Science.gov

Sample records for proton halos

  1. BEAM HALO IN PROTON LINAC BEAMS

    SciTech Connect

    T. WANGLER; K. CRANDALL

    2000-08-01

    In this paper we review the present picture of km halo in proton linacs. Space-charge forces acting in mismatched beams have been identified as a major cause of beam-halo. We present a definition of halo based on a ratio of moments of the distribution of the beam coordinates. We find from our initial studies that for halo detined in this way, a beam can have rms emittance growth without halo growth, but halo growth is always accompanied by rms emittance growth. We describe the beam-halo experiment that is in preparation at Los Alamos, which will address questions about the beam profiles, maximum particle amplitudes, and rms emittance growth associated with the halo.

  2. Range corrections in proton halo nuclei

    NASA Astrophysics Data System (ADS)

    Ryberg, Emil; Forssén, Christian; Hammer, H.-W.; Platter, Lucas

    2016-04-01

    We analyze the effects of finite-range corrections in halo effective field theory for S-wave proton halo nuclei. We calculate the charge radius to next-to-leading order and the astrophysical S-factor for low-energy proton capture to fifth order in the low-energy expansion. As an application, we confront our results with experimental data for the S-factor for proton capture on Oxygen-16 into the excited 1 /2+ state of Fluorine-17. Our low-energy theory is characterized by a systematic low-energy expansion, which can be used to quantify an energy-dependent model error to be utilized in data fitting. Finally, we show that the existence of proton halos is suppressed by the need for two fine tunings in the underlying theory.

  3. Enhanced subbarrier fusion for proton halo nuclei

    NASA Astrophysics Data System (ADS)

    Kumar, Raj; Lay, J. A.; Vitturi, A.

    2014-02-01

    In this Brief Report we use a simple model to describe the dynamical effects of break-up processes in the subbarrier fusion involving weakly bound nuclei. We model two similar cases involving either a neutron or a proton halo nucleus, both schematically coupled to the break-up channels. We find that the decrease of the Coulomb barrier in the proton break-up channel leads, ceteris paribus, to a larger enhancement of the subbarrier fusion probabilities with respect to the neutron halo case.

  4. Beam halo in mismatched proton beams.

    SciTech Connect

    Wangler, Thomas P.,; Allen, C. K.; Chan, D.; Colestock, P. L. ,; Crandall, K. R.; Qiang, J.; Garnett, R. W.; Lysenko, W. P.; Gilpatrick, J. D.; Schneider, J. D.; Schulze, M. E.; Sheffield, R. L.; Smith, H. V.

    2002-01-01

    Progress was made during the past decade towards a better understanding of halo formation caused by beam mismatch in high-intensity beams. To test these ideas an experiment was carried out at Los Alamos with proton beams in a 52-quadrupole focusing channel. Rms emittances and beam widths were obtained from measured beam profiles for comparison with the maximum emittance growth predictions of a free-energy model and the maximum haloamplitude predictions of a particle-core model. The experimental results are also compared with multiparticle simulations. In this paper we will present the experimental results and discuss the implications with respect to the validity of both the models and the simulations. Keywords: beam halo, emittance growth, beam profiles, simulations, space charge, mismatch

  5. Beam-halo measurements in high-current proton beams

    SciTech Connect

    Allen, C.K.; Chan, K.C.D.; Colestock, P.L.; Crandall, K.R.; Garnett, R.W.; Gilpatrick, J.D.; Lysenko, W.; Qiang, J.; Schneider, J.D.; Schulze, M.E.; Sheffield, R.L.; Smith, H.V.; Wangler, T.P.

    2002-01-11

    We present results from an experimental study of the beam halo in a high-current 6.7-MeV proton beam propagating through a 52-quadrupole periodic-focusing channel. The gradients of the first four quadrupoles were independently adjusted to match or mismatch the injected beam. Emittances and beamwidths were obtained from measured profiles for comparisons with maximum emittance-growth predictions of a free-energy model and maximum halo-amplitude predictions of a particle-core model. The experimental results support both models and the present theoretical picture of halo formation.

  6. Reactions induced by beams of neutron and proton halo nuclei

    NASA Astrophysics Data System (ADS)

    Penionzhkevich, Yu. E.

    1997-02-01

    Within the collaboration Dubna-GANIL (Caen, France) - IPN (Orsay, France) - NPI (Rez, Czech Republic) - IAP (Bucharest, Romania) at GANIL and the Dubna U400M accelerator, experiments have been carried out to study elastic scattering, fusion and fission using secondary ion beams of 6He, 11Li and 8B. The fission cross-section for the 6He isotopes has been found to be significantly higher than for the 4He nuclei. This enhancement depends mainly on the entrance channel and it is connected with the neutron skin of the 6He nuclei. Also, investigation of the elastic scattering of 11Li (neutron halo), 7Be and 8B (proton halo) has been performed. The microscopic analysis supports the existence of a neutron halo in 11Li and the proton skin in 8B and 7Be. Perspectives for investigations in this field at the Laboratory of Nuclear Reactions JINR are also discussed.

  7. Near-barrier fusion of proton- and neutron-halo systems

    NASA Astrophysics Data System (ADS)

    Aguilera, E. F.

    2016-07-01

    It is shown that the behaviour of the fusion excitation functions for proton-halo and neutron-halo systems presents important differences, especially in the energy region slightly above the barrier. Measurements for 6He, 11Li and 11Be projectiles are discussed to exemplify the behaviour of neutron-halo systems, while experiments with 8B beams illustrate the situation for proton-halo nuclei. With respect to a standard benchmark, neutron- (proton-) halo systems show a fusion suppression (enhancement) above the barrier.

  8. Experimental study of proton beam halo in mismatched beams

    SciTech Connect

    Allen, C. K.; Chan, K. D.; Colestock, P. L. ,; Garnett, R. W.; Gilpatrick, J. D.; Qiang, J.; Lysenko, W. P.; Smith, H. V.; Schneider, J. D.; Sheffield, R. L.; Wangler, Thomas P.,; Schulze, M. E.; Crandall, K. R.

    2002-01-01

    We report measurements of transverse beam-halo formation in mismatched proton beams in a 52-quadrupole FODO-transport channel following the 6.7 MeV RFQ at the Low-Energy Demonstration Accelerator (LEDA) at Los Alamos. Beam profiles in both transverse planes were measured using a new diagnostic device that consists of a movable carbon filament for measurement of the beam core, and scraper plates for measurement of the outer part of the distributions. The initial results indicate a surprisingly strong growth rate of the rms emittance even for the modest space-charge tune depressions of the experiment. Our results are consistent with the complete transfer of free energy of the mismatched beams into emittance growth within 10 envelope oscillations for both the breathing and the quadrupole modes.

  9. Above-barrier fusion enhancement of proton-halo systems

    NASA Astrophysics Data System (ADS)

    Aguilera, E. F.; Amador-Valenzuela, P.; Martinez-Quiroz, E.; Fernández-Arnáiz, J.; Kolata, J. J.; Guimarães, V.

    2016-03-01

    Previously reported data for fusion of the 8B+(58Ni,28Si) systems are critically reviewed. New α -particle data from the fusion of 8B+58Ni also are reported, but the paper is mostly based on using realistic calculations of well-established codes to reanalyze the previous data. The influence of breakup protons on the evaporation proton measurements for the heavier system is found to be small at all energies except for the lowest one measured, and corrections are made for this process. Possible model dependencies in the deduced fusion cross sections are investigated using three different evaporation codes. The data sets for the 58Ni and 28Si targets are shown to be consistent with each other and with fusion enhancement up to energies that are greater than the Coulomb barrier Vb (Ec.m.≲Vb+1.5 ×ℏ ω ) . This limit corresponds to 6.2 MeV above the barrier for the 58Ni target. An important difference with the behavior of neutron-halo systems is thus confirmed.

  10. Near-Barrier Fusion of the B8+Ni58 Proton-Halo System

    NASA Astrophysics Data System (ADS)

    Aguilera, E. F.; Amador-Valenzuela, P.; Martinez-Quiroz, E.; Lizcano, D.; Rosales, P.; García-Martínez, H.; Gómez-Camacho, A.; Kolata, J. J.; Roberts, A.; Lamm, L. O.; Rogachev, G.; Guimarães, V.; Becchetti, F. D.; Villano, A.; Ojaruega, M.; Febbraro, M.; Chen, Y.; Jiang, H.; Deyoung, P. A.; Peaslee, G. F.; Guess, C.; Khadka, U.; Brown, J.; Hinnefeld, J. D.; Acosta, L.; , E. S. Rossi, Jr.; Huiza, J. F. P.; Belyaeva, T. L.

    2011-08-01

    Fusion cross sections were measured for the exotic proton-halo nucleus B8 incident on a Ni58 target at several energies near the Coulomb barrier. This is the first experiment to report on the fusion of a proton-halo nucleus. The resulting excitation function shows a striking enhancement with respect to expectations for normal projectiles. Evidence is presented that the sum of the fusion and breakup yields saturates the total reaction cross section.

  11. EXPERIMENTAL STUDY OF PROTON-BEAM HALO INDUCED BY BEAM MISMATCH IN LEDA.

    SciTech Connect

    Wangler, Thomas P.,; Allen, C. K.; Colestock, P. L. ,; Chan, K. D.; Crandall, K. R.; Garnett, R. W.; Gilpatrick, J. D.; Lysenko, W. P.; Qiang, J.; Schneider, J. D.; Sheffield, R. L.; Smith, H. V.; Schulze, M. E.

    2001-01-01

    We report measurements of transverse beam halo in mismatched proton beams in a 52-quadrupole FODO transport channel following the 6.7-MeV LEDA RFQ. Beam profiles in both transverse planes are measured using beam-profile diagnostic devices that consist of a movable carbon filament for measurement of the dense beam core, and scraper plates for measurement of the halo. The gradients of the first four quadrupoles can be independently adjusted to mismatch the RFQ output beam into the beam-transport channel. The properties of the measured mismatched beam profiles in the transport channel will be compared with predictions from multiparticle beam-dynamics simulations.

  12. Proton Distribution Radii of 12-19C Illuminate Features of Neutron Halos

    DOE PAGESBeta

    Kanungo, R.; Horiuchi, W.; Hagen, Gaute; Jansen, Gustav R.; Navratil, Petr; Ameil, F.; Atkinson, J.; Ayyad, Y.; Cortina-Gil, D.; Dillmann, I.; et al

    2016-09-02

    We report proton radii of 12-19C densities derived from first accurate charge changing cross section measurements at 900A MeV with a carbon target. A thick neutron surface evolves from ~0.5 fm in 15C to ~1 fm in 19C. Also, the halo radius in 19C is found to be 6.4±0.7 fm as large as 11Li. Ab initio calculations based on chiral nucleon-nucleon and three-nucleon forces reproduce the radii well.

  13. Characterizing a proton beam with two different methods in beam halo experiments

    NASA Astrophysics Data System (ADS)

    Jiang, Hong-Ping; Fu, Shi-Nian; Peng, Jun; Cheng, Peng; Huang, Tao; Li, Peng; Li, Fang; Li, Jian; Liu, Hua-Chang; Liu, Mei-Fei; Meng, Ming; Meng, Cai; Mu, Zhen-Cheng; Rong, Lin-Yan; Ouyang, Hua-Fu; Sun, Biao; Wang, Bo; Tian, Jian-Min; Wang, Biao; Wang, Sheng-Chang; Yao, Yuan; Xu, Tao-Guang; Xu, Xin-An; Xin, Wen-Qu; Zhao, Fu-Xiang; Zeng, Lei; Zhou, Wen-Zhong

    2014-08-01

    In beam halo experiments, it is very important to correctly characterize the RFQ output proton beam. In order to simulate the beam dynamics properly, we must first know the correct initial beam parameters. We have used two different methods, quadrupole scans and multi-wire scanners to determine the transverse phase-space properties of the proton beam. The experimental data were analyzed by fitting to the 3-D nonlinear simulation code IMPACT. For the quadrupole scan method, we found that the RMS beam radius and the measured beam-core profiles agreed very well with the simulations. For the multi-wire scanner method, we choose the case of a matched beam. By fitting the IMPACT simulation results to the measured data, we obtained the Courant-Snyder parameters and the emittance of the beam. The difference between the two methods is about eight percent, which is acceptable in our experiments.

  14. On the nuclear halo of a proton pencil beam stopping in water.

    PubMed

    Gottschalk, Bernard; Cascio, Ethan W; Daartz, Juliane; Wagner, Miles S

    2015-07-21

    The dose distribution of a proton beam stopping in water has components due to basic physics and may have others from beam contamination. We propose the concise terms core for the primary beam, halo (see Pedroni et al 2005 Phys. Med. Biol. 50 541-61) for the low dose region from charged secondaries, aura for the low dose region from neutrals, and spray for beam contamination. We have measured the dose distribution in a water tank at 177 MeV under conditions where spray, therefore radial asymmetry, is negligible. We used an ADCL calibrated thimble chamber and a Faraday cup calibrated integral beam monitor so as to obtain immediately the absolute dose per proton. We took depth scans at fixed distances from the beam centroid rather than radial scans at fixed depths. That minimizes the signal range for each scan and better reveals the structure of the core and halo. Transitions from core to halo to aura are already discernible in the raw data. The halo has components attributable to coherent and incoherent nuclear reactions. Due to elastic and inelastic scattering by the nuclear force, the Bragg peak persists to radii larger than can be accounted for by Molière single scattering. The radius of the incoherent component, a dose bump around midrange, agrees with the kinematics of knockout reactions. We have fitted the data in two ways. The first is algebraic or model dependent (MD) as far as possible, and has 25 parameters. The second, using 2D cubic spline regression, is model independent. Optimal parameterization for treatment planning will probably be a hybrid of the two, and will of course require measurements at several incident energies. The MD fit to the core term resembles that of the PSI group (Pedroni et al 2005), which has been widely emulated. However, we replace their T(w), a mass stopping power which mixes electromagnetic (EM) and nuclear effects, with one that is purely EM, arguing that protons that do not undergo hard single scatters continue to lose

  15. On the nuclear halo of a proton pencil beam stopping in water

    NASA Astrophysics Data System (ADS)

    Gottschalk, Bernard; Cascio, Ethan W.; Daartz, Juliane; Wagner, Miles S.

    2015-07-01

    The dose distribution of a proton beam stopping in water has components due to basic physics and may have others from beam contamination. We propose the concise terms core for the primary beam, halo (see Pedroni et al 2005 Phys. Med. Biol. 50 541-61) for the low dose region from charged secondaries, aura for the low dose region from neutrals, and spray for beam contamination. We have measured the dose distribution in a water tank at 177 MeV under conditions where spray, therefore radial asymmetry, is negligible. We used an ADCL calibrated thimble chamber and a Faraday cup calibrated integral beam monitor so as to obtain immediately the absolute dose per proton. We took depth scans at fixed distances from the beam centroid rather than radial scans at fixed depths. That minimizes the signal range for each scan and better reveals the structure of the core and halo. Transitions from core to halo to aura are already discernible in the raw data. The halo has components attributable to coherent and incoherent nuclear reactions. Due to elastic and inelastic scattering by the nuclear force, the Bragg peak persists to radii larger than can be accounted for by Molière single scattering. The radius of the incoherent component, a dose bump around midrange, agrees with the kinematics of knockout reactions. We have fitted the data in two ways. The first is algebraic or model dependent (MD) as far as possible, and has 25 parameters. The second, using 2D cubic spline regression, is model independent. Optimal parameterization for treatment planning will probably be a hybrid of the two, and will of course require measurements at several incident energies. The MD fit to the core term resembles that of the PSI group (Pedroni et al 2005), which has been widely emulated. However, we replace their T(w), a mass stopping power which mixes electromagnetic (EM) and nuclear effects, with one that is purely EM, arguing that protons that do not undergo hard single scatters continue to lose

  16. Possibilities of studying the structure of halo nuclei in reactions of quasifree proton scattering at low energies

    SciTech Connect

    Zuyev, S. V. Kasparov, A. A.; Konobeevski, E. S.

    2015-07-15

    The possibility of experimentally studying the structure of halo nuclei in reactions induced by quasifree proton scattering on clusters of these nuclei is considered. Quasifree proton scattering on {sup 6}He, {sup 4}He, {sup 4}n, {sup 2}n, and n clusters in inverse kinematics is considered for the example of the {sup 8}He nucleus. Angular and energy distributions of secondaries are obtained for various representations of the cluster structure of the {sup 8}He nucleus. It is clearly shown that, in the angular and energy distributions of secondaries, one can single out regions that receive dominant contributions from reactions on specific clusters and which correspond to concrete cluster configurations of halo nuclei. Possible relevant experiments are proposed.

  17. Characterization of the dose distribution in the halo region of a clinical proton pencil beam using emulsion film detectors

    NASA Astrophysics Data System (ADS)

    Ariga, A.; Ariga, T.; Braccini, S.; Ereditato, A.; Giacoppo, F.; Nesteruk, K. P.; Pistillo, C.; Scampoli, P.

    2015-01-01

    Proton therapy is a high precision technique in cancer radiation therapy which allows irradiating the tumor with minimal damage to the surrounding healthy tissues. Pencil beam scanning is the most advanced dose distribution technique and it is based on a variable energy beam of a few millimeters FWHM which is moved to cover the target volume. Due to spurious effects of the accelerator, of dose distribution system and to the unavoidable scattering inside the patient's body, the pencil beam is surrounded by a halo that produces a peripheral dose. To assess this issue, nuclear emulsion films interleaved with tissue equivalent material were used for the first time to characterize the beam in the halo region and to experimentally evaluate the corresponding dose. The high-precision tracking performance of the emulsion films allowed studying the angular distribution of the protons in the halo. Measurements with this technique were performed on the clinical beam of the Gantry1 at the Paul Scherrer Institute. Proton tracks were identified in the emulsion films and the track density was studied at several depths. The corresponding dose was assessed by Monte Carlo simulations and the dose profile was obtained as a function of the distance from the center of the beam spot.

  18. Masses and Charge Radii of {sup 17-22}Ne and the Two-Proton-Halo Candidate {sup 17}Ne

    SciTech Connect

    Geithner, W.; Kappertz, S.; Keim, M.; Neugart, R.; Wilbert, S.; Neff, T.; Feldmeier, H.; Herfurth, F.; Yazidjian, C.; Audi, G.; Guenaut, C.; Lunney, D.; Blaum, K.; George, S.; Delahaye, P.; Kellerbauer, A.; Kowalska, M.; Herlert, A.; Kluge, H.-J.; Lievens, P.

    2008-12-19

    High-precision mass and charge radius measurements on {sup 17-22}Ne, including the proton-halo candidate {sup 17}Ne, have been performed with Penning trap mass spectrometry and collinear laser spectroscopy. The {sup 17}Ne mass uncertainty is improved by factor 50, and the charge radii of {sup 17-19}Ne are determined for the first time. The fermionic molecular dynamics model explains the pronounced changes in the ground-state structure. It attributes the large charge radius of {sup 17}Ne to an extended proton configuration with an s{sup 2} component of about 40%. In {sup 18}Ne the smaller radius is due to a significantly smaller s{sup 2} component. The radii increase again for {sup 19-22}Ne due to cluster admixtures.

  19. Effect of Coulomb breakup on the elastic cross section of the 8B proton-halo projectile on a heavy, 208Pb target

    NASA Astrophysics Data System (ADS)

    Rangel, J.; Lubian, J.; Canto, L. F.; Gomes, P. R. S.

    2016-05-01

    We investigate the role of the breakup channel in the elastic and breakup cross sections, in collisions of proton-halo nuclei. For this purpose, we perform continuum discretized couple channel (CDCC) calculations for the 8B+208Pb system and evaluate polarization potentials. One-channel calculations including the polarization potential are shown to reproduce very well the elastic cross sections obtained by CDCC calculations. We also study the individual contributions of the Coulomb and the nuclear couplings to the cross sections. To complement our study, we compare the effects of the breakup channel in proton-halo and neutron-halo nuclei, performing calculations treating 8B as a 7B+n core-nucleon system, with an artificially low breakup threshold. When only the nuclear breakup is considered, this approach can reasonably describe the elastic scattering.

  20. Ab-initio Computation of the 17F Proton-Halo State and Resonances in A=17 Nuclei

    SciTech Connect

    Hagen, Gaute; Papenbrock, T.; Hjorth-Jensen, M.

    2010-01-01

    We perform coupled-cluster calculations of the energies and lifetimes of single-particle states around the doubly magic nucleus ^{16}O based on chiral nucleon-nucleon interactions at next-to-next-to-next-to-leading order. To incorporate effects from the scattering continuum, we solve the coupled-cluster equations with a Gamow-Hartree-Fock basis. Our calculations for the J^{pi} = 1/2^{+} proton-halo state in ^{17}F and the 1/2^{+} state in ^{17}O agree well with experiment, while the calculated spin-orbit splitting between d_{5/2} and d_{3/2} states is too small due to the lack of three-nucleon forces. We find that continuum effects yield a significant amount of additional binding energy for the 1/2^{+} and 3/2^{+} states in ^{17}O and ^{17}F.

  1. Halo structure of 11Li in proton scattering: A folding model description with isospin, density and momentum dependent effective interaction

    NASA Astrophysics Data System (ADS)

    Kanungo, Rituparna; Samanta, C.

    1997-02-01

    Recent 11Li+p elastic scattering data at 62, 68.4, and 75 MeV and inelastic scattering data at 68.4 MeV, taken at RIKEN, are analysed with an isospin, density and momentum dependent finite range effective interaction (SBM) and M3Y interaction in a single folding model. The M3Y folded 11Li+p potentials are found to be almost similar to the folded 9Li+p potentials. But the SBM folded 11Li+p potentials are distinctly different, causing small but significant change in the angular distribution. Folded potentials need appreciable reduction factors indicating possible effects of strong breakup channel coupling. No significant change in results is found if 9Li core + Gaussian two-neutron halo density is used instead of the COSM density of 11Li although the radial extent of the latter is much larger. The angular distribution of the recently discovered excited state at 1.3 MeV, well reproduced by the SBM folded potential, is found to be predominantly dipole in nature.

  2. Artificial halos

    NASA Astrophysics Data System (ADS)

    Selmke, Markus

    2015-09-01

    Judged by their frequency and beauty, ice halos easily rival rainbows as a prominent atmospheric optics phenomenon. This article presents experimental halo demonstrations of varying complexity. Using a single commercially available hexagonal glass prism, a variety of artificial halos can be simulated. The experiments include laser beam path analysis, a modified classic spinning prism experiment, and a novel Monte-Carlo machine for three-dimensional rotations. Each of these experiments emulates different conditions of certain halo displays, and in combination, they allow a thorough understanding of these striking phenomena.

  3. Solar Interacting Protons Versus Interplanetary Protons in the Core Plus Halo Model of Diffusive Shock Acceleration and Stochastic Re-acceleration

    NASA Astrophysics Data System (ADS)

    Kocharov, L.; Laitinen, T.; Vainio, R.; Afanasiev, A.; Mursula, K.; Ryan, J. M.

    2015-06-01

    With the first observations of solar γ-rays from the decay of pions, the relationship of protons producing ground level enhancements (GLEs) on the Earth to those of similar energies producing the γ-rays on the Sun has been debated. These two populations may be either independent and simply coincident in large flares, or they may be, in fact, the same population stemming from a single accelerating agent and jointly distributed at the Sun and also in space. Assuming the latter, we model a scenario in which particles are accelerated near the Sun in a shock wave with a fraction transported back to the solar surface to radiate, while the remainder is detected at Earth in the form of a GLE. Interplanetary ions versus ions interacting at the Sun are studied for a spherical shock wave propagating in a radial magnetic field through a highly turbulent radial ray (the acceleration core) and surrounding weakly turbulent sector in which the accelerated particles can propagate toward or away from the Sun. The model presented here accounts for both the first-order Fermi acceleration at the shock front and the second-order, stochastic re-acceleration by the turbulence enhanced behind the shock. We find that the re-acceleration is important in generating the γ-radiation and we also find that up to 10% of the particle population can find its way to the Sun as compared to particles escaping to the interplanetary space.

  4. β -delayed γ decay of P26 : Possible evidence of a proton halo

    NASA Astrophysics Data System (ADS)

    Pérez-Loureiro, D.; Wrede, C.; Bennett, M. B.; Liddick, S. N.; Bowe, A.; Brown, B. A.; Chen, A. A.; Chipps, K. A.; Cooper, N.; Irvine, D.; McNeice, E.; Montes, F.; Naqvi, F.; Ortez, R.; Pain, S. D.; Pereira, J.; Prokop, C. J.; Quaglia, J.; Quinn, S. J.; Sakstrup, J.; Santia, M.; Schwartz, S. B.; Shanab, S.; Simon, A.; Spyrou, A.; Thiagalingam, E.

    2016-06-01

    Background: Measurements of β decay provide important nuclear structure information that can be used to probe isospin asymmetries and inform nuclear astrophysics studies. Purpose: To measure the β -delayed γ decay of P26 and compare the results with previous experimental results and shell-model calculations. Method: A P26 fast beam produced using nuclear fragmentation was implanted into a planar germanium detector. Its β -delayed γ -ray emission was measured with an array of 16 high-purity germanium detectors. Positrons emitted in the decay were detected in coincidence to reduce the background. Results: The absolute intensities of P26 β -delayed γ rays were determined. A total of six new β -decay branches and 15 new γ -ray lines have been observed for the first time in P26 β decay. A complete β -decay scheme was built for the allowed transitions to bound excited states of Si26 . f t values and Gamow-Teller strengths were also determined for these transitions and compared with shell-model calculations and the mirror β decay of Na26 , revealing significant mirror asymmetries. Conclusions: A very good agreement with theoretical predictions based on the USDB shell model is observed. The significant mirror asymmetry observed for the transition to the first excited state (δ =51 (10 )% ) may be evidence for a proton halo in P26 .

  5. An Unusual Lunar Halo

    ERIC Educational Resources Information Center

    Cardon, Bartley L.

    1977-01-01

    Discusses a photograph of an unusual combination of lunar halos: the 22-degree refraction halo, the circumscribed halo, and a reflection halo. Deduces the form and orientations of the ice crystals responsible for the observed halo features. (MLH)

  6. Radiative reactions in halo effective field theory

    NASA Astrophysics Data System (ADS)

    Rupak, Gautam

    2016-03-01

    In this article we review the recent progress in radiative reaction calculations in halo effective field theory. We look at radiative capture and breakup processes that involve a halo nucleus with a single valence neutron or proton. Looking at 7Li(n,γ) 8Li,14C(n,γ)15C and related reactions, the dominant source of theoretical uncertainty in s- and p-wave halo nuclei reaction calculations is quantified in a model-independent framework. The analysis for neutron halos is extended to proton halo systems. The effective field theory results quantify which observable parameters of the strong interaction at low energy need to be determined more precisely for accurate cross-section calculations.

  7. Beam halo studies in LEHIPA DTL

    NASA Astrophysics Data System (ADS)

    Roy, S.; Pande, R.; Rao, S. V. L. S.; Krishnagopal, S.; Singh, P.

    2015-11-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA) project at Bhabha Atomic Research Centre (BARC) consists of a 20 MeV, 30 mA proton linac. The accelerator comprises of a 3 MeV Radio Frequency Quadrupole (RFQ) and a 20 MeV Drift Tube Linac (DTL). In such high intensity accelerators, beam halos are of concern as they not only cause an increase in emittance, but also lead to beam loss and radio activation. We have studied the effect of beam mismatch at the DTL input on halo formation and propagation. The particle core model is used to excite the three envelope eigen modes; the quadrupole mode, the fast mode and the slow mode by giving input beam mismatch. These modes get damped as the beam progresses through the DTL. The damping mechanism is clearly Landau damping and leads to increase in rms emittance of the beam. The evolution of these modes and the corresponding increase in beam emittance and maximum beam extent, as the beam propagates through the DTL, has been studied for different space charge tunes. The halo parameter based on the definition of Allen and Wangler has been calculated. It is seen that beam halos are very important for LEHIPA DTL, even at 20 MeV and leads to emittance and beam size increase and also to beam loss in some cases. The longitudinal halo is present even without mismatch and transverse halos arise in the presence of beam mismatch.

  8. Dynamics of beam halo in mismatched beams

    SciTech Connect

    Wangler, T.P.; Garnett, R.W.; Gray, E.R.; Ryne, R.D.; Wang, T.S.

    1996-09-01

    High-power proton linacs for nuclear materials transmutation and production, and new accelerator-driven neutron spallation sources must be designed to control beam-halo formation, which leads to beam loss. The study of particle-core models is leading to a better understanding of the causes and characteristics of beam halo produced by space-charge forces in rms mismatched beams. Detailed studies of the models have resulted in predictions of the dependence of the maximum amplitude of halo particles on a mismatch parameter and on the space-charge tune-depression ratio. Scaling formulas have been derived which will provide guidance for choosing the aperture radius to contain the halo without loss.

  9. The halo Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Biagetti, Matteo; Desjacques, Vincent; Kehagias, Alex; Racco, Davide; Riotto, Antonio

    2016-04-01

    Dark matter halos are the building blocks of the universe as they host galaxies and clusters. The knowledge of the clustering properties of halos is therefore essential for the understanding of the galaxy statistical properties. We derive an effective halo Boltzmann equation which can be used to describe the halo clustering statistics. In particular, we show how the halo Boltzmann equation encodes a statistically biased gravitational force which generates a bias in the peculiar velocities of virialized halos with respect to the underlying dark matter, as recently observed in N-body simulations.

  10. MHF: MLAPM Halo Finder

    NASA Astrophysics Data System (ADS)

    Gill, Stuart P. D.; Knebe, Alexander

    2015-11-01

    MHF is a Dark Matter halo finder that is based on the refinement grids of MLAPM. The grid structure of MLAPM adaptively refines around high-density regions with an automated refinement algorithm, thus naturally "surrounding" the Dark Matter halos, as they are simply manifestations of over-densities within (and exterior) to the underlying host halo. Using this grid structure, MHF restructures the hierarchy of nested isolated MLAPM grids into a "grid tree". The densest cell in the end of a tree branch marks center of a prospective Dark Matter halo. All gravitationally bound particles about this center are collected to obtain the final halo catalog. MHF automatically finds halos within halos within halos.

  11. "Invisible" Galactic Halos.

    ERIC Educational Resources Information Center

    Lugt, Karel Vander

    1993-01-01

    Develops a simple core-halo model of a galaxy that exhibits the main features of observed rotation curves and quantitatively illustrates the need to postulate halos of dark matter. Uses only elementary mechanics. (Author/MVL)

  12. Beam halo in high-intensity beams

    SciTech Connect

    Wangler, T.P. )

    1993-12-25

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. We describe what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. We present initial results from a study of beam entropy for an intense space-charge dominated beam.

  13. Beam halo in high-intensity beams

    SciTech Connect

    Wangler, T.P.

    1993-06-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam.

  14. Beam halo in high-intensity beams

    SciTech Connect

    Wangler, T.P.

    1993-01-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam.

  15. Study of fusion probabilities with halo nuclei using different proximity based potentials

    NASA Astrophysics Data System (ADS)

    Kumari, Raj

    2013-11-01

    We study fusion of halo nuclei with heavy targets using proximity based potentials due to Aage Winther (AW) 95, Bass 80 and Proximity 2010. In order to consider the extended matter distribution of halo nuclei, the nuclei radii borrowed from cross section measurements are included in these potentials. Our study reveals that the barrier heights are effectively reduced and fusion cross sections are appreciably enhanced by including extended radii of these nuclei. We also find that the extended sizes of halos contribute towards enhancement of fusion probabilities in case of proton halo nuclei, but, contribute to transfer or break-up process rather than fusion yield in case of neutron halo nuclei.

  16. Cold dark matter halos

    NASA Astrophysics Data System (ADS)

    Dubinski, John Joseph

    The dark halos arising in the Cold Dark Matter (CDM) cosmology are simulated to investigate the relationship between the structure and kinematics of dark halos and galaxies. Realistic cosmological initial conditions and tidal field boundary conditions are used in N-body simulations of the collapse of density peaks to form dark halos. The core radii of dark halos are no greater than the softening radius, rs = 1.4 kpc. The density profiles can be fit with an analytical Hernquist (1990) profile with an effective power law which varies between -1 in the center to -4 at large radii. The rotation curves of dark halos resemble the flat rotation curves of spiral galaxies in the observed range, 1.5 approximately less than r approximately less than 30 kpc. The halos are strongly triaxial and very flat with (c/a) = 0.50 and (b/a) = 0.71. The distribution of ellipticities for dark halos reaches a maximum at epsilon = 0.5 in contrast to the distribution for elliptical galaxies which peaks at epsilon = 0.2 suggesting that ellipticals are much rounder than dark halos. Dark halos are generally flatter than their progenitor density peaks. The final shape and orientation of a dark halo are largely determined by tidal torquing and are sensitive to changes in the strength and orientation of a tidal field. Dark halos are pressure supported objects with negligible rotational support as indicated by the mean dimensionless spin, lamda = 0.042 +/- 0.024. The angular momentum vector tends to align with the true minor axis of dark halos. Elliptical galaxies have a similar behavior implied by the observation of the tendency for alignment of the rotation vector and the apparent minor axis. The origin of this behavior may be traced to the tendency for tidal torques to misalign with the major axis of a density peak. Tidal torques are found to isotropize the velocity ellipsoids of dark halos at large radii, contrary to the expectation of radially anisotropic velocity ellipsoids in cold collapse

  17. Halo and space charge issues in the SNS Ring

    SciTech Connect

    Fedotov, A.V.; Abell, D.T.; Beebe-Wang, J.; Lee, Y.Y.; Malitsky, N.; Wei, J.; Gluckstern, R.L.

    2000-06-30

    The latest designs for high-intensity proton rings require minimizing beam-induced radioactivation of the vacuum chamber. Although the tune depression in the ring is much smaller than in high-intensity linacs, space-charge contributions to halo formation and, hence, beam loss may be significant. This paper reviews our current understanding of halo formation issues for the Spallation Neutron Source (SNS) accumulator ring.

  18. Los Alamos beam halo experiment: comparing theory, simulation and experiment.

    SciTech Connect

    Wangler, Thomas P.,; Qiang, J.

    2002-01-01

    We compare macroparticle simulations with measurements from a proton beam-halo experiment in a 52-quadrupole periodic-focusing channel. Three different initial distributions with the same Courant-Snyder parameters and emittances, but different shapes, predict different beam profiles in the transport system. Input distributions with greater population in the tails produce larger rates of emittance growth, a result that is qualitatively consistent with the particle-core model of halo formation in mismatched beams. The simulations underestimate the growth rate of halo and emittance for mismatched beams. Better agreement between simulations and experiment may require an input distribution that represents more accurately the tails of the real input beam.

  19. Tokamak halo currents

    SciTech Connect

    Boozer, Allen H.

    2013-08-15

    A halo current flows for part of its path through the plasma edge and for part through the chamber walls and can be as large as tenths of the plasma current. The primary interest in halo currents is the large force that they can exert on machine components. Two discordant constraints are central to the theory: (1) Halo currents must produce the magnetic field distribution required to maintain plasma force balance—a distribution that depends on the two angular coordinates of a torus. (2) Halo currents must flow along the magnetic field lines in the plasma, which implies a dependence on a linear combination of the two angular coordinates—only one angular coordinate is free. The physics basis of these two constraints is explained as is their application to the calculation of the properties of halo currents, such as their broad toroidal spectrum. Existing codes could be used to (1) provide detailed comparisons with experiments to validate that the critical elements of physics are adequately included, (2) allow more complete predictions for future machines such as ITER, and (3) design shunts and resistive elements to ensure halo currents follow paths that are the least damaging to the machine. The physics of halo currents implies that it may be possible to feedback stabilize resistive wall modes beyond the ideal-wall limit.

  20. Halo vest instrumentation

    NASA Astrophysics Data System (ADS)

    Huston, Dryver R.; Krag, Martin

    1996-05-01

    The halo vest is a head and neck immobilization system that is often used on patients that are recovering from cervical trauma or surgery. The halo vest system consists of a rigid halo that is firmly attached to the skull, an upright support structure for stabilization and immobilization, and a torso-enveloping vest. The main purpose of this study was to measure the forces that are carried by the halo-vest structure as the subject undergoes various activities of daily living and external loading for different vest designs. A tethered strain gage load cell based instrumentation system was used to take these load measurements on ten different subjects. Three different halo-vest systems were evaluated. The primary difference between the vests was the amount of torso coverage and the use of shoulder straps. The loads were measured, analyzed and used to compare the vests and to create a model of halo-vest-neck mechanics. Future applications of this technology to standalone data logging, pin-load measuring and biofeedback applications are discussed.

  1. PARAMETERS FOR QUANTIFYING BEAM HALO

    SciTech Connect

    C.K. ALLEN; T.P. WANGLER

    2001-06-01

    Two different parameters for the quantitative description of beam halo are introduced, both based on moments of the particle distribution. One parameter is a measure of spatial halo formation and has been defined previously by Wangler and Crandall [3], termed the profile parameter. The second parameter relies on kinematic invariants to quantify halo formation in phase space; we call it the halo parameter. The profile parameter can be computed from experimental beam profile data. The halo parameter provides a theoretically more complete description of halo in phase space, but is difficult to obtain experimentally.

  2. HALOE Science Investigation

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris

    1998-01-01

    This cooperative agreement has investigated a number of spectroscopic problems of interest to the Halogen Occultation Experiment (HALOE). The types of studies performed are in two parts, namely, those that involve the testing and characterization of correlation spectrometers and those that provide basic molecular spectroscopic information. In addition, some solar studies were performed with the calibration data returned by HALOE from orbit. In order to accomplish this a software package was written as part of this cooperative agreement. The HALOE spectroscopic instrument package was used in various tests of the HALOE flight instrument. These included the spectral response test, the early stages of the gas response test and various spectral response tests of the detectors and optical elements of the instruments. Considerable effort was also expended upon the proper laboratory setup for many of the prelaunch tests of the HALOE flight instrument, including the spectral response test and the gas response test. These tests provided the calibration and the assurance that the calibration was performed correctly.

  3. Gaseous Halos and the Interstellar Disk-Halo Connection

    NASA Astrophysics Data System (ADS)

    Dettmar, Ralf Jurgen

    The presence of diffuse ionized gas (DIG) in the halos of spiral galaxies is discussed in the framework of the disk-halo interaction. The halo DIG is typically correlated with the presence of other components of the ISM in the halo including X-ray hot gas, cosmic rays, and magnetic fields. All these tracers of an extraplanar ISM correlate well with star formation in the disk thus corroborating the paradigm of an ISM driven by multiple and clustered supernovae.

  4. Renormalized halo bias

    SciTech Connect

    Assassi, Valentin; Baumann, Daniel; Green, Daniel; Zaldarriaga, Matias E-mail: dbaumann@damtp.cam.ac.uk E-mail: matiasz@ias.edu

    2014-08-01

    This paper provides a systematic study of renormalization in models of halo biasing. Building on work of McDonald, we show that Eulerian biasing is only consistent with renormalization if non-local terms and higher-derivative contributions are included in the biasing model. We explicitly determine the complete list of required bias parameters for Gaussian initial conditions, up to quartic order in the dark matter density contrast and at leading order in derivatives. At quadratic order, this means including the gravitational tidal tensor, while at cubic order the velocity potential appears as an independent degree of freedom. Our study naturally leads to an effective theory of biasing in which the halo density is written as a double expansion in fluctuations and spatial derivatives. We show that the bias expansion can be organized in terms of Galileon operators which aren't renormalized at leading order in derivatives. Finally, we discuss how the renormalized bias parameters impact the statistics of halos.

  5. The Outer Halo -- Halo Origins and Mass of the Galaxy

    NASA Astrophysics Data System (ADS)

    Morrison, Heather; Arabadjis, John; Dohm-Palmer, Robbie; Freeman, Ken; Harding, Paul; Mateo, Mario; Norris, John; Olszewski, Ed; Sneden, Chris

    2000-02-01

    Through our detection of distant halo stars, we are now well placed to map the regions of the Galactic halo where previously only satellite galaxies and a few globular clusters were known. Mapping this region is crucial for answering questions like: How and over what timescales was the Milky Way's stellar halo assembled? What is the total mass and shape of its dark halo? The Sagittarius dwarf has demonstrated that at least some of the stellar halo was accreted. But, HOW MUCH of the halo was accreted? Our previous efforts have proven that the Washington photometric system, in conjuction with spectroscopy, is capable of efficiently and unambiguously identifying halo stars out to 100 kpc or more. We require followup spectroscopy to map velocity substructure, which is more likely visible in the outer halo because of the long dynamical timescales, and to identify the rare objects in the extreme outer halo which will constrain the shape and size of its dark halo. We are applying for 4m/RCSP time at both CTIO and KPNO to observe faint outer-halo giant and BHB candidates.

  6. Halo Star Lithium Depletion

    SciTech Connect

    Pinsonneault, M. H.; Walker, T. P.; Steigman, G.; Narayanan, Vijay K.

    1999-12-10

    The depletion of lithium during the pre-main-sequence and main-sequence phases of stellar evolution plays a crucial role in the comparison of the predictions of big bang nucleosynthesis with the abundances observed in halo stars. Previous work has indicated a wide range of possible depletion factors, ranging from minimal in standard (nonrotating) stellar models to as much as an order of magnitude in models that include rotational mixing. Recent progress in the study of the angular momentum evolution of low-mass stars permits the construction of theoretical models capable of reproducing the angular momentum evolution of low-mass open cluster stars. The distribution of initial angular momenta can be inferred from stellar rotation data in young open clusters. In this paper we report on the application of these models to the study of lithium depletion in main-sequence halo stars. A range of initial angular momenta produces a range of lithium depletion factors on the main sequence. Using the distribution of initial conditions inferred from young open clusters leads to a well-defined halo lithium plateau with modest scatter and a small population of outliers. The mass-dependent angular momentum loss law inferred from open cluster studies produces a nearly flat plateau, unlike previous models that exhibited a downward curvature for hotter temperatures in the 7Li-Teff plane. The overall depletion factor for the plateau stars is sensitive primarily to the solar initial angular momentum used in the calibration for the mixing diffusion coefficients. Uncertainties remain in the treatment of the internal angular momentum transport in the models, and the potential impact of these uncertainties on our results is discussed. The 6Li/7Li depletion ratio is also examined. We find that the dispersion in the plateau and the 6Li/7Li depletion ratio scale with the absolute 7Li depletion in the plateau, and we use observational data to set bounds on the 7Li depletion in main-sequence halo

  7. Methods for Identifying Pair Halos

    NASA Astrophysics Data System (ADS)

    Wells, Brendan; Caputo, Regina; Atwood, William; Ritz, Steven M.

    2016-01-01

    The flux of very high energy gamma rays from active galactic nuclei (AGN) is attenuated via interactions with extragalactic background photons and is converted into e+e- pairs. With non-zero intergalactic magnetic fields, the electrons and positrons will deflect as they propagate and simultaneously lose energy by upscattering cosmic microwave background photons. "Pair halos," the visible consequences of these electromagnetic cascades, are faint and difficult to observe against their AGN counterparts. We investigate three methods for indirectly identifying pair halos, using a two-component approach to model the AGN core/halo image. We estimate each method's sensitivity by utilizing a new, detailed Monte Carlo pair-halo simulation.

  8. Nuclear Halos and Borromeans in the Primordial Nucleosynthesis Process and in Astrophysical Nuclear Reactions

    SciTech Connect

    Yilmaz, M.; Oezer, O.

    2007-04-23

    Nuclear halo structures and Borromean nuclei have been intensely studied almost two decades. They have a cloud of neutrons and protons extended well beyond the surface of tightly bound core of neutrons and protons which is classically forbidden. Since the extended tail of the valance neutron wave-function of the neutron halos the cross-sections are much larger and their sizes become substantially much larger than the ordinary nuclei. Inferred expectations of halo and Borroeman nuclei in astrophysics due to their novel structures have been suggested to influence the astrophysical reactions, especially in the primordial furnace during the Standard Big Bang Nucleosynthesis (SBBN) process. It is seen that the large spatial extension directly implies that both elastic and absorption cross-sections are large for the reactions involving halo nuclei. The Trojan Horse Method (THM) and the Distorted Wave Born Approximation (DWBA) reaction cross-sections calculations are discussed for low energies.

  9. Transverse Beam Halo Measurements at High Intensity Neutrino Source (HINS) using Vibrating Wire Monitor

    SciTech Connect

    Chung, M.; Hanna, B.; Scarpine, V.; Shiltsev, V.; Steimel, J.; Artinian, S.; Arutunian, S.

    2015-02-26

    The measurement and control of beam halos will be critical for the applications of future high-intensity hadron linacs. In particular, beam profile monitors require a very high dynamic range when used for the transverse beam halo measurements. In this study, the Vibrating Wire Monitor (VWM) with aperture 60 mm was installed at the High Intensity Neutrino Source (HINS) front-end to measure the transverse beam halo. A vibrating wire is excited at its resonance frequency with the help of a magnetic feedback loop, and the vibrating and sensitive wires are connected through a balanced arm. The sensitive wire is moved into the beam halo region by a stepper motor controlled translational stage. We study the feasibility of the vibrating wire for the transverse beam halo measurements in the low-energy front-end of the proton linac.

  10. Jupiter's Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow.

    A faint mist of particles can be seen above and below the main rings; this vertically extended, toroidal 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces which can push small grains out of the ring plane. Halo material is present across this entire image, implying that it reaches more than 27,000 km above the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. In order to accentuate faint features in the image, different brightnesses are shown through color, with the brightest

  11. Adiabatic Halo Formation

    SciTech Connect

    Bazzani, A.; Turchetti, G.; Benedetti, C.; Rambaldi, S.; Servizi, G.

    2005-06-08

    In a high intensity circular accelerator the synchrotron dynamics introduces a slow modulation in the betatronic tune due to the space-charge tune depression. When the transverse motion is non-linear due to the presence of multipolar effects, resonance islands move in the phase space and change their amplitude. This effect introduces the trapping and detrapping phenomenon and a slow diffusion in the phase space. We apply the neo-adiabatic theory to describe this diffusion mechanism that can contribute to halo formation.

  12. HALOE test and evaluation software

    NASA Technical Reports Server (NTRS)

    Edmonds, W.; Natarajan, S.

    1987-01-01

    Computer programming, system development and analysis efforts during this contract were carried out in support of the Halogen Occultation Experiment (HALOE) at NASA/Langley. Support in the major areas of data acquisition and monitoring, data reduction and system development are described along with a brief explanation of the HALOE project. Documented listings of major software are located in the appendix.

  13. Near Ballistic Halo-to-Halo Transfers between Planetary Moons

    NASA Astrophysics Data System (ADS)

    Lantoine, Gregory; Russell, Ryan P.

    2011-07-01

    Intermoon transfers are important components of planetary tour missions. However, these transfers are challenging to design due in part to the chaotic environment created by the multi-body dynamics. The specific objective of this work is to develop a systematic methodology to find fuel optimal, near ballistic Halo-to-Halo trajectories between planetary moons, and we achieve this goal by combining dynamical systems theory with a variety of nonlinear programming techniques. The spacecraft is constrained to start at a Halo orbit of a moon and end at another Halo orbit of a second moon. Our approach overcomes the obstacles of the chaotic dynamics by combining multiple "resonant-hopping" gravity assists with manifolds that control the low-energy transport near the Halo orbits of the moons. To help construct good initial guesses, contours of semimajor axes that can be reached by falling off a Halo orbit are presented. An empirical relationship is then derived to find quickly the boundary conditions on the Halo orbits that lead to ballistic capture and escape trajectories, and connect to desired resonances. The overall optimization procedure is broken into four parts of increasing fidelity: creation of the initial guess from unstable resonant orbits and manifolds, decomposition and optimization of the trajectory into two independent ideal three-body portions, end-to-end refinement in a patched three-body model, and transition to an ephemeris model using a continuation method. Each step is based on a robust multiple shooting approach to reduce the sensitivities associated with the close approach trajectories. Numerical results of an intermoon transfer in the Jovian system are presented. In an ephemeris model, using only 55 m/s and 205 days, a spacecraft can transfer between a Halo orbit of Ganymede and a Halo orbit of Europa.

  14. Kinematically Detected Halo Streams

    NASA Astrophysics Data System (ADS)

    Smith, Martin C.

    Clues to the origins and evolution of our Galaxy can be found in the kinematics of stars around us. Remnants of accreted satellite galaxies produce over-densities in velocity-space, which can remain coherent for much longer than spatial over-densities. This chapter reviews a number of studies that have hunted for these accretion relics, both in the nearby solar-neighborhood and the more-distant stellar halo. Many observational surveys have driven this field forwards, from early work with the Hipparcos mission, to contemporary surveys like RAVE and SDSS. This active field continues to flourish, providing many new discoveries, and will be revolutionized as the Gaia mission delivers precise proper motions for a billion stars in our Galaxy.

  15. Evidence for core-halo decoupling in halo systems

    SciTech Connect

    Aguilera, E. F.; Kolata, J. J.; Acosta, L.

    2010-01-15

    Evidence is presented showing that for the {sup 6}He+{sup 209}Bi system, the reaction cross sections can be entirely accounted for by interactions of the halo state of {sup 6}He plus reactions that occur with the {sup 4}He core. These and similar conclusions about core-halo decoupling reported earlier for {sup 8}B+{sup 58}Ni are further supported by proving that no such decoupling occurs for reactions with {sup 17}O, whose valence neutron is rather weakly bound but does not form a halo. The preceding conclusions are based on comparisons with purely experimental data, using a quite reasonable scaling. Thus such a decoupling seems to stand out as a characteristic feature of true halo systems.

  16. Proton Therapy

    MedlinePlus

    ... nucleus is surrounded by electrons. In proton therapy, beams of fast-moving protons are used to destroy ... atoms to release proton, neutron, and helium ion beams. In this highly specialized form of radiosurgery , proton ...

  17. Halo model and halo properties in Galileon gravity cosmologies

    SciTech Connect

    Barreira, Alexandre; Li, Baojiu; Hellwing, Wojciech A.; Baugh, Carlton M.; Lombriser, Lucas; Pascoli, Silvia E-mail: baojiu.li@durham.ac.uk E-mail: llo@roe.ac.uk E-mail: silvia.pascoli@durham.ac.uk

    2014-04-01

    We investigate the performance of semi-analytical modelling of large-scale structure in Galileon gravity cosmologies using results from N-body simulations. We focus on the Cubic and Quartic Galileon models that provide a reasonable fit to CMB, SNIa and BAO data. We demonstrate that the Sheth-Tormen mass function and linear halo bias can be calibrated to provide a very good fit to our simulation results. We also find that the halo concentration-mass relation is well fitted by a power law. The nonlinear matter power spectrum computed in the halo model approach is found to be inaccurate in the mildly nonlinear regime, but captures reasonably well the effects of the Vainshtein screening mechanism on small scales. In the Cubic model, the screening mechanism hides essentially all of the effects of the fifth force inside haloes. In the case of the Quartic model, the screening mechanism leaves behind residual modifications to gravity, which make the effective gravitational strength time-varying and smaller than the standard value. Compared to normal gravity, this causes a deficiency of massive haloes and leads to a weaker matter clustering on small scales. For both models, we show that there are realistic halo occupation distributions of Luminous Red Galaxies that can match both the observed large-scale clustering amplitude and the number density of these galaxies.

  18. The Outer Halo Metallicity Distribution

    NASA Astrophysics Data System (ADS)

    MA, ZHIBO; Morrison, H.; Harding, P.; Xue, X.; Rix, H.; Rockosi, C.; Johnson, J.; Lee, Y.; Cudworth, K.

    2012-01-01

    We present a new determination of the metallicity distribution function in the Milky Way halo, based on an in situ sample of more than 5000 K giants from SDSS/SEGUE. We have also measured the metallicity gradient in the halo, using our sample which stretches from 5 kpc to more than 100 kpc from the galactic center. The halo metallicity gradient has been a controversial topic in recent studies, but our in-situ study overcomes the problems caused in these studies by their extrapolations from local samples to the distant halo. We also describe our extensive checks of the log g and [Fe/H] measurements from the SEGUE Stellar Parameters pipeline, using globular and open cluster stars and SEGUE stars with follow-up high-resolution analysis. In addition, we present a new Bayesian estimate of distances to the K giants, which avoids the distance bias introduced by the red giant branch luminosity function.

  19. Supernumerary ice-crystal halos?

    PubMed

    Berry, M V

    1994-07-20

    Geometric-optics singularities in the intensity profiles of refraction halos formed by randomly oriented ice crystals are softened by diffraction and decorated with fine supernumerary fringes. If the crystals have a fixed symmetry axis (as in parhelia), the geometric singularity is a square-root divergence, as in the rainbow. However, the universal curve that describes diffraction is different from the rainbow's Airy function, with weak maxima (supernumerary fringes) on the geometrically dark region inside the halo (and even fainter fringes outside); these are much smaller than their counterparts on the light side of rainbows. If the crystals have no preferred orientation (as in the 22° halo), the geometric singularity is a step. In this case the universal diffraction function has no maxima, and its supernumeraries are shoulders rather than maxima. The low contrast of the fringes is probably the main reason why supernumerary halos are rarely if ever seen. PMID:20935824

  20. Rotation of tokamak halo currents

    SciTech Connect

    Boozer, Allen H.

    2012-05-15

    During tokamak disruptions, halo currents, which can be tenths of the total plasma current, can flow at the plasma edge along the magnetic field lines that intercept the chamber walls. Non-axisymmetric halo currents are required to maintain force balance as the plasma kinks when the edge safety factor drops to about two in a vertical displacement event. The plasma quickly assumes a definite toroidal velocity v{sub a}(r) with respect to that of the magnetic kink, v{sub k}, where v{sub a}(r) is set by the radial electric field required for ambipolarity. The plasma velocity, v{sub pl}=v{sub a}+v{sub k}, near the edge is influenced by the interaction with neutrals and with the potential in the halo required for quasi-neutrality on open magnetic field lines, and the plasma velocity in the core is influenced by external error fields. When plasma effects dominate magnetic locking, the magnetic kink should rotate at a diamagnetic speed of either the edge or the core. If the magnetic field lines of the halo plasma intercept the wall at locations of very different electrical conductivity, the toroidal rotation of the halo currents can intermittently stall at wall locations of high conductivity. Such stalling is seen in experiments. The toroidal phase difference between the stalled halo currents and the kink, which is expected to rotate smoothly, must satisfy {delta}{phi}<{+-}{pi}/2. A concern cited by ITER engineers is that the time varying force of the rotating halo could substantially increase the disruption loads on in-vessel components.

  1. Halo modelling in chameleon theories

    SciTech Connect

    Lombriser, Lucas; Koyama, Kazuya; Li, Baojiu E-mail: kazuya.koyama@port.ac.uk

    2014-03-01

    We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on local scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations.

  2. Rotation of tokamak halo currents

    NASA Astrophysics Data System (ADS)

    Boozer, Allen H.

    2012-05-01

    During tokamak disruptions, halo currents, which can be tenths of the total plasma current, can flow at the plasma edge along the magnetic field lines that intercept the chamber walls. Non-axisymmetric halo currents are required to maintain force balance as the plasma kinks when the edge safety factor drops to about two in a vertical displacement event. The plasma quickly assumes a definite toroidal velocity va(r) with respect to that of the magnetic kink, vk, where va(r) is set by the radial electric field required for ambipolarity. The plasma velocity, vpl=va+vk, near the edge is influenced by the interaction with neutrals and with the potential in the halo required for quasi-neutrality on open magnetic field lines, and the plasma velocity in the core is influenced by external error fields. When plasma effects dominate magnetic locking, the magnetic kink should rotate at a diamagnetic speed of either the edge or the core. If the magnetic field lines of the halo plasma intercept the wall at locations of very different electrical conductivity, the toroidal rotation of the halo currents can intermittently stall at wall locations of high conductivity. Such stalling is seen in experiments. The toroidal phase difference between the stalled halo currents and the kink, which is expected to rotate smoothly, must satisfy δϕ <±π/2. A concern cited by ITER engineers is that the time varying force of the rotating halo could substantially increase the disruption loads on in-vessel components.

  3. Statistics of substructures in dark matter haloes

    NASA Astrophysics Data System (ADS)

    Contini, E.; De Lucia, G.; Borgani, S.

    2012-03-01

    We study the amount and distribution of dark matter substructures within dark matter haloes, using a large set of high-resolution simulations ranging from group-size to cluster-size haloes, and carried out within a cosmological model consistent with Wilkinson Microwave Anisotropy Probe (WMAP) 7-year data. In particular, we study how the measured properties of subhaloes vary as a function of the parent halo mass, the physical properties of the parent halo and redshift. The fraction of halo mass in substructures increases with increasing mass: it is of the order of 5 per cent for haloes with M200˜ 1013 M⊙ and of the order of 10 per cent for the most massive haloes in our sample, with M200˜ 1015 M⊙. There is, however, a very large halo-to-halo scatter that can be explained only in part by a range of halo physical properties, e.g. concentration. At a given halo mass, less concentrated haloes contain significantly larger fractions of mass in substructures because of the reduced strength of tidal disruption. Most of the substructure mass is located at the outskirts of the parent haloes, in relatively few massive subhaloes. This mass segregation appears to become stronger at increasing redshift, and should reflect into a more significant mass segregation of the galaxy population at different cosmic epochs. When haloes are accreted on to larger structures, their mass is significantly reduced by tidal stripping. Haloes that are more massive at the time of accretion (these should host more luminous galaxies) are brought closer to the centre on shorter time-scales by dynamical friction, and therefore suffer a more significant stripping. The halo merger rate depends strongly on the environment with substructure in more massive haloes suffering more important mergers than their counterparts residing in less massive systems. This should translate into a different morphological mix for haloes of different mass.

  4. Fermionic Molecular Dynamics for Clusters, Halos and S-Factors

    NASA Astrophysics Data System (ADS)

    Feldmeier, Hans; Neff, Thomas

    2015-11-01

    Antisymmetrized products of Gaussian wave packets projected on total angular momentum, linear momentum, and parity span the FMD many-body Hilbert space in which the nuclear Hamiltonian is diagonalized. The wave packet parameters -- position, momentum, width and spin -- are obtained by variation under constraints. The great flexibility of this basis allows to describe not only shell-model like states but also exotic states like halos, e.g. the two-proton halo in 17Ne, or cluster states as they appear for example in 12C close to the α breakup threshold where the Hoyle state is located. Even a fully microscopic calculation of the 3He(α,γ)7Be capture reaction is possible and yields an astrophysical S-factor that compares very well with newer data.

  5. The abundance of boron in three halo stars

    NASA Technical Reports Server (NTRS)

    Duncan, Douglas K.; Lambert, David L.; Lemke, Michael

    1992-01-01

    B abundances for three halo stars: HD 140283, HD 19445, and HD 201891 are presented. Using recent determinations of the Be abundance in HD 140283, B/Be of 10 +5/-4 is found for this star, and similar ratios are inferred for HD 19445 and HD 201891. This ratio is equal to the minimum value of 10 expected from a synthesis of B and Be by high-energy cosmic-ray spallation reactions in the interstellar medium. It is shown that the accompanying synthesis of Li by alpha on alpha fusion reactions is probably a minor contributor to the observed 'primordial' Li of halo stars. The observed constant ratios of B/O and Be/O are expected if the principal channel of synthesis involves cosmic-ray CNO nuclei from the supernovae colliding with interstellar protons.

  6. Building Halos by Digesting Satellites

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    We think galactic halos are built through the addition of material from the smaller subhalos of satellites digested by their hosts. Though most of the stars in Milky-Way-mass halos were probably formed in situ, many were instead accumulated over time, as orbiting dwarf galaxies were torn apart and their stars flung throughout the host galaxy. A recent set of simulations has examined this brutal formation process.In the authors simulations, a subhalo first falls into the host halo. At this point, it can either survive to present day as a satellite galaxy, or it can be destroyed, its stars scattering throughout the host halo. [Deason et al. 2016]Subhalo FateThere are many open questions about the growth of Milky-Way-mass halos from the accretion of subhalos. Which subhalos are torn apart and accreted, and which ones survive intact? Are more small or large subhalos accreted? Does subhalo accretion affect the host galaxys metallicity? And what can we learn from all of this about the Milky Ways formation history?In a recently published study, a team of scientists from Stanford University and SLAC National Accelerator Laboratory set out to answer these questions using a suite of 45 zoom-in simulations of Milky-Way-mass halos. Led by Alis Deason, the team tracked the accretion history of these 45 test galaxies to determine how their halos were built.Piecing Together HistoryDeason and collaborators reach several new and interesting conclusions based on the outcomes of their simulations.Average accreted stellar mass from destroyed dwarfs for each host halo, as a function of the time of the last major accretion event. More stellar mass is accreted in more recent accretion events. [Deason et al. 2016]Most of the stellar mass accreted by the Milky-Way-mass halos typically comes from only one or two destroyed dwarfs. The accreted dwarfs are usually low-mass if they were accreted early on in the simulation (i.e., in the early universe), and high-mass if they were accreted

  7. Universality in molecular halo clusters.

    PubMed

    Stipanović, P; Markić, L Vranješ; Bešlić, I; Boronat, J

    2014-12-19

    The ground state of weakly bound dimers and trimers with a radius extending well into the classically forbidden region is explored, with the goal to test the predicted universality of quantum halo states. The focus of the study is molecules consisting of T↓, D↓, ^{3}He, ^{4}He, and alkali atoms, where the interaction between particles is much better known than in the case of nuclei, which are traditional examples of quantum halos. The study of realistic systems is supplemented by model calculations in order to analyze how low-energy properties depend on the interaction potential. The use of variational and diffusion Monte Carlo methods enabled a very precise calculation of both the size and binding energy of the trimers. In the quantum halo regime, and for large values of scaled binding energies, all clusters follow almost the same universal line. As the scaled binding energy decreases, Borromean states separate from tango trimers. PMID:25554880

  8. Simulation of halo particles with Simpsons

    NASA Astrophysics Data System (ADS)

    Machida, Shinji

    2003-12-01

    Recent code improvements and some simulation results of halo particles with Simpsons will be presented. We tried to identify resonance behavior of halo particles by looking at tune evolution of individual macro particle.

  9. Accretion in the galactic halo

    NASA Astrophysics Data System (ADS)

    Stephens, Alex Courtney

    2000-10-01

    The Milky Way disk is enveloped in a diffuse, dynamically-hot collection of stars and star clusters collectively known as the ``stellar halo''. Photometric and chemical analyses suggest that these stars are ancient fossils of the galaxy formation epoch. Yet, little is known about the origin of this trace population. Is this system merely a vestige of the initial burst of star formation within the decoupled proto-Galaxy, or is it the detritus of cannibalized satellite galaxies? In an attempt to unravel the history of the Milky Way's stellar halo, I performed a detailed spectroscopic analysis of 55 metal-poor stars possessing ``extreme'' kinematic properties. It is thought that stars on orbits that either penetrate the remote halo or exhibit large retrograde velocities could have been associated with assimilated (or ``accreted'') dwarf galaxies. The hallmark of an accreted halo star is presumed to be a deficiency (compared with normal stars) of the α-elements (O, Mg, Si, Ca, Ti) with respect to iron, a consequence of sporadic bursts of star formation within the diminutive galaxies. Abundances for a select group of light metals (Li, Na, Mg, Si, Ca, Ti), iron-peak nuclides (Cr, Fe, Ni), and neutron-capture elements (Y, Ba) were calculated using line-strengths measured from high-resolution, high signal-to-noise spectral observations collected with the Keck I 10-m and KPNO 4-m telescopes. The abundances extracted from the spectra reveal: (1)The vast majority of outer halo stars possess supersolar [α/Fe] > 0.0) ratios. (2)The [α/Fe] ratio appears to decrease with increasing metallicity. (3)The outer halo stars have lower ratios of [α/Fe] than inner halo stars at a given metallicity. (4)At the largest metallicities, there is a large spread in the observed [α/Fe] ratios. (5)[α/Fe] anti-correlates with RAPO. (6)Only one star (BD+80° 245) exhibits the peculiar abundances expected of an assimilated star. The general conclusion extracted from these data is that the

  10. Profile, Current, and Halo Monitors of the PROSCAN Beam Lines

    SciTech Connect

    Doelling, Rudolf

    2004-11-10

    PROSCAN, an extended medical facility using proton beams for the treatment of deep-seated tumors and eye melanoma, is under construction at PSI. Ionization chambers and secondary emission monitors will be used as current monitors and in a multi-strip configuration as profile monitors at the PROSCAN beam lines. A thin and a thick version of these detectors are in preparation as well as a 4-segment ionization chamber to detect the beam halo. Electromagnetic and microphonic noise from the signal and high-voltage cables, saturation due to recombination, and the evaluation of the profiles are discussed, as well as measures to detect failures of the detectors during operation.

  11. Core excitation effects in the breakup of halo nuclei

    SciTech Connect

    Moro, A. M.; Diego, R. de; Lay, J. A.; Crespo, R.; Johnson, R. C.; Arias, J. M.; Gomez-Camacho, J.

    2012-10-20

    The role of core excitation in the structure and dynamics of two-body halo nuclei is investigated. We present calculations for the resonant breakup of {sup 11}Be on protons at an incident energy of 63.7 MeV/nucleon, where core excitation effects were shown to be important. To describe the reaction, we use a recently developed extension of the DWBA formalism which incorporates these core excitation effects within the no-recoil approximation. The validity of the no-recoil approximation is also examined by comparing with DWBA calculations which take into account core recoil. In addition, calculations with two different continuum representations are presented and compared.

  12. Visibility of halos and rainbows.

    PubMed

    Gedzelman, S D

    1980-09-15

    A theory for the visibility of halos and rainbows is presented. The light reaching the observer's eye from the direction of the halo or rainbow is assumed to consist of two parts: (1) a beam of singly scattered sunlight (or moonlight) from a cloud of ice crystals or a rainswath, which, in turn, has suffered depletion by scattering or absorption in its passage to the observer, and (2) the general background brightness. The model is able to account for several long-known qualitative observations concerning halos, namely, that the brightest halos are produced by optically thin cirrostratus clouds (i.e., for which the cloud optical depth tau(c), halo is visible much more frequently than the bottom. (This is shown to result in good part from extinction by the turbid atmosphere.) With the rainbow the brightness of the beam increases monotonically with the optical depth tau(R) of the sunlit part of the rainswath, but the increase is quite small for tau(R) >/=1. On the other hand, the brightness of the background increases more rapidly with tau(R) for tau(R)> 1 so that the rainbow appears most easily visible for tau(R) less, similar1. This implies that the most easily visible rainbows are produced by light or moderate showers rather than heavy downpours. Finally, suggestions are made for applying the theory to other atmospheric optical phenomena, such as coronas and glories. PMID:20234562

  13. Halo Coronal Mass Ejections and Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2009-01-01

    In this letter, I show that the discrepancies in the geoeffectiveness of halo coronal mass ejections (CMEs) reported in the literature arise due to the varied definitions of halo CMEs used by different authors. In particular, I show that the low geoeffectiveness rate is a direct consequence of including partial halo CMEs. The geoeffectiveness of partial halo CMEs is lower because they are of low speed and likely to make a glancing impact on Earth. Key words: Coronal mass ejections, geomagnetic storms, geoeffectiveness, halo CMEs.

  14. Wart with Depigmented Halo and Generalized Vitiligo

    PubMed Central

    Ito, Takamichi; Yoshida, Yuichi; Adachi, Koji; Furue, Masutaka; Yamamoto, Osamu

    2012-01-01

    Depigmented haloes sometimes appear around melanocytic tumors or non-melanocytic tumors, but coexistence of warts and depigmented haloes is extremely rare. We report here an unusual case of warts accompanied by depigmented haloes and subsequently-triggered generalized vitiligo. A 55-year-old Japanese man presented with a 3-year history of brown nodules on the back, upper eyelid and dorsum of the left hand. Depigmented haloes appeared around the noldules and then gradually spread over a wide area, resulting in the development of generalized vitiligo. He had no history of antecedent treatment for these lesions before consultation. Histopathologically, the lesion showed papillomatosis and hyperkeratosis with lymphocytic exocytosis into the epidermis, which compatible to warts. Based on these clinical and histopathologic findings, a diagnosis of warts with depigmented halo and subsequently-triggered generalized vitiligo was made. None of the warts had resolved spontaneously after the appearance of haloes, and the depigmented haloes and generalized vitiligo remain unchanged. PMID:24031144

  15. Halo nuclei He6 and He8 with the Coulomb-Sturmian basis

    NASA Astrophysics Data System (ADS)

    Caprio, M. A.; Maris, P.; Vary, J. P.

    2014-09-01

    The rapid Gaussian falloff of the oscillator functions at large radius makes them poorly suited for the description of the asymptotic properties of the nuclear wave function, a problem which becomes particularly acute for halo nuclei. We consider an alternative basis for ab initio no-core configuration interaction (NCCI) calculations, built from Coulomb-Sturmian radial functions, allowing for realistic exponential falloff. NCCI calculations are carried out for the neutron halo nuclei He6,8, as well as for the baseline case 4He, with the JISP16 nucleon-nucleon interaction. Estimates are made for the root-mean-square radii of the proton and matter distributions.

  16. Clouds Dominate the Galactic Halo

    NASA Astrophysics Data System (ADS)

    2003-01-01

    Using the exquisite sensitivity of the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT), astronomer Jay Lockman of the National Radio Astronomy Observatory (NRAO) in Green Bank, W. Va., has produced the best cross-section ever of the Milky Way Galaxy's diffuse halo of hydrogen gas. This image confirms the presence of discrete hydrogen clouds in the halo, and could help astronomers understand the origin and evolution of the rarefied atmosphere that surrounds our Galaxy. Lockman presented his findings at the American Astronomical Society meeting in Seattle, WA. Hydrogen Clouds Graphic Artist's Rendering of the Milky Way (background) with insert showing GBT image of cross-section of neutral atomic Hydrogen Credit: Kirk Woellert/National Science Foundation Patricia Smiley, NRAO. "The first observations with the Green Bank Telescope suggested that the hydrogen in the lower halo, the transition zone between the Milky Way and intergalactic space, is very clumpy," said Lockman. "The latest data confirm these results and show that instead of trailing away smoothly from the Galactic plane, a significant fraction of the hydrogen gas in the halo is concentrated in discrete clouds. There are even some filaments." Beyond the star-filled disk of the Milky Way, there exists an extensive yet diffuse halo of hydrogen gas. For years, astronomers have speculated about the origin and structure of this gas. "Even the existence of neutral hydrogen in the halo has been somewhat of a puzzle," Lockman remarked. "Unlike the Earth's atmosphere, which is hot enough to hold itself up against the force of gravity, the hydrogen in the halo is too cool to support itself against the gravitational pull of the Milky Way." Lockman points out that some additional factor has to be involved to get neutral hydrogen to such large distances from the Galactic plane. "This force could be cosmic rays, a supersonic wind, the blast waves from supernovae, or something we have not thought of

  17. Reionization histories of Milky Way mass halos

    SciTech Connect

    Li, Tony Y.; Wechsler, Risa H.; Abel, Tom; Alvarez, Marcelo A. E-mail: rwechsler@stanford.edu E-mail: malvarez@cita.utoronto.ca

    2014-04-20

    We investigate the connection between the reionization era and the present-day universe by examining the mass reionization histories of z = 0 dark matter halos. In a 600{sup 3} Mpc{sup 3} volume, we combine a dark matter N-body simulation with a three-dimensional seminumerical reionization model. This tags each particle with a reionization redshift, so that individual present-day halos can be connected to their reionization histories and environments. We find that the vast majority of present-day halos with masses larger than ∼ few × 10{sup 11} M {sub ☉} reionize earlier than the rest of the universe. We also find significant halo-to-halo diversity in mass reionization histories, and find that in realistic inhomogeneous models, the material within a given halo is not expected to reionize at the same time. In particular, the scatter in reionization times within individual halos is typically larger than the scatter among halos. From our fiducial reionization model, we find that the typical 68% scatter in reionization times within halos is ∼115 Myr for 10{sup 12±0.25} M {sub ☉} halos, decreasing slightly to ∼95 Myr for 10{sup 15±0.25} M {sub ☉} halos. We find a mild correlation between reionization history and environment: halos with shorter reionization histories are typically in more clustered environments, with the strongest trend on a scale of ∼20 Mpc. Material in Milky Way mass halos with short reionization histories is preferentially reionized in relatively large H II regions, implying reionization mostly by sources external to the progenitors of the present-day halo. We investigate the impact on our results of varying the reionization model parameters, which span a range of reionization scenarios with varying timing and morphology.

  18. Bar Instability in Disk-Halo Systems

    NASA Astrophysics Data System (ADS)

    Sellwood, J. A.

    2016-03-01

    We show that the exponential growth rate of a bar in a stellar disk is substantially greater when the disk is embedded in a live halo than in a rigid one having the same mass distribution. We also find that the vigor of the instability in disk-halo systems varies with the shape of the halo velocity ellipsoid. Disks in rigid halos that are massive enough to be stable by the usual criteria, quickly form bars in isotropic halos and much greater halo mass is needed to avoid a strong bar; thus stability criteria derived for disks in rigid halos do not apply when the halo is responsive. The study presented here is of an idealized family of models with near uniform central rotation and that lack an extended halo; we present more realistic models with extended halos in a companion paper. The puzzle presented by the absence of strong bars in some galaxies having gently rising inner rotation curves is compounded by the results presented here.

  19. The Anemic Stellar Halo of M101

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2014-10-01

    Models of galaxy formation in a cosmological context predict that massive disk galaxies should have richly-structured extended stellar halos, containing ~10% of a galaxy's stars, originating in large part from the tidal disruption of dwarf galaxies. Observations of a number of nearby disk galaxies have generally agreed with these expectations. Recent new observations in integrated light with a novel array of low scattered-light telephoto lenses have failed to convincingly detect a stellar halo in the nearby massive face-on disk galaxy M101 (van Dokkum et al. 2014). They argue that any halo has to have <0.3% of the mass of the galaxy. This halo would be the least massive of any massive disk galaxy in the local Universe (by factors of several) -- such a halo is not predicted or naturally interpreted by the models, and would present a critical challenge to the picture of ubiquitous stellar halos formed from the debris of disrupting dwarf galaxies.We propose to resolve the stellar populations of this uniquely anemic stellar halo for 6 orbits with HST (ACS and WFC3), allowing us to reach surface brightness limits sufficient to clearly detect and characterize M101's stellar halo if it carries more than 0.1% of M101's mass. With resolved stellar populations, we can use the gradient of stellar populations as a function of radius to separate stellar halo from disk, which is impossible using integrated light observations. The resolved stellar populations will reveal the halo mass to much greater accuracy, measure the halo radial profile, constrain any halo lopsidedness, estimate the halo's stellar metallicity, and permit an analysis of outer disk stellar populations.

  20. Halo ion trap mass spectrometer.

    PubMed

    Austin, Daniel E; Wang, Miao; Tolley, Samuel E; Maas, Jeffrey D; Hawkins, Aaron R; Rockwood, Alan L; Tolley, H Dennis; Lee, Edgar D; Lee, Milton L

    2007-04-01

    We describe a novel radio frequency ion trap mass analyzer based on toroidal trapping geometry and microfabrication technology. The device, called the halo ion trap, consists of two parallel ceramic plates, the facing surfaces of which are imprinted with sets of concentric ring electrodes. Radii of the imprinted rings range from 5 to 12 mm, and the spacing between the plates is 4 mm. Unlike conventional ion traps, in which hyperbolic metal electrodes establish equipotential boundary conditions, electric fields in the halo ion trap are established by applying different radio frequency potentials to each ring. The potential on each ring can be independently optimized to provide the best trapping field. The halo ion trap features an open structure, allowing easy access for in situ ionization. The toroidal geometry provides a large trapping and analyzing volume, increasing the number of ions that can be stored and reducing the effects of space-charge on mass analysis. Preliminary mass spectra show resolution (m/Deltam) of 60-75 when the trap is operated at 1.9 MHz and 500 Vp-p. PMID:17335180

  1. Halo Microlensing and Dark Baryons

    NASA Astrophysics Data System (ADS)

    Crotts, A. P. S.

    1993-12-01

    (While Pierce lectures review past accomplishments, customarily, this talk concerns efforts which we have pursued for some years and which are now reaching fruition. We present elsewhere at this meeting results from research cited for the Prize.) Dark matter exists in the halos of spiral galaxies, and the least radical alternative for its identity is normal matter produced by primordial nucleosynthesis. This matter could easily be hidden in large, condensed objects. Paczynski pointed out in 1986 that if condensations of Galactic halo matter are sufficiently massive, they will produce detectable amplification of background starlight by gravitational lensing. Several groups recently reported possible detections of this effect after surveying large numbers of stars in the Galactic Bulge and LMC. The connection between these events and massive, dark halos is unclear and likely to remain so for some time, given the rate at which they are detected. Following Paczynski's realization, we stressed that a much higher event rate, a statistical control sample, sensitivity to a much broader mass range, and modulation of the predicted lensing rate with galactocentric distance can all be realized by a different experiment: observing the halo of M31 (and the Galaxy) using stars in M31. In some ways, M31 is a more difficult target than the LMC or the Bulge, given the faintness of its stars, but our observations in 1991 and 1993 indicate that these problems have been surmounted. We can detect stellar variability even under extremely crowded conditions like those in M31's inner disk, and can monitor a sufficient number of stars to study halo lensing. We present results from our initial survey which indicates that the required sensitivity can be reached to confirm or reject the hypothesis that sub-solar masses like those detected in our Galaxy make up the missing spiral galaxy mass. It is possible that we may use the data already obtained (and still being analyzed) to place

  2. Enantioselective Protonation

    PubMed Central

    Mohr, Justin T.; Hong, Allen Y.; Stoltz, Brian M.

    2010-01-01

    Enantioselective protonation is a common process in biosynthetic sequences. The decarboxylase and esterase enzymes that effect this valuable transformation are able to control both the steric environment around the proton acceptor (typically an enolate) and the proton donor (typically a thiol). Recently, several chemical methods to achieve enantioselective protonation have been developed by exploiting various means of enantiocontrol in different mechanisms. These laboratory transformations have proven useful for the preparation of a number of valuable organic compounds. PMID:20428461

  3. Magnetized galactic haloes and velocity lags

    NASA Astrophysics Data System (ADS)

    Henriksen, R. N.; Irwin, J. A.

    2016-06-01

    We present an analytic model of a magnetized galactic halo surrounding a Mestel gravitating disc. The magnetic field is taken to be in energy equipartition with the pressure dominant rotating halo gas (not with the cosmic rays), and the whole system is in a steady state. A more flexible `anisotropic equipartition' model is also explored. A definite pressure law is required to maintain the equilibrium, but the halo density is constant. The velocity/magnetic system is scale-free. The objective is to find the rotational velocity lag in such a halo. The magnetic field is not force-free so that angular momentum may be transported from the halo to the intergalactic medium. We find that the `X'-shaped structure observed for halo magnetic fields can be obtained together with a simple analytic formula for the rate of decline of the velocity with height z. The formula also predicts the change in lag with radius, r.

  4. Procedure for simulating divergent-light halos

    NASA Astrophysics Data System (ADS)

    Gislén, Lars

    2003-11-01

    Divergent-light halos are halos produced by light from nearby light sources, like street lamps being scattered by small crystals of ice floating in the air. The use of ``brute-force'' Monte Carlo methods to simulate such halos is extremely inefficient, as most scattered rays will not hit the eye of the observer. I present a new procedure for Monte Carlo simulations of divergent-light halos. This procedure uses rotational symmetries to make a selected sampling of events that greatly improves the computational efficiency of the algorithm. We can typically generate a simulated halo display in minutes using a personal computer, several orders of magnitude more rapid than a simple brute-force method. The algorithm can also optionally generate three-dimensional pictures of divergent-light halo displays.

  5. Halotools: Galaxy-Halo connection models

    NASA Astrophysics Data System (ADS)

    Hearin, Andrew; Tollerud, Erik; Robitaille, Thomas; Droettboom, Michael; Zentner, Andrew; Bray, Erik; Craig, Matt; Bradley, Larry; Barbary, Kyle; Deil, Christoph; Tan, Kevin; Becker, Matthew R.; More, Surhud; Günther, Hans Moritz; Sipocz, Brigitta

    2016-04-01

    Halotools builds and tests models of the galaxy-halo connection and analyzes catalogs of dark matter halos. The core functions of the package include fast generation of synthetic galaxy populations using HODs, abundance matching, and related methods; efficient algorithms for calculating galaxy clustering, lensing, z-space distortions, and other astronomical statistics; a modular, object-oriented framework for designing galaxy evolution models; and end-to-end support for reducing halo catalogs and caching them as hdf5 files.

  6. Halo Effective Field Theory of 6He

    NASA Astrophysics Data System (ADS)

    Thapaliya, Arbin; Ji, Chen; Phillips, Daniel

    2016-03-01

    6He has a cluster structure with a tight 4He (α) core surrounded by two loosely bound neutrons (n) making it a halo nucleus. The leading-order (LO) Halo Effective Field Theory (EFT) [1, 2] calculations using momentum-space Faddeev equations pertinent to a bound 6He were carried out in [3]. In this work, we investigate 6He up to next-to-leading order (NLO) within Halo EFT.

  7. The local density of halo giants

    NASA Technical Reports Server (NTRS)

    Morrison, Heather L.

    1993-01-01

    A new estimate of the local density of halo giants - 36 +/- 7 with M(V) less than 0.5 per cu kpc - is presented. This number is derived from an objective-prism survey for nearby metal-weak stars, and so is free from many of the assumptions needed to derive the local halo density in the traditional way, from high proper motion surveys. This number agrees well with estimates of the local density of halo horizontal-branch stars, but is approximately a factor of 2 smaller than the density derived by Bahcall and Casertano (1986). This may be due to the inclusion of some thick disk stars in their proper-motion selected sample. The halo density derived from giants can be expressed as a disk-to-halo ratio of 850:1 (+/- 35 percent). Using these results, a simple model is built to predict numbers of halo giants in specified directions in the Galaxy. It is shown that it performs much better than the Bahcall-Soniera model, in the specific case of halo giants. The surface brightness due to the halo at the solar radius is calculated to be 27.7 V magnitudes per sq arcsec, if the Galaxy was viewed from the outside, edge-on, thus raising the possibility of detecting light from halo field stars in other galaxies similar to our own.

  8. PAHs in the halo of NGC 5529

    NASA Astrophysics Data System (ADS)

    Irwin, J. A.; Kennedy, H.; Parkin, T.; Madden, S.

    2007-11-01

    We present sensitive ISO λ 6.7~μm observations of the edge-on galaxy, NGC 5529, finding an extensive MIR halo around NGC 5529. The emission is dominated by PAHs in this band. The PAH halo has an exponential scale height of 3.7 kpc but can still be detected as far as ≈10 kpc from the plane to the limits of the high dynamic range (1770/1) data. This is the most extensive PAH halo yet detected in a normal galaxy. This halo shows substructure and the PAHs likely originate from some type of disk outflow. PAHs are long-lived in a halo environment and therefore continuous replenishment from the disk is not required (unless halo PAHs are also being destroyed or removed), consistent with the current low SFR of the galaxy. The PAHs correlate spatially with halo Hα emission, previously observed by Miller & Veilleux (2003, ApJS, 148, 383); both components are likely excited/ionized by in-disk photons that are leaking into the halo. The presence of halo gas may be related to the environment of NGC 5529 which contains at least 17 galaxies in a small group of which NGC 5529 is the dominant member. Of these, we have identified two new companions from the SDSS.

  9. Studying Stellar Halos with Future Facilities

    NASA Astrophysics Data System (ADS)

    Greggio, Laura; Falomo, Renato; Uslenghi, Michela

    2015-08-01

    Stellar halos around galaxies retain fundamental evidence of the processes which lead to their build up. Sophisticated models of galaxy formation in a cosmological context yield quantitative predictions about various observable characteristics, including the amount of substructure, the slope of radial mass profiles and three dimensional shapes, and the properties of the stellar populations in the galaxies halos. The comparison of such models with the observations leads to constraints on the general picture of galaxy formation in the hierarchical Universe, as well as on the physical processes taking place in the halos formation. With the current observing facilities, stellar halos can be effectively probed only for a limited number of nearby galaxies. In this contribution we illustrate the progress which we expect in this field with the future large aperture ground based telescopes (E-ELT and TNT), and with JWST. In particular we adress the following issues: (I) the characterization of the stellar populations in the halos innermost regions and substructures, (ii) the measurement of the halos profiles and shapes , and the halos mass content, (iii) the study of Globular Clusters inhabiting the halos of distant galaxies. In order to assess the expected capabilities of future facilities we present the results of a set of simulated images to evaluate to which level of accuracy it will be possible to probe the halos of distant galaxies.

  10. Shell closures, loosely bound structures, and halos in exotic nuclei

    SciTech Connect

    Saxena, G.; Singh, D.

    2013-04-15

    Inspired by the recent experiments indicating doubly magic nuclei that lie near the drip-line and encouraged by the success of our relativistic mean-field (RMF) plus state-dependent BCS approach to the description of the ground-state properties of drip-line nuclei, we develop this approach further, across the entire periodic table, to explore magic nuclei, loosely bound structures, and halo formation in exotic nuclei. In our RMF+BCS approach, the single-particle continuum corresponding to the RMF is replaced by a set of discrete positive-energy states for the calculations of pairing energy. Detailed analysis of the single-particle spectrum, pairing energies, and densities of the nuclei predict the unusual proton shell closures at proton numbers Z = 6, 14, 16, 34, and unusual neutron shell closures at neutron numbers N = 6, 14, 16, 34, 40, 70, 112. Further, in several nuclei like the neutron-rich isotopes of Ca, Zr, Mo, etc., the gradual filling of lowlying single-particle resonant state together with weakly bound single-particle states lying close to the continuum threshold helps accommodate more neutrons but with an extremely small increase in the binding energy. This gives rise to the occurrence of loosely bound systems of neutron-rich nuclei with a large neutron-to-proton ratio. In general, the halo-like formation, irrespective of the existence of any resonant state, is seen to be due to the large spatial extension of the wave functions for the weakly bound single-particle states with low orbital angular momentum having very small or no centrifugal barriers.

  11. Haloes seen in UVIS reflectance

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.; Bradley, E. T.; Colwell, J. E.; Sremcevic, M.

    2012-12-01

    UVIS SOI reflectance spectra show bright 'haloes' around the locations of some of the strongest resonances in Saturn's A ring (Esposito etal 2005). UV spectra constrain the size and composition of the icy ring particles (Bradley etal 2010, 2012). We investigate the Janus 4:3, 5:3, 6:5 and Mimas 5:3 inner Lindblad resonances as well as at the Mimas 5:3 vertical resonance (bending wave location). Models of ring particle regolith evolution (Elliott and Esposito 2010) indicate the deeper regolith is made of older and purer ice. The strong resonances can cause streamline crowding (Lewis and Stewart 2005) which damps the interparticle velocity, allowing temporary clumps to grow, which in turn increase the velocity, eroding the clumps and releasing smaller particles and regolith (see the predator-prey model of Esposito etal 2012). This cyclic behavior, driven by the resonant perturbation from the moon, can yield collision velocities at particular azimuths greater than 1m/sec, sufficient to erode the aggregates (Blum 2006), exposing older, purer materials. Thus, the radial location of the strongest resonances can be where we find both large aggregates and disrupted fragments, in a balance maintained by the periodic moon forcing. If this stirring exposes older, and purer ice, the velocity threshold for eroding the aggregates can explain why only the strongest Lindblad resonances show haloes. Diffusion can explain the morphology of these haloes, although they are not well-resolved spatially by UVIS. Spectra determine the relative contributions of particle size and purity at these locations, for comparison to estimates from the regolith evolution models.

  12. THE PSEUDO-EVOLUTION OF HALO MASS

    SciTech Connect

    Diemer, Benedikt; Kravtsov, Andrey V.; More, Surhud

    2013-03-20

    A dark matter halo is commonly defined as a spherical overdensity of matter with respect to a reference density, such as the critical density or the mean matter density of the universe. Such definitions can lead to a spurious pseudo-evolution of halo mass simply due to redshift evolution of the reference density, even if its physical density profile remains constant over time. We estimate the amount of such pseudo-evolution of mass between z = 1 and 0 for halos identified in a large N-body simulation, and show that it accounts for almost the entire mass evolution of the majority of halos with M{sub 200{rho}-bar} Less-Than-Or-Equivalent-To 10{sup 12} h{sup -1} M{sub Sun} and can be a significant fraction of the apparent mass growth even for cluster-sized halos. We estimate the magnitude of the pseudo-evolution assuming that halo density profiles remain static in physical coordinates, and show that this simple model predicts the pseudo-evolution of halos identified in numerical simulations to good accuracy, albeit with significant scatter. We discuss the impact of pseudo-evolution on the evolution of the halo mass function and show that the non-evolution of the low-mass end of the halo mass function is the result of a fortuitous cancellation between pseudo-evolution and the absorption of small halos into larger hosts. We also show that the evolution of the low-mass end of the concentration-mass relation observed in simulations is almost entirely due to the pseudo-evolution of mass. Finally, we discuss the implications of our results for the interpretation of the evolution of various scaling relations between the observable properties of galaxies and galaxy clusters and their halo masses.

  13. Alignments between galaxies, satellite systems and haloes

    NASA Astrophysics Data System (ADS)

    Shao, Shi; Cautun, Marius; Frenk, Carlos S.; Gao, Liang; Crain, Robert A.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2016-08-01

    The spatial distribution of the satellite populations of the Milky Way and Andromeda are puzzling in that they are nearly perpendicular to the disks of their central galaxies. To understand the origin of such configurations we study the alignment of the central galaxy, satellite system and dark matter halo in the largest of the "Evolution and Assembly of GaLaxies and their Environments" (EAGLE) simulation. We find that centrals and their satellite systems tend to be well aligned with their haloes, with a median misalignment angle of $33^{\\circ}$ in both cases. While the centrals are better aligned with the inner $10$ kpc halo, the satellite systems are better aligned with the entire halo indicating that satellites preferentially trace the outer halo. The central - satellite alignment is weak (median misalignment angle of $52^{\\circ}$) and we find that around $20\\%$ of systems have a misalignment angle larger than $78^{\\circ}$, which is the value for the Milky Way. The central - satellite alignment is a consequence of the tendency of both components to align with the dark matter halo. As a consequence, when the central is parallel to the satellite system, it also tends to be parallel to the halo. In contrast, if the central is perpendicular to the satellite system, as in the case of the Milky Way and Andromeda, then the central - halo alignment is much weaker. Dispersion-dominated (spheroidal) centrals have a stronger alignment with both their halo and their satellites than rotation-dominated (disk) centrals. We also found that the halo, the central galaxy and the satellite system tend to be aligned with the surrounding large-scale distribution of matter, with the halo being the better aligned of the three.

  14. Alignments between galaxies, satellite systems and haloes

    NASA Astrophysics Data System (ADS)

    Shao, Shi; Cautun, Marius; Frenk, Carlos S.; Gao, Liang; Crain, Robert A.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2016-08-01

    The spatial distribution of the satellite populations of the Milky Way and Andromeda are puzzling in that they are nearly perpendicular to the discs of their central galaxies. To understand the origin of such configurations we study the alignment of the central galaxy, satellite system and dark matter halo in the largest of the `Evolution and Assembly of GaLaxies and their Environments' (EAGLE) simulation. We find that centrals and their satellite systems tend to be well aligned with their haloes, with a median misalignment angle of 33° in both cases. While the centrals are better aligned with the inner 10 kpc halo, the satellite systems are better aligned with the entire halo indicating that satellites preferentially trace the outer halo. The central-satellite alignment is weak (median misalignment angle of 52°) and we find that around 20 per cent of systems have a misalignment angle larger than 78°, which is the value for the Milky Way. The central-satellite alignment is a consequence of the tendency of both components to align with the dark matter halo. As a consequence, when the central is parallel to the satellite system, it also tends to be parallel to the halo. In contrast, if the central is perpendicular to the satellite system, as in the case of the Milky Way and Andromeda, then the central-halo alignment is much weaker. Dispersion-dominated (spheroidal) centrals have a stronger alignment with both their halo and their satellites than rotation-dominated (disc) centrals. We also found that the halo, the central galaxy and the satellite system tend to be aligned with the surrounding large-scale distribution of matter, with the halo being the better aligned of the three.

  15. Beam halo formation from space-charge dominated beams in uniform focusing channels

    SciTech Connect

    O'Connell, J.S. ); Wangler, T.P.; Mills, R.S. ); Crandall, K.R. )

    1993-01-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which results in a 2-component beam consisting of an inner core and an outer halo. The halo is very prominent in mismatched beams, and the potential for accelerator activation is of concern for a next generation of cw, high-power proton linacs that could be applied for intense neutron generators to process nuclear materials. We present new results about beam halo and the evolution of space-charge dominated beams from multiparticle simulation of initial laminar beams in a uniform linear focusing channel, and from a model consisting of single particle interactions with a uniform-density beam core. We study the energy gain from particle interactions with the space-charge field of the core, and we identify the resonant characteristic of this interaction as the basic cause of the separation of the beam into the two components. We identify three different particle-trajectory types, and we suggest that one of these types may lead to continuous halo growth, even after the halo is removed by collimators.

  16. Challenge of benchmarking simulation codes for the LANL beam-halo experiment.

    SciTech Connect

    Wangler, Thomas P.,; Lysenko, W. P.; Qiang, J.; Garnett, R. W.

    2003-01-01

    We compare macroparticle simulations with beam-profile measurements from a proton beam-halo experiment in a study of beam-halo formation in mismatched beams in a 52-quadrupole periodic-focusing channel. The lack of detailed measurement of the initial distribution is an important issue for being able to make reliable predictions of the halo. We have found earlier that different initial distributions with the same Courant-Snyder parameters and emittances produce similar matched-beam profiles, but different mismatched-beam profiles in the transport system. Also, input distributions with greater population in the tails produce larger rates of emittance growth. We have concluded that using only the known Courant-Snyder parameters and emittances as input parameters is insufficient information for reliable simulations of beam halo formed in mismatched beams. The question is how to obtain the best estimate of the input beam distribution needed for more accurate simulations. In this paper, we investigate a new least squares fitting procedure, which is applied to the simulations used to determine the injected beam distribution, in an attempt to obtain a more accurate description of halo formation than fiom simulation alone.

  17. Beam halo formation from space-charge dominated beams in uniform focusing channels

    SciTech Connect

    O`Connell, J.S.; Wangler, T.P.; Mills, R.S.; Crandall, K.R.

    1993-06-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which results in a 2-component beam consisting of an inner core and an outer halo. The halo is very prominent in mismatched beams, and the potential for accelerator activation is of concern for a next generation of cw, high-power proton linacs that could be applied for intense neutron generators to process nuclear materials. We present new results about beam halo and the evolution of space-charge dominated beams from multiparticle simulation of initial laminar beams in a uniform linear focusing channel, and from a model consisting of single particle interactions with a uniform-density beam core. We study the energy gain from particle interactions with the space-charge field of the core, and we identify the resonant characteristic of this interaction as the basic cause of the separation of the beam into the two components. We identify three different particle-trajectory types, and we suggest that one of these types may lead to continuous halo growth, even after the halo is removed by collimators.

  18. Cosmic ray transport in galaxy clusters: implications for radio halos and gamma-rays.

    NASA Astrophysics Data System (ADS)

    Pfrommer, C.; Enßlin, T. A.; Miniati, F.; Subramanian, K.

    Observations of giant radio halos provide unambiguous evidence for the existence of cosmic ray (CR) electrons and magnetic fields in galaxy clusters. The physical mechanism generating radio halos is still heavily debated. We critically discuss the proposed models for the radio halo emission and highlight the weaknesses underlying each explanation. We present an idea how the interplay of CR propagation and turbulent advection selects a bimodal spatial CR distribution that is characteristic for the dynamical state of a cluster. As a result, strongly turbulent, merging clusters should have a more centrally concentrated CR energy density profile with respect to relaxed ones with very subsonic turbulence. This translates into a bimodality of the expected diffuse radio and gamma ray emission of clusters. Thus, the observed bimodality of cluster radio halos appears to be a natural consequence of the interplay of CR transport processes, independent of the model of radio halo formation, be it hadronic interactions of CR protons or re-acceleration of low-energy CR electrons.

  19. Correlating galaxy colour and halo concentration: a tunable halo model of galactic conformity

    NASA Astrophysics Data System (ADS)

    Paranjape, Aseem; Kovač, Katarina; Hartley, William G.; Pahwa, Isha

    2015-12-01

    We extend the halo occupation distribution (HOD) framework to generate mock galaxy catalogues exhibiting varying levels of `galactic conformity', which has emerged as a potentially powerful probe of environmental effects in galaxy evolution. Our model correlates galaxy colours in a group with the concentration of the common parent dark halo through a `group quenching efficiency' ρ which makes older, more concentrated haloes at fixed mass preferentially host redder galaxies. We find that, for a specific value of ρ, this 1-halo conformity matches corresponding measurements in a group catalogue based on the Sloan Digital Sky Survey. Our mocks also display conformity at large separations from isolated objects, potentially an imprint of halo assembly bias. A detailed study - using mocks with assembly bias erased while keeping 1-halo conformity intact - reveals a rather nuanced situation, however. At separations ≲4 Mpc, conformity is mainly a 1-halo effect dominated by the largest haloes and is not a robust indicator of assembly bias. Only at very large separations (≳8 Mpc) does genuine 2-halo conformity, driven by the assembly bias of small haloes, manifest distinctly. We explain all these trends in standard halo model terms. Our model opens the door to parametrized HOD analyses that self-consistently account for galactic conformity at all scales.

  20. Correlates of Halo Error in Teacher Evaluation.

    ERIC Educational Resources Information Center

    Moritsch, Brian G.; Suter, W. Newton

    1988-01-01

    An analysis of 300 undergraduate psychology student ratings of teachers was undertaken to assess the magnitude of halo error and a variety of rater, ratee, and course characteristics. The raters' halo errors were significantly related to student effort in the course, previous experience with the instructor, and class level. (TJH)

  1. Confounding among Measures of Leniency and Halo.

    ERIC Educational Resources Information Center

    Alliger, George M.; Williams, Kevin J.

    1989-01-01

    The interrelationships among halo and leniency rating errors were examined using simulated rating data. As leniency increased, halo decreased when measured by dimension intercorrelations but increased when measured by standard deviations across dimensions. Implications of these results for the use of the various measures are discussed. (SLD)

  2. Comments on the Measurement of Halo.

    ERIC Educational Resources Information Center

    Fisicaro, Sebastiano A.; Vance, Robert J.

    1994-01-01

    This article presents arguments that the correlation measure "r" of halo is not conceptually more appropriate than the standard deviation (SD) measure. It also describes conditions under which halo effects occur and when the SD and r measures can be used. Neither measure is uniformly superior to the other. (SLD)

  3. Milky Way halo gas kinematics

    NASA Technical Reports Server (NTRS)

    Danly, L.

    1986-01-01

    Measurements of high resolution, short wavelength absorption data taken by IUE toward high latitude O and B stars are presented in a discussion of the large scale kinematic properties of Milky Way Halo gas. An analysis of these data demonstrates that: (1) the obsrved absorption widths (FWHM) of Si II are very large, ranging up to 150 Km/s for the most distant halo star; this is much larger than is generally appreciated from optical data; (2) the absorption is observed to be systematically negative in radial velocity, indicating that cool material is, on the whole, flowing toward the disk of the galaxy; (3) there is some evidence for asymmetry between the northern and southern galactic hemispheres, in accordance with the HI 21 cm data toward the galactic poles; (4) low column density gas with highly negative radial LSR velocity (V less than -70 km/s) can be found toward stars beyond 1-3 kpc in the northern galactic hemisphere in all four quadrants of galactic longitude; and (5) only the profiles toward stars in the direction of known high velocity HI features show a clear two component structure.

  4. Smooth halos in the cosmic web

    NASA Astrophysics Data System (ADS)

    Gaite, José

    2015-04-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ``smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.

  5. Macroparticle simulation studies of a proton beam haloexperiment

    SciTech Connect

    Qiang, J.; Colestock, P.L.; Gilpatrick, D.; Smith, H.V.; Wangler,T.P.; Schulze, M.E.

    2002-09-12

    We report macroparticle simulations for comparison withmeasured results from a proton beam-halo experiment in a 52-quadrupoleperiodic-focusing channel. An important issue is that the inputphase-space distribution is not experimentally known. Three differentinitial distributions with different shapes predict different beamprofiles in the transport system. Simulations have been fairly successfulin reproducing the core of the measured matched-beam profiles and thetrend of emittance growth as a function of mismatch factor, butunderestimate the growth rate of halo and emittance for mismatched beams.In this study, we find that knowledge of the Courant-Snyder parametersand emittances of the input beam is not sufficient for reliableprediction of the halo. Input distributions iwth greater population inthe tails produce larger rates of emittance growth, a result that isqualitatively consistent with the particle-core model of halo formationin mismatched beams.

  6. THE RESOLVED STELLAR HALO OF NGC 253

    SciTech Connect

    Bailin, Jeremy; Bell, Eric F.; Chappell, Samantha N.; Radburn-Smith, David J.; De Jong, Roelof S.

    2011-07-20

    We have obtained Magellan/IMACS and Hubble Space Telescope (HST)/Advanced Camera for Surveys imaging data that resolve red giant branch stars in the stellar halo of the starburst galaxy NGC 253. The HST data cover a small area, and allow us to accurately interpret the ground-based data, which cover 30% of the halo to a distance of 30 kpc, allowing us to make detailed quantitative measurements of the global properties and structure of a stellar halo outside of the Local Group. The geometry of the halo is significantly flattened in the same sense as the disk, with a projected axis ratio of b/a {approx} 0.35 {+-} 0.1. The total stellar mass of the halo is estimated to be M{sub halo} {approx} (2.5 {+-} 1.5) x 10{sup 9} M{sub sun}, or 6% of the total stellar mass of the galaxy, and has a projected radial dependence that follows a power law of index -2.8 {+-} 0.6, corresponding to a three-dimensional power-law index of {approx} - 4. The total luminosity and profile shape that we measure for NGC 253 are somewhat larger and steeper than the equivalent values for the Milky Way and M31, but are well within the scatter of model predictions for the properties of stellar halos built up in a cosmological context. Structure within the halo is seen at a variety of scales: there is small kpc-scale density variation and a large shelf-like feature near the middle of the field. The techniques that have been developed will be essential for quantitatively comparing our upcoming larger sample of observed stellar halos to models of halo formation.

  7. Ophthalmic halo reduced lenses design

    NASA Astrophysics Data System (ADS)

    Limon, Ofer; Zalevsky, Zeev

    2015-05-01

    The halo effect is a very problematic visual artifact occurring in extended depth of focus or multi-focal ophthalmic lenses such as e.g. intra-ocular (after cataract surgery) or contact lenses when used in dark illumination conditions. This artifact is generated due to surface structures added on top of those lenses in order to increase their depth of focus or to realize multiple focal lengths. In this paper we present novel solution that can resolve this major problem of ophthalmic lenses. The proposed solution involves modification to the surface structure that realizes the extended depth of focus. Our solution is fabricated and numerically and experimentally validated also in preliminary in-vivo trials.

  8. AN EXPERIMENTALLY ROBUST TECHNIQUE FOR HALO MEASUREMENT

    SciTech Connect

    Amundson, J.; Pellico, W.; Spentzouris, P.; Sullivan, T.; Spentzouris, Linda; /IIT, Chicago

    2006-03-01

    We propose a model-independent quantity, L/G, to characterize non-Gaussian tails in beam profiles observed with the Fermilab Booster Ion Profile Monitor. This quantity can be considered a measure of beam halo in the Booster. We use beam dynamics and detector simulations to demonstrate that L/G is superior to kurtosis as an experimental measurement of beam halo when realistic beam shapes, detector effects and uncertainties are taken into account. We include the rationale and method of calculation for L/G in addition to results of the experimental studies in the Booster where we show that L/G is a useful halo discriminator.

  9. Proton Transport

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The transport of protons across membranes is an essential process for both bioenergetics of modern cells and the origins of cellular life. All living systems make use of proton gradients across cell walls to convert environmental energy into a high-energy chemical compound, adenosine triphosphate (ATP), synthesized from adenosine diphosphate. ATP, in turn, is used as a source of energy to drive many cellular reactions. The ubiquity of this process in biology suggests that even the earliest cellular systems were relying on proton gradient for harvesting environmental energy needed to support their survival and growth. In contemporary cells, proton transfer is assisted by large, complex proteins embedded in membranes. The issue addressed in this Study was: how the same process can be accomplished with the aid of similar but much simpler molecules that could have existed in the protobiological milieu? The model system used in the study contained a bilayer membrane made of phospholipid, dimyristoylphosphatidylcholine (DMPC) which is a good model of the biological membranes forming cellular boundaries. Both sides of the bilayer were surrounded by water which simulated the environment inside and outside the cell. Embedded in the membrane was a fragment of the Influenza-A M$_2$ protein and enough sodium counterions to maintain system neutrality. This protein has been shown to exhibit remarkably high rates of proton transport and, therefore, is an excellent model to study the formation of proton gradients across membranes. The Influenza M$_2$ protein is 97 amino acids in length, but a fragment 25 amino acids long. which contains a transmembrane domain of 19 amino acids flanked by three amino acids on each side. is sufficient to transport protons. Four identical protein fragments, each folded into a helix, aggregate to form small channels spanning the membrane. Protons are conducted through a narrow pore in the middle of the channel in response to applied voltage. This

  10. The Diagnostic Value of Halo and Reversed Halo Signs for Invasive Mold Infections in Compromised Hosts

    PubMed Central

    Georgiadou, Sarah P.; Sipsas, Nikolaos V.; Marom, Edith M.

    2011-01-01

    The halo sign is a CT finding of ground-glass opacity surrounding a pulmonary nodule or mass. The reversed halo sign is a focal rounded area of ground-glass opacity surrounded by a crescent or complete ring of consolidation. In severely immunocompromised patients, these signs are highly suggestive of early infection by an angioinvasive fungus. The halo sign and reversed halo sign are most commonly associated with invasive pulmonary aspergillosis and pulmonary mucormycosis, respectively. Many other infections and noninfectious conditions, such as neoplastic and inflammatory processes, may also manifest with pulmonary nodules associated with either sign. Although nonspecific, both signs can be useful for preemptive initiation of antifungal therapy in the appropriate clinical setting. This review aims to evaluate the diagnostic value of the halo sign and reversed halo sign in immunocompromised hosts and describes the wide spectrum of diseases associated with them. PMID:21467021

  11. Symmetry in halo displays and symmetry in halo-making crystals.

    PubMed

    Können, Gunther P

    2003-01-20

    The relation between the symmetry in halo displays and crystal symmetry is investigated for halo displays that are generated by ensembles of crystals. It is found that, regardless of the symmetry of the constituent crystals, such displays are always left-right (L-R) symmetric if the crystals are formed from the surrounding vapor. L-R symmetry of a halo display implies here that the cross sections for formation of a halo arc on the left-hand side of the solar vertical and its right-hand side mirror image are equal. This property leaves room for two types of halo display only: a full symmetric one (mmm-symmetric), and a partial symmetric one (mm2-symmetric) in which halo constituents lack their counterparts on the other side of the parhelic circle. A partial symmetric display can occur only for point halos. Its occurrence implies that a number of symmetry elements are not present in the shape of the halo-making crystals. These elements are a center of inversion, any rotatory-inversion axis that is parallel to the crystal spin axis P, a mirror plane perpendicular to the P axis, and a twofold rotation axis perpendicular to the P axis. A simple conceptual method is presented to reconstruct possible shapes of the halo-generating crystals from the halos in the display. The method is illustrated in two examples. Halos that may occur on the Saturnian satellite Titan are discussed. The possibilities for the Huygens probe to detect these halos during its descent through the Titan clouds in 2005 are detailed. PMID:12570252

  12. Proton interrogation

    SciTech Connect

    Morris, Christopher L

    2008-01-01

    Energetic proton beams may provide an attractive alternative when compared to electromagnetic and neutron beams for active interrogation of nuclear threats because: they have large fission cross sections, long mean free paths and high penetration, and proton beams can be manipulated with magnetic optics. We have measured time-dependent cross sections for delayed neutrons and gamma-rays using the 800 MeV proton beam from the Los Alamos Neutron Science Center for a set of bare and shielded targets. The results show significant signals from both unshielded and shielded nuclear materials. Results will be presented.

  13. Degradation of HaloTag-fused nuclear proteins using bestatin-HaloTag ligand hybrid molecules.

    PubMed

    Tomoshige, Shusuke; Naito, Mikihiko; Hashimoto, Yuichi; Ishikawa, Minoru

    2015-10-14

    We have developed a protein knockdown technology using hybrid small molecules designed as conjugates of a ligand for the target protein and a ligand for ubiquitin ligase cellular inhibitor of apoptosis protein 1 (cIAP1). However, this technology has several limitations. Here, we report the development of a novel protein knockdown system to address these limitations. In this system, target proteins are fused with HaloTag to provide a common binding site for a degradation inducer. We designed and synthesized small molecules consisting of alkyl chloride as the HaloTag-binding degradation inducer, which binds to HaloTag, linked to BE04 (2), which binds to cIAP1. Using this system, we successfully knocked down HaloTag-fused cAMP responsive element binding protein 1 (HaloTag-CREB1) and HaloTag-fused c-jun (HaloTag-c-jun), which are ligand-unknown nuclear proteins, in living cells. HaloTag-binding degradation inducers can be synthesized easily, and are expected to be useful as biological tools for pan-degradation of HaloTag-fused proteins. PMID:26338696

  14. Genesis Halo Orbit Station Keeping Design

    NASA Technical Reports Server (NTRS)

    Lo, M.; Williams, K.; Wilson, R.; Howell, K.; Barden, B.

    2000-01-01

    As the fifth mission of NASA's Directory Program, Genesis is designed to collect solar wind samples for approximately two years in a halo orbit near the Sun-Earth L(sub 1) Lagrange point for return to the Earth.

  15. Few-Body Universality in Halo Nuclei

    NASA Astrophysics Data System (ADS)

    Hammer, H.-W.

    2016-03-01

    Few-body systems with resonant S-wave interactions show universal properties which are independent of the interaction at short distances. These properties include a geometric spectrum of three- and higher-body bound states and universal correlations between few-body observables. They can be observed on a wide range of scales from hadrons and nuclei to ultracold atoms. In this contribution, we focus on few-body universality in halo nuclei which can be considered as effective few-body systems consisting of halo nucleons and a core. This concept provides a unifying framework for halo nuclei with calculable corrections. Recent progress in this field with an emphasis on the possibility of finding Efimov states in halo nuclei is discussed.

  16. Dark matter particles in the galactic halo

    SciTech Connect

    Bernabei, R. Belli, P.; Montecchia, F.; Nozzoli, F.; Cappella, F.; D'Angelo, A.; Incicchitti, A.; Prosperi, D.; Cerulli, R.; Dai, C. J.; He, H. L.; Kuang, H. H.; Ma, J. M.; Sheng, X. D.; Ye, Z. P.

    2009-12-15

    Arguments on the investigation of the DarkMatter particles in the galactic halo are addressed. Recent results obtained by exploiting the annual modulation signature are summarized and the perspectives are discussed.

  17. The Gaseous Halo of NGC 891

    NASA Astrophysics Data System (ADS)

    Hodges-Kluck, Edmund

    2014-08-01

    The halos of disk galaxies contain a substantial mass of diffuse gas whose properties (temperature, density, structure, and metallicity) are important to understanding how the intergalactic medium was enriched and the long-term star-formation potential of the galaxy. However, we still do not know whether most of the halo material was expelled from the galaxy in a 'galactic fountain' or is fresh infall from the circum/intergalactic medium. NGC 891 is a nearby (D=10 Mpc), edge-on Milky Way analog whose halo has been intensively studied. I will present our recent work in the X-ray and UV bands aimed at trying to determine the origin of the hot and cool components of the halo gas by measuring their metal content, and discuss whether results from NGC 891 can be generalized to other galaxies.

  18. Dark matter particles in the galactic halo

    NASA Astrophysics Data System (ADS)

    Bernabei, R.; Belli, P.; Montecchia, F.; Nozzoli, F.; Cappella, F.; D'Angelo, A.; Incicchitti, A.; Prosperi, D.; Cerulli, R.; Dai, C. J.; He, H. L.; Kuang, H. H.; Ma, J. M.; Sheng, X. D.; Ye, Z. P.

    2009-12-01

    Arguments on the investigation of the DarkMatter particles in the galactic halo are addressed. Recent results obtained by exploiting the annual modulation signature are summarized and the perspectives are discussed.

  19. The accretion halo in AM Herculis systems

    NASA Technical Reports Server (NTRS)

    Achilleos, N.; Wickramasinghe, D. T.; Wu, Kinwah

    1992-01-01

    Previous phase-resolved spectropolarimetric observations of the AM Herculis systems V834 Centauri (E1405-451) and EF Eridani have shown broad, Zeeman-shifted absorption features during the bright phases. These features are thought to be nonphotospheric in origin, and to arise from a cool 'halo' of unshocked gas surrounding the accretion shock on the surface of the white dwarf primary. Preliminary models for the accretion halo region are presented and these models are used to perform a more detailed analysis of the relevant data for these two systems than has previously been done. To explain the observed halo Zeeman features, geometries which are consistent with the presence of linearly extended cyclotron emission regions are required. Such regions have previously been deduced from different considerations by other investigators. The estimated masses for the accretion halo are comparable to the mass of the cyclotron emission region.

  20. Solar Back-sided Halo CME

    NASA Video Gallery

    The Sun erupted with several CMEs (coronal mass ejections) during a period just over a day (Nov. 8-9, 2012), the largest of which was a halo CME. This CME appears to have originated from an active ...

  1. Simulating rainbows and halos in color.

    PubMed

    Gedzelman, S D

    1994-07-20

    Geometric optics rainbows and ice-crystal halos that include some effects of a Rayleigh-scattering atmosphere and a cloud of finite optical thickness are simulated in color by the use of a Monte Carlo approach. PMID:20935829

  2. On physical scales of dark matter halos

    SciTech Connect

    Zemp, Marcel

    2014-09-10

    It is common practice to describe formal size and mass scales of dark matter halos as spherical overdensities with respect to an evolving density threshold. Here, we critically investigate the evolutionary effects of several such commonly used definitions and compare them to the halo evolution within fixed physical scales as well as to the evolution of other intrinsic physical properties of dark matter halos. It is shown that, in general, the traditional way of characterizing sizes and masses of halos dramatically overpredicts the degree of evolution in the last 10 Gyr, especially for low-mass halos. This pseudo-evolution leads to the illusion of growth even though there are no major changes within fixed physical scales. Such formal size definitions also serve as proxies for the virialized region of a halo in the literature. In general, those spherical overdensity scales do not coincide with the virialized region. A physically more precise nomenclature would be to simply characterize them by their very definition instead of calling such formal size and mass definitions 'virial'. In general, we find a discrepancy between the evolution of the underlying physical structure of dark matter halos seen in cosmological structure formation simulations and pseudo-evolving formal virial quantities. We question the importance of the role of formal virial quantities currently ubiquitously used in descriptions, models, and relations that involve properties of dark matter structures. Concepts and relations based on pseudo-evolving formal virial quantities do not properly reflect the actual evolution of dark matter halos and lead to an inaccurate picture of the physical evolution of our universe.

  3. Phase transition theory of sprite halo

    NASA Astrophysics Data System (ADS)

    Hiraki, Yasutaka

    2010-04-01

    We present the phase transition theory for sprite halo using measurable lightning parameters (charge moment and discharge time) on the basis of steady state thermodynamics. A halo is located at the upper part of the tree-like structure of a sprite and is produced through electron impact excitation of neutral species under the lightning-induced electric field. We proposed in our previous studies that the occurrence criteria for halos and sprites are characterized by the above lightning parameters, and additionally, the intensity of a halo weakens rapidly with an increase in the discharge time T. We assume that this phenomenon is quite similar to the phase transition between the vapor and the liquid states of water; here the analogy is between the accelerated electrons and the water molecules. We demonstrate analytically a phase transition for a simply modeled halo based on the quasistatic theory of lightning-induced electric field. Choosing the luminosity of a halo as an order parameter, we show that it has a dependence of T-0.25 - Tc-0.25 near the critical point Tc, which is characteristic of the phase transition. Furthermore, the critical time scale Tc ≈ 5.5 ms is provided naturally from our modeling and is somewhat larger than the typical time scale of the halo luminosity in observations. We consider that this kind of formalism is useful in understanding the detailed relationship between lightning activity and occurrence of halos. We discuss this point for future observations along with the possibilities of the transition model of column and carrot structures.

  4. Nanomechanics of HaloTag tethers.

    PubMed

    Popa, Ionel; Berkovich, Ronen; Alegre-Cebollada, Jorge; Badilla, Carmen L; Rivas-Pardo, Jaime Andrés; Taniguchi, Yukinori; Kawakami, Masaru; Fernandez, Julio M

    2013-08-28

    The active site of the Haloalkane Dehydrogenase (HaloTag) enzyme can be covalently attached to a chloroalkane ligand providing a mechanically strong tether, resistant to large pulling forces. Here we demonstrate the covalent tethering of protein L and I27 polyproteins between an atomic force microscopy (AFM) cantilever and a glass surface using HaloTag anchoring at one end and thiol chemistry at the other end. Covalent tethering is unambiguously confirmed by the observation of full length polyprotein unfolding, combined with high detachment forces that range up to ∼2000 pN. We use these covalently anchored polyproteins to study the remarkable mechanical properties of HaloTag proteins. We show that the force that triggers unfolding of the HaloTag protein exhibits a 4-fold increase, from 131 to 491 pN, when the direction of the applied force is changed from the C-terminus to the N-terminus. Force-clamp experiments reveal that unfolding of the HaloTag protein is twice as sensitive to pulling force compared to protein L and refolds at a slower rate. We show how these properties allow for the long-term observation of protein folding-unfolding cycles at high forces, without interference from the HaloTag tether. PMID:23909704

  5. MODIFIED GRAVITY SPINS UP GALACTIC HALOS

    SciTech Connect

    Lee, Jounghun; Zhao, Gong-Bo; Li, Baojiu; Koyama, Kazuya

    2013-01-20

    We investigate the effect of modified gravity on the specific angular momentum of galactic halos by analyzing the halo catalogs at z = 0 from high-resolution N-body simulations for a f(R) gravity model that meets the solar-system constraint. It is shown that the galactic halos in the f(R) gravity model tend to acquire significantly higher specific angular momentum than those in the standard {Lambda}CDM model. The largest difference in the specific angular momentum distribution between these two models occurs for the case of isolated galactic halos with mass less than 10{sup 11} h {sup -1} M {sub Sun }, which are likely least shielded by the chameleon screening mechanism. As the specific angular momentum of galactic halos is rather insensitive to other cosmological parameters, it can in principle be an independent discriminator of modified gravity. We speculate a possibility of using the relative abundance of low surface brightness galaxies (LSBGs) as a test of general relativity given that the formation of the LSBGs occurs in fast spinning dark halos.

  6. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    SciTech Connect

    Stancari, Giulio; Previtali, Valentina; Valishev, Alexander; Bruce, Roderik; Redaelli, Stefano; Rossi, Adriana; Salvachua Ferrando, Belen

    2014-06-26

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. We are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. The expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed. Hardware specifications were based on the Tevatron devices and on preliminary engineering integration studies in the LHC machine. Required resources and a possible timeline were also outlined, together with a brief discussion of alternative halo-removal schemes and of other possible uses of electron lenses to improve the performance of the LHC.

  7. Simulating Halos with the Caterpillar Project

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    The Caterpillar Project is a beautiful series of high-resolution cosmological simulations. The goal of this project is to examine the evolution of dark-matter halos like the Milky Ways, to learn about how galaxies like ours formed. This immense computational project is still in progress, but the Caterpillar team is already providing a look at some of its first results.Lessons from Dark-Matter HalosWhy simulate the dark-matter halos of galaxies? Observationally, the formation history of our galaxy is encoded in galactic fossil record clues, like the tidal debris from disrupted satellite galaxies in the outer reaches of our galaxy, or chemical abundance patterns throughout our galactic disk and stellar halo.But to interpret this information in a way that lets us learn about our galaxys history, we need to first test galaxy formation and evolution scenarios via cosmological simulations. Then we can compare the end result of these simulations to what we observe today.This figure illustrates the difference that mass resolution makes. In the left panel, the mass resolution is 1.5*10^7 solar masses per particle. In the right panel, the mass resolution is 3*10^4 solar masses per particle [Griffen et al. 2016]A Computational ChallengeDue to how computationally expensive such simulations are, previous N-body simulations of the growth of Milky-Way-like halos have consisted of only one or a few halos each. But in order to establish a statistical understanding of how galaxy halos form and find out whether the Milky Ways halo is typical or unusual! it is necessary to simulate a larger number of halos.In addition, in order to accurately follow the formation and evolution of substructure within the dark-matter halos, these simulations must be able to resolve the smallest dwarf galaxies, which are around a million solar masses. This requires an extremely high mass resolution, which adds to the computational expense of the simulation.First OutcomesThese are the challenges faced by

  8. HaloSat- A CubeSat to Study the Hot Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    We propose to develop, build, and fly HaloSat, a CubeSat capable of measuring the oxygen line emission from the hot Galactic halo. A dedicated CubeSat enables an instrument design and observing strategy to maximize the halo signal while minimizing foregrounds from solar wind charge exchange interactions within the solar system. We will use HaloSat to map the distribution of hot gas in the Milky Way and determine whether it fills an extended, and thus massive halo, or whether the halo is compact, and thus does not contribute significantly to the total mass of the Milky Way. HaloSat can be accomplished at modest cost using a CubeSat, a novel platform for space astrophysics missions. We will use a commercially available CubeSat bus and commercially available X-ray detectors to reduce development risk and minimize overall mission cost. HaloSat builds on the initiatives of GSFC/Wallops Flight Facility (WFF) in the development of CubeSats for low cost access to space and relies on the technical expertise of WFF personnel for spacecraft and mission design and operations. The team, from University of Iowa (UI), GSFC, Johns Hopkins, and CNRS (France), contains experts in X-ray detector development and data analysis and the astrophysics of hot plasmas and Galactic structure. The UI team will include a number of junior researchers (undergraduates, graduate students, and a postdoc) and help train them for future leadership roles on NASA space flight missions.

  9. GRAVITATIONALLY CONSISTENT HALO CATALOGS AND MERGER TREES FOR PRECISION COSMOLOGY

    SciTech Connect

    Behroozi, Peter S.; Wechsler, Risa H.; Wu, Hao-Yi; Busha, Michael T.; Klypin, Anatoly A.; Primack, Joel R. E-mail: rwechsler@stanford.edu

    2013-01-20

    We present a new algorithm for generating merger trees and halo catalogs which explicitly ensures consistency of halo properties (mass, position, and velocity) across time steps. Our algorithm has demonstrated the ability to improve both the completeness (through detecting and inserting otherwise missing halos) and purity (through detecting and removing spurious objects) of both merger trees and halo catalogs. In addition, our method is able to robustly measure the self-consistency of halo finders; it is the first to directly measure the uncertainties in halo positions, halo velocities, and the halo mass function for a given halo finder based on consistency between snapshots in cosmological simulations. We use this algorithm to generate merger trees for two large simulations (Bolshoi and Consuelo) and evaluate two halo finders (ROCKSTAR and BDM). We find that both the ROCKSTAR and BDM halo finders track halos extremely well; in both, the number of halos which do not have physically consistent progenitors is at the 1%-2% level across all halo masses. Our code is publicly available at http://code.google.com/p/consistent-trees. Our trees and catalogs are publicly available at http://hipacc.ucsc.edu/Bolshoi/.

  10. The Milky Way, the Galactic Halo, and the Halos of Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin

    2016-08-01

    The Milky Way, ``our'' Galaxy, is currently the subject of intense study with many ground-based surveys, in anticipation of upcoming results from the Gaia mission. From this work we have been learning about the full three-dimensional structure of the Galactic box/peanut bulge, the distribution of stars in the bar and disk, and the many streams and substructures in the Galactic halo. The data indicate that a large fraction of the Galactic halo has been accreted from outside. Similarly, in many external galaxy halos there is now evidence for tidal streams and accretion of satellites. To study these features requires exquisite, deep photometry and spectroscopy. These observations illustrate how galaxy halos are still growing, and sometimes can be used to ``time'' the accretion events. In comparison with cosmological simulations, the structure of galaxy halos gives us a vivid illustration of the hierarchical nature of our Universe.

  11. HaloSat - A CubeSat to Study the Hot Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    2016-04-01

    Observations of the nearby universe fail to locate about half of the normal matter (baryons) observed in the early universe. The missing baryons may be in hot galactic halos. HaloSat is a CubeSat designed to map oxygen line emission (O VII and O VIII) around the Milky Way in order to constrain the mass and spatial distribution of hot gas in the halo. HaloSat has a grasp competitive with current X-ray observatories. Its observing program will be optimized to minimize contributions from solar wind charge exchange (SWCX) emission that limit the accuracy of current measurements. We will describe the HaloSat mission concept, progress towards its implementation, and plans for archiving and distribution of the data.

  12. Magnetic fields in halos of spiral galaxies and the interstellar disk-halo connection

    NASA Astrophysics Data System (ADS)

    Dettmar, Ralf-Jürgen

    2005-09-01

    Observations of magnetic fields in halos of edge-on disk galaxies are discussed in relation to the different gaseous phases of the interstellar medium. For this comparison the presence of diffuse ionized gas (DIG) is introduced as a valuable tracer for gaseous halos which are originating from the star-formation driven disk-halo connection of the interstellar medium. The distribution of extraplanar DIG correlates on local and global scales with cosmic rays and magnetic fields as inferred from observations of the non-thermal radio continuum radiation and its polarization. From the polarization a large scale and well ordered magnetic field in these gaseous halos can be deduced. These observations indicate the presence of physical processes which generate and maintain magnetic fields on galactic scales. The importance of differential rotation of the gaseous halos for such processes is briefly discussed and the possible influence of magnetic fields on the dynamics of dust particles is addressed.

  13. AUTOMATED CONTROL AND REAL-TIME DATA PROCESSING OF WIRE SCANNER/HALO SCRAPER MEASUREMENTS

    SciTech Connect

    L.A. DAY; J.D. GILPATRICK; ET AL

    2001-06-01

    The Low-Energy Demonstration Accelerator (LEDA), assembled and operating at Los Alamos National Laboratory, provides the platform for obtaining measurements of high-power proton beam-halo formation. Control system software and hardware have been integrated and customized to enable the production of real-time beam-halo profiles. The Experimental Physics and Industrial Control System (EPICS) hosted on a VXI platform, Interactive Data Language (IDL) programs hosted on UNIX platforms, and LabVIEW (LV) Virtual Instruments hosted on a PC platform have been integrated and customized to provide real-time, synchronous motor control, data acquisition, and data analysis of data acquired through specialized DSP instrumentation. These modules communicate through EPICS Channel Access (CA) communication protocol extensions to control and manage execution flow ensuring synchronous data acquisition and real-time processing of measurement data. This paper describes the software integration and management scheme implemented to produce these real-time beam profiles.

  14. The Formation and Evolution of Stripped Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Zhu, Jessica; Tuan, Austin Zong; Lee, Christoph; Primack, Joel R.

    2016-01-01

    We implement a model to describe the density profiles of stripped dark matter halos. Our model generalizes the Navarro-Frenk-White (NFW) distribution to allow for more flexibility in the slope of the outer halo. We find that the density distributions of stripped halos tend to have outer slopes steeper than assumed by the NFW distribution. We also examine the relationship between severity of stripping and halo shape, spin parameter and concentration, and find that highly stripped halos are more spheroidal, have lower spin parameters, and have higher concentrations compared to less stripped halos.

  15. Sun-Earth L1 Region Halo-To-Halo Orbit and Halo-To-LisaJous Orbit Transfers

    NASA Technical Reports Server (NTRS)

    Roberts, Craig E.; DeFazio, Robert

    2004-01-01

    Practical techniques for designing transfer trajectories between Libration Point Orbits (LPOs) are presented. Motivation for development of these techniques was provided by a hardware contingency experienced by the Solar Heliospheric Observatory (SOHO), a joint mission of the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA) orbiting the L1 point of the Sun-Earth system. A potential solution to the problem involved a transfer from SOHO s periodic halo orbit to a new LPO of substantially different dimensions. Assuming the SOHO halo orbit as the departure orbit, several practical LPO transfer techniques were developed to obtain new Lissajous or periodic halo orbits that satisfy mission requirements and constraints. While not implemented for the SOHO mission, practical LPO transfer techniques were devised that are generally applicable to current and future LPO missions.

  16. A Universal Model for Halo Concentrations

    NASA Astrophysics Data System (ADS)

    Diemer, Benedikt; Kravtsov, Andrey V.

    2015-01-01

    We present a numerical study of dark matter halo concentrations in ΛCDM and self-similar cosmologies. We show that the relation between concentration, c, and peak height, ν, exhibits the smallest deviations from universality if halo masses are defined with respect to the critical density of the universe. These deviations can be explained by the residual dependence of concentration on the local slope of the matter power spectrum, n, which affects both the normalization and shape of the c-ν relation. In particular, there is no well-defined floor in the concentration values. Instead, the minimum concentration depends on redshift: at fixed ν, halos at higher z experience steeper slopes n, and thus have lower minimum concentrations. We show that the concentrations in our simulations can be accurately described by a universal seven-parameter function of only ν and n. This model matches our ΛCDM results to <~ 5% accuracy up to z = 6, and matches scale-free Ωm = 1 models to <~ 15%. The model also reproduces the low concentration values of Earth-mass halos at z ≈ 30, and thus correctly extrapolates over 16 orders of magnitude in halo mass. The predictions of our model differ significantly from all models previously proposed in the literature at high masses and redshifts. Our model is in excellent agreement with recent lensing measurements of cluster concentrations.

  17. A ''LIGHT'', CENTRALLY CONCENTRATED MILKY WAY HALO?

    SciTech Connect

    Rashkov, Valery; Pillepich, Annalisa; Deason, Alis J.; Madau, Piero; Rockosi, Constance M.; Mayer, Lucio

    2013-08-20

    We discuss a novel approach to ''weighing'' the Milky Way (MW) dark matter halo, one that combines the latest samples of halo stars selected from the Sloan Digital Sky Survey (SDSS) with state of the art numerical simulations of MW analogs. The fully cosmological runs employed in the present study include ''Eris'', one of the highest resolution hydrodynamical simulations of the formation of a M{sub vir} = 8 Multiplication-Sign 10{sup 11} M{sub Sun} late-type spiral, and the dark-matter-only M{sub vir} = 1.7 Multiplication-Sign 10{sup 12} M{sub Sun} ''Via Lactea II'' (VLII) simulation. Eris provides an excellent laboratory for creating mock SDSS samples of tracer halo stars, and we successfully compare their density, velocity anisotropy, and radial velocity dispersion profiles with the observational data. Most mock SDSS realizations show the same ''cold veil'' recently observed in the distant stellar halo of the MW, with tracers as cold as {sigma}{sub los} Almost-Equal-To 50 km s{sup -1} between 100 and 150 kpc. Controlled experiments based on the integration of the spherical Jeans equation as well as a particle tagging technique applied to VLII show that a ''heavy'' M{sub vir} Almost-Equal-To 2 Multiplication-Sign 10{sup 12} M{sub Sun} realistic host produces a poor fit to the kinematic SDSS data. We argue that these results offer added evidence for a ''light'', centrally concentrated MW halo.

  18. A UNIVERSAL MODEL FOR HALO CONCENTRATIONS

    SciTech Connect

    Diemer, Benedikt; Kravtsov, Andrey V.

    2015-01-20

    We present a numerical study of dark matter halo concentrations in ΛCDM and self-similar cosmologies. We show that the relation between concentration, c, and peak height, ν, exhibits the smallest deviations from universality if halo masses are defined with respect to the critical density of the universe. These deviations can be explained by the residual dependence of concentration on the local slope of the matter power spectrum, n, which affects both the normalization and shape of the c-ν relation. In particular, there is no well-defined floor in the concentration values. Instead, the minimum concentration depends on redshift: at fixed ν, halos at higher z experience steeper slopes n, and thus have lower minimum concentrations. We show that the concentrations in our simulations can be accurately described by a universal seven-parameter function of only ν and n. This model matches our ΛCDM results to ≲ 5% accuracy up to z = 6, and matches scale-free Ω{sub m} = 1 models to ≲ 15%. The model also reproduces the low concentration values of Earth-mass halos at z ≈ 30, and thus correctly extrapolates over 16 orders of magnitude in halo mass. The predictions of our model differ significantly from all models previously proposed in the literature at high masses and redshifts. Our model is in excellent agreement with recent lensing measurements of cluster concentrations.

  19. Mapping the Galactic Halo. VIII. Quantifying Substructure

    NASA Astrophysics Data System (ADS)

    Starkenburg, Else; Helmi, Amina; Morrison, Heather L.; Harding, Paul; van Woerden, Hugo; Mateo, Mario; Olszewski, Edward W.; Sivarani, Thirupathi; Norris, John E.; Freeman, Kenneth C.; Shectman, Stephen A.; Dohm-Palmer, R. C.; Frey, Lucy; Oravetz, Dan

    2009-06-01

    We have measured the amount of kinematic substructure in the Galactic halo using the final data set from the Spaghetti project, a pencil-beam high-latitude sky survey. Our sample contains 101 photometrically selected and spectroscopically confirmed giants with accurate distance, radial velocity, and metallicity information. We have developed a new clustering estimator: the "4distance" measure, which when applied to our data set leads to the identification of one group and seven pairs of clumped stars. The group, with six members, can confidently be matched to tidal debris of the Sagittarius dwarf galaxy. Two pairs match the properties of known Virgo structures. Using models of the disruption of Sagittarius in Galactic potentials with different degrees of dark halo flattening, we show that this favors a spherical or prolate halo shape, as demonstrated by Newberg et al. using the Sloan Digital Sky Survey data. One additional pair can be linked to older Sagittarius debris. We find that 20% of the stars in the Spaghetti data set are in substructures. From comparison with random data sets, we derive a very conservative lower limit of 10% to the amount of substructure in the halo. However, comparison to numerical simulations shows that our results are also consistent with a halo entirely built up from disrupted satellites, provided that the dominating features are relatively broad due to early merging or relatively heavy progenitor satellites.

  20. Static galactic halo and galactic wind

    NASA Technical Reports Server (NTRS)

    Ko, Chung-Ming

    1993-01-01

    Although the exact state of the interstellar medium (ISM) in our Galaxy (other galaxies as well) is not clear at all, the 'common consensus' is that a rough pressure balance (or equipartition of energy) exists between different components and phases: cold, warm, hot phases of the ISM, magnetic field, cosmic rays, etc. If the halo of a galaxy is taken to be an extension of the ISM, then its structure is influenced by various ISM components. A 'complete' description of the halo is evidently very complicated. This paper gives a brief account on cosmic ray halo, which emphasizes the role played by cosmic rays. The interaction between cosmic rays and thermal plasma is facilitated by magnetic field. The cosmic rays are scattered by hydromagnetic waves (e.g., Alfven waves) which in turn can be generated by cosmic ray streaming instability. This constitutes a self-consistent picture. Since we are interested in the structure of the halo, we adopted a hydrodynamic model in which the cosmic rays and waves are described by their pressures. In general there are two classes of halos: static and dynamic.

  1. The scale-dependence of halo assembly bias

    NASA Astrophysics Data System (ADS)

    Sunayama, Tomomi; Hearin, Andrew P.; Padmanabhan, Nikhil; Leauthaud, Alexie

    2016-05-01

    The two-point clustering of dark matter haloes is influenced by halo properties besides mass, a phenomenon referred to as halo assembly bias. Using the depth of the gravitational potential well, Vmax, as our secondary halo property, in this paper, we present the first study of the scale-dependence of assembly bias. In the large-scale linear regime, r ≥ 10 h-1 Mpc, our findings are in keeping with previous results. In particular, at the low-mass end (haloes with high Vmax show stronger large-scale clustering relative to haloes with low Vmax of the same mass; this trend weakens and reverses for Mvir ≳ Mcoll. In the non-linear regime, assembly bias in low-mass haloes exhibits a pronounced scale-dependent `bump' at 500 kpc h-1-5 Mpc h-1. This feature weakens and eventually vanishes for haloes of higher mass. We show that this scale-dependent signature can primarily be attributed to a special subpopulation of ejected haloes, defined as present-day host haloes that were previously members of a higher mass halo at some point in their past history. A corollary of our results is that galaxy clustering on scales of r ˜ 1-2 Mpc h-1 can be impacted by up to ˜15 per cent by the choice of the halo property used in the halo model, even for stellar mass-limited samples.

  2. Halo cold dark matter and microlensing

    SciTech Connect

    Gates, Evalyn; Turner, Michael S.

    1993-12-01

    There is good evidence that most of the baryons in the Universe are dark and some evidence that most of the matter in the Universe is nonbaryonic with cold dark matter (cdm) being a promising possibility. We discuss expectations for the abundance of baryons and cdm in the halo of our galaxy and locally. We show that in plausible cdm models the local density of cdm is at least $10^{-25}\\gcmm3$. We also discuss what one can learn about the the local cdm density from microlensing of stars in the LMC by dark stars in the halo and, based upon a suite of reasonable two-component halo models, conclude that microlensing is not a sensitive probe of the local cdm density.

  3. Anomalously Weak Dynamical Friction in Halos

    NASA Astrophysics Data System (ADS)

    Sellwood, J. A.; Debattista, Victor P.

    A bar rotating in a pressure-supported halo generally loses angular momentum and slows down due to dynamical friction. Valenzuela & Klypin report a counter-example of a bar that rotates in a dense halo with little friction for several Gyr, and argue that their result invalidates the claim by Debattista & Sellwood that fast bars in real galaxies require a low halo density. We show that it is possible for friction to cease for a while should the pattern speed of the bar fluctuate upward. The reduced friction is due to an anomalous gradient in the phase-space density of particles at the principal resonance created by the earlier evolution. The result obtained by Valenzuela & Klypin is probably an artifact of their adaptive mesh refinement method, but anyway could not persist in a real galaxy. The conclusion by Debattista & Sellwood still stands.

  4. THE EFFECTS OF HALO-TO-HALO VARIATION ON SUBSTRUCTURE LENSING

    SciTech Connect

    Chen, Jacqueline; Koushiappas, Savvas M.; Zentner, Andrew R. E-mail: koushiappas@brown.edu

    2011-11-10

    We explore the halo-to-halo variation of dark matter (DM) substructure in galaxy-sized DM halos, focusing on its implications for strongly gravitational lensed systems. We find that the median value for projected substructure mass fractions within projected radii of 3% of the host halo virial radius is approximately f{sub sub} Almost-Equal-To 0.25%, but that the variance is large with a 95 percentile range of 0 {<=} f{sub sub} {<=} 1%. We quantify possible effects of substructure on quadruply imaged lens systems using the cusp relation and the simple statistic, R{sub cusp}. We estimate that the probability of obtaining the large values of the R{sub cusp} which have been observed from substructure effects is roughly {approx}10{sup -3} to {approx}10{sup -2}. We consider a variety of possible correlations between host halo properties and substructure properties in order to probe possible sample biases. In particular, low-concentration host DM halos have more large substructures and give rise to large values of R{sub cusp} more often. However, there is no known observational bias that would drive observed quadruply imaged quasars to be produced by low-concentration lens halos. Finally, we show that the substructure mass fraction is a relatively reliable predictor of the value of R{sub cusp}.

  5. Proton therapy

    MedlinePlus

    ... skin redness in the radiation area, and temporary hair loss. AFTER THE PROCEDURE Following proton therapy, you should be able to resume your normal activities. You will likely see your doctor every 3 to 4 months for a follow-up exam.

  6. Rockstar: Phase-space halo finder

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter; Wechsler, Risa; Wu, Hao-Yi

    2012-10-01

    Rockstar (Robust Overdensity Calculation using K-Space Topologically Adaptive Refinement) identifies dark matter halos, substructure, and tidal features. The approach is based on adaptive hierarchical refinement of friends-of-friends groups in six phase-space dimensions and one time dimension, which allows for robust (grid-independent, shape-independent, and noise-resilient) tracking of substructure. Our method is massively parallel (up to 10^5 CPUs) and runs on the largest current simulations (>10^10 particles) with high efficiency (10 CPU hours and 60 gigabytes of memory required per billion particles analyzed). Rockstar offers significant improvement in substructure recovery as compared to several other halo finders.

  7. Complex artificial halos for the classroom

    NASA Astrophysics Data System (ADS)

    Selmke, Markus; Selmke, Sarah

    2016-07-01

    Halos represent a common and imposing atmospheric optics phenomenon whose displays are caused by tiny air-borne ice crystals. Their variety stems from a certain set of orientation classes to which these crystals belong. We present a robust and inexpensive device, made of modular components, that allows for the replication of most of these orientation classes in the laboratory. Under the illumination of light, the corresponding artificial halo counterparts emerge. The mechanical realization of this device allows a thorough understanding and demonstration of these beautiful atmospheric optics phenomena.

  8. The Shape of Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Olling, Robert Paul

    1995-01-01

    After reviewing our current knowledge of dark matter (DM) in spiral galaxies (Chapter 1), I present a new method of deriving the shape of these dark halos (Chapter 2). Such information, if obtained for a large number of systems, can provide important boundary conditions for theories of the formation of galaxies (Chapter 5). The halo-shape determination method relies on the comparison of model predictions of the thickness of the gas layer with observations of this flaring. Calculating the model gas layer widths from the observed gaseous velocity dispersion and the potential due to the total mass distribution of the galaxy we learn the following: (a) beyond the optical disk the thickness of the gas layer is sensitive to the shape of the DM halo, (b) the thickness of the gas layer is proportional to the ratio of the gaseous velocity dispersion and the rotation speed, (c) the self-gravity of the gas contributes significantly to the vertical force, (d) the derived shape of the DM halo is independent of the dark matter's radial density distribution, and is independent of the mass-to-light ratio of the stellar disk (f). In Chapter 3 I present a new method (usable for inclinations larger than 60^circ) to determine the thickness of the gas layer of spiral galaxies from high resolution H sc I observations. I use VLA H sc I observations of the almost edge-on Scd galaxy NGC 4244 to determine the gaseous velocity dispersion, and the flaring and rotation curves. From the Keplerian decline of the rotation curve beyond the stellar disks it follows that the dark-to-luminous mass ratio is at most two and a half. Combining the model predictions for the radial variation of the thickness of the gas layer with the measured flaring curve I find that the dark matter halo of NGC 4244 is highly flattened. The best fit occurs for a halo with an E8 shape (with a mass one-eight of an E0 halo), while the uncertainty (E5-E9) is dominated by the errors in the gaseous velocity dispersion: a round

  9. Dark energy and extended dark matter halos

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  10. HALOGEN: Approximate synthetic halo catalog generator

    NASA Astrophysics Data System (ADS)

    Avila Perez, Santiago; Murray, Steven

    2015-05-01

    HALOGEN generates approximate synthetic halo catalogs. Written in C, it decomposes the problem of generating cosmological tracer distributions (eg. halos) into four steps: generating an approximate density field, generating the required number of tracers from a CDF over mass, placing the tracers on field particles according to a bias scheme dependent on local density, and assigning velocities to the tracers based on velocities of local particles. It also implements a default set of four models for these steps. HALOGEN uses 2LPTic (ascl:1201.005) and CUTE (ascl:1505.016); the software is flexible and can be adapted to varying cosmologies and simulation specifications.

  11. HALO-TO-HALO SIMILARITY AND SCATTER IN THE VELOCITY DISTRIBUTION OF DARK MATTER

    SciTech Connect

    Mao, Yao-Yuan; Strigari, Louis E.; Wechsler, Risa H.; Hahn, Oliver; Wu, Hao-Yi

    2013-02-10

    We examine the velocity distribution function (VDF) in dark matter halos from Milky Way to cluster mass scales. We identify an empirical model for the VDF with a wider peak and a steeper tail than a Maxwell-Boltzmann distribution, and discuss physical explanations. We quantify sources of scatter in the VDF of cosmological halos and their implication for direct detection of dark matter. Given modern simulations and observations, we find that the most significant uncertainty in the VDF of the Milky Way arises from the unknown radial position of the solar system relative to the dark matter halo scale radius.

  12. A hadronic-leptonic model for the Fermi bubbles: Cosmic-rays in the galactic halo and radio emission

    SciTech Connect

    Fujita, Yutaka; Ohira, Yutaka; Yamazaki, Ryo

    2014-07-01

    We investigate non-thermal emission from the Fermi bubbles in a hadronic model. Cosmic-ray (CR) protons are accelerated at the forward shock of the bubbles. They interact with the background gas in the Galactic halo and create π{sup 0}-decay gamma-rays and secondary electrons through proton-proton interaction. We follow the evolution of the CR protons and electrons by calculating their distribution functions. We find that the spectrum and the intensity profiles of π{sup 0}-decay gamma-rays are consistent with observations. We predict that the shock front is located far ahead of the gamma-ray boundary of the Fermi bubbles. This naturally explains the fact that a clear temperature jump of thermal gas was not discovered at the gamma-ray boundary in recent Suzaku observations. We also consider re-acceleration of the background CRs in the Galactic halo at the shock front. We find that it can significantly affect the gamma-rays from the Fermi bubbles, unless the density of the background CRs is ≲ 10% of that in the Galactic disk. We indicate that secondary electrons alone cannot produce the observed radio emission from the Fermi bubbles. However, the radio emission from the outermost region of the bubbles can be explained if electrons are directly accelerated at the shock front with an efficiency of ∼0.1% of that of protons.

  13. 40 CFR 721.10392 - Halo substituted sulfamidylbenzyluracil (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halo substituted... Specific Chemical Substances § 721.10392 Halo substituted sulfamidylbenzyluracil (generic). (a) Chemical... as halo substituted sulfamidylbenzyluracil (PMN P-10-426) is subject to reporting under this...

  14. 40 CFR 721.10392 - Halo substituted sulfamidylbenzyluracil (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halo substituted... Specific Chemical Substances § 721.10392 Halo substituted sulfamidylbenzyluracil (generic). (a) Chemical... as halo substituted sulfamidylbenzyluracil (PMN P-10-426) is subject to reporting under this...

  15. The Constant Error of the Halo in Educational Outcomes Research.

    ERIC Educational Resources Information Center

    Pike, Gary R.

    1999-01-01

    Research suggests correlations between student gains and college experiences may be an artifact of halo effect. A study examined whether halo error underlies students' self-reported gains, significance of the error, and its effect on the relationship between college experiences and educational outcomes. Results confirm halo error may be an…

  16. 40 CFR 721.10392 - Halo substituted sulfamidylbenzyluracil (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halo substituted... Specific Chemical Substances § 721.10392 Halo substituted sulfamidylbenzyluracil (generic). (a) Chemical... as halo substituted sulfamidylbenzyluracil (PMN P-10-426) is subject to reporting under this...

  17. Search for and analysis of radioactive halos in lunar material

    NASA Technical Reports Server (NTRS)

    Gentry, R. V.

    1976-01-01

    The lunar halo search was conducted because halos in terrestrial minerals serve as pointers to localized radioactivity, and make possible analytical studies on the problems of isotopic dating and mode of crystallization of the host mineral. Ancillary studies were conducted on terrestrial halos and on certain samples of special origin such as tektites and meteorites.

  18. The Dependence of Subhalo Abundance on Halo Concentration

    NASA Astrophysics Data System (ADS)

    Mao, Yao-Yuan; Williamson, Marc; Wechsler, Risa H.

    2015-09-01

    Hierarchical structure formation implies that the number of subhalos within a dark matter halo depends not only on halo mass, but also on the formation history of the halo. This dependence on the formation history, which is highly correlated with halo concentration, can account for the super-Poissonian scatter in subhalo occupation at a fixed halo mass that has been previously measured in simulations. Here we propose a model to predict the subhalo abundance function for individual host halos that incorporates both halo mass and concentration. We combine results of cosmological simulations with a new suite of zoom-in simulations of Milky Way-mass halos to calibrate our model. We show that the model can successfully reproduce the mean and the scatter of subhalo occupation in these simulations. The implications of this correlation between subhalo abundance and halo concentration are further investigated. We also discuss cases in which inferences about halo properties can be affected if this correlation between subhalo abundance and halo concentration is ignored; in these cases, our model would give a more accurate inference. We propose that with future deep surveys, satellite occupation in the low-mass regime can be used to verify the existence of halo assembly bias.

  19. Comment on Halo Effects in Rating and Evaluation Research.

    ERIC Educational Resources Information Center

    Feeley, Thomas Hugh

    2002-01-01

    Considers the existence of halo effects in individuals' evaluations of target communicators across different dimensions. Notes that halo effects result from raters' inability to discriminate among conceptually distinct and theoretically independent aspects of a target's behavior. Discusses current conceptions of halo error and suggests several…

  20. On the halo events observed by Mount Fuji and Mount Kanbala Emulsion Chamber Experiments

    NASA Technical Reports Server (NTRS)

    Ren, J. R.; Kuang, H. H.; Lu, S. L.; Su, S.; Xue, Y. G.; Wang, C. R.; Huo, A. X.; Wang, Y. X.; He, M.; Zhang, N. J.

    1985-01-01

    The intensity of big gamma-ray families associated by halo is obtained from Mt. Fuji experiment (650 g/sq.cm. atmospheric depth) and Mt. Kanbala experiment (515 g/sq.cm.). The results are compared with Monte Carlo calculation based on several assumptions on interaction mechanisms and the primary cosmic ray composition. The results suggest more than 3 times lower proton abundance among primaries than that of 10 to the 12th to 10 to the 13th eV region within the framework of quasi-scaling model of multiple production.

  1. Reputation, Halo, and Ratings of Counseling Programs

    ERIC Educational Resources Information Center

    Thoreson, Richard W.; And Others

    1975-01-01

    This study tests the hypothesis that previous ratings of programs in psychology reflect both an experimental psychology and general institutional halo bias. It was found that applied programs in counseling psychology do receive ratings that differ from overall ratings of psychology in general. Programs ranked as strong, good, and adequate are…

  2. Halo and mirage demonstrations in atmospheric optics

    NASA Astrophysics Data System (ADS)

    Vollmer, Michael; Greenler, Robert

    2003-01-01

    Some laboratory demonstrations on atmospheric optics are presented. The focus is on dispersion effects in mirages, lateral mirages, and inferior mirages produced with small hot plates. We also show a demonstration of the upper-tangent-arc halo, produced with a hexagonal prism, rotating about two axes.

  3. The Hot Gaseous Halos of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Bregman, J.

    2016-06-01

    In the Milky Way, absorption and emission line measurements of O VII and O VIII show that the halo environment is dominated by a nearly spherical halo of temperature 2 × 10^6 K, metallicity of 0.3-0.5 solar, and with a density decreasing as r^{-3/2}. The mass of the hot gas, estimated through extrapolation to the virial radius, is comparable to the stellar mass, but does not account for the missing mass. The Milky Way hot halo appears to be rotating at about 180 km/s, which is consistent with model expectations, depending on the time of infall. Around massive spiral galaxies, hot halos are seen in emission out to about 70 kpc in the best cases. These show similar gas density laws and metallicities in the range 0.1-0.5 solar. The gas mass is comparable to the stellar mass, but does not account for the missing baryons within the virial radius. If the density law can be extrapolated to about three virial radii, the missing baryons would be accounted for.

  4. GAS CONDENSATION IN THE GALACTIC HALO

    SciTech Connect

    Joung, M. Ryan; Bryan, Greg L.; Putman, Mary E.

    2012-02-01

    Using adaptive mesh refinement (AMR) hydrodynamic simulations of vertically stratified hot halo gas, we examine the conditions under which clouds can form and condense out of the hot halo medium to potentially fuel star formation in the gaseous disk. We find that halo clouds do not develop from linear isobaric perturbations. This is a regime where the cooling time is longer than the Brunt-Vaeisaelae time, confirming previous linear analysis. We extend the analysis into the nonlinear regime by considering mildly or strongly nonlinear perturbations with overdensities up to 100, also varying the initial height, the cloud size, and the metallicity of the gas. Here, the result depends on the ratio of cooling time to the time required to accelerate the cloud to the sound speed (similar to the dynamical time). If the ratio exceeds a critical value near unity, the cloud is accelerated without further cooling and gets disrupted by Kelvin-Helmholtz and/or Rayleigh-Taylor instabilities. If it is less than the critical value, the cloud cools and condenses before disruption. Accreting gas with overdensities of 10-20 is expected to be marginally unstable; the cooling fraction will depend on the metallicity, the size of the incoming cloud, and the distance to the galaxy. Locally enhanced overdensities within cold streams have a higher likelihood of cooling out. Our results have implications on the evolution of clouds seeded by cold accretion that are barely resolved in current cosmological hydrodynamic simulations and absorption line systems detected in galaxy halos.

  5. Non-Gaussian halo mass function and non-spherical halo collapse: theory vs. simulations

    SciTech Connect

    Achitouv, Ixandra E.; Corasaniti, Pier Stefano E-mail: Pier-Stefano.Corasaniti@obspm.fr

    2012-02-01

    The mass distribution of dark matter halos is a sensitive probe of primordial non-Gaussianity (NG). We derive an analytical formula of the halo mass function by perturbatively computing excursion set path-integrals for a non-Gaussian density field with non-vanishing skewness, f{sub NL}. We assume a stochastic barrier model which captures the main features of the ellipsoidal collapse of halos. Contrary to previous results based on extensions of the Press-Schechter formalism to NG initial conditions, we find that the non-spherical collapse of halos directly alter the signature of primordial NG. This points toward a potential degeneracy between the effect of primordial non-Gaussianity and that of non-linear halo collapse. The inferred mass function is found to be in remarkable agreement with N-body simulations of NG local type. Deviations are well within numerical uncertainties for all values of f{sub NL}{sup loc} in the range of validity of the perturbative calculation (|f{sub nl}{sup loc}|∼<200). Moreover, the comparison with simulation results suggests that for |f{sub NL}|∼>30 the non-linear collapse of halos, as described by our barrier model, strongly deviates from that of Gaussian initial conditions. This is not surprising since the effect of non-linear gravitational processes may be altered by initially large NG. Hence, in the lack of prior theoretical knowledge, halo collapse model parameters should be included in statistical halo mass function data analysis which aim to constrain the signature of primordial NG.

  6. THE HALO OCCUPATION DISTRIBUTION OF SDSS QUASARS

    SciTech Connect

    Richardson, Jonathan; Chatterjee, Suchetana; Nagai, Daisuke; Zheng Zheng; Shen Yue

    2012-08-10

    We present an estimate of the projected two-point correlation function (2PCF) of quasars in the Sloan Digital Sky Survey (SDSS) over the full range of one- and two-halo scales, 0.02 h{sup -1} Mpc < r{sub p} < 120 h{sup -1} Mpc. This was achieved by combining data from SDSS DR7 on large scales and Hennawi et al. (with appropriate statistical corrections) on small scales. Our combined clustering sample is the largest spectroscopic quasar clustering sample to date, containing {approx}48, 000 quasars in the redshift range 0.4 {approx}< z {approx}< 2.5 with median redshift 1.4. We interpret these precise 2PCF measurements within the halo occupation distribution (HOD) framework and constrain the occupation functions of central and satellite quasars in dark matter halos. In order to explain the small-scale clustering, the HOD modeling requires that a small fraction of z {approx} 1.4 quasars, f{sub sat} = (7.4 {+-} 1.4) Multiplication-Sign 10{sup -4}, be satellites in dark matter halos. At z {approx} 1.4, the median masses of the host halos of central and satellite quasars are constrained to be M{sub cen} = 4.1{sup +0.3}{sub -0.4} Multiplication-Sign 10{sup 12} h{sup -1} M{sub Sun} and M{sub sat} = 3.6{sup +0.8}{sub -1.0} Multiplication-Sign 10{sup 14} h{sup -1} M{sub Sun }, respectively. To investigate the redshift evolution of the quasar-halo relationship, we also perform HOD modeling of the projected 2PCF measured by Shen et al. for SDSS quasars with median redshift 3.2. We find tentative evidence for an increase in the mass scale of quasar host halos-the inferred median mass of halos hosting central quasars at z {approx} 3.2 is M{sub cen} = 14.1{sup +5.8}{sub -6.9} Multiplication-Sign 10{sup 12} h{sup -1} M{sub Sun }. The cutoff profiles of the mean occupation functions of central quasars reveal that quasar luminosity is more tightly correlated with halo mass at higher redshifts. The average quasar duty cycle around the median host halo mass is inferred to be f{sub q

  7. The Milky Way, the Galactic halo, and the Halos of Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin

    2015-08-01

    The Milky Way, "our" Galaxy, is currently the subject of intense study with many ground-based surveys, in anticipation of upcoming results from the GAIA mission. From this work we have been learning about the full three-dimensional structure of the Galactic box/peanut bulge, the distribution of stars in the bar and disk, and the many streams in the Galactic halo. The data tell us that most of the Galactic bulge formed from the disk, and that a large fraction of the Galactic halo has been accreted from outside. Similarly, in many external galaxy halos there is now evidence for tidal streams and accretion of satellites. To see these features requires exquisite data - mostly very deep photometry, but some halo substructures have also been found with kinematic data. These observations illustrate how galaxy halos are still growing, and sometimes can be used to "time" the accretion events. In comparison with cosmological simulations, the structure of galaxy halos gives us a vivid illustration of the hierarchical nature of our Universe.

  8. The age of the halo as determined from halo field stars

    NASA Astrophysics Data System (ADS)

    Guo, Jin-Cheng; Liu, Chao; Liu, Ji-Feng

    2016-03-01

    The age of the Galactic halo is a critical parameter that can constrain the origin of the stellar halo. In general, the Galactic stellar halo is believed to be very old. However, different independent measurements and techniques based on various types of stars are required so that the age estimates of the Galactic halo are accurate, robust, and reliable. In this work, we provide a novel approach to determine the age of the halo with turn-off stars. We first carefully select 63 field halo turn-off stars from the literature. Then, we compare them with the GARSTEC model, which takes the process of atomic diffusion into account in the B - V vs. metallicity plane. Finally, we run Monte Carlo simulations to consider the uncertainty of the color index and obtain the age of 10.5 ± 1.5 Gyr. This result is in agreement with previous studies. Future works are needed to collect more turn-off samples with more accurate photometry to reduce the uncertainty of the age.

  9. The Impact of Theoretical Uncertainties in the Halo Mass Function and Halo

    SciTech Connect

    Wu, Hao-Yi; Zentner, Andrew R.; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC /Pittsburgh U. /KIPAC, Menlo Park /SLAC

    2010-06-04

    We study the impact of theoretical uncertainty in the dark matter halo mass function and halo bias on dark energy constraints from imminent galaxy cluster surveys. We find that for an optical cluster survey like the Dark Energy Survey, the accuracy required on the predicted halo mass function to make it an insignificant source of error on dark energy parameters is {approx}1%. The analogous requirement on the predicted halo bias is less stringent ({approx}5%), particularly if the observable-mass distribution can be well constrained by other means. These requirements depend upon survey area but are relatively insensitive to survey depth. The most stringent requirements are likely to come from a survey over a significant fraction of the sky that aims to observe clusters down to relatively low mass, M{sub th}{approx} 10{sup 13.7} h{sup -1} M{sub sun}; for such a survey, the mass function and halo bias must be predicted to accuracies of {approx}0.5% and {approx}1%, respectively. These accuracies represent a limit on the practical need to calibrate ever more accurate halo mass and bias functions. We find that improving predictions for the mass function in the low-redshift and low-mass regimes is the most effective way to improve dark energy constraints.

  10. Dark Halo and Disk Galaxy Scaling Laws

    NASA Astrophysics Data System (ADS)

    Navarro, J. F.

    I highlight recent progress in our understanding of the origin of disk galaxy scaling laws in a hierarchically clustering universe. Numerical simulations of galaxy formation in Cold Dark Matter (CDM) dominated universes indicate that the slope and scatter of the I-band Tully-Fisher (TF) relation are well reproduced in this model, although not, as proposed in recent work, because of the cosmological equivalence between halo mass and circular velocity, but rather as a result of the dynamical response of the halo to the assembly of the luminous component of the galaxy. The zero-point of the TF relation is determined mainly by the stellar mass-to-light ratio (ΥI) as well as by the concentration (c) of the dark halo. For c ~ 10, as is typical of halos formed in the `concordance' ΛCDM model, we find that this requires ΥI ~ 1.5, in reasonable agreement with the mass-to-light ratios expected of stellar populations with colors similar to those of TF galaxies. This conclusion supersedes that of Navarro & Steinmetz (2000a,b), who claimed the ΛCDM halos were too concentrated to be consistent with the observed TF relation. The disagreement can be traced to an incorrect normalization of the power spectrum used in that work. Our new results show that simulated disk galaxies in the ΛCDM scenario are not clearly inconsistent with the observed I-band Tully-Fisher relation. On the other hand, their angular momenta is much lower than observed. Accounting simultaneously for the spin, size and luminosity of disk galaxies remains a challenge for hierarchical models of galaxy formation.

  11. PEEK-Halo effect in interbody fusion.

    PubMed

    Phan, Kevin; Hogan, Jarred A; Assem, Yusuf; Mobbs, Ralph J

    2016-02-01

    Recent developments have seen poly[aryl-ether-ether-ketone] (PEEK) being increasingly used in vertebral body fusion. More novel approaches to improve PEEK have included the introduction of titanium-PEEK (Ti-PEEK) composites and coatings. This paper aims to describe a potential complication of PEEK based implants relating to poorer integration with the surrounding bone, producing a "PEEK-Halo" effect which is not seen in Ti-PEEK composite implants. We present images from two patients undergoing anterior lumbar interbody fusion (ALIF). The first patient underwent an L5/S1 ALIF using a PEEK implant whilst the second patient underwent L4/L5 ALIF using a Ti-PEEK composite implant. Evidence of osseointegration was sought using CT imaging and confirmed using histological preparations of a sheep tibia model. The PEEK-Halo effect is demonstrated by a halo effect between the PEEK implant and the bone graft on CT imaging. This phenomenon is secondary to poor osseointegration of PEEK implants. The PEEK-Halo effect was not demonstrated in the second patient who received a Ti-PEEK composite graft. Histological analysis of graft/bone interface surfaces in PEEK versus Ti-PEEK implants in a sheep model further confirmed poorer osseointegration of the PEEK implant. In conclusion, the PEEK-Halo effect is seen secondary to minimal osseointegration of PEEK at the adjacent vertebral endplate following a PEEK implant insertion. This effect is not seen with Ti-PEEK implants, and may support the role of titanium in improving the bone-implant interface of PEEK substrates. PMID:26474500

  12. Comparing halo bias from abundance and clustering

    NASA Astrophysics Data System (ADS)

    Hoffmann, K.; Bel, J.; Gaztañaga, E.

    2015-06-01

    We model the abundance of haloes in the ˜(3 Gpc h-1)3 volume of the MICE Grand Challenge simulation by fitting the universal mass function with an improved Jackknife error covariance estimator that matches theory predictions. We present unifying relations between different fitting models and new predictions for linear (b1) and non-linear (c2 and c3) halo clustering bias. Different mass function fits show strong variations in their performance when including the low mass range (Mh ≲ 3 × 1012 M⊙ h-1) in the analysis. Together with fits from the literature, we find an overall variation in the amplitudes of around 10 per cent in the low mass and up to 50 per cent in the high mass (galaxy cluster) range (Mh > 1014 M⊙ h-1). These variations propagate into a 10 per cent change in b1 predictions and a 50 per cent change in c2 or c3. Despite these strong variations, we find universal relations between b1 and c2 or c3 for which we provide simple fits. Excluding low-mass haloes, different models fitted with reasonable goodness in this analysis, show per cent level agreement in their b1 predictions, but are systematically 5-10 per cent lower than the bias directly measured with two-point halo-mass clustering. This result confirms previous findings derived from smaller volumes (and smaller masses). Inaccuracies in the bias predictions lead to 5-10 per cent errors in growth measurements. They also affect any halo occupation distribution fitting or (cluster) mass calibration from clustering measurements.

  13. Characteristic time for halo current growth and rotation

    SciTech Connect

    Boozer, Allen H.

    2015-10-15

    A halo current flows for part of its path through the plasma edge and for part through the chamber walls and during tokamak disruptions can be as large as tenths of the plasma current. The primary interest in halo currents is the large force that they can exert on machine components particularly if the toriodal rotation of the halo current resonates with a natural oscillation frequency of the tokamak device. Halo currents arise when required to slow down the growth of a kink that is too unstable to be stabilized by the chamber walls. The width of the current channel in the halo plasma is comparable to the amplitude of the kink, and the halo current grows linearly, not exponentially, in time. The current density in the halo is comparable to that of the main plasma body. The rocket force due to plasma flowing out of the halo and recombining on the chamber walls can cause the non-axisymmetric magnetic structure produced by the kink to rotate toroidally at a speed comparable to the halo speed of sound. Gerhardt's observations of the halo current in NSTX shot 141 687 [Nucl. Fusion 53, 023005 (2013)] illustrate many features of the theory of halo currents and are discussed as a summary of the theory.

  14. Halo mass distribution reconstruction across the cosmic web

    NASA Astrophysics Data System (ADS)

    Zhao, Cheng; Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Prada, Francisco; Yepes, Gustavo; Tao, Charling

    2015-08-01

    We study the relation between halo mass and its environment from a probabilistic perspective. We find that halo mass depends not only on local dark matter density, but also on non-local quantities such as the cosmic web environment and the halo-exclusion effect. Given these accurate relations, we have developed the HADRON-code (Halo mAss Distribution ReconstructiON), a technique which permits us to assign halo masses to a distribution of haloes in three-dimensional space. This can be applied to the fast production of mock galaxy catalogues, by assigning halo masses, and reproducing accurately the bias for different mass cuts. The resulting clustering of the halo populations agree well with that drawn from the BigMultiDark N-body simulation: the power spectra are within 1σ up to scales of k = 0.2 h Mpc-1, when using augmented Lagrangian perturbation theory based mock catalogues. Only the most massive haloes show a larger deviation. For these, we find evidence of the halo-exclusion effect. A clear improvement is achieved when assigning the highest masses to haloes with a minimum distance separation. We also compute the two- and three-point correlation functions, and find an excellent agreement with N-body results. Our work represents a quantitative application of the cosmic web classification. It can have further interesting applications in the multitracer analysis of the large-scale structure for future galaxy surveys.

  15. Can MACHOs probe the shape of the galaxy halo ?

    NASA Technical Reports Server (NTRS)

    Frieman, Joshua; Scoccimarro, Roman

    1994-01-01

    Microlensing searches in our galaxy have recently discovered several candidates in the direction of the Large Magellanic Cloud (LMC). We study the prospects for such searches to yield useful information about the flattening of the Galaxy dark matter halo, using a self-consistent oblate halo model and allowing for the possibility of misalignment between the disk and halo symmetry axes. The microlensing optical depth for the LMC, tau(LMC), depends sensitively on the disk-halo tilt angle in the Milky Way, as does the ratio tau(SMC)/tau(LMC). If the tilt angle is as large as 30 deg, a much larger spread in values for tau(LMC) is consistent with rotation curve constraints than previously thought. Disk-halo tilt and halo flattening do not significantly affect the massive compact halo object (MACHO) masses inferred from event durations.

  16. Dynamics of the Disruption Halo Current Toroidal Asymmetry in NSTX

    SciTech Connect

    S.P. Gerhardt

    2012-09-27

    This paper describes the dynamics of disruption halo current non-axisymmetries in the lower divertor of the National Spherical Torus Experiment [M. Ono, et al. Nuclear Fusion 40, 557 (2000)]. While. The halo currents typically have a strongly asymmetric structure where they enter the divertor floor, and this asymmetry has been observed to complete up to 7 toroidal revolutions over the duration of the halo current pulse. However, the rotation speed and toroidal extend of the asymmetry can vary significantly during the pulse. The rotation speed, halo current pulse duration, and total number of revolutions tend to be smaller in cases with large halo currents. The halo current pattern is observed to become toroidally symmetric at the end of the halo current pulse. It is proposed that this symmeterization is due to the loss of most or all of the closed field line geometry in the final phase of the vertical displacement event.

  17. The Structure of Dark Matter Halos in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Burkert, A.

    1995-07-01

    Recent observations indicate that dark matter halos have flat central density profiles. Cosmological simulations with nonbaryonic dark matter, however, predict self-similar halos with central density cusps. This contradiction has lead to the conclusion that dark matter must be baryonic. Here it is shown that the dark matter halos of dwarf spiral galaxies represent a one-parameter family with self-similar density profiles. The observed global halo parameters are coupled with each other through simple scaling relations which can be explained by the standard cold dark matter model if one assumes that all the halos formed from density fluctuations with the same primordial amplitude. We find that the finite central halo densities correlate with the other global parameters. This result rules out scenarios where the flat halo cores formed subsequently through violent dynamical processes in the baryonic component. These cores instead provide important information on the origin and nature of dark matter in dwarf galaxies.

  18. Proton-driven electromagnetic instabilities in high-speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Abraham-Shrauner, B.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.

    1979-01-01

    Electromagnetic instabilities of the field-aligned, right-hand circularly polarized magnetosonic wave and the left-hand circularly polarized Alfven wave driven by two drifted proton components are analyzed for model parameters determined from Imp 7 solar wind proton data measured during high-speed flow conditions. Growth rates calculated using bi-Lorentzian forms for the main and beam proton as well as core and halo electron velocity distributions do not differ significantly from those calculated using bi-Maxwellian forms. Using distribution parameters determined from 17 measured proton spectra, we show that considering the uncertainties the magnetosonic wave may be linearly stable and the Alfven wave is linearly unstable. Because proton velocity distribution function shapes are observed to persist for times long compared to the proton gyroperiod, the latter result suggests that linear stability theory fails for proton-driven ion cyclotron waves in the high-speed solar wind.

  19. Hot Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.; Upgren, Arthur R.; Adelman, Carol J.

    2011-03-01

    Participants; Preface; Foreword; Acknowledgements; Part I. Introductory Papers: 1. What is the galaxy's halo population?; 2. Theoretical properties of horizontal-branch stars; 3. A review of A-type horizontal-branch stars; Part II. Surveys: 4. A progress report on the Edinburgh-Cape object survey; 5. A 300 square degree survey of young stars at high galactic latitudes; 6. The isolation of a new sample of B stars in the halo; 7. A northern catalog of FHB/A stars; 8. Recent progress on a continuing survey of galactic globular clusters for blue stragglers; 9. UV observations with FAUST and the galactic model; 10. Hot stars at the South Galactic Pole; Part III. Clusters: 11. Population II horizontal branches: a photometric study of globular clusters; 12. The period-shift effect in Oosterhoff type II globular clusters; 13. UV photometry of hot stars in omega centauri; 14. Spectroscopic and UBV observations of blue stars at the NGP; 15. Population I horizontal branches: probing the halo-to-disk transition; Part IV. Stars: 16. Very hot subdwarf O stars; 17. Quantitative spectroscopy of the very hot subluminous O-stars: K646, PG1159-035, and KPD0005+5106; 18. Analyzing the helium-rich hot sdO stars in the Palomar Green Survey; 19. Late type companions of hot sd O stars; 20. Hot stars in globular clusters; 21. Faint blue stars from the Hamburg Schmidt Survey; 22. Stellar winds and the evolution of sdB's to sdO's; 23. Halo stars in the Vilnius photometric system; 24. Horizontal branch stars in the geneva photometric system; 25. Zeeman observations of FHB stars and hot subdwarf stars; 26. What does a FHB star's spectrum look like?; 27. A technique for distinguishing FHB stars from A-type stars; 28. eEemental abundances of halo A and interloper stars; 29. The mass of blue horizontal branch stars in the globular cluster NGC6397; 30. IUE observations of blue HB stars in the globular clusters M3 and NGC6752; 31. Metallicities and kinematics of the local RR lyraes: lukewarm stars

  20. Hot Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.; Upgren, Arthur R.; Adelman, Carol J.

    1994-08-01

    Participants; Preface; Foreword; Acknowledgements; Part I. Introductory Papers: 1. What is the galaxy's halo population?; 2. Theoretical properties of horizontal-branch stars; 3. A review of A-type horizontal-branch stars; Part II. Surveys: 4. A progress report on the Edinburgh-Cape object survey; 5. A 300 square degree survey of young stars at high galactic latitudes; 6. The isolation of a new sample of B stars in the halo; 7. A northern catalog of FHB/A stars; 8. Recent progress on a continuing survey of galactic globular clusters for blue stragglers; 9. UV observations with FAUST and the galactic model; 10. Hot stars at the South Galactic Pole; Part III. Clusters: 11. Population II horizontal branches: a photometric study of globular clusters; 12. The period-shift effect in Oosterhoff type II globular clusters; 13. UV photometry of hot stars in omega centauri; 14. Spectroscopic and UBV observations of blue stars at the NGP; 15. Population I horizontal branches: probing the halo-to-disk transition; Part IV. Stars: 16. Very hot subdwarf O stars; 17. Quantitative spectroscopy of the very hot subluminous O-stars: K646, PG1159-035, and KPD0005+5106; 18. Analyzing the helium-rich hot sdO stars in the Palomar Green Survey; 19. Late type companions of hot sd O stars; 20. Hot stars in globular clusters; 21. Faint blue stars from the Hamburg Schmidt Survey; 22. Stellar winds and the evolution of sdB's to sdO's; 23. Halo stars in the Vilnius photometric system; 24. Horizontal branch stars in the geneva photometric system; 25. Zeeman observations of FHB stars and hot subdwarf stars; 26. What does a FHB star's spectrum look like?; 27. A technique for distinguishing FHB stars from A-type stars; 28. eEemental abundances of halo A and interloper stars; 29. The mass of blue horizontal branch stars in the globular cluster NGC6397; 30. IUE observations of blue HB stars in the globular clusters M3 and NGC6752; 31. Metallicities and kinematics of the local RR lyraes: lukewarm stars

  1. A Speeding Binary in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    The recent discovery of a hyper-velocity binary star system in the halo of the Milky Way poses a mystery: how was this system accelerated to its high speed?Accelerating StarsUnlike the uniform motion in the Galactic disk, stars in the Milky Ways halo exhibit a huge diversity of orbits that are usually tilted relative to the disk and have a variety of speeds. One type of halo star, so-called hyper-velocity stars, travel with speeds that can approach the escape velocity of the Galaxy.How do these hyper-velocity stars come about? Assuming they form in the Galactic disk, there are multiple proposed scenarios through which they could be accelerated and injected into the halo, such as:Ejection after a close encounter with the supermassive black hole at the Galactic centerEjection due to a nearby supernova explosionEjection as the result of a dynamical interaction in a dense stellar population.Further observations of hyper-velocity stars are necessary to identify the mechanism responsible for their acceleration.J1211s SurpriseModels of J1211s orbit show it did not originate from the Galactic center (black dot). The solar symbol shows the position of the Sun and the star shows the current position of J1211. The bottom two panels show two depictions(x-y plane and r-z plane) of estimated orbits of J1211 over the past 10 Gyr. [Nmeth et al. 2016]To this end, a team of scientists led by Pter Nmeth (Friedrich Alexander University, Erlangen-Nrnberg) recently studied the candidate halo hyper-velocity star SDSS J121150.27+143716.2. The scientists obtained spectroscopy of J1211 using spectrographs at the Keck Telescope in Hawaii and ESOs Very Large Telescope in Chile. To their surprise, they discovered the signature of a companion in the spectra: J1211 is actually a binary!Nmeth and collaborators found that J1211, located roughly 18,000 light-years away, is moving at a rapid ~570 km/s relative to the galactic rest frame. The binary system consists of a hot (30,600 K) subdwarf and a

  2. Proton scaling

    SciTech Connect

    Canavan, Gregory H

    2009-01-01

    This note presents analytic estimates of the performance of proton beams in remote surveillance for nuclear materials. The analysis partitions the analysis into the eight steps used by a companion note: (1) Air scattering, (2) Neutron production in the ship and cargo, (3) Target detection probability, (4) Signal produced by target, (5) Attenuation of signal by ship and cargo, (6) Attenuation of signal by air, (7) Geometric dilution, and (8) Detector Efficiency. The above analyses indicate that the dominant air scattering and loss mechanisms for particle remote sensing are calculable with reliable and accepted tools. They make it clear that the conversion of proton beams into neutron sources rapidly goes to completion in all but thinnest targets, which means that proton interrogation is for all purposes executed by neutrons. Diffusion models and limiting approximations to them are simple and credible - apart from uncertainty over the cross sections to be used in them - and uncertainty over the structure of the vessels investigated. Multiplication is essentially unknown, in part because it depends on the details of the target and its shielding, which are unlikely to be known in advance. Attenuation of neutron fluxes on the way out are more complicated due to geometry, the spectrum of fission neutrons, and the details of their slowing down during egress. The attenuation by air is large but less uncertain. Detectors and technology are better known. The overall convolution of these effects lead to large but arguably tolerable levels of attenuation of input beams and output signals. That is particularly the case for small, mobile sensors, which can more than compensate for size with proximity to operate reliably while remaining below flux limits. Overall, the estimates used here appear to be of adequate accuracy for decisions. That assessment is strengthened by their agreement with companion calculations.

  3. Radio haloes in Sunyaev-Zel'dovich-selected clusters of galaxies: the making of a halo?

    NASA Astrophysics Data System (ADS)

    Bonafede, A.; Intema, H.; Brüggen, M.; Vazza, F.; Basu, K.; Sommer, M.; Ebeling, H.; de Gasperin, F.; Röttgering, H. J. A.; van Weeren, R. J.; Cassano, R.

    2015-12-01

    Radio haloes are synchrotron radio sources detected in some massive galaxy clusters. Their size of Mpc indicates that (re)acceleration processes are taking place in the host cluster. X-ray catalogues of galaxy clusters have been used in the past to search for radio haloes and to understand their connection with cluster-cluster mergers and with the thermal component of the intracluster medium. More recently, the Sunyaev-Zel'dovich effect has been proven to be a better route to search for massive clusters in a wider redshift range. With the aim of discovering new radio haloes and understanding their connection with cluster-cluster mergers, we have selected the most massive clusters from the Planck early source catalogue and we have observed with the Giant Metrewave Radio Telescope at 323 MHz those objects for which deep observations were not available. We have discovered new peculiar radio emission in three of the observed clusters, finding (i) a radio halo in the cluster RXCJ0949.8+1708, (ii) extended emission in Abell 1443 that we classify as a radio halo plus a radio relic, with a bright filament embedded in the radio halo, and (iii) low-power radio emission in CIZA J1938.3+5409 that is ten times below the radio-X-ray correlation and represents the first direct detection of the radio emission in the `upper-limit' region of the radio-X-ray diagram. We discuss the properties of these new radio haloes in the framework of theoretical models for the radio emission.

  4. Precise halo orbit design and optimal transfer to halo orbits from earth using differential evolution

    NASA Astrophysics Data System (ADS)

    Nath, Pranav; Ramanan, R. V.

    2016-01-01

    The mission design to a halo orbit around the libration points from Earth involves two important steps. In the first step, we design a halo orbit for a specified size and in the second step, we obtain an optimal transfer trajectory design to the halo orbit from an Earth parking orbit. Conventionally, the preliminary design for these steps is obtained using higher order analytical solution and the dynamical systems theory respectively. Refinements of the design are carried out using gradient based methods such as differential correction and pseudo arc length continuation method under the of circular restricted three body model. In this paper, alternative single level schemes are developed for both of these steps based on differential evolution, an evolutionary optimization technique. The differential evolution based scheme for halo orbit design produces precise halo orbit design avoiding the refinement steps. Further, in this approach, prior knowledge of higher order analytical solutions for the halo orbit design is not needed. The differential evolution based scheme for the transfer trajectory, identifies the precise location on the halo orbit that needs minimum energy for insertion and avoids exploration of multiple points. The need of a close guess is removed because the present scheme operates on a set of bounds for the unknowns. The constraint on the closest approach altitude from Earth is handled through objective function. The use of these schemes as the design and analysis tools within the of circular restricted three body model is demonstrated through case studies for missions to the first libration point of Sun-Earth system.

  5. CALET's sensitivity to Dark Matter annihilation in the galactic halo

    NASA Astrophysics Data System (ADS)

    Motz, H.; Asaoka, Y.; Torii, S.; Bhattacharyya, S.

    2015-12-01

    CALET (Calorimetric Electron Telescope), installed on the ISS in August 2015, directly measures the electron+positron cosmic rays flux up to 20 TeV. With its proton rejection capability of 1 : 105 and an aperture of 1200 cm2· sr, it will provide good statistics even well above one TeV, while also featuring an energy resolution of 2%, which allows it to detect fine structures in the spectrum. Such structures may originate from Dark Matter annihilation or decay, making indirect Dark Matter search one of CALET's main science objectives among others such as identification of signatures from nearby supernova remnants, study of the heavy nuclei spectra and gamma astronomy. The latest results from AMS-02 on positron fraction and total electron+positron flux can be fitted with a parametrization including a single pulsar as an extra power law source with exponential cut-off, which emits an equal amount of electrons and positrons. This single pulsar scenario for the positron excess is extrapolated into the TeV region and the expected CALET data for this case are simulated. Based on this prediction for CALET data, the sensitivity of CALET to Dark Matter annihilation in the galactic halo has been calculated. It is shown that CALET could significantly improve the limits compared to current data, especially for those Dark Matter candidates that feature a large fraction of annihilation directly into e+ + e-, such as the LKP (Lightest Kaluza-Klein particle).

  6. Intracranial halo pin penetration causing brain injury secondary to poor halo care technique: a case report and literature review.

    PubMed

    Male, Kishore Reddy; Guha, Abhijit; James, Stuart; Ahuja, Sashin

    2008-01-01

    : This is a case report of intra cranial penetration by halo pins resulting in cerebritis and fits secondary to incorrect halo care by the patient and his family. Halo pin penetration into the skull with brain injury is itself a rare incident. Previously documented case reports were in patients with a previous cranioplasties and they were highlight the fact that halo not to be used in cranioplasty patients. Cranial penetration of the halo pins has generally been secondary to a fall/medical condition as epilepsy. This incident how ever highlights the fact the halo care itself along with proper techniques used for tightening the halo pins by the carer plays a crucial role in preventing complications such as this. PMID:19068118

  7. Dark-Matter Halos of Tenuous Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    A series of recent deep-imaging surveys has revealed dozens of lurking ultra-diffuse galaxies (UDGs) in nearby galaxy clusters. A new study provides key information to help us understand the origins of these faint giants.What are UDGs?There are three main possibilities for how UDGs galaxies with the sizes of giants, but luminosities no brighter than those of dwarfs formed:They are tidal dwarfs, created in galactic collisions when streams of matter were pulled away from the parent galaxies and halos to form dwarfs.They are descended from normal galaxies and were then altered by tidal interactions with the galaxy cluster.They are ancient remnant systems large galaxies whose gas was swept away, putting an early halt to star formation. The gas removal did not, however, affect their large dark matter halos, which permitted them to survive in the cluster environment.The key to differentiating between these options is to obtain mass measurements for the UDGs how large are their dark matter halos? In a recent study led by Michael Beasley (Institute of Astrophysics of the Canary Islands, University of La Laguna), a team of astronomers has determined a clever approach for measuring these galaxies masses: examine their globular clusters.Masses from Globular ClustersVCC 1287s mass measurements put it outside of the usual halo-mass vs. stellar-mass relationships for nearby galaxies: it has a significantly higher halo mass than is normal, given its stellar mass. [Adapted from Beasley et al. 2016]Beasley and collaborators selected one UDG, VCC 1287, from the Virgo galaxy cluster, and they obtained spectra of the globular clusters around it using the OSIRIS spectrograph on the Great Canary Telescope. They then determined VCC 1287s total halo mass in two ways: first by using the dynamics of the globular clusters, and then by relying on a relation between total globular cluster mass and halo mass.The two masses they found are in good agreement with each other; both are around 80

  8. Massive black holes in galactic halos?

    NASA Technical Reports Server (NTRS)

    Lacey, C. G.; Ostriker, J. P.

    1985-01-01

    In the present attempt to resolve the problems posed by the composition of dark halos and the heating of stellar disks, under the assumption that galaxy halos are composed of massive black holes, it is noted that the black holes must have masses of the order of one million solar masses. The heating mechanism proposed yields predictions for the dependence of the velocity dispersion on time, and for the shape of the velocity ellipsoid, which are in good agreement with observations. Attention is given to the constraints set by dynamical friction causing black holes to spiral to the Galactic center, by the possible presence of dark matter in dwarf spheroidal galaxies, and by the accretion of interstellar gas by the black holes that produce luminous objects in the Galaxy.

  9. Halo formation in high-power klystrons

    SciTech Connect

    Pakter, R.; Chen, C.

    1999-07-01

    Beam losses and radio-frequency (rf) pulse shortening are important issues in the development of high-power microwave (HPM) sources such as high-power klystrons and relativistic magnetrons. In this paper, the authors explore the formation and characteristics of halos around intense relativistic electron beams in a Periodic Permanent Magnet focusing klystron as well as in a uniform solenoidal focusing klystron. A self-consistent electrostatic model is used to investigate intense relativistic electron beam transport as an rf field induced mismatch between the electron beam and the focusing field develops. To model the effect of such mismatch in the PPM klystron experiment, they initialize the beam with an envelope mismatch. For zero canonical angular momentum and an initial mismatch of 100 percent, for example, the preliminary results show halo particles with a maximum radius extending up to several core radii at the rf output section. Transient effects and the influence of finite canonical angular momentum are being studied.

  10. Cool Carbon Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Gigoyan, K. S.

    2016-06-01

    In this paper we report current status of search and study for Faint High Latitude Carbon Stars (FHLCs). Data for more than 1800 spectroscopically confirmed FHLCs are known, which are found thanks to objective prism surveys and photometric selections. More than half of the detected objects belongs to group of dwarf Carbon (dC) stars. Many-sided investigations based on modern astrophysical databases are necessary to study the space distribution of different groups of the FHLC stars and their possible origin in the Halo of our Galaxy. We report about the selection of FHLCs by the spectroscopic surveys: First Byurakan Survey (FBS), Hamburg/ESO Survey (HES), LAMOST Pilot Survey and SDSS, as well as by photometric selection: APM Survey for Cool Carbon Stars in the Galactic Halo, SDSS and 2MASS JHK colours.

  11. Linking the Halo to its Surroundings

    NASA Astrophysics Data System (ADS)

    Arimoto, N.

    The Galactic halo is unlikely built up from galaxy populations similar to the dwarf spheroidal galaxies (dSph's) in the Local Group, but it is possible that the halo was formed by accreted dwarf galaxies that had much larger mass and higher star formation rates such as the Saggitarius dSph. Cosmological simulations show that dSph galaxies formed via hierarchical clustering of numerous smaller building blocks. Stars formed at the galaxy centre tend to form from metal-rich infall gas, which builds up the metallicity gradients. Infalling gas has larger rotational velocity and smaller velocity dispersion due to the dissipative processes, resulting the two distinct old stellar populations of different chemical and kinematic properties, which are recently discovered in the Sculptor dSph galaxy.

  12. Stellar halos around Local Group galaxies

    NASA Astrophysics Data System (ADS)

    McConnachie, Alan W.

    2016-08-01

    The Local Group is now home to 102 known galaxies and candidates, with many new faint galaxies continuing to be discovered. The total stellar mass range spanned by this population covers a factor of close to a billion, from the faintest systems with stellar masses of order a few thousand to the Milky Way and Andromeda, with stellar masses of order 1011 M ⊙. Here, I discuss the evidence for stellar halos surrounding Local Group galaxies spanning from dwarf scales (with the case of the Andromeda II dwarf spheroidal), though to intermediate mass systems (M33) and finishing with M31. Evidence of extended stellar populations and merging is seen across the luminosity function, indicating that the processes that lead to halo formation are common at all mass scales.

  13. The Red Halos of Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Zackrisson, E.; Bergvall, N.; Flynn, C.; Caldwell, B.; Östlin, G.; Micheva, G.

    2008-10-01

    Deep optical/near-IR surface photometry of galaxies outside the Local Group have revealed the existence of faint and very red halos around objects as diverse as spirals and blue compact galaxies. The colors of these structures are much too extreme to be reconciled with resolved stellar populations like those seen in the halos of the Milky Way or M 31, and alternative explanations like dust reddening, high metallicities or nebular emission are also disfavored. A stellar population obeying an extremely bottom-heavy initial mass function, similar to that recently reported for the LMC field population, is on the other hand consistent with all available data. Because of its high mass-to-light ratio, such a population would effectively behave as baryonic dark matter and could account for some of the baryons still missing from local inventories. Here, we report on a number of recent developments in this field.

  14. ASSEMBLY BIAS AND THE DYNAMICAL STRUCTURE OF DARK MATTER HALOS

    SciTech Connect

    Faltenbacher, Andreas; White, Simon D. M.

    2010-01-01

    Based on the Millennium Simulation we examine assembly bias for the halo properties: shape, triaxiality, concentration, spin, shape of the velocity ellipsoid, and velocity anisotropy. For consistency, we determine all these properties using the same set of particles, namely all gravitationally self-bound particles belonging to the most massive substructure of a given friends-of-friends halo. We confirm that near-spherical and high-spin halos show enhanced clustering. The opposite is true for strongly aspherical and low-spin halos. Further, below the typical collapse mass, M{sub *}, more concentrated halos show stronger clustering, whereas less concentrated halos are less clustered which is reversed for masses above M{sub *}. Going beyond earlier work we show that: (1) oblate halos are more strongly clustered than prolate ones; (2) the dependence of clustering on the shape of the velocity ellipsoid coincides with that of the real-space shape, although the signal is stronger; (3) halos with weak velocity anisotropy are more clustered, whereas radially anisotropic halos are more weakly clustered; (4) for all highly clustered subsets we find systematically less radially biased velocity anisotropy profiles. These findings indicate that the velocity structure of halos is tightly correlated with environment.

  15. THE SPHERICALIZATION OF DARK MATTER HALOS BY GALAXY DISKS

    SciTech Connect

    Kazantzidis, Stelios; Abadi, Mario G.; Navarro, Julio F. E-mail: mario@oac.uncor.ed

    2010-09-01

    Cosmological simulations indicate that cold dark matter (CDM) halos should be triaxial. Validating this theoretical prediction is, however, less than straightforward because the assembly of galaxies is expected to modify halo shapes and to render them more axisymmetric. We use a suite of N-body simulations to quantitatively investigate the effect of the growth of a central disk galaxy on the shape of triaxial dark matter halos. In most circumstances, the halo responds to the presence of the disk by becoming more spherical. The net effect depends weakly on the timescale of the disk assembly but noticeably on the orientation of the disk relative to the halo principal axes, and it is maximal when the disk symmetry axis is aligned with the major axis of the halo. The effect depends most sensitively on the overall gravitational importance of the disk. Our results indicate that exponential disks whose contribution peaks at less than {approx}50% of their circular velocity are unable to noticeably modify the shape of the gravitational potential of their surrounding halos. Many dwarf and low surface brightness galaxies are expected to be in this regime, and therefore their detailed kinematics could be used to probe halo triaxiality, one of the basic predictions of the CDM paradigm. We argue that the complex disk kinematics of the dwarf galaxy NGC 2976 might be the reflection of a triaxial halo. Such signatures of halo triaxiality should be common in galaxies where the luminous component is subdominant.

  16. Galaxy Formation in Triaxial Halos: Black Hole-Bulge-Dark Halo Correlation

    NASA Astrophysics Data System (ADS)

    El-Zant, Amr A.; Shlosman, Isaac; Begelman, Mitchell C.; Frank, Juhan

    2003-06-01

    The masses of supermassive black holes (SBHs) show correlations with bulge properties in disk and elliptical galaxies. We study the formation of galactic structure within flat-core, mildly triaxial halos and show that these correlations can be understood within the framework of a baryonic component modifying the orbital structure in the underlying potential. In particular, we find that terminal properties of bulges and their central SBHs are constrained by the destruction of box orbits in the harmonic cores of dark halos and the emergence of progressively less eccentric loop orbits there. SBH masses, M•, should exhibit a tighter correlation with bulge velocity dispersions, σB, than with bulge masses, MB, in accord with observations, if there is a significant scatter in the MH-σH relation for the halo. In the context of this model the observed M•-σB relation implies that halos should exhibit a Faber-Jackson type relationship between their masses and velocity dispersions. The most important prediction of our model is that halo properties determine the bulge and SBH parameters. The model also has important implications for galactic morphology and the process of disk formation.

  17. Capture Reactions with Halo Effective Field Theory

    NASA Astrophysics Data System (ADS)

    Higa, R.

    2015-12-01

    Loosely bound nuclei far from the stability region emerge as a quantum phenomenon with many universal properties. The connection between these properties and the underlying symmetries can be best explored with halo/cluster EFT, an effective field theory where the softness of the binding momentum and the hardness of the core(s) form the expansion parameter of a given perturbative approach. In the following I highlight a particular application where these ideas are being tested, namely capture reactions.

  18. The Halo B2B Studio

    NASA Astrophysics Data System (ADS)

    Gorzynski, Mark; Derocher, Mike; Mitchell, April Slayden

    Research underway at Hewlett-Packard on remote communication resulted in the identification of three important components typically missing in existing systems. These missing components are: group nonverbal communication capabilities, high-resolution interactive data capabilities, and global services. Here we discuss some of the design elements in these three areas as part of the Halo program at HP, a remote communication system shown to be effective to end-users.

  19. Halo abundances within the cosmic web

    NASA Astrophysics Data System (ADS)

    Alonso, D.; Eardley, E.; Peacock, J. A.

    2015-03-01

    We investigate the dependence of the mass function of dark-matter haloes on their environment within the cosmic web of large-scale structure. A dependence of the halo mass function on large-scale mean density is a standard element of cosmological theory, allowing mass-dependent biasing to be understood via the peak-background split. On the assumption of a Gaussian density field, this analysis can be extended to ask how the mass function depends on the geometrical environment: clusters, filaments, sheets and voids, as classified via the tidal tensor (the Hessian matrix of the gravitational potential). In linear theory, the problem can be solved exactly, and the result is attractively simple: the conditional mass function has no explicit dependence on the local tidal field, and is a function only of the local density on the filtering scale used to define the tidal tensor. There is nevertheless a strong implicit predicted dependence on geometrical environment, because the local density couples statistically to the derivatives of the potential. We compute the predictions of this model and study the limits of their validity by comparing them to results deduced empirically from N-body simulations. We have verified that, to a good approximation, the abundance of haloes in different environments depends only on their densities, and not on their tidal structure. In this sense we find relative differences between halo abundances in different environments with the same density which are smaller than ˜13 per cent. Furthermore, for sufficiently large filtering scales, the agreement with the theoretical prediction is good, although there are important deviations from the Gaussian prediction at small, non-linear scales. We discuss how to obtain improved predictions in this regime, using the `effective-universe' approach.

  20. Merger rates of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Neistein, Eyal; Dekel, Avishai

    2008-08-01

    We derive analytic merger rates for dark matter haloes within the framework of the extended Press-Schechter (EPS) formalism. These rates become self-consistent within EPS once we realize that the typical merger in the limit of a small time-step involves more than two progenitors, contrary to the assumption of binary mergers adopted in earlier studies. We present a general method for computing merger rates that span the range of solutions permitted by the EPS conditional mass function, and focus on a specific solution that attempts to match the merger rates in N-body simulations. The corrected EPS merger rates are more accurate than the earlier estimates of Lacey & Cole by ~20 per cent for major mergers and by up to a factor of ~3 for minor mergers of mass ratio 1:104. Based on the revised merger rates, we provide a new algorithm for constructing Monte Carlo EPS merger trees, which could be useful in semi-analytic modelling. We provide analytic expressions and plot numerical results for several quantities that are very useful in studies of galaxy formation. This includes (i) the rate of mergers of a given mass ratio per given final halo, (ii) the fraction of mass added by mergers to a halo and (iii) the rate of mergers per given main progenitor. The creation and destruction rates of haloes serve for a self-consistency check. Our method for computing merger rates can be applied to conditional mass functions beyond EPS, such as those obtained by the ellipsoidal collapse model or extracted from N-body simulations.

  1. Is the Milky Way's Hot Halo Convectively Unstable?

    NASA Astrophysics Data System (ADS)

    Henley, David B.; Shelton, Robin L.

    2014-03-01

    We investigate the convective stability of two popular types of model of the gas distribution in the hot Galactic halo. We first consider models in which the halo density and temperature decrease exponentially with height above the disk. These halo models were created to account for the fact that, on some sight lines, the halo's X-ray emission lines and absorption lines yield different temperatures, implying that the halo is non-isothermal. We show that the hot gas in these exponential models is convectively unstable if γ < 3/2, where γ is the ratio of the temperature and density scale heights. Using published measurements of γ and its uncertainty, we use Bayes' theorem to infer posterior probability distributions for γ, and hence the probability that the halo is convectively unstable for different sight lines. We find that, if these exponential models are good descriptions of the hot halo gas, at least in the first few kiloparsecs from the plane, the hot halo is reasonably likely to be convectively unstable on two of the three sight lines for which scale height information is available. We also consider more extended models of the halo. While isothermal halo models are convectively stable if the density decreases with distance from the Galaxy, a model of an extended adiabatic halo in hydrostatic equilibrium with the Galaxy's dark matter is on the boundary between stability and instability. However, we find that radiative cooling may perturb this model in the direction of convective instability. If the Galactic halo is indeed convectively unstable, this would argue in favor of supernova activity in the Galactic disk contributing to the heating of the hot halo gas.

  2. Is the Milky Way's hot halo convectively unstable?

    SciTech Connect

    Henley, David B.; Shelton, Robin L.

    2014-03-20

    We investigate the convective stability of two popular types of model of the gas distribution in the hot Galactic halo. We first consider models in which the halo density and temperature decrease exponentially with height above the disk. These halo models were created to account for the fact that, on some sight lines, the halo's X-ray emission lines and absorption lines yield different temperatures, implying that the halo is non-isothermal. We show that the hot gas in these exponential models is convectively unstable if γ < 3/2, where γ is the ratio of the temperature and density scale heights. Using published measurements of γ and its uncertainty, we use Bayes' theorem to infer posterior probability distributions for γ, and hence the probability that the halo is convectively unstable for different sight lines. We find that, if these exponential models are good descriptions of the hot halo gas, at least in the first few kiloparsecs from the plane, the hot halo is reasonably likely to be convectively unstable on two of the three sight lines for which scale height information is available. We also consider more extended models of the halo. While isothermal halo models are convectively stable if the density decreases with distance from the Galaxy, a model of an extended adiabatic halo in hydrostatic equilibrium with the Galaxy's dark matter is on the boundary between stability and instability. However, we find that radiative cooling may perturb this model in the direction of convective instability. If the Galactic halo is indeed convectively unstable, this would argue in favor of supernova activity in the Galactic disk contributing to the heating of the hot halo gas.

  3. Constraining the halo mass function with observations

    NASA Astrophysics Data System (ADS)

    Castro, Tiago; Marra, Valerio; Quartin, Miguel

    2016-08-01

    The abundances of dark matter halos in the universe are described by the halo mass function (HMF). It enters most cosmological analyses and parametrizes how the linear growth of primordial perturbations is connected to these abundances. Interestingly, this connection can be made approximately cosmology independent. This made it possible to map in detail its near-universal behavior through large-scale simulations. However, such simulations may suffer from systematic effects, especially if baryonic physics is included. In this paper we ask how well observations can constrain directly the HMF. The observables we consider are galaxy cluster number counts, galaxy cluster power spectrum and lensing of type Ia supernovae. Our results show that DES is capable of putting the first meaningful constraints on the HMF, while both Euclid and J-PAS can give stronger constraints, comparable to the ones from state-of-the-art simulations. We also find that an independent measurement of cluster masses is even more important for measuring the HMF than for constraining the cosmological parameters, and can vastly improve the determination of the halo mass function. Measuring the HMF could thus be used to cross-check simulations and their implementation of baryon physics. It could even, if deviations cannot be accounted for, hint at new physics.

  4. Scaling Limit Analysis of Borromean Halos

    NASA Astrophysics Data System (ADS)

    Souza, L. A.; Bellotti, F. F.; Frederico, T.; Yamashita, M. T.; Tomio, Lauro

    2016-05-01

    The analysis of the core recoil momentum distribution of neutron-rich isotopes of light exotic nuclei is performed within a model of halo nuclei described by a core and two neutrons dominated by the s-wave channel. We adopt the renormalized three-body model with a zero-range force, which accounts for the Efimov physics. This model is applicable to nuclei with large two-neutron halos compared to the core size, and a neutron-core scattering length larger than the interaction range. The halo wave function in momentum space is obtained by using as inputs the two-neutron separation energy and the energies of the singlet neutron-neutron and neutron-core virtual states. Within our model, we obtain the momentum probability densities for the Borromean exotic nuclei Lithium-11 (^{11}Li), Berylium-14 (^{14}Be) and Carbon-22 (^{22}C). A fair reproduction of the experimental data was obtained in the case of the core recoil momentum distribution of ^{11}Li and ^{14}Be, without free parameters. By extending the model to ^{22}C, the combined analysis of the core momentum distribution and matter radius suggest (i) a ^{21}C virtual state well below 1 MeV; (ii) an overestimation of the extracted matter ^{22}C radius; and (iii) a two-neutron separation energy between 100 and 400 keV.

  5. The Halo of NGC 2438 scrutinized

    NASA Astrophysics Data System (ADS)

    Oettl, Silvia; Kimeswenger, Stefan

    2015-08-01

    Haloes and multiple shells around planetary nebulae trace the mass-loss history of the central star. The haloes provide us with information about abundances, ionization or kinematics. Detailed investigations of these haloes can be used to study the evolution of the old stellar population in our galaxy and beyond.Different observations show structures in the haloes like radial rays, blisters and rings (e.g., Ramos-Larios et al. 2012, MNRAS 423, 3753 or Matsuura et al. 2009, ApJ, 700, 1067). The origin of these features has been associated with ionization shadows (Balick 2004, AJ, 127, 2262). They can be observed in regions, where dense knots are opaque to stellar ionizing photons. In this regions we can see leaking UV photons.In this work, we present a detailed investigation of the multiple shell PN NGC 2438. We derive a complete data set of the main nebula. This allows us to analize the physical conditions from photoionization models, such as temperature, density and ionization, and clumping.Data from ESO (3.6m telescope - EFOSC1 - direct imaging and long slit spectroscopy) and from SAAO (spectroscopic observations using a small slit) were available. These data were supplemented by imaging data from the HST archive and by archival VLA observations. The low-excitation species are found to be dominated by clumps. The emission line ratios show no evidence for shocks. We find the shell in ionization equilibrium: a significant amount of UV radiation infiltrates the inner nebula. Thus the shell still seems to be ionized.The photoionization code CLOUDY was used to model the nebular properties and to derive a more accurate distance and ionized mass. The model supports the hypothesis that photoionization is the dominant process in this nebula, far out into the shell.If we want to use extragalactic planetary nebulae as probes of the old stellar population, we need to assess the potential impact of a halo on the evolution. Also the connection of observations and models must

  6. The Making of the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    1999-02-01

    The VLT Watches a Dissolving Stellar Cluster A group of ESO astronomers [1] has used new observations, obtained with the first 8.2-m VLT Unit Telescope (UT1) during the "Science Verification" programme, to show that a globular cluster in the Milky Way galaxy is "evaporating" and has already lost its faintest stars. This is the first observational result of its kind and has important implications for future studies. It may be explained by a gradual loss of such stars from the cluster into the Milky Way halo, a roughly spherical region around the much flatter, spiral structure in which most of the stars and nebulae are located. The new result lends strong support to current theories about the evolution of the structure of this halo and also provides insights into the formation of the galaxy in which we live. Globular clusters and the halo of the Milky Way The stars that we observe in the halo of the Milky Way represent only a small fraction of the total mass in this region. Investigations of the motions of stars in our Galaxy have shown that this halo must harbour much more matter, which is hidden from our view. The same phenomenon has been observed in other galaxies, and astronomers refer to it as "dark matter". It is at this moment not known what this matter consists of. The brightest objects in the halo are the globular clusters . They are large groupings of stars that were formed together in the very early evolutionary phases of the Milky Way, some 12,000 - 14,000 million years ago. This happened soon after the moment when the first structures emerged in the large cloud of primordial hydrogen in which our Galaxy was born. A popular scenario describes the first build-up of galactic structure, i.e. of stars and gas, as when normal matter began to collect inside the dark-matter halo, due to its strong gravitational attraction. The globular clusters were most probably the first denizens of this protogalaxy . It is believed that the Milky Way Galaxy subsequently

  7. Resolved Stellar Halos of M87 and NGC 5128

    NASA Astrophysics Data System (ADS)

    Bird, Sarah A.; Harris, William; Flynn, Chris; Blakeslee, John P.; Valtonen, Mauri

    2015-08-01

    We search halo fields of two giant elliptical galaxies: M87, using HST images at 10 kpc from the center, and NGC 5128 (Cen A), using VIMOS VLT images at 65 kpc from the center and archival HST data from 8 to 38 kpc from the center. We resolve thousands of red-giant-branch stars in these stellar halo fields using V and I filters, and, in addition, measure the metallicity using stellar isochrones. In Cen A, we find that the density of metal-rich and metal-poor halo stars falls off with the same slope in the de Vaucouleurs' law profile, from the inner halo of 8 kpc out to 70 kpc, with no sign of a transition to dominance by metal-poor stars. We also find that the metallicity distribution of the inner stellar halo of M87 is most similar to that of NGC 5128's inner stellar halo.

  8. Light-element abundance variations in the Milky Way halo

    NASA Astrophysics Data System (ADS)

    Martell, S. L.; Grebel, E. K.

    2010-09-01

    We present evidence for the contribution of high-mass globular clusters to the stellar halo of the Galaxy. Using SDSS-II/SEGUE spectra of over 1900 G- and K-type halo giants, we identify for the first time a subset of stars with CN bandstrengths significantly larger, and CH bandstrengths lower, than the majority of halo field stars, at fixed temperature and metallicity. Since CN bandstrength inhomogeneity and the usual attendant abundance variations are presently understood as a result of star formation in globular clusters, we interpret this subset of halo giants as a result of globular cluster dissolution into the Galactic halo. We find that 2.5% of our sample is CN-strong, and can infer based on recent models of globular cluster evolution that the fraction of halo field stars initially formed within globular clusters may be as large as 50%.

  9. Distribution Function in the Center of the Dark Matter Halo

    NASA Astrophysics Data System (ADS)

    Ma, Ding; He, Ping

    N-body simulations of dark matter halos show that the density profiles of the halos behave as ρ(r) ∝ r-α(r), where the density logarithmic slope α ≃ 1-1.5 in the center and α ≃ 3-4 in the outer parts of the halos. However, some observations are not in agreement with simulations in the very central region of the halos. The simulations also show that the velocity dispersion anisotropy parameter β ≈ 0 in the inner part of the halo and the so-called pseudo-phase-space density ρ/σ3 behaves as a power law in radius r. With these results in mind, we study the distribution function and the pseudo-phase-space density ρ/σ3 of the center of dark matter halos and find that they are closely related.

  10. The shapes and alignments of dark matter halos

    SciTech Connect

    Schneider, Michael D.; Frenk, Carlos S.; Cole, Shaun E-mail: c.s.frenk@durham.ac.uk

    2012-05-01

    We present measurements of the triaxial dark matter halo shapes and alignment correlation functions in the Millennium and Millennium-2 dark matter N-body simulations. These two simulations allow us to measure the distributions of halo shapes down to 10% of the virial radius over a halo mass range of 6 × 10{sup 9}–2 × 10{sup 14} h{sup −1}M{sub s}un. We largely confirm previous results on the distributions of halo axis ratios as a function of halo mass, but we find that the median angle between halo major axes at different halo radii can vary by a factor of 2 between the Millennium-1 and 2 simulations because of the different mass resolution. Thus, error in the shape determinations from limited resolution is potentially degenerate with the misalignment of halo inner and outer shapes used to constrain Brightest Cluster Galaxy alignments in previous works. We also present simplifying parameterizations for the 3-D halo-mass alignment correlation functions that are necessary ingredients for triaxial halo models of large-scale structure and models of galaxy intrinsic alignments as contaminants for cosmic shear surveys. We measure strong alignments between halos of all masses and the surrounding dark matter overdensities out to several tens of h{sup −1} Mpc, in agreement with observed shear-galaxy and cluster shape correlations. We use these measurements to forecast the contribution to the weak lensing signal around galaxy clusters from correlated mass along the line-of-sight. For prolate clusters with major axes aligned with the line-of-sight the fraction of the weak lensing signal from mass external to the cluster can be twice that predicted if the excess halo alignment correlation is assumed to be zero.

  11. Data-Parallel Halo Finder Operator in PISTON

    SciTech Connect

    Widanagamaachchi, W. N.

    2012-08-01

    PISTON is a portable framework which supports the development of visualization and analysis operators using a platform-independent, data-parallel programming model. Operators such as isosurface, cut-surface and threshold have been implemented in this framework, with the exact same operator code achieving good parallel performance on different architectures. An important analysis operator in cosmology is the halo finder. A halo is a cluster of particles and is considered a common feature of interest found in cosmology data. As the number of cosmological simulations carried out in the recent past has increased, the resultant data of these simulations and the required analysis tasks have increased as well. As a consequence, there is a need to develop scalable and efficient tools to carry out the needed analysis. Therefore, we are currently implementing a halo finder operator using PISTON. Researchers have developed a wide variety of techniques to identify halos in raw particle data. The most basic algorithm is the friend-of-friends (FOF) halo finder, where the particles are clustered based on two parameters: linking length and halo size. In a FOF halo finder, all particles which lie within the linking length are considered as one halo and the halos are filtered based on the halo size parameter. A naive implementation of a FOF halo finder compares each and every particle pair, requiring O(n{sup 2}) operations. Our data-parallel halo finder operator uses a balanced k-d tree to reduce this number of operations in the average case, and implements the algorithm using only the data-parallel primitives in order to achieve portability and performance.

  12. N-body dark matter haloes with simple hierarchical histories

    NASA Astrophysics Data System (ADS)

    Jiang, Lilian; Helly, John C.; Cole, Shaun; Frenk, Carlos S.

    2014-05-01

    We present a new algorithm which groups the subhaloes found in cosmological N-body simulations by structure finders such as SUBFIND into dark matter haloes whose formation histories are strictly hierarchical. One advantage of these `Dhaloes' over the commonly used friends-of-friends (FoF) haloes is that they retain their individual identity in the cases when FoF haloes are artificially merged by tenuous bridges of particles or by an overlap of their outer diffuse haloes. Dhaloes are thus well suited for modelling galaxy formation and their merger trees form the basis of the Durham semi-analytic galaxy formation model, GALFORM. Applying the Dhalo construction to the Λ cold dark matter Millennium II Simulation, we find that approximately 90 per cent of Dhaloes have a one-to-one, bijective match with a corresponding FoF halo. The remaining 10 per cent are typically secondary components of large FoF haloes. Although the mass functions of both types of haloes are similar, the mass of Dhaloes correlates much more tightly with the virial mass, M200, than FoF haloes. Approximately 80 per cent of FoF and bijective and non-bijective Dhaloes are relaxed according to standard criteria. For these relaxed haloes, all three types have similar concentration-M200 relations and, at fixed mass, the concentration distributions are described accurately by log-normal distributions.

  13. On detecting halo assembly bias with galaxy populations

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Ting; Mandelbaum, Rachel; Huang, Yun-Hsin; Huang, Hung-Jin; Dalal, Neal; Diemer, Benedikt; Kravtsov, Andrey

    2016-01-01

    The fact that the clustering and concentration of dark matter halos depend not only on their mass, but also the formation epoch, is a prominent, albeit subtle, feature of the cold dark matter structure formation theory, and is known as assembly bias. At low mass scales (~1012 Msun), early-forming halos are predicted to be more strongly clustered than the late-forming ones. In this study we aim to robustly detect the signature of assembly bias observationally, making use of formation time indicators of central galaxies in low mass halos as a proxy for the halo formation history. Weak gravitational lensing is employed to ensure our early- and late-forming halo samples have similar masses, and are free of contamination of satellites from more massive halos. For the two formation time indicators used (resolved star formation history and current specific star formation rate), we do not find convincing evidence of assembly bias. We attribute the lack of detection to the possibility that these indicators do not correlate well with the halo formation history, and suggest alternatives that should perform better for future studies. In addition, we have developed a method to constrain the probability distribution function of halo mass of a given galaxy sample, and also demonstrate that the abundance matching-based halo mass assignments to galaxy groups and clusters may be biased, likely due to interlopers from more massive galactic systems.

  14. Proton radiography to improve proton therapy treatment

    NASA Astrophysics Data System (ADS)

    Takatsu, J.; van der Graaf, E. R.; Van Goethem, M.-J.; van Beuzekom, M.; Klaver, T.; Visser, J.; Brandenburg, S.; Biegun, A. K.

    2016-01-01

    The quality of cancer treatment with protons critically depends on an accurate prediction of the proton stopping powers for the tissues traversed by the protons. Today, treatment planning in proton radiotherapy is based on stopping power calculations from densities of X-ray Computed Tomography (CT) images. This causes systematic uncertainties in the calculated proton range in a patient of typically 3-4%, but can become even 10% in bone regions [1,2,3,4,5,6,7,8]. This may lead to no dose in parts of the tumor and too high dose in healthy tissues [1]. A direct measurement of proton stopping powers with high-energy protons will allow reducing these uncertainties and will improve the quality of the treatment. Several studies have shown that a sufficiently accurate radiograph can be obtained by tracking individual protons traversing a phantom (patient) [4,6,10]. Our studies benefit from the gas-filled time projection chambers based on GridPix technology [2], developed at Nikhef, capable of tracking a single proton. A BaF2 crystal measuring the residual energy of protons was used. Proton radiographs of phantom consisting of different tissue-like materials were measured with a 30×30 mm2 150 MeV proton beam. Measurements were simulated with the Geant4 toolkit.First experimental and simulated energy radiographs are in very good agreement [3]. In this paper we focus on simulation studies of the proton scattering angle as it affects the position resolution of the proton energy loss radiograph. By selecting protons with a small scattering angle, the image quality can be improved significantly.

  15. Mapping stellar content to dark matter haloes - II. Halo mass is the main driver of galaxy quenching

    NASA Astrophysics Data System (ADS)

    Zu, Ying; Mandelbaum, Rachel

    2016-04-01

    We develop a simple yet comprehensive method to distinguish the underlying drivers of galaxy quenching, using the clustering and galaxy-galaxy lensing of red and blue galaxies in Sloan Digital Sky Survey. Building on the iHOD framework developed by Zu & Mandelbaum, we consider two quenching scenarios: (1) a `halo' quenching model in which halo mass is the sole driver for turning off star formation in both centrals and satellites; and (2) a `hybrid' quenching model in which the quenched fraction of galaxies depends on their stellar mass, while the satellite quenching has an extra dependence on halo mass. The two best-fitting models describe the red galaxy clustering and lensing equally well, but halo quenching provides significantly better fits to the blue galaxies above 1011 h-2 M⊙. The halo quenching model also correctly predicts the average halo mass of the red and blue centrals, showing excellent agreement with the direct weak lensing measurements of locally brightest galaxies. Models in which quenching is not tied to halo mass, including an age-matching model in which galaxy colour depends on halo age at fixed M*, fail to reproduce the observed halo mass for massive blue centrals. We find similar critical halo masses responsible for the quenching of centrals and satellites (˜1.5 × 1012 h-1 M⊙), hinting at a uniform quenching mechanism for both, e.g. the virial shock heating of infalling gas. The success of the iHOD halo quenching model provides strong evidence that the physical mechanism that quenches star formation in galaxies is tied principally to the masses of their dark matter haloes rather than the properties of their stellar components.

  16. Two-proton decay of the 6Be ground state and the double isobaric analog of 11Li

    NASA Astrophysics Data System (ADS)

    Charity, R. J.; Elson, J. M.; Komarov, S.; Sobotka, L. G.; Manfredi, J.; Shane, R.; Egorova, I. A.; Grigorenko, L. V.; Hagino, K.; Bazin, D.; Chajecki, Z.; Coupland, D.; Gade, A.; Iwasaki, H.; Kilbrun, M.; Lee, J.; Lukyanov, S. M.; Lynch, W. G.; Mocko, M.; Lobastov, S. P.; Rodgers, A.; Sanetullaev, A.; Tsang, M. B.; Wallace, M. S.; Winkelbauer, J.; Youngs, M.; Hudan, S.; Metelko, C.; Famino, M. A.; Marley, S. T.; Shetty, D. V.; Wuosmaa, A. H.; van Goethem, M. J.; Zhukov, M. V.

    2013-03-01

    Two-proton decay is discussed in a number of light isobaric multiplets. For the lightest two-proton emitter, 6Be, the momentum correlations between the three decay products were measured and found to be consistent with quantum-mechanical three-cluster-model calculations. Two-proton decay was also found for two members of the A=8 and A=11 quintets. Finally, a third member of the A=11 sextet, the double isobaric analog of the halo nucleus 11Li in 11B was observed by its two-proton decay.

  17. Characterizing stellar halo populations - I. An extended distribution function for halo K giants

    NASA Astrophysics Data System (ADS)

    Das, Payel; Binney, James

    2016-08-01

    We fit an extended distribution function (EDF) to K giants in the Sloan Extension for Galactic Understanding and Exploration survey. These stars are detected to radii ˜80 kpc and span a wide range in [Fe/H]. Our EDF, which depends on [Fe/H] in addition to actions, encodes the entanglement of metallicity with dynamics within the Galaxy's stellar halo. Our maximum-likelihood fit of the EDF to the data allows us to model the survey's selection function. The density profile of the K giants steepens with radius from a slope ˜-2 to ˜-4 at large radii. The halo's axis ratio increases with radius from 0.7 to almost unity. The metal-rich stars are more tightly confined in action space than the metal-poor stars and form a more flattened structure. A weak metallicity gradient ˜-0.001 dex kpc-1, a small gradient in the dispersion in [Fe/H] of ˜0.001 dex kpc-1, and a higher degree of radial anisotropy in metal-richer stars result. Lognormal components with peaks at ˜-1.5 and ˜-2.3 are required to capture the overall metallicity distribution, suggestive of the existence of two populations of K giants. The spherical anisotropy parameter varies between 0.3 in the inner halo to isotropic in the outer halo. If the Sagittarius stream is included, a very similar model is found but with a stronger degree of radial anisotropy throughout.

  18. Characterising stellar halo populations I: An extended distribution function for halo K giants

    NASA Astrophysics Data System (ADS)

    Das, Payel; Binney, James

    2016-05-01

    We fit an Extended Distribution Function (EDF) to K giants in the Sloan Extension for Galactic Understanding and Exploration (SEGUE) survey. These stars are detected to radii ˜80 kpc and span a wide range in [Fe/H]. Our EDF, which depends on [Fe/H] in addition to actions, encodes the entanglement of metallicity with dynamics within the Galaxy's stellar halo. Our maximum-likelihood fit of the EDF to the data allows us to model the survey's selection function. The density profile of the K giants steepens with radius from a slope ˜-2 to ˜-4 at large radii. The halo's axis ratio increases with radius from 0.7 to almost unity. The metal-rich stars are more tightly confined in action space than the metal-poor stars and form a more flattened structure. A weak metallicity gradient ˜-0.001 dex/kpc, a small gradient in the dispersion in [Fe/H] of ˜0.001 dex/kpc, and a higher degree of radial anistropy in metal-richer stars result. Lognormal components with peaks at ˜-1.5 and ˜-2.3 are required to capture the overall metallicity distribution, suggestive of the existence of two populations of K giants. The spherical anisotropy parameter varies between 0.3 in the inner halo to isotropic in the outer halo. If the Sagittarius stream is included, a very similar model is found but with a stronger degree of radial anisotropy throughout.

  19. COMPOSITION OF LOW-REDSHIFT HALO GAS

    SciTech Connect

    Cen Renyue

    2013-06-20

    Halo gas in low-z (z < 0.5) {>=}0.1 L{sub *} galaxies in high-resolution, large-scale cosmological hydrodynamic simulations is examined with respect to three components: cold, warm, and hot with temperatures of <10{sup 5}, 10{sup 5-6}, and >10{sup 6} K, respectively. Utilizing O VI {lambda}{lambda}1032, 1038 absorption lines, the warm component is compared to observations, and agreement is found with respect to the galaxy-O VI line correlation, the ratio of the O VI line incidence rate in blue to red galaxies, and the amount of O VI mass in star-forming galaxies. A detailed account of the sources of warm halo gas (stellar feedback heating, gravitational shock heating, and accretion from the intergalactic medium), inflowing and outflowing warm halo gas metallicity disparities, and their dependencies on galaxy types and environment is also presented. With the warm component securely anchored, our simulations make the following additional predictions. First, cold gas is the primary component in inner regions with its mass comprising 50% of all gas within galactocentric radius r = (30, 150) kpc in (red, blue) galaxies. Second, at r > (30, 200) kpc in (red, blue) galaxies the hot component becomes the majority. Third, the warm component is a perpetual minority, with its contribution peaking at {approx}30% at r = 100-300 kpc in blue galaxies and never exceeding 5% in red galaxies. The significant amount of cold gas in low-z early-type galaxies, which was found in simulations and in agreement with recent observations (Thom et al.), is intriguing, as is the dominance of hot gas at large radii in blue galaxies.

  20. Composition of Low-redshift Halo Gas

    NASA Astrophysics Data System (ADS)

    Cen, Renyue

    2013-06-01

    Halo gas in low-z (z < 0.5) >=0.1 L * galaxies in high-resolution, large-scale cosmological hydrodynamic simulations is examined with respect to three components: cold, warm, and hot with temperatures of <105, 105-6, and >106 K, respectively. Utilizing O VI λλ1032, 1038 absorption lines, the warm component is compared to observations, and agreement is found with respect to the galaxy-O VI line correlation, the ratio of the O VI line incidence rate in blue to red galaxies, and the amount of O VI mass in star-forming galaxies. A detailed account of the sources of warm halo gas (stellar feedback heating, gravitational shock heating, and accretion from the intergalactic medium), inflowing and outflowing warm halo gas metallicity disparities, and their dependencies on galaxy types and environment is also presented. With the warm component securely anchored, our simulations make the following additional predictions. First, cold gas is the primary component in inner regions with its mass comprising 50% of all gas within galactocentric radius r = (30, 150) kpc in (red, blue) galaxies. Second, at r > (30, 200) kpc in (red, blue) galaxies the hot component becomes the majority. Third, the warm component is a perpetual minority, with its contribution peaking at ~30% at r = 100-300 kpc in blue galaxies and never exceeding 5% in red galaxies. The significant amount of cold gas in low-z early-type galaxies, which was found in simulations and in agreement with recent observations (Thom et al.), is intriguing, as is the dominance of hot gas at large radii in blue galaxies.

  1. Carbon Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Totten, E. J.; Irwin, M. J.

    1996-04-01

    A byproduct of the APM high redshift quasar survey (Irwin et al. 1991) was the discovery of ~ 20 distant (20-100kpc) cool AGB carbon stars (all N-type) at high Galactic latitude. In August we used the INT+IDS to survey the rest of the high latitude SGC sky visible from La Palma and found 10 more similar carbon stars. Before this work there were only a handful of published faint high latitude cool carbon stars known (eg. Margon et al., 1984, Mould et al., 1985) and there has been speculation as to their origin (eg. Sanduleak, 1980, van den Bergh & Lafontaine, 1984). Intermediate age carbon stars (3 -- 7 Gyrs) seem unlikely to have formed in the halo in isolation from other star forming regions so how did they get there ? One possiblity that we are investigating, is that they arise from either the disruption of tidally captured dSph galaxies or are a manifestion of the long sought after optical component of the Magellanic Stream. Lack of proper motion rules out the possibility of them being dwarf carbon stars (eg. Warren et al., 1992); indeed no N-type carbon stars have been found to be dwarf carbon stars. Our optical spectroscopy confirms their carbon star type (they are indistinguishable from cool AGB carbon stars in nearby dwarf galaxies) and hence probable large distances. We are extending our survey to the NGC region, obtaining radial velocities and good S:N fluxed spectra for all the carbon stars. This will enable us to investigate their kinematics, true spatial distribution and hence their origin. Even, in the event that these objects are somehow an integral part of the Galactic halo, then their velocities and large distances will enable direct studies of the velocity ellipsoid and rotation of the outer halo (eg. Green et al., 1994).

  2. Proton decay theory

    SciTech Connect

    Marciano, W.J.

    1983-01-01

    Topics include minimal SU(5) predictions, gauge boson mediated proton decay, uncertainties in tau/sub p/, Higgs scalar effects, proton decay via Higgs scalars, supersymmetric SU(5), dimension 5 operators and proton decay, and Higgs scalars and proton decay. (WHK)

  3. 77 FR 16264 - Manufacturer of Controlled Substances, Notice of Registration; Halo Pharmaceutical Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... FR 77850, Halo Pharmaceutical Inc., 30 North Jefferson Road, Whippany, New Jersey 07981, made... Enforcement Administration Manufacturer of Controlled Substances, Notice of Registration; Halo Pharmaceutical... determined that the registration of Halo Pharmaceutical Inc. to manufacture the listed basic classes...

  4. Resolving the stellar halos of six massive disk galaxies beyond the Local Group

    NASA Astrophysics Data System (ADS)

    Monachesi, Antonela; Bell, Eric F.; Radburn-Smith, David J.; de Jong, Roelof S.; Bailin, Jeremy; Holwerda, Benne; Streich, David

    2016-08-01

    Models of galaxy formation in a hierarchical universe predict substantial scatter in the halo-to-halo stellar properties, owing to stochasticity in galaxies' merger histories. Currently, only few detailed observations of stellar halos are available, mainly for the Milky Way and M31. We present the stellar halo color/metallicity and density profiles of red giant branch stars out to ~60 kpc along the minor axis of six massive nearby Milky Way-like galaxies beyond the Local Group from the Galaxy Halos, Outer disks, Substructure, Thick disks and Star clusters (GHOSTS) HST survey. This enlargement of the sample of galaxies with observations of stellar halo properties is needed to understand the range of possible halo properties, i.e. not only the mean properties but also the halo-to-halo scatter, what a `typical' halo looks like, and how similar the Milky Way halo is to other halos beyond the Local Group.

  5. Halos of unified dark matter scalar field

    SciTech Connect

    Bertacca, Daniele; Bartolo, Nicola; Matarrese, Sabino E-mail: nicola.bartolo@pd.infn.it

    2008-05-15

    We investigate the static and spherically symmetric solutions of Einstein's equations for a scalar field with a non-canonical kinetic term, assumed to provide both the dark matter and dark energy components of the Universe. In particular, we give a prescription to obtain solutions (dark halos) whose rotation curve v{sub c}(r) is in good agreement with observational data. We show that there exist suitable scalar field Lagrangians that allow us to describe the cosmological background evolution and the static solutions with a single dark fluid.

  6. Project ECHO: Electronic Communications from Halo Orbit

    NASA Astrophysics Data System (ADS)

    Borrelli, Jason; Cooley, Bryan; Debole, Marcy; Hrivnak, Lance; Nielsen, Kenneth; Sangmeister, Gary; Wolfe, Matthew

    The design of a communications relay to provide constant access between the Earth and the far side of the Moon is presented. Placement of the relay in a halo orbit about the L2 Earth-Moon Lagrange point allows the satellite to maintain constant simultaneous communication between Earth and scientific payloads on the far side of the Moon. The requirements of NASA's Discovery-class missions adopted and modified for this design are: total project cost should not exceed $150 million excluding launch costs, launch must be provided by Delta-class vehicle, and the satellite should maintain an operational lifetime of 10 to 15 years. The spacecraft will follow a transfer trajectory to the L2 point, after launch by a Delta II 7925 vehicle in 1999. Low-level thrust is used for injection into a stationkeeping-free halo orbit once the spacecraft reaches the L2 point. The shape of this halo orbit is highly elliptical with the maximum excursion from the L2 point being 35000 km. A spun section and despun section connected through a bearing and power transfer assembly (BAPTA) compose the structure of the spacecraft. Communications equipment is placed on the despun section to provide for a stationary dual parabolic offset-feed array antenna system. The dual system is necessary to provide communications coverage during portions of maximum excursion on the halo orbit. Transmissions to the NASA Deep Space Network 34 m antenna include six channels (color video, two voice, scientific data from lunar payloads, satellite housekeeping and telemetry and uplinked commands) using the S- and X-bands. Four radioisotope thermoelectric generators (RTG's) provide a total of 1360 W to power onboard systems and any two of the four Hughes 13 cm ion thrusters at once. Output of the ion thrusters is approximately 17.8 mN each with xenon as the propellant. Presence of torques generated by solar pressure on the antenna dish require the addition of a 'skirt' extending from the spun section of the satellite

  7. Project ECHO: Electronic Communications from Halo Orbit

    NASA Technical Reports Server (NTRS)

    Borrelli, Jason; Cooley, Bryan; Debole, Marcy; Hrivnak, Lance; Nielsen, Kenneth; Sangmeister, Gary; Wolfe, Matthew

    1994-01-01

    The design of a communications relay to provide constant access between the Earth and the far side of the Moon is presented. Placement of the relay in a halo orbit about the L2 Earth-Moon Lagrange point allows the satellite to maintain constant simultaneous communication between Earth and scientific payloads on the far side of the Moon. The requirements of NASA's Discovery-class missions adopted and modified for this design are: total project cost should not exceed $150 million excluding launch costs, launch must be provided by Delta-class vehicle, and the satellite should maintain an operational lifetime of 10 to 15 years. The spacecraft will follow a transfer trajectory to the L2 point, after launch by a Delta II 7925 vehicle in 1999. Low-level thrust is used for injection into a stationkeeping-free halo orbit once the spacecraft reaches the L2 point. The shape of this halo orbit is highly elliptical with the maximum excursion from the L2 point being 35000 km. A spun section and despun section connected through a bearing and power transfer assembly (BAPTA) compose the structure of the spacecraft. Communications equipment is placed on the despun section to provide for a stationary dual parabolic offset-feed array antenna system. The dual system is necessary to provide communications coverage during portions of maximum excursion on the halo orbit. Transmissions to the NASA Deep Space Network 34 m antenna include six channels (color video, two voice, scientific data from lunar payloads, satellite housekeeping and telemetry and uplinked commands) using the S- and X-bands. Four radioisotope thermoelectric generators (RTG's) provide a total of 1360 W to power onboard systems and any two of the four Hughes 13 cm ion thrusters at once. Output of the ion thrusters is approximately 17.8 mN each with xenon as the propellant. Presence of torques generated by solar pressure on the antenna dish require the addition of a 'skirt' extending from the spun section of the satellite

  8. Solitonic axion condensates modeling dark matter halos

    NASA Astrophysics Data System (ADS)

    Castañeda Valle, David; Mielke, Eckehard W.

    2013-09-01

    Instead of fluid type dark matter (DM), axion-like scalar fields with a periodic self-interaction or some truncations of it are analyzed as a model of galaxy halos. It is probed if such cold Bose-Einstein type condensates could provide a viable soliton type interpretation of the DM 'bullets' observed by means of gravitational lensing in merging galaxy clusters. We study solitary waves for two self-interacting potentials in the relativistic Klein-Gordon equation, mainly in lower dimensions, and visualize the approximately shape-invariant collisions of two 'lump' type solitons.

  9. Universal properties of dark matter halos.

    PubMed

    Boyarsky, A; Neronov, A; Ruchayskiy, O; Tkachev, I

    2010-05-14

    We discuss the universal relation between density and size of observed dark matter halos that was recently shown to hold on a wide range of scales, from dwarf galaxies to galaxy clusters. Predictions of cold dark matter (ΛCDM) N-body simulations are consistent with this relation. We demonstrate that this property of ΛCDM can be understood analytically in the secondary infall model. Qualitative understanding given by this model provides a new way to predict which deviations from ΛCDM or large-scale modifications of gravity can affect universal behavior and, therefore, to constrain them observationally. PMID:20866958

  10. Invariant mass spectroscopy of halo nuclei

    SciTech Connect

    Nakamura, Takashi

    2008-11-11

    We have applied the invariant mass spectroscopy to explore the low-lying exited states of halo nuclei at intermediate energies around 70 MeV/nucleon at RIKEN. As examples, we show here the results of Coulomb breakup study for {sup 11}Li using the Pb target, as well as breakup reactions of {sup 14}Be with p and C targets. The former study revealed a strong Coulomb breakup cross section reflecting the large enhancement of E1 strength at low excitation energies (soft E1 excitation). The latter revealed the observation of the first 2{sup +} state in {sup 14}Be.

  11. HOW WELL DO COSMOLOGICAL SIMULATIONS REPRODUCE INDIVIDUAL HALO PROPERTIES?

    SciTech Connect

    Trenti, Michele; Smith, Britton D.; Hallman, Eric J.; Skillman, Samuel W.; Shull, J. Michael

    2010-03-10

    Cosmological simulations of galaxy formation often rely on prescriptions for star formation and feedback that depend on halo properties such as halo mass, central overdensity, and virial temperature. In this paper, we address the convergence of individual halo properties, based on their number of particles N, focusing, in particular, on the mass of halos near the resolution limit of a simulation. While it has been established that the halo mass function is sampled on average down to N {approx} 20-30 particles, we show that individual halo properties exhibit significant scatter, and some systematic biases, as one approaches the resolution limit. We carry out a series of cosmological simulations using the Gadget2 and Enzo codes with N{sub p} = 64{sup 3} to N{sub p} = 1024{sup 3} total particles, keeping the same large-scale structure in the simulation box. We consider boxes of small (l{sub box} = 8 Mpc h {sup -1}), medium (l{sub box} = 64 Mpc h {sup -1}), and large (l{sub box} = 512 Mpc h {sup -1}) size to probe different halo masses and formation redshifts. We cross-identify dark matter halos in boxes at different resolutions and measure the scatter in their properties. The uncertainty in the mass of single halos depends on the number of particles (scaling approximately as N {sup -1/3}), but the rarer the density peak, the more robust its identification. The virial radius of halos is very stable and can be measured without bias for halos with N {approx}> 30. In contrast, the average density within a sphere containing 25% of the total halo mass is severely underestimated (by more than a factor 2) and the halo spin is moderately overestimated for N {approx}< 100. If sub-grid physics is implemented upon a cosmological simulation, we recommend that rare halos ({approx}3sigma peaks) be resolved with N {approx}> 100 particles and common halos ({approx}1sigma peaks) with N {approx}> 400 particles to avoid excessive numerical noise and possible systematic biases in the

  12. Synchrotron based proton drivers

    SciTech Connect

    Weiren Chou

    2002-09-19

    Proton drivers are the proton sources that produce intense short proton bunches. They have a wide range of applications. This paper discusses the proton drivers based on high-intensity proton synchrotrons. It gives a review of the high-intensity proton sources over the world and a brief report on recent developments in this field in the U.S. high-energy physics (HEP) community. The Fermilab Proton Driver is used as a case study for a number of challenging technical design issues.

  13. MASS-DEPENDENT BARYON ACOUSTIC OSCILLATION SIGNAL AND HALO BIAS

    SciTech Connect

    Wang Qiao; Zhan Hu

    2013-05-10

    We characterize the baryon acoustic oscillations (BAO) feature in halo two-point statistics using N-body simulations. We find that nonlinear damping of the BAO signal is less severe for halos in the mass range we investigate than for dark matter. The amount of damping depends weakly on the halo mass. The correlation functions show a mass-dependent drop of the halo clustering bias below roughly 90 h {sup -1} Mpc, which coincides with the scale of the BAO trough. The drop of bias is 4% for halos with mass M > 10{sup 14} h {sup -1} M{sub Sun} and reduces to roughly 2% for halos with mass M > 10{sup 13} h {sup -1} M{sub Sun }. In contrast, halo biases in simulations without BAO change more smoothly around 90 h {sup -1} Mpc. In Fourier space, the bias of M > 10{sup 14} h {sup -1} M{sub Sun} halos decreases smoothly by 11% from wavenumber k = 0.012 h Mpc{sup -1} to 0.2 h Mpc{sup -1}, whereas that of M > 10{sup 13} h {sup -1} M{sub Sun} halos decreases by less than 4% over the same range. By comparing the halo biases in pairs of otherwise identical simulations, one with and the other without BAO, we also observe a modulation of the halo bias. These results suggest that precise calibrations of the mass-dependent BAO signal and scale-dependent bias on large scales would be needed for interpreting precise measurements of the two-point statistics of clusters or massive galaxies in the future.

  14. The Prevalence of the 22 deg Halo in Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Diedenhoven, vanBastiaan

    2014-01-01

    Halos at 22 deg from the sun attributed to randomly-orientated, pristine hexagonal crystals are frequently observed through ice clouds. These frequent sightings of halos formed by pristine crystals pose an apparent inconsistency with the dominance of distorted, nonpristine ice crystals indicated by in situ and remote sensing data. Furthermore, the 46 deg halo, which is associated with pristine hexagonal crystals as well, is observed far less frequently than the 22 deg halo. Considering that plausible mechanisms that could cause crystal distortion such as aggregation, sublimation, riming and collisions are stochastic processes that likely lead to distributions of crystals with varying distortion levels, here the presence of the 22 deg and 46 deg halo features in phase functions of mixtures of pristine and distorted hexagonal ice crystals is examined. We conclude that the 22 deg halo feature is generally present if the contribution by pristine crystals to the total scattering cross section is greater than only about 10% in the case of compact particles or columns, and greater than about 40% for plates. The 46 deg halo feature is present only if the mean distortion level is low and the contribution of pristine crystals to the total scattering cross section is above about 20%, 50% and 70%, in the case of compact crystals, plates and columns, respectively. These results indicate that frequent sightings of 22 deg halos are not inconsistent with the observed dominance of distorted, non-pristine ice crystals. Furthermore, the low mean distortion levels and large contributions by pristine crystals needed to produce the 461 halo features provide a potential explanation of the common sighting of the 22 deg halo without any detectable 46 deg halo.

  15. Proton Therapy - Accelerating Protons to Save Lives

    SciTech Connect

    Keppel, Cynthia

    2011-10-25

    In 1946, physicist Robert Wilson first suggested that protons could be used as a form of radiation therapy in the treatment of cancer because of the sharp drop-off that occurs on the distal edge of the radiation dose. Research soon confirmed that high-energy protons were particularly suitable for treating tumors near critical structures, such as the heart and spinal column. The precision with which protons can be delivered means that more radiation can be deposited into the tumor while the surrounding healthy tissue receives substantially less or, in some cases, no radiation. Since these times, particle accelerators have continuously been used in cancer therapy and today new facilities specifically designed for proton therapy are being built in many countries. Proton therapy has been hailed as a revolutionary cancer treatment, with higher cure rates and fewer side effects than traditional X-ray photon radiation therapy. Proton therapy is the modality of choice for treating certain small tumors of the eye, head or neck. Because it exposes less of the tissue surrounding a tumor to the dosage, proton therapy lowers the risk of secondary cancers later in life - especially important for young children. To date, over 80,000 patients worldwide have been treated with protons. Currently, there are nine proton radiation therapy facilities operating in the United States, one at the Hampton University Proton Therapy Institute. An overview of the treatment technology and this new center will be presented.

  16. Investigating Halo and Ceiling Effects in Student Evaluations of Instruction

    ERIC Educational Resources Information Center

    Keeley, Jared W.; English, Taylor; Irons, Jessica; Henslee, Amber M.

    2013-01-01

    Many measurement biases affect student evaluations of instruction (SEIs). However, two have been relatively understudied: halo effects and ceiling/floor effects. This study examined these effects in two ways. To examine the halo effect, using a videotaped lecture, we manipulated specific teacher behaviors to be "good" or "bad"…

  17. Detecting Halo Effects in Performance-Based Examinations

    ERIC Educational Resources Information Center

    Bechger, Timo M.; Maris, Gunter; Hsiao, Ya Ping

    2010-01-01

    The main purpose of this article is to demonstrate how halo effects may be detected and quantified using two independent ratings of the same person. A practical illustration is given to show how halo effects can be avoided. (Contains 2 tables, 7 figures, and 2 notes.)

  18. SECULAR DAMPING OF STELLAR BARS IN SPINNING DARK MATTER HALOS

    SciTech Connect

    Long, Stacy; Shlosman, Isaac; Heller, Clayton

    2014-03-01

    We demonstrate using numerical simulations of isolated galaxies that growth of stellar bars in spinning dark matter halos is heavily suppressed in the secular phase of evolution. In a representative set of models, we show that for values of the cosmological spin parameter λ ≳ 0.03, bar growth (in strength and size) becomes increasingly quenched. Furthermore, the slowdown of the bar pattern speed weakens considerably with increasing λ until it ceases completely. The terminal structure of the bars is affected as well, including extent and shape of their boxy/peanut bulges. The essence of this effect lies in the modified angular momentum exchange between the disk and the halo facilitated by the bar. For the first time we have demonstrated that a dark matter halo can emit and not purely absorb angular momentum. Although the halo as a whole is not found to emit, the net transfer of angular momentum from the disk to the halo is significantly reduced or completely eliminated. The paradigm shift implies that the accepted view that disks serve as sources of angular momentum and halos serve as sinks must be revised. Halos with λ ≳ 0.03 are expected to form a substantial fraction, based on the lognormal distribution of λ. The dependence of secular bar evolution on halo spin, therefore, implies profound corollaries for the cosmological evolution of galactic disks.

  19. Halo abundance matching: accuracy and conditions for numerical convergence

    NASA Astrophysics Data System (ADS)

    Klypin, Anatoly; Prada, Francisco; Yepes, Gustavo; Heß, Steffen; Gottlöber, Stefan

    2015-03-01

    Accurate predictions of the abundance and clustering of dark matter haloes play a key role in testing the standard cosmological model. Here, we investigate the accuracy of one of the leading methods of connecting the simulated dark matter haloes with observed galaxies- the halo abundance matching (HAM) technique. We show how to choose the optimal values of the mass and force resolution in large volume N-body simulations so that they provide accurate estimates for correlation functions and circular velocities for haloes and their subhaloes - crucial ingredients of the HAM method. At the 10 per cent accuracy, results converge for ˜50 particles for haloes and ˜150 particles for progenitors of subhaloes. In order to achieve this level of accuracy a number of conditions should be satisfied. The force resolution for the smallest resolved (sub)haloes should be in the range (0.1-0.3)rs, where rs is the scale radius of (sub)haloes. The number of particles for progenitors of subhaloes should be ˜150. We also demonstrate that the two-body scattering plays a minor role for the accuracy of N-body simulations thanks to the relatively small number of crossing-times of dark matter in haloes, and the limited force resolution of cosmological simulations.

  20. On Detecting Halo Assembly Bias with Galaxy Populations

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Ting; Mandelbaum, Rachel; Huang, Yun-Hsin; Huang, Hung-Jin; Dalal, Neal; Diemer, Benedikt; Jian, Hung-Yu; Kravtsov, Andrey

    2016-03-01

    The fact that the clustering of dark matter halos depends not only on their mass, but also the formation epoch is a prominent, albeit subtle, feature of the cold dark matter structure formation theory and is known as assembly bias. At low-mass scales (˜ {10}12 {h}-1 {M}⊙ ), early-forming halos are predicted to be more strongly clustered than the late-forming ones. In this study, we aim to robustly detect the signature of assembly bias observationally, making use of formation time indicators of central galaxies in low-mass halos as a proxy for the halo formation history. Weak gravitational lensing is employed to ensure our early- and late-forming halo samples have similar masses, and are free of contamination of satellites from more massive halos. For the two formation time indicators used (resolved star formation history and current specific star formation rate), we do not find convincing evidence of assembly bias. For a pair of early- and late-forming galaxy samples with mean mass {M}200c≈ 9× {10}11 {h}-1 {M}⊙ , the relative bias is 1.00 ± 0.12. We attribute the lack of detection to the possibilities that either the current measurements of these indicators are too noisy, or they do not correlate well with the halo formation history. Alternative proxies for the halo formation history that should perform better are suggested for future studies.

  1. The Cosmogrid Simulation: Statistical Properties of Small Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tomoaki; Rieder, Steven; Makino, Junichiro; Portegies Zwart, Simon; Groen, Derek; Nitadori, Keigo; de Laat, Cees; McMillan, Stephen; Hiraki, Kei; Harfst, Stefan

    2013-04-01

    We present the results of the "Cosmogrid" cosmological N-body simulation suites based on the concordance LCDM model. The Cosmogrid simulation was performed in a 30 Mpc box with 20483 particles. The mass of each particle is 1.28 × 105 M ⊙, which is sufficient to resolve ultra-faint dwarfs. We found that the halo mass function shows good agreement with the Sheth & Tormen fitting function down to ~107 M ⊙. We have analyzed the spherically averaged density profiles of the three most massive halos which are of galaxy group size and contain at least 170 million particles. The slopes of these density profiles become shallower than -1 at the innermost radius. We also find a clear correlation of halo concentration with mass. The mass dependence of the concentration parameter cannot be expressed by a single power law, however a simple model based on the Press-Schechter theory proposed by Navarro et al. gives reasonable agreement with this dependence. The spin parameter does not show a correlation with the halo mass. The probability distribution functions for both concentration and spin are well fitted by the log-normal distribution for halos with the masses larger than ~108 M ⊙. The subhalo abundance depends on the halo mass. Galaxy-sized halos have 50% more subhalos than ~1011 M ⊙ halos have.

  2. Lyman-Werner UV escape fractions from primordial haloes

    NASA Astrophysics Data System (ADS)

    Schauer, Anna T. P.; Whalen, Daniel J.; Glover, Simon C. O.; Klessen, Ralf S.

    2015-12-01

    Population III (Pop III) stars can regulate star formation in the primordial Universe in several ways. They can ionize nearby haloes, and even if their ionizing photons are trapped by their own haloes, their Lyman-Werner (LW) photons can still escape and destroy H2 in other haloes, preventing them from cooling and forming stars. LW escape fractions are thus a key parameter in cosmological simulations of early reionization and star formation but have not yet been parametrized for realistic haloes by halo or stellar mass. To do so, we perform radiation hydrodynamical simulations of LW UV escape from 9-120 M⊙ Pop III stars in 105-107 M⊙ haloes with ZEUS-MP. We find that photons in the LW lines (i.e. those responsible for destroying H2 in nearby systems) have escape fractions ranging from 0 to 85 per cent. No LW photons escape the most massive halo in our sample, even from the most massive star. Escape fractions for photons elsewhere in the 11.18-13.6 eV energy range, which can be redshifted into the LW lines at cosmological distances, are generally much higher, being above 60 per cent for all but the least massive stars in the most massive haloes. We find that shielding of H2 by neutral hydrogen, which has been neglected in most studies to date, produces escape fractions that are up to a factor of 3 smaller than those predicted by H2 self-shielding alone.

  3. Halo-Independent Comparison of Direct Dark Matter Detection Data

    DOE PAGESBeta

    Del Nobile, Eugenio

    2014-01-01

    We review the halo-independent formalism that allows comparing data from different direct dark matter detection experiments without making assumptions on the properties of the dark matter halo. We apply this method to spin-independent WIMP-nuclei interactions, for both isospin-conserving and isospin-violating couplings, and to WIMPs interacting through an anomalous magnetic moment.

  4. The Prolate Dark Matter Halo of the Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Hayashi, Kohei; Chiba, Masashi

    2014-07-01

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi & Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.

  5. Separate universe consistency relation and calibration of halo bias

    NASA Astrophysics Data System (ADS)

    Li, Yin; Hu, Wayne; Takada, Masahiro

    2016-03-01

    The linear halo bias is the response of the dark matter halo number density to a long-wavelength fluctuation in the dark matter density. Using abundance matching between separate universe simulations which absorb the latter into a change in the background, we test the consistency relation between the change in a one-point function, the halo mass function, and a two-point function, the halo-matter cross-correlation in the long-wavelength limit. We find excellent agreement between the two at the 1%-2% level for average halo biases between 1 ≲b¯ 1≲4 and no statistically significant deviations at the 4%-5% level out to b¯1≈8 . The halo bias inferred assuming instead a universal mass function is significantly different and inaccurate at the 10% level or more. The separate universe technique provides a way of calibrating the linear halo bias efficiently for even highly biased rare halos in the Λ cold dark matter model. Observational violation of the consistency relation would indicate new physics, e.g. in the dark matter, dark energy, or primordial non-Gaussianity sectors.

  6. Beam halo definitions based upon moments of the particle distribution

    NASA Astrophysics Data System (ADS)

    Allen, C. K.; Wangler, T. P.

    2002-12-01

    Two different parameters for the quantitative description of beam halo are discussed. Both are based on moments of the particle distribution and represent a convenient and model-independent method for quantifying the magnitude of beam halo observed in either spatial or phase-space projections. One parameter is a measure of spatial profile of the beam and has been defined by Wangler and Crandall previously. The current authors defined a new parameter using kinematic invariants to quantify halo formation in 2D phase space. Here we expand the development and present detailed numerical results. Although the spatial-profile parameter and the phase-space halo parameter both reduce to the same value when the distribution has the elliptical symmetry, in general these parameters are not equal. Halo in the 1D spatial profiles is relatively easily measured, but is variable as the beam distribution evolves and can hide as it rotates in phase space. The 2D phase-space halo is more difficult to measure, but it varies more smoothly as the halo evolves. It provides a more reliable characterization of the halo as an intrinsic property of the beam.

  7. The prolate dark matter halo of the Andromeda galaxy

    SciTech Connect

    Hayashi, Kohei; Chiba, Masashi E-mail: chiba@astr.tohoku.ac.jp

    2014-07-01

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi and Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.

  8. Secular Damping of Stellar Bars in Spinning Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Long, Stacy; Shlosman, Isaac; Heller, Clayton

    2014-03-01

    We demonstrate using numerical simulations of isolated galaxies that growth of stellar bars in spinning dark matter halos is heavily suppressed in the secular phase of evolution. In a representative set of models, we show that for values of the cosmological spin parameter λ >~ 0.03, bar growth (in strength and size) becomes increasingly quenched. Furthermore, the slowdown of the bar pattern speed weakens considerably with increasing λ until it ceases completely. The terminal structure of the bars is affected as well, including extent and shape of their boxy/peanut bulges. The essence of this effect lies in the modified angular momentum exchange between the disk and the halo facilitated by the bar. For the first time we have demonstrated that a dark matter halo can emit and not purely absorb angular momentum. Although the halo as a whole is not found to emit, the net transfer of angular momentum from the disk to the halo is significantly reduced or completely eliminated. The paradigm shift implies that the accepted view that disks serve as sources of angular momentum and halos serve as sinks must be revised. Halos with λ >~ 0.03 are expected to form a substantial fraction, based on the lognormal distribution of λ. The dependence of secular bar evolution on halo spin, therefore, implies profound corollaries for the cosmological evolution of galactic disks.

  9. HALOE Algorithm Improvements for Upper Tropospheric Sounding

    NASA Technical Reports Server (NTRS)

    Thompson, Robert E.

    2001-01-01

    This report details the ongoing efforts by GATS, Inc., in conjunction with Hampton University and University of Wyoming, in NASA's Mission to Planet Earth UARS Science Investigator Program entitled "HALOE Algorithm Improvements for Upper Tropospheric Sounding." The goal of this effort is to develop and implement major inversion and processing improvements that will extend HALOE measurements further into the troposphere. In particular, O3, H2O, and CH4 retrievals may be extended into the middle troposphere, and NO, HCl and possibly HF into the upper troposphere. Key areas of research being carried out to accomplish this include: pointing/tracking analysis; cloud identification and modeling; simultaneous multichannel retrieval capability; forward model improvements; high vertical-resolution gas filter channel retrievals; a refined temperature retrieval; robust error analyses; long-term trend reliability studies; and data validation. The current (first year) effort concentrates on the pointer/tracker correction algorithms, cloud filtering and validation, and multichannel retrieval development. However, these areas are all highly coupled, so progress in one area benefits from and sometimes depends on work in others.

  10. Halogen Occultation Experiment (HALOE) optical filter characterization

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.

    1989-01-01

    The Halogen Occultation Experiment (HALOE) is a solar occultation experiment that will fly on the Upper Atmosphere Research Satellite to measure mixing ratio profiles of O3, H2O, NO2, NO, CH4, HCl, and HF. The inversion of the HALOE data will be critically dependent on a detailed knowledge of eight optical filters. A filter characterization program was undertaken to measure in-band transmissions, out-of-band transmissions, in-band transmission shifts with temperature, reflectivities, and age stability. Fourier Transform Infrared Spectrometers were used to perform measurements over the spectral interval 400/cm to 6300/cm (25 micrometers to 1.6 micrometers). Very high precision (0.1 percent T) in-band measurements and very high resolution (0.0001 percent T) out-of-band measurements have been made. The measurements revealed several conventional leaks at 0.01 percent transmission and greatly enhanced (1,000) leaks to the 2-element filters when placed in a Fabry-Perot cavity. Filter throughput changes by 5 percent for a 25 C change in filter temperature.

  11. MACHO (MAssive Compact Halo Objects) Data

    DOE Data Explorer

    The primary aim of the MACHO Project is to test the hypothesis that a significant fraction of the dark matter in the halo of the Milky Way is made up of objects like brown dwarfs or planets: these objects have come to be known as MACHOs, for MAssive Compact Halo Objects. The signature of these objects is the occasional amplification of the light from extragalactic stars by the gravitational lens effect. The amplification can be large, but events are extremely rare: it is necessary to monitor photometrically several million stars for a period of years in order to obtain a useful detection rate. For this purpose MACHO has a two channel system that employs eight CCDs, mounted on the 50 inch telescope at Mt. Stromlo. The high data rate (several GBytes per night) is accommodated by custom electronics and on-line data reduction. The Project has taken more than 27,000 images with this system since June 1992. Analysis of a subset of these data has yielded databases containing light curves in two colors for 8 million stars in the LMC and 10 million in the bulge of the Milky Way. A search for microlensing has turned up four candidates toward the Large Magellanic Cloud and 45 toward the Galactic Bulge. The web page for data provides links to MACHO Project data portals and various specialized interfaces for viewing or searching the data. (Specialized Interface)

  12. HALOE Algorithm Improvements for Upper Tropospheric Sounding

    NASA Technical Reports Server (NTRS)

    McHugh, Martin J.; Gordley, Larry L.; Russell, James M., III; Hervig, Mark E.

    1999-01-01

    This report details the ongoing efforts by GATS, Inc., in conjunction with Hampton University and University of Wyoming, in NASA's Mission to Planet Earth UARS Science Investigator Program entitled "HALOE Algorithm Improvements for Upper Tropospheric Soundings." The goal of this effort is to develop and implement major inversion and processing improvements that will extend HALOE measurements further into the troposphere. In particular, O3, H2O, and CH4 retrievals may be extended into the middle troposphere, and NO, HCl and possibly HF into the upper troposphere. Key areas of research being carried out to accomplish this include: pointing/tracking analysis; cloud identification and modeling; simultaneous multichannel retrieval capability; forward model improvements; high vertical-resolution gas filter channel retrievals; a refined temperature retrieval; robust error analyses; long-term trend reliability studies; and data validation. The current (first-year) effort concentrates on the pointer/tracker correction algorithms, cloud filtering and validation, and multi-channel retrieval development. However, these areas are all highly coupled, so progress in one area benefits from and sometimes depends on work in others.

  13. HALOE Algorithm Improvements for Upper Tropospheric Sounding

    NASA Technical Reports Server (NTRS)

    Thompson, Robert Earl; McHugh, Martin J.; Gordley, Larry L.; Hervig, Mark E.; Russell, James M., III; Douglass, Anne (Technical Monitor)

    2001-01-01

    This report details the ongoing efforts by GATS, Inc., in conjunction with Hampton University and University of Wyoming, in NASA's Mission to Planet Earth Upper Atmospheric Research Satellite (UARS) Science Investigator Program entitled 'HALOE Algorithm Improvements for Upper Tropospheric Sounding.' The goal of this effort is to develop and implement major inversion and processing improvements that will extend Halogen Occultation Experiment (HALOE) measurements further into the troposphere. In particular, O3, H2O, and CH4 retrievals may be extended into the middle troposphere, and NO, HCl and possibly HF into the upper troposphere. Key areas of research being carried out to accomplish this include: pointing/tracking analysis; cloud identification and modeling; simultaneous multichannel retrieval capability; forward model improvements; high vertical-resolution gas filter channel retrievals; a refined temperature retrieval; robust error analyses; long-term trend reliability studies; and data validation. The current (first year) effort concentrates on the pointer/tracker correction algorithms, cloud filtering and validation, and multichannel retrieval development. However, these areas are all highly coupled, so progress in one area benefits from and sometimes depends on work in others.

  14. Frost halos from supercooled water droplets

    PubMed Central

    Jung, Stefan; Tiwari, Manish K.; Poulikakos, Dimos

    2012-01-01

    Water freezing on solid surfaces is ubiquitous in nature. Even though icing/frosting impairs the performance and safety in many processes, its mechanism remains inadequately understood. Changing atmospheric conditions, surface properties, the complexity of icing physics, and the unorthodox behavior of water are the primary factors that make icing and frost formation intriguing and difficult to predict. In addition to its unquestioned scientific and practical importance, unraveling the frosting mechanism under different conditions is a prerequisite to develop “icephobic” surfaces, which may avoid ice formation and contamination. In this work we demonstrate that evaporation from a freezing supercooled sessile droplet, which starts explosively due to the sudden latent heat released upon recalescent freezing, generates a condensation halo around the droplet, which crystallizes and drastically affects the surface behavior. The process involves simultaneous multiple phase transitions and may also spread icing by initiating sequential freezing of neighboring droplets in the form of a domino effect and frost propagation. Experiments under controlled humidity conditions using substrates differing up to three orders of magnitude in thermal conductivity establish that a delicate balance between heat diffusion and vapor transport determines the final expanse of the frozen condensate halo, which, in turn, controls frost formation and propagation. PMID:23012410

  15. Inhomogeneous chemical enrichment in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kobayashi, Chiaki

    2016-08-01

    In a galaxy, chemical enrichment takes place in an inhomogeneous fashion, and the Galactic Halo is one of the places where the inhomogeneous effects are imprinted and can be constrained from observations. I show this using my chemodynamical simulations of Milky Way type galaxies. The scatter in the elemental abundances originate from radial migration, merging/accretion of satellite galaxies, local variation of star formation and chemical enrichment, and intrinsic variation of nucleosynthesis yields. In the simulated galaxies, there is no strong age-metallicity relation. This means that the most metal-poor stars are not always the oldest stars, and can be formed in chemically unevolved clouds at later times. The long-lifetime sources of chemical enrichment such as asymptotic giant branch stars or neutron star mergers can contribute at low metallicities. The intrinsic variation of yields are important in the early Universe or metal-poor systems such as in the Galactic halo. The carbon enhancement of extremely metal-poor (EMP) stars can be best explained by faint supernovae, the low [α/Fe] ratios in some EMP stars naturally arise from low-mass (~ 13 - 15M ⊙) supernovae, and finally, the [α/Fe] knee in dwarf spheroidal galaxies can be produced by subclasses of Type Ia supernovae such as SN 2002cx-like objects and sub-Chandrasekhar mass explosions.

  16. Cosmic ray transport in galaxy clusters: implications for radio halos, gamma-ray signatures, and cool core heating

    NASA Astrophysics Data System (ADS)

    Enßlin, T.; Pfrommer, C.; Miniati, F.; Subramanian, K.

    2011-03-01

    We investigate the interplay of cosmic ray (CR) propagation and advection in galaxy clusters. Propagation in form of CR diffusion and streaming tends to drive the CR radial profiles towards being flat, with equal CR number density everywhere. Advection of CR by the turbulent gas motions tends to produce centrally enhanced profiles. We assume that the CR streaming velocity is of the order of the sound velocity. This is motivated by plasma physical arguments. The CR streaming is then usually larger than typical advection velocities and becomes comparable or lower than this only for periods with trans- and super-sonic cluster turbulence. As a consequence a bimodality of the CR spatial distribution results. Strongly turbulent, merging clusters should have a more centrally concentrated CR energy density profile with respect to relaxed ones with very subsonic turbulence. This translates into a bimodality of the expected diffuse radio and gamma-ray emission of clusters, since more centrally concentrated CR will find higher target densities for hadronic CR proton interactions, higher plasma wave energy densities for CR electron and proton re-acceleration, and stronger magnetic fields. Thus, the observed bimodality of cluster radio halos appears to be a natural consequence of the interplay of CR transport processes, independent of the model of radio halo formation, be it hadronic interactions of CR protons or re-acceleration of low-energy CR electrons. Energy dependence of the CR propagation should lead to spectral steepening of dying radio halos. Furthermore, we show that the interplay of CR diffusion with advection implies first order CR re-acceleration in the pressure-stratified atmospheres of galaxy clusters. Finally, we argue that CR streaming could be important in turbulent cool cores of galaxy clusters since it heats preferentially the central gas with highest cooling rate.

  17. SUBSTRUCTURE IN THE STELLAR HALOS OF THE AQUARIUS SIMULATIONS

    SciTech Connect

    Helmi, Amina; Cooper, A. P.; Cole, S.; Frenk, C. S.; White, S. D. M.; Navarro, J. F.

    2011-05-20

    We characterize the substructure in the simulated stellar halos of Cooper et al. which were formed by the disruption of satellite galaxies within the cosmological N-body simulations of galactic halos of the Aquarius project. These stellar halos exhibit a wealth of tidal features: broad overdensities and very narrow faint streams akin to those observed around the Milky Way. The substructures are distributed anisotropically on the sky, a characteristic that should become apparent in the next generation of photometric surveys. The normalized RMS of the density of stars on the sky appears to be systematically larger for our halos compared with the value estimated for the Milky Way from main-sequence turnoff stars in the Sloan Digital Sky Survey. We show that this is likely to be due in part to contamination by faint QSOs and redder main-sequence stars, and might suggest that {approx}10% of the Milky Way halo stars have formed in situ.

  18. The Effects of Angular Momentum on Halo Profiles

    NASA Astrophysics Data System (ADS)

    Lentz, Erik W.; Quinn, Thomas R.; Rosenberg, Leslie J.

    2016-05-01

    The near universality of DM halo density profiles provided by N-body simulations proved to be robust against changes in total mass density, power spectrum, and some forms of initial velocity dispersion. Here we study the effects of coherently spinning up an isolated DM-only progenitor on halo structure. Halos with spins within several standard deviations of the simulated mean (λ ≲ 0.20) produce profiles with negligible deviations from the universal form. Only when the spin becomes quite large (λ ≳ 0.20) do departures become evident. The angular momentum distribution also exhibits a near universal form, which is also independent of halo spin up to λ ≲ 0.20. A correlation between these epidemic profiles and the presence of a strong bar in the virialized halo is also observed. These bar structures bear resemblance to the radial orbit instability in the rotationless limit.

  19. The X-ray halo of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Bode, M. F.; Norwell, G. A.; Priedhorsky, W. C.; Evans, A.

    1985-01-01

    Four Einstein HRI images of Cygnus X-1 were examined for the presence of a halo due to scattering of X-rays by interstellar grains. The analysis technique exploits the intrinsic aperiodic variability of the source to map the point response function of the optics. A residual, nonvariable component to the surface brightness distribution (comprising approximately more than 12 percent of the source flux) is interpreted as a scattered halo. The halo flux does not reflect the short term time variability of the central source as it is smoothed by differential time delays of order days. The Cygnus X-1 halo is consistent with those of other sources derived in previous studies using different techniques. Comparison is made with a scattering model, and the sensitivity of the halo flux to maximal grain size is demonstrated.

  20. The starformation driven interstellar disk-halo connection

    NASA Astrophysics Data System (ADS)

    Dettmar, Ralf-Jürgen

    2005-08-01

    The evidence for starformation in the disks of spiral galaxies driving the disk-halo interaction is briefly reviewed. It is argued that diffuse ionized gas (DIG) in the halos of edge-on disk galaxies traces the presence of extraplanar gas well since it correlates with the star formation rate in the underlying disk as well as with other gaseous phases and components of the ISM such as X-ray hot gas, cosmic rays, and magnetic fields. The dependence on the starformation rate is demonstrated using a survey of H+ halos with more than 70 objects. This survey allows us to establish a minimum energy release per unit area that is required to start the disk-halo mass exchange. Observations of extraplanar HII regions let us conclude that also molecular hydrogen must be present. In addition, well ordered magnetic field in the gaseous halos can be deduced from the polarization of synchrotron radiocontinuum maps.

  1. STATISTICS OF DARK MATTER HALOS FROM THE EXCURSION SET APPROACH

    SciTech Connect

    Lapi, A.; Salucci, P.; Danese, L.

    2013-08-01

    We exploit the excursion set approach in integral formulation to derive novel, accurate analytic approximations of the unconditional and conditional first crossing distributions for random walks with uncorrelated steps and general shapes of the moving barrier; we find the corresponding approximations of the unconditional and conditional halo mass functions for cold dark matter (DM) power spectra to represent very well the outcomes of state-of-the-art cosmological N-body simulations. In addition, we apply these results to derive, and confront with simulations, other quantities of interest in halo statistics, including the rates of halo formation and creation, the average halo growth history, and the halo bias. Finally, we discuss how our approach and main results change when considering random walks with correlated instead of uncorrelated steps, and warm instead of cold DM power spectra.

  2. Zooming in on accretion - I. The structure of halo gas

    NASA Astrophysics Data System (ADS)

    Nelson, Dylan; Genel, Shy; Pillepich, Annalisa; Vogelsberger, Mark; Springel, Volker; Hernquist, Lars

    2016-08-01

    We study the properties of gas in and around 1012 M⊙ haloes at z = 2 using a suite of high-resolution cosmological hydrodynamic `zoom' simulations. We quantify the thermal and dynamical structure of these gaseous reservoirs in terms of their mean radial distributions and angular variability along different sightlines. With each halo simulated at three levels of increasing resolution, the highest reaching a baryon mass resolution of ˜10 000 solar masses, we study the interface between filamentary inflow and the quasi-static hot halo atmosphere. We highlight the discrepancy between the spatial resolution available in the halo gas as opposed to within the galaxy itself, and find that stream morphologies become increasingly complex at higher resolution, with large coherent flows revealing density and temperature structure at progressively smaller scales. Moreover, multiple gas components co-exist at the same radius within the halo, making radially averaged analyses misleading. This is particularly true where the hot, quasi-static, high entropy halo atmosphere interacts with cold, rapidly inflowing, low entropy accretion. Haloes at this mass have a well-defined virial shock, associated with a sharp jump in temperature and entropy at ≳ 1.25 rvir. The presence, radius, and radial width of this boundary feature, however, vary not only from halo to halo, but also as a function of angular direction, covering roughly ˜75 per cent of the 4π sphere. We investigate the process of gas virialization as imprinted in the halo structure, and discuss different modes for the accretion of gas from the intergalactic medium.

  3. Zooming in on accretion - I. The structure of halo gas

    NASA Astrophysics Data System (ADS)

    Nelson, Dylan; Genel, Shy; Pillepich, Annalisa; Vogelsberger, Mark; Springel, Volker; Hernquist, Lars

    2016-05-01

    We study the properties of gas in and around 1012 M⊙ haloes at z = 2 using a suite of high-resolution cosmological hydrodynamic `zoom' simulations. We quantify the thermal and dynamical structure of these gaseous reservoirs in terms of their mean radial distributions and angular variability along different sightlines. With each halo simulated at three levels of increasing resolution, the highest reaching a baryon mass resolution of ˜10,000 solar masses, we study the interface between filamentary inflow and the quasi-static hot halo atmosphere. We highlight the discrepancy between the spatial resolution available in the halo gas as opposed to within the galaxy itself, and find that stream morphologies become increasingly complex at higher resolution, with large coherent flows revealing density and temperature structure at progressively smaller scales. Moreover, multiple gas components co-exist at the same radius within the halo, making radially averaged analyses misleading. This is particularly true where the hot, quasi-static, high entropy halo atmosphere interacts with cold, rapidly inflowing, low entropy accretion. Haloes at this mass have a well-defined virial shock, associated with a sharp jump in temperature and entropy at ≳ 1.25 rvir. The presence, radius, and radial width of this boundary feature, however, vary not only from halo to halo, but also as a function of angular direction, covering roughly ˜ 75% of the 4π sphere. We investigate the process of gas virialization as imprinted in the halo structure, and discuss different modes for the accretion of gas from the intergalactic medium.

  4. Zooming in on accretion - I. The structure of halo gas

    NASA Astrophysics Data System (ADS)

    Nelson, Dylan; Genel, Shy; Pillepich, Annalisa; Vogelsberger, Mark; Springel, Volker; Hernquist, Lars

    2016-08-01

    We study the properties of gas in and around 10^12 solar mass halos at z=2 using a suite of high-resolution cosmological hydrodynamic 'zoom' simulations. We quantify the thermal and dynamical structure of these gaseous reservoirs in terms of their mean radial distributions and angular variability along different sightlines. With each halo simulated at three levels of increasing resolution, the highest reaching a baryon mass resolution of ~10,000 solar masses, we study the interaction of filamentary inflow and the quasi-static hot halo atmosphere. We highlight the discrepancy between the spatial resolution available in the halo gas as opposed to within the galaxy itself, and find that stream morphologies become increasingly complex at higher resolution, with large coherent flows revealing density and temperature structure at progressively smaller scales. Moreover, multiple gas components co-exist at the same radius within the halo, making radially averaged analyses misleading. This is particularly true where the hot, quasi-static, high entropy halo atmosphere interacts with cold, rapidly inflowing, low entropy accretion. We investigate the process of gas virialization and identify different regimes for the heating of gas as it accretes from the intergalactic medium. Haloes at this mass have a well-defined virial shock, associated with a sharp jump in temperature and entropy at ~1.25 r_vir. The presence, radius, and radial width of this boundary feature, however, vary not only from halo to halo, but also as a function of angular direction, covering roughly ~85% of the 4pi sphere. Our findings are relevant for the proper interpretation of observations pertaining to the circumgalactic medium, including evidence for large amounts of cold gas surrounding massive haloes at intermediate redshifts.

  5. Kinematic imprint of clumpy disk formation on halo objects

    NASA Astrophysics Data System (ADS)

    Inoue, Shigeki

    2013-02-01

    Context. Clumpy disk galaxies in the distant universe, at redshift of z ≳ 1, have been observed to host several giant clumps in their disks. They are thought to correspond to early formative stages of disk galaxies. On the other hand, halo objects, such as old globular clusters and halo stars, are likely to consist of the oldest stars in a galaxy (age ≳ 10 Gyr), clumpy disk formation can thus be presumed to take place in a pre-existing halo system. Aims: Giant clumps orbit in the same direction in a premature disk and are so massive that they may be expected to interact gravitationally with halo objects and exercise influence on the kinematic state of the halo. Accordingly, I scrutinize the possibility that the clumps leave a kinematic imprint of the clumpy disk formation on a halo system. Methods: I perform a restricted N-body calculation with a toy model to study the kinematic influence on a halo by orbital motions of clumps and the dependence of the results on masses (mass loss), number, and orbital radii of the clumps. Results: I show that halo objects can catch clump motions and acquire disky rotation in a dynamical friction time scale of the clumps, ~0.5 Gyr. The influence of clumps is limited within a region around the disk, while the halo system shows vertical gradients of net rotation velocity and orbital eccentricity. The significance of the kinematic influence strongly depends on the clump masses; the lower limit of postulated clump mass would be ~5 × 108 M⊙. The result also depends on whether the clumps are subjected to rapid mass loss or not, which is an open question under debate in recent studies. The existence of such massive clumps is not unrealistic. I therefore suggest that the imprints of past clumpy disk formation could remain in current galactic halos.

  6. Halo or skin in the excited states of some light mirror nuclei

    NASA Astrophysics Data System (ADS)

    Chen, J. G.; Cai, X. Z.; Shen, W. Q.; Ma, Y. G.; Ren, Z. Z.; Zhang, H. Y.; Jiang, W. Z.; Zhong, C.; Wei, Y. B.; Guo, W.; Zhou, X. F.; Wang, K.; Ma, G. L.

    2005-01-01

    The properties of three pairs of mirror nuclei 13N- 13C, 15N- 15O and 21Na- 21Ne (these mirror nuclei are all made of a good inert core plus an unpaired valence nucleon) are investigated by using the nonlinear relativistic mean-field (RMF) theory. It is found that the calculated binding energies with two different parameter sets are very close to the experimental ones for both the ground states and the excited states except for the large deformed nuclei. The calculations show that the 2 s1/2 excited states of 15N and of 21Na are both weakly bound with a proton halo and a proton skin (or a pigmy proton skin), respectively. In addition, the 1 d5/2 excited state of 13C and the 2 s1/2 excited state of 15O are also weakly bound with a neutron skin, respectively. The ratio of the valence nucleon radius to matter radius is deduced and it can be regarded as an additional criterion for the existence of exotic structure. The unbound 2 s1/2 and 1 d5/2 excited states of 13N are also discussed.

  7. Halo plasma heating by neutral beam injection in TMX-U

    SciTech Connect

    Hsu, W.L.; Bauer, W.; Kerst, R.A.; Wilson, K.L.; Simonen, T.C.; Foote, J.H.; Pickles, W.L.

    1985-05-01

    The electron temperature and density of the halo in TMX-U have been measured by Langmuir probes to study the heating of the halo plasma by neutral beam injection. This study is motivated by the recent interest in using a pair of halo recyclers to enhance the halo density and thereby increase halo shielding. In present TMX-U operation, without halo recyclers, a halo density of 2 x 10/sup 12/ cm/sup -3/ with electron temperature of 20 eV has been measured during the heating phase with neutral beam injection only. A halo power balance model incorporating several heating mechanisms resulting from neutral beam injection is described. The model accurately predicts the measured temperatures. At the halo density range that one expects to achieve with halo recyclers, the model predicts the existing TMX-U neutral beam sources to heat the halo to at least 30 eV.

  8. Neutron Skins and Halo Orbits in the sd and pf Shells.

    PubMed

    Bonnard, J; Lenzi, S M; Zuker, A P

    2016-05-27

    The strong dependence of Coulomb energies on nuclear radii makes it possible to extract the latter from calculations of the former. The resulting estimates of neutron skins indicate that two mechanisms are involved. The first one-isovector monopole polarizability-amounts to noting that when a particle is added to a system it drives the radii of neutrons and protons in different directions, tending to equalize the radii of both fluids independently of the neutron excess. This mechanism is well understood and the Duflo-Zuker (small) neutron skin values derived 14 years ago are consistent with recent measures and estimates. The alternative mechanism involves halo orbits whose huge sizes tend to make the neutron skins larger and have a subtle influence on the radial behavior of sd and pf shell nuclei. In particular, they account for the sudden rise in the isotope shifts of nuclei beyond N=28 and the near constancy of radii in the A=40-56 region. This mechanism, detected here for the first time, is not well understood and may well go beyond the Efimov physics usually associated with halo orbits. PMID:27284653

  9. Neutron density distribution and the halo structure of {sup 22}C

    SciTech Connect

    Sharma, Manjari; Khan, Z. A.; Haider, W.; Bhagwat, A.; Gambhir, Y. K.

    2011-03-15

    The recently measured reaction cross sections for the neutron-rich carbon isotopes ({sup 19}C, {sup 20}C, and {sup 22}C) on a proton target at 40 A MeV are analyzed using the finite range Glauber model (FRGM) and the microscopic optical potential calculated within the Brueckner-Hartree-Fock formalism (BHF). In FRGM nucleon-nucleon cross sections are used, while in the latter (BHF), Hamada-Johnston, Urbana v-14, and the Argonne v-18 internucleon potentials are employed to calculate the microscopic optical potential. The required nucleon density distributions are calculated within the relativistic mean-field (RMF) framework. To test the halo structure, the extended neutron density distribution for {sup 22}C is also used. The analysis reveals that the BHF results of all three internucleon potentials are very close to each other, and also agree with the corresponding results of the FRGM. Our results, using RMF densities, are in agreement with the experimental data for all isotopes of carbon except {sup 22}C, for which we require extended neutron density distribution, indicating a halo structure.

  10. Neutron Skins and Halo Orbits in the s d and p f Shells

    NASA Astrophysics Data System (ADS)

    Bonnard, J.; Lenzi, S. M.; Zuker, A. P.

    2016-05-01

    The strong dependence of Coulomb energies on nuclear radii makes it possible to extract the latter from calculations of the former. The resulting estimates of neutron skins indicate that two mechanisms are involved. The first one—isovector monopole polarizability—amounts to noting that when a particle is added to a system it drives the radii of neutrons and protons in different directions, tending to equalize the radii of both fluids independently of the neutron excess. This mechanism is well understood and the Duflo-Zuker (small) neutron skin values derived 14 years ago are consistent with recent measures and estimates. The alternative mechanism involves halo orbits whose huge sizes tend to make the neutron skins larger and have a subtle influence on the radial behavior of s d and p f shell nuclei. In particular, they account for the sudden rise in the isotope shifts of nuclei beyond N =28 and the near constancy of radii in the A =40 - 56 region. This mechanism, detected here for the first time, is not well understood and may well go beyond the Efimov physics usually associated with halo orbits.

  11. Jupiter's Main Ring/Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (28.5 miles) per picture element (pixel) along Jupiter's rings. Because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow, peering back toward the Sun; the ring was approximately 2.3 million kilometers (1.4 million miles) away. The arc on the far right of the image is produced when sunlight is scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts - - a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, outside the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the figure's far left side. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. Some radial structure is barely visible across the ring's ansa (top image). A faint mist of particles can be seen above and below the main rings. This vertically extended 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces pushing the smallest grains out of the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. To accentuate faint features in the bottom image of the ring halo, different brightnesses are shown through color. Brightest features are white or yellow and the

  12. GCN: a gaseous Galactic halo stream?

    NASA Astrophysics Data System (ADS)

    Jin, Shoko

    2010-10-01

    We show that a string of HI clouds that form part of the high-velocity cloud complex known as GCN is a probable gaseous stream extending over more than 50° in the Galactic halo. The radial velocity gradient along the stream is used to deduce transverse velocities as a function of distance, enabling a family of orbits to be computed. We find that a direction of motion towards the Galactic disc coupled with a mid-stream distance of ~20kpc provides a good match to the observed sky positions and radial velocities of the HI clouds comprising the stream. With an estimated mass of 105Msolar, its progenitor is likely to be a dwarf galaxy. However, no stellar counterpart has been found amongst the currently known Galactic dwarf spheroidal galaxies or stellar streams and the exact origin of the stream is therefore currently unknown.

  13. The formation of the smooth halo component

    NASA Astrophysics Data System (ADS)

    Peñarrubia, Jorge

    2016-08-01

    The detection and characterization of debris in the integral-of-motion space is a promising avenue to uncover the hierarchical formation of the Milky Way. Yet, the fact that the integrals do not remain constant during the assembly process adds considerable complexity to this approach. Indeed, in time-dependent potentials tidal substructures tend to be effaced from the integral-of-motion space through an orbital diffusion process, which naturally leads to the formation of a `smooth' stellar halo. In this talk I will introduce a new probability theory that describes the evolution of collisionless systems subject to a time-dependent potential. The new theory can be used to reconstruct the hierarchical assembly of our Galaxy through modelling the observed distribution of accreted stars in the integral-of-motion space.

  14. Matter Radii of Light Halo Nuclei

    NASA Astrophysics Data System (ADS)

    Al-Khalili, J. S.; Tostevin, J. A.

    1996-05-01

    We reexamine the matter radii of diffuse halo nuclei, as deduced from reaction cross section measurements at high energy. Careful consideration is given to the intrinsic few-body structure of these projectiles and the adiabatic nature of the projectile-target interaction. Using 11Li, 11Be, and 8B as examples we show that data require significantly larger matter radii than previously reported. The revised value for 11Li of 3.55 fm is consistent with three-body models with significant 1s-intruder state components, which reproduce experimental 9Li momentum distributions following 11Li breakup, but were hitherto thought to be at variance with cross section data.

  15. Solitonic axion condensates modeling dark matter halos

    SciTech Connect

    Castañeda Valle, David Mielke, Eckehard W.

    2013-09-15

    Instead of fluid type dark matter (DM), axion-like scalar fields with a periodic self-interaction or some truncations of it are analyzed as a model of galaxy halos. It is probed if such cold Bose–Einstein type condensates could provide a viable soliton type interpretation of the DM ‘bullets’ observed by means of gravitational lensing in merging galaxy clusters. We study solitary waves for two self-interacting potentials in the relativistic Klein–Gordon equation, mainly in lower dimensions, and visualize the approximately shape-invariant collisions of two ‘lump’ type solitons. -- Highlights: •An axion model of dark matter is considered. •Collision of axion type solitons are studied in a two dimensional toy model. •Relations to dark matter collisions in galaxy clusters are proposed.

  16. Reflection halo twins: subsun and supersun.

    PubMed

    Können, Gunther P; van der Werf, Siebren Y

    2011-10-01

    From an aircraft, a short distinct vertical structure is sometimes seen above the setting sun. Such a feature can be understood as a halo, which is the counterpart of the well-known subsun. Whereas the latter arises from reflections off basal faces of plate-oriented ice crystals illuminated from above, what we call the supersun emerges when these crystals are illuminated from below. The supersun occurs when the sun is below the true horizon and is only visible from elevated positions. The curvature of the Earth causes the ensemble of reflecting crystal faces to act as a hollow mirror and the supersun appears as a vertical band of uniform width, extending from the sun upwards to its supersolar point. We discuss the geometrical properties of the phenomenon and simulate its shape and radiance distribution with an extended version of an atmospheric ray-tracing program. PMID:22016250

  17. Halo Substructure and the Power Spectrum

    NASA Astrophysics Data System (ADS)

    Zentner, Andrew R.; Bullock, James S.

    2003-11-01

    We present a semianalytic model to investigate the merger history, destruction rate, and survival probability of substructure in hierarchically formed dark matter halos and use it to study the substructure content of halos as a function of input primordial power spectrum. For a standard cold dark matter ``concordance'' cosmology (ΛCDM n=1, σ8=0.95) we successfully reproduce the subhalo velocity function and radial distribution profile seen in N-body simulations and determine that the rate of merging and disruption peaks ~10-12 Gyr in the past for Milky Way-like halos, while surviving substructures are typically accreted within the last ~0-8 Gyr. We explore power spectra with normalizations and spectral ``tilts'' spanning the ranges σ8~=1-0.65 and n~=1-0.8, and include a ``running-index'' model with dn/dlnk=-0.03 similar to the best-fit model discussed in the first-year Wilkinson Microwave Anisotropy Probe (WMAP) report. We investigate spectra with truncated small-scale power, including a broken-scale inflation model and three warm dark matter cases with mW=0.75-3.0 keV. We find that the mass fraction in substructure is relatively insensitive to the tilt and overall normalization of the primordial power spectrum. All of the CDM-type models yield projected substructure mass fractions that are consistent with, but on the low side, of published estimates from strong lens systems: f9=0.4%-1.5% (64th percentile) for subhalos smaller than 109 Msolar within projected cylinders of radius r<10 kpc. Truncated models produce significantly smaller fractions, f9=0.02%-0.2% for mW~=1 keV, and are disfavored by lensing estimates. This suggests that lensing and similar probes can provide a robust test of the CDM paradigm and a powerful constraint on broken-scale inflation/warm particle masses, including masses larger than the ~1 keV upper limits of previous studies. We compare our predicted subhalo velocity functions with the dwarf satellite population of the Milky Way. Assuming

  18. Elastic proton-proton scattering at RHIC

    SciTech Connect

    Yip, K.

    2011-09-03

    Here we describe elastic proton+proton (p+p) scattering measurements at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run. We present preliminary results of single and double spin asymmetries.

  19. THE STELLAR HALOS OF MASSIVE ELLIPTICAL GALAXIES

    SciTech Connect

    Greene, Jenny E.; Murphy, Jeremy D.; Comerford, Julia M.; Gebhardt, Karl; Adams, Joshua J.

    2012-05-01

    We use the Mitchell Spectrograph (formerly VIRUS-P) on the McDonald Observatory 2.7 m Harlan J. Smith Telescope to search for the chemical signatures of massive elliptical galaxy assembly. The Mitchell Spectrograph is an integral-field spectrograph with a uniquely wide field of view (107'' Multiplication-Sign 107''), allowing us to achieve remarkably high signal-to-noise ratios of {approx}20-70 pixel{sup -1} in radial bins of 2-2.5 times the effective radii of the eight galaxies in our sample. Focusing on a sample of massive elliptical galaxies with stellar velocity dispersions {sigma}{sub *} > 150 km s{sup -1}, we study the radial dependence in the equivalent widths (EW) of key metal absorption lines. By twice the effective radius, the Mgb EWs have dropped by {approx}50%, and only a weak correlation between {sigma}{sub *} and Mgb EW remains. The Mgb EWs at large radii are comparable to those seen in the centers of elliptical galaxies that are {approx} an order of magnitude less massive. We find that the well-known metallicity gradients often observed within an effective radius continue smoothly to 2.5 R{sub e} , while the abundance ratio gradients remain flat. Much like the halo of the Milky Way, the stellar halos of our galaxies have low metallicities and high {alpha}-abundance ratios, as expected for very old stars formed in small stellar systems. Our observations support a picture in which the outer parts of massive elliptical galaxies are built by the accretion of much smaller systems whose star formation history was truncated at early times.

  20. Column density profiles of multiphase gaseous haloes

    NASA Astrophysics Data System (ADS)

    Liang, Cameron J.; Kravtsov, Andrey V.; Agertz, Oscar

    2016-05-01

    We analyse circumgalactic medium (CGM) in a suite of high-resolution cosmological re-simulations of a Milky Way size galaxy and show that CGM properties are quite sensitive to details of star formation-feedback loop modelling. The simulation that produces a realistic late-type galaxy, fails to reproduce existing observations of the CGM. In contrast, simulation that does not produce a realistic galaxy has the predicted CGM in better agreement with observations. This illustrates that properties of galaxies and properties of their CGM provide strong complementary constraints on the processes governing galaxy formation. Our simulations predict that column density profiles of ions are well described by an exponential function of projected distance d: N ∝ e^{-d/h_s}. Simulations thus indicate that the sharp drop in absorber detections at larger distances in observations does not correspond to a `boundary' of an ion, but reflects the underlying steep exponential column density profile. Furthermore, we find that ionization energy of ions is tightly correlated with the scaleheight hs: h_s ∝ E_ion^{0.74}. At z ≈ 0, warm gas traced by low-ionization species (e.g. Mg II and C IV) has hs ≈ 0.03 - 0.07Rvir, while higher ionization species (O VI and Ne VIII) have hs ≈ 0.32 - 0.45Rvir. Finally, the scaleheights of ions in our simulations evolve slower than the virial radius for z ≤ 2, but similarly to the halo scale radius, rs. Thus, we suggest that the column density profiles of galaxies at different redshifts should be scaled by rs rather than the halo virial radius.

  1. Solar wind halo electrons from 1-4 AU

    NASA Technical Reports Server (NTRS)

    Mccomas, D. J.; Bame, S. J.; Feldman, W. C.; Gosling, J. T.; Phillips, J. L.

    1992-01-01

    Observations from the Ulysses solar wind electron spectrometer are used to make a first examination of the evolution of the solar wind suprathermal or halo electron population as a function of heliocentric distance beyond 1 AU. As the core population cools with increasing heliocentric distance, no gap is formed between the core and halo populations. Rather, the halo electrons extend to increasingly lower energies. As predicted previously on theoretical grounds, the ratio of the core electron temperature to the low energy cutoff of the halo population appears to be roughly constant with a value of about 7.5. The total integrated heat flux drops rapidly with increasing heliocentric distance; a best fit power law of R exp -2.36 is found. In addition, it is found that the ratio of the halo to core densities is roughly constant over heliocentric distance with the halo representing 4 percent of the total electron distribution. These results suggest that the halo population may not consist of truly noninteractive test particles over the heliocentric range of 1-4 AU.

  2. Optimal linear reconstruction of dark matter from halo catalogues

    SciTech Connect

    Cai, Yan -Chuan; Bernstein, Gary; Sheth, Ravi K.

    2011-04-01

    The dark matter lumps (or "halos") that contain galaxies have locations in the Universe that are to some extent random with respect to the overall matter distributions. We investigate how best to estimate the total matter distribution from the locations of the halos. We derive the weight function w(M) to apply to dark-matter haloes that minimizes the stochasticity between the weighted halo distribution and its underlying mass density field. The optimal w(M) depends on the range of masses of halos being used. While the standard biased-Poisson model of the halo distribution predicts that bias weighting is optimal, the simple fact that the mass is comprised of haloes implies that the optimal w(M) will be a mixture of mass-weighting and bias-weighting. In N-body simulations, the Poisson estimator is up to 15× noisier than the optimal. Optimal weighting could make cosmological tests based on the matter power spectrum or cross-correlations much more powerful and/or cost effective.

  3. Optimal linear reconstruction of dark matter from halo catalogues

    DOE PAGESBeta

    Cai, Yan -Chuan; Bernstein, Gary; Sheth, Ravi K.

    2011-04-01

    The dark matter lumps (or "halos") that contain galaxies have locations in the Universe that are to some extent random with respect to the overall matter distributions. We investigate how best to estimate the total matter distribution from the locations of the halos. We derive the weight function w(M) to apply to dark-matter haloes that minimizes the stochasticity between the weighted halo distribution and its underlying mass density field. The optimal w(M) depends on the range of masses of halos being used. While the standard biased-Poisson model of the halo distribution predicts that bias weighting is optimal, the simple factmore » that the mass is comprised of haloes implies that the optimal w(M) will be a mixture of mass-weighting and bias-weighting. In N-body simulations, the Poisson estimator is up to 15× noisier than the optimal. Optimal weighting could make cosmological tests based on the matter power spectrum or cross-correlations much more powerful and/or cost effective.« less

  4. Historic halo displays as weather indicator: Criteria and examples

    NASA Astrophysics Data System (ADS)

    Neuhäuser, Dagmar L.; Neuhäuser, Ralph

    2016-04-01

    There are numerous celestial signs reported in historic records, many of them refer to atmospheric ("sub-lunar") phenomena, such as ice halos and aurorae. In an interdisciplinary collaboration between astrophysics and cultural astronomy, we noticed that celestial observations including meteorological phenomena are often misinterpreted, mostly due to missing genuine criteria: especially ice crystal halos were recorded frequently in past centuries for religious reasons, but are mistaken nowadays often for other phenomena like aurorae. Ice halo displays yield clear information on humidity and temperature in certain atmospheric layers, and thereby indicate certain weather patterns. Ancient so-called rain makers used halo observations for weather forecast; e.g., a connection between certain halo displays and rain a few day later is statistically significant. Ice halos exist around sun and moon and are reported for both (they can stay for several days): many near, middle, and far eastern records from day- and night-time include such observations with high frequency. (Partly based on publications on halos by D.L. Neuhäuser & R. Neuhäuser, available at http://www.astro.uni-jena.de/index.php/terra-astronomy.html)

  5. What's In a Proton?

    ScienceCinema

    Brookhaven Lab

    2010-01-08

    Physicist Peter Steinberg explains that fundamental particles like protons are themselves made up of still smaller particles called quarks. He discusses how new particles are produced when quarks are liberated from protons...a process that can be observed

  6. Proton pump inhibitors

    MedlinePlus

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by glands in ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This is a ...

  7. What's In a Proton?

    SciTech Connect

    Brookhaven Lab

    2009-07-08

    Physicist Peter Steinberg explains that fundamental particles like protons are themselves made up of still smaller particles called quarks. He discusses how new particles are produced when quarks are liberated from protons...a process that can be observed

  8. Bar formation and evolution in disc galaxies with gas and a triaxial halo: morphology, bar strength and halo properties

    NASA Astrophysics Data System (ADS)

    Athanassoula, E.; Machado, Rubens E. G.; Rodionov, S. A.

    2013-03-01

    We follow the formation and evolution of bars in N-body simulations of disc galaxies with gas and/or a triaxial halo. We find that both the relative gas fraction and the halo shape play a major role in the formation and evolution of the bar. In gas-rich simulations, the disc stays near-axisymmetric much longer than in gas-poor ones, and, when the bar starts growing, it does so at a much slower rate. Because of these two effects combined, large-scale bars form much later in gas-rich than in gas-poor discs. This can explain the observation that bars are in place earlier in massive red disc galaxies than in blue spirals. We also find that the morphological characteristics in the bar region are strongly influenced by the gas fraction. In particular, the bar at the end of the simulation is much weaker in gas-rich cases. The quality of our simulations is such as to allow us to discuss the question of bar longevity because the resonances are well resolved and the number of gas particles is sufficient to describe the gas flow adequately. In no case did we find a bar which was destroyed. Halo triaxiality has a dual influence on bar strength. In the very early stages of the simulation it induces bar formation to start earlier. On the other hand, during the later, secular evolution phase, triaxial haloes lead to considerably less increase of the bar strength than spherical ones. The shape of the halo evolves considerably with time. We confirm previous results of gas-less simulations that find that the inner part of an initially spherical halo can become elongated and develop a halo bar. However we also show that, on the contrary, in gas-rich simulations, the inner parts of an initially triaxial halo can become rounder with time. The main body of initially triaxial haloes evolves towards sphericity, but in initially strongly triaxial cases it stops well short of becoming spherical. Part of the angular momentum absorbed by the halo generates considerable rotation of the halo

  9. The halo model in a massive neutrino cosmology

    SciTech Connect

    Massara, Elena; Villaescusa-Navarro, Francisco; Viel, Matteo E-mail: villaescusa@oats.inaf.it

    2014-12-01

    We provide a quantitative analysis of the halo model in the context of massive neutrino cosmologies. We discuss all the ingredients necessary to model the non-linear matter and cold dark matter power spectra and compare with the results of N-body simulations that incorporate massive neutrinos. Our neutrino halo model is able to capture the non-linear behavior of matter clustering with a ∼20% accuracy up to very non-linear scales of k = 10 h/Mpc (which would be affected by baryon physics). The largest discrepancies arise in the range k = 0.5 – 1 h/Mpc where the 1-halo and 2-halo terms are comparable and are present also in a massless neutrino cosmology. However, at scales k < 0.2 h/Mpc our neutrino halo model agrees with the results of N-body simulations at the level of 8% for total neutrino masses of < 0.3 eV. We also model the neutrino non-linear density field as a sum of a linear and clustered component and predict the neutrino power spectrum and the cold dark matter-neutrino cross-power spectrum up to k = 1 h/Mpc with ∼30% accuracy. For masses below 0.15 eV the neutrino halo model captures the neutrino induced suppression, casted in terms of matter power ratios between massive and massless scenarios, with a 2% agreement with the results of N-body/neutrino simulations. Finally, we provide a simple application of the halo model: the computation of the clustering of galaxies, in massless and massive neutrinos cosmologies, using a simple Halo Occupation Distribution scheme and our halo model extension.

  10. THE GROWTH OF GALAXY STELLAR MASS WITHIN DARK MATTER HALOS

    SciTech Connect

    Zehavi, Idit; Patiri, Santiago; Zheng Zheng

    2012-02-20

    We study the evolution of stellar mass in galaxies as a function of host halo mass, using the 'MPA' and 'Durham' semi-analytic models, implemented on the Millennium Run simulation. For both models, the stellar mass of the central galaxies increases rapidly with halo mass at the low-mass end and more slowly in halos of larger masses at the three redshifts probed (z {approx} 0, 1, 2). About 45% of the stellar mass in central galaxies in present-day halos less massive than {approx}10{sup 12} h{sup -1} M{sub Sun} is already in place at z {approx} 1, and this fraction increases to {approx}65% for more massive halos. The baryon conversion efficiency into stars has a peaked distribution with halo mass, and the peak location shifts toward lower mass from z {approx} 1 to z {approx} 0. The stellar mass in low-mass halos grows mostly by star formation since z {approx} 1, while in high-mass halos most of the stellar mass is assembled by mergers, reminiscent of 'downsizing'. We compare our findings to empirical results from the Sloan Digital Sky Survey and DEEP2 surveys utilizing galaxy clustering measurements to study galaxy evolution. The theoretical predictions are in qualitative agreement with these phenomenological results, but there are large discrepancies. The most significant one concerns the number of stars already in place in the progenitor galaxies at z {approx} 1, which is about a factor of two larger in both semi-analytic models. We demonstrate that methods studying galaxy evolution from the galaxy-halo connection are powerful in constraining theoretical models and can guide future efforts of modeling galaxy evolution. Conversely, semi-analytic models serve an important role in improving such methods.

  11. A halo bias function measured deeply into voids without stochasticity

    NASA Astrophysics Data System (ADS)

    Neyrinck, Mark C.; Aragón-Calvo, Miguel A.; Jeong, Donghui; Wang, Xin

    2014-06-01

    We study the relationship between dark-matter haloes and matter in the MIP (multum in parvo) N-body simulation ensemble, which allows precision measurements of this relationship, even deeply into voids. What enables this is a lack of discreteness, stochasticity, and exclusion, achieved by averaging over hundreds of possible sets of initial small-scale modes, while holding fixed large-scale modes that give the cosmic web. We find (i) that dark-matter-halo formation is greatly suppressed in voids; there is an exponential downturn at low densities in the otherwise power-law matter-to-halo density bias function. Thus, the rarity of haloes in voids is akin to the rarity of the largest clusters, and their abundance is quite sensitive to cosmological parameters. The exponential downturn appears both in an excursion-set model, and in a model in which fluctuations evolve in voids as in an open universe with an effective Ωm proportional to a large-scale density. We also find that (ii) haloes typically populate the average halo-density field in a super-Poisson way, i.e. with a variance exceeding the mean; and (iii) the rank-order-Gaussianized halo and dark-matter fields are impressively similar in Fourier space. We compare both their power spectra and cross-correlation, supporting the conclusion that one is roughly a strictly increasing mapping of the other. The MIP ensemble especially reveals how halo abundance varies with `environmental' quantities beyond the local matter density; (iv) we find a visual suggestion that at fixed matter density, filaments are more populated by haloes than clusters.

  12. A New Model for Dark Matter Halos Hosting Quasars

    NASA Astrophysics Data System (ADS)

    Cen, Renyue; Safarzadeh, Mohammadtaher

    2015-01-01

    A new model for quasar-hosting dark matter halos, meeting two physical conditions, is put forth. First, significant interactions are taken into consideration to trigger quasar activities. Second, satellites in very massive halos at low redshift are removed from consideration due to their deficiency in cold gas. We analyze the Millennium Simulation to find halos that meet these two conditions and simultaneously match two-point auto-correlation functions of quasars and cross-correlation functions between quasars and galaxies at z = 0.5-3.2. The masses of the quasar hosts found decrease with decreasing redshift, with the mass thresholds being [(2-5) × 1012, (2-5) × 1011, (1-3) × 1011] M ⊙ for median luminosities of ~[1046, 1046, 1045] erg s-1 at z = (3.2, 1.4, 0.53), respectively, an order of magnitude lower than those inferred based on halo occupation distribution modeling. In this model, quasar hosts are primarily massive central halos at z >= 2-3 but increasingly dominated by lower mass satellite halos experiencing major interactions toward lower redshift. However, below z = 1, satellite halos in groups more massive than ~2 × 1013 M ⊙ do not host quasars. Whether for central or satellite halos, imposing the condition of significant interactions substantially boosts the clustering strength compared to the total population with the same mass cut. The inferred lifetimes of quasars at z = 0.5-3.2 of 3-30 Myr are in agreement with observations. Quasars at z ~ 2 would be hosted by halos of mass ~5 × 1011 M ⊙ in this model, compared to ~3 × 1012 M ⊙ previously thought, which would help reconcile with the observed, otherwise puzzling high covering fractions for Lyman limit systems around quasars.

  13. Proton: the particle.

    PubMed

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10(80). Protons were created at 10(-6) -1 second after the Big Bang at ≈1.37 × 10(10) years beforethe present. Proton life span has been experimentally determined to be ≥10(34) years; that is, the age of the universe is 10(-24)th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W(+), W(-), Z(0), and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter. PMID:24074929

  14. Proton: The Particle

    SciTech Connect

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10{sup 80}. Protons were created at 10{sup −6} –1 second after the Big Bang at ≈1.37 × 10{sup 10} years beforethe present. Proton life span has been experimentally determined to be ≥10{sup 34} years; that is, the age of the universe is 10{sup −24}th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W{sup +}, W{sup −}, Z{sup 0}, and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter.

  15. SU-E-T-443: Developmental Technique for Proton Pencil Beam Measurements: Depth Dose

    SciTech Connect

    Arjomandy, B; Lee, T; Schultz, T; Hsi, W; Park, S

    2014-06-01

    Purpose: Measurements of depth dose distribution (DDD) of pencil beam in proton therapy can be challenging and time consuming. We have developed a technique that uses two Bragg peak chambers to expedite these measurements with a high accuracy. Methods and Material: We used a PTW water tank and two PTW 10.5 cm3 Bragg peak chambers; one as a field chamber and the other as a reference chamber to measure DDDs for 100–250 MeV proton pencil beams. The reference chamber was positioned outside of the water tank upstream with respect to field chamber. We used Geant4 Monte Carlo Simulation (MCS) to model the ProTom proton beam to generate DDDs. The MCS generated DDDs were used to account for halo effects of proton pencil beam that are not measureable with Bragg peak chambers. We also used PTW PEAKFINDER to measure DDDs for comparison purpose. Results: We compared measured and MCS DDDs with Continuous Slowing Down Approximation (CSDA) ranges to verify the range of proton beams that were supplied by the manufacturer. The agreements between all DDD with respect to CSDA were within ±0.5 mm. The WET for Bragg peak chamber for energies between 100–250 MeV was 12.7 ± 0.5 mm. The correction for halo effect was negligible below 150 MeV and was in order of ∼5-10% for 150–250 MeV. Conclusion: Use of Bragg Peak chamber as a reference chamber can facilitate DDD measurements in proton pencil beam with a high accuracy. Some corrections will be required to account for halo effect in case of high energy proton beams due to physical size of chamber.

  16. Core-halo issues for a very high intensity beam

    SciTech Connect

    Nghiem, P. A. P.; Chauvin, N.; Uriot, D.

    2014-02-17

    The relevance of classical parameters like beam emittance and envelope used to describe a particle beam is questioned in case of a high intensity accelerator. In the presence of strong space charge effects that affect the beam differently following its density, the much less dense halo part behaves differently from the much denser core part. A method for precisely determining the core-halo limit is proposed, that allows characterizing the halo and the core independently. Results in 1D case are given and discussed. Expected developments extending the method to 2D, 4D, or 6D phase spaces are examined.

  17. Halo current diagnostic system of experimental advanced superconducting tokamak.

    PubMed

    Chen, D L; Shen, B; Granetz, R S; Sun, Y; Qian, J P; Wang, Y; Xiao, B J

    2015-10-01

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well. PMID:26520954

  18. Connecting Galaxies, Halos, and Star Formation Rates Across Cosmic Time

    SciTech Connect

    Conroy, Charlie; Wechsler, Risa H.

    2008-06-02

    A simple, observationally-motivated model is presented for understanding how halo masses, galaxy stellar masses, and star formation rates are related, and how these relations evolve with time. The relation between halo mass and galaxy stellar mass is determined by matching the observed spatial abundance of galaxies to the expected spatial abundance of halos at multiple epochs--i.e. more massive galaxies are assigned to more massive halos at each epoch. This 'abundance matching' technique has been shown previously to reproduce the observed luminosity- and scale-dependence of galaxy clustering over a range of epochs. Halos at different epochs are connected by halo mass accretion histories estimated from N-body simulations. The halo-galaxy connection at fixed epochs in conjunction with the connection between halos across time provides a connection between observed galaxies across time. With approximations for the impact of merging and accretion on the growth of galaxies, one can then directly infer the star formation histories of galaxies as a function of stellar and halo mass. This model is tuned to match both the observed evolution of the stellar mass function and the normalization of the observed star formation rate--stellar mass relation to z {approx} 1. The data demands, for example, that the star formation rate density is dominated by galaxies with M{sub star} {approx} 10{sup 10.0-10.5} M{sub {circle_dot}} from 0 < z < 1, and that such galaxies over these epochs reside in halos with M{sub vir} {approx} 10{sup 11.5-12.5} M{sub {circle_dot}}. The star formation rate--halo mass relation is approximately Gaussian over the range 0 < z < 1 with a mildly evolving mean and normalization. This model is then used to shed light on a number of issues, including (1) a clarification of 'downsizing', (2) the lack of a sharp characteristic halo mass at which star formation is truncated, and (3) the dominance of star formation over merging to the stellar build-up of galaxies

  19. Testing gravity using the environmental dependence of dark matter halos.

    PubMed

    Zhao, Gong-Bo; Li, Baojiu; Koyama, Kazuya

    2011-08-12

    In this Letter, we investigate the environmental dependence of dark matter halos in theories which attempt to explain the accelerated expansion of the Universe by modifying general relativity (GR). Using high-resolution N-body simulations in f(R) gravity models which recover GR in dense environments by virtue of the chameleon mechanism, we find a significant difference, which depends on the environment, between the lensing and dynamical masses of dark matter halos. This environmental dependence of the halo properties can be used as a smoking gun to test GR observationally. PMID:21902382

  20. Stellar halos: a rosetta stone for galaxy formation and cosmology

    NASA Astrophysics Data System (ADS)

    Inglis Read, Justin

    2015-08-01

    Stellar halos make up about a percent of the total stellar mass in galaxies. Yet their old age and long phase mixing times make them living fossil records of galactic history. In this talk, I review the latest simulations of structure formation in our standard Lambda Cold Dark Matter cosmology. I discuss the latest predictions for stellar halos and the relationship between the stellar halo light and the underlying dark matter. Finally, I discuss how these simulations compare to observations of the Milky Way and Andromeda and, ultimately, what this means for our cosmological model and the formation history of the Galaxy.

  1. Halo current diagnostic system of experimental advanced superconducting tokamak

    SciTech Connect

    Chen, D. L.; Shen, B.; Sun, Y.; Qian, J. P. Wang, Y.; Xiao, B. J.; Granetz, R. S.

    2015-10-15

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  2. CONNECTING GALAXIES, HALOS, AND STAR FORMATION RATES ACROSS COSMIC TIME

    SciTech Connect

    Conroy, Charlie; Wechsler, Risa H.

    2009-05-01

    A simple, observationally motivated model is presented for understanding how halo masses, galaxy stellar masses, and star formation rates are related, and how these relations evolve with time. The relation between halo mass and galaxy stellar mass is determined by matching the observed spatial abundance of galaxies to the expected spatial abundance of halos at multiple epochs, i.e., more massive galaxies are assigned to more massive halos at each epoch. This 'abundance matching' technique has been shown previously to reproduce the observed luminosity and scale dependence of galaxy clustering over a range of epochs. Halos at different epochs are connected by halo mass accretion histories estimated from N-body simulations. The halo-galaxy connection at fixed epochs in conjunction with the connection between halos across time provides a connection between observed galaxies across time. With approximations for the impact of merging and accretion on the growth of galaxies, one can then directly infer the star formation histories of galaxies as a function of stellar and halo mass. This model is tuned to match both the observed evolution of the stellar mass function and the normalization of the observed star formation rate (SFR)-stellar mass relation to z {approx} 1. The data demands, for example, that the star formation rate density is dominated by galaxies with M {sub star} {approx} 10{sup 10.0-10.5} M {sub sun} from 0 < z < 1, and that such galaxies over these epochs reside in halos with M {sub vir} {approx} 10{sup 11.5-12.5} M {sub sun}. The SFR-halo mass relation is approximately Gaussian over the range 0 < z < 1 with a mildly evolving mean and normalization. This model is then used to shed light on a number of issues, including (1) a clarification of {sup d}ownsizing{sup ,} (2) the lack of a sharp characteristic halo mass at which star formation is truncated, and (3) the dominance of star formation over merging to the stellar buildup of galaxies with M {sub star

  3. DUST-SCATTERED ULTRAVIOLET HALOS AROUND BRIGHT STARS

    SciTech Connect

    Murthy, Jayant; Henry, Richard Conn

    2011-06-10

    We have discovered ultraviolet (UV) halos extending as far as 5 deg. around four (of six) bright UV stars using data from the Galaxy Evolution Explorer satellite. These halos are due to scattering of the starlight from nearby thin, foreground dust clouds. We have placed limits of 0.58 {+-} 0.12 and 0.72 {+-} 0.06 on the phase function asymmetry factor (g) in the FUV (1521 A) and NUV (2320 A) bands, respectively. We suggest that these halos are a common feature around bright stars and may be used to explore the scattering function of interstellar grains at small angles.

  4. Using accurate phase space coordinates of ~100,00 halo field stars to constrain the Milky Way halo

    NASA Astrophysics Data System (ADS)

    Valluri, Monica

    2015-08-01

    The current cosmological paradigm predicts that dark matter halos are triaxial overall, but oblate in regions where baryons dominate. However recent measurements of the shape of the Milky Way dark matter halo find it to be very triaxial with a shape and orientation that are significantly at odds with theoretical predictions. The ESA’s Gaia satellite will soon map the entire Milky Way giving us six phase-space coordinates, ages and abundances for hundreds of thousands of halo stars. I will report progress on a new code based on the Schwarzschild orbit superposition method and orbital frequency mapping, to determine the global shape of the Milky Way's dark matter halo using field stars from Gaia. This technique will simultaneously yield the self-consistent phase-space distribution function of the stellar halo in the inner 20-30kpc region. Detailed analysis of correlations between the chemical abundances, ages and orbits of halo stars in this distribution function will enable us to extract clues to the formation history of the Milky Way that are encoded in orbital properties of halo stars.

  5. HaloSat: A CubeSat to Map the Distribution of Baryonic Matter in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Miles, Drew M.

    2016-04-01

    Approximately half of predicted baryonic matter in the Milky Way remains unidentified. One possible explanation for the location of this missing matter is in an extended Galactic halo. HaloSat is a CubeSat that aims to constrain the mass and distribution of the halo’s baryonic matter by obtaining an all-sky map of O VII and O VIII emission in the hot gas associated with the halo of the Milky Way. HaloSat offers an improvement in the quality of measurements of oxygen line emission over existing X-ray observatories and an observation plan dedicated to mapping the hot gas in the Galactic halo. In addition to the missing baryon problem, HaloSat will assign a portion of its observations to the solar wind charge exchange (SWCX) in order to calibrate models of SCWX emission. We present here the current status of HaloSat and the progression of instrument development in anticipation of a 2018 launch.

  6. Systematics of reactions with 4,6He: Static and dynamic halo effects and evidence for core-halo decoupling

    NASA Astrophysics Data System (ADS)

    Aguilera, E. F.; Martel, I.; Sánchez-Benítez, A. M.; Acosta, L.

    2011-02-01

    Experimental reaction cross sections for He6 and He4 projectiles are reduced and are shown to follow well-defined trajectories that can be characterized by respective Wong-type curves. The strong enhancement observed for the He6 data is interpreted as caused by two separate halo effects: a size effect, which affects the whole energy region, and a dynamic effect, important only near and below the barrier. Evidence for a core-halo decoupling is presented for the 6He+64Zn system, which further supports the hypothesis that the decoupling is a characteristic feature of true halo systems.

  7. Possible existence of wormholes in the central regions of halos

    SciTech Connect

    Rahaman, Farook; Salucci, P.; Kuhfittig, P.K.F.; Ray, Saibal; Rahaman, Mosiur

    2014-11-15

    An earlier study (Rahaman, et al., 2014 and Kuhfittig, 2014) has demonstrated the possible existence of wormholes in the outer regions of the galactic halo, based on the Navarro–Frenk–White (NFW) density profile. This paper uses the Universal Rotation Curve (URC) dark matter model to obtain analogous results for the central parts of the halo. This result is an important compliment to the earlier result, thereby confirming the possible existence of wormholes in most of the spiral galaxies. - Highlights: • Earlier we showed possible existence of wormholes in the outer regions of halo. • We obtain here analogous results for the central parts of the galactic halo. • Our result is an important compliment to the earlier result. • This confirms possible existence of wormholes in most of the spiral galaxies.

  8. DIAGNOSTIC TOOLS FOR BEAM HALO INVESTIGATION IN SNS LINAC

    SciTech Connect

    Aleksandrov, Alexander V; Blokland, Willem; Liu, Yun; Long, Cary D; Zhukov, Alexander P

    2012-01-01

    Uncontrolled beam loss is a major concern in the operation of a high intensity hadron linac. A low density cloud of particles with large oscillation amplitudes, so called halo, can form around the dense regular beam core. This halo can be a direct or indirect cause of beam loss. There is experimental evidence of halo growing in the SNS linac and limiting the further reduction of beam loss. A set of tools is being developed for detecting of the halo and investigating its origin and dynamics. The set includes high resolution emittance measurements in the injector, laser based emittance measurements at 1 GeV, and high resolution profile measurements along the linac. We will present our experience with useful measurement techniques and data analysis algorithms.

  9. Halo Orbit Mission Correction Maneuvers Using Optimal Control

    NASA Technical Reports Server (NTRS)

    Lo, M.; Serban, R.; Petzold, L.; Koon, W.; Ross, S.; Marsden, J.; Wilson, R.

    2000-01-01

    This paper addresses the computation of the required trajectory correction maneuvers (TCM) for a halo orbit space mission to compensate for the launch velocity errors introduced by inaccuracies of the launch vehicle.

  10. BEAM HALO FORMATION IN HIGH-INTENSITY BEAMS.

    SciTech Connect

    FEDOTOV, A.V.

    2005-03-18

    Studies of beam halo became unavoidable feature of high-intensity machines where uncontrolled beam loss should be kept to extremely small level. For a well controlled stable beam such a loss is typically associated with the low density halo surrounding beam core. In order to minimize uncontrolled beam loss or improve performance of an accelerator, it is very important to understand what are the sources of halo formation in a specific machine of interest. The dominant mechanisms are, in fact, different in linear accelerators, circular machines or Energy Recovering Linacs (ERL). In this paper, we summarize basic mechanisms of halo formation in high-intensity beams and discuss their application to various types of accelerators of interest, such as linacs, rings and ERL.

  11. Lithium in halo stars from standard stellar evolution

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Demarque, Pierre; Kawaler, Steven D.

    1990-01-01

    A grid has been constructed of theoretical evolution sequences of models for low-metallicity stars from the premain-sequence to the giant branch phases. The grid is used to study the history of surface Li abundance during standard stellar evolution. The Li-7 observations of halo stars by Spite and Spite (1982) and subsequent observations are synthesized to separate the halo stars by age. The theory of surface Li abundance is illustrated by following the evolution of a reference halo star model from the contracting fully convective premain sequence to the giant branch phase. The theoretical models are compared with observed Li abundances. The results show that the halo star lithium abundances can be explained in the context of standard stellar evolution theory using completely standard assumptions and physics.

  12. Building Blocks of the Milky Way's Stellar Halo

    NASA Astrophysics Data System (ADS)

    van Oirschot, Pim; Starkenburg, Else; Helmi, Amina; Nelemans, Gijs

    2016-08-01

    We study the assembly history of the stellar halo of Milky Way-like galaxies using the six high-resolution Aquarius dark matter simulations combined with the Munich-Groningen semi-analytic galaxy formation model. Our goal is to understand the stellar population contents of the building blocks of the Milky Way halo, including their star formation histories and chemical evolution, as well as their internal dynamical properties. We are also interested in how they relate or are different from the surviving satellite population. Finally, we will use our models to compare to observations of halo stars in an attempt to reconstruct the assembly history of the Milky Way's stellar halo itself.

  13. ADP study of the structure of the IUE halo

    NASA Technical Reports Server (NTRS)

    Massa, Derck

    1992-01-01

    Results of a two year ADP study of gas in the Galactic halo are presented. This is partly a summary of 2 papers which were published in referred journals and partly a discussion of work currently underway.

  14. EFFECT OF DARK MATTER HALO SUBSTRUCTURES ON GALAXY ROTATION CURVES

    SciTech Connect

    Roy, Nirupam

    2010-11-01

    In this paper, the effect of halo substructures on galaxy rotation curves is investigated using a simple model of dark matter clustering. A dark matter halo density profile is developed based only on the scale-free nature of clustering that leads to a statistically self-similar distribution of the substructures at the galactic scale. A semi-analytical method is used to derive rotation curves for such a clumpy dark matter density profile. It is found that the halo substructures significantly affect the galaxy velocity field. Based on the fractal geometry of the halo, this self-consistent model predicts a Navarro-Frenk-White-like rotation curve and a scale-free power spectrum of the rotation velocity fluctuations.

  15. Effective Dark Matter Halo Catalog in f(R) Gravity.

    PubMed

    He, Jian-Hua; Hawken, Adam J; Li, Baojiu; Guzzo, Luigi

    2015-08-14

    We introduce the idea of an effective dark matter halo catalog in f(R) gravity, which is built using the effective density field. Using a suite of high resolution N-body simulations, we find that the dynamical properties of halos, such as the distribution of density, velocity dispersion, specific angular momentum and spin, in the effective catalog of f(R) gravity closely mimic those in the cold dark matter model with a cosmological constant (ΛCDM). Thus, when using effective halos, an f(R) model can be viewed as a ΛCDM model. This effective catalog therefore provides a convenient way for studying the baryonic physics, the galaxy halo occupation distribution and even semianalytical galaxy formation in f(R) cosmologies. PMID:26317711

  16. Detection of ultraviolet halos around highly inclined galaxies

    SciTech Connect

    Hodges-Kluck, Edmund; Bregman, Joel N.

    2014-07-10

    We report the discovery of diffuse ultraviolet light around late-type galaxies out to 5-20 kpc from the midplane using Swift and GALEX images. The emission is consistent with the stellar outskirts in the early-type galaxies but not in the late-type galaxies, where the emission is quite blue and consistent with a reflection nebula powered by light escaping from the galaxy and scattering off dust in the halo. Our results agree with expectations from halo dust discovered in extinction by Ménard et al. to within a few kpc of the disk and imply a comparable amount of hot and cold gas in galaxy halos (a few× 10{sup 8} M{sub ☉} within 20 kpc) if the dust resides primarily in Mg II absorbers. The results also highlight the potential of UV photometry to study individual galaxy halos.

  17. Halo sign on indium-111 leukocyte scan in gangrenous cholecystitis

    SciTech Connect

    Bauman, J.M.; Boykin, M.; Hartshorne, M.F.; Cawthon, M.A.; Landry, A.J.

    1986-02-01

    A 56-year-old man with a long history of Crohn's disease was evaluated by In-111 labeled leukocyte scanning. A halo of leukocyte activity was seen around the gallbladder fossa. A gangrenous gallbladder was removed at surgery.

  18. Spherical collapse and halo mass function in the symmetron model

    NASA Astrophysics Data System (ADS)

    Taddei, Laura; Catena, Riccardo; Pietroni, Massimo

    2014-01-01

    We study the gravitational clustering of spherically symmetric overdensities and the statistics of the resulting dark matter halos in the "symmetron model," in which a new long range force is mediated by a Z2 symmetric scalar field. Depending on the initial radius of the overdensity, we identify two distinct regimes: for small initial radii the symmetron mediated force affects the spherical collapse at all redshifts; for initial radii larger than some critical size this force vanishes before collapse because of the symmetron screening mechanism. As a consequence, halos with initial radii smaller than some critical value collapse earlier than in the ΛCDM and statistically tend to form more massive dark matter halos. Regarding the halo mass function of these objects, we observe departures from standard ΛCDM predictions at the few percent level. The formalism developed here can be easily applied to other models where fifth forces participate to the dynamics of the gravitational collapse.

  19. Summary of the 2014 Beam-Halo Monitoring Workshop

    SciTech Connect

    Fisher, Alan

    2015-09-25

    Understanding and controlling beam halo is important for high-intensity hadron accelerators, for high-brightness electron linacs, and for low-emittance light sources. This can only be achieved by developing suitable diagnostics. The main challenge faced by such instrumentation is the high dynamic range needed to observe the halo in the presence of an intense core. In addition, measurements must often be made non-invasively. This talk summarizes the one-day workshop on Beam-Halo Monitoring that was held at SLAC on September 19 last year, immediately following IBIC 2014 in Monterey. Workshop presentations described invasive techniques using wires, screens, or crystal collimators, and non-invasive measurements with gas or scattered electrons. Talks on optical methods showed the close links between observing halo and astronomical problems like observing the solar corona or directly observing a planet orbiting another star.

  20. Halo formation and evolution: unification of structure and physical properties

    NASA Astrophysics Data System (ADS)

    Ernest, Allan D.; Collins, Matthew P.

    2016-08-01

    The assembly of matter in the universe proliferates a wide variety of halo structures, often with enigmatic consequences. Giant spiral galaxies, for example, contain both dark matter and hot gas, while dwarf spheroidal galaxies, with weaker gravity, contain much larger fractions of dark matter, but little gas. Globular clusters, superficially resembling these dwarf spheroidals, have little or no dark matter. Halo temperatures are also puzzling: hot cluster halos contain cooler galaxy halos; dwarf galaxies have no hot gas at all despite their similar internal processes. Another mystery is the origin of the gas that galaxies require to maintain their measured star formation rates (SFRs). We outline how gravitational quantum theory solves these problems, and enables baryons to function as weakly-interacting-massive-particles (WIMPs) in Lambda Cold Dark Matter (LCDM) theory. Significantly, these dark-baryon ensembles may also be consistent with primordial nucleosynthesis (BBN) and cosmic microwave background (CMB) anisotropies.

  1. Spontaneous Involution of Congenital Melanocytic Nevus With Halo Phenomenon

    PubMed Central

    Lee, Noo Ri; Chung, Hee-Chul; Hong, Hannah; Lee, Jin Wook

    2015-01-01

    Abstract: Congenital melanocytic nevus (CMN) is a neural crest-derived hamartoma, which appear at or soon after birth. CMN has a dynamic course and may show variable changes over time, including spontaneous involution. Spontaneous involution of CMN is a rare phenomenon and is often reported in association with halo phenomenon or vitiligo. The mechanism of halo phenomenon is yet to be investigated but is suggested to be a destruction of melanocytes by immune responses of cytotoxic T cells or IgM autoantibodies. Here, the authors report an interesting case of spontaneously regressed medium-sized CMN with halo phenomenon and without vitiligo, which provides evidence that cytotoxic T cells account for the halo formation and pigmentary regression of CMN. PMID:26588343

  2. Recent results in analysis and simulation of beam halo

    SciTech Connect

    Ryne, Robert D.; Wangler, Thomas P.

    1995-09-15

    Understanding and predicting beam halo is a major issue for accelerator driven transmutation technologies. If strict beam loss requirements are not met, the resulting radioactivation can reduce the availability of the accelerator facility and may lead to the necessity for time-consuming remote maintenance. Recently there has been much activity related to the core-halo model of halo evolution [1-5]. In this paper we will discuss the core-halo model in the context of constant focusing channels and periodic focusing channels. We will present numerical results based on this model and we will show comparisons with results from large scale particle simulations run on a massively parallel computer. We will also present results from direct Vlasov simulations.

  3. Recent results in analysis and simulation of beam halo

    SciTech Connect

    Ryne, R.D.; Wangler, T.P.

    1994-09-01

    Understanding and predicting beam halo is a major issue for accelerator driven transmutation technologies. If strict beam loss requirements are not met, the resulting radioactivation can reduce the availability of the accelerator facility and may lead to the necessity for time-consuming remote maintenance. Recently there has been much activity related to the core-halo model of halo evolution. In this paper the authors will discuss the core-halo model in the context of constant focusing channels and periodic focusing channels. They will present numerical results based on this model and they will show comparisons with results from large scale particle simulations run on a massively parallel computer. They will also present results from direct Vlasov simulations.

  4. Dark matter annihilation in the first galaxy haloes

    NASA Astrophysics Data System (ADS)

    Schön, S.; Mack, K. J.; Avram, C. A.; Wyithe, J. S. B.; Barberio, E.

    2015-08-01

    We investigate the impact of energy released from self-annihilating dark matter (DM) on heating of gas in the small, high-redshift DM haloes thought to host the first stars. A supersymmetric (SUSY)-neutralino-like particle is implemented as our DM candidate. The PYTHIA code is used to model the final, stable particle distributions produced during the annihilation process. We use an analytic treatment in conjunction with the code MEDEA2 to find the energy transfer and subsequent partition into heating, ionizing and Lyman α photon components. We consider a number of halo density models, DM particle masses and annihilation channels. We find that the injected energy from DM exceeds the binding energy of the gas within a 105-106 M⊙ halo at redshifts above 20, preventing star formation in early haloes in which primordial gas would otherwise cool. Thus we find that DM annihilation could delay the formation of the first galaxies.

  5. Visibility of stars, halos, and rainbows during solar eclipses.

    PubMed

    Können, Gunther P; Hinz, Claudia

    2008-12-01

    The visibility of stars, planets, diffraction coronas, halos, and rainbows during the partial and total phases of a solar eclipse is studied. The limiting magnitude during various stages of the partial phase is presented. The sky radiance during totality with respect to noneclipse conditions is revisited and found to be typically 1/4000. The corresponding limiting magnitude is +3.5. At totality, the signal-to-background ratio of diffraction coronas, halos, and rainbows has dropped by a factor of 250. It is found that diffraction coronas around the totally eclipsed Sun may nevertheless occur. Analyses of lunar halo observations during twilight indicate that bright halo displays may also persist during totality. Rainbows during totality seem impossible. PMID:19037334

  6. Development of hollow electron beams for proton and ion collimation

    SciTech Connect

    Stancari, G.; Drozhdin, A.I.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; Assmann, R.; Kabantsev, A.; /UC, San Diego

    2010-06-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  7. Observation of energetic protons penetrating previous shock wave

    NASA Astrophysics Data System (ADS)

    Al-Sawad, A.; Saloniemi, O.; Laitinen, T. L.; Kocharov, L. G.; Valtonen, E.

    2009-12-01

    We report new evidence on energetic protons penetrating previous shock wave. We have chosen four Multi Eruption Solar Energetic Particle (MESEP) events from the list presented by Al-Sawad 2007, and observed by Energetic and Relativistic Nuclei and Electron (ERNE) instrument on the Solar and Heliospheric Observatory (SOHO). Two events were studied in details, the event of 2001 October 19-21, which was in association with two X1.6/2B solar flares and halo CMEs separated by ~15 hours and the event of 2000 April 04, which was associated with two CMEs separated by ~8 hours. The other two new MESEP events were on 2000 February 17-19 and 2005 August 22-25. The first event was associated with two CMEs. The first halo CME was associated with M 1.3 solar flare at S29E07 Hα location from the NOAA AR 8827, and with metric and later D-H type II radio bursts, indicating a formation of shock wave, which was later passed near the Earth's orbit and registered, by SOHO, ACE and Wind spacecrafts. The second CME erupted from the south-west after ~13 hours. The second event was associated with two halo CMEs separated by ~16 and erupted from same NOAA AR 10798 in association with M class solar flares. The first halo was in association with metric type II but both were in association with D-H type II. In both events the first CME was decelerating and both events can be classified as gradual SEP events. Our analysis for proton flux anisotropy data, He/P ratio and possible velocity dispersion in the second peak of the intensity-time profile are related to the second CME in both events. This suggests that the energetic protons > 10 MeV penetrate the first shock waves associated with first CMEs in order to reach 1 AU and thus, these observations indicate that capability of interplanetary shock to accelerate high-energy protons gradually declines as shock travels from near the Sun to beyond 1~AU.

  8. REVISITING SCALING RELATIONS FOR GIANT RADIO HALOS IN GALAXY CLUSTERS

    SciTech Connect

    Cassano, R.; Brunetti, G.; Venturi, T.; Kale, R.; Pratt, G. W.; Markevitch, M.

    2013-11-10

    Many galaxy clusters host megaparsec-scale radio halos, generated by ultrarelativistic electrons in the magnetized intracluster medium. Correlations between the synchrotron power of radio halos and the thermal properties of the hosting clusters were established in the last decade, including the connection between the presence of a halo and cluster mergers. The X-ray luminosity and redshift-limited Extended GMRT Radio Halo Survey provides a rich and unique dataset for statistical studies of the halos. We uniformly analyze the radio and X-ray data for the GMRT cluster sample, and use the new Planck Sunyaev-Zel'dovich (SZ) catalog to revisit the correlations between the power of radio halos and the thermal properties of galaxy clusters. We find that the radio power at 1.4 GHz scales with the cluster X-ray (0.1-2.4 keV) luminosity computed within R{sub 500} as P{sub 1.4}∼L{sup 2.1±0.2}{sub 500}. Our bigger and more homogenous sample confirms that the X-ray luminous (L{sub 500} > 5 × 10{sup 44} erg s{sup –1}) clusters branch into two populations—radio halos lie on the correlation, while clusters without radio halos have their radio upper limits well below that correlation. This bimodality remains if we excise cool cores from the X-ray luminosities. We also find that P{sub 1.4} scales with the cluster integrated SZ signal within R{sub 500}, measured by Planck, as P{sub 1.4}∼Y{sup 2.05±0.28}{sub 500}, in line with previous findings. However, contrary to previous studies that were limited by incompleteness and small sample size, we find that 'SZ-luminous' Y{sub 500} > 6 × 10{sup –5} Mpc{sup 2} clusters show a bimodal behavior for the presence of radio halos, similar to that in the radio-X-ray diagram. Bimodality of both correlations can be traced to clusters dynamics, with radio halos found exclusively in merging clusters. These results confirm the key role of mergers for the origin of giant radio halos, suggesting that they trigger the relativistic particle

  9. Revisiting Scaling Relations for Giant Radio Halos in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Cassano, R.; Ettori, S.; Brunetti, G.; Giacintucci, S.; Pratt, G. W.; Venturi, T.; Kale, R.; Dolag, K.; Markevitch, Maxim L.

    2013-01-01

    Many galaxy clusters host megaparsec-scale radio halos, generated by ultrarelativistic electrons in the magnetized intracluster medium. Correlations between the synchrotron power of radio halos and the thermal properties of the hosting clusters were established in the last decade, including the connection between the presence of a halo and cluster mergers. The X-ray luminosity and redshift-limited Extended GMRT Radio Halo Survey provides a rich and unique dataset for statistical studies of the halos. We uniformly analyze the radio and X-ray data for the GMRT cluster sample, and use the new Planck Sunyaev-Zel'dovich (SZ) catalog to revisit the correlations between the power of radio halos and the thermal properties of galaxy clusters. We find that the radio power at 1.4 GHz scales with the cluster X-ray (0.1-2.4 keV) luminosity computed within R(sub 500) as P(sub 1.4) approx. L(2.1+/-0.2) - 500). Our bigger and more homogenous sample confirms that the X-ray luminous (L(sub 500) > 5 × 10(exp 44) erg/s)) clusters branch into two populations-radio halos lie on the correlation, while clusters without radio halos have their radio upper limits well below that correlation. This bimodality remains if we excise cool cores from the X-ray luminosities. We also find that P(sub 1.4) scales with the cluster integrated SZ signal within R(sub 500), measured by Planck, as P(sub 1.4) approx. Y(2.05+/-0.28) - 500), in line with previous findings. However, contrary to previous studies that were limited by incompleteness and small sample size, we find that "SZ-luminous" Y(sub 500) > 6×10(exp -5) Mpc(exp 2) clusters show a bimodal behavior for the presence of radio halos, similar to that in the radio-X-ray diagram. Bimodality of both correlations can be traced to clusters dynamics, with radio halos found exclusively in merging clusters. These results confirm the key role of mergers for the origin of giant radio halos, suggesting that they trigger the relativistic particle acceleration.

  10. Halo-independent direct detection analyses without mass assumptions

    NASA Astrophysics Data System (ADS)

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew

    2015-10-01

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the mχ-σn plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the vmin-tilde g plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from vmin to nuclear recoil momentum (pR), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call tilde h(pR). The entire family of conventional halo-independent tilde g(vmin) plots for all DM masses are directly found from the single tilde h(pR) plot through a simple rescaling of axes. By considering results in tilde h(pR) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple tilde g(vmin) plots for different DM masses. We conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity.

  11. STELLAR POPULATION VARIATIONS IN THE MILKY WAY's STELLAR HALO

    SciTech Connect

    Bell, Eric F.; Xue Xiangxiang; Rix, Hans-Walter; Ruhland, Christine; Hogg, David W.

    2010-12-15

    If the stellar halos of disk galaxies are built up from the disruption of dwarf galaxies, models predict highly structured variations in the stellar populations within these halos. We test this prediction by studying the ratio of blue horizontal branch stars (BHB stars; more abundant in old, metal-poor populations) to main-sequence turn-off stars (MSTO stars; a feature of all populations) in the stellar halo of the Milky Way using data from the Sloan Digital Sky Survey. We develop and apply an improved technique to select BHB stars using ugr color information alone, yielding a sample of {approx}9000 g < 18 candidates where {approx}70% of them are BHB stars. We map the BHB/MSTO ratio across {approx}1/4 of the sky at the distance resolution permitted by the absolute magnitude distribution of MSTO stars. We find large variations of the BHB/MSTO star ratio in the stellar halo. Previously identified, stream-like halo structures have distinctive BHB/MSTO ratios, indicating different ages/metallicities. Some halo features, e.g., the low-latitude structure, appear to be almost completely devoid of BHB stars, whereas other structures appear to be rich in BHB stars. The Sagittarius tidal stream shows an apparent variation in the BHB/MSTO ratio along its extent, which we interpret in terms of population gradients within the progenitor dwarf galaxy. Our detection of coherent stellar population variations between different stellar halo substructures provides yet more support to cosmologically motivated models for stellar halo growth.

  12. Galaxy disruption in a halo of dark matter.

    PubMed

    Forbes, Duncan A; Beasley, Michael A; Bekki, Kenji; Brodie, Jean P; Strader, Jay

    2003-08-29

    The relics of disrupted satellite galaxies have been found around the Milky Way and Andromeda, but direct evidence of a satellite galaxy in the early stages of disruption has remained elusive. We have discovered a dwarf satellite galaxy in the process of being torn apart by gravitational tidal forces as it merges with a larger galaxy's dark matter halo. Our results illustrate the morphological transformation of dwarf galaxies by tidal interaction and the continued buildup of galaxy halos. PMID:12907809

  13. Unraveling the History of the Milky Way's Halo

    NASA Astrophysics Data System (ADS)

    Valluri, Monica; Debattista, V. P.

    2010-01-01

    One of the key predictions of Lambda-CDM cosmological simulations is that the dark matter halos of galaxies, such as the Milky Way, are strongly prolate or triaxial. However simulations with gas show that both the shapes and density profiles of dark matter halos can be dramatically altered by the condensation of baryons into a disk or spheroidal component. Current and future astrometric mission (e.g. RAVE, Segue, Gaia and NASA's SIM Lite Astrometric Observatory) are expected to obtain the full 6 dimensional phase space information of several thousands of halo stars. We describes a novel method to analyze this phase-space information that be used to set constrains, not just on the present shape and phase space distribution of the Milky Way halo, but also on its past shape history. We exploit a technique for revealing the phase space structure and orbital content of galaxies: "The Laskar Frequency Map". The power of this technique is demonstrated by applying it to a series of controlled simulations in which dynamically realistic disks are grown in isolated triaxial dark matter halos. We show that even when the growth of a baryonic disk causes the halo's shape to become oblate or close to spherical, it is possible to determine if it was originally prolate or triaxial as predicted by cosmological N-body simulations. It is also possible to determine if the original halo's major axis was perpendicular to the major axis or the minor axis of the disk. The technique can yield valuable information on the shape history of the halo form as few as a 1000- 5000 orbits.

  14. Flattened halos in a nontopological soliton model of dark matter

    NASA Astrophysics Data System (ADS)

    Mielke, Eckehard W.; Peralta, Humberto H.

    2004-12-01

    Soliton type solutions of a scalar model with a Φ6 self-interaction are analyzed for their density profiles as toy model of dark matter halos. We construct exact solutions with nontrivial ellipticity due to angular momentum and propose a “nonlinear superposition” of round and flattened halos in order to improve the scaling relations and the correspondence of the predicted rotation curves to the empirical Burkert fit.

  15. Vaporization in comets - The icy grain halo of Comet West

    NASA Technical Reports Server (NTRS)

    Ahearn, M. F.; Cowan, J. J.

    1980-01-01

    The variation with heliocentric distance of the production rates of various species in Comet West (1975n = 1976 VI) is explained with a cometary model consisting of a CO2 dominated nucleus plus a halo of icy grains of H2O or clathrate hydrate. It is concluded that the parents of CN and C3 are released primarily from the nucleus but that the parent of C2 is released primarily from the halo of icy grains.

  16. Non-Gaussianity and Excursion Set Theory: Halo Bias

    SciTech Connect

    Adshead, Peter; Baxter, Eric J.; Dodelson, Scott; Lidz, Adam

    2012-09-01

    We study the impact of primordial non-Gaussianity generated during inflation on the bias of halos using excursion set theory. We recapture the familiar result that the bias scales as $k^{-2}$ on large scales for local type non-Gaussianity but explicitly identify the approximations that go into this conclusion and the corrections to it. We solve the more complicated problem of non-spherical halos, for which the collapse threshold is scale dependent.

  17. An Improved Catalog of Halo Wide Binary Candidates

    NASA Astrophysics Data System (ADS)

    Allen, Christine; Monroy-Rodríguez, Miguel A.

    2014-08-01

    We present an improved catalog of halo wide binaries compiled from an extensive literature search. Most of our binaries stem from the common proper motion binary catalogs by Allen et al. and Chanamé & Gould, but we have also included binaries from the lists of Ryan and Zapatero-Osorio & Martín. All binaries were carefully checked and their distances and systemic radial velocities are included when available. Probable membership to the halo population was tested by means of reduced proper motion diagrams for 251 candidate halo binaries. After eliminating obvious disk binaries, we ended up with 211 probable halo binaries, 150 of which have radial velocities available. We compute galactic orbits for these 150 binaries and calculate the time they spend within the galactic disk. Considering the full sample of 251 candidate halo binaries as well as several subsamples, we find that the distribution of angular separations (or expected major semiaxes) follows a power law f(a) ~ a -1 (Oepik's relation) up to different limits. For the 50 most disk-like binaries, those that spend their entire lives within z = ±500 pc, this limit is found to be 19,000 AU (0.09 pc), while for the 50 most halo-like binaries, those that spend on average only 18% of their lives within z = ±500 pc, the limit is 63,000 AU (0.31 pc). In a companion paper, we employ this catalog to establish limits on the masses of the halo massive perturbers (massive compact halo objects).

  18. The SEGUE K Giant Survey. III. Quantifying Galactic Halo Substructure

    NASA Astrophysics Data System (ADS)

    Janesh, William; Morrison, Heather L.; Ma, Zhibo; Rockosi, Constance; Starkenburg, Else; Xue, Xiang Xiang; Rix, Hans-Walter; Harding, Paul; Beers, Timothy C.; Johnson, Jennifer; Lee, Young Sun; Schneider, Donald P.

    2016-01-01

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5-125 kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey’s Sloan Extension for Galactic Understanding and Exploration project. Using a position-velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (˜33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity.

  19. One dark matter mystery: halos in the cosmic web

    NASA Astrophysics Data System (ADS)

    Gaite, Jose

    2015-01-01

    The current cold dark matter cosmological model explains the large scale cosmic web structure but is challenged by the observation of a relatively smooth distribution of matter in galactic clusters. We consider various aspects of modeling the dark matter around galaxies as distributed in smooth halos and, especially, the smoothness of the dark matter halos seen in N-body cosmological simulations. We conclude that the problems of the cold dark matter cosmology on small scales are more serious than normally admitted.

  20. Halo-independent direct detection analyses without mass assumptions

    SciTech Connect

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew

    2015-10-06

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the m{sub χ}−σ{sub n} plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the v{sub min}−g-tilde plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from v{sub min} to nuclear recoil momentum (p{sub R}), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call h-til-tilde(p{sub R}). The entire family of conventional halo-independent g-tilde(v{sub min}) plots for all DM masses are directly found from the single h-tilde(p{sub R}) plot through a simple rescaling of axes. By considering results in h-tilde(p{sub R}) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple g-tilde(v{sub min}) plots for different DM masses. We conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity.

  1. An improved catalog of halo wide binary candidates

    SciTech Connect

    Allen, Christine; Monroy-Rodríguez, Miguel A.

    2014-08-01

    We present an improved catalog of halo wide binaries compiled from an extensive literature search. Most of our binaries stem from the common proper motion binary catalogs by Allen et al. and Chanamé and Gould, but we have also included binaries from the lists of Ryan and Zapatero-Osorio and Martín. All binaries were carefully checked and their distances and systemic radial velocities are included when available. Probable membership to the halo population was tested by means of reduced proper motion diagrams for 251 candidate halo binaries. After eliminating obvious disk binaries, we ended up with 211 probable halo binaries, 150 of which have radial velocities available. We compute galactic orbits for these 150 binaries and calculate the time they spend within the galactic disk. Considering the full sample of 251 candidate halo binaries as well as several subsamples, we find that the distribution of angular separations (or expected major semiaxes) follows a power law f(a) ∼ a {sup –1} (Oepik's relation) up to different limits. For the 50 most disk-like binaries, those that spend their entire lives within z = ±500 pc, this limit is found to be 19,000 AU (0.09 pc), while for the 50 most halo-like binaries, those that spend on average only 18% of their lives within z = ±500 pc, the limit is 63,000 AU (0.31 pc). In a companion paper, we employ this catalog to establish limits on the masses of the halo massive perturbers (massive compact halo objects).

  2. Halo-independent direct detection analyses without mass assumptions

    SciTech Connect

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew

    2015-10-06

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the mχ – σn plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the vmin – g~ plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from vmin to nuclear recoil momentum (pR), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call tilde h(pR). The entire family of conventional halo-independent tilde g~(vmin) plots for all DM masses are directly found from the single tilde h~(pR) plot through a simple rescaling of axes. By considering results in tildeh~(pR) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple tilde g~(vmin) plots for different DM masses. As a result, we conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity.

  3. Halo-independent direct detection analyses without mass assumptions

    DOE PAGESBeta

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew

    2015-10-06

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the mχ – σn plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the vmin – g~ plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from vmin to nuclear recoil momentum (pR),more » the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call tilde h(pR). The entire family of conventional halo-independent tilde g~(vmin) plots for all DM masses are directly found from the single tilde h~(pR) plot through a simple rescaling of axes. By considering results in tildeh~(pR) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple tilde g~(vmin) plots for different DM masses. As a result, we conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity.« less

  4. Star Streams in Triaxial Isochrone Potentials with Sub-halos

    NASA Astrophysics Data System (ADS)

    Carlberg, R. G.

    2015-07-01

    The velocity, position, and action variable evolutions of a tidal stream drawn out of a star cluster in a triaxial isochrone potential, containing a sub-halo population, reproduces many of the orbital effects of more general cosmological halos but allows for the easy calculation of orbital actions. We employ a spherical shell code, which we show accurately reproduces the results of a tree gravity code for a collisionless star cluster. Streams from clusters on high eccentricity orbits, e≳ 0.6, can spread out so much that the amount of material at high enough surface density to stand out on the sky may be only a few percent of the stream’s total mass. Low eccentricity streams remain more spatially coherent, but sub-halos both broaden the stream and displace the centerline with details depending on the orbits allowed within the potential. Overall, the majority of stream particles have changes in their total actions of only 1%-2%, leaving the mean stream relatively undisturbed. A halo with 1% of the mass in sub-halos typically spreads the velocity distribution about a factor of two wider than would be expected for a smooth halo. Strong density variations, “gaps,” along with mean velocity offsets, are clearly detected in low eccentricity streams for even a 0.2% sub-halo mass fraction. Around one hundred velocity measurements per kiloparsec of stream will enable tests for the presence of a local sub-halo density as small as 0.2%-0.5% of the local mass density, with about 1% predicted for 30 kpc orbital radii streams.

  5. Study of proton radioactivities

    SciTech Connect

    Davids, C.N.; Back, B.B.; Henderson, D.J.

    1995-08-01

    About a dozen nuclei are currently known to accomplish their radioactive decay by emitting a proton. These nuclei are situated far from the valley of stability, and mark the very limits of existence for proton-rich nuclei: the proton drip line. A new 39-ms proton radioactivity was observed following the bombardment of a {sup 96}Ru target by a beam of 420-MeV {sup 78}Kr. Using the double-sided Si strip detector implantation system at the FMA, a proton group having an energy of 1.05 MeV was observed, correlated with the implantation of ions having mass 167. The subsequent daughter decay was identified as {sup 166}Os by its characteristic alpha decay, and therefore the proton emitter is assigned to the {sup 167}Ir nucleus. Further analysis showed that a second weak proton group from the same nucleus is present, indicating an isomeric state. Two other proton emitters were discovered recently at the FMA: {sup 171}Au and {sup 185}Bi, which is the heaviest known proton radioactivity. The measured decay energies and half-lives will enable the angular momentum of the emitted protons to be determined, thus providing spectroscopic information on nuclei that are beyond the proton drip line. In addition, the decay energy yields the mass of the nucleus, providing a sensitive test of mass models in this extremely proton-rich region of the chart of the nuclides. Additional searches for proton emitters will be conducted in the future, in order to extend our knowledge of the location of the proton drip line.

  6. Highly ionized gas in the Galactic halo

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Slavin, Jonathan D.

    1994-01-01

    We reexamine the values of electron density n(sub e) and gas pressure P/k in the interstellar medium (ISM) of the Galactic halo, as inferred from C IV emission and absorption lines and using current C IV atomic data. In a homogeneous model with 4.7 less than or equal to log T less than or equal to 5.3, the data are consistent with 0.01 less than or equal to n(sub e) less than or equal to 0.02/cu cm and 2200 less than or equal to P/k less than or equal to 3700/cu cm K, a factor of 2-3 higher than advocated by Martin & Bowyer (1990) and comparable to the thermal pressure in the disk. If some of the C IV absorption arises from nonemitting, photoionized gas, then the inferred density and pressure will increase accordingly. The volume filling factor for homogeneous models ranges from 0.5% to 5%. Because of the constraints arising from filling factor and radiated power, most of the C IV must arise from gas near the peak of the cooling curve, at log t less than or equal to 5.6. We relate both emission-line and absorption-line observations to recent models in which turbulent mixing layers and isobarically cooling supernova remnants (SNRs) provide significant amounts of halo gas at approximately 10(exp 5.3) K and process 20-40 solar mass/yr with a power of approximately 10(exp 41) ergs/sec. Since the observed C IV and N V absorption scale heights have been reported to differ, at 4.9 kpc and 1.6 kpc, respectively, we examine inhomogeneous models with different exponential scale heights of T, P, and SN energy input. The ISM may change its character with distance above the Galactic plane, as superbubbles and mixing layers dominate over isolated SNRs as the source of the C IV. For appropiate scale heights, the midplane pressure is twice the homogeneous values quoted above. The O IV lambda 1034 diffuse emission line, which can be used as a temperature diagnostic of the hot gas, is predicted to be comparable in strength to that of C IV lambda 1549 (approximately 6000 photons

  7. Evolution of Extended Satellites in Massive Halos

    NASA Astrophysics Data System (ADS)

    Gravel, Pierre

    The evolution of extended satellites in massive halos is studied in the weak and the strong regimes of satellite deformation. In the first part of the thesis we follow the dynamics of a spherical region evolving locally as an Einstein-de Sitter universe ( qo=0.5,W=1 ) and containing overdensities acting as seeds for the formation of a satellite and its future host. We study the dynamics of forming satellites when their hosts are still unvirialized, accreting material, and generating time-varying gravitational potentials (TVGP). The three main dynamical processes affecting the satellite are dynamical friction, the TVGP, and tidal disruption. The internal flow of energy inside a satellite and across its boundary is analyzed with specialized local and global methods, providing information on the nature, the magnitude and the timing of the individual processes. A strongly deformed satellite able to survive a few galaxy crossings forms a compact core from which dynamical friction extracts energy, while its halo is tidally disrupted by the ``slingshot'' effect. This leads to the formation of systems of external stellar shells and internal energy shells. Their origins and appearances are closely related. Satellite self-gravity and phase wrapping control the emergence of both types of shells from the satellite inner regions once non-linear effects set in. In the second part of the thesis, we analyze the combined effects of dynamical friction, tidal stripping, and internal and external two-body heating on satellites moving inside massive hosts. External two-body heating is a stochastic process that occurs inside a satellite as a back reaction to the scattering of inhomogeneous material in the surrounding stellar system. This type of heating accelerates the evolution of less bound objects by increasing their rate of evaporation. The heating becomes important at low satellite velocities, and when the masses of the perturbing objects are comparable to or greater than the

  8. Subhalo statistics of galactic haloes: beyond the resolution limit

    NASA Astrophysics Data System (ADS)

    Cautun, Marius; Hellwing, Wojciech A.; van de Weygaert, Rien; Frenk, Carlos S.; Jones, Bernard J. T.; Sawala, Till

    2014-12-01

    We study the substructure population of Milky Way (MW)-mass haloes in the Λ cold dark matter (ΛCDM) cosmology using a novel procedure to extrapolate subhalo number statistics beyond the resolution limit of N-body simulations. The technique recovers the mean and the variance of the subhalo abundance, but not its spatial distribution. It extends the dynamic range over which precise statistical predictions can be made by the equivalent of performing a simulation with 50 times higher resolution, at no additional computational cost. We apply this technique to MW-mass haloes, but it can easily be applied to haloes of any mass. We find up to 20 per cent more substructures in MW-mass haloes than found in previous studies. Our analysis lowers the mass of the MW halo required to accommodate the observation that the MW has only three satellites with a maximum circular velocity Vmax ≥ 30 km s- 1 in the ΛCDM cosmology. The probability of having a subhalo population similar to that in the MW is 20 per cent for a virial mass, M200 = 1 × 1012 M⊙ and practically zero for haloes more massive than M200 = 2 × 1012 M⊙.

  9. QUANTIFYING KINEMATIC SUBSTRUCTURE IN THE MILKY WAY'S STELLAR HALO

    SciTech Connect

    Xue Xiangxiang; Zhao Gang; Luo Ali; Rix, Hans-Walter; Bell, Eric F.; Koposov, Sergey E.; Kang, Xi; Liu, Chao; Yanny, Brian; Beers, Timothy C.; Lee, Young Sun; Bullock, James S.; Johnston, Kathryn V.; Morrison, Heather; Rockosi, Constance

    2011-09-01

    We present and analyze the positions, distances, and radial velocities for over 4000 blue horizontal-branch (BHB) stars in the Milky Way's halo, drawn from SDSS DR8. We search for position-velocity substructure in these data, a signature of the hierarchical assembly of the stellar halo. Using a cumulative 'close pair distribution' as a statistic in the four-dimensional space of sky position, distance, and velocity, we quantify the presence of position-velocity substructure at high statistical significance among the BHB stars: pairs of BHB stars that are close in position on the sky tend to have more similar distances and radial velocities compared to a random sampling of these overall distributions. We make analogous mock observations of 11 numerical halo formation simulations, in which the stellar halo is entirely composed of disrupted satellite debris, and find a level of substructure comparable to that seen in the actually observed BHB star sample. This result quantitatively confirms the hierarchical build-up of the stellar halo through a signature in phase (position-velocity) space. In detail, the structure present in the BHB stars is somewhat less prominent than that seen in most simulated halos, quite possibly because BHB stars represent an older sub-population. BHB stars located beyond 20 kpc from the Galactic center exhibit stronger substructure than at r{sub gc} < 20 kpc.

  10. The age of the Milky Way inner halo.

    PubMed

    Kalirai, Jason S

    2012-06-01

    The Milky Way galaxy has several components, such as the bulge, disk and halo. Unravelling the assembly history of these stellar populations is often restricted because of difficulties in measuring accurate ages for low-mass, hydrogen-burning stars. Unlike these progenitors, white dwarf stars, the 'cinders' of stellar evolution, are remarkably simple objects and their fundamental properties can be measured with little ambiguity. Here I report observations of newly formed white dwarf stars in the halo of the Milky Way, and a separate analysis of archival data in the well studied 12.5-billion-year-old globular cluster Messier 4. I measure the mass distribution of the remnant stars and invert the stellar evolution process to develop a mathematical relation that links this final stellar mass to the mass of their immediate progenitors, and therefore to the age of the parent population. By applying this technique to a small sample of four nearby and kinematically confirmed halo white dwarf stars, I calculate the age of local field halo stars to be 11.4 ± 0.7 billion years. The oldest globular clusters formed 13.5 billion years ago. Future observations of newly formed white dwarf stars in the halo could be used to reduce the uncertainty, and to probe relative differences between the formation times of the youngest globular clusters and the inner halo. PMID:22678285

  11. The abundance and environment of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Metuki, Ofer; Libeskind, Noam I.; Hoffman, Yehuda

    2016-04-01

    An open question in cosmology and the theory of structure formation is to what extent does environment affect the properties of galaxies and haloes. The present paper aims at shedding light on this problem. The paper focuses on the analysis of a dark matter only simulation and it addresses the issue of how the environment affects the abundance of haloes, which are are assigned four attributes: their virial mass, an ambient density calculated with an aperture that scales with Rvir (ΔM), a fixed-aperture (ΔR) ambient density, and a cosmic web classification (i.e. voids, sheets, filaments, and knots, as defined by the V-web algorithm). ΔM is the mean density around a halo evaluated within a sphere of a radius of 5Rvir, where Rvir is the virial radius. ΔR is the density field Gaussian smoothed with R=4{ {h}^{-1}Mpc}, evaluated at the center of the halo. The main result of the paper is that the difference between haloes in different web elements stems from the difference in their mass functions, and does not depend on their adaptive-aperture ambient density. A dependence on the fixed-aperture ambient density is induced by the cross correlation between the mass of a halo and its fixed-aperture ambient density.

  12. Stellar Haloes with the Illustris Simulation: Mock Observations and Assembly

    NASA Astrophysics Data System (ADS)

    Pillepich, Annalisa; Torrey, Paul; Nelson, Dylan; Snyder, Greg; Rodriguez-Gomez, Vicente; Genel, Shy; Vogelsberger, Mark; Hernquist, Lars

    2015-08-01

    Illustris is a state-of-the-art simulation which combines the statistical power of a ˜106 Mpc-side cosmological volume with gasdynamics, prescriptions for star formation, feedback, and kpc resolution. It allows us to analyze about ˜5,000 well-resolved galaxies spanning a variety of morphologies, environments, and halo masses (3×10^11 < Mvir < 10^14 Msun). Illustris therefore provides the most realistic and richest sample of simulated galactic stellar haloes available up to date. Based on the properties of the stellar particles in each simulated galaxy/halo, we have produced synthetic images in different luminosity bands and extracted information about the mass distribution, smoothness, and phase-space structures up to large galactocentric distances at different limits of surface brightness. We can therefore gain insight and provide theoretically-motivated expectations for the build-up and properties of the stellar haloes, and their relation to the underlying DM haloes, their central galaxies, and their halo assembly histories.

  13. The gamma-ray-flux PDF from galactic halo substructure

    NASA Astrophysics Data System (ADS)

    Lee, Samuel K.; Ando, Shin'ichiro; Kamionkowski, Marc

    2009-07-01

    One of the targets of the recently launched Fermi Gamma-ray Space Telescope is a diffuse gamma-ray background from dark-matter annihilation or decay in the Galactic halo. N-body simulations and theoretical arguments suggest that the dark matter in the Galactic halo may be clumped into substructure, rather than smoothly distributed. Here we propose the gamma-ray-flux probability distribution function (PDF) as a probe of substructure in the Galactic halo. We calculate this PDF for a phenomenological model of halo substructure and determine the regions of the substructure parameter space in which the PDF may be distinguished from the PDF for a smooth distribution of dark matter. In principle, the PDF allows a statistical detection of substructure, even if individual halos cannot be detected. It may also allow detection of substructure on the smallest microhalo mass scales, ~ M⊕, for weakly-interacting massive particles (WIMPs). Furthermore, it may also provide a method to measure the substructure mass function. However, an analysis that assumes a typical halo substructure model and a conservative estimate of the diffuse background suggests that the substructure PDF may not be detectable in the lifespan of Fermi in the specific case that the WIMP is a neutralino. Nevertheless, for a large range of substructure, WIMP annihilation, and diffuse background models, PDF analysis may provide a clear signature of substructure.

  14. The abundance and environment of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Metuki, Ofer; Libeskind, Noam I.; Hoffman, Yehuda

    2016-07-01

    An open question in cosmology and the theory of structure formation is to what extent does environment affect the properties of galaxies and haloes. The present paper aims at shedding light on this problem. The paper focuses on the analysis of a dark matter only simulation and it addresses the issue of how the environment affects the abundance of haloes, which are assigned four attributes: their virial mass, an ambient density calculated with an aperture that scales with Rvir (ΔM), a fixed-aperture (ΔR) ambient density, and a cosmic web classification (i.e. voids, sheets, filaments, and knots, as defined by the V-web algorithm). ΔM is the mean density around a halo evaluated within a sphere of a radius of 5Rvir, where Rvir is the virial radius. ΔR is the density field Gaussian smoothed with R = 4 h-1 Mpc, evaluated at the centre of the halo. The main result of the paper is that the difference between haloes in different web elements stems from the difference in their mass functions, and does not depend on their adaptive-aperture ambient density. A dependence on the fixed-aperture ambient density is induced by the cross-correlation between the mass of a halo and its fixed-aperture ambient density.

  15. DUAL HALOS AND FORMATION OF EARLY-TYPE GALAXIES

    SciTech Connect

    Park, Hong Soo; Lee, Myung Gyoon E-mail: mglee@astro.snu.ac.kr

    2013-08-20

    We present a determination of the two-dimensional shape parameters of the blue and red globular cluster systems (GCSs) in a large number of elliptical galaxies and lenticular galaxies (early-type galaxies, called ETGs). We use a homogeneous data set of the globular clusters in 23 ETGs obtained from the HST/ACS Virgo Cluster Survey. The position angles of both blue and red GCSs show a correlation with those of the stellar light distribution, showing that the major axes of the GCSs are well aligned with those of their host galaxies. However, the shapes of the red GCSs show a tight correlation with the stellar light distribution as well as with the rotation property of their host galaxies, while the shapes of the blue GCSs do much less. These provide clear geometric evidence that the origins of the blue and red globular clusters are distinct and that ETGs may have dual halos: a blue (metal-poor) halo and a red (metal-rich) halo. These two halos show significant differences in metallicity, structure, and kinematics, indicating that they are formed in two distinguishable ways. The red halos might have formed via dissipational processes with rotation, while the blue halos are through accretion.

  16. Cold dark matter. 1: The formation of dark halos

    NASA Technical Reports Server (NTRS)

    Gelb, James M.; Bertschinger, Edmund

    1994-01-01

    We use numerical simulations of critically closed cold dark matter (CDM) models to study the effects of numerical resolution on observable quantities. We study simulations with up to 256(exp 3) particles using the particle-mesh (PM) method and with up to 144(exp 3) particles using the adaptive particle-particle-mesh (P3M) method. Comparisons of galaxy halo distributions are made among the various simulations. We also compare distributions with observations, and we explore methods for identifying halos, including a new algorithm that finds all particles within closed contours of the smoothed density field surrounding a peak. The simulated halos show more substructure than predicted by the Press-Schechter theory. We are able to rule out all omega = 1 CDM models for linear amplitude sigma(sub 8) greater than or approximately = 0.5 because the simulations produce too many massive halos compared with the observations. The simulations also produce too many low-mass halos. The distribution of halos characterized by their circular velocities for the P3M simulations is in reasonable agreement with the observations for 150 km/s less than or = V(sub circ) less than or = 350 km/s.

  17. Observation and analysis of halo current in EAST

    NASA Astrophysics Data System (ADS)

    Chen, Da-Long; Shen, Biao; Qian, Jin-Ping; Sun, You-Wen; Liu, Guang-Jun; Shi, Tong-Hui; Zhuang, Hui-Dong; Xiao, Bing-Jia

    2014-06-01

    Plasma in a typically elongated cross-section tokamak (for example, EAST) is inherently unstable against vertical displacement. When plasma loses the vertical position control, it moves downward or upward, leading to disruption, and a large halo current is generated helically in EAST typically in the scrape-off layer. When flowing into the vacuum vessel through in-vessel components, the halo current will give rise to a large J × B force acting on the vessel and the in-vessel components. In EAST VDE experiment, part of the eddy current is measured in halo sensors, due to the large loop voltage. Primary experimental data demonstrate that the halo current first lands on the outer plate and then flows clockwise, and the analysis of the information indicates that the maximum halo current estimated in EAST is about 0.4 times the plasma current and the maximum value of TPF × Ih/IP0 is 0.65, furthermore Ih/Ip0 and TPF × Ih/Ip0 tend to increase with the increase of Ip0. The test of the strong gas injection system shows good success in increasing the radiated power, which may be effective in reducing the halo current.

  18. A New Method to Estimate Halo Mass of Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Yang, Xiaohu; Shen, Shiyin

    2015-08-01

    Reliable halo mass estimation for a given galaxy system plays an important role both in cosmology and galaxy formation studies. Here we set out to find the way that can improve the halo mass estimation for those galaxy systems with limited brightest member galaxies been observed. Using four mock galaxy samples constructed from semi-analytical formation models, the subhalo abundance matching method and the conditional luminosity functions, respectively, we find that the luminosity gap between the brightest and the subsequent brightest member galaxies in a halo (group) can be used to significantly reduce the scatter in the halo mass estimation based on the luminosity of the brightest galaxy alone. Tests show that these corrections can significantly reduce the scatter in the halo mass estimations by $\\sim 50\\%$ to $\\sim 70\\%$ in massive halos depending on which member galaxies are considered. Comparing to the traditional ranking method, we find that this method works better for groups with less than five members, or in observations with very bright magnitude cut.

  19. Halo formation in arc-melted Cr-Nb alloys

    NASA Astrophysics Data System (ADS)

    Li, K. W.; Li, S. M.; Xue, Y. L.; Fu, H. Z.

    2012-10-01

    Haloes of Laves phase Cr2Nb around the primary dendrites Cr were observed in the arc-melted Cr-12% Nb hypoeutectic alloy, while no halo of non-faceted Cr phase around the Cr2Nb Laves phase occurred in the Cr-20% Nb hypereutectic alloy. This observation differs from the haloes formed in metal-intermetallic alloy systems. An explanation on the formation of Cr2Nb halo was presented by considering the solidification behavior of the leading phase and non-reciprocal nucleation characteristics of the Cr2Nb/Cr eutectic. In the Cr-12% Nb alloy, primary dendrites Cr worked as a good nucleant available for the occurrence of the halo Cr2Nb that subsequently solidified as the leading phase in the eutectic. For the Cr-20% Nb alloy, primary dendrites Cr2Nb first precipitated as the leading phase inducing the eutectic formation, resulting in no halo growth. In addition, the coupled zone of the Cr-Nb alloy was theoretically predicted in agreement with the experimental results.

  20. The abundance and environment of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Metuki, Ofer; Libeskind, Noam I.; Hoffman, Yehuda

    2016-07-01

    An open question in cosmology and the theory of structure formation is to what extent does environment affect the properties of galaxies and haloes. The present paper aims at shedding light on this problem. The paper focuses on the analysis of a dark matter only simulation and it addresses the issue of how the environment affects the abundance of haloes, which are are assigned four attributes: their virial mass, an ambient density calculated with an aperture that scales with $R_{vir}$ ($\\Delta_M$), a fixed-aperture ($\\Delta_R$) ambient density, and a cosmic web classification (i.e. voids, sheets, filaments, and knots, as defined by the V--web algorithm). $\\Delta_M$ is the mean density around a halo evaluated within a sphere of a radius of $5$\\rvir, where \\rvir\\ is the virial radius. $\\Delta_R$ is the density field Gaussian smoothed with $R=4h^{-1}$Mpc, evaluated at the center of the halo. The main result of the paper is that the difference between haloes in different web elements stems from the difference in their mass functions, and does not depend on their adaptive-aperture ambient density. A dependence on the fixed-aperture ambient density is induced by the cross correlation between the mass of a halo and its fixed-aperture ambient density.

  1. Concentration, ellipsoidal collapse, and the densest dark matter haloes

    NASA Astrophysics Data System (ADS)

    Okoli, Chiamaka; Afshordi, Niayesh

    2016-03-01

    The smallest dark matter haloes are the first objects to form in the hierarchical structure formation of cold dark matter (CDM) cosmology and are expected to be the densest and most fundamental building blocks of CDM structures in our Universe. Nevertheless, the physical characteristics of these haloes have stayed illusive, as they remain well beyond the current resolution of N-body simulations (at redshift zero). However, they dominate the predictions (and uncertainty) in expected dark matter annihilation signal, amongst other astrophysical observables. Using the conservation of total energy and the ellipsoidal collapse framework, we can analytically find the mean and scatter of concentration c and 1D velocity dispersion σ1d for haloes of different virial mass M200. Both c and σ _1d/M_{200}^{1/3} are in good agreement with numerical results within the regime probed by simulations - slowly decreasing functions of mass that approach constant values at large masses. In particular, the predictions for the 1D velocity dispersion of cluster mass haloes are surprisingly robust as the inverse heat capacity of cosmological haloes crosses zero at M200 ˜ 1014 M⊙. However, we find that current extrapolations from simulations to smallest CDM haloes dramatically depend on the assumed profile (e.g. NFW versus Einasto) and fitting function, which is why theoretical considerations, such as the one presented here, can significantly constrain the range of feasible predictions.

  2. The Halo of the Milky Way

    SciTech Connect

    Newberg, Heidi Jo; Yanny, Brian; /Rensselaer Poly. /Fermilab

    2005-02-01

    The authors show that the star counts in the spheroid of the Milky Way are not symmetric about the l = 0{sup o}, l = 180{sup o} plane. The minimum counts are found towards l = 155{sup o}. The Galactic longitude of maximum star counts depends on the magnitude and color selection of the halo stars. They interpret this as evidence that the spheroid population is triaxial with a major axis oriented 65{sup o} from the line of sight from the Sun to the Galactic center, and approximately perpendicular to the Galactic bar. Large local star concentrations from tidal debris and possible tidal debris are also observed. A full understanding of the Galactic spheroid population awaits position information and three dimensional space velocities for a representative set of stars in every substructure. Tangential velocities for many stars will be provided by current and planned astrometry missions, but no planned mission will measure stars faint enough to unravel the more distant parts of the spheroid, which contain the majority of the spatial substructure. This paper uses data from the Sloan Digital Sky Survey (SDSS) public data release DR3.

  3. MAGNIFICATION BY GALAXY GROUP DARK MATTER HALOS

    SciTech Connect

    Ford, Jes; Hildebrandt, Hendrik; Van Waerbeke, Ludovic; Leauthaud, Alexie; Tanaka, Masayuki; Capak, Peter; Finoguenov, Alexis; George, Matthew R.; Rhodes, Jason

    2012-08-01

    We report on the detection of gravitational lensing magnification by a population of galaxy groups, at a significance level of 4.9{sigma}. Using X-ray-selected groups in the COSMOS 1.64 deg{sup 2} field, and high-redshift Lyman break galaxies as sources, we measure a lensing-induced angular cross-correlation between the samples. After satisfying consistency checks that demonstrate we have indeed detected a magnification signal, and are not suffering from contamination by physical overlap of samples, we proceed to implement an optimally weighted cross-correlation function to further boost the signal to noise of the measurement. Interpreting this optimally weighted measurement allows us to study properties of the lensing groups. We model the full distribution of group masses using a composite-halo approach, considering both the singular isothermal sphere and Navarro-Frenk-White profiles, and find our best-fit values to be consistent with those recovered using the weak-lensing shear technique. We argue that future weak-lensing studies will need to incorporate magnification along with shear, both to reduce residual systematics and to make full use of all available source information, in an effort to maximize scientific yield of the observations.

  4. The CMS Beam Halo Monitor electronics

    NASA Astrophysics Data System (ADS)

    Tosi, N.; Dabrowski, A. E.; Fabbri, F.; Grassi, T.; Hughes, E.; Mans, J.; Montanari, A.; Orfanelli, S.; Rusack, R.; Torromeo, G.; Stickland, D. P.; Stifter, K.

    2016-02-01

    The CMS Beam Halo Monitor has been successfully installed in the CMS cavern in LHC Long Shutdown 1 for measuring the machine induced background for LHC Run II. The system is based on 40 detector units composed of synthetic quartz Cherenkov radiators coupled to fast photomultiplier tubes (PMTs). The readout electronics chain uses many components developed for the Phase 1 upgrade to the CMS Hadronic Calorimeter electronics, with dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal is digitized by a charge integrating ASIC (QIE10), providing both the signal rise time, with few nanosecond resolution, and the charge integrated over one bunch crossing. The backend electronics uses microTCA technology and receives data via a high-speed 5 Gbps asynchronous link. It records histograms with sub-bunch crossing timing resolution and is read out via IPbus using the newly designed CMS data acquisition for non-event based data. The data is processed in real time and published to CMS and the LHC, providing online feedback on the beam quality. A dedicated calibration monitoring system has been designed to generate short triggered pulses of light to monitor the efficiency of the system. The electronics has been in operation since the first LHC beams of Run II and has served as the first demonstration of the new QIE10, Microsemi Igloo2 FPGA and high-speed 5 Gbps link with LHC data.

  5. Clusters and Halos in Light Nuclei

    NASA Astrophysics Data System (ADS)

    Neff, Thomas; Feldmeier, Hans

    2009-08-01

    The structure of light nuclei in the p- and sd-shell features exotic phenomena like halos and clustering. In the Fermionic Molecular Dynamics (FMD) approach we aim at a consistent microscopic description of well bound nuclei and of loosely bound exotic systems. This is possible due to the flexibility of the single-particle basis states using Gaussian wave-packets localized in phase space. Many-body basis states are Slater determinants projected on parity, angular and total linear momentum. The structure of 12C is discussed. Here the ground state band can be well described within a shell model picture but excited states above the three-α threshold, including the famous Hoyle state, show a pronounced cluster structure. As another example we study the structure of the Neon isotopes 17-22Ne. In 17Ne we find a large s2 occupation related to a large charge radius. The charge radius decreases for 18Ne but gets again very large for 19Ne and 20Ne which is explained by significant admixtures of 3He and 4He cluster components into to the ground state wave functions.

  6. The metallicity distributon function of halo stars

    NASA Astrophysics Data System (ADS)

    Beers, T. C.; Christlieb, N.

    2005-01-01

    Over the past two decades a worldwide effort to obtain medium-resolution spectroscopic confirmation of candidate low-metallicity stars in the halo and thick disk of the Galaxy has produced ~ 8000 1-2 A observations of stars selected from the HK objective prism survey of Beers and colleagues. More recently the Hamburg/ESO prism survey of Christlieb and collaborators has produced a larger and better understood selection of metal-poor candidates that explore a much larger volume of the Galaxy than was available to the HK survey. We summarize the final derived Metallicity Distribution Function (MDF) of the HK survey objects and compare it with that obtained from the first several years of the HES follow-up effort. In particular we investigate whether there is evidence for a change in the nature of the MDF as a function of distance from the Galactic center which could have profound implications for the nature of the formation and evolution of the Milky Way and for galaxy formation in general.

  7. Experimental searches for galactic halo axions.

    PubMed

    van Bibber, Karl A; Kinion, S Darin

    2003-11-15

    A very light axion would be copiously produced during the Big Bang as a zero-temperature Bose gas, and it would possess vanishingly small couplings to matter and radiation. It thus represents an ideal cold dark matter candidate. Galactic halo axions may be detected by their resonant conversion to microwave photons in a high-Q cavity permeated by a strong magnetic field. A large-scale search for the axion is ongoing in the US with sufficient sensitivity to see axions of plausible model couplings. Dramatic breakthroughs in the development of near-quantum limited superconducting quantum interference device amplifiers promise to improve the sensitivity of the experiment by a factor of 30 in the near future. In Japan, a group has been developing a Rydberg atom single-quantum detector as an alternative to linear amplifiers for a microwave-cavity axion experiment. Should the axion be discovered, the predicted fine structure in the axion signal would be rich in information about the history of galactic formation. PMID:14667317

  8. Haloes Seen In UVIS Reflectance Spectra

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.; Bradley, E.; Colwell, J.; Sremcevic, M.

    2012-10-01

    UVIS SOI reflectance spectra show bright ‘haloes’ around the locations of some of the strongest resonances in Saturn’s A ring (Esposito etal 2005). UV spectra constrain the size and composition of the icy ring particles (Bradley etal 2010, 2012). We investigate the Janus 4:3, 5:3, 6:5 and Mimas 5:3 inner Lindblad resonances as well as at the Mimas 5:3 vertical resonance (bending wave location). Models of ring particle regolith evolution (Elliott and Esposito 2010) indicate the deeper regolith is made of older and purer ice. The strong resonances cause streamline crowding (Lewis and Stewart 2005) which damps the interparticle velocity, allowing temporary clumps to grow, which in turn increase the velocity, eroding the clumps and releasing smaller particles and regolith (see the predator-prey model of Esposito etal 2012). This cyclic behavior, driven by the resonant perturbation from the moon, can yield collision velocities greater than 1m/sec, sufficient to erode the aggregates (Blum 2006), exposing older, purer materials. Thus, the radial location of the strongest resonances can be where we find both large aggregates and disrupted fragments, in a balance maintained by the periodic moon forcing. If this stirring exposes older, and purer ice, the velocity threshold for eroding the aggregates can explain why only the strongest Lindblad resonances show haloes. UVIS spectra can determine the relative contributions of particle size and purity at these locations, for comparison to estimates from the regolith evolution models.

  9. Inner caustics of cold dark matter halos

    NASA Astrophysics Data System (ADS)

    Natarajan, Aravind; Sikivie, Pierre

    2006-01-01

    We prove that a flow of cold collisionless particles from all directions in and out of a region necessarily forms a caustic. A corollary is that, in cold dark matter cosmology, galactic halos have inner caustics in addition to the more obvious outer caustics. The outer caustics are fold catastrophes located on topological spheres surrounding the galaxy. To obtain the catastrophe structure of the inner caustics, we simulate the infall of cold collisionless particles in a fixed gravitational potential. The structure of inner caustics depends on the angular momentum distribution of the infalling particles. We confirm a previous result that the inner caustic is a “tricusp ring” when the initial velocity field is dominated by net overall rotation. A tricusp ring is a closed tube whose cross section is a section of an elliptic umbilic catastrophe. However, tidal torque theory predicts that the initial velocity field is irrotational. For irrotational initial velocity fields, we find the inner caustic to have a tentlike structure which we describe in detail in terms of the known catastrophes. We also show how the tent caustic transforms into a tricusp ring when a rotational component is added to the initial velocity field.

  10. Inner caustics of cold dark matter halos

    SciTech Connect

    Natarajan, Aravind; Sikivie, Pierre

    2006-01-15

    We prove that a flow of cold collisionless particles from all directions in and out of a region necessarily forms a caustic. A corollary is that, in cold dark matter cosmology, galactic halos have inner caustics in addition to the more obvious outer caustics. The outer caustics are fold catastrophes located on topological spheres surrounding the galaxy. To obtain the catastrophe structure of the inner caustics, we simulate the infall of cold collisionless particles in a fixed gravitational potential. The structure of inner caustics depends on the angular momentum distribution of the infalling particles. We confirm a previous result that the inner caustic is a 'tricusp ring' when the initial velocity field is dominated by net overall rotation. A tricusp ring is a closed tube whose cross section is a section of an elliptic umbilic catastrophe. However, tidal torque theory predicts that the initial velocity field is irrotational. For irrotational initial velocity fields, we find the inner caustic to have a tentlike structure which we describe in detail in terms of the known catastrophes. We also show how the tent caustic transforms into a tricusp ring when a rotational component is added to the initial velocity field.

  11. HALO VELOCITY GROUPS IN THE PISCES OVERDENSITY

    SciTech Connect

    Sesar, Branimir; Ivezic, Zeljko; Vivas, A. Katherina; Duffau, Sonia E-mail: zi@u.washington.ed E-mail: sonia.duffau@gmail.co

    2010-07-01

    We report spectroscopic observations of five faint (V {approx} 20) RR Lyrae stars associated with the Pisces overdensity conducted with the Gemini South Telescope. At a heliocentric and galactocentric distance of {approx}80 kpc, this is the most distant substructure in the Galactic halo known to date. We combined our observations with literature data and confirmed that the substructure is composed of two different kinematic groups. The main group contains eight stars and has (V{sub gsr}) = 50 km s{sup -1}, while the second group contains four stars at a velocity of (V{sub gsr}) = -52 km s{sup -1}, where V{sub gsr} is the radial velocity in the galactocentric standard of rest. The metallicity distribution of RR Lyrae stars in the Pisces overdensity is centered on [Fe/H] = -1.5 dex and has a width of 0.3 dex. The new data allowed us to establish that both groups are spatially extended making it very unlikely that they are bound systems, and are more likely to be debris of a tidally disrupted galaxy or galaxies. Due to small sky coverage, it is still unclear whether these groups have the same or different progenitors.

  12. The extent of the local hi halo

    NASA Technical Reports Server (NTRS)

    Lockman, F. J.; Hobbs, L. M.; Shull, J. M.

    1985-01-01

    Forty-five high-latitude, OB stars have been observed in the Ly alpha and 21 cm lines of HI in an effort to map out the vertical distribution and extent of the local HI halo. The 25 stars for which a reliable HI colum density can be obtained from Ly alpha lie between 60 and 3100 pc from the plane. The principal result is that the total column density of HI at z 1 kpc is, on the average, 5 + or - 3 x 10 the 19th power/sq cm, or 15% of the total sub HI. At relatively low z the data toward some stars suggest a low effective scale height and fairly high average foreground density, while toward others the effective scale height is large and the average density is low. This can be understood as the result of irregularities in the interstellar medium. A model with half of the HI mass in clouds having radii of a few pc and a Gaussian vertical distribution with sigma sub 2 = 135 pc, and half of the mass in an exponential component with a scale height of 500 pc, gives a satisfactory fit to the data. The technique of comparing Ly alpha and 21 cm column densities is also used to discuss the problem of estimating the distance to several possibly subluminous stars.

  13. The kinematics of halo red giants

    NASA Astrophysics Data System (ADS)

    Carney, B. W.; Latham, D. W.

    1986-07-01

    The authors have obtained 337 radial velocities with typical accuracies of ± 0.7 km s-1 for 85 metal-poor field red giants, selected from the kinematically unbiased samples of Bond (1980) and Bidelman and MacConnell (1973). The multiply observed stars suggest the field halo giant binary fraction exceeds 10%. Using their own velocities and those published by others, the authors have a sample of 174 red giants with [Fe/H] ≤ -1.5. Their mean motion with respect to the local standard of rest is >V< = -206±23 km s-1, and the velocity dispersions are σR = 154±18 km s-1, σθ = 102±27 km s-1, and σφ = 107±15 km s-1. Using photometrically derived absolute magnitudes and published proper motions, the authors compute orbital eccentricities for 72 stars not already considered in a similar study of southern stars by Norris, Bessell, and Pickles (1985). They find a few (5% - 8%) stars with e < 0.4.

  14. The universality of the virial halo mass function and models for non-universality of other halo definitions

    NASA Astrophysics Data System (ADS)

    Despali, Giulia; Giocoli, Carlo; Angulo, Raul E.; Tormen, Giuseppe; Sheth, Ravi K.; Baso, Giacomo; Moscardini, Lauro

    2016-03-01

    The abundance of galaxy clusters can constrain both the geometry and growth of structure in our Universe. However, this probe could be significantly complicated by recent claims of non-universality-non-trivial dependences with respect to the cosmological model and redshift. In this work, we analyse the dependence of the mass function on the way haloes are identified and establish if this can cause departures from universality. In order to explore this dependence, we use a set of different N-body cosmological simulations (Le SBARBINE simulations), with the latest cosmological parameters from the Planck collaboration; this first suite of simulations is followed by a lower resolution set, carried out with different cosmological parameters. We identify dark matter haloes using a spherical overdensity algorithm with varying overdensity thresholds (virial, 2000, 1000, 500, 200 ρc and 200 ρb) at all redshifts. We notice that, when expressed in terms of the rescaled variable ν, the mass function for virial haloes is a nearly universal as a function of redshift and cosmology, while this is clearly not the case for the other overdensities we considered. We provide fitting functions for the halo mass function parameters as a function of overdensity, that allow us to predict, to within a few per cent accuracy, the halo mass function for a wide range of halo definitions, redshifts and cosmological models. We then show how the departures from universality associated with other halo definitions can be derived by combining the universality of the virial definition with the expected shape of the density profile of haloes.

  15. DO HOT HALOS AROUND GALAXIES CONTAIN THE MISSING BARYONS?

    SciTech Connect

    Anderson, Michael E.; Bregman, Joel N. E-mail: jbregman@umich.ed

    2010-05-01

    Galaxies are missing most of their baryons, and many models predict these baryons lie in a hot halo around galaxies. We establish observationally motivated constraints on the mass and radii of these halos using a variety of independent arguments. First, the observed dispersion measure of pulsars in the Large Magellanic Cloud allows us to constrain the hot halo around the Milky Way: if it obeys the standard Navarro, Frenk, and White (NFW) profile, it must contain less than 4%-5% of the missing baryons from the Galaxy. This is similar to other upper limits on the Galactic hot halo, such as the soft X-ray background and the pressure around high-velocity clouds. Second, we note that the X-ray surface brightness of hot halos with NFW profiles around large isolated galaxies is high enough that such emission should be observed, unless their halos contain less than 10%-25% of their missing baryons. Third, we place constraints on the column density of hot halos using nondetections of O VII absorption along active galactic nucleus (AGN) sightlines: in general they must contain less than 70% of the missing baryons or extend to no more than 40 kpc. Flattening the density profile of galactic hot halos weakens the surface brightness constraint so that a typical L{sub *} galaxy may hold half its missing baryons in its halo, but the O VII constraint remains unchanged, and around the Milky Way a flattened profile may only hold 6%-13% of the missing baryons from the Galaxy ((2-4) x 10{sup 10} M{sub sun}). We also show that AGN and supernovae at low to moderate redshift-the theoretical sources of winds responsible for driving out the missing baryons-do not produce the expected correlations with the baryonic Tully-Fisher relationship and, therefore, are insufficient to explain the missing baryons from galaxies. We conclude that most of missing baryons from galaxies do not lie in hot halos around the galaxies, and that the missing baryons never fell into the potential wells of

  16. Measurement of high energy resolution inelastic proton scattering at and close to zero degrees

    NASA Astrophysics Data System (ADS)

    Tamii, A.; Fujita, Y.; Matsubara, H.; Adachi, T.; Carter, J.; Dozono, M.; Fujita, H.; Fujita, K.; Hashimoto, H.; Hatanaka, K.; Itahashi, T.; Itoh, M.; Kawabata, T.; Nakanishi, K.; Ninomiya, S.; Perez-Cerdan, A. B.; Popescu, L.; Rubio, B.; Saito, T.; Sakaguchi, H.; Sakemi, Y.; Sasamoto, Y.; Shimbara, Y.; Shimizu, Y.; Smit, F. D.; Tameshige, Y.; Yosoi, M.; Zenhiro, J.

    2009-07-01

    Measurements of inelastic proton scattering with high energy resolution at forward scattering angles including 0∘ are described. High-resolution halo-free beams were accelerated by the cyclotron complex at the Research Center for Nuclear Physics. Instrumental background events were minimized using the high-quality beam. The remaining instrumental background events were eliminated by applying a background subtraction method. As a result, clean spectra were obtained even for a heavy target nucleus such as Pb208. A high energy resolution of 20 keV (FWHM) and a scattering angle resolution of ±0.6∘ were achieved at an incident proton energy of 295 MeV.

  17. Investigating the Origins of Dark Matter Halo Density Profiles

    NASA Astrophysics Data System (ADS)

    Williams, Liliya L. R.; Babul, Arif; Dalcanton, Julianne J.

    2004-03-01

    Although high-resolution N-body simulations make robust empirical predictions of the density distribution within cold dark matter halos, these studies have yielded little physical insight into the origins of the distribution. We therefore attempt to investigate the problem using analytic and semianalytic approaches. Simple analytic considerations suggest that the inner slope of the central cusps in dark matter halos cannot be steeper than α=2 (where ρ~r-α), with α=1.5-1.7 being a more realistic upper limit. Moreover, our analysis suggests that any number of effects, whether real (e.g., angular momentum imparted by tidal torques and secondary perturbations) or artificial (e.g., two-body interactions, the accuracy of the numerical integrator, round-off errors) will result in shallower slopes. We also find that the halos should exhibit a well-defined relationship between rperi/rapo and jθ/jr. We derive this relationship analytically and speculate that it may be ``universal.'' Using a semianalytic scheme based on Ryden & Gunn, we further explore the relationship between the specific angular momentum distribution in a halo and its density profile. For present purposes, we restrict ourselves to halos that form primarily via the nearly smooth accretion of matter, and consider only the specific angular momentum generated by secondary perturbations associated with the cold dark matter spectrum of density fluctuations. Compared to those formed in N-body simulations, our ``semianalytic'' halos are more extended, have flatter rotation curves, and have a higher specific angular momentum, even though we have not yet taken into account the effects of tidal torques. Whether the density profile of numerical halos is indeed the result of loss in angular momentum outside the central region, and whether this loss is a feature of hierarchical merging and major mergers in particular, is under investigation.

  18. THE CASE FOR THE DUAL HALO OF THE MILKY WAY

    SciTech Connect

    Beers, Timothy C.; Lee, Young Sun; Carollo, Daniela; Norris, John E.; Freeman, Ken C. E-mail: lee@pa.msu.edu E-mail: jen@mso.anu.edu.au; and others

    2012-02-10

    Carollo et al. have recently resolved the stellar population of the Milky Way halo into at least two distinct components, an inner halo and an outer halo. This result has been criticized by Schoenrich et al., who claim that the retrograde signature associated with the outer halo is due to the adoption of faulty distances. We refute this claim, and demonstrate that the Schoenrich et al. photometric distances are themselves flawed because they adopted an incorrect main-sequence absolute magnitude relationship from the work of Ivezic et al. When compared to the recommended relation from Ivezic et al., which is tied to a Milky Way globular cluster distance scale and accounts for age and metallicity effects, the relation adopted by Schoenrich et al. yields up to 18% shorter distances for stars near the main-sequence turnoff (TO). Use of the correct relationship yields agreement between the distances assigned by Carollo et al. and Ivezic et al. for low-metallicity dwarfs to within 6%-10%. Schoenrich et al. also point out that intermediate-gravity stars (3.5 {<=}log g < 4.0) with colors redder than the TO region are likely misclassified, with which we concur. We implement a new procedure to reassign luminosity classifications for the TO stars that require it. New derivations of the rotational behavior demonstrate that the retrograde signature and high velocity dispersion of the outer-halo population remain. We summarize additional lines of evidence for a dual halo, including a test of the retrograde signature based on proper motions alone, and conclude that the preponderance of evidence strongly rejects the single-halo interpretation.

  19. The Copernicus Complexio: statistical properties of warm dark matter haloes

    NASA Astrophysics Data System (ADS)

    Bose, Sownak; Hellwing, Wojciech A.; Frenk, Carlos S.; Jenkins, Adrian; Lovell, Mark R.; Helly, John C.; Li, Baojiu

    2016-01-01

    The recent detection of a 3.5 keV X-ray line from the centres of galaxies and clusters by Bulbul et al. and Boyarsky et al. has been interpreted as emission from the decay of 7 keV sterile neutrinos which could make up the (warm) dark matter (WDM). As part of the Copernicus Complexio (COCO) programme, we investigate the properties of dark matter haloes formed in a high-resolution cosmological N-body simulation from initial conditions similar to those expected in a universe in which the dark matter consists of 7 keV sterile neutrinos. This simulation and its cold dark matter (CDM) counterpart have ˜13.4 bn particles, each of mass ˜105 h-1 M⊙, providing detailed information about halo structure and evolution down to dwarf galaxy mass scales. Non-linear structure formation on small scales (M200 ≲ 2 × 109 h-1 M⊙) begins slightly later in COCO-WARM than in COCO-COLD. The halo mass function at the present day in the WDM model begins to drop below its CDM counterpart at a mass ˜2 × 109 h-1 M⊙ and declines very rapidly towards lower masses so that there are five times fewer haloes of mass M200 = 108 h-1 M⊙ in COCO-WARM than in COCO-COLD. Halo concentrations on dwarf galaxy scales are correspondingly smaller in COCO-WARM, and we provide a simple functional form that describes its evolution with redshift. The shapes of haloes are similar in the two cases, but the smallest haloes in COCO-WARM rotate slightly more slowly than their CDM counterparts.

  20. Kinematics of Baryons Cycling Through Galaxy Halos

    NASA Astrophysics Data System (ADS)

    Nielsen, Nikole M.

    2015-01-01

    In a modern view of galaxy evolution, the baryon cycle is key to understanding the observed global properties of galaxies. Red galaxies passively evolve due to quenching of their star formation, whereas blue galaxies actively evolve, presumably due to a replenishing gas supply. Signatures of the baryon cycle such as IGM accretion, minor mergers, and stellar-driven outflows and fountains are best probed in gaseous halos, i.e., the circumgalactic medium (CGM). We study the spatial and kinematic distribution of the low-ionization metal-enriched CGM with QSO absorption lines for a population of 182 galaxies in the MgII Absorber-Galaxy Catalog (MAGIICAT). We present our findings detailing how the extent and patchiness of the CGM depends on MgII absorption strength, and galaxy luminosity and color. For the first time, we placed the kinematics of 39 MgII absorbers with high-resolution spectra in the context of their host galaxy color, redshift, and orientation. By examining the velocity dispersions of absorbers, we find possible effects of quenching on red galaxies where the velocity dispersions decrease over 2 Gyrs time and are smaller at larger radii. The velocity dispersions for blue galaxies remain constant over time and radius and possibly indicate a sustained flow of baryons feeding star formation. Blue, face-on galaxies probed along the minor axis show the largest velocity dispersions to very high significance. This result provides the strongest direct evidence to date for galactic-scale outflows which, for this orientation, are pointing nearly towards the observer. We discuss how our results place observational constraints on simulations which are just now beginning to accurately model the baryon cycle and its role in galaxy evolution.

  1. Properties of Galaxy Dark Matter Halos from Weak Lensing

    NASA Astrophysics Data System (ADS)

    Hoekstra, Henk; Yee, H. K. C.; Gladders, Michael D.

    2004-05-01

    We present the results of a study of weak lensing by galaxies based on 45.5 deg2 of RC-band imaging data from the Red-Sequence Cluster Survey (RCS). We define a sample of lenses with 19.5halos. We use a simple model in which the ellipticity of the halo is f times the observed ellipticity of the lens. We find a best-fit value of f=0.77+0.18-0.21, which suggests that the dark matter halos are somewhat rounder than the light distribution. The fact that we detect a significant flattening implies that the halos are well aligned with the light distribution. Given the average ellipticity of the lenses, this implies a halo ellipticity of =0.33+0.07-0.09, in fair agreement with results from numerical simulations of cold dark matter. We note that this result is formally a lower limit to the flattening, since the measurements imply a larger flattening if the halos are not aligned with the light distribution. Alternative theories of gravity (without dark matter) predict an isotropic lensing signal, which is excluded with 99.5% confidence. Hence, our results provide strong support for the existence of dark matter. We also study the average mass profile around the lenses, using a maximum likelihood analysis. We consider two models for the halo mass profile: a truncated isothermal sphere (TIS) and a Navarro-Frenk-White (NFW) profile. We adopt observationally motivated scaling relations between the lens luminosity and the velocity dispersion and the extent of the halo. The TIS model yields a best-fit velocity dispersion of σ=136+/-5+/-3 km s-1 (all errors are 68% confidence limits; the first error bar indicates the statistical uncertainty, whereas the second error bar indicates the systematic error) and a truncation radius s=185+30-28h-1 kpc for a galaxy with a fiducial luminosity of LB=1010h-2LB,solar (under the assumption that

  2. A NEW MODEL FOR DARK MATTER HALOS HOSTING QUASARS

    SciTech Connect

    Cen, Renyue; Safarzadeh, Mohammadtaher

    2015-01-10

    A new model for quasar-hosting dark matter halos, meeting two physical conditions, is put forth. First, significant interactions are taken into consideration to trigger quasar activities. Second, satellites in very massive halos at low redshift are removed from consideration due to their deficiency in cold gas. We analyze the Millennium Simulation to find halos that meet these two conditions and simultaneously match two-point auto-correlation functions of quasars and cross-correlation functions between quasars and galaxies at z = 0.5-3.2. The masses of the quasar hosts found decrease with decreasing redshift, with the mass thresholds being [(2-5) × 10{sup 12}, (2-5) × 10{sup 11}, (1-3) × 10{sup 11}] M {sub ☉} for median luminosities of ∼[10{sup 46}, 10{sup 46}, 10{sup 45}] erg s{sup –1} at z = (3.2, 1.4, 0.53), respectively, an order of magnitude lower than those inferred based on halo occupation distribution modeling. In this model, quasar hosts are primarily massive central halos at z ≥ 2-3 but increasingly dominated by lower mass satellite halos experiencing major interactions toward lower redshift. However, below z = 1, satellite halos in groups more massive than ∼2 × 10{sup 13} M {sub ☉} do not host quasars. Whether for central or satellite halos, imposing the condition of significant interactions substantially boosts the clustering strength compared to the total population with the same mass cut. The inferred lifetimes of quasars at z = 0.5-3.2 of 3-30 Myr are in agreement with observations. Quasars at z ∼ 2 would be hosted by halos of mass ∼5 × 10{sup 11} M {sub ☉} in this model, compared to ∼3 × 10{sup 12} M {sub ☉} previously thought, which would help reconcile with the observed, otherwise puzzling high covering fractions for Lyman limit systems around quasars.

  3. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    NASA Technical Reports Server (NTRS)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated

  4. Halo formation and evolution: unifying physical properties with structure

    NASA Astrophysics Data System (ADS)

    Ernest, Alllan David; Collins, Matthew P.

    2015-08-01

    The assembly of matter in the universe proliferates a variety of structures with diverse properties. For example, massive halos of clusters of galaxies have temperatures often an order of magnitude or more higher than the individual galaxy halos within the cluster, or the temperatures of isolated galaxy halos. Giant spiral galaxies contain large quantities of both dark matter and hot gas while other structures like globular clusters appear to have little or no dark matter or gas. Still others, like the dwarf spheroidal galaxies have low gravity and little hot gas, but ironically contain some of the largest fractions of dark matter in the universe. Star forming rates (SFRs) also vary: compare for example the SFRs of giant elliptical galaxies, globular clusters, spiral and starburst galaxies. Furthermore there is evidence that the various structure types have existed over a large fraction of cosmic history. How can this array of variation in properties be reconciled with galaxy halo formation and evolution?We propose a model of halo formation [1] and evolution [2] that is consistent with both primordial nucleosynthesis (BBN) and the isotropies in the cosmic microwave background (CMB). The model uses two simple parameters, the total mass and size of a structure, to (1) explain why galaxies have the fractions of dark matter that they do (including why dwarf spheroidals are so dark matter dominated despite their weak gravity), (2) enable an understanding of the black hole-bulge/black hole-dark halo relations, (3) explain how fully formed massive galaxies can occur so early in cosmic history, (4) understand the connection between spiral and elliptical galaxies (5) unify the nature of globular clusters, dwarf spheroidal galaxies and bulges and (6) predict the temperatures of hot gas halos and understand how cool galaxy halos can remain stable in the hot environments of cluster-galaxy halos.[1] Ernest, A. D., 2012, in Prof. Ion Cotaescu (Ed) Advances in Quantum Theory, pp

  5. INSIGHT INTO THE FORMATION OF THE MILKY WAY THROUGH COLD HALO SUBSTRUCTURE. III. STATISTICAL CHEMICAL TAGGING IN THE SMOOTH HALO

    SciTech Connect

    Schlaufman, Kevin C.; Rockosi, Constance M.; Rashkov, Valery; Madau, Piero; Lee, Young Sun; Beers, Timothy C.; Prieto, Carlos Allende; Bizyaev, Dmitry E-mail: crockosi@ucolick.org E-mail: pmadau@ucolick.org E-mail: beers@pa.msu.edu E-mail: dmbiz@apo.nmsu.edu

    2012-04-10

    We find that the relative contribution of satellite galaxies accreted at high redshift to the stellar population of the Milky Way's smooth halo increases with distance, becoming observable relative to the classical smooth halo about 15 kpc from the Galactic center. In particular, we determine line-of-sight-averaged [Fe/H] and [{alpha}/Fe] in the metal-poor main-sequence turnoff (MPMSTO) population along every Sloan Extension for Galactic Understanding and Exploration (SEGUE) spectroscopic line of sight. Restricting our sample to those lines of sight along which we do not detect elements of cold halo substructure (ECHOS), we compile the largest spectroscopic sample of stars in the smooth component of the halo ever observed in situ beyond 10 kpc. We find significant spatial autocorrelation in [Fe/H] in the MPMSTO population in the distant half of our sample beyond about 15 kpc from the Galactic center. Inside of 15 kpc however, we find no significant spatial autocorrelation in [Fe/H]. At the same time, we perform SEGUE-like observations of N-body simulations of Milky Way analog formation. While we find that halos formed entirely by accreted satellite galaxies provide a poor match to our observations of the halo within 15 kpc of the Galactic center, we do observe spatial autocorrelation in [Fe/H] in the simulations at larger distances. This observation is an example of statistical chemical tagging and indicates that spatial autocorrelation in metallicity is a generic feature of stellar halos formed from accreted satellite galaxies.

  6. X-Ray Emission from the Halo of M31

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); DiStefano, Rosanne

    2004-01-01

    Our goal was to use short (10 ksec) observations of selected fields in the halo of M31, to determine the size and characteristics of its X-ray population and to study the connection between globular clusters and X-ray sources. The program of observations has yet to be successfully completed. We received acceptable data from just 2 of the 5 approved fields. Nevertheless, the results were intriguing and we have submitted a paper based on this data to Nature. We find that the X-ray source density is significantly enhanced in the vicinity of one GC, providing the first observational evidence supporting the ejection hypothesis. We also find additional X-ray sources, including some which are very soft, in large enough numbers to suggest that not all could have been formed in GCs. That is, some must be descended from the same primordial halo population that produced any compact stars comprising part of the halo's dark matter. Extrapolating fiom the X-ray source population, we estimate that stellar remnants and dim old stars in the halo could comprise as much as 25% of the estimated mass (approx. 10(exp 12) Solar Mass) of the halo. These results suggest that the other approved fields should be observed soon and also provide strong motivation for the future XMM-Newton programs.

  7. Does SEGUE/SDSS indicate a dual galactic halo?

    SciTech Connect

    Schönrich, Ralph; Asplund, Martin; Casagrande, Luca

    2014-05-01

    We re-examine recent claims of observational evidence for a dual Galactic halo in SEGUE/SDSS data, and trace them back to improper error treatment and neglect of selection effects. In particular, the detection of a vertical abundance gradient in the halo can be explained as a metallicity bias in distance. A similar bias and the impact of disk contamination affect the sample of blue horizontal branch stars. These examples highlight why non-volume complete samples require forward modeling from theoretical models or extensive bias-corrections. We also show how observational uncertainties produce the specific non-Gaussianity in the observed azimuthal velocity distribution of halo stars, which can be erroneously identified as two Gaussian components. A single kinematic component yields an excellent fit to the observed data, when we model the measurement process including distance uncertainties. Furthermore, we show that sample differences in proper motion space are the direct consequence of kinematic cuts and are enhanced when distance estimates are less accurate. Thus, their presence is neither proof of a separate population nor a measure of reliability for the applied distances. We conclude that currently there is no evidence from SEGUE/SDSS that would favor a dual Galactic halo over a single halo that is full of substructure.

  8. HALOGEN: a tool for fast generation of mock halo catalogues

    NASA Astrophysics Data System (ADS)

    Avila, Santiago; Murray, Steven G.; Knebe, Alexander; Power, Chris; Robotham, Aaron S. G.; Garcia-Bellido, Juan

    2015-06-01

    We present a simple method of generating approximate synthetic halo catalogues: HALOGEN. This method uses a combination of second-order Lagrangian Perturbation Theory (2LPT) in order to generate the large-scale matter distribution, analytical mass functions to generate halo masses, and a single-parameter stochastic model for halo bias to position haloes. HALOGEN represents a simplification of similar recently published methods. Our method is constrained to recover the two-point function at intermediate (10 h-1 Mpc < r < 50 h-1 Mpc) scales, which we show is successful to within 2 per cent. Larger scales (˜100 h-1 Mpc) are reproduced to within 15 per cent. We compare several other statistics (e.g. power spectrum, point distribution function, redshift space distortions) with results from N-body simulations to determine the validity of our method for different purposes. One of the benefits of HALOGEN is its flexibility, and we demonstrate this by showing how it can be adapted to varying cosmologies and simulation specifications. A driving motivation for the development of such approximate schemes is the need to compute covariance matrices and study the systematic errors for large galaxy surveys, which requires thousands of simulated realizations. We discuss the applicability of our method in this context, and conclude that it is well suited to mass production of appropriate halo catalogues. The code is publicly available at https://github.com/savila/halogen.

  9. Modelling Galaxy Clustering: Halo Occupation Distribution versus Subhalo Matching

    NASA Astrophysics Data System (ADS)

    Guo, Hong; Zheng, Zheng; Behroozi, Peter S.; Zehavi, Idit; Chuang, Chia-Hsun; Comparat, Johan; Favole, Ginevra; Gottloeber, Stefan; Klypin, Anatoly; Prada, Francisco; Rodríguez-Torres, Sergio A.; Weinberg, David H.; Yepes, Gustavo

    2016-04-01

    We model the luminosity-dependent projected and redshift-space two-point correlation functions (2PCFs) of the Sloan Digital Sky Survey (SDSS) DR7 Main galaxy sample, using the halo occupation distribution (HOD) model and the subhalo abundance matching (SHAM) model and its extension. All the models are built on the same high-resolution N-body simulations. We find that the HOD model generally provides the best performance in reproducing the clustering measurements in both projected and redshift spaces. The SHAM model with the same halo-galaxy relation for central and satellite galaxies (or distinct haloes and subhaloes), when including scatters, has a best-fitting χ2/dof around 2-3. We therefore extend the SHAM model to the subhalo clustering and abundance matching (SCAM) by allowing the central and satellite galaxies to have different galaxy-halo relations. We infer the corresponding halo/subhalo parameters by jointly fitting the galaxy 2PCFs and abundances and consider subhaloes selected based on three properties, the mass Macc at the time of accretion, the maximum circular velocity Vacc at the time of accretion, and the peak maximum circular velocity Vpeak over the history of the subhaloes. The three subhalo models work well for luminous galaxy samples (with luminosity above L★). For low-luminosity samples, the Vacc model stands out in reproducing the data, with the Vpeak model slightly worse, while the Macc model fails to fit the data. We discuss the implications of the modeling results.

  10. Is the dark halo of the Milky Way prolate?

    NASA Astrophysics Data System (ADS)

    Bowden, A.; Evans, N. W.; Williams, A. A.

    2016-07-01

    We introduce the flattening equation, which relates the shape of the dark halo to the angular velocity dispersions and the density of a tracer population of stars. It assumes spherical alignment of the velocity dispersion tensor, as seen in the data on stellar halo stars in the Milky Way. The angular anisotropy and gradients in the angular velocity dispersions drive the solutions towards prolateness, whilst the gradient in the stellar density is a competing effect favouring oblateness. We provide an efficient numerical algorithm to integrate the flattening equation. Using tests on mock data, we show that there is a strong degeneracy between circular speed and flattening, which can be circumvented with informative priors. Therefore, we advocate the use of the flattening equation to test for oblateness or prolateness, though the precise value of q can only be measured with the addition of the radial Jeans equation. We apply the flattening equation to a sample extracted from the Sloan Digital Sky Survey of ˜15 000 halo stars with full phase space information and errors. We find that between Galactocentric radii of 5 and 10 kpc, the shape of the dark halo is prolate, whilst even mildly oblate models are disfavoured. Strongly oblate models are ruled out. Specifically, for a logarithmic halo model, if the asymptotic circular speed v0 lies between 210 and 250 km s-1, then we find the axis ratio of the equipotentials q satisfies 1.5 ≲ q ≲ 2.

  11. Is the Dark Halo of the Milky Way Prolate?

    NASA Astrophysics Data System (ADS)

    Bowden, A.; Evans, N. W.; Williams, A. A.

    2016-04-01

    We introduce the flattening equation, which relates the shape of the dark halo to the angular velocity dispersions and the density of a tracer population of stars. It assumes spherical alignment of the velocity dispersion tensor, as seen in the data on stellar halo stars in the Milky Way. The angular anisotropy and gradients in the angular velocity dispersions drive the solutions towards prolateness, whilst the gradient in the stellar density is a competing effect favouring oblateness. We provide an efficient numerical algorithm to integrate the flattening equation. Using tests on mock data, we show that the there is a strong degeneracy between circular speed and flattening, which can be circumvented with informative priors. Therefore, we advocate the use of the flattening equation to test for oblateness or prolateness, though the precise value of q can only be measured with the addition of the radial Jeans equation. We apply the flattening equation to a sample extracted from the Sloan Digital Sky Survey of ˜15000 halo stars with full phase space information and errors. We find that between Galactocentric radii of 5 and 10 kpc, the shape of the dark halo is prolate, whilst even mildly oblate models are disfavoured. Strongly oblate models are ruled out. Specifically, for a logarithmic halo model, if the asymptotic circular speed v0 lies between 210 and 250 kms-1, then we find the axis ratio of the equipotentials q satisfies 1.5 ≲ q ≲ 2.

  12. Galactic evolution. II - Disk galaxies with massive halos

    NASA Technical Reports Server (NTRS)

    Ostriker, J. P.; Thuan, T. X.

    1975-01-01

    Models of galactic evolution are computed in which matter shed by dying halo stars accumulates in a smaller, more rapidly rotating disk. The models are simpler and more successful than one-zone (pure disk) models in that (1) the observed absence of low-metal-abundance low-mass dwarfs is expected, not anomalous and (2) the relative birthrate function (or IMF) need not be a strongly variable function of time in agreement with recent interpretations of observed stellar populations and neutral hydrogen in our own and other galaxies. Even a simple 'Salpeter' IMF for both disk and halo will produce an acceptable model. The model with a halo 'Salpeter' IMF, roughly one-quarter of the mass in the secondary disk, and approximately half the metals produced in the halo seems most compatible with observations of the metal abundance in low-mass stars, the deuterium abundance, halo planetary nebulae, and light from Population II stars, as well as with arguments on the stability of the disk.

  13. Subaru Hyper Suprime Cam Survey of the Andromeda Halo

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi; Tanaka, Mikito; Komiyama, Yutaka

    2015-08-01

    We present a progress report on our deep and wide-field imaging survey of the Andromeda halo with Hyper Suprime Cam (HSC) mounted on Subaru. HSC is the upgraded prime focus camera after Suprime-Cam, having a field of view of 1.77 square degree (1.5 degree in diameter), namely about 10 times larger than that of Suprime-Cam. This camera will thus offer us great opportunities to explore unique and legacy surveys for the Andromeda halo, as well as for other Galactic Archaeology science cases. We are now carrying out an intensive survey program of the Andromeda halo reaching a depth of 27.4 and 26.4 mag in g and i bands, respectively, which allows us to map out numerous horizontal branch (HB) stars in large halo areas: a wealth of new, faint halo features as expected from LCDM models can be identified through these HB stars. whereas these were not detected by previous surveys based on the analysis of RGB stars. This HSC survey will also provide lower luminosity dwarf satellites and globular clusters through identification of member HBs than hitherto possible, thereby providing important insight into the true luminosity and spatial distributions of these objects. We will report on the progress we have made so far and show our further survey plan.

  14. Modelling galaxy clustering: halo occupation distribution versus subhalo matching

    NASA Astrophysics Data System (ADS)

    Guo, Hong; Zheng, Zheng; Behroozi, Peter S.; Zehavi, Idit; Chuang, Chia-Hsun; Comparat, Johan; Favole, Ginevra; Gottloeber, Stefan; Klypin, Anatoly; Prada, Francisco; Rodríguez-Torres, Sergio A.; Weinberg, David H.; Yepes, Gustavo

    2016-07-01

    We model the luminosity-dependent projected and redshift-space two-point correlation functions (2PCFs) of the Sloan Digital Sky Survey (SDSS) Data Release 7 Main galaxy sample, using the halo occupation distribution (HOD) model and the subhalo abundance matching (SHAM) model and its extension. All the models are built on the same high-resolution N-body simulations. We find that the HOD model generally provides the best performance in reproducing the clustering measurements in both projected and redshift spaces. The SHAM model with the same halo-galaxy relation for central and satellite galaxies (or distinct haloes and subhaloes), when including scatters, has a best-fitting χ2/dof around 2-3. We therefore extend the SHAM model to the subhalo clustering and abundance matching (SCAM) by allowing the central and satellite galaxies to have different galaxy-halo relations. We infer the corresponding halo/subhalo parameters by jointly fitting the galaxy 2PCFs and abundances and consider subhaloes selected based on three properties, the mass Macc at the time of accretion, the maximum circular velocity Vacc at the time of accretion, and the peak maximum circular velocity Vpeak over the history of the subhaloes. The three subhalo models work well for luminous galaxy samples (with luminosity above L*). For low-luminosity samples, the Vacc model stands out in reproducing the data, with the Vpeak model slightly worse, while the Macc model fails to fit the data. We discuss the implications of the modelling results.

  15. Observations of stratospheric hydrogen fluoride by halogen occultation experiment (HALOE)

    NASA Technical Reports Server (NTRS)

    Luo, M.; Cicerone, R. J.; Russel, J. M., III; Huang, T. Y. W.

    1994-01-01

    The Halogen Occultation Experiment (HALOE) Hydrogen Fluoride (HF) channel on the Upper Atmospheric Research Satellite (UARS) is providing the first global measurements of stratospheric HF, the dominant flourine reservoir in the atmosphere. This paper describes the latitudinal and seasonal variations of HALOE-observed HF in terms of vertical profiles, altitude/latitude cross sections, and column abundances. The HF global distribution shows a 'tracerlike' structure and its column amount increases with latitude, in agreement with previous aircraft measurements of the HF column amount. A comparison between the HALOE HF column above 20 km and the ATMOS 1985 measurements is used to estimate the annual rate of increase of stratospheric HF. Exponential rates of 4.9-6.6%/yr and linear growth rates of 6-8.6%/yr in 1985 and 4.3-5.5%/yr in 1992-1993 are found. HALOE HF measurements during the 1993 Antarctic spring are briefly described. This species behaves like a conserved tracer and its distribution shows an area of enhanced mixing ratios correlated with the polar vortex that has a clear latitude boundary. Finally, simulated HF distributions by the National Center for Atmospheric Research (NCAR) two-dimensional model are used to compare with HALOE observations of HF. Reasonable agreements in the global structure and the absolute amount of HF are found. The differences between the model and the observed results indicate the need for improving treatment of atmospheric dynamics and fluorine-related chemical parameters in the model simulations.

  16. Dynamical evolution of primordial dark matter haloes through mergers

    NASA Astrophysics Data System (ADS)

    Ogiya, Go; Nagai, Daisuke; Ishiyama, Tomoaki

    2016-09-01

    Primordial dark matter (DM) haloes are the smallest gravitationally bound DM structures from which the first stars, black holes and galaxies form and grow in the early universe. However, their structures are sensitive to the free streaming scale of DM, which in turn depends on the nature of DM particles. In this work, we test the hypothesis that the slope of the central cusps in primordial DM haloes near the free streaming scale depends on the nature of merging process. By combining and analysing data from a cosmological simulation with the cutoff in the small-scale matter power spectrum as well as a suite of controlled, high-resolution simulations of binary mergers, we find that (1) the primordial DM haloes form preferentially through major mergers in radial orbits; (2) their central DM density profile is more susceptible to a merging process compared to that of galaxy- and cluster-sized DM haloes; (3) consecutive major mergers drive the central density slope to approach the universal form characterized by the Navarro-Frenk-White profile, which is shown to be robust to the impacts of mergers and serves an attractor solution for the density structure of DM haloes. Our work highlights the importance of dynamical processes on the structure formation during the Dark Ages.

  17. Algorithms for ice halo detection in all-sky images

    NASA Astrophysics Data System (ADS)

    King, Michelle; Greenslit, Morton; Boyd, Sylke

    The effect of cirrus clouds on the radiation budget of the atmosphere depends not only on optical depth and frequency of occurrence, but also on the composition of the clouds. Ice halo phenomena signal the presence of hexagonal crystal habits. Long-term observations on frequency, duration, and type of halo appearances can give ground-based insight into the behavior of cirrus composition. We are capturing images of the entire sky at 30 second intervals using an all-sky camera. We have created a program that analyzes these images for the presence of halos. The algorithm removes the lens distortion, excludes low-level clouds from further analysis, measures the radial RGB color channel intensity, and uses this radial intensity to assess for ice halo presence. We will present our algorithms for image analysis, including removing the lens distortion and low-level clouds, as well as the algorithm to assign a halo probability. We will also present our observation results for the year 2015. Supported by HHMI and UROP.

  18. Deep brain transcranial magnetic stimulation using variable "Halo coil" system

    NASA Astrophysics Data System (ADS)

    Meng, Y.; Hadimani, R. L.; Crowther, L. J.; Xu, Z.; Qu, J.; Jiles, D. C.

    2015-05-01

    Transcranial Magnetic Stimulation has the potential to treat various neurological disorders non-invasively and safely. The "Halo coil" configuration can stimulate deeper regions of the brain with lower surface to deep-brain field ratio compared to other coil configurations. The existing "Halo coil" configuration is fixed and is limited in varying the site of stimulation in the brain. We have developed a new system based on the current "Halo coil" design along with a graphical user interface system that enables the larger coil to rotate along the transverse plane. The new system can also enable vertical movement of larger coil. Thus, this adjustable "Halo coil" configuration can stimulate different regions of the brain by adjusting the position and orientation of the larger coil on the head. We have calculated magnetic and electric fields inside a MRI-derived heterogeneous head model for various positions and orientations of the coil. We have also investigated the mechanical and thermal stability of the adjustable "Halo coil" configuration for various positions and orientations of the coil to ensure safe operation of the system.

  19. The Black Hole-Dark Matter Halo Connection

    NASA Astrophysics Data System (ADS)

    Sabra, Bassem M.; Saliba, Charbel; Abi Akl, Maya; Chahine, Gilbert

    2015-04-01

    We explore the connection between the central supermassive black holes (SMBH) in galaxies and the dark matter halo through the relation between the masses of the SMBHs and the maximum circular velocities of the host galaxies, as well as the relationship between stellar velocity dispersion of the spheroidal component and the circular velocity. Our assumption here is that the circular velocity is a proxy for the mass of the dark matter halo. We rely on a heterogeneous sample containing galaxies of all types. The only requirement is that the galaxy has a direct measurement of the mass of its SMBH and a direct measurement of its circular velocity and its velocity dispersion. Previous studies have analyzed the connection between the SMBH and dark matter halo through the relationship between the circular velocity and the bulge velocity dispersion, with the assumption that the bulge velocity dispersion stands in for the mass of the SMBH, via the well-established SMBH mass-bulge velocity dispersion relation. Using intermediate relations may be misleading when one is studying them to decipher the active ingredients of galaxy formation and evolution. We believe that our approach will provide a more direct probe of the SMBH and the dark matter halo connection. We find that the correlation between the mass of SMBHs and the circular velocities of the host galaxies is extremely weak, leading us to state the dark matter halo may not play a major role in regulating the black hole growth in the present Universe.

  20. The outer profile of dark matter haloes: an analytical approach

    NASA Astrophysics Data System (ADS)

    Shi, Xun

    2016-07-01

    A steepening feature in the outer density profiles of dark matter haloes indicating the splashback radius has drawn much attention recently. Possible observational detections have even been made for galaxy clusters. Theoretically, Adhikari et al. have estimated the location of the splashback radius by computing the secondary infall trajectory of a dark matter shell through a growing dark matter halo with an NFW profile. However, since they imposed a shape of the halo profile rather than computing it consistently from the trajectories of the dark matter shells, they could not provide the full shape of the dark matter profile around the splashback radius. We improve on this by extending the self-similar spherical collapse model of Fillmore & Goldreich to a ΛCDM universe. This allows us to compute the dark matter halo profile and the trajectories simultaneously from the mass accretion history. Our results on the splashback location agree qualitatively with Adhikari et al. but with small quantitative differences at large mass accretion rates. We present new fitting formulae for the splashback radius Rsp in various forms, including the ratios of Rsp/R200c and Rsp/R200m. Numerical simulations have made the puzzling discovery that the splashback radius scales well with R200m but not with R200c. We trace the origin of this to be the correlated increase of Ωm and the average halo mass accretion rate with an increasing redshift.

  1. HaloTag Technology: A Versatile Platform for Biomedical Applications

    PubMed Central

    2015-01-01

    Exploration of protein function and interaction is critical for discovering links among genomics, proteomics, and disease state; yet, the immense complexity of proteomics found in biological systems currently limits our investigational capacity. Although affinity and autofluorescent tags are widely employed for protein analysis, these methods have been met with limited success because they lack specificity and require multiple fusion tags and genetic constructs. As an alternative approach, the innovative HaloTag protein fusion platform allows protein function and interaction to be comprehensively analyzed using a single genetic construct with multiple capabilities. This is accomplished using a simplified process, in which a variable HaloTag ligand binds rapidly to the HaloTag protein (usually linked to the protein of interest) with high affinity and specificity. In this review, we examine all current applications of the HaloTag technology platform for biomedical applications, such as the study of protein isolation and purification, protein function, protein–protein and protein–DNA interactions, biological assays, in vitro cellular imaging, and in vivo molecular imaging. In addition, novel uses of the HaloTag platform are briefly discussed along with potential future applications. PMID:25974629

  2. The outer profile of dark matter halos: an analytical approach

    NASA Astrophysics Data System (ADS)

    Shi, Xun

    2016-04-01

    A steepening feature in the outer density profiles of dark matter halos indicating the splashback radius has drawn much attention recently. Possible observational detections have even been made for galaxy clusters. Theoretically, Adhikari et al. have estimated the location of the splashback radius by computing the secondary infall trajectory of a dark matter shell through a growing dark matter halo with an NFW profile. However, since they imposed a shape of the halo profile rather than computing it consistently from the trajectories of the dark matter shells, they could not provide the full shape of the dark matter profile around the splashback radius. We improve on this by extending the self-similar spherical collapse model of Fillmore & Goldreich to a ΛCDM universe. This allows us to compute the dark matter halo profile and the trajectories simultaneously from the mass accretion history. Our results on the splashback location agree qualitatively with Adhikari et al. but with small quantitative differences at large mass accretion rates. We present new fitting formulae for the splashback radius Rsp in various forms, including the ratios of Rsp/R200c and Rsp/R200m. Numerical simulations have made the puzzling discovery that the splashback radius scales well with R200m but not with R200c. We trace the origin of this to be the correlated increase of Ωm and the average halo mass accretion rate with an increasing redshift.

  3. Beam halo imaging with a digital optical mask

    NASA Astrophysics Data System (ADS)

    Zhang, H. D.; Fiorito, R. B.; Shkvarunets, A. G.; Kishek, R. A.; Welsch, C. P.

    2012-07-01

    Beam halo is an important factor in any high intensity accelerator. It can cause difficulties in the control of the beam, emittance growth, particle loss, and even damage to the accelerator. It is therefore essential to understand the mechanisms of halo formation and its dynamics. Experimental measurement of the halo distribution is a fundamental tool for such studies. In this paper, we present a new high dynamic range, adaptive masking method to image beam halo, which uses a digital micromirror-array device. This method has been thoroughly tested in the laboratory using standard optical techniques, and with an actual beam produced by the University of Maryland Electron Ring (UMER). A high dynamic range (DR˜105) has been demonstrated with this new method at UMER and recent studies, with more intense beams, indicate that this DR can be exceeded by more than an order of magnitude. The method is flexible, easy to implement, low cost, and can be used at any accelerator or light source. We present the results of our measurements of the performance of the method and illustrative images of beam halos produced under various experimental conditions.

  4. The Schwarzschild Proton

    SciTech Connect

    Haramein, Nassim

    2010-11-24

    We review our model of a proton that obeys the Schwarzschild condition. We find that only a very small percentage ({approx}10{sup -39}%) of the vacuum fluctuations available within a proton volume need be cohered and converted to mass-energy in order for the proton to meet the Schwarzschild condition. This proportion is equivalent to that between gravitation and the strong force where gravitation is thought to be {approx}10{sup -38} to 10{sup -40} weaker than the strong force. Gravitational attraction between two contiguous Schwarzschild protons can accommodate both nucleon and quark confinement. We calculate that two contiguous Schwarzschild protons would rotate at c and have a period of 10{sup -23} s and a frequency of 10{sup 22} Hz which is characteristic of the strong force interaction time and a close approximation of the gamma emission typically associated with nuclear decay. We include a scaling law and find that the Schwarzschild proton data point lies near the least squares trend line for organized matter. Using a semi-classical model, we find that a proton charge orbiting at a proton radius at c generates a good approximation to the measured anomalous magnetic moment.

  5. Electron-proton spectrometer

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.

    1973-01-01

    An electron-proton spectrometer was designed to measure the geomagnetically trapped radiation in a geostationary orbit at 6.6 earth radii in the outer radiation belt. This instrument is to be flown on the Applications Technology Satellite-F (ATS-F). The electron-proton spectrometer consists of two permanent magnet surface barrier detector arrays and associated electronics capable of selecting and detecting electrons in three energy ranges: (1) 30-50 keV, (2) 150-200 keV, and (3) 500 keV and protons in three energy ranges. The electron-proton spectrometer has the capability of measuring the fluxes of electrons and protons in various directions with respect to the magnetic field lines running through the satellite. One magnet detector array system is implemented to scan between EME north and south through west, sampling the directional flux in 15 steps. The other magnet-detector array system is fixed looking toward EME east.

  6. Chandra measurements of non-thermal-like X-ray emission from massive, merging, radio halo clusters

    NASA Astrophysics Data System (ADS)

    Million, E. T.; Allen, S. W.

    2009-11-01

    We report the discovery of spatially extended, non-thermal-like emission components in Chandra X-ray spectra for five of a sample of seven massive, merging galaxy clusters with powerful radio haloes. The emission components can be fitted by power-law models with mean photon indices in the range 1.5 < Γ < 2.0. A control sample of regular, dynamically relaxed clusters, without radio haloes but with comparable mean thermal temperatures and luminosities, shows no compelling evidence for similar components. Detailed X-ray spectral mapping reveals the complex thermodynamic states of the radio halo clusters. Our deepest observations, of the Bullet Cluster 1E0657-56, demonstrate a spatial correlation between the strongest power-law X-ray emission, highest thermal pressure and brightest 1.34 GHz radio halo emission in this cluster. We confirm the presence of a shock front in the 1E0657-56 and report the discovery of a new, large-scale shock front in Abell 2219. We explore possible origins for the power-law X-ray components. These include inverse-Compton scattering of cosmic microwave background photons by relativistic electrons in the clusters; bremsstrahlung from suprathermal electrons energized by Coulomb collisions with an energetic, non-thermal proton population; and synchrotron emission associated with ultrarelativistic electrons. Interestingly, we show that the power-law signatures may also be due to complex temperature and/or metallicity structure in clusters particularly in the presence of metallicity gradients. In this case, an important distinguishing characteristic between the radio halo clusters and control sample of predominantly cool-core clusters is the relatively low central X-ray surface brightness of the former. Our results have implications for previous discussions of soft excess X-ray emission from clusters and highlight the importance of further deep X-ray and radio mapping, coupled with new hard X-ray, γ-ray and TeV observations, for improving our

  7. Haloes light and dark: dynamical models of the stellar halo and constraints on the mass of the Galaxy

    NASA Astrophysics Data System (ADS)

    Williams, A. A.; Evans, N. W.

    2015-11-01

    We develop a flexible set of action-based distribution functions (DFs) for stellar haloes. The DFs have five free parameters, controlling the inner and outer density slope, break radius, flattening, and anisotropy, respectively. The DFs generate flattened stellar haloes with a rapidly varying logarithmic slope in density, as well as a spherically aligned velocity ellipsoid with a long axis that points towards the Galactic Centre - all attributes possessed by the stellar halo of the Milky Way. We use our action-based DF to model the blue horizontal branch stars extracted from the Sloan Digital Sky Survey as stellar halo tracers in a spherical Galactic potential. As the selection function is hard to model, we fix the density law from earlier studies and solve for the anisotropy and gravitational potential parameters. Our best-fitting model has a velocity anisotropy that becomes more radially anisotropic on moving outwards. It changes from β ≈ 0.4 at Galactocentric radius of 15 kpc to ≈0.7 at 60 kpc. This is a gentler increase than is typically found in simulations of stellar haloes built from the multiple accretion of smaller systems. We find the potential corresponds to an almost flat rotation curve with amplitude of ≈200 km s-1 at these distances. This implies an enclosed mass of ≈4.5 × 1011 M⊙ within a spherical shell of radius 50 kpc.

  8. Velocity Structure and Plasma Properties in Halo CMES

    NASA Technical Reports Server (NTRS)

    Raymond, John C.

    2004-01-01

    We have identified a set of 23 Halo CMEs and 21 Partial Halo CMEs from the LASCO Halo CME Archive for which UVCS spectra exist through July 2002. For each event we have collected basic information such as the event speed, whether or not UVCS caught the bright front, lines detected, Doppler shift and associated flare class. We are currently analyzing the subset for which UVCS caught the CME front. We also obtained excellent observations of some of the spectacular events in November 2003, and we have made theoretical calculations pertaining to CME expansion at the heights observed by UVCS. In one event we were able to analyze the properties of the current sheet in detail.

  9. Halo-independent methods for inelastic dark matter scattering

    SciTech Connect

    Bozorgnia, Nassim; Schwetz, Thomas; Herrero-Garcia, Juan; Zupan, Jure E-mail: juan.a.herrero@uv.es E-mail: jure.zupan@cern.ch

    2013-07-01

    We present halo-independent methods to analyze the results of dark matter direct detection experiments assuming inelastic scattering. We focus on the annual modulation signal reported by DAMA/LIBRA and present three different halo-independent tests. First, we compare it to the upper limit on the unmodulated rate from XENON100 using (a) the trivial requirement that the amplitude of the annual modulation has to be smaller than the bound on the unmodulated rate, and (b) a bound on the annual modulation amplitude based on an expansion in the Earth's velocity. The third test uses the special predictions of the signal shape for inelastic scattering and allows for an internal consistency check of the data without referring to any astrophysics. We conclude that a strong conflict between DAMA/LIBRA and XENON100 in the framework of spin-independent inelastic scattering can be established independently of the local properties of the dark matter halo.

  10. Could wormholes form in dark matter galactic halos?

    NASA Astrophysics Data System (ADS)

    Rahaman, Farook; Shit, G. C.; Sen, Banashree; Ray, Saibal

    2016-01-01

    We estimate expression for velocity as a function of the radial coordinate r by using polynomial interpolation based on the experimental data of rotational velocities at distant outer regions of galaxies. The interpolation technique has been used to estimate fifth degree polynomial followed by cubic spline interpolation. This rotational velocity is used to find the geometry of galactic halo regions within the framework of Einstein's general relativity. In this paper we have analyzed features of galactic halo regions based on two possible choices for the dark matter density profile, viz. Navarro, Frenk & White (NFW) type (Navarro et al. in Astrophys. J. 462:563, 1996) and Universal Rotation Curve (URC) (Castignani et al. in Nat. Sci. 4:265, 2012). It is argued that spacetime of the galactic halo possesses some of the characteristics needed to support traversable wormholes.

  11. A panoramic VISTA of the stellar halo of NGC 253

    NASA Astrophysics Data System (ADS)

    Greggio, L.; Rejkuba, M.; Gonzalez, O. A.; Arnaboldi, M.; Iodice, E.; Irwin, M.; Neeser, M. J.; Emerson, J.

    2014-02-01

    Context. Outskirts of large galaxies contain important information about galaxy formation and assembly. Resolved star count studies can probe the extremely low surface brightness of the outer halos. Aims: NGC 253 is a nearly edge-on disk galaxy in the Sculptor group, of which we resolved the halo stars from ground-based images, with the aim of studying its stellar population content, the structure and the overall extent of the halo. Methods: We use Z and J-band images from the VIRCAM camera mounted on the VISTA telescope to construct the spatially resolved J vs. Z-J color-magnitude diagrams (CMDs). The very deep photometry and the wide area covered allow us to trace the red giant branch (RGB) and asymptotic giant branch (AGB) stars that belong to the halo of NGC 253 out to 50 kpc along the galaxy's minor axis. Results: We confirm the existence of an extra-planar stellar component of the disk, with a very prominent southern shelf and a symmetrical feature on the north side. The only additional visible substructure is an overdensity in the north-west part of the halo ~28 kpc distant from the plane and extending over 20 kpc parallel with the disk of the galaxy. Our data are not deep enough to distinguish its stellar population from that of the surrounding halo, but the excess of stars above the smooth halo traces the mass of the parent population of ~7.5 × 106M⊙. From stellar counts, we measure the transition from the disk to the halo at a radial distance of about 25 kpc with a clear break in the number density profile. The isodensity contours show that the inner halo is a flattened structure that blends with a more extended, diffuse, rounder outer halo. Such external structure can be traced to the very edge of our image out to 50 kpc from the disk plane. The number density profile of the stars in the stellar halo follows a power law with index -1.6, as a function of radius. The CMD shows a very homogeneous stellar population across the field. By comparing

  12. Mixing between High Velocity Clouds and the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Gritton, Jeffrey A.; Shelton, Robin L.; Kwak, Kyujin

    2014-11-01

    In the Galactic halo, metal-bearing Galactic halo material mixes into high velocity clouds (HVCs) as they hydrodynamically interact. This interaction begins long before the clouds completely dissipate and long before they slow to the velocity of the Galactic material. In order to make quantitative estimates of the mixing efficiency and resulting metal enrichment of HVCs, we made detailed two- and three-dimensional simulations of cloud-interstellar medium interactions. Our simulations track the hydrodynamics and time-dependent ionization levels. They assume that the cloud originally has a warm temperature and extremely low metallicity while the surrounding medium has a high temperature, low density, and substantial metallicity, but our simulations can be generalized to other choices of initial metallicities. In our simulations, mixing between cloud and halo gas noticeably raises the metallicity of the high velocity material. We present plots of the mixing efficiency and metal enrichment as a function of time.

  13. Particle ejection during mergers of dark matter halos

    SciTech Connect

    Carucci, Isabella P.; Sparre, Martin; Hansen, Steen H.; Joyce, Michael E-mail: sparre@dark-cosmology.dk E-mail: joyce@lpnhe.in2p3.fr

    2014-06-01

    Dark matter halos are built from accretion and merging. During merging some of the dark matter particles may be ejected with velocities higher than the escape velocity. We use both N-body simulations and single-particle smooth-field simulations to demonstrate that rapid changes to the mean field potential are responsible for such ejection, and in particular that dynamical friction plays no significant role in it. Studying a range of minor mergers, we find that typically between 5–15% of the particles from the smaller of the two merging structures are ejected. We also find that the ejected particles originate essentially from the small halo, and more specifically are particles in the small halo which pass later through the region in which the merging occurs.

  14. Disruptions and halo currents in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Granetz, R. S.; Hutchinson, I. H.; Sorci, J.; Irby, J. H.; La Bombard, B.; Gwinn, D.

    1996-05-01

    Disruptions in Alcator C-Mod can generate large eddy currents in the highly conducting vacuum vessel and internal structures, including a significant poloidal component due to halo currents. In order to understand better the stresses arising from the resulting J*B forces, Alcator C-Mod has been fitted with a comprehensive set of sensors to measure the spatial distribution and temporal behaviour of the halo currents. It is found that they are toroidally asymmetric, with a typical peaking factor of 2. The asymmetric pattern usually rotates toroidally at a few kilohertz, thus ruling out first wall non-uniformities as the cause of the asymmetry. Analysis of the information compiled in the C-Mod disruption database indicates that the maximum halo current during a disruption scales roughly as either Ip2/Bphi or Ip/q95, but that there is a large amount of variation that is not yet understood

  15. Mixing between high velocity clouds and the galactic halo

    SciTech Connect

    Gritton, Jeffrey A.; Shelton, Robin L.; Kwak, Kyujin E-mail: rls@physast.uga.edu

    2014-11-01

    In the Galactic halo, metal-bearing Galactic halo material mixes into high velocity clouds (HVCs) as they hydrodynamically interact. This interaction begins long before the clouds completely dissipate and long before they slow to the velocity of the Galactic material. In order to make quantitative estimates of the mixing efficiency and resulting metal enrichment of HVCs, we made detailed two- and three-dimensional simulations of cloud-interstellar medium interactions. Our simulations track the hydrodynamics and time-dependent ionization levels. They assume that the cloud originally has a warm temperature and extremely low metallicity while the surrounding medium has a high temperature, low density, and substantial metallicity, but our simulations can be generalized to other choices of initial metallicities. In our simulations, mixing between cloud and halo gas noticeably raises the metallicity of the high velocity material. We present plots of the mixing efficiency and metal enrichment as a function of time.

  16. Analysis of the halo background in femtosecond slicing experiments.

    PubMed

    Schick, Daniel; Le Guyader, Loïc; Pontius, Niko; Radu, Ilie; Kachel, Torsten; Mitzner, Rolf; Zeschke, Thomas; Schüßler-Langeheine, Christian; Föhlisch, Alexander; Holldack, Karsten

    2016-05-01

    The slicing facility FemtoSpeX at BESSY II offers unique opportunities to study photo-induced dynamics on femtosecond time scales by means of X-ray magnetic circular dichroism, resonant and non-resonant X-ray diffraction, and X-ray absorption spectroscopy experiments in the soft X-ray regime. Besides femtosecond X-ray pulses, slicing sources inherently also produce a so-called `halo' background with a different time structure, polarization and pointing. Here a detailed experimental characterization of the halo radiation is presented, and a method is demonstrated for its correct and unambiguous removal from femtosecond time-resolved data using a special laser triggering scheme as well as analytical models. Examples are given for time-resolved measurements with corresponding halo correction, and errors of the relevant physical quantities caused by either neglecting or by applying a simplified model to describe this background are estimated. PMID:27140149

  17. A Robust Measure of Dark Matter Halo Ellipticities

    NASA Astrophysics Data System (ADS)

    Evslin, Jarah

    2016-08-01

    In simulations of the standard cosmological model (ΛCDM), dark matter halos are aspherical. However, so far the asphericity of an individual galaxy’s halo has never been robustly established. We use the Jeans equations to define a quantity that robustly characterizes a deviation from rotational symmetry. This quantity is essentially the gravitational torque and it roughly provides the ellipticity projected along the line of sight. We show that the Thirty Meter Telescope (TMT), with a single epoch of observations combined with those of the Gaia Space Telescope, can distinguish the ΛCDM value of the torque from zero for each Sculptor-like dwarf galaxy with a confidence between 0 and 5σ, depending on the orientation of each halo. With two epochs of observations, TMT will achieve a 5σ discovery of torque and thus asphericity for most such galaxies, thus providing a new and powerful test of the ΛCDM model.

  18. Halos in cirrus clouds: why are classic displays so rare?

    PubMed

    Sassen, Kenneth

    2005-09-20

    Upper tropospheric cirrus clouds consist of hexagonal ice crystals, which geometrical ray-tracing-theory predicts should regularly produce a variety of optical phenomena such as vivid 22 degrees and 46 degrees halos. Yet, cirrus inconsistently generate such optical displays, while a class of more exotic displays are reported, albeit rarely. I review current knowledge of the cirrus cloud microphysical factors that control ice crystal shape, and hence halo/arc formation, but also appeal to halo enthusiasts to help investigate the causes of unusually complex, brilliant, or rare optical displays. Currently, a wealth of meteorological information can be tapped from the Internet to help advance our knowledge of the basic meteorological factors leading to these rare events. PMID:16201430

  19. Halo Coronal Mass Ejections: Comparing Observations and Models

    NASA Technical Reports Server (NTRS)

    Gilbert, Holly; Orlove, Matthew; SaintCyr, O.; Mays, L.; Gopalswamy, N.

    2011-01-01

    Since 1996, the SOHO LASCO coronagraphs have detected "halo" CMEs that appear to be directed toward Earth, but information about the size and speed of these events seen face-on has been limited. From a single vantage point along the Sun-Earth line, the primary limitation has been ambiguity in fitting the cone model (or other forward-modeling techniques, e.g., Thernisian et al., 2006). But in the past few years, the STEREO mission has provided a view of Earth-directed events from the side. These events offer the opportunity to compare measurements (width and speed) of halo CMEs observed by STEREO with models that derive halo CME properties. We report here results of such a comparison on a large sample of LASCO CMEs in the STEREO era.

  20. Dark halos of M 31 and the Milky Way

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki

    2015-08-01

    Grand rotation curves (GRC) within ˜ 400 kpc of M 31 and the Milky Way were constructed by combining disk rotation velocities and radial velocities of satellite galaxies and globular clusters. The GRC for the Milky Way was revised using the most recent solar rotation velocity. The derived GRCs were deconvolved into a de Vaucouleurs bulge, exponential disk, and a dark halo with a Navarro-Frenk-White (NFW) density profile by least-χ2 fitting. Comparison of the best-fitting parameters revealed similarities between the disks and bulges of the two galaxies, whereas the dark-halo mass of M 31 was found to be twice that of the Galaxy. We show that the NFW model may be a realistic approximation of the observed dark halos in these two giant spirals.

  1. Experimental and Theoretical Status of Borromean Halo Nuclei Structure Investigation

    NASA Astrophysics Data System (ADS)

    Petrascu, Marius

    2006-08-01

    An introduction to the work performed in pre-emission of neutrons from 11Li halo nuclei will be presented. The standing present problems in the investigation of the structure of Borromean halo nuclei by means of the Cnn correlation function are outlined. An investigation of the target screening effect on the pre-emission of halo neutrons will be briefly described. It is shown that due to the diminishing of the screening effect the yield of neutron pair pre-emission is expected to be much larger in the case of 12C than in the case of Si target. It is shown that a new experiment on l2C target will allow to solve the standing problems of Cnn and also to test experimentally a recent new theory of Cnn [10 ].

  2. Halo-independent tests of dark matter annual modulation signals

    SciTech Connect

    Herrero-Garcia, Juan

    2015-09-02

    New halo-independent lower bounds on the product of the dark matter-nucleon scattering cross section and the local dark matter density that are valid for annual modulations of dark matter direct detection signals are derived. They are obtained by making use of halo-independent bounds based on an expansion of the rate on the Earth’s velocity that were derived in previous works. In combination with astrophysical measurements of the local energy density, an observed annual modulation implies a lower bound on the cross section that is independent of the velocity distribution and that must be fulfilled by any particle physics model. In order to illustrate the power of the bounds we apply them to DAMA/LIBRA data and obtain quite strong results when compared to the standard halo model predictions. We also extend the bounds to the case of multi-target detectors.

  3. Halo dust detection around NGC 891

    NASA Astrophysics Data System (ADS)

    Bocchio, M.; Bianchi, S.; Hunt, L. K.; Schneider, R.

    2016-02-01

    Context. Observations of edge-on galaxies allow us to investigate the vertical extent and properties of dust, gas and stellar distributions. NGC 891 has been studied for decades and represents one of the best studied cases of an edge-on galaxy. Aims: We use deep Photoconductor Array Camera and Spectrometer (PACS) data together with Infrared Array Camera (IRAC), Multiband Imaging Photometer for Spitzer (MIPS) and Spectral and Photometric Imaging Receiver (SPIRE) data to study the vertical extent of dust emission around NGC 891. We also test for the presence of a more extended, thick dust component. Methods: By performing a convolution of an intrinsic vertical profile emission with each instrument point spread function (PSF) and comparing it with observations we derived the scale height of a thin and thick dust-disc component. Results: The emission is best fit with the sum of a thin and a thick dust component for all wavelengths considered. The scale height of both dust components shows a gradient goes from 70 μm to 250 μm. This could be due either to a drop in dust heating (and thus the dust's temperature) with the distance from the plane, or to a sizable contribution (~15-80%) of an unresolved thin disc of hotter dust to the observed surface brightness at shorter wavelengths. The scale height of the thick dust component, using observations from 70 μm to 250 μm, has been estimated at (1.44 ± 0.12) kpc, which is consistent with previous estimates (i.e. extinction and scattering in optical bands and mid-infrared (MIR) emission). The amount of dust mass at distances greater than ~2 kpc from the midplane represents 2-3.3% of the total galactic dust mass, and the abundance of small grains relative to large grains is almost halved compared to levels in the midplane. Conclusions: The paucity of small grains high above the midplane might indicate that dust is hit by interstellar shocks or galactic fountains and entrained together with gas. The halo dust component is

  4. Characteristic time for halo current growth and rotation

    NASA Astrophysics Data System (ADS)

    Boozer, Allen

    2015-11-01

    Halo currents, Ih, flow in part through plasma on open magnetic lines and in part through the walls. A halo current has the same function as the wall current of a resistive wall mode and arises when a kink cannot be wall stabilized. When flowing in the plasma, the halo current can produce no forces, so j->h = (j∥ / B) B-> with B-> . ∇ -> j∥ / B = 0 . To avoid too strong a coupling to stable kinks, the wall interception must be of sufficient toroidal extent, which implies the width of the halo current channel Δh aIh /Ip , where aIh /Ip is the amplitude of the kink, a is the minor radius, and Ip is the plasma current. The equation for the growth of the halo current is dIh / dt =Ip /τg , where τg (μ0 /ηh) (a2 / 4) /seff and seff is a dimensionless stability coefficient. The rocket effect of the plasma flowing out of the two ends of the magnetic field lines in the halo can set the magnetic perturbation into toroidal rotation at a Mach number, Mh, comparable to unity. The rotation period is τr = (2 πR0 /Cs) /Mh , where R0 is the major radius and Cs =√{ (Te +Ti) /mi } is the speed of sound. NSTX results appear consistent for seff 0 . 5 , Mh 1 , and Te , i = 10 eV. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number De-FG02-03ER54696.

  5. Solar Radiation Measurements Onboard the Research Aircraft HALO

    NASA Astrophysics Data System (ADS)

    Lohse, I.; Bohn, B.; Werner, F.; Ehrlich, A.; Wendisch, M.

    2014-12-01

    Airborne measurements of the separated upward and downward components of solar spectral actinic flux densities for the determination of photolysis frequencies and of upward nadir spectral radiance were performed with the HALO Solar Radiation (HALO-SR) instrument package onboard the High Altitude and Long Range Research Aircraft (HALO). The instrumentation of HALO-SR is characterized and first measurement data from the Next-generation Aircraft Remote-Sensing for Validation Studies (NARVAL) campaigns in 2013 and 2014 are presented. The measured data are analyzed in the context of the retrieved microphysical and optical properties of clouds which were observed underneath the aircraft. Detailed angular sensitivities of the two optical actinic flux receivers were determined in the laboratory. The effects of deviations from the ideal response are investigated using radiative transfer calculations of atmospheric radiance distributions under various atmospheric conditions and different ground albedos. Corresponding correction factors are derived. Example photolysis frequencies are presented, which were sampled in the free troposphere and lower stratosphere over the Atlantic Ocean during the 2013/14 HALO NARVAL campaigns. Dependencies of photolysis frequencies on cloud cover, flight altitude and wavelength range of the photolysis process are investigated. Calculated actinic flux densities in the presence of clouds benefit from the measured spectral radiances. Retrieved cloud optical thicknesses and effective droplet radii are used as model input for the radiative transfer calculations. By comparison with the concurrent measurements of actinic flux densities the retrieval approach is validated. Acknowledgements: Funding by the Deutsche Forschungsgemeinschaft within the priority program HALO (BO 1580/4-1, WE 1900/21-1) is gratefully acknowledged.

  6. Are Radio Halos Common in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Eilek, J. A.; Markovic, T.; Owen, F. N.

    2002-05-01

    Diffuse synchrotron radio halos are known to exist in several rich clusters of galaxies. The detection of a cluster-wide halo demonstrates that the ICM in that cluster has a non-thermal component, namely, relativistic particles and magnetic field. Some authors have suggested that radio halos are rare, and that their host clusters are unusual, having recently undergone a strong merger. We propose a different picture. We suspect that halos may be more common than has been thought, and are a simple by-product of cluster 'weather'. The radio and X-ray powers of known halos are roughly correlated. We find that this correlation is to be expected if the ratio of non-thermal pressure to thermal pressure is the same for the ICM in all rich clusters. We expect this to be the case if ongoing minor mergers maintain flows and turbulence in the ICM. We will discuss constraints the radio-Xray correlation imposes on the turbulence, and how the turbulence is driven. Our speculation can be tested by observations. We are using the VLA at 1.4 GHz to search for radio halos in a set of 30 Abell clusters. They have been chosen based on their X-ray power, angular size and redshift, but irregardless of their structure. We have neither excluded cooling cores nor specialized to clusters undergoing major mergers. All of our targets will be detected at or above a few mJy if they obey the current radio-Xray correlation. Those not detected will give us upper limits which also tell us about the turbulence and re-energization in the ICM of those clusters.

  7. Revisiting the luminosity function of single halo white dwarfs

    NASA Astrophysics Data System (ADS)

    Cojocaru, Ruxandra; Torres, Santiago; Althaus, Leandro G.; Isern, Jordi; García-Berro, Enrique

    2015-09-01

    Context. White dwarfs are the fossils left by the evolution of low- and intermediate-mass stars, and have very long evolutionary timescales. This allows us to use them to explore the properties of old populations, like the Galactic halo. Aims: We present a population synthesis study of the luminosity function of halo white dwarfs, aimed at investigating which information can be derived from the currently available observed data. Methods: We employ an up-to-date population synthesis code based on Monte Carlo techniques, which incorporates the most recent and reliable cooling sequences for metal-poor progenitors as well as an accurate modeling of the observational biases. Results: We find that because the observed sample of halo white dwarfs is restricted to the brightest stars, only the hot branch of the white dwarf luminosity function can be used for these purposes, and that its shape function is almost insensitive to the most relevant inputs, such as the adopted cooling sequences, the initial mass function, the density profile of the stellar spheroid, or the adopted fraction of unresolved binaries. Moreover, since the cutoff of the observed luminosity has not yet been determined only the lower limits to the age of the halo population can be placed. Conclusions: We conclude that the current observed sample of the halo white dwarf population is still too small to obtain definite conclusions about the properties of the stellar halo, and the recently computed white dwarf cooling sequences, which incorporate residual hydrogen burning, should be assessed using metal-poor globular clusters.

  8. Proton-proton colliding beam facility ISABELLE

    SciTech Connect

    Hahn, H

    1980-01-01

    This paper attempts to present the status of the ISABELLE construction project, which has the objective of building a 400 + 400 GeV proton colliding beam facility. The major technical features of the superconducting accelerators with their projected performance are described. Progress made so far, difficulties encountered, and the program until completion in 1986 is briefly reviewed.

  9. ASSEMBLY OF THE OUTER GALACTIC STELLAR HALO IN THE HIERARCHICAL MODEL

    SciTech Connect

    Murante, Giuseppe; Curir, Anna; Poglio, Eva; Villalobos, Alvaro E-mail: curir@oato.inaf.i E-mail: villalobos@oats.inaf.i

    2010-06-20

    We provide a set of numerical N-body simulations for studying the formation of the outer Milky Ways' stellar halo through accretion events. After simulating minor mergers of prograde and retrograde orbiting satellite halos with a dark matter main halo, we analyze the signal left by satellite stars in the rotation velocity distribution. The aim is to explore the orbital conditions where a retrograde signal in the outer part of the halo can be obtained, in order to give a possible explanation of the observed rotational properties of the Milky Way stellar halo. Our results show that, for satellites more massive than {approx}1/40 of the main halo, the dynamical friction has a fundamental role in assembling the final velocity distributions resulting from different orbits and that retrograde satellites moving on low-inclination orbits deposit more stars in the outer halo regions and therefore can produce the counter-rotating behavior observed in the outer Milky Way halo.

  10. PSF halo reduction in adaptive optics using dynamic pupil masking.

    PubMed

    Osborn, James; Myers, Richard M; Love, Gordon D

    2009-09-28

    We describe a method to reduce residual speckles in an adaptive optics system which add to the halo of the point spread function (PSF). The halo is particularly problematic in astronomical applications involving the detection of faint companions. Areas of the pupil are selected where the residual wavefront aberrations are large and these are masked using a spatial light modulator. The method is also suitable for smaller telescopes without adaptive optics as a relatively simple method to increase the resolution of the telescope. We describe the principle of the technique and show simulation results. PMID:19907514

  11. Subaru Hyper Suprime Cam Survey of the Andromeda Halo

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi; Tanaka, Mikito; Komiyama, Yutaka

    2016-08-01

    We present a progress report on our deep and wide-field imaging survey of the Andromeda halo with Hyper Suprime Cam (HSC) mounted on Subaru. HSC is the upgraded prime focus camera after Suprime-Cam, having a field of view of 1.77 square degree (1.5 degree in diameter), namely about 10 times larger than that of Suprime-Cam. This camera will thus offer us great opportunities to explore unique and legacy surveys for the Andromeda halo, as well as for other Galactic Archaeology science cases.

  12. On the (non-)universality of halo density profiles

    NASA Astrophysics Data System (ADS)

    Diemer, Benedikt

    We present a systematic study of the density profiles of dark matter halos in LambdaCDM cosmologies, focusing on the question whether these profiles are "universal", i.e., whether they follow the same functional form regardless of halo mass, redshift, cosmology, and other parameters. The inner profiles (r [special character omitted] R vir) can be described as a function of only mass and concentration, and we thus begin by investigating whether there is a universal, cosmology-independent relation between those two parameters. We propose a model in which concentration is a function only of a halo's peak height and the local slope of the matter power spectrum. This model matches the concentrations in LambdaCDM and scale-free simulations, correctly extrapolates over 16 orders of magnitude in halo mass, and differs significantly from all previously proposed models at high masses and redshifts. We find that the outer profiles (r [special character omitted] Rvir) are remarkably universal across redshifts when radii are rescaled by R200m, whereas the inner profiles are most universal in units of R200c, highlighting that universality depends upon the definition of the halo boundary. Furthermore, we discover that the profiles exhibit significant deviations from the supposedly universal analytic formulae previously suggested in the literature, such as the NFW and Einasto forms. In particular, the logarithmic slope of the profiles of massive or rapidly accreting halos steepens more sharply than predicted around r ≈ R200m, where the steepness increases with increasing peak height or mass accretion rate. We propose a new, accurate fitting formula that takes these dependencies into account. Finally, we demonstrate that the profile steepening corresponds to the caustic at the apocenter of infalling matter on its first orbit. We call the location of the caustic the splashback radius, Rsp, and propose this radius as a new, physically motivated definition of the halo boundary. We

  13. Stellar halos and the link to galaxy formation

    NASA Astrophysics Data System (ADS)

    Helmi, Amina

    2016-08-01

    I present a brief overview of how stellar halos may be used to constrain the process of galaxy formation. In particular, streams and substructure in stellar halos trace merger events but can also be used to determine the mass distribution of the host galaxy and hence put constraints on the nature of dark matter. Much of the focus of this contribution is on the Milky Way, but I also present an attempt to understand the kinematics of the globular cluster system of M31.

  14. The Longest Stellar Stream in M31's Halo

    NASA Astrophysics Data System (ADS)

    Fardal, Mark A.; PAndAS Collaboration

    2016-01-01

    We present updated data and dynamical modeling of several tidal features in the M31 halo. We focus on the NW Stream, a nearly radial feature extending outwards from M31. Using new distance estimates fromevolved stars and embedded globular clusters, we find this stream extends to a greater distance from its host than any other known tidal stream. We update the stream velocity profile with new measures from resolved stars and globular clusters. We use Bayesian dynamical modeling to discover the stream's implications for M31's halo mass and the life history of its progenitor galaxy.

  15. The FUSE Survey of 0 VI in the Galactic Halo

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Savage, B. D.; Wakker, B. P.; Sembach, K. R.; Jenkins, E. B.; Moos, H. W.; Shull, J. M.

    2003-01-01

    This paper summarizes the results of the Far-Ultraviolet Spectroscopic Explorer (FUSE) program to study 0 VI in the Milky Way halo. Spectra of 100 extragalactic objects and two distant halo stars are analyzed to obtain measures of O VI absorption along paths through the Milky Way thick disk/halo. Strong O VI absorption over the velocity range from -100 to 100 km/s reveals a widespread but highly irregular distribution of O VI, implying the existence of substantial amounts of hot gas with T approx. 3 x 10(exp 5) K in the Milky Way thick disk/halo. The overall distribution of O VI is not well described by a symmetrical plane-parallel layer of patchy O VI absorption. The simplest departure from such a model that provides a reasonable fit to the observations is a plane-parallel patchy absorbing layer with an average O VI mid-plane density of n(sub 0)(O VI) = 1.7 x 10(exp -2)/cu cm, a scale height of approx. 2.3 kpc, and a approx. 0.25 dex excess of O VI in the northern Galactic polar region. The distribution of O VI over the sky is poorly correlated with other tracers of gas in the halo, including low and intermediate velocity H I, Ha emission from the warm ionized gas at approx. l0(exp 4) K, and hot X-ray emitting gas at approx. l0(exp 6) K . The O VI has an average velocity dispersion, b approx. 60 km/s and standard deviation of 15 km/s. Thermal broadening alone cannot explain the large observed profile widths. A combination of models involving the radiative cooling of hot fountain gas, the cooling of supernova bubbles in the halo, and the turbulent mixing of warm and hot halo gases is required to explain the presence of O VI and other highly ionized atoms found in the halo. The preferential venting of hot gas from local bubbles and superbubbles into the northern Galactic polar region may explain the enhancement of O VI in the North.

  16. Toward a universal formulation of the halo mass function.

    PubMed

    Corasaniti, P S; Achitouv, I

    2011-06-17

    We compute the dark matter halo mass function using the excursion set formalism for a diffusive barrier with linearly drifting average which captures the main features of the ellipsoidal collapse model. We evaluate the non-Markovian corrections due to the sharp filtering of the linear density field in real space with a path-integral method. We find an unprecedented agreement with N-body simulation data with deviations ≲5% over the range of masses probed by the simulations. This indicates that the excursion set in combination with a realistic modeling of the collapse threshold can provide a robust estimation of the halo mass function. PMID:21770562

  17. Halogen occultation experiment (HALOE) optical witness-plate program

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Raper, James L.

    1989-01-01

    An optical witness plate program was implemented to monitor buildup of molecular contamination in the clean room during the assembly and testing of the Halogen Occulation Experiment (HALOE) instrument. Travel plates to monitor molecular contamination when the instrument is not in the clean room are also measured. The instrument technique is high-resolution transmission spectroscopy in the 3 micron spectral region using a Fourier transform spectrometer. Witness specimens of low index of refraction, infrared transmitting material are used for contaminant monitoring and for spectral signature analysis. Spectral signatures of possible molecular contamination are presented. No condensible volatile material contamination of HALOE optical witness specimens have yet been found.

  18. How big should hexagonal ice crystals be to produce halos?

    PubMed

    Mishchenko, M I; Macke, A

    1999-03-20

    It has been hypothesized that the frequent lack of halos in observations of cirrus and contrails and laboratory measurements is caused by small ice crystal sizes that put the particles outside the geometrical optics domain of size parameters. We test this hypothesis by exploiting a strong similarity of ray tracing phase functions for finite hexagonal and circular ice cylinders and using T-matrix computations of electromagnetic scattering by circular cylinders with size parameters up to 180 in the visible. We conclude that well-defined halos should be observable for ice crystal size parameters of the order of 100 and larger and discuss remote-sensing implications of this result. PMID:18305781

  19. Modelling giant radio halos. Doctoral Thesis Award Lecture 2012

    NASA Astrophysics Data System (ADS)

    Donnert, J. M. F.

    2013-06-01

    We review models for giant radio halos in clusters of galaxies, with a focus on numerical and theoretical work. After summarising the most important observations of these objects, we present an introduction to the theoretical aspects of hadronic models. We compare these models with observations using simulations and find severe problems for hadronic models. We give a short introduction to reacceleration models and show results from the first simulation of CRe reacceleration in cluster mergers. We find that in-line with previous theoretical work, reacceleration models are able to elegantly explain main observables of giant radio halos.

  20. Velocity Structure and Plasma Properties in Halo CMEs

    NASA Technical Reports Server (NTRS)

    Wagner, William (Technical Monitor); Raymond, John C.

    2003-01-01

    We have identified a set of 23 Halo CMEs through July 2002 and 21 Partial Halo CMEs from the LASCO Halo CME Mail Archive for which Ultraviolet Coronagraph Spectrometer (UVCS) spectra exist. For each event we have collected basic information such as the event speed, whether or not UVCS caught the bright front, lines detected, Doppler shift and associated flare class. We have also obtained excellent observations of some of the spectacular events in November 2003, and we have made theoretical calculations pertaining to CME expansion at the heights observed by UVCS. We first analyzed the halo CMEs on 21 April and 24 August 2002 and the partial halo on 23 July 2002, because the X-class flares associated with these CMEs were extensively observed by RHESSI and other instruments as part of the MAX MILLENIUM campaign. These very fast CMEs showed extremely violent disruption of the pre-CME streamers, little or no cool prominence material, and the unusual (for UVCS heights) hot emission line [Fe XVIII]. Results, including a discussion of the current sheet interpretation for the [Fe XVIII] emission, are published in Raymond et al. and presented at the Fall 2002 AGU meeting and the solar physics summer school in L'Aquila, Italy. We are currently preparing two papers on the Dec. 28, 2000 partial halo event. This event was chosen to take advantage of the SEP event measured by WIND and ACE, and because a Type II radio burst coincides with the time that broad, blue-shifted O VI emission appeared in the UVCS spectra. One paper deals with a new density and velocity diagnostic for very fast CMEs; pumping of O VI lambda 1032 by Ly beta and pumping of O VI lambda 1038 by O VI lambda 1032. The other discusses physics of the shock wave and association with the SEP event. In the coming year we plan to expand the list of Halo and Partial Halo events observed by UVCS through the end of 2003. We will look at those events as a class to search for correlation between UV spectral characteristics

  1. Hyperfine Structure Constant of the Neutron Halo Nucleus Be+11

    NASA Astrophysics Data System (ADS)

    Takamine, A.; Wada, M.; Okada, K.; Sonoda, T.; Schury, P.; Nakamura, T.; Kanai, Y.; Kubo, T.; Katayama, I.; Ohtani, S.; Wollnik, H.; Schuessler, H. A.

    2014-04-01

    The hyperfine splittings of ground state Be+11 have been measured precisely by laser-microwave double resonance spectroscopy for trapped and laser cooled beryllium ions. The ions were produced at relativistic energies and subsequently slowed down and trapped at mK temperatures. The magnetic hyperfine structure constant of Be+11 was determined to be A11=-2677.302 988(72) MHz from the measurements of the mF-mF'=0-0 field independent transition. This measurement provides essential data for the study of the distribution of the halo neutron in the single neutron halo nucleus Be11 through the Bohr-Weisskopf effect.

  2. Halos and rainbows: The elastic scattering of light exotic nuclei

    SciTech Connect

    Satchler, G.R.; Hussein, M.H.

    1993-10-01

    The scattering of an exotic light nucleus with a halo is compared with that of a normal nucleus. Four, sometimes opposing effects arising from the halo are identified. Semiclassical expressions are derived which embody these effects. The cases of {sup 11}Li and {sup 11}C scattering from {sup 12}C at E/A = 60 MeV are compared. We conclude that the {sup 11}Li differential cross sections are probably smaller than those for {sup 11}C, in agreement with recent analyses of the measurements.

  3. Resolution of vitiligo following excision of halo congenital melanocytic nevus: a rare case report.

    PubMed

    Wang, Kai; Wang, Zhi; Huang, Weiqing

    2016-05-01

    Halo congenital melanocytic nevus (CMN) associated with vitiligo is rare, especially with regard to CMN excision. Only two reports of excision of halo CMN following repigmentation of vitiligo are found in the literature. We present a case of a girl with halo CMN and periorbital vitiligo. The halo CMN was excised and followed by spontaneous improvement of vitiligo. The result suggests excision of the inciting lesion may be a promising way to control vitiligo. PMID:26627472

  4. The ionization conditions in the Milky Way halo - Infalling gas toward the North Galactic Pole

    NASA Technical Reports Server (NTRS)

    Danly, Laura

    1992-01-01

    Observations of gas in the Milky Way halo are studied with an eye toward the theoretical predictions of the Galactic Fountain model for the production of halo gas. Data are shown that indicate significant variations in the ionization conditions in infalling halo gas in the northern galactic hemisphere. Understanding the nature of Milky Way halo gas plays a critical role in interpreting QSO absorption lines in the investigation of galaxies at high redshift.

  5. The inner structure of ΛCDM haloes - II. Halo mass profiles and low surface brightness galaxy rotation curves

    NASA Astrophysics Data System (ADS)

    Hayashi, E.; Navarro, J. F.; Power, C.; Jenkins, A.; Frenk, C. S.; White, S. D. M.; Springel, V.; Stadel, J.; Quinn, T. R.

    2004-12-01

    We use a set of high-resolution cosmological N-body simulations to investigate the inner mass profile of galaxy-sized cold dark matter (CDM) haloes. These simulations extend the numerical convergence study presented in Paper I of this series, and demonstrate that the mass profile of CDM galaxy haloes can be robustly estimated beyond a minimum converged radius of order rconv~ 1h-1 kpc in our highest-resolution runs. The density profiles of simulated haloes become progressively shallower from the virial radius inwards, and show no sign of approaching a well-defined power law near the centre. At rconv, the density profile is steeper than expected from the formula proposed by Navarro, Frenk & White, which has a ρ~r-1 cusp, but significantly shallower than the steeply divergent ρ~r-1.5 cusp proposed by Moore et al. We perform a direct comparison of the spherically averaged dark matter circular velocity profiles with Hα rotation curves of a sample of low surface brightness (LSB) galaxies. We find that most galaxies in the sample (about 70 per cent) have rotation curves that are consistent with the structure of CDM haloes. Of the remainder, 20 per cent have rotation curves which cannot be fit by any smooth fitting function with few free parameters, and 10 per cent are inconsistent with CDM haloes. However, the latter consist mostly of rotation curves that do not extend to large enough radii to accurately determine their shapes and maximum velocities. We conclude that the inner structure of CDM haloes is not manifestly inconsistent with the rotation curves of LSB galaxies.

  6. Toward a Combined SAGE II-HALOE Aerosol Climatology: An Evaluation of HALOE Version 19 Stratospheric Aerosol Extinction Coefficient Observations

    NASA Technical Reports Server (NTRS)

    Thomason, L. W.

    2012-01-01

    Herein, the Halogen Occultation Experiment (HALOE) aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment) aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 microns is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 microns is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 micron aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40micronaerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 micron channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived data sets.

  7. Flash Proton Radiography

    NASA Astrophysics Data System (ADS)

    Merrill, Frank E.

    Protons were first investigated as radiographic probes as high energy proton accelerators became accessible to the scientific community in the 1960s. Like the initial use of X-rays in the 1800s, protons were shown to be a useful tool for studying the contents of opaque materials, but the electromagnetic charge of the protons opened up a new set of interaction processes which complicated their use. These complications in combination with the high expense of generating protons with energies high enough to penetrate typical objects resulted in proton radiography becoming a novelty, demonstrated at accelerator facilities, but not utilized to their full potential until the 1990s at Los Alamos. During this time Los Alamos National Laboratory was investigating a wide range of options, including X-rays and neutrons, as the next generation of probes to be used for thick object flash radiography. During this process it was realized that the charge nature of the protons, which was the source of the initial difficulty with this idea, could be used to recover this technique. By introducing a magnetic imaging lens downstream of the object to be radiographed, the blur resulting from scattering within the object could be focused out of the measurements, dramatically improving the resolution of proton radiography of thick systems. Imaging systems were quickly developed and combined with the temporal structure of a proton beam generated by a linear accelerator, providing a unique flash radiography capability for measurements at Los Alamos National Laboratory. This technique has now been employed at LANSCE for two decades and has been adopted around the world as the premier flash radiography technique for the study of dynamic material properties.

  8. 40 CFR 721.10157 - Benzeneethanol,halo-,halocycloalkyl-,hydrazinealkyl- (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzeneethanol,halo-,halocycloalkyl... Specific Chemical Substances § 721.10157 Benzeneethanol,halo-,halocycloalkyl-,hydrazinealkyl- (generic). (a... generically as benzeneethanol,halo-,halocycloalkyl-,hydrazinealkyl (PMN P-05-775) is subject to...

  9. 40 CFR 721.10157 - Benzeneethanol,halo-,halocycloalkyl-,hydrazinealkyl- (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzeneethanol,halo-,halocycloalkyl... Specific Chemical Substances § 721.10157 Benzeneethanol,halo-,halocycloalkyl-,hydrazinealkyl- (generic). (a... generically as benzeneethanol,halo-,halocycloalkyl-,hydrazinealkyl (PMN P-05-775) is subject to...

  10. 40 CFR 721.10157 - Benzeneethanol,halo-,halocycloalkyl-,hydrazinealkyl- (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzeneethanol,halo-,halocycloalkyl... Specific Chemical Substances § 721.10157 Benzeneethanol,halo-,halocycloalkyl-,hydrazinealkyl- (generic). (a... generically as benzeneethanol,halo-,halocycloalkyl-,hydrazinealkyl (PMN P-05-775) is subject to...

  11. 40 CFR 721.10063 - Halo substituted hydroxy nitrophenyl amide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halo substituted hydroxy nitrophenyl... Specific Chemical Substances § 721.10063 Halo substituted hydroxy nitrophenyl amide (generic). (a) Chemical... as halo substituted hydroxy nitrophenyl amide (PMN P-04-792) is subject to reporting under...

  12. 40 CFR 721.10157 - Benzeneethanol,halo-,halocycloalkyl-,hydrazinealkyl- (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzeneethanol,halo-,halocycloalkyl... Specific Chemical Substances § 721.10157 Benzeneethanol,halo-,halocycloalkyl-,hydrazinealkyl- (generic). (a... generically as benzeneethanol,halo-,halocycloalkyl-,hydrazinealkyl (PMN P-05-775) is subject to...

  13. 40 CFR 721.10063 - Halo substituted hydroxy nitrophenyl amide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halo substituted hydroxy nitrophenyl... Specific Chemical Substances § 721.10063 Halo substituted hydroxy nitrophenyl amide (generic). (a) Chemical... as halo substituted hydroxy nitrophenyl amide (PMN P-04-792) is subject to reporting under...

  14. 40 CFR 721.10157 - Benzeneethanol,halo-,halocycloalkyl-,hydrazinealkyl- (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzeneethanol,halo-,halocycloalkyl... Specific Chemical Substances § 721.10157 Benzeneethanol,halo-,halocycloalkyl-,hydrazinealkyl- (generic). (a... generically as benzeneethanol,halo-,halocycloalkyl-,hydrazinealkyl (PMN P-05-775) is subject to...

  15. Implications of Three Causal Models for the Measurement of Halo Error.

    ERIC Educational Resources Information Center

    Fisicaro, Sebastiano A.; Lance, Charles E.

    1990-01-01

    Three conceptual definitions of halo error are reviewed in the context of causal models of halo error. A corrected correlational measurement of halo error is derived, and the traditional and corrected measures are compared empirically for a 1986 study of 52 undergraduate students' ratings of a lecturer's performance. (SLD)

  16. 40 CFR 721.10063 - Halo substituted hydroxy nitrophenyl amide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halo substituted hydroxy nitrophenyl... Specific Chemical Substances § 721.10063 Halo substituted hydroxy nitrophenyl amide (generic). (a) Chemical... as halo substituted hydroxy nitrophenyl amide (PMN P-04-792) is subject to reporting under...

  17. 40 CFR 721.10063 - Halo substituted hydroxy nitrophenyl amide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halo substituted hydroxy nitrophenyl... Specific Chemical Substances § 721.10063 Halo substituted hydroxy nitrophenyl amide (generic). (a) Chemical... as halo substituted hydroxy nitrophenyl amide (PMN P-04-792) is subject to reporting under...

  18. 40 CFR 721.10063 - Halo substituted hydroxy nitrophenyl amide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halo substituted hydroxy nitrophenyl... Specific Chemical Substances § 721.10063 Halo substituted hydroxy nitrophenyl amide (generic). (a) Chemical... as halo substituted hydroxy nitrophenyl amide (PMN P-04-792) is subject to reporting under...

  19. Modelling galactic conformity with the colour-halo age relation in the Illustris simulation

    NASA Astrophysics Data System (ADS)

    Bray, Aaron D.; Pillepich, Annalisa; Sales, Laura V.; Zhu, Emily; Genel, Shy; Rodriguez-Gomez, Vicente; Torrey, Paul; Nelson, Dylan; Vogelsberger, Mark; Springel, Volker; Eisenstein, Daniel J.; Hernquist, Lars

    2016-01-01

    Comparisons between observational surveys and galaxy formation models find that dark matter haloes' mass can largely explain their galaxies' stellar mass. However, it remains uncertain whether additional environmental variables, known as assembly bias, are necessary to explain other galaxy properties. We use the Illustris simulation to investigate the role of assembly bias in producing galactic conformity by considering 18 000 galaxies with Mstellar > 2 × 109 M⊙. We find a significant signal of galactic conformity: out to distances of about 10 Mpc, the mean red fraction of galaxies around redder galaxies is higher than around bluer galaxies at fixed stellar mass. Dark matter haloes exhibit an analogous conformity signal, in which the fraction of haloes formed at earlier times (old haloes) is higher around old haloes than around younger ones at fixed halo mass. A plausible interpretation of galactic conformity is the combination of the halo conformity signal with the galaxy colour-halo age relation: at fixed stellar mass, particularly towards the low-mass end, Illustris' galaxy colours correlate with halo age, with the reddest galaxies (often satellites) preferentially found in the oldest haloes. We explain the galactic conformity effect with a simple semi-empirical model, assigning stellar mass via halo mass (abundance matching) and galaxy colour via halo age (age matching). Regarding comparison to observations, we conclude that the adopted selection/isolation criteria, projection effects, and stacking techniques can have a significant impact on the measured amplitude of the conformity signal.

  20. Are protons nonidentical fermions?

    SciTech Connect

    Mart, T.

    2014-09-25

    We briefly review the progress of our investigation on the electric (charge) radius of the proton. In order to explain the recently measured proton radius, which is significantly smaller than the standard CODATA value, we assume that the real protons radii are not identical, they are randomly distributed in a certain range. To obtain the measured radius we average the radii and fit both the mean radius and the range. By using an averaged dipole form factor we obtain the charge radius r{sub E} = 0.8333 fm, in accordance with the recent measurement of the Lamb shift in muonic hydrogen.

  1. Halo Nuclei: Stepping Stones Across the Dripline

    NASA Astrophysics Data System (ADS)

    Simon, Haik

    2013-08-01

    The availability of intense secondary beams in conjunction with efficient detection setups allows for a production and study of the most extreme nuclear systems, in terms of asymmetry of proton and neutron number, in the continuum. They can be produced via transfer and knockout reactions, depending on beam energies, with beams of nuclei close to the driplines, exhibiting exotic properties themselves, as seeds. These nuclear open quantum systems far from the valley of beta stability challenge nuclear structure theory being as well as reaction theory that tries to describe their production mechanisms. Due to their strong clustering they exhibit a rather clean few-body character. From experiments momentum distributions, relative energy spectra, and spin alignment during the reaction can be determined, which leads to the observation of energy and angular correlations as well as dependent quantities like e.g. the profile function denoting a momentum width in dependence of relative energy. They are determined from momentum vectors of fragments and gamma radiation leaving the reaction zone. The link to intrinsic properties of these unbound systems has to be explored by gathering precise knowledge of the properties of the seed nuclei and compare them to the structures observed in the continuum. In this paper I will exemplify the above-mentioned methods, and apply them particularly to light systems like 10He, 10-13Li, and neutron-rich Beryllium systems. Furthermore, perspectives for the 7H and heavy Oxygen systems are discussed.

  2. Anisotropy in Dynamical Models of Elliptical Galaxy Dark Halos

    NASA Astrophysics Data System (ADS)

    Forestell, Amy; Gebhardt, K.

    2013-07-01

    Abstract (2,250 Maximum Characters): We discuss the orbital anisotropy results of axisymmetric orbit-superposition dynamical models of elliptical galaxies NGC 821 and NGC 4697. For NGC 821 stellar kinematics are used to determine the best-fitted dark halo (Forestell 2010), then we determine the orbital properties required for planetary nebulae to match the observed kinematic data (Romanowsky et al. 2003) in that assumed dark halo. For NGC 4697 we use both stellar and planetary nebula kinematics (Pinkney et al. 2003, Mendez et al. 2009) to model the galaxy dark halo. In both galaxies we find that the planetary nebulae, which are located at large radii, show radial anisotropy. This is consistent with the results of Dekel et al. (2005), who use disk galaxy merger simulations to show that large anisotropies can be created in the resulting elliptical galaxies and that this anisotropy in combination with the different density profile of a young population could explain how the low dispersions from planetary nebulae measurements are also consistent with typical dark matter halos.

  3. Are Course Evaluations Subject to a Halo Effect?

    ERIC Educational Resources Information Center

    Darby, Jenny A.

    2007-01-01

    Many course evaluations, including those used in schools by OfStEd, colleges and universities, employ a number of scales as a means of evaluating various aspects of the educational experience of the student. It tends to be assumed that students consider the scales independently. This article argues that students are influenced by a "halo effect"…

  4. Reputational Quality of Academic Programs: The Institutional Halo.

    ERIC Educational Resources Information Center

    Fairweather, James S.

    1988-01-01

    A study of the contribution of institutional characteristics to the National Academy of Sciences' reputational ratings of faculty found that program characteristics do influence ratings, but an "institutional halo" effect also exists, indicating that faculty reputations and program quality are more complex phenomena than implied by…

  5. An Examination of Negative Halo Error in Ratings.

    ERIC Educational Resources Information Center

    Lance, Charles E.; And Others

    1990-01-01

    A causal model of halo error (HE) is derived. Three hypotheses are formulated to explain findings of negative HE. It is suggested that apparent negative HE may have been misinferred from existing correlational measures of HE, and that positive HE is more prevalent than had previously been thought. (SLD)

  6. Prospects for detecting supersymmetric dark matter in the Galactic halo.

    PubMed

    Springel, V; White, S D M; Frenk, C S; Navarro, J F; Jenkins, A; Vogelsberger, M; Wang, J; Ludlow, A; Helmi, A

    2008-11-01

    Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species. In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at a level that may soon be observable. Previous work has argued that the annihilation signal will be dominated by emission from very small clumps (perhaps smaller even than the Earth), which would be most easily detected where they cluster together in the dark matter haloes of dwarf satellite galaxies. Here we report that such small-scale structure will, in fact, have a negligible impact on dark matter detectability. Rather, the dominant and probably most easily detectable signal will be produced by diffuse dark matter in the main halo of the Milky Way. If the main halo is strongly detected, then small dark matter clumps should also be visible, but may well contain no stars, thereby confirming a key prediction of the cold dark matter model. PMID:18987737

  7. Neutron stars and white dwarfs in galactic halos?

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Olive, Keith A.; Silk, Joseph

    1990-01-01

    The possibility that galactic halos are composed of stellar remnants such as neutron stars and white dwarfs is discussed. On the basis of a simple model for the evolution of galactic halos, researchers follow the history of halo matter, luminosity, and metal and helium abundances. They assume conventional yields for helium and the heavier elements. By comparing with the observational constraints, which may be considered as fairly conservative, it is found that, for an exponentially decreasing star formation rate (SFR) with e-folding time tau, only values between 6 x 10(8) less than similar to tau less than similar to 2 x 10(9) years are allowed together with a very limited range of masses for the initial mass function (IMF). Star formation is allowed for 2 solar mass less than similar to m less than similar to 8 solar mass if tau = 2 x 10(9) years, and for 4 solar mass less than similar to m less than similar to 6 solar mass if tau = 10(9) years. For tau = 6 x 10(8) years, the lower and upper mass limits merge to similar to 5 solar mass. Researchers conclude that, even though the possibility of neutron stars as halo matter may be ruled out, that of white dwarfs may still be a viable hypothesis, though with very stringent constraints on allowed parameters, that merits further consideration.

  8. Neutron stars and white dwarfs in galactic halos

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Olive, Keith A.; Silk, Joseph

    1989-01-01

    The possibility that galactic halos are composed of stellar remnants such as neutron stars and white dwarfs is discussed. On the basis of a simple model for the evolution of galactic halos, researchers follow the history of halo matter, luminosity, and metal and helium abundances. They assume conventional yields for helium and the heavier elements. By comparing with the observational constraints, which may be considered as fairly conservative, it is found that, for an exponentially decreasing star formation rate (SFR) with e-folding time tau, only values between 6 x 10(8) less than similar to tau less than similar to 2 x 10(9) years are allowed together with a very limited range of masses for the initial mass function (IMF). Star formation is allowed for 2 solar mass less than similar to m less than similar to 8 solar mass if tau = 2 x 10(9) years, and for 4 solar mass less than similar to m less than similar to 6 solar mass if tau = 10(9) years. For tau = 6 x 10(8) years, the lower and upper mass limits merge to similar to 5 solar mass. Researchers conclude that, even though the possibility of neutron stars as halo matter may be ruled out, that of white dwarfs may still be a viable hypothesis, though with very stringent constraints on allowed parameters, that merits further consideration.

  9. IDENTIFYING STAR STREAMS IN THE MILKY WAY HALO

    SciTech Connect

    King, Charles III; Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J. E-mail: wbrown@cfa.harvard.edu E-mail: skenyon@cfa.harvard.edu

    2012-05-01

    We develop statistical methods for identifying star streams in the halo of the Milky Way that exploit observed spatial and radial velocity distributions. Within a great circle, departures of the observed spatial distribution from random provide a measure of the likelihood of a potential star stream. Comparisons between the radial velocity distribution within a great circle and the radial velocity distribution of the entire sample also measure the statistical significance of potential streams. The radial velocities enable construction of a more powerful joint statistical test for identifying star streams in the Milky Way halo. Applying our method to halo stars in the Hypervelocity Star (HVS) survey, we detect the Sagittarius stream at high significance. Great circle counts and comparisons with theoretical models suggest that the Sagittarius stream comprises 10%-17% of the halo stars in the HVS sample. The population of blue stragglers and blue horizontal branch stars varies along the stream and is a potential probe of the distribution of stellar populations in the Sagittarius dwarf galaxy prior to disruption.

  10. The reversed halo sign: update and differential diagnosis.

    PubMed

    Godoy, M C B; Viswanathan, C; Marchiori, E; Truong, M T; Benveniste, M F; Rossi, S; Marom, E M

    2012-09-01

    The reversed halo sign is characterised by a central ground-glass opacity surrounded by denser air-space consolidation in the shape of a crescent or a ring. It was first described on high-resolution CT as being specific for cryptogenic organising pneumonia. Since then, the reversed halo sign has been reported in association with a wide range of pulmonary diseases, including invasive pulmonary fungal infections, paracoccidioidomycosis, pneumocystis pneumonia, tuberculosis, community-acquired pneumonia, lymphomatoid granulomatosis, Wegener granulomatosis, lipoid pneumonia and sarcoidosis. It is also seen in pulmonary neoplasms and infarction, and following radiation therapy and radiofrequency ablation of pulmonary malignancies. In this article, we present the spectrum of neoplastic and non-neoplastic diseases that may show the reversed halo sign and offer helpful clues for assisting in the differential diagnosis. By integrating the patient's clinical history with the presence of the reversed halo sign and other accompanying radiological findings, the radiologist should be able to narrow the differential diagnosis substantially, and may be able to provide a presumptive final diagnosis, which may obviate the need for biopsy in selected cases, especially in the immunosuppressed population. PMID:22553298

  11. Transformationally Describing Halo Bias and Exposing Cosmological Information

    NASA Astrophysics Data System (ADS)

    Neyrinck, Mark C.; Aragon-Calvo, M.; Jeong, D.; Wang, X.

    2014-01-01

    Local density transforms have many uses in large-scale structure. If a logarithm is applied to the matter density field, the statistics are much better-behaved (covariances are reduced), and redshift-space distortions even become easier to model. Also, the biasing of haloes compared to matter is well-described by local transforms, even deeply into voids. For the first time, we cleanly resolve an exponential suppression of halo formation in voids, which is well-fit by the excursion-set model. A void is like a local low-density (open) universe, where fluctuations are suppressed. So forming a galaxy inside a void is as rare as forming a rich cluster in a high-density region. What enables this measurement is the MIP ensemble of N-body simulations, in which halo discreteness, exclusion, and stochasticity are made negligible by stacking hundreds of simulations with the same large-scale cosmic web, but which differ on small scales, i.e. in the way the cosmic web is populated with haloes.

  12. The Highly Flattened Dark Matter Halo of NGC 4244

    NASA Astrophysics Data System (ADS)

    Olling, Rob P.

    1996-08-01

    In a previous paper (Olling 1995, AJ, 110,591) a method was developed to determine the shapes of dark matter halos of spiral galaxies from an accurate determination of the rotation curve, the flaring of the gas layer and the velocity dispersion in the HI. Here this method is applied to the almost edge-on Scd galaxy NGC 4244 for which the necessary parameters are determined in the accompanying paper (AJ, 112,457, 1996). The observed flaring of the HI beyond the optical disk puts significant constraints on the shape of the dark matter halo, which are almost independent of the stellar mass-to-light ratio. NGC 4244's dark matter halo is found to be highly flattened with a shortest-to-longest axis ratio of 0.2_-0.1_^+0.3^. If the dark matter is disk-like, the data presented in this paper imply that the vertical velocity dispersion of the dark matter must be 10%-30% larger than the measured tangential dispersion in the H I . Alternatively, the measured flaring curve is consistent with a round halo if the gaseous velocity dispersion ellipsoid is anisotropic. In that case the vertical dispersion of the gas is 50%- 70% of the measured tangential velocity dispersion.

  13. The Highly Flattened Dark Halo of NGC 4244

    NASA Astrophysics Data System (ADS)

    Olling, R. P.

    1995-12-01

    In a previous paper (Olling 1995, AJ, 110, 591) a method was developed to determine the shapes of dark matter halos of spiral galaxies from an accurate determination of the rotation curve and the flaring of the gas layer. Here this method is applied to the almost edge-on spiral NGC 4244. I present sensitive high resolution VLA B, C, and D array observations in the 21-cm spectral line of neutral atomic hydrogen of the nearby Scd galaxy NGC 4244. The observed flaring of the HI beyond the optical disk puts significant constraints on the dark matter halo, which are almost independent of the stellar mass-to-light ratio. I find that NGC 4244's dark matter halo is highly flattened: c/a=0.1 - 0.5. Alternatively, the measured flaring curve is consistent with a round halo if the gaseous velocity dispersion ellipsoid is anisotropic. In that case the vertical dispersion of the gas is 50 - 70% of the measured tangential velocity dispersion. A new technique is presented to determine simultaneously the inclination and the thickness of the gas layer from high resolution HI observations. This procedure uses the apparent widths at many azimuths rather than just the edge channels, and can be used at inclinations as low as 60^o .

  14. On the alleged duality of the Galactic halo

    NASA Astrophysics Data System (ADS)

    Schönrich, Ralph; Asplund, Martin; Casagrande, Luca

    2011-08-01

    We examine the kinematics of the Galactic halo based on SDSS/SEGUE data by Carollo et al. We find that their claims of a counter-rotating halo are the result of substantial biases in distance estimates (of the order of 50 per cent): the claimed retrograde component, which makes up only a tiny fraction of the entire sample, prone to contaminations, is identified as the tail of distance overestimates. The strong overestimates also result in a lift in the vertical velocity component, which explains the large altitudes those objects were claimed to reach. Errors are worst for the lowest metallicity stars, which explains the metal-poor nature of the artificial component. We also argue that measurement errors were not properly accounted for and that the use of Gaussian fitting on intrinsically non-Gaussian Galactic components invokes the identification of components that are distorted or even artificial. Our evaluation of the data leads to a revision of the estimated velocity ellipsoids and does not yield any reliable evidence for a counter-rotating halo component. If a distinct counter-rotating halo component exists, then it must be far weaker than claimed by Carollo et al. Finally, we note that their revised analysis presented in Beers et al. does not alleviate our main concerns.

  15. A halo model for intrinsic alignments of galaxy ellipticities

    NASA Astrophysics Data System (ADS)

    Schneider, Michael D.; Bridle, Sarah

    2010-03-01

    Correlations between intrinsic ellipticities of galaxies are a potentially important systematic error when constraining dark energy properties from weak gravitational lensing (cosmic shear) surveys. In the absence of perfectly known galaxy redshifts, some modelling of the galaxy intrinsic alignments is likely to be required to extract the lensing signal to sufficient accuracy. We present a new model based on the placement of galaxies into dark matter haloes. The central galaxy ellipticity follows the large-scale potential and, in the simplest case, the satellite galaxies point at the halo centre. The two-halo term is then dominated by the linear-alignment model and the one-halo term provides a motivated extension of intrinsic alignment models to small scales. We provide fitting formulae for the spatial projected source power spectra for both intrinsic-intrinsic (II) and gravitational-intrinsic (GI) correlations. We illustrate the potential impact of ignoring intrinsic alignments on cosmological parameter constraints from non-tomographic surveys, finding that σ8 could be underestimated by up to the size of the current 1σ error bar from cosmic shear if very small scales are included in the analysis. Finally, we highlight areas of interest for numerical simulations of dark matter clustering and galaxy formation that can further constrain the intrinsic alignment signal.

  16. The locations of halo formation and the peaks formalism

    NASA Astrophysics Data System (ADS)

    Hahn, Oliver; Paranjape, Aseem

    2014-02-01

    We investigate the problem of predicting the halo mass function from the properties of the Lagrangian density field. We focus on a perturbation spectrum with a small-scale cut-off (as in warm dark matter cosmologies). This cut-off results in a strong suppression of low-mass objects, providing additional leverage to rigorously test which perturbations collapse and to what mass. We find that all haloes are consistent with forming near peaks of the initial density field, with a strong correlation between protohalo density and ellipticity. We demonstrate that, while standard excursion set theory with correlated steps completely fails to reproduce the mass function, the inclusion of the peaks constraint leads to the correct number of haloes but significantly underpredicts the masses of low-mass objects (with the predicted halo mass function at low masses behaving like dn/d ln m ˜ m2/3). This prediction is very robust and cannot be easily altered within the framework of a single collapse barrier. The nature of collapse in the presence of a small-scale cut-off thus reveals that excursion set calculations require a more detailed understanding of the collapse-time of a general ellipsoidal perturbation to predict the ultimate collapsed mass of a peak - a problem that has been hidden in the large abundance of small-scale structure in cold dark matter. We demonstrate how this problem can be resolved within the excursion set framework.

  17. Halogen occultation experiment (HALOE) performance verification test procedure

    NASA Astrophysics Data System (ADS)

    Mauldin, L. E., III

    1986-07-01

    The Performance Verification Test Procedure is given for the Halogen Occultation Experiment (HALOE) instrument, which is being developed in house at the Langley Research Center for the Upper Atmosphere Research Satellite (UARS). This procedure is used for comprehensive performance testing of the HALOE instrument which occurs before, during, and after flight environmental tests. The radiometric performance tests include noise, drift, linearity, instantaneous field-of-view, cal wheel gas cell characterization, and self thermal emissions. Pointer/tracker performance tests include sun sensor performance, gimbal performance, control system performance, and boresight alignment. In addition, the instrument is tested functionally in simulated orbit sequences and all command operating modes are exercised. The data analysis required for each test is specified and pass/fail criteria are given where applicable. This test will fully demonstrate the HALOE instrument's ability to achieve science mission requirements. The HALOE instrument is a gas correlation radiometer that measures vertical distribution of eight upper atmospheric constituents: O3, HCl, HF, NO, CH4, H2O, NO2, and CO2.

  18. Halogen occultation experiment (HALOE) performance verification test procedure

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E., III

    1986-01-01

    The Performance Verification Test Procedure is given for the Halogen Occultation Experiment (HALOE) instrument, which is being developed in house at the Langley Research Center for the Upper Atmosphere Research Satellite (UARS). This procedure is used for comprehensive performance testing of the HALOE instrument which occurs before, during, and after flight environmental tests. The radiometric performance tests include noise, drift, linearity, instantaneous field-of-view, cal wheel gas cell characterization, and self thermal emissions. Pointer/tracker performance tests include sun sensor performance, gimbal performance, control system performance, and boresight alignment. In addition, the instrument is tested functionally in simulated orbit sequences and all command operating modes are exercised. The data analysis required for each test is specified and pass/fail criteria are given where applicable. This test will fully demonstrate the HALOE instrument's ability to achieve science mission requirements. The HALOE instrument is a gas correlation radiometer that measures vertical distribution of eight upper atmospheric constituents: O3, HCl, HF, NO, CH4, H2O, NO2, and CO2.

  19. Differentiation of Illusory and True Halo in Writing Scores

    ERIC Educational Resources Information Center

    Lai, Emily R.; Wolfe, Edward W.; Vickers, Daisy

    2015-01-01

    This report summarizes an empirical study that addresses two related topics within the context of writing assessment--illusory halo and how much unique information is provided by multiple analytic scores. Specifically, we address the issue of whether unique information is provided by analytic scores assigned to student writing, beyond what is…

  20. Stellar spiral structures in triaxial dark matter haloes

    NASA Astrophysics Data System (ADS)

    Hu, Shaoran; Sijacki, Debora

    2016-09-01

    We employ very high resolution simulations of isolated Milky Way-like galaxies to study the effect of triaxial dark matter haloes on exponential stellar discs. Non-adiabatic halo shape changes can trigger two-armed grand-design spiral structures which extend all the way to the edge of the disc. Their pattern speed coincides with the inner Lindblad resonance indicating that they are kinematic density waves which can persist up to several Gyr. In dynamically cold discs, grand-design spirals are swing amplified and after a few Gyr can lead to the formation of (multi-armed) transient recurrent spirals. Stellar discs misaligned to the principal planes of the host triaxial halo develop characteristic integral shaped warps, but otherwise exhibit very similar spiral structures as aligned discs. For the grand-design spirals in our simulations, their strength dependence with radius is determined by the torque on the disc, suggesting that by studying grand-design spirals without bars it may be possible to set constraints on the tidal field and host dark matter halo shape.

  1. A High-Throughput Yeast Halo Assay for Bioactive Compounds.

    PubMed

    Bray, Walter; Lokey, R Scott

    2016-01-01

    When a disk of filter paper is impregnated with a cytotoxic or cytostatic drug and added to solid medium seeded with yeast, a visible clear zone forms around the disk whose size depends on the concentration and potency of the drug. This is the traditional "halo" assay and provides a convenient, if low-throughput, read-out of biological activity that has been the mainstay of antifungal and antibiotic testing for decades. Here, we describe a protocol for a high-throughput version of the halo assay, which uses an array of 384 pins to deliver ∼200 nL of stock solutions from compound plates onto single-well plates seeded with yeast. Using a plate reader in the absorbance mode, the resulting halos can be quantified and the data archived in the form of flat files that can be connected to compound databases with standard software. This assay has the convenience associated with the visual readout of the traditional halo assay but uses far less material and can be automated to screen thousands of compounds per day. PMID:27587777

  2. Halo Nucleus Be11: A Spectroscopic Study via Neutron Transfer

    NASA Astrophysics Data System (ADS)

    Schmitt, K. T.; Jones, K. L.; Bey, A.; Ahn, S. H.; Bardayan, D. W.; Blackmon, J. C.; Brown, S. M.; Chae, K. Y.; Chipps, K. A.; Cizewski, J. A.; Hahn, K. I.; Kolata, J. J.; Kozub, R. L.; Liang, J. F.; Matei, C.; Matoš, M.; Matyas, D.; Moazen, B.; Nesaraja, C.; Nunes, F. M.; O'Malley, P. D.; Pain, S. D.; Peters, W. A.; Pittman, S. T.; Roberts, A.; Shapira, D.; Shriner, J. F., Jr.; Smith, M. S.; Spassova, I.; Stracener, D. W.; Villano, A. N.; Wilson, G. L.

    2012-05-01

    The best examples of halo nuclei, exotic systems with a diffuse nuclear cloud surrounding a tightly bound core, are found in the light, neutron-rich region, where the halo neutrons experience only weak binding and a weak, or no, potential barrier. Modern direct-reaction measurement techniques provide powerful probes of the structure of exotic nuclei. Despite more than four decades of these studies on the benchmark one-neutron halo nucleus Be11, the spectroscopic factors for the two bound states remain poorly constrained. In the present work, the Be10(d,​p) reaction has been used in inverse kinematics at four beam energies to study the structure of Be11. The spectroscopic factors extracted using the adiabatic model were found to be consistent across the four measurements and were largely insensitive to the optical potential used. The extracted spectroscopic factor for a neutron in an nℓj=2s1/2 state coupled to the ground state of Be10 is 0.71(5). For the first excited state at 0.32 MeV, a spectroscopic factor of 0.62(4) is found for the halo neutron in a 1p1/2 state.

  3. SELF-SIMILAR SOLUTIONS OF TRIAXIAL DARK MATTER HALOS

    SciTech Connect

    Lithwick, Yoram; Dalal, Neal

    2011-06-20

    We investigate the collapse and the internal structure of dark matter halos. We consider halo formation from initially scale-free perturbations, for which gravitational collapse is self-similar. Fillmore and Goldreich and Bertschinger solved the one-dimensional (i.e., spherically symmetric) case. We generalize their results by formulating the three-dimensional self-similar equations. We solve the equations numerically and analyze the similarity solutions in detail, focusing on the internal density profiles of the collapsed halos. By decomposing the total density into subprofiles of particles that collapse coevally, we identify two effects as the main determinants of the internal density structure of halos: adiabatic contraction and the shape of a subprofile shortly after collapse; the latter largely reflects the triaxiality of the subprofile. We develop a simple model that describes the results of our three-dimensional simulations. In a companion paper, we apply this model to more realistic cosmological fluctuations, and thereby explain the origin of the nearly universal (NFW-like) density profiles found in N-body simulations.

  4. A strip search for new very wide halo binaries

    NASA Astrophysics Data System (ADS)

    Quinn, D. P.; Smith, M. C.

    2009-12-01

    We report on a search for new wide halo binary stars in Sloan Digital Sky Survey (SDSS) Stripe 82. A list of new halo wide binary candidates which satisfy common proper motion and photometric constraints is provided. The projected separations of the sample lie between 0.007 and 0.25 pc. Although the sample is not large enough to improve constraints on dark matter in the halo, we find the wide binary angular separation function is broadly consistent with past work. We discuss the significance of the new sample for a number of astrophysical applications, including as a testbed for ideas about wide binary formation. For the subset of candidates which have radial velocity information, we make use of integrals of motion to investigate one such scheme in which the origin of Galactic wide binaries is associated with the accretion/disruption of stellar systems in the Galaxy. Additional spectroscopic observations of these candidate binaries will strengthen their usefulness in many of these respects. Based on our search experience in Stripe 82 we estimate that the upcoming Pan-STARRS survey will increase the sample size of wide halo binaries by over an order of magnitude.

  5. Halo formation from mismatched beam-beam interactions

    SciTech Connect

    Qiang, Ji

    2003-05-23

    In this paper, we report on the halo formation and emittance growth driven by a parametric resonance during mismatched beam-beam collisions. In the regime of the weak-strong beam-beam interaction, if two beams have the same machine tunes, on-axis head-on collisions between a mismatched strong beam and a weak beam will not cause the formation of halo. However, if the two beams collide with an initial offset, the beam-beam force from the mismatched strong beam can cause halo formation and emittance growth in the weak beam. Meanwhile, if two beams have different machine tunes, for opposite charged colliding beams, when the machine tune of the weak beam is smaller than that of strong beam, there is emittance growth in the weak beam. When the machine tune of the weak beam is larger than that of the strong beam, there is little emittance growth. In the regime of strong-strong beam-beam interaction, halo is formed in both beams even when the two beams collide head-on on the axis with equal machine tunes. This puts a strong requirement for a good beam match during the injection to colliders in order to avoid the emittance growth.

  6. Generalized halo independent comparison of direct dark matter detection data

    SciTech Connect

    Nobile, Eugenio Del; Gelmini, Graciela; Huh, Ji-Haeng; Gondolo, Paolo E-mail: gelmini@physics.ucla.edu E-mail: jhhuh@physics.ucla.edu

    2013-10-01

    We extend the halo-independent method to compare direct dark matter detection data, so far used only for spin-independent WIMP-nucleon interactions, to any type of interaction. As an example we apply the method to magnetic moment interactions.

  7. Halo detection via large-scale Bayesian inference

    NASA Astrophysics Data System (ADS)

    Merson, Alexander I.; Jasche, Jens; Abdalla, Filipe B.; Lahav, Ofer; Wandelt, Benjamin; Jones, D. Heath; Colless, Matthew

    2016-08-01

    We present a proof-of-concept of a novel and fully Bayesian methodology designed to detect haloes of different masses in cosmological observations subject to noise and systematic uncertainties. Our methodology combines the previously published Bayesian large-scale structure inference algorithm, HAmiltonian Density Estimation and Sampling algorithm (HADES), and a Bayesian chain rule (the Blackwell-Rao estimator), which we use to connect the inferred density field to the properties of dark matter haloes. To demonstrate the capability of our approach, we construct a realistic galaxy mock catalogue emulating the wide-area 6-degree Field Galaxy Survey, which has a median redshift of approximately 0.05. Application of HADES to the catalogue provides us with accurately inferred three-dimensional density fields and corresponding quantification of uncertainties inherent to any cosmological observation. We then use a cosmological simulation to relate the amplitude of the density field to the probability of detecting a halo with mass above a specified threshold. With this information, we can sum over the HADES density field realisations to construct maps of detection probabilities and demonstrate the validity of this approach within our mock scenario. We find that the probability of successful detection of haloes in the mock catalogue increases as a function of the signal to noise of the local galaxy observations. Our proposed methodology can easily be extended to account for more complex scientific questions and is a promising novel tool to analyse the cosmic large-scale structure in observations.

  8. Influence of "Halo" and "Demon" Effects in Subjective Grading.

    ERIC Educational Resources Information Center

    Gibb, Gerald D.

    1983-01-01

    The phenomenon of "halo" effects in subjective grading was investigated. Two groups of three raters evaluated 20 term papers in introductory psychology. Term paper grades correlated significantly with course grades when information about previous academic performance was made available. When this information was not available, the correlation was…

  9. On halo formation from space-charge dominated beams

    NASA Astrophysics Data System (ADS)

    Lagniel, Jean-Michel

    1994-06-01

    In this paper, as in J.S. O'Connell, T.P. Wangler, R.S. Mills and K.R. Crandall, Beam halo formation from space-charge dominated beams in uniform focusing channels, PAC Washington, 1993, the interaction of particles with a zero-emittance, uniform-density beam core is described. When this core is mismatched in a uniform linear focusing channel, its envelope oscillates, just like a matched beam in an alternating gradient channel. As is usual for this kind of channel, the particle evolution in the transverse phase plane has been followed period by period. For a strong core modulation, this analysis clearly shows i) how the particles nearest to the core move to the halo, ii) two stable areas separated from the core, and iii) how trajectories develop along the ``lattice''. Also the halo formation problem is compared with similar phenomena from stellar dynamics in order to demonstrate that it is the mechanism of resonance overlap which leads to the formation of a halo area where the particle trajectories are stochastic. The chaotic behaviour of the particle trajectories in this area is subsequently discussed.

  10. Distant Galactic Halo Substructures Observed by the Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Sesar, Branimir

    2013-01-01

    Characterization of Galactic halo substructures is important as their kinematic and chemical properties help constrain the properties of the Galactic dark matter halo, the formation history of the Milky Way, and the galaxy formation process in general. The best practical choice for finding distant halo substructures are pulsating RR Lyrae stars, due to their intrinsic brightness (M_V = 0.6 mag) and distinct light curves. I will present kinematic and chemical properties of two distant halo substructures that were traced using RR Lyrae stars observed by the Palomar Transient Factory. One of these substructures, located at 90 kpc from the Sun in the Cancer constellation, consists of two groups of RR Lyrae stars moving away from the Galaxy at ~80 and ~20 km/s, respectively. The second substructure is located at ~65 kpc from the Sun in the Hercules constellation. The kinematics of RR Lyrae stars tracing this substructure suggest a presence of 2 or 3 stellar streams extending in the similar direction on the sky. Due to their spatial extent, both of these substructures are clearly disrupted and would be very difficult to detect using tradiitonal techniques such as the color-magnitude diagram filtering.

  11. Evidence of Halo Effects in Student Evaluations of Communication Instruction.

    ERIC Educational Resources Information Center

    Feeley, Thomas Hugh

    2002-01-01

    Notes that the halo effect is a construct reserved to explain individual rater's failure to discriminate among conceptually distinct aspects of a stimulus person's behavior. Examines instructor evaluations completed by 128 students from three communication courses. Finds significant inter-correlations among five measures indicating the presence of…

  12. Micko's "Halo"--Model for Multidimensional Ratio Scaling

    ERIC Educational Resources Information Center

    Lund, Thorleif

    1975-01-01

    Among the criticisms of Micko's Halo Model are: 1) it is too restrictive to fit empirical data, 2) it misrepresents unrelated percepts as bipolar structures, 3) it requires all dimensions to be bipolar, and 4) it causes the interpretations of orthogonality of factors and factor loadings to become problematic. (Author/BJG)

  13. The influence of halo evolution on galaxy structure

    NASA Astrophysics Data System (ADS)

    White, Simon

    2015-03-01

    If Einstein-Newton gravity holds on galactic and larger scales, then current observations demonstrate that the stars and interstellar gas of a typical bright galaxy account for only a few percent of its total nonlinear mass. Dark matter makes up the rest and cannot be faint stars or any other baryonic form because it was already present and decoupled from the radiation plasma at z = 1000, long before any nonlinear object formed. The weak gravito-sonic waves so precisely measured by CMB observations are detected again at z = 4 as order unity fluctuations in intergalactic matter. These subsequently collapse to form today's galaxy/halo systems, whose mean mass profiles can be accurately determined through gravitational lensing. High-resolution simulations link the observed dark matter structures seen at all these epochs, demonstrating that they are consistent and providing detailed predictions for all aspects of halo structure and growth. Requiring consistency with the abundance and clustering of real galaxies strongly constrains the galaxy-halo relation, both today and at high redshift. This results in detailed predictions for galaxy assembly histories and for the gravitational arena in which galaxies live. Dark halos are not expected to be passive or symmetric but to have a rich and continually evolving structure which will drive evolution in the central galaxy over its full life, exciting warps, spiral patterns and tidal arms, thickening disks, producing rings, bars and bulges. Their growth is closely related to the provision of new gas for galaxy building.

  14. THEORY OF PROTON EMITTERS

    SciTech Connect

    P. TALOU

    2000-08-01

    Modern theoretical methods used to interpret recent experimental data on ground-state proton emission near the proton drip line are reviewed. Most of them are stationary and are aimed to compute proton decay widths {Gamma}{sub p} only. Comparison is made between these approaches before being compared to experimental data. Our time-dependent approach based on the numerical solution of the time-dependent Schroedinger equation (TDSE) for initial quasi-stationary single-proton states is then introduced. It is shown that much deeper insights into the physics of this clean multidimensional quantum tunneling effect can be accessed, and that in addition to {Gamma}{sub p}, other physical quantities could be tested experimentally, offering new stringent tests on nuclear physics models away from the valley of {beta}-stability. Finally, the necessity of using the TDSE approach in more complex, dynamical, problems is demonstrated.

  15. The Proton Radius Puzzle

    NASA Astrophysics Data System (ADS)

    Downie, E. J.

    2016-03-01

    The proton radius puzzle is the difference between the proton radius as measured with electron scattering and in the excitation spectrum of atomic hydrogen, and that measured with muonic hydrogen spectroscopy. Since the inception of the proton radius puzzle in 2010 by the measurement of Pohl et al.[1], many possible resolutions to the puzzle have been postulated, but, to date, none has been generally accepted. New data are therefore necessary to resolve the issue. We briefly review the puzzle, the proposed solutions, and the new electron scattering and spectroscopy experiments planned and underway. We then introduce the MUSE experiment, which seeks to resolve the puzzle by simultaneously measuring elastic electron and muon scattering on the proton, in both charge states, thereby providing new information to the puzzle. MUSE addresses issues of two-photon effects, lepton universality and, possibly, new physics, while providing simultaneous form factor, and therefore radius, measurements with both muons and electrons.

  16. Apparatus for proton radiography

    DOEpatents

    Martin, Ronald L.

    1976-01-01

    An apparatus for effecting diagnostic proton radiography of patients in hospitals comprises a source of negative hydrogen ions, a synchrotron for accelerating the negative hydrogen ions to a predetermined energy, a plurality of stations for stripping extraction of a radiography beam of protons, means for sweeping the extracted beam to cover a target, and means for measuring the residual range, residual energy, or percentage transmission of protons that pass through the target. The combination of information identifying the position of the beam with information about particles traversing the subject and the back absorber is performed with the aid of a computer to provide a proton radiograph of the subject. In an alternate embodiment of the invention, a back absorber comprises a plurality of scintillators which are coupled to detectors.

  17. Proton channel models

    PubMed Central

    Pupo, Amaury; Baez-Nieto, David; Martínez, Agustín; Latorre, Ramón; González, Carlos

    2014-01-01

    Voltage-gated proton channels are integral membrane proteins with the capacity to permeate elementary particles in a voltage and pH dependent manner. These proteins have been found in several species and are involved in various physiological processes. Although their primary topology is known, lack of details regarding their structures in the open conformation has limited analyses toward a deeper understanding of the molecular determinants of their function and regulation. Consequently, the function-structure relationships have been inferred based on homology models. In the present work, we review the existing proton channel models, their assumptions, predictions and the experimental facts that support them. Modeling proton channels is not a trivial task due to the lack of a close homolog template. Hence, there are important differences between published models. This work attempts to critically review existing proton channel models toward the aim of contributing to a better understanding of the structural features of these proteins. PMID:24755912

  18. THE STRUCTURE OF THE MILKY WAY'S HOT GAS HALO

    SciTech Connect

    Miller, Matthew J.; Bregman, Joel N. E-mail: jbregman@umich.edu

    2013-06-20

    The Milky Way's million degree gaseous halo contains a considerable amount of mass that, depending on its structural properties, can be a significant mass component. In order to analyze the structure of the Galactic halo, we use XMM-Newton Reflection Grating Spectrometer archival data and measure O VII K{alpha} absorption-line strengths toward 26 active galactic nuclei, LMC X-3, and two Galactic sources (4U 1820-30 and X1735-444). We assume a {beta}-model as the underlying gas density profile and find best-fit parameters of n{sub circle} = 0.46{sup +0.74}{sub -0.35} cm{sup -3}, r{sub c} = 0.35{sup +0.29}{sub -0.27} kpc, and {beta} = 0.71{sup +0.13}{sub -0.14}. These parameters result in halo masses ranging between M(18 kpc) = 7.5{sub -4.6}{sup +}2{sup 2.0} x 10{sup 8} M{sub Sun} and M (200 kpc) = 3.8{sub -0.5}{sup +6.0} x 10{sup 10} M{sub Sun} assuming a gas metallicity of Z = 0.3 Z{sub Sun }, which are consistent with current theoretical and observational work. The maximum baryon fraction from our halo model of f{sub b} = 0.07{sup +0.03}{sub -0.01} is significantly smaller than the universal value of f{sub b} = 0.171, implying the mass contained in the Galactic halo accounts for 10%-50% of the missing baryons in the Milky Way. We also discuss our model in the context of several Milky Way observables, including ram pressure stripping in dwarf spheroidal galaxies, the observed X-ray emission measure in the 0.5-2 keV band, the Milky Way's star formation rate, spatial and thermal properties of cooler gas ({approx}10{sup 5} K), and the observed Fermi bubbles toward the Galactic center. Although the metallicity of the halo gas is a large uncertainty in our analysis, we place a lower limit on the halo gas between the Sun and the Large Magellanic Cloud (LMC). We find that Z {approx}> 0.2 Z{sub Sun} based on the pulsar dispersion measure toward the LMC.

  19. The Case for the Dual Halo of the Milky Way

    SciTech Connect

    Beers, Timothy C.; Carollo, Daniela; Ivezic, Zeljko; An, Deokkeun; Chiba, Masashi; Norris, John E.; Freeman, Ken C.; Lee, Young Sun; Munn, Jeffrey A.; Fiorentin, Paola Re; Sivarani, Thirupathi; /Bangalore, Indian Inst. Astrophys. /Kentucky U.

    2011-04-01

    Based on an analysis of the local kinematics of SDSS DR7 calibration stars, Carollo et al. have resolved the stellar population of the Milky Way halo into at least two components. This result has recently been criticized by Schoenrich et al., who claim that the retrograde signature associated with the outer halo is due to the adoption of faulty distances. We refute this claim, and demonstrate that the Schoenrich et al. photometric distances are themselves flawed because they adopted an incorrect main-sequence absolute magnitude relationship from the work of Ivezic et al.. When compared to the recommended relation from Ivezic et al., which is tied to a Milky Way globular cluster distance scale and accounts for age and metallicity effects, the incorrect relation adopted by Schoenrich et al. yields, on average, 18% shorter distances (independent of metallicity) for stars near the main-sequence turnoff (TO). When the correct relationship is used, the distances assigned by Carollo et al. and Ivezic et al. for low-metallicity dwarfs agree to within 6-10%, depending on the color range considered. We have also compared the Carollo et al. distances with the distances derived from the calibrated isochrones of An et al., and find a similar level of agreement for low-metallicity dwarfs. Schoenrich et al. also point out that stars of intermediate gravity (3.5 {<=} log g < 4.0, based on spectroscopic determinations) are likely misclassified, at least for colors significantly redder than the TO region, with which we concur. We implement a new procedure to reassign luminosity classifications for the TO stars that require it. New derivations of the rotational behavior for the Carollo et al. stars that are most likely associated with the outer halo demonstrate that, when either a sample of exclusively dwarf stars or the full sample of dwarf, TO, and subgiant/giant stars is used, the retrograde signature and high velocity dispersion of the outer-halo population remains, with values

  20. Massive Halos in Millennium Gas Simulations: Multivariate Scaling Relations

    NASA Astrophysics Data System (ADS)

    Stanek, R.; Rasia, E.; Evrard, A. E.; Pearce, F.; Gazzola, L.

    2010-06-01

    The joint likelihood of observable cluster signals reflects the astrophysical evolution of the coupled baryonic and dark matter components in massive halos, and its knowledge will enhance cosmological parameter constraints in the coming era of large, multiwavelength cluster surveys. We present a computational study of intrinsic covariance in cluster properties using halo populations derived from Millennium Gas Simulations (MGS). The MGS are re-simulations of the original 500 h -1 Mpc Millennium Simulation performed with gas dynamics under two different physical treatments: shock heating driven by gravity only (GO) and a second treatment with cooling and preheating (PH). We examine relationships among structural properties and observable X-ray and Sunyaev-Zel'dovich (SZ) signals for samples of thousands of halos with M 200 >= 5 × 1013 h -1 M sun and z < 2. While the X-ray scaling behavior of PH model halos at low redshift offers a good match to local clusters, the model exhibits non-standard features testable with larger surveys, including weakly running slopes in hot gas observable-mass relations and ~10% departures from self-similar redshift evolution for 1014 h -1 M sun halos at redshift z ~ 1. We find that the form of the joint likelihood of signal pairs is generally well described by a multivariate, log-normal distribution, especially in the PH case which exhibits less halo substructure than the GO model. At fixed mass and epoch, joint deviations of signal pairs display mainly positive correlations, especially the thermal SZ effect paired with either hot gas fraction (r = 0.88/0.69 for PH/GO at z = 0) or X-ray temperature (r = 0.62/0.83). The levels of variance in X-ray luminosity, temperature, and gas mass fraction are sensitive to the physical treatment, but offsetting shifts in the latter two measures maintain a fixed 12% scatter in the integrated SZ signal under both gas treatments. We discuss halo mass selection by signal pairs, and find a minimum mass