commercial PET/CT scanner for 30 min, starting within 20 min after treatment. The same treatment immobilization device was used during imaging for all but 2 patients. Measured PET/CT images were coregistered to the planning CT and compared with the corresponding PET expectation, obtained from CT-based Monte Carlo calculations complemented by functional information. For the ocular case, treatment position was approximately replicated, and spatial correlation was deduced from reference clips visible in both the planning radiographs and imaging CT. Here, the expected PET image was obtained from an analytical model. Results: Good spatial correlation and quantitative agreement within 30% were found between the measured and expected activity. For head-and-neck patients, the beam range could be verified with an accuracy of 1-2 mm in well-coregistered bony structures. Low spine and eye sites indicated the need for better fixation and coregistration methods. An analysis of activity decay revealed as tissue-effective half-lives of 800-1,150 s. Conclusions: This study demonstrates the feasibility of postradiation PET/CT for in vivo treatment verification. It also indicates some technological and methodological improvements needed for optimal clinical application.

  7. Development of Proton Computed Tomography for Applications in Proton Therapy

    NASA Astrophysics Data System (ADS)

    Bashkirov, Vladimir; Schulte, Reinhard; Coutrakon, George; Erdelyi, Bela; Wong, Kent; Sadrozinski, Hartmut; Penfold, Scott; Rosenfeld, Anatoly; McAllister, Scott; Schubert, Keith

    2009-03-01

    Determination of the Bragg peak position in proton therapy requires accurate knowledge of the electron density and ratio of effective atomic number and mass (Z/A) of the body tissues traversed. While the Z/A ratio is fairly constant for human tissues, the density of tissues varies significantly. One possibility to obtain accurate electron density information of tissues is to use protons of sufficient energy to penetrate the patient and measure their energy loss. From these transmission measurements, it is possible to reconstruct a three-dimensional map of electron densities using algebraic techniques. The interest in proton computed tomography (pCT) has considerably increased in recent years due to the more common use of proton accelerators for cancer treatment world-wide and a modern design concept based on current high-energy physics technology has been suggested. This contribution gives a status update on the pCT project carried out by the pCT Collaboration, a group of institutions sharing interest and expertise in the development of pCT. We will present updated imaging data obtained with a small pCT prototype developed in collaboration with the Santa Cruz Institute of Particle Physics and installed on the proton research beam line at Loma Linda University Medical Center. We will discuss hardware decisions regarding the next-generation pCT scanner, which will permit scanning of head-sized objects. Progress has also been made in the formulation of the most likely path of protons through an object and parallelizable iterative reconstruction algorithms that can be implemented on general-purpose commodity graphics processing units. Finally, we will present simulation studies for utilizing pCT technology for on-line proton dose verification and tumor imaging with positron emission tomography (PET).

  8. Development of Proton Computed Tomography for Applications in Proton Therapy

    SciTech Connect

    Bashkirov, Vladimir; Schulte, Reinhard; Coutrakon, George; Erdelyi, Bela; Wong, Kent; Sadrozinski, Hartmut; Penfold, Scott; Rosenfeld, Anatoly; McAllister, Scott; Schubert, Keith

    2009-03-10

    Determination of the Bragg peak position in proton therapy requires accurate knowledge of the electron density and ratio of effective atomic number and mass (Z/A) of the body tissues traversed. While the Z/A ratio is fairly constant for human tissues, the density of tissues varies significantly. One possibility to obtain accurate electron density information of tissues is to use protons of sufficient energy to penetrate the patient and measure their energy loss. From these transmission measurements, it is possible to reconstruct a three-dimensional map of electron densities using algebraic techniques. The interest in proton computed tomography (pCT) has considerably increased in recent years due to the more common use of proton accelerators for cancer treatment world-wide and a modern design concept based on current high-energy physics technology has been suggested. This contribution gives a status update on the pCT project carried out by the pCT Collaboration, a group of institutions sharing interest and expertise in the development of pCT. We will present updated imaging data obtained with a small pCT prototype developed in collaboration with the Santa Cruz Institute of Particle Physics and installed on the proton research beam line at Loma Linda University Medical Center. We will discuss hardware decisions regarding the next-generation pCT scanner, which will permit scanning of head-sized objects. Progress has also been made in the formulation of the most likely path of protons through an object and parallelizable iterative reconstruction algorithms that can be implemented on general-purpose commodity graphics processing units. Finally, we will present simulation studies for utilizing pCT technology for on-line proton dose verification and tumor imaging with positron emission tomography (PET)

  9. Diagnosis of Alzheimer-type dementia: a preliminary comparison of positron emission tomography and proton magnetic resonance

    SciTech Connect

    Friedland, R.P.; Budinger, T.F.; Brant-Zawadzki, M.; Jagust, W.J.

    1984-11-16

    The use of positron emission tomography with (18F)-2-fluoro-2-deoxy-D-glucose (FDG) to study glucose metabolism in dementia is described and compared with the use of magnetic resonance imaging. These studies suggest that physiological imaging with PET may be superior to MR as it is currently used in the diagnosis of dementia-like diseases. Pet is currently limited to a few centers; however, single photon emission CT can provide regional physiological data without the need for a local cyclotron. 15 references, 2 tables.

  10. Positron emission tomography

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y. Lucas; Thompson, Christopher J.; Diksic, Mirko; Meyer, Ernest; Feindel, William H.

    One of the most exciting new technologies introduced in the last 10 yr is positron emission tomography (PET). PET provides quantitative, three-dimensional images for the study of specific biochemical and physiological processes in the human body. This approach is analogous to quantitative in-vivo autoradiography but has the added advantage of permitting non-invasive in vivo studies. PET scanning requires a small cyclotron to produce short-lived positron emitting isotopes such as oxygen-15, carbon-11, nitrogen-13 and fluorine-18. Proper radiochemical facilities and advanced computer equipment are also needed. Most important, PET requires a multidisciplinary scientific team of physicists, radiochemists, mathematicians, biochemists and physicians. This review analyzes the most recent trends in the imaging technology, radiochemistry, methodology and clinical applications of positron emission tomography.

  11. Positron emission tomography.

    PubMed

    Hoffman, E J; Phelps, M E

    1979-01-01

    Conventional nuclear imaging techniques utilizing lead collimation rely on radioactive tracers with little role in human physiology. The principles of imaging based on coincidence detection of the annihilation radiation produced in positron decay indicate that this mode of detection is uniquely suited for use in emission computed tomography. The only gamma-ray-emitting isotopes of carbon, nitrogen, and oxygen are positron emitters, which yield energies too high for conventional imaging techniques. Thus development of positron emitters in nuclear medicine imaging would make possible the use of a new class of physiologically active, positron-emitting radiopharmaceuticals. The application of these principles is described in the use of a physiologically active compound labeled with a positron emitter and positron-emission computed tomography to measure the local cerebral metabolic rate in humans. PMID:440173

  12. Proton radiography and tomography with application to proton therapy

    PubMed Central

    Allinson, N M; Evans, P M

    2015-01-01

    Proton radiography and tomography have long promised benefit for proton therapy. Their first suggestion was in the early 1960s and the first published proton radiographs and CT images appeared in the late 1960s and 1970s, respectively. More than just providing anatomical images, proton transmission imaging provides the potential for the more accurate estimation of stopping-power ratio inside a patient and hence improved treatment planning and verification. With the recent explosion in growth of clinical proton therapy facilities, the time is perhaps ripe for the imaging modality to come to the fore. Yet many technical challenges remain to be solved before proton CT scanners become commonplace in the clinic. Research and development in this field is currently more active than at any time with several prototype designs emerging. This review introduces the principles of proton radiography and tomography, their historical developments, the raft of modern prototype systems and the primary design issues. PMID:26043157

  13. Proton radiography and tomography with application to proton therapy.

    PubMed

    Poludniowski, G; Allinson, N M; Evans, P M

    2015-09-01

    Proton radiography and tomography have long promised benefit for proton therapy. Their first suggestion was in the early 1960s and the first published proton radiographs and CT images appeared in the late 1960s and 1970s, respectively. More than just providing anatomical images, proton transmission imaging provides the potential for the more accurate estimation of stopping-power ratio inside a patient and hence improved treatment planning and verification. With the recent explosion in growth of clinical proton therapy facilities, the time is perhaps ripe for the imaging modality to come to the fore. Yet many technical challenges remain to be solved before proton CT scanners become commonplace in the clinic. Research and development in this field is currently more active than at any time with several prototype designs emerging. This review introduces the principles of proton radiography and tomography, their historical developments, the raft of modern prototype systems and the primary design issues. PMID:26043157

  14. Emission tomography of the kidney

    SciTech Connect

    Teates, C.D.; Croft, B.Y.; Brenbridge, N.A.; Bray, S.T.; Williamson, B.R.

    1983-12-01

    Single photon emission computerized tomography (SPECT) was done on two patients with suspected renal masses. Nuclear scintigraphy was equivocal on two tumors readily identified by SPECT. Single photon tomography is cost effective and increases the reliability of nuclear scintigraphy.

  15. Positron Emission Tomography (PET)

    SciTech Connect

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  16. Positron Emission Tomography (PET)

    DOE R&D Accomplishments Database

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  17. Generalized local emission tomography

    DOEpatents

    Katsevich, Alexander J.

    1998-01-01

    Emission tomography enables locations and values of internal isotope density distributions to be determined from radiation emitted from the whole object. In the method for locating the values of discontinuities, the intensities of radiation emitted from either the whole object or a region of the object containing the discontinuities are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the isotope density discontinuity. The asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) is determined in a neighborhood of S, and the value for the discontinuity is estimated from the asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) knowing pointwise values of the attenuation coefficient within the object. In the method for determining the location of the discontinuity, the intensities of radiation emitted from an object are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the density discontinuity and the location .GAMMA. of the attenuation coefficient discontinuity. Pointwise values of the attenuation coefficient within the object need not be known in this case.

  18. Positron Emission Tomography.

    PubMed

    Lameka, Katherine; Farwell, Michael D; Ichise, Masanori

    2016-01-01

    Positron emission tomography (PET) is a minimally invasive imaging procedure with a wide range of clinical and research applications. PET allows for the three-dimensional mapping of administered positron-emitting radiopharmaceuticals such as (18)F-fluorodeoxyglucose (for imaging glucose metabolism). PET enables the study of biologic function in both health and disease, in contrast to magnetic resonance imaging (MRI) and computed tomography (CT), that are more suited to study a body's morphologic changes, although functional MRI can also be used to study certain brain functions by measuring blood flow changes during task performance. This chapter first provides an overview of the basic physics principles and instrumentation behind PET methodology, with an introduction to the merits of merging functional PET imaging with anatomic CT or MRI imaging. We then focus on clinical neurologic disorders, and reference research on relevant PET radiopharmaceuticals when applicable. We then provide an overview of PET scan interpretation and findings in several specific neurologic disorders such as dementias, epilepsy, movement disorders, infection, cerebrovascular disorders, and brain tumors. PMID:27432667

  19. Cardiac positron emission tomography

    SciTech Connect

    Geltman, E.M.

    1985-12-01

    Positron emission tomography (PET) is a new technique for noninvasively assessing myocardial metabolism and perfusion. It has provided new insight into the dynamics of myocardial fatty acid and glucose metabolism in normal subjects, patients with ischemic heart disease and those with cardiomyopathies, documenting regionally depressed fatty acid metabolism during myocardial ischemia and infarction and spatial heterogeneity of fatty acid metabolism in patients with cardiomyopathy. Regional myocardial perfusion has been studied with PET using water, ammonia and rubidium labeled with positron emitters, permitting the noninvasive detection of hypoperfused zones at rest and during vasodilator stress. With these techniques the relationship between perfusion and the metabolism of a variety of substrates has been studied. The great strides that have been made in developing faster high-resolution instruments and producing new labeled intermediates indicate the promise of this technique for facilitating an increase in the understanding of regional metabolism and blood flow under normal and pathophysiologic conditions. 16 references, 9 figures, 2 tables.

  20. A Detector for Proton Computed Tomography

    SciTech Connect

    Blazey, G.; et al.,

    2013-12-06

    Radiation therapy is a widely recognized treatment for cancer. Energetic protons have distinct features that set them apart from photons and make them desirable for cancer therapy as well as medical imaging. The clinical interest in heavy ion therapy is due to the fact that ions deposit almost all of their energy in a sharp peak – the Bragg peak- at the very end of their path. Proton beams can be used to precisely localize a tumor and deliver an exact dose to the tumor with small doses to the surrounding tissue. Proton computed tomography (pCT) provides direct information on the location on the target tumor, and avoids position uncertainty caused by treatment planning based on imaging with X-ray CT. The pCT project goal is to measure and reconstruct the proton relative stopping power distribution directly in situ. To ensure the full advantage of cancer treatment with 200 MeV proton beams, pCT must be realized.

  1. Sparse-view proton computed tomography using modulated proton beams

    SciTech Connect

    Lee, Jiseoc; Kim, Changhwan; Cho, Seungryong; Min, Byungjun; Kwak, Jungwon; Park, Seyjoon; Lee, Se Byeong; Park, Sungyong

    2015-02-15

    Purpose: Proton imaging that uses a modulated proton beam and an intensity detector allows a relatively fast image acquisition compared to the imaging approach based on a trajectory tracking detector. In addition, it requires a relatively simple implementation in a conventional proton therapy equipment. The model of geometric straight ray assumed in conventional computed tomography (CT) image reconstruction is however challenged by multiple-Coulomb scattering and energy straggling in the proton imaging. Radiation dose to the patient is another important issue that has to be taken care of for practical applications. In this work, the authors have investigated iterative image reconstructions after a deconvolution of the sparsely view-sampled data to address these issues in proton CT. Methods: Proton projection images were acquired using the modulated proton beams and the EBT2 film as an intensity detector. Four electron-density cylinders representing normal soft tissues and bone were used as imaged object and scanned at 40 views that are equally separated over 360°. Digitized film images were converted to water-equivalent thickness by use of an empirically derived conversion curve. For improving the image quality, a deconvolution-based image deblurring with an empirically acquired point spread function was employed. They have implemented iterative image reconstruction algorithms such as adaptive steepest descent-projection onto convex sets (ASD-POCS), superiorization method–projection onto convex sets (SM-POCS), superiorization method–expectation maximization (SM-EM), and expectation maximization-total variation minimization (EM-TV). Performance of the four image reconstruction algorithms was analyzed and compared quantitatively via contrast-to-noise ratio (CNR) and root-mean-square-error (RMSE). Results: Objects of higher electron density have been reconstructed more accurately than those of lower density objects. The bone, for example, has been reconstructed

  2. Instrumentation for positron emission tomography.

    PubMed

    Budinger, T F; Derenzo, S E; Huesman, R H

    1984-01-01

    Positron emission tomography with a spatial resolution of 2 mm full width at half maximum for quantitation in regions of interest 4 mm in diameter will become possible with the development of detectors that achieve ultrahigh resolution. Improved resolution will be possible using solid-state photodetectors for crystal identification or photomultiplier tubes with many small electron multipliers . Temporal resolution of 2 seconds and gating of cyclic events can be accomplished if statistical requirements are met. The major physical considerations in achieving high-resolution positron emission tomography are the degradation in resolution resulting from positron range, emission angle, parallax error, detector sampling density, the sensitivity of various detector materials and packing schemes, and the trade off between temporal resolution and statistical accuracy. The accuracy of data required for physiological models depends primarily on the fidelity of spatial sampling independent of statistical constraints. PMID:6611124

  3. Positron emission tomography/computed tomography.

    PubMed

    Townsend, David W

    2008-05-01

    Accurate anatomical localization of functional abnormalities obtained with the use of positron emission tomography (PET) is known to be problematic. Although tracers such as (18)F-fluorodeoxyglucose ((18)F-FDG) visualize certain normal anatomical structures, the spatial resolution is generally inadequate for accurate anatomic localization of pathology. Combining PET with a high-resolution anatomical imaging modality such as computed tomography (CT) can resolve the localization issue as long as the images from the two modalities are accurately coregistered. However, software-based registration techniques have difficulty accounting for differences in patient positioning and involuntary movement of internal organs, often necessitating labor-intensive nonlinear mapping that may not converge to a satisfactory result. Acquiring both CT and PET images in the same scanner obviates the need for software registration and routinely provides accurately aligned images of anatomy and function in a single scan. A CT scanner positioned in line with a PET scanner and with a common patient couch and operating console has provided a practical solution to anatomical and functional image registration. Axial translation of the couch between the 2 modalities enables both CT and PET data to be acquired during a single imaging session. In addition, the CT images can be used to generate essentially noiseless attenuation correction factors for the PET emission data. By minimizing patient movement between the CT and PET scans and accounting for the axial separation of the two modalities, accurately registered anatomical and functional images can be obtained. Since the introduction of the first PET/CT prototype more than 6 years ago, numerous patients with cancer have been scanned on commercial PET/CT devices worldwide. The commercial designs feature multidetector spiral CT and high-performance PET components. Experience has demonstrated an increased level of accuracy and confidence in the

  4. Instrumentation in positron emission tomography

    SciTech Connect

    Not Available

    1988-03-11

    Positron emission tomography (PET) is a three-dimensional medical imaging technique that noninvasively measures the concentration of radiopharmaceuticals in the body that are labeled with positron emitters. With the proper compounds, PET can be used to measure metabolism, blood flow, or other physiological values in vivo. The technique is based on the physics of positron annihilation and detection and the mathematical formulations developed for x-ray computed tomography. Modern PET systems can provide three-dimensional images of the brain, the heart, and other internal organs with resolutions on the order of 4 to 6 mm. With the selectivity provided by a choice of injected compounds, PET has the power to provide unique diagnostic information that is not available with any other imaging modality. This is the first five reports on the nature and uses of PET that have been prepared for the American Medical Association's Council on Scientific Affairs by an authoritative panel.

  5. Positron emission tomography and autoradiography

    SciTech Connect

    Mazziotta, J.; Schelbert, H.R.

    1985-01-01

    This a text on cerebral and myocardial imaging using positron emission tomography and autoradiography. Authorities in nuclear medicine and biophysics define the central principles of these complex and rapidly evolving imagine technologies-their theoretical foundations, the nature of the biochemical events being measured, the basis for constructing tracer kinetic models, the criteria governing radiopharmaceutical design, and the rationale for PET in the clinical setting. After reviewing the characteristics of cerebral and myocardial hemodynamics, transport, and metabolism, the contributors detail the theory of PET and autoradiography, the instrumentation required, and the procedures involved.

  6. [Fundamentals of positron emission tomography].

    PubMed

    Ostertag, H

    1989-07-01

    Positron emission tomography is a modern radionuclide method of measuring physiological quantities or metabolic parameters in vivo. The method is based on: (1) radioactive labelling with positron emitters; (2) the coincidence technique for the measurement of the annihilation radiation following positron decay; (3) analysis of the data measured using biological models. The basic aspects and problems of the method are discussed. The main fields of future research are the synthesis of new labelled compounds and the development of mathematical models of the biological processes to be investigated. PMID:2667029

  7. Compartmental Modeling in Emission Tomography

    NASA Astrophysics Data System (ADS)

    Lammertsma, Adriaan A.

    This chapter provides an overview of the basic principles of compartmental modeling as it is being applied to the quantitative analysis of positron emission tomography (PET) studies. Measurement of blood flow (perfusion) is used as an example of a single tissue compartment model and receptor studies are discussed in relation to a two tissue compartment model. Emphasis is placed on the accurate measurement of both arterial whole blood and metabolite-corrected plasma input functions. Reference tissue models are introduced as a noninvasive tool to investigate neuroreceptor studies. Finally, parametric methods are introduced in which calculations are performed at a voxel level.

  8. Single-photon emission tomography.

    PubMed

    Goffin, Karolien; van Laere, Koen

    2016-01-01

    Single-photon emission computed tomography (SPECT) is a functional nuclear imaging technique that allows visualization and quantification of different in vivo physiologic and pathologic features of brain neurobiology. It has been used for many years in diagnosis of several neurologic and psychiatric disorders. In this chapter, we discuss the current state-of-the-art of SPECT imaging of brain perfusion and dopamine transporter (DAT) imaging. Brain perfusion SPECT imaging plays an important role in the localization of the seizure onset zone in patients with refractory epilepsy. In cerebrovascular disease, it can be useful in determining the cerebrovascular reserve. After traumatic brain injury, SPECT has shown perfusion abnormalities despite normal morphology. In the context of organ donation, the diagnosis of brain death can be made with high accuracy. In neurodegeneration, while amyloid or (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) are the nuclear diagnostic tools of preference for early and differential diagnosis of dementia, perfusion SPECT imaging can be useful, albeit with slightly lower accuracy. SPECT imaging of the dopamine transporter system is widely available in Europe and Asia, but since recently also in the USA, and has been accepted as an important diagnostic tool in the early and differential diagnosis of parkinsonism in patients with unclear clinical features. The combination of perfusion SPECT (or FDG-PET) and DAT imaging provides differential diagnosis between idiopathic Parkinson's disease, Parkinson-plus syndromes, dementia with Lewy bodies, and essential tremor. PMID:27432669

  9. PRaVDA: High Energy Physics towards proton Computed Tomography

    NASA Astrophysics Data System (ADS)

    Price, T.

    2016-07-01

    Proton radiotherapy is an increasingly popular modality for treating cancers of the head and neck, and in paediatrics. To maximise the potential of proton radiotherapy it is essential to know the distribution, and more importantly the proton stopping powers, of the body tissues between the proton beam and the tumour. A stopping power map could be measured directly, and uncertainties in the treatment vastly reduce, if the patient was imaged with protons instead of conventional x-rays. Here we outline the application of technologies developed for High Energy Physics to provide clinical-quality proton Computed Tomography, in so reducing range uncertainties and enhancing the treatment of cancer.

  10. Positron emission tomography wrist detector

    DOEpatents

    Schlyer, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois

    2006-08-15

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal representing a time-of-occurrence of an annihilation event, generating an address signal representing a channel detecting the annihilation event, and generating a channel signal including the time and address signals. The method also includes generating a composite signal including the channel signal and another similarly generated channel signal concerning another annihilation event. An apparatus that serially transfers annihilation information includes a time signal generator, address signal generator, channel signal generator, and composite signal generator. The time signal is asynchronous and the address signal is synchronous to a clock signal. A PET scanner includes a scintillation array, detection array, front-end array, and a serial encoder. The serial encoders include the time signal generator, address signal generator, channel signal generator, and composite signal generator.

  11. Single photon emission computed tomography

    SciTech Connect

    Piez, C.W. Jr.; Holman, B.L.

    1985-07-01

    Single photon emission computed tomography (SPECT) is becoming an increasingly important part of routine clinical nuclear medicine. By providing tomographic reconstructions in multiple planes through the patient, SPECT expands the clinical applications in nuclear medicine as well as providing better contrast, edge definition and separation of target from background activities. Imaging techniques have been developed for the evaluation of regional cerebral blood flow using radiolabeled amines. Thus, cerebral functional imaging can be used in the diagnosis of acute cerebral infarction, cerebral vascular disease, dementia and epilepsy. SPECT plays a complementary role in the evaluation of coronary artery disease, particularly when it is coupled with thallium-201 and exercise testing. SPECT extends our diagnostic capabilities in additional areas, such as liver and bone scintigraphy as well as tumor imaging with gallium-67.

  12. -delayed proton emission branches in 43Cr

    SciTech Connect

    Pomorski, M.; Miernik, K.; Dominik, W.; Janas, Z.; Pfutzner, M.; Bingham, C. R.; Czyrkowski, H.; Cwiok, Mikolaj; Darby, Iain; Dabrowski, Ryszard; Ginter, T. N.; Grzywacz, Robert Kazimierz; Karny, M.; Korgul, A.; Kusmierz, W.; Liddick, Sean; Rajabali, M. M.; Rykaczewski, Krzysztof Piotr; Stolz, A.

    2011-01-01

    The + decay of very neutron-deficient 43Cr was studied by means of an imaging time projection chamber that allowed recording tracks of charged particles. Events of -delayed emission of one, two, and three protons were clearly identified. The absolute branching ratios for these channels were determined to be (81 4)%, (7.1 0.4)%, and (0.08 0.03)%, respectively. 43Cr is thus established as the second case in which the -3p decay occurs. Although the feeding to the proton-bound states in 43V is expected to be negligible, the large branching ratio of (12 4)% for decays without proton emission is found.

  13. Single Photon Emission Computed Tomography (SPECT)

    MedlinePlus

    ... High Blood Pressure Tools & Resources Stroke More Single Photon Emission Computed Tomography (SPECT) Updated:Sep 11,2015 ... Persantine) or dobutamine. The tests may take between 2 and 2 1/2 hours. What happens after ...

  14. Reduced Calibration Curve for Proton Computed Tomography

    NASA Astrophysics Data System (ADS)

    Yevseyeva, Olga; de Assis, Joaquim; Evseev, Ivan; Schelin, Hugo; Paschuk, Sergei; Milhoretto, Edney; Setti, João; Díaz, Katherin; Hormaza, Joel; Lopes, Ricardo

    2010-05-01

    The pCT deals with relatively thick targets like the human head or trunk. Thus, the fidelity of pCT as a tool for proton therapy planning depends on the accuracy of physical formulas used for proton interaction with thick absorbers. Although the actual overall accuracy of the proton stopping power in the Bethe-Bloch domain is about 1%, the analytical calculations and the Monte Carlo simulations with codes like TRIM/SRIM, MCNPX and GEANT4 do not agreed with each other. A tentative to validate the codes against experimental data for thick absorbers bring some difficulties: only a few data is available and the existing data sets have been acquired at different initial proton energies, and for different absorber materials. In this work we compare the results of our Monte Carlo simulations with existing experimental data in terms of reduced calibration curve, i.e. the range—energy dependence normalized on the range scale by the full projected CSDA range for given initial proton energy in a given material, taken from the NIST PSTAR database, and on the final proton energy scale—by the given initial energy of protons. This approach is almost energy and material independent. The results of our analysis are important for pCT development because the contradictions observed at arbitrary low initial proton energies could be easily scaled now to typical pCT energies.

  15. Scintillators for positron emission tomography

    SciTech Connect

    Moses, W.W.; Derenzo, S.E.

    1995-09-01

    Like most applications that utilize scintillators for gamma detection, Positron Emission Tomography (PET) desires materials with high light output, short decay time, and excellent stopping power that are also inexpensive, mechanically rugged, and chemically inert. Realizing that this ``ultimate`` scintillator may not exist, this paper evaluates the relative importance of these qualities and describes their impact on the imaging performance of PET. The most important PET scintillator quality is the ability to absorb 511 keV photons in a small volume, which affects the spatial resolution of the camera. The dominant factor is a short attenuation length ({le} 1.5 cm is required), although a high photoelectric fraction is also important (> 30% is desired). The next most important quality is a short decay time, which affects both the dead time and the coincidence timing resolution. Detection rates for single 511 keV photons can be extremely high, so decay times {le} 500 ns are essential to avoid dead time losses. In addition, positron annihilations are identified by time coincidence so {le}5 ns fwhm coincidence pair timing resolution is required to identify events with narrow coincidence windows, reducing contamination due to accidental coincidences. Current trends in PET cameras are toward septaless, ``fully-3D`` cameras, which have significantly higher count rates than conventional 2-D cameras and so place higher demands on scintillator decay time. Light output affects energy resolution, and thus the ability of the camera to identify and reject events where the initial 511 keV photon has undergone Compton scatter in the patient. The scatter to true event fraction is much higher in fully-3D cameras than in 2-D cameras, so future PET cameras would benefit from scintillators with a 511 keV energy resolution < 10--12% fwhm.

  16. Development of a proton Computed Tomography detector system

    NASA Astrophysics Data System (ADS)

    Naimuddin, Md.; Coutrakon, G.; Blazey, G.; Boi, S.; Dyshkant, A.; Erdelyi, B.; Hedin, D.; Johnson, E.; Krider, J.; Rukalin, V.; Uzunyan, S. A.; Zutshi, V.; Fordt, R.; Sellberg, G.; Rauch, J. E.; Roman, M.; Rubinov, P.; Wilson, P.

    2016-02-01

    Computer tomography is one of the most promising new methods to image abnormal tissues inside the human body. Tomography is also used to position the patient accurately before radiation therapy. Hadron therapy for treating cancer has become one of the most advantegeous and safe options. In order to fully utilize the advantages of hadron therapy, there is a necessity of performing radiography with hadrons as well. In this paper we present the development of a proton computed tomography system. Our second-generation proton tomography system consists of two upstream and two downstream trackers made up of fibers as active material and a range detector consisting of plastic scintillators. We present details of the detector system, readout electronics, and data acquisition system as well as the commissioning of the entire system. We also present preliminary results from the test beam of the range detector.

  17. A proton Computed Tomography system for medical applications

    NASA Astrophysics Data System (ADS)

    Sipala, V.; Bruzzi, M.; Bucciolini, M.; Carpinelli, M.; Cirrone, G. A. P.; Civinini, C.; Cuttone, G.; Lo Presti, D.; Pallotta, S.; Pugliatti, C.; Randazzo, N.; Romano, F.; Scaringella, M.; Stancampiano, C.; Talamonti, C.; Tesi, M.; Vanzi, E.; Zani, M.

    2013-02-01

    Proton Computed Tomography (pCT) can improve the accuracy of both patient positioning and dose calculation in proton therapy, enabling to accurately reconstruct the electron density distribution of irradiated tissues. A pCT prototype, equipped with a silicon tracker and a YAG:Ce calorimeter, has been manufactured by an Italian collaboration. First tests under proton beam allowed obtaining good quality tomographic images of a non-homogeneous phantom. Manufacturing of a new large area system with real-time data acquisition is under way.

  18. Proton computed tomography from multiple physics processes

    NASA Astrophysics Data System (ADS)

    Bopp, C.; Colin, J.; Cussol, D.; Finck, Ch; Labalme, M.; Rousseau, M.; Brasse, D.

    2013-10-01

    Proton CT (pCT) nowadays aims at improving hadron therapy treatment planning by mapping the relative stopping power (RSP) of materials with respect to water. The RSP depends mainly on the electron density of the materials. The main information used is the energy of the protons. However, during a pCT acquisition, the spatial and angular deviation of each particle is recorded and the information about its transmission is implicitly available. The potential use of those observables in order to get information about the materials is being investigated. Monte Carlo simulations of protons sent into homogeneous materials were performed, and the influence of the chemical composition on the outputs was studied. A pCT acquisition of a head phantom scan was simulated. Brain lesions with the same electron density but different concentrations of oxygen were used to evaluate the different observables. Tomographic images from the different physics processes were reconstructed using a filtered back-projection algorithm. Preliminary results indicate that information is present in the reconstructed images of transmission and angular deviation that may help differentiate tissues. However, the statistical uncertainty on these observables generates further challenge in order to obtain an optimal reconstruction and extract the most pertinent information.

  19. Proton computed tomography from multiple physics processes.

    PubMed

    Bopp, C; Colin, J; Cussol, D; Finck, Ch; Labalme, M; Rousseau, M; Brasse, D

    2013-10-21

    Proton CT (pCT) nowadays aims at improving hadron therapy treatment planning by mapping the relative stopping power (RSP) of materials with respect to water. The RSP depends mainly on the electron density of the materials. The main information used is the energy of the protons. However, during a pCT acquisition, the spatial and angular deviation of each particle is recorded and the information about its transmission is implicitly available. The potential use of those observables in order to get information about the materials is being investigated. Monte Carlo simulations of protons sent into homogeneous materials were performed, and the influence of the chemical composition on the outputs was studied. A pCT acquisition of a head phantom scan was simulated. Brain lesions with the same electron density but different concentrations of oxygen were used to evaluate the different observables. Tomographic images from the different physics processes were reconstructed using a filtered back-projection algorithm. Preliminary results indicate that information is present in the reconstructed images of transmission and angular deviation that may help differentiate tissues. However, the statistical uncertainty on these observables generates further challenge in order to obtain an optimal reconstruction and extract the most pertinent information. PMID:24076769

  20. Deformable template models for emission tomography

    SciTech Connect

    Amit, Y. . Dept. of Statistics); Manbeck, K.M. . Div. of Applied Mathematics)

    1993-06-01

    The reconstruction of emission tomography data is an ill-posed inverse problem and, as such, requires some form of regularization. Previous efforts to regularize the restoration process have incorporated rather general assumptions about the isotope distribution within a patient's body. Here, the authors present a theoretical and algorithmic framework in which the notion of a deformable template can be used to identify and quantify brain tumors in pediatric patients. Patient data and computer simulation experiments are presented which illustrate the performance of the deformable template approach to single photon emission computed tomography (SPECT).

  1. Advanced Instrumentation for Positron Emission Tomography [PET

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.

  2. 4D image reconstruction for emission tomography

    NASA Astrophysics Data System (ADS)

    Reader, Andrew J.; Verhaeghe, Jeroen

    2014-11-01

    An overview of the theory of 4D image reconstruction for emission tomography is given along with a review of the current state of the art, covering both positron emission tomography and single photon emission computed tomography (SPECT). By viewing 4D image reconstruction as a matter of either linear or non-linear parameter estimation for a set of spatiotemporal functions chosen to approximately represent the radiotracer distribution, the areas of so-called ‘fully 4D’ image reconstruction and ‘direct kinetic parameter estimation’ are unified within a common framework. Many choices of linear and non-linear parameterization of these functions are considered (including the important case where the parameters have direct biological meaning), along with a review of the algorithms which are able to estimate these often non-linear parameters from emission tomography data. The other crucial components to image reconstruction (the objective function, the system model and the raw data format) are also covered, but in less detail due to the relatively straightforward extension from their corresponding components in conventional 3D image reconstruction. The key unifying concept is that maximum likelihood or maximum a posteriori (MAP) estimation of either linear or non-linear model parameters can be achieved in image space after carrying out a conventional expectation maximization (EM) update of the dynamic image series, using a Kullback-Leibler distance metric (comparing the modeled image values with the EM image values), to optimize the desired parameters. For MAP, an image-space penalty for regularization purposes is required. The benefits of 4D and direct reconstruction reported in the literature are reviewed, and furthermore demonstrated with simple simulation examples. It is clear that the future of reconstructing dynamic or functional emission tomography images, which often exhibit high levels of spatially correlated noise, should ideally exploit these 4D

  3. Proton emission from a laser ion source

    SciTech Connect

    Torrisi, L.; Cavallaro, S.; Gammino, S.; Cutroneo, M.; Margarone, D.

    2012-02-15

    At intensities of the order of 10{sup 10} W/cm{sup 2}, ns pulsed lasers can be employed to ablate solid bulk targets in order to produce high emission of ions at different charge state and kinetic energy. A special interest is devoted to the production of protons with controllable energy and current from a roto-translating target irradiated in repetition rate at 1-10 Hz by a Nd:Yag pulsed laser beam. Different hydrogenated targets based on polymers and hydrates were irradiated in high vacuum. Special nanostrucutres can be embedded in the polymers in order to modify the laser absorption properties and the amount of protons to be accelerated in the plasma. For example, carbon nanotubes may increase the laser absorption and the hydrogen absorption to generate high proton yields from the plasma. Metallic nanostrucutres may increase the electron density of the plasma and the kinetic energy of the accelerated protons. Ion collectors, ion energy analyzer, and mass spectrometers, used in time-of-flight configuration, were employed to characterize the ion beam properties. A comparison with traditional proton ion source is presented and discussed.

  4. Positron emission tomography - a new approach to brain chemistry

    SciTech Connect

    Jacobson, H.G.

    1988-11-11

    Positron emission tomography permits examination of the chemistry of the brain in living beings. Until recently, positron emission tomography had been considered a research tool, but it is rapidly moving into clinical practice. This report describes the uses and applications of positron emission tomography in examinations of patients with strokes, epilepsy, malignancies, dementias, and schizophrenia and in basic studies of synaptic neurotransmission.

  5. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Emission computed tomography system. 892.1200... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1200 Emission computed tomography system. (a) Identification. An emission computed tomography system is a device intended to detect...

  6. Improved proton computed tomography by dual modality image reconstruction

    SciTech Connect

    Hansen, David C. Bassler, Niels; Petersen, Jørgen Breede Baltzer; Sørensen, Thomas Sangild

    2014-03-15

    Purpose: Proton computed tomography (CT) is a promising image modality for improving the stopping power estimates and dose calculations for particle therapy. However, the finite range of about 33 cm of water of most commercial proton therapy systems limits the sites that can be scanned from a full 360° rotation. In this paper the authors propose a method to overcome the problem using a dual modality reconstruction (DMR) combining the proton data with a cone-beam x-ray prior. Methods: A Catphan 600 phantom was scanned using a cone beam x-ray CT scanner. A digital replica of the phantom was created in the Monte Carlo code Geant4 and a 360° proton CT scan was simulated, storing the entrance and exit position and momentum vector of every proton. Proton CT images were reconstructed using a varying number of angles from the scan. The proton CT images were reconstructed using a constrained nonlinear conjugate gradient algorithm, minimizing total variation and the x-ray CT prior while remaining consistent with the proton projection data. The proton histories were reconstructed along curved cubic-spline paths. Results: The spatial resolution of the cone beam CT prior was retained for the fully sampled case and the 90° interval case, with the MTF = 0.5 (modulation transfer function) ranging from 5.22 to 5.65 linepairs/cm. In the 45° interval case, the MTF = 0.5 dropped to 3.91 linepairs/cm For the fully sampled DMR, the maximal root mean square (RMS) error was 0.006 in units of relative stopping power. For the limited angle cases the maximal RMS error was 0.18, an almost five-fold improvement over the cone beam CT estimate. Conclusions: Dual modality reconstruction yields the high spatial resolution of cone beam x-ray CT while maintaining the improved stopping power estimation of proton CT. In the case of limited angles, the use of prior image proton CT greatly improves the resolution and stopping power estimate, but does not fully achieve the quality of a 360

  7. Positron emission tomography tracers for imaging angiogenesis

    PubMed Central

    Beer, Ambros J.; Wang, Hui; Chen, Xiaoyuan

    2013-01-01

    Position emission tomography imaging of angiogenesis may provide non-invasive insights into the corresponding molecular processes and may be applied for individualized treatment planning of antiangiogenic therapies. At the moment, most strategies are focusing on the development of radiolabelled proteins and antibody formats targeting VEGF and its receptor or the ED-B domain of a fibronectin isoform as well as radiolabelled matrix metalloproteinase inhibitors or αvβ3 integrin antagonists. Great efforts are being made to develop suitable tracers for different target structures. All of the major strategies focusing on the development of radiolabelled compounds for use with positron emission tomography are summarized in this review. However, because the most intensive work is concentrated on the development of radiolabelled RGD peptides for imaging αvβ3 expression, which has successfully made its way from bench to bedside, these developments are especially emphasized. PMID:20559632

  8. A wavelet phase filter for emission tomography

    SciTech Connect

    Olsen, E.T.; Lin, B.

    1995-07-01

    The presence of a high level of noise is a characteristic in some tomographic imaging techniques such as positron emission tomography (PET). Wavelet methods can smooth out noise while preserving significant features of images. Mallat et al. proposed a wavelet based denoising scheme exploiting wavelet modulus maxima, but the scheme is sensitive to noise. In this study, the authors explore the properties of wavelet phase, with a focus on reconstruction of emission tomography images. Specifically, they show that the wavelet phase of regular Poisson noise under a Haar-type wavelet transform converges in distribution to a random variable uniformly distributed on [0, 2{pi}). They then propose three wavelet-phase-based denoising schemes which exploit this property: edge tracking, local phase variance thresholding, and scale phase variation thresholding. Some numerical results are also presented. The numerical experiments indicate that wavelet phase techniques show promise for wavelet based denoising methods.

  9. Tracker Readout ASIC for Proton Computed Tomography Data Acquisition

    PubMed Central

    Johnson, Robert P.; DeWitt, Joel; Holcomb, Cole; Macafee, Scott; Sadrozinski, Hartmut F.-W.; Steinberg, David

    2014-01-01

    A unique CMOS chip has been designed to serve as the front-end of the tracking detector data acquisition system of a pre-clinical prototype scanner for proton computed tomography (pCT). The scanner is to be capable of measuring one to two million proton tracks per second, so the chip must be able to digitize the data and send it out rapidly while keeping the front-end amplifiers active at all times. One chip handles 64 consecutive channels, including logic for control, calibration, triggering, buffering, and zero suppression. It outputs a formatted cluster list for each trigger, and a set of field programmable gate arrays merges those lists from many chips to build the events to be sent to the data acquisition computer. The chip design has been fabricated, and subsequent tests have demonstrated that it meets all of its performance requirements, including excellent low-noise performance. PMID:24653525

  10. Tracker Readout ASIC for Proton Computed Tomography Data Acquisition.

    PubMed

    Johnson, Robert P; Dewitt, Joel; Holcomb, Cole; Macafee, Scott; Sadrozinski, Hartmut F-W; Steinberg, David

    2013-10-01

    A unique CMOS chip has been designed to serve as the front-end of the tracking detector data acquisition system of a pre-clinical prototype scanner for proton computed tomography (pCT). The scanner is to be capable of measuring one to two million proton tracks per second, so the chip must be able to digitize the data and send it out rapidly while keeping the front-end amplifiers active at all times. One chip handles 64 consecutive channels, including logic for control, calibration, triggering, buffering, and zero suppression. It outputs a formatted cluster list for each trigger, and a set of field programmable gate arrays merges those lists from many chips to build the events to be sent to the data acquisition computer. The chip design has been fabricated, and subsequent tests have demonstrated that it meets all of its performance requirements, including excellent low-noise performance. PMID:24653525

  11. Development of novel emission tomography system

    NASA Astrophysics Data System (ADS)

    Fu, Geng

    In recent years, small animals, such as mice and rats, have been widely used as subjects of study in biomedical research while molecular biology and imaging techniques open new opportunities to investigate disease model. With the help of medical imaging techniques, researchers can investigate underlying mechanisms inside the small animal, which are useful for both early diagnosis and treatment monitoring. Based on tracer principle single photon emission computed tomography (SPECT) has increased popularity in small animal imaging due to its higher spatial resolution and variety of single-photon emitting radionuclides. Since the image quality strongly depends on the detector properties, both scintillation and semiconductor detectors are under active investigation for high resolution X-ray and gamma ray photon detection. The desired detector properties include high intrinsic spatial resolution, high energy resolution, and high detection efficiency. In this thesis study, we have made extensive efforts to develop novel emission tomography system, and evaluate the use of both semiconductor and ultra-high resolution scintillation detectors for small animal imaging. This thesis work includes the following three areas. Firstly, we have developed a novel energy-resolved photon counting (ERPC) detector. With the benefits of high energy resolution, high spatial resolution, flexible detection area, and a wide dynamic range of 27--200keV, ERPC detector is well-suited for small animal SPECT applications. For prototype ERPC detector excellent imaging (˜350microm) and spectroscopic performance (4keV Co-57 122keV) has been demonstrated in preliminary study. Secondly, to further improve spatial resolution to hundred-micron level, an ultra-high resolution Intensified EMCCD (I-EMCCD) detector has been designed and evaluated. This detector consists of the newly developed electron multiplying CCD (EMCCD) sensor, columnar CsI(Tl) scintillator, and an electrostatic de-magnifier (DM) tube

  12. Single photon emission computed tomography-guided Cerenkov luminescence tomography

    NASA Astrophysics Data System (ADS)

    Hu, Zhenhua; Chen, Xueli; Liang, Jimin; Qu, Xiaochao; Chen, Duofang; Yang, Weidong; Wang, Jing; Cao, Feng; Tian, Jie

    2012-07-01

    Cerenkov luminescence tomography (CLT) has become a valuable tool for preclinical imaging because of its ability of reconstructing the three-dimensional distribution and activity of the radiopharmaceuticals. However, it is still far from a mature technology and suffers from relatively low spatial resolution due to the ill-posed inverse problem for the tomographic reconstruction. In this paper, we presented a single photon emission computed tomography (SPECT)-guided reconstruction method for CLT, in which a priori information of the permissible source region (PSR) from SPECT imaging results was incorporated to effectively reduce the ill-posedness of the inverse reconstruction problem. The performance of the method was first validated with the experimental reconstruction of an adult athymic nude mouse implanted with a Na131I radioactive source and an adult athymic nude mouse received an intravenous tail injection of Na131I. A tissue-mimic phantom based experiment was then conducted to illustrate the ability of the proposed method in resolving double sources. Compared with the traditional PSR strategy in which the PSR was determined by the surface flux distribution, the proposed method obtained much more accurate and encouraging localization and resolution results. Preliminary results showed that the proposed SPECT-guided reconstruction method was insensitive to the regularization methods and ignored the heterogeneity of tissues which can avoid the segmentation procedure of the organs.

  13. Single-photon emission computed tomography (SPECT): Applications and potential

    SciTech Connect

    Holman, B.L.; Tumeh, S.S. )

    1990-01-26

    Single-photon emission computed tomography has received increasing attention as radiopharmaceuticals that reflect perfusion, metabolism, and receptor and cellular function have become widely available. Perfusion single-photon emission computed tomography of the brain provides functional information useful for the diagnosis and management of stroke, dementia, and epilepsy. Single-photon emission computed tomography has been applied to myocardial, skeletal, hepatic, and tumor scintigraphy, resulting in increased diagnostic accuracy over planar imaging because background activity and overlapping tissues interfere far less with activity from the target structure when tomographic techniques are used. Single-photon emission computed tomography is substantially less expensive and far more accessible than positron emission tomography and will become an increasingly attractive alternative for transferring the positron emission tomography technology to routine clinical use.

  14. Positron emission tomography imaging of coronary atherosclerosis.

    PubMed

    Moss, Alastair J; Adamson, Philip D; Newby, David E; Dweck, Marc R

    2016-07-01

    Inflammation has a central role in the progression of coronary atherosclerosis. Recent developments in cardiovascular imaging with the advent of hybrid positron emission tomography have provided a window into the molecular pathophysiology underlying coronary plaque inflammation. Using novel radiotracers targeted at specific cellular pathways, the potential exists to observe inflammation, apoptosis, cellular hypoxia, microcalcification and angiogenesis in vivo. Several clinical studies are now underway assessing the ability of this hybrid imaging modality to inform about atherosclerotic disease activity and the prediction of future cardiovascular risk. A better understanding of the molecular mechanisms governing coronary atherosclerosis may be the first step toward offering patients a more stratified, personalized approach to treatment. PMID:27322032

  15. Positron Emission Tomography: Its 65 years

    NASA Astrophysics Data System (ADS)

    Del Guerra, A.; Belcari, N.; Bisogni, M.

    2016-04-01

    Positron Emission Tomography (PET) is a well-established imaging technique for in vivo molecular imaging. In this review after a brief history of PET there are presented its physical principles and the technology that has been developed for bringing PET from a bench experiment to a clinical indispensable instrument. The limitations and performance of the PET tomographs are discussed, both as for the hardware and software aspects. The status of art of clinical, pre-clinical and hybrid scanners (, PET/CT and PET/MR) is reported. Finally the actual trend and the recent and future technological developments are fully illustrated.

  16. Neurologic applications of positron emission tomography.

    PubMed

    Lenzi, G L; Pantano, P

    1984-11-01

    The impact of computerized neuroimaging in the neurologic sciences has been so dramatic that it has completely changed our approach to the individual patient. Further changes may be expected from the newborn positron emission tomography (PET) and nuclear magnetic resonance (NMR) in order to help the reader digest a large bulk of data and fully realize the present state of the art of PET, the authors have shaped this review mainly on results rather than on methods and on published reports rather than on future potential. PMID:6335222

  17. The Effect of Tissue Inhomogeneities on the Accuracy of Proton Path Reconstruction for Proton Computed Tomography

    NASA Astrophysics Data System (ADS)

    Wong, Kent; Erdelyi, Bela; Schulte, Reinhard; Bashkirov, Vladimir; Coutrakon, George; Sadrozinski, Hartmut; Penfold, Scott; Rosenfeld, Anatoly

    2009-03-01

    Maintaining a high degree of spatial resolution in proton computed tomography (pCT) is a challenge due to the statistical nature of the proton path through the object. Recent work has focused on the formulation of the most likely path (MLP) of protons through a homogeneous water object and the accuracy of this approach has been tested experimentally with a homogeneous PMMA phantom. Inhomogeneities inside the phantom, consisting of, for example, air and bone will lead to unavoidable inaccuracies of this approach. The purpose of this ongoing work is to characterize systematic errors that are introduced by regions of bone and air density and how this affects the accuracy of proton CT in surrounding voxels both in terms of spatial and density reconstruction accuracy. Phantoms containing tissue-equivalent inhomogeneities have been designed and proton transport through them has been simulated with the GEANT 4.9.0 Monte Carlo tool kit. Various iterative reconstruction techniques, including the classical fully sequential algebraic reconstruction technique (ART) and block-iterative techniques, are currently being tested, and we will select the most accurate method for this study.

  18. Reconstruction for proton computed tomography by tracing proton trajectories – A Monte Carlo study

    PubMed Central

    Li, Tianfang; Liang, Zhengrong; Singanallur, Jayalakshmi V.; Satogata, Todd J.; Williams, David C.; Schulte, Reinhard W.

    2006-01-01

    Proton computed tomography (pCT) has been explored in the past decades because of its unique imaging characteristics, low radiation dose, and its possible use for treatment planning and on-line target localization in proton therapy. However, reconstruction of pCT images is challenging because the proton path within the object to be imaged is statistically affected by multiple Coulomb scattering. In this paper, we employ GEANT4-based Monte Carlo simulations of the two-dimensional pCT reconstruction of an elliptical phantom to investigate the possible use of the Algebraic Reconstruction Technique (ART) with three different path-estimation methods for pCT reconstruction. The first method assumes a straight-line path (SLP) connecting the proton entry and exit positions, the second method adapts the most-likely path (MLP) theoretically determined for a uniform medium, and the third method employs a cubic spline path (CSP). The ART reconstructions showed progressive improvement of spatial resolution when going from the SLP (2 line pairs (lp) cm-1) to the curved CSP and MLP path estimates (5 lp cm-1). The MLP-based ART algorithm had the fastest convergence and smallest residual error of all three estimates. This work demonstrates the advantage of tracking curved proton paths in conjunction with the ART algorithm and curved path estimates. PMID:16878573

  19. Reconstruction for proton computed tomography by tracing proton trajectories: A Monte Carlo study

    SciTech Connect

    Li Tianfang; Liang Zhengrong; Singanallur, Jayalakshmi V.; Satogata, Todd J.; Williams, David C.; Schulte, Reinhard W.

    2006-03-15

    Proton computed tomography (pCT) has been explored in the past decades because of its unique imaging characteristics, low radiation dose, and its possible use for treatment planning and on-line target localization in proton therapy. However, reconstruction of pCT images is challenging because the proton path within the object to be imaged is statistically affected by multiple Coulomb scattering. In this paper, we employ GEANT4-based Monte Carlo simulations of the two-dimensional pCT reconstruction of an elliptical phantom to investigate the possible use of the algebraic reconstruction technique (ART) with three different path-estimation methods for pCT reconstruction. The first method assumes a straight-line path (SLP) connecting the proton entry and exit positions, the second method adapts the most-likely path (MLP) theoretically determined for a uniform medium, and the third method employs a cubic spline path (CSP). The ART reconstructions showed progressive improvement of spatial resolution when going from the SLP [2 line pairs (lp) cm{sup -1}] to the curved CSP and MLP path estimates (5 lp cm{sup -1}). The MLP-based ART algorithm had the fastest convergence and smallest residual error of all three estimates. This work demonstrates the advantage of tracking curved proton paths in conjunction with the ART algorithm and curved path estimates.

  20. The Effect of Tissue Inhomogeneities on the Accuracy of Proton Path Reconstruction for Proton Computed Tomography

    SciTech Connect

    Wong, Kent; Erdelyi, Bela; Schulte, Reinhard; Bashkirov, Vladimir; Coutrakon, George; Sadrozinski, Hartmut; Penfold, Scott; Rosenfeld, Anatoly

    2009-03-10

    Maintaining a high degree of spatial resolution in proton computed tomography (pCT) is a challenge due to the statistical nature of the proton path through the object. Recent work has focused on the formulation of the most likely path (MLP) of protons through a homogeneous water object and the accuracy of this approach has been tested experimentally with a homogeneous PMMA phantom. Inhomogeneities inside the phantom, consisting of, for example, air and bone will lead to unavoidable inaccuracies of this approach. The purpose of this ongoing work is to characterize systematic errors that are introduced by regions of bone and air density and how this affects the accuracy of proton CT in surrounding voxels both in terms of spatial and density reconstruction accuracy. Phantoms containing tissue-equivalent inhomogeneities have been designed and proton transport through them has been simulated with the GEANT 4.9.0 Monte Carlo tool kit. Various iterative reconstruction techniques, including the classical fully sequential algebraic reconstruction technique (ART) and block-iterative techniques, are currently being tested, and we will select the most accurate method for this study.

  1. A pencil beam approach to proton computed tomography

    SciTech Connect

    Rescigno, Regina Bopp, Cécile; Rousseau, Marc; Brasse, David

    2015-11-15

    Purpose: A new approach to proton computed tomography (pCT) is presented. In this approach, protons are not tracked one-by-one but a beam of particles is considered instead. The elements of the pCT reconstruction problem (residual energy and path) are redefined on the basis of this new approach. An analytical image reconstruction algorithm applicable to this scenario is also proposed. Methods: The pencil beam (PB) and its propagation in matter were modeled by making use of the generalization of the Fermi–Eyges theory to account for multiple Coulomb scattering (MCS). This model was integrated into the pCT reconstruction problem, allowing the definition of the mean beam path concept similar to the most likely path (MLP) used in the single-particle approach. A numerical validation of the model was performed. The algorithm of filtered backprojection along MLPs was adapted to the beam-by-beam approach. The acquisition of a perfect proton scan was simulated and the data were used to reconstruct images of the relative stopping power of the phantom with the single-proton and beam-by-beam approaches. The resulting images were compared in a qualitative way. Results: The parameters of the modeled PB (mean and spread) were compared to Monte Carlo results in order to validate the model. For a water target, good agreement was found for the mean value of the distributions. As far as the spread is concerned, depth-dependent discrepancies as large as 2%–3% were found. For a heterogeneous phantom, discrepancies in the distribution spread ranged from 6% to 8%. The image reconstructed with the beam-by-beam approach showed a high level of noise compared to the one reconstructed with the classical approach. Conclusions: The PB approach to proton imaging may allow technical challenges imposed by the current proton-by-proton method to be overcome. In this framework, an analytical algorithm is proposed. Further work will involve a detailed study of the performances and limitations of

  2. Estimation of linear functionals in emission tomography

    SciTech Connect

    Kuruc, A.

    1995-08-01

    In emission tomography, the spatial distribution of a radioactive tracer is estimated from a finite sample of externally-detected photons. We present an algorithm-independent theory of statistical accuracy attainable in emission tomography that makes minimal assumptions about the underlying image. Let f denote the tracer density as a function of position (i.e., f is the image being estimated). We consider the problem of estimating the linear functional {Phi}(f) {triple_bond} {integral}{phi}(x)f(x) dx, where {phi} is a smooth function, from n independent observations identically distributed according to the Radon transform of f. Assuming only that f is bounded above and below away from 0, we construct statistically efficient estimators for {Phi}(f). By definition, the variance of the efficient estimator is a best-possible lower bound (depending on and f) on the variance of unbiased estimators of {Phi}(f). Our results show that, in general, the efficient estimator will have a smaller variance than the standard estimator based on the filtered-backprojection reconstruction algorithm. The improvement in performance is obtained by exploiting the range properties of the Radon transform.

  3. Fan Beam Emission Tomography for Laminar Fires

    NASA Technical Reports Server (NTRS)

    Sivathanu, Yudaya; Lim, Jongmook; Feikema, Douglas

    2003-01-01

    Obtaining information on the instantaneous structure of turbulent and transient flames is important in a wide variety of applications such as fire safety, pollution reduction, flame spread studies, and model validation. Durao et al. has reviewed the different methods of obtaining structure information in reacting flows. These include Tunable Laser Absorption Spectroscopy, Fourier Transform Infrared Spectroscopy, and Emission Spectroscopy to mention a few. Most flames emit significant radiation signatures that are used in various applications such as fire detection, light-off detection, flame diagnostics, etc. Radiation signatures can be utilized to maximum advantage for determining structural information in turbulent flows. Emission spectroscopy is most advantageous in the infrared regions of the spectra, principally because these emission lines arise from transitions in the fundamental bands of stable species such as CO2 and H2O. Based on the above, the objective of this work was to develop a fan beam emission tomography system to obtain the local scalar properties such as temperature and mole fractions of major gas species from path integrated multi-wavelength infrared radiation measurements.

  4. [Basic principles of 18F-fluorodeoxyglucose positron emission tomography].

    PubMed

    Standke, R

    2002-01-01

    Positron emission tomography uses photons to receive regional information about dynamic, physiologic, and biochemical processes in the living body. A positron decay is measured indirectly by the simultaneous registration of both gamma rays created by the annihilation. The event is counted, if two directly opposite located detectors register gamma rays in coincidence. Unfortunately the detectors of a positron emission tomography system do not register only true coincident events. There are also scattered and random coincidences. Different types of positron tomographs are presented and scintillation crystals, which are in use for positron emission tomography are discussed. The 2D- and 3D-acquisition methods are described as well as preprocessing methods, such as correction for attenuation, scatter and dead time. For quantification the relative parameter standard uptake value (SUV) is explained. Finally hybrid systems, such as combined positron emission tomography/computed tomography scanners and the use of computed tomography data for attenuation correction are introduced. PMID:12506765

  5. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1200 Emission computed tomography system. (a) Identification. An...

  6. Compact conscious animal positron emission tomography scanner

    DOEpatents

    Schyler, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois; Volkow, Nora

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  7. Imaging Tumor Metabolism Using Positron Emission Tomography

    PubMed Central

    Lewis, David Y.; Soloviev, Dmitry; Brindle, Kevin M.

    2015-01-01

    Positron emission tomography (PET) is an extraordinarily sensitive clinical imaging modality for interrogating tumor metabolism. Radiolabelled PET substrates can be traced at sub-physiological concentrations, allowing non-invasive imaging of metabolism and intra-tumoral heterogeneity in systems ranging from advanced cancer models to cancer patients in the clinic. There are a wide range of novel and more established PET radiotracers, which can be used to investigate various aspects of tumor metabolism, including carbohydrate, amino acid and fatty acid metabolism. In this review we will briefly discuss the more established metabolic tracers and describe recent work on the development of new tracers. Some of the unanswered questions in tumor metabolism will be considered alongside new technical developments, such as combined PET/MRI machines, that could provide new imaging solutions to some of the outstanding diagnostic challenges facing modern cancer medicine. PMID:25815854

  8. Positron Emission Tomography of the Heart

    DOE R&D Accomplishments Database

    Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.

    1979-01-01

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease.

  9. Imaging tumor metabolism using positron emission tomography.

    PubMed

    Lewis, David Y; Soloviev, Dmitry; Brindle, Kevin M

    2015-01-01

    Positron emission tomography (PET) is an extraordinarily sensitive clinical imaging modality for interrogating tumor metabolism. Radiolabeled PET substrates can be traced at subphysiological concentrations, allowing noninvasive imaging of metabolism and intratumoral heterogeneity in systems ranging from advanced cancer models to patients in the clinic. There are a wide range of novel and more established PET radiotracers, which can be used to investigate various aspects of the tumor, including carbohydrate, amino acid, and fatty acid metabolism. In this review, we briefly discuss the more established metabolic tracers and describe recent work on the development of new tracers. Some of the unanswered questions in tumor metabolism are considered alongside new technical developments, such as combined PET/magnetic resonance imaging scanners, which could provide new imaging solutions to some of the outstanding diagnostic challenges facing modern cancer medicine. PMID:25815854

  10. Bayesian image reconstruction: Application to emission tomography

    SciTech Connect

    Nunez, J.; Llacer, J.

    1989-02-01

    In this paper we propose a Maximum a Posteriori (MAP) method of image reconstruction in the Bayesian framework for the Poisson noise case. We use entropy to define the prior probability and likelihood to define the conditional probability. The method uses sharpness parameters which can be theoretically computed or adjusted, allowing us to obtain MAP reconstructions without the problem of the grey'' reconstructions associated with the pre Bayesian reconstructions. We have developed several ways to solve the reconstruction problem and propose a new iterative algorithm which is stable, maintains positivity and converges to feasible images faster than the Maximum Likelihood Estimate method. We have successfully applied the new method to the case of Emission Tomography, both with simulated and real data. 41 refs., 4 figs., 1 tab.

  11. Positron emission tomography and radiation oncology

    NASA Astrophysics Data System (ADS)

    Fullerton, PhD, Gary D.; Fox, MD, Peter; Phillips, MD, William T.

    2001-10-01

    Medical physics research is providing new avenues for addressing the fundamental problem of radiation therapy-how to provide a tumor-killing dose while reducing the dose to a non-lethal level for critical organs in adjacent portions of the patient anatomy. This talk reviews the revolutionary impact of Positron Emission Tomography on the practice of radiation oncology. The concepts of PET imaging and the development of "tumor" imaging methods using 18F-DG flouro-deoxyglucose are presented to provide the foundation for contemporary research and application to therapy. PET imaging influences radiation therapy decisions in multiple ways. Imaging of occult but viable tumor metastases eliminates misguided therapy attempts. The ability to distinguish viable tumor from scar tissue and necroses allows reduction of treatment portals and more selective treatments. Much research remains before the clinical benefits of these advances are fully realized.

  12. Positron Emission Tomography with improved spatial resolution

    SciTech Connect

    Drukier, A.K.

    1990-04-01

    Applied Research Corporation (ARC) proposed the development of a new class of solid state detectors called Superconducting Granular Detectors (SGD). These new detectors permit considerable improvements in medical imaging, e.g. Positron Emission Tomography (PET). The biggest impact of this technique will be in imaging of the brain. It should permit better clinical diagnosis of such important diseases as Altzheimer's or schizophrenia. More specifically, we will develop an improved PET-imager; a spatial resolution 2 mm may be achievable with SGD. A time-of-flight capability(t {approx} 100 psec) will permit better contrast and facilitate 3D imaging. In the following, we describe the results of the first 9 months of the development.

  13. Tumor Quantification in Clinical Positron Emission Tomography

    PubMed Central

    Bai, Bing; Bading, James; Conti, Peter S

    2013-01-01

    Positron emission tomography (PET) is used extensively in clinical oncology for tumor detection, staging and therapy response assessment. Quantitative measurements of tumor uptake, usually in the form of standardized uptake values (SUVs), have enhanced or replaced qualitative interpretation. In this paper we review the current status of tumor quantification methods and their applications to clinical oncology. Factors that impede quantitative assessment and limit its accuracy and reproducibility are summarized, with special emphasis on SUV analysis. We describe current efforts to improve the accuracy of tumor uptake measurements, characterize overall metabolic tumor burden and heterogeneity of tumor uptake, and account for the effects of image noise. We also summarize recent developments in PET instrumentation and image reconstruction and their impact on tumor quantification. Finally, we offer our assessment of the current development needs in PET tumor quantification, including practical techniques for fully quantitative, pharmacokinetic measurements. PMID:24312151

  14. Imaging tumour hypoxia with positron emission tomography

    PubMed Central

    Fleming, I N; Manavaki, R; Blower, P J; West, C; Williams, K J; Harris, A L; Domarkas, J; Lord, S; Baldry, C; Gilbert, F J

    2015-01-01

    Hypoxia, a hallmark of most solid tumours, is a negative prognostic factor due to its association with an aggressive tumour phenotype and therapeutic resistance. Given its prominent role in oncology, accurate detection of hypoxia is important, as it impacts on prognosis and could influence treatment planning. A variety of approaches have been explored over the years for detecting and monitoring changes in hypoxia in tumours, including biological markers and noninvasive imaging techniques. Positron emission tomography (PET) is the preferred method for imaging tumour hypoxia due to its high specificity and sensitivity to probe physiological processes in vivo, as well as the ability to provide information about intracellular oxygenation levels. This review provides an overview of imaging hypoxia with PET, with an emphasis on the advantages and limitations of the currently available hypoxia radiotracers. PMID:25514380

  15. Calorimetry in Medical Applications: Single-Photon Emission Computed Tomography and Positron Emission Tomography

    SciTech Connect

    Chen, C.-T.

    2006-10-27

    Positron emission tomography (PET) and single-photon emission computed tomography (SPECT), two nuclear medicine imaging modalities broadly used in clinics and research, share many common instrumentation, detector, and electronics technology platforms with calorimetry in high-energy physics, astronomy, and other physics sciences. Historically, advances made in calorimetry had played major roles in the development of novel approaches and critical technologies essential to the evolution of PET and SPECT. There have also been examples in which PET/SPECT developments had led to new techniques in calorimetry for other application areas. In recent years, several innovations have propelled advances in both calorimetry in general and PET/SPECT in particular. Examples include time-of-flight (TOF) measurements, silicon photomultipliers (SiPMs), etc.

  16. Positron Emission Tomography/Magnetic Resonance Imaging of Gastrointestinal Cancers.

    PubMed

    Goh, Vicky; Prezzi, Davide; Mallia, Andrew; Bashir, Usman; Stirling, J James; John, Joemon; Charles-Edwards, Geoff; MacKewn, Jane; Cook, Gary

    2016-08-01

    As an integrated system, hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) is able to provide simultaneously complementary high-resolution anatomic, molecular, and functional information, allowing comprehensive cancer phenotyping in a single imaging examination. In addition to an improved patient experience by combining 2 separate imaging examinations and streamlining the patient pathway, the superior soft tissue contrast resolution of MRI and the ability to acquire multiparametric MRI data is advantageous over computed tomography. For gastrointestinal cancers, this would improve tumor staging, assessment of neoadjuvant response, and of the likelihood of a complete (R0) resection in comparison with positron emission tomography or computed tomography. PMID:27342899

  17. Total variation superiorization schemes in proton computed tomography image reconstruction

    PubMed Central

    Penfold, S. N.; Schulte, R. W.; Censor, Y.; Rosenfeld, A. B.

    2010-01-01

    Purpose: Iterative projection reconstruction algorithms are currently the preferred reconstruction method in proton computed tomography (pCT). However, due to inconsistencies in the measured data arising from proton energy straggling and multiple Coulomb scattering, the noise in the reconstructed image increases with successive iterations. In the current work, the authors investigated the use of total variation superiorization (TVS) schemes that can be applied as an algorithmic add-on to perturbation-resilient iterative projection algorithms for pCT image reconstruction. Methods: The block-iterative diagonally relaxed orthogonal projections (DROP) algorithm was used for reconstructing GEANT4 Monte Carlo simulated pCT data sets. Two TVS schemes added on to DROP were investigated; the first carried out the superiorization steps once per cycle and the second once per block. Simplifications of these schemes, involving the elimination of the computationally expensive feasibility proximity checking step of the TVS framework, were also investigated. The modulation transfer function and contrast discrimination function were used to quantify spatial and density resolution, respectively. Results: With both TVS schemes, superior spatial and density resolution was achieved compared to the standard DROP algorithm. Eliminating the feasibility proximity check improved the image quality, in particular image noise, in the once-per-block superiorization, while also halving image reconstruction time. Overall, the greatest image quality was observed when carrying out the superiorization once per block and eliminating the feasibility proximity check. Conclusions: The low-contrast imaging made possible with TVS holds a promise for its incorporation into future pCT studies. PMID:21158301

  18. Proton radiography and proton computed tomography based on time-resolved dose measurements.

    PubMed

    Testa, Mauro; Verburg, Joost M; Rose, Mark; Min, Chul Hee; Tang, Shikui; Bentefour, El Hassane; Paganetti, Harald; Lu, Hsiao-Ming

    2013-11-21

    We present a proof of principle study of proton radiography and proton computed tomography (pCT) based on time-resolved dose measurements. We used a prototype, two-dimensional, diode-array detector capable of fast dose rate measurements, to acquire proton radiographic images expressed directly in water equivalent path length (WEPL). The technique is based on the time dependence of the dose distribution delivered by a proton beam traversing a range modulator wheel in passive scattering proton therapy systems. The dose rate produced in the medium by such a system is periodic and has a unique pattern in time at each point along the beam path and thus encodes the WEPL. By measuring the time dose pattern at the point of interest, the WEPL to this point can be decoded. If one measures the time–dose patterns at points on a plane behind the patient for a beam with sufficient energy to penetrate the patient, the obtained 2D distribution of the WEPL forms an image. The technique requires only a 2D dosimeter array and it uses only the clinical beam for a fraction of second with negligible dose to patient. We first evaluated the accuracy of the technique in determining the WEPL for static phantoms aiming at beam range verification of the brain fields of medulloblastoma patients. Accurate beam ranges for these fields can significantly reduce the dose to the cranial skin of the patient and thus the risk of permanent alopecia. Second, we investigated the potential features of the technique for real-time imaging of a moving phantom. Real-time tumor tracking by proton radiography could provide more accurate validations of tumor motion models due to the more sensitive dependence of proton beam on tissue density compared to x-rays. Our radiographic technique is rapid (~100 ms) and simultaneous over the whole field, it can image mobile tumors without the problem of interplay effect inherently challenging for methods based on pencil beams. Third, we present the reconstructed p

  19. Proton radiography and proton computed tomography based on time-resolved dose measurements

    NASA Astrophysics Data System (ADS)

    Testa, Mauro; Verburg, Joost M.; Rose, Mark; Min, Chul Hee; Tang, Shikui; Hassane Bentefour, El; Paganetti, Harald; Lu, Hsiao-Ming

    2013-11-01

    We present a proof of principle study of proton radiography and proton computed tomography (pCT) based on time-resolved dose measurements. We used a prototype, two-dimensional, diode-array detector capable of fast dose rate measurements, to acquire proton radiographic images expressed directly in water equivalent path length (WEPL). The technique is based on the time dependence of the dose distribution delivered by a proton beam traversing a range modulator wheel in passive scattering proton therapy systems. The dose rate produced in the medium by such a system is periodic and has a unique pattern in time at each point along the beam path and thus encodes the WEPL. By measuring the time dose pattern at the point of interest, the WEPL to this point can be decoded. If one measures the time-dose patterns at points on a plane behind the patient for a beam with sufficient energy to penetrate the patient, the obtained 2D distribution of the WEPL forms an image. The technique requires only a 2D dosimeter array and it uses only the clinical beam for a fraction of second with negligible dose to patient. We first evaluated the accuracy of the technique in determining the WEPL for static phantoms aiming at beam range verification of the brain fields of medulloblastoma patients. Accurate beam ranges for these fields can significantly reduce the dose to the cranial skin of the patient and thus the risk of permanent alopecia. Second, we investigated the potential features of the technique for real-time imaging of a moving phantom. Real-time tumor tracking by proton radiography could provide more accurate validations of tumor motion models due to the more sensitive dependence of proton beam on tissue density compared to x-rays. Our radiographic technique is rapid (˜100 ms) and simultaneous over the whole field, it can image mobile tumors without the problem of interplay effect inherently challenging for methods based on pencil beams. Third, we present the reconstructed p

  20. Understanding proton-conducting perovskite interfaces using atom probe tomography

    NASA Astrophysics Data System (ADS)

    Clark, Daniel R.

    Proton-conducting ceramics are under intense scientific investigation for a number of exciting applications, including fuel cells, electrolyzers, hydrogen separation membranes, membrane reactors, and sensors. However, commercial application requires deeper understanding and improvement of proton conductivity in these materials. It is well-known that proton conductivity in these materials is often limited by highly resistive grain boundaries (GBs). While these conductivity-limiting GBs are still not well understood, it is hypothesized that their blocking nature stems from the formation of a positive (proton-repelling) space-charge zone. Furthermore, it has been observed that the strength of the blocking behavior can change dramatically depending on the fabrication process used to make the ceramic. This thesis applies laser-assisted atom probe tomography (LAAPT) to provide new insights into the GB chemistry and resulting space-charge behavior of BaZr0.9Y0.1O 3--delta (BZY10), a prototypical proton-conducting ceramic. LAAPT is an exciting characterization technique that allows for three-dimensional nm-scale spatial resolution and very high chemical resolution (up to parts-per-million). While it is challenging to quantitatively apply LAAPT to complex, multi-cation oxide materials, this thesis successfully develops a method to accurately quantify the stoichiometry of BZY10 and maintain minimal quantitative cationic deviation at a laser energies of approximately 10--20 pJ. With the analysis technique specifically optimized for BZY10, GB chemistry is then examined for BZY10 samples prepared using four differing processing methods: (1) spark plasma sintering (SPS), (2) conventional sintering using powder prepared by solid-state reaction followed by high-temperature annealing (HT), (3) conventional sintering using powder prepared by solid-state reaction with NiO used as a sintering aid (SSR-Ni), and (4) solid-state reactive sintering directly from BaCO3, ZrO2, and Y2O3

  1. Positron emission tomography in generalized seizures

    SciTech Connect

    Theodore, W.H.; Brooks, R.; Margolin, R.; Patronas, N.; Sato, S.; Porter, R.J.; Mansi, L.; Bairamian, D.; DiChiro, G.

    1985-05-01

    The authors used /sup 18/F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to study nine patients with clinical absence or generalized seizures. One patient had only absence seizures, two had only generalized tonic-clonic seizures, and six had both seizure types. Interictal scans in eight failed to reveal focal or lateralized hypometabolism. No apparent abnormalities were noted. Two patients had PET scans after isotope injection during hyperventilation-induced generalized spike-wave discharges. Diffusely increased metabolic rates were found in one compared with an interictal scan, and in another compared with control values. Another patient had FDG injected during absence status: EEG showed generalized spike-wave discharges (during which she was unresponsive) intermixed with slow activity accompanied by confusion. Metabolic rates were decreased, compared with the interictal scan, throughout both cortical and subcortical structures. Interictal PET did not detect specific anatomic regions responsible for absence seizure onset in any patient, but the results of the ictal scans did suggest that pathophysiologic differences exist between absence status and single absence attacks.

  2. Resistive plate chambers in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Crespo, Paulo; Blanco, Alberto; Couceiro, Miguel; Ferreira, Nuno C.; Lopes, Luís; Martins, Paulo; Ferreira Marques, Rui; Fonte, Paulo

    2013-07-01

    Resistive plate chambers (RPC) were originally deployed for high energy physics. Realizing how their properties match the needs of nuclear medicine, a LIP team proposed applying RPCs to both preclinical and clinical positron emission tomography (RPC-PET). We show a large-area RPC-PET simulated scanner covering an axial length of 2.4m —slightly superior to the height of the human body— allowing for whole-body, single-bed RPC-PET acquisitions. Simulations following NEMA (National Electrical Manufacturers Association, USA) protocols yield a system sensitivity at least one order of magnitude larger than present-day, commercial PET systems. Reconstruction of whole-body simulated data is feasible by using a dedicated, direct time-of-flight-based algorithm implemented onto an ordered subsets estimation maximization parallelized strategy. Whole-body RPC-PET patient images following the injection of only 2mCi of 18-fluorodesoxyglucose (FDG) are expected to be ready 7 minutes after the 6 minutes necessary for data acquisition. This compares to the 10-20mCi FDG presently injected for a PET scan, and to the uncomfortable 20-30minutes necessary for its data acquisition. In the preclinical field, two fully instrumented detector heads have been assembled aiming at a four-head-based, small-animal RPC-PET system. Images of a disk-shaped and a needle-like 22Na source show unprecedented sub-millimeter spatial resolution.

  3. Functional cardiac imaging: positron emission tomography

    SciTech Connect

    Mullani, N.A.; Gould, K.L.

    1984-02-01

    Dynamic cardiovascular imaging plays a vital role in the diagnosis and treatment of cardiac disease by providing information about the function of the heart. During the past 30 years, cardiovascular imaging has evolved from the simple chest x-ray and fluoroscopy to such sophisticated techniques as invasive cardiac angiography and cinearteriography and, more recently, to noninvasive cardiac CT scanning, nuclear magnetic resonance, and positron emission tomography, which reflect more complex physiologic functions. As research tools, CT, NMR, and PET provide quantitative information on global as well as regional ventricular function, coronary artery stenosis, myocardial perfusion, glucose and fatty acid metabolism, or oxygen utilization, with little discomfort or risk to the patient. As imaging modalities become more sophisticated and more oriented toward clinical application, the prospect of routinely obtaining such functional information about the heart is becoming realistic. However, these advances are double-edged in that the interpretation of functional data is more complex than that of the anatomic imaging familiar to most physicians. They will require an enhanced understanding of the physiologic and biochemical processes, as well as of the instrumentation and techniques for analyzing the data. Of the new imaging modalities that provide functional information about the heart, PET is the most useful because it quantitates the regional distribution of radionuclides in vivo. Clinical applications, interpretation of data, and the impact of PET on our understanding of cardiac pathophysiology are discussed. 5 figures.

  4. Using GPU for Seismic Emission Tomography processing

    NASA Astrophysics Data System (ADS)

    Dricker, I. G.; Cooke, A. J.; Friberg, P. A.; Hellman, S. B.

    2010-12-01

    Seismic Emission Tomography (SET) is an emerging technique which is rapidly gaining popularity in both earthquake seismology and the oil and gas industry. Stacking seismic records from multiple channels of a surface seismic array with moveout correction dramatically increases the signal-to-noise ratio and allows monitoring of fine-scale microseismicity. Using SET to detect active seismic locations within the study volume requires time-shifting and stacking the trace for each seismic recording channel and node in the 3D Earth grid. Algorithmically, this implies five nested loops over space coordinates, channel lists and time. Even the most powerful PC CPUs proved impractical for this task; only rough models could be built in a reasonable period of time. Fortunately the SET computational kernel is easy to parallelize, because computations for each grid node and recording channel are independent, so we could achieve significant (of order x100) speedups on Nvidia GPUs with OpenCL. In this case study we show how progressive optimization, from Matlab to C, and on to OpenCL, improved performance. We discuss various problems encountered, give practical guidance on refactoring, and include benchmarks on several GPUs.

  5. Utility of positron emission tomography in schwannomatosis.

    PubMed

    Lieber, Bryan; Han, ByoungJun; Allen, Jeffrey; Fatterpekar, Girish; Agarwal, Nitin; Kazemi, Noojan; Zagzag, David

    2016-08-01

    Schwannomatosis is characterized by multiple non-intradermal schwannomas with patients often presenting with a painful mass in their extremities. In this syndrome malignant transformation of schwannomas is rare in spite of their large size at presentation. Non-invasive measures of assessing the biological behavior of plexiform neurofibromas in neurofibromatosis type 1 such as positron emission tomography (PET), CT scanning and MRI are well characterized but little information has been published on the use of PET imaging in schwannomatosis. We report a unique clinical presentation portraying the use of PET imaging in schwannomatosis. A 27-year-old woman presented with multiple, rapidly growing, large and painful schwannomas confirmed to be related to a constitutional mutation in the SMARCB1 complex. Whole body PET/MRI revealed numerous PET-avid tumors suggestive of malignant peripheral nerve sheath tumors. Surgery was performed on multiple tumors and none of them had histologic evidence of malignant transformation. Overall, PET imaging may not be a reliable predictor of malignant transformation in schwannomatosis, tempering enthusiasm for surgical interventions for tumors not producing significant clinical signs or symptoms. PMID:26960263

  6. Positron Emission Tomography Imaging of Atherosclerosis

    PubMed Central

    Orbay, Hakan; Hong, Hao; Zhang, Yin; Cai, Weibo

    2013-01-01

    Atherosclerosis-related cardiovascular events are the leading causes of death in the industrialized world. Atherosclerosis develops insidiously and the initial manifestation is usually sudden cardiac death, stroke, or myocardial infarction. Molecular imaging is a valuable tool to identify the disease at an early stage before fatal manifestations occur. Among the various molecular imaging techniques, this review mainly focuses on positron emission tomography (PET) imaging of atherosclerosis. The targets and pathways that have been investigated to date for PET imaging of atherosclerosis include: glycolysis, cell membrane metabolism (phosphatidylcholine synthesis), integrin αvβ3, low density lipoprotein (LDL) receptors (LDLr), natriuretic peptide clearance receptors (NPCRs), fatty acid synthesis, vascular cell adhesion molecule-1 (VCAM-1), macrophages, platelets, etc. Many PET tracers have been investigated clinically for imaging of atherosclerosis. Early diagnosis of atherosclerotic lesions by PET imaging can help to prevent the premature death caused by atherosclerosis, and smooth translation of promising PET tracers into the clinic is critical to the benefit of patients. PMID:24312158

  7. Amorphous silicon detectors in positron emission tomography

    SciTech Connect

    Conti, M. Lawrence Berkeley Lab., CA ); Perez-Mendez, V. )

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters {epsilon}{sup 2}{tau}'s are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs.

  8. The Role of Chemistry in Positron Emission Tomography.

    ERIC Educational Resources Information Center

    Feliu, Anthony L.

    1988-01-01

    Investigates use of positron emission tomography (PET) to study in-vivo metabolic processes. Discusses methodology of PET and medical uses. Outlines the production of different radioisotopes used in PET radiotracers. Includes selected bibliography. (ML)

  9. Positron emission tomography and bone metastases.

    PubMed

    Fogelman, Ignac; Cook, Gary; Israel, Ora; Van der Wall, Hans

    2005-04-01

    The use of 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in the evaluation and management of patients with malignancy continues to increase. However, its role in the identification of bone metastases is far from clear. FDG has the advantage of demonstrating all metastatic sites, and in the skeleton it is assumed that its uptake is directly into tumor cells. It is probable that for breast and lung carcinoma, FDG-PET has similar sensitivity, although poorer specificity, when compared with the isotope bone scan, although there is conflicting evidence, with several articles suggesting that it is less sensitive than conventional imaging in breast cancer. There is convincing evidence that for prostate cancer, FDG-PET is less sensitive than the bone scan and this may be tumor specific. There is very little data relating to lymphoma, but FDG-PET seems to perform better than the bone scan. There is an increasing body of evidence relating to the valuable role of FDG-PET in myeloma, where it is clearly better than the bone scan, presumably because FDG is identifying marrow-based disease at an early stage. There are, however, several other important variables that should be considered. The morphology of the metastasis itself appears to be relevant. At least in breast cancer, different patterns of FDG uptake have been shown in sclerotic, lytic, or lesions with a mixed pattern, Furthermore, the precise localization of a metastasis in the skeleton may be important with regard to the extent of the metabolic response induced. Previous treatment is highly relevant and it has been found that although the majority of untreated bone metastases are positive on PET scans and have a lytic pattern on computed tomography (CT), after treatment, incongruent CT-positive/PET-negative lesions are significantly more prevalent and generally are blastic, which presumably reflects a direct effect of treatment. Finally, the aggressiveness of the tumor itself may be relevant

  10. Diffuse nesidioblastosis diagnosed on a Ga-68 DOTATATE positron emission tomography/computerized tomography.

    PubMed

    Arun, Sasikumar; Rai Mittal, Bhagwant; Shukla, Jaya; Bhattacharya, Anish; Kumar, Praveen

    2013-07-01

    The authors describe a 50 days old pre-term infant with persistent hyperinsulinemic hypoglycemia of infancy in whom Ga-68 DOTATATE positron emission tomography/computerized tomography scan showed diffusely increased tracer uptake in the entire pancreas with no abnormal tracer uptake anywhere else in the body, suggestive of a diffuse variant of nesidioblastosis. PMID:24250024

  11. Future direction of renal positron emission tomography.

    PubMed

    Szabo, Zsolt; Xia, Jinsong; Mathews, William B; Brown, Phillip R

    2006-01-01

    Positron emission tomography (PET) is perfectly suited for quantitative imaging of the kidneys, and the recent improvements in detector technology, computer hardware, and image processing software add to its appeal. Multiple positron emitting radioisotopes can be used for renal imaging. Some, including carbon-11, nitrogen-13, and oxygen-15, can be used at institutions with an on-site cyclotron. Other radioisotopes that may be even more useful in a clinical setting are those that either can be obtained from radionuclide generators (rubidium-82, copper-62) or have a sufficiently long half-life for transportation (fluorine-18). The clinical use of functional renal PET studies (blood flow, glomerular filtration rate) has been slow, in part because of the success of concurrent technologies, including single-photon emission computed tomography (SPECT) and planar gamma camera imaging. Renal blood flow studies can be performed with O-15-labeled water, N-13-labeled ammonia, rubidium-82, and copper-labeled PTSM. With these tracers, renal blood flow can be quantified using a modified microsphere kinetic model. Glomerular filtration can be imaged and quantified with gallium-68 EDTA or cobalt-55 EDTA. Measurements of renal blood flow with PET have potential applications in renovascular disease, in transplant rejection or acute tubular necrosis, in drug-induced nephropathies, ureteral obstruction, before and after revascularization, and before and after the placement of ureteral stents. The most important clinical application for imaging glomerular function with PET would be renovascular hypertension. Molecular imaging of the kidneys with PET is rather limited. At present, research is focused on the investigation of metabolism (acetate), membrane transporters (organic cation and anion transporters, pepT1 and pepT2, GLUT, SGLT), enzymes (ACE), and receptors (AT1R). Because many nephrological and urological disorders are initiated at the molecular and organelle levels and may

  12. [Value of positron emission tomography and computer tomography (PET/CT) for urologic malignancies].

    PubMed

    Boujelbene, N; Prior, J O; Boubaker, A; Azria, D; Schaffer, M; Gez, E; Jichlinski, P; Meuwly, J-Y; Mirimanoff, R O; Ozsahin, M; Zouhair, A

    2011-07-01

    Positron emission tomography is a functional imaging technique that allows the detection of the regional metabolic rate, and is often coupled with other morphological imaging technique such as computed tomography. The rationale for its use is based on the clearly demonstrated fact that functional changes in tumor processes happen before morphological changes. Its introduction to the clinical practice added a new dimension in conventional imaging techniques. This review presents the current and proposed indications of the use of positron emission/computed tomography for prostate, bladder and testes, and the potential role of this exam in radiotherapy planning. PMID:21507695

  13. Simulation of prompt gamma-ray emission during proton radiotherapy.

    PubMed

    Verburg, Joost M; Shih, Helen A; Seco, Joao

    2012-09-01

    The measurement of prompt gamma rays emitted from proton-induced nuclear reactions has been proposed as a method to verify in vivo the range of a clinical proton radiotherapy beam. A good understanding of the prompt gamma-ray emission during proton therapy is key to develop a clinically feasible technique, as it can facilitate accurate simulations and uncertainty analysis of gamma detector designs. Also, the gamma production cross-sections may be incorporated as prior knowledge in the reconstruction of the proton range from the measurements. In this work, we performed simulations of proton-induced nuclear reactions with the main elements of human tissue, carbon-12, oxygen-16 and nitrogen-14, using the nuclear reaction models of the GEANT4 and MCNP6 Monte Carlo codes and the dedicated nuclear reaction codes TALYS and EMPIRE. For each code, we made an effort to optimize the input parameters and model selection. The results of the models were compared to available experimental data of discrete gamma line cross-sections. Overall, the dedicated nuclear reaction codes reproduced the experimental data more consistently, while the Monte Carlo codes showed larger discrepancies for a number of gamma lines. The model differences lead to a variation of the total gamma production near the end of the proton range by a factor of about 2. These results indicate a need for additional theoretical and experimental study of proton-induced gamma emission in human tissue. PMID:22864267

  14. Monte Carlo Simulation of Emission Tomography and other Medical Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Harrison, Robert L.

    2010-01-01

    As an introduction to Monte Carlo simulation of emission tomography, this paper reviews the history and principles of Monte Carlo simulation, then applies these principles to emission tomography using the public domain simulation package SimSET (a Simulation System for Emission Tomography) as an example. Finally, the paper discusses how the methods are modified for X-ray computed tomography and radiotherapy simulations.

  15. Proton transport and auroral optical emissions. Ph.D. Thesis

    SciTech Connect

    Shen, D.

    1993-12-31

    The hydrogen lines are the characteristic emissions of proton aurora and have been used to study the impact of protons upon the atmosphere. Observations of hydrogen emission on the long wavelength side of the unshifted lines were not explained by previous theories. To explain the observed optical emissions, a numerical code is developed to solve the one dimensional, steady state, linearly coupled transport equations of H(+)/H in a dipole magnetic field. The mirror force is included in the transport equations to produce backscattered particles which are responsible for emission at wavelengths longward of the unshifted lines. Both downward and upward particle intensities of H(+)/H are calculated. The mirror reflectivities of energy and particles are defined, and their dependences on proton input spectra and pitch angle distributions are studied. The results show that the mirror reflectivity increases both with characteristic energy and with pitch angle of the input proton flux, but is more sensitive to angular distributions than to energy spectra. Energy deposition rate, ionization rate, H alpha, H beta, and nitrogen first negative bands emission rates and profiles are calculated. Calculated fluxes of H(+)/H and emission properties of hydrogen Balmer lines are compared with a rocket measurement. The efficiency for production of the Balmer lines and the nitrogen first negative bands is obtained in terms of the energy input rate and the H(+) particle flux. A Doppler shift of about 3.0 A toward the blue for magnetic zenith profiles of H alpha is obtained, compared with observational results of 6.0 +/- 2.0 A. The calculated emissions on the red side of the unshifted hydrogen atomic emission lines when convolved with the instrumental function account for the observed emissions on the long wavelength side of the unshifted hydrogen Balmer lines.

  16. Diagnosis of dementia with single photon emission computed tomography

    SciTech Connect

    Jagust, W.J.; Budinger, T.F.; Reed, B.R.

    1987-03-01

    Single photon emission computed tomography is a practical modality for the study of physiologic cerebral activity in vivo. We utilized single photon emission computed tomography and N-isopropyl-p-iodoamphetamine iodine 123 to evaluate regional cerebral blood flow in nine patients with Alzheimer's disease (AD), five healthy elderly control subjects, and two patients with multi-infarct dementia. We found that all subjects with AD demonstrated flow deficits in temporoparietal cortex bilaterally, and that the ratio of activity in bilateral temporoparietal cortex to activity in the whole slice allowed the differentiation of all patients with AD from both the controls and from the patients with multi-infarct dementia. Furthermore, this ratio showed a strong correlation with disease severity in the AD group. Single photon emission computed tomography appears to be useful in the differential diagnosis of dementia and reflects clinical features of the disease.

  17. Study of spatial resolution of proton computed tomography using a silicon strip detector

    NASA Astrophysics Data System (ADS)

    Saraya, Y.; Izumikawa, T.; Goto, J.; Kawasaki, T.; Kimura, T.

    2014-01-01

    Proton computed tomography (CT) is an imaging technique using a high-energy proton beam penetrating the human body and shows promise for improving the quality of cancer therapy with high-energy particle beams because more accurate electron density distribution measurements can be achieved with proton CT. The deterioration of the spatial resolution owing to multiple Coulomb scattering is, however, a crucial issue. The control of the radiation dose and the long exposure time are also problems to be solved. We have developed a prototype system for proton CT with a silicon strip detector and performed a beam test for imaging. The distribution of the electron density has been measured precisely. We also demonstrated an improvement in spatial resolution by reconstructing the proton trajectory. A spatial resolution of 0.45 mm is achieved for a 25-mm-thick polyethylene object. This will be a useful result for upgrading proton CT application for practical use.

  18. Calculations on decay rates of various proton emissions

    NASA Astrophysics Data System (ADS)

    Qian, Yibin; Ren, Zhongzhou

    2016-03-01

    Proton radioactivity of neutron-deficient nuclei around the dripline has been systematically studied within the deformed density-dependent model. The crucial proton-nucleus potential is constructed via the single-folding integral of the density distribution of daughter nuclei and the effective M3Y nucleon-nucleon interaction or the proton-proton Coulomb interaction. After the decay width is obtained by the modified two-potential approach, the final decay half-lives can be achieved by involving the spectroscopic factors from the relativistic mean-field (RMF) theory combined with the BCS method. Moreover, a simple formula along with only one adjusted parameter is tentatively proposed to evaluate the half-lives of proton emitters, where the introduction of nuclear deformation is somewhat discussed as well. It is found that the calculated results are in satisfactory agreement with the experimental values and consistent with other theoretical studies, indicating that the present approach can be applied to the case of proton emission. Predictions on half-lives are made for possible proton emitters, which may be useful for future experiments.

  19. Pigmented villonodular synovitis mimics metastases on fluorine 18 fluorodeoxyglucose position emission tomography-computed tomography

    PubMed Central

    Elumogo, Comfort O.; Kochenderfer, James N.; Civelek, A. Cahid

    2016-01-01

    Pigmented villonodular synovitis (PVNS) is a benign joint disease best characterized on magnetic resonance imaging (MRI). The role of fluorine 18 fluorodeoxyglucose (18F-FDG) position emission tomography-computed tomography (PET-CT) in the diagnosis or characterization remains unclear. PVNS displays as a focal FDG avid lesion, which can masquerade as a metastatic lesion, on PET-CET. We present a case of PVNS found on surveillance imaging of a lymphoma patient. PMID:27190776

  20. Single Photon Emission Local Tomography (SPELT)

    SciTech Connect

    Zeng, G.L.; Gullberg, G.T.

    1996-12-31

    Local tomography uses truncated projection data to reconstruct a region of interest, and is important in medical imaging and industrial non-destructive evaluation using micro X-ray CT. The popular filtered backprojection (FBP) algorithm does not reconstruct a reliable image, which varies with the degree and location of truncation due to its global convolution kernel. A typical local tomography method uses a second derivative local operator to replace the global convolution kernel in the filtered backprojection algorithm (LFBP). By using a local filter, the reconstructed region depends only on the local projections. The singularities (edges) are preserved, but the exact image value cannot be recovered. This paper, using the data consistency conditions, developed a pre-processing technique that uses the FBP algorithm, which outperforms direct FBP and LFBP.

  1. Technical Note: Spatial resolution of proton tomography: Impact of air gap between patient and detector

    SciTech Connect

    Schneider, Uwe; Besserer, Juergen; Hartmann, Matthias

    2012-02-15

    Purpose: Proton radiography and tomography were investigated since the early 1970s because of its low radiation dose, high density resolution, and ability to image directly proton stopping power. However, spatial resolution is still a limiting factor. In this note, preliminary results of the impact of an air gap between detector system and patient on spatial resolution are presented. Methods: Spatial resolution of proton radiography and tomography is governed by multiple Coulomb scattering (MCS) of the protons in the patient. In this note, the authors employ Monte Carlo simulations of protons traversing a 20 cm thick water box. Entrance and exit proton coordinate measurements were simulated for improved spatial resolution. The simulations were performed with and without a 5 cm air gap in front of and behind the patient. Loss of spatial resolution due to the air gap was studied for protons with different initial angular confusion. Results: It was found that spatial resolution is significantly deteriorated when a 5 cm air gap between the position sensitive detector and the patient is included. For a perfect parallel beam spatial resolution worsens by about 40%. Spatial resolution is getting worse with increasing angular confusion and can reach 80%. Conclusions: When proton radiographies are produced by measuring the entrance and exit coordinates of the protons in front of and behind the patient the air gap between the detector and the patient can significantly deteriorate the spatial resolution of the system by up to 80%. An alternative would be to measure in addition to the coordinates also the exit and entrance angles of each proton. In principle, using the air gap size and proton angle, images can be reconstructed with the same spatial resolution than without air gap.

  2. Addiction Studies with Positron Emission Tomography

    SciTech Connect

    Joanna Fowler

    2008-10-13

    Brookhaven scientist Joanna Fowler describes Positron Emission Technology (PET) research at BNL which for the past 30 years has focused in the integration of basic research in radiotracer chemistry with the tools of neuroscience to develop new scientific

  3. Addiction Studies with Positron Emission Tomography

    ScienceCinema

    Joanna Fowler

    2010-01-08

    Brookhaven scientist Joanna Fowler describes Positron Emission Technology (PET) research at BNL which for the past 30 years has focused in the integration of basic research in radiotracer chemistry with the tools of neuroscience to develop new scientific

  4. Single photon emission computed tomography and other selected computer topics

    SciTech Connect

    Price, R.R.; Gilday, D.L.; Croft, B.Y.

    1980-01-01

    This volume includes an overview of single photon emission computed tomography and numerous papers that describe and evaluate specific systems and techniques. Papers cover such topics as Auger cameras; seven-pinhole and slant-hole collimators; brain; cardiac; and gated blood-pool studies; and the BICLET and SPECT systems.

  5. Recent Developments in Positron Emission Tomography (PET) Instrumentation

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors.

  6. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... location and distribution of gamma ray- and positron-emitting radionuclides in the body and produce...

  7. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... location and distribution of gamma ray- and positron-emitting radionuclides in the body and produce...

  8. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... location and distribution of gamma ray- and positron-emitting radionuclides in the body and produce...

  9. Positron Emission Tomography: Human Brain Function and Biochemistry.

    ERIC Educational Resources Information Center

    Phelps, Michael E.; Mazziotta, John C.

    1985-01-01

    Describes the method, present status, and application of positron emission tomography (PET), an analytical imaging technique for "in vivo" measurements of the anatomical distribution and rates of specific biochemical reactions. Measurements and image dynamic biochemistry link basic and clinical neurosciences with clinical findings suggesting…

  10. Probable Syphilitic Aortitis Documented by Positron Emission Tomography.

    PubMed

    Joseph Davey, Dvora; Acosta, Lourdes Del Rocio Carrera; Gupta, Pawan; Konda, Kelika A; Caceres, Carlos F; Klausner, Jeffrey D

    2016-03-01

    Positron emission tomography (PET) has been used to aid in diagnosis of inflammatory and infectious disease. We describe the case of a patient with early latent syphilis with increased metabolic activity along the aorta detected via PET, suggesting probable aortitis. Three months after treatment, the PET showed apparent resolution of the aortitis. PMID:26859808

  11. Computed tomography with a low-intensity proton flux: results of a Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Schulte, Reinhard W.; Klock, Margio C. L.; Bashkirov, Vladimir; Evseev, Ivan G.; de Assis, Joaquim T.; Yevseyeva, Olga; Lopes, Ricardo T.; Li, Tianfang; Williams, David C.; Wroe, Andrew J.; Schelin, Hugo R.

    2004-10-01

    Conformal proton radiation therapy requires accurate prediction of the Bragg peak position. This problem may be solved by using protons rather than conventional x-rays to determine the relative electron density distribution via proton computed tomography (proton CT). However, proton CT has its own limitations, which need to be carefully studied before this technique can be introduced into routine clinical practice. In this work, we have used analytical relationships as well as the Monte Carlo simulation tool GEANT4 to study the principal resolution limits of proton CT. The GEANT4 simulations were validated by comparing them to predictions of the Bethe Bloch theory and Tschalar's theory of energy loss straggling, and were found to be in good agreement. The relationship between phantom thickness, initial energy, and the relative electron density uncertainty was systematically investigated to estimate the number of protons and dose needed to obtain a given density resolution. The predictions of this study were verified by simulating the performance of a hypothetical proton CT scanner when imaging a cylindrical water phantom with embedded density inhomogeneities. We show that a reasonable density resolution can be achieved with a relatively small number of protons, thus providing a possible dose advantage over x-ray CT.

  12. Atlas of positron emission tomography of the brain

    SciTech Connect

    Heiss, W.; Beil, C.; Herholz, K.; Pavlik, G.; Wagner, R.; Weinhard, K.

    1985-01-01

    The aim and scope of this atlas are expressed in its title. The text and legends of the book are presented in both German and English. The book contains 12 high-quality color illustrations culled from nine tomography centers across Europe and North America. Almost two-thirds of the book is devoted to the measurement of regional cerebral glucose metabolism and cerebral blood flow. The remainder manages to cover all of the other cerebral applications of positron emission tomography (PET). The authors discuss that PET is being used principally in research and that its future, although theoretically unlimited, depends on the development of ''further labeled compounds.''

  13. Thermally excited proton spin-flip laser emission in tokamaks

    SciTech Connect

    Arunasalam, V.; Greene, G.J.

    1993-07-01

    Based on statistical thermodynamic fluctuation arguments, it is shown here for the first time that thermally excited spin-flip laser emission from the fusion product protons can occur in large tokamak devices that are entering the reactor regime of operation. Existing experimental data from TFTR supports this conjecture, in the sense that these measurements are in complete agreement with the predictions of the quasilinear theory of the spin-flip laser.

  14. Ionoacoustic tomography of the proton Bragg peak in combination with ultrasound and optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Kellnberger, Stephan; Assmann, Walter; Lehrack, Sebastian; Reinhardt, Sabine; Thirolf, Peter; Queirós, Daniel; Sergiadis, George; Dollinger, Günther; Parodi, Katia; Ntziachristos, Vasilis

    2016-07-01

    Ions provide a more advantageous dose distribution than photons for external beam radiotherapy, due to their so-called inverse depth dose deposition and, in particular a characteristic dose maximum at their end-of-range (Bragg peak). The favorable physical interaction properties enable selective treatment of tumors while sparing surrounding healthy tissue, but optimal clinical use requires accurate monitoring of Bragg peak positioning inside tissue. We introduce ionoacoustic tomography based on detection of ion induced ultrasound waves as a technique to provide feedback on the ion beam profile. We demonstrate for 20 MeV protons that ion range imaging is possible with submillimeter accuracy and can be combined with clinical ultrasound and optoacoustic tomography of similar precision. Our results indicate a simple and direct possibility to correlate, in-vivo and in real-time, the conventional ultrasound echo of the tumor region with ionoacoustic tomography. Combined with optoacoustic tomography it offers a well suited pre-clinical imaging system.

  15. [TUBERCULOUS CONSTRICTIVE PERICARDITIS DETECTED ON POSITRON EMISSION TOMOGRAPHY].

    PubMed

    Takakura, Hiroki; Sunada, Kouichi; Shimizu, Kunihiko

    2016-02-01

    A 72-year-old man presented with fever, dyspnea, and weight loss. He was referred to our hospital for further examination of the cause of the pleural effusions. Chest computed tomography showed pleural effusions, a pericardial effusion, and enlarged lymph nodes in the carina tracheae. We administered treatment for heart failure and conducted analyses for a malignant tumor. The pericardial effusion improved, but the pericardium was thickened. Positron emission tomography-computed tomography (PET-CT) showed fluorine-18 deoxyglucose accumulation at the superior fovea of the right clavicle, carina tracheae, superior mediastinum lymph nodes, and a thickened pericardium. Because these findings did not suggest malignancy, we assumed this was a tuberculous lesion. Echocardiography confirmed this finding as constrictive pericarditis; therefore, pericardiolysis was performed. Pathological examination showed features of caseous necrosis and granulomatous changes. Hence, the patient was diagnosed with tuberculous constrictive pericarditis. PET-CT serves as a useful tool for the diagnosis of tuberculous pericarditis. PMID:27263228

  16. Flip-flop phenomenon in systemic sclerosis on fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Oksuzoglu, Kevser; Ozen, Gulsen; Inanir, Sabahat; Direskeneli, Rafi Haner

    2015-01-01

    Systemic sclerosis (SSc) is a rare autoimmune disease, which may affect multiple organ systems. Fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) can demonstrate the degree and anatomical extent of involvement in the entire body and coexisting malignancies in connective tissue diseases. We present a case of SSc with an increased 18F-FDG uptake in the cutaneous and subcutaneous tissues even higher than the neighboring skeletal muscles ("flip-flop phenomenon," that is, an increased 18F-FDG uptake in the skin but a decreased 18F-FDG uptake in the skeletal muscles). PMID:26430324

  17. Positron Emission Tomography Imaging Using Radiolabeled Inorganic Nanomaterials

    PubMed Central

    Sun, Xiaolian; Cai, Weibo; Chen, Xiaoyuan

    2015-01-01

    CONSPECTUS Positron emission tomography (PET) is a radionuclide imaging technology that plays an important role in preclinical and clinical research. With administration of a small amount of radiotracer, PET imaging can provide a noninvasive, highly sensitive, and quantitative readout of its organ/tissue targeting efficiency and pharmacokinetics. Various radiotracers have been designed to target specific molecular events. Compared with antibodies, proteins, peptides, and other biologically relevant molecules, nanoparticles represent a new frontier in molecular imaging probe design, enabling the attachment of different imaging modalities, targeting ligands, and therapeutic payloads in a single vector. We introduce the radiolabeled nanoparticle platforms that we and others have developed. Due to the fundamental differences in the various nanoparticles and radioisotopes, most radiolabeling methods are designed case-by-case. We focus on some general rules about selecting appropriate isotopes for given types of nanoparticles, as well as adjusting the labeling strategies according to specific applications. We classified these radiolabeling methods into four categories: (1) complexation reaction of radiometal ions with chelators via coordination chemistry; (2) direct bombardment of nanoparticles via hadronic projectiles; (3) synthesis of nanoparticles using a mixture of radioactive and nonradioactive precursors; (4) chelator-free postsynthetic radiolabeling. Method 1 is generally applicable to different nanomaterials as long as the surface chemistry is well-designed. However, the addition of chelators brings concerns of possible changes to the physicochemical properties of nanomaterials and detachment of the radiometal. Methods 2 and 3 have improved radiochemical stability. The applications are, however, limited by the possible damage to the nanocomponent caused by the proton beams (method 2) and harsh synthetic conditions (method 3). Method 4 is still in its infancy

  18. Proton emission from the deformed odd-odd nuclei near drip line

    NASA Astrophysics Data System (ADS)

    Patial, M.; Arumugam, P.; Jain, A. K.; Maglione, E.; Ferreira, L. S.

    2016-01-01

    Proton emission from odd-odd nuclei is studied within the two quasiparticle plus rotor model which includes the non-adiabatic effects and the residual interaction between valence proton and neutron. Justification of the formalism is discussed through corroboration of our results with the experimental spectrum of 180Ta. Exact calculations are performed to get the proton emission halflives. Our results for the proton emitter 130Eu leads to the assignment of spin and parity Jπ = 1+ for the ground state. The role of Coriolis and residual neutron-proton interactions on the proton emission halflives and their interplay are also discussed.

  19. Monte Carlo Simulation Of Emission Tomography And Other Medical Imaging Techniques

    PubMed Central

    Harrison, Robert L.

    2010-01-01

    An introduction to Monte Carlo simulation of emission tomography. This paper reviews the history and principles of Monte Carlo simulation, then applies these principles to emission tomography using the public domain simulation package SimSET (a Simulation System for Emission Tomography) as an example. Finally, the paper discusses how the methods are modified for X-ray computed tomography and radiotherapy simulations. PMID:20733931

  20. Positron Emission Tomography: Principles, Technology, and Recent Developments

    NASA Astrophysics Data System (ADS)

    Ziegler, Sibylle I.

    2005-04-01

    Positron emission tomography (PET) is a nuclear medical imaging technique for quantitative measurement of physiologic parameters in vivo (an overview of principles and applications can be found in [P.E. Valk, et al., eds. Positron Emission Tomography. Basic Science and Clinical Practice. 2003, Springer: Heidelberg]), based on the detection of small amounts of posi-tron-emitter-labelled biologic molecules. Various radiotracers are available for neuro-logical, cardiological, and oncological applications in the clinic and in research proto-cols. This overview describes the basic principles, technology, and recent develop-ments in PET, followed by a section on the development of a tomograph with ava-lanche photodiodes dedicated for small animal imaging as an example of efforts in the domain of high resolution tomographs.

  1. Nuclear spectroscopy with Geant4: Proton and neutron emission & radioactivity

    NASA Astrophysics Data System (ADS)

    Sarmiento, L. G.; Rudolph, D.

    2016-07-01

    With the aid of a novel combination of existing equipment - JYFLTRAP and the TASISpec decay station - it is possible to perform very clean quantum-state selective, high-resolution particle-γ decay spectroscopy. We intend to study the determination of the branching ratio of the ℓ = 9 proton emission from the Iπ = 19/2-, 3174-keV isomer in the N = Z - 1 nucleus 53Co. The study aims to initiate a series of similar experiments along the proton dripline, thereby providing unique insights into "open quantum systems". The technique has been pioneered in case studies using SHIPTRAP and TASISpec at GSI. Newly available radioactive decay modes in Geant4 simulations are going to corroborate the anticipated experimental results.

  2. Single photon emission computed tomography in AIDS dementia complex

    SciTech Connect

    Pohl, P.; Vogl, G.; Fill, H.; Roessler, H.Z.; Zangerle, R.; Gerstenbrand, F.

    1988-08-01

    Single photon emission computed tomography (SPECT) studies were performed in AIDS dementia complex using IMP in 12 patients (and HM-PAO in four of these same patients). In all patients, SPECT revealed either multiple or focal uptake defects, the latter corresponding with focal signs or symptoms in all but one case. Computerized tomography showed a diffuse cerebral atrophy in eight of 12 patients, magnetic resonance imaging exhibited changes like atrophy and/or leukoencephalopathy in two of five cases. Our data indicate that both disturbance of cerebral amine metabolism and alteration of local perfusion share in the pathogenesis of AIDS dementia complex. SPECT is an important aid in the diagnosis of AIDS dementia complex and contributes to the understanding of the pathophysiological mechanisms of this disorder.

  3. Newer positron emission tomography radiopharmaceuticals for radiotherapy planning: an overview

    PubMed Central

    Mukherjee, Anirban

    2016-01-01

    Positron emission tomography-computed tomography (PET-CT) has changed cancer imaging in the last decade, for better. It can be employed for radiation treatment planning of different cancers with improved accuracy and outcomes as compared to conventional imaging methods. 18F-fluorodeoxyglucose remains the most widely used though relatively non-specific cancer imaging PET tracer. A wide array of newer PET radiopharmaceuticals has been developed for targeted imaging of different cancers. PET-CT with such new PET radiopharmaceuticals has also been used for radiotherapy planning with encouraging results. In the present review we have briefly outlined the role of PET-CT with newer radiopharmaceuticals for radiotherapy planning and briefly reviewed the available literature in this regard. PMID:26904575

  4. Imaging local brain function with emission computed tomography

    SciTech Connect

    Kuhl, D.E.

    1984-03-01

    Positron emission tomography (PET) using /sup 18/F-fluorodeoxyglucose (FDG) was used to map local cerebral glucose utilization in the study of local cerebral function. This information differs fundamentally from structural assessment by means of computed tomography (CT). In normal human volunteers, the FDG scan was used to determine the cerebral metabolic response to conrolled sensory stimulation and the effects of aging. Cerebral metabolic patterns are distinctive among depressed and demented elderly patients. The FDG scan appears normal in the depressed patient, studded with multiple metabolic defects in patients with multiple infarct dementia, and in the patients with Alzheimer disease, metabolism is particularly reduced in the parietal cortex, but only slightly reduced in the caudate and thalamus. The interictal FDG scan effectively detects hypometabolic brain zones that are sites of onset for seizures in patients with partial epilepsy, even though these zones usually appear normal on CT scans. The future prospects of PET are discussed.

  5. Acute Calculous Cholecystitis Missed on Computed Tomography and Ultrasound but Diagnosed with Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    PubMed Central

    Aparici, Carina Mari; Win, Aung Zaw

    2016-01-01

    We present a case of a 69-year-old patient who underwent ascending aortic aneurysm repair with aortic valve replacement. On postsurgical day 12, he developed leukocytosis and low-grade fevers. The chest computed tomography (CT) showed a periaortic hematoma which represents a postsurgical change from aortic aneurysm repair, and a small pericardial effusion. The abdominal ultrasound showed cholelithiasis without any sign of cholecystitis. Finally, a fluorodeoxyglucose (FDG)-positron emission tomography (PET)/CT examination was ordered to find the cause of fever of unknown origin, and it showed increased FDG uptake in the gallbladder wall, with no uptake in the lumen. FDG-PET/CT can diagnose acute cholecystitis in patients with nonspecific clinical symptoms and laboratory results. PMID:27625897

  6. Acute Calculous Cholecystitis Missed on Computed Tomography and Ultrasound but Diagnosed with Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography.

    PubMed

    Aparici, Carina Mari; Win, Aung Zaw

    2016-01-01

    We present a case of a 69-year-old patient who underwent ascending aortic aneurysm repair with aortic valve replacement. On postsurgical day 12, he developed leukocytosis and low-grade fevers. The chest computed tomography (CT) showed a periaortic hematoma which represents a postsurgical change from aortic aneurysm repair, and a small pericardial effusion. The abdominal ultrasound showed cholelithiasis without any sign of cholecystitis. Finally, a fluorodeoxyglucose (FDG)-positron emission tomography (PET)/CT examination was ordered to find the cause of fever of unknown origin, and it showed increased FDG uptake in the gallbladder wall, with no uptake in the lumen. FDG-PET/CT can diagnose acute cholecystitis in patients with nonspecific clinical symptoms and laboratory results. PMID:27625897

  7. Concurrent Ultrasonic Tomography and Acoustic Emission in Solid Materials

    NASA Astrophysics Data System (ADS)

    Chow, Thomas M.

    A series of experiments were performed to detect stress induced changes in the elastic properties of various solid materials. A technique was developed where these changes were monitored concurrently by two methods, ultrasonic tomography and acoustic emission monitoring. This thesis discusses some experiments in which acoustic emission (AE) and ultrasonic tomography were performed on various samples of solid materials including rocks, concrete, metals, and fibre reinforced composites. Three separate techniques were used to induce stress in these samples. Disk shaped samples were subject to stress via diametral loading using an indirect tensile test geometry. Cylindrical samples of rocks and concrete were subject to hydraulic fracture tests, and rectangular samples of fibre reinforced composite were subject to direct tensile loading. The majority of the samples were elastically anisotropic. Full waveform acoustic emission and tomographic data were collected while these samples were under load to give information concerning changes in the structure of the material as it was undergoing stress change and/or failure. Analysis of this data indicates that AE and tomographic techniques mutually compliment each other to give a view of the stress induced elastic changes in the tested samples.

  8. Combined positron emission tomography and computed tomography to visualize and quantify fluid flow in sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Fernø, M. A.; Gauteplass, J.; Hauge, L. P.; Abell, G. E.; Adamsen, T. C. H.; Graue, A.

    2015-09-01

    Here we show for the first time the combined positron emission tomography (PET) and computed tomography (CT) imaging of flow processes within porous rocks to quantify the development in local fluid saturations. The coupling between local rock structure and displacement fronts is demonstrated in exploratory experiments using this novel approach. We also compare quantification of 3-D temporal and spatial water saturations in two similar CO2 storage tests in sandstone imaged separately with PET and CT. The applicability of each visualization technique is evaluated for a range of displacement processes, and the favorable implementation of combining PET/CT for laboratory core analysis is discussed. We learn that the signal-to-noise ratio (SNR) is over an order of magnitude higher for PET compared with CT for the studied processes.

  9. Unusual case of infantile fibrosarcoma evaluated on F-18 fluorodeoxyglucose positron emission tomography-computed tomography.

    PubMed

    Bedmutha, Akshay; Singh, Natasha; Shivdasani, Divya; Gupta, Nitin

    2016-01-01

    Infantile fibrosarcoma (IFS) is a rare soft-tissue sarcoma originating from extremities and occasionally from axial soft tissue. The prognosis is good with favorable long-term survival. It is rarely metastasizing tumor, the chances being lesser with IFS originating from extremities. Use of neoadjuvant chemotherapy (NACT) as a treatment regime further reduces the chances of local relapse and distant metastasis. The organs commonly affected in metastatic IFS are lungs and lymph nodes. We report an unusual case of an IFS originating from extremity, which received NACT, yet presented with an early metastatic disease involving soft tissues and sparing lungs and lymph nodes, as demonstrated on fluorodeoxyglucose positron emission tomography-computed tomography. PMID:27385891

  10. Unusual case of infantile fibrosarcoma evaluated on F-18 fluorodeoxyglucose positron emission tomography-computed tomography

    PubMed Central

    Bedmutha, Akshay; Singh, Natasha; Shivdasani, Divya; Gupta, Nitin

    2016-01-01

    Infantile fibrosarcoma (IFS) is a rare soft-tissue sarcoma originating from extremities and occasionally from axial soft tissue. The prognosis is good with favorable long-term survival. It is rarely metastasizing tumor, the chances being lesser with IFS originating from extremities. Use of neoadjuvant chemotherapy (NACT) as a treatment regime further reduces the chances of local relapse and distant metastasis. The organs commonly affected in metastatic IFS are lungs and lymph nodes. We report an unusual case of an IFS originating from extremity, which received NACT, yet presented with an early metastatic disease involving soft tissues and sparing lungs and lymph nodes, as demonstrated on fluorodeoxyglucose positron emission tomography-computed tomography. PMID:27385891

  11. A case of sarcoidosis diagnosed by positron emission tomography/computed tomography

    PubMed Central

    Aksoy, Sabire Yilmaz; Özdemir, Elif; Sentürk, Aysegül; Türkölmez, Seyda

    2016-01-01

    Sarcoidosis is a multisystem granulomatous disorder of unknown cause which may affect any organ or system but primarily involve the lungs and the lymphatic system. Extrapulmonary sarcoidosis represents approximately 30-50% of patients. We report the case of a 51-year-old female who presented with increasing complaints of a cough, weakness, weight loss, and chest pain and who was found to have a suspicious lesion on thorax computed tomography(CT). Fluorodeoxyglucose (FDG) positron emission tomography/CT performed for diagnostic purposes demonstrated increased FDG accumulation at the bilateral enlarged parotid and lacrimal gland and in the reticulonodular infiltration area located in the left lung as well as multiple lymphadenopathies with increased FDG accumulation. There were also hepatosplenomegaly and splenic uptake. Skin biopsy showed noncaseating granulomas, and the patient was diagnosed as stage 2 sarcoidosis. PMID:27385890

  12. Depiction of ventriculoperitoneal shunt obstruction with single-photon emission computed tomography/computed tomography

    PubMed Central

    Aksoy, Sabire Yılmaz; Vatankulu, Betül; Uslu, Lebriz; Halac, Metin

    2016-01-01

    An 83-year-old male patient with ventriculoperitoneal shunt underwent radionuclide shunt study using single-photon emission computed tomography/computed tomography (SPECT/CT) to evaluate the shunt patency. The planar images showed activity at the cranial region and spinal canal but no significant activity at the peritoneal cavity. However, SPECT/CT images clearly demonstrated accumulation of activity at the superior part of bifurcation level with no activity at the distal end of shunt as well as no spilling of radiotracer into the peritoneal cavity indicating shunt obstruction. SPECT/CT makes the interpretation of radionuclide shunt study more accurate and easier as compared with traditional planar images. PMID:27385906

  13. A case of sarcoidosis diagnosed by positron emission tomography/computed tomography.

    PubMed

    Aksoy, Sabire Yilmaz; Özdemir, Elif; Sentürk, Aysegül; Türkölmez, Seyda

    2016-01-01

    Sarcoidosis is a multisystem granulomatous disorder of unknown cause which may affect any organ or system but primarily involve the lungs and the lymphatic system. Extrapulmonary sarcoidosis represents approximately 30-50% of patients. We report the case of a 51-year-old female who presented with increasing complaints of a cough, weakness, weight loss, and chest pain and who was found to have a suspicious lesion on thorax computed tomography(CT). Fluorodeoxyglucose (FDG) positron emission tomography/CT performed for diagnostic purposes demonstrated increased FDG accumulation at the bilateral enlarged parotid and lacrimal gland and in the reticulonodular infiltration area located in the left lung as well as multiple lymphadenopathies with increased FDG accumulation. There were also hepatosplenomegaly and splenic uptake. Skin biopsy showed noncaseating granulomas, and the patient was diagnosed as stage 2 sarcoidosis. PMID:27385890

  14. Quantitative simultaneous positron emission tomography and magnetic resonance imaging

    PubMed Central

    Ouyang, Jinsong; Petibon, Yoann; Huang, Chuan; Reese, Timothy G.; Kolnick, Aleksandra L.; El Fakhri, Georges

    2014-01-01

    Abstract. Simultaneous positron emission tomography and magnetic resonance imaging (PET-MR) is an innovative and promising imaging modality that is generating substantial interest in the medical imaging community, while offering many challenges and opportunities. In this study, we investigated whether MR surface coils need to be accounted for in PET attenuation correction. Furthermore, we integrated motion correction, attenuation correction, and point spread function modeling into a single PET reconstruction framework. We applied our reconstruction framework to in vivo animal and patient PET-MR studies. We have demonstrated that our approach greatly improved PET image quality. PMID:26158055

  15. Quantitative simultaneous positron emission tomography and magnetic resonance imaging.

    PubMed

    Ouyang, Jinsong; Petibon, Yoann; Huang, Chuan; Reese, Timothy G; Kolnick, Aleksandra L; El Fakhri, Georges

    2014-10-01

    Simultaneous positron emission tomography and magnetic resonance imaging (PET-MR) is an innovative and promising imaging modality that is generating substantial interest in the medical imaging community, while offering many challenges and opportunities. In this study, we investigated whether MR surface coils need to be accounted for in PET attenuation correction. Furthermore, we integrated motion correction, attenuation correction, and point spread function modeling into a single PET reconstruction framework. We applied our reconstruction framework to in vivo animal and patient PET-MR studies. We have demonstrated that our approach greatly improved PET image quality. PMID:26158055

  16. Efficient photon transport in positron emission tomography simulations using VMC++

    NASA Astrophysics Data System (ADS)

    Kawrakow, I.; Mitev, K.; Gerganov, G.; Madzhunkov, J.; Kirov, A.

    2008-02-01

    vmcPET, a VMC++ based fast code for simulating photon transport through the patient geometry for use in positron emission tomography related calculations, is presented. vmcPET is shown to be between 250 and 425 times faster than GATE in completely analog mode and up to 50000 times faster when using advanced variance reduction techniques. Excellent agreement between vmcPET and EGSnrc and GATE benchmarks is found. vmcPET is coupled to GATE via phase-space files of particles emerging from the patient geometry.

  17. Spatial emission tomography reconstruction using Pitman-Yor process

    SciTech Connect

    Fall, Mame Diarra; Mohammad-Djafari, Ali; Barat, Eric; Comtat, Claude

    2009-12-08

    In this paper, we address the problem of emission tomography spatial reconstruction in three dimensions following a Bayesian nonparametric approach. Our model makes use of a generalization of the Dirichlet process called Pitman-Yor process. The problem in this approach is to deal with the infinite representation of the distribution in the inference. So we propose an efficient Markov Chain Monte-Carlo sampling scheme which is able to generate samples from the posterior distribution of the activity distribution. An application to 3D-PET reconstruction is presented.

  18. Studying the pulmonary circulation with positron emission tomography

    SciTech Connect

    Schuster, D.P.; Mintun, M.A.

    1988-01-01

    Positron emission tomography and appropriately labeled, short-lived radiopharmaceuticals can be used to study a variety of physiologic processes within the lung. Recently, methods have been developed to measure regional pulmonary blood flow and pulmonary vascular permeability to protein macromolecules. The advantages of these techniques include accurate quantitation, regional data available in an image format, noninvasiveness, and repeatability. These methods have recently been applied to studies of hypoxic vasoconstriction, pulmonary edema, and chronic obstructive lung disease in man and large experimental animals. Although the technology is complex and requires the integration of people from a variety of disciplines, these methods offer a unique opportunity to study in vivo lung physiology.

  19. Positron Emission Tomography Findings in Atypical Polypoid Adenomyoma

    PubMed Central

    Fukami, Tatsuya; Yoshikai, Tomonori; Tsujioka, Hiroshi; Tohyama, Atsushi; Sorano, Sumire; Matsuoka, Sakiko; Yamamoto, Hiroko; Nakamura, Sumie; Goto, Maki; Matsuoka, Ryoei; Oya, Masafumi; Torii, Yoshikuni; Eguchi, Fuyuki

    2016-01-01

    Atypical polypoid adenomyoma (APAM) is a rare polypoid tumor of the uterus composed of atypical endometrial glands surrounded by smooth muscle. A 29-year-old nulligravida, was clinically diagnosed with endocervical myoma and underwent trans-uterine cervical resection with hysteroscope. The histopathological diagnosis of specimens was APAM. Eight months later, she diagnosed recurrent uterine tumor. The positron emission tomography (PET-CT) imaging showed an increased fluorodeoxyglucose uptake. She has performed hysterectomy and was diagnosed APAM. Therapy for APAM depends on multiple factors such as age at presentation and desire for childbearing among others. This is the first report of PET-CT findings in APAM. PMID:27134711

  20. Flow visualization in porous media via Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Khalili, A.; Basu, A. J.; Pietrzyk, U.

    1998-04-01

    We demonstrate here the use of a non-invasive technique based on Positron Emission Tomography (PET) in visualizing and in making quantitative measurements of scalar transport through natural opaque permeable sediments. Along with various other possibilities, this technique has the potential to help improve the understanding of processes that take place at the seabeds between the porewater and the overlying water, which result in exchange of nutrients, toxins and solute. Unlike many other methods, PET is able to produce full three-dimensional pictures of the percolation of fluid through not only "constructed" but also natural porous media.

  1. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    SciTech Connect

    Morris, Christopher L.; Bourke, Mark A.; Byler, Darrin D.; Chen, Ching-Fong; Hogan, Gary E.; Hunter, James F.; Kwiatkowski, Kris K.; Mariam, Fesseha G.; McClellan, Kenneth J.; Merrill, Frank E.; Morley, Deborah J.; Saunders, Alexander

    2013-02-11

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. Also, we show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods has been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.

  2. Detection of lung cancer in patients with pneumoconiosis by fluorodeoxyglucose-positron emission tomography/computed tomography: four cases.

    PubMed

    Yu, Hua; Zhang, Hua; Wang, Yanli; Cui, Xinjian; Han, Jiankui

    2013-01-01

    We report 4 cases of lung cancer in patients with pneumoconiosis detected by F18-fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT), which could differentiate lung cancer and pneumoconiosis. FDG-PET/CT may be useful in cancer screening for patients with pneumoconiosis. PMID:23369632

  3. Pure hemidystonia with basal ganglion abnormalities on positron emission tomography

    SciTech Connect

    Perlmutter, J.S.; Raichle, M.E.

    1984-03-01

    We present a patient with hemidystonia and an abnormality of the contralateral basal ganglion seen only with positron emission tomography. A 50-year-old sinistral man suffered minor trauma to the right side of his head and neck. Within 20 minutes he developed paroxysmal intermittent dystonic posturing of his right face, forearm, hand, and foot, with weaker contractions of the left foot, lasting several seconds and recurring every few minutes. Neurological findings between spells were normal. The following were also normal: electrolyte, calcium, magnesium, and arterial blood gas levels, and findings of drug screen, cerebrospinal fluid examination, electroencephalography with nasopharyngeal leads, computed tomographic scanning (initially and four weeks later), and cerebral angiography. Positron emission tomographic scanning revealed abnormalities in the left basal ganglion region, including decreased oxygen metabolism, decreased oxygen extraction, increased blood volume, and increased blood flow.

  4. Dynamic Positron Emission Tomography Imaging of Renal Clearable Gold Nanoparticles.

    PubMed

    Chen, Feng; Goel, Shreya; Hernandez, Reinier; Graves, Stephen A; Shi, Sixiang; Nickles, Robert J; Cai, Weibo

    2016-05-01

    Optical imaging has been the primary imaging modality for nearly all of the renal clearable nanoparticles since 2007. Due to the tissue depth penetration limitation, providing accurate organ kinetics non-invasively has long been a huge challenge. Although a more quantitative imaging technique has been developed by labeling nanoparticles with single-photon emission computed tomography (SPECT) isotopes, the low temporal resolution of SPECT still limits its potential for visualizing the rapid dynamic process of renal clearable nanoparticles in vivo. The dynamic positron emission tomography (PET) imaging of renal clearable gold (Au) nanoparticles by labeling them with copper-64 ((64) Cu) to form (64) Cu-NOTA-Au-GSH is reported. Systematic nanoparticle synthesis and characterizations are performed to demonstrate the efficient renal clearance of as-prepared nanoparticles. A rapid renal clearance of (64) Cu-NOTA-Au-GSH is observed (>75%ID at 24 h post-injection) with its elimination half-life calculated to be less than 6 min, over 130 times shorter than previously reported similar nanoparticles. Dynamic PET imaging not only addresses the current challenges in accurately and non-invasively acquiring the organ kinetics, but also potentially provides a highly useful tool for studying renal clearance mechanism of other ultra-small nanoparticles, as well as the diagnosis of kidney diseases in the near future. PMID:27062146

  5. Single photon emission tomography imaging in parkinsonian disorders: a review.

    PubMed

    Acton, P D; Mozley, P D

    2000-01-01

    Parkinsonian symptoms are associated with a number of neurodegenerative disorders, such as Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. Pathological evidence has shown clearly that these disorders are associated with a loss of neurons, particularly in the nigrostriatal dopaminergic pathway. Positron emission tomography (PET) and single photon emission tomography (SPECT) now are able to visualise and quantify changes in cerebral blood flow, glucose metabolism, and dopaminergic function produced by parkinsonian disorders. Both PET and SPECT have become important tools in the differential diagnosis of these diseases, and may have sufficient sensitivity to detect neuronal changes before the onset of clinical symptoms. Imaging is now being utilised to elucidate the genetic contribution to Parkinson's disease, and in longitudinal studies to assess the efficacy and mode of action of neuroprotective drug and surgical treatments. This review summarises recent applications of SPECT imaging in the study of parkinsonian disorders, with particular reference to the increasing role it is playing in the understanding, diagnosis and management of these diseases. PMID:11455039

  6. Positron emission tomography: physics, instrumentation, and image analysis.

    PubMed

    Porenta, G

    1994-01-01

    Positron emission tomography (PET) is a noninvasive diagnostic technique that permits reconstruction of cross-sectional images of the human body which depict the biodistribution of PET tracer substances. A large variety of physiological PET tracers, mostly based on isotopes of carbon, nitrogen, oxygen, and fluorine is available and allows the in vivo investigation of organ perfusion, metabolic pathways and biomolecular processes in normal and diseased states. PET cameras utilize the physical characteristics of positron decay to derive quantitative measurements of tracer concentrations, a capability that has so far been elusive for conventional SPECT (single photon emission computed tomography) imaging techniques. Due to the short half lives of most PET isotopes, an on-site cyclotron and a radiochemistry unit are necessary to provide an adequate supply of PET tracers. While operating a PET center in the past was a complex procedure restricted to few academic centers with ample resources, PET technology has rapidly advanced in recent years and has entered the commercial nuclear medicine market. To date, the availability of compact cyclotrons with remote computer control, automated synthesis units for PET radiochemistry, high-performance PET cameras, and user-friendly analysis workstations permits installation of a clinical PET center within most nuclear medicine facilities. This review provides simple descriptions of important aspects concerning physics, instrumentation, and image analysis in PET imaging which should be understood by medical personnel involved in the clinical operation of a PET imaging center. PMID:7941595

  7. Reconstruction in emission tomography via a Bayesian multiscale statistical framework

    NASA Astrophysics Data System (ADS)

    Kolaczyk, Eric D.; Nowak, Robert D.

    2000-12-01

    Recently the authors introduced a general Bayesian statistical method for modeling and analysis in linear inverse problems involving certain types of count data. Emission-based tomography is medical imaging is a particularly important and common examples of this type of proem. In this paper we provide an overview of the methodology and illustrate its application to problems in emission tomography through a series of simulated and real- data examples. The framework rests on the special manner in which a multiscale representation of recursive dyadic partitions interacts with the statistical likelihood of data with Poisson noise characteristics. In particular, the likelihood function permits a factorization, with respect to location-scale indexing, analogous to the manner in which, say, an arbitrary signal allows a wavelet transform. Recovery of an object from tomographic data is the posed as a problem involving the statistical estimation of a multiscale parameter vector. A type of statistical shrinkage estimation is used, induced by careful choice of a Bayesian prior probability structure for the parameters. Finally, the ill-posedness of the tomographic imaging problem is accounted for by embedding the above-described framework within a larger, but simpler statistical algorithm problem, via the so-called Expectation-Maximization approach. The resulting image reconstruction algorithm is iterative in nature, entailing the calculation of two closed-form algebraic expression at each iteration. Convergence of the algorithm to a unique solution, under appropriate choice of Bayesian prior, can be assured.

  8. Is there any role of positron emission tomography computed tomography for predicting resectability of gallbladder cancer?

    PubMed

    Kim, Jaihwan; Ryu, Ji Kon; Kim, Chulhan; Paeng, Jin Chul; Kim, Yong-Tae

    2014-05-01

    The role of integrated (18)F-2-fluoro-2-deoxy-D-glucose positron emission tomography computed tomography (PET-CT) is uncertain in gallbladder cancer. The aim of this study was to show the role of PET-CT in gallbladder cancer patients. Fifty-three patients with gallbladder cancer underwent preoperative computed tomography (CT) and PET-CT scans. Their medical records were retrospectively reviewed. Twenty-six patients underwent resection. Based on the final outcomes, PET-CT was in good agreement (0.61 to 0.80) with resectability whereas CT was in acceptable agreement (0.41 to 0.60) with resectability. When the diagnostic accuracy of the predictions for resectability was calculated with the ROC curve, the accuracy of PET-CT was higher than that of CT in patients who underwent surgical resection (P=0.03), however, there was no difference with all patients (P=0.12). CT and PET-CT had a discrepancy in assessing curative resection in nine patients. These consisted of two false negative and four false positive CT results (11.3%) and three false negative PET-CT results (5.1%). PET-CT was in good agreement with the final outcomes compared to CT. As a complementary role of PEC-CT to CT, PET-CT tended to show better prediction about resectability than CT, especially due to unexpected distant metastasis. PMID:24851025

  9. Ionoacoustic tomography of the proton Bragg peak in combination with ultrasound and optoacoustic imaging

    PubMed Central

    Kellnberger, Stephan; Assmann, Walter; Lehrack, Sebastian; Reinhardt, Sabine; Thirolf, Peter; Queirós, Daniel; Sergiadis, George; Dollinger, Günther; Parodi, Katia; Ntziachristos, Vasilis

    2016-01-01

    Ions provide a more advantageous dose distribution than photons for external beam radiotherapy, due to their so-called inverse depth dose deposition and, in particular a characteristic dose maximum at their end-of-range (Bragg peak). The favorable physical interaction properties enable selective treatment of tumors while sparing surrounding healthy tissue, but optimal clinical use requires accurate monitoring of Bragg peak positioning inside tissue. We introduce ionoacoustic tomography based on detection of ion induced ultrasound waves as a technique to provide feedback on the ion beam profile. We demonstrate for 20 MeV protons that ion range imaging is possible with submillimeter accuracy and can be combined with clinical ultrasound and optoacoustic tomography of similar precision. Our results indicate a simple and direct possibility to correlate, in-vivo and in real-time, the conventional ultrasound echo of the tumor region with ionoacoustic tomography. Combined with optoacoustic tomography it offers a well suited pre-clinical imaging system. PMID:27384505

  10. Ionoacoustic tomography of the proton Bragg peak in combination with ultrasound and optoacoustic imaging.

    PubMed

    Kellnberger, Stephan; Assmann, Walter; Lehrack, Sebastian; Reinhardt, Sabine; Thirolf, Peter; Queirós, Daniel; Sergiadis, George; Dollinger, Günther; Parodi, Katia; Ntziachristos, Vasilis

    2016-01-01

    Ions provide a more advantageous dose distribution than photons for external beam radiotherapy, due to their so-called inverse depth dose deposition and, in particular a characteristic dose maximum at their end-of-range (Bragg peak). The favorable physical interaction properties enable selective treatment of tumors while sparing surrounding healthy tissue, but optimal clinical use requires accurate monitoring of Bragg peak positioning inside tissue. We introduce ionoacoustic tomography based on detection of ion induced ultrasound waves as a technique to provide feedback on the ion beam profile. We demonstrate for 20 MeV protons that ion range imaging is possible with submillimeter accuracy and can be combined with clinical ultrasound and optoacoustic tomography of similar precision. Our results indicate a simple and direct possibility to correlate, in-vivo and in real-time, the conventional ultrasound echo of the tumor region with ionoacoustic tomography. Combined with optoacoustic tomography it offers a well suited pre-clinical imaging system. PMID:27384505

  11. MRI-Based Computed Tomography Metal Artifact Correction Method for Improving Proton Range Calculation Accuracy

    SciTech Connect

    Park, Peter C.; Schreibmann, Eduard; Roper, Justin; Elder, Eric; Crocker, Ian; Fox, Tim; Zhu, X. Ronald; Dong, Lei; Dhabaan, Anees

    2015-03-15

    Purpose: Computed tomography (CT) artifacts can severely degrade dose calculation accuracy in proton therapy. Prompted by the recently increased popularity of magnetic resonance imaging (MRI) in the radiation therapy clinic, we developed an MRI-based CT artifact correction method for improving the accuracy of proton range calculations. Methods and Materials: The proposed method replaces corrupted CT data by mapping CT Hounsfield units (HU number) from a nearby artifact-free slice, using a coregistered MRI. MRI and CT volumetric images were registered with use of 3-dimensional (3D) deformable image registration (DIR). The registration was fine-tuned on a slice-by-slice basis by using 2D DIR. Based on the intensity of paired MRI pixel values and HU from an artifact-free slice, we performed a comprehensive analysis to predict the correct HU for the corrupted region. For a proof-of-concept validation, metal artifacts were simulated on a reference data set. Proton range was calculated using reference, artifactual, and corrected images to quantify the reduction in proton range error. The correction method was applied to 4 unique clinical cases. Results: The correction method resulted in substantial artifact reduction, both quantitatively and qualitatively. On respective simulated brain and head and neck CT images, the mean error was reduced from 495 and 370 HU to 108 and 92 HU after correction. Correspondingly, the absolute mean proton range errors of 2.4 cm and 1.7 cm were reduced to less than 2 mm in both cases. Conclusions: Our MRI-based CT artifact correction method can improve CT image quality and proton range calculation accuracy for patients with severe CT artifacts.

  12. Bragg peak prediction from quantitative proton computed tomography using different path estimates.

    PubMed

    Wang, Dongxu; Mackie, T Rockwell; Tomé, Wolfgang A

    2011-02-01

    This paper characterizes the performance of the straight-line path (SLP) and cubic spline path (CSP) as path estimates used in reconstruction of proton computed tomography (pCT). The GEANT4 Monte Carlo simulation toolkit is employed to simulate the imaging phantom and proton projections. SLP, CSP and the most-probable path (MPP) are constructed based on the entrance and exit information of each proton. The physical deviations of SLP, CSP and MPP from the real path are calculated. Using a conditional proton path probability map, the relative probability of SLP, CSP and MPP are calculated and compared. The depth dose and Bragg peak are predicted on the pCT images reconstructed using SLP, CSP, and MPP and compared with the simulation result. The root-mean-square physical deviations and the cumulative distribution of the physical deviations show that the performance of CSP is comparable to MPP while SLP is slightly inferior. About 90% of the SLP pixels and 99% of the CSP pixels lie in the 99% relative probability envelope of the MPP. Even at an imaging dose of ∼0.1 mGy the proton Bragg peak for a given incoming energy can be predicted on the pCT image reconstructed using SLP, CSP, or MPP with 1 mm accuracy. This study shows that SLP and CSP, like MPP, are adequate path estimates for pCT reconstruction, and therefore can be chosen as the path estimation method for pCT reconstruction, which can aid the treatment planning and range prediction of proton radiation therapy. PMID:21212472

  13. Simulation study of respiratory-induced errors in cardiac positron emission tomography/computed tomography

    SciTech Connect

    Fitzpatrick, Gianna M.; Wells, R. Glenn

    2006-08-15

    Heart disease is a leading killer in Canada and positron emission tomography (PET) provides clinicians with in vivo metabolic information for diagnosing heart disease. Transmission data are usually acquired with {sup 68}Ge, although the advent of PET/CT scanners has made computed tomography (CT) an alternative option. The fast data acquisition of CT compared to PET may cause potential misregistration problems, leading to inaccurate attenuation correction (AC). Using Monte Carlo simulations and an anthropomorphic dynamic computer phantom, this study determines the magnitude and location of respiratory-induced errors in radioactivity uptake measured in cardiac PET/CT. A homogeneous tracer distribution in the heart was considered. The AC was based on (1) a time-averaged attenuation map (2) CT maps from a single phase of the respiratory cycle, and (3) CT maps phase matched to the emission data. Circumferential profiles of the heart uptake were compared and differences of up to 24% were found between the single-phase CT-AC method and the true phantom values. Simulation results were supported by a PET/CT canine study which showed differences of up to 10% in the heart uptake in the lung-heart boundary region when comparing {sup 68}Ge- to CT-based AC with the CT map acquired at end inhalation.

  14. 77 FR 71802 - Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-04

    ... announced in the Federal Register on February 14, 2012 (77 FR 8262), and Docket No. FDA-2012-D- 0081 was... Positron Emission Tomography Drugs; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice... ``Investigational New Drug Applications for Positron Emission Tomography (PET) Drugs.'' The guidance is intended...

  15. Plasma Emission Profile Recreation using Soft X-Ray Tomography

    NASA Astrophysics Data System (ADS)

    Page, J. W.; Mauel, M. E.; Levesque, J. P.

    2015-11-01

    With sufficient views from multiple diode arrays, soft X-ray tomography is an invaluable plasma diagnostic because it is a non-perturbing method to reconstruct the emission within the interior of the plasma. In preparation for the installation of new SXR arrays in HBT-EP, we compute high-resolution tomographic reconstructions of discharges having kink-like structures that rotate nearly rigidly. By assuming a uniform angular mapping from the kink mode rotation, Δϕ ~ ωΔ t, a temporal sequence from a single 16-diode fan array represents as many as 16 x 100 independent views. We follow the procedure described by Wang and Granetz and use Bessel basis functions to take the inverse Radon transform. This transform is fit to our data using a least-squares method to estimate the internal SXR emissivity as a sum of polar functions. By varying different parameters of the transformation, we optimize the quality of our recreation of the emission profile and quantify how the reconstruction changes with the azimuthal order of the transform. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  16. Positron emission tomography in patients with clinically diagnosed Alzheimer's disease.

    PubMed Central

    McGeer, P L; Kamo, H; Harrop, R; Li, D K; Tuokko, H; McGeer, E G; Adam, M J; Ammann, W; Beattie, B L; Calne, D B

    1986-01-01

    Fourteen patients who had clinically diagnosed Alzheimer's disease with mild to severe dementia (mean age 69.1 years) were evaluated by calculation of local cerebral metabolic rate for glucose (LCMR-gl) based on uptake of 18F-2-fluoro-2-deoxyglucose (FDG) detected with positron emission tomography (PET). PET scanning showed that the patients had significantly lower LCMR-gl values than 11 age-matched neurologically normal volunteers (mean age 66.3 years). The differences were most marked in the temporal cortex, followed by the frontal, parietal and occipital cortex. In each case the LCMR-gl value was below the lowest control value in at least one cortical area and usually in several; the reduction in LCMR-gl and the number of regions involved in the patients increased with the severity of the dementia. Deficits noted in neuropsychologic testing generally correlated with those predicted from loss of regional cortical metabolism. The patients with Alzheimer's disease were also examined with magnetic resonance imaging, computed tomography or both; the degree of atrophy found showed only a poor correlation with the neuropsychologic deficit. Significant atrophy was also noted in some of the controls. A detailed analysis of LCMR-gl values in selected cerebral regions of various sizes refuted the hypothesis that the reduction in cortical glucose metabolism in Alzheimer's disease is due to the filling by metabolically inert cerebrospinal fluid of space created by tissue atrophy. Images Fig. 2 Fig. 3 Fig. 4 Fig. 7 Fig. 8 Fig. 9 PMID:3512063

  17. Sooting flame thermometry using emission/absorption tomography.

    PubMed

    Hall, R J; Bonczyk, P A

    1990-11-01

    A sooting flame temperature measurement technique has been demonstrated based on emission-absorption tomography. The approach applies the algorithms of Fourier transform tomography to deconvolve local soot absorption coefficient and Planck function (temperature) from sets of parallel line-of-sight measurements. The technique has the advantage that it is experimentally simple and does not require involved data reduction. For small particles, there is also no sensitivity of the inferred temperature to possibly uncertain medium parameters. Its main limitation seems to be that it will not work well for vanishingly small absorption, but this could be overcome in practice by seeding and then performing all work at the wavelength of a seed resonance. While in principle limited to optically thin flames, accurate corrections for moderate optical thickness can often be made. A self-consistent comparison of measured global radiation from a sooting ethylene flame with a radiative transfer calculation based on measured temperature and soot absorption parameters has been performed. PMID:20577438

  18. Positron emission tomography in aging and dementia: effect of cerebral atrophy

    SciTech Connect

    Chawluk, J.B.; Alavi, A.; Dann, R.; Hurtig, H.I.; Bais, S.; Kushner, M.J.; Zimmerman, R.A.; Reivich, M.

    1987-04-01

    The spatial resolution of current positron emission tomography (PET) scanners does not allow a distinction between cerebrospinal fluid (CSF) containing spaces and contiguous brain tissue. Data analysis strategies which therefore purport to quantify cerebral metabolism per unit mass brain tissue are in fact measuring a value which may be artifactually reduced due to contamination by CSF. We studied cerebral glucose metabolism (CMRglc) in 17 healthy elderly individuals and 24 patients with Alzheimer's dementia using (/sup 18/F)fluorodeoxyglucose and PET. All subjects underwent x-ray computed tomography (XCT) scanning at the time of their PET study. The XCT scans were analyzed volumetrically, in order to determine relative areas for ventricles, sulci, and brain tissue. Global CMRglc was calculated before and after correction for contamination by CSF (cerebral atrophy). A greater increase in global CMRglc after atrophy correction was seen in demented individuals compared with elderly controls (16.9% versus 9.0%, p less than 0.0005). Additional preliminary data suggest that volumetric analysis of proton-NMR images may prove superior to analysis of XCT data in quantifying the degree of atrophy. Appropriate corrections for atrophy should be employed if current PET scanners are to accurately measure actual brain tissue metabolism in various pathologic states.

  19. Single photon emission computed tomography (SPECT) in epilepsy

    SciTech Connect

    Leroy, R.F.

    1991-12-31

    Epilepsy is a common neurologic disorder which has just begun to be studied with single photon emission computerized tomography (SPECT). Epilepsy usually is studied with electroencephalographic (EEG) techniques that demonstrate the physiologic changes that occur during seizures, and with neuroimaging techniques that show the brain structures where seizures originate. Neither method alone has been adequate to describe the pathophysiology of the patient with epilepsy. EEG techniques lack anatomic sensitivity, and there are no structural abnormalities shown by neuroimaging which are specific for epilepsy. Functional imaging (FI) has developed as a physiologic tool with anatomic sensitivity, and SPECT has been promoted as a FI technique because of its potentially wide availability. However, SPECT is early in its development and its clinical utility for epilepsy still has to be demonstrated. To understand this role of SPECT, consideration must be given to the pathophysiology of epilepsy, brain physiology, types of seizure, epileptic syndromes, and the SPECT technique itself. 44 refs., 2 tabs.

  20. Studies of the brain cannabinoid system using positron emission tomography

    SciTech Connect

    Gatley, S.J.; Volkow, N.D.

    1995-10-01

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.

  1. Simulation of Medical Imaging Systems: Emission and Transmission Tomography

    NASA Astrophysics Data System (ADS)

    Harrison, Robert L.

    Simulation is an important tool in medical imaging research. In patient scans the true underlying anatomy and physiology is unknown. We have no way of knowing in a given scan how various factors are confounding the data: statistical noise; biological variability; patient motion; scattered radiation, dead time, and other data contaminants. Simulation allows us to isolate a single factor of interest, for instance when researchers perform multiple simulations of the same imaging situation to determine the effect of statistical noise or biological variability. Simulations are also increasingly used as a design optimization tool for tomographic scanners. This article gives an overview of the mechanics of emission and transmission tomography simulation, reviews some of the publicly available simulation tools, and discusses trade-offs between the accuracy and efficiency of simulations.

  2. Current good manufacturing practice for positron emission tomography drugs.

    PubMed

    2009-12-10

    The Food and Drug Administration (FDA) is issuing regulations on current good manufacturing practice (CGMP) for positron emission tomography (PET) drugs. The regulations are intended to ensure that PET drugs meet the requirements of the Federal Food, Drug, and Cosmetic Act (the act) regarding safety, identity, strength, quality, and purity. In this final rule, we are establishing CGMP regulations for approved PET drugs. For investigational and research PET drugs, the final rule states that the requirement to follow CGMP may be met by complying with these regulations or by producing PET drugs in accordance with the United States Pharmacopeia (USP) general chapter on compounding PET radiopharmaceuticals. We are establishing these CGMP requirements for PET drugs under the provisions of the Food and Drug Administration Modernization Act of 1997 (the Modernization Act). Elsewhere in this issue of the Federal Register, we are announcing the availability of a guidance entitled "PET Drugs--Current Good Manufacturing Practice (CGMP)." PMID:20169678

  3. FDG positron emission computed tomography in a study of aphasia

    SciTech Connect

    Metter, E.J.; Wasterlain, C.G.; Kuhl, D.E.; Hanson, W.R.; Phelps, M.E.

    1981-08-01

    Positron emission computed tomography (PECT) using 18F-2-fluoro-2-deoxy-D-glucose (FDG) was used to investigate the correlations between clinical status, anatomy (as described by CT), and metabolism in five patients with stable aphasia resulting from ischemic cerebral infarction. Local cerebral metabolic activity was diminished in an area larger than the area of infarction demonstrated by CT. In one patient, FDG PECT revealed a metabolic lesion that probably caused the aphasic syndrome and was not apparent by CT. The data suggest that reliance on CT in delineating the extent of the brain lesion in aphasia or other neuropsychological defects can be misleading; FDG PECT may provide important additional information. Two patients with similar metabolic lesions had very different clinical syndromes, showing that even when currently available methods are combined, major gaps remain in clinicoanatomical correlations in aphasia.

  4. Temporoparietal cortex in aphasia. Evidence from positron emission tomography

    SciTech Connect

    Metter, E.J.; Hanson, W.R.; Jackson, C.A.; Kempler, D.; van Lancker, D.; Mazziotta, J.C.; Phelps, M.E. )

    1990-11-01

    Forty-four aphasic patients were examined with (F18)-fluorodeoxyglucose positron emission tomography in a resting state to determine whether consistent glucose metabolic abnormalities were present. Ninety-seven percent of subjects showed metabolic abnormalities in the angular gyrus, 89% in the supramarginal gyrus, and 87% in the lateral and transverse superior temporal gyrus. Pearson product moment correlations were calculated between regional metabolic measures and performance on the Western Aphasia Battery. No significant correlations were found between the Western Aphasia Battery scores and right hemisphere metabolic measures. Most left hemisphere regions correlated with more than one score from the Western Aphasia Battery. Temporal but not frontal regions had significant correlations to the comprehension score. The left temporoparietal region was consistently affected in these subjects, suggesting that common features in the aphasias were caused by left temporoparietal dysfunction, while behavioral differences resulted from (1) the extent of temporoparietal changes, and (2) dysfunction elsewhere in the brain, particularly the left frontal and subcortical areas.

  5. A Review on Segmentation of Positron Emission Tomography Images

    PubMed Central

    Foster, Brent; Bagci, Ulas; Mansoor, Awais; Xu, Ziyue; Mollura, Daniel J.

    2014-01-01

    Positron Emission Tomography (PET), a non-invasive functional imaging method at the molecular level, images the distribution of biologically targeted radiotracers with high sensitivity. PET imaging provides detailed quantitative information about many diseases and is often used to evaluate inflammation, infection, and cancer by detecting emitted photons from a radiotracer localized to abnormal cells. In order to differentiate abnormal tissue from surrounding areas in PET images, image segmentation methods play a vital role; therefore, accurate image segmentation is often necessary for proper disease detection, diagnosis, treatment planning, and follow-ups. In this review paper, we present state-of-the-art PET image segmentation methods, as well as the recent advances in image segmentation techniques. In order to make this manuscript self-contained, we also briefly explain the fundamentals of PET imaging, the challenges of diagnostic PET image analysis, and the effects of these challenges on the segmentation results. PMID:24845019

  6. Central Nervous System Drug Evaluation Using Positron Emission Tomography

    PubMed Central

    Maeda, Jun; Shimada, Hitoshi; Nogami, Tsuyoshi; Arakawa, Ryosuke; Takano, Harumasa; Higuchi, Makoto; Ito, Hiroshi; Okubo, Yoshiro; Suhara, Tetsuya

    2011-01-01

    In conventional pharmacological research in the field of mental disorders, pharmacological effect and dose have been estimated by ethological approach and in vitro data of affinity to the site of action. In addition, the frequency of administration has been estimated from drug kinetics in blood. However, there is a problem regarding an objective index of drug effects in the living body. Furthermore, the possibility that the concentration of drug in blood does not necessarily reflect the drug kinetics in target organs has been pointed out. Positron emission tomography (PET) techniques have made progress for more than 20 years, and made it possible to measure the distribution and kinetics of small molecule components in living brain. In this article, we focused on rational drug dosing using receptor occupancy and proof-of-concept of drugs in the drug development process using PET. PMID:23431048

  7. Differential diagnosis of depression: relevance of positron emission tomography

    SciTech Connect

    Schwartz, J.M.; Baxter, L.R. Jr.; Mazziotta, J.C.; Gerner, R.H.; Phelps, M.E.

    1987-09-11

    The proper differential diagnosis of depression is important. A large body of research supports the division of depressive illness into bipolar and unipolar subtypes with respect to demographics, genetics, treatment response, and neurochemical mechanisms. Optimal treatment is different for unipolar and bipolar depressions. Treating a patient with bipolar depression as one would a unipolar patient may precipitate a serious manic episode or possibly even permanent rapid cycling disorder. The clinical distinction between these disorders, while sometimes difficult, can often be achieved through an increased diagnostic suspicion concerning a personal or family history of mania. Positron emission tomography and the FDG method, which allow in vivo study of the glucose metabolic rates for discrete cerebral structures, provide new evidence that bipolar and unipolar depression are two different disorders.

  8. Positron Emission Tomography: state of the art and future developments

    NASA Astrophysics Data System (ADS)

    Pizzichemi, M.

    2016-08-01

    Positron emission tomography (PET) plays a fundamental role in medical imaging, with a wide range of applications covering, among the others, oncology, neurology and cardiology. PET has undergone a steady technological evolution since its introduction in mid 20th century, from the development of 3D PET in the late 1980s, to the invention of PET/CT in the 1990s and more recently with the introduction of PET/MR scanners. The current research topics aiming to develop the next generation of PET scanners are summarized in this paper, focusing on the efforts to increase the sensitivity of the detectors, as long as improving their timing, spatial and energy resolutions, with the final goal of reducing the amount of radioactive dose received by the patients and the duration of the exams while improving at the same time the detectability of lesions.

  9. Wilson's disease studied with FDG and positron emission tomography

    SciTech Connect

    Hawkins, R.A.; Mazziotta, J.C.; Phelps, M.E.

    1987-11-01

    Four patients with Wilson's disease and eight normal controls were studied with 2-deoxy-2-(/sup 18/F)fluoro-D-glucose (FDG) and positron emission tomography (PET). The patients had diffusely reduced glucose metabolism in all brain regions evaluated compared with controls, with the exception of the thalamus. The ratio of the cerebral metabolic rate for glucose in the lenticular nuclei to hemispheres declined from 1.23 (+/- 0.14 SD) in controls to 1.03 (+/- 0.06) (p less than 0.025) in Wilson's disease patients. Compared with Huntington's disease, the PET FDG results in Wilson's disease indicate relatively less focal involvement of the caudate nucleus, more severe focal changes in the lenticular nuclei, and more significant global changes in glucose metabolism.

  10. Chelators for copper radionuclides in positron emission tomography radiopharmaceuticals†

    PubMed Central

    Cai, Zhengxin; Anderson, Carolyn J.

    2014-01-01

    The development of chelating agents for copper radionuclides in positron emission tomography radiopharmaceuticals has been a highly active and important area of study in recent years. The rapid evolution of chelators has resulted in highly specific copper chelators that can be readily conjugated to biomolecules and efficiently radiolabeled to form stable complexes in vivo. Chelators are not only designed for conjugation to monovalent biomolecules but also for incorporation into multivalent targeting ligands such as theranostic nanoparticles. These advancements have strengthened the role of copper radionuclides in the fields of nuclear medicine and molecular imaging. This review emphasizes developments of new copper chelators that have most greatly advanced the field of copper-based radiopharmaceuticals over the past 5 years. PMID:24347474

  11. Fuzzy-rule-based image reconstruction for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Mondal, Partha P.; Rajan, K.

    2005-09-01

    Positron emission tomography (PET) and single-photon emission computed tomography have revolutionized the field of medicine and biology. Penalized iterative algorithms based on maximum a posteriori (MAP) estimation eliminate noisy artifacts by utilizing available prior information in the reconstruction process but often result in a blurring effect. MAP-based algorithms fail to determine the density class in the reconstructed image and hence penalize the pixels irrespective of the density class. Reconstruction with better edge information is often difficult because prior knowledge is not taken into account. The recently introduced median-root-prior (MRP)-based algorithm preserves the edges, but a steplike streaking effect is observed in the reconstructed image, which is undesirable. A fuzzy approach is proposed for modeling the nature of interpixel interaction in order to build an artifact-free edge-preserving reconstruction. The proposed algorithm consists of two elementary steps: (1) edge detection, in which fuzzy-rule-based derivatives are used for the detection of edges in the nearest neighborhood window (which is equivalent to recognizing nearby density classes), and (2) fuzzy smoothing, in which penalization is performed only for those pixels for which no edge is detected in the nearest neighborhood. Both of these operations are carried out iteratively until the image converges. Analysis shows that the proposed fuzzy-rule-based reconstruction algorithm is capable of producing qualitatively better reconstructed images than those reconstructed by MAP and MRP algorithms. The reconstructed images are sharper, with small features being better resolved owing to the nature of the fuzzy potential function.

  12. Integrated telemedicine applications and services for oncological positron emission tomography.

    PubMed

    Kontaxakis, George; Visvikis, Dimitris; Ohl, Roland; Sachpazidis, Ilias; Suarez, Juan Pablo; Selby, Peter; Cheze-Le Rest, Catherine; Santos, Andres; Ortega, Fernando; Diaz, Javier; Pan, Leyun; Strauss, Ludwig; Dimitrakopoulou-Strauss, Antonia; Sakas, Georgios; Pozo, Miguel Angel

    2006-01-01

    TENPET (Trans European Network for Positron Emission Tomography) aims to evaluate the provision of integrated teleconsultation and intelligent computer supported cooperative work services for clinical positron emission tomography (PET) in Europe at its current stage, as it is a multi-centre project financially supported by the European Commission (Information Society, eTEN Program). It addresses technological challenges by linking PET centres and developing supporting services that permit remote consultation between professionals in the field. The technological platform (CE-marked) runs on Win2000/NT/XP systems and incorporates advanced techniques for image visualization, analysis and fusion, as well as for interactive communication and message handling for off-line communications. Four PET Centres from Spain, France and Germany participate to the pilot system trials. The performance evaluation of the system is carried out via log files and user-filled questionnaires on the frequency of the teleconsultations, their duration and efficacy, quality of the images received, user satisfaction, as well as on privacy, ethical and security issues. TENPET promotes the co-operation and improved communication between PET practitioners that are miles away from their peers or on mobile units, offering options for second opinion and training and permitting physicians to remotely consult patient data if they are away from their centre. It is expected that TENPET will have a significant impact in the development of new skills by PET professionals and will support the establishment of peripheral PET units. To our knowledge, TENPET is the first telemedicine service specifically designed for oncological PET. This report presents the technical innovations incorporated in the TENPET platform and the initial pilot studies at real and diverse clinical environments in the field of oncology. PMID:16525707

  13. False-positive Uptake on Positron Emission Tomography/Computed Tomography Immediately After Lung Biopsy

    PubMed Central

    Bae, Jung Min; Lee, Ho Yun; Choi, Joon Young

    2015-01-01

    Abstract 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) is an evolving tool in the field of oncology. 18F-fluorodeoxyglucose, however, is not a specific tool for malignant tumor that it may also accumulate in benign processes. To avoid false-positive interpretation of 18F-FDG-PET/computed tomography (CT), having knowledge of the potential pitfalls is important. The authors present a case of a patient with a lung mass who underwent fluoroscopy-guided transthoracic lung biopsy followed by 18F-FDG-PET/CT scan with a 4-hour interval between biopsy and scanning. Abnormally increased FDG uptake in the mass and pleural effusion was detected. Pathologic examination of the specimen, however, revealed only fibrous tissues with chronic inflammatory cells. On performing CT imaging, 1 month later, the mass and effusion had spontaneously resolved without treatment. Our findings suggest that PET/CT performed immediately following invasive procedures can result in false-positive results and thus mislead diagnosis. Therefore, the interval and order, in which PET/CT and invasive procedures are performed, should be carefully considered in oncologic work-up. PMID:26554786

  14. Role of positron emission tomography-computed tomography in non-small cell lung cancer.

    PubMed

    Garg, Pankaj Kumar; Singh, Saurabh Kumar; Prakash, Gaurav; Jakhetiya, Ashish; Pandey, Durgatosh

    2016-03-26

    Lung cancer is the leading cause of cancer-related mortality worldwide. Non-small cell carcinoma and small cell carcinoma are the main histological subtypes and constitutes around 85% and 15% of all lung cancer respectively. Multimodality treatment plays a key role in the successful management of lung cancer depending upon the histological subtype, stage of disease, and performance status. Imaging modalities play an important role in the diagnosis and accurate staging of the disease, in assessing the response to neoadjuvant therapy, and in the follow-up of the patients. Last decade has witnessed voluminous upsurge in the use of positron emission tomography-computed tomography (PET-CT); role of PET-CT has widened exponentially in the management of lung cancer. The present article reviews the role of 18-fluoro-deoxyglucose PET-CT in the management of non small cell lung cancer with emphasis on staging of the disease and the assessment of response to neoadjuvant therapy based on available literature. PMID:27018223

  15. Mycosis fungoides: Positron emission tomography/computed tomography in staging and monitoring the effect of therapy

    PubMed Central

    D’Souza, Maria Mathew; D’Souza, Paschal; Sharma, Rajnish; Jaimini, Abhinav; Mondal, Anupam

    2015-01-01

    A 58-year-old woman, diagnosed as a case of mycosis fungoides (MF), underwent [18F]-fluoro-D-glucose positron emission tomography/computed tomography (FDG PET/CT) examination. The study revealed intense FDG uptake in a large ulceroproliferative right thigh lesion, indurated plaques in the chest wall and left thigh, along with multiple sites of cutaneous involvement, axillary and inguinal lymphadenopathy. The patient underwent chemotherapy with CHOP regimen, radiotherapy for the right thigh lesion, along with topical corticosteroids and emollients for the disseminated cutaneous involvement. Repeat [18F]-FDG PET/CT study performed a year later, showed near complete disease regression specifically of the ulceroproliferative lesion and indurated cutaneous plaques, no change in lymphadenopathy, and a subtle diffuse progression of the remaining cutaneous lesions. A multidisciplinary approach to the diagnosis, staging and treatment of MF has long been suggested for optimizing outcomes from management of patients with this disease. This case highlights the potential role of incorporating PET/CT as a single modality imaging technique in the staging and assessment of response to therapy. PMID:25829740

  16. High-resolution positron emission tomography/computed tomography imaging of the mouse heart.

    PubMed

    Greco, Adelaide; Fiumara, Giovanni; Gargiulo, Sara; Gramanzini, Matteo; Brunetti, Arturo; Cuocolo, Alberto

    2013-03-01

    Different animal models have been used to reproduce coronary heart disease, but in recent years mice have become the animals of choice, because of their short life cycle and the possibility of genetic manipulation. Various techniques are currently used for cardiovascular imaging in mice, including high-resolution ultrasound, X-ray computed tomography (CT), magnetic resonance imaging and nuclear medicine procedures. In particular, molecular imaging with cardiac positron emission tomography (PET) allows non-invasive evaluation of changes in myocardial perfusion, metabolism, apoptosis, inflammation and gene expression or measurement of changes in left ventricular functional parameters. With technological advances, dedicated small laboratory PET/CT imaging has emerged in cardiovascular research, providing in vivo a non-invasive, serial and quantitative assessment of left ventricular function, myocardial perfusion and metabolism at a molecular level. This non-invasive methodology might be useful in longitudinal studies to monitor cardiac biochemical parameters and might facilitate studies to assess the effect of different interventions after acute myocardial ischaemia. PMID:23118016

  17. Quality Assurance of Positron Emission Tomography/Computed Tomography for Radiation Therapy

    SciTech Connect

    Xing Lei

    2008-05-01

    Recent advances in radiation delivery techniques, such as intensity-modulated radiation therapy, provide unprecedented ability to exquisitely control three-dimensional dose distribution. Development of on-board imaging and other image-guidance methods significantly improved our ability to better target a radiation beam to the tumor volume. However, in reality, accurate definition of the location and boundary of the tumor target is still problematic. Biologic and physiologic imaging promises to solve the problem in a fundamental way and has a more and more important role in patient staging, treatment planning, and therapeutic assessment in radiation therapy clinics. The last decade witnessed a dramatic increase in the use of positron emission tomography and computed tomography in radiotherapy practice. To ensure safe and effective use of nuclide imaging, a rigorous quality assurance (QA) protocol of the imaging tools and integration of the imaging data must be in place. The application of nuclide imaging in radiation oncology occurs at different levels of sophistication. Quantitative use of the imaging data in treatment planning through image registration and standardized uptake value calculation is often involved. Thus, QA should not be limited to the performance of the scanner, but should also include the process of implementing image data in treatment planning, such as data transfer, image registration, and quantitation of data for delineation of tumors and sensitive structures. This presentation discusses various aspects of nuclide imaging as applied to radiotherapy and describes the QA procedures necessary for the success of biologic image-guided radiation therapy.

  18. Role of positron emission tomography-computed tomography in non-small cell lung cancer

    PubMed Central

    Garg, Pankaj Kumar; Singh, Saurabh Kumar; Prakash, Gaurav; Jakhetiya, Ashish; Pandey, Durgatosh

    2016-01-01

    Lung cancer is the leading cause of cancer-related mortality worldwide. Non-small cell carcinoma and small cell carcinoma are the main histological subtypes and constitutes around 85% and 15% of all lung cancer respectively. Multimodality treatment plays a key role in the successful management of lung cancer depending upon the histological subtype, stage of disease, and performance status. Imaging modalities play an important role in the diagnosis and accurate staging of the disease, in assessing the response to neoadjuvant therapy, and in the follow-up of the patients. Last decade has witnessed voluminous upsurge in the use of positron emission tomography-computed tomography (PET-CT); role of PET-CT has widened exponentially in the management of lung cancer. The present article reviews the role of 18-fluoro-deoxyglucose PET-CT in the management of non small cell lung cancer with emphasis on staging of the disease and the assessment of response to neoadjuvant therapy based on available literature. PMID:27018223

  19. Pulmonary malignant melanoma with distant metastasis assessed by positron emission tomography-computed tomography.

    PubMed

    Kim, So Ri; Yoon, Ha-Yong; Jin, Gong Yong; Choe, Yeong Hun; Park, Seung Yong; Lee, Yong Chul

    2016-07-01

    Melanoma is a cutaneous malignant neoplasm of melanocytes. Primary malignant melanoma (MM) of the lung is very rare. Although previous reports have described the radiologic features of pulmonary MM, its rarity means that many factors are unknown. Thus, radiologic diagnosis is very difficult. Furthermore, there is little information regarding diagnostic application and/or the usefulness of [(18)F]-fluorine-2-fluoro-2-deoxy-D-glucose positron emission tomography-computed tomography (FDG-PET-CT) for primary pulmonary MM. A 69-year-old patient with a productive cough lasting three weeks was admitted to our hospital. Chest CT showed a large single mass with a multi-lobulated margin and homogeneous enhancement in the right upper lobe, which was subsequently diagnosed as a primary pulmonary MM with multiple metastases. On PET-CT images, the pulmonary mass and multiple bone lesions showed very increased uptakes of FDG. Considering that pulmonary metastasis from a mucocutaneous melanoma is the main differential diagnosis of primary pulmonary MM, systemic assessment of the whole body is more important than for other types of lung malignancies. This report introduces PET-CT as a useful diagnostic modality for pulmonary MM, especially in cases of distant multiple metastases. PMID:27385996

  20. Detecting Metastatic Bladder Cancer Using 18F-Fluorodeoxyglucose Positron-Emission Tomography/Computed Tomography

    PubMed Central

    Öztürk, Hakan

    2015-01-01

    Purpose The purpose of this study was to retrospectively investigate the contribution of 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG-PET/CT) to detection of metastatic bladder cancer. Materials and Methods The present study included 79 patients (69 men and 10 women) undergoing 18F-FDG-PET/CT upon suspicion of metastatic bladder cancer between July 2007 and April 2013. The mean age was 66.1 years with a standard deviation of 10.7 years (range, 21 to 85 years). Patients were required to fast for 6 hours prior to scanning, and whole-body PET scanning from the skull base to the upper thighs was performed approximately 1 hour after intravenous injection of 555 MBq of 18F-FDG. Whole body CT scanning was performed in the cranio-caudal direction. FDG-PET images were reconstructed using CT data for attenuation correction. Suspicious recurrent or metastatic lesions were confirmed by histopathology or clinical follow-up. Results The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 18F-FDG-PET/CT were 89%, 78%, 90%, 75%, and 86%, respectively. Conclusion 18F-FDG-PET/CT can detect metastases with high sensitivity and positive predictive values in patients with metastatic bladder carcinoma. PMID:25687863

  1. Management of urological malignancies: Has positron emission tomography/computed tomography made a difference?

    PubMed Central

    Nirmal, Thampi John; Kekre, Nitin S.

    2015-01-01

    Positron emission tomography/computed tomography (PET/CT) technology has been a significant, but expensive addition to the oncologist's armamentarium. The aim of this review was to determine the clinical utility of PET/CT in urological oncology, its impact on disease outcome and cost-effectiveness. We searched MedLine and peer reviewed journals for all relevant literature available online from the year 2000 until January 2014 regarding the use of PET/CT in the management of urological malignancies. 11C-choline PET/CT has emerged as a powerful tool for assessment of biochemical relapse in prostate cancer. Use of novel radiotracers like 124I-girentuximab has shown promise in the diagnosis of clear cell renal carcinoma. Fluorodeoxyglucose PET has a proven role in seminoma for the evaluation of postchemotherapy residual masses and has shown encouraging results when used for detection of metastasis in renal, bladder, and penile cancer. Introduction of novel radiotracers and advanced technology has led to a wider application of PET/CT in urological oncology. However, testicular seminoma aside, its impact on disease outcome and cost-effectiveness still needs to be established. PMID:25624571

  2. EEG, transmission computed tomography, and positron emission tomography with fluorodeoxyglucose /sup 18/F. Their use in adults with gliomas

    SciTech Connect

    Newmark, M.E.; Theodore, W.H.; Sato, S.; De La Paz, R.; Patronas, N.; Brooks, R.; Jabbari, B.; Di Chiro, G.

    1983-10-01

    We evaluated the relationship between findings from EEG, transmission computed tomography (CT), and positron emission tomography in 23 adults with gliomas. The cortical metabolic rate was suppressed in patients with and without focal slowing. Focal delta activity was not related to involvement of gray or white matter. Rhythmic delta activity and focal attenuation of background amplitude on EEG, however, were correlated with involvement of the thalamus.

  3. Utility of fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography in a child with chronic granulomatous disease.

    PubMed

    Garg, Gunjan; DaSilva, Raphaella; Bhalakia, Avni; Milstein, David M

    2016-01-01

    We report the fluorodeoxyglucose positron emission tomography/computed tomography (FDG - PET/CT) findings in an 11-month-old boy with suspected milk protein allergy, presented to the hospital with 2-month history of fever of unknown origin and failure to thrive. It showed FDG avid lymphadenopathy above and below the diaphragm and splenic focus, which could represent diffuse inflammatory process or lymphoma. Subsequent jejunal biopsy showed non-necrotizing granulomas. PMID:26917900

  4. F-18 fluoro-d-glucose positron emission tomography/computed tomography in a patient with corticobasal degeneration.

    PubMed

    Marti, Alejandro

    2015-01-01

    Corticobasal degeneration is a rare neurodegenerative disorder that often eludes clinical diagnosis. The present case shows the F-18 fluoro-d-glucose positron emission tomography/computed tomography (PET/CT) of a 62-year-old man with a progressive movement disorder with asymmetric features. PET/CT examination showed a markedly right-brain hemispheric hypometabolism also involving basal ganglia. PMID:25829747

  5. Utility of fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography in a child with chronic granulomatous disease

    PubMed Central

    Garg, Gunjan; DaSilva, Raphaella; Bhalakia, Avni; Milstein, David M.

    2016-01-01

    We report the fluorodeoxyglucose positron emission tomography/computed tomography (FDG - PET/CT) findings in an 11-month-old boy with suspected milk protein allergy, presented to the hospital with 2-month history of fever of unknown origin and failure to thrive. It showed FDG avid lymphadenopathy above and below the diaphragm and splenic focus, which could represent diffuse inflammatory process or lymphoma. Subsequent jejunal biopsy showed non-necrotizing granulomas. PMID:26917900

  6. Single-photon emission computed tomography/computed tomography in lung cancer and malignant lymphoma.

    PubMed

    Schillaci, Orazio

    2006-10-01

    In nuclear oncology, despite the fast-growing diffusion of (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET), single-photon emission computed tomography (SPECT) studies can still play an useful clinical role in several applications. The main limitation of SPECT imaging with tumor-seeking agents is the lack of the structural delineation of the pathologic processes they detect; this drawback sometimes renders SPECT interpretation difficult and can diminish its diagnostic accuracy. Fusion with morphological studies can overcome this limitation by giving an anatomical map to scintigraphic data. In the past, software-based fusion of independently performed SPECT and CT images proved to be time-consuming and impractical for routine use. The recent development of dual-modality integrated imaging systems that provide functional (SPECT) and anatomical (CT) images in the same scanning session, with the acquired images coregistered by means of the hardware, has opened a new era in this field. The first reports indicate that SPECT/CT is very useful in cancer imaging because it is able to provide further information of clinical value in several cases. In SPECT, studies of lung cancer and malignant lymphomas using different radiopharmaceutical, hybrid images are of value in providing the correct localization of tumor sites, with a precise detection of the involved organs, and the definition of their functional status, and in allowing the exclusion of disease in sites of physiologic tracer uptake. Therefore, in lung cancer and lymphomas, hybrid SPECT/CT can play a role in the diagnosis of the primary tumor, in the staging of the disease, in the follow-up, in the monitoring of therapy, in the detection of recurrence, and in dosimetric estimations for target radionuclide therapy. PMID:16950145

  7. Endocrine radionuclide scintigraphy with fusion single photon emission computed tomography/computed tomography

    PubMed Central

    Wong, Ka-Kit; Gandhi, Arpit; Viglianti, Benjamin L; Fig, Lorraine M; Rubello, Domenico; Gross, Milton D

    2016-01-01

    AIM: To review the benefits of single photon emission computed tomography (SPECT)/computed tomography (CT) hybrid imaging for diagnosis of various endocrine disorders. METHODS: We performed MEDLINE and PubMed searches using the terms: “SPECT/CT”; “functional anatomic mapping”; “transmission emission tomography”; “parathyroid adenoma”; “thyroid cancer”; “neuroendocrine tumor”; “adrenal”; “pheochromocytoma”; “paraganglioma”; in order to identify relevant articles published in English during the years 2003 to 2015. Reference lists from the articles were reviewed to identify additional pertinent articles. Retrieved manuscripts (case reports, reviews, meta-analyses and abstracts) concerning the application of SPECT/CT to endocrine imaging were analyzed to provide a descriptive synthesis of the utility of this technology. RESULTS: The emergence of hybrid SPECT/CT camera technology now allows simultaneous acquisition of combined multi-modality imaging, with seamless fusion of three-dimensional volume datasets. The usefulness of combining functional information to depict the bio-distribution of radiotracers that map cellular processes of the endocrine system and tumors of endocrine origin, with anatomy derived from CT, has improved the diagnostic capability of scintigraphy for a range of disorders of endocrine gland function. The literature describes benefits of SPECT/CT for 99mTc-sestamibi parathyroid scintigraphy and 99mTc-pertechnetate thyroid scintigraphy, 123I- or 131I-radioiodine for staging of differentiated thyroid carcinoma, 111In- and 99mTc- labeled somatostatin receptor analogues for detection of neuroendocrine tumors, 131I-norcholesterol (NP-59) scans for assessment of adrenal cortical hyperfunction, and 123I- or 131I-metaiodobenzylguanidine imaging for evaluation of pheochromocytoma and paraganglioma. CONCLUSION: SPECT/CT exploits the synergism between the functional information from radiopharmaceutical imaging and anatomy

  8. Attenuation correction in emission tomography using the emission data—A review

    PubMed Central

    Li, Yusheng

    2016-01-01

    The problem of attenuation correction (AC) for quantitative positron emission tomography (PET) had been considered solved to a large extent after the commercial availability of devices combining PET with computed tomography (CT) in 2001; single photon emission computed tomography (SPECT) has seen a similar development. However, stimulated in particular by technical advances toward clinical systems combining PET and magnetic resonance imaging (MRI), research interest in alternative approaches for PET AC has grown substantially in the last years. In this comprehensive literature review, the authors first present theoretical results with relevance to simultaneous reconstruction of attenuation and activity. The authors then look back at the early history of this research area especially in PET; since this history is closely interwoven with that of similar approaches in SPECT, these will also be covered. We then review algorithmic advances in PET, including analytic and iterative algorithms. The analytic approaches are either based on the Helgason–Ludwig data consistency conditions of the Radon transform, or generalizations of John’s partial differential equation; with respect to iterative methods, we discuss maximum likelihood reconstruction of attenuation and activity (MLAA), the maximum likelihood attenuation correction factors (MLACF) algorithm, and their offspring. The description of methods is followed by a structured account of applications for simultaneous reconstruction techniques: this discussion covers organ-specific applications, applications specific to PET/MRI, applications using supplemental transmission information, and motion-aware applications. After briefly summarizing SPECT applications, we consider recent developments using emission data other than unscattered photons. In summary, developments using time-of-flight (TOF) PET emission data for AC have shown promising advances and open a wide range of applications. These techniques may both remedy

  9. Proton-Induced X-Ray Emission Analysis of Crematorium Emissions

    NASA Astrophysics Data System (ADS)

    Ali, Salina; Nadareski, Benjamin; Yoskowitz, Joshua; Labrake, Scott; Vineyard, Michael

    2014-09-01

    There has been considerable debate in recent years about possible mercury emissions from crematoria due to amalgam tooth restorations. We have performed a proton-induced X-ray emission (PIXE) analysis of aerosol and soil samples taken near the Vale Cemetery Crematorium in Schenectady, NY, to address this concern. The aerosol samples were collected on the roof of the crematorium using a nine-stage, cascade impactor that separates the particulate matter by aerodynamic diameter and deposits it onto thin Kapton foils. The soil samples were collected at several different distances from the crematorium and compressed into pellets with a hydraulic press. The Kapton foils containing the aerosol samples and the soil pellets were bombarded with 2.2-MeV protons from the 1.1-MV tandem Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. We measured significant concentrations of sulfur, phosphorus, potassium, calcium, and iron, but essentially no mercury in the aerosol samples. The lower limit of detection for airborne mercury in this experiment was approximately 0.2 ng / m3. The PIXE analysis of the soil samples showed the presence of elements commonly found in soil (Si, K, Ca, Ti, Mn, Fe), but no trace of mercury. There has been considerable debate in recent years about possible mercury emissions from crematoria due to amalgam tooth restorations. We have performed a proton-induced X-ray emission (PIXE) analysis of aerosol and soil samples taken near the Vale Cemetery Crematorium in Schenectady, NY, to address this concern. The aerosol samples were collected on the roof of the crematorium using a nine-stage, cascade impactor that separates the particulate matter by aerodynamic diameter and deposits it onto thin Kapton foils. The soil samples were collected at several different distances from the crematorium and compressed into pellets with a hydraulic press. The Kapton foils containing the aerosol samples and the soil pellets were bombarded with 2.2-Me

  10. Specific cationic emission of cisplatin following ionization by swift protons

    NASA Astrophysics Data System (ADS)

    Moretto-Capelle, Patrick; Champeaux, Jean-Philippe; Deville, Charlotte; Sence, Martine; Cafarelli, Pierre

    2016-05-01

    We have investigated collision-induced ionization and fragmentation by 100 keV protons of the radio sensitizing molecule cisplatin, which is used in cancer treatments. A large emission of HCl+ and NH2+ is observed, but surprisingly, no cationic fragments containing platinum are detected, in contrast to ionization-dissociation induced by electronic collision. Theoretical investigations show that the ionization processes take place on platinum and on chlorine atoms. We propose new ionization potentials for cisplatin. Dissociation limits corresponding to the measured fragmentation mass spectrum have been evaluated and the theoretical results show that the non-observed cationic fragments containing platinum are mostly associated with low dissociation energies. We have also investigated the reaction path for the hydrogen transfer from the NH3 group to the Cl atom, as well as the corresponding dissociation limits from this tautomeric form. Here again the cations containing platinum correspond to lower dissociation limits. Thus, the experimental results suggest that excited states, probably formed via inner-shell ionization of the platinum atom of the molecule, correlated to higher dissociation limits are favored.

  11. Bone metabolism induced by denture insertion in positron emission tomography.

    PubMed

    Suenaga, H; Chen, J; Yamaguchi, K; Sugazaki, M; Li, W; Swain, M; Li, Q; Sasaki, K

    2016-03-01

    18F-fluoride positron emission tomogra-phy (PET) can identify subtle functional variation prior to the major structural change detectable by X-ray. This study aims to investigate the mechanobiological bone reaction around the abutment tooth and in the residual ridge, induced by insertion of removable partial denture (RPD) within two different groups of patients: patients without denture experience (Group 1) and patients with denture experience before (Group 2), using 18F-fluoride PET imaging technique. 18F-fluoride PET/computerised tomography (CT) scan was performed to examine the bone metabolic change in mandible before and after the RPD treatment. Region of interests (ROIs) were placed in alveolar bone around abutment tooth and in residual bone beneath the RPD. Standardised uptake value (SUV), reflecting the accumulation of 18F-fluoride, was measured for each ROI. In all subjects of Group 1, SUVs after insertion were higher than before in both alveolar bone and residual bone, while there was less significant change in SUV in subjects of Group 2. This study demonstrated using longitudinal 18F-fluoride PET scans to effectively examine the bone metabolic change in mandible induced by occlusal loading after RPD insertion. Using this technique, within the six subjects in this study, it was shown that bone metabolism around abutment tooth and residual ridge increased after RPD insertion in case of first-time denture user, while there was no big change in the patient with experience of denture before. This study revealed the effectiveness of applying PET to evaluate bone metabolic activity as mechanobiolo-gical reaction. PMID:26431672

  12. Assessment of myocardial perfusion and viability by positron emission tomography.

    PubMed

    Anagnostopoulos, Constantinos; Georgakopoulos, Alexandros; Pianou, Nikoletta; Nekolla, Stephan G

    2013-09-01

    An important evolution has taken place recently in the field of cardiovascular Positron Emission Tomography (PET) imaging. Being originally a highly versatile research tool that has contributed significantly to advance our understanding of cardiovascular physiology and pathophysiology, PET has gradually been incorporated into the clinical cardiac imaging portfolio contributing to diagnosis and management of patients investigated for coronary artery disease (CAD). PET myocardial perfusion imaging (MPI) has an average sensitivity and specificity around 90% for the detection of angiographically significant CAD and it is also a very accurate technique for prognostication of patients with suspected or known CAD. In clinical practice, Rubidium-82 ((82)Rb) is the most widely used radiopharmaceutical for MPI that affords also accurate and reproducible quantification in absolute terms (ml/min/g) comparable to that obtained by cyclotron produced tracers such as Nitrogen-13 ammonia ((13)N-ammonia) and Oxygen-15 labeled water ((15)O-water). Quantification increases sensitivity for detection of multivessel CAD and it may also be helpful for detection of early stages of atherosclerosis or microvascular dysfunction. PET imaging combining perfusion with myocardial metabolism using (18)F-Fluorodeoxyglucose ((18)F FDG), a glucose analog, is an accurate standard for assessment of myocardial hibernation and risk stratification of patients with left ventricular dysfunction of ischemic etiology. It is helpful for guiding management decisions regarding revascularization or medical treatment and predicting improvement of symptoms, exercise capacity and quality of life post-revascularization. The strengths of PET can be increased further with the introduction of hybrid scanners, which combine PET with computed tomography (PET/CT) or with magnetic resonance imaging (PET/MRI) offering integrated morphological, biological and physiological information and hence, comprehensive evaluation of

  13. Positron-emission tomography pitfalls related to oral prosthesis.

    PubMed

    More, Yogesh; Dusing, Reginald; Counts, Shaheen; Bond, Justin; Tsue, Terrance; Girod, Douglas

    2013-02-01

    This case report describes false-positive positron-emission tomography/computed tomography (PET/CT) findings related to oral prostheses and its implications in cancer surveillance. In head and neck cancer management, F18-flurodeoxyglucose (FDG) PET/CT is widely accepted for evaluating treatment response and detecting recurrence. Interpretation of FDG PET/CT images in this setting is often challenging due to various prostheses and reconstruction methods. Following surgery for squamous cell carcinoma of the maxillary alveolus, a 61-year-old female had a FDG PET/CT scan on a 7-month follow-up that showed high FDG uptake along the resection site. Clinical examination showed no signs of inflammation or recurrence. Repeat FDG PET/CT without the prosthesis was normal. The PET/CT attenuation-corrected images demonstrated high FDG uptake (standardized uptake value: 11.6) along the resection site corresponding to contrast-enhanced CT images of the lesion. PET/CT nonattenuation-corrected images also confirmed increased activity. Repeat PET/CT without the prosthesis was normal. FDG is not tumor specific; it can accumulate in inflammation, infection, and post-therapy settings. Metallic and high-density prostheses show radial artifacts on CT and falsely elevated FDG uptake on PET/ CT in adjacent areas. Salivary pooling may concentrate FDG. The presence of oral prostheses has not been described as a cause of this high level of activity. PET/CT images that demonstrate intense activity corresponding to dense structures should be viewed with caution. A detailed history and physical exam as well as knowledge of artifacts are pertinent for the managing physician. Laryngoscope, 2012. PMID:22778055

  14. Theoretical studies of proton emission from drip-line nuclei

    SciTech Connect

    Ferreira, L. S.; Maglione, E.; Ring, P.

    2011-11-30

    In this work, we discuss proton radioactivity from spherical nuclei in a modern perspective, based on a fully self--consistent relativistic density functional calculation with fundamental interactions.

  15. C-Arm Computed Tomography Compared With Positron Emission Tomography/Computed Tomography for Treatment Planning Before Radioembolization

    SciTech Connect

    Becker, Christoph Waggershauser, Tobias; Tiling, Reinhold; Weckbach, Sabine; Johnson, Thorsten; Meissner, Oliver; Klingenbeck-Regn, Klaus; Reiser, Maximilian; Hoffmann, Ralf Thorsten

    2011-06-15

    The purpose of this study was to determine whether rotational C-arm computed tomography (CT) allows visualization of liver metastases and adds relevant information for radioembolization (RE) treatment planning. Technetium angiography, together with C-arm CT, was performed in 47 patients to determine the feasibility for RE. C-arm CT images were compared with positron emission tomography (PET)/CT images for the detection of liver tumors. The images were also rated according one of the following three categories: (1) images that provide no additional information compared with DSA alone; (2) images that do provide additional information compared with DSA; and (2) images that had an impact on eligibility determination for and planning of the RE procedure. In all patients, 283 FDG-positive liver lesions were detected by PET. In venous contrast-phase CT, 221 (78.1%) and 15 (5.3%) of these lesions were either hypodense or hyperdense, respectively. In C-arm CT, 103 (36.4%) liver lesions were not detectable because they were outside of either the field of view or the contrast-enhanced liver segment. Another 25 (8.8%) and 98 (34.6%) of the liver lesions were either hyperdense or presented primarily as hypodense lesions with a rim enhancement, respectively. With PET/CT as the standard of reference, venous CT and C-arm CT failed to detect 47 (16.6%) and 57 (20.1%) of all liver lesions, respectively. For RE planning, C-arm CT provided no further information, provide some additional information, or had an impact on the procedure in 20 (42.5%), 15 (31.9%) and 12 (25.6%) of patients, respectively. We conclude that C-arm CT may add decisive information in patients scheduled for RE.

  16. Silicon photomultiplier choice for the scintillating fibre tracker in second generation proton computed tomography scanner

    SciTech Connect

    Gearhart, A.; Johnson, E.; Medvedev, V.; Ronzhin, A.; Rykalin, V.; Rubinov, P.; Sleptcov, V.; /Unlisted, RU

    2012-03-01

    Scintillating fibers are capable of charged particle tracking with high position resolution, as demonstrated by the central fiber tracker of the D0 experiment. The charged particles will deposit less energy in the polystyrene scintillating fibers as opposed to a typical silicon tracker of the same thickness, while SiPM's are highly efficient at detecting photons created by the passage of the charged particle through the fibers. The current prototype of the Proton Computed Tomography (pCT) tracker uses groups of three 0.5 mm green polystyrene based scintillating fibers connected to a single SiPM, while first generation prototype tracker used Silicon strip detectors. The results of R&D for the Scintillating Fiber Tracker (SFT) as part of the pCT detector are outlined, and the premise for the selection of SiPM is discussed.

  17. Beta-delayed two-proton emission as a nuclear probe

    SciTech Connect

    Moltz, D.M.; Reiff, J.E.; Robertson, J.D.; Lang, T.F.; Cerny, J.

    1987-09-01

    A brief history of beta-delayed two-proton emission is given. Speculations about future experiments which would enhance our knowledge about both nuclear spectroscopy and this relatively unique decay mode are presented. 16 refs., 7 figs.

  18. Relationship of computed tomography perfusion and positron emission tomography to tumour progression in malignant glioma

    SciTech Connect

    Yeung, Timothy P C; Yartsev, Slav; Lee, Ting-Yim; Wong, Eugene; He, Wenqing; Fisher, Barbara; VanderSpek, Lauren L; Macdonald, David; Bauman, Glenn

    2014-02-15

    Introduction: This study aimed to explore the potential for computed tomography (CT) perfusion and 18-Fluorodeoxyglucose positron emission tomography (FDG-PET) in predicting sites of future progressive tumour on a voxel-by-voxel basis after radiotherapy and chemotherapy. Methods: Ten patients underwent pre-radiotherapy magnetic resonance (MR), FDG-PET and CT perfusion near the end of radiotherapy and repeated post-radiotherapy follow-up MR scans. The relationships between these images and tumour progression were assessed using logistic regression. Cross-validation with receiver operating characteristic (ROC) analysis was used to assess the value of these images in predicting sites of tumour progression. Results: Pre-radiotherapy MR-defined gross tumour; near-end-of-radiotherapy CT-defined enhancing lesion; CT perfusion blood flow (BF), blood volume (BV) and permeability-surface area (PS) product; FDG-PET standard uptake value (SUV); and SUV:BF showed significant associations with tumour progression on follow-up MR imaging (P < 0.0001). The mean sensitivity (±standard deviation), specificity and area under the ROC curve (AUC) of PS were 0.64 ± 0.15, 0.74 ± 0.07 and 0.72 ± 0.12 respectively. This mean AUC was higher than that of the pre-radiotherapy MR-defined gross tumour and near-end-of-radiotherapy CT-defined enhancing lesion (both AUCs = 0.6 ± 0.1, P ≤ 0.03). The multivariate model using BF, BV, PS and SUV had a mean AUC of 0.8 ± 0.1, but this was not significantly higher than the PS only model. Conclusion: PS is the single best predictor of tumour progression when compared to other parameters, but voxel-based prediction based on logistic regression had modest sensitivity and specificity.

  19. Enhancement of positron emission tomography-computed tomography image quality using the principle of stochastic resonance

    PubMed Central

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Sharma, Punit; Singh, Harmandeep; Patel, Chetan; Sarkar, Kaushik; Kumar, Rakesh; Bal, Chandra Sekhar

    2014-01-01

    Purpose: Acquisition of higher counts improves visual perception of positron emission tomography-computed tomography (PET-CT) image. Larger radiopharmaceutical doses (implies more radiation dose) are administered to acquire this count in a short time period. However, diagnostic information does not increase after a certain threshold of counts. This study was conducted to develop a post processing method based on principle of “stochastic resonance” to improve visual perception of the PET-CT image having a required threshold counts. Materials and Methods: PET-CT images (JPEG file format) with low, medium, and high counts in the image were included in this study. The image was corrupted with the addition of Poisson noise. The amplitude of the Poisson noise was adjusted by dividing each pixel by a constant 1, 2, 4, 8, 16, and 32. The best amplitude of the noise that gave best images quality was selected based on high value of entropy of the output image, high value of structural similarity index and feature similarity index. Visual perception of the image was evaluated by two nuclear medicine physicians. Results: The variation in structural and feature similarity of the image was not appreciable visually, but statistically images deteriorated as the noise amplitude increases although maintaining structural (above 70%) and feature (above 80%) similarity of input images in all cases. We obtained the best image quality at noise amplitude “4” in which 88% structural and 95% feature similarity of the input images was retained. Conclusion: This method of stochastic resonance can be used to improve the visual perception of the PET-CT image. This can indirectly lead to reduction of radiation dose. PMID:25400362

  20. Positron emission tomography/computed tomography--imaging protocols, artifacts, and pitfalls.

    PubMed

    Bockisch, Andreas; Beyer, Thomas; Antoch, Gerald; Freudenberg, Lutz S; Kühl, Hilmar; Debatin, Jörg F; Müller, Stefan P

    2004-01-01

    There has been a longstanding interest in fused images of anatomical information, such as that provided by computed tomography (CT) or magnetic resonance imaging (MRI) systems, with biological information obtainable by positron emission tomography (PET). The near-simultaneous data acquisition in a fixed combination of a PET and a CT scanner in a combined PET/CT imaging system minimizes spatial and temporal mismatches between the modalities by eliminating the need to move the patient in between exams. In addition, using the fast CT scan for PET attenuation correction, the duration of the examination is significantly reduced compared to standalone PET imaging with standard rod-transmission sources. The main source of artifacts arises from the use of the CT-data for scatter and attenuation correction of the PET images. Today, CT reconstruction algorithms cannot account for the presence of metal implants, such as dental fillings or prostheses, properly, thus resulting in streak artifacts, which are propagated into the PET image by the attenuation correction. The transformation of attenuation coefficients at X-ray energies to those at 511 keV works well for soft tissues, bone, and air, but again is insufficient for dense CT contrast agents, such as iodine or barium. Finally, mismatches, for example, due to uncoordinated respiration result in incorrect attenuation-corrected PET images. These artifacts, however, can be minimized or avoided prospectively by careful acquisition protocol considerations. In doubt, the uncorrected images almost always allow discrimination between true and artificial finding. PET/CT has to be integrated into the diagnostic workflow for harvesting the full potential of the new modality. In particular, the diagnostic power of both, the CT and the PET within the combination must not be underestimated. By combining multiple diagnostic studies within a single examination, significant logistic advantages can be expected if the combined PET

  1. Trends in radiation protection of positron emission tomography/computed tomography imaging.

    PubMed

    Alenezi, A; Soliman, K

    2015-06-01

    Over the past decade, the number of positron emission tomography/computed tomography (PET/CT) imaging procedures has increased substantially. This imaging technique provides accurate functional and anatomical information, particularly for oncological applications. Separately, both PET and CT are considered as high-dose imaging modalities. With the increased use of PET/CT, one could expect an increase in radiation doses to staff and patients. As such, major efforts have been made to reduce radiation dose in PET/CT facilities. Variations in working techniques have made it difficult to compare published results. This study aimed to review the literature on proposed methods to reduce patient and staff dose in clinical PET/CT imaging. A brief overview of some published information on staff and patient doses will be analysed and presented. Recent trends regarding radiation protection in PET/CT imaging will be discussed, and practical recommendations for reducing radiation doses to staff and patients will be discussed and summarised. Generally, the CT dose component is often higher in magnitude than the dose from PET alone; as such, focusing on CT dose reduction will decrease the overall patient dose in PET/CT imaging studies. The following factors should be considered in order to reduce the patient's dose from CT alone: proper justification for ordering contrast-enhanced CT; use of automatic exposure control features; use of adaptive statistical iterative reconstruction algorithms; and optimisation of scan parameters, especially scan length. The PET dose component can be reduced by administration of lower activity to the patient, optimisation of the workflow, and appropriate use of protective devices and engineered systems. At the international level, there is wide variation in work practices among institutions. The current observed trends are such that the annual dose limits for radiation workers in PET/CT imaging are unlikely to be exceeded. PMID:25915553

  2. Whole-body magnetic resonance imaging and positron emission tomography-computed tomography in oncology.

    PubMed

    Schmidt, Gerwin P; Kramer, Harald; Reiser, Maximilian F; Glaser, Christian

    2007-06-01

    The advent of positron emission tomography-computed tomography (PET-CT) and whole-body magnetic resonance imaging (WB-MRI) has introduced tumor imaging with a systemic and functional approach compared with established sequential, multimodal diagnostic algorithms.Whole-body PET with [18F]-fluoro-2-desoxy-glucose is a useful imaging procedure for tumor staging and monitoring that can visualize active tumor tissue by detecting pathological glucose metabolism. The combination of PET with the detailed anatomical information of multislice computed tomography as dual-modality scanners has markedly increased lesion localization and diagnostic accuracy compared with both modalities as standalone applications.Hardware innovations, such as the introduction of multi-receiver channel whole-body MRI scanners at 1.5 and, recently, 3 T, combined with acquisition acceleration techniques, have made high-resolution WB-MRI clinically feasible. Now, a dedicated assessment of individual organs with various soft tissue contrast, spatial resolution, and contrast media dynamics can be combined with whole-body anatomical coverage in a multiplanar imaging approach. More flexible protocols (eg, T1-weighted turbo spin-echo and short inversion recovery imaging, dedicated lung imaging or dynamic contrast-enhanced studies of the abdomen) can be performed within 45 minutes.Whole-body magnetic resonance imaging has recently been proposed for tumor screening of asymptomatic individuals, and potentially life-changing diagnoses, such as formerly unknown malignancy, have been reported. However, larger patient cohort studies will have to show the cost efficiency and the clinical effectiveness of such an approach.For initial tumor staging, PET-CT has proved more accurate for the definition of T-stage and lymph node assessment, mainly because of the missing metabolic information in WB-MRI. However, new applications, such as magnetic resonance whole-body diffusion-weighted imaging or lymphotropic contrast

  3. Segmentation and analysis of emission-computed-tomography images

    NASA Astrophysics Data System (ADS)

    Johnson, Valen E.; Bowsher, James E.; Qian, Jiang; Jaszczak, Ronald J.

    1992-12-01

    This paper describes a statistical model for reconstruction of emission computed tomography (ECT) images. A distinguishing feature of this model is that it is parameterized in terms of quantities of direct physiological significance, rather than only in terms of grey-level voxel values. Specifically, parameters representing regions, region means, and region volumes are included in the model formulation and are estimated directly from projection data. The model is specified hierarchically within the Bayesian paradigm. At the lowest level of the hierarchy, a Gibbs distribution is employed to specify a probability distribution on the space of all possible partitions of the discretized image scene. A novel feature of this distribution is that the number of partitioning elements, or image regions, is not assumed known a priori. In contrast, any other segmentation models (e.g., Liang et al., 1991, Amit et al., 1991) require that the number of regions be specified prior to image reconstruction. Since the number of regions in a source distribution is seldom known a priori, allowing the number of regions to vary within the model framework is an important practical feature of this model. In the second level of the model hierarchy, random variables representing emission intensity are associated with each partitioning element or region. Individual voxel intensities are assumed to be drawn from a gamma distribution with mean equal to the region mean in the third stage, and in the final stage of the hierarchy projection data are assumed to be generated from Poisson distributions with means equal to weighted sums of voxel intensities.

  4. Multidimensional characterization of an entangled photon-pair source via stimulated emission tomography.

    PubMed

    Fang, B; Liscidini, M; Sipe, J E; Lorenz, V O

    2016-05-01

    Using stimulated emission tomography, we characterize an entangled photon-pair source in the energy and polarization degrees of freedom, with a precision far exceeding what could be obtained by quantum state tomography. Through this multidimensional tomography we find that energy-polarization correlations are a cause of polarization-entanglement degradation, demonstrating that this technique provides useful information for source engineering and can accelerate the development of quantum information processing systems dependent on many degrees of freedom. PMID:27137611

  5. The methodology of TSPO imaging with positron emission tomography.

    PubMed

    Turkheimer, Federico E; Rizzo, Gaia; Bloomfield, Peter S; Howes, Oliver; Zanotti-Fregonara, Paolo; Bertoldo, Alessandra; Veronese, Mattia

    2015-08-01

    The 18-kDA translocator protein (TSPO) is consistently elevated in activated microglia of the central nervous system (CNS) in response to a variety of insults as well as neurodegenerative and psychiatric conditions. It is therefore a target of interest for molecular strategies aimed at imaging neuroinflammation in vivo. For more than 20 years, positron emission tomography (PET) has allowed the imaging of TSPO density in brain using [(11)C]-(R)-PK11195, a radiolabelled-specific antagonist of the TSPO that has demonstrated microglial activation in a large number pathological cohorts. The significant clinical interest in brain immunity as a primary or comorbid factor in illness has sparked great interest in the TSPO as a biomarker and a surprising number of second generation TSPO radiotracers have been developed aimed at improving the quality of TSPO imaging through novel radioligands with higher affinity. However, such major investment has not yet resulted in the expected improvement in image quality. We here review the main methodological aspects of TSPO PET imaging with particular attention to TSPO genetics, cellular heterogeneity of TSPO in brain tissue and TSPO distribution in blood and plasma that need to be considered in the quantification of PET data to avoid spurious results as well as ineffective development and use of these radiotracers. PMID:26551697

  6. Automated identification of the lung contours in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Nery, F.; Silvestre Silva, J.; Ferreira, N. C.; Caramelo, F. J.; Faustino, R.

    2013-03-01

    Positron Emission Tomography (PET) is a nuclear medicine imaging technique that permits to analyze, in three dimensions, the physiological processes in vivo. One of the areas where PET has demonstrated its advantages is in the staging of lung cancer, where it offers better sensitivity and specificity than other techniques such as CT. On the other hand, accurate segmentation, an important procedure for Computer Aided Diagnostics (CAD) and automated image analysis, is a challenging task given the low spatial resolution and the high noise that are intrinsic characteristics of PET images. This work presents an algorithm for the segmentation of lungs in PET images, to be used in CAD and group analysis in a large patient database. The lung boundaries are automatically extracted from a PET volume through the application of a marker-driven watershed segmentation procedure which is robust to the noise. In order to test the effectiveness of the proposed method, we compared the segmentation results in several slices using our approach with the results obtained from manual delineation. The manual delineation was performed by nuclear medicine physicians that used a software routine that we developed specifically for this task. To quantify the similarity between the contours obtained from the two methods, we used figures of merit based on region and also on contour definitions. Results show that the performance of the algorithm was similar to the performance of human physicians. Additionally, we found that the algorithm-physician agreement is similar (statistically significant) to the inter-physician agreement.

  7. Characterization of nontransmural myocardial infarction by positron-emission tomography

    SciTech Connect

    Geltman, E.M.; Biello, D.; Welch, M.J.; Ter-Pogossian, M.M.; Roberts, R.; Sobel, B.E.

    1982-04-01

    The present study was performed to determine whether positron emission tomography (PET) performed after i.v. 11C-palmitate permits detection and characterization of nontransmural myocardial infarction. PET was performed after the i.v. injection of 11C-palmitate in 10 normal subjects, 24 patients with initial nontransmural myocardial infarction (defined electrocardiographically), and 22 patients with transmural infarction. Depressed accumulation of 11C-palmitate was detected with sagittal, coronal and transverse reconstructions, and quantified based on 14 contiguous transaxial reconstructions. Defects with homogeneously intense depression of accumulation of tracer were detected in all 22 patients with transmural infarction (100%). Abnormalities of the distribution of 11C-palmitate in the myocardium were detected in 23 patients with nontransmural infarction (96%). Thallium scintigrams were abnormal in only 11 of 18 patients with nontransmural infarction (61%). Tomographically estimated infarct size was greater among patients with transmural infarction (50.4 +/- 7.8 PET-g-Eq/m2 (+/- SEM SEM)) compared with those with nontransmural infarction (19 +/- 4 PET-g-Eq, p less than 0.01). Residual accumulation of 11C-palmitate within regions of infarction was more intensely depressed among patients with transmural compared to nontransmural infarction (33 +/- 1 vs 39 +/- 1% maximal myocardial radioactivity, p less than 0.01). Thus, PET and metabolic imaging with 11C-palmitate is a sensitive means of detecting, quantifying and characterizing nontransmural and transmural myocardial infarction.

  8. Microfluidics for Positron Emission Tomography (PET) Imaging Probe Development

    PubMed Central

    Wang, Ming-Wei; Lin, Wei-Yu; Liu, Kan; Masterman-Smith, Michael; Shen, Clifton Kwang-Fu

    2012-01-01

    Due to increased needs for Positron Emission Tomography (PET) scanning, high demands for a wide variety of radiolabeled compounds will have to be met by exploiting novel radiochemistry and engineering technologies to improve the production and development of PET probes. The application of microfluidic reactors to perform radiosyntheses is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional labeling systems. Microfluidic-based radiochemistry can lead to the use of smaller quantities of precursors, accelerated reaction rates and easier purification processes with greater yield and higher specific activity of desired probes. Several ‘proof-of-principle’ examples, along with basics of device architecture and operation, and potential limitations of each design are discussed here. Along with the concept of radioisotope distribution from centralized cyclotron facilities to individual imaging centers and laboratories (“decentralized model”), an easy-to-use, standalone, flexible, fully-automated radiochemical microfluidic platform can open up to simpler and more cost-effective procedures for molecular imaging using PET. PMID:20643021

  9. Silicon as an unconventional detector in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Clinthorne, Neal; Brzezinski, Karol; Chesi, Enrico; Cochran, Eric; Grkovski, Milan; Grošičar, Borut; Honscheid, Klaus; Huh, Sam; Kagan, Harris; Lacasta, Carlos; Linhart, Vladimir; Mikuž, Marko; Smith, D. Shane; Stankova, Vera; Studen, Andrej; Weilhammer, Peter; Žontar, Dejan

    2013-01-01

    Positron emission tomography (PET) is a widely used technique in medical imaging and in studying small animal models of human disease. In the conventional approach, the 511 keV annihilation photons emitted from a patient or small animal are detected by a ring of scintillators such as LYSO read out by arrays of photodetectors. Although this has been successful in achieving ˜5 mm FWHM spatial resolution in human studies and ˜1 mm resolution in dedicated small animal instruments, there is interest in significantly improving these figures. Silicon, although its stopping power is modest for 511 keV photons, offers a number of potential advantages over more conventional approaches including the potential for high intrinsic spatial resolution in 3D. To evaluate silicon in a variety of PET "magnifying glass" configurations, an instrument was constructed that consists of an outer partial-ring of PET scintillation detectors into which various arrangements of silicon detectors are inserted to emulate dual-ring or imaging probe geometries. Measurements using the test instrument demonstrated the capability of clearly resolving point sources of 22Na having a 1.5 mm center-to-center spacing as well as the 1.2 mm rods of a 18F-filled resolution phantom. Although many challenges remain, silicon has potential to become the PET detector of choice when spatial resolution is the primary consideration.

  10. The methodology of TSPO imaging with positron emission tomography

    PubMed Central

    Turkheimer, Federico E.; Rizzo, Gaia; Bloomfield, Peter S.; Howes, Oliver; Zanotti-Fregonara, Paolo; Bertoldo, Alessandra; Veronese, Mattia

    2015-01-01

    The 18-kDA translocator protein (TSPO) is consistently elevated in activated microglia of the central nervous system (CNS) in response to a variety of insults as well as neurodegenerative and psychiatric conditions. It is therefore a target of interest for molecular strategies aimed at imaging neuroinflammation in vivo. For more than 20 years, positron emission tomography (PET) has allowed the imaging of TSPO density in brain using [11C]-(R)-PK11195, a radiolabelled-specific antagonist of the TSPO that has demonstrated microglial activation in a large number pathological cohorts. The significant clinical interest in brain immunity as a primary or comorbid factor in illness has sparked great interest in the TSPO as a biomarker and a surprising number of second generation TSPO radiotracers have been developed aimed at improving the quality of TSPO imaging through novel radioligands with higher affinity. However, such major investment has not yet resulted in the expected improvement in image quality. We here review the main methodological aspects of TSPO PET imaging with particular attention to TSPO genetics, cellular heterogeneity of TSPO in brain tissue and TSPO distribution in blood and plasma that need to be considered in the quantification of PET data to avoid spurious results as well as ineffective development and use of these radiotracers. PMID:26551697

  11. Proceedings of clinical SPECT (single photon emission computed tomography) symposium

    SciTech Connect

    Not Available

    1986-09-01

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base. (TEM)

  12. European health telematics networks for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Kontaxakis, George; Pozo, Miguel Angel; Ohl, Roland; Visvikis, Dimitris; Sachpazidis, Ilias; Ortega, Fernando; Guerra, Pedro; Cheze-Le Rest, Catherine; Selby, Peter; Pan, Leyun; Diaz, Javier; Dimitrakopoulou-Strauss, Antonia; Santos, Andres; Strauss, Ludwig; Sakas, Georgios

    2006-12-01

    A pilot network of positron emission tomography centers across Europe has been setup employing telemedicine services. The primary aim is to bring all PET centers in Europe (and beyond) closer, by integrating advanced medical imaging technology and health telematics networks applications into a single, easy to operate health telematics platform, which allows secure transmission of medical data via a variety of telecommunications channels and fosters the cooperation between professionals in the field. The platform runs on PCs with Windows 2000/XP and incorporates advanced techniques for image visualization, analysis and fusion. The communication between two connected workstations is based on a TCP/IP connection secured by secure socket layers and virtual private network or jabber protocols. A teleconsultation can be online (with both physicians physically present) or offline (via transmission of messages which contain image data and other information). An interface sharing protocol enables online teleconsultations even over low bandwidth connections. This initiative promotes the cooperation and improved communication between nuclear medicine professionals, offering options for second opinion and training. It permits physicians to remotely consult patient data, even if they are away from the physical examination site.

  13. Variation in Positron Emission Tomography Use After Colon Cancer Resection

    PubMed Central

    Bailey, Christina E.; Hu, Chung-Yuan; You, Y. Nancy; Kaur, Harmeet; Ernst, Randy D.; Chang, George J.

    2015-01-01

    Purpose: Colon cancer surveillance guidelines do not routinely include positron emission tomography (PET) imaging; however, its use after surgical resection has been increasing. We evaluated the secular patterns of PET use after surgical resection of colon cancer among elderly patients and identified factors associated with its increasing use. Patients and Methods: We used the SEER-linked Medicare database (July 2001 through December 2009) to establish a retrospective cohort of patients age ≥ 66 years who had undergone surgical resection for colon cancer. Postoperative PET use was assessed with the test for trends. Patient, tumor, and treatment characteristics were analyzed using univariable and multivariable logistic regression analyses. Results: Of the 39,221 patients with colon cancer, 6,326 (16.1%) had undergone a PET scan within 2 years after surgery. The use rate steadily increased over time. The majority of PET scans had been performed within 2 months after surgery. Among patients who had undergone a PET scan, 3,644 (57.6%) had also undergone preoperative imaging, and 1,977 (54.3%) of these patients had undergone reimaging with PET within 2 months after surgery. Marriage, year of diagnosis, tumor stage, preoperative imaging, postoperative visit to a medical oncologist, and adjuvant chemotherapy were significantly associated with increased PET use. Conclusion: PET use after colon cancer resection is steadily increasing, and further study is needed to understand the clinical value and effectiveness of PET scans and the reasons for this departure from guideline-concordant care. PMID:25852143

  14. Simultaneous in vivo positron emission tomography and magnetic resonance imaging.

    PubMed

    Catana, Ciprian; Procissi, Daniel; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Jacobs, Russell E; Cherry, Simon R

    2008-03-11

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution of biologically targeted radiotracers with high sensitivity, but images generally lack anatomic context and are of lower spatial resolution. Integration of these technologies permits the acquisition of temporally correlated data showing the distribution of PET radiotracers and MRI contrast agents or MR-detectable metabolites, with registration to the underlying anatomy. An MRI-compatible PET scanner has been built for biomedical research applications that allows data from both modalities to be acquired simultaneously. Experiments demonstrate no effect of the MRI system on the spatial resolution of the PET system and <10% reduction in the fraction of radioactive decay events detected by the PET scanner inside the MRI. The signal-to-noise ratio and uniformity of the MR images, with the exception of one particular pulse sequence, were little affected by the presence of the PET scanner. In vivo simultaneous PET and MRI studies were performed in mice. Proof-of-principle in vivo MR spectroscopy and functional MRI experiments were also demonstrated with the combined scanner. PMID:18319342

  15. Anaesthesia for positron emission tomography scanning of animal brains.

    PubMed

    Alstrup, Aage Kristian Olsen; Smith, Donald F

    2013-01-01

    Positron emission tomography (PET) provides a means of studying physiological and pharmacological processes as they occur in the living brain. Mice, rats, dogs, cats, pigs and non-human primates are often used in studies using PET. They are commonly anaesthetized with ketamine, propofol or isoflurane in order to prevent them from moving during the imaging procedure. The use of anaesthesia in PET studies suffers, however, from the drawback of possibly altering central neuromolecular mechanisms. As a result, PET findings obtained in anaesthetized animals may fail to correctly represent normal properties of the awake brain. Here, we review findings of PET studies carried out either in both awake and anaesthetized animals or in animals given at least two different anaesthetics. Such studies provide a means of estimating the extent to which anaesthesia affects the outcome of PET neuroimaging in animals. While no final conclusion can be drawn concerning the 'best' general anaesthetic for PET neuroimaging in laboratory animals, such studies provide findings that can enhance an understanding of neurobiological mechanisms in the living brain. PMID:23349451

  16. Brain single photon emission computed tomography in neonates

    SciTech Connect

    Denays, R.; Van Pachterbeke, T.; Tondeur, M.; Spehl, M.; Toppet, V.; Ham, H.; Piepsz, A.; Rubinstein, M.; Nol, P.H.; Haumont, D. )

    1989-08-01

    This study was designed to rate the clinical value of ({sup 123}I)iodoamphetamine (IMP) or ({sup 99m}Tc) hexamethyl propylene amine oxyme (HM-PAO) brain single photon emission computed tomography (SPECT) in neonates, especially in those likely to develop cerebral palsy. The results showed that SPECT abnormalities were congruent in most cases with structural lesions demonstrated by ultrasonography. However, mild bilateral ventricular dilatation and bilateral subependymal porencephalic cysts diagnosed by ultrasound were not associated with an abnormal SPECT finding. In contrast, some cortical periventricular and sylvian lesions and all the parasagittal lesions well visualized in SPECT studies were not diagnosed by ultrasound scans. In neonates with subependymal and/or intraventricular hemorrhage the existence of a parenchymal abnormality was only diagnosed by SPECT. These results indicate that ({sup 123}I)IMP or ({sup 99m}Tc)HM-PAO brain SPECT shows a potential clinical value as the neurodevelopmental outcome is clearly related to the site, the extent, and the number of cerebral lesions. Long-term clinical follow-up is, however, mandatory in order to define which SPECT abnormality is associated with neurologic deficit.

  17. Simultaneous in vivo positron emission tomography and magnetic resonance imaging

    PubMed Central

    Catana, Ciprian; Procissi, Daniel; Wu, Yibao; Judenhofer, Martin S.; Qi, Jinyi; Pichler, Bernd J.; Jacobs, Russell E.; Cherry, Simon R.

    2008-01-01

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution of biologically targeted radiotracers with high sensitivity, but images generally lack anatomic context and are of lower spatial resolution. Integration of these technologies permits the acquisition of temporally correlated data showing the distribution of PET radiotracers and MRI contrast agents or MR-detectable metabolites, with registration to the underlying anatomy. An MRI-compatible PET scanner has been built for biomedical research applications that allows data from both modalities to be acquired simultaneously. Experiments demonstrate no effect of the MRI system on the spatial resolution of the PET system and <10% reduction in the fraction of radioactive decay events detected by the PET scanner inside the MRI. The signal-to-noise ratio and uniformity of the MR images, with the exception of one particular pulse sequence, were little affected by the presence of the PET scanner. In vivo simultaneous PET and MRI studies were performed in mice. Proof-of-principle in vivo MR spectroscopy and functional MRI experiments were also demonstrated with the combined scanner. PMID:18319342

  18. Application of silicon photomultipliers to positron emission tomography.

    PubMed

    Roncali, Emilie; Cherry, Simon R

    2011-04-01

    Historically, positron emission tomography (PET) systems have been based on scintillation crystals coupled to photomultipliers tubes (PMTs). However, the limited quantum efficiency, bulkiness, and relatively high cost per unit surface area of PMTs, along with the growth of new applications for PET, offers opportunities for other photodetectors. Among these, small-animal scanners, hybrid PET/MRI systems, and incorporation of time-of-flight information are of particular interest and require low-cost, compact, fast, and magnetic field compatible photodetectors. With high quantum efficiency and compact structure, avalanche photodiodes (APDs) overcome several of the drawbacks of PMTs, but this is offset by degraded signal-to-noise and timing properties. Silicon photomultipliers (SiPMs) offer an alternative solution, combining many of the advantages of PMTs and APDs. They have high gain, excellent timing properties and are insensitive to magnetic fields. At the present time, SiPM technology is rapidly developing and therefore an investigation into optimal design and operating conditions is underway together with detailed characterization of SiPM-based PET detectors. Published data are extremely promising and show good energy and timing resolution, as well as the ability to decode small scintillator arrays. SiPMs clearly have the potential to be the photodetector of choice for some, or even perhaps most, PET systems. PMID:21321792

  19. Imaging Cellular Proliferation in Prostate Cancer with Positron Emission Tomography

    PubMed Central

    Jadvar, Hossein

    2015-01-01

    Prostate cancer remains a major public health problem worldwide. Imaging plays an important role in the assessment of disease at all its clinical phases, including staging, restaging after definitive therapy, evaluation of therapy response, and prognostication. Positron emission tomography with a number of biologically targeted radiotracers has been demonstrated to have potential diagnostic and prognostic utility in the various clinical phases of this prevalent disease. Given the remarkable biological heterogeneity of prostate cancer, one major unmet clinical need that remains is the non-invasive imaging-based characterization of prostate tumors. Accurate tumor characterization allows for image-targeted biopsy and focal therapy as well as facilitates objective assessment of therapy effect. PET in conjunction with radiotracers that track the thymidine salvage pathway of DNA synthesis may be helpful to fulfill this necessity. We review briefly the preclinical and pilot clinical experience with the two major cellular proliferation radiotracers, [18F]-3’-deoxy-3’-fluorothymidine and [18F]-2’-fluoro-5-methyl-1-beta-D-arabinofuranosyluracil in prostate cancer. PMID:27408885

  20. The Next Generation of Positron Emission Tomography Radiopharmaceuticals in Oncology

    PubMed Central

    Rice, Samuel L.; Roney, Celeste A.; Daumar, Pierre; Lewis, Jason S.

    2015-01-01

    Although 18F-fluorodeoxyglucose (18F-FDG) is still the most widely used positron emission tomography (PET) radiotracer, there are a few well-known limitations to its use. The last decade has seen the development of new PET probes for in vivo visualization of specific molecular targets, along with important technical advances in the production of positron-emitting radionuclides and their related labeling methods. As such, a broad range of new PET tracers are in preclinical development or have recently entered clinical trials. The topics covered in this review include labeling methods, biological targets, and the most recent preclinical or clinical data of some of the next generation of PET radiopharmaceuticals. This review, which is by no means exhaustive, has been separated into sections related to the PET radionuclide used for radiolabeling: fluorine-18, for the labeling of agents such as FACBC, FDHT, choline, and Galacto-RGD; carbon-11, for the labeling of choline; gallium-68, for the labeling of peptides such as DOTATOC and bombesin analogs; and the long-lived radionuclides iodine-124 and zirconium-89 for the labeling of monoclonal antibodies cG250, and J591 and trastuzumab, respectively. PMID:21624561

  1. Positron Emission Tomography Detector Development for Plant Biology

    SciTech Connect

    Weisenberger, A G; McKisson, J; Stolin, A; Zorn, C; Howell, C R; Crowell, A S; Reid, C D; Majewski, S; Smith, M F

    2010-01-01

    There are opportunities for the development of new tools to advance plant biology research through the use of radionuclides. Thomas Jefferson National Accelerator Facility, Duke University, West Virginia University and the University of Maryland are collaborating on the development of radionuclide imaging technologies to facilitate plant biology research. Biological research into optimizing plant productivity under various environmental constraints, biofuel and carbon sequestration research are areas that could potentially benefit from new imaging technologies. Using 11CO2 tracers, the investigators at Triangle University Nuclear Laboratory / Duke University Phytotron are currently researching the dynamical responses of plants to environmental changes forecasted from increasing greenhouse trace gases involved in global change. The biological research primary focus is to investigate the impact of elevated atmospheric CO2 and nutrients limitation on carbon and nitrogen dynamics in plants. We report here on preliminary results of 11CO2 plant imaging experiments involving barley plants using Jefferson Lab dual planar positron emission tomography detectors to image 11CO2 in live barley plants. New detector designs will be developed based on the preliminary studies reported here and further planned.

  2. Clinical positron emission tomography/magnetic resonance imaging applications.

    PubMed

    von Schulthess, Gustav K; Kuhn, Felix Pierre; Kaufmann, Philipp; Veit-Haibach, Patrick

    2013-01-01

    Although clinical positron emission tomography (PET)/computed tomography (CT) applications were obvious and have completely replaced PET in oncology, clinical applications of PET/magnetic resonance (MR) are currently not clearly defined. This is due to the lack of clinical data, which is mainly because PET/MR technology is not clinically mature at this point. Open issues are technical and concern ease of obtaining PET attenuation correction maps, dealing with, for example, MR surface coil metal in the PET field-of-view and appropriate workflows leading to a cost-effective examination. All issues can be circumvented by using a shuttle-connected PET/CT-MR system, but the penalty is that simultaneous PET and MR imaging are not possible and potential motion between examinations may occur. Clinically, some systems installed worldwide start to have a reasonable bulk of clinical data. Preliminary results suggest that in oncology, PET/MR may have advantages over PET/CT in head and neck imaging. In liver imaging, more PET-positive lesions are seen on MR than on CT, but that does not mean that PET/MR is superior to PET/CT. Possibly in some settings where a contrast-enhanced PET/CT is needed to be diagnostic, PET/MR can be done without contrast media. Although PET/CT has virtually no role in brain imaging, this may be an important domain for PET/MR, particularly in dementia imaging. The role of PET/MR in the heart is as yet undefined, and much research will have to be done to elucidate this role. At this point, it is also not clear where the simultaneity afforded by a fully integrated PET/MR is really needed. Sequential data acquisition even on separate systems and consecutive software image fusion may well be appropriate. With the increasing installed base of systems, clinical data will be forthcoming and define more clearly where there is clinical value in PET/MR at an affordable price. PMID:23178084

  3. Spectrum of single photon emission computed tomography/computed tomography findings in patients with parathyroid adenomas

    PubMed Central

    Chakraborty, Dhritiman; Mittal, Bhagwant Rai; Harisankar, Chidambaram Natrajan Balasubramanian; Bhattacharya, Anish; Bhadada, Sanjay

    2011-01-01

    Primary hyperparathyroidism results from excessive parathyroid hormone secretion. Approximately 85% of all cases of primary hyperparathyroidism are caused by a single parathyroid adenoma; 10–15% of the cases are caused by parathyroid hyperplasia. Parathyroid carcinoma accounts for approximately 3–4% of cases of primary disease. Technetium-99m-sestamibi (MIBI), the current scintigraphic procedure of choice for preoperative parathyroid localization, can be performed in various ways. The “single-isotope, double-phase technique” is based on the fact that MIBI washes out more rapidly from the thyroid than from abnormal parathyroid tissue. However, not all parathyroid lesions retain MIBI and not all thyroid tissue washes out quickly, and subtraction imaging is helpful. Single photon emission computed tomography (SPECT) provides information for localizing parathyroid lesions, differentiating thyroid from parathyroid lesions, and detecting and localizing ectopic parathyroid lesions. Addition of CT with SPECT improves the sensitivity. This pictorial assay demonstrates various SPECT/CT patterns observed in parathyroid scintigraphy. PMID:21969785

  4. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets.

    PubMed

    Morris, C L; Bourke, M; Byler, D D; Chen, C F; Hogan, G; Hunter, J F; Kwiatkowski, K; Mariam, F G; McClellan, K J; Merrill, F; Morley, D J; Saunders, A

    2013-02-01

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. We also show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods have been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation, and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods. PMID:23464222

  5. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron

    SciTech Connect

    Jones, Kevin C.; Solberg, Timothy D.; Avery, Stephen; Vander Stappen, François; Janssens, Guillaume; Prieels, Damien; Bawiec, Christopher R.; Lewin, Peter A.; Sehgal, Chandra M.

    2015-12-15

    Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. Results: The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. Conclusions: The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.

  6. PDE regularization for Bayesian reconstruction of emission tomography

    NASA Astrophysics Data System (ADS)

    Wang, Zhentian; Zhang, Li; Xing, Yuxiang; Zhao, Ziran

    2008-03-01

    The aim of the present study is to investigate a type of Bayesian reconstruction which utilizes partial differential equations (PDE) image models as regularization. PDE image models are widely used in image restoration and segmentation. In a PDE model, the image can be viewed as the solution of an evolutionary differential equation. The variation of the image can be regard as a descent of an energy function, which entitles us to use PDE models in Bayesian reconstruction. In this paper, two PDE models called anisotropic diffusion are studied. Both of them have the characteristics of edge-preserving and denoising like the popular median root prior (MRP). We use PDE regularization with an Ordered Subsets accelerated Bayesian one step late (OSL) reconstruction algorithm for emission tomography. The OS accelerated OSL algorithm is more practical than a non-accelerated one. The proposed algorithm is called OSEM-PDE. We validated the OSEM-PDE using a Zubal phantom in numerical experiments with attenuation correction and quantum noise considered, and the results are compared with OSEM and an OS version of MRP (OSEM-MRP) reconstruction. OSEM-PDE shows better results both in bias and variance. The reconstruction images are smoother and have sharper edges, thus are more applicable for post processing such as segmentation. We validate this using a k-means segmentation algorithm. The classic OSEM is not convergent especially in noisy condition. However, in our experiment, OSEM-PDE can benefit from OS acceleration and keep stable and convergent while OSEM-MRP failed to converge.

  7. Radiopharmaceuticals for single-photon emission computed tomography brain imaging.

    PubMed

    Kung, Hank F; Kung, Mei-Ping; Choi, Seok Rye

    2003-01-01

    In the past 10 years, significant progress on the development of new brain-imaging agents for single-photon emission computed tomography has been made. Most of the new radiopharmaceuticals are designed to bind specific neurotransmitter receptor or transporter sites in the central nervous system. Most of the site-specific brain radiopharmaceuticals are labeled with (123)I. Results from imaging of benzodiazepine (gamma-aminobutyric acid) receptors by [(123)I]iomazenil are useful in identifying epileptic seizure foci and changes of this receptor in psychiatric disorders. Imaging of dopamine D2/D3 receptors ([(123)I]iodobenzamide and [(123)I]epidepride) and transporters [(123)I]CIT (2-beta-carboxymethoxy-3-beta(4-iodophenyl)tropane) and [(123)I]FP-beta-CIT (N-propyl-2-beta-carboxymethoxy-3-beta(4-iodophenyl)-nortropane has proven to be a simple but powerful tool for differential diagnosis of Parkinson's and other neurodegenerative diseases. A (99m)Tc-labeled agent, [(99m)Tc]TRODAT (technetium, 2-[[2-[[[3-(4-chlorophenyl)-8-methyl-8-azabicyclo [3,2,1]oct-2-yl]methyl](2-mercaptoethyl)amino]ethyl]amino] ethanethiolato(3-)]oxo-[1R-(exo-exo)]-), for imaging dopamine transporters in the brain has been successfully applied in the diagnosis of Parkinson's disease. Despite the fact that (123)I radiopharmaceuticals have been widely used in Japan and in Europe, clinical application of (123)I-labeled brain radiopharmaceuticals in the United States is limited because of the difficulties in supplying such agents. Development of (99m)Tc agents will likely extend the application of site-specific brain radiopharmaceuticals for routine applications in aiding the diagnosis and monitoring treatments of various neurologic and psychiatric disorders. PMID:12605353

  8. Noninvasive imaging of islet grafts using positron-emission tomography

    NASA Astrophysics Data System (ADS)

    Lu, Yuxin; Dang, Hoa; Middleton, Blake; Zhang, Zesong; Washburn, Lorraine; Stout, David B.; Campbell-Thompson, Martha; Atkinson, Mark A.; Phelps, Michael; Gambhir, Sanjiv Sam; Tian, Jide; Kaufman, Daniel L.

    2006-07-01

    Islet transplantation offers a potential therapy to restore glucose homeostasis in type 1 diabetes patients. However, islet transplantation is not routinely successful because most islet recipients gradually lose graft function. Furthermore, serological markers of islet function are insensitive to islet loss until the latter stages of islet graft rejection. A noninvasive method of monitoring islet grafts would aid in the assessment of islet graft survival and the evaluation of interventions designed to prolong graft survival. Here, we show that recombinant adenovirus can engineer isolated islets to express a positron-emission tomography (PET) reporter gene and that these islets can be repeatedly imaged by using microPET after transplantation into mice. The magnitude of signal from engineered islets implanted into the axillary cavity was directly related to the implanted islet mass. PET signals attenuated over the following weeks because of the transient nature of adenovirus-mediated gene expression. Because the liver is the preferred site for islet implantation in humans, we also tested whether islets could be imaged after transfusion into the mouse liver. Control studies revealed that both intrahepatic islet transplantation and hyperglycemia altered the biodistribution kinetics of the PET probe systemically. Although transplanted islets were dispersed throughout the liver, clear signals from the liver region of mice receiving PET reporter-expressing islets were detectable for several weeks. Viral transduction, PET reporter expression, and repeated microPET imaging had no apparent deleterious effects on islet function after implantation. These studies lay a foundation for noninvasive quantitative assessments of islet graft survival using PET. diabetes | transplantation

  9. [Positron emission tomography to study central pain integration].

    PubMed

    Laurent, B; Peyron, R; Garcia Larrea, L; Mauguière, F

    2000-04-01

    The study of pain integration, in vivo, within the human brain has been largely improved by the functional neuro-imaging techniques available for about 10 years. Positron Emission Tomography (PET), complemented by laser evoked potentials (LEP) and functional Magnetic Resonance Imaging (fMRI) can nowadays generate maps of physiological or neuropathic pain-related brain activity. LEP and fMRI complement PET by their better temporal resolution and the possibility of individual subject analyze. Recent advances in our knowledge of pain mechanisms concern physiological acute pain, neuropathic pain and investigation of analgesic mechanisms. The sixteen studies using PET have demonstrated pain-related activations in thalamus, insula/SII, anterior cingulate and posterior parietal cortices Activity in right pre-frontal and posterior parietal cortices, anterior cingulate and thalami can be modulated by attention (hypnosis, chronic pain, diversion, selective attention to pain) and probably subserve attentional processes rather than pain analysis. Responses in insula/SII cortex presumably subserve discriminative aspects of pain perception while SI cortex is particularly involved in particular aspects of pain discrimination (movement, contact.) In patients, neuropathic pain, angina and atypical facial pain result in PET abnormalities whose significance remain obscure but which are localized in thalamus and anterior cingulate cortices suggesting their distribution is not random while discriminative responses remain detectable in insula/SII. Drug or stimulation induced analgesia are associated with normalization of basal thalamic abnormalities associated with many chronic pains. The need to investigate the significance of these responses, their neuro-chemical correlates (PET), their time course, the individual strategies by which they have been generated by correlating PET data with LEP and fMRI results, are the challenges that remain to be addressed in the next few years by

  10. Role of Positron Emission Tomography-Computed Tomography in the Management of Anal Cancer

    SciTech Connect

    Mistrangelo, Massimiliano; Pelosi, Ettore; Bello, Marilena; Ricardi, Umberto; Milanesi, Enrica; Cassoni, Paola; Baccega, Massimo; Filippini, Claudia; Racca, Patrizia; Lesca, Adriana; Munoz, Fernando H.; Fora, Gianluca; Skanjeti, Andrea; Cravero, Francesca; Morino, Mario

    2012-09-01

    Purpose: Pre- and post-treatment staging of anal cancer are often inaccurate. The role of positron emission tomograpy-computed tomography (PET-CT) in anal cancer is yet to be defined. The aim of the study was to compare PET-CT with CT scan, sentinel node biopsy results of inguinal lymph nodes, and anal biopsy results in staging and in follow-up of anal cancer. Methods and Materials: Fifty-three consecutive patients diagnosed with anal cancer underwent PET-CT. Results were compared with computed tomography (CT), performed in 40 patients, and with sentinel node biopsy (SNB) (41 patients) at pretreatment workup. Early follow-up consisted of a digital rectal examination, an anoscopy, a PET-CT scan, and anal biopsies performed at 1 and 3 months after the end of treatment. Data sets were then compared. Results: At pretreatment assessment, anal cancer was identified by PET-CT in 47 patients (88.7%) and by CT in 30 patients (75%). The detection rates rose to 97.9% with PET-CT and to 82.9% with CT (P=.042) when the 5 patients who had undergone surgery prior to this assessment and whose margins were positive at histological examination were censored. Perirectal and/or pelvic nodes were considered metastatic by PET-CT in 14 of 53 patients (26.4%) and by CT in 7 of 40 patients (17.5%). SNB was superior to both PET-CT and CT in detecting inguinal lymph nodes. PET-CT upstaged 37.5% of patients and downstaged 25% of patients. Radiation fields were changed in 12.6% of patients. PET-CT at 3 months was more accurate than PET-CT at 1 month in evaluating outcomes after chemoradiation therapy treatment: sensitivity was 100% vs 66.6%, and specificity was 97.4% vs 92.5%, respectively. Median follow-up was 20.3 months. Conclusions: In this series, PET-CT detected the primary tumor more often than CT. Staging of perirectal/pelvic or inguinal lymph nodes was better with PET-CT. SNB was more accurate in staging inguinal lymph nodes.

  11. Relationship of computed tomography perfusion and positron emission tomography to tumour progression in malignant glioma

    PubMed Central

    Yeung, Timothy P C; Yartsev, Slav; Lee, Ting-Yim; Wong, Eugene; He, Wenqing; Fisher, Barbara; VanderSpek, Lauren L; Macdonald, David; Bauman, Glenn

    2014-01-01

    IntroductionThis study aimed to explore the potential for computed tomography (CT) perfusion and 18-Fluorodeoxyglucose positron emission tomography (FDG-PET) in predicting sites of future progressive tumour on a voxel-by-voxel basis after radiotherapy and chemotherapy. MethodsTen patients underwent pre-radiotherapy magnetic resonance (MR), FDG-PET and CT perfusion near the end of radiotherapy and repeated post-radiotherapy follow-up MR scans. The relationships between these images and tumour progression were assessed using logistic regression. Cross-validation with receiver operating characteristic (ROC) analysis was used to assess the value of these images in predicting sites of tumour progression. ResultsPre-radiotherapy MR-defined gross tumour; near-end-of-radiotherapy CT-defined enhancing lesion; CT perfusion blood flow (BF), blood volume (BV) and permeability-surface area (PS) product; FDG-PET standard uptake value (SUV); and SUV:BF showed significant associations with tumour progression on follow-up MR imaging (P < 0.0001). The mean sensitivity (±standard deviation), specificity and area under the ROC curve (AUC) of PS were 0.64 ± 0.15, 0.74 ± 0.07 and 0.72 ± 0.12 respectively. This mean AUC was higher than that of the pre-radiotherapy MR-defined gross tumour and near-end-of-radiotherapy CT-defined enhancing lesion (both AUCs = 0.6 ± 0.1, P ≤ 0.03). The multivariate model using BF, BV, PS and SUV had a mean AUC of 0.8 ± 0.1, but this was not significantly higher than the PS only model. ConclusionPS is the single best predictor of tumour progression when compared to other parameters, but voxel-based prediction based on logistic regression had modest sensitivity and specificity. PMID:26229630

  12. Budget impact from the incorporation of positron emission tomography – computed tomography for staging lung cancers

    PubMed Central

    Biz, Aline Navega; Caetano, Rosângela

    2015-01-01

    OBJECTIVE To estimate the budget impact from the incorporation of positron emission tomography (PET) in mediastinal and distant staging of non-small cell lung cancer. METHODS The estimates were calculated by the epidemiological method for years 2014 to 2018. Nation-wide data were used about the incidence; data on distribution of the disease´s prevalence and on the technologies’ accuracy were from the literature; data regarding involved costs were taken from a micro-costing study and from Brazilian Unified Health System (SUS) database. Two strategies for using PET were analyzed: the offer to all newly-diagnosed patients, and the restricted offer to the ones who had negative results in previous computed tomography (CT) exams. Univariate and extreme scenarios sensitivity analyses were conducted to evaluate the influence from sources of uncertainties in the parameters used. RESULTS The incorporation of PET-CT in SUS would imply the need for additional resources of 158.1 BRL (98.2 USD) million for the restricted offer and 202.7 BRL (125.9 USD) million for the inclusive offer in five years, with a difference of 44.6 BRL (27.7 USD) million between the two offer strategies within that period. In absolute terms, the total budget impact from its incorporation in SUS, in five years, would be 555 BRL (345 USD) and 600 BRL (372.8 USD) million, respectively. The costs from the PET-CT procedure were the most influential parameter in the results. In the most optimistic scenario, the additional budget impact would be reduced to 86.9 BRL (54 USD) and 103.8 BRL (64.5 USD) million, considering PET-CT for negative CT and PET-CT for all, respectively. CONCLUSIONS The incorporation of PET in the clinical staging of non-small cell lung cancer seems to be financially feasible considering the high budget of the Brazilian Ministry of Health. The potential reduction in the number of unnecessary surgeries may cause the available resources to be more efficiently allocated. PMID:26274871

  13. High-resolution PET (positron emission tomography) for medical science studies

    SciTech Connect

    Budinger, T.F.; Derenzo, S.E.; Huesman, R.H.; Jagust, W.J.; Valk, P.E. )

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging. 6 refs., 21 figs.

  14. High-resolution PET [Positron Emission Tomography] for Medical Science Studies

    DOE R&D Accomplishments Database

    Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.

  15. Particle induced X-ray emission-computed tomography analysis of an adsorbent for extraction chromatography

    NASA Astrophysics Data System (ADS)

    Satoh, Takahiro; Yokoyama, Akihito; Kitamura, Akane; Ohkubo, Takeru; Ishii, Yasuyuki; Takahatake, Yoko; Watanabe, Sou; Koma, Yoshikazu; Kada, Wataru

    2016-03-01

    Nd, which simulates minor actinides (MAs), was used for investigating residual minor actinides produced during the extraction chromatography separation of spent fuel from fast neutron reactors. A cross-sectional distribution of Nd in a minute globular adsorbent having diameter less than 50 μm was obtained using particle induced X-ray emission-computed tomography with a 3-MeV proton microbeam. The measurement area was 150 × 150 μm2 corresponding to 128 × 128 imaging pixels in projection images with 9° resolution, image reconstruction was carried out by a modified ML-EM (maximum likelihood expectation maximization) method. As a result, the cross-sectional distribution of Nd in the adsorbent was successfully obtained, and it was first revealed that Nd existed both in the central region and on the outer surface even after an elution. This implies that the internal structure of the adsorbent must be modified for improving of the recovery of MAs.

  16. Neutron stimulated emission computed tomography: a Monte Carlo simulation approach.

    PubMed

    Sharma, A C; Harrawood, B P; Bender, J E; Tourassi, G D; Kapadia, A J

    2007-10-21

    A Monte Carlo simulation has been developed for neutron stimulated emission computed tomography (NSECT) using the GEANT4 toolkit. NSECT is a new approach to biomedical imaging that allows spectral analysis of the elements present within the sample. In NSECT, a beam of high-energy neutrons interrogates a sample and the nuclei in the sample are stimulated to an excited state by inelastic scattering of the neutrons. The characteristic gammas emitted by the excited nuclei are captured in a spectrometer to form multi-energy spectra. Currently, a tomographic image is formed using a collimated neutron beam to define the line integral paths for the tomographic projections. These projection data are reconstructed to form a representation of the distribution of individual elements in the sample. To facilitate the development of this technique, a Monte Carlo simulation model has been constructed from the GEANT4 toolkit. This simulation includes modeling of the neutron beam source and collimation, the samples, the neutron interactions within the samples, the emission of characteristic gammas, and the detection of these gammas in a Germanium crystal. In addition, the model allows the absorbed radiation dose to be calculated for internal components of the sample. NSECT presents challenges not typically addressed in Monte Carlo modeling of high-energy physics applications. In order to address issues critical to the clinical development of NSECT, this paper will describe the GEANT4 simulation environment and three separate simulations performed to accomplish three specific aims. First, comparison of a simulation to a tomographic experiment will verify the accuracy of both the gamma energy spectra produced and the positioning of the beam relative to the sample. Second, parametric analysis of simulations performed with different user-defined variables will determine the best way to effectively model low energy neutrons in tissue, which is a concern with the high hydrogen content in

  17. Incremental value of single photon emission tomography/computed tomography in 3-phase bone scintigraphy of an accessory navicular bone.

    PubMed

    Jain, Sachin; Karunanithi, Sellam; Agarwal, Krishan Kant; Kumar, Ganesh; Roy, Shambo Guha; Tripathi, Madhavi

    2014-07-01

    Accessory navicular bone is one of the supernumerary ossicles in the foot. Radiography is non diagnostic in symptomatic cases. Accessory navicular has been reported as a cause of foot pain and is usually associated with flat foot. Increased radio tracer uptake on bone scan is found to be more sensitive. We report a case highlighting the significance of single photon emission tomography/computed tomography in methylene diphosphonate bone scan in the evaluation of symptomatic accessory navicular bone where three phase bone scan is equivocal. PMID:25210293

  18. Metastatic superscan in prostate carcinoma on gallium-68-prostate-specific membrane antigen positron emission tomography/computed tomography scan

    PubMed Central

    Agarwal, Krishan Kant; Tripathi, Madhavi; Kumar, Rajeev; Bal, Chandrasekhar

    2016-01-01

    We describe the imaging features of a metastatic superscan on gallium-68 Glu-NH-CO-NH-Lys-(Ahx)-[Ga-68(HBED-CC)], abbreviated as gallium-68-prostate-specific membrane antigen (68Ga-PSMA) positron emission tomography/computed tomography (PET/CT) imaging. 68Ga-PSMA is novel radiotracer undergoing evaluation for PET/CT imaging of prostate carcinoma. This patient had a superscan of metastases on conventional bone scintigraphy and was referred for 68Ga-PSMA PET/CT to evaluate the feasibility of 177Lu-PSMA therapy. PMID:27095868

  19. Comparison of diffuse optical tomography of human breast with whole-body and breast-only positron emission tomography

    PubMed Central

    Konecky, Soren D.; Choe, Regine; Corlu, Alper; Lee, Kijoon; Wiener, Rony; Srinivas, Shyam M.; Saffer, Janet R.; Freifelder, Richard; Karp, Joel S.; Hajjioui, Nassim; Azar, Fred; Yodh, Arjun G.

    2008-01-01

    We acquire and compare three-dimensional tomographic breast images of three females with suspicious masses using diffuse optical tomography (DOT) and positron emission tomography (PET). Co-registration of DOT and PET images was facilitated by a mutual information maximization algorithm. We also compared DOT and whole-body PET images of 14 patients with breast abnormalities. Positive correlations were found between total hemoglobin concentration and tissue scattering measured by DOT, and fluorodeoxyglucose (18F-FDG) uptake. In light of these observations, we suggest potential benefits of combining both PET and DOT for characterization of breast lesions. PMID:18383664

  20. Clinical usefulness of post-operative 18F-fluorodeoxyglucose positron emission tomography-computed tomography in canine hemangiosarcoma

    PubMed Central

    Lee, Gahyun; Kwon, Seong Young; Son, Kyuyeol; Park, Seungjo; Lee, Ju-hwan; Cho, Kyoung-Oh; Min, Jung-Joon

    2016-01-01

    This report describes the usefulness of positron emission tomography-computed tomography (PET-CT) for evaluating recurrent or residual tumors following surgery. CT and 18F-fluorodeoxyglucose PET-CT were pre- and post-operatively applied to multiple masses in a dog with hemangiosarcoma. The distinction between the left subcutaneous mass and the peritoneum was clarified on pre-operative CT examination, and malignancy was suspected based on PET-CT. A recurrent or residual tumor in the left subcutaneous region was suspected on post-operative PET-CT, and confirmed through histopathologic examination. PMID:26645332

  1. Simulation Study of Single Photon Emission Computed Tomography for Industrial Applications

    NASA Astrophysics Data System (ADS)

    Roy, Tushar; Sarkar, P. S.; Sinha, Amar

    2008-09-01

    SPECT (Single Photon Emission Computed Tomography) provides for an invaluable non-invasive technique for the characterization and activity distribution of the gamma-emitting source. For many applications of radioisotopes for medical and industrial application, not only the positional information of the distribution of radioisotopes is needed but also its strength. The well-established X-ray radiography or transmission tomography techniques do not yield sufficient quantitative information about these objects. Emission tomography is one of the important methods for such characterization. Application of parallel beam, fan beam and 3D cone beam emission tomography methods have been discussed in this paper. Simulation studies to test these algorithms have been carried out to validate the technique.

  2. Single-photon emission computed tomography/computed tomography in abdominal diseases.

    PubMed

    Schillaci, Orazio; Filippi, Luca; Danieli, Roberta; Simonetti, Giovanni

    2007-01-01

    Single-photon emission computed tomography (SPECT) studies of the abdominal region are established in conventional nuclear medicine because of their easy and large availability, even in the most peripheral hospitals. It is well known that SPECT imaging demonstrates function, rather than anatomy. It is useful in the diagnosis of various disorders because of its ability to detect changes caused by disease before identifiable anatomic correlates and clinical manifestations exist. However, SPECT data frequently need anatomic landmarks to precisely depict the site of a focus of abnormal tracer uptake and the structures containing normal activity; the fusion with morphological studies can furnish an anatomical map to scintigraphic findings. In the past, software-based fusion of independently performed SPECT and CT or magnetic resonance images have been demonstrated to be time consuming and not useful for routine clinical employment. The recent development of dual-modality integrated imaging systems, which provide SPECT and CT images in the same scanning session, with the acquired images co-registered by means of the hardware, has created a new scenario. The first data have been mainly reported in oncology patients and indicate that SPECT/CT is very useful because it is able to provide further information of clinical value in several cases. In SPECT studies of abdominal diseases, hybrid SPECT/CT can play a role in the differential diagnosis of hepatic hemangiomas located near vascular structures, in precisely detecting and localizing active splenic tissue caused by splenosis in splenectomy patients, in providing important information for therapy optimization in patients submitted to hepatic arterial perfusion scintigraphy, in accurately identifying the involved bowel segments in patients with inflammatory bowel diseases, and in correctly localizing the bleeding sites in patients with gastrointestinal bleeding. PMID:17161039

  3. Positron emission tomography displacement sensitivity: predicting binding potential change for positron emission tomography tracers based on their kinetic characteristics.

    PubMed

    Morris, Evan D; Yoder, Karmen K

    2007-03-01

    There is great interest in positron emission tomography (PET) as a noninvasive assay of fluctuations in synaptic neurotransmitter levels, but questions remain regarding the optimal choice of tracer for such a task. A mathematical method is proposed for predicting the utility of any PET tracer as a detector of changes in the concentration of an endogenous competitor via displacement of the tracer (a.k.a., its 'vulnerability' to competition). The method is based on earlier theoretical work by Endres and Carson and by the authors. A tracer-specific predictor, the PET Displacement Sensitivity (PDS), is calculated from compartmental model simulations of the uptake and retention of dopaminergic radiotracers in the presence of transient elevations of dopamine (DA). The PDS predicts the change in binding potential (DeltaBP) for a given change in receptor occupancy because of binding by the endogenous competitor. Simulations were performed using estimates of tracer kinetic parameters derived from the literature. For D(2)/D(3) tracers, the calculated PDS indices suggest a rank order for sensitivity to displacement by DA as follows: raclopride (highest sensitivity), followed by fallypride, FESP, FLB, NMSP, and epidepride (lowest). Although the PDS takes into account the affinity constant for the tracer at the binding site, its predictive value cannot be matched by either a single equilibrium constant, or by any one rate constant of the model. Values for DeltaBP have been derived from published studies that employed comparable displacement paradigms with amphetamine and a D(2)/D(3) tracer. The values are in good agreement with the PDS-predicted rank order of sensitivity to displacement. PMID:16788713

  4. Surgical strategy for aortic prosthetic graft infection with (18)F-fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Yamanaka, Katsuhiro; Matsueda, Takashi; Miyahara, Shunsuke; Nomura, Yoshikatsu; Sakamoto, Toshihito; Morimoto, Naoto; Inoue, Takeshi; Matsumori, Masamichi; Okada, Kenji; Okita, Yutaka

    2016-09-01

    A 30-year-old man with Marfan syndrome who underwent Crawford type II extension aneurysm repair about 9 years ago was referred to our hospital with persistent fever. Computed tomography (CT) showed air around the mid-descending aortic prosthetic graft. Because the air did not disappear in spite of intravenous antibiotics, (18)F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) was performed. FDG-PET/CT revealed four high-uptake lesions. After dissecting the aortic graft particularly focusing on the high-uptake lesions, this patient underwent in situ graft re-replacement of descending aortic graft with a rifampicin-bonded gelatin-impregnated Dacron graft and omentopexy. The patient remains well without recurrent infection at 3 months after surgery. PMID:25563707

  5. Proton Emission Studies at GSI in the 1980s

    SciTech Connect

    Hofmann, Sigurd

    2000-12-31

    This article describes the experiments that were performed during the first decade of the operation of UNILAC, GSI-Darmstadt, at the recoil separator SHIP and the on-line mass separator. The measurements resulted in the discovery of the first radioactive ground state proton emitters, {sup 151}Lu and {sup 147}Tm.

  6. Space Environment Effects: Model for Emission of Solar Protons (ESP): Cumulative and Worst Case Event Fluences

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Barth, J. L.; Stassinopoulos, E. G.; Burke, E. A.; Gee, G. B.

    1999-01-01

    The effects that solar proton events have on microelectronics and solar arrays are important considerations for spacecraft in geostationary and polar orbits and for interplanetary missions. Designers of spacecraft and mission planners are required to assess the performance of microelectronic systems under a variety of conditions. A number of useful approaches exist for predicting information about solar proton event fluences and, to a lesser extent, peak fluxes. This includes the cumulative fluence over the course of a mission, the fluence of a worst-case event during a mission, the frequency distribution of event fluences, and the frequency distribution of large peak fluxes. Naval Research Laboratory (NRL) and NASA Goddard Space Flight Center, under the sponsorship of NASA's Space Environments and Effects (SEE) Program, have developed a new model for predicting cumulative solar proton fluences and worst-case solar proton events as functions of mission duration and user confidence level. This model is called the Emission of Solar Protons (ESP) model.

  7. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    DOE PAGESBeta

    Morris, Christopher L.; Bourke, Mark A.; Byler, Darrin D.; Chen, Ching-Fong; Hogan, Gary E.; Hunter, James F.; Kwiatkowski, Kris K.; Mariam, Fesseha G.; McClellan, Kenneth J.; Merrill, Frank E.; et al

    2013-02-11

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. Also, we show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods has been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomographymore » on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.« less

  8. Performance of Positron Emission Tomography and Positron Emission Tomography/Computed Tomography Using Fluorine-18-Fluorodeoxyglucose for the Diagnosis, Staging, and Recurrence Assessment of Bone Sarcoma

    PubMed Central

    Liu, Fanxiao; Zhang, Qingyu; Zhu, Dezhi; Li, Zhenfeng; Li, Jianmin; Wang, Boim; Zhou, Dongsheng; Dong, Jinlei

    2015-01-01

    Abstract To investigate the performance of fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) and PET/computed tomography (CT) in the diagnosis, staging, restaging, and recurrence surveillance of bone sarcoma by systematically reviewing and meta-analyzing the published literature. To retrieve eligible studies, we searched the MEDLINE, Embase, and the Cochrane Central library databases using combinations of following Keywords: “positron emission tomography” or “PET,” and “bone tumor” or “bone sarcoma” or “sarcoma.” Bibliographies from relevant articles were also screened manually. Data were extracted and the pooled sensitivity, specificity, and diagnostic odds ratio (DOR), on an examination-based or lesion-based level, were calculated to appraise the diagnostic accuracy of 18F-FDG PET and PET/CT. All statistical analyses were performed using Meta-Disc 1.4. Forty-two trials were eligible. The pooled sensitivity and specificity of PET/CT to differentiate primary bone sarcomas from benign lesions were 96% (95% confidence interval [CI], 93–98) and 79% (95% CI, 63–90), respectively. For detecting recurrence, the pooled results on an examination-based level were sensitivity 92% (95% CI, 85–97), specificity 93% (95% CI, 88–96), positive likelihood ratio (PLR) 10.26 (95% CI, 5.99–17.60), and negative likelihood ratio (NLR) 0.11 (95% CI, 0.05–0.22). For detecting distant metastasis, the pooled results on a lesion-based level were sensitivity 90% (95% CI, 86–93), specificity 85% (95% CI, 81–87), PLR 5.16 (95% CI, 2.37–11.25), and NLR 0.15 (95% CI, 0.11–0.20). The accuracies of PET/CT for detecting local recurrence, lung metastasis, and bone metastasis were satisfactory. Pooled outcome estimates of 18F-FDG PET were less complete compared with those of PET/CT. 18F-FDG PET and PET/CT showed a high sensitivity for diagnosing primary bone sarcoma. Moreover, PET/CT demonstrated excellent accuracy for the staging

  9. 11C-Methionine positron emission tomography-computed tomography in localization of methoxyisobutyl isonitrile negative ectopic parathyroid adenoma

    PubMed Central

    Seniaray, Nikhil; Sharma, Harshul; Arbind, Arpana; Jaimini, Abhinav; D’souza, Maria; Saw, Sanjeev; Hazari, Puja Panwar; Mishra, A. K.; Sharma, Rajnish; Mondal, Anupam

    2016-01-01

    Primary hyperparathyroidism is caused by parathyroid adenomas in 85% of the cases. Since parathyroid adenomas are known for their ectopic location, presurgical localization of the suspected site of adenoma is desirable. However, current imaging modalities are not always successful in localizing ectopic parathyroid adenomas. The aim of this case report is to show that 11C-methionine positron emission tomography could accurately localize ectopic parathyroid adenomas in patients in whom conventional imaging had failed or is inconclusive. PMID:26917896

  10. Distinguishing tumor recurrence from irradiation sequelae with positron emission tomography in patients treated for larynx cancer

    SciTech Connect

    Greven, K.M.; Williams, D.W. III; Keyes, J.W. Jr.; McGuirt, W.F.; Harkness, B.A.; Watson, N.E. Jr.; Raben, M.; Frazier, L.C.; Geisinger, K.R.; Capellari, J.O.

    1994-07-01

    Distinguishing persistent or recurrent tumor from postradiation edema, or soft tissue/cartilage necrosis in patients treated for carcinoma of the larynx can be difficult. Because recurrent tumor is often submucosal, multiple deep biopsies may be necessary before a diagnosis can be established. Positron emission tomography with 18F-2-fluro-2-deoxglucose (FDG) was studied for its ability to aid in this problem. Positron emission tomography (18FDG) scans were performed on 11 patients who were suspected of having persistent or recurrent tumor after radiation treatment for carcinoma of the larynx. Patients underwent thorough history and physical examinations, scans with computerized tomography, and pathologic evaluation when indicated. Standard uptake values were used to quantitate the FDG uptake in the larynx. The time between completion of radiation treatment and positron emission tomography examination ranged from 2 to 26 months with a median of 6 months. Ten patients underwent computed tomography (CT) of the larynx, which revealed edema of the larynx (six patients), glottic mass (four patients), and cervical nodes (one patient). Positron emission tomography scans revealed increased FDG uptake in the larynx in five patients and laryngectomy confirmed the presence of carcinoma in these patients. Five patients had positron emission tomography results consistent with normal tissue changes in the larynx, and one patient had increased FDG uptake in neck nodes. This patient underwent laryngectomy, and no cancer was found in the primary site, but nodes were pathologically positive. One patient had slightly elevated FDG uptake and negative biopsy results. The remaining patients have been followed for 11 to 14 months since their positron emission studies and their examinations have remained stable. In patients without tumor, average standard uptake values of the larynx ranged from 2.4 to 4.7, and in patients with tumor, the range was 4.9 to 10.7. 18 refs., 3 figs., 1 tab.