Sample records for proton lateral broadening

  1. Proton Lateral Broadening Distribution Comparisons Between GRNTRN, MCNPX, and Laboratory Beam Measurements

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Moyers, Michael F.; Walker, Steven A.; Tweed, John

    2010-01-01

    Recent developments in NASA s deterministic High charge (Z) and Energy TRaNsport (HZETRN) code have included lateral broadening of primary ion beams due to small-angle multiple Coulomb scattering, and coupling of the ion-nuclear scattering interactions with energy loss and straggling. This new version of HZETRN is based on Green function methods, called GRNTRN, and is suitable for modeling transport with both space environment and laboratory boundary conditions. Multiple scattering processes are a necessary extension to GRNTRN in order to accurately model ion beam experiments, to simulate the physical and biological-effective radiation dose, and to develop new methods and strategies for light ion radiation therapy. In this paper we compare GRNTRN simulations of proton lateral broadening distributions with beam measurements taken at Loma Linda University Proton Therapy Facility. The simulated and measured lateral broadening distributions are compared for a 250 MeV proton beam on aluminum, polyethylene, polystyrene, bone substitute, iron, and lead target materials. The GRNTRN results are also compared to simulations from the Monte Carlo MCNPX code for the same projectile-target combinations described above.

  2. Comparisons between GRNTRN simulations and beam measurements of proton lateral broadening distributions

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher; Moyers, Michael; Walker, Steven; Tweed, John

    Recent developments in NASA's High Charge and Energy Transport (HZETRN) code have included lateral broadening of primary ion beams due to small-angle multiple Coulomb scattering, and coupling of the ion-nuclear scattering interactions with energy loss and straggling. The new version of HZETRN based on Green function methods, GRNTRN, is suitable for modeling transport with both space environment and laboratory boundary conditions. Multiple scattering processes are a necessary extension to GRNTRN in order to accurately model ion beam experiments, to simulate the physical and biological-effective radiation dose, and to develop new methods and strategies for light ion radiation therapy. In this paper we compare GRNTRN simulations of proton lateral scattering distributions with beam measurements taken at Loma Linda Medical University. The simulated and measured lateral proton distributions will be compared for a 250 MeV proton beam on aluminum, polyethylene, polystyrene, bone, iron, and lead target materials.

  3. Doppler broadening in the β-proton- γ decay sequence

    NASA Astrophysics Data System (ADS)

    Schwartz, Sarah; Wrede, C.; Bennett, M. B.; Liddick, S. N.; Perez-Loureiro, D.; Bowe, A.; Chen, A. A.; Chipps, K. A.; Cooper, N.; Irvine, D.; McNeice, E.; Montes, F.; Naqvi, F.; Ortez, R.; Pain, S. D.; Pereira, J.; Prokop, C.; Quaglia, J.; Quinn, S. J.; Sakstrup, J.; Santia, M.; Shanab, S.; Simon, A.; Spyrou, A.; Thiagalingam, E.

    2015-10-01

    We report the first observation of Doppler-broadening in β delayed proton- γ decay. The broadening occurs because the daughter nucleus γ decays while recoiling from proton emission. A method to analyze β delayed nucleon emission was applied to two Doppler-broadened 25Al peaks from the 26P(βpγ)25Al decay. The method was first tested on the broad 1613 keV γ-ray peak using known center-of-mass proton energies as constraints. The method was then applied to the 1776 keV γ-ray peak from the 2720 keV excited state of 25Al. The broadening was used to determine a 26Si excitation energy of 13.3 +/- 1.0 (stat.) +/- 0.7 (syst.) MeV. This energy is consistent with proton emission from the known T = 2 isobaric analog state of 26P in 26Si.

  4. Observation of Doppler broadening in β -delayed proton- γ decay

    DOE PAGES

    Schwartz, S. B.; Wrede, C.; Bennett, M. B.; ...

    2015-09-14

    Background: The Doppler broadening of gamma-ray peaks is due to nuclear recoil from beta-delayed nucleon emission can be used to measure the energies of the nucleons. This method has never been tested using beta-delayed proton emission or applied to a recoil heavier than A = 10. Purpose: To test and apply this Doppler broadening method using gamma-ray peaks from the P-26(beta p gamma)Al-25 decay sequence. Methods: A fast beam of P-26 was implanted into a planar Ge detector, which was used as a P-26 beta-decay trigger. The SeGA array of high-purity Ge detectors was used to detect gamma rays frommore » the P-26(beta p gamma)Al-25 decay sequence. Results: Radiative Doppler broadening in beta-delayed proton-gamma decay was observed for the first time. Moreover, the Doppler broadening analysis method was verified using the 1613-keV gamma-ray line for which the proton energies were previously known. The 1776-keV gamma ray de-exciting the 2720 keV Al-25 level was observed in P-26(beta p gamma)Al-25 decay for the first time and used to determine that the center-of-mass energy of the proton emission feeding the 2720-keV level is 5.1 +/- 1.0 (stat.) +/- 0.6 (syst.) MeV, corresponding to a Si-26 excitation energy of 13.3 +/- 1.0 (stat.) +/- 0.6 (syst.) MeV for the proton-emitting level. Conclusions: Finally, the Doppler broadening method has been demonstrated to provide practical measurements of the energies for beta-delayed nucleon emissions populating excited states of nuclear recoils at least as heavy as A = 25.« less

  5. Observation of Doppler broadening in β -delayed proton-γ decay

    NASA Astrophysics Data System (ADS)

    Schwartz, S. B.; Wrede, C.; Bennett, M. B.; Liddick, S. N.; Pérez-Loureiro, D.; Bowe, A.; Chen, A. A.; Chipps, K. A.; Cooper, N.; Irvine, D.; McNeice, E.; Montes, F.; Naqvi, F.; Ortez, R.; Pain, S. D.; Pereira, J.; Prokop, C.; Quaglia, J.; Quinn, S. J.; Sakstrup, J.; Santia, M.; Shanab, S.; Simon, A.; Spyrou, A.; Thiagalingam, E.

    2015-09-01

    Background: The Doppler broadening of γ -ray peaks due to nuclear recoil from β -delayed nucleon emission can be used to measure the energies of the nucleons. This method has never been tested using β -delayed proton emission or applied to a recoil heavier than A =10 . Purpose: To test and apply this Doppler broadening method using γ -ray peaks from the 26P(β p γ )25Al decay sequence. Methods: A fast beam of 26P was implanted into a planar Ge detector, which was used as a 26P β -decay trigger. The SeGA array of high-purity Ge detectors was used to detect γ rays from the 26P(β p γ )25Al decay sequence. Results: Radiative Doppler broadening in β -delayed proton-γ decay was observed for the first time. The Doppler broadening analysis method was verified using the 1613-keV γ -ray line for which the proton energies were previously known. The 1776-keV γ ray de-exciting the 2720 keV 25Al level was observed in 26P(β p γ )25Al decay for the first time and used to determine that the center-of-mass energy of the proton emission feeding the 2720-keV level is 5.1 ±1.0 (stat.) ±0.6 (syst.) MeV, corresponding to a 26Si excitation energy of 13.3 ±1.0 (stat.) ±0.6 (syst.) MeV for the proton-emitting level. Conclusions: The Doppler broadening method has been demonstrated to provide practical measurements of the energies for β -delayed nucleon emissions populating excited states of nuclear recoils at least as heavy as A =25 .

  6. Observation of Doppler broadening in beta-delayed proton-gamma decay

    NASA Astrophysics Data System (ADS)

    Schwartz, Sarah

    The Doppler broadening of gamma-ray peaks due to nuclear recoil from beta-delayed nucleon emission can be used to measure the energies of the nucleons. The purpose of this Thesis is to test and apply this Doppler broadening method using gamma-ray peaks from the 26P(betapgamma) 25Al decay sequence. A fast beam of 26P was implanted into a planar Ge detector, which was used as a 26P beta-decay trigger. The SeGA array of high-purity Ge detectors was used to detect gamma rays from the 26P(betapgamma)25Al decay sequence. Radiative Doppler broadening in beta-delayed proton-gamma decay was observed for the first time. The Doppler broadening analysis method was verified using the 1613 keV gamma-ray line for which the proton energies were previously known. The 1776 keV gamma ray de-exciting the 2720 keV 25Al level was observed in 26P(betapgamma) 25Al decay for the first time and used to determine that the center-of-mass energy of the proton emission feeding the 2720-keV level is 5.1 +/- 1.0 (stat.) +/- 0.6 (syst.) MeV, corresponding to a 26Si excitation energy of 13.3 +/- 1.0 (stat.) +/- 0.7 (syst.) MeV for the proton-emitting level. The Doppler broadening method has been demonstrated to provide practical measurements of the energies for beta-delayed nucleon emissions populating excited states of nuclear recoils at least as heavy as A = 25.

  7. Correlation of the antimicrobial activity of salicylaldehydes with broadening of the NMR signal of the hydroxyl proton. Possible involvement of proton exchange processes in the antimicrobial activity.

    PubMed

    Elo, Hannu; Kuure, Matti; Pelttari, Eila

    2015-03-06

    Certain substituted salicylaldehydes are potent antibacterial and antifungal agents and some of them merit consideration as potential chemotherapeutic agents against Candida infections, but their mechanism of action has remained obscure. We report here a distinct correlation between broadening of the NMR signal of the hydroxyl proton of salicylaldehydes and their activity against several types of bacteria and fungi. When proton NMR spectra of the compounds were determined using hexadeuterodimethylsulfoxide as solvent and the height of the OH proton signal was measured, using the signal of the aldehyde proton as an internal standard, it was discovered that a prerequisite of potent antimicrobial activity is that the proton signal is either unobservable or relatively very low, i.e. that it is extremely broadened. Thus, none of the congeners whose OH proton signal was high were potent antimicrobial agents. Some congeners that gave a very low OH signal were, however, essentially inactive against the microbes, indicating that although drastic broadening of the OH signal appears to be a prerequisite, also other (so far unknown) factors are needed for high antimicrobial activity. Because broadening of the hydroxyl proton signal is related to the speed of the proton exchange process(es) involving that proton, proton exchange may be involved in the mechanism of action of the compounds. Further studies are needed to analyze the relative importance of different factors (such as electronic effects, strength of the internal hydrogen bond, co-planarity of the ring and the formyl group) that determine the rates of those processes. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Protons are a neurotransmitter that regulates synaptic plasticity in the lateral amygdala

    PubMed Central

    Du, Jianyang; Reznikov, Leah R.; Price, Margaret P.; Zha, Xiang-ming; Lu, Yuan; Moninger, Thomas O.; Wemmie, John A.; Welsh, Michael J.

    2014-01-01

    Stimulating presynaptic terminals can increase the proton concentration in synapses. Potential receptors for protons are acid-sensing ion channels (ASICs), Na+- and Ca2+-permeable channels that are activated by extracellular acidosis. Those observations suggest that protons might be a neurotransmitter. We found that presynaptic stimulation transiently reduced extracellular pH in the amygdala. The protons activated ASICs in lateral amygdala pyramidal neurons, generating excitatory postsynaptic currents. Moreover, both protons and ASICs were required for synaptic plasticity in lateral amygdala neurons. The results identify protons as a neurotransmitter, and they establish ASICs as the postsynaptic receptor. They also indicate that protons and ASICs are a neurotransmitter/receptor pair critical for amygdala-dependent learning and memory. PMID:24889629

  9. Protons are a neurotransmitter that regulates synaptic plasticity in the lateral amygdala.

    PubMed

    Du, Jianyang; Reznikov, Leah R; Price, Margaret P; Zha, Xiang-ming; Lu, Yuan; Moninger, Thomas O; Wemmie, John A; Welsh, Michael J

    2014-06-17

    Stimulating presynaptic terminals can increase the proton concentration in synapses. Potential receptors for protons are acid-sensing ion channels (ASICs), Na(+)- and Ca(2+)-permeable channels that are activated by extracellular acidosis. Those observations suggest that protons might be a neurotransmitter. We found that presynaptic stimulation transiently reduced extracellular pH in the amygdala. The protons activated ASICs in lateral amygdala pyramidal neurons, generating excitatory postsynaptic currents. Moreover, both protons and ASICs were required for synaptic plasticity in lateral amygdala neurons. The results identify protons as a neurotransmitter, and they establish ASICs as the postsynaptic receptor. They also indicate that protons and ASICs are a neurotransmitter/receptor pair critical for amygdala-dependent learning and memory.

  10. Water at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a pathway for lateral proton diffusion

    PubMed Central

    Zhang, Chao; Knyazev, Denis G.; Vereshaga, Yana A.; Ippoliti, Emiliano; Nguyen, Trung Hai; Carloni, Paolo; Pohl, Peter

    2012-01-01

    Fast lateral proton migration along membranes is of vital importance for cellular energy homeostasis and various proton-coupled transport processes. It can only occur if attractive forces keep the proton at the interface. How to reconcile this high affinity to the membrane surface with high proton mobility is unclear. Here, we tested whether a minimalistic model interface between an apolar hydrophobic phase (n-decane) and an aqueous phase mimics the biological pathway for lateral proton migration. The observed diffusion span, on the order of tens of micrometers, and the high proton mobility were both similar to the values previously reported for lipid bilayers. Extensive ab initio simulations on the same water/n-decane interface reproduced the experimentally derived free energy barrier for the excess proton. The free energy profile GH+ adopts the shape of a well at the interface, having a width of two water molecules and a depth of 6 ± 2RT. The hydroniums in direct contact with n-decane have a reduced mobility. However, the hydroniums in the second layer of water molecules are mobile. Their in silico diffusion coefficient matches that derived from our in vitro experiments, (5.7 ± 0.7) × 10-5 cm2 s-1. Conceivably, these are the protons that allow for fast diffusion along biological membranes. PMID:22675120

  11. Imaging an optogenetic pH sensor reveals that protons mediate lateral inhibition in the retina.

    PubMed

    Wang, Tzu-Ming; Holzhausen, Lars C; Kramer, Richard H

    2014-02-01

    The reciprocal synapse between photoreceptors and horizontal cells underlies lateral inhibition and establishes the antagonistic center-surround receptive fields of retinal neurons to enhance visual contrast. Despite decades of study, the signal mediating the negative feedback from horizontal cells to cones has remained under debate because the small, invaginated synaptic cleft has precluded measurement. Using zebrafish retinas, we show that light elicits a change in synaptic proton concentration with the correct magnitude, kinetics and spatial dependence to account for lateral inhibition. Light, which hyperpolarizes horizontal cells, causes synaptic alkalinization, whereas activating an exogenously expressed ligand-gated Na(+) channel, which depolarizes horizontal cells, causes synaptic acidification. Whereas acidification was prevented by blocking a proton pump, re-alkalinization was prevented by blocking proton-permeant ion channels, suggesting that distinct mechanisms underlie proton efflux and influx. These findings reveal that protons mediate lateral inhibition in the retina, raising the possibility that protons are unrecognized retrograde messengers elsewhere in the nervous system.

  12. A carbon-13 and proton nuclear magnetic resonance study of some experimental referee broadened-specification /ERBS/ turbine fuels

    NASA Technical Reports Server (NTRS)

    Dalling, D. K.; Pugmire, R. J.

    1982-01-01

    Preliminary results of a nuclear magnetic resonance (NMR) spectroscopy study of alternative jet fuels are presented. A referee broadened-specification (ERBS) aviation turbine fuel, a mixture of 65 percent traditional kerosene with 35 percent hydrotreated catalytic gas oil (HCGO) containing 12.8 percent hydrogen, and fuels of lower hydrogen content created by blending the latter with a mixture of HCGO and xylene bottoms were studied. The various samples were examined by carbon-13 and proton NMR at high field strength, and the resulting spectra are shown. In the proton spectrum of the 12.8 percent hydrogen fuel, no prominent single species is seen while for the blending stock, many individual lines are apparent. The ERBS fuels were fractionated by high-performance liquid chromatography and the resulting fractions analyzed by NMR. The species found are identified.

  13. On the parametrization of lateral dose profiles in proton radiation therapy.

    PubMed

    Bellinzona, V E; Ciocca, M; Embriaco, A; Fontana, A; Mairani, A; Mori, M; Parodi, K

    2015-07-01

    The accurate evaluation of the lateral dose profile is an important issue in the field of proton radiation therapy. The beam spread, due to Multiple Coulomb Scattering (MCS), is described by the Molière's theory. To take into account also the contribution of nuclear interactions, modern Treatment Planning Systems (TPSs) generally approximate the dose profiles by a sum of Gaussian functions. In this paper we have compared different parametrizations for the lateral dose profile of protons in water for therapeutical energies: the goal is to improve the performances of the actual treatment planning. We have simulated typical dose profiles at the CNAO (Centro Nazionale di Adroterapia Oncologica) beamline with the FLUKA code and validated them with data taken at CNAO considering different energies and depths. We then performed best fits of the lateral dose profiles for different functions using ROOT and MINUIT. The accuracy of the best fits was analyzed by evaluating the reduced χ(2), the number of free parameters of the functions and the calculation time. The best results were obtained with the triple Gaussian and double Gaussian Lorentz-Cauchy functions which have 6 parameters, but good results were also obtained with the so called Gauss-Rutherford function which has only 4 parameters. The comparison of the studied functions with accurate and validated Monte Carlo calculations and with experimental data from CNAO lead us to propose an original parametrization, the Gauss-Rutherford function, to describe the lateral dose profiles of proton beams. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. SU-E-T-523: On the Radiobiological Impact of Lateral Scatter in Proton Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heuvel, F Van den; Deruysscher, D

    2014-06-01

    Introduction: In proton therapy, justified concern has been voiced with respect to an increased efficiency in cell kill at the distal end of the Bragg peak. This coupled with range uncertainty is a counter indication to use the Bragg peak to define the border of a treated volume with a critical organ. An alternative is to use the lateral edge of the proton beam, obtaining more robust plans. We investigate the spectral and biological effects of the lateral scatter . Methods: A general purpose Monte Carlo simulation engine (MCNPX 2.7c) installed on a Scientific Linux cluster, calculated the dose depositionmore » spectrum of protons, knock on electrons and generated neutrons for a proton beam with maximal kinetic energy of 200MeV. Around the beam at different positions in the beam direction the spectrum is calculated in concentric rings of thickness 1cm. The deposited dose is converted to a double strand break map using an analytical expression.based on micro dosimetric calculations using a phenomenological Monte Carlo code (MCDS). A strict version of RBE is defined as the ratio of generation of double strand breaks in the different modalities. To generate the reference a Varian linac was modelled in MCNPX and the generated electron dose deposition spectrum was used . Results: On a pristine point source 200MeV beam the RBE before the Bragg peak was of the order of 1.1, increasing to 1.7 right behind the Bragg peak. When using a physically more realistic beam of 10cm diameter the effect was smaller. Both the lateral dose and RBE increased with increasing beam depth, generating a dose deposition with mixed biological effect. Conclusions: The dose deposition in proton beams need to be carefully examined because the biological effect will be different depending on the treatment geometry. Deeply penetrating proton beams generate more biologically effective lateral scatter.« less

  15. On the Stark broadening of Cr VI spectral lines in astrophysical plasma

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.; Simić, Z.; Sahal-Bréchot, S.

    2017-02-01

    Stark broadening parameters for Cr VI lines have been calculated using semiclassical perturbation method for conditions of interest for stellar plasma. Here are presented, as an example of obtained results, Stark broadening parameters for electron- and proton-impact broadening for Cr VI 4s 2S-4p 2P° λ = 1430 Å and Cr VI 4p 2P°-5s 2S λ = 611.8 Å multiplets. The obtained results are used to demonstrate the importance of Stark broadening of Cr VI in DO white dwarf atmospheres. Also the obtained results will enter in STARK-B database which is included in Virtual Atomic and Molecula Data Center - VAMDC.

  16. Measurements of lateral penumbra for uniform scanning proton beams under various beam delivery conditions and comparison to the XiO treatment planning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, Suresh; Zeidan, Omar; Ramirez, Eric

    2013-09-15

    Purpose: The main purposes of this study were to (1) investigate the dependency of lateral penumbra (80%–20% distance) of uniform scanning proton beams on various factors such as air gap, proton range, modulation width, compensator thickness, and depth, and (2) compare the lateral penumbra calculated by a treatment planning system (TPS) with measurements.Methods: First, lateral penumbra was measured using solid–water phantom and radiographic films for (a) air gap, ranged from 0 to 35 cm, (b) proton range, ranged from 8 to 30 cm, (c) modulation, ranged from 2 to 10 cm, (d) compensator thickness, ranged from 0 to 20 cm,more » and (e) depth, ranged from 7 to 15 cm. Second, dose calculations were computed in a virtual water phantom using the XiO TPS with pencil beam algorithm for identical beam conditions and geometrical configurations that were used for the measurements. The calculated lateral penumbra was then compared with the measured one for both the horizontal and vertical scanning magnets of our uniform scanning proton beam delivery system.Results: The results in the current study showed that the lateral penumbra of horizontal scanning magnet was larger (up to 1.4 mm for measurement and up to 1.0 mm for TPS) compared to that of vertical scanning magnet. Both the TPS and measurements showed an almost linear increase in lateral penumbra with increasing air gap as it produced the greatest effect on lateral penumbra. Lateral penumbra was dependent on the depth and proton range. Specifically, the width of lateral penumbra was found to be always lower at shallower depth than at deeper depth within the spread out Bragg peak (SOBP) region. The lateral penumbra results were less sensitive to the variation in the thickness of compensator, whereas lateral penumbra was independent of modulation. Overall, the comparison between the results of TPS with that of measurements indicates a good agreement for lateral penumbra, with TPS predicting higher values compared to

  17. Carbon-13 and proton nuclear magnetic resonance analysis of shale-derived refinery products and jet fuels and of experimental referee broadened-specification jet fuels

    NASA Technical Reports Server (NTRS)

    Dalling, D. K.; Bailey, B. K.; Pugmire, R. J.

    1984-01-01

    A proton and carbon-13 nuclear magnetic resonance (NMR) study was conducted of Ashland shale oil refinery products, experimental referee broadened-specification jet fuels, and of related isoprenoid model compounds. Supercritical fluid chromatography techniques using carbon dioxide were developed on a preparative scale, so that samples could be quantitatively separated into saturates and aromatic fractions for study by NMR. An optimized average parameter treatment was developed, and the NMR results were analyzed in terms of the resulting average parameters; formulation of model mixtures was demonstrated. Application of novel spectroscopic techniques to fuel samples was investigated.

  18. Fundamental edge broadening effects during focused electron beam induced nanosynthesis

    DOE PAGES

    Schmied, Roland; Fowlkes, Jason Davidson; Winkler, Robert; ...

    2015-02-16

    In this study, we explore lateral broadening effects of 3D structures fabricated through focused electron beam induced deposition using MeCpPt(IV)Me 3 precursor. In particular, the scaling behavior of proximity effects as a function of the primary electron energy and the deposit height is investigated through experiments and validated through simulations. Correlated Kelvin force microscopy and conductive atomic force microscopy measurements identified conductive and non-conductive proximity regions. It was determined that the highest primary electron energies enable the highest edge sharpness while lower energies contain a complex convolution of broadening effects. In addition, it is demonstrated that intermediate energies lead tomore » even more complex proximity effects that significantly reduce lateral edge sharpness and thus should be avoided if desiring high lateral resolution.« less

  19. The broaden-and-build theory of positive emotions.

    PubMed Central

    Fredrickson, Barbara L

    2004-01-01

    The broaden-and-build theory describes the form and function of a subset of positive emotions, including joy, interest, contentment and love. A key proposition is that these positive emotions broaden an individual's momentary thought-action repertoire: joy sparks the urge to play, interest sparks the urge to explore, contentment sparks the urge to savour and integrate, and love sparks a recurring cycle of each of these urges within safe, close relationships. The broadened mindsets arising from these positive emotions are contrasted to the narrowed mindsets sparked by many negative emotions (i.e. specific action tendencies, such as attack or flee). A second key proposition concerns the consequences of these broadened mindsets: by broadening an individual's momentary thought-action repertoire--whether through play, exploration or similar activities--positive emotions promote discovery of novel and creative actions, ideas and social bonds, which in turn build that individual's personal resources; ranging from physical and intellectual resources, to social and psychological resources. Importantly, these resources function as reserves that can be drawn on later to improve the odds of successful coping and survival. This chapter reviews the latest empirical evidence supporting the broaden-and-build theory and draws out implications the theory holds for optimizing health and well-being. PMID:15347528

  20. Monte Carlo-based parametrization of the lateral dose spread for clinical treatment planning of scanned proton and carbon ion beams

    PubMed Central

    Parodi, Katia; Mairani, Andrea; Sommerer, Florian

    2013-01-01

    Ion beam therapy using state-of-the-art pencil-beam scanning offers unprecedented tumour-dose conformality with superior sparing of healthy tissue and critical organs compared to conventional radiation modalities for external treatment of deep-seated tumours. For inverse plan optimization, the commonly employed analytical treatment-planning systems (TPSs) have to meet reasonable compromises in the accuracy of the pencil-beam modelling to ensure good performances in clinically tolerable execution times. In particular, the complex lateral spreading of ion beams in air and in the traversed tissue is typically approximated with ideal Gaussian-shaped distributions, enabling straightforward superimposition of several scattering contributions. This work presents the double Gaussian parametrization of scanned proton and carbon ion beams in water that has been introduced in an upgraded version of the worldwide first commercial ion TPS for clinical use at the Heidelberg Ion Beam Therapy Center (HIT). First, the Monte Carlo results obtained from a detailed implementation of the HIT beamline have been validated against available experimental data. Then, for generating the TPS lateral parametrization, radial beam broadening has been calculated in a water target placed at a representative position after scattering in the beamline elements and air for 20 initial beam energies for each ion species. The simulated profiles were finally fitted with an idealized double Gaussian distribution that did not perfectly describe the nature of the data, thus requiring a careful choice of the fitting conditions. The obtained parametrization is in clinical use not only at the HIT center, but also at the Centro Nazionale di Adroterapia Oncologica. PMID:23824133

  1. Monte Carlo-based parametrization of the lateral dose spread for clinical treatment planning of scanned proton and carbon ion beams.

    PubMed

    Parodi, Katia; Mairani, Andrea; Sommerer, Florian

    2013-07-01

    Ion beam therapy using state-of-the-art pencil-beam scanning offers unprecedented tumour-dose conformality with superior sparing of healthy tissue and critical organs compared to conventional radiation modalities for external treatment of deep-seated tumours. For inverse plan optimization, the commonly employed analytical treatment-planning systems (TPSs) have to meet reasonable compromises in the accuracy of the pencil-beam modelling to ensure good performances in clinically tolerable execution times. In particular, the complex lateral spreading of ion beams in air and in the traversed tissue is typically approximated with ideal Gaussian-shaped distributions, enabling straightforward superimposition of several scattering contributions. This work presents the double Gaussian parametrization of scanned proton and carbon ion beams in water that has been introduced in an upgraded version of the worldwide first commercial ion TPS for clinical use at the Heidelberg Ion Beam Therapy Center (HIT). First, the Monte Carlo results obtained from a detailed implementation of the HIT beamline have been validated against available experimental data. Then, for generating the TPS lateral parametrization, radial beam broadening has been calculated in a water target placed at a representative position after scattering in the beamline elements and air for 20 initial beam energies for each ion species. The simulated profiles were finally fitted with an idealized double Gaussian distribution that did not perfectly describe the nature of the data, thus requiring a careful choice of the fitting conditions. The obtained parametrization is in clinical use not only at the HIT center, but also at the Centro Nazionale di Adroterapia Oncologica.

  2. Excited state of protonated benzene and toluene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esteves-López, Natalia; Dedonder-Lardeux, Claude; Jouvet, Christophe, E-mail: Christophe.jouvet@univ-amu.fr

    We present photo-fragmentation electronic spectra of the simplest protonated aromatic molecules, protonated benzene and toluene, recorded under medium resolution conditions and compared with the photo-fragmentation spectrum of protonated pyridine. Despite the resolution and cold temperature achieved in the experiment, the electronic spectra of protonated benzene and toluene are structure-less, thus intrinsically broadened. This is in agreement with the large geometrical changes and the fast dynamic toward internal conversion predicted by ab initio calculations for protonated benzene [Rode et al., J. Phys. Chem. A 113, 5865–5873 (2009)].

  3. Hydrogen Balmer Line Broadening in Solar and Stellar Flares

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalski, Adam F.; Allred, Joel C.; Uitenbroek, Han

    2017-03-10

    The broadening of the hydrogen lines during flares is thought to result from increased charge (electron, proton) density in the flare chromosphere. However, disagreements between theory and modeling prescriptions have precluded an accurate diagnostic of the degree of ionization and compression resulting from flare heating in the chromosphere. To resolve this issue, we have incorporated the unified theory of electric pressure broadening of the hydrogen lines into the non-LTE radiative-transfer code RH. This broadening prescription produces a much more realistic spectrum of the quiescent, A0 star Vega compared to the analytic approximations used as a damping parameter in the Voigtmore » profiles. We test recent radiative-hydrodynamic (RHD) simulations of the atmospheric response to high nonthermal electron beam fluxes with the new broadening prescription and find that the Balmer lines are overbroadened at the densest times in the simulations. Adding many simultaneously heated and cooling model loops as a “multithread” model improves the agreement with the observations. We revisit the three-component phenomenological flare model of the YZ CMi Megaflare using recent and new RHD models. The evolution of the broadening, line flux ratios, and continuum flux ratios are well-reproduced by a multithread model with high-flux nonthermal electron beam heating, an extended decay phase model, and a “hot spot” atmosphere heated by an ultrarelativistic electron beam with reasonable filling factors: ∼0.1%, 1%, and 0.1% of the visible stellar hemisphere, respectively. The new modeling motivates future work to understand the origin of the extended gradual phase emission.« less

  4. Hydrogen Balmer Line Broadening in Solar and Stellar Flares

    NASA Technical Reports Server (NTRS)

    Kowalski, Adam F.; Allred, Joel C.; Uitenbroek, Han; Tremblay, Pier-Emmanuel; Brown, Stephen; Carlsson, Mats; Osten, Rachel A.; Wisniewski, John P.; Hawley, Suzanne L.

    2017-01-01

    The broadening of the hydrogen lines during flares is thought to result from increased charge (electron, proton) density in the flare chromosphere. However, disagreements between theory and modeling prescriptions have precluded an accurate diagnostic of the degree of ionization and compression resulting from flare heating in the chromosphere. To resolve this issue, we have incorporated the unified theory of electric pressure broadening of the hydrogen lines into the non-LTE radiative-transfer code RH. This broadening prescription produces a much more realistic spectrum of the quiescent, A0 star Vega compared to the analytic approximations used as a damping parameter in the Voigt profiles. We test recent radiative-hydrodynamic (RHD) simulations of the atmospheric response to high nonthermal electron beam fluxes with the new broadening prescription and find that the Balmer lines are overbroadened at the densest times in the simulations. Adding many simultaneously heated and cooling model loops as a 'multithread' model improves the agreement with the observations. We revisit the three component phenomenological flare model of the YZ CMi Megaflare using recent and new RHD models. The evolution of the broadening, line flux ratios, and continuum flux ratios are well-reproduced by a multithread model with high-flux nonthermal electron beam heating, an extended decay phase model, and a 'hot spot' atmosphere heated by an ultra relativistic electron beam with reasonable filling factors: approximately 0.1%, 1%, and 0.1% of the visible stellar hemisphere, respectively. The new modeling motivates future work to understand the origin of the extended gradual phase emission.

  5. Hydrogen Balmer Line Broadening in Solar and Stellar Flares

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.; Allred, Joel C.; Uitenbroek, Han; Tremblay, Pier-Emmanuel; Brown, Stephen; Carlsson, Mats; Osten, Rachel A.; Wisniewski, John P.; Hawley, Suzanne L.

    2017-03-01

    The broadening of the hydrogen lines during flares is thought to result from increased charge (electron, proton) density in the flare chromosphere. However, disagreements between theory and modeling prescriptions have precluded an accurate diagnostic of the degree of ionization and compression resulting from flare heating in the chromosphere. To resolve this issue, we have incorporated the unified theory of electric pressure broadening of the hydrogen lines into the non-LTE radiative-transfer code RH. This broadening prescription produces a much more realistic spectrum of the quiescent, A0 star Vega compared to the analytic approximations used as a damping parameter in the Voigt profiles. We test recent radiative-hydrodynamic (RHD) simulations of the atmospheric response to high nonthermal electron beam fluxes with the new broadening prescription and find that the Balmer lines are overbroadened at the densest times in the simulations. Adding many simultaneously heated and cooling model loops as a “multithread” model improves the agreement with the observations. We revisit the three-component phenomenological flare model of the YZ CMi Megaflare using recent and new RHD models. The evolution of the broadening, line flux ratios, and continuum flux ratios are well-reproduced by a multithread model with high-flux nonthermal electron beam heating, an extended decay phase model, and a “hot spot” atmosphere heated by an ultrarelativistic electron beam with reasonable filling factors: ˜0.1%, 1%, and 0.1% of the visible stellar hemisphere, respectively. The new modeling motivates future work to understand the origin of the extended gradual phase emission.

  6. WE-D-17A-02: Evaluation of a Two-Dimensional Optical Dosimeter On Measuring Lateral Profiles of Proton Pencil Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsi, W; Lee, T; Schultz, T

    Purpose: To evaluate the accuracy of a two-dimensional optical dosimeter on measuring lateral profiles for spots and scanned fields of proton pencil beams. Methods: A digital camera with a color image senor was utilized to image proton-induced scintillations on Gadolinium-oxysulfide phosphor reflected by a stainless-steel mirror. Intensities of three colors were summed for each pixel with proper spatial-resolution calibration. To benchmark this dosimeter, the field size and penumbra for 100mm square fields of singleenergy pencil-scan protons were measured and compared between this optical dosimeter and an ionization-chamber profiler. Sigma widths of proton spots in air were measured and compared betweenmore » this dosimeter and a commercial optical dosimeter. Clinical proton beams with ranges between 80 mm and 300 mm at CDH proton center were used for this benchmark. Results: Pixel resolutions vary 1.5% between two perpendicular axes. For a pencil-scan field with 302 mm range, measured field sizes and penumbras between two detection systems agreed to 0.5 mm and 0.3 mm, respectively. Sigma widths agree to 0.3 mm between two optical dosimeters for a proton spot with 158 mm range; having widths of 5.76 mm and 5.92 mm for X and Y axes, respectively. Similar agreements were obtained for others beam ranges. This dosimeter was successfully utilizing on mapping the shapes and sizes of proton spots at the technical acceptance of McLaren proton therapy system. Snow-flake spots seen on images indicated the image sensor having pixels damaged by radiations. Minor variations in intensity between different colors were observed. Conclusions: The accuracy of our dosimeter was in good agreement with other established devices in measuring lateral profiles of pencil-scan fields and proton spots. A precise docking mechanism for camera was designed to keep aligned optical path while replacing damaged image senor. Causes for minor variations between emitted color lights will be

  7. A model for the accurate computation of the lateral scattering of protons in water

    NASA Astrophysics Data System (ADS)

    Bellinzona, E. V.; Ciocca, M.; Embriaco, A.; Ferrari, A.; Fontana, A.; Mairani, A.; Parodi, K.; Rotondi, A.; Sala, P.; Tessonnier, T.

    2016-02-01

    A pencil beam model for the calculation of the lateral scattering in water of protons for any therapeutic energy and depth is presented. It is based on the full Molière theory, taking into account the energy loss and the effects of mixtures and compounds. Concerning the electromagnetic part, the model has no free parameters and is in very good agreement with the FLUKA Monte Carlo (MC) code. The effects of the nuclear interactions are parametrized with a two-parameter tail function, adjusted on MC data calculated with FLUKA. The model, after the convolution with the beam and the detector response, is in agreement with recent proton data in water from HIT. The model gives results with the same accuracy of the MC codes based on Molière theory, with a much shorter computing time.

  8. A model for the accurate computation of the lateral scattering of protons in water.

    PubMed

    Bellinzona, E V; Ciocca, M; Embriaco, A; Ferrari, A; Fontana, A; Mairani, A; Parodi, K; Rotondi, A; Sala, P; Tessonnier, T

    2016-02-21

    A pencil beam model for the calculation of the lateral scattering in water of protons for any therapeutic energy and depth is presented. It is based on the full Molière theory, taking into account the energy loss and the effects of mixtures and compounds. Concerning the electromagnetic part, the model has no free parameters and is in very good agreement with the FLUKA Monte Carlo (MC) code. The effects of the nuclear interactions are parametrized with a two-parameter tail function, adjusted on MC data calculated with FLUKA. The model, after the convolution with the beam and the detector response, is in agreement with recent proton data in water from HIT. The model gives results with the same accuracy of the MC codes based on Molière theory, with a much shorter computing time.

  9. Constraining the Lateral Helix of Respiratory Complex I by Cross-linking Does Not Impair Enzyme Activity or Proton Translocation.

    PubMed

    Zhu, Shaotong; Vik, Steven B

    2015-08-21

    Complex I (NADH:ubiquinone oxidoreductase) is a multisubunit, membrane-bound enzyme of the respiratory chain. The energy from NADH oxidation in the peripheral region of the enzyme is used to drive proton translocation across the membrane. One of the integral membrane subunits, nuoL in Escherichia coli, has an unusual lateral helix of ∼75 residues that lies parallel to the membrane surface and has been proposed to play a mechanical role as a piston during proton translocation (Efremov, R. G., Baradaran, R., and Sazanov, L. A. (2010) Nature 465, 441-445). To test this hypothesis we have introduced 11 pairs of cysteine residues into Complex I; in each pair one is in the lateral helix, and the other is in a nearby region of subunit N, M, or L. The double mutants were treated with Cu(2+) ions or with bi-functional methanethiosulfonate reagents to catalyze cross-link formation in membrane vesicles. The yields of cross-linked products were typically 50-90%, as judged by immunoblotting, but in no case did the activity of Complex I decrease by >10-20%, as indicated by deamino-NADH oxidase activity or rates of proton translocation. In contrast, several pairs of cysteine residues introduced at other interfaces of N:M and M:L subunits led to significant loss of activity, in particular, in the region of residue Glu-144 of subunit M. The results do not support the hypothesis that the lateral helix of subunit L functions like a piston, but rather, they suggest that conformational changes might be transmitted more directly through the functional residues of the proton translocation apparatus. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. SU-F-T-158: Experimental Characterization of Field Size Dependence of Dose and Lateral Beam Profiles of Scanning Proton and Carbon Ion Beams for Empirical Model in Air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y; Hsi, W; Zhao, J

    2016-06-15

    Purpose: The Gaussian model for the lateral profiles in air is crucial for an accurate treatment planning system. The field size dependence of dose and the lateral beam profiles of scanning proton and carbon ion beams are due mainly to particles undergoing multiple Coulomb scattering in the beam line components and secondary particles produced by nuclear interactions in the target, both of which depend upon the energy and species of the beam. In this work, lateral profile shape parameters were fitted to measurements of field size dependence dose at the center of field size in air. Methods: Previous studies havemore » employed empirical fits to measured profile data to significantly reduce the QA time required for measurements. From this approach to derive the weight and sigma of lateral profiles in air, empirical model formulations were simulated for three selected energies for both proton and carbon beams. Results: The 20%–80% lateral penumbras predicted by the double model for proton and single model for carbon with the error functions agreed with the measurements within 1 mm. The standard deviation between measured and fitted field size dependence of dose for empirical model in air has a maximum accuracy of 0.74% for proton with double Gaussian, and of 0.57% for carbon with single Gaussian. Conclusion: We have demonstrated that the double Gaussian model of lateral beam profiles is significantly better than the single Gaussian model for proton while a single Gaussian model is sufficient for carbon. The empirical equation may be used to double check the separately obtained model that is currently used by the planning system. The empirical model in air for dose of spot scanning proton and carbon ion beams cannot be directly used for irregular shaped patient fields, but can be to provide reference values for clinical use and quality assurance.« less

  11. An integrated field-effect microdevice for monitoring membrane transport in Xenopus laevis oocytes via lateral proton diffusion.

    PubMed

    Schaffhauser, Daniel Felix; Patti, Monica; Goda, Tatsuro; Miyahara, Yuji; Forster, Ian Cameron; Dittrich, Petra Stephanie

    2012-01-01

    An integrated microdevice for measuring proton-dependent membrane activity at the surface of Xenopus laevis oocytes is presented. By establishing a stable contact between the oocyte vitelline membrane and an ion-sensitive field-effect (ISFET) sensor inside a microperfusion channel, changes in surface pH that are hypothesized to result from facilitated proton lateral diffusion along the membrane were detected. The solute diffusion barrier created between the sensor and the active membrane area allowed detection of surface proton concentration free from interference of solutes in bulk solution. The proposed sensor mechanism was verified by heterologously expressing membrane transport proteins and recording changes in surface pH during application of the specific substrates. Experiments conducted on two families of phosphate-sodium cotransporters (SLC20 & SLC34) demonstrated that it is possible to detect phosphate transport for both electrogenic and electroneutral isoforms and distinguish between transport of different phosphate species. Furthermore, the transport activity of the proton/amino acid cotransporter PAT1 assayed using conventional whole cell electrophysiology correlated well with changes in surface pH, confirming the ability of the system to detect activity proportional to expression level.

  12. Exact Doppler broadening of tabulated cross sections. [SIGMA 1 kernel broadening method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cullen, D.E.; Weisbin, C.R.

    1976-07-01

    The SIGMA1 kernel broadening method is presented to Doppler broaden to any required accuracy a cross section that is described by a table of values and linear-linear interpolation in energy-cross section between tabulated values. The method is demonstrated to have no temperature or energy limitations and to be equally applicable to neutron or charged-particle cross sections. The method is qualitatively and quantitatively compared to contemporary approximate methods of Doppler broadening with particular emphasis on the effect of each approximation introduced.

  13. SU-E-T-457: Impact of Interfractional Variations On Anterior Vs. Lateral-Field Proton Therapy of Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moteabbed, M; Trofimov, A; Sharp, G C

    2015-06-15

    Purpose: To investigate the effects of interfractional anatomy and setup variations on plans with anterior-oblique vs. lateral beams for prostate cancer pencil beam scanning (PBS) and passive scattered (PS) proton therapy. Methods: Six patients with low/intermediate risk prostate cancer treated with PS proton therapy at our institution were selected. All patients underwent weekly verification CT scans. Implanted fiducials were used for localization, and endorectal balloons for prostate immobilization. New PBS plans with lateral beams, as well as PBS and PS plans with anterior-oblique beams (±35 deg) were created. PBS plans used two different spot sizes: ∼10mm (large) and ∼5mm (medium)more » sigma at 25cm range and optimized as single-field-uniform-dose with ∼8% non-uniformity. No range uncertainty margins were applied in PBS plans to maximize rectal sparing. Field-specific apertures were used when planning with large spots to sharpen the penumbrae. The planned dose was recomputed on each weekly CT with fiducials aligned to the simulation CT, scaled and accumulated via deformable image registration. Results: The dose volume analysis showed that although difference between planned and accumulated dose remains negligible for plans with conventional lateral beams using both PS and PBS, this is not the case for plans with anterior beams. The target coverage in anterior plans was largely degraded due to the variations in the beam path length and the absence of range margins. The average prostate D95 was reduced by 7.5/15.9% (using PS/PBS) after accumulation for anterior plans, compared with 0/0.4% for lateral plans. The average mean dose in organs-at-risk decreased by 1% for lateral and 2% for anterior plans, similarly for PS and PBS. Spot size did not affect the dose changes. Conclusion: Prostate plans using anterior beams may undergo clinically relevant interfractional dose degradation. Corrective strategies guided by in-vivo range measurements should be

  14. Experimental Analysis of Proton-Induced Displacement and Ionization Damage Using Gate-Controlled Lateral PNP Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Ball, D. R.; Schrimpf, R. D.; Barnaby, H. J.

    2006-01-01

    The electrical characteristics of proton-irradiated bipolar transistors are affected by ionization damage to the insulating oxide and displacement damage to the semiconductor bulk. While both types of damage degrade the transistor, it is important to understand the mechanisms individually and to be able to analyze them separately. In this paper, a method for analyzing the effects of ionization and displacement damage using gate-controlled lateral PNP bipolar junction transistors is described. This technique allows the effects of oxide charge, surface recombination velocity, and bulk traps to be measured independently.

  15. Measured Early Lateral Energy Fractions in Concert Halls and Opera Houses

    NASA Astrophysics Data System (ADS)

    BARRON, M.

    2000-04-01

    In the 30 years since early lateral reflections were first suggested as important for concert halls, spatial impression and source broadening have become almost universally accepted as essential characteristics of halls with good acoustics. Two objective measures of source broadening have been proposed. Measured values of the best defined of these measures, the early lateral energy fraction (LF), are considered here. Results from two independent measurement surveys are discussed. Comparisons of LF values by hall show a significant link between hall mean LF and hall width. There is however considerable overlap between measured LF values in different halls so the relevance of describing halls by their mean early lateral energy fraction values is questionable. The behaviour of LF values within auditoria is discussed for different concert hall plan forms and within opera houses. A measure of source broadening including sound level is proposed and results considered in the context of auditorium design.

  16. 2JHH-resolved HSQC: Exclusive determination of geminal proton-proton coupling constants

    NASA Astrophysics Data System (ADS)

    Marcó, Núria; Nolis, Pau; Gil, Roberto R.; Parella, Teodor

    2017-09-01

    The measurement of two-bond proton-proton coupling constants (2JHH) in prochiral CH2 groups from the F2 dimension of 2D spectra is not easy due to the usual presence of complex multiplet J patterns, line broadening effects and strong coupling artifacts. These drawbacks are particularly pronounced and frequent in AB spin systems, as those normally exhibited by the pair of diastereotopic CH2 protons. Here, a novel 2JHH-resolved HSQC experiment for the exclusive and accurate determination of the magnitude of 2JHH from the doublet displayed along the highly-resolved indirect F1 dimension is described. A pragmatic 2JHH NMR profile affords a fast overview of the full range of existing 2JHH values. In addition, a 2JHH/δ(13C)-scaled version proves to be an efficient solution when severe signal overlapping complicate a rigorous analysis. The performance of the method is compared with other current techniques and illustrated by the determination of challenging residual dipolar 2DHH coupling constants of small molecules dissolved in weakly orienting media.

  17. Degradation mechanisms of 2 MeV proton irradiated AlGaN/GaN HEMTs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenlee, Jordan D., E-mail: jordan.greenlee.ctr@nrl.navy.mil; Anderson, Travis J.; Koehler, Andrew D.

    2015-08-24

    Proton-induced damage in AlGaN/GaN HEMTs was investigated using energy-dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM), and simulated using a Monte Carlo technique. The results were correlated to electrical degradation using Hall measurements. It was determined by EDS that the interface between GaN and AlGaN in the irradiated HEMT was broadened by 2.2 nm, as estimated by the width of the Al EDS signal compared to the as-grown interface. The simulation results show a similar Al broadening effect. The extent of interfacial roughening was examined using high resolution TEM. At a 2 MeV proton fluence of 6 × 10{sup 14} H{supmore » +}/cm{sup 2}, the electrical effects associated with the Al broadening and surface roughening include a degradation of the ON-resistance and a decrease in the electron mobility and 2DEG sheet carrier density by 28.9% and 12.1%, respectively.« less

  18. Lateral Diffusion Length Changes in HgCdTe Detectors in a Proton Environment

    NASA Technical Reports Server (NTRS)

    Hubbs, John E.; Marshall, Paul W.; Marshall, Cheryl J.; Gramer, Mark E.; Maestas, Diana; Garcia, John P.; Dole, Gary A.; Anderson, Amber A.

    2007-01-01

    This paper presents a study of the performance degradation in a proton environment of very long wavelength infrared (VLWIR) HgCdTe detectors. The energy dependence of the Non-Ionizing Energy Loss (NIEL) in HgCdTe provides a framework for estimating the responsivity degradation in VLWIR HgCdTe due to on orbit exposure from protons. Banded detector arrays that have different detector designs were irradiated at proton energies of 7, 12, and 63 MeV. These banded detector arrays allovedin sight into how the fundamental detector parameters degraded in a proton environment at the three different proton energies. Measured data demonstrated that the detector responsivity degradation at 7 MeV is 5 times larger than the degradation at 63 MeV. The comparison of the responsivity degradation at the different proton energies suggests that the atomic Columbic interaction of the protons with the HgCdTe detector is likely the primary mechanism responsible for the degradation in responsivity at proton energies below 30 MeV.

  19. Direct observation of the protonation of acetone ketyl radical by conductometric pulse radiolysis. [8-MeV electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janata, E.; Schuler, R.H.

    1980-12-11

    Improvements in conductometric pulse radiolysis methods allow direct observation of the protonation of the acetone ketyl radical anion on the 10-ns time scale. The protonation period of 9.7 +- 0.5 ns determined here is in good agreement with that estimated from the ESR line broadening studies of Laroff and Fessenden, (J. Phys. Chem., 77, 1283(1973)).

  20. Positive mood broadens visual attention to positive stimuli.

    PubMed

    Wadlinger, Heather A; Isaacowitz, Derek M

    2006-03-01

    In an attempt to investigate the impact of positive emotions on visual attention within the context of Fredrickson's (1998) broaden-and-build model, eye tracking was used in two studies to measure visual attentional preferences of college students (n=58, n=26) to emotional pictures. Half of each sample experienced induced positive mood immediately before viewing slides of three similarly-valenced images, in varying central-peripheral arrays. Attentional breadth was determined by measuring the percentage viewing time to peripheral images as well as by the number of visual saccades participants made per slide. Consistent with Fredrickson's theory, the first study showed that individuals induced into positive mood fixated more on peripheral stimuli than did control participants; however, this only held true for highly-valenced positive stimuli. Participants under induced positive mood also made more frequent saccades for slides of neutral and positive valence. A second study showed that these effects were not simply due to differences in emotional arousal between stimuli. Selective attentional broadening to positive stimuli may act both to facilitate later building of resources as well as to maintain current positive affective states.

  1. The ExoMol pressure broadening diet: H2 and He line-broadening parameters

    NASA Astrophysics Data System (ADS)

    Barton, Emma J.; Hill, C.; Czurylo, M.; Li, H. Y.; Hyslop, A.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2017-12-01

    In a variety of astronomical objects including gas giant (exo-)planets, brown dwarfs and cool stars, molecular hydrogen and helium are the major line broadeners. However, there is currently no systematic source for these parameters, particularly at the elevated temperatures encountered in many of these objects. The ExoMol project provides comprehensive molecular line lists for exoplanet and other hot atmospheres. The ExoMol database has recently been extended to provide additional data including temperature-dependent, pressure-broadening parameters. Here we assemble H2 and He pressure-broadening datasets for the molecules H2O, NH3, SO2, CH4, PH3, HCN and H2CO using available experimental and theoretical studies.

  2. Minibeam therapy with protons and light ions: physical feasibility and potential to reduce radiation side effects and to facilitate hypofractionation.

    PubMed

    Dilmanian, F Avraham; Eley, John G; Krishnan, Sunil

    2015-06-01

    Despite several advantages of proton therapy over megavoltage x-ray therapy, its lack of proximal tissue sparing is a concern. The method presented here adds proximal tissue sparing to protons and light ions by turning their uniform incident beams into arrays of parallel, small, or thin (0.3-mm) pencil or planar minibeams, which are known to spare tissues. As these minibeams penetrate the tissues, they gradually broaden and merge with each other to produce a solid beam. Broadening of 0.3-mm-diameter, 109-MeV proton pencil minibeams was measured using a stack of radiochromic films with plastic spacers. Monte Carlo simulations were used to evaluate the broadening in water of minibeams of protons and several light ions and the dose from neutron generated by collimator. A central parameter was tissue depth, where the beam full width at half maximum (FWHM) reached 0.7 mm, beyond which tissue sparing decreases. This depth was 22 mm for 109-MeV protons in a film stack. It was also found by simulations in water to be 23.5 mm for 109 MeV proton pencil minibeams and 26 mm for 116 MeV proton planar minibeams. For light ions, all with 10 cm range in water, that depth increased with particle size; specifically it was 51 mm for Li-7 ions. The ∼2.7% photon equivalent neutron skin dose from the collimator was reduced 7-fold by introducing a gap between the collimator and the skin. Proton minibeams can be implemented at existing particle therapy centers. Because they spare the shallow tissues, they could augment the efficacy of proton therapy and light particle therapy, particularly in treating tumors that benefit from sparing of proximal tissues such as pediatric brain tumors. They should also allow hypofractionated treatment of all tumors by allowing the use of higher incident doses with less concern about proximal tissue damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Minibeam Therapy With Protons and Light Ions: Physical Feasibility and Potential to Reduce Radiation Side Effects and to Facilitate Hypofractionation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dilmanian, F. Avraham, E-mail: avraham.dilmanian@stonybrook.edu; Eley, John G.; Krishnan, Sunil

    2015-06-01

    Purpose: Despite several advantages of proton therapy over megavoltage x-ray therapy, its lack of proximal tissue sparing is a concern. The method presented here adds proximal tissue sparing to protons and light ions by turning their uniform incident beams into arrays of parallel, small, or thin (0.3-mm) pencil or planar minibeams, which are known to spare tissues. As these minibeams penetrate the tissues, they gradually broaden and merge with each other to produce a solid beam. Methods and Materials: Broadening of 0.3-mm-diameter, 109-MeV proton pencil minibeams was measured using a stack of radiochromic films with plastic spacers. Monte Carlo simulationsmore » were used to evaluate the broadening in water of minibeams of protons and several light ions and the dose from neutron generated by collimator. Results: A central parameter was tissue depth, where the beam full width at half maximum (FWHM) reached 0.7 mm, beyond which tissue sparing decreases. This depth was 22 mm for 109-MeV protons in a film stack. It was also found by simulations in water to be 23.5 mm for 109 MeV proton pencil minibeams and 26 mm for 116 MeV proton planar minibeams. For light ions, all with 10 cm range in water, that depth increased with particle size; specifically it was 51 mm for Li-7 ions. The ∼2.7% photon equivalent neutron skin dose from the collimator was reduced 7-fold by introducing a gap between the collimator and the skin. Conclusions: Proton minibeams can be implemented at existing particle therapy centers. Because they spare the shallow tissues, they could augment the efficacy of proton therapy and light particle therapy, particularly in treating tumors that benefit from sparing of proximal tissues such as pediatric brain tumors. They should also allow hypofractionated treatment of all tumors by allowing the use of higher incident doses with less concern about proximal tissue damage.« less

  4. A method for modeling laterally asymmetric proton beamlets resulting from collimation

    PubMed Central

    Gelover, Edgar; Wang, Dongxu; Hill, Patrick M.; Flynn, Ryan T.; Gao, Mingcheng; Laub, Steve; Pankuch, Mark; Hyer, Daniel E.

    2015-01-01

    Purpose: To introduce a method to model the 3D dose distribution of laterally asymmetric proton beamlets resulting from collimation. The model enables rapid beamlet calculation for spot scanning (SS) delivery using a novel penumbra-reducing dynamic collimation system (DCS) with two pairs of trimmers oriented perpendicular to each other. Methods: Trimmed beamlet dose distributions in water were simulated with MCNPX and the collimating effects noted in the simulations were validated by experimental measurement. The simulated beamlets were modeled analytically using integral depth dose curves along with an asymmetric Gaussian function to represent fluence in the beam’s eye view (BEV). The BEV parameters consisted of Gaussian standard deviations (sigmas) along each primary axis (σx1,σx2,σy1,σy2) together with the spatial location of the maximum dose (μx,μy). Percent depth dose variation with trimmer position was accounted for with a depth-dependent correction function. Beamlet growth with depth was accounted for by combining the in-air divergence with Hong’s fit of the Highland approximation along each axis in the BEV. Results: The beamlet model showed excellent agreement with the Monte Carlo simulation data used as a benchmark. The overall passing rate for a 3D gamma test with 3%/3 mm passing criteria was 96.1% between the analytical model and Monte Carlo data in an example treatment plan. Conclusions: The analytical model is capable of accurately representing individual asymmetric beamlets resulting from use of the DCS. This method enables integration of the DCS into a treatment planning system to perform dose computation in patient datasets. The method could be generalized for use with any SS collimation system in which blades, leaves, or trimmers are used to laterally sharpen beamlets. PMID:25735287

  5. A method for modeling laterally asymmetric proton beamlets resulting from collimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelover, Edgar; Wang, Dongxu; Flynn, Ryan T.

    2015-03-15

    Purpose: To introduce a method to model the 3D dose distribution of laterally asymmetric proton beamlets resulting from collimation. The model enables rapid beamlet calculation for spot scanning (SS) delivery using a novel penumbra-reducing dynamic collimation system (DCS) with two pairs of trimmers oriented perpendicular to each other. Methods: Trimmed beamlet dose distributions in water were simulated with MCNPX and the collimating effects noted in the simulations were validated by experimental measurement. The simulated beamlets were modeled analytically using integral depth dose curves along with an asymmetric Gaussian function to represent fluence in the beam’s eye view (BEV). The BEVmore » parameters consisted of Gaussian standard deviations (sigmas) along each primary axis (σ{sub x1},σ{sub x2},σ{sub y1},σ{sub y2}) together with the spatial location of the maximum dose (μ{sub x},μ{sub y}). Percent depth dose variation with trimmer position was accounted for with a depth-dependent correction function. Beamlet growth with depth was accounted for by combining the in-air divergence with Hong’s fit of the Highland approximation along each axis in the BEV. Results: The beamlet model showed excellent agreement with the Monte Carlo simulation data used as a benchmark. The overall passing rate for a 3D gamma test with 3%/3 mm passing criteria was 96.1% between the analytical model and Monte Carlo data in an example treatment plan. Conclusions: The analytical model is capable of accurately representing individual asymmetric beamlets resulting from use of the DCS. This method enables integration of the DCS into a treatment planning system to perform dose computation in patient datasets. The method could be generalized for use with any SS collimation system in which blades, leaves, or trimmers are used to laterally sharpen beamlets.« less

  6. Determination of Lateral Diffusivity in Single Pixel X-ray Absorbers with Implications for Position Dependent Excess Broadening

    NASA Technical Reports Server (NTRS)

    Saab, T.; Figueroa-Feliciano, E.; Iyomoto, N.; Bandler, S. R.; Chervenak, J.; Finkbeiner, F.; Kelley, R.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J.

    2005-01-01

    An ideal microcalorimeter is characterized by a constant energy resolution across the sensor's dynamic range. Any dependence of pulse shape on the position within the absorber where an event occurs leads to a degradation in resolution that is linear with event s energy (excess broadening). In this paper we present a numerical simulation that was developed to model the variation in pulse shape with position based on the thermal conductivity within the absorber and between the absorber, sensor, and heat bath, for arbitrarily shaped absorbers and sensors. All the parameters required for the simulation can be measured from actual devices. We describe how the thermal conductivity of the absorber material is determined by comparing the results of this model with data taken from a position sensitive detector in which any position dependent effect is purposely emphasized by making a long, narrow absorber that is read out by sensors on both end. Finally, we present the implications for excess broadening given the measured parameters of our X-ray microcalorimeters.

  7. Proton NMR study of α-MnH 0.06

    NASA Astrophysics Data System (ADS)

    Soloninin, A. V.; Skripov, A. V.; Buzlukov, A. L.; Antonov, V. E.; Antonova, T. E.

    2004-07-01

    Proton nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rates for the solid solution α-MnH 0.06 have been measured over the temperature range 11-297 K and the resonance frequency range 20-90 MHz. A considerable shift and broadening of the proton NMR line and a sharp peak of the spin-lattice relaxation rate are observed near 130 K. These effects are attributed to the onset of antiferromagnetic ordering below the Néel temperature TN≈130 K. The proton NMR line does not disappear in the antiferromagnetic phase; this suggests a small magnitude of the local magnetic fields at H-sites in α-MnH 0.06. The spin-lattice relaxation rate in the paramagnetic phase is dominated by the effects of spin fluctuations.

  8. Foreign-gas broadening of nitrous oxide absorption lines.

    NASA Technical Reports Server (NTRS)

    Tubbs, L. D.; Williams, D.

    1972-01-01

    We have measured the foreign-gas broadening coefficients for collisional broadening of lines in the nu-3 fundamental of N2O by He, Ne, Ar, Kr, Xe, H2, D2, and CH4. These coefficients, which give the ratio of the line-broadening ability of these gases to the line-broadening ability of N2, can be used with recent measurements and calculations of N2 broadening to obtain optical collision cross sections.

  9. Momentum broadening in unstable quark-gluon plasma

    DOE PAGES

    Carrington, M. E.; Mrówczyński, St.; Schenke, B.

    2017-02-01

    We present that quark-gluon plasma produced at the early stage of ultrarelativistic heavy-ion collisions is unstable, if weakly coupled, due to the anisotropy of its momentum distribution. Chromomagnetic fields are spontaneously generated and can reach magnitudes much exceeding typical values of the fields in equilibrated plasma. We consider a high-energy test parton traversing an unstable plasma that is populated with strong fields. We study the momentum broadening parametermore » $$ˆ\\atop{q}$$ which determines the radiative energy loss of the test parton. We develop a formalism which gives $$ˆ\\atop{q}$$ as the solution of an initial value problem, and we focus on extremely oblate plasmas which are physically relevant for relativistic heavy-ion collisions. The parameter $$ˆ\\atop{q}$$ is found to be strongly dependent on time. For short times it is of the order of the equilibrium value, but at later times $$ˆ\\atop{q}$$ grows exponentially due to the interaction of the test parton with unstable modes and becomes much bigger than the value in equilibrium. The momentum broadening is also strongly directionally dependent and is largest when the test parton velocity is transverse to the beam axis. Lastly, consequences of our findings for the phenomenology of jet quenching in relativistic heavy-ion collisions are briefly discussed.« less

  10. Experimental validation of a Monte Carlo proton therapy nozzle model incorporating magnetically steered protons.

    PubMed

    Peterson, S W; Polf, J; Bues, M; Ciangaru, G; Archambault, L; Beddar, S; Smith, A

    2009-05-21

    The purpose of this study is to validate the accuracy of a Monte Carlo calculation model of a proton magnetic beam scanning delivery nozzle developed using the Geant4 toolkit. The Monte Carlo model was used to produce depth dose and lateral profiles, which were compared to data measured in the clinical scanning treatment nozzle at several energies. Comparisons were also made between measured and simulated off-axis profiles to test the accuracy of the model's magnetic steering. Comparison of the 80% distal dose fall-off values for the measured and simulated depth dose profiles agreed to within 1 mm for the beam energies evaluated. Agreement of the full width at half maximum values for the measured and simulated lateral fluence profiles was within 1.3 mm for all energies. The position of measured and simulated spot positions for the magnetically steered beams agreed to within 0.7 mm of each other. Based on these results, we found that the Geant4 Monte Carlo model of the beam scanning nozzle has the ability to accurately predict depth dose profiles, lateral profiles perpendicular to the beam axis and magnetic steering of a proton beam during beam scanning proton therapy.

  11. VUV pressure-broadening in sulfur dioxide

    NASA Astrophysics Data System (ADS)

    Lyons, J. R.; Herde, H.; Stark, G.; Blackie, D. S.; Pickering, J. C.; de Oliveira, N.

    2018-05-01

    In the pre-oxygenated ancient Earth atmosphere, the lack of O3 absorption allowed ultraviolet photodissociation of numerous molecules in the troposphere and lower stratosphere. For molecules with narrow line-type absorption spectra, optically thick columns would have produced isotope fractionation due to self-shielding of the most abundant isotopologues. In the lower atmosphere pressure broadening would modify, and in some cases, eliminate these isotope signatures. Shielding is particularly important for quantifying or constraining photolysis-derived isotope effects, such as those believed to explain the sulfur mass-independent fractionation in Archean sedimentary rocks. Here, we report pressure broadening coefficients for natural abundance SO2 in theC˜1B2 ←X˜1A1 band system at 215 nm. For gas bath pressures up to 750 mbar, we find broadening coefficients of 0.30 ± 0.03 cm-1 atm-1 and 0.40 ± 0.04 cm-1 atm-1 for N2 and CO2, respectively. These broadening coefficients are ∼30% larger than SO2 broadening coefficients previously measured in the B˜ -X˜ bands at 308 nm. Because of the highly congested nature of the C˜ -X˜ bands, pressure broadening in the early Earth troposphere will cause line profile overlap that will diminish the self-shielding-derived mass-independent isotope fractionation for optically thick SO2 columns. Thus, non-explosive volcanic eruptions may not have left a signature of SO2 self-shielding in the ancient sedimentary rock record.

  12. Low Arousing Positive Affect Broadens Visual Attention and Alters the Thought-Action Repertoire While Broadened Visual Attention Does Not

    PubMed Central

    Jäger, Daniel T.; Rüsseler, Jascha

    2016-01-01

    The Broaden-and-Build Theory states that positive emotions broaden cognition and therefore build personal resources. However, missing theoretical precision regarding the interaction of the cognitive processes involved offers a variety of possible explanations for the mechanisms of broadening and building. In Experiment 1 we tested the causality assumption which states that positive emotions first broaden visual attention which in turn leads to broadened cognition. We examined the effects of a broadened, narrowed or neutral attentional scope of 72 subjects (30 men) on their momentary thought-action repertoire. Results showed that there were no significant differences between groups regarding the breadth or the content of the thought-action repertoire. In Experiment 2 we studied the non-causality hypothesis which assumes a non-causal relationship between cognitive processes. We did so by investigating the effects of negative, neutral, and positive affect on the visual attentional scope of 85 subjects (41 men) in Experiment 2a, as well as on the thought-action repertoire of 85 participants (42 men) in Experiment 2b. Results revealed an attentional broadening effect in Experiment 2a but no differences between groups concerning the breadth of the thought-action repertoire in Experiment 2b. However, a theory driven content analysis showed that positive affect promoted social actions. Thus, our results favor the non-causality assumption. Moreover, results indicate that positive emotions do not target personal resources in general but rather resources associated with social behavior. In conclusion, we argue that the Broaden-and-Build Theory should be refined. PMID:27826276

  13. Lateral response heterogeneity of Bragg peak ionization chambers for narrow-beam photon and proton dosimetry

    NASA Astrophysics Data System (ADS)

    Kuess, Peter; Böhlen, Till T.; Lechner, Wolfgang; Elia, Alessio; Georg, Dietmar; Palmans, Hugo

    2017-12-01

    Large area ionization chambers (LAICs) can be used to measure output factors of narrow beams. Dose area product measurements are proposed as an alternative to central-axis point dose measurements. Using such detectors requires detailed information on the uniformity of the response along the sensitive area. Eight LAICs were investigated in this study: four of type PTW-34070 (LAICThick) and four of type PTW-34080 (LAICThin). Measurements were performed in an x-ray unit using peak voltages of 100-200 kVp and a collimated beam of 3.1 mm (FWHM). The LAICs were moved with a step size of 5 mm to measure the chamber response at lateral positions. To account for beam positions where only a fraction of the beam impinged within the sensitive area of the LAICs, a corrected response was calculated which was the basis to calculate the relative response. The impact of a heterogeneous LAIC response, based on the obtained response maps was henceforth investigated for proton pencil beams and small field photon beams. A pronounced heterogeneity of the responses was observed in the investigated LAICs. The response of LAICThick generally decreased with increasing radius, resulting in a response correction of up to 5%. This correction was more pronounced and more diverse (up to 10%) for LAICThin. Considering a proton pencil beam the systematic offset for reference dosimetry was 2.4-4.1% for LAICThick and  -9.5 to 9.4% for LAICThin. For relative dosimetry (e.g. integral depth-dose curves) systematic response variation by 0.8-1.9% were found. For a decreasing photon field size the systematic offset for absolute dose measurements showed a 2.5-4.5% overestimation of the response for 6  ×  6 mm2 field sizes for LAICThick. For LAICThin the response varied even over a range of 20%. This study highlights the need for chamber-dependent response maps when using LAICs for absolute and relative dosimetry with proton pencil beams or small photon beams.

  14. A study of lateral fall-off (penumbra) optimisation for pencil beam scanning (PBS) proton therapy

    NASA Astrophysics Data System (ADS)

    Winterhalter, C.; Lomax, A.; Oxley, D.; Weber, D. C.; Safai, S.

    2018-01-01

    The lateral fall-off is crucial for sparing organs at risk in proton therapy. It is therefore of high importance to minimize the penumbra for pencil beam scanning (PBS). Three optimisation approaches are investigated: edge-collimated uniformly weighted spots (collimation), pencil beam optimisation of uncollimated pencil beams (edge-enhancement) and the optimisation of edge collimated pencil beams (collimated edge-enhancement). To deliver energies below 70 MeV, these strategies are evaluated in combination with the following pre-absorber methods: field specific fixed thickness pre-absorption (fixed), range specific, fixed thickness pre-absorption (automatic) and range specific, variable thickness pre-absorption (variable). All techniques are evaluated by Monte Carlo simulated square fields in a water tank. For a typical air gap of 10 cm, without pre-absorber collimation reduces the penumbra only for water equivalent ranges between 4-11 cm by up to 2.2 mm. The sharpest lateral fall-off is achieved through collimated edge-enhancement, which lowers the penumbra down to 2.8 mm. When using a pre-absorber, the sharpest fall-offs are obtained when combining collimated edge-enhancement with a variable pre-absorber. For edge-enhancement and large air gaps, it is crucial to minimize the amount of material in the beam. For small air gaps however, the superior phase space of higher energetic beams can be employed when more material is used. In conclusion, collimated edge-enhancement combined with the variable pre-absorber is the recommended setting to minimize the lateral penumbra for PBS. Without collimator, it would be favourable to use a variable pre-absorber for large air gaps and an automatic pre-absorber for small air gaps.

  15. Biophysical characterization of a relativistic proton beam for image-guided radiosurgery

    PubMed Central

    Yu, Zhan; Vanstalle, Marie; La Tessa, Chiara; Jiang, Guo-Liang; Durante, Marco

    2012-01-01

    We measured the physical and radiobiological characteristics of 1 GeV protons for possible applications in stereotactic radiosurgery (image-guided plateau-proton radiosurgery). A proton beam was accelerated at 1 GeV at the Brookhaven National Laboratory (Upton, NY) and a target in polymethyl methacrylate (PMMA) was used. Clonogenic survival was measured after exposures to 1–10 Gy in three mammalian cell lines. Measurements and simulations demonstrate that the lateral scattering of the beam is very small. The lateral dose profile was measured with or without the 20-cm plastic target, showing no significant differences up to 2 cm from the axis A large number of secondary swift protons are produced in the target and this leads to an increase of approximately 40% in the measured dose on the beam axis at 20 cm depth. The relative biological effectiveness at 10% survival level ranged between 1.0 and 1.2 on the beam axis, and was slightly higher off-axis. The very low lateral scattering of relativistic protons and the possibility of using online proton radiography during the treatment make them attractive for image-guided plateau (non-Bragg peak) stereotactic radiosurgery. PMID:22843629

  16. Study on patient-induced radioactivity during proton treatment in hengjian proton medical facility.

    PubMed

    Wu, Qingbiao; Wang, Qingbin; Liang, Tianjiao; Zhang, Gang; Ma, Yinglin; Chen, Yu; Ye, Rong; Liu, Qiongyao; Wang, Yufei; Wang, Huaibao

    2016-09-01

    At present, increasingly more proton medical facilities have been established globally for better curative effect and less side effect in tumor treatment. Compared with electron and photon, proton delivers more energy and dose at its end of range (Bragg peak), and has less lateral scattering for its much larger mass. However, proton is much easier to produce neutron and induced radioactivity, which makes radiation protection for proton accelerators more difficult than for electron accelerators. This study focuses on the problem of patient-induced radioactivity during proton treatment, which has been ignored for years. However, we confirmed it is a vital factor for radiation protection to both patient escort and positioning technician, by FLUKA's simulation and activation formula calculation of Hengjian Proton Medical Facility (HJPMF), whose energy ranges from 130 to 230MeV. Furthermore, new formulas for calculating the activity buildup process of periodic irradiation were derived and used to study the relationship between saturation degree and half-life of nuclides. Finally, suggestions are put forward to lessen the radiation hazard from patient-induced radioactivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. SU-E-T-236: Deconvolution of the Total Nuclear Cross-Sections of Therapeutic Protons and the Characterization of the Reaction Channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulmer, W.

    2015-06-15

    Purpose: The knowledge of the total nuclear cross-section Qtot(E) of therapeutic protons Qtot(E) provides important information in advanced radiotherapy with protons, such as the decrease of fluence of primary protons, the release of secondary particles (neutrons, protons, deuterons, etc.), and the production of nuclear fragments (heavy recoils), which usually undergo β+/− decay by emission of γ-quanta. Therefore determination of Qtot(E) is an important tool for sophisticated calculation algorithms of dose distributions. This cross-section can be determined by a linear combination of shifted Gaussian kernels and an error-function. The resonances resulting from deconvolutions in the energy space can be associated withmore » typical nuclear reactions. Methods: The described method of the determination of Qtot(E) results from an extension of the Breit-Wigner formula and a rather extended version of the nuclear shell theory to include nuclear correlation effects, clusters and highly excited/virtually excited nuclear states. The elastic energy transfer of protons to nucleons (the quantum numbers of the target nucleus remain constant) can be removed by the mentioned deconvolution. Results: The deconvolution of the term related to the error-function of the type cerf*er((E-ETh)/σerf] is the main contribution to obtain various nuclear reactions as resonances, since the elastic part of energy transfer is removed. The nuclear products of various elements of therapeutic interest like oxygen, calcium are classified and calculated. Conclusions: The release of neutrons is completely underrated, in particular, for low-energy protons. The transport of seconary particles, e.g. cluster formation by deuterium, tritium and α-particles, show an essential contribution to secondary particles, and the heavy recoils, which create γ-quanta by decay reactions, lead to broadening of the scatter profiles. These contributions cannot be accounted for by one single Gaussian kernel for the

  18. Statistical Fine Structure of Inhomogeneously Broadened Absorption Lines.

    DTIC Science & Technology

    1987-07-31

    inhomogeneously broadened optical absorption of pentacene n p-terphenyl at liquid helium temperatures... SFS is the actual frequency- ependent, time...statistical fine structure (SFS) in the inhomogeneously broadened optical absorption of pentacene in p-terphenyl at liquid helium temperatures. SFS is the...quite difficult . -2- We have observed for the first time statistical fine structure in the inhomogeneously broadened optical absorption of pentacene

  19. Monte Carlo simulations for angular and spatial distributions in therapeutic-energy proton beams

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Chun; Pan, C. Y.; Chiang, K. J.; Yuan, M. C.; Chu, C. H.; Tsai, Y. W.; Teng, P. K.; Lin, C. H.; Chao, T. C.; Lee, C. C.; Tung, C. J.; Chen, A. E.

    2017-11-01

    The purpose of this study is to compare the angular and spatial distributions of therapeutic-energy proton beams obtained from the FLUKA, GEANT4 and MCNP6 Monte Carlo codes. The Monte Carlo simulations of proton beams passing through two thin targets and a water phantom were investigated to compare the primary and secondary proton fluence distributions and dosimetric differences among these codes. The angular fluence distributions, central axis depth-dose profiles, and lateral distributions of the Bragg peak cross-field were calculated to compare the proton angular and spatial distributions and energy deposition. Benchmark verifications from three different Monte Carlo simulations could be used to evaluate the residual proton fluence for the mean range and to estimate the depth and lateral dose distributions and the characteristic depths and lengths along the central axis as the physical indices corresponding to the evaluation of treatment effectiveness. The results showed a general agreement among codes, except that some deviations were found in the penumbra region. These calculated results are also particularly helpful for understanding primary and secondary proton components for stray radiation calculation and reference proton standard determination, as well as for determining lateral dose distribution performance in proton small-field dosimetry. By demonstrating these calculations, this work could serve as a guide to the recent field of Monte Carlo methods for therapeutic-energy protons.

  20. Exciton broadening in WS 2 /graphene heterostructures

    DOE PAGES

    Hill, Heather M.; Rigosi, Albert F.; Raja, Archana; ...

    2017-11-01

    Here, we have used optical spectroscopy to observe spectral broadening of WS 2 exciton reflectance peaks in heterostructures of monolayer WS 2 capped with mono- to few-layer graphene. The broadening is found to be similar for the A and B excitons and on the order of 5–10 meV. No strong dependence on the number of graphene layers was observed within experimental uncertainty. The broadening can be attributed to charge- and energy-transfer processes between the two materials, providing an observed lower bound for the corresponding time scales of 65 fs.

  1. Artificial synapse network on inorganic proton conductor for neuromorphic systems.

    PubMed

    Zhu, Li Qiang; Wan, Chang Jin; Guo, Li Qiang; Shi, Yi; Wan, Qing

    2014-01-01

    The basic units in our brain are neurons, and each neuron has more than 1,000 synapse connections. Synapse is the basic structure for information transfer in an ever-changing manner, and short-term plasticity allows synapses to perform critical computational functions in neural circuits. Therefore, the major challenge for the hardware implementation of neuromorphic computation is to develop artificial synapse network. Here in-plane lateral-coupled oxide-based artificial synapse network coupled by proton neurotransmitters are self-assembled on glass substrates at room-temperature. A strong lateral modulation is observed due to the proton-related electrical-double-layer effect. Short-term plasticity behaviours, including paired-pulse facilitation, dynamic filtering and spatiotemporally correlated signal processing are mimicked. Such laterally coupled oxide-based protonic/electronic hybrid artificial synapse network proposed here is interesting for building future neuromorphic systems.

  2. Measurements of air-broadened and nitrogen-broadened half-widths and shifts of ozone lines near 9 microns

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H.; Rinsland, C. P.; Devi, Malathy V.; Benner, D. Chris; Thakur, K. B.

    1988-01-01

    Air- and nitrogen-broadened half-widths and line shifts at room temperature for more than 60 individual vibration-rotation transitions in the nu1 fundamental band of (O-16)3 and several transitions in the nu3 band were determined from infrared absorption spectra. These spectra were recorded at 0.005/cm resolution with a Fourier-transform spectrometer. A tunable-diode-laser spectrometer operating in the 1090-1150/cm region was also used to record data on oxygen-, nitrogen-, and air-broadened half-widths for selected individual transitions. The nitrogen- and air-broadened half-widths determined by these two different measurement techniques are consistent to within 4 percent. The results are in good agreement with other published measurements and calculations.

  3. Wall-collision line broadening of molecular oxygen within nanoporous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Can T.; Lewander, Maerta; Andersson-Engels, Stefan

    2011-10-15

    Wall-collision broadening of near-infrared absorption lines of molecular oxygen confined in nanoporous zirconia is studied by employing high-resolution diode-laser spectroscopy. The broadening is studied for pores of different sizes under a range of pressures, providing new insights on how wall collisions and intermolecular collisions influence the total spectroscopic line profile. The pressure series show that wall-collision broadening is relatively more prominent under reduced pressures, enabling sensitive means to probe pore sizes of porous materials. In addition, we show that the total wall-collision-broadened profile strongly deviates from a Voigt profile and that wall-collision broadening exhibits an additive-like behavior to the pressuremore » and Doppler broadening.« less

  4. Doppler Broadening Calculations of Compton Scattering for Molecules, Plastics, Tissues, and Few Biological Materials in the X-Ray Region: An Analysis in Terms of Compton Broadening and Geometrical Energy Broadening

    NASA Astrophysics Data System (ADS)

    Rao, D. V.; Cesareo, R.; Brunetti, A.; Gigante, G. E.; Akatsuka, T.; Takeda, T.; Itai, Y.

    2004-09-01

    Relativistic and nonrelativistic Compton profile cross sections for H, C, N, O, P, and Ca and for a few important biological materials such as water, polyethylene, lucite, polystyrene, nylon, polycarbonate, bakelite, fat, bone and calcium hydroxyapatite are estimated for a number of Kα x-ray energies and for 59.54 keV (Am-241) γ photons. Energy broadening and geometrical broadening (ΔG) is estimated by assuming θmin and θmax are symmetrically situated around θ=90°. FWHM of J(PZ) and FWHM of Compton energy broadening are evaluated at various incident photon energies. These values are estimated around the centroid of the Compton profile with an energy interval of 0.1 and 1.0 keV for 59.54 keV photons. Total Compton, individual shell, and Compton energy-absorption scattering cross sections are evaluated in the energy region from 0.005 to 0.5 MeV. It is an attempt to know the effect of Doppler broadening for single atoms, many of which constitute the biological materials.

  5. An analysis of beam parameters on proton-acoustic waves through an analytic approach.

    PubMed

    Kipergil, Esra Aytac; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Unlu, Mehmet Burcin

    2017-06-21

    It has been reported that acoustic waves are generated when a high-energy pulsed proton beam is deposited in a small volume within tissue. One possible application of proton-induced acoustics is to get real-time feedback for intra-treatment adjustments by monitoring such acoustic waves. A high spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution for the proton-induced acoustic wave is presented to reveal the dependence of the signal on the beam parameters; then it is combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of the proton-acoustic signals. Our results show that the smaller spill time of the proton beam upsurges the amplitude of the acoustic wave for a constant number of protons, which is hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to the spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.

  6. Parity Nonconservation in Proton-water Scattering at 800 MeV

    DOE R&D Accomplishments Database

    Nagle, D. E.; Bowman, J. D.; Carlini, R.; Mischke, R. E.; Frauenfelder, H.; Harper, R. W.; Yuan, V.; McDonald, A. B.; Talaga, R.

    1982-01-01

    A search has been made for parity nonconservation in the scattering of 800 MeV polarized protons from an unpolarized water target. The result is for the longitudinal asymmetry, A{sub L} = +(6.6 +- 3.2) x 10{sup -7}. Control runs with Pb, using a thickness which gave equivalent beam broadening from Coulomb multiple scattering, but a factor of ten less nuclear interactions than the water target, gave A{sub L} = -(0.5 +- 6.0) x 10{sup -7}.

  7. Probing transverse momentum broadening in heavy ion collisions

    DOE PAGES

    Mueller, A. H.; Wu, Bin; Xiao, Bo -Wen; ...

    2016-10-20

    We study the dijet azimuthal de-correlation in relativistic heavy ion collisions as an important probe of the transverse momentum broadening effects of a high energy jet traversing the quark–gluon plasma. We take into account both the soft gluon radiation in vacuum associated with the Sudakov logarithms and the jet P T-broadening effects in the QCD medium. We find that the Sudakov effects are dominant at the LHC, while the medium effects can play an important role at RHIC energies. This explains why the LHC experiments have not yet observed sizable P T-broadening effects in the measurement of dijet azimuthal correlationsmore » in heavy ion collisions. Future investigations at RHIC will provide a unique opportunity to study the -broadening effects and help to pin down the underlying mechanism for jet energy loss in a hot and dense medium.« less

  8. Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Han; Zhang, Xingwang; Chau, Fook Siong

    2016-04-25

    We report the experimental observation of lateral shearing optical gradient forces in nanoelectromechanical systems (NEMS) controlled dual-coupled photonic crystal (PhC) nanobeam cavities. With an on-chip integrated NEMS actuator, the coupled cavities can be mechanically reconfigured in the lateral direction while maintaining a constant coupling gap. Shearing optical gradient forces are generated when the two cavity centers are laterally displaced. In our experiments, positive and negative lateral shearing optical forces of 0.42 nN and 0.29 nN are observed with different pumping modes. This study may broaden the potential applications of the optical gradient force in nanophotonic devices and benefit the futuremore » nanooptoelectromechanical systems.« less

  9. Memory device using movement of protons

    DOEpatents

    Warren, William L.; Vanheusden, Karel J. R.; Fleetwood, Daniel M.; Devine, Roderick A. B.

    1998-01-01

    An electrically written memory element utilizing the motion of protons within a dielectric layer surrounded by layers on either side to confine the protons within the dielectric layer with electrode means attached to the surrounding layers to change the spatial position of the protons within the dielectric layer. The device is preferably constructed as a silicon-silicon dioxide-silicon layered structure with the protons being introduced to the structure laterally through the exposed edges of the silicon dioxide layer during a high temperature anneal in an atmosphere containing hydrogen gas. The device operates at low power, is preferably nonvolatile, is radiation tolerant, and is compatible with convention silicon MOS processing for integration with other microelectronic elements on the same silicon substrate. With the addition of an optically active layer, the memory element becomes an electrically written, optically read optical memory element.

  10. Memory device using movement of protons

    DOEpatents

    Warren, William L.; Vanheusden, Karel J. R.; Fleetwood, Daniel M.; Devine, Roderick A. B.

    2000-01-01

    An electrically written memory element utilizing the motion of protons within a dielectric layer surrounded by layers on either side to confine the protons within the dielectric layer with electrode means attached to the surrounding layers to change the spatial position of the protons within the dielectric layer. The device is preferably constructed as a silicon-silicon dioxide-silicon layered structure with the protons being introduced to the structure laterally through the exposed edges of the silicon dioxide layer during a high temperature anneal in an atmosphere containing hydrogen gas. The device operates at low power, is preferably nonvolatile, is radiation tolerant, and is compatible with convention silicon MOS processing for integration with other microelectronic elements on the same silicon substrate. With the addition of an optically active layer, the memory element becomes an electrically written, optically read optical memory element.

  11. Solar Wind Strahl Broadening by Self-Generated Plasma Waves

    NASA Technical Reports Server (NTRS)

    Pavan, J.; Vinas, A. F.; Yoon, P. H.; Ziebell, L. F.; Gaelzer, R.

    2013-01-01

    This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.

  12. Alternative Fuels Data Center: New York Broadens Network for Electric

    Science.gov Websites

    Vehicle Charging New York Broadens Network for Electric Vehicle Charging to someone by E-mail Share Alternative Fuels Data Center: New York Broadens Network for Electric Vehicle Charging on Facebook Tweet about Alternative Fuels Data Center: New York Broadens Network for Electric Vehicle Charging on

  13. Far-infrared self-broadening in methylcyanide - Absorber-perturber resonance

    NASA Technical Reports Server (NTRS)

    Buffa, G.; Tarrini, O.; De Natale, P.; Inguscio, M.; Pavone, F. S.; Prevedelli, M.; Evenson, K. M.; Zink, L. R.; Schwaab, G. W.

    1992-01-01

    Using tunable far-infrared spectrometers with high-frequency stability and accuracy, the self-pressure broadening and shift of CH3CN are measured. Evidence of absorber-perturber resonance effects on the collisional line shape are obtained. This tests the theoretical model and its possible improvements and also allows predictions of broadening and shift for a large class of molecules. Moreover, the resonance effect produces a theoretical temperature dependence of self-broadening that is different from what is commonly assumed.

  14. Dosimetric uncertainty in prostate cancer proton radiotherapy.

    PubMed

    Lin, Liyong; Vargas, Carlos; Hsi, Wen; Indelicato, Daniel; Slopsema, Roelf; Li, Zuofeng; Yeung, Daniel; Horne, Dave; Palta, Jatinder

    2008-11-01

    The authors we evaluate the uncertainty in proton therapy dose distribution for prostate cancer due to organ displacement, varying penumbra width of proton beams, and the amount of rectal gas inside the rectum. Proton beam treatment plans were generated for ten prostate patients with a minimum dose of 74.1 cobalt gray equivalent (CGE) to the planning target volume (PTV) while 95% of the PTV received 78 CGE. Two lateral or lateral oblique proton beams were used for each plan. The authors we investigated the uncertainty in dose to the rectal wall (RW) and the bladder wall (BW) due to organ displacement by comparing the dose-volume histograms (DVH) calculated with the original or shifted contours. The variation between DVHs was also evaluated for patients with and without rectal gas in the rectum for five patients who had 16 to 47 cc of visible rectal gas in their planning computed tomography (CT) imaging set. The uncertainty due to the varying penumbra width of the delivered protons for different beam setting options on the proton delivery system was also evaluated. For a 5 mm anterior shift, the relative change in the RW volume receiving 70 CGE dose (V70) was 37.9% (5.0% absolute change in 13.2% of a mean V70). The relative change in the BW volume receiving 70 CGE dose (V70) was 20.9% (4.3% absolute change in 20.6% of a mean V70) with a 5 mm inferior shift. A 2 mm penumbra difference in beam setting options on the proton delivery system resulted in the relative variations of 6.1% (0.8% absolute change) and 4.4% (0.9% absolute change) in V70 of RW and BW, respectively. The data show that the organ displacements produce absolute DVH changes that generally shift the entire isodose line while maintaining the same shape. The overall shape of the DVH curve for each organ is determined by the penumbra and the distance of the target in beam's eye view (BEV) from the block edge. The beam setting option producing a 2 mm sharper penumbra at the isocenter can reduce the

  15. Broadening Leaders? Culture Change as the Cure

    DTIC Science & Technology

    2012-04-05

    system. The muddy boots culture results from how the Army defines career success – defined by selection for battalion and brigade command. By looking at...commanders reinforce the perception – repeated tactical assignments in lieu of risking broadening assignments is the path to career success that...boots culture actually discourages the pursuit of broadening assignments – the ―narrow definition or path of career success for Army officers

  16. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams

    NASA Astrophysics Data System (ADS)

    Masood, U.; Cowan, T. E.; Enghardt, W.; Hofmann, K. M.; Karsch, L.; Kroll, F.; Schramm, U.; Wilkens, J. J.; Pawelke, J.

    2017-07-01

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam

  17. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams.

    PubMed

    Masood, U; Cowan, T E; Enghardt, W; Hofmann, K M; Karsch, L; Kroll, F; Schramm, U; Wilkens, J J; Pawelke, J

    2017-07-07

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam

  18. Memory device using movement of protons

    DOEpatents

    Warren, W.L.; Vanheusden, K.J.R.; Fleetwood, D.M.; Devine, R.A.B.

    1998-11-03

    An electrically written memory element is disclosed utilizing the motion of protons within a dielectric layer surrounded by layers on either side to confine the protons within the dielectric layer with electrode means attached to the surrounding layers to change the spatial position of the protons within the dielectric layer. The device is preferably constructed as a silicon-silicon dioxide-silicon layered structure with the protons being introduced to the structure laterally through the exposed edges of the silicon dioxide layer during a high temperature anneal in an atmosphere containing hydrogen gas. The device operates at low power, is preferably nonvolatile, is radiation tolerant, and is compatible with convention silicon MOS processing for integration with other microelectronic elements on the same silicon substrate. With the addition of an optically active layer, the memory element becomes an electrically written, optically read optical memory element. 19 figs.

  19. The influence of physical wedges on penumbra and in-field dose uniformity in ocular proton beams.

    PubMed

    Baker, Colin; Kacperek, Andrzej

    2016-04-01

    A physical wedge may be partially introduced into a proton beam when treating ocular tumours in order to improve dose conformity to the distal border of the tumour and spare the optic nerve. Two unwanted effects of this are observed: a predictable broadening of the beam penumbra on the wedged side of the field and, less predictably, an increase in dose within the field along a relatively narrow volume beneath the edge (toe) of the wedge, as a result of small-angle proton scatter. Monte Carlo simulations using MCNPX and direct measurements with radiochromic (GAFCHROMIC(®) EBT2) film were performed to quantify these effects for aluminium wedges in a 60 MeV proton beam as a function of wedge angle and position of the wedge relative to the patient. For extreme wedge angles (60° in eye tissue) and large wedge-to-patient distances (70 mm in this context), the 90-10% beam penumbra increased from 1.9 mm to 9.1 mm. In-field dose increases from small-angle proton scatter were found to contribute up to 21% additional dose, persisting along almost the full depth of the spread-out-Bragg peak. Profile broadening and in-field dose enhancement are both minimised by placing the wedge as close as possible to the patient. Use of lower atomic number wedge materials such as PMMA reduce the magnitude of both effects as a result of a reduced mean scattering angle per unit energy loss; however, their larger physical size and greater variation in density are undesirable. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. IR spectral assignments for the hydrated excess proton in liquid water.

    PubMed

    Biswas, Rajib; Carpenter, William; Fournier, Joseph A; Voth, Gregory A; Tokmakoff, Andrei

    2017-04-21

    The local environmental sensitivity of infrared (IR) spectroscopy to a hydrogen-bonding structure makes it a powerful tool for investigating the structure and dynamics of excess protons in water. Although of significant interest, the line broadening that results from the ultrafast evolution of different solvated proton-water structures makes the assignment of liquid-phase IR spectra a challenging task. In this work, we apply a normal mode analysis using density functional theory of thousands of proton-water clusters taken from reactive molecular dynamics trajectories of the latest generation multistate empirical valence bond proton model (MS-EVB 3.2). These calculations are used to obtain a vibrational density of states and IR spectral density, which are decomposed on the basis of solvated proton structure and the frequency dependent mode character. Decompositions are presented on the basis of the proton sharing parameter δ, often used to distinguish Eigen and Zundel species, the stretch and bend character of the modes, the mode delocalization, and the vibrational mode symmetry. We find there is a wide distribution of vibrational frequencies spanning 1200-3000 cm -1 for every local proton configuration, with the region 2000-2600 cm -1 being mostly governed by the distorted Eigen-like configuration. We find a continuous red shift of the special-pair O⋯H + ⋯O stretching frequency, and an increase in the flanking water bending intensity with decreasing δ. Also, we find that the flanking water stretch mode of the Zundel-like species is strongly mixed with the flanking water bend, and the special pair proton oscillation band is strongly coupled with the bend modes of the central H 5 O2+moiety.

  1. IR spectral assignments for the hydrated excess proton in liquid water

    NASA Astrophysics Data System (ADS)

    Biswas, Rajib; Carpenter, William; Fournier, Joseph A.; Voth, Gregory A.; Tokmakoff, Andrei

    2017-04-01

    The local environmental sensitivity of infrared (IR) spectroscopy to a hydrogen-bonding structure makes it a powerful tool for investigating the structure and dynamics of excess protons in water. Although of significant interest, the line broadening that results from the ultrafast evolution of different solvated proton-water structures makes the assignment of liquid-phase IR spectra a challenging task. In this work, we apply a normal mode analysis using density functional theory of thousands of proton-water clusters taken from reactive molecular dynamics trajectories of the latest generation multistate empirical valence bond proton model (MS-EVB 3.2). These calculations are used to obtain a vibrational density of states and IR spectral density, which are decomposed on the basis of solvated proton structure and the frequency dependent mode character. Decompositions are presented on the basis of the proton sharing parameter δ, often used to distinguish Eigen and Zundel species, the stretch and bend character of the modes, the mode delocalization, and the vibrational mode symmetry. We find there is a wide distribution of vibrational frequencies spanning 1200-3000 cm-1 for every local proton configuration, with the region 2000-2600 cm-1 being mostly governed by the distorted Eigen-like configuration. We find a continuous red shift of the special-pair O⋯H+⋯O stretching frequency, and an increase in the flanking water bending intensity with decreasing δ. Also, we find that the flanking water stretch mode of the Zundel-like species is strongly mixed with the flanking water bend, and the special pair proton oscillation band is strongly coupled with the bend modes of the central H5+O2 moiety.

  2. Statistical Fine Structure in Inhomogeneously Broadened Absorption Lines in Solids.

    DTIC Science & Technology

    1987-12-22

    the inhomogeneously broadened zero-phonon SijSo (0-0) absorption of pentacene molecules in crystals of p-terphenyl at liquid helium temperatures. SFS...structure (SFS) in the inhomogeneously broadened zero-phonon S, +- So (0-0) absorption of pentacene molecules in crystals of p-terphenyl at liquid helium...tile large multiplicity of local environments. Inhomogeneously broadened absorption lines are usually treated as smooth, Gaussian profiles. In recent

  3. Immunity of intersubband polaritons to inhomogeneous broadening

    NASA Astrophysics Data System (ADS)

    Manceau, J.-M.; Biasiol, G.; Tran, N. L.; Carusotto, I.; Colombelli, R.

    2017-12-01

    We demonstrate that intersubband (ISB) polaritons are robust to inhomogeneous effects originating from the presence of multiple quantum wells (MQWs). In a series of samples that exhibit mid-infrared ISB absorption transitions with broadenings varying by a factor of 5 (from 4 to 20 meV), we observed polariton linewidths always lying in the 4 to 7 meV range only. We experimentally verified the dominantly inhomogeneous origin of the broadening of the ISB transition, and that the linewidth reduction effect of the polariton modes persists up to room-temperature. This immunity to inhomogeneous broadening is a direct consequence of the coupling of the large number of ISB oscillators to a single photonic mode. It is a precious tool to gauge the natural linewidth of the ISB plasmon that is otherwise masked in such MQWs system, and is also beneficial in view of perspective applications such as intersubband polariton lasers.

  4. Proton therapy in the clinic.

    PubMed

    DeLaney, Thomas F

    2011-01-01

    The clinical advantage for proton radiotherapy over photon approaches is the marked reduction in integral dose to the patient, due to the absence of exit dose beyond the proton Bragg peak. The integral dose with protons is approximately 60% lower than that with any external beam photon technique. Pediatric patients, because of their developing normal tissues and anticipated length of remaining life, are likely to have the maximum clinical gain with the use of protons. Proton therapy may also allow treatment of some adult tumors to much more effective doses, because of normal tissue sparing distal to the tumor. Currently, the most commonly available proton treatment technology uses 3D conformal approaches based on (a) distal range modulation, (b) passive scattering of the proton beam in its x- and y-axes, and (c) lateral beam-shaping. It is anticipated that magnetic pencil beam scanning will become the dominant mode of proton delivery in the future, which will lower neutron scatter associated with passively scattered beam lines, reduce the need for expensive beam-shaping devices, and allow intensity-modulated proton radiotherapy. Proton treatment plans are more sensitive to variations in tumor size and normal tissue changes over the course of treatment than photon plans, and it is expected that adaptive radiation therapy will be increasingly important for proton therapy as well. While impressive treatment results have been reported with protons, their cost is higher than for photon IMRT. Hence, protons should ideally be employed for anatomic sites and tumors not well treated with photons. While protons appear cost-effective for pediatric tumors, their cost-effectiveness for treatment of some adult tumors, such as prostate cancer, is uncertain. Comparative studies have been proposed or are in progress to more rigorously assess their value for a variety of sites. The utility of proton therapy will be enhanced by technological developments that reduce its cost

  5. Resonant beam behavior studies in the Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Cousineau, S.; Holmes, J.; Galambos, J.; Fedotov, A.; Wei, J.; Macek, R.

    2003-07-01

    We present studies of space-charge-induced beam profile broadening at high intensities in the Proton Storage Ring (PSR) at Los Alamos National Laboratory. We investigate the profile broadening through detailed particle-in-cell simulations of several experiments and obtain results in good agreement with the measurements. We interpret these results within the framework of coherent resonance theory. With increasing intensity, our simulations show strong evidence for the presence of a quadrupole-mode resonance of the beam envelope with the lattice in the vertical plane. Specifically, we observe incoherent tunes crossing integer values, and large amplitude, nearly periodic envelope oscillations. At the highest operating intensities, we observe a continuing relaxation of the beam through space charge forces leading to emittance growth. The increase of emittance commences when the beam parameters encounter an envelope stop band. Once the stop band is reached, the emittance growth balances the intensity increase to maintain the beam near the stop band edge. Additionally, we investigate the potential benefit of a stop band correction to the high intensity PSR beam.

  6. SU-E-J-201: Investigation of MRI Guided Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, JS

    2015-06-15

    Purpose: Image-guided radiation therapy has been employed for cancer treatment to improve the tumor localization accuracy. Radiation therapy with proton beams requires more on this accuracy because the proton beam has larger uncertainty and dramatic dose variation along the beam direction. Among all the image modalities, magnetic-resonance image (MRI) is the best for soft tissue delineation and real time motion monitoring. In this work, we investigated the behavior of the proton beam in magnetic field with Monte Carlo simulations. Methods: A proton Monte Carlo platform, TOPAS, was used for this investigation. Dose calculations were performed with this platform in amore » 30cmx30cmx30cm water phantom for both pencil and broad proton beams with different energies (120, 150 and 180MeV) in different magnetic fields (0.5T, 1T and 3T). The isodose distributions, dose profiles in lateral and beam direction were evaluated. The shifts of the Bragg peak in different magnetic fields for different proton energies were compared and the magnetic field effects on the characters of the dose distribution were analyzed. Results: Significant effects of magnetic field have been observed on the proton beam dose distributions, especially for magnetic field of 1T and up. The effects are more significant for higher energy proton beam because higher energy protons travel longer distance in the magnetic field. The Bragg peak shift in the lateral direction is about 38mm for 180MeV and 11mm for 120MeV proton beams in 3T magnetic field. The peak positions are retracted back for 6mm and 2mm, respectively. The effect on the beam penumbra and dose falloff at the distal edge of the Bragg peak is negligible. Conclusion: Though significant magnetic effects on dose distribution have been observed for proton beams, MRI guided proton therapy is feasible because the magnetic effects on dose is predictable and can be considered in patient dose calculation.« less

  7. EIT Noise Resonance Power Broadening: a probe for coherence dynamics

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; O'Leary, Shannon; Snider, Charles

    2012-06-01

    EIT noise correlation spectroscopy holds promise as a simple, robust method for performing high resolution spectroscopy used in devices as diverse as magnetometers and clocks. One useful feature of these noise correlation resonances is that they do not power broaden with the EIT window. We report on measurements of the eventual power broadening (at higher optical powers) of these resonances and a simple, quantitative theoretical model that relates the observed power broadening slope with processes such as two-photon detuning gradients and coherence diffusion. These processes reduce the ground state coherence relative to that of a homogeneous system, and thus the power broadening slope of the EIT noise correlation resonance may be a simple, useful probe for coherence dynamics.

  8. Laterally Overgrown Structures as Substrates for Lattice Mismatched Epitaxy

    DTIC Science & Technology

    2002-06-03

    low supersaturation substrate [3]. Therefore, equilibrium growth techniques as liquid buffer with TD phase epitaxy (LPE) or vapour phase epitaxy (VPE...phase diffusion during MBE growth, so lateral over- low cost semiconductor devices. Therefore, vapour growth must rely on the surface mobility of...is replaced by graphite film not wetted For the GaAs on GaAs ELO system we attributed by the gallium melt [35]. Similarly, tungsten has been broadening

  9. Enhancing the resolution of 1H and 13C solid-state NMR spectra by reduction of anisotropic bulk magnetic susceptibility broadening.

    PubMed

    Hanrahan, Michael P; Venkatesh, Amrit; Carnahan, Scott L; Calahan, Julie L; Lubach, Joseph W; Munson, Eric J; Rossini, Aaron J

    2017-10-25

    We demonstrate that natural isotopic abundance 2D heteronuclear correlation (HETCOR) solid-state NMR spectra can be used to significantly reduce or eliminate the broadening of 1 H and 13 C solid-state NMR spectra of organic solids due to anisotropic bulk magnetic susceptibility (ABMS). ABMS often manifests in solids with aromatic groups, such as active pharmaceutical ingredients (APIs), and inhomogeneously broadens the NMR peaks of all nuclei in the sample. Inhomogeneous peaks with full widths at half maximum (FWHM) of ∼1 ppm typically result from ABMS broadening and the low spectral resolution impedes the analysis of solid-state NMR spectra. ABMS broadening of solid-state NMR spectra has previously been eliminated using 2D multiple-quantum correlation experiments, or by performing NMR experiments on diluted materials or single crystals. However, these experiments are often infeasible due to their poor sensitivity and/or provide limited gains in resolution. 2D 1 H- 13 C HETCOR experiments have previously been applied to reduce susceptibility broadening in paramagnetic solids and we show that this strategy can significantly reduce ABMS broadening in diamagnetic organic solids. Comparisons of 1D solid-state NMR spectra and 1 H and 13 C solid-state NMR spectra obtained from 2D 1 H- 13 C HETCOR NMR spectra show that the HETCOR spectrum directly increases resolution by a factor of 1.5 to 8. The direct gain in resolution is determined by the ratio of the inhomogeneous 13 C/ 1 H linewidth to the homogeneous 1 H linewidth, with the former depending on the magnitude of the ABMS broadening and the strength of the applied field and the latter on the efficiency of homonuclear decoupling. The direct gains in resolution obtained using the 2D HETCOR experiments are better than that obtained by dilution. For solids with long proton longitudinal relaxation times, dynamic nuclear polarization (DNP) was applied to enhance sensitivity and enable the acquisition of 2D 1 H- 13 C

  10. Lateral mode control in edge-emitting lasers with modified mirrors

    NASA Astrophysics Data System (ADS)

    Payusov, A.; Serin, A.; Mukhin, I.; Shernyakov, Y.; Zadiranov, Y.; Maximov, M.; Gordeev, N.

    2017-11-01

    We present a study on lateral mode control in edge-emitting lasers with profiled mirror reflectivity. The object was to eliminate high-order lateral modes in conventional ridge-waveguide InAs/InGaAs QD (quantum dot) lasers with the stripe width of 10 μm. We have used a FIB (focused ion beam) technique to selectively etch windows in the AR (anti-reflection) facet coatings in order to introduce extra mirror losses for the high order modes. This approach allowed us to eliminate the first-order mode lasing without deterioration of the laser parameters. We suppose that further optimisation of the laser heterostructure and window designs may lead to a pure lateral single-mode lasing in the broadened ridge waveguides.

  11. EIT intensity noise spectroscopy power-broadening and level structure

    NASA Astrophysics Data System (ADS)

    Snider, Charles; Crescimanno, Michael; Oleary, Shannon

    2011-05-01

    One particularly interesting (and potentially technologically useful) characteristic of EIT coherence as viewed through intensity noise spectroscopy is its power-broadening resistant features. We detail a connection between the power broadening behavior and the underlying level structure by solving a more realistic quantum optics scenario modeled on recent experiments.

  12. Medical vest broadens treatment capability

    NASA Technical Reports Server (NTRS)

    Johnson, G. S.

    1970-01-01

    Universal sized vest, with specially tailored pockets designed to hold medical supplies, provides first aid/first care medical teams with broadened on-site capability. Vest is made of nylon, tough fibrous materials, and polyvinyl chloride. Design facilitates rapid donning, doffing, and adjustment.

  13. Ring-like spatial distribution of laser accelerated protons in the ultra-high-contrast TNSA-regime

    NASA Astrophysics Data System (ADS)

    Becker, G. A.; Tietze, S.; Keppler, S.; Reislöhner, J.; Bin, J. H.; Bock, L.; Brack, F.-E.; Hein, J.; Hellwing, M.; Hilz, P.; Hornung, M.; Kessler, A.; Kraft, S. D.; Kuschel, S.; Liebetrau, H.; Ma, W.; Polz, J.; Schlenvoigt, H.-P.; Schorcht, F.; Schwab, M. B.; Seidel, A.; Zeil, K.; Schramm, U.; Zepf, M.; Schreiber, J.; Rykovanov, S.; Kaluza, M. C.

    2018-05-01

    The spatial distribution of protons accelerated from submicron-thick plastic foil targets using multi-terawatt, frequency-doubled laser pulses with ultra-high temporal contrast has been investigated experimentally. A very stable, ring-like beam profile of the accelerated protons, oriented around the target’s normal direction has been observed. The ring’s opening angle has been found to decrease with increasing foil thicknesses. Two-dimensional particle-in-cell simulations reproduce our results indicating that the ring is formed during the expansion of the proton density distribution into the vacuum as described by the mechanism of target-normal sheath acceleration. Here—in addition to the longitudinal electric fields responsible for the forward acceleration of the protons—a lateral charge separation leads to transverse field components accelerating the protons in the lateral direction.

  14. Causes of power broadening in EIT intensity noise spectroscopy

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Snider, Charles; O'Leary, Shannon

    2011-05-01

    EIT noise spectroscopy is a potentially promising way to simplify magnetometer design. One technically fortuitous characteristic of this intensity noise spectroscopy is the non-power broadening behaviour. We describe quantum optics theory applied to more realistic models of EIT systems that explain the existence and range of this power broadening-free regime.

  15. Homogenization of Doppler broadening in spin-noise spectroscopy

    NASA Astrophysics Data System (ADS)

    Petrov, M. Yu.; Ryzhov, I. I.; Smirnov, D. S.; Belyaev, L. Yu.; Potekhin, R. A.; Glazov, M. M.; Kulyasov, V. N.; Kozlov, G. G.; Aleksandrov, E. B.; Zapasskii, V. S.

    2018-03-01

    The spin-noise spectroscopy, being a nonperturbative linear optics tool, is still reputed to reveal a number of capabilities specific to nonlinear optics techniques. The effect of the Doppler broadening homogenization discovered in this work essentially widens these unique properties of spin-noise spectroscopy. We investigate spin noise of a classical system—cesium atoms vapor with admixture of buffer gas—by measuring the spin-induced Faraday rotation fluctuations in the region of D 2 line. The line, under our experimental conditions, is strongly inhomogeneously broadened due to the Doppler effect. Despite that, optical spectrum of the spin-noise power has the shape typical for the homogeneously broadened line with a dip at the line center. This fact is in stark contrast with the results of previous studies of inhomogeneous quantum dot ensembles and Doppler broadened atomic systems. In addition, the two-color spin-noise measurements have shown, in a highly spectacular way, that fluctuations of the Faraday rotation within the line are either correlated or anticorrelated depending on whether the two wavelengths lie on the same side or on different sides of the resonance. The experimental data are interpreted in the frame of the developed theoretical model which takes into account both kinetics and spin dynamics of Cs atoms. It is shown that the unexpected behavior of the Faraday rotation noise spectra and effective homogenization of the optical transition in the spin-noise measurements are related to smallness of the momentum relaxation time of the atoms as compared with their spin-relaxation time. Our findings demonstrate abilities of spin-noise spectroscopy for studying dynamic properties of inhomogeneously broadened ensembles of randomly moving spins.

  16. Influence of resonant collisions on the self-broadening of acetylene

    NASA Astrophysics Data System (ADS)

    Lehmann, Kevin K.

    2017-03-01

    Iwakuni et al. [Phys. Rev. Lett. 117, 143902 (2016)] have reported an ortho-para alternation of ˜10% in the self pressure broadening coefficients for ro-vibrational lines of the C2H2 transitions in the ν1+ν3 C-H (local mode) overtone band near 197 THz (1.52 μm). These authors attributed this effect to the contribution of resonant collisions, where the rotational energy change of one molecule is exactly compensated by the rotational energy change of its collision partner. Resonant collisions are known to be important in the case of self pressure broadening of highly polar molecules, such as HCN, but have not previously been invoked in the case of nonpolar molecules, such as acetylene, where the long range potential is dominated by the quadrupole-quadrupole electrostatic interaction. In the present work, the simple semiclassical Anderson-theory approach is used to estimate the rates of C2H2-C2H2 rotationally inelastic collisions and these used to predict pressure broadening rates, ignoring other contributions to the broadening, which should not have resonant enhancements. It is found that exactly resonant collisions do not make a major contribution to the broadening and these calculations predict an ortho-para alternation of the pressure broadening coefficients far below what was inferred by Iwakuni et al. The present results are consistent with a large body of published work that reported self-broadening coefficients of C2H2 ro-vibrational transitions that found negligible dependence on the vibrational transition and no even-odd alternation, even for Q and S branch transitions where any such effect is predicted to be much larger than for the P and R branch transitions studied by Iwakuni et al.

  17. D2O self-broadening study in 2.5 μ

    NASA Astrophysics Data System (ADS)

    Lavrentieva, N.; Lugovskoi, A.; Sinitsa, L.; Sherbakov, A.; Svetlichny, O.

    2014-11-01

    The absorption spectra of the D2O monomer in 3600…4200 cm-1 were recorded using Fourier Transform spectrometer FS-125M at room temperature and pressure of 15 and 33 mbar with spectral resolution of 0.03 cm-1 using 2.5 cm long absorption cell. Strong unblended D2O lines lying on the wing of the H2O stretching band were used to determine the line broadening parameters. They were determined from the line profile by Program VxpProfile. The differences between fitted line profiles and experimental ones do not exceed 2%. Registered D2O lines belong to (011) - (000) and (110) - (000) bands of the second triad. Self-broadening coefficients vary from 0.27 cm-1/atm to 0.445 cm-1/atm and they exceed 3 times the D2O-N2 line broadening coefficients in the v3. Calculations of self-broadening coefficients of the D2O lines were performed using semiempirical method based on the impact theory of broadening and included the correction factors. The calculated results well agree with experimental data.

  18. Seeing the big picture: Broadening attention relieves sadness and depressed mood.

    PubMed

    Gu, Li; Yang, Xueling; Li, Liman Man Wai; Zhou, Xinyue; Gao, Ding-Guo

    2017-08-01

    We examined whether the broadened attentional scope would affect people's sad or depressed mood with two experiments, enlightened by the meaning of "seeing the big picture" and the broaden-and-build model. Experiment 1 (n = 164) is a laboratory-based experiment, in which we manipulated the attentional scope by showing participants zoomed-out or zoomed-in scenes. In Experiment 2 (n = 44), we studied how depressed mood and positive and negative emotions were affected when participants watched distant versus proximal scenes for eight weeks in real life. Healthy participants in Experiment 1, who were induced to feel sad, could return to the baseline mood after having the broadened attention task but not after having the narrowed attention task, which indicated that immediate attention broadening manipulation could function as antidotes for the lingering effects of induced negative emotions. Participants with depressed mood in Experiment 2 showed reduced depressed mood, increased positive affect, and decreased negative affect after receiving attention broadening training compared to those receiving attention narrowing training. Our findings suggest a robust role of broadened attentional scope in relieving negative emotions and even mildly depressed mood in the long run. © 2017 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  19. Effects of spatial transport and ambient wave intensity on the generation of MHD waves by interstellar pickup protons

    NASA Technical Reports Server (NTRS)

    Isenberg, P. A.

    1995-01-01

    Intense MHD waves generated by the isotropization of interstellar pickup protons were predicted by Lee and Ip (1987) to appear in the solar wind whenever pickup proton fluxes were high enough. However, in reality these waves have proved surprisingly difficult to identify, even in the presence of observed pickup protons. We investigate the wave excitation by isotropization from an initially broad pitch-angle distribution instead of the narrow ring-beam assumed by Lee and Ip. The pitch angle of a newly-ionized proton is given by theta(sub o), the angle between the magnetic field (averaged over a pickup proton gyroradius) and the solar wind flow at the time of ionization. Then, a broadened distribution results from spatial transport of pickup protons prior to isotropization from regions upstream along the field containing different values of theta(sub o). The value of theta(sub o) will vary as a result of the ambient long-wavelength fluctuations in the solar wind. Thus, the range of initial pitch-angles is directly related to the amplitude of these fluctuations within a length-scale determined by the isotropization time. We show that a broad initial pitch-angle distribution can significantly modify the intensity and shape of the pickup-proton-generated wave spectrum, and we derive a criterion for the presence of observable pickup-proton generated waves given the intensity of the ambient long wavelength fluctuations.

  20. Single-photon superradiant beating from a Doppler-broadened ladder-type atomic ensemble

    NASA Astrophysics Data System (ADS)

    Lee, Yoon-Seok; Lee, Sang Min; Kim, Heonoh; Moon, Han Seb

    2017-12-01

    We report on heralded-single-photon superradiant beating in the spontaneous four-wave mixing process of Doppler-broadened ladder-type 87Rb atoms. When Doppler-broadened atoms contribute to two-photon coherence, the detection probability amplitudes of the heralded single photons are coherently superposed despite inhomogeneous broadened atomic media. Single-photon superradiant beating is observed, which constitutes evidence for the coherent superposition of two-photon amplitudes from different velocity classes in the Doppler-broadened atomic ensemble. We present a theoretical model in which the single-photon superradiant beating originates from the interference between wavelength-separated two-photon amplitudes via the reabsorption filtering effect.

  1. Water absorption lines, 931-961 nm - Selected intensities, N2-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Gentry, B.; Schwemmer, G.; Wilkerson, T. D.

    1982-01-01

    Intensities were measured for 97 lines of H2O vapor between 932 and 961 nm. The lines were selected for their potential usefulness for remote laser measurements of H2O vapor in the earth's atmosphere. The spectra were obtained with several different H2O vapor abundances and N2 broadening gas pressures; the spectral resolution was 0.046/cm FWHM. Measured H2O line intensities range from 7 x 10 to the -25th to 7 x 10 to the -22nd/cm per (molecules/sq cm). H2O self-broadening coefficients were measured for 13 of these strongest lines; the mean value was 0.5/cm per atm. N2-collision-broadening coefficients were measured for 73 lines, and the average was 0.11 cm per atm HWHM. Pressure shifts in air were determined for a sample of six lines between 948 and 950 nm; these lines shift to lower frequency by an amount comparable to 0.1 of the collision-broadened widths measured in air or N2. The measured intensities of many lines of 300-000 band are much larger than expected from prior computations, in some cases by over an order of magnitude. Coriolis interactions with the stronger 201-000 band appear to be the primary cause of the enhancement of these line intensities.

  2. SU-E-T-616: Comparison of Plan Dose Accuracy for Anterior Vs. Lateral Fields in Proton Therapy of Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moteabbed, M; Trofimov, A; Testa, M

    2014-06-01

    Purpose: With the anticipated introduction of in vivo range verification methods, the use of anterior fields for proton therapy of prostate cancer may become an attractive treatment option, and improve upon the dose distributions achievable with conventional lateral-opposed fields. This study aimed to evaluate and compare the planned dose accuracy for lateral versus anterior oblique field arrangements. Methods: Four patients with low/intermediate risk prostate cancer, participating in a clinical trial at our institution, were selected for this study. All patients were treated using lateral-opposed fields (LAT). The clinical target volume (CTV) received a total dose of 79.2 Gy in 44more » fractions. Anterior oblique research plans (ANT) were created using the clinical planning system, and featured beams with ±35-degree gantry angle, 1.2 cm aperture margins, 3-mm range compensator smearing and no range uncertainty margins. Monte Carlo (MC) simulations were performed for both beam arrangements using TOPAS. Dose volume histograms were analyzed and compared for planned and MC dose distributions. Differences between MC and planned DVH parameters were computed as a percentage of the total prescribed dose. Results: For all patients, CTV dose was systematically lower (∼2–2.5%) for MC than the plan. This discrepancy was slightly larger (∼0.5%) for LAT compared to ANT plans for all cases. Although the dose differences for bladder and anterior rectal wall remained within 0.7% for all LAT cases, they were slightly larger for ANT plans, especially for case 3 due to larger patient size and MC-plan range difference. The EUD difference for femoral heads was within 0.6% for both LAT and ANT cases. Conclusion: The dose calculated by the treatment planning system using pencil beam algorithm agrees with MC to within 2.5% and is comparable for lateral and anterior scenarios. The dose agreement in the anterior rectal wall is range- and hence, patient-dependent for ANT treatments.« less

  3. The effects of Doppler broadening and detector resolution on the performance of three-stage Compton cameras

    PubMed Central

    Mackin, Dennis; Polf, Jerimy; Peterson, Steve; Beddar, Sam

    2013-01-01

    Purpose: The authors investigated how the characteristics of the detectors used in a three-stage Compton camera (CC) affect the CC's ability to accurately measure the emission distribution and energy spectrum of prompt gammas (PG) emitted by nuclear de-excitations during proton therapy. The detector characteristics they studied included the material (high-purity germanium [HPGe] and cadmium zinc telluride [CZT]), Doppler broadening (DB), and resolution (lateral, depth, and energy). Methods: The authors simulated three-stage HPGe and CZT CCs of various configurations, detecting gammas from point sources with energies ranging from 0.511 to 7.12 MeV. They also simulated a proton pencil beam irradiating a tissue target to study how the detector characteristics affect the PG data measured by CCs in a clinical proton therapy setting. They used three figures of merit: the distance of closest approach (DCA) and the point of closest approach (PCA) between the measured and actual position of the PG emission origin, and the calculated energy resolution. Results: For CCs with HPGe detectors, DB caused the DCA to be greater than 3 mm for 14% of the 6.13 MeV gammas and 20% of the 0.511 MeV gammas. For CCs with CZT detectors, DB caused the DCA to be greater than 3 mm for 18% of the 6.13 MeV gammas and 25% of the 0.511 MeV gammas. The full width at half maximum (FWHM) of the PCA in the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\hat z\\end{equation*} \\end{document}z^ direction for HPGe and CZT detectors ranged from 1.3 to 0.4 mm for gammas with incident energy ranging from 0.511 to 7.12 MeV. For CCs composed of HPGe detectors, the resolution of incident gamma energy calculated by the CC ranged from 6% to 1% for gammas with true incident energies from 0.511 to 7.12 Me

  4. Transient proton inflows during illumination of anaerobic Halobacterium halobium cells

    NASA Technical Reports Server (NTRS)

    Helgerson, S. L.; Stoeckenius, W.

    1985-01-01

    The roles of bacteriorhodopsin (bR), halorhodopsin (hR), and the H(+)-ATPase in the proton uptake in intact cells are examined. The Halobacterium halobium strains and solutions utilized in the experiment, and the techniques for measuring extracellular pH changes and intracellular K(+) concentrations are described. It is observed that in Halobacterium halobium strain R1, containing bR and hR, the light-driven proton uptake is divided into three transient inflows superimposed on the larger proton outflow. Under anaerobic conditions early proton uptake consists of an inflow which can be blocked with Dio-9 and a second inflow that can be eliminated by low concentrations (less than 125 nm) of triphenyltin chloride (TPT). The effects of Dio-9 and TPT on the passive proton-hydroxyl permeability of the cell membrane are investigated. A third transient light-driven proton flow observed at later times of illumination is studied. The data reveal that the first proton inflow correlates with proton dependent ATP synthesis; the second inflow is a passive uptake through an unidentified channel in response to electrogenic chloride pumping by bR and/or hR; and the third inflow correlates with the Na(+)/H(+) antiporter function.

  5. Proton-Proton and Proton-Antiproton Colliders

    NASA Astrophysics Data System (ADS)

    Scandale, Walter

    In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  6. Proton-Proton and Proton-Antiproton Colliders

    NASA Astrophysics Data System (ADS)

    Scandale, Walter

    2014-04-01

    In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  7. Proton-Proton and Proton-Antiproton Colliders

    NASA Astrophysics Data System (ADS)

    Scandale, Walter

    2015-02-01

    In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  8. Effects of positive mood on attention broadening for self-related information.

    PubMed

    Grol, Maud; Koster, Ernst H W; Bruyneel, Lynn; De Raedt, Rudi

    2014-07-01

    Studies on cognitive effects of positive emotions have associated positive emotions to broadened attention. Given the widely investigated relationship between self-focused attention and mood, it is important to investigate the effect of positive mood on visuospatial attention for self-related information. We used a performance-based measure to assess fluctuations in attentional broadening from self-related contrasted to not-self-related information. In Experiment 1, we checked that the self-related versus not-self-related stimuli did not evoke differential attention effects in general. In Experiment 2, we manipulated mood and found that an increase in positive mood was associated with a relative broadening of attention for self-related information. These results suggest that the meaning of the target of attention provides an interesting dimension for further investigation into the relation between positive emotions and attentional broadening.

  9. The role of a microDiamond detector in the dosimetry of proton pencil beams.

    PubMed

    Gomà, Carles; Marinelli, Marco; Safai, Sairos; Verona-Rinati, Gianluca; Würfel, Jan

    2016-03-01

    In this work, the performance of a microDiamond detector in a scanned proton beam is studied and its potential role in the dosimetric characterization of proton pencil beams is assessed. The linearity of the detector response with the absorbed dose and the dependence on the dose-rate were tested. The depth-dose curve and the lateral dose profiles of a proton pencil beam were measured and compared to reference data. The feasibility of calibrating the beam monitor chamber with a microDiamond detector was also studied. It was found the detector reading is linear with the absorbed dose to water (down to few cGy) and the detector response is independent of both the dose-rate (up to few Gy/s) and the proton beam energy (within the whole clinically-relevant energy range). The detector showed a good performance in depth-dose curve and lateral dose profile measurements; and it might even be used to calibrate the beam monitor chambers-provided it is cross-calibrated against a reference ionization chamber. In conclusion, the microDiamond detector was proved capable of performing an accurate dosimetric characterization of proton pencil beams. Copyright © 2015. Published by Elsevier GmbH.

  10. Self-phase-modulation induced spectral broadening in silicon waveguides

    NASA Astrophysics Data System (ADS)

    Boyraz, Ozdal; Indukuri, Tejaswi; Jalali, Bahram

    2004-03-01

    The prospect for generating supercontinuum pulses on a silicon chip is studied. Using ~4ps optical pulses with 2.2GW/cm2 peak power, a 2 fold spectral broadening is obtained. Theoretical calculations, that include the effect of two-photon-absorption, indicate up to 5 times spectral broadening is achievable at 10x higher peak powers. Representing a nonlinear loss mechanism at high intensities, TPA limits the maximum optical bandwidth that can be generated.

  11. Self-phase-modulation induced spectral broadening in silicon waveguides.

    PubMed

    Boyraz, Ozdal; Indukuri, Tejaswi; Jalali, Bahram

    2004-03-08

    The prospect for generating supercontinuum pulses on a silicon chip is studied. Using ~4ps optical pulses with 2.2GW/cm(2) peak power, a 2 fold spectral broadening is obtained. Theoretical calculations, that include the effect of two-photon-absorption, indicate up to 5 times spectral broadening is achievable at 10x higher peak powers. Representing a nonlinear loss mechanism at high intensities, TPA limits the maximum optical bandwidth that can be generated.

  12. Detailed characterization of the LLNL imaging proton spectrometer

    DOE PAGES

    Rasmus, A. M.; Hazi, A. U.; Manuel, M. J. -E.; ...

    2016-09-01

    Here, ultra-intense short pulse lasers incident on solid targets (e.g., several um thick Au foils) produce well collimated, broad-energy-spectrum proton beams. These proton beams can be used to characterize magnetic fields, electric fields (through particle deflection), and density gradients (through collisions) in high energy-density systems. The LLNL-Imaging Proton Spectrometer (L-IPS) was designed and built for use with such laser produced proton beams. The L-IPS has an energy range of 50 keV-40 MeV with a resolving power (E/dE) of about 275 at 1 MeV and 21 at 20 MeV, as well as a single spatial imaging axis. The protons enter themore » diagnostic through a vertical slit, aligned with a magnetic field imposed by permanent magnets. The protons are deflected perpendicular to the magnetic field (and therefor slit), so that spatial information in the direction of the slit is preserved. The extent to which the protons are bent by the magnetic field depends on the energy, so that the energy of the protons can be resolved as well. The protons are then measured by image plates, in which a meta-stable state is excited by collisions with the protons, which can later be imaged by a scanner. In order to better characterize the dispersion and imaging capability of this diagnostic, a 3D finite element analysis solver is used to calculate the magnetic field of the L-IPS. Particle trajectories are then obtained via numerical integration to determine the dispersion relation of the L-IPS in both energy and angular space.« less

  13. Broadening and collisional interference of lines in the IR spectra of ammonia. Theory

    NASA Astrophysics Data System (ADS)

    Cherkasov, M. R.

    2016-06-01

    The general theory of relaxation spectral shape parameters in the impact approximation (M. R. Cherkasov, J. Quant. Spectrosc. Radiat. Transfer 141, 73 (2014)) is adapted to the case of line broadening of infrared spectra of ammonia. Specific features of line broadening of parallel and perpendicular bands are discussed. It is shown that in both cases the spectrum consists of independently broadened singlets and doublets; however, the components of doublets can be affected by collisional interference. The paper is the first part of a cycle of studies devoted to the problems of spectral line broadening of ammonia.

  14. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy

    NASA Astrophysics Data System (ADS)

    Islam, M. R.; Collums, T. L.; Zheng, Y.; Monson, J.; Benton, E. R.

    2013-11-01

    The production of secondary neutrons is an undesirable byproduct of proton therapy and it is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons experimentally using CR-39 plastic nuclear track detectors (PNTD) at ProCure Proton Therapy Center, Oklahoma City, OK. In this experiment, we placed several layers of CR-39 PNTD laterally outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with max energies of 78, 162 and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the entire experiment. Monte Carlo simulations were also performed based on the experimental setup using a simplified snout configuration and the FLUKA Monte Carlo radiation transport code. The measured ratio of secondary neutron dose equivalent to therapeutic primary proton dose (H/D) ranged from 0.3 ± 0.08 mSv Gy-1 for 78 MeV proton beam to 37.4 ± 2.42 mSv Gy-1 for 226 MeV proton beam. Both experiment and simulation showed a similar decreasing trend in dose equivalent with distance to the central axis and the magnitude varied by a factor of about 2 in most locations. H/D was found to increase as the energy of the primary proton beam increased and higher H/D was observed at 135° compared to 45° and 90°. The overall higher H/D in air indicates the predominance of external neutrons produced in the nozzle rather than inside the body.

  15. Low-Temperature Collisional Broadening in the Far-Infrared Centrifugal Distortion Spectrum of CH_4

    NASA Astrophysics Data System (ADS)

    Boudon, Vincent; Vander Auwera, Jean; Manceron, Laurent; Kwabia Tchana, F.; Gabard, Tony; Amyay, Badr; Faye, Mbaye

    2015-06-01

    Previously, we could record on the AILES Beamline at the SOLEIL Synchrotron facility the first resolved centrifugal distorsion spectrum of methane (CH_4) in the THz region, which led to a precise determination of line intensities Later, we could measure collisional self- and N_2-broadening coefficients at room temperature. This time, we reinvestigated this topic by measuring these broadening coefficients at low temperature (between 120~K and 160~K) for J=5 to 12, thanks to a cryogenic multipass cell. We used a 93~m total optical path length. Five pure methane pressures (from 10 to 100 mbar) and four CH_4/N_2 mixtures (20~% of methane with a total pressure from 100 to 800 mbar) were used. These measurements allow us to obtain data for physical conditions approaching those of Titan's atmosphere and to estimate temperature exponents. V. Boudon, O. Pirali, P. Roy, J.-B. Brubach, L. Manceron and J. Vander Auwera, J. Quant. Spectrosc. Radiate. Transfer, 111, 1117--1129 (2010). M. Sanzharov, J. Vander Auwera, O. Pirali, P. Roy, J.-B. Brubach, L. Manceron, T. Gabard and V. Boudon, J. Quant. Spectrosc. Radiate. Transfer, 113, 1874--1886 (2012). F. Kwabia Tchana, F. Willaert, X. Landshere, J.-M. Flaud, L. Lago, M. Chapuis, C. Herbeaux, P. Roy and L. Manceron, Rev. Sci. Instrum., 84, 093101 (2013).

  16. Proton therapy - Present and future.

    PubMed

    Mohan, Radhe; Grosshans, David

    2017-01-15

    In principle, proton therapy offers a substantial clinical advantage over conventional photon therapy. This is because of the unique depth-dose characteristics of protons, which can be exploited to achieve significant reductions in normal tissue doses proximal and distal to the target volume. These may, in turn, allow escalation of tumor doses and greater sparing of normal tissues, thus potentially improving local control and survival while at the same time reducing toxicity and improving quality of life. Protons, accelerated to therapeutic energies ranging from 70 to 250MeV, typically with a cyclotron or a synchrotron, are transported to the treatment room where they enter the treatment head mounted on a rotating gantry. The initial thin beams of protons are spread laterally and longitudinally and shaped appropriately to deliver treatments. Spreading and shaping can be achieved by electro-mechanical means to treat the patients with "passively-scattered proton therapy" (PSPT) or using magnetic scanning of thin "beamlets" of protons of a sequence of initial energies. The latter technique can be used to treat patients with optimized intensity modulated proton therapy (IMPT), the most powerful proton modality. Despite the high potential of proton therapy, the clinical evidence supporting the broad use of protons is mixed. It is generally acknowledged that proton therapy is safe, effective and recommended for many types of pediatric cancers, ocular melanomas, chordomas and chondrosarcomas. Although promising results have been and continue to be reported for many other types of cancers, they are based on small studies. Considering the high cost of establishing and operating proton therapy centers, questions have been raised about their cost effectiveness. General consensus is that there is a need to conduct randomized trials and/or collect outcomes data in multi-institutional registries to unequivocally demonstrate the advantage of protons. Treatment planning and plan

  17. Proton-proton correlations observed in two-proton radioactivity of 94Ag.

    PubMed

    Mukha, Ivan; Roeckl, Ernst; Batist, Leonid; Blazhev, Andrey; Döring, Joachim; Grawe, Hubert; Grigorenko, Leonid; Huyse, Mark; Janas, Zenon; Kirchner, Reinhard; La Commara, Marco; Mazzocchi, Chiara; Tabor, Sam L; Van Duppen, Piet

    2006-01-19

    The stability and spontaneous decay of naturally occurring atomic nuclei have been much studied ever since Becquerel discovered natural radioactivity in 1896. In 1960, proton-rich nuclei with an odd or an even atomic number Z were predicted to decay through one- and two-proton radioactivity, respectively. The experimental observation of one-proton radioactivity was first reported in 1982, and two-proton radioactivity has now also been detected by experimentally studying the decay properties of 45Fe (refs 3, 4) and 54Zn (ref. 5). Here we report proton-proton correlations observed during the radioactive decay of a spinning long-lived state of the lightest known isotope of silver, 94Ag, which is known to undergo one-proton decay. We infer from these correlations that the long-lived state must also decay through simultaneous two-proton emission, making 94Ag the first nucleus to exhibit one- as well as two-proton radioactivity. We attribute the two-proton emission behaviour and the unexpectedly large probability for this decay mechanism to a very large deformation of the parent nucleus into a prolate (cigar-like) shape, which facilitates emission of protons either from the same or from opposite ends of the 'cigar'.

  18. Pencil Beam Scanning Proton Therapy for Rhabdomyosarcoma of the Biliary Tract.

    PubMed

    Pater, Luke; Turpin, Brian; Mascia, Anthony

    2017-10-05

    Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood with 250-350 cases diagnosed annually in the United States. Biliary tract rhabdomyosarcoma is rare, representing <1% of the RMS cases. Due to its location, resection is clinically challenging, and functional complications exist and persist from biliary obstruction. The anatomical location of this tumor presents both opportunities and challenges for pencil beam scanning proton therapy. Proton therapy offers a dosimetric and clinical advantage by sparing the healthy liver, stomach, contra-lateral kidney and bowel. Motion management and anatomical variations, such as intestinal filling or weight loss, requiring routine dosimetric evaluation and possible adaptive treatment planning, present challenges for the use of proton therapy. By taking advantage of the superior dose distribution of proton radiation, assessing the impact of tumor and anatomy motion, and performing regular dose evaluations, biliary tract RMS is an ideal diagnosis for pencil beam scanning proton therapy.

  19. Pion, Kaon, Proton and Antiproton Production in Proton-Proton Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Blattnig, Steve R.

    2008-01-01

    Inclusive pion, kaon, proton, and antiproton production from proton-proton collisions is studied at a variety of proton energies. Various available parameterizations of Lorentz-invariant differential cross sections as a function of transverse momentum and rapidity are compared with experimental data. The Badhwar and Alper parameterizations are moderately satisfactory for charged pion production. The Badhwar parameterization provides the best fit for charged kaon production. For proton production, the Alper parameterization is best, and for antiproton production the Carey parameterization works best. However, no parameterization is able to fully account for all the data.

  20. Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy.

    PubMed

    Zhang, Rongchun; Mroue, Kamal H; Ramamoorthy, Ayyalusamy

    2017-04-18

    Protons are vastly abundant in a wide range of exciting macromolecules and thus can be a powerful probe to investigate the structure and dynamics at atomic resolution using solid-state NMR (ssNMR) spectroscopy. Unfortunately, the high signal sensitivity, afforded by the high natural-abundance and high gyromagnetic ratio of protons, is greatly compromised by severe line broadening due to the very strong 1 H- 1 H dipolar couplings. As a result, protons are rarely used, in spite of the desperate need for enhancing the sensitivity of ssNMR to study a variety of systems that are not amenable for high resolution investigation using other techniques including X-ray crystallography, cryo-electron microscopy, and solution NMR spectroscopy. Thanks to the remarkable improvement in proton spectral resolution afforded by the significant advances in magic-angle-spinning (MAS) probe technology, 1 H ssNMR spectroscopy has recently attracted considerable attention in the structural and dynamics studies of various molecular systems. However, it still remains a challenge to obtain narrow 1 H spectral lines, especially from proteins, without resorting to deuteration. In this Account, we review recent proton-based ssNMR strategies that have been developed in our laboratory to further improve proton spectral resolution without resorting to chemical deuteration for the purposes of gaining atomistic-level insights into molecular structures of various crystalline solid systems, using small molecules and peptides as illustrative examples. The proton spectral resolution enhancement afforded by the ultrafast MAS frequencies up to 120 kHz is initially discussed, followed by a description of an ensemble of multidimensional NMR pulse sequences, all based on proton detection, that have been developed to obtain in-depth information from dipolar couplings and chemical shift anisotropy (CSA). Simple single channel multidimensional proton NMR experiments could be performed to probe the proximity of

  1. Supine craniospinal irradiation in pediatric patients by proton pencil beam scanning.

    PubMed

    Farace, Paolo; Bizzocchi, Nicola; Righetto, Roberto; Fellin, Francesco; Fracchiolla, Francesco; Lorentini, Stefano; Widesott, Lamberto; Algranati, Carlo; Rombi, Barbara; Vennarini, Sabina; Amichetti, Maurizio; Schwarz, Marco

    2017-04-01

    Proton therapy is the emerging treatment modality for craniospinal irradiation (CSI) in pediatric patients. Herein, special methods adopted for CSI at proton Therapy Center of Trento by pencil beam scanning (PBS) are comprehensively described. Twelve pediatric patients were treated by proton PBS using two/three isocenters. Special methods refer to: (i) patient positioning in supine position on immobilization devices crossed by the beams; (ii) planning field-junctions via the ancillary-beam technique; (iii) achieving lens-sparing by three-beams whole-brain-irradiation; (iv) applying a movable-snout and beam-splitting technique to reduce the lateral penumbra. Patient-specific quality assurance (QA) program was performed using two-dimensional ion chamber array and γ-analysis. Daily kilovoltage alignment was performed. PBS allowed to obtain optimal target coverage (mean D98%>98%) with reduced dose to organs-at-risk. Lens sparing was obtained (mean D1∼730cGyE). Reducing lateral penumbra decreased the dose to the kidneys (mean Dmean<600cGyE). After kilovoltage alignment, potential dose deviations in the upper and lower junctions were small (average 0.8% and 1.2% respectively). Due to imperfect modeling of range shifter, QA showed better agreements between measurements and calculations at depths >4cm (mean γ>95%) than at depths<4cm. The reported methods allowed to effectively perform proton PBS CSI. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. GOLD: Building capacity for broadening participation in the Geosciences

    NASA Astrophysics Data System (ADS)

    Adams, Amanda; Patino, Lina; Jones, Michael B.; Rom, Elizabeth

    2017-04-01

    The geosciences continue to lag other science, technology, engineering, and mathematics (STEM) disciplines in the engagement, recruitment and retention of traditionally underrepresented and underserved minorities, requiring more focused and strategic efforts to address this problem. Prior investments made by the National Science Foundation (NSF) related to broadening participation in STEM have identified many effective strategies and model programs for engaging, recruiting, and retaining underrepresented students in the geosciences. These investments also have documented clearly the importance of committed, knowledgeable, and persistent leadership for making local progress in broadening participation in STEM and the geosciences. Achieving diversity at larger and systemic scales requires a network of diversity "champions" who can catalyze widespread adoption of these evidence-based best practices and resources. Although many members of the geoscience community are committed to the ideals of broadening participation, the skills and competencies that empower people who wish to have an impact, and make them effective as leaders in that capacity for sustained periods of time, must be cultivated through professional development. The NSF GEO Opportunities for Leadership in Diversity (GOLD) program was implemented in 2016, as a funding opportunity utilizing the Ideas Lab mechanism. Ideas Labs are intensive workshops focused on finding innovative solutions to grand challenge problems. The ultimate aim of this Ideas Lab, organized by the NSF Directorate for Geosciences (GEO), was to facilitate the design, pilot implementation, and evaluation of innovative professional development curricula that can unleash the potential of geoscientists with interests in broadening participation to become impactful leaders within the community. The expectation is that mixing geoscientists with experts in broadening participation research, behavioral change, social psychology, institutional

  3. Pathways of proton release in the bacteriorhodopsin photocycle

    NASA Technical Reports Server (NTRS)

    Zimanyi, L.; Varo, G.; Chang, M.; Ni, B.; Needleman, R.; Lanyi, J. K.

    1992-01-01

    The pH dependencies of the rate constants in the photocycles of recombinant D96N and D115N/D96N bacteriorhodopsins were determined from time-resolved difference spectra between 70 ns and 420 ms after photoexcitation. The results were consistent with the model suggested earlier for proteins containing D96N substitution: BR hv----K----L----M1----M2----BR. Only the M2----M1 back-reaction was pH-dependent: its rate increased with increasing [H+] between pH 5 and 8. We conclude from quantitative analysis of this pH dependency that its reverse, the M1----M2 reaction, is linked to the release of a proton from a group with a pKa = 5.8. This suggests a model for wild-type bacteriorhodopsin in which at pH greater than 5.8 the transported proton is released on the extracellular side from this as yet unknown group and on the 100-microseconds time scale, but at pH less than 5.8, the proton release occurs from another residue and later in the photocycle most likely directly from D85 during the O----BR reaction. We postulate, on the other hand, that proton uptake on the cytoplasmic side will be by D96 and during the N----O reaction regardless of pH. The proton kinetics as measured with indicator dyes confirmed the unique prediction of this model: at pH greater than 6, proton release preceded proton uptake, but at pH less than 6, the release was delayed until after the uptake. The results indicated further that the overall M1----M2 reaction includes a second kinetic step in addition to proton release; this is probably the earlier postulated extracellular-to-cytoplasmic reorientation switch in the proton pump.

  4. Commitment to Broadening Participation at NOAO

    NASA Astrophysics Data System (ADS)

    Garmany, Catharine D.; Norman, D.

    2011-01-01

    AURA and NOAO take seriously the importance of Broadening Participation in Astronomy. At the request of the AURA President, each of the AURA centers (NOAO, NSO, STSCI, Gemini) appointed a Diversity Advocates (DA). At NOAO this job is shared by Dara Norman and Katy Garmany, who were appointed by Dave Silva in Jan 2009. The DA's are members of the AURA Committee on Workforce and Diversity (WDC), a designated subcommittee of the AURA Board of Directors. The role of this committee includes reviewing activities and plans on an AURA wide basis aimed at broadening the participation within AURA, and reviewing AURA wide policies on the workforce. At NOAO, the role of the DAs spans a number of departments and activities. They serve on observatory search committees, and offer suggestions on how NOAO job searches can reach the most diverse audience. The DA's job is to insure that NOAO actively pursues every opportunity to increase diversity: to this end they are involved in outreach and educational activities that focus on workplace development and encourage inclusion of woman, minorities and persons with disabilities.

  5. Three new defined proton affinities for polybasic molecules in the gas-phase: Proton microaffinity, proton macroaffinity and proton overallaffinity

    NASA Astrophysics Data System (ADS)

    Salehzadeh, Sadegh; Bayat, Mehdi

    2006-08-01

    A theoretical study on complete protonation of a series of tetrabasic molecules with general formula N[(CH 2) nNH 2][(CH 2) mNH 2][(CH 2) pNH 2] (tren, pee, ppe, tpt, epb and ppb) is reported. For first time, three kinds of gas-phase proton affinities for each polybasic molecule are defined as: 'proton microaffinity (PA n, i)', 'proton macroaffinity (PA)' and 'proton overall affinity ( PA)'. The variations of calculated logPA in the series of these molecules is very similar to that of their measured log Kn. There is also a good correlation between the calculated gas-phase proton macroaffinities and proton overallaffinities with corresponding equilibrium macroconstants and overall protonation constants in solution.

  6. Positive emotions broaden the scope of attention and thought-action repertoires

    PubMed Central

    Fredrickson, Barbara L.; Branigan, Christine

    2011-01-01

    The broaden-and-build theory (Fredrickson, 1998, 2001) hypothesises that positive emotions broaden the scope of attention and thought-action repertoires. Two experiments with 104 college students tested these hypotheses. In each, participants viewed a film that elicited (a) amusement, (b) contentment, (c) neutrality, (d) anger, or (e) anxiety. Scope of attention was assessed using a global-local visual processing task (Experiment 1) and thought-action repertoires were assessed using a Twenty Statements Test (Experiment 2). Compared to a neutral state, positive emotions broadened the scope of attention in Experiment 1 and thought-action repertoires in Experiment 2. In Experiment 2, negative emotions, relative to a neutral state, narrowed thought-action repertoires. Implications for promoting emotional well-being and physical health are discussed. PMID:21852891

  7. Meta-Research: Broadening the Scope of PLOS Biology.

    PubMed

    Kousta, Stavroula; Ferguson, Christine; Ganley, Emma

    2016-01-01

    In growing recognition of the importance of how scientific research is designed, performed, communicated, and evaluated, PLOS Biology announces a broadening of its scope to cover meta-research articles.

  8. Measurement of Spectral Broadening in PTS-Polydiacetylene

    NASA Astrophysics Data System (ADS)

    Bhowmik, Achintya; Thakur, Mrinal

    1998-03-01

    PTS-polydiacetylene has significant potential for future applications in ultrafast all-optical switches and logic gates.(R. Quintero-Torres and M. Thakur, Appl. Phys. Lett., 66, 1310 (1995).) In this work, we have made detailed measurements of the instantaneous spectral line broadening in a 500 μm thick PTS single-crystal as a function of intensity and wavelength. A mode-locked Ti-Sapphire laser with 2 ps pulse-width at 82 MHz repetition rate, and a Nd:YAG laser with 60 ps pulse-width at 10 Hz repetition rate were used for measurements at 720-840 nm and 1064 nm wavelength respectively. The spectral bandwidth of the beam was recorded before and after passing through the PTS single-crystal by a high-resolution spectrometer. The nonlinear refractive index (n_2) of PTS as a function of wavelength has been determined from the spectral broadening data.

  9. Dose perturbation effect of metallic spinal implants in proton beam therapy.

    PubMed

    Jia, Yingcui; Zhao, Li; Cheng, Chee-Wai; McDonald, Mark W; Das, Indra J

    2015-09-08

    The purpose of this study was to investigate the effect of dose perturbations for two metallic spinal screw implants in proton beam therapy in the perpendicular and parallel beam geometry. A 5.5 mm (diameter) by 45 mm (length) stainless steel (SS) screw and a 5.5 mm by 35 mm titanium (Ti) screw commonly used for spinal fixation were CT-scanned in a hybrid phantom of water and solid water. The CT data were processed with an orthopedic metal artifact reduction (O-MAR) algorithm. Treatment plans were generated for each metal screw with a proton beam oriented, first parallel and then perpendicular, to the longitudinal axis of the screw. The calculated dose profiles were compared with measured results from a plane-parallel ion chamber and Gafchromic EBT2 films. For the perpendicular setup, the measured dose immediately downstream from the screw exhibited dose enhancement up to 12% for SS and 8% for Ti, respectively, but such dose perturbation was not observed outside the lateral edges of the screws. The TPS showed 5% and 2% dose reductions immediately at the interface for the SS nd Ti screws, respectively, and up to 9% dose enhancements within 1 cm outside of the lateral edges of the screws. The measured dose enhancement was only observed within 5 mm from the interface along the beam path. At deeper depths, the lateral dose profiles appeared to be similar between the measurement and TPS, with dose reduction in the screw shadow region and dose enhancement within 1-2 cm outside of the lateral edges of the metals. For the parallel setup, no significant dose perturbation was detected at lateral distance beyond 3 mm away from both screws. Significant dose discrepancies exist between TPS calculations and ion chamber and film measurements in close proximity of high-Z inhomogeneities. The observed dose enhancement effect with proton therapy is not correctly modeled by TPS. An extra measure of caution should be taken when evaluating dosimetry with spinal metallic implants.

  10. An In-situ method for the study of strain broadening usingsynchrotronx-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Chiu C.; Lynch, Peter A.; Cheary, Robert W.

    2006-12-15

    A tensonometer for stretching metal foils has beenconstructed for the study of strain broadening in x-ray diffraction lineprofiles. This device, which is designed for use on the powderdiffractometer in Station 2.3 at Daresbury Laboratory, allows in-situmeasurements to be performed on samples under stress. It can be used fordata collection in either transmission or reflection modes using eithersymmetric or asymmetric diffraction geometries. As a test case,measurements were carried out on a 18mum thick copper foil experiencingstrain levels of up to 5 percent using both symmetric reflection andsymmetric transmission diffraction. All the diffraction profilesdisplayed peak broadening and asymmetry which increased with strain.more » Themeasured profiles were analysed by the fundamental parameters approachusing the TOPAS peak fitting software. All the observed broadenedprofiles were modelled by convoluting a refineable diffraction profile,representing the dislocation and crystallite size broadening, with afixed instrumental profile pre-determined usinghigh quality LaB6reference powder. The de-convolution process yielded "pure" sampleintegral breadths and asymmetry results which displayed a strongdependence on applied strain and increased almost linearly with appliedstrain. Assuming crystallite size broadening in combination withdislocation broadening arising from fcc a/2<110>111 dislocations,we have extracted the variation of mechanic al property with strain. Theobservation of both peak asymmetry and broadening has been interpreted asa manifestation of a cellular structure with cell walls and cellinteriors possessing high and low dislocation densities.« less

  11. Proton core-beam system in the expanding solar wind: Hybrid simulations

    NASA Astrophysics Data System (ADS)

    Hellinger, Petr; Trávníček, Pavel M.

    2011-11-01

    Results of a two-dimensional hybrid expanding box simulation of a proton beam-core system in the solar wind are presented. The expansion with a strictly radial magnetic field leads to a decrease of the ratio between the proton perpendicular and parallel temperatures as well as to an increase of the ratio between the beam-core differential velocity and the local Alfvén velocity creating a free energy for many different instabilities. The system is indeed most of the time marginally stable with respect to the parallel magnetosonic, oblique Alfvén, proton cyclotron and parallel fire hose instabilities which determine the system evolution counteracting some effects of the expansion and interacting with each other. Nonlinear evolution of these instabilities leads to large modifications of the proton velocity distribution function. The beam and core protons are slowed with respect to each other and heated, and at later stages of the evolution the two populations are not clearly distinguishable. On the macroscopic level the instabilities cause large departures from the double adiabatic prediction leading to an efficient isotropization of effective proton temperatures in agreement with Helios observations.

  12. Action potential broadening in a presynaptic channelopathy

    NASA Astrophysics Data System (ADS)

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E.; Kullmann, Dimitri M.

    2016-07-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca2+ influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction.

  13. Proton dose distribution measurements using a MOSFET detector with a simple dose-weighted correction method for LET effects.

    PubMed

    Kohno, Ryosuke; Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi

    2011-04-04

    We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth-dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high-bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L-shaped bolus. The dose reproducibility, angular dependence and depth-dose response were evaluated using a 190 MeV proton beam. Depth-output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose-weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L-shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors.

  14. Proton dose distribution measurements using a MOSFET detector with a simple dose‐weighted correction method for LET effects

    PubMed Central

    Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi

    2011-01-01

    We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth‐dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high‐bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L‐shaped bolus. The dose reproducibility, angular dependence and depth‐dose response were evaluated using a 190 MeV proton beam. Depth‐output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose‐weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L‐shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors. PACS number: 87.56.‐v

  15. Protons and how they are transported by proton pumps.

    PubMed

    Buch-Pedersen, M J; Pedersen, B P; Veierskov, B; Nissen, P; Palmgren, M G

    2009-01-01

    The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded ATPases extrude protons from cells of plants and fungi to generate electrochemical proton gradients. The recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Taking the biochemical and structural data together, we are now able to describe the basic molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological proton pumps emerge. Most notably, the minimal pumping apparatus of all pumps consists of a central proton acceptor/donor, a positively charged residue to control pK(a) changes of the proton acceptor/donor, and bound water molecules to facilitate rapid proton transport along proton wires.

  16. Digital nonlinearity compensation in high-capacity optical communication systems considering signal spectral broadening effect.

    PubMed

    Xu, Tianhua; Karanov, Boris; Shevchenko, Nikita A; Lavery, Domaniç; Liga, Gabriele; Killey, Robert I; Bayvel, Polina

    2017-10-11

    Nyquist-spaced transmission and digital signal processing have proved effective in maximising the spectral efficiency and reach of optical communication systems. In these systems, Kerr nonlinearity determines the performance limits, and leads to spectral broadening of the signals propagating in the fibre. Although digital nonlinearity compensation was validated to be promising for mitigating Kerr nonlinearities, the impact of spectral broadening on nonlinearity compensation has never been quantified. In this paper, the performance of multi-channel digital back-propagation (MC-DBP) for compensating fibre nonlinearities in Nyquist-spaced optical communication systems is investigated, when the effect of signal spectral broadening is considered. It is found that accounting for the spectral broadening effect is crucial for achieving the best performance of DBP in both single-channel and multi-channel communication systems, independent of modulation formats used. For multi-channel systems, the degradation of DBP performance due to neglecting the spectral broadening effect in the compensation is more significant for outer channels. Our work also quantified the minimum bandwidths of optical receivers and signal processing devices to ensure the optimal compensation of deterministic nonlinear distortions.

  17. Studies of solar flares: Homology and X-ray line broadening

    NASA Astrophysics Data System (ADS)

    Ranns, Neale David Raymond

    This thesis starts with an introduction to the solar atmosphere and the physics that governs its behaviour. The formation processes of spectral lines are presented followed by an explanation of employed plasma diagnostic techniques and line broadening mechanisms. The current understanding on some principle concepts of flare physics are reviewed and the topics of flare homology and non-thermal line broadening are introduced. The many solar satellites and instrumentation that were utilised during this thesis are described. Analysis techniques for some instruments are also presented. A series of solar flares that conform to the literature definition for homologous flares are examined. The apparent homology is shown to be caused by emerging flux rather than continual stressing of a single, or group of, magnetic structure's. The implications for flare homology are discussed. The analysis of a solar flare with a rise and peak in the observed non-thermal X-ray line broadening (Vnt) is then performed. The location of the hot plasma within the flare area is determined and consequently the source of Vnt is located to be within and above the flare loops. The flare footpoints are therefore discarded as a possible source location. Viable source locations are discussed with a view to determining the dominant mechanism for the generation of line broadening. The timing relationships between the hard X-ray (HXR) flux and Vnt in many solar flares are then examined. I show that there is a causal relationship between these two parameters and that the HXR rise time is related to the time delay between the maxima of HXR flux and Vnt. The temporal evolution of Vnt is shown to be dependent upon the shape of the HXR burst. The implications of these results are discussed in terms of determining the line broadening mechanism and the limitations of the data. A summary of the results in this thesis is then presented together with suggestions for future research.

  18. Effect of proton irradiation on the normal-state low-energy excitations of Ba(Fe 1-xRh x) 2As 2 superconductors

    DOE PAGES

    Moroni, M.; Gozzelino, L.; Ghigo, G.; ...

    2017-09-19

    Here, we present a 75As nuclear magnetic resonance (NMR) and resistivity study of the effect of 5.5 MeV proton irradiation on the optimal electron doped (x = 0.068) and overdoped (x = 0.107) Ba(Fe 1–xRh x) 2As 2 iron based superconductors. While the proton induced defects only mildly suppress the critical temperature and increase residual resistivity in both compositions, sizable broadening of the NMR spectra was observed in all the irradiated samples at low temperature. The effect is significantly stronger in the optimally doped sample where the Curie Weiss temperature dependence of the line width suggests the onset of ferromagneticmore » correlations coexisting with superconductivity at the nanoscale. 1/T 2 measurements revealed that the energy barrier characterizing the low energy spin fluctuations of these compounds is enhanced upon proton irradiation, suggesting that the defects are likely slowing down the fluctuations between (0,π) and (π,0) nematic ground states.« less

  19. Effect of proton irradiation on the normal-state low-energy excitations of Ba(Fe 1-xRh x) 2As 2 superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moroni, M.; Gozzelino, L.; Ghigo, G.

    Here, we present a 75As nuclear magnetic resonance (NMR) and resistivity study of the effect of 5.5 MeV proton irradiation on the optimal electron doped (x = 0.068) and overdoped (x = 0.107) Ba(Fe 1–xRh x) 2As 2 iron based superconductors. While the proton induced defects only mildly suppress the critical temperature and increase residual resistivity in both compositions, sizable broadening of the NMR spectra was observed in all the irradiated samples at low temperature. The effect is significantly stronger in the optimally doped sample where the Curie Weiss temperature dependence of the line width suggests the onset of ferromagneticmore » correlations coexisting with superconductivity at the nanoscale. 1/T 2 measurements revealed that the energy barrier characterizing the low energy spin fluctuations of these compounds is enhanced upon proton irradiation, suggesting that the defects are likely slowing down the fluctuations between (0,π) and (π,0) nematic ground states.« less

  20. Beam-specific planning volumes for scattered-proton lung radiotherapy

    NASA Astrophysics Data System (ADS)

    Flampouri, S.; Hoppe, B. S.; Slopsema, R. L.; Li, Z.

    2014-08-01

    This work describes the clinical implementation of a beam-specific planning treatment volume (bsPTV) calculation for lung cancer proton therapy and its integration into the treatment planning process. Uncertainties incorporated in the calculation of the bsPTV included setup errors, machine delivery variability, breathing effects, inherent proton range uncertainties and combinations of the above. Margins were added for translational and rotational setup errors and breathing motion variability during the course of treatment as well as for their effect on proton range of each treatment field. The effect of breathing motion and deformation on the proton range was calculated from 4D computed tomography data. Range uncertainties were considered taking into account the individual voxel HU uncertainty along each proton beamlet. Beam-specific treatment volumes generated for 12 patients were used: a) as planning targets, b) for routine plan evaluation, c) to aid beam angle selection and d) to create beam-specific margins for organs at risk to insure sparing. The alternative planning technique based on the bsPTVs produced similar target coverage as the conventional proton plans while better sparing the surrounding tissues. Conventional proton plans were evaluated by comparing the dose distributions per beam with the corresponding bsPTV. The bsPTV volume as a function of beam angle revealed some unexpected sources of uncertainty and could help the planner choose more robust beams. Beam-specific planning volume for the spinal cord was used for dose distribution shaping to ensure organ sparing laterally and distally to the beam.

  1. SU-E-T-73: A Robust Proton Beam Therapy Technique for High-Risk Prostate Cancer Whole Pelvis Irradiation: Bilateral Opposed Single Field Uniform Dose (SFUD) Plan with Lateral Penumbra Gradient Matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, X; Wu, H; Rosen, L

    2015-06-15

    Purpose: To develop a clinical feasible and robust proton therapy technique to spare bowel, bladder and rectum for high-risk prostate cancer patients Methods: The study includes 3 high-risk prostate cancer cases treated with bilateral opposed SFUD with lateral penumbra gradient matching technique prescribed to 5400cGyE in 30 fx in our institution. To treat whole pelvic lymph node chain, the complicated ‘H’ shape, using SFUD technique, we divided the target into two sub-targets (LLAT beam treating ‘90 degree T-shape’ and RLAT beam treating ‘: shape’) in Plan A and use lateral penumbra gradient matching at patient’s left side. Vice verse inmore » Plan B. Each plan deliver half of the prescription dose. Beam-specific PTVs were created to take range uncertainty and setup error into account. For daily treatment, patient received four fields from both plan A and B per day. Robustness evaluation were performed in the worst case scenario with 3.5% range uncertainty and 1, 2, 3mm overlap or gap between LLAT and RLAT field matching in Raystation 4.0. All of cases also have a Tomotherapy backup plan approved by physician as a dosimetric comparison. Results: The total treatment time take 15–20mins including IGRT and four fields delivery on ProteusONE, a compact size PBS proton system, compared to 25–30min in traditional Tomotherapy. Robustness analysis shows that this plan technique is insensitive to the range uncertainties. With the lateral gradient matching, 1, 2, 3mm overlap renders only 2.5%, 5.5% and 8% hot or cool spot in the junction areas. Dosimetric comparisons with Tomotherapy show a significant dose reduction in bladder D50%(14.7±9.3Gy), D35%(7.3±5.8Gy); small bowel and rectum average dose(19.6±7.5Gy and 14.5±6.3Gy respectively). Conclusion: The bilateral opposed(SFUD) plan with lateral penumbra gradient matching has been approved to be a safe, robust and efficient treatment option for whole pelvis high-risk prostate cancer patient which

  2. Hydrogen and Nitrogen Broadened Ethane and Propane Absorption Cross Sections

    NASA Astrophysics Data System (ADS)

    Hargreaves, Robert J.; Appadoo, Dominique; Billinghurst, Brant E.; Bernath, Peter F.

    2015-06-01

    High-resolution infrared absorption cross sections are presented for the ν9 band of ethane (C2H6) at 823 cm-1. These cross sections make use of spectra recorded at the Australian Synchrotron using a Fourier transform infrared spectrometer with maximum resolution of 0.00096 cm-1. The spectra have been recorded at 150, 120 and 90 K for hydrogen and nitrogen broadened C2H6. They cover appropriate temperatures, pressures and broadening gases associated with the atmospheres of the Outer Planets and Titan, and will improve atmospheric retrievals. The THz/Far-IR beamline at the Australian Synchrotron is unique in combining a high-resolution Fourier transform spectrometer with an 'enclosive flow cooling' (EFC) cell designed to study molecules at low temperatures. The EFC cell is advantageous at temperatures for which the vapor pressure is very low, such as C2H6 at 90 K. Hydrogen broadened absorption cross sections of propane between 700 and 1200 cm-1 will also be presented based on spectra obtained at the Canadian Light Source.

  3. Broadening the optical bandwidth of quantum cascade lasers using RF noise current perturbations.

    PubMed

    Pinto, Tomás H P; Kirkbride, James M R; Ritchie, Grant A D

    2018-04-15

    We report on the broadening of the optical bandwidth of a distributed feedback quantum cascade laser (QCL) caused by the application of radio frequency (RF) noise to the injection current. The broadening is quantified both via Lamb-dip spectroscopy and the frequency noise power spectral density (PSD). The linewidth of the unperturbed QCL (emitting at ∼5.3  μm) determined by Lamb-dip spectroscopy is 680±170  kHz, and is in reasonable agreement with the linewidth of 460±40  kHz estimated by integrating the PSD measured under the same laser operating conditions. Measurements with both techniques reveal that by mixing the driving current with broadband RF noise the laser lineshape was reproducibly broadened up to ca 6 MHz with an increasing Gaussian contribution. The effects of linewidth broadening are then demonstrated in the two-color coherent transient spectra of nitric oxide.

  4. Spectral broadening of VLF transmitter signals observed on DE 1 - A quasi-electrostatic phenomenon?

    NASA Technical Reports Server (NTRS)

    Inan, U. S.; Bell, T. F.

    1985-01-01

    Spectrally broadened VLF transmitter signals are observed on the DE 1 satellite using alternatively both electric and magnetic field sensors. It is found that at times when the electric field component undergoes significant bandwidth expansion (up to about 110 Hz) the magnetic field component has a bandwidth of less than 10 Hz. The results support the theory that the off-carrier components are quasi-electrostatic in nature. Measurement of the absolute E and B field magnitudes of the broadened signals are used to determine the wave Poynting vector. It is found that the observed power levels can be understood without invoking any strong amplification process that operates in conjunction with the spectral broadening. The implications of this finding in distinguishing among the various possible mechanisms for spectral broadening are discussed.

  5. Wideband nonlinear spectral broadening in ultra-short ultra - silicon rich nitride waveguides.

    PubMed

    Choi, Ju Won; Chen, George F R; Ng, D K T; Ooi, Kelvin J A; Tan, Dawn T H

    2016-06-08

    CMOS-compatible nonlinear optics platforms with high Kerr nonlinearity facilitate the generation of broadband spectra based on self-phase modulation. Our ultra - silicon rich nitride (USRN) platform is designed to have a large nonlinear refractive index and low nonlinear losses at 1.55 μm for the facilitation of wideband spectral broadening. We investigate the ultrafast spectral characteristics of USRN waveguides with 1-mm-length, which have high nonlinear parameters (γ ∼ 550 W(-1)/m) and anomalous dispersion at 1.55 μm wavelength of input light. USRN add-drop ring resonators broaden output spectra by a factor of 2 compared with the bandwidth of input fs laser with the highest quality factors of 11000 and 15000. Two - fold self phase modulation induced spectral broadening is observed using waveguides only 430 μm in length, whereas a quadrupling of the output bandwidth is observed with USRN waveguides with a 1-mm-length. A broadening factor of around 3 per 1 mm length is achieved in the USRN waveguides, a value which is comparatively larger than many other CMOS-compatible platforms.

  6. Wideband nonlinear spectral broadening in ultra-short ultra - silicon rich nitride waveguides

    PubMed Central

    Choi, Ju Won; Chen, George F. R.; Ng, D. K. T.; Ooi, Kelvin J. A.; Tan, Dawn T. H.

    2016-01-01

    CMOS-compatible nonlinear optics platforms with high Kerr nonlinearity facilitate the generation of broadband spectra based on self-phase modulation. Our ultra – silicon rich nitride (USRN) platform is designed to have a large nonlinear refractive index and low nonlinear losses at 1.55 μm for the facilitation of wideband spectral broadening. We investigate the ultrafast spectral characteristics of USRN waveguides with 1-mm-length, which have high nonlinear parameters (γ ∼ 550 W−1/m) and anomalous dispersion at 1.55 μm wavelength of input light. USRN add-drop ring resonators broaden output spectra by a factor of 2 compared with the bandwidth of input fs laser with the highest quality factors of 11000 and 15000. Two – fold self phase modulation induced spectral broadening is observed using waveguides only 430 μm in length, whereas a quadrupling of the output bandwidth is observed with USRN waveguides with a 1-mm-length. A broadening factor of around 3 per 1 mm length is achieved in the USRN waveguides, a value which is comparatively larger than many other CMOS-compatible platforms. PMID:27272558

  7. Helium broadened propane absorption cross sections in the far-IR

    NASA Astrophysics Data System (ADS)

    Wong, A.; Billinghurst, B.; Bernath, P. F.

    2017-09-01

    Infrared absorption spectra for pure and He broadened propane have been recorded in the far-IR region (650-1300 cm-1) at the Canadian Light Source (CLS) facility using either the synchrotron or internal glowbar source depending on the required resolution. The measurements were made for 4 temperatures in the range 202-292 K and for 3 pressures of He broadening gas up to 100 Torr. Infrared absorption cross sections are derived from the spectra and the integrated cross sections are within 10 % of the corresponding values from the Pacific Northwest National Laboratory (PNNL) for all temperatures and pressures.

  8. Chemical Ototoxicity of the Fish Inner Ear and Lateral Line.

    PubMed

    Coffin, Allison B; Ramcharitar, John

    2016-01-01

    Hair cell-driven mechanosensory systems are crucial for successful execution of a number of behaviors in fishes, and have emerged as good models for exploring questions relevant to human hearing. This review focuses on ototoxic effects in the inner ear and lateral line system of fishes. We specifically examine studies where chemical ototoxins such as aminoglycoside antibiotics have been employed as tools to disable the lateral line. Lateral line ablation results in alterations to feeding behavior and orientation to water current in a variety of species. However, neither behavior is abolished in the presence of additional sensory cues, supporting the hypothesis that many fish behaviors are driven by multisensory integration. Within biomedical research, the larval zebrafish lateral line has become an important model system for understanding signaling mechanisms that contribute to hair cell death and for developing novel pharmacological therapies that protect hair cells from ototoxic damage. Furthermore, given that fishes robustly regenerate damaged hair cells, ototoxin studies in fishes have broadened our understanding of the molecular and genetic events in an innately regenerative system, offering potential targets for mammalian hair cell regeneration. Collectively, studies of fish mechanosensory systems have yielded insight into fish behavior and in mechanisms of hair cell death, protection, and regeneration.

  9. Ion therapy for uveal melanoma in new human eye phantom based on GEANT4 toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahdipour, Seyed Ali; Mowlavi, Ali Asghar, E-mail: amowlavi@hsu.ac.ir; ICTP, Associate Federation Scheme, Medical Physics Field, Trieste

    Radiotherapy with ion beams like proton and carbon has been used for treatment of eye uveal melanoma for many years. In this research, we have developed a new phantom of human eye for Monte Carlo simulation of tumors treatment to use in GEANT4 toolkit. Total depth−dose profiles for the proton, alpha, and carbon incident beams with the same ranges have been calculated in the phantom. Moreover, the deposited energy of the secondary particles for each of the primary beams is calculated. The dose curves are compared for 47.8 MeV proton, 190.1 MeV alpha, and 1060 MeV carbon ions that havemore » the same range in the target region reaching to the center of tumor. The passively scattered spread-out Bragg peak (SOBP) for each incident beam as well as the flux curves of the secondary particles including neutron, gamma, and positron has been calculated and compared for the primary beams. The high sharpness of carbon beam's Bragg peak with low lateral broadening is the benefit of this beam in hadrontherapy but it has disadvantages of dose leakage in the tail after its Bragg peak and high intensity of neutron production. However, proton beam, which has a good conformation with tumor shape owing to the beam broadening caused by scattering, can be a good choice for the large-size tumors.« less

  10. Biological and dosimetric characterisation of spatially fractionated proton minibeams

    NASA Astrophysics Data System (ADS)

    Meyer, Juergen; Stewart, Robert D.; Smith, Daniel; Eagle, James; Lee, Eunsin; Cao, Ning; Ford, Eric; Hashemian, Reza; Schuemann, Jan; Saini, Jatinder; Marsh, Steve; Emery, Robert; Dorman, Eric; Schwartz, Jeff; Sandison, George

    2017-12-01

    The biological effectiveness of proton beams varies with depth, spot size and lateral distance from the beam central axis. The aim of this work is to incorporate proton relative biological effectiveness (RBE) and equivalent uniform dose (EUD) considerations into comparisons of broad beam and highly modulated proton minibeams. A Monte Carlo model of a small animal proton beamline is presented. Dose and variable RBE is calculated on a per-voxel basis for a range of energies (30-109 MeV). For an open beam, the RBE values at the beam entrance ranged from 1.02-1.04, at the Bragg peak (BP) from 1.3 to 1.6, and at the distal end of the BP from 1.4 to 2.0. For a 50 MeV proton beam, a minibeam collimator designed to produce uniform dose at the depth of the BP peak, had minimal impact on the open beam RBE values at depth. RBE changes were observed near the surface when the collimator was placed flush with the irradiated object, due to a higher neutron contribution derived from proton interactions with the collimator. For proton minibeams, the relative mean RBE weighted entrance dose (RWD) was ~25% lower than the physical mean dose. A strong dependency of the EUD with fraction size was observed. For 20 Gy fractions, the EUD varied widely depending on the radiosensitivity of the cells. For radiosensitive cells, the difference was up to ~50% in mean dose and ~40% in mean RWD and the EUD trended towards the valley dose rather than the mean dose. For comparative studies of uniform dose with spatially fractionated proton minibeams, EUD derived from a per-voxel RWD distribution is recommended for biological assessments of reproductive cell survival and related endpoints.

  11. Biological and dosimetric characterisation of spatially fractionated proton minibeams.

    PubMed

    Meyer, Juergen; Stewart, Robert D; Smith, Daniel; Eagle, James; Lee, Eunsin; Cao, Ning; Ford, Eric; Hashemian, Reza; Schuemann, Jan; Saini, Jatinder; Marsh, Steve; Emery, Robert; Dorman, Eric; Schwartz, Jeff; Sandison, George

    2017-11-21

    The biological effectiveness of proton beams varies with depth, spot size and lateral distance from the beam central axis. The aim of this work is to incorporate proton relative biological effectiveness (RBE) and equivalent uniform dose (EUD) considerations into comparisons of broad beam and highly modulated proton minibeams. A Monte Carlo model of a small animal proton beamline is presented. Dose and variable RBE is calculated on a per-voxel basis for a range of energies (30-109 MeV). For an open beam, the RBE values at the beam entrance ranged from 1.02-1.04, at the Bragg peak (BP) from 1.3 to 1.6, and at the distal end of the BP from 1.4 to 2.0. For a 50 MeV proton beam, a minibeam collimator designed to produce uniform dose at the depth of the BP peak, had minimal impact on the open beam RBE values at depth. RBE changes were observed near the surface when the collimator was placed flush with the irradiated object, due to a higher neutron contribution derived from proton interactions with the collimator. For proton minibeams, the relative mean RBE weighted entrance dose (RWD) was ~25% lower than the physical mean dose. A strong dependency of the EUD with fraction size was observed. For 20 Gy fractions, the EUD varied widely depending on the radiosensitivity of the cells. For radiosensitive cells, the difference was up to ~50% in mean dose and ~40% in mean RWD and the EUD trended towards the valley dose rather than the mean dose. For comparative studies of uniform dose with spatially fractionated proton minibeams, EUD derived from a per-voxel RWD distribution is recommended for biological assessments of reproductive cell survival and related endpoints.

  12. A correction scheme for a simplified analytical random walk model algorithm of proton dose calculation in distal Bragg peak regions

    NASA Astrophysics Data System (ADS)

    Yao, Weiguang; Merchant, Thomas E.; Farr, Jonathan B.

    2016-10-01

    The lateral homogeneity assumption is used in most analytical algorithms for proton dose, such as the pencil-beam algorithms and our simplified analytical random walk model. To improve the dose calculation in the distal fall-off region in heterogeneous media, we analyzed primary proton fluence near heterogeneous media and propose to calculate the lateral fluence with voxel-specific Gaussian distributions. The lateral fluence from a beamlet is no longer expressed by a single Gaussian for all the lateral voxels, but by a specific Gaussian for each lateral voxel. The voxel-specific Gaussian for the beamlet of interest is calculated by re-initializing the fluence deviation on an effective surface where the proton energies of the beamlet of interest and the beamlet passing the voxel are the same. The dose improvement from the correction scheme was demonstrated by the dose distributions in two sets of heterogeneous phantoms consisting of cortical bone, lung, and water and by evaluating distributions in example patients with a head-and-neck tumor and metal spinal implants. The dose distributions from Monte Carlo simulations were used as the reference. The correction scheme effectively improved the dose calculation accuracy in the distal fall-off region and increased the gamma test pass rate. The extra computation for the correction was about 20% of that for the original algorithm but is dependent upon patient geometry.

  13. A simplified analytical random walk model for proton dose calculation

    NASA Astrophysics Data System (ADS)

    Yao, Weiguang; Merchant, Thomas E.; Farr, Jonathan B.

    2016-10-01

    We propose an analytical random walk model for proton dose calculation in a laterally homogeneous medium. A formula for the spatial fluence distribution of primary protons is derived. The variance of the spatial distribution is in the form of a distance-squared law of the angular distribution. To improve the accuracy of dose calculation in the Bragg peak region, the energy spectrum of the protons is used. The accuracy is validated against Monte Carlo simulation in water phantoms with either air gaps or a slab of bone inserted. The algorithm accurately reflects the dose dependence on the depth of the bone and can deal with small-field dosimetry. We further applied the algorithm to patients’ cases in the highly heterogeneous head and pelvis sites and used a gamma test to show the reasonable accuracy of the algorithm in these sites. Our algorithm is fast for clinical use.

  14. SU-E-T-353: Verification of Water Equivalent Thickness (WET) and Water Equivalent Spreadness (WES) of Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demez, N; Lee, T; Keppel, Cynthia

    Purpose: To verify calculated water equivalent thickness (WET) and water equivalent spreadness (WES) in various tissue equivalent media for proton therapy Methods: Water equivalent thicknesses (WET) of tissue equivalent materials have been calculated using the Bragg-Kleeman rule. Lateral spreadness and fluence reduction of proton beams both in those media were calculated using proton loss model (PLM) algorithm. In addition, we calculated lateral spreadness ratios with respect to that in water at the same WET depth and so the WES was defined. The WETs of those media for different proton beam energies were measured using MLIC (Multi-Layered Ionization Chamber). Also, fluencemore » and field sizes in those materials of various thicknesses were measured with ionization chambers and films Results: Calculated WETs are in agreement with measured WETs within 0.5%. We found that water equivalent spreadness (WES) is constant and the fluence and field size measurements verify that fluence can be estimated using the concept of WES. Conclusions: Calculation of WET based on the Bragg-Kleeman rule as well as the constant WES of proton beams for tissue equivalent phantoms can be used to predict fluence and field sizes at the depths of interest both in tissue equivalent media accurately for clinically available protonenergies.« less

  15. PULSE BROADENING MEASUREMENTS FROM THE GALACTIC CENTER PULSAR J1745-2900

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spitler, L. G.; Lee, K. J.; Eatough, R. P.

    2014-01-01

    We present temporal scattering measurements of single pulses and average profiles of PSR J1745-2900, a magnetar recently discovered only 3 arcsec away from Sagittarius A* (Sgr A*), from 1.2 to 18.95 GHz using the Effelsberg 100 m Radio Telescope, the Nançay Decimetric Radio Telescope, and the Jodrell Bank Lovell Telescope. Single pulse analysis shows that the integrated pulse profile above 2 GHz is dominated by pulse jitter, while below 2 GHz the pulse profile shape is dominated by scattering. This is the first object in the Galactic center (GC) with both pulse broadening and angular broadening measurements. We measure a pulse broadening time scale at 1 GHzmore » of τ{sub 1GHz} = 1.3 ± 0.2 and pulse broadening spectral index of α = –3.8 ± 0.2, which is several orders of magnitude lower than predicted by the NE2001 model (Cordes and Lazio 2002). If this scattering time scale is representative of the GC as a whole, then previous surveys should have detected many pulsars. The lack of detections implies either our understanding of scattering in the GC is incomplete or there are fewer pulsars in the GC than previously predicted. Given that magnetars are a rare class of radio pulsar, there are likely many canonical and millisecond pulsars in the GC, and not surprisingly, scattering in the GC is spatially complex.« less

  16. Eye tracking and gating system for proton therapy of orbital tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Dongho; Yoo, Seung Hoon; Moon, Sung Ho

    2012-07-15

    Purpose: A new motion-based gated proton therapy for the treatment of orbital tumors using real-time eye-tracking system was designed and evaluated. Methods: We developed our system by image-pattern matching, using a normalized cross-correlation technique with LabVIEW 8.6 and Vision Assistant 8.6 (National Instruments, Austin, TX). To measure the pixel spacing of an image consistently, four different calibration modes such as the point-detection, the edge-detection, the line-measurement, and the manual measurement mode were suggested and used. After these methods were applied to proton therapy, gating was performed, and radiation dose distributions were evaluated. Results: Moving phantom verification measurements resulted in errorsmore » of less than 0.1 mm for given ranges of translation. Dosimetric evaluation of the beam-gating system versus nongated treatment delivery with a moving phantom shows that while there was only 0.83 mm growth in lateral penumbra for gated radiotherapy, there was 4.95 mm growth in lateral penumbra in case of nongated exposure. The analysis from clinical results suggests that the average of eye movements depends distinctively on each patient by showing 0.44 mm, 0.45 mm, and 0.86 mm for three patients, respectively. Conclusions: The developed automatic eye-tracking based beam-gating system enabled us to perform high-precision proton radiotherapy of orbital tumors.« less

  17. Broadening and Shifting of Atomic Strontium and Diatomic Bismuth Spectral Lines

    DTIC Science & Technology

    2003-05-01

    Upper Energy State, Ek kA q kA q jA jA Figure 2-4. Transition between the lower and upper energy states of an atom or molecule affected by quenching...broadened by both lifetime effects and quenching. This profile has a F HM given by Equation 2-16. W q q jA kA qq vNA (2-17) where N is the...December 1998 (AD-A361408)(9921302). 42. Predoi-Cross, Adriana , J. P. Bouanich, D. C. Benner, A. D. May, and J. R. Drummond. “Broadening, Shifting

  18. Observation and Study of Proton Aurora by using Scanning Photometer

    NASA Astrophysics Data System (ADS)

    Mochizuki, T.; Ono, T.; Kadokura, A.; Sato, N.

    2009-12-01

    The proton auroras have significant differences from electron auroras in their spectral shape. They show Doppler-shifted and broadened spectra: the spectra have Doppler-shifted (~0.5 nm shorter) peak and both bluewing (~2-4 nm) and redwing (~1.5 nm) extending. Energy spectra of precipitating protons have been estimated from this shape. Recently it is found that the intensity in the extent of the blue wing reflects more effectively by the change of the mean energy of precipitating protons than the shift of peak wavelength [Lanchester et al., 2003]. Another character of the H-beta aurora is that it is diffuse form because a proton becomes hydrogen atom due to a charge-exchange reaction with atmospheric constituent and then possible to move across the magnetic field line. By using a scanning photometer, the movement of the proton auroral belt and change of a spectrum shape associated with the variation of proton source region due to storm and substorm were reported, however, not discussed in detail yet [Deehr and Lummerzheim, 2001]. The purpose of this study is to obtain the detail characteristics of H-beta aurora for understanding of source region of energetic protons in the magnetosphere. For this purpose, a new meridian-scanning photometer (SPM) was installed at Husafell station in Iceland in last summer season and Syowa Station, Antarctica. It will contribute to investigate the distribution of energetic protons and plasma waves which cause the pitch angle scattering in the magnetosphere. The meridian-scanning photometer is able to observe at five wavelengths for H-beta emission. One channel is to measure the background level. By analyzing the data obtained by the SPM, the H-beta spectrum can be estimated by fitting a model function with it. Then it is possible to obtain distribution of precipitating protons in north-south direction. It is also possible to estimate an energy spectrum of precipitating proton, simultaneously. The instrumental parameters of the SPM is

  19. Extraction of inhomogeneous broadening and nonradiative losses in InAs quantum-dot lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, Weng W.; Liu, Alan Y.; Gossard, Arthur C.

    2015-10-28

    We present a method to quantify inhomogeneous broadening and nonradiative losses in quantum dot lasers by comparing the gain and spontaneous emission results of a microscopic laser theory with measurements made on 1.3 μm InAs quantum-dot lasers. Calculated spontaneous-emission spectra are first matched to those measured experimentally to determine the inhomogeneous broadening in the experimental samples. This is possible because treatment of carrier scattering at the level of quantum kinetic equations provides the homogeneously broadened spectra without use of free parameters, such as the dephasing rate. Thus we then extract the nonradiative recombination current associated with the quantum-dot active regionmore » from a comparison of measured and calculated gain versus current relations.« less

  20. Extraction of inhomogeneous broadening and nonradiative losses in InAs quantum-dot lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, Weng W., E-mail: wwchow@sandia.gov; Liu, Alan Y.; Gossard, Arthur C.

    2015-10-26

    We present a method to quantify inhomogeneous broadening and nonradiative losses in quantum dot lasers by comparing the gain and spontaneous emission results of a microscopic laser theory with measurements made on 1.3 μm InAs quantum-dot lasers. Calculated spontaneous-emission spectra are first matched to those measured experimentally to determine the inhomogeneous broadening in the experimental samples. This is possible because treatment of carrier scattering at the level of quantum kinetic equations provides the homogeneously broadened spectra without use of free parameters, such as the dephasing rate. We then extract the nonradiative recombination current associated with the quantum-dot active region from amore » comparison of measured and calculated gain versus current relations.« less

  1. Effects of target plasma electron-electron collisions on correlated motion of fragmented protons.

    PubMed

    Barriga-Carrasco, Manuel D

    2006-02-01

    The objective of the present work is to examined the effects of plasma target electron-electron collisions on H2 + protons traversing it. Specifically, the target is deuterium in a plasma state with temperature Te=10 eV and density n=10(23) cm(-3), and proton velocities are vp=vth, vp=2vth, and vp=3vth, where vth is the electron thermal velocity of the target plasma. Proton interactions with plasma electrons are treated by means of the dielectric formalism. The interactions among close protons through plasma electronic medium are called vicinage forces. It is checked that these forces always screen the Coulomb explosions of the two fragmented protons from the same H2 + ion decreasing their relative distance. They also align the interproton vector along the motion direction, and increase the energy loss of the two protons at early dwell times while for longer times the energy loss tends to the value of two isolated protons. Nevertheless, vicinage forces and effects are modified by the target electron collisions. These collisions enhance the calculated self-stopping and vicinage forces over the collisionless results. Regarding proton correlated motion, when these collisions are included, the interproton vector along the motion direction overaligns at slower proton velocities (vp=vth) and misaligns for faster ones (vp=2vth, vp=3vth). They also contribute to a great extend to increase the energy loss of the fragmented H2 + ion. This later effect is more significant in reducing projectile velocity.

  2. Windowed multipole for cross section Doppler broadening

    NASA Astrophysics Data System (ADS)

    Josey, C.; Ducru, P.; Forget, B.; Smith, K.

    2016-02-01

    This paper presents an in-depth analysis on the accuracy and performance of the windowed multipole Doppler broadening method. The basic theory behind cross section data is described, along with the basic multipole formalism followed by the approximations leading to windowed multipole method and the algorithm used to efficiently evaluate Doppler broadened cross sections. The method is tested by simulating the BEAVRS benchmark with a windowed multipole library composed of 70 nuclides. Accuracy of the method is demonstrated on a single assembly case where total neutron production rates and 238U capture rates compare within 0.1% to ACE format files at the same temperature. With regards to performance, clock cycle counts and cache misses were measured for single temperature ACE table lookup and for windowed multipole. The windowed multipole method was found to require 39.6% more clock cycles to evaluate, translating to a 7.9% performance loss overall. However, the algorithm has significantly better last-level cache performance, with 3 fewer misses per evaluation, or a 65% reduction in last-level misses. This is due to the small memory footprint of the windowed multipole method and better memory access pattern of the algorithm.

  3. Fan-beam intensity modulated proton therapy.

    PubMed

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-11-01

    falloff of a proton depth-dose distribution was found to provide sufficient control over the dose distribution to meet objectives, even with coarse lateral resolution and channel widths as large as 2 cm. Treatment plans on both phantom and patient data show that dose conformity suffers when treatments are delivered from less than approximately ten angles. Treatment time for a sample prostate delivery is estimated to be on the order of 10 min, and neutron production is estimated to be comparable to that found for existing collimated systems. Fan beam proton therapy is a method of delivering intensity modulated proton therapy which may be employed as an alternative to magnetic scanning systems. A fan beam of protons can be created by a set of quadrupole magnets and modified by a dual-purpose range and intensity modulator. This can be used to deliver inversely planned treatments, with spot intensities optimized to meet user defined dose objectives. Additionally, the ability of a fan beam delivery system to effectively treat multiple beam spots simultaneously may provide advantages as compared to spot scanning deliveries.

  4. Extensional-wave stopband broadening across the joint of pipes of different thickness.

    PubMed

    Su, Yuanda; Tang, Xiaoming; Liu, Yukai; Xu, Song; Zhuang, Chunxi

    2015-11-01

    The stopband of pipe extensional waves is an interesting natural phenomenon. This study demonstrates an important extension of this phenomenon. That is, the stopband can be effectively broadened by transmitting the waves across the joint of pipes of different thickness. The theoretical and experimental results reveal the detailed process of stopband forming along the pipe and the band broadening across the pipe joint. The result can be utilized to provide a method for logging while drilling acoustic isolation design.

  5. [The application of Doppler broadening and Doppler shift to spectral analysis].

    PubMed

    Xu, Wei; Fang, Zi-shen

    2002-08-01

    The distinction between Doppler broadening and Doppler shift has analyzed, Doppler broadening locally results from the distribution of velocities of the emitting particles, the line width gives the information on temperature of emitting particles. Doppler shift results when the emitting particles have a bulk non random flow velocity in a particular direction, the drift of central wavelength gives the information on flow velocity of emitting particles, and the Doppler shift only drifts the profile of line without changing the width. The difference between Gaussian fitting and the distribution of chord-integral line shape have also been discussed. The distribution of H alpha spectral line shape has been derived from the surface of limiter in HT-6M Tokamak with optical spectroscope multichannel analysis (OSMA), the result by double Gaussian fitting shows that the line shape make up of two port, the emitting of reflect particles with higher energy and the release particle from the limiter surface. Ion temperature and recycling particle flow velocity have been obtained from Doppler broadening and Doppler shift.

  6. A Solar-flux Line-broadening Analysis

    NASA Astrophysics Data System (ADS)

    Gray, David F.

    2018-04-01

    The Fourier technique of extracting rotation rates and macroturbulence-velocity dispersions from the shapes and broadening of stellar spectral lines is applied to the solar-flux spectrum. Lines with equivalent widths less than ∼0.055 Å are shown to have the advantage over stronger lines by allowing the residual transform to be followed to higher frequencies. The standard radial-tangential macroturbulence formulation fits the observations well and yields an equatorial velocity that is within a few percent of the correct rate.

  7. Quantitative assessment of anatomical change using a virtual proton depth radiograph for adaptive head and neck proton therapy.

    PubMed

    Wang, Peng; Yin, Lingshu; Zhang, Yawei; Kirk, Maura; Song, Gang; Ahn, Peter H; Lin, Alexander; Gee, James; Dolney, Derek; Solberg, Timothy D; Maughan, Richard; McDonough, James; Teo, Boon-Keng Kevin

    2016-03-08

    The aim of this work is to demonstrate the feasibility of using water-equivalent thickness (WET) and virtual proton depth radiographs (PDRs) of intensity corrected cone-beam computed tomography (CBCT) to detect anatomical change and patient setup error to trigger adaptive head and neck proton therapy. The planning CT (pCT) and linear accelerator (linac) equipped CBCTs acquired weekly during treatment of a head and neck patient were used in this study. Deformable image registration (DIR) was used to register each CBCT with the pCT and map Hounsfield units (HUs) from the planning CT (pCT) onto the daily CBCT. The deformed pCT is referred as the corrected CBCT (cCBCT). Two dimensional virtual lateral PDRs were generated using a ray-tracing technique to project the cumulative WET from a virtual source through the cCBCT and the pCT onto a virtual plane. The PDRs were used to identify anatomic regions with large variations in the proton range between the cCBCT and pCT using a threshold of 3 mm relative difference of WET and 3 mm search radius criteria. The relationship between PDR differences and dose distribution is established. Due to weight change and tumor response during treatment, large variations in WETs were observed in the relative PDRs which corresponded spatially with an increase in the number of failing points within the GTV, especially in the pharynx area. Failing points were also evident near the posterior neck due to setup variations. Differences in PDRs correlated spatially to differences in the distal dose distribution in the beam's eye view. Virtual PDRs generated from volumetric data, such as pCTs or CBCTs, are potentially a useful quantitative tool in proton therapy. PDRs and WET analysis may be used to detect anatomical change from baseline during treatment and trigger further analysis in adaptive proton therapy.

  8. LBQ2D, Extending the Line Broadened Quasilinear Model to TAE-EP Interaction

    NASA Astrophysics Data System (ADS)

    Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert

    2012-10-01

    The line broadened quasilinear model was proposed and tested on the one dimensional electrostatic case of the bump on tailfootnotetextH.L Berk, B. Breizman and J. Fitzpatrick, Nucl. Fusion, 35:1661, 1995 to study the wave particle interaction. In conventional quasilinear theory, the sea of overlapping modes evolve with time as the particle distribution function self consistently undergo diffusion in phase space. The line broadened quasilinear model is an extension to the conventional theory in a way that allows treatment of isolated modes as well as overlapping modes by broadening the resonant line in phase space. This makes it possible to treat the evolution of modes self consistently from onset to saturation in either case. We describe here the model denoted by LBQ2D which is an extension of the proposed one dimensional line broadened quasilinear model to the case of TAEs interacting with energetic particles in two dimensional phase space, energy as well as canonical angular momentum. We study the saturation of isolated modes in various regimes and present the analytical derivation and numerical results. Finally, we present, using ITER parameters, the case where multiple modes overlap and describe the techniques used for the numerical treatment.

  9. Monte Carlo simulations of a low energy proton beamline for radiobiological experiments.

    PubMed

    Dahle, Tordis J; Rykkelid, Anne Marit; Stokkevåg, Camilla H; Mairani, Andrea; Görgen, Andreas; Edin, Nina J; Rørvik, Eivind; Fjæra, Lars Fredrik; Malinen, Eirik; Ytre-Hauge, Kristian S

    2017-06-01

    In order to determine the relative biological effectiveness (RBE) of protons with high accuracy, radiobiological experiments with detailed knowledge of the linear energy transfer (LET) are needed. Cell survival data from high LET protons are sparse and experiments with low energy protons to achieve high LET values are therefore required. The aim of this study was to quantify LET distributions from a low energy proton beam by using Monte Carlo (MC) simulations, and to further compare to a proton beam representing a typical minimum energy available at clinical facilities. A Markus ionization chamber and Gafchromic films were employed in dose measurements in the proton beam at Oslo Cyclotron Laboratory. Dose profiles were also calculated using the FLUKA MC code, with the MC beam parameters optimized based on comparisons with the measurements. LET spectra and dose-averaged LET (LET d ) were then estimated in FLUKA, and compared with LET calculated from an 80 MeV proton beam. The initial proton energy was determined to be 15.5 MeV, with a Gaussian energy distribution of 0.2% full width at half maximum (FWHM) and a Gaussian lateral spread of 2 mm FWHM. The LET d increased with depth, from approximately 5 keV/μm in the entrance to approximately 40 keV/μm in the distal dose fall-off. The LET d values were considerably higher and the LET spectra were much narrower than the corresponding spectra from the 80 MeV beam. MC simulations accurately modeled the dose distribution from the proton beam and could be used to estimate the LET at any position in the setup. The setup can be used to study the RBE for protons at high LET d , which is not achievable in clinical proton therapy facilities.

  10. Ab Initio Computation of Dynamical Properties: Pressure Broadening

    NASA Astrophysics Data System (ADS)

    Wiesenfeld, Laurent; Drouin, Brian

    2014-06-01

    Rotational spectroscopy of polar molecules is the main observational tool in many areas of astrophysics, for gases of low densities (n ˜ 102 - 108 cm-3). Spectral line shapes in astrophysical media are largely dominated by turbulence-induced Doppler effects and natural line broadening are negligible. However line broadening remains an important tool for denser gases, like planetary high atmospheres. Understanding the excitation schemes of polar molecules requires the knowledge of excitation transfer rate due to collisional excitation, between the polar molecule and the ambient gas, usually H2. Transport properties in ionized media also require a precise knowledge of momentum transfer rates by elastic collisions. In order to assess the theoretically computed cross section and energy/momentum transfer rates, direct absolute experiments are scarce. The best way is to measure not individual scattering events but rather the global effect of the buffer gas, thanks to the pressure broadening cross sections, whose magnitude can be measured without any scaling parameters. At low temperatures, both elastic and inelastic scattering amplitudes are tested. At higher temperature, depending on the interaction strength, only inelastic scattering cross section are shown to play a significant role 1 ,2. Thanks to the advances of computer capabilities, it has become practical to compute spectral line parameters fromab initio quantum chemistry. In particular, the theory of rotational line broadening is readily incorporated into scattering quantum dynamical theory, like close-coupling schemes. The only approximations used in the computation are the isolated collision/isolated line approximations. We compute the non-binding interaction potential with high precision quantum chemistry and fit the resulting ab initio points onto a suitable functional. We have recently computed several such systems, for molecules in H2 buffer gas: H2O,3 H2CO,4 HCO+ .5 Detailed computations taking into

  11. The effect of broadened linewidth induced by dispersion on the performance of resonant optical gyroscope

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Li, Wenxiu; Han, Peng; Chang, Xiaoyang; Liu, Jiaming; Lin, Jian; Xue, Xia; Zhu, Fang; Yang, Yang; Liu, Xiaojing; Zhang, Xiaofu; Huang, Anping; Xiao, Zhisong; Fang, Jiancheng

    2018-01-01

    Anomalous dispersion enhancement physical mechanism for Sagnac effect is described by special relativity derivation, and three kinds of definitions of minimum detectable angular rate of resonance optical gyroscope (ROG) are compared and the relations among them are investigated. The effect of linewidth broadening induced by anomalous dispersion on the sensitivity of ROG is discussed in this paper. Material dispersion-broadened resonance linewidth deteriorates the performance of a passive ROG and dispersion enhancement effect, while the sensitivity of a structural dispersion ROG is enhanced by two orders of magnitude even considering the dispersion-broadened resonance linewidth.

  12. Origins of spectral broadening of incoherent waves: Catastrophic process of coherence degradation

    NASA Astrophysics Data System (ADS)

    Xu, G.; Garnier, J.; Rumpf, B.; Fusaro, A.; Suret, P.; Randoux, S.; Kudlinski, A.; Millot, G.; Picozzi, A.

    2017-08-01

    We revisit the mechanisms underlying the process of spectral broadening of incoherent optical waves propagating in nonlinear media on the basis of nonequilibrium thermodynamic considerations. A simple analysis reveals that a prerequisite for the existence of a significant spectral broadening of the waves is that the linear part of the energy (Hamiltonian) has different contributions of opposite signs. It turns out that, at variance with the expected soliton turbulence scenario, an increase of the amount of disorder (incoherence) in the system does not require the generation of a coherent soliton structure. We illustrate the idea by considering the propagation of two wave components in an optical fiber with opposite dispersion coefficients. A wave turbulence approach to the problem reveals that the increase of kinetic energy in one component is offset by the negative reduction in the other component, so that the waves exhibit, as a general rule, virtually unlimited spectral broadening. More precisely, a self-similar solution of the kinetic equations reveals that the spectra of the incoherent waves tend to relax toward a homogeneous distribution in the wake of a front that propagates in frequency space with a decelerating velocity. We discuss this catastrophic process of spectral broadening in the light of different important phenomena, in particular supercontinuum generation, soliton turbulence, wave condensation, and the runaway motion of mechanical systems composed of positive and negative masses.

  13. Importance of Doppler broadening in Compton scatter imaging techniques

    NASA Astrophysics Data System (ADS)

    Rao, Donepudi V.; Takeda, Tohoru; Itai, Yuji; Seltzer, S. M.; Hubbell, John H.; Zeniya, Tsutomu; Akatsuka, Takao; Cesareo, Roberto; Brunetti, Antonio; Gigante, Giovanni E.

    2001-12-01

    Compton scattering is a potential tool for the determination of bone mineral content or tissue density for dose planning purposes, and requires knowledge of the energy distribution of the X-rays through biological materials of medical interest in the X-ray and (gamma) -ray region. The energy distribution is utilized in a number of ways in diagnostic radiology, for example, in determining primary photon spectra, electron densities in separate volumes, and in tomography and imaging. The choice of the X-ray energy is more related to X-ray absorption, where as that of the scattering angle is more related to geometry. The evaluation of all the contributions are mandatory in Compton profile measurements and is important in X-ray imaging systems in order to achieve good results. In view of this, Compton profile cross-sections for few biological materials are estimated at nineteen K(alpha) X-ray energies and 60 keV (Am-241) photons. Energy broadening, geometrical broadening from 1 to 180 degree(s), FWHM of J(Pz) and FWHM of Compton energy broadening has been evaluated at various incident photon energies. These values are estimated around the centroid of the Compton profile with an energy interval of 0.1 keV and 1.0 keV for 60 keV photons. The interaction cross sections for the above materials are estimated using fractions-by-weight of the constituent elements. Input data for these tables are purely theoretical.

  14. Single-energy intensity modulated proton therapy

    NASA Astrophysics Data System (ADS)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-09-01

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described. The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods. It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan. When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.

  15. Single-energy intensity modulated proton therapy.

    PubMed

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-10-07

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described.The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods.It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan.When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.

  16. Self- and foreign-gas broadening of ethane lines determined from diode laser measurements at 12 microns

    NASA Technical Reports Server (NTRS)

    Blass, W. E.; Halsey, G. W.; Jennings, D. E.

    1987-01-01

    Self- and foreign-gas broadening of ethane lines have been measured in the nu9 band at 12 microns. A coefficient of 0.125 per cm atm was determined for self broadening. Foreign-gas broadening coefficients determined are (in per cm atm) 0.090 for N2, 0.069 for He, 0.068 for Ar, 0.108 for H2, and 0.096 for CH4. Results are given for a sample temperature of 296 K.

  17. Experimental Air-Broadened Line Parameters in the nu2 Band of CH3D

    NASA Technical Reports Server (NTRS)

    Cross, Adriana Predoi; Brawley-Tremblay, Shannon; Povey, Chad; Smith, Mary Ann H.

    2007-01-01

    In this study we report the first experimental measurements of air-broadening and air-induced pressure-shift coefficients for approximately 378 transitions in the nu2 fundamental band of CH3D. These results were obtained from analysis of 17 room temperature laboratory absorption spectra recorded at 0.0056 cm(exp -1) resolution using the McMath-Pierce Fourier transform spectrometer located on Kitt Peak, Arizona. Three absorption cells with path lengths of 10.2, 25 and 150 cm were used to record the spectra. The total sample pressures ranged from 0.129x10(exp -2) to 52.855x10(exp -2) atm with CH3D volume mixing ratios of approximately 0.0109 in air. The spectra were analyzed using a multispectrum non-linear least-squares fitting technique. We report measurements for air pressure-broadening coefficients for transitions with quantum numbers as high as J" = 20 and K = 15, where K" = K' equivalent to K (for a parallel band). The measured air broadening coefficients range from 0.0205 to 0.0835 cm(exp -1) atm(exp -1) at 296 K. All the measured pressure-shift coefficients are negative and are found to vary from about -0.0005 to -0.0080 cm(exp -1) atm(exp -1) at the temperature of the spectra. We have examined the dependence of the measured broadening and shift parameters on the J" and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = -J", J" and J" + 1 in the (sup Q)P- (sup Q)Q-, and (sup Q)R-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.4%.

  18. Measurements of pressure-broadening coefficients of NO and O3 using a computerized tunable diode laser spectrometer

    NASA Technical Reports Server (NTRS)

    Lundqvist, S.; Margolis, J.; Reid, J.

    1982-01-01

    Foreign-gas broadening coefficients have been measured for selected lines of ozone in the 9.2 micron region and for several R-branch lines of nitric oxide in the 5.4 micron region using a computerized tunable diode laser spectrometer. The data analysis showed the importance of fitting a Lorentzian line shape out to several times the halfwidth to obtain a correct value of the broadening coefficient. The measured broadening coefficients of nitric oxide were in good agreement with those obtained by Abels and Shaw (1966). The results of the analysis of eleven lines in the v-1 band and five lines in the v-3 band of ozone show a transition-dependent broadening coefficient. The average value of the foreign-gas broadening ceofficients for the measured v-1 and v-3 lines are 0.075 and 0.073 per cm per atm, respectively.

  19. Proton Radiography Imager:Generates Synthetic Proton Radiographs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilks, Scott C.; Black, Mason R.

    ProRad is a computer program that is used to generate synthetic images of proton (or other charged particles) radiographs. The proton radiographs arc images that arc obtained by sending energetic protons (or electrons or positrons, for example) through 11 plasma where electric and/or magnetic fields alter the particles trajectory, Dnd the variations me imaged on RC film, image plate, or equivalent

  20. Initial characterization of an Experimental Referee Broadened-Specification (ERBS) aviation turbine fuel

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Seng, G. T.

    1980-01-01

    Characterization data and a hydrocarbon compositional analysis are presented for a research test fuel designated as an experimental referee broadened-specification aviation turbine fuel. This research fuel, which is a special blend of kerosene and hydrotreated catalytic gas oil, is a hypothetical representation of a future fuel should it become necessary to broaden current kerojet specifications. It is used as a reference fuel in research investigations into the effects of fuel property variations on the performance and durability of jet aircraft components, including combustors and fuel systems.

  1. SU-C-204-02: Behavioral and Pathologic Differences in Mice Exposed to Proton Minibeam Arrays Versus Proton Broad Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eley, J; Zhang, C; Wolfe, T

    Purpose: Minibeam therapy using protons or light-ions offers a theoretical reduction of biologic damage to tissues upstream of a tumor compared to broad-beam therapy while providing equal tumor control. The purpose of this study was to investigate behavioral and pathologic differences in mice after exposure of healthy brain to proton minibeam arrays versus proton broad beams. Methods: Twenty-four C57BL/6J juvenile mice were divided into 5 study arms: sham irradiation (NoRT), broad-beam 10 Gy (BB10), minibeam 10Gy (MB10), broad-beam 30 Gy (BB30), and minibeam 30 Gy (MB30), approximate integral entrance doses. Circular beams of 100 MeV protons with 7-mm diameter weremore » delivered laterally through the brain, either as broad beams or as planar minibeam arrays having 300-micron beam width and 1-mm spacing on center. Mice were followed for 8 months using standard behavioral tests. Pathologic studies were carried out at 8 months after irradiation. Results: Peak entrance doses were 10.0, 23.8, 30.0, and 71.3 Gy for mice in BB10, MB10, BB30, and MB30, respectively. Despite the high single-fraction doses, no animals showed signs of radiation sickness or neurophysical impairment over the 8-month study duration. The Morris water maze alternate-starting-position trial showed significant evidence of better spatial learning for mice in MB10 versus BB10 (p=0.026), but other behavioral tests showed no significant differences. Glial fibrillary acidic protein stains showed gliosis in arms BB10, BB30, and MB30 but not in NoRT or MB10. A secondary finding was categorically higher epilation in broad-beam arms compared with their minibeam dose counterparts. Conclusion: Our findings indicate trends that, despite the higher peak doses, proton minibeam therapy can reduce radiation side effects in shallow tissue and brain compared to proton broadbeam therapy. As the behavioral findings were mixed, confirmation studies are needed with larger numbers of animals. AAPM Research Seed

  2. The Frequency Evolution of Interstellar Pulse Broadening from Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Löhmer, O.; Mitra, D.; Gupta, Y.; Kramer, M.; Ahuja, A.

    2004-10-01

    Using radio pulsars as probes of the interstellar medium (ISM) we study the frequency evolution of interstellar scattering. The frequency dependence of scatter broadening times, τsc, for most of the pulsars with low and intermediate dispersion measures (DM ≲ 400 pc cm-3) is consistent with the Kolmogorov spectrum of electron density fluctuations in a turbulent medium. In contrast, the measured τsc's for highly dispersed pulsars in the central region of the Galaxy are larger than expected and show a spectrum which is flatter than the Kolmogorov law. We analyse the first measurements of spectral indices of scatter broadening over the full known DM range and discuss possible explanations for the anomalous scattering behaviour along peculiar lines of sight (LOS).

  3. Measurements of neutron dose equivalent for a proton therapy center using uniform scanning proton beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Yuanshui; Liu Yaxi; Zeidan, Omar

    Purpose: Neutron exposure is of concern in proton therapy, and varies with beam delivery technique, nozzle design, and treatment conditions. Uniform scanning is an emerging treatment technique in proton therapy, but neutron exposure for this technique has not been fully studied. The purpose of this study is to investigate the neutron dose equivalent per therapeutic dose, H/D, under various treatment conditions for uniform scanning beams employed at our proton therapy center. Methods: Using a wide energy neutron dose equivalent detector (SWENDI-II, ThermoScientific, MA), the authors measured H/D at 50 cm lateral to the isocenter as a function of proton range,more » modulation width, beam scanning area, collimated field size, and snout position. They also studied the influence of other factors on neutron dose equivalent, such as aperture material, the presence of a compensator, and measurement locations. They measured H/D for various treatment sites using patient-specific treatment parameters. Finally, they compared H/D values for various beam delivery techniques at various facilities under similar conditions. Results: H/D increased rapidly with proton range and modulation width, varying from about 0.2 mSv/Gy for a 5 cm range and 2 cm modulation width beam to 2.7 mSv/Gy for a 30 cm range and 30 cm modulation width beam when 18 Multiplication-Sign 18 cm{sup 2} uniform scanning beams were used. H/D increased linearly with the beam scanning area, and decreased slowly with aperture size and snout retraction. The presence of a compensator reduced the H/D slightly compared with that without a compensator present. Aperture material and compensator material also have an influence on neutron dose equivalent, but the influence is relatively small. H/D varied from about 0.5 mSv/Gy for a brain tumor treatment to about 3.5 mSv/Gy for a pelvic case. Conclusions: This study presents H/D as a function of various treatment parameters for uniform scanning proton beams. For similar

  4. Broadening the Study of Participation in the Life Sciences: How Critical Theoretical and Mixed-Methodological Approaches Can Enhance Efforts to Broaden Participation

    ERIC Educational Resources Information Center

    Metcalf, Heather

    2016-01-01

    This research methods Essay details the usefulness of critical theoretical frameworks and critical mixed-methodological approaches for life sciences education research on broadening participation in the life sciences. First, I draw on multidisciplinary research to discuss critical theory and methodologies. Then, I demonstrate the benefits of these…

  5. Differential Cross Sections for Proton-Proton Elastic Scattering

    NASA Technical Reports Server (NTRS)

    Norman, Ryan B.; Dick, Frank; Norbury, John W.; Blattnig, Steve R.

    2009-01-01

    Proton-proton elastic scattering is investigated within the framework of the one pion exchange model in an attempt to model nucleon-nucleon interactions spanning the large range of energies important to cosmic ray shielding. A quantum field theoretic calculation is used to compute both differential and total cross sections. A scalar theory is then presented and compared to the one pion exchange model. The theoretical cross sections are compared to proton-proton scattering data to determine the validity of the models.

  6. Ghost features in Doppler-broadened spectra of rovibrational transitions in trapped HD+ ions

    NASA Astrophysics Data System (ADS)

    Patra, Sayan; Koelemeij, J. C. J.

    2017-02-01

    Doppler broadening plays an important role in laser rovibrational spectroscopy of trapped deuterated molecular hydrogen ions (HD+), even at the millikelvin temperatures achieved through sympathetic cooling by laser-cooled beryllium ions. Recently, Biesheuvel et al. (2016) presented a theoretical lineshape model for such transitions which not only considers linestrengths and Doppler broadening, but also the finite sample size and population redistribution by blackbody radiation, which are important in view of the long storage and probe times achievable in ion traps. Here, we employ the rate equation model developed by Biesheuvel et al. to theoretically study the Doppler-broadened hyperfine structure of the (v, L) : (0, 3) → (4, 2) rovibrational transition in HD+ at 1442 nm. We observe prominent yet hitherto unrecognized ghost features in the simulated spectrum, whose positions depend on the Doppler width, transition rates, and saturation levels of the hyperfine components addressed by the laser. We explain the origin and behavior of such features, and we provide a simple quantitative guideline to assess whether ghost features may appear. As such ghost features may be common to saturated Doppler-broadened spectra of rotational and vibrational transitions in trapped ions composed of partly overlapping lines, our work illustrates the necessity to use lineshape models that take into account all the relevant physics.

  7. Deconvolving instrumental and intrinsic broadening in core-shell x-ray spectroscopies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fister, T. T.; Seidler, G. T.; Rehr, J. J.

    2007-05-01

    Intrinsic and experimental mechanisms frequently lead to broadening of spectral features in core-shell spectroscopies. For example, intrinsic broadening occurs in x-ray absorption spectroscopy (XAS) measurements of heavy elements where the core-hole lifetime is very short. On the other hand, nonresonant x-ray Raman scattering (XRS) and other energy loss measurements are more limited by instrumental resolution. Here, we demonstrate that the Richardson-Lucy (RL) iterative algorithm provides a robust method for deconvolving instrumental and intrinsic resolutions from typical XAS and XRS data. For the K-edge XAS of Ag, we find nearly complete removal of {approx}9.3 eV full width at half maximum broadeningmore » from the combined effects of the short core-hole lifetime and instrumental resolution. We are also able to remove nearly all instrumental broadening in an XRS measurement of diamond, with the resulting improved spectrum comparing favorably with prior soft x-ray XAS measurements. We present a practical methodology for implementing the RL algorithm in these problems, emphasizing the importance of testing for stability of the deconvolution process against noise amplification, perturbations in the initial spectra, and uncertainties in the core-hole lifetime.« less

  8. Proton radiography and tomography with application to proton therapy

    PubMed Central

    Allinson, N M; Evans, P M

    2015-01-01

    Proton radiography and tomography have long promised benefit for proton therapy. Their first suggestion was in the early 1960s and the first published proton radiographs and CT images appeared in the late 1960s and 1970s, respectively. More than just providing anatomical images, proton transmission imaging provides the potential for the more accurate estimation of stopping-power ratio inside a patient and hence improved treatment planning and verification. With the recent explosion in growth of clinical proton therapy facilities, the time is perhaps ripe for the imaging modality to come to the fore. Yet many technical challenges remain to be solved before proton CT scanners become commonplace in the clinic. Research and development in this field is currently more active than at any time with several prototype designs emerging. This review introduces the principles of proton radiography and tomography, their historical developments, the raft of modern prototype systems and the primary design issues. PMID:26043157

  9. Proton-Proton Scattering at 105 Mev and 75 Mev

    DOE R&D Accomplishments Database

    Birge, R. W.; Kruse, U. E.; Ramsey, N. F.

    1951-01-31

    The scattering of protons by protons provides an important method for studying the nature of nuclear forces. Recent proton-proton scattering experiments at energies as high as thirty Mev{sup 1} have failed to show any appreciable contribution to the cross section from higher angular momentum states, but it is necessary to bring in tensor forces to explain the magnitude of the observed cross section.

  10. Proton: The Particle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suit, Herman

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10{sup 80}. Protons were created atmore » 10{sup −6} –1 second after the Big Bang at ≈1.37 × 10{sup 10} years beforethe present. Proton life span has been experimentally determined to be ≥10{sup 34} years; that is, the age of the universe is 10{sup −24}th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W{sup +}, W{sup −}, Z{sup 0}, and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving

  11. Proton: the particle.

    PubMed

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10(80). Protons were created at 10(-6) -1 second after the Big Bang at ≈1.37 × 10(10) years beforethe present. Proton life span has been experimentally determined to be ≥10(34) years; that is, the age of the universe is 10(-24)th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W(+), W(-), Z(0), and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter. Copyright © 2013 Elsevier Inc. All

  12. Happy heart, smiling eyes: A systematic review of positive mood effects on broadening of visuospatial attention.

    PubMed

    Vanlessen, Naomi; De Raedt, Rudi; Koster, Ernst H W; Pourtois, Gilles

    2016-09-01

    Positive mood contributes to mental and physical wellbeing. The broaden-and-build theory (Fredrickson, 2001) proposed that the beneficial effects of positive mood on life quality result from attentional broadening. In this article, we systematically review (following PRISMA guidelines; Moher et al., 2009), a host of studies investigating the nature and extent of attentional changes triggered by the experience of positive mood, with a focus on vision. While several studies reported a broadening of attention, others found that positive mood led to a more diffuse information processing style. Positive mood appears to lessen attention selectivity in a way that is context-specific and bound to limitations. We propose a new framework in which we postulate that positive mood impacts the balance between internally and externally directed attention, through modulations of cognitive control processes, instead of broadening attention per se. This novel model is able to accommodate discrepant findings, seeks to translate the phenomenon of the so-called broadening of attention with positive mood into functional terms, and provides plausible neurobiological mechanisms underlying this effect, suggesting a crucial role of the anterior and posterior cingulate cortex in this interaction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Observation of asymmetric spectrum broadening induced by silver nanoparticles in a heavy-metal oxide glass

    NASA Astrophysics Data System (ADS)

    Zhavoronkov, N.; Driben, R.; Bregadiolli, B. A.; Nalin, M.; Malomed, B. A.

    2011-05-01

    We demonstrate experimentally and support by a theoretical analysis an effect of asymmetric spectrum broadening, which results from doping of silver nanoparticles into a heavy-glass matrix, 90(0.5WO3-0.3SbPO4-0.2PbO)-10AgCl. The strong dispersion of the effective nonlinear coefficient of the composite significantly influences the spectral broadening via the self-phase modulation, and leads to a blue upshift of the spectrum. Further extension of the spectrum towards shorter wavelengths is suppressed by a growing loss caused by the plasmon resonance in the silver particles. The red-edge spectral broadening is dominated by the stimulated Raman scattering.

  14. Positive emotions and the social broadening effects of Barack Obama.

    PubMed

    Ong, Anthony D; Burrow, Anthony L; Fuller-Rowell, Thomas E

    2012-10-01

    Past experiments have demonstrated that the cognitive broadening produced by positive emotions may extend to social contexts. Building on this evidence, we hypothesized that positive emotions triggered by thinking about Barack Obama may broaden and expand people's sense of self to include others. Results from an expressive-writing study demonstrated that African American college students prompted to write about Obama immediately prior to and after the 2008 presidential election used more plural self-references, fewer other-references, and more social references. Mediation analyses revealed that writing about Obama increased positive emotions, which in turn increased the likelihood that people thought in terms of more-inclusive superordinate categories (we and us rather than they and them). Implications of these findings for the role of positive emotions in perspective-taking and intergroup relations are considered.

  15. Enantioselective Protonation

    PubMed Central

    Mohr, Justin T.; Hong, Allen Y.; Stoltz, Brian M.

    2010-01-01

    Enantioselective protonation is a common process in biosynthetic sequences. The decarboxylase and esterase enzymes that effect this valuable transformation are able to control both the steric environment around the proton acceptor (typically an enolate) and the proton donor (typically a thiol). Recently, several chemical methods to achieve enantioselective protonation have been developed by exploiting various means of enantiocontrol in different mechanisms. These laboratory transformations have proven useful for the preparation of a number of valuable organic compounds. PMID:20428461

  16. A dynamic collimation system for penumbra reduction in spot-scanning proton therapy: Proof of concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyer, Daniel E., E-mail: daniel-hyer@uiowa.edu; Hill, Patrick M.; Wang, Dongxu

    2014-09-15

    Purpose: In the absence of a collimation system the lateral penumbra of spot scanning (SS) dose distributions delivered by low energy proton beams is highly dependent on the spot size. For current commercial equipment, spot size increases with decreasing proton energy thereby reducing the benefit of the SS technique. This paper presents a dynamic collimation system (DCS) for sharpening the lateral penumbra of proton therapy dose distributions delivered by SS. Methods: The collimation system presented here exploits the property that a proton pencil beam used for SS requires collimation only when it is near the target edge, enabling the usemore » of trimmers that are in motion at times when the pencil beam is away from the target edge. The device consists of two pairs of parallel nickel trimmer blades of 2 cm thickness and dimensions of 2 cm × 18 cm in the beam's eye view. The two pairs of trimmer blades are rotated 90° relative to each other to form a rectangular shape. Each trimmer blade is capable of rapid motion in the direction perpendicular to the central beam axis by means of a linear motor, with maximum velocity and acceleration of 2.5 m/s and 19.6 m/s{sup 2}, respectively. The blades travel on curved tracks to match the divergence of the proton source. An algorithm for selecting blade positions is developed to minimize the dose delivered outside of the target, and treatment plans are created both with and without the DCS. Results: The snout of the DCS has outer dimensions of 22.6 × 22.6 cm{sup 2} and is capable of delivering a minimum treatment field size of 15 × 15 cm{sup 2}. Using currently available components, the constructed system would weigh less than 20 kg. For irregularly shaped fields, the use of the DCS reduces the mean dose outside of a 2D target of 46.6 cm{sup 2} by approximately 40% as compared to an identical plan without collimation. The use of the DCS increased treatment time by 1–3 s per energy layer. Conclusions: The spread

  17. Attention and positive affect: temporal switching or spatial broadening?

    PubMed

    Phaf, R Hans

    2015-04-01

    Evolutionary reasoning and computation suggest that positive affect is associated with higher attentional flexibility than negative affect, even when affectively neutral material is processed. The affective modulation of interference in the Eriksen flanker task seems, however, more readily explained by a spatial broadening of attention due to positive affect. It is argued here that these results should also be interpreted in terms of an increased switching over time between flankers and target (i.e., flexibility). The two hypotheses were contrasted with positive and negative mood inductions in a masked-flanker task. The interval (Stimulus Onset Asynchrony; SOA) with which the masked flankers preceded the target letter was parametrically varied. In contrast to what is found with simultaneous non-masked flanker presentation, masking produced larger interference with negative than with positive moods. In addition, a crossover interaction between mood and SOA emerged. These results seem incompatible with a spatial broadening account and support an affective modulation account in terms of flexibility.

  18. Ortho-para spin isomers of the protons in the methylene group--possible implications for protein structure.

    PubMed

    Shinitzky, Meir; Elitzur, Avshalom C

    2006-09-01

    The two hydrogen atoms attached to the carbon in the methylene group are of two different spin configurations, similar to those in the case of water: ortho, where the two proton spins are parallel to each other, and para, where they are antiparallel. The ortho configuration has three degenerate states, while the para configuration is singular, leading to a statistical ratio of these isomers 3:1 ortho/para. Such spin isomers are present in glycine and most chiral amino acids where they may induce broadening of structural zones, a possibility which remains to be assessed. The implications of this neglected possibility could be far-reaching, in particular with respect to protein structure and the origins of biochirality.

  19. Nitrogen-broadened lines of ethane at 150 K

    NASA Technical Reports Server (NTRS)

    Chudamani, S.; Varanasi, P.; Giver, L. P.; Valero, F. P. J.

    1985-01-01

    Spectral transmittance has been measured in the nu9 fundamental band of C2H6 at 150 K using a Fourier transform spectrometer with apodized spectral resolution of 0.06/cm. Comparison of observed spectral transmittance with a line-by-line computation using the spectral catalog of Atakan et al. (1983) has yielded N2-broadened half-widths at 150 K.

  20. Phenomenological plasmon broadening and relation to the dispersion

    NASA Astrophysics Data System (ADS)

    Hobbiger, Raphael; Drachta, Jürgen T.; Kreil, Dominik; Böhm, Helga M.

    2017-02-01

    Pragmatic ways of including lifetime broadening of collective modes in the electron liquid are critically compared. Special focus lies on the impact of the damping parameter onto the dispersion. It is quantitatively exemplified for the two-dimensional case, for both, the charge ('sheet'-)plasmon and the spin-density plasmon. The predicted deviations fall within the resolution limits of advanced techniques.

  1. The Effects of Career Broadening on Leadership Development

    DTIC Science & Technology

    2007-03-01

    development of its officer corps. Specifically, the study sought to find significant relationships between incidents of career broadening in the...Introduction Introduction In organizations where change is necessary, which is most organizations today, strong leadership relationships are required (Yukl...Holton, 2004; Mumford, Marks et al., 2000; Campion et. al., 1994; McCauley et. al., 1994). The relationship between personality and leadership is

  2. Proton Transport

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The transport of protons across membranes is an essential process for both bioenergetics of modern cells and the origins of cellular life. All living systems make use of proton gradients across cell walls to convert environmental energy into a high-energy chemical compound, adenosine triphosphate (ATP), synthesized from adenosine diphosphate. ATP, in turn, is used as a source of energy to drive many cellular reactions. The ubiquity of this process in biology suggests that even the earliest cellular systems were relying on proton gradient for harvesting environmental energy needed to support their survival and growth. In contemporary cells, proton transfer is assisted by large, complex proteins embedded in membranes. The issue addressed in this Study was: how the same process can be accomplished with the aid of similar but much simpler molecules that could have existed in the protobiological milieu? The model system used in the study contained a bilayer membrane made of phospholipid, dimyristoylphosphatidylcholine (DMPC) which is a good model of the biological membranes forming cellular boundaries. Both sides of the bilayer were surrounded by water which simulated the environment inside and outside the cell. Embedded in the membrane was a fragment of the Influenza-A M$_2$ protein and enough sodium counterions to maintain system neutrality. This protein has been shown to exhibit remarkably high rates of proton transport and, therefore, is an excellent model to study the formation of proton gradients across membranes. The Influenza M$_2$ protein is 97 amino acids in length, but a fragment 25 amino acids long. which contains a transmembrane domain of 19 amino acids flanked by three amino acids on each side. is sufficient to transport protons. Four identical protein fragments, each folded into a helix, aggregate to form small channels spanning the membrane. Protons are conducted through a narrow pore in the middle of the channel in response to applied voltage. This

  3. Broadening and Simplifying the First SETI Protocol

    NASA Astrophysics Data System (ADS)

    Michaud, M. A. G.

    The Declaration of Principles Concerning Activities Following the Detection of Extraterrestrial Intelligence, known informally as the First SETI Protocol, is the primary existing international guidance on this subject. During the fifteen years since the document was issued, several people have suggested revisions or additional protocols. This article proposes a broadened and simplified text that would apply to the detection of alien technology in our solar system as well as to electromagnetic signals from more remote sources.

  4. Atomic Force Microscopy Nanomechanical Mapping Visualizes Interfacial Broadening between Networks Due to Chemical Exchange Reactions.

    PubMed

    He, Changfei; Shi, Shaowei; Wu, Xuefei; Russell, Thomas P; Wang, Dong

    2018-06-06

    The interfacial broadening between two different epoxy networks having different moduli was nanomechanically mapped. The interfacial broadening of the two networks produced an interfacial zone having a gradient in the concentration and, hence, properties of the original two networks. This interfacial broadening of the networks leads to the generation of a new network with a segmental composition corresponding to a mixture of the original two network segments. The intermixing of the two, by nature of the exchange reactions, was on the segmental level. By mapping the time dependence of the variation in the modulus at different temperatures, the kinetics of the exchange reaction was measured and, by varying the temperature, the activation energy of the exchange reaction was determined.

  5. The Role of Positive Emotions in Positive Psychology: The Broaden-and-Build Theory of Positive Emotions.

    ERIC Educational Resources Information Center

    Fredrickson, Barbara L.

    2001-01-01

    Describes the broaden-and-build theory of positive emotions, situating it within the field of positive psychology. The theory posits that experiences of positive emotions broaden people's momentary thought-action repertoires, which in turn build their enduring personal resources (physical, intellectual, social, and psychological). Reviews…

  6. An analytical dose-averaged LET calculation algorithm considering the off-axis LET enhancement by secondary protons for spot-scanning proton therapy.

    PubMed

    Hirayama, Shusuke; Matsuura, Taeko; Ueda, Hideaki; Fujii, Yusuke; Fujii, Takaaki; Takao, Seishin; Miyamoto, Naoki; Shimizu, Shinichi; Fujimoto, Rintaro; Umegaki, Kikuo; Shirato, Hiroki

    2018-05-22

    To evaluate the biological effects of proton beams as part of daily clinical routine, fast and accurate calculation of dose-averaged linear energy transfer (LET d ) is required. In this study, we have developed the analytical LET d calculation method based on the pencil-beam algorithm (PBA) considering the off-axis enhancement by secondary protons. This algorithm (PBA-dLET) was then validated using Monte Carlo simulation (MCS) results. In PBA-dLET, LET values were assigned separately for each individual dose kernel based on the PBA. For the dose kernel, we employed a triple Gaussian model which consists of the primary component (protons that undergo the multiple Coulomb scattering) and the halo component (protons that undergo inelastic, nonelastic and elastic nuclear reaction); the primary and halo components were represented by a single Gaussian and the sum of two Gaussian distributions, respectively. Although the previous analytical approaches assumed a constant LET d value for the lateral distribution of a pencil beam, the actual LET d increases away from the beam axis, because there are more scattered and therefore lower energy protons with higher stopping powers. To reflect this LET d behavior, we have assumed that the LETs of primary and halo components can take different values (LET p and LET halo ), which vary only along the depth direction. The values of dual-LET kernels were determined such that the PBA-dLET reproduced the MCS-generated LET d distribution in both small and large fields. These values were generated at intervals of 1 mm in depth for 96 energies from 70.2 to 220 MeV and collected in the look-up table. Finally, we compared the LET d distributions and mean LET d (LET d,mean ) values of targets and organs at risk between PBA-dLET and MCS. Both homogeneous phantom and patient geometries (prostate, liver, and lung cases) were used to validate the present method. In the homogeneous phantom, the LET d profiles obtained by the dual-LET kernels

  7. TH-C-BRD-04: Beam Modeling and Validation with Triple and Double Gaussian Dose Kernel for Spot Scanning Proton Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirayama, S; Takayanagi, T; Fujii, Y

    2014-06-15

    Purpose: To present the validity of our beam modeling with double and triple Gaussian dose kernels for spot scanning proton beams in Nagoya Proton Therapy Center. This study investigates the conformance between the measurements and calculation results in absolute dose with two types of beam kernel. Methods: A dose kernel is one of the important input data required for the treatment planning software. The dose kernel is the 3D dose distribution of an infinitesimal pencil beam of protons in water and consists of integral depth doses and lateral distributions. We have adopted double and triple Gaussian model as lateral distributionmore » in order to take account of the large angle scattering due to nuclear reaction by fitting simulated inwater lateral dose profile for needle proton beam at various depths. The fitted parameters were interpolated as a function of depth in water and were stored as a separate look-up table for the each beam energy. The process of beam modeling is based on the method of MDACC [X.R.Zhu 2013]. Results: From the comparison results between the absolute doses calculated by double Gaussian model and those measured at the center of SOBP, the difference is increased up to 3.5% in the high-energy region because the large angle scattering due to nuclear reaction is not sufficiently considered at intermediate depths in the double Gaussian model. In case of employing triple Gaussian dose kernels, the measured absolute dose at the center of SOBP agrees with calculation within ±1% regardless of the SOBP width and maximum range. Conclusion: We have demonstrated the beam modeling results of dose distribution employing double and triple Gaussian dose kernel. Treatment planning system with the triple Gaussian dose kernel has been successfully verified and applied to the patient treatment with a spot scanning technique in Nagoya Proton Therapy Center.« less

  8. PROTON HEATING BY PICK-UP ION DRIVEN CYCLOTRON WAVES IN THE OUTER HELIOSPHERE: HYBRID EXPANDING BOX SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellinger, Petr; Trávníček, Pavel M., E-mail: petr.hellinger@asu.cas.cz

    Using a one-dimensional hybrid expanding box model, we investigate properties of the solar wind in the outer heliosphere. We assume a proton–electron plasma with a strictly transverse ambient magnetic field and, aside from the expansion, we take into account the influence of a continuous injection of cold pick-up protons through the charge-exchange process between the solar wind protons and hydrogen of interstellar origin. The injected cold pick-up protons form a ring distribution function, which rapidly becomes unstable, and generate Alfvén cyclotron waves. The Alfvén cyclotron waves scatter pick-up protons to a spherical shell distribution function that thickens over that timemore » owing to the expansion-driven cooling. The Alfvén cyclotron waves heat solar wind protons in the perpendicular direction (with respect to the ambient magnetic field) through cyclotron resonance. At later times, the Alfvén cyclotron waves become parametrically unstable and the generated ion-acoustic waves heat protons in the parallel direction through Landau resonance. The resulting heating of the solar wind protons is efficient on the expansion timescale.« less

  9. Broadening the Horizons: Organizational Communication in the Real World.

    ERIC Educational Resources Information Center

    Swanson, Georgia

    Working in the microcosm of an individual class, organizational communication instructors can broaden the student's horizon by starting with what are local types of diversity and then expanding the classroom understanding to include the larger world where that student is going to live and work. Speech communication teachers/scholars have seen…

  10. Long-range multiplicity correlations in proton-proton collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzdak, Adam

    The forward-backward long-range multiplicity correlations in proton-proton collisions are investigated in the model with two independent sources of particles: one left- and one right-moving wounded nucleon. A good agreement with the UA5 Collaboration proton-antiproton data at the c.m. energy of 200 GeV is observed. For comparison the model with only one source of particles is also discussed.

  11. [Proton imaging applications for proton therapy: state of the art].

    PubMed

    Amblard, R; Floquet, V; Angellier, G; Hannoun-Lévi, J M; Hérault, J

    2015-04-01

    Proton therapy allows a highly precise tumour volume irradiation with a low dose delivered to the healthy tissues. The steep dose gradients observed and the high treatment conformity require a precise knowledge of the proton range in matter and the target volume position relative to the beam. Thus, proton imaging allows an improvement of the treatment accuracy, and thereby, in treatment quality. Initially suggested in 1963, radiographic imaging with proton is still not used in clinical routine. The principal difficulty is the lack of spatial resolution, induced by the multiple Coulomb scattering of protons with nuclei. Moreover, its realization for all clinical locations requires relatively high energies that are previously not considered for clinical routine. Abandoned for some time in favor of X-ray technologies, research into new imaging methods using protons is back in the news because of the increase of proton radiation therapy centers in the world. This article exhibits a non-exhaustive state of the art in proton imaging. Copyright © 2015 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  12. Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch

    DOE PAGES

    Vogman, G. V.; Shumlak, U.

    2011-10-13

    Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian functionmore » associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. As a result, these measurements are used to gain a better understanding of Z-pinch equilibria.« less

  13. Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogman, G. V.; Shumlak, U.

    2011-10-15

    Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian functionmore » associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. These measurements are used to gain a better understanding of Z-pinch equilibria.« less

  14. Towards Broadening the Audience

    NASA Astrophysics Data System (ADS)

    Sakimoto, P. J.

    2008-06-01

    The strand Towards Broadening the Audience was intended to seed thoughtful conversations about building bridges for outreach programs across cultural barriers. Many participants spoke about progress in increasing the diversity of their outreach audiences, but it was new voices from time-honored sources that offered fundamentally new wisdom. From the religious traditions and tensions that mark the Holy Land came the simple concept of bringing unity through teaching the commonalities found in basic concepts of the observed sky. From Mayan traditions, both contemporary and ancient, came the reminder that the sky is intimately connected to all aspects of our lives. Astronomy outreach should therefore be a part of much larger family and community celebrations. Ideas such as these offer renewed hope for major advances in bringing space science outreach to much broader audiences. They tell us about the importance of learning from voices with perspectives different from our own, and of building partnerships based upon genuine cross-cultural understanding and mutual love of the sky.

  15. Mechanism of asymmetric lineshape broadening in GaAs1-xNx Raman spectra

    NASA Astrophysics Data System (ADS)

    Mialitsin, Aleksej; Fluegel, Brian; Ptak, Aaron; Mascarenhas, Angelo

    2012-07-01

    Resonance Raman spectroscopy is used to probe the asymmetric broadening of the LO phonon linewidth in a dilute GaAs1-xNx alloy (x=0.41%). Electronic Raman scattering from a broad continuum is observed that gets enhanced concurrently with the LO phonon linewidth under resonance. The Fano interaction between the LO phonon and the electronic continuum is used to develop a model that satisfactorily explains the origin of the asymmetric LO phonon linewidth broadening in this abnormal alloy as arising due to coupling between the discrete and the continuum configurations.

  16. Relational Themes in Counseling Supervision: Broadening and Narrowing Processes

    ERIC Educational Resources Information Center

    Gazzola, Nicola; Theriault, Anne

    2007-01-01

    This study investigated the experiences of broadening (i.e., thinking and acting creatively and being open to exploring new ways of being) and narrowing (i.e., the experience of perceiving one's choices as limited) in the supervisory process with the aim of identifying key relational themes from the perspective of supervisees. We interviewed 10…

  17. Inflight proton activation and damage on a CdTe detection plane

    NASA Astrophysics Data System (ADS)

    Simões, N.; Maia, J. M.; Curado da Silva, R. M.; Ghithan, S.; Crespo, P.; do Carmo, S. J. C.; Alves, Francisco; Moita, M.; Auricchio, N.; Caroli, E.

    2018-01-01

    Future high-energy space telescope missions require further analysis of orbital environment induced activation and radiation damage on main instruments. A scientific satellite is exposed to the charged particles harsh environment, mainly geomagnetically trapped protons (up to ∼300 MeV) that interact with the payload materials, generating nuclear activation background noise within instruments' operational energy range and causing radiation damage in detector material. As a consequence, instruments' performances deteriorate during the mission time-frame. In order to optimize inflight operational performances of future CdTe high-energy telescope detection planes under orbital radiation environment, we measured and analyzed the effects generated by protons on CdTe ACRORAD detectors with 2.56 cm2 sensitive area and 2 mm thickness. To carry-out this study, several sets of measurements were performed under a ∼14 MeV cyclotron proton beam. Nuclear activation radionuclides' identification was performed. Estimation of activation background generated by short-lived radioisotopes during one day was less than ∼1.3 ×10-5 counts cm-2 s-1 keV-1 up to 800 keV. A noticeable gamma-rays energy resolution degradation was registered (∼60% @ 122 keV, ∼14% @ 511 and ∼2.2% @ 1275 keV) after an accumulated proton fluence of 4.5 ×1010 protons cm-2, equivalent to ∼22 years in-orbit fluence. One year later, the energy resolution of the irradiated prototype showed a good level of performancerecovery.

  18. Theoretical investigation of local proton conductance in the proton exchange membranes

    NASA Astrophysics Data System (ADS)

    Singh, Raman K.; Tsuneda, Takao; Miyatake, Kenji; Watanabe, Masahiro

    2014-07-01

    The hydrated structures of the proton exchange membranes were theoretically investigated using long-range corrected density functional theory to make clear why perfluorinated polymer membrane Nafion is superior to other membranes in the proton conductivity at low humidity. For exploring the possibility of the proton conductance in the vehicle mechanism with low hydration numbers, we examined the relay model of protonated water clusters between the sulfonic acid groups in Nafion and concluded that this relay model may contribute to the high proton conductivity of Nafion with less-hydrated sulfonic acid groups.

  19. Diffuse Vibrational Signature of a Single Proton Embedded in the Oxalate Scaffold, HO2CCO2(-).

    PubMed

    Wolke, Conrad T; DeBlase, Andrew F; Leavitt, Christopher M; McCoy, Anne B; Johnson, Mark A

    2015-12-31

    To understand how the D2d oxalate scaffold (C2O4)(2-) distorts upon capture of a proton, we report the vibrational spectra of the cryogenically cooled HO2CCO2(-) anion and its deuterated isotopologue DO2CCO2(-). The transitions associated with the skeletal vibrations and OH bending modes are sharp and are well described by inclusion of cubic terms in the normal mode expansion of the potential surface through an extended Fermi resonance analysis. The ground state structure features a five-membered ring with an asymmetric intramolecular proton bond. The spectral signatures of the hydrogen stretches, on the contrary, are surprisingly diffuse, and this behavior is not anticipated by the extended Fermi scheme. We trace the diffuse bands to very strong couplings between the high-frequency OH-stretch and the low-frequency COH bends as well as heavy particle skeletal deformations. A simple vibrationally adiabatic model recovers this breadth of oscillator strength as a 0 K analogue of the motional broadening commonly used to explain the diffuse spectra of H-bonded systems at elevated temperatures, but where these displacements arise from the configurations present at the vibrational zero-point level.

  20. Proton Beam Therapy

    NASA Astrophysics Data System (ADS)

    Paganetti, Harald

    2017-01-01

    Cancer therapy is a multi-modality approach including surgery, systemic or targeted chemotherapy, radiation (external beam or radionuclide), and immunotherapy. Radiation is typically administered using external beam photon therapy. Proton therapy has been around for more than 60 years but was restricted to research laboratories until the 1990s. Since then clinical proton therapy has been growing rapidly with currently more than 50 facilities worldwide. The interest in proton therapy stems from the physical properties of protons allowing for advanced dose sculpting around the target and sparing of healthy tissue. This review first evaluates the basics of proton therapy physics and technology and then outlines some of the current physical, biological, and clinical challenges. Solving these will ultimately determine whether proton therapy will continue on its path to becoming mainstream.

  1. Lifetime broadening in GaAs-AlGaAs quantum well lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucharska, A.I.; Robbins, D.J.

    1990-03-01

    Experimental observations of spontaneous emission spectra from GaAs-AlGaAs quantum well lasers show that spectral broadening should be included in any realistic model of laser performance. The authors describe a model of the lifetime broadening due to intraband Auger processes of the Landsberg type and develop it for the case of electron-electron scattering in a 2-D system. They apply the model to the calculation of gain and spontaneous emission spectra and gain-current relationships in short-wavelength GaAs-AlGaAs quantum well lasers, and compare their results with those obtained using both a fixed intraband scattering time and one that varies as {ital n}{sup 1/2},more » where {ital n} is the volume injected carrier density.« less

  2. The IACOB project . III. New observational clues to understand macroturbulent broadening in massive O- and B-type stars

    NASA Astrophysics Data System (ADS)

    Simón-Díaz, S.; Godart, M.; Castro, N.; Herrero, A.; Aerts, C.; Puls, J.; Telting, J.; Grassitelli, L.

    2017-01-01

    Context. The term macroturbulent broadening is commonly used to refer to a certain type of non-rotational broadening affecting the spectral line profiles of O- and B-type stars. It has been proposed to be a spectroscopic signature of the presence of stellar oscillations; however, we still lack a definitive confirmation of this hypothesis. Aims: We aim to provide new empirical clues about macroturbulent spectral line broadening in O- and B-type stars to evaluate its physical origin. Methods: We used high-resolution spectra of 430 stars with spectral types in the range O4 - B9 (all luminosity classes) compiled in the framework of the IACOB project. We characterized the line broadening of adequate diagnostic metal lines using a combined Fourier transform and goodness-of-fit technique. We performed a quantitative spectroscopic analysis of the whole sample using automatic tools coupled with a huge grid of fastwind models to determine their effective temperatures and gravities. We also incorporated quantitative information about line asymmetries into our observational description of the characteristics of the line profiles, and performed a comparison of the shape and type of line-profile variability found in a small sample of O stars and B supergiants with still undefined pulsational properties and B main-sequence stars with variable line profiles owing to a well-identified type of stellar oscillations or to the presence of spots in the stellar surface. Results: We present a homogeneous and statistically significant overview of the (single snapshot) line-broadening properties of stars in the whole O and B star domain. We find empirical evidence of the existence of various types of non-rotational broadening agents acting in the realm of massive stars. Even though all these additional sources of line-broadening could be quoted and quantified as a macroturbulent broadening from a practical point of view, their physical origin can be different. Contrarily to the early- to

  3. Signal broadening in the laser Doppler velocimeter.

    NASA Technical Reports Server (NTRS)

    Angus, J. C.; Edwards, R. V.; Dunning, J. W., Jr.

    1971-01-01

    Critical review of a recent paper in which Denison, Stevenson, and Fox (1971) discussed the sources of spectral broadening in the laser Doppler velocimeter. It is pointed out that, in their discussion, the above-mentioned authors indicated that the spread in wave vectors of the incident and detected fields and the finite length of time a scattering center stayed in the sample volume each contributed separately and independently to the observed spectral width of the scattered radiation. This statement is termed incorrect, and it is shown that the two effects are one and the same.

  4. Broadening the Study of Participation in the Life Sciences: How Critical Theoretical and Mixed-Methodological Approaches Can Enhance Efforts to Broaden Participation

    PubMed Central

    Metcalf, Heather

    2016-01-01

    This research methods Essay details the usefulness of critical theoretical frameworks and critical mixed-methodological approaches for life sciences education research on broadening participation in the life sciences. First, I draw on multidisciplinary research to discuss critical theory and methodologies. Then, I demonstrate the benefits of these approaches for researchers who study diversity and inclusion issues in the life sciences through examples from two critical mixed-methods studies of prominent issues in science, technology, engineering, and mathematics (STEM) participation and recognition. The first study pairs critical discourse analysis of the STEM workforce literature, data, and underlying surveys with quantitative analyses of STEM pathways into the workforce. This example illustrates the necessity of questioning popular models of retention. It also demonstrates the importance of intersecting demographic categories to reveal patterns of experience both within and between groups whose access to and participation in STEM we aim to improve. The second study’s critical approach applies research on inequities in prizes awarded by STEM professional societies toward organizational change. This example uses data from the life sciences professional societies to show the importance of placing data within context to broaden participation and understand challenges in creating sustainable change. PMID:27521238

  5. Phenazine redox cycling enhances anaerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a proton-motive force

    PubMed Central

    Glasser, Nathaniel R.; Kern, Suzanne E.

    2014-01-01

    Summary While many studies have explored the growth of Pseudomonas aeruginosa, comparatively few have focused on its survival. Previously, we reported that endogenous phenazines support the anaerobic survival of P. aeruginosa, yet the physiological mechanism underpinning survival was unknown. Here, we demonstrate that phenazine redox cycling enables P. aeruginosa to oxidize glucose and pyruvate into acetate, which promotes survival by coupling acetate and ATP synthesis through the activity of acetate kinase. By measuring intracellular NAD(H) and ATP concentrations, we show that survival is correlated with ATP synthesis, which is tightly coupled to redox homeostasis during pyruvate fermentation but not during arginine fermentation. We also show that ATP hydrolysis is required to generate a proton-motive force using the ATP synthase complex during fermentation. Together, our results suggest that phenazines enable maintenance of the proton-motive force by promoting redox homeostasis and ATP synthesis. This work demonstrates the more general principle that extracellular redox-active molecules, such as phenazines, can broaden the metabolic versatility of microorganisms by facilitating energy generation. PMID:24612454

  6. Design and implementation of a robust and cost-effective double-scattering system at a horizontal proton beamline

    NASA Astrophysics Data System (ADS)

    Helmbrecht, S.; Baumann, M.; Enghardt, W.; Fiedler, F.; Krause, M.; Lühr, A.

    2016-11-01

    Purpose: particle therapy has the potential to improve radiooncology. With more and more facilities coming into operation, also the interest for research at proton beams increases. Though many centers provide beam at an experimental room, some of them do not feature a device for radiation field shaping, a so called nozzle. Therefore, a robust and cost-effective double-scattering system for horizontal proton beamlines has been designed and implemented. Materials and methods: the nozzle is based on the double scattering technique. Two lead scatterers, an aluminum ridge-filter and two brass collimators were optimized in a simulation study to form a laterally homogeneous 10 cm × 10 cm field with a spread-out Bragg-peak (SOBP). The parts were mainly manufactured using 3D printing techniques and the system was set up at OncoRay's experimental beamline. Measurement of the radiation field were carried out using a water phantom. Results: high levels of dose homogeneity were found in lateral (dose variation ΔD/D < ±2%) as well as in beam direction (ΔD/D < ± 3% in the SOBP). The system has already been used for radiobiology and physical experiments. Conclusion: the presented setup allows for creating clinically realistic extended radiation fields at fixed horizontal proton beamlines and is ready to use for internal and external users. The excellent performance combined with the simplistic design let it appear as a valuable option for proton therapy centers intending to foster their experimental portfolio.

  7. Delayed effects of proton irradiation in Macaca mulatta. II. Mortality (15-year report). Interim report 1964-1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yochmowitz, M.G.; Wood, D.H.; Salmon, Y.L.

    1983-01-01

    A radiation primate colony of 57 controls and 301 (217 proton) exposed subjects has been followed since 1964. Lifespan of both the exposed and, more specifically, the proton-exposed subjects in the chronic colony was shortened. Energies of 55 MeV and greater decreased life span as did doses in excess of 360 rads. Females were more sensitive to lower doses than males. They died earlier in doses as low as 25-113 rads and in all energies tested except 55 MeV. Survival curve analysis found no difference among the onset of death in the 3 highest energies (138, 400, and 2300 Mev);more » however, its onset was earlier in the 32-MeV exposure and later in the 55-MeV exposure and later in the 55-MeV exposure than the total penetrating energies (greater than or equal to 138 MeV). Dose ordering effects were evident. In contrast to the controls, mortality rates began to accelerate at approx. 8 years in the 360-400-rad group; at approx. 2 years in the 500-650-rad group and approx. 1 year in the 800-rad group. The leading causes of death among the proton-exposed animals were primary infections (approx. 30%), endometriosis (25%), and organ degeneration (approx. 17%). Malignant tumors accounted for 18% of the deaths. If endometriosis is included in this group, the mortality from all forms of neoplastic conditions is 43% in the proton-exposed animals.« less

  8. Delayed effects of proton irradiation in Macaca mulatta. II. mortality (15-year report). Interim report 1964-1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yochmowitz, M.G.; Wood, D.H.; Salmon, Y.L.

    1983-01-01

    A radiation primate colony of 57 controls and 301 (217 proton) exposed subjects has been followed since 1964. Lifespan of both the exposed and, more specifically, the proton-exposed subjects in the chronic colony was shortened. Energies of 55 MeV and greater decreased life span as did doses in excess of 360 rads. Females were more sensitive to lower doses than males. They died earlier in doses as low as 25-113 rads and in all energies tested except 55 MeV. Survival curve analysis found no difference among the onset of death in the 3 highest energies (138, 400, and 2300 Mev);more » however, its onset was earlier in the 32-MeV exposure and later in the 55-MeV exposure and later in the 55-MeV exposure than the total penetrating energies (greater than or equal to 138 MeV). Dose ordering effects were evident. In contrast to the controls, mortality rates began to accelerate at approx. 8 years in the 360-400-rad group; at approx. 2 years in the 500-650-rad group and approx. 1 year in the 800-rad group. The leading causes of death among the proton-exposed animals were primary infections (approx. 30%), endometriosis (25%), and organ degeneration (approx. 17%). Malignant tumors accounted for 18% of the deaths. If endometriosis is included in this group, the mortality from all forms of neoplastic conditions is 43% in the proton-exposed animals.« less

  9. Measurements of air-broadened and nitrogen-broadened Lorentz width coefficients and pressure shift coefficients in the nu4 and nu2 bands of C-12H4

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Smith, Mary Ann H.; Devi, V. Malathy; Benner, D. Chris

    1988-01-01

    Air-broadened and N2-broadened halfwidth and pressure shift coefficients of 294 transitions in the nu4 and nu2 bands of C-12H4 have been measured from laboratory absorption spectra recorded at room temperature with the Fourier transform spectrometer in the McMath solar telescope facility of the National Solar Observatory. Total pressures of up to 551 Torr were employed with absorption paths of 5-150 cm, CH4 volume mixing ratios of 2.6 percent or less, and resolutions of 0.005 and 0.01/cm. A nonlinear least-squares spectral fitting technique has been utilized in the analysis of the twenty-five measured spectra. Lines up to J double-prime = 18 in the nu4 band and J double-prime = 15 in the nu2 band have been analyzed.

  10. Collisional Shift and Broadening of Iodine Spectral Lines in Air Near 543 nm

    NASA Technical Reports Server (NTRS)

    Fletcher, D. G.; McDaniel, J. C.

    1995-01-01

    The collisional processes that influence the absorption of monochromatic light by iodine in air have been investigated. Measurements were made in both a static cell and an underexpanded jet flow over the range of properties encountered in typical compressible-flow aerodynamic applications. Experimentally measured values of the collisional shift and broadening coefficients were 0.058 +/- 0.004 and 0.53 +/- 0.010 GHz K(exp 0.7)/torr, respectively. The measured shift value showed reasonable agreement with theoretical calculations based on Lindholm-Foley collisional theory for a simple dispersive potential. The measured collisional broadening showed less favorable agreement with the calculated value.

  11. Theoretical calculation of CH3F/N2-broadening coefficients and their temperature dependence

    NASA Astrophysics Data System (ADS)

    Jellali, C.; Maaroufi, N.; Aroui, H.

    2018-07-01

    Using Robert and Bonamy formalism (with parabolic and exact trajectories) based on the semi-classical impact theory, N2-broadening coefficients of methyl fluoride CH3F were calculated for transitions belonging to the PP-, PQ-, PR-, RP-, RQ- and RR- sub-branches of the ν6 perpendicular band near 8.5 μm. The calculations showed the predominance of the dipole-quadruple interaction. The J and K rotational quantum numbers dependencies of the computed coefficients that are consistent with previous measurements were clearly observed in this study. For a fixed value of J, we noticed a decrease in the broadening coefficients, which was more significant at lower J values. In order to deduce the temperature exponent, the N2-broadening coefficients of CH3F were calculated at various temperatures of atmospheric interest between 183 and 296 K with J ≤ 60 and K ≤ 10. These exponents were, in general, J-dependent and K-independent, except for K close to J.

  12. Stereochemistry-Dependent Proton Conduction in Proton Exchange Membrane Fuel Cells.

    PubMed

    Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Tiwari, Omshanker; Gaikwad, Pramod; Paswan, Bhuneshwar; Thotiyl, Musthafa Ottakam

    2016-01-12

    Graphene oxide (GO) is impermeable to H2 and O2 fuels while permitting H(+) shuttling, making it a potential candidate for proton exchange membrane fuel cells (PEMFC), albeit with a large anisotropy in their proton transport having a dominant in plane (σIP) contribution over the through plane (σTP). If GO-based membranes are ever to succeed in PEMFC, it inevitably should have a dominant through-plane proton shuttling capability (σTP), as it is the direction in which proton gets transported in a real fuel-cell configuration. Here we show that anisotropy in proton conduction in GO-based fuel cell membranes can be brought down by selectively tuning the geometric arrangement of functional groups around the dopant molecules. The results show that cis isomer causes a selective amplification of through-plane proton transport, σTP, pointing to a very strong geometry angle in ionic conduction. Intercalation of cis isomer causes significant expansion of GO (001) planes involved in σTP transport due to their mutual H-bonding interaction and efficient bridging of individual GO planes, bringing down the activation energy required for σTP, suggesting the dominance of a Grotthuss-type mechanism. This isomer-governed amplification of through-plane proton shuttling resulted in the overall boosting of fuel-cell performance, and it underlines that geometrical factors should be given prime consideration while selecting dopant molecules for bringing down the anisotropy in proton conduction and enhancing the fuel-cell performance in GO-based PEMFC.

  13. Line shape parameters of air-broadened water vapor transitions in the ν 1 and ν 3 spectral region

    DOE PAGES

    Malathy Devi, V.; Gamache, Robert R.; Vispoel, Bastien; ...

    2017-11-26

    A Bruker IFS-120HR Fourier transform spectrometer located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington was used to record a series of spectra of pure H 2O and air-broadened H 2O in the regions of the ν 1 and ν 3 bands (3450–4000 cm -1) at different pressures, temperatures and volume mixing ratios of H 2O in air. Eighteen high-resolution, high signal-to-noise (S/N) ratio absorption spectra were recorded at T = 268, 296 and 353 K using two temperature-controlled absorption cells with path lengths of 9.906(1) and 19.95(1) cm. Furthermore, the resolution of the spectra recorded with themore » 9.906 cm and 19.95 cm absorption cells was 0.006 and 0.008 cm -1, respectively. A multispectrum nonlinear least squares fitting technique was employed to fit all the eighteen spectra simultaneously to retrieve 313 accurate line positions, 315 intensities, 229 Lorentz air-broadened half-width and 213 air-shift coefficients and their temperature dependences (136 for air-broadened width and 128 for air-shift coefficients, respectively). Room temperature self-broadened half-width coefficients for 209 transitions and self-shift coefficients for 106 transitions were also measured. Line mixing coefficients were experimentally determined for isolated sets of 10 transition pairs for H 2O-air and 8 transition pairs for H 2O-H 2O using the off-diagonal relaxation matrix element formalism, and 85 quadratic speed dependence parameters were measured. Modified Complex Robert-Bonamy (MCRB) calculations of self-, and air-broadened (from N 2- and O 2-broadening) half-width and air-shift coefficients, and temperature dependence exponents of air-broadened half-width coefficients are made. Finally, the measurements and calculations are compared with each other and with similar parameters reported in the literature.« less

  14. Line shape parameters of air-broadened water vapor transitions in the ν1 and ν3 spectral region

    NASA Astrophysics Data System (ADS)

    Malathy Devi, V.; Gamache, Robert R.; Vispoel, Bastien; Renaud, Candice L.; Chris Benner, D.; Smith, Mary Ann H.; Blake, Thomas A.; Sams, Robert L.

    2018-06-01

    A Bruker IFS-120HR Fourier transform spectrometer located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington was used to record a series of spectra of pure H2O and air-broadened H2O in the regions of the ν1 and ν3 bands (3450-4000 cm-1) at different pressures, temperatures and volume mixing ratios of H2O in air. Eighteen high-resolution, high signal-to-noise (S/N) ratio absorption spectra were recorded at T = 268, 296 and 353 K using two temperature-controlled absorption cells with path lengths of 9.906(1) and 19.95(1) cm. The resolution of the spectra recorded with the 9.906 cm and 19.95 cm absorption cells was 0.006 and 0.008 cm-1, respectively. A multispectrum nonlinear least squares fitting technique was employed to fit all the eighteen spectra simultaneously to retrieve 313 accurate line positions, 315 intensities, 229 Lorentz air-broadened half-width and 213 air-shift coefficients and their temperature dependences (136 for air-broadened width and 128 for air-shift coefficients, respectively). Room temperature self-broadened half-width coefficients for 209 transitions and self-shift coefficients for 106 transitions were also measured. Line mixing coefficients were experimentally determined for isolated sets of 10 transition pairs for H2O-air and 8 transition pairs for H2O-H2O using the off-diagonal relaxation matrix element formalism, and 85 quadratic speed dependence parameters were measured. Modified Complex Robert-Bonamy (MCRB) calculations of self-, and air-broadened (from N2- and O2-broadening) half-width and air-shift coefficients, and temperature dependence exponents of air-broadened half-width coefficients are made. The measurements and calculations are compared with each other and with similar parameters reported in the literature.

  15. Line shape parameters of air-broadened water vapor transitions in the ν 1 and ν 3 spectral region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malathy Devi, V.; Gamache, Robert R.; Vispoel, Bastien

    A Bruker IFS-120HR Fourier transform spectrometer located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington was used to record a series of spectra of pure H 2O and air-broadened H 2O in the regions of the ν 1 and ν 3 bands (3450–4000 cm -1) at different pressures, temperatures and volume mixing ratios of H 2O in air. Eighteen high-resolution, high signal-to-noise (S/N) ratio absorption spectra were recorded at T = 268, 296 and 353 K using two temperature-controlled absorption cells with path lengths of 9.906(1) and 19.95(1) cm. Furthermore, the resolution of the spectra recorded with themore » 9.906 cm and 19.95 cm absorption cells was 0.006 and 0.008 cm -1, respectively. A multispectrum nonlinear least squares fitting technique was employed to fit all the eighteen spectra simultaneously to retrieve 313 accurate line positions, 315 intensities, 229 Lorentz air-broadened half-width and 213 air-shift coefficients and their temperature dependences (136 for air-broadened width and 128 for air-shift coefficients, respectively). Room temperature self-broadened half-width coefficients for 209 transitions and self-shift coefficients for 106 transitions were also measured. Line mixing coefficients were experimentally determined for isolated sets of 10 transition pairs for H 2O-air and 8 transition pairs for H 2O-H 2O using the off-diagonal relaxation matrix element formalism, and 85 quadratic speed dependence parameters were measured. Modified Complex Robert-Bonamy (MCRB) calculations of self-, and air-broadened (from N 2- and O 2-broadening) half-width and air-shift coefficients, and temperature dependence exponents of air-broadened half-width coefficients are made. Finally, the measurements and calculations are compared with each other and with similar parameters reported in the literature.« less

  16. An efficient method to determine double Gaussian fluence parameters in the eclipse™ proton pencil beam model.

    PubMed

    Shen, Jiajian; Liu, Wei; Stoker, Joshua; Ding, Xiaoning; Anand, Aman; Hu, Yanle; Herman, Michael G; Bues, Martin

    2016-12-01

    To find an efficient method to configure the proton fluence for a commercial proton pencil beam scanning (PBS) treatment planning system (TPS). An in-water dose kernel was developed to mimic the dose kernel of the pencil beam convolution superposition algorithm, which is part of the commercial proton beam therapy planning software, eclipse™ (Varian Medical Systems, Palo Alto, CA). The field size factor (FSF) was calculated based on the spot profile reconstructed by the in-house dose kernel. The workflow of using FSFs to find the desirable proton fluence is presented. The in-house derived spot profile and FSF were validated by a direct comparison with those calculated by the eclipse TPS. The validation included 420 comparisons of the FSFs from 14 proton energies, various field sizes from 2 to 20 cm and various depths from 20% to 80% of proton range. The relative in-water lateral profiles between the in-house calculation and the eclipse TPS agree very well even at the level of 10 -4 . The FSFs between the in-house calculation and the eclipse TPS also agree well. The maximum deviation is within 0.5%, and the standard deviation is less than 0.1%. The authors' method significantly reduced the time to find the desirable proton fluences of the clinical energies. The method is extensively validated and can be applied to any proton centers using PBS and the eclipse TPS.

  17. Energy- and time-resolved detection of prompt gamma-rays for proton range verification.

    PubMed

    Verburg, Joost M; Riley, Kent; Bortfeld, Thomas; Seco, Joao

    2013-10-21

    In this work, we present experimental results of a novel prompt gamma-ray detector for proton beam range verification. The detection system features an actively shielded cerium-doped lanthanum(III) bromide scintillator, coupled to a digital data acquisition system. The acquisition was synchronized to the cyclotron radio frequency to separate the prompt gamma-ray signals from the later-arriving neutron-induced background. We designed the detector to provide a high energy resolution and an effective reduction of background events, enabling discrete proton-induced prompt gamma lines to be resolved. Measuring discrete prompt gamma lines has several benefits for range verification. As the discrete energies correspond to specific nuclear transitions, the magnitudes of the different gamma lines have unique correlations with the proton energy and can be directly related to nuclear reaction cross sections. The quantification of discrete gamma lines also enables elemental analysis of tissue in the beam path, providing a better prediction of prompt gamma-ray yields. We present the results of experiments in which a water phantom was irradiated with proton pencil-beams in a clinical proton therapy gantry. A slit collimator was used to collimate the prompt gamma-rays, and measurements were performed at 27 positions along the path of proton beams with ranges of 9, 16 and 23 g cm(-2) in water. The magnitudes of discrete gamma lines at 4.44, 5.2 and 6.13 MeV were quantified. The prompt gamma lines were found to be clearly resolved in dimensions of energy and time, and had a reproducible correlation with the proton depth-dose curve. We conclude that the measurement of discrete prompt gamma-rays for in vivo range verification of clinical proton beams is feasible, and plan to further study methods and detector designs for clinical use.

  18. Perceived workplace harassment experiences and problem drinking among physicians: broadening the stress/alienation paradigm.

    PubMed

    Richman, J A; Flaherty, J A; Rospenda, K M

    1996-03-01

    Sociologists who embrace the stress or alienation paradigms generally focus on explaining problem drinking in low status occupations. By contrast, this paper argues that a broadened conceptualization of stress and alienation which incorporates abusive work relationships has utility for explaining male and female drinking outcomes in both high and low status occupations. We provide empirical data on the relationship between perceived abusive experiences and drinking outcomes in a cohort of male and female physicians in their internship year of training. The data show that perceived sexual harassment, discriminatory treatment and psychological humiliation relate to various drinking outcomes in men and women, controlling for drinking prior to the internship year. While females were more likely to report experiencing abuse, these perceived experiences had deleterious effects on drinking outcomes for both genders. Personal vulnerability (narcissism) brought into the training environment somewhat influenced the later reporting of abusive experiences by males but not by females. Regression analyses showed that, for both males and females, work-place abusive experiences in interaction with personality vulnerability best explained drinking outcomes. The implications of these results for the design of future alcohol-related work-place studies are discussed.

  19. H2-,He-and CO2-line broadening coefficients and pressure shifts for the HITRAN database

    NASA Astrophysics Data System (ADS)

    Wilzewski, Jonas; Gordon, Iouli E.; Rothman, Laurence S.

    2014-06-01

    To increase the potential of the HITRAN database in astronomy, experimental and theoretical line broadening coefficients and line shifts of molecules of planetary interest broadened by H2,He,and CO2 have been assembled from available peer-reviewed sources. Since H2 and He are major constituents in the atmospheres of gas giants, and CO2 predominates in atmospheres of some rocky planets with volcanic activity, these spectroscopic data are important for studying planetary atmospheres. The collected data were used to create semi-empirical models for complete data sets from the microwave to the UV part of the spectrum of the studied molecules. The presented work will help identify the need for further investigations of broadening and shifting of spectral lines.

  20. Evaluation of the radiation hazard for ion-beam analysis with MeV external proton beams (X-IBA)

    NASA Astrophysics Data System (ADS)

    Hofsäss, Hans

    2018-07-01

    MeV ion beams which are extracted into air or He atmosphere are used in many labs for proton-induced X-ray emission (PIXE), proton induced gamma ray emission (PIGE) or Rutherford backscattering (RBS) to analyze samples which are difficult or impossible to handle in vacuum. When MeV proton beams are extracted into air through thin Kapton foils or nowadays thin silicon nitride membranes, the protons will interact with air, as well as elements present in the analyzed samples. Typically the range of MeV protons in air is several cm, in Helium atmosphere several 10 cm and in human skin around 100 μm. Besides the severe radiation hazard in case of a direct exposure of skin with protons, there are a manifold of nuclear reactions or inelastic proton scattering processes which may cause activation of air and target materials but also prompt radiation. The radiation hazard associated with the direct and scattered beam, nuclear reaction products and radionuclide production in air have been discussed in a publication by Doyle et al. in 1991 which was used as a reference in several later publications. I have reevaluated the radiation hazards for external proton beams with up to 4.5 MeV using proton reaction cross sections taken from the JANIS book of proton induced cross sections. The radionuclide production in air is about 3 orders of magnitude lower compared to values given in the 1991 publication. Radionuclide production as well as generation of prompt alpha, gamma and neutron radiation in target materials for elements up to molybdenum is also evaluated.

  1. Proton-proton bremsstrahlung towards the elastic limit

    NASA Astrophysics Data System (ADS)

    Mahjour-Shafiei, M.; Amir-Ahmadi, H. R.; Bacelar, J. C. S.; Castelijns, R.; Ermisch, K.; van Garderen, E.; Gašparić, I.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Kiš, M.; Löhner, H.

    2005-05-01

    In oder to study proton-proton bremsstrahlung moving towards the elastic limit, a detection system, consisting of Plastic-ball and SALAD, was set up and an experiment at 190 MeV incident beam energy was performed. Here, the experimental setup and the data analysis procedure along with some results obtained in the measurement are discussed.

  2. Improved electron collisional line broadening for low-temperature ions and neutrals in plasma modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johns, H. M.; Kilcrease, D. P.; Colgan, J.

    In this study, electron collisional broadening of observed spectral lines depends on plasma electron temperature and density. Including this effect in models of measured spectra is necessary to determine plasma conditions; however, computational limits make accurate line broadening treatments difficult to implement in large-scale plasma modeling efforts. In this paper, we report on improvements to the treatment of electron collisional line broadening and illustrate this with calculations using the Los Alamos ATOMIC code. We implement the Dimitrijevic and Konjevic modified semi-empirical model Dimitrijevic and Konjevic (1986 Astron. and Astrophy. 163 297 and 1987 Astron. Astrophys. 172 345), which we amendmore » by employing oscillator strengths from Hartree–Fock calculations. This line broadening model applies to near-neutral plasmas with electron temperatures of Te ~ 1 eV and electron densities of N e ~10 17 cm -3. We evaluate the D.K.-inspired model against the previous hydrogenic approach in ATOMIC through comparison to NIST-rated measurements for selected neutral and singly-ionized Ca, O, Fe, and Sn lines using both fine-structure and configuration-averaged oscillator strengths. The new D.K.-inspired model is significantly more accurate than the previous hydrogenic model and we find the use of configuration-averaged oscillator strengths a good approximation for applications such as LIBS (laser induced breakdown spectroscopy), for which we demonstrate the use of the D.K.-inspired model.« less

  3. Improved electron collisional line broadening for low-temperature ions and neutrals in plasma modeling

    DOE PAGES

    Johns, H. M.; Kilcrease, D. P.; Colgan, J.; ...

    2015-09-29

    In this study, electron collisional broadening of observed spectral lines depends on plasma electron temperature and density. Including this effect in models of measured spectra is necessary to determine plasma conditions; however, computational limits make accurate line broadening treatments difficult to implement in large-scale plasma modeling efforts. In this paper, we report on improvements to the treatment of electron collisional line broadening and illustrate this with calculations using the Los Alamos ATOMIC code. We implement the Dimitrijevic and Konjevic modified semi-empirical model Dimitrijevic and Konjevic (1986 Astron. and Astrophy. 163 297 and 1987 Astron. Astrophys. 172 345), which we amendmore » by employing oscillator strengths from Hartree–Fock calculations. This line broadening model applies to near-neutral plasmas with electron temperatures of Te ~ 1 eV and electron densities of N e ~10 17 cm -3. We evaluate the D.K.-inspired model against the previous hydrogenic approach in ATOMIC through comparison to NIST-rated measurements for selected neutral and singly-ionized Ca, O, Fe, and Sn lines using both fine-structure and configuration-averaged oscillator strengths. The new D.K.-inspired model is significantly more accurate than the previous hydrogenic model and we find the use of configuration-averaged oscillator strengths a good approximation for applications such as LIBS (laser induced breakdown spectroscopy), for which we demonstrate the use of the D.K.-inspired model.« less

  4. The STARS Alliance: Viable Strategies for Broadening Participation in Computing

    ERIC Educational Resources Information Center

    Dahlberg, Teresa; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey

    2011-01-01

    The Students and Technology in Academia, Research, and Service (STARS) Alliance is a nationally-connected system of regional partnerships among higher education, K-12 schools, industry and the community with a mission to broaden the participation of women, under-represented minorities and persons with disabilities in computing (BPC). Each regional…

  5. The importance of nuclear quantum effects in spectral line broadening of optical spectra and electrostatic properties in aromatic chromophores.

    PubMed

    Law, Y K; Hassanali, A A

    2018-03-14

    In this work, we examine the importance of nuclear quantum effects on capturing the line broadening and vibronic structure of optical spectra. We determine the absorption spectra of three aromatic molecules indole, pyridine, and benzene using time dependent density functional theory with several molecular dynamics sampling protocols: force-field based empirical potentials, ab initio simulations, and finally path-integrals for the inclusion of nuclear quantum effects. We show that the absorption spectrum for all these chromophores are similarly broadened in the presence of nuclear quantum effects regardless of the presence of hydrogen bond donor or acceptor groups. We also show that simulations incorporating nuclear quantum effects are able to reproduce the heterogeneous broadening of the absorption spectra even with empirical force fields. The spectral broadening associated with nuclear quantum effects can be accounted for by the broadened distribution of chromophore size as revealed by a particle in the box model. We also highlight the role that nuclear quantum effects have on the underlying electronic structure of aromatic molecules as probed by various electrostatic properties.

  6. The importance of nuclear quantum effects in spectral line broadening of optical spectra and electrostatic properties in aromatic chromophores

    NASA Astrophysics Data System (ADS)

    Law, Y. K.; Hassanali, A. A.

    2018-03-01

    In this work, we examine the importance of nuclear quantum effects on capturing the line broadening and vibronic structure of optical spectra. We determine the absorption spectra of three aromatic molecules indole, pyridine, and benzene using time dependent density functional theory with several molecular dynamics sampling protocols: force-field based empirical potentials, ab initio simulations, and finally path-integrals for the inclusion of nuclear quantum effects. We show that the absorption spectrum for all these chromophores are similarly broadened in the presence of nuclear quantum effects regardless of the presence of hydrogen bond donor or acceptor groups. We also show that simulations incorporating nuclear quantum effects are able to reproduce the heterogeneous broadening of the absorption spectra even with empirical force fields. The spectral broadening associated with nuclear quantum effects can be accounted for by the broadened distribution of chromophore size as revealed by a particle in the box model. We also highlight the role that nuclear quantum effects have on the underlying electronic structure of aromatic molecules as probed by various electrostatic properties.

  7. Probing transverse momentum broadening via jet-related angular correlations in relativistic nuclear collisions

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Qin, Guang-You; Wei, Shu-Yi; Xiao, Bo-Wen; Zhang, Han-Zhong

    2017-11-01

    Jet-related correlations have been regarded as important tools for studying jet-medium interaction and jet quenching in relativistic heavy-ion collisions at RHIC and the LHC. Here we present our recent work [L. Chen, G.-Y. Qin, S.-Y. Wei, B.-W. Xiao, H.-Z. Zhang, Probing Transverse Momentum Broadening via Dihadron and Hadron-jet Angular Correlations in Relativistic Heavy-ion Collisions, arxiv:arXiv:1607.01932] and show that the back-to-back angular correlations in dijet, dihadron and hadron-jet measurements can be utilized as a quantitative tool to probe the medium-induced transverse momentum broadening and to extract jet quenching parameter q̂. By comparing with the dihadron and hadron-jet angular correlation data at RHIC, we obtain the medium-induced transverse momentum broadening, averaged over different jet paths, 〈 p⊥2 〉 ∼ 13 GeV2 for a quark jet in most central Au-Au collisions at 200A GeV. Future experiments with statistically improved data on jet-related (angular) correlations will allow us to obtain more precise knowledge of jet quenching parameter and parton-medium interaction in high-energy nuclear collisions.

  8. Proton transfer in organic scaffolds

    NASA Astrophysics Data System (ADS)

    Basak, Dipankar

    This dissertation focuses on the fundamental understanding of the proton transfer process and translating the knowledge into design/development of new organic materials for efficient non-aqueous proton transport. For example, what controls the shuttling of a proton between two basic sites? a) Distance between two groups? or b) the basicity? c) What is the impact of protonation on molecular conformation when the basic sites are attached to rigid scaffolds? For this purpose, we developed several tunable proton sponges and studied proton transfer in these scaffolds theoretically as well as experimentally. Next we moved our attention to understand long-range proton conduction or proton transport. We introduced liquid crystalline (LC) proton conductor based on triphenylene molecule and established that activation energy barrier for proton transport is lower in the LC phase compared to the crystalline phase. Furthermore, we investigated the impact of several critical factors: the choice of the proton transferring groups, mobility of the charge carriers, intrinsic vs. extrinsic charge carrier concentrations and the molecular architectures on long-range proton transport. The outcome of this research will lead to a deeper understanding of non-aqueous proton transfer process and aid the design of next generation proton exchange membrane (PEM) for fuel cell.

  9. Collision-induced dissociation processes of protonated benzoic acid and related compounds: competitive generation of protonated carbon dioxide or protonated benzene.

    PubMed

    Xu, Sihang; Pavlov, Julius; Attygalle, Athula B

    2017-04-01

    Upon activation in the gas phase, protonated benzoic acid (m/z 123) undergoes fragmentation by several mechanisms. In addition to the predictable water loss followed by a CO loss, the m/z 123 ion more intriguingly eliminates a molecule of benzene to generate protonated carbon dioxide (H - O +  ═ C ≡ O, m/z 45), or a molecule of carbon dioxide to yield protonated benzene (m/z 79). Experimental evidence shows that the incipient proton ambulates during the fragmentation processes. For the CO 2 or benzene loss, protonated benzoic acid transfers the charge-imparting proton initially to the ortho position and then to the ipso position to generate a transient species which dissociates to form an ion-neutral complex between benzene and protonated CO 2 . The formation of the m/z 45 ion is not a phenomenon unique to benzoic acid: spectra from protonated isophthalic acid, terephthalic acid, trans-cinnamic acid and some aliphatic acids also displayed a peak for m/z 45. However, the m/z 45 peak is structurally diagnostic only for certain benzene polycarboxylic acids because the spectra of compounds with two carboxyl groups on adjacent ring carbons do not produce a peak at m/z 45. For the m/z 79 ion to be formed, an intramolecular reaction should take place in which protonated CO 2 within the ion-neutral complex acts as the attacking electrophile to transfer a proton to benzene. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Cloud droplet size distribution broadening during diffusional growth: ripening amplified by deactivation and reactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fan; Kollias, Pavlos; Shaw, Raymond A.

    Cloud droplet size distributions (CDSDs), which are related to cloud albedo and lifetime, are usually broader in warm clouds than predicted from adiabatic parcel calculations. We investigate a mechanism for the CDSD broadening using a Lagrangian bin-microphysics cloud parcel model that considers the condensational growth of cloud droplets formed on polydisperse, sub-micrometer aerosols in an adiabatic cloud parcel that undergoes vertical oscillations, such as those due to cloud circulations or turbulence. Results show that the CDSD can be broadened during condensational growth as a result of Ostwald ripening amplified by droplet deactivation and reactivation, which is consistent with Korolev (1995).more » The relative roles of the solute effect, curvature effect, deactivation and reactivation on CDSD broadening are investigated. Deactivation of smaller cloud droplets, which is due to the combination of curvature and solute effects in the downdraft region, enhances the growth of larger cloud droplets and thus contributes particles to the larger size end of the CDSD. Droplet reactivation, which occurs in the updraft region, contributes particles to the smaller size end of the CDSD. In addition, we find that growth of the largest cloud droplets strongly depends on the residence time of cloud droplet in the cloud rather than the magnitude of local variability in the supersaturation fluctuation. This is because the environmental saturation ratio is strongly buffered by smaller cloud droplets. Two necessary conditions for this CDSD broadening, which generally occur in the atmosphere, are: (1) droplets form on polydisperse aerosols of varying hygroscopicity and (2) the cloud parcel experiences upwards and downwards motions. Therefore we expect that this mechanism for CDSD broadening is possible in real clouds. Our results also suggest it is important to consider both curvature and solute effects before and after cloud droplet activation in a cloud model. The importance

  11. Cloud droplet size distribution broadening during diffusional growth: ripening amplified by deactivation and reactivation

    DOE PAGES

    Yang, Fan; Kollias, Pavlos; Shaw, Raymond A.; ...

    2017-12-06

    Cloud droplet size distributions (CDSDs), which are related to cloud albedo and lifetime, are usually broader in warm clouds than predicted from adiabatic parcel calculations. We investigate a mechanism for the CDSD broadening using a Lagrangian bin-microphysics cloud parcel model that considers the condensational growth of cloud droplets formed on polydisperse, sub-micrometer aerosols in an adiabatic cloud parcel that undergoes vertical oscillations, such as those due to cloud circulations or turbulence. Results show that the CDSD can be broadened during condensational growth as a result of Ostwald ripening amplified by droplet deactivation and reactivation, which is consistent with Korolev (1995).more » The relative roles of the solute effect, curvature effect, deactivation and reactivation on CDSD broadening are investigated. Deactivation of smaller cloud droplets, which is due to the combination of curvature and solute effects in the downdraft region, enhances the growth of larger cloud droplets and thus contributes particles to the larger size end of the CDSD. Droplet reactivation, which occurs in the updraft region, contributes particles to the smaller size end of the CDSD. In addition, we find that growth of the largest cloud droplets strongly depends on the residence time of cloud droplet in the cloud rather than the magnitude of local variability in the supersaturation fluctuation. This is because the environmental saturation ratio is strongly buffered by smaller cloud droplets. Two necessary conditions for this CDSD broadening, which generally occur in the atmosphere, are: (1) droplets form on polydisperse aerosols of varying hygroscopicity and (2) the cloud parcel experiences upwards and downwards motions. Therefore we expect that this mechanism for CDSD broadening is possible in real clouds. Our results also suggest it is important to consider both curvature and solute effects before and after cloud droplet activation in a cloud model. The importance

  12. Cloud droplet size distribution broadening during diffusional growth: ripening amplified by deactivation and reactivation

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Kollias, Pavlos; Shaw, Raymond A.; Vogelmann, Andrew M.

    2018-05-01

    Cloud droplet size distributions (CDSDs), which are related to cloud albedo and rain formation, are usually broader in warm clouds than predicted from adiabatic parcel calculations. We investigate a mechanism for the CDSD broadening using a moving-size-grid cloud parcel model that considers the condensational growth of cloud droplets formed on polydisperse, submicrometer aerosols in an adiabatic cloud parcel that undergoes vertical oscillations, such as those due to cloud circulations or turbulence. Results show that the CDSD can be broadened during condensational growth as a result of Ostwald ripening amplified by droplet deactivation and reactivation, which is consistent with early work. The relative roles of the solute effect, curvature effect, deactivation and reactivation on CDSD broadening are investigated. Deactivation of smaller cloud droplets, which is due to the combination of curvature and solute effects in the downdraft region, enhances the growth of larger cloud droplets and thus contributes particles to the larger size end of the CDSD. Droplet reactivation, which occurs in the updraft region, contributes particles to the smaller size end of the CDSD. In addition, we find that growth of the largest cloud droplets strongly depends on the residence time of cloud droplet in the cloud rather than the magnitude of local variability in the supersaturation fluctuation. This is because the environmental saturation ratio is strongly buffered by numerous smaller cloud droplets. Two necessary conditions for this CDSD broadening, which generally occur in the atmosphere, are as follows: (1) droplets form on aerosols of different sizes, and (2) the cloud parcel experiences upwards and downwards motions. Therefore we expect that this mechanism for CDSD broadening is possible in real clouds. Our results also suggest it is important to consider both curvature and solute effects before and after cloud droplet activation in a cloud model. The importance of this mechanism

  13. 800-MeV magnetic-focused flash proton radiography for high-contrast imaging of low-density biologically-relevant targets using an inverse-scatter collimator

    NASA Astrophysics Data System (ADS)

    Freeman, Matthew S.; Allison, Jason; Espinoza, Camilo; Goett, John Jerome; Hogan, Gary; Hollander, Brian; Kwiatkowski, Kris; Lopez, Julian; Mariam, Fesseha; Martinez, Michael; Medina, Jason; Medina, Patrick; Merrill, Frank E.; Morley, Deborah; Morris, Chris; Murray, Matthew; Nedrow, Paul; Saunders, Alexander; Schurman, Tamsen; Sisneros, Thomas; Tainter, Amy; Trouw, Frans; Tupa, Dale; Tybo, Josh; Wilde, Carl

    2016-03-01

    Proton radiography shows great promise as a tool to guide proton beam therapy (PBT) in real time. Here, we demonstrate two ways in which the technology may progress towards that goal. Firstly, with a proton beam that is 800 MeV in energy, target tissue receives a dose of radiation with very tight lateral constraint. This could present a benefit over the traditional treatment energies of ~200 MeV, where up to 1 cm of lateral tissue receives scattered radiation at the target. At 800 MeV, the beam travels completely through the object with minimal deflection, thus constraining lateral dose to a smaller area. The second novelty of this system is the utilization of magnetic quadrupole refocusing lenses that mitigate the blur caused by multiple Coulomb scattering within an object, enabling high resolution imaging of thick objects, such as the human body. This system is demonstrated on ex vivo salamander and zebrafish specimens, as well as on a realistic hand phantom. The resulting images provide contrast sufficient to visualize thin tissue, as well as fine detail within the target volumes, and the ability to measure small changes in density. Such a system, combined with PBT, would enable the delivery of a highly specific dose of radiation that is monitored and guided in real time.

  14. Transboundary natural area protection: Broadening the definition of national security

    Treesearch

    Haven B. Cook

    2007-01-01

    This paper looks at the definition and concept of national security, and examines how the environment is linked with national security. The traditional, state view of national security that guides most foreign policy includes the concepts of military power, sovereignty and geopolitical stability. This paper advocates broadening the definition of security to include...

  15. Quality's Higher Education Dividends: Broadened Custodianship and Global Public Scholarship

    ERIC Educational Resources Information Center

    Jacobs, Gerrie J.

    2010-01-01

    This paper speculates on the possible contribution of the quality movement to higher education and the perceived dividends received from this, in general, over the past two decades but also, more specifically, with reference to the author's institution in South Africa. The first major quality contribution is a gradual broadening of higher…

  16. How proton pulse characteristics influence protoacoustic determination of proton-beam range: simulation studies.

    PubMed

    Jones, Kevin C; Seghal, Chandra M; Avery, Stephen

    2016-03-21

    The unique dose deposition of proton beams generates a distinctive thermoacoustic (protoacoustic) signal, which can be used to calculate the proton range. To identify the expected protoacoustic amplitude, frequency, and arrival time for different proton pulse characteristics encountered at hospital-based proton sources, the protoacoustic pressure emissions generated by 150 MeV, pencil-beam proton pulses were simulated in a homogeneous water medium. Proton pulses with Gaussian widths ranging up to 200 μs were considered. The protoacoustic amplitude, frequency, and time-of-flight (TOF) range accuracy were assessed. For TOF calculations, the acoustic pulse arrival time was determined based on multiple features of the wave. Based on the simulations, Gaussian proton pulses can be categorized as Dirac-delta-function-like (FWHM < 4 μs) and longer. For the δ-function-like irradiation, the protoacoustic spectrum peaks at 44.5 kHz and the systematic error in determining the Bragg peak range is <2.6 mm. For longer proton pulses, the spectrum shifts to lower frequencies, and the range calculation systematic error increases (⩽ 23 mm for FWHM of 56 μs). By mapping the protoacoustic peak arrival time to range with simulations, the residual error can be reduced. Using a proton pulse with FWHM = 2 μs results in a maximum signal-to-noise ratio per total dose. Simulations predict that a 300 nA, 150 MeV, FWHM = 4 μs Gaussian proton pulse (8.0 × 10(6) protons, 3.1 cGy dose at the Bragg peak) will generate a 146 mPa pressure wave at 5 cm beyond the Bragg peak. There is an angle dependent systematic error in the protoacoustic TOF range calculations. Placing detectors along the proton beam axis and beyond the Bragg peak minimizes this error. For clinical proton beams, protoacoustic detectors should be sensitive to <400 kHz (for -20 dB). Hospital-based synchrocyclotrons and cyclotrons are promising sources of proton pulses for generating clinically measurable protoacoustic

  17. Cell micro-irradiation with MeV protons counted by an ultra-thin diamond membrane

    NASA Astrophysics Data System (ADS)

    Barberet, Philippe; Pomorski, Michal; Muggiolu, Giovanna; Torfeh, Eva; Claverie, Gérard; Huss, Cédric; Saada, Samuel; Devès, Guillaume; Simon, Marina; Seznec, Hervé

    2017-12-01

    We report the development of thin single crystal diamond membranes suitable for dose control in targeted cell irradiation experiments with a proton microbeam. A specific design was achieved to deliver single protons with a hit detection efficiency approaching 100%. The membranes have thicknesses between 1.8 and 3 μm and are used as vacuum windows on the microbeam line. The impact of these transmission detectors on the microbeam spot size is estimated by Monte-Carlo simulations, indicating that a beam lateral resolution below 2 μm is achieved. This is confirmed by experiments showing the accumulation online of X-ray Repair Cross-Complementing protein 1 (XRCC1)-Green Fluorescent Protein (GFP) at DNA damaged sites in living cells.

  18. Broaden Engineering Technology students' knowledge through hands-on with motion robotics

    USDA-ARS?s Scientific Manuscript database

    The skills and knowledge that employers value most are not always well-aligned with undergraduate engineering technology programs. With the support of a federal grant, we identify and propose to broaden the undergraduate student experience to include training in transferable skills with agricultura...

  19. Exciton broadening and band renormalization due to Dexter-like intervalley coupling

    NASA Astrophysics Data System (ADS)

    Bernal-Villamil, Ivan; Berghäuser, Gunnar; Selig, Malte; Niehues, Iris; Schmidt, Robert; Schneider, Robert; Tonndorf, Philipp; Erhart, Paul; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf; Knorr, Andreas; Malic, Ermin

    2018-04-01

    A remarkable property of atomically thin transition metal dichalcogenides (TMDs) is the possibility to selectively address single valleys by circularly polarized light. In the context of technological applications, it is very important to understand possible intervalley coupling mechanisms. Here, we show how the Dexter-like intervalley coupling mixes A and B states from opposite valleys leading to a significant broadening γB_{1s} of the B1s exciton. The effect is much more pronounced in tungsten-based TMDs, where the coupling excitonic states are quasi-resonant. We calculate a ratio γB_{1s}/γA_{1s}≈ 4.0 , which is in good agreement with the experimentally measured value of 3.9+/-0.7 . In addition to the broadening effect, the Dexter-like intervalley coupling also leads to a considerable energy renormalization resulting in an increased energetic distance between A1s and B1s states.

  20. Synthetic Secoisolariciresinol Diglucoside (LGM2605) Protects Human Lung in an Ex Vivo Model of Proton Radiation Damage.

    PubMed

    Velalopoulou, Anastasia; Chatterjee, Shampa; Pietrofesa, Ralph A; Koziol-White, Cynthia; Panettieri, Reynold A; Lin, Liyong; Tuttle, Stephen; Berman, Abigail; Koumenis, Constantinos; Christofidou-Solomidou, Melpo

    2017-11-25

    Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS), pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung.

  1. Synthetic Secoisolariciresinol Diglucoside (LGM2605) Protects Human Lung in an Ex Vivo Model of Proton Radiation Damage

    PubMed Central

    Velalopoulou, Anastasia; Chatterjee, Shampa; Pietrofesa, Ralph A.; Koziol-White, Cynthia; Panettieri, Reynold A.; Lin, Liyong; Tuttle, Stephen; Berman, Abigail; Koumenis, Constantinos; Christofidou-Solomidou, Melpo

    2017-01-01

    Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS), pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung. PMID:29186841

  2. TH-C-BRD-02: Analytical Modeling and Dose Calculation Method for Asymmetric Proton Pencil Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelover, E; Wang, D; Hill, P

    2014-06-15

    Purpose: A dynamic collimation system (DCS), which consists of two pairs of orthogonal trimmer blades driven by linear motors has been proposed to decrease the lateral penumbra in pencil beam scanning proton therapy. The DCS reduces lateral penumbra by intercepting the proton pencil beam near the lateral boundary of the target in the beam's eye view. The resultant trimmed pencil beams are asymmetric and laterally shifted, and therefore existing pencil beam dose calculation algorithms are not capable of trimmed beam dose calculations. This work develops a method to model and compute dose from trimmed pencil beams when using the DCS.more » Methods: MCNPX simulations were used to determine the dose distributions expected from various trimmer configurations using the DCS. Using these data, the lateral distribution for individual beamlets was modeled with a 2D asymmetric Gaussian function. The integral depth dose (IDD) of each configuration was also modeled by combining the IDD of an untrimmed pencil beam with a linear correction factor. The convolution of these two terms, along with the Highland approximation to account for lateral growth of the beam along the depth direction, allows a trimmed pencil beam dose distribution to be analytically generated. The algorithm was validated by computing dose for a single energy layer 5×5 cm{sup 2} treatment field, defined by the trimmers, using both the proposed method and MCNPX beamlets. Results: The Gaussian modeled asymmetric lateral profiles along the principal axes match the MCNPX data very well (R{sup 2}≥0.95 at the depth of the Bragg peak). For the 5×5 cm{sup 2} treatment plan created with both the modeled and MCNPX pencil beams, the passing rate of the 3D gamma test was 98% using a standard threshold of 3%/3 mm. Conclusion: An analytical method capable of accurately computing asymmetric pencil beam dose when using the DCS has been developed.« less

  3. A Generalized Weizsacker-Williams Method Applied to Pion Production in Proton-Proton Collisions

    NASA Technical Reports Server (NTRS)

    Ahern, Sean C.; Poyser, William J.; Norbury, John W.; Tripathi, R. K.

    2002-01-01

    A new "Generalized" Weizsacker-Williams method (GWWM) is used to calculate approximate cross sections for relativistic peripheral proton-proton collisions. Instead of a mass less photon mediator, the method allows for the mediator to have mass for short range interactions. This method generalizes the Weizsacker-Williams method (WWM) from Coulomb interactions to GWWM for strong interactions. An elastic proton-proton cross section is calculated using GWWM with experimental data for the elastic p+p interaction, where the mass p+ is now the mediator. The resulting calculated cross sections is compared to existing data for the elastic proton-proton interaction. A good approximate fit is found between the data and the calculation.

  4. Proton tracking in a high-granularity Digital Tracking Calorimeter for proton CT purposes

    NASA Astrophysics Data System (ADS)

    Pettersen, H. E. S.; Alme, J.; Biegun, A.; van den Brink, A.; Chaar, M.; Fehlker, D.; Meric, I.; Odland, O. H.; Peitzmann, T.; Rocco, E.; Ullaland, K.; Wang, H.; Yang, S.; Zhang, C.; Röhrich, D.

    2017-07-01

    Radiation therapy with protons as of today utilizes information from x-ray CT in order to estimate the proton stopping power of the traversed tissue in a patient. The conversion from x-ray attenuation to proton stopping power in tissue introduces range uncertainties of the order of 2-3% of the range, uncertainties that are contributing to an increase of the necessary planning margins added to the target volume in a patient. Imaging methods and modalities, such as Dual Energy CT and proton CT, have come into consideration in the pursuit of obtaining an as good as possible estimate of the proton stopping power. In this study, a Digital Tracking Calorimeter is benchmarked for proof-of-concept for proton CT purposes. The Digital Tracking Calorimeter was originally designed for the reconstruction of high-energy electromagnetic showers for the ALICE-FoCal project. The presented prototype forms the basis for a proton CT system using a single technology for tracking and calorimetry. This advantage simplifies the setup and reduces the cost of a proton CT system assembly, and it is a unique feature of the Digital Tracking Calorimeter concept. Data from the AGORFIRM beamline at KVI-CART in Groningen in the Netherlands and Monte Carlo simulation results are used to in order to develop a tracking algorithm for the estimation of the residual ranges of a high number of concurrent proton tracks. High energy protons traversing the detector leave a track through the sensor layers. These tracks are spread out through charge diffusion processes. A charge diffusion model is applied for acquisition of estimates of the deposited energy of the protons in each sensor layer by using the size of the charge diffused area. A model fit of the Bragg Curve is applied to each reconstructed track and through this, estimating the residual range of each proton. The range of the individual protons can at present be estimated with a resolution of 4%. The readout system for this prototype is able to

  5. An Experimental and Theoretical Study of Nitrogen-Broadened Acetylene Lines

    NASA Technical Reports Server (NTRS)

    Thibault, Franck; Martinez, Raul Z.; Bermejo, Dionisio; Ivanov, Sergey V.; Buzykin, Oleg G.; Ma, Qiancheng

    2014-01-01

    We present experimental nitrogen-broadening coefficients derived from Voigt profiles of isotropic Raman Q-lines measured in the 2 band of acetylene (C2H2) at 150 K and 298 K, and compare them to theoretical values obtained through calculations that were carried out specifically for this work. Namely, full classical calculations based on Gordon's approach, two kinds of semi-classical calculations based on Robert Bonamy method as well as full quantum dynamical calculations were performed. All the computations employed exactly the same ab initio potential energy surface for the C2H2N2 system which is, to our knowledge, the most realistic, accurate and up-to-date one. The resulting calculated collisional half-widths are in good agreement with the experimental ones only for the full classical and quantum dynamical methods. In addition, we have performed similar calculations for IR absorption lines and compared the results to bibliographic values. Results obtained with the full classical method are again in good agreement with the available room temperature experimental data. The quantum dynamical close-coupling calculations are too time consuming to provide a complete set of values and therefore have been performed only for the R(0) line of C2H2. The broadening coefficient obtained for this line at 173 K and 297 K also compares quite well with the available experimental data. The traditional Robert Bonamy semi-classical formalism, however, strongly overestimates the values of half-width for both Qand R-lines. The refined semi-classical Robert Bonamy method, first proposed for the calculations of pressure broadening coefficients of isotropic Raman lines, is also used for IR lines. By using this improved model that takes into account effects from line coupling, the calculated semi-classical widths are significantly reduced and closer to the measured ones.

  6. Broadening Participation in the Society for Integrative and Comparative Biology

    PubMed Central

    Wilga, Cheryl A.D.; Nishiguchi, Michele; Tsukimura, Brian

    2017-01-01

    Synopsis The goal of the Society for Integrative and Comparative Biology’s Broadening Participation Committee (SICB BPC) is to increase the number of underrepresented group (URG) members within the society and to expand their capabilities as future researchers and leaders within SICB. Our short-term 10-year goal was to increase the recruitment and retention of URG members in the society by 10%. Our long-term 25-year goal is to increase the membership of URG in the society through recruitment and retention until the membership demographic mirrors that of the US Census. Our plans to accomplish this included establishment of a formal standing committee, establishment of a moderate budget to support BPC activities, hosting professional development workshops, hosting diversity and mentor socials, and obtaining grant funds to supplement our budget. This paper documents broadening participation activities in the society, discusses the effectiveness of these activities, and evaluates BPC goals after 5 years of targeted funded activities. Over the past 5 years, the number of URG members rose by 5.2% to a total of 16.2%, members who report ethnicity and gender increased by 25.2% and 18%, respectively, and the number of members attending BPC activities has increased to 33% by 2016. SICB has made significant advances in broadening participation, not only through increased expenditures, but also with a commitment by its members and leadership to increase diversity. Most members realize that increasing diversity will both improve the Society’s ability to develop different approaches to tackling problems within integrative biology, and help solve larger global issues that are evident throughout science and technology fields. In addition, having URG members as part of the executive committee would provide other URG members role models within the society, as well as have a voice in the leadership that represents diversity and inclusion for all scientists. PMID:28881934

  7. UV action spectroscopy of protonated PAH derivatives. Methyl substituted quinolines

    NASA Astrophysics Data System (ADS)

    Klærke, B.; Holm, A. I. S.; Andersen, L. H.

    2011-08-01

    Aims: We investigate the production of molecular photofragments upon UV excitation of PAH derivatives, relevant for the interstellar medium. Methods: The action absorption spectra of protonated gas-phase methyl-substituted quinolines (CH3 - C9H7NH+) have been recorded in the 215-338 nm spectral range using the electrostatic storage ring ELISA, an electrospray ion source and 3 ns UV laser pulses. Results: It is shown that the absorption profile is both redshifted and broadened when moving the methyl group from the heterocycle containing nitrogen to the homoatomic ring. The absorption profiles are explained by TD-DFT calculations. The dissociation time of the studied molecules is found to be of several milliseconds at 230 nm and it is shown that after redistribution of the absorbed energy the molecules dissociate in several channels. The dissociation time found is an order of magnitude faster than the estimated IR relaxation time. Photophysical properties of both nitrogen containing and methyl-substituted PAHs are interesting in an astrophysical context in connection with identifying the aromatic component of the interstellar medium.

  8. Extending, Broadening and Rethinking Existing Research on Transfer of Training

    ERIC Educational Resources Information Center

    Volet, Simone

    2013-01-01

    The aim of this Special Issue was to generate a new integrated agenda for research on transfer of training. It brought together scholars from diverse perspectives and invited them to strive toward synergy. This article examines how this collection of articles, as well as other bodies of literature, can help extend, broaden and rethink current…

  9. Evaluation of proton cross-sections for radiation sources in the proton accelerator

    NASA Astrophysics Data System (ADS)

    Cho, Young-Sik; Lee, Cheol-Woo; Lee, Young-Ouk

    2007-08-01

    Proton Engineering Frontier Project (PEFP) is currently building a proton accelerator in Korea which consists of a proton linear accelerator with 100 MeV of energy, 20 mA of current and various particle beam facilities. The final goal of this project consists of the production of 1 GeV proton beams, which will be used for various medical and industrial applications as well as for research in basic and applied sciences. Carbon and copper in the proton accelerator for PEPP, through activation, become radionuclides such as 7Be and 64Cu. Copper is a major element of the accelerator components and the carbon is planned to be used as a target material of the beam dump. A recent survey showed that the currently available cross-sections create a large difference from the experimental data in the production of some residual nuclides by the proton-induced reactions for carbon and copper. To more accurately estimate the production of radioactive nuclides in the accelerator, proton cross-sections for carbon and copper are evaluated. The TALYS code was used for the evaluation of the cross-sections for the proton-induced reactions. To obtain the cross-sections which best fits the experimental data, optical model parameters for the neutron, proton and other complex particles such as the deuteron and alpha were successively adjusted. The evaluated cross-sections in this study are compared with the measurements and other evaluations .

  10. Parameterized spectral distributions for meson production in proton-proton collisions

    NASA Technical Reports Server (NTRS)

    Schneider, John P.; Norbury, John W.; Cucinotta, Francis A.

    1995-01-01

    Accurate semiempirical parameterizations of the energy-differential cross sections for charged pion and kaon production from proton-proton collisions are presented at energies relevant to cosmic rays. The parameterizations, which depend on both the outgoing meson parallel momentum and the incident proton kinetic energy, are able to be reduced to very simple analytical formulas suitable for cosmic ray transport through spacecraft walls, interstellar space, the atmosphere, and meteorites.

  11. An Experiment to Demonstrate the Energy Broadening of Annihilation Gamma Rays

    ERIC Educational Resources Information Center

    Ouseph, P. J.; DuBard, James L.

    1978-01-01

    Shows that when positions annihilate in solid materials the energy distribution of the annihilation gamma rays is much broader than that of a 0.511-Mev gamma peak. This broadening is caused by the momentum distribution of the electrons in the material. (Author/GA)

  12. Proton radiography and fluoroscopy of lung tumors: A Monte Carlo study using patient-specific 4DCT phantoms

    PubMed Central

    Han, Bin; Xu, X. George; Chen, George T. Y.

    2011-01-01

    Purpose: Monte Carlo methods are used to simulate and optimize a time-resolved proton range telescope (TRRT) in localization of intrafractional and interfractional motions of lung tumor and in quantification of proton range variations. Methods: The Monte Carlo N-Particle eXtended (MCNPX) code with a particle tracking feature was employed to evaluate the TRRT performance, especially in visualizing and quantifying proton range variations during respiration. Protons of 230 MeV were tracked one by one as they pass through position detectors, patient 4DCT phantom, and finally scintillator detectors that measured residual ranges. The energy response of the scintillator telescope was investigated. Mass density and elemental composition of tissues were defined for 4DCT data. Results: Proton water equivalent length (WEL) was deduced by a reconstruction algorithm that incorporates linear proton track and lateral spatial discrimination to improve the image quality. 4DCT data for three patients were used to visualize and measure tumor motion and WEL variations. The tumor trajectories extracted from the WEL map were found to be within ∼1 mm agreement with direct 4DCT measurement. Quantitative WEL variation studies showed that the proton radiograph is a good representation of WEL changes from entrance to distal of the target. Conclusions:MCNPX simulation results showed that TRRT can accurately track the motion of the tumor and detect the WEL variations. Image quality was optimized by choosing proton energy, testing parameters of image reconstruction algorithm, and comparing to ground truth 4DCT. The future study will demonstrate the feasibility of using the time resolved proton radiography as an imaging tool for proton treatments of lung tumors. PMID:21626923

  13. Neutrinos from the primary proton-proton fusion process in the Sun

    NASA Astrophysics Data System (ADS)

    BOREXINO Collaboration; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; D'Angelo, D.; Davini, S.; Derbin, A.; Empl, A.; Etenko, A.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Göger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Lehnert, B.; Lewke, T.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Meindl, Q.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Saldanha, R.; Salvo, C.; Schönert, S.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Vignaud, D.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2014-08-01

    In the core of the Sun, energy is released through sequences of nuclear reactions that convert hydrogen into helium. The primary reaction is thought to be the fusion of two protons with the emission of a low-energy neutrino. These so-called pp neutrinos constitute nearly the entirety of the solar neutrino flux, vastly outnumbering those emitted in the reactions that follow. Although solar neutrinos from secondary processes have been observed, proving the nuclear origin of the Sun's energy and contributing to the discovery of neutrino oscillations, those from proton-proton fusion have hitherto eluded direct detection. Here we report spectral observations of pp neutrinos, demonstrating that about 99 per cent of the power of the Sun, 3.84 × 1033 ergs per second, is generated by the proton-proton fusion process.

  14. Sparse-view proton computed tomography using modulated proton beams.

    PubMed

    Lee, Jiseoc; Kim, Changhwan; Min, Byungjun; Kwak, Jungwon; Park, Seyjoon; Lee, Se Byeong; Park, Sungyong; Cho, Seungryong

    2015-02-01

    Proton imaging that uses a modulated proton beam and an intensity detector allows a relatively fast image acquisition compared to the imaging approach based on a trajectory tracking detector. In addition, it requires a relatively simple implementation in a conventional proton therapy equipment. The model of geometric straight ray assumed in conventional computed tomography (CT) image reconstruction is however challenged by multiple-Coulomb scattering and energy straggling in the proton imaging. Radiation dose to the patient is another important issue that has to be taken care of for practical applications. In this work, the authors have investigated iterative image reconstructions after a deconvolution of the sparsely view-sampled data to address these issues in proton CT. Proton projection images were acquired using the modulated proton beams and the EBT2 film as an intensity detector. Four electron-density cylinders representing normal soft tissues and bone were used as imaged object and scanned at 40 views that are equally separated over 360°. Digitized film images were converted to water-equivalent thickness by use of an empirically derived conversion curve. For improving the image quality, a deconvolution-based image deblurring with an empirically acquired point spread function was employed. They have implemented iterative image reconstruction algorithms such as adaptive steepest descent-projection onto convex sets (ASD-POCS), superiorization method-projection onto convex sets (SM-POCS), superiorization method-expectation maximization (SM-EM), and expectation maximization-total variation minimization (EM-TV). Performance of the four image reconstruction algorithms was analyzed and compared quantitatively via contrast-to-noise ratio (CNR) and root-mean-square-error (RMSE). Objects of higher electron density have been reconstructed more accurately than those of lower density objects. The bone, for example, has been reconstructed within 1% error. EM

  15. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    NASA Astrophysics Data System (ADS)

    Nagao, Yuki; Kubo, Takahiro

    2014-12-01

    Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120-670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  16. Technique for comprehensive head and neck irradiation using 3-dimensional conformal proton therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Mark W., E-mail: markmcdonaldmd@gmail.com; Indiana University Health Proton Therapy Center, Bloomington, IN; Walter, Alexander S.

    2015-01-01

    Owing to the technical and logistical complexities of matching photon and proton treatment modalities, we developed and implemented a technique of comprehensive head and neck radiation using 3-dimensional (3D) conformal proton therapy. A monoisocentric technique was used with a 30-cm snout. Cervical lymphatics were treated with 3 fields: a posterior-anterior field with a midline block and a right and a left posterior oblique field. The matchline of the 3 cervical nodal fields with the primary tumor site fields was staggered by 0.5 cm. Comparative intensity-modulated photon plans were later developed for 12 previously treated patients to provide equivalent target coverage,more » while matching or improving on the proton plans' sparing of organs at risk (OARs). Dosimetry to OARs was evaluated and compared by treatment modality. Comprehensive head and neck irradiation using proton therapy yielded treatment plans with significant dose avoidance of the oral cavity and midline neck structures. When compared with the generated intensity-modulated radiation therapy (IMRT) plans, the proton treatment plans yielded statistically significant reductions in the mean and integral radiation dose to the oral cavity, larynx, esophagus, and the maximally spared parotid gland. There was no significant difference in mean dose to the lesser-spared parotid gland by treatment modality or in mean or integral dose to the spared submandibular glands. A technique for cervical nodal irradiation using 3D conformal proton therapy with uniform scanning was developed and clinically implemented. Use of proton therapy for cervical nodal irradiation resulted in large volume of dose avoidance to the oral cavity and low dose exposure to midline structures of the larynx and the esophagus, with lower mean and integral dose to assessed OARs when compared with competing IMRT plans.« less

  17. Acousto-optics bandwidth broadening in a Bragg cell based on arbitrary synthesized signal methods.

    PubMed

    Peled, Itay; Kaminsky, Ron; Kotler, Zvi

    2015-06-01

    In this work, we present the advantages of driving a multichannel acousto-optical deflector (AOD) with a digitally synthesized multifrequency RF signal. We demonstrate a significant bandwidth broadening of ∼40% by providing well-tuned phase control of the array transducers. Moreover, using a multifrequency, complex signal, we manage to suppress the harmonic deflections and return most of the spurious energy to the main beam. This method allows us to operate the AOD with more than an octave of bandwidth with negligible spurious energy going to the harmonic beams and a total bandwidth broadening of over 70%.

  18. Improving the resolution in proton-detected through-space heteronuclear multiple quantum correlation NMR spectroscopy.

    PubMed

    Shen, Ming; Trébosc, J; Lafon, O; Pourpoint, F; Hu, Bingwen; Chen, Qun; Amoureux, J-P

    2014-08-01

    Connectivities and proximities between protons and low-gamma nuclei can be probed in solid-state NMR spectroscopy using two-dimensional (2D) proton-detected heteronuclear correlation, through Heteronuclear Multiple Quantum Correlation (HMQC) pulse sequence. The indirect detection via protons dramatically enhances the sensitivity. However, the spectra are often broadened along the indirect F1 dimension by the decay of heteronuclear multiple-quantum coherences under the strong (1)H-(1)H dipolar couplings. This work presents a systematic comparison of the performances of various decoupling schemes during the indirect t1 evolution period of dipolar-mediated HMQC (D-HMQC) experiment. We demonstrate that (1)H-(1)H dipolar decoupling sequences during t1, such as symmetry-based schemes, phase-modulated Lee-Goldburg (PMLG) and Decoupling Using Mind-Boggling Optimization (DUMBO), provide better resolution than continuous wave (1)H irradiation. We also report that high resolution requires the preservation of (1)H isotropic chemical shifts during the decoupling sequences. When observing indirectly broad spectra presenting numerous spinning sidebands, the D-HMQC sequence must be fully rotor-synchronized owing to the rotor-synchronized indirect sampling and dipolar recoupling sequence employed. In this case, we propose a solution to reduce artefact sidebands caused by the modulation of window delays before and after the decoupling application during the t1 period. Moreover, we show that (1)H-(1)H dipolar decoupling sequence using Smooth Amplitude Modulation (SAM) minimizes the t1-noise. The performances of the various decoupling schemes are assessed via numerical simulations and compared to 2D (1)H-{(13)C} D-HMQC experiments on [U-(13)C]-L-histidine⋅HCl⋅H2O at various magnetic fields and Magic Angle spinning (MAS) frequencies. Great resolution and sensitivity enhancements resulting from decoupling during t1 period enable the detection of heteronuclear correlation between

  19. Strategies for broadening public involvement in space developments

    NASA Technical Reports Server (NTRS)

    Harris, Philip R.

    1992-01-01

    There is widespread public interest in and goodwill toward the space program. For NASA's plans for the next 25 years to be achieved, this public reservoir of support needs to be tapped and channeled. NASA endeavors have to reach out beyond the scientific, technological, and aerospace communities to foster wider participation in space exploration and exploitation. To broaden NASA support and spread out the financing of space activities, recommendations for consideration are offered in the area of economics, political, institutional, international, and managerial areas.

  20. Emission of neutron–proton and proton–proton pairs in neutrino scattering

    DOE PAGES

    Ruiz Simo, I.; Amaro, J. E.; Barbaro, M. B.; ...

    2016-11-10

    For this paper, we use a recently developed model of relativistic meson-exchange currents to compute the neutron–proton and proton–proton yields in (νμ, μ -)scattering from 12C in the 2p–2h channel. We compute the response functions and cross sections with the relativistic Fermi gas model for different kinematics from intermediate to high momentum transfers. We find a large contribution of neutron–proton configurations in the initial state, as compared to proton–proton pairs. In the case of charge-changing neutrino scattering the 2p–2h cross section of proton–proton emission (i.e.,np in the initial state) is much larger than for neutron–proton emission (i.e.,two neutrons in themore » initial state) by a (ω, q)-dependent factor. The different emission probabilities of distinct species of nucleon pairs are produced in our model only by meson-exchange currents, mainly by the Δ isobar current. We also analyze other effects including exchange contributions and the effect of the axial and vector currents.« less

  1. Using the water signal to detect invisible exchanging protons in the catalytic triad of a serine protease

    PubMed Central

    Lauzon, Carolyn B.; van Zijl, Peter; Stivers, James T.

    2011-01-01

    Chemical Exchange Saturation Transfer (CEST) is an MRI approach that can indirectly detect exchange broadened protons that are invisible in traditional NMR spectra. We modified the CEST pulse sequence for use on high-resolution spectrometers and developed a quantitative approach for measuring exchange rates based upon CEST spectra. This new methodology was applied to the rapidly exchanging Hδ1 and Hε2 protons of His57 in the catalytic triad of bovine chymotrypsinogen-A (bCT-A). CEST enabled observation of Hε2 at neutral pH values, and also allowed measurement of solvent exchange rates for His57-Hδ1 and His57-Hε2 across a wide pH range (3–10). Hδ1 exchange was only dependent upon the charge state of the His57 (kex,Im+ = 470 s−1, kex,Im = 50 s−1), while Hε2 exchange was found to be catalyzed by hydroxide ion and phosphate base (kOH− = 1.7 × 1010 M−1s−1, kHPO42−=1.7×106M−1s−1), reflecting its greater exposure to solute catalysts. Concomitant with the disappearance of the Hε2 signal as the pH was increased above its pKa, was the appearance of a novel signal (δ = 12 ppm), which we assigned to Hγ of the nearby Ser195 nucleophile, that is hydrogen bonded to Nε2 of neutral His57. The chemical shift of Hγ is about 7 ppm downfield from a typical hydroxyl proton, suggesting a highly polarized O-Hγ bond. The significant alkoxide character of Oγ indicates that Ser195 is preactivated for nucleophilic attack before substrate binding. CEST should be generally useful for mechanistic investigations of many enzymes with labile protons involved in active site chemistry. PMID:21809183

  2. Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons.

    PubMed

    Bythell, Benjamin J; Suhai, Sándor; Somogyi, Arpád; Paizs, Béla

    2009-10-07

    The mobile proton model (Dongre, A. R., Jones, J. L., Somogyi, A. and Wysocki, V. H. J. Am. Chem. Soc. 1996, 118 , 8365-8374) of peptide fragmentation states that the ionizing protons play a critical role in the gas-phase fragmentation of protonated peptides upon collision-induced dissociation (CID). The model distinguishes two classes of peptide ions, those with or without easily mobilizable protons. For the former class mild excitation leads to proton transfer reactions which populate amide nitrogen protonation sites. This enables facile amide bond cleavage and thus the formation of b and y sequence ions. In contrast, the latter class of peptide ions contains strongly basic functionalities which sequester the ionizing protons, thereby often hindering formation of sequence ions. Here we describe the proton-driven amide bond cleavages necessary to produce b and y ions from peptide ions lacking easily mobilizable protons. We show that this important class of peptide ions fragments by different means from those with easily mobilizable protons. We present three new amide bond cleavage mechanisms which involve salt-bridge, anhydride, and imine enol intermediates, respectively. All three new mechanisms are less energetically demanding than the classical oxazolone b(n)-y(m) pathway. These mechanisms offer an explanation for the formation of b and y ions from peptide ions with sequestered ionizing protons which are routinely fragmented in large-scale proteomics experiments.

  3. Broadening the diagnosis of bipolar disorder: benefits vs. risks

    PubMed Central

    STRAKOWSKI, STEPHEN M.; FLECK, DAVID E.; MAJ, MARIO

    2011-01-01

    There is considerable debate over whether bipolar and related disorders that share common signs and symptoms, but are currently defined as distinct clinical entities in DSM-IV and ICD-10, may be better characterized as falling within a more broadly defined “bipolar spectrum”. With a spectrum view in mind, the possibility of broadening the diagnosis of bipolar disorder has been proposed. This paper discusses some of the rationale for an expanded diagnostic scheme from both clinical and research perspectives in light of potential drawbacks. The ultimate goal of broadening the diagnosis of bipolar disorder is to help identify a common etiopathogenesis for these conditions to better guide treatment. To help achieve this goal, bipolar researchers have increasingly expanded their patient populations to identify objective biological or endophenotypic markers that transcend phenomenological observation. Although this approach has and will likely continue to produce beneficial results, the upcoming DSM-IV and ICD-10 revisions will place increasing scrutiny on psychiatry’s diagnostic classification systems and pressure to re-evaluate our conceptions of bipolar disorder. However, until research findings can provide consistent and converging evidence as to the validity of a broader diagnostic conception, clinical expansion to a dimensional bipolar spectrum should be considered with caution. PMID:21991268

  4. The Organization as Client: Broadening the Concept of Employee Assistance Programs.

    ERIC Educational Resources Information Center

    Googins, Bradley; Davidson, Bruce N.

    1993-01-01

    Notes that many employee assistance programs (EAPs) are broadening their function to address rapidly changing human and social issues of environments in which they operate, refocusing practice to include organization as the client. Discusses traditional EAP practice, evolution of EAPs, changes confronting corporations, and alternative model in…

  5. Doppler broadening of neutron-induced resonances using ab initio phonon spectrum

    NASA Astrophysics Data System (ADS)

    Noguere, G.; Maldonado, P.; De Saint Jean, C.

    2018-05-01

    Neutron resonances observed in neutron cross section data can only be compared with their theoretical analogues after a correct broadening of the resonance widths. This broadening is usually carried out by two different theoretical models, namely the Free Gas Model and the Crystal Lattice Model, which, however, are only applicable under certain assumptions. Here, we use neutron transmission experiments on UO2 samples at T=23.7 K and T=293.7 K, to investigate the limitations of these models when an ab initio phonon spectrum is introduced in the calculations. Comparisons of the experimental and theoretical transmissions highlight the underestimation of the energy transferred at low temperature and its impact on the accurate determination of the radiation widths Γ_{γ_{λ}} of the 238U resonances λ. The observed deficiency of the model represents an experimental evidence that the Debye-Waller factor is not correctly calculated at low temperature near the Neel temperature ( TN=30.8 K).

  6. First Extraction of Transversity from a Global Analysis of Electron-Proton and Proton-Proton Data

    NASA Astrophysics Data System (ADS)

    Radici, Marco; Bacchetta, Alessandro

    2018-05-01

    We present the first extraction of the transversity distribution in the framework of collinear factorization based on the global analysis of pion-pair production in deep-inelastic scattering and in proton-proton collisions with a transversely polarized proton. The extraction relies on the knowledge of dihadron fragmentation functions, which are taken from the analysis of electron-positron annihilation data. For the first time, the transversity is extracted from a global analysis similar to what is usually done for the spin-averaged and helicity distributions. The knowledge of transversity is important for, among other things, detecting possible signals of new physics in high-precision low-energy experiments.

  7. PREFACE: Transport phenomena in proton conducting media Transport phenomena in proton conducting media

    NASA Astrophysics Data System (ADS)

    Eikerling, Michael

    2011-06-01

    Proton transport phenomena are of paramount importance for acid-base chemistry, energy transduction in biological organisms, corrosion processes, and energy conversion in electrochemical systems such as polymer electrolyte fuel cells. The relevance for such a plethora of materials and systems, and the ever-lasting fascination with the highly concerted nature of underlying processes drive research across disciplines in chemistry, biology, physics and chemical engineering. A proton never travels alone. Proton motion is strongly correlated with its environment, usually comprised of an electrolyte and a solid or soft host material. For the transport in nature's most benign proton solvent and shuttle, water that is, insights from ab initio simulations, matured over the last 15 years, have furnished molecular details of the structural diffusion mechanism of protons. Excess proton movement in water consists of sequences of Eigen-Zundel-Eigen transitions, triggered by hydrogen bond breaking and making in the surrounding water network. Nowadays, there is little debate about the validity of this mechanism in water, which bears a stunning resemblance to the basic mechanistic picture put forward by de Grotthuss in 1806. While strong coupling of an excess proton with degrees of freedom of solvent and host materials facilitates proton motion, this coupling also creates negative synergies. In general, proton mobility in biomaterials and electrochemical proton conducting media is highly sensitive to the abundance and structure of the proton solvent. In polymer electrolyte membranes, in which protons are bound to move in nano-sized water-channels, evaporation of water or local membrane dehydration due to electro-osmotic coupling are well-known phenomena that could dramatically diminish proton conductivity. Contributions in this special issue address various vital aspects of the concerted nature of proton motion and they elucidate important structural and dynamic effects of solvent

  8. Proton transfer events in GFP.

    PubMed

    Di Donato, Mariangela; van Wilderen, Luuk J G W; Van Stokkum, Ivo H M; Stuart, Thomas Cohen; Kennis, John T M; Hellingwerf, Klaas J; van Grondelle, Rienk; Groot, Marie Louise

    2011-09-28

    Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton transfer through a 'proton-wire', formed by the chromophore (the proton donor), water molecule W22, Ser205 and Glu222 (the acceptor), on a picosecond time scale. To obtain a more refined view of this process, we have used a combined approach of time resolved mid-infrared spectroscopy and visible pump-dump-probe spectroscopy to resolve with atomic resolution how and how fast protons move through this wire. Our results indicate that absorption of light by GFP induces in 3 ps (10 ps in D(2)O) a shift of the equilibrium positions of all protons in the H-bonded network, leading to a partial protonation of Glu222 and to a so-called low barrier hydrogen bond (LBHB) for the chromophore's proton, giving rise to dual emission at 475 and 508 nm. This state is followed by a repositioning of the protons on the wire in 10 ps (80 ps in D(2)O), ultimately forming the fully deprotonated chromophore and protonated Glu222.

  9. Action Potential Broadening in Capsaicin-Sensitive DRG Neurons from Frequency-Dependent Reduction of Kv3 Current

    PubMed Central

    Liu, Pin W.; Blair, Nathaniel T.

    2017-01-01

    Action potential (AP) shape is a key determinant of cellular electrophysiological behavior. We found that in small-diameter, capsaicin-sensitive dorsal root ganglia neurons corresponding to nociceptors (from rats of either sex), stimulation at frequencies as low as 1 Hz produced progressive broadening of the APs. Stimulation at 10 Hz for 3 s resulted in an increase in AP width by an average of 76 ± 7% at 22°C and by 38 ± 3% at 35°C. AP clamp experiments showed that spike broadening results from frequency-dependent reduction of potassium current during spike repolarization. The major current responsible for frequency-dependent reduction of overall spike-repolarizing potassium current was identified as Kv3 current by its sensitivity to low concentrations of 4-aminopyridine (IC50 <100 μm) and block by the peptide inhibitor blood depressing substance I (BDS-I). There was a small component of Kv1-mediated current during AP repolarization, but this current did not show frequency-dependent reduction. In a small fraction of cells, there was a component of calcium-dependent potassium current that showed frequency-dependent reduction, but the contribution to overall potassium current reduction was almost always much smaller than that of Kv3-mediated current. These results show that Kv3 channels make a major contribution to spike repolarization in small-diameter DRG neurons and undergo frequency-dependent reduction, leading to spike broadening at moderate firing frequencies. Spike broadening from frequency-dependent reduction in Kv3 current could mitigate the frequency-dependent decreases in conduction velocity typical of C-fiber axons. SIGNIFICANCE STATEMENT Small-diameter dorsal root ganglia (DRG) neurons mediating nociception and other sensory modalities express many types of potassium channels, but how they combine to control firing patterns and conduction is not well understood. We found that action potentials of small-diameter rat DRG neurons showed spike

  10. Pressure broadening of the ((dt. mu. )dee)/sup */ formation resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, J.S.; Leon, M.; Padial, N.T.

    1988-01-01

    The treatment of ((dt..mu..)dee)/sup */ formation at high densities as a pressure broadening process is discussed. The quasistatic approximation is shown to satisfy the usual conditions of muon-catalyzed fusion better than does the impact approximation. Complete accurate results are shown for the impact approximation, and a preliminary rough treatment is presented to illustrate the quasistatic approximation. 13 refs., 8 figs.

  11. Sources of protons and a role for bicarbonate in inhibitory feedback from horizontal cells to cones in Ambystoma tigrinum retina.

    PubMed

    Warren, Ted J; Van Hook, Matthew J; Supuran, Claudiu T; Thoreson, Wallace B

    2016-11-15

    In the vertebrate retina, photoreceptors influence the signalling of neighbouring photoreceptors through lateral-inhibitory interactions mediated by horizontal cells (HCs). These interactions create antagonistic centre-surround receptive fields important for detecting edges and generating chromatically opponent responses in colour vision. The mechanisms responsible for inhibitory feedback from HCs involve changes in synaptic cleft pH that modulate photoreceptor calcium currents. However, the sources of synaptic protons involved in feedback and the mechanisms for their removal from the cleft when HCs hyperpolarize to light remain unknown. Our results indicate that Na + -H + exchangers are the principal source of synaptic cleft protons involved in HC feedback but that synaptic cleft alkalization during light-evoked hyperpolarization of HCs also involves changes in bicarbonate transport across the HC membrane. In addition to delineating processes that establish lateral inhibition in the retina, these results contribute to other evidence showing the key role for pH in regulating synaptic signalling throughout the nervous system. Lateral-inhibitory feedback from horizontal cells (HCs) to photoreceptors involves changes in synaptic cleft pH accompanying light-evoked changes in HC membrane potential. We analysed HC to cone feedback by studying surround-evoked light responses of cones and by obtaining paired whole cell recordings from cones and HCs in salamander retina. We tested three potential sources for synaptic cleft protons: (1) generation by extracellular carbonic anhydrase (CA), (2) release from acidic synaptic vesicles and (3) Na + /H + exchangers (NHEs). Neither antagonizing extracellular CA nor blocking loading of protons into synaptic vesicles eliminated feedback. However, feedback was eliminated when extracellular Na + was replaced with choline and significantly reduced by an NHE inhibitor, cariporide. Depriving NHEs of intracellular protons by buffering HC

  12. WE-D-17A-01: A Dynamic Collimation System for Spot Scanned Proton Therapy: Conceptual Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyer, D; Hill, P; Wang, D

    2014-06-15

    Purpose: In the absence of a collimation system, the lateral penumbra in pencil beam scanning (PBS) proton therapy delivered at low energies is highly dependent on the spot size. This dependence, coupled with the fact that spot sizes increase with decreasing energy, reduces the benefit of the PBS technique for treating shallow tumors such as those found in the head and neck region. In order to overcome this limitation, a dynamic collimation system (DCS) was developed for sharpening the lateral penumbra of low energy proton therapy dose distributions delivered by PBS. Methods: The proposed DCS consists of two pairs ofmore » orthogonal trimmer blades which intercept the edges of the proton beam near the target edge in the beam's eye view. Each trimmer blade is capable of rapid motion in the direction perpendicular to the central beam axis by means of a linear motor, with maximum velocity and acceleration of 2.5 m/s and 19.6 m/s{sup 2}, respectively. Two-dimensional treatment plans were created both with and without the DCS for in-air spot sizes (σ-air) of 3, 5, 7, and 9 mm, representing a wide array of clinically available equipment. Results: In its current configuration, the snout of the DCS has outer dimensions of 22.6 × 22.6 cm{sup 2} and is capable of delivering a minimum treatment field size of 15 × 15 cm{sup 2}. Using off the shelf components, the constructed system would weigh less than 20 kg. The treatment plans created with the DCS yielded a reduction in the mean dose to normal tissue surrounding the target of 26.2–40.6% for spot sizes of 3–9 mm, respectively. Conclusion: The DCS can be integrated with current or future proton therapy equipment and we believe it will serve as a useful tool to further improve the next generation of proton therapy delivery.« less

  13. Spectral broadening of optical transitions in InAs/GaAs coupled quantum dot pairs

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Czarnocki, C.; Jennings, C.; Casara, J.; Monteros, A. L.; Zahbihi, N.; Scheibner, M.; Economou, S. E.; Bracker, A. S.; Pursley, B. C.; Gammon, D.; Carter, S. G.

    The optical transitions in InAs/GaAs coupled quantum dot (CQD) pairs are investigated experimentally. These coupled dot systems provide new means to study the interaction of quantum states with the mechanical modes of the crystal environment. Here, the line width and line shape of CQD optical transitions are analyzed in detail as a function of temperature, excitation power, excitation energy, and tunnel coupling strength. A significant line broadening, up to 25 times the typical lifetime-limited linewidth of single-dot excitons, is being observed at level anti-crossings where the coherent tunnel coupling between spatially direct and indirect exciton states is considerable. The experimental observations are compared with theoretical predictions where linewidth broadening at anti-crossings is attributed to the phonon assisted transitions, and found to be strongly dependent on the energy splitting of the two exciton branches. This work focuses on understanding the linewidth broadening due to the pure dephasing, and fundamental aspects of the interaction of these systems with the local environment. This work was supported by the Defense Threat Reduction Agency, Basic Research Award HDTRA1-15-1-0011.

  14. A maximum likelihood method for high resolution proton radiography/proton CT

    NASA Astrophysics Data System (ADS)

    Collins-Fekete, Charles-Antoine; Brousmiche, Sébastien; Portillo, Stephen K. N.; Beaulieu, Luc; Seco, Joao

    2016-12-01

    Multiple Coulomb scattering (MCS) is the largest contributor to blurring in proton imaging. In this work, we developed a maximum likelihood least squares estimator that improves proton radiography’s spatial resolution. The water equivalent thickness (WET) through projections defined from the source to the detector pixels were estimated such that they maximizes the likelihood of the energy loss of every proton crossing the volume. The length spent in each projection was calculated through the optimized cubic spline path estimate. The proton radiographies were produced using Geant4 simulations. Three phantoms were studied here: a slanted cube in a tank of water to measure 2D spatial resolution, a voxelized head phantom for clinical performance evaluation as well as a parametric Catphan phantom (CTP528) for 3D spatial resolution. Two proton beam configurations were used: a parallel and a conical beam. Proton beams of 200 and 330 MeV were simulated to acquire the radiography. Spatial resolution is increased from 2.44 lp cm-1 to 4.53 lp cm-1 in the 200 MeV beam and from 3.49 lp cm-1 to 5.76 lp cm-1 in the 330 MeV beam. Beam configurations do not affect the reconstructed spatial resolution as investigated between a radiography acquired with the parallel (3.49 lp cm-1 to 5.76 lp cm-1) or conical beam (from 3.49 lp cm-1 to 5.56 lp cm-1). The improved images were then used as input in a photon tomography algorithm. The proton CT reconstruction of the Catphan phantom shows high spatial resolution (from 2.79 to 5.55 lp cm-1 for the parallel beam and from 3.03 to 5.15 lp cm-1 for the conical beam) and the reconstruction of the head phantom, although qualitative, shows high contrast in the gradient region. The proposed formulation of the optimization demonstrates serious potential to increase the spatial resolution (up by 65 % ) in proton radiography and greatly accelerate proton computed tomography reconstruction.

  15. A maximum likelihood method for high resolution proton radiography/proton CT.

    PubMed

    Collins-Fekete, Charles-Antoine; Brousmiche, Sébastien; Portillo, Stephen K N; Beaulieu, Luc; Seco, Joao

    2016-12-07

    Multiple Coulomb scattering (MCS) is the largest contributor to blurring in proton imaging. In this work, we developed a maximum likelihood least squares estimator that improves proton radiography's spatial resolution. The water equivalent thickness (WET) through projections defined from the source to the detector pixels were estimated such that they maximizes the likelihood of the energy loss of every proton crossing the volume. The length spent in each projection was calculated through the optimized cubic spline path estimate. The proton radiographies were produced using Geant4 simulations. Three phantoms were studied here: a slanted cube in a tank of water to measure 2D spatial resolution, a voxelized head phantom for clinical performance evaluation as well as a parametric Catphan phantom (CTP528) for 3D spatial resolution. Two proton beam configurations were used: a parallel and a conical beam. Proton beams of 200 and 330 MeV were simulated to acquire the radiography. Spatial resolution is increased from 2.44 lp cm -1 to 4.53 lp cm -1 in the 200 MeV beam and from 3.49 lp cm -1 to 5.76 lp cm -1 in the 330 MeV beam. Beam configurations do not affect the reconstructed spatial resolution as investigated between a radiography acquired with the parallel (3.49 lp cm -1 to 5.76 lp cm -1 ) or conical beam (from 3.49 lp cm -1 to 5.56 lp cm -1 ). The improved images were then used as input in a photon tomography algorithm. The proton CT reconstruction of the Catphan phantom shows high spatial resolution (from 2.79 to 5.55 lp cm -1 for the parallel beam and from 3.03 to 5.15 lp cm -1 for the conical beam) and the reconstruction of the head phantom, although qualitative, shows high contrast in the gradient region. The proposed formulation of the optimization demonstrates serious potential to increase the spatial resolution (up by 65[Formula: see text]) in proton radiography and greatly accelerate proton computed tomography reconstruction.

  16. SU-F-T-131: No Increase in Biological Effectiveness Through Collimator Scattered Low Energy Protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuura, T; Takao, S; Matsuzaki, Y

    Purpose: To reduce the lateral penumbra of low-energy proton beams, brass collimators are often used in spot-scanning proton therapy (SSPT). This study investigates the increase in biological effectiveness through collimator scattered protons in SSPT. Methods: The SSPT system of the Hokkaido University Hospital Proton Beam Therapy Center, which consists of a scanning nozzle, a 2-cm thick brass collimator, and a 4-cm thick energy absorber, was simulated with our validated Geant4 Monte Carlo code (ver. 9.3). A water phantom was irradiated with proton pencil beams of 76, 110, and 143 MeV. The tested collimator opening areas (COA) were 5×5, 10×10, andmore » 15×15 cm{sup 2}. Comparisons were made among the dose-averaged LET values of protons that hit the collimators (LETDColl), protons that did not hit the collimators (LETDNoColl), and all protons (LETDTotal). X-ray equivalent doses (Deq) were calculated using the linear-quadratic model with LETDNoColl and LETDTotal, and their maximum difference was determined over regions where the physical dose was greater than 10% of the peak dose of 2 Gy. Results: The ratio of the dose contribution of collimator scattered protons to that of all protons, defined as λ, was large at high proton energies and large COAs. The maximum λ value ranged from 3% (76 MeV, 5×5 cm{sup 2}) to 29% (143 MeV, 15×15 cm{sup 2}). Moreover, a large difference between LETDColl and LETDNoColl was only found in regions where λ was below 20% (ΔLETD > 2 keV/µm) and 8% (ΔLETD > 5 keV/µm). Consequently, the maximum difference between LETDNoColl and LETDTotal was as small as 0.8 keV/µm in all simulated voxels, and the difference of Deq reached a maximum of 1.5% that of the peak dose obtained at the water surface with a 76 MeV beam. Conclusion: Although collimator scattered protons have high LET, they only increase the physical dose, not the biological effectiveness.« less

  17. The blues broaden, but the nasty narrows: attentional consequences of negative affects low and high in motivational intensity.

    PubMed

    Gable, Philip; Harmon-Jones, Eddie

    2010-02-01

    Positive and negative affects high in motivational intensity cause a narrowing of attentional focus. In contrast, positive affects low in motivational intensity cause a broadening of attentional focus. The attentional consequences of negative affects low in motivational intensity have not been experimentally investigated. Experiment 1 compared the attentional consequences of negative affect low in motivational intensity (sadness) relative to a neutral affective state. Results indicated that low-motivation negative affect caused attentional broadening. Experiment 2 found that disgust, a high-motivation negative affect not previously investigated in attentional studies, narrowed attentional focus. These experiments support the conceptual model linking high-motivation affective states to narrowed attention and low-motivation affective states to broadened attention.

  18. Experimental investigation of the effect of pump incoherence on nonlinear pump spectral broadening and continuous-wave supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Martin-Lopez, S.; Carrasco-Sanz, A.; Corredera, P.; Abrardi, L.; Hernanz, M. L.; Gonzalez-Herraez, M.

    2006-12-01

    The development of high-power cw fiber lasers has triggered a great interest in the phenomena of nonlinear pump spectral broadening and cw supercontinuum generation. These effects have very convenient applications in Raman amplification, optical fiber metrology, and fiber sensing. In particular, it was recently shown that pump incoherence has a strong impact in these processes. We study experimentally the effect of pump incoherence in nonlinear pump spectral broadening and cw supercontinuum generation in optical fibers. We show that under certain experimental conditions an optimum degree of pump incoherence yields the best performance in the broadening process. We qualitatively explain these results, and we point out that these results may have important implications in cw supercontinuum optimization.

  19. Correlated stopping, proton clusters and higher order proton cumulants

    DOE PAGES

    Bzdak, Adam; Koch, Volker; Skokov, Vladimir

    2017-05-05

    Here, we investigate possible effects of correlations between stopped nucleons on higher order proton cumulants at low energy heavy-ion collisions. We find that fluctuations of the number of wounded nucleons N part lead to rather nontrivial dependence of the correlations on the centrality; however, this effect is too small to explain the large and positive four-proton correlations found in the preliminary data collected by the STAR collaboration at √s = 7.7 GeV. We further demonstrate that, by taking into account additional proton clustering, we are able to qualitatively reproduce the preliminary experimental data. We speculate that this clustering may originatemore » either from collective/multi-collision stopping which is expected to be effective at lower energies or from a possible first-order phase transition, or from (attractive) final state interactions. To test these ideas we propose to measure a mixed multi-particle correlation between stopped protons and a produced particle (e.g. pion, antiproton).« less

  20. Experimental and Theoretical Studies of Pressure Broadened Alkali-Metal Atom Resonance Lines

    NASA Technical Reports Server (NTRS)

    Shindo, F.; Zhu, C.; Kirby, K.; Babb, J. F.

    2006-01-01

    We are carrying out a joint theoretical and experimental research program to study the broadening of alkali atom resonance lines due to collisions with helium and molecular hydrogen for applications to spectroscopic studies of brown dwarfs and extrasolar giant planets.

  1. Proton therapy in clinical practice

    PubMed Central

    Liu, Hui; Chang, Joe Y.

    2011-01-01

    Radiation dose escalation and acceleration improves local control but also increases toxicity. Proton radiation is an emerging therapy for localized cancers that is being sought with increasing frequency by patients. Compared with photon therapy, proton therapy spares more critical structures due to its unique physics. The physical properties of a proton beam make it ideal for clinical applications. By modulating the Bragg peak of protons in energy and time, a conformal radiation dose with or without intensity modulation can be delivered to the target while sparing the surrounding normal tissues. Thus, proton therapy is ideal when organ preservation is a priority. However, protons are more sensitive to organ motion and anatomy changes compared with photons. In this article, we review practical issues of proton therapy, describe its image-guided treatment planning and delivery, discuss clinical outcome for cancer patients, and suggest challenges and the future development of proton therapy. PMID:21527064

  2. Insight into proton transfer in phosphotungstic acid functionalized mesoporous silica-based proton exchange membrane fuel cells.

    PubMed

    Zhou, Yuhua; Yang, Jing; Su, Haibin; Zeng, Jie; Jiang, San Ping; Goddard, William A

    2014-04-02

    We have developed for fuel cells a novel proton exchange membrane (PEM) using inorganic phosphotungstic acid (HPW) as proton carrier and mesoporous silica as matrix (HPW-meso-silica) . The proton conductivity measured by electrochemical impedance spectroscopy is 0.11 S cm(-1) at 90 °C and 100% relative humidity (RH) with a low activation energy of ∼14 kJ mol(-1). In order to determine the energetics associated with proton migration within the HPW-meso-silica PEM and to determine the mechanism of proton hopping, we report density functional theory (DFT) calculations using the generalized gradient approximation (GGA). These DFT calculations revealed that the proton transfer process involves both intramolecular and intermolecular proton transfer pathways. When the adjacent HPWs are close (less than 17.0 Å apart), the calculated activation energy for intramolecular proton transfer within a HPW molecule is higher (29.1-18.8 kJ/mol) than the barrier for intermolecular proton transfer along the hydrogen bond. We find that the overall barrier for proton movement within the HPW-meso-silica membranes is determined by the intramolecular proton transfer pathway, which explains why the proton conductivity remains unchanged when the weight percentage of HPW on meso-silica is above 67 wt %. In contrast, the activation energy of proton transfer on a clean SiO2 (111) surface is computed to be as high as ∼40 kJ mol(-1), confirming the very low proton conductivity on clean silica surfaces observed experimentally.

  3. Optimizing a three-stage Compton camera for measuring prompt gamma rays emitted during proton radiotherapy

    PubMed Central

    Peterson, S W; Robertson, D; Polf, J

    2011-01-01

    In this work, we investigate the use of a three-stage Compton camera to measure secondary prompt gamma rays emitted from patients treated with proton beam radiotherapy. The purpose of this study was (1) to develop an optimal three-stage Compton camera specifically designed to measure prompt gamma rays emitted from tissue and (2) to determine the feasibility of using this optimized Compton camera design to measure and image prompt gamma rays emitted during proton beam irradiation. The three-stage Compton camera was modeled in Geant4 as three high-purity germanium detector stages arranged in parallel-plane geometry. Initially, an isotropic gamma source ranging from 0 to 15 MeV was used to determine lateral width and thickness of the detector stages that provided the optimal detection efficiency. Then, the gamma source was replaced by a proton beam irradiating a tissue phantom to calculate the overall efficiency of the optimized camera for detecting emitted prompt gammas. The overall calculated efficiencies varied from ~10−6 to 10−3 prompt gammas detected per proton incident on the tissue phantom for several variations of the optimal camera design studied. Based on the overall efficiency results, we believe it feasible that a three-stage Compton camera could detect a sufficient number of prompt gammas to allow measurement and imaging of prompt gamma emission during proton radiotherapy. PMID:21048295

  4. Kinematical line broadening and spatially resolved line profiles from AGN.

    NASA Astrophysics Data System (ADS)

    Schulz, H.; Muecke, A.; Boer, B.; Dresen, M.; Schmidt-Kaler, T.

    1995-03-01

    We study geometrical effects for emission-line broadening in the optically thin limit by integrating the projected line emissivity along prespecified lines of sight that intersect rotating or expanding disks or cone-like configurations. Analytical expressions are given for the case that emissivity and velocity follow power laws of the radial distance. The results help to interpret spatially resolved spectra and to check the reliability of numerical computations. In the second part we describe a numerical code applicable to any geometrical configuration. Turbulent motions, atmospheric seeing and effects induced by the size of the observing aperture are simulated with appropriate convolution procedures. An application to narrow-line Hα profiles from the central region of the Seyfert galaxy NGC 7469 is presented. The shapes and asymmetries as well as the relative strengths of the Hα lines from different spatial positions can be explained by emission from a nuclear rotating disk of ionized gas, for which the distribution of Hα line emissivity and the rotation curve are derived. Appreciable turbulent line broadening with a Gaussian σ of ~40% of the rotational velocity has to be included to obtain a satisfactory fit.

  5. Search for Magnetically Broadened Cascade Emission from Blazars with VERITAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archambault, S.; Griffin, S.; Archer, A.

    2017-02-01

    We present a search for magnetically broadened gamma-ray emission around active galactic nuclei (AGNs), using VERITAS observations of seven hard-spectrum blazars. A cascade process occurs when multi-TeV gamma-rays from an AGN interact with extragalactic background light (EBL) photons to produce electron–positron pairs, which then interact with cosmic microwave background photons via inverse-Compton scattering to produce gamma-rays. Due to the deflection of the electron–positron pairs, a non-zero intergalactic magnetic field (IGMF) would potentially produce detectable effects on the angular distribution of the cascade emission. In particular, an angular broadening compared to the unscattered emission could occur. Through non-detection of angularly broadenedmore » emission from 1ES 1218+304, the source with the largest predicted cascade fraction, we exclude a range of IGMF strengths around 10{sup −14} G at the 95% confidence level. The extent of the exclusion range varies with the assumptions made about the intrinsic spectrum of 1ES 1218+304 and the EBL model used in the simulation of the cascade process. All of the sources are used to set limits on the flux due to extended emission.« less

  6. Stark broadening of Ca IV spectral lines of astrophysical interest

    NASA Astrophysics Data System (ADS)

    Alonso-Medina, A.; Colón, C.

    2014-12-01

    Ca IV emission lines are under the preview of Solar Ultraviolet Measurements of Emitted Radiation device aboard the Solar and Heliospheric Observatory. Also, lines of the Ca IV in planetary nebulae NGC 7027 were detected with the Short Wavelength Spectrometer on board the Infrared Space Observatory. These facts justify an attempt to provide new spectroscopic parameters of Ca IV. There are no theoretical or experimental Stark broadening data for Ca IV. Using the Griem semi-empirical approach and the COWAN code, we report in this paper calculated values of the Stark broadening parameters for 467 lines of Ca IV. They were calculated using a set of wavefunctions obtained by using Hartree-Fock relativistic calculations. These lines arising from 3s23p4ns (n = 4, 5), 3s23p44p, 3s23p4nd (n = 3, 4) configurations. Stark widths and shifts are presented for an electron density of 1017 cm-3 and temperatures T = 10 000, 20 000 and 50 200 K. As these data cannot be compared to others in the literature, we present an analysis of the different regularities of the values presented in this work.

  7. Quantum Optics Models of EIT Noise and Power Broadening

    NASA Astrophysics Data System (ADS)

    Snider, Chad; Crescimanno, Michael; O'Leary, Shannon

    2011-04-01

    When two coherent beams of light interact with an atom they tend to drive the atom to a non-absorbing state through a process called Electromagnetically Induced Transparency (EIT). If the light's frequency dithers, the atom's state stochastically moves in and out of this non-absorbing state. We describe a simple quantum optics model of this process that captures the essential experimentally observed statistical features of this EIT noise, with a particular emphasis on understanding power broadening.

  8. Proton clouds to measure long-range contacts between nonexchangeable side chain protons in solid-state NMR.

    PubMed

    Sinnige, Tessa; Daniëls, Mark; Baldus, Marc; Weingarth, Markus

    2014-03-26

    We show that selective labeling of proteins with protonated amino acids embedded in a perdeuterated matrix, dubbed 'proton clouds', provides general access to long-range contacts between nonexchangeable side chain protons in proton-detected solid-state NMR, which is important to study protein tertiary structure. Proton-cloud labeling significantly improves spectral resolution by simultaneously reducing proton line width and spectral crowding despite a high local proton density in clouds. The approach is amenable to almost all canonical amino acids. Our method is demonstrated on ubiquitin and the β-barrel membrane protein BamA.

  9. Moving protons with pendant amines: proton mobility in a nickel catalyst for oxidation of hydrogen.

    PubMed

    O'Hagan, Molly; Shaw, Wendy J; Raugei, Simone; Chen, Shentan; Yang, Jenny Y; Kilgore, Uriah J; DuBois, Daniel L; Bullock, R Morris

    2011-09-14

    Proton transport is ubiquitous in chemical and biological processes, including the reduction of dioxygen to water, the reduction of CO(2) to formate, and the production/oxidation of hydrogen. In this work we describe intramolecular proton transfer between Ni and positioned pendant amines for the hydrogen oxidation electrocatalyst [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+) (P(Cy)(2)N(Bn)(2) = 1,5-dibenzyl-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane). Rate constants are determined by variable-temperature one-dimensional NMR techniques and two-dimensional EXSY experiments. Computational studies provide insight into the details of the proton movement and energetics of these complexes. Intramolecular proton exchange processes are observed for two of the three experimentally observable isomers of the doubly protonated Ni(0) complex, [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+), which have N-H bonds but no Ni-H bonds. For these two isomers, with pendant amines positioned endo to the Ni, the rate constants for proton exchange range from 10(4) to 10(5) s(-1) at 25 °C, depending on isomer and solvent. No exchange is observed for protons on pendant amines positioned exo to the Ni. Analysis of the exchange as a function of temperature provides a barrier for proton exchange of ΔG(‡) = 11-12 kcal/mol for both isomers, with little dependence on solvent. Density functional theory calculations and molecular dynamics simulations support the experimental observations, suggesting metal-mediated intramolecular proton transfers between nitrogen atoms, with chair-to-boat isomerizations as the rate-limiting steps. Because of the fast rate of proton movement, this catalyst may be considered a metal center surrounded by a cloud of exchanging protons. The high intramolecular proton mobility provides information directly pertinent to the ability of pendant amines to accelerate proton transfers during catalysis of hydrogen oxidation. These results may also have broader implications for proton movement in

  10. The physics of proton therapy.

    PubMed

    Newhauser, Wayne D; Zhang, Rui

    2015-04-21

    The physics of proton therapy has advanced considerably since it was proposed in 1946. Today analytical equations and numerical simulation methods are available to predict and characterize many aspects of proton therapy. This article reviews the basic aspects of the physics of proton therapy, including proton interaction mechanisms, proton transport calculations, the determination of dose from therapeutic and stray radiations, and shielding design. The article discusses underlying processes as well as selected practical experimental and theoretical methods. We conclude by briefly speculating on possible future areas of research of relevance to the physics of proton therapy.

  11. The physics of proton therapy

    PubMed Central

    Newhauser, Wayne D; Zhang, Rui

    2015-01-01

    The physics of proton therapy has advanced considerably since it was proposed in 1946. Today analytical equations and numerical simulation methods are available to predict and characterize many aspects of proton therapy. This article reviews the basic aspects of the physics of proton therapy, including proton interaction mechanisms, proton transport calculations, the determination of dose from therapeutic and stray radiations, and shielding design. The article discusses underlying processes as well as selected practical experimental and theoretical methods. We conclude by briefly speculating on possible future areas of research of relevance to the physics of proton therapy. PMID:25803097

  12. Proton beams in radiotherapy

    NASA Astrophysics Data System (ADS)

    Khoroshkov, V. S.; Minakova, E. I.

    1998-11-01

    A branch of radiology, proton therapy employs fast protons as a tool for the treatment of various, mainly oncological, diseases. The features of tissue ionization by protons (Bragg peak) facilitate a further step towards solving the principal challenge in radiology: to deliver a sufficiently high and homogeneous dose to virtually any tumour, while sparing healthy neighbouring tissues, organs and structures. The state of the art of proton therapy is described, as well as the main technical, physics and clinical results gained since the 1950s at high-energy physics centres worldwide. The future of proton therapy is connected with the construction of hospital-based facilities with dedicated medical accelerators and modern technical instrumentation.

  13. Out-of-Field Dose Equivalents Delivered by Passively Scattered Therapeutic Proton Beams for Clinically Relevant Field Configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wroe, Andrew; Centre for Medical Radiation Physics, University of Wollongong, Wollongong; Clasie, Ben

    2009-01-01

    Purpose: Microdosimetric measurements were performed at Massachusetts General Hospital, Boston, MA, to assess the dose equivalent external to passively delivered proton fields for various clinical treatment scenarios. Methods and Materials: Treatment fields evaluated included a prostate cancer field, cranial and spinal medulloblastoma fields, ocular melanoma field, and a field for an intracranial stereotactic treatment. Measurements were completed with patient-specific configurations of clinically relevant treatment settings using a silicon-on-insulator microdosimeter placed on the surface of and at various depths within a homogeneous Lucite phantom. The dose equivalent and average quality factor were assessed as a function of both lateral displacement frommore » the treatment field edge and distance downstream of the beam's distal edge. Results: Dose-equivalent value range was 8.3-0.3 mSv/Gy (2.5-60-cm lateral displacement) for a typical prostate cancer field, 10.8-0.58 mSv/Gy (2.5-40-cm lateral displacement) for the cranial medulloblastoma field, 2.5-0.58 mSv/Gy (5-20-cm lateral displacement) for the spinal medulloblastoma field, and 0.5-0.08 mSv/Gy (2.5-10-cm lateral displacement) for the ocular melanoma field. Measurements of external field dose equivalent for the stereotactic field case showed differences as high as 50% depending on the modality of beam collimation. Average quality factors derived from this work ranged from 2-7, with the value dependent on the position within the phantom in relation to the primary beam. Conclusions: This work provides a valuable and clinically relevant comparison of the external field dose equivalents for various passively scattered proton treatment fields.« less

  14. Proton permeation of lipid bilayers.

    PubMed

    Deamer, D W

    1987-10-01

    Proton permeation of the lipid bilayer barrier has two unique features. First, permeability coefficients measured at neutral pH ranges are six to seven orders of magnitude greater than expected from knowledge of other monovalent cations. Second, proton conductance across planar lipid bilayers varies at most by a factor of 10 when pH is varied from near 1 to near 11. Two mechanisms have been proposed to account for this anomalous behavior: proton conductance related to contaminants of lipid bilayers, and proton translocation along transient hydrogen-bonded chains (tHBC) of associated water molecules in the membrane. The weight of evidence suggests that trace contaminants may contribute to proton conductance across planar lipid membranes at certain pH ranges, but cannot account for the anomalous proton flux in liposome systems. Two new results will be reported here which were designed to test the tHBC model. These include measurements of relative proton/potassium permeability in the gramicidin channel, and plots of proton flux against the magnitude of pH gradients. (1) The relative permeabilities of protons and potassium through the gramicidin channel, which contains a single strand of hydrogen-bonded water molecules, were found to differ by at least four orders of magnitude when measured at neutral pH ranges. This result demonstrates that a hydrogen-bonded chain of water molecules can provide substantial discrimination between protons and other cations. It was also possible to calculate that if approximately 7% of bilayer water was present in a transient configuration similar to that of the gramicidin channel, it could account for the measured proton flux. (2) The plot of proton conductance against pH gradient across liposome membranes was superlinear, a result that is consistent with one of three alternative tHBC models for proton conductance described by Nagle elsewhere in this volume.

  15. Proton beam deflection in MRI fields: Implications for MRI-guided proton therapy.

    PubMed

    Oborn, B M; Dowdell, S; Metcalfe, P E; Crozier, S; Mohan, R; Keall, P J

    2015-05-01

    This paper investigates, via magnetic modeling and Monte Carlo simulation, the ability to deliver proton beams to the treatment zone inside a split-bore MRI-guided proton therapy system. Field maps from a split-bore 1 T MRI-Linac system are used as input to geant4 Monte Carlo simulations which model the trajectory of proton beams during their paths to the isocenter of the treatment area. Both inline (along the MRI bore) and perpendicular (through the split-bore gap) orientations are simulated. Monoenergetic parallel and diverging beams of energy 90, 195, and 300 MeV starting from 1.5 and 5 m above isocenter are modeled. A phase space file detailing a 2D calibration pattern is used to set the particle starting positions, and their spatial location as they cross isocenter is recorded. No beam scattering, collimation, or modulation of the proton beams is modeled. In the inline orientation, the radial symmetry of the solenoidal style fringe field acts to rotate the protons around the beam's central axis. For protons starting at 1.5 m from isocenter, this rotation is 19° (90 MeV) and 9.8° (300 MeV). A minor focusing toward the beam's central axis is also seen, but only significant, i.e., 2 mm shift at 150 mm off-axis, for 90 MeV protons. For the perpendicular orientation, the main MRI field and near fringe field act as the strongest to deflect the protons in a consistent direction. When starting from 1.5 m above isocenter shifts of 135 mm (90 MeV) and 65 mm (300 MeV) were observed. Further to this, off-axis protons are slightly deflected toward or away from the central axis in the direction perpendicular to the main deflection direction. This leads to a distortion of the phase space pattern, not just a shift. This distortion increases from zero at the central axis to 10 mm (90 MeV) and 5 mm (300 MeV) for a proton 150 mm off-axis. In both orientations, there is a small but subtle difference in the deflection and distortion pattern between protons fired parallel to the

  16. Hydrogen analysis for granite using proton-proton elastic recoil coincidence spectrometry.

    PubMed

    Komatsubara, T; Sasa, K; Ohshima, H; Kimura, H; Tajima, Y; Takahashi, T; Ishii, S; Yamato, Y; Kurosawa, M

    2008-07-01

    In an effort to develop DS02, a new radiation dosimetry system for the atomic bomb survivors of Hiroshima and Nagasaki, measurements of neutron-induced activities have provided valuable information to reconstruct the radiation situation at the time of the bombings. In Hiroshima, the depth profile of (152)Eu activity measured in a granite pillar of the Motoyasu Bridge (128 m from the hypocenter) was compared with that calculated using the DS02 methodology. For calculation of the (152)Eu production due to the thermal-neutron activation reaction, (151)Eu(n,gamma)(152)Eu, information on the hydrogen content in granite is important because the transport and slowing-down process of neutrons penetrating into the pillar is strongly affected by collisions with the protons of hydrogen. In this study, proton-proton elastic recoil coincidence spectrometry has been used to deduce the proton density in the Motoyasu pillar granite. Slices of granite samples were irradiated by a 20 MeV proton beam, and the energies of scattered and recoil protons were measured with a coincidence method. The water concentration in the pillar granite was evaluated to be 0.30 +/- 0.07%wt. This result is consistent with earlier data on adsorptive water (II) and bound water obtained by the Karl Fisher method.

  17. Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation.

    PubMed

    Wan, W J; Li, H; Cao, J C

    2018-01-22

    The authors present an experimental investigation of radio frequency modulation on pulsed terahertz quantum cascade lasers (QCLs) emitting around 4.3 THz. The QCL chip used in this work is based on a resonant phonon design which is able to generate a 1.2 W peak power at 10 K from a 400-µm-wide and 4-mm-long laser with a single plasmon waveguide. To enhance the radio frequency modulation efficiency and significantly broaden the terahertz spectra, the QCLs are also processed into a double-metal waveguide geometry with a Silicon lens out-coupler to improve the far-field beam quality. The measured beam patterns of the double-metal QCL show a record low divergence of 2.6° in vertical direction and 2.4° in horizontal direction. Finally we perform the inter-mode beat note and terahertz spectra measurements for both single plasmon and double-metal QCLs working in pulsed mode. Since the double-metal waveguide is more suitable for microwave signal transmission, the radio frequency modulation shows stronger effects on the spectral broadening for the double-metal QCL. Although we are not able to achieve comb operation in this work for the pulsed lasers due to the large phase noise, the homogeneous spectral broadening resulted from the radio frequency modulation can be potentially used for spectroscopic applications.

  18. Broadening Educational Outcomes: Social Relations, Skills Development, and Employability for Youth

    ERIC Educational Resources Information Center

    Dejaeghere, Joan; Wiger, Nancy Pellowski; Willemsen, Laura Wangsness

    2016-01-01

    This article argues that, if a global development aim is to address educational inequalities, the post-2015 agenda needs to conceptually and practically broaden the focus of learning to include social relations as important processes and outcomes for achieving educational equity. We draw on Sen's capability approach and Bourdieu's forms of capital…

  19. Electromagnetically-induced-transparency intensity-correlation power broadening in a buffer gas

    NASA Astrophysics Data System (ADS)

    Zheng, Aojie; Green, Alaina; Crescimanno, Michael; O'Leary, Shannon

    2016-04-01

    Electromagnetically-induced-transparency (EIT) noise correlation spectroscopy holds promise as a simple, robust method for performing high-resolution spectroscopy used in optical magnetometry and clocks. Of relevance to these applications, we report on the role of buffer gas pressure and magnetic field gradients on power broadening of Zeeman-EIT noise correlation resonances.

  20. SU-G-TeP2-13: Patient-Specific Reduction of Range Uncertainties in Proton Therapy by Proton Radiography with a Multi-Layer Ionization Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deffet, S; Macq, B; Farace, P

    2016-06-15

    Purpose: The conversion from Hounsfield units (HU) to stopping powers is a major source of range uncertainty in proton therapy (PT). Our contribution shows how proton radiographs (PR) acquired with a multi-layer ionization chamber in a PT center can be used for accurate patient positioning and subsequently for patient-specific optimization of the conversion from HU to stopping powers. Methods: A multi-layer ionization chamber was used to measure the integral depth-dose (IDD) of 220 MeV pencil beam spots passing through several anthropomorphic phantoms. The whole area of interest was imaged by repositioning the couch and by acquiring a 45×45 mm{sup 2}more » frame for each position. A rigid registration algorithm was implemented to correct the positioning error between the proton radiographs and the planning CT. After registration, the stopping power map obtained from the planning CT with the calibration curve of the treatment planning system was used together with the water equivalent thickness gained from two proton radiographs to generate a phantom-specific stopping power map. Results: Our results show that it is possible to make a registration with submillimeter accuracy from proton radiography obtained by sending beamlets separated by more than 1 mm. This was made possible by the complex shape of the IDD due to the presence of lateral heterogeneities along the path of the beam. Submillimeter positioning was still possible with a 5 mm spot spacing. Phantom specific stopping power maps obtained by minimizing the range error were cross-verified by the acquisition of an additional proton radiography where the phantom was positioned in a random but known manner. Conclusion: Our results indicate that a CT-PR registration algorithm together with range-error based optimization can be used to produce a patient-specific stopping power map. Sylvain Deffet reports financial funding of its PhD thesis by Ion Beam Applications (IBA) during the confines of the study and

  1. Broadening Participation in the Society for Integrative and Comparative Biology.

    PubMed

    Wilga, Cheryl A D; Nishiguchi, Michele; Tsukimura, Brian

    2017-07-01

    The goal of the Society for Integrative and Comparative Biology's Broadening Participation Committee (SICB BPC) is to increase the number of underrepresented group (URG) members within the society and to expand their capabilities as future researchers and leaders within SICB. Our short-term 10-year goal was to increase the recruitment and retention of URG members in the society by 10%. Our long-term 25-year goal is to increase the membership of URG in the society through recruitment and retention until the membership demographic mirrors that of the US Census. Our plans to accomplish this included establishment of a formal standing committee, establishment of a moderate budget to support BPC activities, hosting professional development workshops, hosting diversity and mentor socials, and obtaining grant funds to supplement our budget. This paper documents broadening participation activities in the society, discusses the effectiveness of these activities, and evaluates BPC goals after 5 years of targeted funded activities. Over the past 5 years, the number of URG members rose by 5.2% to a total of 16.2%, members who report ethnicity and gender increased by 25.2% and 18%, respectively, and the number of members attending BPC activities has increased to 33% by 2016. SICB has made significant advances in broadening participation, not only through increased expenditures, but also with a commitment by its members and leadership to increase diversity. Most members realize that increasing diversity will both improve the Society's ability to develop different approaches to tackling problems within integrative biology, and help solve larger global issues that are evident throughout science and technology fields. In addition, having URG members as part of the executive committee would provide other URG members role models within the society, as well as have a voice in the leadership that represents diversity and inclusion for all scientists. © The Author 2017. Published by

  2. Improving Program Design and Assessment with Broadening Participation Resources

    NASA Astrophysics Data System (ADS)

    Siegfried, D.; Johnson, A.; Thomas, S. H.; Fauver, A.; Detrick, L.

    2012-12-01

    Many theoretical and research-based approaches suggest how to best use mentoring to enhance an undergraduate research program. The Institute for Broadening Participation's Pathways to Engineering and Pathways to Ocean Sciences projects synthesized a set of mentoring studies, theoretical sources, and other texts pertinent to undergraduate research program design into a suite of practical tools that includes an online mentoring manual, an online reference library of mentoring and diversity literature, and practical guides such as Using Social Media to Build Diversity in Your REU. The overall goal is to provide easy-to-access resources that can assist faculty and program directors in implementing or honing the mentoring elements in their research programs for undergraduates. IBP's Online Mentoring Manual addresses common themes, such as modeling, student self-efficacy, career development, retention and evaluation. The Online Diversity Reference Library provides a comprehensive, annotated selection of key policy documents, research studies, intervention studies, and other texts on broadening participation in science, technology, engineering and mathematics. IBP's suite of tools provides the theoretical underpinnings and research findings that can help leaders in education integrate site-appropriate mentoring elements into their educational programs. Program directors and faculty from a variety of program types and disciplines have benefitted from using the Manual and other resources. IBP continues the work of translating and synthesizing theory to practice and welcomes your participation and partnership in that effort.

  3. Proton energy and scattering angle radiographs to improve proton treatment planning: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Biegun, A. K.; Takatsu, J.; Nakaji, T.; van Goethem, M. J.; van der Graaf, E. R.; Koffeman, E. N.; Visser, J.; Brandenburg, S.

    2016-12-01

    The novel proton radiography imaging technique has a large potential to be used in direct measurement of the proton energy loss (proton stopping power, PSP) in various tissues in the patient. The uncertainty of PSPs, currently obtained from translation of X-ray Computed Tomography (xCT) images, should be minimized from 3-5% or higher to less than 1%, to make the treatment plan with proton beams more accurate, and thereby better treatment for the patient. With Geant4 we simulated a proton radiography detection system with two position-sensitive and residual energy detectors. A complex phantom filled with various materials (including tissue surrogates), was placed between the position sensitive detectors. The phantom was irradiated with 150 MeV protons and the energy loss radiograph and scattering angles were studied. Protons passing through different materials in the phantom lose energy, which was used to create a radiography image of the phantom. The multiple Coulomb scattering of a proton traversing different materials causes blurring of the image. To improve image quality and material identification in the phantom, we selected protons with small scattering angles. A good quality proton radiography image, in which various materials can be recognized accurately, and in combination with xCT can lead to more accurate relative stopping powers predictions.

  4. SU-F-T-214: Re-Thinking the Useful Clinical Beam Energy in Proton Therapy: An Opportunity for Cost Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentefour, El H; Lu, H

    Purpose: We conducted a retrospective study of the useful clinical proton beam energy based on the beam range data of patients treated over the last 10 years at Massachusetts General Hospital Proton Therapy Center. Methods: Treatment field information were collected for all patients treated over the last 10 years (2005–2015) in the two gantry treatment rooms at MGH. The beam ranges for these fields were retrieved and categorized per treatment site. The 10 prostate patients that required the highest beam range (lateral fields) were selected. For these patients, anterior oblique beams (30–40 degrees) were simulated in a planning system tomore » obtain the required beam ranges including the margins for potential range uncertainties. Results: There were a total of 4033 patients, treated with combined total of 23603 fields. All treatment indications were considered with the exception of ocular tumors generally treated in a fixed beam room. For all non-prostate treatments (21811 fields), only 5 fields for 4 patients (1-pancreas, 1-lumbar chordoma, 2-spine mets) required beam range greater than 25 cm. There were 446 prostate patients (1792 fields), with the required beam range from 22.3 to 29.0 cm; 386 of them had at least one of their lateral beam range greater than 25 cm. For the 10 prostate patients with highest lateral beam ranges (26 to 29 cm), their treatment with anterior oblique beams would drop the beam ranges below 25 cm (17.3 to 18.5 cm). Conclusion: if prostate patients are treated with anterior fields only, the useful maximum beam range is reduced to 25 cm. Thus a proton therapy system with maximum beam energy of 196 MeV is sufficient to treat all tumors sites with very rare exceptions (<0.1%). Designing such PT system would reduce the cost of proton therapy for hospitals and patients and increase the accessibility to the treatment.« less

  5. Startup of the Kling Center for Proton Therapy

    NASA Astrophysics Data System (ADS)

    Bloch, C.; Hill, P. M.; Chen, K. L.; Saito, A.; Klein, E. E.

    2013-04-01

    In November of 2011 Mevion Medical Systems (formerly Still River Systems) delivered the Mevion S250 proton therapy system accelerator to the Kling Center for Proton Therapy at the Siteman Cancer Center in Saint Louis. The Mevion system is unique, with an in-room gantry-mounted superconducting synchrocyclotron. This is the first true single-room proton therapy system and it has a greatly reduced size as well as cost. A month after its arrival, the installation was complete and the superconducting magnet was ramped up to full current (˜2000 amperes). In March of 2012, full energy beam (250 MeV) was extracted and radiation surveys were performed to verify the shielding. Once that was shown to be sufficient, Mevion began fine-tuning the system to provide a highly isocentric beam from the 50 ton system. In June of 2012 the field-shaping system (energy degraders, contoured scatterers and range modulators) were installed and measurements of the clinical beam properties commenced. Monte Carlo simulations (MCNPX) have been performed for the system and validated with beam measurements done at the factory. These simulations have been used for a preliminary commissioning of our treatment planning system. Additionally, predictions of the neutron background have been made and validated with factory measurements. Final commissioning of the treatment planning system and verification of the neutron background will be accomplished with measurements made later in 2012. Based on current progress, patient treatments are scheduled to begin in late 2012. Beam and radiation background data will be presented.

  6. Self- and CO2-broadened line shape parameters for infrared bands of HDO

    NASA Astrophysics Data System (ADS)

    Smith, Mary-Ann H.; Malathy Devi, V.; Benner, D. Chris; Sung, Keeyoon; Mantz, Arlan W.; Gamache, Robert R.; Villanueva, Geronimo L.

    2015-11-01

    Knowledge of CO2-broadened HDO line widths and their temperature dependence is required to interpret infrared spectra of the atmospheres of Mars and Venus. However, this information is currently absent in most spectroscopic databases. We have analyzed nine high-resolution, high signal-to-noise spectra of HDO and HDO+CO2 mixtures to obtain broadening coefficients and other line shape parameters for transitions of the ν2 and ν3 vibrational bands located at 7.13 and 2.70 μm, respectively. The gas samples were prepared by mixing equal amounts of high-purity distilled H2O and 99% enriched D2O. The spectra were recorded at different temperatures (255-296 K) using a 20.38 cm long coolable cell [1] installed in the sample compartment of the Bruker IFS125HR Fourier transform spectrometer at the Jet Propulsion Laboratory in Pasadena, CA. The retrieved HDO spectroscopic parameters include line positions, intensities, self- and CO2-broadened half-width and pressure-induced shift coefficients and the temperature dependences for CO2 broadening. These spectroscopic parameters were obtained by simultaneous multispectrum fitting [2] of the same interval in all nine spectra. A non-Voigt line shape with speed dependence was applied. Line mixing was also observed for several transition pairs. Preliminary results compare well with the few other measurements reported in the literature.[1] K. Sung et al., J. Mol. Spectrosc. 162, 124-134 (2010).[2] D. C. Benner et al., J. Quant. Spectrosc. Radiat Transfer 53, 705-721 (1995).The research performed at the College of William and Mary was supported by NASA’s Mars Fundamental Research Program (Grant NNX13AG66G). The research at Jet Propulsion Laboratory, California Institute of Technology, Connecticut College, Langley Research Center, and Goddard Space Flight Center was conducted under contracts and cooperative agreements with the National Aeronautics and Space Administration. RRG is pleased to acknowledge support of this study by the

  7. Relativistic quantum mechanical calculations of electron-impact broadening for spectral lines in Be-like ions

    NASA Astrophysics Data System (ADS)

    Duan, B.; Bari, M. A.; Wu, Z. Q.; Jun, Y.; Li, Y. M.; Wang, J. G.

    2012-11-01

    Aims: We present relativistic quantum mechanical calculations of electron-impact broadening of the singlet and triplet transition 2s3s ← 2s3p in four Be-like ions from N IV to Ne VII. Methods: In our theoretical calculations, the K-matrix and related symmetry information determined by the colliding systems are generated by the DARC codes. Results: A careful comparison between our calculations and experimental results shows good agreement. Our calculated widths of spectral lines also agree with earlier theoretical results. Our investigations provide new methods of calculating electron-impact broadening parameters for plasma diagnostics.

  8. Proton beam characterization in the experimental room of the Trento Proton Therapy facility

    NASA Astrophysics Data System (ADS)

    Tommasino, F.; Rovituso, M.; Fabiano, S.; Piffer, S.; Manea, C.; Lorentini, S.; Lanzone, S.; Wang, Z.; Pasini, M.; Burger, W. J.; La Tessa, C.; Scifoni, E.; Schwarz, M.; Durante, M.

    2017-10-01

    As proton therapy is becoming an established treatment methodology for cancer patients, the number of proton centres is gradually growing worldwide. The economical effort for building these facilities is motivated by the clinical aspects, but might be also supported by the potential relevance for the research community. Experiments with high-energy protons are needed not only for medical physics applications, but represent also an essential part of activities dedicated to detector development, space research, radiation hardness tests, as well as of fundamental research in nuclear and particle physics. Here we present the characterization of the beam line installed in the experimental room of the Trento Proton Therapy Centre (Italy). Measurements of beam spot size and envelope, range verification and proton flux were performed in the energy range between 70 and 228 MeV. Methods for reducing the proton flux from typical treatments values of 106-109 particles/s down to 101-105 particles/s were also investigated. These data confirm that a proton beam produced in a clinical centre build by a commercial company can be exploited for a broad spectrum of experimental activities. The results presented here will be used as a reference for future experiments.

  9. Computer modeling of electron and proton transport in chloroplasts.

    PubMed

    Tikhonov, Alexander N; Vershubskii, Alexey V

    2014-07-01

    chloroplasts and lateral heterogeneity of lamellar system of thylakoids. The lateral profiles of pH in the thylakoid lumen and in the narrow gap between grana thylakoids have been calculated under different metabolic conditions. Analyzing topological aspects of diffusion-controlled stages of electron and proton transport in chloroplasts, we conclude that along with the NPQ mechanism of attenuation of PSII activity and deceleration of PQH2 oxidation by the cytochrome b6f complex caused by the lumen acidification, the intersystem electron transport may be down-regulated due to the light-induced alkalization of the narrow partition between adjacent thylakoids of grana. The computer models of electron and proton transport described in this article may be integrated as appropriate modules into a comprehensive model of oxygenic photosynthesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Measurements of argon-, helium-, hydrogen-, and nitrogen-broadened widths of methane lines near 9000 per cm

    NASA Technical Reports Server (NTRS)

    Fox, Kenneth; Jennings, Donald E.; Stern, Elizabeth A.; Hubbard, Rob

    1988-01-01

    Pressure-broadened widths of rotational-vibrational lines in CH4 have been measured at very high spectral resolution in the R-branch of the 3nu3 overtone. The broadening gases were Ar, He, H2, and N2. Results are presented as averages for J-multiplets at ambient temperature. The overall values (per cm per atm) for these R-branch lines are 0.0651 (CH4-Ar), 0.0508 (CH4-He), 0.0728 (CH4-H2), and 0.0715 (CH4-N2).

  11. Spectral broadening in electroluminescence of white organic light-emitting diodes based on complementary colors

    NASA Astrophysics Data System (ADS)

    Kim, Young Min; Park, Young Wook; Choi, Jin Hwan; Ju, Byeong Kwon; Jung, Jae Hoon; Kim, Jai Kyeong

    2007-01-01

    The authors report the optical and electroluminescent (EL) properties of white organic light-emitting diodes (OLEDs) which have two emitters with similar structures: 1, 1, 4, 4-tetraphenyl-1, 3-butadiene and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline have an emission peak of 400nm around the near ultraviolet, and tris-(8-hydroxyquinoline) aluminum doped with 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran has an emission peak of 580nm producing a yellow color. The EL spectra of the white OLED have shown a broadening through visual range from 400to780nm. This spectral broadening is related to an exciplex emission at the organic solid interface.

  12. SU-F-T-198: Dosimetric Comparison of Carbon and Proton Radiotherapy for Recurrent Nasopharynx Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Y; Zhao, J; Wang, W

    2016-06-15

    Purpose: Various radiotherapy planning methods for locally recurrent nasopharynx carcinoma (R-NPC) have been proposed. The purpose of this study was to compare carbon and proton therapy for the treatment of R-NPC in terms of dose coverage for target volume and sparing for organs at risk (OARs). Methods: Six patients who were suffering from R-NPC and treated using carbon therapy were selected for this study. Treatment plans with a total dose of 57.5Gy (RBE) in 23 fractions were made using SIEMENS Syngo V11. An intensity-modulated radiotherapy optimization method was chosen for carbon plans (IMCT) while for proton plans both intensity-modulated radiotherapymore » (IMPT) and single beam optimization (proton-SBO) methods were chosen. Dose distributions, dose volume parameters, and selected dosimetric indices for target volumes and OARs were compared for all treatment plans. Results: All plans provided comparable PTV coverage. The volume covered by 95% of the prescribed dose was comparable for all three plans. The average values were 96.11%, 96.24% and 96.11% for IMCT, IMPT, and proton-SBO respectively. A significant reduction of the 80% and 50% dose volumes were observed for the IMCT plans compared to the IMPT and proton-SBO plans. Critical organs lateral to the target such as brain stem and spinal cord were better spared by IMPT than by proton-SBO, while IMCT spared those organs best. For organs in the beam path, such as parotid glands, the mean dose results were similar for all three plans. Conclusion: Carbon plans yielded better dose conformity than proton plans. They provided similar or better target coverage while significantly lowering the dose for normal tissues. Dose sparing for critical organs in IMPT plans was better than proton-SBO, however, IMPT is known to be more sensitive to range uncertainties. For proton plans it is essential to find a balance between the two optimization methods.« less

  13. Dosimetric properties of a proton beamline dedicated to the treatment of ocular disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slopsema, R. L., E-mail: rslopsema@floridaproton.org; Mamalui, M.; Yeung, D.

    2014-01-15

    Purpose: A commercial proton eyeline has been developed to treat ocular disease. Radiotherapy of intraocular lesions (e.g., uveal melanoma, age-related macular degeneration) requires sharp dose gradients to avoid critical structures like the macula and optic disc. A high dose rate is needed to limit patient gazing times during delivery of large fractional dose. Dose delivery needs to be accurate and predictable, not in the least because current treatment planning algorithms have limited dose modeling capabilities. The purpose of this paper is to determine the dosimetric properties of a new proton eyeline. These properties are compared to those of existing systemsmore » and evaluated in the context of the specific clinical requirements of ocular treatments. Methods: The eyeline is part of a high-energy, cyclotron-based proton therapy system. The energy at the entrance of the eyeline is 105 MeV. A range modulator (RM) wheel generates the spread-out Bragg peak, while a variable range shifter system adjusts the range and spreads the beam laterally. The range can be adjusted from 0.5 up to 3.4 g/cm{sup 2}; the modulation width can be varied in steps of 0.3 g/cm{sup 2} or less. Maximum field diameter is 2.5 cm. All fields can be delivered with a dose rate of 30 Gy/min or more. The eyeline is calibrated according to the IAEA TRS-398 protocol using a cylindrical ionization chamber. Depth dose distributions and dose/MU are measured with a parallel-plate ionization chamber; lateral profiles with radiochromic film. The dose/MU is modeled as a function of range, modulation width, and instantaneous MU rate with fit parameters determined per option (RM wheel). Results: The distal fall-off of the spread-out Bragg peak is 0.3 g/cm{sup 2}, larger than for most existing systems. The lateral penumbra varies between 0.9 and 1.4 mm, except for fully modulated fields that have a larger penumbra at skin. The source-to-axis distance is found to be 169 cm. The dose/MU shows a strong

  14. 200 MeV Proton Radiography Studies with a Hand Phantom Using a Prototype Proton CT Scanner

    PubMed Central

    Plautz, Tia; Bashkirov, V.; Feng, V.; Hurley, F.; Johnson, R.P.; Leary, C.; Macafee, S.; Plumb, A.; Rykalin, V.; Sadrozinski, H.F.-W.; Schubert, K.; Schulte, R.; Schultze, B.; Steinberg, D.; Witt, M.; Zatserklyaniy, A.

    2014-01-01

    Proton radiography has applications in patient alignment and verification procedures for proton beam radiation therapy. In this paper, we report an experiment which used 200 MeV protons to generate proton energy-loss and scattering radiographs of a hand phantom. The experiment used the first-generation proton CT scanner prototype, which was installed on the research beam line of the clinical proton synchrotron at Loma Linda University Medical Center (LLUMC). It was found that while both radiographs displayed anatomical details of the hand phantom, the energy-loss radiograph had a noticeably higher resolution. Nonetheless, scattering radiography may yield more contrast between soft and bone tissue than energy-loss radiography, however, this requires further study. This study contributes to the optimization of the performance of the next-generation of clinical proton CT scanners. Furthermore, it demonstrates the potential of proton imaging (proton radiography and CT), which is now within reach of becoming available as a new, potentially low-dose medical imaging modality. PMID:24710156

  15. Function Lateralization via Measuring Coherence Laterality

    PubMed Central

    Wang, Ze; Mechanic-Hamilton, Dawn; Pluta, John; Glynn, Simon; Detre, John A.

    2009-01-01

    A data-driven approach for lateralization of brain function based on the spatial coherence difference of functional MRI (fMRI) data in homologous regions-of-interest (ROI) in each hemisphere is proposed. The utility of using coherence laterality (CL) to determine function laterality was assessed first by examining motor laterality using normal subjects’ data acquired both at rest and with a simple unilateral motor task and subsequently by examining mesial temporal lobe memory laterality in normal subjects and patients with temporal lobe epilepsy. The motor task was used to demonstrate that CL within motor ROI correctly lateralized functional stimulation. In patients with unilateral epilepsy studied during a scene-encoding task, CL in a hippocampus-parahippocampus-fusiform (HPF) ROI was concordant with lateralization based on task activation, and the CL index (CLI) significantly differentiated the right side group to the left side group. By contrast, normal controls showed a symmetric HPF CLI distribution. Additionally, similar memory laterality prediction results were still observed using CL in epilepsy patients with unilateral seizures after the memory encoding effect was removed from the data, suggesting the potential for lateralization of pathological brain function based on resting fMRI data. A better lateralization was further achieved via a combination of the proposed approach and the standard activation based approach, demonstrating that assessment of spatial coherence changes provides a complementary approach to quantifying task-correlated activity for lateralizing brain function. PMID:19345736

  16. Energetic solar proton vs terrestrially trapped proton fluxes. [geocentric space missions shielding requirements

    NASA Technical Reports Server (NTRS)

    King, J. H.; Stassinopoulos, E. G.

    1975-01-01

    The relative importance of solar and trapped proton fluxes in the consideration of shielding requirements for geocentric space missions is analyzed. Using models of these particles, their fluences encountered by spacecraft in circular orbits are computed as functions of orbital altitude and inclination, mission duration, threshold energy (10 to 100 MeV), and risk factor (for solar protons only), and ratios of solar-to-trapped fluences are derived. It is shown that solar protons predominate for low-altitude polar and very high-altitude missions, while trapped protons predominate for missions at low and medium altitudes and low inclinations. It is recommended that if the ratio of solar-to-trapped protons falls between 0.1 and 10, both fluences should be considered in planning shielding systems.

  17. Action Potential Broadening in Capsaicin-Sensitive DRG Neurons from Frequency-Dependent Reduction of Kv3 Current.

    PubMed

    Liu, Pin W; Blair, Nathaniel T; Bean, Bruce P

    2017-10-04

    Action potential (AP) shape is a key determinant of cellular electrophysiological behavior. We found that in small-diameter, capsaicin-sensitive dorsal root ganglia neurons corresponding to nociceptors (from rats of either sex), stimulation at frequencies as low as 1 Hz produced progressive broadening of the APs. Stimulation at 10 Hz for 3 s resulted in an increase in AP width by an average of 76 ± 7% at 22°C and by 38 ± 3% at 35°C. AP clamp experiments showed that spike broadening results from frequency-dependent reduction of potassium current during spike repolarization. The major current responsible for frequency-dependent reduction of overall spike-repolarizing potassium current was identified as Kv3 current by its sensitivity to low concentrations of 4-aminopyridine (IC 50 <100 μm) and block by the peptide inhibitor blood depressing substance I (BDS-I). There was a small component of Kv1-mediated current during AP repolarization, but this current did not show frequency-dependent reduction. In a small fraction of cells, there was a component of calcium-dependent potassium current that showed frequency-dependent reduction, but the contribution to overall potassium current reduction was almost always much smaller than that of Kv3-mediated current. These results show that Kv3 channels make a major contribution to spike repolarization in small-diameter DRG neurons and undergo frequency-dependent reduction, leading to spike broadening at moderate firing frequencies. Spike broadening from frequency-dependent reduction in Kv3 current could mitigate the frequency-dependent decreases in conduction velocity typical of C-fiber axons. SIGNIFICANCE STATEMENT Small-diameter dorsal root ganglia (DRG) neurons mediating nociception and other sensory modalities express many types of potassium channels, but how they combine to control firing patterns and conduction is not well understood. We found that action potentials of small-diameter rat DRG neurons showed spike

  18. Effects of Proton and Combined Proton and (56)Fe Radiation on the Hippocampus.

    PubMed

    Raber, Jacob; Allen, Antiño R; Sharma, Sourabh; Allen, Barrett; Rosi, Susanna; Olsen, Reid H J; Davis, Matthew J; Eiwaz, Massarra; Fike, John R; Nelson, Gregory A

    2016-01-01

    The space radiation environment contains protons and (56)Fe, which could pose a significant hazard to space flight crews during and after missions. The space environment involves complex radiation exposures, thus, the effects of a dose of protons might be modulated by a dose of heavy-ion radiation. The brain, and particularly the hippocampus, may be susceptible to space radiation-induced changes. In this study, we first determined the dose-response effect of proton radiation (150 MeV) on hippocampus-dependent cognition 1 and 3 months after exposure. Based on those results, we subsequently exposed mice to protons alone (150 MeV, 0.1 Gy), (56)Fe alone (600 MeV/n, 0.5 Gy) or combined proton and (56)Fe radiations (protons first) with the two exposures separated by 24 h. At one month postirradiation, all animal groups showed novel object recognition. However, at three months postirradiation, mice exposed to either protons or combined proton and (56)Fe radiations showed impaired novel object recognition, which was not observed in mice irradiated with (56)Fe alone. The mechanisms in these impairments might involve inflammation. In mice irradiated with protons alone or (56)Fe alone three months earlier, there was a negative correlation between a measure of novel object recognition and the number of newly born activated microglia in the dentate gyrus. Next, cytokine and chemokine levels were assessed in the hippocampus. At one month after exposure the levels of IL-12 were higher in mice exposed to combined radiations compared with sham-irradiated mice, while the levels of IFN-γ were lower in mice exposed to (56)Fe radiation alone or combined radiations. In addition, IL-4 levels were lower in (56)Fe-irradiated mice compared with proton-irradiated mice and TNF-α levels were lower in proton-irradiated mice than in mice receiving combined radiations. At three months after exposure, macrophage-derived chemokine (MDC) and eotaxin levels were lower in mice receiving combined

  19. Feasibility study of proton-based quality assurance of proton range compensator

    NASA Astrophysics Data System (ADS)

    Park, S.; Jeong, C.; Min, B. J.; Kwak, J.; Lee, J.; Cho, S.; Shin, D.; Lim, Y. K.; Park, S. Y.; Lee, S. B.

    2013-06-01

    All patient specific range compensators (RCs) are customized for achieving distal dose conformity of target volume in passively scattered proton therapy. Compensators are milled precisely using a computerized machine. In proton therapy, precision of the compensator is critical and quality assurance (QA) is required to protect normal tissues and organs from radiation damage. This study aims to evaluate the precision of proton-based quality assurance of range compensator. First, the geometry information of two compensators was extracted from the DICOM Radiotherapy (RT) plan. Next, RCs were irradiated on the EBT film individually by proton beam which is modulated to have a photon-like percent depth dose (PDD). Step phantoms were also irradiated on the EBT film to generate calibration curve which indicates relationship between optical density of irradiated film and perpendicular depth of compensator. Comparisons were made using the mean absolute difference (MAD) between coordinate information from DICOM RT and converted depth information from the EBT film. MAD over the whole region was 1.7, and 2.0 mm. However, MAD over the relatively flat regions on each compensator selected for comparison was within 1 mm. These results shows that proton-based quality assurance of range compensator is feasible and it is expected to achieve MAD over the whole region less than 1 mm with further correction about scattering effect of proton imaging.

  20. Electron-proton spectrometer design summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The electron-proton spectrometer (EPS) will be placed aboard the Skylab in order to provide data from which electron and proton radiation dose can be determined. The EPS has five sensors, each consisting of a shielded silicon detector. These provide four integral electron channels and five integral proton channels from which can be deduced four differential proton increments.

  1. Stark broadening of He I lines

    NASA Astrophysics Data System (ADS)

    Dimitrijevic, M. S.; Sahal-Brechot, S.

    1990-03-01

    Results are presented from calculations of the electron-, proton-, and ionized helium-impact line widths and shifts for 77 neutral helium multiplets in the UV, visible, and IR regions of the spectrum. The calculations are performed using a semiclassical perturbation formalism (Sahal-Brechot, 1969). Tables are given for the line widths and shift for He I resonance lines at a perturber density of 10 to the 13th/cu cm.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, S. B.; Wrede, C.; Bennett, M. B.

    Background: The Doppler broadening of gamma-ray peaks is due to nuclear recoil from beta-delayed nucleon emission can be used to measure the energies of the nucleons. This method has never been tested using beta-delayed proton emission or applied to a recoil heavier than A = 10. Purpose: To test and apply this Doppler broadening method using gamma-ray peaks from the P-26(beta p gamma)Al-25 decay sequence. Methods: A fast beam of P-26 was implanted into a planar Ge detector, which was used as a P-26 beta-decay trigger. The SeGA array of high-purity Ge detectors was used to detect gamma rays frommore » the P-26(beta p gamma)Al-25 decay sequence. Results: Radiative Doppler broadening in beta-delayed proton-gamma decay was observed for the first time. Moreover, the Doppler broadening analysis method was verified using the 1613-keV gamma-ray line for which the proton energies were previously known. The 1776-keV gamma ray de-exciting the 2720 keV Al-25 level was observed in P-26(beta p gamma)Al-25 decay for the first time and used to determine that the center-of-mass energy of the proton emission feeding the 2720-keV level is 5.1 +/- 1.0 (stat.) +/- 0.6 (syst.) MeV, corresponding to a Si-26 excitation energy of 13.3 +/- 1.0 (stat.) +/- 0.6 (syst.) MeV for the proton-emitting level. Conclusions: Finally, the Doppler broadening method has been demonstrated to provide practical measurements of the energies for beta-delayed nucleon emissions populating excited states of nuclear recoils at least as heavy as A = 25.« less

  3. [Why proton therapy? And how?

    PubMed

    Thariat, Juliette; Habrand, Jean Louis; Lesueur, Paul; Chaikh, Abdulhamid; Kammerer, Emmanuel; Lecomte, Delphine; Batalla, Alain; Balosso, Jacques; Tessonnier, Thomas

    2018-03-01

    Proton therapy is a radiotherapy, based on the use of protons, charged subatomic particles that stop at a given depth depending on their initial energy (pristine Bragg peak), avoiding any output beam, unlike the photons used in most of the other modalities of radiotherapy. Proton therapy has been used for 60 years, but has only become ubiquitous in the last decade because of recent major advances in particle accelerator technology. This article reviews the history of clinical implementation of protons, the nature of the technological advances that now allows its expansion at a lower cost. It also addresses the technical and physical specificities of proton therapy and the clinical situations for which proton therapy may be relevant but requires evidence. Different proton therapy techniques are possible. These are explained in terms of their clinical potential by explaining the current terminology (such as cyclotrons, synchrotrons or synchrocyclotrons, using superconducting magnets, fixed line or arm rotary with passive diffusion delivery or active by scanning) in basic words. The requirements associated with proton therapy are increased due to the precision of the depth dose deposit. The learning curve of proton therapy requires that clinical indications be prioritized according to their associated uncertainties (such as range uncertainties and movement in lung tumors). Many clinical indications potentially fall under proton therapy ultimately. Clinical strategies are explained in a paralleled manuscript. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  4. Binding of oxytocin and 8-arginine-vasopressin to neurophysin studied by /sup 15/N NMR using magnetization transfer and indirect detection via protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Live, D.H.; Cowburn, D.

    1987-10-06

    NMR was used to monitor the binding to neurophysin of oxytocin and 8-arginine-vasopressin, /sup 15/N labeling being used to identify specific backbone /sup 15/N and /sup 1/H signals. The most significant effects of binding were large downfield shifts in the amino nitrogen resonance of Phe-3 of vasopressin and in its associated proton, providing evidence that the peptide bond between residues 2 and 3 of the hormones is hydrogen-bonded to the protein within hormone-neurophysin complexes. Suggestive evidence for hydrogen bonding of the amino nitrogen of Tyr-2 was also obtained in the form of decreased proton exchange rates on binding; however, themore » chemical shift changes of this nitrogen and its associated proton indicated that such hydrogen bonding, if present, is probably weak. Shifts in the amino nitrogen of Asn-5 and in the -NH protons of both Asn-5 and Cys-6 demonstrated that these residues are significantly perturbed by binding, suggesting conformational changes of the ring on binding and/or the presence of binding sites on the hormone outside the 1-3 region. No support was obtained for the thesis that there is a significant second binding site for vasopressin on each neutrophysin chain. The behavior of both oxytocin and vasopressin on binding was consistent with formation of 1:1 complexes in slow exchange with the free state under most pH conditions. At low pH there was evidence of an increased exchange rate. Additionally, broadening of /sup 15/N resonances in the bound state at low pH occurred without a corresponding change in the resonances of equilibrating free hormone. The results suggest significant conformational alteration in neurophysin-hormone complexes at low pH possibly associated with protonation of the carboxyl group of the hormone-protein salt bridge.« less

  5. Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Parmigiani, Francesca; Finot, Christophe; Mukasa, Kazunori; Ibsen, Morten; Roelens, Michael A.; Petropoulos, Periklis; Richardson, David J.

    2006-08-01

    We propose a new method for generating flat self-phase modulation (SPM)-broadened spectra based on seeding a highly nonlinear fiber (HNLF) with chirp-free parabolic pulses generated using linear pulse shaping in a superstructured fiber Bragg grating (SSFBG). We show that the use of grating reshaped parabolic pulses allows substantially better performance in terms of the extent of SPM-based spectral broadening and flatness relative to conventional hyperbolic secant (sech) pulses. We demonstrate both numerically and experimentally the generation of SPM-broadened pulses centred at 1542 nm with 92% of the pulse energy remaining within the 29 nm 3 dB spectral bandwidth. Applications in spectra slicing and pulse compression are demonstrated.

  6. [Participatory potential and deliberative function: a debate on broadening the scope of democracy through the health councils].

    PubMed

    Bispo Júnior, José Patrício; Gerschman, Sílvia

    2013-01-01

    This article reflects upon the relation between democracy and health councils. It seeks to analyze the councils as a space for broadening the scope of democracy. First, some characteristics and principles of the liberal democratic regime are presented, with an emphasis on the minimalist and procedural approach of decision-making. The fragilities of the representative model and the establishment of new relations between the Government and society are then discussed in light of the new social grammar and the complexity of the division between governmental and societal responsibilities. The principles of deliberative democracy and the idea of substantive democracy are subsequently presented. Broadening the scope of democracy is understood not only as the guarantee of civil and political rights, but also especially, of social rights. Lastly, based on discussion of the participation and deliberation categories, the health councils are analyzed as potential mechanisms for broadening the scope of democracy.

  7. Covariance Matrix of a Double-Differential Doppler-Broadened Elastic Scattering Cross Section

    NASA Astrophysics Data System (ADS)

    Arbanas, G.; Becker, B.; Dagan, R.; Dunn, M. E.; Larson, N. M.; Leal, L. C.; Williams, M. L.

    2012-05-01

    Legendre moments of a double-differential Doppler-broadened elastic neutron scattering cross section on 238U are computed near the 6.67 eV resonance at temperature T = 103 K up to angular order 14. A covariance matrix of these Legendre moments is computed as a functional of the covariance matrix of the elastic scattering cross section. A variance of double-differential Doppler-broadened elastic scattering cross section is computed from the covariance of Legendre moments. Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  8. Broadening of resistive transition and irreversibility line for epitaxial YBa2Cu3O7-δ thin film

    NASA Astrophysics Data System (ADS)

    Xiao-jun, Xu; Ke-bin, Li; Jun, Fang; Zhi-he, Wang; Xiao-wen, Cao

    1996-04-01

    The broadening of resistive transition of c axis oriented epitaxial YBCO thin film has been measured for three configurations: (1) Hparc and H ⊥ I; (2) Hparab plane and H ⊥ I; (3) Hparab plane and HparI in magnetic field up to 8 Tesla(T), and for different angle θ of magnetic field relative to the ab plane with H = 4T. The results obtained indicate that the broadening of resistive transition is mainly determined by the angle θ, but is hardly related to the angle α made between magnetic field and tran sport current in ab plane. This means that the broadening of resistive transition is not determined by flux motion drived by apparent Lorentz force. An expression of angular dependence of irreversibility line has been given.

  9. Pressure broadening and frequency shift of the D 1 and D 2 lines of K in the presence of Ne and Kr

    NASA Astrophysics Data System (ADS)

    Wang, Xulin; Chen, Yao; Quan, Wei; Chi, Haotian; Fang, Jiancheng

    2018-02-01

    We present the results of pressure broadening and frequency shift of K D 1 and D 2 lines in presence of 1-4 amg of Neon gas and 1-5 amg of Krypton gas by laser absorption spectroscopy. Both pressure broadening and frequency shift are linearly related to gas density with high accuracy. The asymmetry of the absorption line shape caused by van der Waals potential was first found in the near-line wings of large density Kr in the experiment. We have also investigated the temperature dependence of the pressure broadening and frequency shift in a range of 353-403 K in Neon and 373-417 K in Krypton and compared the results of the pressure broadening and frequency shift with previous values.

  10. Classical Molecular Dynamics with Mobile Protons.

    PubMed

    Lazaridis, Themis; Hummer, Gerhard

    2017-11-27

    An important limitation of standard classical molecular dynamics simulations is the inability to make or break chemical bonds. This restricts severely our ability to study processes that involve even the simplest of chemical reactions, the transfer of a proton. Existing approaches for allowing proton transfer in the context of classical mechanics are rather cumbersome and have not achieved widespread use and routine status. Here we reconsider the combination of molecular dynamics with periodic stochastic proton hops. To ensure computational efficiency, we propose a non-Boltzmann acceptance criterion that is heuristically adjusted to maintain the correct or desirable thermodynamic equilibria between different protonation states and proton transfer rates. Parameters are proposed for hydronium, Asp, Glu, and His. The algorithm is implemented in the program CHARMM and tested on proton diffusion in bulk water and carbon nanotubes and on proton conductance in the gramicidin A channel. Using hopping parameters determined from proton diffusion in bulk water, the model reproduces the enhanced proton diffusivity in carbon nanotubes and gives a reasonable estimate of the proton conductance in gramicidin A.

  11. Surface Protonics Promotes Catalysis

    PubMed Central

    Manabe, R.; Okada, S.; Inagaki, R.; Oshima, K.; Ogo, S.; Sekine, Y.

    2016-01-01

    Catalytic steam reforming of methane for hydrogen production proceeds even at 473 K over 1 wt% Pd/CeO2 catalyst in an electric field, thanks to the surface protonics. Kinetic analyses demonstrated the synergetic effect between catalytic reaction and electric field, revealing strengthened water pressure dependence of the reaction rate when applying an electric field, with one-third the apparent activation energy at the lower reaction temperature range. Operando–IR measurements revealed that proton conduction via adsorbed water on the catalyst surface occurred during electric field application. Methane was activated by proton collision at the Pd–CeO2 interface, based on the inverse kinetic isotope effect. Proton conduction on the catalyst surface plays an important role in methane activation at low temperature. This report is the first describing promotion of the catalytic reaction by surface protonics. PMID:27905505

  12. Strain broadening of the 1042-nm zero phonon line of the NV- center in diamond: A promising spectroscopic tool for defect tomography

    NASA Astrophysics Data System (ADS)

    Biktagirov, T. B.; Smirnov, A. N.; Davydov, V. Yu.; Doherty, M. W.; Alkauskas, A.; Gibson, B. C.; Soltamov, V. A.

    2017-08-01

    The negatively charged nitrogen-vacancy (NV-) center in diamond is a promising candidate for many quantum applications. Here, we examine the splitting and broadening of the center's infrared (IR) zero-phonon line (ZPL). We develop a model for these effects that accounts for the strain induced by photodependent microscopic distributions of defects. We apply this model to interpret observed variations of the IR ZPL shape with temperature and photoexcitation conditions. We identify an anomalous temperature-dependent broadening mechanism and that defects other than the substitutional nitrogen center significantly contribute to strain broadening. The former conclusion suggests the presence of a strong Jahn-Teller effect in the center's singlet levels and the latter indicates that major sources of broadening are yet to be identified. These conclusions have important implications for the understanding of the center and the engineering of diamond quantum devices. Finally, we propose that, once the major sources of broadening are identified, the IR ZPL has the potential to be a sensitive spectroscopic tool for probing microscopic strain fields and performing defect tomography.

  13. Thoracic and diaphragmatic endometriosis: Single-institution experience using a novel broadened diagnostic criteria

    PubMed

    Larraín, Demetrio; Suárez, Francisco; Braun, Hernán; Chapochnick, Javier; Diaz, Lidia; Rojas, Iván

    2018-06-05

    To describe our experience with the multidisciplinary management of both thoracic/diaphragmatic endometriosis (TED), applying a broadened definition of the “thoracic endometriosis syndrome (TES)” to define cases. We present a retrospective series of consecutive patients affected by pathology-proven TED, treated at our institution, during a period of 7 years. Five women were included. Two cases were referred due to catamenial chest/shoulder pain, one due to recurrent catamenial pneumothorax, one due to new-onset diaphragmatic hernia. One patient had not thoracic symptoms, and diaphragmatic endometriosis was found during gynecologic laparoscopy for pelvic endometriosis. Endometriosis was histologically confirmed in all cases. After follow-up all patients remain asymptomatic. Broadened TES criteria could increase the incidence of TED and determine better knowledge of this condition. Multidisciplinary, minimally invasive surgery is effective and safe, but should be reserved to tertiary referral centers.

  14. Evaluation of the dosimetric properties of a synthetic single crystal diamond detector in high energy clinical proton beams.

    PubMed

    Mandapaka, A K; Ghebremedhin, A; Patyal, B; Marinelli, Marco; Prestopino, G; Verona, C; Verona-Rinati, G

    2013-12-01

    To investigate the dosimetric properties of a synthetic single crystal diamond Schottky diode for accurate relative dose measurements in large and small field high-energy clinical proton beams. The dosimetric properties of a synthetic single crystal diamond detector were assessed by comparison with a reference Markus parallel plate ionization chamber, an Exradin A16 microionization chamber, and Exradin T1a ion chamber. The diamond detector was operated at zero bias voltage at all times. Comparative dose distribution measurements were performed by means of Fractional depth dose curves and lateral beam profiles in clinical proton beams of energies 155 and 250 MeV for a 14 cm square cerrobend aperture and 126 MeV for 3, 2, and 1 cm diameter circular brass collimators. ICRU Report No. 78 recommended beam parameters were used to compare fractional depth dose curves and beam profiles obtained using the diamond detector and the reference ionization chamber. Warm-up∕stability of the detector response and linearity with dose were evaluated in a 250 MeV proton beam and dose rate dependence was evaluated in a 126 MeV proton beam. Stem effect and the azimuthal angle dependence of the diode response were also evaluated. A maximum deviation in diamond detector signal from the average reading of less than 0.5% was found during the warm-up irradiation procedure. The detector response showed a good linear behavior as a function of dose with observed deviations below 0.5% over a dose range from 50 to 500 cGy. The detector response was dose rate independent, with deviations below 0.5% in the investigated dose rates ranging from 85 to 300 cGy∕min. Stem effect and azimuthal angle dependence of the diode signal were within 0.5%. Fractional depth dose curves and lateral beam profiles obtained with the diamond detector were in good agreement with those measured using reference dosimeters. The observed dosimetric properties of the synthetic single crystal diamond detector indicate that

  15. cSELF (Computer Science Education from Life): Broadening Participation through Design Agency

    ERIC Educational Resources Information Center

    Bennett, Audrey; Eglash, Ron

    2013-01-01

    The phrase "broadening participation" is often used to describe efforts to decrease the race and gender gap in science and engineering education, and in this paper the authors describe an educational program focused on addressing the lower achievement rates and career interests of underrepresented ethnic groups (African American, Native…

  16. Validation of an in-vivo proton beam range check method in an anthropomorphic pelvic phantom using dose measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentefour, El H., E-mail: hassan.bentefour@iba-group.com; Prieels, Damien; Tang, Shikui

    Purpose: In-vivo dosimetry and beam range verification in proton therapy could play significant role in proton treatment validation and improvements. In-vivo beam range verification, in particular, could enable new treatment techniques one of which could be the use of anterior fields for prostate treatment instead of opposed lateral fields as in current practice. This paper reports validation study of an in-vivo range verification method which can reduce the range uncertainty to submillimeter levels and potentially allow for in-vivo dosimetry. Methods: An anthropomorphic pelvic phantom is used to validate the clinical potential of the time-resolved dose method for range verification inmore » the case of prostrate treatment using range modulated anterior proton beams. The method uses a 3 × 4 matrix of 1 mm diodes mounted in water balloon which are read by an ADC system at 100 kHz. The method is first validated against beam range measurements by dose extinction measurements. The validation is first completed in water phantom and then in pelvic phantom for both open field and treatment field configurations. Later, the beam range results are compared with the water equivalent path length (WEPL) values computed from the treatment planning system XIO. Results: Beam range measurements from both time-resolved dose method and the dose extinction method agree with submillimeter precision in water phantom. For the pelvic phantom, when discarding two of the diodes that show sign of significant range mixing, the two methods agree with ±1 mm. Only a dose of 7 mGy is sufficient to achieve this result. The comparison to the computed WEPL by the treatment planning system (XIO) shows that XIO underestimates the protons beam range. Quantifying the exact XIO range underestimation depends on the strategy used to evaluate the WEPL results. To our best evaluation, XIO underestimates the treatment beam range between a minimum of 1.7% and maximum of 4.1%. Conclusions: Time

  17. Broadening participation in Natural Sciences and Mathematics at the University of Maryland Baltimore County

    NASA Astrophysics Data System (ADS)

    Rous, Philip

    2013-03-01

    Over the past two decades, UMBC has undertaken a series of efforts to broaden participation in the natural sciences and mathematics, beginning with the establishment of the Meyerhoff program. Using as examples the multiple initiatives that followed, and with a focus on the challenge of increasing access and success of all students who enter as both freshmen and transfer students, I will describe a model of culture change that we have employed repeatedly to understand and guide our efforts in broadening participation. Particular attention will be paid to the concept of cultural capital, the role of innovators and the challenge of scaling small-scale innovations towards institutional change. Supported by the National Science Foundation and the Bill and Melinda Gates Foundation.

  18. Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking

    PubMed Central

    Wang, Cheng; Schires, Kevin; Osiński, Marek; Poole, Philip J.; Grillot, Frédéric

    2016-01-01

    In semiconductor lasers, current injection not only provides the optical gain, but also induces variation of the refractive index, as governed by the Kramers-Krönig relation. The linear coupling between the changes of the effective refractive index and the modal gain is described by the linewidth broadening factor, which is responsible for many static and dynamic features of semiconductor lasers. Intensive efforts have been made to characterize this factor in the past three decades. In this paper, we propose a simple, flexible technique for measuring the linewidth broadening factor of semiconductor lasers. It relies on the stable optical injection locking of semiconductor lasers, and the linewidth broadening factor is extracted from the residual side-modes, which are supported by the amplified spontaneous emission. This new technique has great advantages of insensitivity to thermal effects, the bias current, and the choice of injection-locked mode. In addition, it does not require the explicit knowledge of optical injection conditions, including the injection strength and the frequency detuning. The standard deviation of the measurements is less than 15%. PMID:27302301

  19. Nuclear p ⊥-broadening of an energetic parton pair

    NASA Astrophysics Data System (ADS)

    Cougoulic, Florian; Peigné, Stéphane

    2018-05-01

    We revisit the transverse momentum broadening of a fast parton pair crossing a nuclear medium, putting emphasis on the pair global color state, for any number of colors N and within the eikonal limit for parton propagation and the Gaussian approximation for the gluon field of the target. The pair transverse momentum probability distribution is derived in a kinetic equation approach, and is determined by an operator ℬ describing the possible transitions between the pair color states when crossing the medium. The exponential of ℬ encompasses the 4-point correlators of Wilson lines in the saturation formalism. We emphasize the relation of ℬ with the anomalous dimension matrices appearing in the study of soft gluon radiation associated to hard 2 → 2 partonic processes. In a well-chosen, orthonormal basis of the pair color states, we rederive ℬ for any type of parton pair, making maximal use of SU( N) invariants and using `birdtrack' color pictorial notations, providing a quite economical derivation of all previously known 4-point correlators (or equivalently, anomalous dimension matrices for 2 → 2 parton scattering). We discuss some general features of the pair transverse momentum distribution. The latter simplifies in the `compact pair expansion' which singles out the global charges (Casimirs) of the pair color states. This study should provide the necessary tools to address nuclear broadening of n-parton systems in phenomenology while highlighting the color structure of the process.

  20. Modeling the Proton Radiation Belt With Van Allen Probes Relativistic Electron-Proton Telescope Data

    NASA Technical Reports Server (NTRS)

    Kanekal, S. G.; Li, X.; Baker, D. N.; Selesnick, R. S.; Hoxie, V. C.

    2018-01-01

    An empirical model of the proton radiation belt is constructed from data taken during 2013-2017 by the Relativistic Electron-Proton Telescopes on the Van Allen Probes satellites. The model intensity is a function of time, kinetic energy in the range 18-600 megaelectronvolts, equatorial pitch angle, and L shell of proton guiding centers. Data are selected, on the basis of energy deposits in each of the nine silicon detectors, to reduce background caused by hard proton energy spectra at low L. Instrument response functions are computed by Monte Carlo integration, using simulated proton paths through a simplified structural model, to account for energy loss in shielding material for protons outside the nominal field of view. Overlap of energy channels, their wide angular response, and changing satellite orientation require the model dependencies on all three independent variables be determined simultaneously. This is done by least squares minimization with a customized steepest descent algorithm. Model uncertainty accounts for statistical data error and systematic error in the simulated instrument response. A proton energy spectrum is also computed from data taken during the 8 January 2014 solar event, to illustrate methods for the simpler case of an isotropic and homogeneous model distribution. Radiation belt and solar proton results are compared to intensities computed with a simplified, on-axis response that can provide a good approximation under limited circumstances.

  1. Modeling the Proton Radiation Belt With Van Allen Probes Relativistic Electron-Proton Telescope Data

    NASA Astrophysics Data System (ADS)

    Selesnick, R. S.; Baker, D. N.; Kanekal, S. G.; Hoxie, V. C.; Li, X.

    2018-01-01

    An empirical model of the proton radiation belt is constructed from data taken during 2013-2017 by the Relativistic Electron-Proton Telescopes on the Van Allen Probes satellites. The model intensity is a function of time, kinetic energy in the range 18-600 MeV, equatorial pitch angle, and L shell of proton guiding centers. Data are selected, on the basis of energy deposits in each of the nine silicon detectors, to reduce background caused by hard proton energy spectra at low L. Instrument response functions are computed by Monte Carlo integration, using simulated proton paths through a simplified structural model, to account for energy loss in shielding material for protons outside the nominal field of view. Overlap of energy channels, their wide angular response, and changing satellite orientation require the model dependencies on all three independent variables be determined simultaneously. This is done by least squares minimization with a customized steepest descent algorithm. Model uncertainty accounts for statistical data error and systematic error in the simulated instrument response. A proton energy spectrum is also computed from data taken during the 8 January 2014 solar event, to illustrate methods for the simpler case of an isotropic and homogeneous model distribution. Radiation belt and solar proton results are compared to intensities computed with a simplified, on-axis response that can provide a good approximation under limited circumstances.

  2. GPU.proton.DOCK: Genuine Protein Ultrafast proton equilibria consistent DOCKing.

    PubMed

    Kantardjiev, Alexander A

    2011-07-01

    GPU.proton.DOCK (Genuine Protein Ultrafast proton equilibria consistent DOCKing) is a state of the art service for in silico prediction of protein-protein interactions via rigorous and ultrafast docking code. It is unique in providing stringent account of electrostatic interactions self-consistency and proton equilibria mutual effects of docking partners. GPU.proton.DOCK is the first server offering such a crucial supplement to protein docking algorithms--a step toward more reliable and high accuracy docking results. The code (especially the Fast Fourier Transform bottleneck and electrostatic fields computation) is parallelized to run on a GPU supercomputer. The high performance will be of use for large-scale structural bioinformatics and systems biology projects, thus bridging physics of the interactions with analysis of molecular networks. We propose workflows for exploring in silico charge mutagenesis effects. Special emphasis is given to the interface-intuitive and user-friendly. The input is comprised of the atomic coordinate files in PDB format. The advanced user is provided with a special input section for addition of non-polypeptide charges, extra ionogenic groups with intrinsic pK(a) values or fixed ions. The output is comprised of docked complexes in PDB format as well as interactive visualization in a molecular viewer. GPU.proton.DOCK server can be accessed at http://gpudock.orgchm.bas.bg/.

  3. Proton irradiation on materials

    NASA Technical Reports Server (NTRS)

    Chang, C. Ken

    1993-01-01

    A computer code is developed by utilizing a radiation transport code developed at NASA Langley Research Center to study the proton radiation effects on materials which have potential application in NASA's future space missions. The code covers the proton energy from 0.01 Mev to 100 Gev and is sufficient for energetic protons encountered in both low earth and geosynchronous orbits. With some modification, the code can be extended for particles heavier than proton as the radiation source. The code is capable of calculating the range, stopping power, exit energy, energy deposition coefficients, dose, and cumulative dose along the path of the proton in a target material. The target material can be any combination of the elements with atomic number ranging from 1 to 92, or any compound with known chemical composition. The generated cross section for a material is stored and is reused in future to save computer time. This information can be utilized to calculate the proton dose a material would receive in an orbit when the radiation environment is known. It can also be used to determine, in the laboratory, the parameters such as beam current of proton and irradiation time to attain the desired dosage for accelerated ground testing of any material. It is hoped that the present work be extended to include polymeric and composite materials which are prime candidates for use as coating, electronic components, and structure building. It is also desirable to determine, for ground testing these materials, the laboratory parameters in order to simulate the dose they would receive in space environments. A sample print-out for water subject to 1.5 Mev proton is included as a reference.

  4. Squeezing at Entrance of Proton Transport Pathway in Proton-translocating Pyrophosphatase upon Substrate Binding*

    PubMed Central

    Huang, Yun-Tzu; Liu, Tseng-Huang; Lin, Shih-Ming; Chen, Yen-Wei; Pan, Yih-Jiuan; Lee, Ching-Hung; Sun, Yuh-Ju; Tseng, Fan-Gang; Pan, Rong-Long

    2013-01-01

    Homodimeric proton-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) is indispensable for many organisms in maintaining organellar pH homeostasis. This unique proton pump couples the hydrolysis of PPi to proton translocation across the membrane. H+-PPase consists of 14–16 relatively hydrophobic transmembrane domains presumably for proton translocation and hydrophilic loops primarily embedding a catalytic site. Several highly conserved polar residues located at or near the entrance of the transport pathway in H+-PPase are essential for proton pumping activity. In this investigation single molecule FRET was employed to dissect the action at the pathway entrance in homodimeric Clostridium tetani H+-PPase upon ligand binding. The presence of the substrate analog, imidodiphosphate mediated two sites at the pathway entrance moving toward each other. Moreover, single molecule FRET analyses after the mutation at the first proton-carrying residue (Arg-169) demonstrated that conformational changes at the entrance are conceivably essential for the initial step of H+-PPase proton translocation. A working model is accordingly proposed to illustrate the squeeze at the entrance of the transport pathway in H+-PPase upon substrate binding. PMID:23720778

  5. Enhanced proton conductivity of proton exchange membranes by incorporating sulfonated metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Li, Zhen; He, Guangwei; Zhao, Yuning; Cao, Ying; Wu, Hong; Li, Yifan; Jiang, Zhongyi

    2014-09-01

    In this study, octahedral crystal MIL101(Cr) with a uniform size of ∼400 nm is synthesized via hydrothermal reaction. It is then functionalized with sulfonic acid groups by concentrated sulfuric acid and trifluoromethanesulfonic anhydride in nitromethane. The sulfonated MIL101(Cr) are homogeneously incorporated into sulfonated poly(ether ether ketone) (SPEEK) matrix to prepare hybrid membranes. The performances of hybrid membranes are evaluated by proton conductivity, methanol permeability, water uptake and swelling property, and thermal stability. The methanol permeability increased slightly from 6.12 × 10-7 to 7.39 × 10-7 cm2 s-1 with the filler contents increasing from 0 to 10 wt. %. However, the proton conductivity of the hybrid membranes increased significantly. The proton conductivity is increased up to 0.306 S cm-1 at 75 °C and 100% RH, which is 96.2% higher than that of pristine membranes (0.156 S cm-1). The increment of proton conductivity is attributed to the following multiple functionalities of the sulfonated MIL101(Cr) in hybrid membranes: i) providing sulfonic acid groups as facile proton hopping sites; ii) forming additional proton-transport pathways at the interfaces of polymer and MOFs; iii) constructing hydrogen-bonded networks for proton conduction via -OH provided by the hydrolysis of coordinatively unsaturated metal sites.

  6. Low-Energy Proton Testing Methodology

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Marshall, Paul W.; Heidel, David F.; Schwank, James R.; Shaneyfelt, Marty R.; Xapsos, M.A.; Ladbury, Raymond L.; LaBel, Kenneth A.; Berg, Melanie; Kim, Hak S.; hide

    2009-01-01

    Use of low-energy protons and high-energy light ions is becoming necessary to investigate current-generation SEU thresholds. Systematic errors can dominate measurements made with low-energy protons. Range and energy straggling contribute to systematic error. Low-energy proton testing is not a step-and-repeat process. Low-energy protons and high-energy light ions can be used to measure SEU cross section of single sensitive features; important for simulation.

  7. Stark broadening of resonant Cr II 3d5-3d44p spectral lines in hot stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Simić, Z.; Dimitrijević, M. S.; Sahal-Bréchot, S.

    2013-07-01

    New Stark broadening parameters of interest for the astrophysical, laboratory and technological plasma modelling, investigations and analysis for nine resonant Cr II multiplets have been determined within the semiclassical perturbation approach. In order to demonstrate one possibility for their usage in astrophysical plasma research, obtained results have been applied to the analysis of the Stark broadening influence on stellar spectral line shapes.

  8. Proton Effects and Test Issues for Satellite Designers. Section 4; Ionization Effects

    NASA Technical Reports Server (NTRS)

    Marshall, Paul W.; Marshall, Cheryl J.

    1999-01-01

    This portion of the Short Course is divided into two segments to separately address the two major proton-related effects confronting satellite designers: ionization effects and displacement damage effects. While both of these topics are deeply rooted in "traditional" descriptions of space radiation effects, there are several factors at play to cause renewed concern for satellite systems being designed today. For example, emphasis on Commercial Off-The-Shelf (COTS) technologies in both commercial and government systems increases both Total Ionizing Dose (TID) and Single Event Effect (SEE) concerns. Scaling trends exacerbate the problems, especially with regard to SEEs where protons can dominate soft error rates and even cause destructive failure. In addition, proton-induced displacement damage at fluences encountered in natural space environments can cause degradation in modern bipolar circuitry as well as in many emerging electronic and opto-electronic technologies. A crude, but nevertheless telling, indication of the level of concern for proton effects follows from surveying the themes treated in papers presented at this conference. The table lists themes found in the IEEE Transaction on Nuclear Science (TNS) December issue from the past year and compares them with the December issue's content a decade earlier. Ten years ago there were nine papers, or about 10% of the total, dealing with the four indicated topics. At that time, single event effects from protons were the primary concern, and these were thought to be possible only when a nuclear reaction initiated energetic recoil atoms. This is shown in the table as the 'traditional" SEE subject. A decade later, submissions addressing this topic had doubled, while papers devoted to displacement damage studies had increased from one to nine! More importantly, displacement damage effects in the natural space environments have become a concern for degradation in modern devices (other than solar cells), and this was

  9. Turbulent Density Fluctuations and Proton Heating Rate in the Solar Wind from 9-20 R ⊙

    NASA Astrophysics Data System (ADS)

    Sasikumar Raja, K.; Subramanian, Prasad; Ramesh, R.; Vourlidas, Angelos; Ingale, Madhusudan

    2017-12-01

    We obtain scatter-broadened images of the Crab Nebula at 80 MHz as it transits through the inner solar wind in 2017 and 2016 June. These images are anisotropic, with the major axis oriented perpendicular to the radially outward coronal magnetic field. Using these data, we deduce that the density modulation index (δ {N}e/{N}e) caused by turbulent density fluctuations in the solar wind ranges from 1.9× {10}-3 to 7.7× {10}-3 between 9 and 20 R ⊙. We also find that the heating rate of solar wind protons at these distances ranges from 2.2× {10}-13 to 1.0× {10}-11 {erg} {{cm}}-3 {{{s}}}-1. On two occasions, the line of sight intercepted a coronal streamer. We find that the presence of the streamer approximately doubles the thickness of the scattering screen.

  10. Reaction pathways of proton transfer in hydrogen-bonded phenol-carboxylate complexes explored by combined UV-vis and NMR spectroscopy.

    PubMed

    Koeppe, Benjamin; Tolstoy, Peter M; Limbach, Hans-Heinrich

    2011-05-25

    Combined low-temperature NMR/UV-vis spectroscopy (UVNMR), where optical and NMR spectra are measured in the NMR spectrometer under the same conditions, has been set up and applied to the study of H-bonded anions A··H··X(-) (AH = 1-(13)C-2-chloro-4-nitrophenol, X(-) = 15 carboxylic acid anions, 5 phenolates, Cl(-), Br(-), I(-), and BF(4)(-)). In this series, H is shifted from A to X, modeling the proton-transfer pathway. The (1)H and (13)C chemical shifts and the H/D isotope effects on the latter provide information about averaged H-bond geometries. At the same time, red shifts of the π-π* UV-vis absorption bands are observed which correlate with the averaged H-bond geometries. However, on the UV-vis time scale, different tautomeric states and solvent configurations are in slow exchange. The combined data sets indicate that the proton transfer starts with a H-bond compression and a displacement of the proton toward the H-bond center, involving single-well configurations A-H···X(-). In the strong H-bond regime, coexisting tautomers A··H···X(-) and A(-)···H··X are observed by UV. Their geometries and statistical weights change continuously when the basicity of X(-) is increased. Finally, again a series of single-well structures of the type A(-)···H-X is observed. Interestingly, the UV-vis absorption bands are broadened inhomogeneously because of a distribution of H-bond geometries arising from different solvent configurations.

  11. Infrared absorption cross sections of propane broadened by hydrogen

    NASA Astrophysics Data System (ADS)

    Wong, A.; Hargreaves, R. J.; Billinghurst, B.; Bernath, P. F.

    2017-09-01

    Fourier transform infrared absorption cross-sections of pure propane (C3H8) and propane broadened with H2 have been calculated from transmittance spectra recorded at temperatures from 292 K to 205 K. Transmittance spectra were recorded at the Canadian Light Source (CLS) Far-Infrared beamline, utilizing both the synchrotron source and the internal glowbar source. The absorption cross-sections have been calibrated to Pacific Northwest National Laboratory (PNNL) reference cross-sections of propane and can be used to interpret astronomical observations of giant planets such as Jupiter and Saturn as well as exoplanets.

  12. Fundamental radiological and geometric performance of two types of proton beam modulated discrete scanning systems.

    PubMed

    Farr, J B; Dessy, F; De Wilde, O; Bietzer, O; Schönenberg, D

    2013-07-01

    The purpose of this investigation was to compare and contrast the measured fundamental properties of two new types of modulated proton scanning systems. This provides a basis for clinical expectations based on the scanned beam quality and a benchmark for computational models. Because the relatively small beam and fast scanning gave challenges to the characterization, a secondary purpose was to develop and apply new approaches where necessary to do so. The following performances of the proton scanning systems were investigated: beamlet alignment, static in-air beamlet size and shape, scanned in-air penumbra, scanned fluence map accuracy, geometric alignment of scanning system to isocenter, maximum field size, lateral and longitudinal field uniformity of a 1 l cubic uniform field, output stability over time, gantry angle invariance, monitoring system linearity, and reproducibility. A range of detectors was used: film, ionization chambers, lateral multielement and longitudinal multilayer ionization chambers, and a scintillation screen combined with a digital video camera. Characterization of the scanned fluence maps was performed with a software analysis tool. The resulting measurements and analysis indicated that the two types of delivery systems performed within specification for those aspects investigated. The significant differences were observed between the two types of scanning systems where one type exhibits a smaller spot size and associated penumbra than the other. The differential is minimum at maximum energy and increases inversely with decreasing energy. Additionally, the large spot system showed an increase in dose precision to a static target with layer rescanning whereas the small spot system did not. The measured results from the two types of modulated scanning types of system were consistent with their designs under the conditions tested. The most significant difference between the types of system was their proton spot size and associated resolution

  13. Broadening the Study of Participation in the Life Sciences: How Critical Theoretical and Mixed-Methodological Approaches Can Enhance Efforts to Broaden Participation.

    PubMed

    Metcalf, Heather

    This research methods Essay details the usefulness of critical theoretical frameworks and critical mixed-methodological approaches for life sciences education research on broadening participation in the life sciences. First, I draw on multidisciplinary research to discuss critical theory and methodologies. Then, I demonstrate the benefits of these approaches for researchers who study diversity and inclusion issues in the life sciences through examples from two critical mixed-methods studies of prominent issues in science, technology, engineering, and mathematics (STEM) participation and recognition. The first study pairs critical discourse analysis of the STEM workforce literature, data, and underlying surveys with quantitative analyses of STEM pathways into the workforce. This example illustrates the necessity of questioning popular models of retention. It also demonstrates the importance of intersecting demographic categories to reveal patterns of experience both within and between groups whose access to and participation in STEM we aim to improve. The second study's critical approach applies research on inequities in prizes awarded by STEM professional societies toward organizational change. This example uses data from the life sciences professional societies to show the importance of placing data within context to broaden participation and understand challenges in creating sustainable change. © 2016 H. Metcalf. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. The role of BK-type Ca2+-dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells

    PubMed Central

    Shao, Li-Rong; Halvorsrud, Ragnhild; Borg-Graham, Lyle; Storm, Johan F

    1999-01-01

    The role of large-conductance Ca2+-dependent K+ channels (BK-channels; also known as maxi-K- or slo-channels) in spike broadening during repetitive firing was studied in CA1 pyramidal cells, using sharp electrode intracellular recordings in rat hippocampal slices, and computer modelling. Trains of action potentials elicited by depolarizing current pulses showed a progressive, frequency-dependent spike broadening, reflecting a reduced rate of repolarization. During a 50 ms long 5 spike train, the spike duration increased by 63·6 ± 3·4% from the 1st to the 3rd spike. The amplitude of the fast after-hyperpolarization (fAHP) also rapidly declined during each train. Suppression of BK-channel activity with (a) the selective BK-channel blocker iberiotoxin (IbTX, 60 nM), (b) the non-peptidergic BK-channel blocker paxilline (2–10 μM), or (c) calcium-free medium, broadened the 1st spike to a similar degree (≈60%). BK-channel suppression also caused a similar change in spike waveform as observed during repetitive firing, and eliminated (occluded) most of the spike broadening during repetitive firing. Computer simulations using a reduced compartmental model with transient BK-channel current and 10 other active ionic currents, produced an activity-dependent spike broadening that was strongly reduced when the BK-channel inactivation mechanism was removed. These results, which are supported by recent voltage-clamp data, strongly suggest that in CA1 pyramidal cells, fast inactivation of a transient BK-channel current (ICT), substantially contributes to frequency-dependent spike broadening during repetitive firing. PMID:10562340

  15. Proton-minibeam radiation therapy: A proof of concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prezado, Y.; Fois, G. R.

    2013-03-15

    Purpose: This Monte Carlo simulation work aims at studying a new radiotherapy approach called proton-minibeam radiation therapy (pMBRT). The main objective of this proof of concept was the evaluation of the possible gain in tissue sparing, thanks to the spatial fractionation of the dose, which could be used to deposit higher and potentially curative doses in clinical cases where tissue tolerances are a limit for conventional methods. Methods: Monte Carlo simulations (GATE v.6) have been used as a method to calculate the ratio of the peak-to-valley doses (PVDR) for arrays of proton minibeams of 0.7 mm width and several center-to-centermore » distances, at different depths in a water phantom. The beam penumbras were also evaluated as an important parameter for tissue sparing, for example, in the treatment of non-cancer diseases like epilepsy. Two proton energies were considered in this study: a clinically relevant energy (105 MeV) and a very high energy (1 GeV), to benefit from a reduced lateral scattering. For the latter case, an interlaced geometry was also evaluated. Results: Higher or similar PVDR than the ones obtained in x-rays minibeam radiation therapy were achieved in several pMBRT configurations. In addition, for the two energies studied, the beam penumbras are smaller than in the case of Gamma Knife radiosurgery. Conclusions: The high PVDR obtained for some configurations and the small penumbras in comparison with existing radiosurgery techniques, suggest a potential gain in healthy tissue sparing in this new technique. Biological studies are warranted to assess the effects of pMBRT on both normal and tumoral tissues.« less

  16. Lifetime increased cancer risk in mice following exposure to clinical proton beam generated neutrons

    PubMed Central

    Gerweck, Leo E.; Huang, Peigen; Lu, Hsiao-Ming; Paganetti, Harald; Zhou, Yenong

    2014-01-01

    Purpose To evaluate the lifespan and risk of cancer following whole-body exposure of mice to neutrons generated by a passively scattered clinical SOBP proton beam. Methods and Materials Three hundred young adult female FVB/N mice, 152 test and 148 control, were entered into the experiment. Mice were placed in an annular cassette around a cylindrical phantom, which was positioned lateral to the mid SOBP of a 165 MeV, clinical proton beam. The average distance from the edge of the mid SOBP to the conscious active mice was 21.5 cm. The phantom was irradiated with once daily fractions of 25 Gy, 4 days per week, for 6 weeks. The age at death and cause of death, i.e., cancer and type vs. non-cancer causes, were assessed over the lifespan of the mice. Results Exposure of mice to a dose of 600 Gy of proton beam generated neutrons, reduced the median lifespan of the mice by 4.2% (Kaplan-Meier cumulative survival, P = 0.053). The relative risk of death from cancer in neutron exposed vs. control mice was 1.40 for cancer of all types (P = 0.0006) and 1.22 for solid cancers (P = 0.09). For a typical 60 Gy dose of clinical protons, the observed 22% increased risk of solid cancer would be expected to decrease by a factor of 10. Conclusions Exposure of mice to neutrons generated by a proton dose which exceeds a typical course of radiotherapy by a factor of 10, resulted in a statistically significant increase in the background incidence of leukemia and a marginally significant increase in solid cancer. The results indicate that the risk of out-of-field 2nd solid cancers from SOBP proton generated neutrons and typical treatment schedules, is 6 - 10 times less than is suggested by current neutron risk estimates. PMID:24725699

  17. Restrained Proton Indicator in Combined Quantum-Mechanics/Molecular-Mechanics Dynamics Simulations of Proton Transfer through a Carbon Nanotube.

    PubMed

    Duster, Adam W; Lin, Hai

    2017-09-14

    Recently, a collective variable "proton indicator" was purposed for tracking an excess proton solvated in bulk water in molecular dynamics simulations. In this work, we demonstrate the feasibility of utilizing the position of this proton indicator as a reaction coordinate to model an excess proton migrating through a hydrophobic carbon nanotube in combined quantum-mechanics/molecular-mechanics simulations. Our results indicate that applying a harmonic restraint to the proton indicator in the bulk solvent near the nanotube pore entrance leads to the recruitment of water molecules into the pore. This is consistent with an earlier study that employed a multistate empirical valence bond potential and a different representation (center of excess charge) of the proton. We attribute this water recruitment to the delocalized nature of the solvated proton, which prefers to be in high-dielectric bulk solvent. While water recruitment into the pore is considered an artifact in the present simulations (because of the artificially imposed restraint on the proton), if the proton were naturally restrained, it could assist in building water wires prior to proton transfer through the pore. The potential of mean force for a proton translocation through the water-filled pore was computed by umbrella sampling, where the bias potentials were applied to the proton indicator. The free energy curve and barrier heights agree reasonably with those in the literature. The results suggest that the proton indicator can be used as a reaction coordinate in simulations of proton transport in confined environments.

  18. Hydrogen concentration analysis in clinopyroxene using proton-proton scattering analysis

    NASA Astrophysics Data System (ADS)

    Weis, Franz A.; Ros, Linus; Reichart, Patrick; Skogby, Henrik; Kristiansson, Per; Dollinger, Günther

    2018-02-01

    Traditional methods to measure water in nominally anhydrous minerals (NAMs) are, for example, Fourier transformed infrared (FTIR) spectroscopy or secondary ion mass spectrometry (SIMS). Both well-established methods provide a low detection limit as well as high spatial resolution yet may require elaborate sample orientation or destructive sample preparation. Here we analyze the water content in erupted volcanic clinopyroxene phenocrysts by proton-proton scattering and reproduce water contents measured by FTIR spectroscopy. We show that this technique provides significant advantages over other methods as it can provide a three-dimensional distribution of hydrogen within a crystal, making the identification of potential inclusions possible as well as elimination of surface contamination. The sample analysis is also independent of crystal structure and orientation and independent of matrix effects other than sample density. The results are used to validate the accuracy of wavenumber-dependent vs. mineral-specific molar absorption coefficients in FTIR spectroscopy. In addition, we present a new method for the sample preparation of very thin crystals suitable for proton-proton scattering analysis using relatively low accelerator potentials.

  19. Virus-Specific T Cells: Broadening Applicability.

    PubMed

    Barrett, A John; Prockop, Susan; Bollard, Catherine M

    2018-01-01

    Virus infection remains an appreciable cause of morbidity and mortality after hematopoietic stem cell transplantation (HSCT). Although pharmacotherapy and/or antibody therapy may help prevent or treat viral disease, these drugs are expensive, toxic, and often ineffective due to primary or secondary resistance. Further, effective treatments are limited for many infections (eg, adenovirus, BK virus), which are increasingly detected after alternative donor transplants. These deficiencies in conventional therapeutics have increased interest in an immunotherapeutic approach to viral disorders, leading to adoptive transfer of virus-specific cytotoxic T lymphocytes (VSTs), which can rapidly reconstitute antiviral immunity post-transplantation without causing graft-versus-host disease. This review will explore how the VST field has improved outcomes for many patients with life-threatening viral infections after HSCT, and how to broaden applicability beyond the "patient-specific" products, as well as extending to other viral diseases even outside the context of HSCT. Copyright © 2017 The American Society for Blood and Marrow Transplantation. All rights reserved.

  20. Self-Broadening and Self-Shift Coefficients in the Fundamental Band of 12C 16O

    NASA Technical Reports Server (NTRS)

    Devi, Malathy V.; Benner, D. Chris; Smith, Mary Ann H.; Rinsland, Curtis P.

    1998-01-01

    High quality and precise measurements of self-broadened and self-shift coefficients in the fundamental band of C-12O-16 were made using spectra recorded at room temperature with the high-resolution (0.0027 cm(exp -1)) McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak, Arizona. The spectral region under investigation (2008-2247 cm(exp -1)) contains the P(31) to R(31) transitions. The data were obtained using a high-purity natural isotopic sample ofcarbon monoxide and two absorption cells with pathlengths of 4.08 and 9.98 cm, respectively. Various pressures of CO were used, ranging between 0.25 and 201.2 Torr. The results were obtained by analyzing five spectra simultaneously, using a multispectrum nonlinear least-squares fitting technique. The self-broadened coefficients ranged from 0.0426(2) cm(exp -1) atm(exp -1) at 296 K to 0.0924(2) cm(exp -1) atm(exp -1) at 296 K, while the pressure-induced shift coefficients varied between -0.0042(3) cm(exp -1) atm(exp -1) at 296 K and +0.0005(l) cm(exp -1) atm(exp -1) at 296 K. The value in parentheses is the estimated uncertainty in units of the last digit. The self-broadened coefficients of lines with same values of m in the P and R branches agree close to within experimental uncertainties while the self-shift coefficients showed considerable variation within and between the two branches. The mean value of the ratios of P branch to R branch self-broadened coefficients was found to be 1.01 with a standard deviation of + or - 0.01. Comparisons of the results with other published data were made.

  1. GOLD (GEO Opportunities for Leadership in Diversity): Building capacity for broadening participation in the Geosciences

    NASA Astrophysics Data System (ADS)

    Jones, B.; Patino, L. C.; Rom, E. L.; Adams, A.

    2017-12-01

    The geosciences continue to lag other science, technology, engineering, and mathematics (STEM) disciplines in the engagement, recruitment and retention of traditionally underrepresented and underserved groups, requiring more focused and strategic efforts to address this problem. Prior investments made by the National Science Foundation (NSF) related to broadening participation in STEM have identified many effective strategies and model programs for engaging, recruiting, and retaining underrepresented students in the geosciences. These investments also have documented clearly the importance of committed, knowledgeable, and persistent leadership for making local progress in this area. Achieving diversity at larger and systemic scales requires a network of diversity "champions" who can catalyze widespread adoption of these evidence-based best practices and resources. Although many members of the geoscience community are committed to the ideals of broadening participation, the skills and competencies to achieve success must be developed. The NSF GEO Opportunities for Leadership in Diversity (GOLD) program was implemented in 2016, as a funding opportunity utilizing the Ideas Lab mechanism. Ideas Labs are intensive workshops focused on finding innovative solutions to grand challenge problems. The ultimate aim of this Ideas Lab, organized by the NSF Directorate for Geosciences (GEO), was to facilitate the design, pilot implementation, and evaluation of innovative professional development curricula that can unleash the potential of geoscientists with interests in broadening participation to become impactful leaders within the community. The expectation is that mixing geoscientists with experts in broadening participation research, behavioral change, social psychology, institutional change management, leadership development research, and pedagogies for professional development will not only engender fresh thinking and innovative approaches for preparing and empowering

  2. Proton channel models

    PubMed Central

    Pupo, Amaury; Baez-Nieto, David; Martínez, Agustín; Latorre, Ramón; González, Carlos

    2014-01-01

    Voltage-gated proton channels are integral membrane proteins with the capacity to permeate elementary particles in a voltage and pH dependent manner. These proteins have been found in several species and are involved in various physiological processes. Although their primary topology is known, lack of details regarding their structures in the open conformation has limited analyses toward a deeper understanding of the molecular determinants of their function and regulation. Consequently, the function-structure relationships have been inferred based on homology models. In the present work, we review the existing proton channel models, their assumptions, predictions and the experimental facts that support them. Modeling proton channels is not a trivial task due to the lack of a close homolog template. Hence, there are important differences between published models. This work attempts to critically review existing proton channel models toward the aim of contributing to a better understanding of the structural features of these proteins. PMID:24755912

  3. Coherent forward broadening in cold atom clouds

    NASA Astrophysics Data System (ADS)

    Sutherland, R. T.; Robicheaux, F.

    2016-02-01

    It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Furthermore, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single-photon wave-function model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms at the back of the cloud are more excited than the atoms at the front. These calculations are conducted at the low densities relevant to recent experiments.

  4. Voltage-gated Proton Channels

    PubMed Central

    DeCoursey, Thomas E.

    2014-01-01

    Voltage-gated proton channels, HV1, have vaulted from the realm of the esoteric into the forefront of a central question facing ion channel biophysicists, namely the mechanism by which voltage-dependent gating occurs. This transformation is the result of several factors. Identification of the gene in 2006 revealed that proton channels are homologues of the voltage-sensing domain of most other voltage-gated ion channels. Unique, or at least eccentric, properties of proton channels include dimeric architecture with dual conduction pathways, perfect proton selectivity, a single-channel conductance ~103 smaller than most ion channels, voltage-dependent gating that is strongly modulated by the pH gradient, ΔpH, and potent inhibition by Zn2+ (in many species) but an absence of other potent inhibitors. The recent identification of HV1 in three unicellular marine plankton species has dramatically expanded the phylogenetic family tree. Interest in proton channels in their own right has increased as important physiological roles have been identified in many cells. Proton channels trigger the bioluminescent flash of dinoflagellates, facilitate calcification by coccolithophores, regulate pH-dependent processes in eggs and sperm during fertilization, secrete acid to control the pH of airway fluids, facilitate histamine secretion by basophils, and play a signaling role in facilitating B-cell receptor mediated responses in B lymphocytes. The most elaborate and best-established functions occur in phagocytes, where proton channels optimize the activity of NADPH oxidase, an important producer of reactive oxygen species. Proton efflux mediated by HV1 balances the charge translocated across the membrane by electrons through NADPH oxidase, minimizes changes in cytoplasmic and phagosomal pH, limits osmotic swelling of the phagosome, and provides substrate H+ for the production of H2O2 and HOCl, reactive oxygen species crucial to killing pathogens. PMID:23798303

  5. A Conserved Asparagine in a P-type Proton Pump Is Required for Efficient Gating of Protons*

    PubMed Central

    Ekberg, Kira; Wielandt, Alex G.; Buch-Pedersen, Morten J.; Palmgren, Michael G.

    2013-01-01

    The minimal proton pumping machinery of the Arabidopsis thaliana P-type plasma membrane H+-ATPase isoform 2 (AHA2) consists of an aspartate residue serving as key proton donor/acceptor (Asp-684) and an arginine residue controlling the pKa of the aspartate. However, other important aspects of the proton transport mechanism such as gating, and the ability to occlude protons, are still unclear. An asparagine residue (Asn-106) in transmembrane segment 2 of AHA2 is conserved in all P-type plasma membrane H+-ATPases. In the crystal structure of the plant plasma membrane H+-ATPase, this residue is located in the putative ligand entrance pathway, in close proximity to the central proton donor/acceptor Asp-684. Substitution of Asn-106 resulted in mutant enzymes with significantly reduced ability to transport protons against a membrane potential. Sensitivity toward orthovanadate was increased when Asn-106 was substituted with an aspartate residue, but decreased in mutants with alanine, lysine, glutamine, or threonine replacement of Asn-106. The apparent proton affinity was decreased for all mutants, most likely due to a perturbation of the local environment of Asp-684. Altogether, our results demonstrate that Asn-106 is important for closure of the proton entrance pathway prior to proton translocation across the membrane. PMID:23420846

  6. A conserved asparagine in a P-type proton pump is required for efficient gating of protons.

    PubMed

    Ekberg, Kira; Wielandt, Alex G; Buch-Pedersen, Morten J; Palmgren, Michael G

    2013-04-05

    The minimal proton pumping machinery of the Arabidopsis thaliana P-type plasma membrane H(+)-ATPase isoform 2 (AHA2) consists of an aspartate residue serving as key proton donor/acceptor (Asp-684) and an arginine residue controlling the pKa of the aspartate. However, other important aspects of the proton transport mechanism such as gating, and the ability to occlude protons, are still unclear. An asparagine residue (Asn-106) in transmembrane segment 2 of AHA2 is conserved in all P-type plasma membrane H(+)-ATPases. In the crystal structure of the plant plasma membrane H(+)-ATPase, this residue is located in the putative ligand entrance pathway, in close proximity to the central proton donor/acceptor Asp-684. Substitution of Asn-106 resulted in mutant enzymes with significantly reduced ability to transport protons against a membrane potential. Sensitivity toward orthovanadate was increased when Asn-106 was substituted with an aspartate residue, but decreased in mutants with alanine, lysine, glutamine, or threonine replacement of Asn-106. The apparent proton affinity was decreased for all mutants, most likely due to a perturbation of the local environment of Asp-684. Altogether, our results demonstrate that Asn-106 is important for closure of the proton entrance pathway prior to proton translocation across the membrane.

  7. Proton-counting radiography for proton therapy: a proof of principle using CMOS APS technology

    NASA Astrophysics Data System (ADS)

    Poludniowski, G.; Allinson, N. M.; Anaxagoras, T.; Esposito, M.; Green, S.; Manolopoulos, S.; Nieto-Camero, J.; Parker, D. J.; Price, T.; Evans, P. M.

    2014-06-01

    Despite the early recognition of the potential of proton imaging to assist proton therapy (Cormack 1963 J. Appl. Phys. 34 2722), the modality is still removed from clinical practice, with various approaches in development. For proton-counting radiography applications such as computed tomography (CT), the water-equivalent-path-length that each proton has travelled through an imaged object must be inferred. Typically, scintillator-based technology has been used in various energy/range telescope designs. Here we propose a very different alternative of using radiation-hard CMOS active pixel sensor technology. The ability of such a sensor to resolve the passage of individual protons in a therapy beam has not been previously shown. Here, such capability is demonstrated using a 36 MeV cyclotron beam (University of Birmingham Cyclotron, Birmingham, UK) and a 200 MeV clinical radiotherapy beam (iThemba LABS, Cape Town, SA). The feasibility of tracking individual protons through multiple CMOS layers is also demonstrated using a two-layer stack of sensors. The chief advantages of this solution are the spatial discrimination of events intrinsic to pixelated sensors, combined with the potential provision of information on both the range and residual energy of a proton. The challenges in developing a practical system are discussed.

  8. Proton-counting radiography for proton therapy: a proof of principle using CMOS APS technology

    PubMed Central

    Poludniowski, G; Allinson, N M; Anaxagoras, T; Esposito, M; Green, S; Manolopoulos, S; Nieto-Camero, J; Parker, D J; Price, T; Evans, P M

    2014-01-01

    Despite the early recognition of the potential of proton imaging to assist proton therapy the modality is still removed from clinical practice, with various approaches in development. For proton-counting radiography applications such as Computed Tomography (CT), the Water-Equivalent-Path-Length (WEPL) that each proton has travelled through an imaged object must be inferred. Typically, scintillator-based technology has been used in various energy/range telescope designs. Here we propose a very different alternative of using radiation-hard CMOS Active Pixel Sensor (APS) technology. The ability of such a sensor to resolve the passage of individual protons in a therapy beam has not been previously shown. Here, such capability is demonstrated using a 36 MeV cyclotron beam (University of Birmingham Cyclotron, Birmingham, UK) and a 200 MeV clinical radiotherapy beam (iThemba LABS, Cape Town, SA). The feasibility of tracking individual protons through multiple CMOS layers is also demonstrated using a two-layer stack of sensors. The chief advantages of this solution are the spatial discrimination of events intrinsic to pixelated sensors, combined with the potential provision of information on both the range and residual energy of a proton. The challenges in developing a practical system are discussed. PMID:24785680

  9. Noble-gas-induced collisional broadening of the 3P12-3P32 transition of sodium measured by the trilevel-echo technique

    NASA Astrophysics Data System (ADS)

    Mossberg, T. W.; Whittaker, E.; Kachru, R.; Hartmann, S. R.

    1980-11-01

    A variant of the trilevel-echo effect is observed and utilized to measure the effective cross section for broadening of the 3P12-3P32 transition of sodium by the noble gases. The cross section measured here should be the same as the broadening cross section obtained from a direct measurement of the collisionally broadened 3P12-3P32 transition linewidth (if such a measurement were possible). The new echo, the "inverted-difference-frequency" (IDF) trilevel echo, is well suited to the study of transitions between excited states of the same parity. At 400 K the measured broadening cross sections are He 115(12) Å2, Ne 120(12) Å2, Ar 234(23) Å2, Kr 266(27) Å2, and Xe 311(31) Å2. With He as the perturber, the cross section for broadening of the 3P12-3P32 transition can be calculated from measured depolarization and fine-structure-changing collision cross sections. With the other perturbers, however, collisional phase changes appear to be important. An intuitive diagrammatic technique for the analysis of echoes is applied to the IDF trilevel echo.

  10. Gas temperature determination of non-thermal atmospheric plasmas from the collisional broadening of argon atomic emission lines

    NASA Astrophysics Data System (ADS)

    Rodero, A.; García, M. C.

    2017-09-01

    In this work we propose a new method allowing gas temperature determination in argon non-thermal plasma jets, based on the measurement of the collisional broadening of different argon atomic lines corresponding to transitions into both resonance levels s2 and s4 of the 3p54s configuration. The method was developed for fourteen lines: Ar I 978.45, 935.42, 922.45, 852.14, 840.82, 826.45, 750.39 (corresponding to transitions falling to level s2) and 965.77, 842.46, 810.37, 800.62, 751.46, 738.40, 727.29 nm (corresponding to transitions falling to level s4). A carefully study of the relative importance of all broadening mechanisms to the whole profile for these lines, under a broad range of experimental conditions, revealed that for electron densities and gas temperature lower than 1015 cm-3 and 2000 K, the Stark and Doppler broadenings can be neglected in the method, but the van der Waals contribution should not be ever discarded for gas temperature determination. The gas temperature of a microwave non-thermal plasma jet was determined using nine of these lines. Results were consistent with each other, and with those obtained from the rotational temperature derived from OH ro-vibrational band. Also, the influence of the air entrance on the collisional broadening of the lines has been studied and the way the method should be modified to include this effect is indicated.

  11. Voltage-gated proton channel in a dinoflagellate

    PubMed Central

    Smith, Susan M. E.; Morgan, Deri; Musset, Boris; Cherny, Vladimir V.; Place, Allen R.; Hastings, J. Woodland; DeCoursey, Thomas E.

    2011-01-01

    Fogel and Hastings first hypothesized the existence of voltage-gated proton channels in 1972 in bioluminescent dinoflagellates, where they were thought to trigger the flash by activating luciferase. Proton channel genes were subsequently identified in human, mouse, and Ciona intestinalis, but their existence in dinoflagellates remained unconfirmed. We identified a candidate proton channel gene from a Karlodinium veneficum cDNA library based on homology with known proton channel genes. K. veneficum is a predatory, nonbioluminescent dinoflagellate that produces toxins responsible for fish kills worldwide. Patch clamp studies on the heterologously expressed gene confirm that it codes for a genuine voltage-gated proton channel, kHV1: it is proton-specific and activated by depolarization, its gH–V relationship shifts with changes in external or internal pH, and mutation of the selectivity filter (which we identify as Asp51) results in loss of proton-specific conduction. Indirect evidence suggests that kHV1 is monomeric, unlike other proton channels. Furthermore, kHV1 differs from all known proton channels in activating well negative to the Nernst potential for protons, EH. This unique voltage dependence makes the dinoflagellate proton channel ideally suited to mediate the proton influx postulated to trigger bioluminescence. In contrast to vertebrate proton channels, whose main function is acid extrusion, we propose that proton channels in dinoflagellates have fundamentally different functions of signaling and excitability. PMID:22006335

  12. Secondary neutron spectrum from 250-MeV passively scattered proton therapy: measurement with an extended-range Bonner sphere system.

    PubMed

    Howell, Rebecca M; Burgett, E A

    2014-09-01

    Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ≥20 MeV. The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire energy range being measured, i.e., thermal to

  13. Secondary neutron spectrum from 250-MeV passively scattered proton therapy: Measurement with an extended-range Bonner sphere system

    PubMed Central

    Howell, Rebecca M.; Burgett, E. A.

    2014-01-01

    Purpose: Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. Methods: The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. Results: The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ≥20 MeV. Conclusions: The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire

  14. Commissioning dose computation models for spot scanning proton beams in water for a commercially available treatment planning system

    PubMed Central

    Zhu, X. R.; Poenisch, F.; Lii, M.; Sawakuchi, G. O.; Titt, U.; Bues, M.; Song, X.; Zhang, X.; Li, Y.; Ciangaru, G.; Li, H.; Taylor, M. B.; Suzuki, K.; Mohan, R.; Gillin, M. T.; Sahoo, N.

    2013-01-01

    Purpose: To present our method and experience in commissioning dose models in water for spot scanning proton therapy in a commercial treatment planning system (TPS). Methods: The input data required by the TPS included in-air transverse profiles and integral depth doses (IDDs). All input data were obtained from Monte Carlo (MC) simulations that had been validated by measurements. MC-generated IDDs were converted to units of Gy mm2/MU using the measured IDDs at a depth of 2 cm employing the largest commercially available parallel-plate ionization chamber. The sensitive area of the chamber was insufficient to fully encompass the entire lateral dose deposited at depth by a pencil beam (spot). To correct for the detector size, correction factors as a function of proton energy were defined and determined using MC. The fluence of individual spots was initially modeled as a single Gaussian (SG) function and later as a double Gaussian (DG) function. The DG fluence model was introduced to account for the spot fluence due to contributions of large angle scattering from the devices within the scanning nozzle, especially from the spot profile monitor. To validate the DG fluence model, we compared calculations and measurements, including doses at the center of spread out Bragg peaks (SOBPs) as a function of nominal field size, range, and SOBP width, lateral dose profiles, and depth doses for different widths of SOBP. Dose models were validated extensively with patient treatment field-specific measurements. Results: We demonstrated that the DG fluence model is necessary for predicting the field size dependence of dose distributions. With this model, the calculated doses at the center of SOBPs as a function of nominal field size, range, and SOBP width, lateral dose profiles and depth doses for rectangular target volumes agreed well with respective measured values. With the DG fluence model for our scanning proton beam line, we successfully treated more than 500 patients from

  15. Commissioning dose computation models for spot scanning proton beams in water for a commercially available treatment planning system.

    PubMed

    Zhu, X R; Poenisch, F; Lii, M; Sawakuchi, G O; Titt, U; Bues, M; Song, X; Zhang, X; Li, Y; Ciangaru, G; Li, H; Taylor, M B; Suzuki, K; Mohan, R; Gillin, M T; Sahoo, N

    2013-04-01

    To present our method and experience in commissioning dose models in water for spot scanning proton therapy in a commercial treatment planning system (TPS). The input data required by the TPS included in-air transverse profiles and integral depth doses (IDDs). All input data were obtained from Monte Carlo (MC) simulations that had been validated by measurements. MC-generated IDDs were converted to units of Gy mm(2)/MU using the measured IDDs at a depth of 2 cm employing the largest commercially available parallel-plate ionization chamber. The sensitive area of the chamber was insufficient to fully encompass the entire lateral dose deposited at depth by a pencil beam (spot). To correct for the detector size, correction factors as a function of proton energy were defined and determined using MC. The fluence of individual spots was initially modeled as a single Gaussian (SG) function and later as a double Gaussian (DG) function. The DG fluence model was introduced to account for the spot fluence due to contributions of large angle scattering from the devices within the scanning nozzle, especially from the spot profile monitor. To validate the DG fluence model, we compared calculations and measurements, including doses at the center of spread out Bragg peaks (SOBPs) as a function of nominal field size, range, and SOBP width, lateral dose profiles, and depth doses for different widths of SOBP. Dose models were validated extensively with patient treatment field-specific measurements. We demonstrated that the DG fluence model is necessary for predicting the field size dependence of dose distributions. With this model, the calculated doses at the center of SOBPs as a function of nominal field size, range, and SOBP width, lateral dose profiles and depth doses for rectangular target volumes agreed well with respective measured values. With the DG fluence model for our scanning proton beam line, we successfully treated more than 500 patients from March 2010 through June 2012

  16. Air-broadened Lorentz halfwidths and pressure-induced line shifts in the nu(4) band of C-13H4

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Rinsland, Curtis P.; Smith, Mary Ann H.

    1988-01-01

    Air-broadened halfwidths and pressure-induced line shifts in the nu(4) fundamental of C-13H4 were determined from spectra recorded at room temperature and at 0.01/cm resolution using a Fourier transform spectrometer. Halfwidths and pressure shifts were determined for over 180 transitions belonging to J-double prime values of less than or = to 16. Comparisons of air-broadened halfwidths and pressure-induced line shifts made for identical transitions in the nu(4) bands of C-12H4 and C-13H4 have shown that C-13H4 air-broadened halfwidths are about 5 percent smaller than the corresponding C-12H4 halfwidths, and the pressure shifts for C-13H4 lines are about 5-15 percent larger than those for C-12H4.

  17. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy.

    PubMed

    Sengbusch, E; Pérez-Andújar, A; DeLuca, P M; Mackie, T R

    2009-02-01

    Several compact proton accelerator systems for use in proton therapy have recently been proposed. Of paramount importance to the development of such an accelerator system is the maximum kinetic energy of protons, immediately prior to entry into the patient, that must be reached by the treatment system. The commonly used value for the maximum kinetic energy required for a medical proton accelerator is 250 MeV, but it has not been demonstrated that this energy is indeed necessary to treat all or most patients eligible for proton therapy. This article quantifies the maximum kinetic energy of protons, immediately prior to entry into the patient, necessary to treat a given percentage of patients with rotational proton therapy, and examines the impact of this energy threshold on the cost and feasibility of a compact, gantry-mounted proton accelerator treatment system. One hundred randomized treatment plans from patients treated with IMRT were analyzed. The maximum radiological pathlength from the surface of the patient to the distal edge of the treatment volume was obtained for 180 degrees continuous arc proton therapy and for 180 degrees split arc proton therapy (two 90 degrees arcs) using CT# profiles from the Pinnacle (Philips Medical Systems, Madison, WI) treatment planning system. In each case, the maximum kinetic energy of protons, immediately prior to entry into the patient, that would be necessary to treat the patient was calculated using proton range tables for various media. In addition, Monte Carlo simulations were performed to quantify neutron production in a water phantom representing a patient as a function of the maximum proton kinetic energy achievable by a proton treatment system. Protons with a kinetic energy of 240 MeV, immediately prior to entry into the patient, were needed to treat 100% of patients in this study. However, it was shown that 90% of patients could be treated at 198 MeV, and 95% of patients could be treated at 207 MeV. Decreasing the

  18. Hardness assurance for proton direct ionization-induced SEEs using a high-energy proton beam

    DOE PAGES

    Dodds, Nathaniel Anson; Schwank, James R.; Shaneyfelt, Marty R.; ...

    2014-11-06

    The low-energy proton energy spectra of all shielded space environments have the same shape. This shape is easily reproduced in the laboratory by degrading a high-energy proton beam, producing a high-fidelity test environment. We use this test environment to dramatically simplify rate prediction for proton direct ionization effects, allowing the work to be done at high-energy proton facilities, on encapsulated parts, without knowledge of the IC design, and with little or no computer simulations required. Proton direct ionization (PDI) is predicted to significantly contribute to the total error rate under the conditions investigated. Scaling effects are discussed using data frommore » 65-nm, 45-nm, and 32-nm SOI SRAMs. These data also show that grazing-angle protons will dominate the PDI-induced error rate due to their higher effective LET, so PDI hardness assurance methods must account for angular effects to be conservative. As a result, we show that this angular dependence can be exploited to quickly assess whether an IC is susceptible to PDI.« less

  19. Attitudes and Motivation of Poor and Good Spellers: Broadening Planned Behavior Theory

    ERIC Educational Resources Information Center

    Sideridis, Georgios D.

    2005-01-01

    The purpose of the present study was to broaden planned behavior theory and examine its applicability to predict the academic achievement of students of low and high spelling ability. Two hundred fifty seven students, 54 low spellers and 203 high spellers from thirty elementary schools in northern Greece, participated in the study. Between groups…

  20. Eta Meson Production in Proton-Proton and Nuclear Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Dick, Frank

    2008-01-01

    Total cross sections for eta meson production in proton - proton collisions are calculated. The eta meson is mainly produced via decay of the excited nucleon resonance at 1535 MeV. A scalar quantum field theory is used to calculate cross sections, which also include resonance decay. Comparison between theory and experiment is problematic near threshold when resonance decay is not included. When the decay is included, the comparison between theory and experiment is much better.

  1. Modeling and optimization of a time-resolved proton radiographic imaging system for proton cancer treatment

    NASA Astrophysics Data System (ADS)

    Han, Bin

    This dissertation describes a research project to test the clinical utility of a time-resolved proton radiographic (TRPR) imaging system by performing comprehensive Monte Carlo simulations of a physical device coupled with realistic lung cancer patient anatomy defined by 4DCT for proton therapy. A time-resolved proton radiographic imaging system was modeled through Monte Carlo simulations. A particle-tracking feature was employed to evaluate the performance of the proton imaging system, especially in its ability to visualize and quantify proton range variations during respiration. The Most Likely Path (MLP) algorithm was developed to approximate the multiple Coulomb scattering paths of protons for the purpose of image reconstruction. Spatial resolution of ˜ 1 mm and range resolution of 1.3% of the total range were achieved using the MLP algorithm. Time-resolved proton radiographs of five patient cases were reconstructed to track tumor motion and to calculate water equivalent length variations. By comparing with direct 4DCT measurement, the accuracy of tumor tracking was found to be better than 2 mm in five patient cases. Utilizing tumor tracking information to reduce margins to the planning target volume, a gated treatment plan was compared with un-gated treatment plan. The equivalent uniform dose (EUD) and the normal tissue complication probability (NTCP) were used to quantify the gain in the quality of treatments. The EUD of the OARs was found to be reduced up to 11% and the corresponding NTCP of organs at risk (OARs) was found to be reduced up to 16.5%. These results suggest that, with image guidance by proton radiography, dose to OARs can be reduced and the corresponding NTCPs can be significantly reduced. The study concludes that the proton imaging system can accurately track the motion of the tumor and detect the WEL variations, leading to potential gains in using image-guided proton radiography for lung cancer treatments.

  2. Music-induced positive mood broadens the scope of auditory attention

    PubMed Central

    Makkonen, Tommi; Eerola, Tuomas

    2017-01-01

    Abstract Previous studies indicate that positive mood broadens the scope of visual attention, which can manifest as heightened distractibility. We used event-related potentials (ERP) to investigate whether music-induced positive mood has comparable effects on selective attention in the auditory domain. Subjects listened to experimenter-selected happy, neutral or sad instrumental music and afterwards participated in a dichotic listening task. Distractor sounds in the unattended channel elicited responses related to early sound encoding (N1/MMN) and bottom-up attention capture (P3a) while target sounds in the attended channel elicited a response related to top-down-controlled processing of task-relevant stimuli (P3b). For the subjects in a happy mood, the N1/MMN responses to the distractor sounds were enlarged while the P3b elicited by the target sounds was diminished. Behaviorally, these subjects tended to show heightened error rates on target trials following the distractor sounds. Thus, the ERP and behavioral results indicate that the subjects in a happy mood allocated their attentional resources more diffusely across the attended and the to-be-ignored channels. Therefore, the current study extends previous research on the effects of mood on visual attention and indicates that even unfamiliar instrumental music can broaden the scope of auditory attention via its effects on mood. PMID:28460035

  3. Music-induced positive mood broadens the scope of auditory attention.

    PubMed

    Putkinen, Vesa; Makkonen, Tommi; Eerola, Tuomas

    2017-07-01

    Previous studies indicate that positive mood broadens the scope of visual attention, which can manifest as heightened distractibility. We used event-related potentials (ERP) to investigate whether music-induced positive mood has comparable effects on selective attention in the auditory domain. Subjects listened to experimenter-selected happy, neutral or sad instrumental music and afterwards participated in a dichotic listening task. Distractor sounds in the unattended channel elicited responses related to early sound encoding (N1/MMN) and bottom-up attention capture (P3a) while target sounds in the attended channel elicited a response related to top-down-controlled processing of task-relevant stimuli (P3b). For the subjects in a happy mood, the N1/MMN responses to the distractor sounds were enlarged while the P3b elicited by the target sounds was diminished. Behaviorally, these subjects tended to show heightened error rates on target trials following the distractor sounds. Thus, the ERP and behavioral results indicate that the subjects in a happy mood allocated their attentional resources more diffusely across the attended and the to-be-ignored channels. Therefore, the current study extends previous research on the effects of mood on visual attention and indicates that even unfamiliar instrumental music can broaden the scope of auditory attention via its effects on mood. © The Author (2017). Published by Oxford University Press.

  4. SU-E-T-14: A Feasibility Study of Using Modified AP Proton Beam for Post-Operative Pancreatic Cancer Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, X; Witztum, A; Kenton, O

    2014-06-01

    Purpose: Due to the unpredictability of bowel gas movement, the PA beam direction is always favored for robust proton therapy in post-operative pancreatic cancer treatment. We investigate the feasibility of replacing PA beam with a modified AP beam to take the bowel gas uncertainty into account. Methods: Nine post-operative pancreatic cancer patients treated with proton therapy (5040cGy, 28 fractions) in our institution were randomly selected. The original plan uses PA and lateral direction passive-scattering proton beams. Beam weighting is about 1:1. All patients received weekly verification CTs to assess the daily variations(total 17 verification CTs). The PA direction beam wasmore » replaced by two other groups of AP direction beam. Group AP: takes 3.5% range uncertainty into account. Group APmod: compensates the bowel gas uncertainty by expanding the proximal margin to 2cm more. The 2cm margin was acquired from the average bowel diameter in from 100 adult abdominal CT scans near pancreatic region (+/- 5cm superiorly and inferiorly). Dose Volume Histograms(DVHs) of the verification CTs were acquired for robustness study. Results: Without the lateral beam, Group APmod is as robust as Group PA. In Group AP, more than 10% of iCTV D98/D95 were reduced by 4–8%. LT kidney and Liver dose robustness are not affected by the AP/PA beam direction. There is 10% of chance that RT kidney and cord will be hit by AP proton beam due to the bowel gas. Compared to Group PA, APmod plan reduced the dose to kidneys and cord max significantly, while there is no statistical significant increase in bowel mean dose. Conclusion: APmod proton beam for the target coverage could be as robust as the PA direction without sacrificing too much of bowel dose. When the AP direction beam has to be selected, a 2cm proximal margin should be considered.« less

  5. WE-F-16A-02: Design, Fabrication, and Validation of a 3D-Printed Proton Filter for Range Spreading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remmes, N; Courneyea, L; Corner, S

    2014-06-15

    Purpose: To design, fabricate and test a 3D-printed filter for proton range spreading in scanned proton beams. The narrow Bragg peak in lower-energy synchrotron-based scanned proton beams can result in longer treatment times for shallow targets due to energy switching time and plan quality degradation due to minimum monitor unit limitations. A filter with variable thicknesses patterned on the same scale as the beam's lateral spot size will widen the Bragg peak. Methods: The filter consists of pyramids dimensioned to have a Gaussian distribution in thickness. The pyramids are 2.5mm wide at the base, 0.6 mm wide at the peak,more » 5mm tall, and are repeated in a 2.5mm pseudo-hexagonal lattice. Monte Carlo simulations of the filter in a proton beam were run using TOPAS to assess the change in depth profiles and lateral beam profiles. The prototypes were constrained to a 2.5cm diameter disk to allow for micro-CT imaging of promising prototypes. Three different 3D printers were tested. Depth-doses with and without the prototype filter were then measured in a ~70MeV proton beam using a multilayer ion chamber. Results: The simulation results were consistent with design expectations. Prototypes printed on one printer were clearly unacceptable on visual inspection. Prototypes on a second printer looked acceptable, but the micro-CT image showed unacceptable voids within the pyramids. Prototypes from the third printer appeared acceptable visually and on micro-CT imaging. Depth dose scans using the prototype from the third printer were consistent with simulation results. Bragg peak width increased by about 3x. Conclusions: A prototype 3D printer pyramid filter for range spreading was successfully designed, fabricated and tested. The filter has greater design flexibility and lower prototyping and production costs compared to traditional ridge filters. Printer and material selection played a large role in the successful development of the filter.« less

  6. Proton Translocation in Cytochrome c Oxidase: Insights from Proton Exchange Kinetics and Vibrational Spectroscopy

    PubMed Central

    Ishigami, Izumi; Hikita, Masahide; Egawa, Tsuyoshi; Yeh, Syun-Ru; Rousseau, Denis L.

    2014-01-01

    Cytochrome c oxidase is the terminal enzyme in the electron transfer chain. It reduces oxygen to water and harnesses the released energy to translocate protons across the inner mitochondrial membrane. The mechanism by which the oxygen chemistry is coupled to proton translocation is not yet resolved owing to the difficulty of monitoring dynamic proton transfer events. Here we summarize several postulated mechanisms for proton translocation, which have been supported by a variety of vibrational spectroscopic studies. We recently proposed a proton translocation model involving proton accessibility to the regions near the propionate groups of the heme a and heme a3 redox centers of the enzyme based by hydrogen/deuterium (H/D) exchange Raman scattering studies (Egawa et al., PLOS ONE 2013). To advance our understanding of this model and to refine the proton accessibility to the hemes, the H/D exchange dependence of the heme propionate group vibrational modes on temperature and pH was measured. The H/D exchange detected at the propionate groups of heme a3 takes place within a few seconds under all conditions. In contrast, that detected at the heme a propionates occurs in the oxidized but not the reduced enzyme and the H/D exchange is pH-dependent with a pKa of ~8.0 (faster at high pH). Analysis of the thermodynamic parameters revealed that, as the pH is varied, entropy/enthalpy compensation held the free energy of activation in a narrow range. The redox dependence of the possible proton pathways to the heme groups is discussed. PMID:25268561

  7. Activation of acid-sensing ion channels by localized proton transient reveals their role in proton signaling.

    PubMed

    Zeng, Wei-Zheng; Liu, Di-Shi; Liu, Lu; She, Liang; Wu, Long-Jun; Xu, Tian-Le

    2015-09-15

    Extracellular transients of pH alterations likely mediate signal transduction in the nervous system. Neuronal acid-sensing ion channels (ASICs) act as sensors for extracellular protons, but the mechanism underlying ASIC activation remains largely unknown. Here, we show that, following activation of a light-activated proton pump, Archaerhodopsin-3 (Arch), proton transients induced ASIC currents in both neurons and HEK293T cells co-expressing ASIC1a channels. Using chimera proteins that bridge Arch and ASIC1a by a glycine/serine linker, we found that successful coupling occurred within 15 nm distance. Furthermore, two-cell sniffer patch recording revealed that regulated release of protons through either Arch or voltage-gated proton channel Hv1 activated neighbouring cells expressing ASIC1a channels. Finally, computational modelling predicted the peak proton concentration at the intercellular interface to be at pH 6.7, which is acidic enough to activate ASICs in vivo. Our results highlight the pathophysiological role of proton signalling in the nervous system.

  8. Parameterized Cross Sections for Pion Production in Proton-Proton Collisions

    NASA Technical Reports Server (NTRS)

    Blattnig, Steve R.; Swaminathan, Sudha R.; Kruger, Adam T.; Ngom, Moussa; Norbury, John W.; Tripathi, R. K.

    2000-01-01

    An accurate knowledge of cross sections for pion production in proton-proton collisions finds wide application in particle physics, astrophysics, cosmic ray physics, and space radiation problems, especially in situations where an incident proton is transported through some medium and knowledge of the output particle spectrum is required when given the input spectrum. In these cases, accurate parameterizations of the cross sections are desired. In this paper much of the experimental data are reviewed and compared with a wide variety of different cross section parameterizations. Therefore, parameterizations of neutral and charged pion cross sections are provided that give a very accurate description of the experimental data. Lorentz invariant differential cross sections, spectral distributions, and total cross section parameterizations are presented.

  9. Proton Therapy Verification with PET Imaging

    PubMed Central

    Zhu, Xuping; Fakhri, Georges El

    2013-01-01

    Proton therapy is very sensitive to uncertainties introduced during treatment planning and dose delivery. PET imaging of proton induced positron emitter distributions is the only practical approach for in vivo, in situ verification of proton therapy. This article reviews the current status of proton therapy verification with PET imaging. The different data detecting systems (in-beam, in-room and off-line PET), calculation methods for the prediction of proton induced PET activity distributions, and approaches for data evaluation are discussed. PMID:24312147

  10. Electron and proton transfer in chloroplasts in silico. 2: The effect of diffusion limitations on the process of photosynthesis in spatially inhomogeneous thylakoids

    NASA Astrophysics Data System (ADS)

    Vershubskii, A. V.; Tikhonov, A. N.

    2017-07-01

    The lateral mobility of protons and mobile electron carriers (plastoquinone and plastocyanin) is subjected to diffusion limitations; the effect of these limitations on the kinetics of photoinduced pH i changes has been investigated in the present work for metabolic states 3 (conditions of intensive ATP synthesis) and 4 (the state of photosynthetic control). Computer simulations were based on a mathematical model of electron and proton transport in chloroplasts developed earlier by the authors. Non-uniform distribution of electron carriers and ATP synthase complexes in the membranes of grana and intergranal thylakoids was taken into account in the model. The kinetics of intrathylakoid pH i changes and the lateral profiles of distribution of the mobile electron transporters in granal and intergranal thylakoids were studied. The formation of non-uniform pH i profiles (with lumen acidification in the central parts of the grana being substantially slower than in the stromal thylakoids) was shown to occur under the conditions of ATP synthesis. Variation of the diffusion coefficients of intrathylakoid hydrogen ions and mobile electron carriers (plastoquinone and plastocyanin) can have substantial effects on the lateral pH i profiles and the redox state of the mobile electron carriers.

  11. SU-E-T-268: Proton Radiosurgery End-To-End Testing Using Lucy 3D QA Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, D; Gordon, I; Ghebremedhin, A

    2014-06-01

    Purpose: To check the overall accuracy of proton radiosurgery treatment delivery using ready-made circular collimator inserts and fixed thickness compensating boluses. Methods: Lucy 3D QA phantom (Standard Imaging Inc. WI, USA) inserted with GaFchromicTM film was irradiated with laterally scattered and longitudinally spread-out 126.8 MeV proton beams. The tests followed every step in the proton radiosurgery treatment delivery process: CT scan (GE Lightspeed VCT), target contouring, treatment planning (Odyssey 5.0, Optivus, CA), portal calibration, target localization using robotic couch with image guidance and dose delivery at planned gantry angles. A 2 cm diameter collimator insert in a 4 cm diametermore » radiosurgery cone and a 1.2 cm thick compensating flat bolus were used for all beams. Film dosimetry (RIT114 v5.0, Radiological Imaging Technology, CO, USA) was used to evaluate the accuracy of target localization and relative dose distributions compared to those calculated by the treatment planning system. Results: The localization accuracy was estimated by analyzing the GaFchromic films irradiated at gantry 0, 90 and 270 degrees. We observed 0.5 mm shift in lateral direction (patient left), ±0.9 mm shift in AP direction and ±1.0 mm shift in vertical direction (gantry dependent). The isodose overlays showed good agreement (<2mm, 50% isodose lines) between measured and calculated doses. Conclusion: Localization accuracy depends on gantry sag, CT resolution and distortion, DRRs from treatment planning computer, localization accuracy of image guidance system, fabrication of ready-made aperture and cone housing. The total deviation from the isocenter was 1.4 mm. Dose distribution uncertainty comes from distal end error due to bolus and CT density, in addition to localization error. The planned dose distribution was well matched (>90%) to the measured values 2%/2mm criteria. Our test showed the robustness of our proton radiosurgery treatment delivery system

  12. Studies of physiology and the morphology of the cat LGN following proton irradiation.

    PubMed

    Reder, C S; Moyers, M F; Lau, D; Kirby, M A

    2000-03-15

    We have examined the effects of proton irradiation on the histologic and receptive field properties of thalamic relay cells in the cat visual system. The cat lateral geniculate nucleus (LGN) is a large structure with well-defined anatomical boundaries, and well-described afferent, efferent, and receptive field properties. A 1.0-mm proton microbeam was used on the cat LGN to determine short-term (3 months) and long-term (9 months) receptive field effects of irradiation on LGN relay cells. The doses used were 16-, 40-, and 60-gray (Gy). Following irradiation, abnormalities in receptive field organization were found in 40- and 60-Gy short-term animals, and in all of the long-term animals. The abnormalities included "silent" areas of the LGN where a visual response could not be evoked and other regions that had unusually large or small compound receptive fields. Histologic analysis failed to identify cellular necrosis or vascular damage in the irradiated LGN, but revealed a disruption in retinal afferents to areas of the LGN. These results indicate that microbeam proton irradiation can disrupt cellular function in the absence of obvious cellular necrosis. Moreover, the area and extent of this disruption increased with time, having larger affect with longer post-irradiation periods.

  13. Ozone Measurements in the Mesosphere During a Solar Proton Event

    NASA Technical Reports Server (NTRS)

    Lippert, W.; Felske, D.

    1984-01-01

    Charged particle precipitation in the Earth's atmosphere produces odd nitrogen and odd hydrogen. These species take part in catalytic reactions which destroy atmospheric ozone in the stratosphere and mesosphere. Modeling efforts regarding the impact of these ionization events on the neutral atmosphere describe ozone depletions in good agreement with observations in the stratosphere and mesosphere. The photochemical effects of the solar proton event (SPE) of August 1972 are discussed, and calculations for higher altitudes (70 to 90 km) are presented that indicate after a brief reduction during and immediately following intense particle precipitation, ozone will later reach higher concentrations than those present before the event.

  14. Triple Parton Scatterings in High-Energy Proton-Proton Collisions

    NASA Astrophysics Data System (ADS)

    d'Enterria, David; Snigirev, Alexander M.

    2017-03-01

    A generic expression to compute triple parton scattering cross sections in high-energy proton-proton (p p ) collisions is presented as a function of the corresponding single parton cross sections and the transverse parton profile of the proton encoded in an effective parameter σeff,TPS . The value of σeff,TPS is closely related to the similar effective cross section that characterizes double parton scatterings, and amounts to σeff,TPS=12.5 ±4.5 mb . Estimates for triple charm (c c ¯) and bottom (b b ¯) production in p p collisions at LHC and FCC energies are presented based on next-to-next-to-leading-order perturbative calculations for single c c ¯ , b b ¯ cross sections. At √{s }≈100 TeV , about 15% of the p p collisions produce three c c ¯ pairs from three different parton-parton scatterings.

  15. Triple Parton Scatterings in High-Energy Proton-Proton Collisions.

    PubMed

    d'Enterria, David; Snigirev, Alexander M

    2017-03-24

    A generic expression to compute triple parton scattering cross sections in high-energy proton-proton (pp) collisions is presented as a function of the corresponding single parton cross sections and the transverse parton profile of the proton encoded in an effective parameter σ_{eff,TPS}. The value of σ_{eff,TPS} is closely related to the similar effective cross section that characterizes double parton scatterings, and amounts to σ_{eff,TPS}=12.5±4.5  mb. Estimates for triple charm (cc[over ¯]) and bottom (bb[over ¯]) production in pp collisions at LHC and FCC energies are presented based on next-to-next-to-leading-order perturbative calculations for single cc[over ¯], bb[over ¯] cross sections. At sqrt[s]≈100  TeV, about 15% of the pp collisions produce three cc[over ¯] pairs from three different parton-parton scatterings.

  16. Transverse relaxation of scalar-coupled protons.

    PubMed

    Segawa, Takuya F; Baishya, Bikash; Bodenhausen, Geoffrey

    2010-10-25

    In a preliminary communication (B. Baishya, T. F. Segawa, G. Bodenhausen, J. Am. Chem. Soc. 2009, 131, 17538-17539), we recently demonstrated that it is possible to obtain clean echo decays of protons in biomolecules despite the presence of homonuclear scalar couplings. These unmodulated decays allow one to determine apparent transverse relaxation rates R(2) (app) of individual protons. Herein, we report the observation of R(2) (app) for three methyl protons, four amide H(N) protons, and all 11 backbone H(α) protons in cyclosporin A. If the proton resonances overlap, their R(2) (app) rates can be measured by transferring their magnetization to neighboring (13)C nuclei, which are less prone to overlap. The R(2) (app) rates of protons attached to (13)C are faster than those attached to (12)C because of (13)C-(1)H dipolar interactions. The differences of these rates allow the determination of local correlation functions. Backbone H(N) and H(α) protons that have fast decay rates R(2) (app) also feature fast longitudinal relaxation rates R(1) and intense NOESY cross peaks that are typical of crowded environments. Variations of R(2) (app) rates of backbone H(α) protons in similar amino acids reflect differences in local environments.

  17. Proton Upset Monte Carlo Simulation

    NASA Technical Reports Server (NTRS)

    O'Neill, Patrick M.; Kouba, Coy K.; Foster, Charles C.

    2009-01-01

    The Proton Upset Monte Carlo Simulation (PROPSET) program calculates the frequency of on-orbit upsets in computer chips (for given orbits such as Low Earth Orbit, Lunar Orbit, and the like) from proton bombardment based on the results of heavy ion testing alone. The software simulates the bombardment of modern microelectronic components (computer chips) with high-energy (.200 MeV) protons. The nuclear interaction of the proton with the silicon of the chip is modeled and nuclear fragments from this interaction are tracked using Monte Carlo techniques to produce statistically accurate predictions.

  18. Coherent Forward Broadening in Cold Atom Clouds

    NASA Astrophysics Data System (ADS)

    Sutherland, R. T.; Robicheaux, Francis

    2016-05-01

    It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Further, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single photon wavefunction model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms in the back of the cloud are more excited than the atoms in the front. These calculations are conducted at low densities relevant to recent experiments. This work was supported by the National Science Foundation under Grant No. 1404419-PHY.

  19. Influence of secondary neutrons induced by proton radiotherapy for cancer patients with implantable cardioverter defibrillators

    PubMed Central

    2012-01-01

    Background Although proton radiotherapy is a promising new approach for cancer patients, functional interference is a concern for patients with implantable cardioverter defibrillators (ICDs). The purpose of this study was to clarify the influence of secondary neutrons induced by proton radiotherapy on ICDs. Methods The experimental set-up simulated proton radiotherapy for a patient with an ICD. Four new ICDs were placed 0.3 cm laterally and 3 cm distally outside the radiation field in order to evaluate the influence of secondary neutrons. The cumulative in-field radiation dose was 107 Gy over 10 sessions of irradiation with a dose rate of 2 Gy/min and a field size of 10 × 10 cm2. After each radiation fraction, interference with the ICD by the therapy was analyzed by an ICD programmer. The dose distributions of secondary neutrons were estimated by Monte-Carlo simulation. Results The frequency of the power-on reset, the most serious soft error where the programmed pacing mode changes temporarily to a safety back-up mode, was 1 per approximately 50 Gy. The total number of soft errors logged in all devices was 29, which was a rate of 1 soft error per approximately 15 Gy. No permanent device malfunctions were detected. The calculated dose of secondary neutrons per 1 Gy proton dose in the phantom was approximately 1.3-8.9 mSv/Gy. Conclusions With the present experimental settings, the probability was approximately 1 power-on reset per 50 Gy, which was below the dose level (60-80 Gy) generally used in proton radiotherapy. Further quantitative analysis in various settings is needed to establish guidelines regarding proton radiotherapy for cancer patients with ICDs. PMID:22284700

  20. Position sensitivity in large spectroscopic LaBr3:Ce crystals for Doppler broadening correction

    NASA Astrophysics Data System (ADS)

    Blasi, N.; Giaz, A.; Boiano, C.; Brambilla, S.; Camera, F.; Million, B.; Riboldi, S.

    2016-12-01

    The position sensitivity of a large LaBr3:Ce crystal was investigated with the aim of correcting for the Doppler broadening in nuclear physics experiments. The crystal was cylindrical, 3 in×3 in (7.62 cm x 7.62 cm) and with diffusive surfaces as typically used in nuclear physics basic research to measure medium or high energy gamma rays (0.5 MeVbroadening induced by relativistic beams in Nuclear Physics experiments.

  1. Proton transport through aqueous Nafion membrane

    NASA Astrophysics Data System (ADS)

    Son, D. N.; Kasai, H.

    2009-08-01

    We introduce a new model for proton transport through a single proton-conducting channel of an aqueous Nafion membrane based on a mechanism in which protons move under electrostatic effect provided by the sulfonate ( SO3 -groups of the Nafion side chains, the spin effect of active components, the hydrogen bonding effect with water molecules, and the screening effect of water media. This model can describe the proton transport within various levels of humidification ranging from the low humidity to the high humidity as a function of operating temperature. At low humidity, this model approaches to the so-called surface mechanism, while at high humidity, it approaches the well-known Grotthuss one. Proton motion is considered as the transfer from cluster to cluster under a potential energy. A proton-proton interaction is comprised in the calculation. Using Green function method, we obtained the proton current as a function of the Nafion membrane temperature. We found that the lower the temperature, the higher the proton current transfer through the Nafion membrane in low temperatures compared to the critical point 10K, which separates magnetic regime from non-magnetic regime. The increasing of proton current at very low temperatures is attributed to the spin effect. As the membrane temperature is higher than 40 ° C , the decreasing of proton current is attributed to the loss of water uptake and the polymer contraction. The results of this study are qualitatively in good agreement with experiments. The expression for the critical temperature is also presented as a function of structural and tunable parameters, and interpreted by experimental data. in here

  2. Protonated sugars: vibrational spectroscopy and conformational structure of protonated O-methyl α-D-galactopyranoside

    NASA Astrophysics Data System (ADS)

    Rudić, Svemir; Xie, Hong-bin; Gerber, R. Benny; Simons, John P.

    2012-08-01

    'Bridging' protons provide a common structural motif in biological assemblies such as proton wires and proton-bound dimers. Here we present a 'proof-of-principle' computational and vibrational spectroscopic investigation of an 'intra-molecular proton-bound dimer,' O-methyl α-D-galactopyranoside (αMeGal-H+), generated in the gas phase through photo-ionisation of its complex with phenol in a molecular beam. Its vibrational spectrum corresponds well with a classical molecular dynamics simulation conducted 'on-the-fly' and also with the lowest-energy structures predicted by DFT and ab initio calculations. They reveal proton-bound structures that bridge neighbouring pairs of oxygen atoms, preferentially O6 and O4, linked together within the carbohydrate scaffold. Motivated by the possibility of an entry into the microscopic mechanism of its acid (or enzyme)-catalysed hydrolysis, we also report the corresponding predictions for its singly hydrated complex.

  3. Proton affinity determinations and proton-bound dimer structure indications in C2 to C15, (alpha),(omega)-alkyldiamines

    NASA Technical Reports Server (NTRS)

    Karpas, Z.; Harden, C. S.; Smith, P. B. W.

    1995-01-01

    The 'kinetic method' was used to determine the proton affinity (PA) of a,coalkyldiamines from collision induced dissociation (CID) studies of protonated heterodimers. These PA values were consistently lower than those reported in the proton affinity scale. The apparent discrepancy was rationalized in terms of differences in the conformation of the protonated diamine monomers. The minimum energy species, formed by equilibrium proton transfer processes, have a cyclic conformation and the ion charge is shared by both amino-groups which are bridged by the proton. On the other hand, the species formed through dissociation of protonated dimers have a linear structure and the charge is localized on one of the amino-groups. Thus, the difference in the PA values obtained by both methods is a measure of the additional stability acquired by the protonated diamines through cyclization and charge delocalization. The major collision dissociation pathway of the protonated diamine monomers involved elimination of an ammonia moiety. Other reactions observed included loss of the second amino-group and several other bond cleavages. CID of the protonated dimers involved primarily formation of a protonated monomer through cleavage of the weaker hydrogen bond and subsequently loss of ammonia at higher collision energies. As observed from the CID studies, doubly charged ions were also formed from the diamines under conditions of the electrospray ionization.

  4. Apparatus for proton radiography

    DOEpatents

    Martin, Ronald L.

    1976-01-01

    An apparatus for effecting diagnostic proton radiography of patients in hospitals comprises a source of negative hydrogen ions, a synchrotron for accelerating the negative hydrogen ions to a predetermined energy, a plurality of stations for stripping extraction of a radiography beam of protons, means for sweeping the extracted beam to cover a target, and means for measuring the residual range, residual energy, or percentage transmission of protons that pass through the target. The combination of information identifying the position of the beam with information about particles traversing the subject and the back absorber is performed with the aid of a computer to provide a proton radiograph of the subject. In an alternate embodiment of the invention, a back absorber comprises a plurality of scintillators which are coupled to detectors.

  5. Activation of acid-sensing ion channels by localized proton transient reveals their role in proton signaling

    PubMed Central

    Zeng, Wei-Zheng; Liu, Di-Shi; Liu, Lu; She, Liang; Wu, Long-Jun; Xu, Tian-Le

    2015-01-01

    Extracellular transients of pH alterations likely mediate signal transduction in the nervous system. Neuronal acid-sensing ion channels (ASICs) act as sensors for extracellular protons, but the mechanism underlying ASIC activation remains largely unknown. Here, we show that, following activation of a light-activated proton pump, Archaerhodopsin-3 (Arch), proton transients induced ASIC currents in both neurons and HEK293T cells co-expressing ASIC1a channels. Using chimera proteins that bridge Arch and ASIC1a by a glycine/serine linker, we found that successful coupling occurred within 15 nm distance. Furthermore, two-cell sniffer patch recording revealed that regulated release of protons through either Arch or voltage-gated proton channel Hv1 activated neighbouring cells expressing ASIC1a channels. Finally, computational modelling predicted the peak proton concentration at the intercellular interface to be at pH 6.7, which is acidic enough to activate ASICs in vivo. Our results highlight the pathophysiological role of proton signalling in the nervous system. PMID:26370138

  6. Proton trapping in yttrium-doped barium zirconate

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yoshihiro; Blanc, Frédéric; Okuyama, Yuji; Buannic, Lucienne; Lucio-Vega, Juan C.; Grey, Clare P.; Haile, Sossina M.

    2013-07-01

    The environmental benefits of fuel cells have been increasingly appreciated in recent years. Among candidate electrolytes for solid-oxide fuel cells, yttrium-doped barium zirconate has garnered attention because of its high proton conductivity, particularly in the intermediate-temperature region targeted for cost-effective solid-oxide fuel cell operation, and its excellent chemical stability. However, fundamental questions surrounding the defect chemistry and macroscopic proton transport mechanism of this material remain, especially in regard to the possible role of proton trapping. Here we show, through a combined thermogravimetric and a.c. impedance study, that macroscopic proton transport in yttrium-doped barium zirconate is limited by proton-dopant association (proton trapping). Protons must overcome the association energy, 29 kJ mol-1, as well as the general activation energy, 16 kJ mol-1, to achieve long-range transport. Proton nuclear magnetic resonance studies show the presence of two types of proton environment above room temperature, reflecting differences in proton-dopant configurations. This insight motivates efforts to identify suitable alternative dopants with reduced association energies as a route to higher conductivities.

  7. Proton trapping in yttrium-doped barium zirconate.

    PubMed

    Yamazaki, Yoshihiro; Blanc, Frédéric; Okuyama, Yuji; Buannic, Lucienne; Lucio-Vega, Juan C; Grey, Clare P; Haile, Sossina M

    2013-07-01

    The environmental benefits of fuel cells have been increasingly appreciated in recent years. Among candidate electrolytes for solid-oxide fuel cells, yttrium-doped barium zirconate has garnered attention because of its high proton conductivity, particularly in the intermediate-temperature region targeted for cost-effective solid-oxide fuel cell operation, and its excellent chemical stability. However, fundamental questions surrounding the defect chemistry and macroscopic proton transport mechanism of this material remain, especially in regard to the possible role of proton trapping. Here we show, through a combined thermogravimetric and a.c. impedance study, that macroscopic proton transport in yttrium-doped barium zirconate is limited by proton-dopant association (proton trapping). Protons must overcome the association energy, 29 kJ mol(-1), as well as the general activation energy, 16 kJ mol(-1), to achieve long-range transport. Proton nuclear magnetic resonance studies show the presence of two types of proton environment above room temperature, reflecting differences in proton-dopant configurations. This insight motivates efforts to identify suitable alternative dopants with reduced association energies as a route to higher conductivities.

  8. Perfluoroalkyl phosphonic and phosphinic acids as proton conductors for anhydrous proton-exchange membranes.

    PubMed

    Herath, Mahesha B; Creager, Stephen E; Kitaygorodskiy, Alex; DesMarteau, Darryl D

    2010-09-10

    A study of proton-transport rates and mechanisms under anhydrous conditions using a series of acid model compounds, analogous to comb-branch perfluorinated ionomers functionalized with phosphonic, phosphinic, sulfonic, and carboxylic acid protogenic groups, is reported. Model compounds are characterized with respect to proton conductivity, viscosity, proton, and anion (conjugate base) self-diffusion coefficients, and Hammett acidity. The highest conductivities, and also the highest viscosities, are observed for the phosphonic and phosphinic acid model compounds. Arrhenius analysis of conductivity and viscosity for these two acids reveals much lower activation energies for ion transport than for viscous flow. Additionally, the proton self-diffusion coefficients are much higher than the conjugate-base self-diffusion coefficients for these two acids. Taken together, these data suggest that anhydrous proton transport in the phosphonic and phosphinic acid model compounds occurs primarily by a structure-diffusion, hopping-based mechanism rather than a vehicle mechanism. Further analysis of ionic conductivity and ion self-diffusion rates by using the Nernst-Einstein equation reveals that the phosphonic and phosphinic acid model compounds are relatively highly dissociated even under anhydrous conditions. In contrast, sulfonic and carboxylic acid-based systems exhibit relatively low degrees of dissociation under anhydrous conditions. These findings suggest that fluoroalkyl phosphonic and phosphinic acids are good candidates for further development as anhydrous, high-temperature proton conductors.

  9. From Late-Onset Stress Symptomatology to Later-Adulthood Trauma Reengagement in Aging Combat Veterans: Taking a Broader View.

    PubMed

    Davison, Eve H; Kaiser, Anica Pless; Spiro, Avron; Moye, Jennifer; King, Lynda A; King, Daniel W

    2016-02-01

    About a decade ago we proposed the notion of late-onset stress symptomatology, to characterize the later-life emergence of symptoms related to early-life warzone trauma among aging combat Veterans. We hypothesized that aging-related challenges (role transition and loss, death of family members and friends, physical and cognitive decline) might lead to increased reminiscence, and possibly distress, among Veterans who had previously dealt successfully with earlier traumatic events. Recently, we have reexamined our earlier ideas, to better reflect our developing understanding of this phenomenon, and to incorporate more contemporary perspectives on posttraumatic growth and resilience. As a result, we have broadened our conceptualization to later-adulthood trauma reengagement (LATR). We suggest that in later life many combat Veterans confront and rework their wartime memories in an effort to find meaning and build coherence. Through reminiscence, life review, and wrestling with issues such as integrity versus despair, they intentionally reengage with experiences they avoided or managed successfully earlier in life, perhaps without resolution or integration. This article links LATR to classic gerontologic notions, and elaborates how the LATR process can lead positively to personal growth or negatively to increased symptomatology. We also address the role of preventive intervention in enhancing positive outcomes for Veterans who reengage with their wartime memories in later life. Published by Oxford University Press on behalf of the Gerontological Society of America 2015.

  10. Compelling evidence for Lucky Survivor and gas phase protonation: the unified MALDI analyte protonation mechanism.

    PubMed

    Jaskolla, Thorsten W; Karas, Michael

    2011-06-01

    This work experimentally verifies and proves the two long since postulated matrix-assisted laser desorption/ionization (MALDI) analyte protonation pathways known as the Lucky Survivor and the gas phase protonation model. Experimental differentiation between the predicted mechanisms becomes possible by the use of deuterated matrix esters as MALDI matrices, which are stable under typical sample preparation conditions and generate deuteronated reagent ions, including the deuterated and deuteronated free matrix acid, only upon laser irradiation in the MALDI process. While the generation of deuteronated analyte ions proves the gas phase protonation model, the detection of protonated analytes by application of deuterated matrix compounds without acidic hydrogens proves the survival of analytes precharged from solution in accordance with the predictions from the Lucky Survivor model. The observed ratio of the two analyte ionization processes depends on the applied experimental parameters as well as the nature of analyte and matrix. Increasing laser fluences and lower matrix proton affinities favor gas phase protonation, whereas more quantitative analyte protonation in solution and intramolecular ion stabilization leads to more Lucky Survivors. The presented results allow for a deeper understanding of the fundamental processes causing analyte ionization in MALDI and may alleviate future efforts for increasing the analyte ion yield.

  11. Positron annihilation lifetime and Doppler broadening spectroscopy at the ELBE facility

    NASA Astrophysics Data System (ADS)

    Wagner, Andreas; Butterling, Maik; Liedke, Maciej O.; Potzger, Kay; Krause-Rehberg, Reinhard

    2018-05-01

    The Helmholtz-Zentrum Dresden-Rossendorf operates a superconducting linear accelerator for electrons with energies up to 35 MeV and average beam currents up to 1.6 mA with bunch charges up to 120 pC. The electron beam is employed to produce several secondary beams including X-rays from bremsstrahlung production, coherent IR light in a Free Electron Laser, superradiant THz radiation, neutrons, and positrons. The secondary positron beam after moderation feeds the Monoenergetic Positron Source (MePS) where positron annihilation lifetime (PALS) and positron annihilation Doppler-broadening experiments in materials science are performed. The adjustable repetition rate of the continuous-wave electron beams allows matching of the pulse separation to the positron lifetime in the sample under study. The energy of the positron beam can be set between 0.5 keV and 20 keV to perform depth resolved defect spectroscopy and porosity studies especially for thin films. Bulk materials, fluids, gases, and even radioactive samples can be studied at the unique Gamma-induced Positron Source (GiPS) where an intense bremsstrahlung source generates positrons directly inside the material under study. A 22Na-based monoenergetic positron beam serves for offline experiments and additional depth-resolved Doppler-broadening studies complementing both accelerator-based sources.

  12. Measurements and calculations of H2-broadening and shift parameters of water vapour transitions of the ν1 + ν2 + ν3 band

    NASA Astrophysics Data System (ADS)

    Petrova, T. M.; Solodov, A. M.; Solodov, A. A.; Deichuli, V. M.; Starikov, V. I.

    2018-05-01

    The water vapour line broadening and shifting for 97 lines in the ν1 + ν2 + ν3 band induced by hydrogen pressure are measured with Bruker IFS 125 HR FTIR spectrometer. The measurements were performed at room temperature, at the spectral resolution of 0.01 cm-1 and in a wide pressure range of H2. The calculations of the broadening γ and shift δ coefficients were performed in the semi-classical method framework with use of an effective vibrationally depended interaction potential. Two potential parameters were optimised to improve the quality of calculations. Good agreements with measured broadening coefficients were achieved. The comparison of calculated broadening coefficients γ with the previous measurements is discussed. The analytical expressions that reproduce these coefficients for rotational, ν2, ν1, and ν3 vibrational bands are presented.

  13. WE-D-BRB-00: Basics of Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. Itmore » introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.« less

  14. SU-E-T-14: Modeling of 3D Positron Emission Activity Distributions Induced by Proton Irradiation: A Semi-Empirical Method.

    PubMed

    Lopatiuk-Tirpak, O; Su, Z; Hsi, W; Zeidan, O; Meeks, S

    2012-06-01

    to present and validate a method for modeling three-dimensional positron emission (PE) activity distributions induced by proton beam irradiation for PET/CT delivery verification studies in homogeneous media. the method relies on modeling the 3D proton flux distribution by combining the analytical expression for the depth reduction of proton flux with the empirically obtained lateral distribution. The latter is extracted from the corresponding dose distribution under the assumption that the projectile energy is nearly constant in the lateral plane. The same assumption allows calculating the 3D induced activity distributions from proton flux distributions by parameterizing the energy-dependent activation cross-sections in terms of depth via the energy-range relation. Results of this modeling approach were validated against experimental PET/CT data from three phantom deliveries: unmodulated (pristine) beam, spread-out Bragg peak (SOBP) delivery without a range compensator, and SOBP with a range compensator. BANG3-Pro2 polymer gel was used as a phantom material because of its elemental soft-tissue equivalence. the agreement between modeled and measured activity distributions was evaluated using 3D gamma index analysis method, which, despite being traditionally reserved for dose distribution comparisons, is sufficiently general to be applied to other quantities. The evaluation criteria were dictated by limitations of PET imaging and were chosen to correspond to count rate uncertainty (6% value difference) and spatial resolution (4 mm distance to agreement). With these criteria and the threshold of 6%, the fraction of evaluated voxels passing the gamma evaluation was 97.9% for the pristine beam, 98.9% for the SOBP without compensator, and 98.5% for SOBP with compensator. results of gamma evaluation indicate that the activity distributions produced by the model are consistent with experimental data within the uncertainties of PET imaging for clinical proton beams

  15. Broadening engineering education: bringing the community in : commentary on "social responsibility in French engineering education: a historical and sociological analysis".

    PubMed

    Conlon, Eddie

    2013-12-01

    Two issues of particular interest in the Irish context are (1) the motivation for broadening engineering education to include the humanities, and an emphasis on social responsibility and (2) the process by which broadening can take place. Greater community engagement, arising from a socially-driven model of engineering education, is necessary if engineering practice is to move beyond its present captivity by corporate interests.

  16. Bare Proton Contribution to the d / u Ratio in the Proton Sea

    NASA Astrophysics Data System (ADS)

    Fish, Aaron

    2017-09-01

    From perturbative processes, such as gluon splitting, we expect there to be symmetric distributions of d and u partons in the proton. partons in the proton. However, experiment has shown an excess of d over u . This has been qualitatively explained by the Meson Cloud Model (MCM), in which the non-perturbative processes of proton fluctuations into meson-baryon pairs, allowed by the Heisenberg uncertainty principle, create the flavor asymmetry. The x dependence of d and u in the nucleon sea is determined from a convolution of meson-baryon splitting functions and the parton distribution functions (pdfs) of the mesons and baryons in the cloud, as well as a contribution from the leading term in the MCM, the ``bare proton.'' We use a statistical model to calculate pdfs for the hadrons in the cloud, but modify the model for the bare proton in order to avoid double counting. We evolved our distributions in Q2 for comparison to experimental data from the Fermilab E866/NuSea experiment. We present predictions for the d / u ratio that is currently being examined by Fermilab's SeaQuest experiment, E906. This work is supported in part by the National Science Foundation under Grant No.1516105.

  17. Deformation of the proton emitter 113Cs from electromagnetic transition and proton-emission rates

    NASA Astrophysics Data System (ADS)

    Hodge, D.; Cullen, D. M.; Taylor, M. J.; Nara Singh, B. S.; Ferreira, L. S.; Maglione, E.; Smith, J. F.; Scholey, C.; Rahkila, P.; Grahn, T.; Braunroth, T.; Badran, H.; Capponi, L.; Girka, A.; Greenlees, P. T.; Julin, R.; Konki, J.; Mallaburn, M.; Nefodov, O.; O'Neill, G. G.; Pakarinen, J.; Papadakis, P.; Partanen, J.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Smolen, M.; Sorri, J.; Stolze, S.; Uusitalo, J.

    2016-09-01

    The lifetime of the (11 /2+ ) state in the band above the proton-emitting (3 /2+ ) state in 113Cs has been measured to be τ =24 (6 ) ps from a recoil-decay-tagged differential-plunger experiment. The measured lifetime was used to deduce the deformation of the states using wave functions from a nonadiabatic quasiparticle model to independently calculate both proton-emission and electromagnetic γ -ray transition rates as a function of deformation. The only quadrupole deformation, which was able to reproduce the experimental excitation energies of the states, the electromagnetic decay rate of the (11 /2+ ) state and the proton-emission rate of the (3 /2+ ) state, was found to be β2=0.22 (6 ) . This deformation is in agreement with the earlier proton emission studies which concluded that 113Cs was best described as a deformed proton emitter, however, it is now more firmly supported by the present measurement of the electromagnetic transition rate.

  18. Shielding of relativistic protons.

    PubMed

    Bertucci, A; Durante, M; Gialanella, G; Grossi, G; Manti, L; Pugliese, M; Scampoli, P; Mancusi, D; Sihver, L; Rusek, A

    2007-06-01

    Protons are the most abundant element in the galactic cosmic radiation, and the energy spectrum peaks around 1 GeV. Shielding of relativistic protons is therefore a key problem in the radiation protection strategy of crewmembers involved in long-term missions in deep space. Hydrogen ions were accelerated up to 1 GeV at the NASA Space Radiation Laboratory, Brookhaven National Laboratory, New York. The proton beam was also shielded with thick (about 20 g/cm2) blocks of lucite (PMMA) or aluminium (Al). We found that the dose rate was increased 40-60% by the shielding and decreased as a function of the distance along the axis. Simulations using the General-Purpose Particle and Heavy-Ion Transport code System (PHITS) show that the dose increase is mostly caused by secondary protons emitted by the target. The modified radiation field after the shield has been characterized for its biological effectiveness by measuring chromosomal aberrations in human peripheral blood lymphocytes exposed just behind the shield block, or to the direct beam, in the dose range 0.5-3 Gy. Notwithstanding the increased dose per incident proton, the fraction of aberrant cells at the same dose in the sample position was not significantly modified by the shield. The PHITS code simulations show that, albeit secondary protons are slower than incident nuclei, the LET spectrum is still contained in the low-LET range (<10 keV/microm), which explains the approximately unitary value measured for the relative biological effectiveness.

  19. What's In a Proton?

    ScienceCinema

    Brookhaven Lab

    2017-12-09

    Physicist Peter Steinberg explains that fundamental particles like protons are themselves made up of still smaller particles called quarks. He discusses how new particles are produced when quarks are liberated from protons...a process that can be observed

  20. Saturation Dip Measurements of High-J Transitions in the v_1+v_3 Band of C_2H_2: Absolute Frequencies and Self-Broadening

    NASA Astrophysics Data System (ADS)

    Sears, Trevor; Twagirayezu, Sylvestre; Hall, Gregory

    2017-06-01

    Saturation dip spectra of acetylene in the v_1 + v_3 band have been obtained for rotational lines with J = 31-37 inclusive, using a diode laser referenced to a frequency comb. The estimated accuracy and precision of the measurements is better than 10 kHz in 194 THz. Data were obtained as a function of sample pressure to investigate the broadening of the saturation features. The observed line shapes are well modeled by convolution of a fixed Gaussian transit-time and varying Lorentzian lifetime broadening, i.e. a Voigt-type profile. The lines exhibit a significantly larger collisional (lifetime) broadening than has been measured in conventional Doppler and pressure-broadened samples at ambient temperatures. The figure shows the fitted Lorentzian width versus sample pressure for P(31). The slope of this plot gives the pressure broadening coefficient, γ_{self} = 9.35(13) MHz/mbar. For comparison, the coefficient derived from conventional Doppler and pressure broadened spectra for this transition is 2.7 MHz/mbar. The sub-Doppler broadening coefficients are all significantly larger than the conventionally measured ones, due to the increased importance of velocity-changing collisions. The measurements therefore give information on the balance between hard phase- or state-changing and large cross-section velocity-changing collisions. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences and Biosciences within the Office of Basic Energy Sciences. J. Molec. Spectrosc. 209, 216-227 (2001) and J. Quant. Spectrosc. Rad. Transf. 76, 237-267 (2003)

  1. Mammalian complex I pumps 4 protons per 2 electrons at high and physiological proton motive force in living cells.

    PubMed

    Ripple, Maureen O; Kim, Namjoon; Springett, Roger

    2013-02-22

    Mitochondrial complex I couples electron transfer between matrix NADH and inner-membrane ubiquinone to the pumping of protons against a proton motive force. The accepted proton pumping stoichiometry was 4 protons per 2 electrons transferred (4H(+)/2e(-)) but it has been suggested that stoichiometry may be 3H(+)/2e(-) based on the identification of only 3 proton pumping units in the crystal structure and a revision of the previous experimental data. Measurement of proton pumping stoichiometry is challenging because, even in isolated mitochondria, it is difficult to measure the proton motive force while simultaneously measuring the redox potentials of the NADH/NAD(+) and ubiquinol/ubiquinone pools. Here we employ a new method to quantify the proton motive force in living cells from the redox poise of the bc(1) complex measured using multiwavelength cell spectroscopy and show that the correct stoichiometry for complex I is 4H(+)/2e(-) in mouse and human cells at high and physiological proton motive force.

  2. Mammalian Complex I Pumps 4 Protons per 2 Electrons at High and Physiological Proton Motive Force in Living Cells*

    PubMed Central

    Ripple, Maureen O.; Kim, Namjoon; Springett, Roger

    2013-01-01

    Mitochondrial complex I couples electron transfer between matrix NADH and inner-membrane ubiquinone to the pumping of protons against a proton motive force. The accepted proton pumping stoichiometry was 4 protons per 2 electrons transferred (4H+/2e−) but it has been suggested that stoichiometry may be 3H+/2e− based on the identification of only 3 proton pumping units in the crystal structure and a revision of the previous experimental data. Measurement of proton pumping stoichiometry is challenging because, even in isolated mitochondria, it is difficult to measure the proton motive force while simultaneously measuring the redox potentials of the NADH/NAD+ and ubiquinol/ubiquinone pools. Here we employ a new method to quantify the proton motive force in living cells from the redox poise of the bc1 complex measured using multiwavelength cell spectroscopy and show that the correct stoichiometry for complex I is 4H+/2e− in mouse and human cells at high and physiological proton motive force. PMID:23306206

  3. A Novel Unitized Regenerative Proton Exchange Membrane Fuel Cell

    NASA Technical Reports Server (NTRS)

    Murphy, O. J.; Cisar, A. J.; Gonzalez-Martin, A.; Salinas, C. E.; Simpson, S. F.

    1996-01-01

    A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel single cell unitized regenerative fuel cell and results obtained on testing it are presented.

  4. Contaminant-State Broadening Mechanism in a Driven Dissipative Rydberg System

    NASA Astrophysics Data System (ADS)

    Porto, J. V.

    2017-04-01

    The strong interactions in Rydberg atoms make them an ideal system for the study of correlated many-body physics, both in the presence and absence of dissipation. Using such highly excited atomic states requires addressing challenges posed by the dense spectrum of Rydberg levels, the detrimental effects of spontaneous emission, and strong interactions. A full understanding of the scope and limitations of many Rydberg-based proposals requires simultaneously including these effects, which typically cannot be described by a mean-field treatment due to correlations in the quantum coherent and dissipative processes. We study a driven, dissipative system of Rydberg atoms in a 3D optical lattice, and observe substantial deviation from single-particle excitation rates, both on and off resonance. The observed broadened spectra cannot be explained by van der Waals interactions or a mean-field treatment of the system. Based on the magnitude of the broadening and the scaling with density and two-photon Rabi frequency, we attribute these effects to unavoidable blackbody-induced transitions to nearby Rydberg states of opposite parity, which have large, resonant dipole-dipole interactions with the state of interest. Even at low densities of Rydberg atoms, uncontrolled production of atoms in other states significantly modifies the energy levels of the remaining atoms. These off-diagonal exchange interactions result in complex many-body states of the system and have implications for off-resonant Rydberg dressing proposals. This work was partially supported by the ARL-CDQI program.

  5. Self- and Air-Broadened Line Shapes in the 2v3 P and R Branches of 12CH4

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Crawford, Timothy J.; Yu, Shanshan; Brown, Linda R.; Smith, Mary Ann H.; Mantz, Arlan W.; Boudon, Vincent; Ismail, Syed

    2015-01-01

    In this paper we report line shape parameters of 12CH4 for several hundred 2V(sub 3) transitions in the spectral regions 5891-5996 cm( exp -1) (P branch) and 6015-6115 cm(exp -1) (R branch). Air- and self-broadening coefficients were measured as a function of temperature; line mixing via off-diagonal relaxation matrix element coefficients was also obtained for 47 transition pairs. In total, nearly 1517 positions and intensities were retrieved, but many transitions were too weak for the line shape study. For this analysis, we used 25 high-resolution (0.0056 and 0.0067 cm(ex[ -1) and high signal-to-noise (S/N) spectra of high-purity 12CH4 and the same high-purity 12CH4 broadened by dry air recorded at different sample temperatures between 130 K and 295 K with the Bruker IFS 125HR Fourier transform spectrometer at JPL. Three different absorption cells were used (1) a White cell set to a path length of 13.09 m for room temperature data, (2) a single-pass 0.2038 m long coolable cell (for self-broadening) and (3) a multipass cell with 20.941 m total path coolable Herriott cell (for air-broadening). In total there were 13 spectra with pure 12CH4 (0.27-599 Torr) and 12 air-broadened spectra with total sample pressures of 80-805 Torr and volume mixing ratios (VMR) of methane between 0.18 and 1.0. An interactive multispectrum nonlinear least-squares technique was employed to fit the individual P10-P1 and R0-R10 manifolds in all the spectra simultaneously. Results obtained from the present analysis are compared to other recent measurements.

  6. Pressure broadening and fine-structure-dependent predissociation in oxygen B 3sigma(u)-, v = 0.

    PubMed

    Hannemann, Sandro; Wu, GuoRong; van Duijn, Eric-Jan; Ubachs, Wim; Cosby, Philip C

    2005-11-01

    Both laser-induced fluorescence and cavity ring-down spectral observations were made in the Schumann-Runge band system of oxygen, using a novel-type ultranarrow deep-UV pulsed laser source. From measurements on the very weak (0,0) band pressure broadening, pressure shift, and predissociation line-broadening parameters were determined for the B 3sigma(u)-, v = 0,F(i) fine-structure components for various rotational levels in O2. The information content from these studies was combined with that of entirely independent measurements probing the much stronger (0,10), (0,19), and (0,20) Schumann-Runge bands involving preparation of vibrationally excited O2 molecules via photolysis of ozone. The investigations result in a consistent set of predissociation widths for the B 3sigma(u)-, v = 0 state of oxygen.

  7. Solitary waves of surface plasmon polariton via phase shifts under Doppler broadening and Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Ahmad, A.; Bacha, B. A.; Khan, A. A.; Abdul Jabar, M. S.

    2017-12-01

    Surface Plasmon Polaritons (SPPs) are theoretically investigated at the interface of a dielectric metal and gold. The output pulse from the dielectric is used as the input pulse for the generation of SPPs. The SPPs show soliton-like behavior at the interface. The solitary form of a SPP is maintained under the effects of Kerr nonlinearity, Doppler broadening and Fresnel dragging whereas its phase shift is significantly modified. A 0.3radian phase shift is calculated in the presence of both Kerr nonlinearity and Fresnel dragging in the absence of plasma motion. The phase shift is enhanced to 60radian due to the combined effect of Doppler broadening, Kerr nonlinearity and Fresnel dragging. The results may have significant applications in nano-photonics, optical tweezers, photovoltaic devices, plasmonster and sensing technology.

  8. Collimated proton pencil-beam scanning for superficial targets: impact of the order of range shifter and aperture

    NASA Astrophysics Data System (ADS)

    Bäumer, C.; Janson, M.; Timmermann, B.; Wulff, J.

    2018-04-01

    To assess if apertures shall be mounted upstream or downstream of a range shifting block if these field-shaping devices are combined with the pencil-beam scanning delivery technique (PBS). The lateral dose fall-off served as a benchmark parameter. Both options realizing PBS-with-apertures were compared to the uniform scanning mode. We also evaluated the difference regarding the out-of-field dose caused by interactions of protons in beam-shaping devices. The potential benefit of the downstream configuration over the upstream configuration was estimated analytically. Guided by this theoretical evaluation a mechanical adapter was developed which transforms the upstream configuration provided by the proton machine vendor to a downstream configuration. Transversal dose profiles were calculated with the Monte-Carlo based dose engine of the commercial treatment planning system RayStation 6. Two-dimensional dose planes were measured with an ionization chamber array and a scintillation detector at different depths and compared to the calculation. Additionally, a clinical example for the irradiation of the orbit was compared for both PBS options and a uniform scanning treatment plan. Assuming the same air gap the lateral dose fall-off at the field edge at a few centimeter depth is 20% smaller for the aperture-downstream configuration than for the upstream one. For both options of PBS-with-apertures the dose fall-off is larger than in uniform scanning delivery mode if the minimum accelerator energy is 100 MeV. The RayStation treatment planning system calculated the width of the lateral dose fall-off with an accuracy of typically 0.1 mm–0.3 mm. Although experiments and calculations indicate a ranking of the three delivery options regarding lateral dose fall-off, there seems to be a limited impact on a multi-field treatment plan.

  9. Investigating the Origins of Two Extreme Solar Particle Events: Proton Source Profile and Associated Electromagnetic Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocharov, Leon; Usoskin, Ilya; Pohjolainen, Silja

    We analyze the high-energy particle emission from the Sun in two extreme solar particle events in which protons are accelerated to relativistic energies and can cause a significant signal even in the ground-based particle detectors. Analysis of a relativistic proton event is based on modeling of the particle transport and interaction, from a near-Sun source through the solar wind and the Earth’s magnetosphere and atmosphere to a detector on the ground. This allows us to deduce the time profile of the proton source at the Sun and compare it with observed electromagnetic emissions. The 1998 May 2 event is associatedmore » with a flare and a coronal mass ejection (CME), which were well observed by the Nançay Radioheliograph, thus the images of the radio sources are available. For the 2003 November 2 event, the low corona images of the CME liftoff obtained at the Mauna Loa Solar Observatory are available. Those complementary data sets are analyzed jointly with the broadband dynamic radio spectra, EUV images, and other data available for both events. We find a common scenario for both eruptions, including the flare’s dual impulsive phase, the CME-launch-associated decimetric-continuum burst, and the late, low-frequency type III radio bursts at the time of the relativistic proton injection into the interplanetary medium. The analysis supports the idea that the two considered events start with emission of relativistic protons previously accelerated during the flare and CME launch, then trapped in large-scale magnetic loops and later released by the expanding CME.« less

  10. N-Protonated Isomers and Coulombic Barriers to Dissociation of Doubly Protonated Ala8Arg

    NASA Astrophysics Data System (ADS)

    Haeffner, Fredrik; Irikura, Karl K.

    2017-10-01

    Collision-induced dissociation (or tandem mass spectrometry, MS/MS) of a protonated peptide results in a spectrum of fragment ions that is useful for inferring amino acid sequence. This is now commonplace and a foundation of proteomics. The underlying chemical and physical processes are believed to be those familiar from physical organic chemistry and chemical kinetics. However, first-principles predictions remain intractable because of the conflicting necessities for high accuracy (to achieve qualitatively correct kinetics) and computational speed (to compensate for the high cost of reliable calculations on such large molecules). To make progress, shortcuts are needed. Inspired by the popular mobile proton model, we have previously proposed a simplified theoretical model in which the gas-phase fragmentation pattern of protonated peptides reflects the relative stabilities of N-protonated isomers, thus avoiding the need for transition-state information. For singly protonated Ala n ( n = 3-11), the resulting predictions were in qualitative agreement with the results from low-energy MS/MS experiments. Here, the comparison is extended to a model tryptic peptide, doubly protonated Ala8Arg. This is of interest because doubly protonated tryptic peptides are the most important in proteomics. In comparison with experimental results, our model seriously overpredicts the degree of backbone fragmentation at N9. We offer an improved model that corrects this deficiency. The principal change is to include Coulombic barriers, which hinder the separation of the product cations from each other. Coulombic barriers may be equally important in MS/MS of all multiply charged peptide ions. [Figure not available: see fulltext.

  11. NMR Observation of Mobile Protons in Proton-Implanted ZnO Nanorods

    PubMed Central

    Park, Jun Kue; Kwon, Hyeok-Jung; Lee, Cheol Eui

    2016-01-01

    The diffusion properties of H+ in ZnO nanorods are investigated before and after 20 MeV proton beam irradiation by using 1H nuclear magnetic resonance (NMR) spectroscopy. Herein, we unambiguously observe that the implanted protons occupy thermally unstable site of ZnO, giving rise to a narrow NMR line at 4.1 ppm. The activation barrier of the implanted protons was found to be 0.46 eV by means of the rotating-frame spin-lattice relaxation measurements, apparently being interstitial hydrogens. High-energy beam irradiation also leads to correlated jump diffusion of the surface hydroxyl group of multiple lines at ~1 ppm, implying the presence of structural disorder at the ZnO surface. PMID:26988733

  12. From forensic epigenetics to forensic epigenomics: broadening DNA investigative intelligence.

    PubMed

    Vidaki, Athina; Kayser, Manfred

    2017-12-21

    Human genetic variation is a major resource in forensics, but does not allow all forensically relevant questions to be answered. Some questions may instead be addressable via epigenomics, as the epigenome acts as an interphase between the fixed genome and the dynamic environment. We envision future forensic applications of DNA methylation analysis that will broaden DNA-based forensic intelligence. Together with genetic prediction of appearance and biogeographic ancestry, epigenomic lifestyle prediction is expected to increase the ability of police to find unknown perpetrators of crime who are not identifiable using current forensic DNA profiling.

  13. Pressure broadening of the ((dt. mu. )dee)* formation resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, J.S.; Leon, M.; Padial, N.T.

    1988-12-27

    The treatment of ((dt..mu..)dee)* formation at high densities as a pressure broadening process is discussed. Cross sections for collisions of the complex (dt..mu..)dee, and of the D/sub 2/ molecule from which it is formed, with the bath molecules have been accurately calculated. These cross sections are used to calculate the collisional width in three variations of the impact approximation that have been proposed for this problem. In general, the quasistatic approximation is shown to satisfy the usual conditions of muon-catalyzed fusion better than does the impact approximation. A preliminary rough treatment is presented to illustrate the quasistatic approximation.

  14. Commercial observation satellites: broadening the sources of geospatial data

    NASA Astrophysics Data System (ADS)

    Baker, John C.; O'Connell, Kevin M.; Venzor, Jose A.

    2002-09-01

    Commercial observation satellites promise to broaden substantially the sources of imagery data available to potential users of geospatial data and related information products. We examine the new trend toward private firms acquiring and operating high-resolution imagery satellites. These commercial observation satellites build on the substantial experience in Earth observation operations provided by government-owned imaging satellites for civilian and military purposes. However, commercial satellites will require governments and companies to reconcile public and private interests in allowing broad public access to high-resolution satellite imagery data without creating national security risks or placing the private firms at a disadvantage compared with other providers of geospatial data.

  15. Molecular mechanisms for generating transmembrane proton gradients

    PubMed Central

    Gunner, M.R.; Amin, Muhamed; Zhu, Xuyu; Lu, Jianxun

    2013-01-01

    Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side. PMID:23507617

  16. Proton and non-proton activation of ASIC channels

    PubMed Central

    Gautschi, Ivan; van Bemmelen, Miguel Xavier; Schild, Laurent

    2017-01-01

    The Acid-Sensing Ion Channels (ASIC) exhibit a fast desensitizing current when activated by pH values below 7.0. By contrast, non-proton ligands are able to trigger sustained ASIC currents at physiological pHs. To analyze the functional basis of the ASIC desensitizing and sustained currents, we have used ASIC1a and ASIC2a mutants with a cysteine in the pore vestibule for covalent binding of different sulfhydryl reagents. We found that ASIC1a and ASIC2a exhibit two distinct currents, a proton-induced desensitizing current and a sustained current triggered by sulfhydryl reagents. These currents differ in their pH dependency, their sensitivity to the sulfhydryl reagents, their ionic selectivity and their relative magnitude. We propose a model for ASIC1 and ASIC2 activity where the channels can function in two distinct modes, a desensitizing mode and a sustained mode depending on the activating ligands. The pore vestibule of the channel represents a functional site for binding non-proton ligands to activate ASIC1 and ASIC2 at neutral pH and to prevent channel desensitization. PMID:28384246

  17. Proton and helium ion radiotherapy for meningioma tumors: a Monte Carlo-based treatment planning comparison.

    PubMed

    Tessonnier, Thomas; Mairani, Andrea; Chen, Wenjing; Sala, Paola; Cerutti, Francesco; Ferrari, Alfredo; Haberer, Thomas; Debus, Jürgen; Parodi, Katia

    2018-01-09

    Due to their favorable physical and biological properties, helium ion beams are increasingly considered a promising alternative to proton beams for radiation therapy. Hence, this work aims at comparing in-silico the treatment of brain and ocular meningiomas with protons and helium ions, using for the first time a dedicated Monte Carlo (MC) based treatment planning engine (MCTP) thoroughly validated both in terms of physical and biological models. Starting from clinical treatment plans of four patients undergoing proton therapy with a fixed relative biological effectiveness (RBE) of 1.1 and a fraction dose of 1.8 Gy(RBE), new treatment plans were optimized with MCTP for both protons (with variable and fixed RBE) and helium ions (with variable RBE) under the same constraints derived from the initial clinical plans. The resulting dose distributions were dosimetrically compared in terms of dose volume histograms (DVH) parameters for the planning target volume (PTV) and the organs at risk (OARs), as well as dose difference maps. In most of the cases helium ion plans provided a similar PTV coverage as protons with a consistent trend of superior OAR sparing. The latter finding was attributed to the ability of helium ions to offer sharper distal and lateral dose fall-offs, as well as a more favorable differential RBE variation in target and normal tissue. Although more studies are needed to investigate the clinical potential of helium ions for different tumour entities, the results of this work based on an experimentally validated MC engine support the promise of this modality with state-of-the-art pencil beam scanning delivery, especially in case of tumours growing in close proximity of multiple OARs such as meningiomas.

  18. Lifetime Increased Cancer Risk in Mice Following Exposure to Clinical Proton Beam–Generated Neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerweck, Leo E., E-mail: lgerweck@mgh.harvard.edu; Huang, Peigen; Lu, Hsiao-Ming

    2014-05-01

    Purpose: To evaluate the life span and risk of cancer following whole-body exposure of mice to neutrons generated by a passively scattered clinical spread-out Bragg peak (SOBP) proton beam. Methods and Materials: Three hundred young adult female FVB/N mice, 152 test and 148 control, were entered into the experiment. Mice were placed in an annular cassette around a cylindrical phantom, which was positioned lateral to the mid-SOBP of a 165-MeV, clinical proton beam. The average distance from the edge of the mid-SOBP to the conscious active mice was 21.5 cm. The phantom was irradiated with once-daily fractions of 25 Gy,more » 4 days per week, for 6 weeks. The age at death and cause of death (ie, cancer and type vs noncancer causes) were assessed over the life span of the mice. Results: Exposure of mice to a dose of 600 Gy of proton beam–generated neutrons, reduced the median life span of the mice by 4.2% (Kaplan-Meier cumulative survival, P=.053). The relative risk of death from cancer in neutron exposed versus control mice was 1.40 for cancer of all types (P=.0006) and 1.22 for solid cancers (P=.09). For a typical 60 Gy dose of clinical protons, the observed 22% increased risk of solid cancer would be expected to decrease by a factor of 10. Conclusions: Exposure of mice to neutrons generated by a proton dose that exceeds a typical course of radiation therapy by a factor of 10, resulted in a statistically significant increase in the background incidence of leukemia and a marginally significant increase in solid cancer. The results indicate that the risk of out-of-field second solid cancers from SOBP proton-generated neutrons and typical treatment schedules, is 6 to 10 times less than is suggested by current neutron risk estimates.« less

  19. Quasi-monoenergetic proton beam from a proton-layer embedded metal foil irradiated by an intense laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyung Nam; Lee, Kitae, E-mail: klee@kaeri.re.kr; Kumar, Manoj

    A target structure, ion-layer embedded foil (ILEF) is proposed for producing a quasi-monoenergetic proton beam by utilizing a bulk electrostatic field, which is generated by irradiating the target with an ultra-intense laser pulse, inside the plasma. Compared with the case of a single metal foil in which the proton layer is initially present on the surface, in the ILEF target, the proton layer is initially located inside a metal foil. A two-dimensional particle-in-cell (PIC) simulation shows that the target generates a proton beam with a narrow energy spread. With a laser intensity of 2 × 10{sup 19 }W/cm{sup 2}, a 22-MeV proton beammore » with an energy spread of 8% at the full-width-half-maximum (FWHM) is obtained when the proton layer is located at 0.4 μm inside the rear surface of a 2.4 μm-thick copper foil. When the proton layer moves toward the front side, a proton beam with a flat-top energy distribution ranging from 15 MeV to 35 MeV is obtained. Further, with a higher laser intensity of 10{sup 21 }W/cm{sup 2}, a proton beam with the maximum energy of 345 MeV and FWHM energy spread of 7.2% is obtained. The analysis of the PIC simulation with an aid of a fluid analysis shows that the spectrum is affected by the initial position of the proton layer, its initial spread during the formation of the sheath field, and the space charge effect.« less

  20. Comparison of optimized single and multifield irradiation plans of antiproton, proton and carbon ion beams.

    PubMed

    Bassler, Niels; Kantemiris, Ioannis; Karaiskos, Pantelis; Engelke, Julia; Holzscheiter, Michael H; Petersen, Jørgen B

    2010-04-01

    Antiprotons have been suggested as a possibly superior modality for radiotherapy, due to the energy released when antiprotons annihilate, which enhances the Bragg peak and introduces a high-LET component to the dose. However, concerns are expressed about the inferior lateral dose distribution caused by the annihilation products. We use the Monte Carlo code FLUKA to generate depth-dose kernels for protons, antiprotons, and carbon ions. Using these we then build virtual treatment plans optimized according to ICRU recommendations for the different beam modalities, which then are recalculated with FLUKA. Dose-volume histograms generated from these plans can be used to compare the different irradiations. The enhancement in physical and possibly biological dose from annihilating antiprotons can significantly lower the dose in the entrance channel; but only at the expense of a diffuse low dose background from long-range secondary particles. Lateral dose distributions are improved using active beam delivery methods, instead of flat fields. Dose-volume histograms for different treatment scenarios show that antiprotons have the potential to reduce the volume of normal tissue receiving medium to high dose, however, in the low dose region antiprotons are inferior to both protons and carbon ions. This limits the potential usage to situations where dose to normal tissue must be reduced as much as possible. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Collisional Broadening and Shift of D1 and D2 Spectral Lines in Atomic Alkali Vapor - Noble Gas Systems

    DTIC Science & Technology

    2013-03-01

    12 curve fit to the 2Σ1 2� − 2Σ1 2� difference potential Table 2.2a: Lennard - Jones parameters for Rubidium + Helium lines. Difference...Table Page Table 2.2a. Lennard - Jones parameters for Rubidium + Helium lines 22 Table 2.2b. Line broadening and shift parameters for Rb + He lines...all nine M + Ng pairs, using Lennard - Jones (6-12) potentials in Anderson- Talman 25 Table 2.2e. Broadening and shift coefficients (in MHz/torr

  2. Proton-coupled electron transfer and the role of water molecules in proton pumping by cytochrome c oxidase

    PubMed Central

    Sharma, Vivek; Enkavi, Giray; Vattulainen, Ilpo; Róg, Tomasz; Wikström, Mårten

    2015-01-01

    Molecular oxygen acts as the terminal electron sink in the respiratory chains of aerobic organisms. Cytochrome c oxidase in the inner membrane of mitochondria and the plasma membrane of bacteria catalyzes the reduction of oxygen to water, and couples the free energy of the reaction to proton pumping across the membrane. The proton-pumping activity contributes to the proton electrochemical gradient, which drives the synthesis of ATP. Based on kinetic experiments on the O–O bond splitting transition of the catalytic cycle (A → PR), it has been proposed that the electron transfer to the binuclear iron–copper center of O2 reduction initiates the proton pump mechanism. This key electron transfer event is coupled to an internal proton transfer from a conserved glutamic acid to the proton-loading site of the pump. However, the proton may instead be transferred to the binuclear center to complete the oxygen reduction chemistry, which would constitute a short-circuit. Based on atomistic molecular dynamics simulations of cytochrome c oxidase in an explicit membrane–solvent environment, complemented by related free-energy calculations, we propose that this short-circuit is effectively prevented by a redox-state–dependent organization of water molecules within the protein structure that gates the proton transfer pathway. PMID:25646428

  3. Proton radiography and proton computed tomography based on time-resolved dose measurements

    NASA Astrophysics Data System (ADS)

    Testa, Mauro; Verburg, Joost M.; Rose, Mark; Min, Chul Hee; Tang, Shikui; Hassane Bentefour, El; Paganetti, Harald; Lu, Hsiao-Ming

    2013-11-01

    We present a proof of principle study of proton radiography and proton computed tomography (pCT) based on time-resolved dose measurements. We used a prototype, two-dimensional, diode-array detector capable of fast dose rate measurements, to acquire proton radiographic images expressed directly in water equivalent path length (WEPL). The technique is based on the time dependence of the dose distribution delivered by a proton beam traversing a range modulator wheel in passive scattering proton therapy systems. The dose rate produced in the medium by such a system is periodic and has a unique pattern in time at each point along the beam path and thus encodes the WEPL. By measuring the time dose pattern at the point of interest, the WEPL to this point can be decoded. If one measures the time-dose patterns at points on a plane behind the patient for a beam with sufficient energy to penetrate the patient, the obtained 2D distribution of the WEPL forms an image. The technique requires only a 2D dosimeter array and it uses only the clinical beam for a fraction of second with negligible dose to patient. We first evaluated the accuracy of the technique in determining the WEPL for static phantoms aiming at beam range verification of the brain fields of medulloblastoma patients. Accurate beam ranges for these fields can significantly reduce the dose to the cranial skin of the patient and thus the risk of permanent alopecia. Second, we investigated the potential features of the technique for real-time imaging of a moving phantom. Real-time tumor tracking by proton radiography could provide more accurate validations of tumor motion models due to the more sensitive dependence of proton beam on tissue density compared to x-rays. Our radiographic technique is rapid (˜100 ms) and simultaneous over the whole field, it can image mobile tumors without the problem of interplay effect inherently challenging for methods based on pencil beams. Third, we present the reconstructed p

  4. Protonation and Proton-Coupled Electron Transfer at S-Ligated [4Fe-4S] Clusters

    PubMed Central

    Morris, Wesley D.; Darcy, Julia W.; Mayer, James M.

    2015-01-01

    Biological [Fe-S] clusters are increasingly recognized to undergo proton-coupled electron transfer (PCET), but the site of protonation, mechanism, and role for PCET remains largely unknown. Here we explore this reactivity with synthetic model clusters. Protonation of the arylthiolate-ligated [4Fe-4S] cluster [Fe4S4(SAr)4]2- (1, SAr = S-2,4-6-(iPr)3C6H2) leads to thiol dissociation, reversibly forming [Fe4S4(SAr)3L]1- (2) + ArSH (L = solvent, and/or conjugate base). Solutions of 2 + ArSH react with the nitroxyl radical TEMPO to give [Fe4S4(SAr)4]1- (1ox) and TEMPOH. This reaction involves PCET coupled to thiolate association and may proceed via the unobserved protonated cluster [Fe4S4(SAr)3(HSAr)]1-(1-H). Similar reactions with this and related clusters proceed comparably. An understanding of the PCET thermochemistry of this cluster system has been developed, encompassing three different redox levels and two protonation states. PMID:25965413

  5. Status of the Proton Therapy Project at IUCF and the Midwest Proton Radiotherapy Institute

    NASA Astrophysics Data System (ADS)

    Klein, Susan B.

    2003-08-01

    The first proton therapy patient was successfully treated for astrocytoma using a modified nuclear experimentation beam line and in-house treatment planning in 1993. In 1998, IUCF constructed an eye treatment clinic, and conducted a phase III clinical trial investigating proton radiation treatment of AMD. Treatment was planned using Eyeplan modified to match the IUCF beam characteristics. MPRI was conceptualized in 1996 by a consortium of physicians and physicists. Reconfiguration began in 2000; construction of the achromatic trunk line began in 2001, followed by manufacture of 4 energy selection lines and two fixed horizontal beam treatment lines. Two isocentric, rotational gantries will be installed following completion of the horizontal beam lines. A fifth line will supply the full-time radiation effects research station. Standard proton delivery out of the main stage is specified at 500 nA of 205 MeV. Clinic construction began in April, 2002 and will be completed by mid-December. Design, construction and operation of these proton facilities have been accomplished by the proton therapy group at IUCF.

  6. CARRIER-LATTICE RELAXATION FOR BROADENING EPR LINEWIDTH IN Nd0.55Sr0.45MnO3

    NASA Astrophysics Data System (ADS)

    Fan, Jiyu; Zhang, Xiyuan; Tong, Wei; Zhang, Lei; Zhang, Weichun; Zhu, Yan; Shi, Yangguang; Hu, Dazhi; Hong, Bo; Ying, Yao; Ling, Langsheng; Pi, Li; Zhang, Yuheng

    2013-12-01

    In this paper, we report the electron paramagnetic resonance (EPR) study of perovskite manganite Nd0.55Sr0.45MnO3. Experimental data reveal that the EPR linewidth broadens with a quasilinear manner up to 480 K. The broadening of the EPR linewidth can be understood in terms of the shortening of carrier-lattice relaxation time due to the occurrence of strong carrier-phonon interactions. Two same activation energies obtained respectively from the temperature dependence of EPR intensity and resistivity indicate that the linewidth variation is correlated to the small polaron hopping. Therefore, the carrier-lattice coupling play a major role for deciding its magnetism in the present system.

  7. High Temperature Protonic Conductors

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Berger, Marie-Helen; Sayir, Ali

    2007-01-01

    High Temperature Protonic Conductors (HTPC) with the perovskite structure are envisioned for electrochemical membrane applications such as H2 separation, H2 sensors and fuel cells. Successive membrane commercialization is dependent upon addressing issues with H2 permeation rate and environmental stability with CO2 and H2O. HTPC membranes are conventionally fabricated by solid-state sintering. Grain boundaries and the presence of intergranular second phases reduce the proton mobility by orders of magnitude than the bulk crystalline grain. To enhanced protonic mobility, alternative processing routes were evaluated. A laser melt modulation (LMM) process was utilized to fabricate bulk samples, while pulsed laser deposition (PLD) was utilized to fabricate thin film membranes . Sr3Ca(1+x)Nb(2-x)O9 and SrCe(1-x)Y(x)O3 bulk samples were fabricated by LMM. Thin film BaCe(0.85)Y(0.15)O3 membranes were fabricated by PLD on porous substrates. Electron microscopy with chemical mapping was done to characterize the resultant microstructures. High temperature protonic conduction was measured by impedance spectroscopy in wet air or H2 environments. The results demonstrate the advantage of thin film membranes to thick membranes but also reveal the negative impact of defects or nanoscale domains on protonic conductivity.

  8. Doppler-Broadening Gas Thermometry at 1.39 μm: Towards a New Spectroscopic Determination of the Boltzmann Constant

    NASA Astrophysics Data System (ADS)

    Castrillo, A.; de Vizia, M. D.; Fasci, E.; Odintsova, T.; Moretti, L.; Gianfrani, L.

    The expression of the Doppler width of a spectral line, valid for a gaseous sample at thermodynamic equilibrium, represents a powerful tool to link the thermodynamic temperature to an optical frequency. This is the basis of a relatively new method of primary gas thermometry, known as Doppler broadening thermometry. Implemented at the Second University of Naples on H218O molecules at the temperature of the triple point of water, this method has recently allowed to determine the Boltzmann constant with a global uncertainty of 24 parts over 106. Even though this is the best result ever obtained by using an optical method, its uncertainty is still far from the requirement for the new definition of the unit kelvin. To this end, Doppler broadening thermometry should approach the accuracy of 1 part per million. In this paper, we will report on our recent efforts to further develop and optimize Doppler broadening thermometry at 1.39 μm, using acetylene as a molecular target. Main progresses and current limitations will be highlighted.

  9. Prompt Gamma Imaging for In Vivo Range Verification of Pencil Beam Scanning Proton Therapy.

    PubMed

    Xie, Yunhe; Bentefour, El Hassane; Janssens, Guillaume; Smeets, Julien; Vander Stappen, François; Hotoiu, Lucian; Yin, Lingshu; Dolney, Derek; Avery, Stephen; O'Grady, Fionnbarr; Prieels, Damien; McDonough, James; Solberg, Timothy D; Lustig, Robert A; Lin, Alexander; Teo, Boon-Keng K

    2017-09-01

    To report the first clinical results and value assessment of prompt gamma imaging for in vivo proton range verification in pencil beam scanning mode. A stand-alone, trolley-mounted, prototype prompt gamma camera utilizing a knife-edge slit collimator design was used to record the prompt gamma signal emitted along the proton tracks during delivery of proton therapy for a brain cancer patient. The recorded prompt gamma depth detection profiles of individual pencil beam spots were compared with the expected profiles simulated from the treatment plan. In 6 treatment fractions recorded over 3 weeks, the mean (± standard deviation) range shifts aggregated over all spots in 9 energy layers were -0.8 ± 1.3 mm for the lateral field, 1.7 ± 0.7 mm for the right-superior-oblique field, and -0.4 ± 0.9 mm for the vertex field. This study demonstrates the feasibility and illustrates the distinctive benefits of prompt gamma imaging in pencil beam scanning treatment mode. Accuracy in range verification was found in this first clinical case to be better than the range uncertainty margin applied in the treatment plan. These first results lay the foundation for additional work toward tighter integration of the system for in vivo proton range verification and quantification of range uncertainties. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Simultaneous influence of Stark effect and excessive line broadening on the Hα line

    NASA Astrophysics Data System (ADS)

    Cvetanović, Nikola; Ivković, Saša S.; Obradović, Bratislav M.; Kuraica, Milorad M.

    2017-12-01

    The aim of this paper is to study the combined influence of the Stark effect and the excessive Doppler broadening on the Balmer alpha line in hydrogen discharges. Since this line is a good candidate for measuring electric field in various types of discharges with different gas compositions, a simple method for field measurement based on polarization spectroscopy is developed, that includes all the excitation mechanisms. To simultaneously test the flexibility of the fitting procedure and investigate the excessive broadening, we applied the fitting procedure on line profiles obtained at a range of conditions from two different discharges. The range of pressures and voltages was examined in an abnormal glow and in dielectric barrier discharge operating with hydrogen gas. The model fitting function was able to respond and follow the change in the line profile caused by the change of conditions. This procedure can therefore be recommended for electric field measurement. Contribution to the "Topical Issue: Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  11. Quasiparticle Lifetime Broadening in Resonant X-ray Scattering of NH4NO3.

    PubMed

    Vinson, John; Jach, Terrence; Müller, Matthias; Unterumsberger, Rainer; Beckhoff, Burkhard

    2016-07-15

    It has been previously shown that two effects cause dramatic changes in the x-ray absorption and emission spectra from the N K edge of the insulating crystal ammonium nitrate. First, vibrational disorder causes major changes in the absorption spectrum, originating not only from the thermal population of phonons, but, significantly, from zero-point motion as well. Second, the anomalously large broadening ( ~ 4 eV) of the emission originating from nitrate σ states is due to unusually short lifetimes of quasiparticles in an otherwise extremely narrow band. In this work we investigate the coupling of these effects to core and valence excitons that are created as the initial x-ray excitation energy is progressively reduced toward the N edge. Using a GW /Bethe-Salpeter approach, we show the extent to which this anomalous broadening is captured by the GW approximation. The data and calculations demonstrate the importance that the complex self-energies (finite lifetimes) of valence bands have on the interpretation of emission spectra. We produce a scheme to explain why extreme lifetimes should appear in σ states of other similar compounds.

  12. Protons -- The Future of Radiation Therapy?

    NASA Astrophysics Data System (ADS)

    Avery, Steven

    2007-03-01

    Cancer is the 2^nd highest cause of death in the United States. The challenges of controlling this disease remain more difficult as the population lives longer. Proton therapy offers another choice in the management of cancer care. Proton therapy has existed since the late 1950s and the first hospital based center in the United States opened in 1990. Since that time four hospital based proton centers are treating patients with other centers either under construction or under consideration. This talk will focus on an introduction to proton therapy: it's medical advantages over current treatment modalities, accelerators and beam delivery systems, applications to clinical radiation oncology and the future outlook for proton therapy.

  13. Generic FPGA-Based Platform for Distributed IO in Proton Therapy Patient Safety Interlock System

    NASA Astrophysics Data System (ADS)

    Eichin, Michael; Carmona, Pablo Fernandez; Johansen, Ernst; Grossmann, Martin; Mayor, Alexandre; Erhardt, Daniel; Gomperts, Alexander; Regele, Harald; Bula, Christian; Sidler, Christof

    2017-06-01

    At the Paul Scherrer Institute (PSI) in Switzerland, cancer patients are treated with protons. Proton therapy at PSI has a long history and started in the 1980s. More than 30 years later, a new gantry has recently been installed in the existing facility. This new machine has been delivered by an industry partner. A big challenge is the integration of the vendor's safety system into the existing PSI environment. Different interface standards and the complexity of the system made it necessary to find a technical solution connecting an industry system to the existing PSI infrastructure. A novel very flexible distributed IO system based on field-programmable gate array (FPGA) technology was developed, supporting many different IO interface standards and high-speed communication links connecting the device to a PSI standard versa module eurocard-bus input output controller. This paper summarizes the features of the hardware technology, the FPGA framework with its high-speed communication link protocol, and presents our first measurement results.

  14. Measurement of charged pion, kaon, and proton production in proton-proton collisions at s = 13 TeV

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2017-12-05

    Here, transverse momentum spectra of charged pions, kaons, and protons are measured in proton-proton collisions at √s = 13 TeV with the CMS detector at the LHC. The particles, identified via their energy loss in the silicon tracker, are measured in the transverse momentum range of p T ≈ 0.1–1.7 GeV/c and rapidities |y| < 1. The p T spectra and integrated yields are compared to previous results at smaller s and to predictions of Monte Carlo event generators. The average p T increases with particle mass and charged particle multiplicity of the event. Comparisons with previous CMS results at √smore » = 0.9, 2.76, and 7 TeV show that the average p T and the ratios of hadron yields feature very similar dependences on the particle multiplicity in the event, independently of the center-of-mass energy of the pp collision.« less

  15. Flares, ejections, proton events

    NASA Astrophysics Data System (ADS)

    Belov, A. V.

    2017-11-01

    Statistical analysis is performed for the relationship of coronal mass ejections (CMEs) and X-ray flares with the fluxes of solar protons with energies >10 and >100 MeV observed near the Earth. The basis for this analysis was the events that took place in 1976-2015, for which there are reliable observations of X-ray flares on GOES satellites and CME observations with SOHO/LASCO coronagraphs. A fairly good correlation has been revealed between the magnitude of proton enhancements and the power and duration of flares, as well as the initial CME speed. The statistics do not give a clear advantage either to CMEs or the flares concerning their relation with proton events, but the characteristics of the flares and ejections complement each other well and are reasonable to use together in the forecast models. Numerical dependences are obtained that allow estimation of the proton fluxes to the Earth expected from solar observations; possibilities for improving the model are discussed.

  16. The assembly of ant-farmed gardens: mutualism specialization following host broadening

    PubMed Central

    Janda, Milan

    2017-01-01

    Ant-gardens (AGs) are ant/plant mutualisms in which ants farm epiphytes in return for nest space and food rewards. They occur in the Neotropics and Australasia, but not in Africa, and their evolutionary assembly remains unclear. We here use phylogenetic frameworks for important AG lineages in Australasia, namely the ant genus Philidris and domatium-bearing ferns (Lecanopteris) and flowering plants in the Apocynaceae (Hoya and Dischidia) and Rubiaceae (Myrmecodia, Hydnophytum, Anthorrhiza, Myrmephytum and Squamellaria). Our analyses revealed that in these clades, diaspore dispersal by ants evolved at least 13 times, five times in the Late Miocene and Pliocene in Australasia and seven times during the Pliocene in Southeast Asia, after Philidris ants had arrived there, with subsequent dispersal between these two areas. A uniquely specialized AG system evolved in Fiji at the onset of the Quaternary. The farming in the same AG of epiphytes that do not offer nest spaces suggests that a broadening of the ants' plant host spectrum drove the evolution of additional domatium-bearing AG-epiphytes by selecting on pre-adapted morphological traits. Consistent with this, we found a statistical correlation between the evolution of diaspore dispersal by ants and domatia in all three lineages. Our study highlights how host broadening by a symbiont has led to new farming mutualisms. PMID:28298344

  17. Theory and Simulation of Exoplanetary Atmospheric Haze: Giant Spectral Line Broadening

    NASA Astrophysics Data System (ADS)

    Sadeghpour, Hossein; Felfeli, Zineb; Kharchenko, Vasili; Babb, James; Vrinceanu, Daniel

    2018-01-01

    Prominent spectral features in observed transmission spectra of exoplanets are obscured. Atmospheric haze is the leading candidate for the flattening of spectral transmission of expolanetray occultation, but also for solar system planets, Earth and cometary atmospheres. Such spectra which carry information about how the planetary atmospheres become opaque to stellar light in transit, show broad absorption where strong absorption lines from sodium or potassium and water are predicted to exist. In this work, we develop a detailed atomistic theoretical model, taking into account interaction between an atomic or molecular radiator with dust and haze particulates. Our model considers a realistic structure of haze particulates from small seed particles up to sub-micron irregularly shaped aggregates. This theory of interaction between haze and radiator particles allows to consider nearly all realistic structure, size and chemical composition of haze particulates. The computed shift and broadening of emission spectra will include both quasi-static (mean field) and collisional (pressure) shift and broadening. Our spectral calculations will be verified with available laboratory experimental data on spectra of alkali atoms in liquid droplet, solid ice, dust and dense gaseous environments. The simplicity, elegance and generality of the proposed model makes it amenable to a broad community of users in astrophysics and chemistry. The verified models can be used for analysis of emission and absorption spectra of alkali atoms from exoplanets, solar system planets, satellites and comets.

  18. Lateral interactions in the outer retina

    PubMed Central

    Thoreson, Wallace B.; Mangel, Stuart C.

    2012-01-01

    Lateral interactions in the outer retina, particularly negative feedback from horizontal cells to cones and direct feed-forward input from horizontal cells to bipolar cells, play a number of important roles in early visual processing, such as generating center-surround receptive fields that enhance spatial discrimination. These circuits may also contribute to post-receptoral light adaptation and the generation of color opponency. In this review, we examine the contributions of horizontal cell feedback and feed-forward pathways to early visual processing. We begin by reviewing the properties of bipolar cell receptive fields, especially with respect to modulation of the bipolar receptive field surround by the ambient light level and to the contribution of horizontal cells to the surround. We then review evidence for and against three proposed mechanisms for negative feedback from horizontal cells to cones: 1) GABA release by horizontal cells, 2) ephaptic modulation of the cone pedicle membrane potential generated by currents flowing through hemigap junctions in horizontal cell dendrites, and 3) modulation of cone calcium currents (ICa) by changes in synaptic cleft proton levels. We also consider evidence for the presence of direct horizontal cell feed-forward input to bipolar cells and discuss a possible role for GABA at this synapse. We summarize proposed functions of horizontal cell feedback and feed-forward pathways. Finally, we examine the mechanisms and functions of two other forms of lateral interaction in the outer retina: negative feedback from horizontal cells to rods and positive feedback from horizontal cells to cones. PMID:22580106

  19. Origins of extreme broadening mechanisms in near-edge x-ray spectra of nitrogen compounds

    NASA Astrophysics Data System (ADS)

    Vinson, John; Jach, Terrence; Elam, W. T.; Denlinger, J. D.

    2014-11-01

    We demonstrate the observation of many-body lifetime effects in valence-band x-ray emission. A comparison of the N K α emission of crystalline ammonium nitrate to molecular-orbital calculations revealed an unexpected, extreme broadening of the NO σ recombination—so extensively as to virtually disappear. GW calculations establish that this disappearance is due to a large imaginary component of the self-energy associated with the NO σ orbitals. Building upon density-functional theory, we have calculated radiative transitions from the nitrogen 1 s level of ammonium nitrate and ammonium chloride using a Bethe-Salpeter method to include electron-hole interactions. The absorption and emission spectra of both crystals evince large, orbital-dependent sensitivity to molecular dynamics. We demonstrate that many-body effects as well as thermal and zero-point motion are vital for understanding observed spectra. A computational approach using average atomic positions and uniform broadening to account for lifetime and phonon effects is unsatisfactory.

  20. Practical Model for First Hyperpolarizability Dispersion Accounting for Both Homogeneous and Inhomogeneous Broadening Effects.

    PubMed

    Campo, Jochen; Wenseleers, Wim; Hales, Joel M; Makarov, Nikolay S; Perry, Joseph W

    2012-08-16

    A practical yet accurate dispersion model for the molecular first hyperpolarizability β is presented, incorporating both homogeneous and inhomogeneous line broadening because these affect the β dispersion differently, even if they are indistinguishable in linear absorption. Consequently, combining the absorption spectrum with one free shape-determining parameter Ginhom, the inhomogeneous line width, turns out to be necessary and sufficient to obtain a reliable description of the β dispersion, requiring no information on the homogeneous (including vibronic) and inhomogeneous line broadening mechanisms involved, providing an ideal model for practical use in extrapolating experimental nonlinear optical (NLO) data. The model is applied to the efficient NLO chromophore picolinium quinodimethane, yielding an excellent fit of the two-photon resonant wavelength-dependent data and a dependable static value β0 = 316 × 10(-30) esu. Furthermore, we show that including a second electronic excited state in the model does yield an improved description of the NLO data at shorter wavelengths but has only limited influence on β0.

  1. Broadening the interface bandwidth in simulation based training

    NASA Technical Reports Server (NTRS)

    Somers, Larry E.

    1989-01-01

    Currently most computer based simulations rely exclusively on computer generated graphics to create the simulation. When training is involved, the method almost exclusively used to display information to the learner is text displayed on the cathode ray tube. MICROEXPERT Systems is concentrating on broadening the communications bandwidth between the computer and user by employing a novel approach to video image storage combined with sound and voice output. An expert system is used to combine and control the presentation of analog video, sound, and voice output with computer based graphics and text. Researchers are currently involved in the development of several graphics based user interfaces for NASA, the U.S. Army, and the U.S. Navy. Here, the focus is on the human factors considerations, software modules, and hardware components being used to develop these interfaces.

  2. A compact electron cyclotron resonance proton source for the Paul Scherrer Institute's proton accelerator facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgarten, C.; Barchetti, A.; Einenkel, H.

    2011-05-15

    A compact electron cyclotron resonance proton source has been developed and installed recently at thePaul Scherrer Institute's high intensity proton accelerator. Operation at the ion source test stand and the accelerator demonstrates a high reliability and stability of the new source. When operated at a 10 - 12 mA net proton current the lifetime of the source exceeds 2000 h. The essential development steps towards the observed performance are described.

  3. Constituent Quark and Diquark Properties from Small Angle Proton--Proton Elastic Scattering at High Energies

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Bzdak, A.

    2007-01-01

    Small momentum transfer elastic proton-proton cross-section at high energies is calculated assuming the nucleon composed of two constituents -- a quark and a diquark. A comparison to data (described very well up to -t approx 2 GeV2/c) allows to determine some properties of the constituents. While quark turns out fairly small, the diquark appears to be rather large, comparable to the size of the proton.

  4. Local Equation of State for Protons, and Implications for Proton Heating in the Solar Wind.

    NASA Astrophysics Data System (ADS)

    Zaslavsky, A.; Maksimovic, M.; Kasper, J. C.

    2017-12-01

    The solar wind protons temperature is observed to decrease with distance to the Sun at a slower rate than expected from an adiabatic expansion law: the protons are therefore said to be heated. This observation raises the question of the evaluation of the heating rate, and the question of the heat source.These questions have been investigated by previous authors by gathering proton data on various distances to the Sun, using spacecraft as Helios or Ulysses, and then computing the radial derivative of the proton temperature in order to obtain a heating rate from the internal energy equation. The problem of such an approach is the computation of the radial derivative of the temperature profile, for which uncertainties are very large, given the dispersion of the temperatures measured at a given distance.An alternative approach, that we develop in this paper, consists in looking for an equation of state that links locally the pressure (or temperature) to the mass density. If such a relation exists then one can evaluate the proton heating rate on a local basis, without having any space derivative to compute.Here we use several years of STEREO and WIND proton data to search for polytropic equation of state. We show that such relationships are indeed a good approximation in given solar wind's velocity intervals and deduce the associated protons heating rates as a function of solar wind's speed. The obtained heating rates are shown to scale from around 1 kW/kg in the slow wind to around 10 kW/kg in the fast wind, in remarkable agreement with the rate of energy observed by previous authors to cascade in solar wind's MHD turbulence at 1 AU. These results therefore support the idea of proton turbulent heating in the solar wind.

  5. Resonance frequency broadening of wave-particle interaction in tokamaks due to Alfvénic eigenmode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Guo; Gorelenkov, Nikolai N.; Duarte, Vinicius N.

    We use the guiding center code ORBIT to study the broadening of resonances and the parametric dependence of the resonance frequency broadening widthmore » $$\\Delta\\Omega$$ on the nonlinear particle trapping frequency $$\\omega_b$$ of wave-particle interaction with specific examples using realistic equilibrium DIII-D shot 159243 (Collins et al. 2016 Phys. Rev. Lett. 116 095001). When the mode amplitude is small, the pendulum approximation for energetic particle dynamics near the resonance is found to be applicable and the ratio of the resonance frequency width to the deeply trapped bounce frequency $$\\Delta\\Omega/\\omega_b$$ equals 4, as predicted by theory. Lastly, it is found that as the mode amplitude increases, the coefficient $$a=\\Delta\\Omega/\\omega_b$$ becomes increasingly smaller because of the breaking down of the nonlinear pendulum approximation for the wave-particle interaction.« less

  6. Resonance frequency broadening of wave-particle interaction in tokamaks due to Alfvénic eigenmode

    DOE PAGES

    Meng, Guo; Gorelenkov, Nikolai N.; Duarte, Vinicius N.; ...

    2018-01-19

    We use the guiding center code ORBIT to study the broadening of resonances and the parametric dependence of the resonance frequency broadening widthmore » $$\\Delta\\Omega$$ on the nonlinear particle trapping frequency $$\\omega_b$$ of wave-particle interaction with specific examples using realistic equilibrium DIII-D shot 159243 (Collins et al. 2016 Phys. Rev. Lett. 116 095001). When the mode amplitude is small, the pendulum approximation for energetic particle dynamics near the resonance is found to be applicable and the ratio of the resonance frequency width to the deeply trapped bounce frequency $$\\Delta\\Omega/\\omega_b$$ equals 4, as predicted by theory. Lastly, it is found that as the mode amplitude increases, the coefficient $$a=\\Delta\\Omega/\\omega_b$$ becomes increasingly smaller because of the breaking down of the nonlinear pendulum approximation for the wave-particle interaction.« less

  7. Measuring the contribution of low Bjorken-x gluons to the proton spin with polarized proton-proton collisions

    NASA Astrophysics Data System (ADS)

    Wolin, Scott Justin

    The PHENIX experiment is one of two detectors located at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory in Upton, NY. Understanding the spin structure of the proton is a central goal at RHIC, the only polarized proton-on-proton collider in existence. The PHENIX spin program has two primary objectives. The first is to improve the constraints on the polarized parton distributions of the anti-u and anti-d quarks within the proton. The second objective is to improve the constraint on the gluon spin contribution to the proton spin, DeltaG. The focus of this thesis is the second objective. PHENIX experiment has been successful at providing the first meaningful constraints on DeltaG, along with STAR, the other detector located at RHIC. These constraints have, in fact, eliminated the extreme scenarios for gluon polarization through measurements of the double spin asymmetry, ALL, between the cross section of like and unlike sign helicity pp interactions. ALL measurements can be performed with a variety of final states at PHENIX. Until 2009, these final states were only measured for pseudo-rapidities of |eta| < 0.35. This range of eta is referred to as mid-rapidity. These mid-rapidity measurements, like the polarized DIS measurements, suffer from a limited kinematic reach. Final states containing a measured particle with pT [special character omitted] 1 GeV/c are considered to have occurred in the hard scattering domain where the pp interaction is well approximated as an interaction of a quark or gluon in one proton and a quark or gluon in the second proton. Each of these interacting particles has a momentum fraction, x, of its parent proton's momentum. The gluon polarization is dependent on the momentum fraction and the net gluon polarization can be written as the integral of the momentum fraction dependent polarization: DeltaG = f(1,0)Delta g(x)dx. The momentum fractions of the two interacting particles give information about the final state

  8. SU-E-T-482: In Vivo Dosimetry of An Anthropomorphic Phantom by Using the RADPOS System for Proton Beam Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohno, R; Motegi, K; Hotta, K

    Purpose: Delivered doses in an anthropomorphic phantom were evaluated by using the RADPOS system for proton beam therapy. Methods: The RADPOS in vivo dosimetry system combines an electromagnetic positioning sensor with MOSFET dosimetry, allowing simultaneous online measurements of dose and spatial position. Through the RADPOS system, dose evaluation points can be determined. In vivo proton dosimetry was evaluated by using the RADPOS system and anthropomorphic head and neck phantom. MOSFET doses measured at 3D positions obtained with the RADPOS were compared to the treatment plan values that were calculated by a simplified Monte Carlo (SMC) method. Although the MOSFET responsemore » depends strongly on the linear energy transfer (LET) of proton beam, the MOSFET responses to proton beams were corrected with the SMC. Here, the SMC calculated only dose deposition determined by the experimental depth–dose distribution and lateral displacement of protons due to both multiple scattering effect in materials and incident angle. As a Result, the SMC could quickly calculate accurate doses in even heterogeneities. Results: In vivo dosimetry by using the RADPOS, as well as the MOSFET doses agreed in comparison with calculations by the SMC in the range of −3.0% to 8.3%. Most measurement errors occurred because of the uncertainties of dose calculations due to the position error of 1 mm. Conclusion: We evaluated the delivered doses in the anthropomorphic phantom by using the RADPOS system for proton beam therapy. The MOSFET doses agreed in comparison with calculations by the SMC within the measurement error. Therefore, we could successfully control the uncertainties of the measurement positions by using the RADPOS system within 1 mm in in vivo proton dosimetry. We aim for the clinical application of in vivo proton dosimetry with this RADPOS system.« less

  9. Cavity-ring-down Doppler-broadening primary thermometry

    NASA Astrophysics Data System (ADS)

    Gotti, Riccardo; Moretti, Luigi; Gatti, Davide; Castrillo, Antonio; Galzerano, Gianluca; Laporta, Paolo; Gianfrani, Livio; Marangoni, Marco

    2018-01-01

    A step forward in Doppler-broadening thermometry is demonstrated using a comb-assisted cavity-ring-down spectroscopic approach applied to an isolated near-infrared line of carbon dioxide at thermodynamic equilibrium. Specifically, the line-shape of the Pe(12 ) line of the (30012 )←(00001 ) band of C O2 at 1.578 µm is accurately measured and its Doppler width extracted from a refined multispectrum fitting procedure accounting for the speed dependence of the relaxation rates, which were found to play a role even at the very low pressures explored, from 1 to 7 Pa. The thermodynamic gas temperature is retrieved with relative uncertainties of 8 ×10-6 (type A) and 11 ×10-6 (type B), which ranks the system at the first place among optical methods. Thanks to a measurement time of only ≈5 h , the technique represents a promising pathway toward the optical determination of the thermodynamic temperature with a global uncertainty at the 10-6 level.

  10. Photoproduction of vector mesons in proton-proton ultraperipheral collisions at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Xie, Ya-Ping; Chen, Xurong

    2018-05-01

    Photoproduction of vector mesons is computed with dipole model in proton-proton ultraperipheral collisions (UPCs) at the CERN Large Hadron Collider (LHC). The dipole model framework is employed in the calculations of vector mesons production in diffractive processes. Parameters of the bCGC model are refitted with the latest inclusive deep inelastic scattering experimental data. Employing the bCGC model and boosted Gaussian light-cone wave function for vector mesons, we obtain the prediction of rapidity distributions of J/ψ and ψ(2s) mesons in proton-proton ultraperipheral collisions at the LHC. The predictions give a good description of the experimental data of LHCb. Predictions of ϕ and ω mesons are also evaluated in this paper.

  11. Broadening of the infrared absorption lines at reduced temperatures. II - Carbon monoxide in an atmosphere of carbon dioxide.

    NASA Technical Reports Server (NTRS)

    Tubbs, L. D.; Williams, D.

    1972-01-01

    The strengths of the rotational lines in the R branch of the CO fundamental have been determined at temperatures of 298, 202, and 132 K by means of a high-resolution spectrograph. The results can be used to determine line strengths at other temperatures by means of the Herman-Wallis relation or by considerations of the populations of the rotational levels in the ground vibrational state. Parameters describing the self-broadening and carbon dioxide broadening of CO lines have been determined at 298 and 202 K. The results are compared with other recent experimental and theoretical studies.

  12. Shrink-wrapping water to conduct protons

    NASA Astrophysics Data System (ADS)

    Shimizu, George K. H.

    2017-11-01

    For proton-conducting metal-organic frameworks (MOFs) to find application as the electrolyte in proton-exchange membrane fuel cells, materials with better stability and conductivity are required. Now, a structurally flexible MOF that is also highly stable is demonstrated to possess high proton conductivity over a range of humidities.

  13. Measurement of charged pion, kaon, and proton production in proton-proton collisions at √{s }=13 TeV

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Waltenberger, W.; Wulz, C.-E.; Dvornikov, O.; Makarenko, V.; Mossolov, V.; Suarez Gonzalez, J.; Zykunov, V.; Shumeiko, N.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Ruan, M.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Abdelalim, A. A.; Mohammed, Y.; Salama, E.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ã.-.; Saxena, P.; Schoerner-Sadenius, T.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Baus, C.; Berger, J.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Katkov, I.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Pasztor, G.; Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Bhawandeep, U.; Chawla, R.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Fallavollita, F.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Mariani, V.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chistov, R.; Danilov, M.; Popova, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Gribushin, A.; Khein, L.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Lukina, O.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Volkov, P.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Yang, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Squires, M.; Stolp, D.; Tos, K.; Tripathi, M.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Weber, M.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Bunn, J.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, Y.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Bein, S.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Prosper, H.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Jung, K.; Sandoval Gonzalez, I. D.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Forthomme, L.; Kenny, R. P.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Kumar, A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Shi, X.; Sun, J.; Wang, F.; Xie, W.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Belknap, D. A.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration

    2017-12-01

    Transverse momentum spectra of charged pions, kaons, and protons are measured in proton-proton collisions at √{s }=13 TeV with the CMS detector at the LHC. The particles, identified via their energy loss in the silicon tracker, are measured in the transverse momentum range of pT≈0.1 - 1.7 GeV /c and rapidities |y | <1 . The pT spectra and integrated yields are compared to previous results at smaller √{s } and to predictions of Monte Carlo event generators. The average pT increases with particle mass and charged particle multiplicity of the event. Comparisons with previous CMS results at √{s }=0.9 , 2.76, and 7 TeV show that the average pT and the ratios of hadron yields feature very similar dependences on the particle multiplicity in the event, independently of the center-of-mass energy of the pp collision.

  14. Dosimetric study of uniform scanning proton therapy planning for prostate cancer patients with a metal hip prosthesis, and comparison with volumetric‐modulated arc therapy

    PubMed Central

    Cheng, ChihYao; Zheng, Yuanshui; Hsi, Wen; Zeidan, Omar; Schreuder, Niek; Vargas, Carlos; Larson, Gary

    2014-01-01

    The main purposes of this study were to 1) investigate the dosimetric quality of uniform scanning proton therapy planning (USPT) for prostate cancer patients with a metal hip prosthesis, and 2) compare the dosimetric results of USPT with that of volumetric‐modulated arc therapy (VMAT). Proton plans for prostate cancer (four cases) were generated in XiO treatment planning system (TPS). The beam arrangement in each proton plan consisted of three fields (two oblique fields and one lateral or slightly angled field), and the proton beams passing through a metal hip prosthesis was avoided. Dose calculations in proton plans were performed using the pencil beam algorithm. From each proton plan, planning target volume (PTV) coverage value (i.e., relative volume of the PTV receiving the prescription dose of 79.2 CGE) was recorded. The VMAT prostate planning was done using two arcs in the Eclipse TPS utilizing 6 MV X‐rays, and beam entrance through metallic hip prosthesis was avoided. Dose computation in the VMAT plans was done using anisotropic analytical algorithm, and calculated VMAT plans were then normalized such that the PTV coverage in the VMAT plan was the same as in the proton plan of the corresponding case. The dose‐volume histograms of calculated treatment plans were used to evaluate the dosimetric quality of USPT and VMAT. In comparison to the proton plans, on average, the maximum and mean doses to the PTV were higher in the VMAT plans by 1.4% and 0.5%, respectively, whereas the minimum PTV dose was lower in the VMAT plans by 3.4%. The proton plans had lower (or better) average homogeneity index (HI) of 0.03 compared to the one for VMAT (HI = 0.04). The relative rectal volume exposed to radiation was lower in the proton plan, with an average absolute difference ranging from 0.1% to 32.6%. In contrast, using proton planning, the relative bladder volume exposed to radiation was higher at high‐dose region with an average absolute difference ranging from 0

  15. Dosimetric verification in water of a Monte Carlo treatment planning tool for proton, helium, carbon and oxygen ion beams at the Heidelberg Ion Beam Therapy Center

    NASA Astrophysics Data System (ADS)

    Tessonnier, T.; Böhlen, T. T.; Ceruti, F.; Ferrari, A.; Sala, P.; Brons, S.; Haberer, T.; Debus, J.; Parodi, K.; Mairani, A.

    2017-08-01

    The introduction of ‘new’ ion species in particle therapy needs to be supported by a thorough assessment of their dosimetric properties and by treatment planning comparisons with clinically used proton and carbon ion beams. In addition to the latter two ions, helium and oxygen ion beams are foreseen at the Heidelberg Ion Beam Therapy Center (HIT) as potential assets for improving clinical outcomes in the near future. We present in this study a dosimetric validation of a FLUKA-based Monte Carlo treatment planning tool (MCTP) for protons, helium, carbon and oxygen ions for spread-out Bragg peaks in water. The comparisons between the ions show the dosimetric advantages of helium and heavier ion beams in terms of their distal and lateral fall-offs with respect to protons, reducing the lateral size of the region receiving 50% of the planned dose up to 12 mm. However, carbon and oxygen ions showed significant doses beyond the target due to the higher fragmentation tail compared to lighter ions (p and He), up to 25%. The Monte Carlo predictions were found to be in excellent geometrical agreement with the measurements, with deviations below 1 mm for all parameters investigated such as target and lateral size as well as distal fall-offs. Measured and simulated absolute dose values agreed within about 2.5% on the overall dose distributions. The MCTP tool, which supports the usage of multiple state-of-the-art relative biological effectiveness models, will provide a solid engine for treatment planning comparisons at HIT.

  16. Impact of spot size on plan quality of spot scanning proton radiosurgery for peripheral brain lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dongxu, E-mail: dongxu-wang@uiowa.edu; Dirksen, Blake; Hyer, Daniel E.

    Purpose: To determine the plan quality of proton spot scanning (SS) radiosurgery as a function of spot size (in-air sigma) in comparison to x-ray radiosurgery for treating peripheral brain lesions. Methods: Single-field optimized (SFO) proton SS plans with sigma ranging from 1 to 8 mm, cone-based x-ray radiosurgery (Cone), and x-ray volumetric modulated arc therapy (VMAT) plans were generated for 11 patients. Plans were evaluated using secondary cancer risk and brain necrosis normal tissue complication probability (NTCP). Results: For all patients, secondary cancer is a negligible risk compared to brain necrosis NTCP. Secondary cancer risk was lower in proton SSmore » plans than in photon plans regardless of spot size (p = 0.001). Brain necrosis NTCP increased monotonically from an average of 2.34/100 (range 0.42/100–4.49/100) to 6.05/100 (range 1.38/100–11.6/100) as sigma increased from 1 to 8 mm, compared to the average of 6.01/100 (range 0.82/100–11.5/100) for Cone and 5.22/100 (range 1.37/100–8.00/100) for VMAT. An in-air sigma less than 4.3 mm was required for proton SS plans to reduce NTCP over photon techniques for the cohort of patients studied with statistical significance (p = 0.0186). Proton SS plans with in-air sigma larger than 7.1 mm had significantly greater brain necrosis NTCP than photon techniques (p = 0.0322). Conclusions: For treating peripheral brain lesions—where proton therapy would be expected to have the greatest depth-dose advantage over photon therapy—the lateral penumbra strongly impacts the SS plan quality relative to photon techniques: proton beamlet sigma at patient surface must be small (<7.1 mm for three-beam single-field optimized SS plans) in order to achieve comparable or smaller brain necrosis NTCP relative to photon radiosurgery techniques. Achieving such small in-air sigma values at low energy (<70 MeV) is a major technological challenge in commercially available proton therapy systems.« less

  17. Proton radiography in three dimensions: A proof of principle of a new technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raytchev, Milen; Seco, Joao

    2013-10-15

    Purpose: Monte Carlo simulations were used to investigate a range of phantom configurations to establish enabling three-dimensional proton radiographic techniques.Methods: A large parameter space of stacked phantom geometries composed of tissue inhomogeneity materials such as lung, bone, and cartilage inserted within water background were simulated using a purposefully modified version of TOPAS, an application running on top of the GEANT4 Monte Carlo code. The phantoms were grouped in two classes, one with the inhomogeneity inserted only half-way in the lateral direction and another with complete inhomogeneity insertion. The former class was used to calculate the track count and the energymore » fluence of the protons as they exit the phantoms either having traversed the inhomogeneity or not. The latter class was used to calculate one yield value accounting for loss of protons due to physical processes only and another yield value accounting for deliberately discarded protons due to large scattering angles. A graphical fingerprinting method was developed to determine the inhomogeneity thickness and location within the phantom based on track count and energy fluence information. Two additional yield values extended this method to the general case which also determines the inhomogeneity material and the phantom thickness.Results: The graphical fingerprinting method was manually validated for two, and automatically tested for all, tissue materials using an exhaustive set of inhomogeneity geometries for 16 cm thick phantoms. Unique recognition of test phantom configurations was achieved in the large majority of cases. The method in the general case was further tested using an exhaustive set of inhomogeneity and phantom tissues and geometries where the phantom thicknesses ranged between 8 and 24 cm. Unique recognition of the test phantom configurations was achieved only for part of the phantom parameter space. The correlations between the remaining false positive

  18. The "heartbeat of the proton"

    NASA Astrophysics Data System (ADS)

    Weisskopf, Victor F.

    Once Nino came to my office to tell me about his ideas of studying lepton pair production at PS. I was still not Director General, but Research Director at CERN. In addition to (e+e-) and (μ+μ-) pairs, he wanted to search for (e±μ∓) pairs as a signature of a new lepton carrying its own lepton number. He told me that if such a lepton existed with one GeV mass, it would have escaped detection in hadron accelerator experiments for two reasons: i) it would decay with a lifetime of order 10-11 sec and ii) because there is no π → μ mechanism for such a heavy new lepton: for its production a time-like photon would be needed. Time-like photons could be produced in hadronic interactions: for example in (bar{p}p) annihilation. This was before Lederman-Schwartz and Steinberger had discovered the two neutrinos. To think of a "sequential" Heavy Lepton and to work out the possible ways to get it in a hadron machine was for me extremely interesting Nino had just finished his first high precision work on the muon (g-2). It was some time after the Rochester Conference in 1960. I gave Nino the following suggestion: if you want to search for something so revolutionary as a Heavy Lepton carrying its own lepton number you should work out a proposal for a series of experiments where the study of lepton pairs (e+e-) and (μ+μ-) could be justified in terms of physics accepted by the community. In addition a high intensity antiproton beam was needed. He came later to tell me that he had two very good friends, both excellent engineers: Mario Morpurgo and Guido Petrucci. A very high intensity antiproton beam could be built to study the electromagnetic form factor of the proton in the time-like region. If the proton was "point-like" in the time-like region, the rate of time-like photons yielding (e+e-) and (μ+μ-) pairs could be accessible to experimental observation, thus allowing to establish some limits on the new Heavy Lepton mass, or to see it, via the (e±μ∓) channel. The

  19. High-energy proton irradiation of C57Bl6 mice under hindlimb unloading

    NASA Astrophysics Data System (ADS)

    Mendonca, Marc; Todd, Paul; Orschell, Christie; Chin-Sinex, Helen; Farr, Jonathan; Klein, Susan; Sokol, Paul

    2012-07-01

    Solar proton events (SPEs) pose substantial risk for crewmembers on deep space missions. It has been shown that low gravity and ionizing radiation both produce transient anemia and immunodeficiencies. We utilized the C57Bl/6 based hindlimb suspension model to investigate the consequences of hindlimb-unloading induced immune suppression on the sensitivity to whole body irradiation with modulated 208 MeV protons. Eight-week old C57Bl/6 female mice were conditioned by hindlimb-unloading. Serial CBC and hematocrit assays by HEMAVET were accumulated for the hindlimb-unloaded mice and parallel control animals subjected to identical conditions without unloading. One week of hindlimb-unloading resulted in a persistent, statistically significant 10% reduction in RBC count and a persistent, statistically significant 35% drop in lymphocyte count. This inhibition is consistent with published observations of low Earth orbit flown mice and with crewmember blood analyses. In our experiments the cell count suppression was sustained for the entire six-week period of observation and persisted for at least 7 days beyond the period of active hindlimb-unloading. C57Bl/6 mice were also irradiated with 208 MeV Spread Out Bragg Peak (SOBP) protons at the Midwest Proton Radiotherapy Institute at the Indiana University Cyclotron Facility. We found that at 8.5 Gy hindlimb-unloaded mice were significantly more radiation sensitive with 35 lethalities out of 51 mice versus 15 out of 45 control (non-suspended) mice within 30 days of receiving 8.5 Gy of SOBP protons (p =0.001). Both control and hindlimb-unloaded stocktickerCBC analyses of 8.5 Gy proton irradiated and control mice by HEMAVET demonstrated severe reductions in WBC counts (Lymphocytes and PMNs) by day 2 post-irradiation, followed a week to ten days later by reductions in platelets, and then reductions in RBCs about 2 weeks post-irradiation. Recovery of all blood components commenced by three weeks post-irradiation. CBC analyses of 8

  20. Air- and N2-Broadening Coefficients and Pressure-Shift Coefficients in the C-12(O2-16) Laser Bands

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Smith, Mary Ann H.; Rinsland, Curtis P.

    1998-01-01

    In this paper we report the pressure broadening and the pressure-induced line shift coefficients for 46 individual rovibrational lines in both the (12)C(16)O2, 00(sup 0)1-(10(sup 0)0-02(sup 0)0)I, and 00(sup 0)1-(10(sup 0)0-02(sup 0)0)II, laser bands (laser band I centered at 960.959/cm and laser band II centered at 1063.735/cm) determined from spectra recorded with the McMath-Pierce Fourier transform spectrometer. The results were obtained from analysis of 10 long-path laboratory absorption spectra recorded at room temperature using a multispectrum nonlinear least-squares technique. Pressure effects caused by both air and nitrogen have been investigated. The air-broadening coefficients determined in this study agree well with the values in the 1996 HITRAN database; ratios and standard deviations of the ratios of the present air-broadening measurements to the 1996 HITRAN values for the two laser bands are: 1.005(15) for laser band I and 1.005(14) for laser band II. Broadening by nitrogen is 3 to 4% larger than that of air. The pressure-induced line shift coefficients are found to be transition dependent and different for the P- and R-branch lines with same J" value. No noticeable differences in the shift coefficients caused by air and nitrogen were found. The results obtained are compared with available values previously reported in the literature.